
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Brandon Satrom

Building Polyfills
Web Platform APIs for the Present and Future

www.allitebooks.com

http://www.allitebooks.org

Building Polyfills

by Brandon Satrom

Copyright © 2014 Brandon Satrom. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian Anderson

Production Editor: Nicole Shelby

Proofreader: Sharon Wilkey

Cover Designer: Randy Comer

Interior Designer: David Futato

Illustrator: Rebecca Demarest

February 2014: First Edition

Revision History for the First Edition:

2014-02-14: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449370732 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Building Polyfills, the image of a beech marten, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37073-2

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370732
http://www.allitebooks.org

Table of Contents

Preface. vii
Foreword. xiii

Part I. Building Polyfills

1. The Current State of Web Polyfills. 3
Polyfilling: Past, Present, and Future 3
What Is a Polyfill (and What Is It Not)? 4
Types of Polyfills 5

The Shim 5
The Opt-In Polyfill 7
The Drop-In Polyfill 9
The Forward Polyfill 10

Why Polyfills Still Matter 11

2. Principles and Practices of Polyfill Development. 13
Building Responsible Polyfills 13

The Polyfill Vision Statement 14
Principles of Responsible Polyfill Development 16

Read the Spec 16
Respect the API, If Possible 17
Mind (Only) the Gaps 18
Think Like A Browser Developer 19
Build With Performance in Mind 19
Plan for Obsolescence 20

3. Building Your First Polyfill, Part 1: Getting Started. 23
The HTML5 Forms Polyfill 23

Why Use a Library? 25

iii

www.allitebooks.com

http://www.allitebooks.org

Setting Up Your Polyfill Project 26
Choosing a Source Control Solution 26
Setting Up the Initial Project Structure 27

Specifying the API 28
Initializing an Opt-In Polyfill 29

Deciding What to Build 30
Adding Basic Features 31

Creating a Sample Form 31
Color Support 36
To Feature Detect or Not to Feature Detect 39
Adding Opt-In Overrides to Your Polyfill 40

Beefing Up Your Polyfill with Additional Features 42
Adding Support for the Number Type 42
Refactoring Type Support 45
Adding Input Types 3-n 46

Building Utility Polyfills 49
Polyfilling Visual Features With CSS 50
Testing Your Work Across Browsers 53

Installing the Evergreen Browsers 53
Testing in OldIE 54
Cross-Browser Testing and Verification with Online Services 56

4. Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing. 59
Setting Up Your Project Workflow 59

Package and Dependency Management 60
Build and Workflow Management 60
Automated and Cross-Browser Testing 61
Continuous Integration 61

Jump-Starting Your Workflow 62
Configuring npm 62
Configuring Grunt 63

Adding Unit Tests to Your Polyfill 66
Configuring Unit Tests with Jasmine 66
Red to Green: Making the First Tests Pass 69
Running Jasmine Tests via Grunt 70
Configuring Jasmine for the Browser and the Console 72

Automating Cross-Browser Polyfill Testing 73
Configuring Cross-Browser Tests with Karma 74

Making Karma, Jasmine, and the Browser Play Nice 76
Automating Polyfill Development with Grunt Tasks 77
Performing Remote Testing with Travis CI 79

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The Bottom Line: Use What Works for You! 80

5. Building Your First Polyfill, Part 3: Performance and Edge-Case Testing. 83
Building for Performance 83

1. Set Up Performance Benchmarks 84
2. Don’t Execute Code Too Early or Too Often 84
3. Iterate Until You’re Happy, Then Iterate Some More 91
Running Performance Benchmarks 103
Tune It But Don’t Overdo It 104

Dealing with Browser-Specific Edge Cases 104
Mobile-Specific Considerations 110

File Size Matters 110
Always Test on Devices 111

Part II. Prollyfilling and the Future of the Web Platform

6. The Future of Polyfilling. 115
Polyfilling: Not Just For Older Browsers 115
Prollyfilling: Extending the Web Forward 115
Prollyfills In Action: Prollyfilling CSS 116

Using HitchJS to Experiment with CSS 117
Building Your Own Hitches 120

Prollyfills in Action: ServiceWorker 122
Prollyfills in Action: Web Components 124

Templates 125
Shadow DOM 126
Custom Elements 127
HTML Imports 128
Creating Custom Elements with AngularJS 129
Creating Custom Elements with Polymer 129

Strategies for Polyfilling Experimental APIs 131
Expect the API to Change 132
Don’t Be Afraid to Try Something New 132

7. Building Your First Prollyfill. 133
Prollyfills vs. Polyfills: What’s the Difference? 133
The Resource Priorities Prollyfill 134
Specifying the API and Deciding What to Build 137
Setting Up Your Prollyfill Project 139
Adding Prollyfill Features 140

The First Test: Feature Detection 140

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

The Second Test: Initial lazyload Functionality 142
The First Refactor: Cleaning Up the Tests 143
The Third Test: Modifying the Public API 144
The Fourth Test: Supporting Additional Element Types 145
The Second Refactor: Completing Element Type Support 146
The Fifth Test: Completing Initial Support 148
The Final Test: Supporting the lazyloaded Event 149

What’s Next? 150
Suggesting an API Modification 151
Building for Performance 151

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

If you play a game of word association with a room full of frontend developers, polyfill
will no doubt receive mention from more than a few participants. This word—tradi‐
tionally a synonym for fallback, spackle, or patch—was unfamiliar to many developers
until just a few years ago, but has become a staple of conversations about modern and
open web technologies. And while polyfilling has traditionally operated as a practice
for delivering modern features to nonmodern browsers (oldIE, meaning IE6–8, is in‐
creasingly a synonym for older browsers), the concept has expanded over the last few
years to include the addition of new and experimental platform features to all browsers,
including the newest and most cutting-edge.

Before our eyes, the practice of polyfilling is evolving from an adoption technique to a
full-blown design pattern that allows developers to “spackle” their browsers with what‐
ever semantics they wish. AngularJS, a very popular and fast-growing app framework,
encourages this practice by enabling developers to use directives to add custom HTML
tags and components to their applications.

Design by polyfill extends beyond frameworks as well. One such example is the Web
Components effort, a set of specifications in the W3C designed to make the creation of
custom semantics and encapsulated components a feature in the browser itself. With

Web Components, if you want a <calendar> component, you need only create one
yourself, or grab one from a third party. It’s a powerful idea, and if the concept takes off,
it will unlock a new set of capabilities for web developers while adding new depth and
richness to the applications we create.

Who This Book Is For
When it comes to the art of patching browser capabilities via polyfills, developers fall
into two camps: those using polyfills to provide modern web platform capabilities in
their sites, and those building polyfills for the broader web community. The book is
primarily focused on the latter camp, and is intended to serve as an introduction to

vii

www.allitebooks.com

http://www.allitebooks.org

polyfilling, to provide a set of principles and practical guidelines for building reliable
polyfills, and finally, to provide a road map for the future of polyfilling itself. However,
even if you’re a JavaScript developer not especially interested in building polyfills, there’s
a lot of useful content in this book in the realm of test-driven development (TDD),
JavaScript build workflows, and performance optimizations.

At present, countless articles and book chapters exist that cover the subject of polyfilling.
However, in nearly every case, these articles are targeted at polyfill consumers, not the
intrepid developers who build these libraries. One notable exception is Addy Osmani’s
guide for polyfill developers, an introductory read that I highly recommend. Beyond
Addy’s article, there are few resources, online or in print, that cover the topic of polyfills
from the viewpoint of the developer. A lack of definitive resources for building these
libraries means that we must strike out on our own, or slowly dig through other libraries
for patterns and ideas.

My sincere hope is that this book will close the gap by serving as a field guide for polyfill
developers. We’ll start with a cursory introduction to polyfilling on the web platform,
and I’ll share some principles and guidelines for building polyfills that developers can
rely on. Once the guidelines have been established, we’ll shift the discussion to an in-
depth walk-through of building a real-life, reasonably complex polyfills.

Once I’ve covered the ins and outs of building polyfills, the last two chapters will shift
to focus on that emerging trend on the web platform: the forward polyfill, or prollyfill.
This pattern, as I’ve mentioned already, enables developers to test and work with emerg‐
ing concepts, sometimes ahead of the browser vendors themselves. By the time we’re
done, you’ll have all the tools you need to build reliable polyfills for the present, and the
future, of the Web.

How This Book Is Organized
This book is organized into two parts. In the first part, we discuss the ins and outs of
polyfill development, starting with the current landscape of polyfilling in Chapter 1. In
Chapter 2, I’ll introduce some principles and practices for the polyfill developer, guid‐
ance that I hope you’ll find useful regardless of the type of polyfill you plan to build.
Then, in Chapters 3 through 5, we’ll dig deep into polyfill development with a real-life
library. In Chapter 3, I’ll introduce our sample project, an HTML5 Forms polyfill, and
we’ll build out several features for this library. In Chapter 4, we’ll talk about testing and
build workflows, and I’ll introduce you to some tools that can make your life easier as
a polyfill developer. Finally, we’ll wrap up Part I with a discussion on polyfill perfor‐
mance in Chapter 5, where I’ll walk through a couple of cases in which we can improve
the speed of our polyfill.

In Part II of this book, we’ll turn our focus to the future of polyfilling, the prollyfill. In
Chapter 6, I’ll introduce the concept of prollyfilling and walk through examples of this

viii | Preface

www.allitebooks.com

http://bit.ly/osmani-guide
http://bit.ly/osmani-guide
http://www.allitebooks.org

important variation on the polyfill. Finally, in Chapter 7, we’ll close out the book with
another walk-through and build a prollyfill for a cutting-edge web platform specifica‐
tion. Once we’re done, you should be well equipped to jump into the present, and future,
of polyfilling.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | ix

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://bit.ly/kendo-ui and http://bit.ly/slacker-js.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Polyfills by Brandon Satrom
(O’Reilly). Copyright 2014 Brandon Satrom, 978-1-449-37073-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

x | Preface

http://bit.ly/kendo-ui
http://bit.ly/slacker-js
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/building-polyfills.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First and foremost, thanks go to my wife Sarah, whose faith in me is equal parts un‐
flagging and humbling. I am ever grateful for her encouragement to take on these kinds
of projects, while also keeping me honest and engaged with my family. It is because of
her that I don’t have to apologize for countless nights of missed dinners and time lost
with our family, because no such sacrifice was required. I hope you’ll agree that the
quality of this work did not suffer, as a result.

I’m also grateful to my boys, Benjamin and Jack, whose smiles and playful spirits remind
me of what really matters each and every day. Thanks for all of the writing interruptions
for hugs and kisses, boys! Also, to Matthew Satrom. Though this book was completed
before you were born, you were constantly in my thoughts. I can’t wait to meet you in
early 2014!

Thanks also to my fantastic colleagues at Telerik, especially Burke Holland, who re‐
viewed every single line of this book, ran and critiqued all of the code samples, and
provided immensely helpful feedback when I was deep in the weeds of polyfilling.
Thanks also to Addy Osmani who, in addition to writing the foreword, provided early

Preface | xi

http://bit.ly/building-polyfills
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

input on the proposal and table of contents for this book. Any “aha!” moments you have
while reading this book are due to the insight of these two gentlemen, while any excla‐
mations to the opposite effect are solely the fault of its author.

I also want to thank Brian Kardell for his helpful insights about the origin of the term
“prollyfill” and his work on both HitchJS and as chair of the Extensible Web W3C
Community Group. Thanks for all of your hard work extending the Web forward, Brian.

Finally, I want to thank my editors, Simon St. Laurent and Brian Anderson. This project
started as a vision in Simon’s head, and I’m grateful to have been given the opportunity
to turn that vision into reality. I am grateful to have had Simon’s keen insight, experience,
and guidance early on in this project. Brian helped shepherd this project from its very
raw stages all the way through to the end, and I am in his debt for keeping things on
track, helping me manage my deadlines, and driving this book to completion. Thank
you both.

xii | Preface

Foreword

Polyfill, a word synonymous with fallback, is a term which has become all too familiar
with developers building modern web apps targeting nonmodern browsers. In the past,
however, much of the guidance around authoring them was limited to out of date re‐
sources, often leaving developers to fend for their own.

I’m happy to say that the lack of a definitive resource for learning how to build robust
polyfills is filled by this excellent book, allowing you to spend less time striking out on
your own and more time building a reliable solution that won’t let you down.

In this practical guide, you will be shown through the fundamental principles and
guidelines for building polyfills that users can rely on. Learn how to responsibly match
the APIs specified by the web platform features you’re targeting and deliver a solution
which is focused and does one thing well. It can be a challenge to understand the ins
and outs of platform features, but this guide cuts through the nonsense, helping you
understand web platform features so that you can deliver complete polyfills which won’t
frustrate developers.

In the fast-paced world of frontend development, polyfills are no longer strictly used
for delivering modern features to older browsers, but also to enable developers to use
experimental platform features. This hints at the potential for polyfills to be around far
longer than when all browsers become evergreen (or auto-updating).

Walk through an introduction to polyfilling, discover the core principles for building
reliable polyfills, and then move on to an in-depth explanation of developing a real-
world, nontrivial polyfill—the HTML5 Forms polyfill. Brandon talks about emerging
trends such as the “experimental feature” polyfill and how this has been a successful
pattern for W3C specifications like Web Components, encompassing Custom Elements,
HTML Imports, and other technologies.

xiii

Building Polyfills is an invaluable resource which will teach you lessons that can be easily
reused to write reliable polyfills today and in the future. I found it filled with useful best
practices, original thinking, and pro-tips that make it an important reference book for
anyone serious about writing cross-browser polyfills.

— Addy Osmani, Chrome Developer Relations

xiv | Foreword

PART I

Building Polyfills

In this first part, we’ll explore the world of polyfills as they exist today. In Chapter 1,
we’ll discuss the origin of polyfilling, and in Chapter 2 I’ll share some principles and
practices for the polyfill developer to consider when building libraries for cross-browser
compatability. In Chapters 3 through 5, we’ll get our hands dirty and walk through
building a polyfill for the HTML5 Forms specification. We’ll also cover testing and build
workflows and the all-important subject of polyfill performance.

CHAPTER 1

The Current State of Web Polyfills

Like many things in the world of technology, the practice of polyfilling is far older than
its name. And even though the term itself is a recent addition to the web platform canon,
as long as we’ve had multiple browsers with varying and inconsistent implementations
of web platform features—which is to say, always—we’ve had the practice of polyfilling
in one form or another. Every developer who mucks with the string prototype to add a

trim() function for oldIE is creating a polyfill, as is the developer who lovingly adds a

homegrown window.addEventListner() function to IE8 in the hopes of simplifying
her event management code. As a practice, polyfilling has been around for a while, but
its naming coincides with a time in which its use on the Web exploded: the advent of
HTML5.

Polyfilling: Past, Present, and Future
Much as the term Ajax was minted at a time when JavaScript and XHR apps were a daily
occurrence, the practice of polyfilling was given a name at a time when developers were
increasingly looking at HTML5 and thinking, “How can I get some of that in my site?”
Part of the answer at the time was polyfilling and, in many ways, it’s been an adequate
answer. For the last several years, polyfilling has allowed developers to target multiple
browsers with new technologies, while not leaving those oldIE users behind. This is
polyfilling’s past, and also its present. We still live in a world where the predominant
use case for a polyfill is “filling the gaps” in a browser that doesn’t yet natively provide
a feature or features that we need.

But were that the end of the story, I don’t think an entire book on polyfills would be very
interesting. Thankfully, the story continues, and a subtle shift in how we look at poly‐
filling is taking place in the web community. Rather than simply building polyfills to
modernize older browsers, a new class of library is starting to emerge. These libraries,
sometimes called forward polyfills, or prollyfills, are created with the goal of trying out
new ideas and unproven specifications on the Web. This can be something as simple as

3

a library that adds classes to JavaScript in accordance with the ECMAScript 6 specifi‐
cation, or as complex as a full suite of libraries that provide advance support for Web
Components, as is the case with the Polymer project.

It’s a powerful pattern, and this new class of polyfill is shifting the balance of power on
the Web. Increasingly, these libraries are allowing us lowly web developers to emerge as
not just authors of websites and applications, but also as architects of the web platform
itself. It’s an exciting time to be a polyfiller.

What Is a Polyfill (and What Is It Not)?
In 2009, as he was working on the popular book Introducing HTML5, Remy Sharp
conceived and coined the term polyfill to describe a practice that he’d seen increasingly
applied by developers adopting HTML5 and CSS3 in their applications. In a post on his
blog from 2010, Sharp defines the term as follows:

A polyfill, or polyfiller, is a piece of code (or plug-in) that provides the technology that
you, the developer, expect the browser to provide natively. Flattening the API landscape
if you will.

For those of you in the United Kingdom, the term polyfill might evoke images of Polyfilla,
a paste that Britons use to cover cracks and holes in wall (we call this spackling in the
United States). It’s a convenient image that happens to describe exactly what good poly‐
fills strive to do: fill in the gaps and holes of browsers so that a developer can go to work
on a smooth, consistent surface.

The term also has a more direct, deeper meaning if analyzed in parts, poly and fill. Fill
denotes the hole in the browser that the library exists to address, and poly means that
the problem can be solved by using any number of techniques. JavaScript might be the
predominant polyfilling approach, but there are several examples of polyfills that fall
back to plug-ins like Silverlight or Flash to provide functionality to the browser. Notable
examples of these are the excanvas plug-in, which falls back to Silverlight to provide
Canvas support in IE6–8 and mediaelement.js, which provides consistent HTML5 me‐
dia support across browsers with Flash.

According to Sharp, the practice that we now refer to as polyfilling needed a new term
because existing terms didn’t convey the key idea of replicating the API of native browser
features by using JavaScript. Polyfills are distinct from both shimming and progressive
enhancement in that regard. The term shim does describe a library or bit of code that
adds features or functionality to the browser, and may even provide an abstraction that
spans cross-browser inconsistencies, but these libraries often introduce their own, spe‐
cialized APIs. jQuery, which was first introduced as a way to normalize Document
Object Model (DOM) interactions across browsers, is a popular example of a shim.

Progressive enhancement and its cousin graceful degradation are also inadequate for
this idea, as these terms imply building sites that either gain functionality with

4 | Chapter 1: The Current State of Web Polyfills

www.allitebooks.com

http://polymer-project.org
http://bit.ly/remysharp
http://bit.ly/xcanvas
http://mediaelementjs.com/
http://www.allitebooks.org

JavaScript, or that remain functional in the absence of JavaScript, respectively. Polyfills
often depend on JavaScript in the absence of native browser functionality and, as such,
neither of these terms seem appropriate.

When Remy Sharp conceived of the term polyfill, he wasn’t attempting to coin a new
phrase for posterity. Instead, he was hoping to describe an increasingly relevant practice
that would undoubtedly become even more important as HTML5 and the open Web
continued to proliferate throughout the development world. The web development
community needed a term to describe this burgeoning practice, and Sharp had one to
offer. In spite of periodic assertions from corners of the community that the word should
be changed, “polyfilling” has caught on. I don’t expect that it, or the practice that it
represents, will go anywhere any time soon. Quite the opposite, in fact, which is why
you hold this book in your hands.

Types of Polyfills
With a proper explanation of polyfills out of the way, let’s spend a few moments talking
about types of polyfills. While the formal definition does have a pure, simple interpre‐
tation, polyfills, in reality, don’t always respect this definition to a T. In this section, we’ll
look at some common “classes” of polyfills, as well as the pros and cons of choosing each
approach when building polyfills of your own.

The Shim
A shim is not a polyfill, at least by definition, but is often considered a worthy member
of the polyfilling conversation nonetheless. This is for two reasons:

1. People often use the two terms interchangeably.

2. Shims and polyfills share similar goals, in spite of their differing approaches.

A shim is a piece of code, typically JavaScript, that’s designed to add functionality into
the browser that is not already present, or to bring a level of consistency to various
browser implementations. Unlike the various polyfill types, shims do not map their
functionality to a built-in or specified browser API, instead choosing to implement their
own API that developers must learn and adopt in order to leverage provided
functionality.

As stated previously, jQuery—specifically the library’s sizzle selector engine and event
management functionality—is a classic example of a shim. Selecting an element from
the DOM with jQuery requires a specific action on the part of the developer. For in‐
stance, consider the simple selector in Example 1-1.

Types of Polyfills | 5

Example 1-1. Using jQuery to interact with the DOM

$('#myTodoList').find('li.dueToday')

 .css('background-color','yellow')

 .end()

 .find('li.overdue')

 .css('background-color', 'red');

The preceding sample is doing a number of things, not the least of which is performing
three separate element selections from the DOM. This code is guaranteed to work con‐
sistently across all browsers, from IE6 on up, and there’s nothing special I need to do to
manage how jQuery performs this selection from one browser to the next. Internally,
jQuery does manage a complex algorithm for DOM selection based on the browser,

using HTML5’s querySelector/querySelectorAll syntax, if supported, or the classic

document.GetElementById/document.GetElementsByClassName approach, if not.
However, because all of this functionality is abstracted into a separate API from that

specified by the W3C—as opposed to adding its functionality to the document object
prototype—it fits more into the definition of a shim than that of a polyfill.

In spite of the fact that shims are not polyfills, they do still offer some advantages to
developers. For starters, their opt-in nature means that developers leveraging their
functionality aren’t doing so by accident. Instead they are choosing to learn a new API
because the library provides needed functionality. Because a library-specific API is being
used, developers are guaranteed not to override built-in browser functionality in an
unexpected way, which can happen with pure polyfills. A developer adopting a shim
(hopefully) knows what he’s getting himself into and has chosen that shim for a reason.

Another advantage to shims is that the library developer isn’t constrained by the speci‐
fied API of built-in functionality. If the developer wishes to diverge from the API to
improve the library’s interface for developers—for instance, the chainability of jQuery
selectors and methods—she is free to do so without worrying about affecting or breaking
a standardized API. With pure polyfills, respecting the API is vital, as we’ll discuss in
Chapter 2.

While some see the opt-in nature of shims as an advantage, others disagree. To these
developers, adopting a shim is akin to taking on technical debt that requires rework to
remove. Imagine a developer who adopts a shim with the goal of gaining some as-yet
unimplemented functionality in the browser. If, in the future, the browsers add this
native functionality, the developer must remove or update the shim to offer the native
experience—and concomitant performance gains—to the end user. As long as the shim
remains in place, the end user will receive a less than ideal experience in their perfectly
capable browser. Polyfills, on the other hand, tend to have a built-in answer to this
problem.

6 | Chapter 1: The Current State of Web Polyfills

The Opt-In Polyfill
The next polyfill type on our list is the opt-in polyfill. These libraries qualify as polyfills
in the sense that they operate on standard APIs. However, they are opt-in because the
developer must take action in order to leverage them in their apps.

As an example, consider PIE, a popular CSS3 polyfill. PIE, aka Progressive Internet

Explorer, exists to provide CSS3 features like border-radius, box-shadow, and border-

image to, you guessed it, IE6, 7, and 8. The library works in one of two ways. Developers
can use the relevant CSS properties, as normal, and then opt into PIE by including a

behavior property at the end of the CSS rule, as shown in Example 1-2.

Example 1-2. Activate PIE using CSS

#myElement {

 background: #DDD;

 padding: 2em;

 -o-border-radius: 1em;

 -moz-border-radius: 1em;

 -webkit-border-radius: 1em;

 border-radius: 1em;

 `behavior: url(PIE.htc);`

}

This IE-specific line of CSS activates the PIE polyfill.

In this example, the opt-in happens when the browser’s parser encounters the behav

ior property. If the behavior property looks foreign to you, you’re not alone. This
property, which is supported only in Internet Explorer 5.5 through 9, allows you to use
CSS to add a script to a selector, with the purpose of implementing something Microsoft
calls HTML components. The .htc extension on our PIE file is an HTML component-
specific format that’s essentially markup and JavaScript, plus some additional vendor-
specific elements that define the components themselves.

When loaded, PIE.htc uses the CSS properties defined in its loading selector—border-

radius in this case—to fake those features using the HTC component. So, PIE is using
a decade-old IE-specific hack in order to add support for CSS3 to IE6–8. That’s pretty

clever! Not only that; it’s also efficient. Since other browsers don’t support the behav

ior property, its existence will be overlooked, and the HTC file will be neither loaded
nor parsed by browsers that already support CSS3 properties.

If the thought of using DHTML to fake CSS3 support in IE isn’t your cup o’ tea, you can
also use JavaScript to add PIE to your apps, as illustrated in Example 1-3. Of course,

you’ll still need to define the CSS for border-radius, as well as include any of PIE’s
dependencies, like jQuery.

Types of Polyfills | 7

http://bit.ly/pie-poly
http://bit.ly/html-dhtml

Example 1-3. Activate PIE using JavaScript

Modernizr.load({

 test: Modernizr.borderradius,

 nope: 'PIE.js',

 complete: function() {

 if (window.PIE) {

 // Select all elements with class 'rounded'

 $('.rounded').each(function() {

 PIE.attach(this);

 });

 }

 }

});

In this example, we start by leveraging Modernizr’s built-in Modernizr.load capabilities

to determine if the CSS3 border-radius property is supported. A key feature of Mod

ernizr.load is the ability to conditionally load a script file based on the truthiness or
falsiness of a test. When using polyfills, it’s important to consider the users who don’t
need a polyfill just as much as those who do. Ideally, you never want to load a library

that a user doesn’t need, and polyfills are no exception. With Modernizr.load, you can
load libraries only when the browser requires them.

Hopefully, you’re familiar with Modernizr as a polyfill consumer. If
not, I highly recommend learning the library since, as a polyfill au‐
thor, you’ll need to be intimately familiar with the various ways de‐
velopers perform feature detection before loading your library. That
is, unless you do the feature detection for them, which we’ll discuss
shortly.

Once PIE.js is loaded, the complete function is called. At this point, I opt in to PIE by

selecting elements from the DOM via jQuery and passing each element into the PIE.at

tach function, which does the fancy corner-rounding for me. It’s a bit more code than
the HTML Components approach, but still simple enough to implement.

Opt-in polyfills have a couple of advantages over shims. For starters, these libraries work
against standard APIs, meaning that developers don’t have to learn a new API or write
a bunch of needless boilerplate in order to use them. What’s more, the footprint of these
libraries is relatively small and self-contained. When the developer no longer needs to
support an opt-in polyfill, the offending code is easy to track down and remove.

On the other hand, opt-in polyfills do still introduce technical debt in the form of extra
code, even if that code is often just a few lines. A line or two of extra code is all fine and
good with example code, but imagine having to add opt-in support for a few hundred
selectors across a large site. Now, imagine what it would be like to remove all of that
opt-in code a few years down the road, and deal with the regression that would

8 | Chapter 1: The Current State of Web Polyfills

http://modernizr.com

undoubtedly pop up. Doesn’t sound like much fun, does it? Thankfully, there are other
approaches that are designed to be a bit more hands-off.

The Drop-In Polyfill
The next type of polyfill is the so-called drop-in, or pure, polyfill. I’ve chosen this name
to indicate a polyfill that adheres to the API of the feature in question while requiring
no additional configuration beyond a script include. When included, a drop-in polyfill
goes to work by adding its functionality to the browser, typically via additions to Java‐

Script prototypes or globals such as window or document. Once the polyfill is included
and parsed, the developer is free to rely on standard functionality without the need for
additional feature detects or user agent interrogation.

Let’s take a look at a simple, yet appropriate example: String.trim(). This useful func‐
tion is included in all modern browsers, but is notably absent from IE6–8. If you’re
tasked with supporting these browsers, and you absolutely must trim your strings with
a built-in function, you can add that needed functionality via a drop-in polyfill, as il‐
lustrated in Example 1-4, courtesy of Mozilla’s excellent MDN documentation.

Example 1-4. Creating a drop-in polyfill for String.trim()

if(!String.prototype.trim) {

 String.prototype.trim = function () {

 return this.replace(/^\s+|\s+$/g,'');

 };

}

In this example, we’re checking to see whether the trim function exists on the String
prototype, and if not, we add a new function that performs a simple RegEx replacement.
To leverage this polyfill, a developer need only include it somewhere in her app before

the first call to trim. If trim does indeed exist, our polyfill isn’t needed and thus, nothing
happens. It may seem like a minor point, but it’s important to note that a good polyfill
is aware of its execution environment and adds functionality only when needed. We’ll
talk more about this in the next chapter.

The biggest advantage of the drop-in polyfill is hands-off adoption for the developer.
Because the workflow for using this type of library is a single step—include the library
in your app—this type of approach is quite appealing for many developers looking for
a quick solution that takes them out of the feature-detection game.

That said, the biggest benefit of the drop-in polyfill can also be a weakness. A drop-in
polyfill can mislead developers into thinking that the API they are looking to leverage
is both fully supported and implemented in a similar manner as standard approaches
taken by already-supporting browsers. If your polyfill deviates from the spec in any way,
or behaves unpredictably, you run the risk of confusing or annoying the developers who
rely on your tool. As a result, building drop-in polyfills is not for the faint of heart.

Types of Polyfills | 9

http://bit.ly/mdn-docu

Taking on this type of library necessitates a deep understanding of the relevant spec, as
well as some knowledge of the inner-workings of compliant implementations in other
browsers.

It also requires that you either support the entire API of a given feature, or be crystal
clear which aspects you do and don’t support in your documentation. By definition,
drop-in polyfills can be subdivided into two types: those that fully fill a complete feature
API, and those that fill only a portion of that API. An example of the latter subtype is
the excanvas polyfill, which supports much of the HTML5 Canvas API, but does not

support the rendering of text via the standard fillText and strokeText APIs. For text,
the developer must either avoid using these functions, or leverage an additional polyfill
for this functionality. While a partial drop-in polyfill is still useful, it somewhat obviates
the benefits of building this type of library because the developer still must feature-test
for those aspects of the API not supported by your library. It’s not always possible or
sensible to fully support a standard API, of course, but where possible, you should make
every effort to do so when building this type of polyfill.

The Forward Polyfill
The last type of polyfill is an emerging type: the prollyfill. According to Alex Sexton,
who coined the term, a prollyfill is “a polyfill for a not yet standardized API.” These
types of libraries, also called forward polyfills, are unique in that they are not designed
to fill existing standards gaps, as polyfills have done traditionally. Rather, these polyfills
are designed to test new or emerging standards inside browsers.

The prollyfill pattern is becoming more and more important to web developers and
standards authors alike because they create a feedback loop between developers, spec
authors, and browser engineers that’s heretofore been unseen on the Web. Traditionally,
browser standardization has been very top-down, and often developers have no op‐
portunity to experiment with new APIs until these are implemented in one or more
browsers. If you want proof that top-down standardization isn’t always the best ap‐
proach, see XHTML 2.0, Microformats, Web SQL, Application Cache, or any number
of standards that failed to gain traction once subjected to real-world use by developers.

Prollyfills bring a bottom-up, democratized process to the open Web by allowing de‐
velopers to experiment with and iterate on candidate APIs before they move into stable
browser implementations. Prollyfills can also emerge from new libraries and languages
that weren’t formed with the goal of shaking up the world of web standards. Take Cof‐
feeScript, for instance, as shown in Example 1-5:

Example 1-5. CoffeeScript’s “dash rocket” and fat-arrow function syntax

square = (x) -> x * x

cube = (x) => square(x) * x

10 | Chapter 1: The Current State of Web Polyfills

http://bit.ly/xcanvas
http://bit.ly/prolly-tweet

Though CoffeeScript isn’t really a prollyfill, it’s a great example of how developer adop‐
tion of an idea can drive the standardization process, as evidenced by TC39’s acceptance
of fat-arrow function syntax into ECMAScript 6, as shown in Example 1-6:

Example 1-6. Arrow function syntax in ECMAScript 6

let square = x => x * x;

let cube = x => square(x) * x;

Prollyfills are an important concept, and they are a big reason for my writing this book.
A deeper discussion of these, the rationale behind them, and various approaches for
building prollyfills can be found in the latter half of this book. In the meantime, let’s talk
about why polyfills should and do still matter to web developers.

Why Polyfills Still Matter
In the current era of faster updates to browsers—including our favorite punching bag,
Internet Explorer—it’s easy to dismiss polyfills as a passing fad that have offered little
more than to inform the early days of HTML5 adoption. In some ways, this claim isn’t
unfair. When polyfills first entered the developer consciousness, their goal was singular:
easing the path to HTML5 adoption by reducing the amount of platform-specific code
needed to leverage a new feature. Had the polyfilling pattern never grown beyond this
scope, we probably wouldn’t be talking about them much these days.

And yet, polyfills remain part of our everyday frontend vernacular. I believe this is for
a couple of reasons. For starters, for HTML5 and beyond (the open Web, if you will),
browser vendors continue to adopt emerging technologies at differing paces. While
some browsers tend to add features as early as possible for the purpose of developer
testing and feedback, others prefer to iterate solely in the standards bodies, adopting
features only as they move further through the process and mature. It’s outside the scope
of this book and well beyond this author’s temperament to render judgment on which
of these approaches is more ideal, but these differences are worth mentioning because
they point to the continued importance of polyfills. As long as browser x implements a
different set of emerging features than browsers y or z, the need for polyfills remains.

Another reason for the continued importance of the polyfill is the emergence of the
prollyfill, as described in the last section. The prollyfill variation has appeared over the
last year in response to an ever-growing number of developers desiring to get involved
earlier in the standards process. Prollyfills are a tool of choice for developers looking to
“extend the Web forward.” In the recent Extensible Web Manifesto, polyfills were de‐
scribed as the catalyst that aids in creating a “virtuous cycle” between web developers
and the W3C’s standardization process:

Why Polyfills Still Matter | 11

Making new features easy to understand and polyfill introduces a virtuous cycle:

• Developers can ramp up more quickly on new APIs, providing quicker feedback to

the platform while the APIs are still the most malleable.

• Mistakes in APIs can be corrected quickly by the developers who use them, and

library authors who serve them, providing high-fidelity, critical feedback to browser
vendors and platform designers.

• Library authors can experiment with new APIs and create more cow-paths for the

platform to pave.

— The Extensible Web Manifesto
 http://extensiblewebmanifesto.org

Over the last few years, polyfills have grown from an HTML5 adoption tactic to a pop‐
ular library development pattern and, finally, a full-blown standardization strategy. As
a polyfill developer, you may be building your library with one of these targets in mind.
Regardless of whether your polyfill is practical, tactical, or strategic in nature, you’ll
want to keep some guiding principles and practices in mind as you set out to build your
library. We’ll discuss these in the next chapter.

12 | Chapter 1: The Current State of Web Polyfills

CHAPTER 2

Principles and Practices of
Polyfill Development

In Chapter 1, we talked about what polyfills are and are not, various types of polyfills,
and why these libraries are still important in the world of web development. In this
chapter, I’m going to introduce the concept of responsible polyfills, that is, polyfills built
to serve the needs of the consuming web developer. It’s a common sense subject, for
sure, but one that I still believe warrants explicit discussion.

Once I’ve introduced the responsible polyfills concept, I’ll share some principles of poly‐
fill development to use as your guide, regardless of the type of library you’re building.
For many of these principles, the discussion will include some of the common challenges
and pitfalls of polyfilling you might run into.

Building Responsible Polyfills
When building a polyfill, or any library for that matter, you’ll probably start by asking
yourself several questions. For instance:

• Why is this library necessary?

• Why am I building it?

• What should this library do?

• How will developers want to use it?

For most of us, the act of creating a new piece of software is driven by an unmet need
of our own. If you encounter a platform feature not supported in all browsers, and think
that you have the skills, time, and desire to create a polyfill, that may be all it takes to
get you started. And, as the developer and first user of your library, you often have a
good handle on answering most or all of the preceding questions.

13

Even still, if you’re creating a library as open source or publicly available software, you’re
probably not doing it for yourself alone. You may be the first user, but you don’t want
to be the only one. As such, planning the creation of your polyfill should be an exercise
in thinking about the variety of needs and contexts that developers will bring to the
table when using your library.

I call this practice responsible polyfilling because it’s not just for yourself and your needs,
but for the needs of as many developers as possible. This means that you need to think
about things like performance, the execution environment, and even planned obsoles‐
cence. Responsible polyfills are polyfills that don’t make the developer pay a tax for using
them, be that a performance tax, maintenance tax, or otherwise. Responsible polyfills
give developers options based on their context and needs, and don’t force them down
a narrow path built solely for the library developer.

Responsible polyfilling is about having a clear purpose, clear goals and non-goals, and
about following a couple of basic principles during development. We’ll talk about prin‐
ciples in the next section, but the first and most important step in polyfill development
is to define the purpose and goals for your library.

The Polyfill Vision Statement
Much like a vision statement for a new company or product, your polyfill needs some‐
thing to clearly define why it exists, what benefit it provides, and what it will and won’t
offer to developers. This little bit of advance planning helps drive development and
clearly communicates your values. It can also spur additional feedback from developers
who might have different or expanded needs from your library, thereby allowing you
to enhance your polyfill, if doing so makes sense.

All this vision statement babble might sound like a lot of work for an open source library,
but it doesn’t have to be. A half-hour spent defining what your polyfill is all about will
streamline your development, keep you focused on the things that matter, and save you
tons of time and headaches down the road.

Let’s look at an example. In the next few chapters, I’m going to walk step-by-step through
the construction of a polyfilling library that uses Kendo UI widgets to fill in the missing
or inconsistent parts of the HTML5 Forms experience across all browsers, including
IE7/8. When I started this project, I sat down and defined three things:

• The scope and vision for the library

• Its goals

• Its non-goals

This vision statement can be found on the home page for the project, but I’ll include it
here so you can see an example of what I mean:

14 | Chapter 2: Principles and Practices of Polyfill Development

www.allitebooks.com

http://www.kendoui.com
http://bit.ly/kendo-ui
http://www.allitebooks.org

Purpose and Goals of the Kendo UI HTML5 Forms Polyfill

The purpose of this project is to serve as a complete polyfill for HTML5 Forms func‐
tionality, including support for new input types (like color and datetime), new attributes
(like placeholder and pattern), and validation. This project includes built-in feature de‐
tection and, by default, will polyfill only those forms features not present in the user’s
browser. To polyfill forms features, Kendo UI widgets and framework features will be
used.

If developers prefer not to use the default behavior, they will be able to configure the
polyfill to always use Kendo UI widgets and features, even in cases where the browser
natively supports these.

This library will function as an opt-in polyfill, meaning that the developer will need to
initialize a form using Kendo UI’s imperative, plug-in syntax (e.g., $("form").kendo
Form();) or with declarative syntax on an HTML form element (for example, <form data-
role="form">).

Goals

• Provide a complete HTML5 Forms solution that leverages Kendo UI for visual

widgets and features such as validation.

• Enable developers to mark up forms using HTML5 Forms semantics and automat‐

ically gain support for these in nonsupporting browsers. Anecdotally, in a future
world where all browsers fully support the forms spec, a developer should be able
to remove the script reference for this library and the single attribute or line of code
that initializes it and have a nonbroken, fully functional experience.

• Ensure that performance is a feature. This library should tax the developer and end

user as little as possible, making the benefit of use far higher than the cost of devel‐
opment, maintenance, or performance.

Non-Goals

• This library will not support configurable or drop-in replacement for another UI/

widget library.

• This library will not diverge from the HTML5 Forms spec in order to add conve‐

nience features or nonstandard behaviors.

As you can see, in just a few hundred words, I’m able to clarify important features of
the library, why it exists, and even spend some time being specific about what the library
does and doesn’t do. If I hadn’t written this ahead of time, I might have missed important
features or configuration options, or overlooked the importance of performance. I
might have even taken on large, burdensome features—like swappable library support
—without thinking them through ahead of time.

When you set out to build your polyfill, spend an hour or so thinking about some of
those important Ws from journalism and composition: Who, What, Why, When,
Where, and of course, How. The exercise will provide you with laser-like focus and set
you up for success.

Building Responsible Polyfills | 15

http://bit.ly/html5-forms

Speaking of success, let’s build on our vision statement and talk about some principles
for building responsible polyfills.

Principles of Responsible Polyfill Development
I’m a big fan of guiding principles and patterns, and not so much a fan of lists of rules.
In my experience, it’s too easy to allow lists of rules to turn into checklists and, when
that happens, one can lose all sense of context around the current problem—meaning,
rules tend to be rote, often applied without context. Principles, on the other hand, en‐
courage the application of context because they force us to consider how to uniquely
apply a given principle to the current problem. Sometimes a principle will be incorpo‐
rated in a straightforward matter. In other scenarios, a given principle may not even
apply to the problem at hand. Either way, it’s up to the developer to decide, not the
crafter of the principles themselves.

With that bit of soapboxing out of the way, let’s talk about principles for responsible
polyfill development. Remember that the goal of responsible polyfilling is to build for
the needs of developers using your library. With that goal in mind, here are the six
principles that I believe can help you build reliable polyfills for other developers:

• Read the spec

• Respect the API, if possible

• Mind (only) the gaps

• Think like a browser developer

• Build with performance in mind

• Plan for obsolescence

Let’s talk about each of these in turn.

Read the Spec
I do a lot of reading. About half of my reading is technical (blog posts, articles, and
books) and the other half is not; things like great novels and books about the joys and
trials of raising three precocious boys. Across these, there are a lot of things I love to
read, and many things that require a monumental force of will for me to power through.

Specifications, be they the W3C or WHATWG variety, fall squarely into that latter cat‐
egory. If I’m being completely honest, and in a private conversation with a close friend,
I’d probably even admit that I’d rather paint my living room, pull up a lawn chair, and
watch that paint dry while licking 9-volt batteries, than willingly read a W3C
specification.

16 | Chapter 2: Principles and Practices of Polyfill Development

This is not to say that these specifications aren’t useful or even a worthwhile read. As a
matter of fact, they are enormously useful to their primary audience: browser imple‐
menters. And they are worth your time as a polyfill developer. Much like my four-year-
old needs to be reminded that eating vegetables is important, I have to be reminded
from time to time that specifications are very useful, even to us lowly web developers.

For the polyfill developer, reading and understanding a specification is almost as im‐
portant as it is to browser implementers themselves. As we’ll discuss in the next prin‐
ciple, reading the spec is the best way to understand what your polyfill needs to provide
and thus is essential. It’s the most rule-like of all these principles, but also the most
important. So pull up a chair, put on a pot of coffee, get yourself a Ludovico apparatus,
and get to work.

Respect the API, If Possible
When reading W3C specifications, you’ll often come across blocks of text and pseudo-
code, similar to those found in Figure 2-1. This code is called Web IDL, an interface
definition language designed for browsers. According to its specification, Web IDL “is
an IDL variant with a number of features that allow the behavior of common script
objects in the web platform to be specified more readily.”

Figure 2-1. Example WebIDL snippet for the HTML form element

So Web IDL specifies the interface that browsers are to use when building a standard
implementation, and browsers do exactly that. What’s more, most of them—perhaps
even all of them, but I can’t claim all without seeing Internet Explorer’s code base, which

Principles of Responsible Polyfill Development | 17

http://bit.ly/web-idl

is not open source—automatically generate Web IDL bindings directly from the spec-
defined IDL. Chrome even includes Web IDL docs for developers working with the
browser source.

While it’s true that not all W3C specifications use Web IDL at present,
the Web IDL spec itself was moved into Candidate Recommenda‐
tion status in early 2012, so it’s likely that the newer spec you’re look‐
ing to polyfill will be written using this syntax.

There’s no doubt that JavaScript API design is hard work. It’s easy to get it wrong, and
the chances of doing something you’ll later regret are high. Because of this, one of the
best parts of building polyfills is that your API is already defined for you! While W3C
specs contain a lot of information you’ll need to absorb for your polyfill, Web IDL is the
icing on the cupcake, giving you the exact shape of your API, and all you need to do is
make sense of it. What’s more, with efforts like WebIDL.js from the Extensible Web
Community Group, getting a boilerplate API for your library might soon be as easy as
running some IDL through the terminal.

The bottom line of this principle is that, most of the time, the API of your polyfill should
be a pretty cut and dried effort. My advice is to extract the defined interfaces from the
spec and make sure to implement those. No more, and no less.

Of course, this principle does have the caveat of “if possible.” For some libraries, you
might not be able to implement the entire API because part of the API depends on low-
level networking or platform features that aren’t available to you. For example, if you’re
building a polyfill for the DeviceOrientation Event spec, you might find it possible to

support the deviceorientation event via existing platform features, but not device

motion or other aspects of the spec. This is fine, of course, as long as you’re crystal clear
with your users that you’re providing an incomplete polyfill implementation by design.

In other cases, you might be dealing with a specification that has experienced changes
to its API. One example of this scenario is the CSS Flexbox module, which has changed
property syntax a couple of times during its lifetime while also experiencing early
browser implementations. If you’re maintaining a Flexbox library, chances are you’ll
need to support the legacy CSS property syntax in your implementation for a while. The
bottom line is this: specs and their APIs change, and building a polyfill might require
you to bridge the gap created by API changes, in addition to merely filling in the gaps
for browsers.

Mind (Only) the Gaps
This is a simple principle, but an important one to highlight nonetheless. When building
your polyfill, it’s important to never lose sight of the fact that your library’s purpose in

18 | Chapter 2: Principles and Practices of Polyfill Development

http://bit.ly/idl-blink
http://bit.ly/webidl-js
http://bit.ly/devo-spec
http://bit.ly/css-flexbox

life is to fill in the gaps in other browsers—or to iterate on experimental APIs, in the
case of a prollyfill—and nothing more. You should resist the temptation to add non-
standard features simply because you want them or developers are clamoring for them.
You can always create a separate shim that depends on your polyfill and add these
features, but you’d be wise to keep them out of your main library.

Of course, prollyfills, which we’ll discuss in Chapters 6 and 7, are an exception to this
principle. Because the point of a prollyfill is to help vet an emerging API, you should
experiment with new ideas and interfaces that you believe belong in the spec.

Think Like A Browser Developer
As I mentioned in the first principle, most W3C specifications are written by browser
developers for browser developers. And while efforts like the Extensible Web movement
are hoping to change that reality, for now, many of the specs in the standards pipeline
were written by the people who will be adding those features to our browsers. I’m not
going to weigh in here on whether that reality is or isn’t an ideal world, but I do bring
this point up to underscore an important fact: when you’re building polyfills, you need
to think like the C++ developer who is working on this feature in the browser. “Thinking
like a browser developer” can take a number of forms:

• Following feature and spec discussions on the appropriate W3C Working Group
mailing list.

• Following the implementation discussion in the issue trackers for Chrome or Fire‐
fox. Google and Mozilla developers do a very good job of working in the open, so
these trackers reveal a lot of insight into the various design decisions that go into
implementing a given feature.

• Asking questions of developers on Internet Relay Chat (IRC). Picking a browser
developer’s brain via IRC can be one of the best ways to tap into implementation
knowledge. It may sound daunting, but if you let these folks know that you’re
working on a polyfill for the feature they’re working on, most will be happy to help.
The Chrome team can be reached at #blink-dev on freenode, while Mozilla engi‐
neers typically hang out at #firefox on irc.mozilla.org. For more information on
getting started with IRC, check out #irchelp.

Build With Performance in Mind
If you talk to web developers who have been working with HTML5 for a couple of years,
you might discover that many hold the opinion that polyfills are nice, but too often,
slow. Sometimes, when developers create a polyfill, they’re interested first in covering
features. Once those are delivered, the developers usually pack up their gear and head
home, thinking the job is done.

Principles of Responsible Polyfill Development | 19

http://bit.ly/chr-issues
http://bit.ly/fire-comp
http://bit.ly/fire-comp
http://irc.mozilla.org
http://www.irchelp.org/

But the truth is, performance is important when adopting HTML5 features, even when
polyfilling older browsers. While your library cannot hope to match native browser
performance, you should make every effort to make your library as fast as possible.
After all, a poorly performing polyfill will end up being a bigger nightmare to end users
—and thus developers—than if the developer just omitted the nonstandard feature in
the first place.

There are a couple of ways you can build for performance. First, you can benchmark
your implementation against native (i.e., the browser) using a tool like JSPerf and then
iterate the heck out of your library until you can’t iterate anymore. Second, you can
create a robust set of unit tests with your polyfill, and make sure that these are tested
using a cross-browser automated testing framework, like Karma. We’ll look at both of
these strategies in Chapters 3 through 5.

Plan for Obsolescence
Polyfills, by their nature, are temporary. Unless you’re building a shim with a brand new
API—and thus, not a polyfill—your goal should never be to build the next jQuery or
Backbone. As a polyfill developer, recognize that you’re in the humbling business of
building libraries that you want to become irrelevant in the future. The good news is
that, for as long as developers need your library to fill in a key feature, it will be a welcome
addition to their toolset. But we should never forget that the ultimate goal is to push for
a world where these features exist native to all the browsers. It may seem that it goes
without saying, but planning for obsolescence, along with complementary principles
like “mind (only) the gaps,” will help you stay focused on polyfilling and only polyfilling,
while resisting the urge to morph your library into something that’s part polyfill and
part shim. A phrankenfill, if you will.

Take a look back at the principles for development, specifically the second bullet under
“Goals.” The second sentence indicates that a goal of my Kendo UI Forms polyfill is to
allow the developer to remove the library in a fully compliant browser and not lose any
functionality whatsoever. Not only does this keep me focused on the spec, and only the
spec, but it is an example of planning for obsolescence.

A great example of planned obsolescence comes from the Apache Cordova/PhoneGap
project. In a post entitled “PhoneGap Beliefs, Goals, and Philosophy,” Brian Leroux
states that “the ultimate goal of the PhoneGap project is to cease to exist.” He goes on
to explain this seemingly defeatist statement as anything but:

20 | Chapter 2: Principles and Practices of Polyfill Development

http://jsperf.com
http://bit.ly/karma-js
http://bit.ly/pg-goals

Our second goal is not nihilistic but is rather a commitment to standardization of the
Web as a platform. We believe in a Web open to everyone to participate however they
will. No locked doors. No walls. The things we do with PhoneGap are directly influenced
by the work we see at the W3C, WHATWG, and other research such as Mozilla’s WebAPI,
BONDI, WAC, webinos, webOS, Tizen, and the like.

Over the last five years, Apache Cordova (aka PhoneGap) has become the de facto
wrapper for building hybrid mobile apps with HTML5. It would be easy for the founders
and their benefactors to focus on sustaining this little kingdom of theirs. Instead, they
point to the open Web as the reason they exist, as well as the reason they one day hope
to shutter the project. It’s an admirable attitude, and one we’d all be wise to emulate
when building polyfills of our own.

Each of the preceding principles is designed to reinforce the goal of building responsible
polyfills for developers. If you build your polyfill with some or all of these principles in
mind, you’ll go a long way toward delivering a robust, dependable, well-performing
library that developers will love to use.

Now that we’ve talked about some of the key principles of building responsible polyfills,
let’s get to work. In the next chapter, I’ll walk you through building a complete polyfill,
step-by-step, using the principles found in this chapter.

Principles of Responsible Polyfill Development | 21

CHAPTER 3

Building Your First Polyfill,
Part 1: Getting Started

Over the last two chapters, we’ve covered why polyfilling is still important, as well as
some principles for responsible polyfill development. In this chapter, I’m going to walk
through some practical steps for building cross-browser polyfills via an actual, real-
world project that I created. We won’t go through every line of code or every excruciating
detail, but I will introduce you to some practical examples and considerations that you’ll
want to keep in mind for your own polyfill development, no matter the web platform
feature being targeted. We’ll start with a discussion on project setup and structure before
diving into setting up your API and deciding what you plan to build and not to build.
Then we’ll explore adding basic features and refactoring your polyfill as you expand
scope over time. We’ll then wrap up the chapter with a look at manual cross-browser
testing, and some tips for streamlining your cross-browser testing workflow.

The HTML5 Forms Polyfill
First, let’s take a look at our candidate library for the next two chapters: an HTML5
Forms polyfill. When I first set out to write this book, I considered a lot of different
options for a guinea pig polyfill to use. I wanted to target something that was reasonably
complex, but straightforward enough to introduce in bits and pieces, via text. I also
wanted to choose a technology whose implementation status across browsers was more
than just “supported in everything but IE.” And even though IE will factor into some of
the hairier aspects of our polyfill development, I wanted to walk through an example
with quirks in as many browsers as possible. For those purposes, there’s no better tech‐
nology to attempt to polyfill than HTML5 Forms.

What we know of today as “HTML5 Forms” was actually the first technology to be
proposed under the umbrella of what eventually became HTML5. First introduced out‐
side the W3C as Web Forms 2.0 by a consortium of browser vendors that included

23

Google, Mozilla, Opera Software, and Apple, this proposal arrived at a time when the
W3C was still pouring much of its effort into the now-defunct XHTML 2.0 specification.
As an outflow of Web Forms 2.0, these vendors formed the Web Hypertext Application
Technology Working Group (WHATWG), a sibling standards body to the W3C that
still exists today.

And while it is outside of the scope of this book to discuss the politics of HTML5, various
collected standards, and competing standards bodies, it is important to note that
HTML5 Forms has not only been around a while, but it’s still one of the most hotly
debated aspects of the HTML5 spec. While certain aspects of the Forms spec have near
universal support (for example, forms constraint validation), some of the more visual

aspects of the spec (new input types like number, color, and datetime) have yet to be
consistently implemented across all browsers, as illustrated in Figure 3-1. What’s more,
in some cases, for those browsers that do support certain types, the specifics of said
support are often inconsistent from one implementation to the next. This means that
you, the developer, might not get exactly the behavior you expect, every time, in every
browser.

HTML5 Forms is a minefield, and I can’t think of a better area in which to venture as a
polyfill developer. It’s a bit hairy, for sure, but this area of the spec is sufficiently complex
enough to expose many of the polyfilling practices that I introduced in the preceding
chapter.

In addition to targeting HTML5 Forms with my polyfill, I’ve chosen to leverage Kendo
UI to provide much of the functionality that my polyfill will deliver to older browsers,
from visual elements like color and date pickers, to key framework-level features like
form validation. All of the UI widgets and framework features I need for my polyfill are
available in the open source version of Kendo UI, which is available from its website.
That said, if you’re following along and prefer to instead use a UI library like jQuery
UI, you’re welcome to do so. In fact, I’ve built a version of this polyfill using jQuery UI,
and you can find it on GitHub. Very little of what I cover in this chapter is dependent
upon and applicable to only Kendo UI.

24 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

www.allitebooks.com

http://www.kendoui.com
http://jqueryui.com
http://jqueryui.com
http://bit.ly/ui-forms
http://www.allitebooks.org

Figure 3-1. Color inputs viewed in Opera, Chrome, and Firefox

Why Use a Library?
At this point, you may be asking yourself why I’ve chosen to use a library like jQuery
UI or Kendo UI at all. Why not just build the UI for each input type from scratch? It’s
a valid question, and in fact there are several great HTML5 Forms libraries out there
that take this approach. If you’re interested in taking a look at the code required to deliver
UI widgets from scratch, I encourage you to check one of these out.

In our case, however, I’ve chosen to use a UI library because it allows me to focus on
the process of building polyfills, which is, after all, what this book is about. By starting
with a library that I can plug in, I’m able to focus on tips and tricks that are common to

The HTML5 Forms Polyfill | 25

all types of polyfills, without getting bogged down in the very complex specifics of
building form UI by hand.

The HTML5 Forms polyfill we will be building over the next three
chapters can be found in its current form online on GitHub. The
project is actively maintained, and you’re welcome to view the source
after reading this book if you want to dig deeper into any specifics
that I was unable to cover here.

Finally, it’s worth mentioning that I’ve decided to build my HTML5 Forms polyfill as
an opt-in polyfill, as opposed to a drop-in library. While it’s certainly possible to do the
latter, I think the former is a better approach, in my case, for a couple of reasons. For
starters, since I’m using Kendo UI to power my widgets, and Kendo UI requires explicit
widget initialization, I feel that it’s appropriate for me to do the same with my polyfill
and require that the developer activate the capabilities of my polyfill. I’ve also chosen
to pursue an opt-in approach because the HTML5 Forms spec is so broad and complex
that I’m not sure if my library will ever be able to support every single corner of the spec
to the letter. By taking an opt-in approach, and documenting what I do and don’t sup‐
port, I can make sure that the developers know what they are buying into.

That said, even though my polyfill is opt-in, it doesn’t mean that I can’t future-proof my
library. Just as with a drop-in polyfill, my goal is to provide a polyfill that can be easily
removed (along with a line of code) when all browsers support the HTML5 Forms spec.

Setting Up Your Polyfill Project
Regardless of the technology you choose to target with your polyfill, the two most im‐
portant choices that you can make early on are:

• Which source control solution you plan to use

• What your initial project structure will look like.

Sure, you can start with “Source Control by Dropbox” at the beginning and name your

polyfill mylib.js if you’re just itching to get started, but a little bit of foresight and
planning is, in my opinion, just as important to polyfill development as the code you
write. As such, I’ll use the next few sections to talk about these early considerations.

Choosing a Source Control Solution
The first step is to think about how and where you’ll want to host your code so that
you’ve got a backup and full project history in case things go wrong so other developers
can find, leverage, and contribute to your project. For the first part, you’ll want to choose
a source control solution that’s open source and widely used. Two examples are Git and

26 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/kendo-ui
http://git-scm.com/

Mercurial. These two systems have a similar command-line syntax for working with
files and code repositories, so some developers will be comfortable working with either.
That said, Git is far and away the most popular source control system in use today, so
you’ll reach a larger body of potential collaborators by choosing that system.

When paired with a solid code-sharing site, your source control solution also gives you
a platform for making your polyfill available to the world. You can not only store your
polyfill source and history in these sites, but also make that source and history available
for others, which is hopefully your goal as a polyfill developer. Just as Git is the most
popular source control option around today, GitHub is the most popular option for
hosting and collaborating on all manner of Git-based open source software projects.
Other options worth considering, if GitHub is not your cup of tea, are Bitbucket, which
allows you to host both Git and Mercurial projects, and Microsoft’s CodePlex, which
supports Mercurial projects only. For the examples in this book, I’ve chosen Git as my
source control solution and GitHub for code sharing and distribution.

Setting Up the Initial Project Structure
Once I’ve chosen a source control solution, I’m ready to set up my project. I’ll start by
creating a new folder for my polyfill, called kendo-ui-forms in my usual development
folder on my machine. Then, I’ll open a terminal window in that directory and initialize

a new GitHub repo by running the git init command. Once you’ve initialized your
own local Git repository, you’ll want to connect it to the remote repository that will be

hosting your project online, which you can do by running the following command: git

remote add git@github.com:yourusername/your-project-name.git. If you’re not
familiar with setting up a new remote repository, head over to GitHub, create a new
repository for your project, and follow the on-screen instructions.

With that done, your local and remote repositories will be all set up, and it will be time
to add some essential project files. Here’s the basic project structure I recommend for
most open source polyfills (assuming a view from the folder root):

dist/
The minified and concatenated files you plan to distribute (the “binaries” for your
polyfill).

lib/
Any third party libraries that your polyfill depends on (jQuery, Underscore).

sample/
Sample and example code for the polyfill.

spec/
Home for your unit tests, which we’ll discuss in Chapter 4.

Setting Up Your Polyfill Project | 27

http://mercurial.selenic.com/
https://github.com/
http://www.bitbucket.com/
http://www.codeplex.com/

src/[js,css]
Source JavaScript and CSS files.

gitignore
A list of files for Git to ignore when found in your project. GitHub can create one
of these files for you when creating a new project. If you go that route, select the
Node template.

CHANGELOG.md
A laundry list of minor and breaking changes for each version of your library.

CONTRIBUTING.md
Essential if you plan to accept contributions for your project.

README.md
The readme file for your project. GitHub automatically treats this file as the main
entry point when anyone visits your project. It should describe the purpose and
goals of the polyfill—as I discussed in Chapter 1—features of the project, a road
map for the project, installation and usage instructions, and anything else you think
might be useful to consumers of or collaborators on your polyfill.

LICENSE.md
Every open source project needs a license. Which license you choose is up to you,
but permissive licenses, such as MIT and Apache 2.0, will garner more interest and,
possibly, participation from other developers. GitHub can also generate this file for
you, based on the license chosen at project creation.

Though I did take the LSAT once upon a time, please note that I am
not an attorney, nor do I play one on the Internet. As such, my opin‐
ions on licensing should not be confused for legal expertise. Your best
bet is to consult with a legal expert before choosing an open source
license. You can also visit Choose A License for more information
about the dizzying array of open source licenses available. But still,
you should talk to a lawyer if you want an expert legal perspective.

Specifying the API
Once your polyfill project is set up, your next important decision is determining how
other developers will “call” your polyfill, if at all. As you’ll recall, two of the important
subtypes of polyfills are the opt-in and drop-in types. If you’re building a drop-in polyfill,
that essentially means that developers need only include a reference to your library in
their projects. When your script is loaded, it automatically activates and goes to work.
For these types of polyfills, the API of your library is straightforward and should match
the API of the specified functionality you’re emulating as much as possible.

28 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://choosealicense.com/

If, on the other hand, you’re building an opt-in polyfill, you’ll need to provide some
mechanism for developers to activate your library. How you choose to expose your
polyfill to developers is up to you, but I recommend considering your audience, specif‐
ically what they are likely to expect and be comfortable with, as you design your API.
For examples of how other libraries expose their opt-in APIs, you can check out exam‐
ples on the Modernizr Polyfill List. Since the HTML5 Forms polyfill I’m building will
leverage Kendo UI, I’ve chosen to build my polyfill as a custom Kendo UI widget. By
doing so, I can use Kendo UI’s ready-made options for initializing my library. As a result,
I gain an initialization API for my polyfill that’s easy to use and familiar to developers,
especially those already familiar with Kendo UI.

Initializing an Opt-In Polyfill
Kendo UI allows developers to initialize widgets in one of two ways. I can use jQuery-
style widget initialization, as illustrated in Example 3-1, or I can use a declarative-style

declaration, which hinges on placing data-role attributes on relevant elements in my
markup. This approach is illustrated in Example 3-2. Note that the next few examples
assume the inclusion of jQuery, Kendo UI JavaScript, and Kendo UI CSS in the page.

Example 3-1. Initializing my Forms polyfill using JavaScript

<form id="myForm">

 <!-- Rest of form declaration -->

</form>

<script>

 $('#myForm').kendoForm();

</script>

Example 3-2. Initializing my Forms polyfill via declarative initialization

<form action="input.html" data-role="form">

 <!-- Rest of form declaration -->

</form>

<script>

 kendo.init(document.body);

</script>

To support both of these approaches in my polyfill, I’ll need to follow Kendo UI’s rec‐
ommended approach for creating custom widgets. First, I’ll create the core source file
for my polyfill in the src/ folder for my project. I’ll call it kendo.forms.js, which follows
a naming convention similar to other Kendo UI source files. Then, in my new source
file, I’ll include the code in Example 3-3.

Example 3-3. Initial skeleton for the Kendo UI Forms polyfill

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget;

Specifying the API | 29

http://bit.ly/mod-list

 var Form = Widget.extend({

 init: function(element, options) {

 // base call to widget initialization

 Widget.fn.init.call(this, element, options);

 },

 options: {

 // the name is what will appear in the kendo namespace (kendo.ui.Form).

 // The jQuery plug-in would be jQuery.fn.kendoForm.

 name: 'Form'

 }

 });

 ui.plugin(Form);

} (jQuery, kendo));

As illustrated here, my polyfill starts with an Immediately-Invoked Function Expres‐
sion (IIFE) that specifies my dependencies (jQuery and Kendo UI in this case). Next, I
create some local lookup variables to cache key parts of the Kendo UI namespace. Then,

I create a new Form variable by calling the kendo.ui.Widget.extend() method, which

takes care of handling the initialization types I specified. Finally, I’ll call the ken

do.ui.plugin() method and pass in my Form widget, which adds my polyfill to the
widget registry for runtime lookup and evaluation.

For my HTML5 Forms polyfill, this is all I need to create a public API for initializing
my library. With this skeleton code in place, I can now use either initialization method
described in Example 3-1 and Example 3-2, and things will resolve. My polyfill won’t
do anything at this point, but it will run without errors, so that’s progress!

With the opt-in API of our library set, we can move on to building out the core func‐
tionality of our polyfill. Regardless of the type of polyfill you’re building, much of the
API you’ll be exposing should already be decided for you via the specification for the
technology you’re targeting. As discussed in the preceding chapter, it’s important to
adhere to this specification as much as possible. If you’re planning to support an aspect
of the spec, you should try your best to support it as specced. You should also be clear
in your documentation and in-source comments about which aspects of the spec you
support and which you don’t.

Deciding What to Build
Speaking of which, the next important decision you need to make in your library is what
to build. Even if you do plan to support every nook and cranny of a spec with your
polyfill, you probably won’t be able to bang out full support over a weekend. You need
a plan, and if you’re anything like me, you probably want to target simple features and
“quick wins” first. This establishes a good foundation and a working polyfill before you
tackle the hairier aspects of support. If you’d rather target the hard stuff, that’s OK too!

30 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/i-ife
http://bit.ly/i-ife

In the context of HTML5 Forms, the simpler features are those new input types like

color, number, and datetime. Because Kendo UI Web has widgets for these, supporting
them is a simple matter of adding the Kendo UI widget when one of these types is found
on a form. Validation support, on the other hand, is a bit trickier, so I’m going to put
that off for later, perhaps after the first couple of releases.

Speaking of releases, this is probably a good time to think about the road map for your
polyfill. Assuming you’re talking about a complex feature, you’ll probably want to write
down what you plan to support, and when. For the HTML5 Forms polyfill, I chose to
include a road map in the readme for the project, which I’ve also included in Table 3-1.

Table 3-1. Road map for the Kendo UI Forms polyfill

Release Features

v0.1 Support upgrading all HTML5 input types (color, numeric, range, file, datetime, time, month, week).

v0.1.1 Button support and date type support.

v0.2 Add support for progress and datalist elements; add a placeholder fallback and search box UI; autocomplete attribute

support.

v0.3 Add validation support.

In addition to creating a road map and plan for your polyfill, you’ll want to consider
whether there’s anything under the technology umbrella of your polyfill that you don’t
plan to or cannot support. Sometimes it’s not possible to reliably polyfill an aspect of a
specification, so you’ll want to avoid even trying to support it. Other times, adding
support for a given feature is possible, but not something you’re prepared to take on.
No matter the reason, be sure that your road map is clear about what you’re not planning
to polyfill so that developers are informed when considering your library.

Adding Basic Features
So we’ve got our basic polyfill skeleton in place, an API for calling it, and a road map
for which features we plan to add. Now it’s time to get to work and add our first, real
feature. Of course, if we’re going to add features to our polyfill, we also need ways to
test them out, don’t we? In Chapter 4, I’ll discuss setting up unit and cross-browser
testing in depth, but in the meantime, let’s create a sample form that we can use to test
out our library as we work on it. This sample will serve as a live demonstration and part
of our docs when we publish our polyfill, so it’s something you’ll want to add to your
projects even if you’re also performing automated testing. Consider it a way to show off
all your hard work to your potential users.

Creating a Sample Form
To that end, let’s create a new HTML page in the samples/ folder and call it form.html.
Since our library is an HTML5 Forms polyfill, it makes sense that the sample page itself

Adding Basic Features | 31

contain a form showing off all of our bells and whistles. Since this sample page will also
serve as a part of my docs, the HTML page, which you can view in the online repo for
this project, will include references to bootstrap and some additional markup that I’ve
not included in Example 3-4. The relevant portion of this sample page, the form itself,
is shown in Table 3-1.

Example 3-4. Sample markup for the Forms polyfill

<form action="#" id="sampleForm">

 <fieldset>

 <legend>Essentials</legend>

 <div>

 <label for="name">Name</label>

 <input type="text" required placeholder="ex. Hugo Reyes" />

 </div>

 <div>

 <label for="email">Email</label>

 <input type="email" required placeholder="ex. hugo@dharma.com" />

 </div>

 <div>

 <label for="phone">Phone</label>

 <input type="tel" placeholder="ex. 555-555-5555"

 pattern="^[2-9]\d{2}-\d{3}-\d{4}$"

 title="Use a XXX-XXX-XXXX format" />

 </div>

 <div>

 <label for="phone">Gratuitous Search</label>

 <input type="search" id="search" />

 </div>

 </fieldset>

 <fieldset>

 <legend>Dates and Times</legend>

 <div>

 <label for="birthday">Birthday</label>

 <input type="date" />

 </div>

 <div>

 <label for="doctor">Next Doctor's Appointment</label>

 <input type="datetime-local" value="2012-12-14T19:00"/>

 </div>

 <div>

 <label for="favMonth">What month is it?</label>

 <input type="month" />

 </div>

 <div>

 <label for="favMonth">When is Shark Week?</label>

 <input type="week" />

 </div>

 <div>

 <label for="favMonth">What time is Beer O'Clock?</label>

 <input type="time" />

 </div>

32 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/kendo-ui
http://bit.ly/kendo-ui

 </fieldset>

 <fieldset>

 <legend>Other Stuff</legend>

 <div>

 <label for="age">Age</label>

 <input type="number" min=13 max=128 required placeholder="13 - 128" />

 </div>

 <div>

 <label for="color">Favorite Color</label>

 <input type="color" value="#fd49eb" />

 </div>

 <div>

 <label for="GPA">College GPA</label>

 <input type="range" min=0.0 max=4.0 value=3.0 step=0.25 />

 </div>

 <div>

 <label for="browser">Favorite Browser</label>

 <input type="text" list="browsers" />

 <datalist id="browsers">

 <option value="Chrome">

 <option value="Firefox">

 <option value="Internet Explorer">

 <option value="Opera">

 <option value="Safari">

 </datalist>

 </div>

 <div>

 <label for="picture">Recent Photo</label>

 <input type="file" />

 </div>

 </fieldset>

 <hr />

 <div>

 <div>Progress

 <progress id="completionPct" min=1 max=12 value=3></progress>

 </div>

 <input type="submit" value="Submit this mess!" />

 <input type="submit" formnovalidate value="Save for later" />

 </div>

</form>

As you can see from the sample, it’s a pretty robust form, and it also uses all of the new

HTML5 Forms features introduced in the spec, like new input types (such as color and

datetime), new attributes (like autocomplete, pattern, or required) and form vali‐
dation features. To give you an idea of what this form looks like in various browsers,
Figure 3-2 shows what our form looks like, by default, in Chrome 29, while Figure 3-3
shows what the form looks like in Safari 6.1. Notice the difference in the date fields, the

Adding Basic Features | 33

favorite color field, and others. We’ve certainly got our work cut out for us with this
polyfill, even without taking oldIE into account!

Figure 3-2. Sample form as viewed in Google Chrome 29

34 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

www.allitebooks.com

http://www.allitebooks.org

Figure 3-3. Sample form as viewed in Safari 6.1

Adding Basic Features | 35

With my sample form in place, I’ll next need to add a reference to my polyfill source
file. In Example 3-3, we created the main kendo.forms.js file, which included the skeleton
for our Forms widget and polyfill. I’ll add a reference to that file in my sample form,
and then add a script block or new file reference to activate the sample form, as illustrated
in Example 3-5.

Example 3-5. Activating our Forms opt-in polyfill via JavaScript

(function($, kendo) {

 $('#sampleForm').kendoForm();

}(jQuery, kendo));

Now, if I refresh the page in my browser, I’ll see that nothing is different. I’m not getting
any console errors, though, which means that my polyfill is being properly initialized.
All that’s left is to add some real functionality. So, without further ado, let’s add that
much-anticipated first feature.

Color Support
When I created the road map for my polyfill, I decided to tackle new input types first,
and build up in complexity from there. The first type I’ll add support for is the color
option, which is covered in section 4.10.7.1.15 of the HTML5 Forms spec. Here’s the
text of that section:

Color State Section of the HTML5 Forms Spec
4.10.7.1.15 Color state

When an input element’s type attribute is in the Color state, the rules in this section apply.

The input element represents a color well control, for setting the element’s value to a string
representing a simple color.

Note: In this state, there is always a color picked, and there is no way to set the value to the
empty string.

If the element is mutable, the user agent should allow the user to change the color rep‐
resented by its value, as obtained from applying the rules for parsing simple color values
to it. User agents must not allow the user to set the value to a string that is not a valid
lowercase simple color. If the user agent provides a user interface for selecting a color,
then the value must be set to the result of using the rules for serializing simple color values
to the user’s selection. User agents must not allow the user to set the value to the empty
string.

The value attribute, if specified and not empty, must have a value that is a valid simple
color.

The value sanitization algorithm is as follows: If the value of the element is a valid simple
color, then set it to the value of the element converted to ASCII lowercase; otherwise, set
it to the string “#000000”.

Bookkeeping details

36 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/numberstate
http://bit.ly/microsyntaxes

• The following common input element content attributes, IDL attributes, and meth‐

ods apply to the element: autocomplete and list content attributes; list, value, and
selectedOption IDL attributes.

• The value IDL attribute is in mode value.

• The input and change events apply.

• The following content attributes must not be specified and do not apply to the

element: accept, alt, checked, dirname, formaction, formenctype, formmethod, for‐
mnovalidate, formtarget, height, maxlength, max, min, multiple, pattern, place‐
holder, readonly, required, size, src, step, and width.

• The following IDL attributes and methods do not apply to the element: checked,

files, selectionStart, selectionEnd, selectionDirection, valueAsDate, and valueAs‐
Number IDL attributes; select(), setSelectionRange(), stepDown(), and stepUp()
methods.

As noted in the preceding text, the “Color” type is intended to offer a simple “color well”
control that supports visual selection of simple colors and retrieval of sRGB or hexa‐
decimal equivalents of these. There’s a lot of W3C-speak in the section, but the rules for
implementing a color input type in a browser are pretty straightforward:

• The value attribute of an input with a type of color is a seven character string (#
and six characters for the color value) that represents a valid sRGB color.

• A valid color value must always be selected; null and empty string values are not
permitted.

• The default color value string is #000000, or black.

• The UI for the color type must be a mask input—that is, it will not accept values
that do not represent a valid sRGB color.

• The string value for the color input should always be represented by a lowercase
string, and converted to a lowercase string upon input, if uppercase characters are
used.

You can see in Figure 3-2 that Chrome supports this attribute, while Safari 6.1 does not,
as shown in Figure 3-3 (Safari simply shows the hex value I set in the sample form).

Coincidentally, Kendo UI Web provides a ColorPicker widget that follows all of the
preceding rules, so this control is a great first addition to our polyfill.

When I initialize my polyfill by calling kendoForm() (or via the declarative approach),

the init() method in Example 3-3 will be fired, so that’s the right place to start adding

my functionality. Inside that method, and just after the call to Widget.fn.init, I can
add my color type code, as illustrated in Example 3-6.

Adding Basic Features | 37

http://bit.ly/k-colorpicker

Example 3-6. Adding color type support to the Forms polyfill

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget;

 var Form = Widget.extend({

 init: function(element, options) {

 // base call to widget initialization

 Widget.fn.init.call(this, element, options);

 var form = $(element);

 `form.find('input[type=color]').kendoColorPicker({ palette: 'basic' });`

 },

 options: {

 // the name is what will appear in the kendo namespace (kendo.ui.Form).

 // The jQuery plug-in would be jQuery.fn.kendoForm.

 name: 'Form'

 }

 });

 ui.plugin(Form);

} (jQuery, kendo));

In this sample, I’m looking for every input on my form with the attribute type=color

and initializing a kendoColorPicker for each, using the basic palette option. The
HTML5 specification doesn’t have anything to say about what the color control should
look like or how it should behave, visually, so I’ve chosen a sensible default for the

ColorPicker. Now, when I view the sample form in Safari, Firefox, or Internet Explorer

(all browsers that do not support the color type at the time of writing), I’ll see a Kendo
UI ColorPicker in place of the default text input, as seen in Figure 3-4.

Figure 3-4. Color support in the Forms polyfill (Safari 6.1)

38 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

To Feature Detect or Not to Feature Detect
Of course, there’s a catch. As it happens, if you view the sample page in a browser that

does support the color type (like Chrome or Opera), you’ll notice that a ColorPicker
was created in these browsers as well. This is because my current implementation doesn’t

bother to perform feature detection for the color type, instead overriding every occur‐
rence of the type on every browser.

Feature detection is the practice of executing code in the browser for
the purpose of determining whether that browser supports a given
feature. The practice is considered superior to the classical practice of
browser or user-agent sniffing because, rather than making whole‐
sale decisions about which features to provide based on the user’s
browser, you can enable or disable functionality at the feature level,
based on support, regardless of the browser in use.

When building a cross-browser polyfill, you’ll need to consider how you wish to ap‐
proach feature detection for your library. You have two choices:

1. Require that the user perform feature detection before including or opting in to
your polyfill.

2. Perform feature detection on behalf of (or in addition to) the user.

The first approach is common for polyfills that cover a limited feature-set, or those that
are activated on a per element or frequent basis. As Modernizr is widely used by devel‐
opers, it’s common to see polyfills used in a manner similar to Example 1-3. In this

example, I’m using Modernizr to query for CSS border-radius support and, if it’s not
available in the user’s browser, I’ll opt in to PIE for a given set of elements.

When building polyfills that are a bit more expansive, or even more “intrusive” in the
functionality they provide, I recommend performing feature detection on the devel‐
oper’s behalf. In the case of HTML5 Forms, my polyfill is instantiated at the form level,
so asking the user to perform feature detection before calling my library would be an
all-or-nothing proposition that would lead to my library being used for all HTML5
Forms features, or none of them at all. Instead, I’d rather provide the ability for the
polyfill to selectively upgrade only those features not supported in the browser.

To check for support for the color input type, I’ll create a function inside my init
function to test for support for individual form types, as shown in Example 3-7:

Example 3-7. Testing for input type support

function isFormTypeSupported(type) {

 if (type === 'text') { return true; }

Adding Basic Features | 39

http://modernizr.com

 var input = document.createElement('input');

 input.setAttribute('type', type);

 return input.type !== 'text';

}

First, I’ll create an in-memory input element. Then I’ll set its type attribute to the type

variable provided by the caller. Finally, I’ll check the type attribute. If its value is still

text even after I set it to another value, such as color, that means that the browser does

not support this input type. As such, I’ll return false. If the value is retained, browser

support is available, and I’ll return true.

To leverage this home grown feature-detection method, I’ll modify the code in
Example 3-6 to first check for support, as shown in Example 3-8. Now if I refresh
Chrome or Opera, the built-in browser support is back, while custom widget support
provided by my polyfill will be leveraged for all other browsers.

Example 3-8. Checking for color type support before adding a ColorPicker widget

if (!isFormTypeSupported('color')) {

 form.find('input[type=color]').kendoColorPicker({ palette: 'basic' });

}

Adding Opt-In Overrides to Your Polyfill
Once I add feature detection to my polyfill, the color type will be “upgraded” only when
the browser doesn’t support this type. This is excellent for a default behavior, but what
if the developer wants to author HTML5 Forms markup and have all of their form fields
upgraded to widgets, regardless of browser support? This is obviously a case that falls
outside specified HTML5 Forms behavior, but it’s a feature I’ve chosen to add in my
forms polyfill, for two reasons:

• With an opt-in polyfill, allowing developers to pass in options is easy.

• Since the visual aspects of HTML5 forms vary greatly from one browser to the next,
even between browsers that support a new type, some developers may prefer the
ability to author HTML5 Forms markup while gaining a consistent look and feel
for visual widgets across browsers. It’s downright “prollyfill-esque,” but we’ll get to
that.

If you recall that one of our “responsible polyfilling” principles in Chapter 2 is “mind
(only) the gaps,” you probably think I’m contradicting myself right now by adding
override capabilities to my library. And while an argument can be made for leaving out
a feature such as this, I believe that it’s a feature that adds value to the developer and end
user by providing the ability to apply a consistent form UI across browsers. As such, I
think it’s appropriate. What’s more, since the feature I’m adding doesn’t “break” the end-
user experience on supporting browsers if the polyfill is removed—it merely changes
the look and feel of HTML5 Forms fields—I don’t see it as a violation of the principle.

40 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

Bottom line: These are principles, not rules. As the polyfill developer, you get to decide
which ones to follow and which to discard, with good reason. If consumers of your
library don’t agree, they’ll let you know.

To add an override for visual elements to my polyfill, I can leverage the built-in op

tions object required by all Kendo UI widgets. In Example 3-3, we used this object to

specify the name of our widget, Form, which Kendo UI uses when adding our polyfill
to the library namespace. I can use this object to specify any number of developer-

defined features, and I’ll use it now to add an alwaysUseWidgets Boolean value. Once

I’ve added that option, I’ll modify my isFormTypeSupported method to check for this

property. If alwaysUseWidgets is true, I’ll skip the feature-detection test and return

false. The full listing for our polyfill source, including color type support and the
override, is shown in Example 3-9.

Example 3-9. Polyfill source with color type support and an alwaysUseWidgets option

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget;

 var Form = Widget.extend({

 init: function(element, options) {

 var form = $(element),

 that = this;

 // base call to widget initialization

 Widget.fn.init.call(this, element, options);

 function isFormTypeSupported(type) {

 if (type === 'text') { return true; }

 if (that.options.alwaysUseWidgets) {

 return false;

 }

 var input = document.createElement('input');

 input.setAttribute('type', type);

 return input.type !== 'text';

 }

 if (!isFormTypeSupported('color')) {

 form.find('input[type=color]').kendoColorPicker({ palette: 'basic' });

 }

 },

 options: {

 // the name is what will appear in the kendo namespace (kendo.ui.Form).

 // The jQuery plug-in would be jQuery.fn.kendoForm.

 name: 'Form',

 alwaysUseWidgets: false

 }

Adding Basic Features | 41

 });

 ui.plugin(Form);

} (jQuery, kendo));

Test the override property to determine if the element should always be upgraded

Specify the override property and set the default value to false

With this functionality in place, I can modify my initialization code to pass in the

alwaysUseWidgets option:

$('#sampleForm').kendoForm({ alwaysUseWidgets: true });

Now, the Kendo UI ColorPicker widget will be used in all browsers.

Beefing Up Your Polyfill with Additional Features
So far, we’ve added basic support for the color input type, feature detection for that
type, and the ability to override detection and always upgrade the type to use a UI widget.
And while it’s nice to have support for a single type, it doesn’t make for a terribly useful
polyfill. Let’s expand our polyfill by adding support for an additional input type.

Adding Support for the Number Type
The next feature for which I’ll add support in my polyfill is the number input type, which
is covered in section 4.10.7.1.13 of the HTML5 Forms specification:

Number State Section of the HTML5 Forms Spec
4.10.7.1.13 Number state

When an input element’s type attribute is in the Number state, the rules in this section
apply.

The input element represents a control for setting the element’s value to a string repre‐
senting a number.

If the element is mutable, the user agent should allow the user to change the number
represented by its value, as obtained from applying the rules for parsing floating-point
number values to it. User agents must not allow the user to set the value to a nonempty
string that is not a valid floating-point number. If the user agent provides a user interface
for selecting a number, then the value must be set to the best representation of the number
representing the user’s selection as a floating-point number. User agents should allow the
user to set the value to the empty string.

The value attribute, if specified and not empty, must have a value that is a valid floating-
point number.

The value sanitization algorithm is as follows: If the value of the element is not a valid
floating-point number, then set it to the empty string instead.

42 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/rangestate

The min attribute, if specified, must have a value that is a valid floating-point number. The
max attribute, if specified, must have a value that is a valid floating-point number.

The step scale factor is 1. The default step is 1 (allowing only integers, unless the min
attribute has a noninteger value).

When the element is suffering from a step mismatch, the user agent may round the
element’s value to the nearest number for which the element would not suffer from a step
mismatch. If there are two such numbers, user agents are encouraged to pick the one
nearest positive infinity.

The algorithm to convert a string to a number, given a string input, is as follows: If
applying the rules for parsing floating-point number values to input results in an error,
then return an error; otherwise, return the resulting number.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid floating-point number that represents input.

Bookkeeping details

• The following common input element content attributes, IDL attributes, and meth‐

ods apply to the element: autocomplete, list, max, min, readonly, required, and step
content attributes; list, value, valueAsNumber, and selectedOption IDL attributes;
stepDown() and stepUp() methods.

• The value IDL attribute is in mode value.

• The input and change events apply.

• The following content attributes must not be specified and do not apply to the

element: accept, alt, checked, dirname, formaction, formenctype, formmethod, for‐
mnovalidate, formtarget, height, maxlength, multiple, pattern, placeholder, size, src,
and width.

• The following IDL attributes and methods do not apply to the element: checked,

files, selectionStart, selectionEnd, selectionDirection, and valueAsDate IDL at‐
tributes; select() and setSelectionRange() methods.

As detailed in the spec, the number type is basically an edit mask that ensures that a user

enters only numeric values into fields given the type="number" attribute value. Let’s
take the preceding wall of text and translate it into some simple rules:

• The value attribute of an input with a type of number is a floating-point number.

• A valid number value is not required at all times. If a valid number is not selected,

the value is empty string.

• If the user attempts to enter an invalid or non-numeric value, the input value should

be set to empty string.

• The min and max attributes are allowed on this input, and should both represent
valid floating-point numbers.

Beefing Up Your Polyfill with Additional Features | 43

• The step attribute is allowed and has a default value of 1, which allows only integers
to be specified.

• If the value of the input is set programmatically and that value violates the specified

step property (i.e., step is 1 and a value of 2.88 is set), the control should round the
set value up or down based on rounding rules (in this example, the value would be
set to 3).

Just as with the color type, Kendo UI Web has a NumericTestBox widget that functions
as a nice edit mask control for floating-point values, so we’ll use this widget to polyfill

nonsupporting browsers. Example 3-10 contains the code specific to number that I’ll

add to kendo.forms.js, just after my color type code.

Example 3-10. Adding number input type support to my Forms polyfill

if (!isFormTypeSupported('number')) {

 form.find('input[type=number]').kendoNumericTextBox();

}

To test this feature, I can load my sample form in a browser that doesn’t support the

number type, like IE9 or Firefox, or use the alwaysUseWidgets option. It works like a

charm, and you’ll also notice that attributes like min and max, which I specified for the
Age field on my sample form in Example 3-4, were preserved by the Kendo UI Numer‐
icTextBox widget. I get that for free, which is awesome.

Even still, I can’t help but get this creeping feeling that things could be better. To see
what I mean, let’s look at our two features together in Example 3-11:

Example 3-11. Color and number type support

if (!isFormTypeSupported('color')) {

 form.find('input[type=color]').kendoColorPicker({ palette: 'basic' });

}

if (!isFormTypeSupported('number')) {

 form.find('input[type=number]').kendoNumericTextBox();

}

Repetition everywhere! And while it doesn’t look terrible with only two features, I can’t
even bear the thought of what my polyfill will look like once I add support for all of the
12+ visual types and features. So, before we add our next input type, it’s time to refactor!

Refactoring is the practice of reorganizing code for maintenance, readability, and ease
of use, while leaving its behavior unchanged. It’s most often associated with the agile
discipline of TDD (where the phrase “Red, Green, Refactor” was born), but it’s a useful
practice regardless of your specific development workflow. That said, refactoring is
worlds easier when your production code is covered by a good suite of unit tests. And

44 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

www.allitebooks.com

http://bit.ly/numericbox
http://www.allitebooks.org

though I’m going to perform my refactor without a safety net now, I’ll be covering unit
testing, as well as some performance-driven refactoring in Chapters 4 and 5.

Refactoring Type Support
When refactoring JavaScript code, I prefer to think not just of the refactor that will
benefit my current code, but the code I plan to add next. This might sound like a bit of
“you ain’t gonna need it” (or YAGNI) to you, but there are cases when I do indeed know
“but I’m gonnna need it, and soon.” (I tried to coin the acronym BIGNIAS for this, but
it doesn’t quite roll off the tongue.) Such is the case with my polyfill, where I know that
much of the process of adding support for additional types will be consistent from one
type to the next, with only a few, specific differences.

Because of this, the first step in my refactor is to move my color and number type
upgrades into a lookup table, essentially just an array of objects that contains the type
name and the upgrade function to execute for that type. My initial lookup object can
be found in Example 3-12.

Example 3-12. Type lookup table for the color and number input types

var typeUpgrades = [

{

 type: 'color',

 upgrade: function(inputs) {

 inputs.kendoColorPicker({ palette: 'basic' });

 }

},

{

 type: 'number',

 upgrade: function(inputs) {

 inputs.kendoNumericTextBox();

 }

}];

Once I have my lookup table, I can refactor the code in Example 3-11 into something
more like Example 3-13, where I iterate over each type in my lookup table, test for

support, and perform the upgrade specified in the upgrade function for each.

Example 3-13. Using the lookup table to add input type support

var i, len;

for (i = 0, len = typeUpgrades.length; i < len; i++) {

 var typeObj = typeUpgrades[i];

 if (!isFormTypeSupported(typeObj.type)) {

 var inputs = form.find('input[type=' + typeObj.type + ']');

 typeObj.upgrade(inputs);

 }

}

Beefing Up Your Polyfill with Additional Features | 45

If I rerun the sample page in a browser, I’ll note that things still work just as before.
That’s nice, but the real benefit to refactoring comes when I add features to my polyfill,
which I’ll do next.

Before I move on, it’s worth mentioning that refactoring doesn’t have to stop with the
simple changes I’ve detailed. While it’s out of the scope of this short book to belabor the
refactoring conversation any further, it’s worth mentioning that, in the production ver‐
sion of my polyfill, I did perform some additional refactoring, including breaking my
type upgrades and feature tests into two additional files, which I combine during my
build process. If you’re interested in seeing those additional changes, you can view the
types and features source files in the online GitHub repo for my polyfill.

Adding Input Types 3-n
Now that we’ve refactored things a bit, let’s add support for a third input type: the range

type. The range input type enables developers to capture numeric data via a slider

control with built-in min, max, and step values. Here’s the text from section 4.10.7.1.14
in the HTML5 spec:

Number State Section of the HTML5 Forms Spec
4.10.7.1.14 Range state

When an input element’s type attribute is in the Range state, the rules in this section
apply.

The input element represents a control for setting the element’s value to a string repre‐
senting a number, but with the caveat that the exact value is not important, letting UAs
provide a simpler interface than they do for the Number state.

Note: In this state, the range and step constraints are enforced even during user input, and
there is no way to set the value to the empty string.

If the element is mutable, the user agent should allow the user to change the number
represented by its value, as obtained from applying the rules for parsing floating-point
number values to it. User agents must not allow the user to set the value to a string that
is not a valid floating-point number. If the user agent provides a user interface for selecting
a number, then the value must be set to a best representation of the number representing
the user’s selection as a floating-point number. User agents must not allow the user to set
the value to the empty string.

The value attribute, if specified, must have a value that is a valid floating-point number.

The value sanitization algorithm is as follows: If the value of the element is not a valid
floating-point number, then set it to a valid floating-point number that represents the
default value.

The min attribute, if specified, must have a value that is a valid floating-point number. The
default minimum is 0. The max attribute, if specified, must have a value that is a valid
floating-point number. The default maximum is 100.

46 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/typesjs
http://bit.ly/featuresjs
http://bit.ly/kendo-ui
http://bit.ly/typerange
http://bit.ly/rangestate
http://bit.ly/rangestate

The default value is the minimum plus half the difference between the minimum and
the maximum, unless the maximum is less than the minimum, in which case the default
value is the minimum.

When the element is suffering from an underflow, the user agent must set the element’s
value to a valid floating-point number that represents the minimum.

When the element is suffering from an overflow, if the maximum is not less than the
minimum, the user agent must set the element’s value to a valid floating-point number
that represents the maximum.

The step scale factor is 1. The default step is 1 (allowing only integers, unless the min
attribute has a noninteger value).

When the element is suffering from a step mismatch, the user agent must round the
element’s value to the nearest number for which the element would not suffer from a step
mismatch, and which is greater than or equal to the minimum, and, if the maximum is
not less than the minimum, which is less than or equal to the maximum. If two numbers
match these constraints, then user agents must use the one nearest to positive infinity.

For example, the markup <input type="range" min=0 max=100 step=20 value=50> results
in a range control whose initial value is 60.

The algorithm to convert a string to a number, given a string input, is as follows: If
applying the rules for parsing floating-point number values to input results in an error,
then return an error; otherwise, return the resulting number.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid floating-point number that represents input.

Bookkeeping details

The following common input element content attributes, IDL attributes, and methods
apply to the element: autocomplete, list, max, min, and step content attributes; list, value,
valueAsNumber, and selectedOption IDL attributes; stepDown() and stepUp() methods.

• The value IDL attribute is in mode value.

• The input and change events apply.

• The following content attributes must not be specified and do not apply to the

element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formno
validate, formtarget, height, maxlength, multiple, pattern, placeholder, readonly,
required, size, src, and width.

• The following IDL attributes and methods do not apply to the element: checked,

files, selectionStart, selectionEnd, selectionDirection, and valueAsDate IDL at‐
tributes; select() and setSelectionRange() methods.

This is much more complex than the section for our color and number types, but there’s

some overlap with the number type, especially around attributes. Let’s break this down
into some rules, as we’ve done for the other two:

Beefing Up Your Polyfill with Additional Features | 47

• The value attribute of an input with a type of range is a floating-point number.

• A valid range value is required at all times. If a valid range is not selected, the default
value is used.

• The range value cannot be set to an empty string.

• If the user attempts to enter an invalid or non-numeric value, the input value should
be set to the default value.

• The min attribute is allowed, and should represent a valid floating-point number.

The default min value is 0.

• The max attribute is allowed, and should represent a valid floating-point number.

The default max value is 100.

• The default value of the range input, if no value is set, is the minimum plus half the

difference between the minimum and maximum: d = min + 0.5(max - min). If

the default min and max values are used, the default value is 50: 0 + 0.5(100-0).

• When the set value is smaller than the minimum, the value should be automatically
set to the minimum.

• When the set value is larger than the maximum, the value should be automatically
set to the maximum.

• The step attribute is allowed and has a default value of 1, which allows only integers
to be specified.

• If the value of the input is set programmatically and that value violates the specified

step property (i.e., step is 20 and a value of 50 is set), the control should round the
set value up to the closest value that matches the step and that does not violate the

max attribute (in this example, the value would be set to 60).

In Kendo UI, the equivalent widget to the range type is the Slider control, which has
identical behavior, and supports all of the necessary attributes and rules specified here.

To add support for the range type, I’ll add another object literal to my typeUpgrades
array, as shown in Example 3-14.

Example 3-14. Adding support for the range input type

{

 type: 'range',

 upgrade: function(inputs) {

 inputs.kendoSlider({

 showButtons: false,

 tickPlacement: 'none'

 });

 }

}

48 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/slidercont

For the Slider widget, I’ll need to pass in a couple of configuration settings so that the
default behavior of the Kendo UI Slider matches that of browsers that do support this
type. That means no buttons or ticks. Just a simple slider, as depicted in Figure 3-5. And
the best news is that there is no step 2, other than refreshing your browser and viewing
the slider in the sample form! With the refactor that we made in the preceding section,
adding support for additional input types is a simple matter of adding a new entry to
our lookup table. Now, adding features 3–n is quick and painless.

Figure 3-5. Sample form with range support

Building Utility Polyfills
When building your polyfill, you might, from time to time, encounter a situation where
your polyfill needs a polyfill of its own. For instance, there are a bevy of JavaScript utility
functions that, while useful, may not be supported in older browsers like IE6-8, which

your polyfill will often need to target. Examples are useful utilities like String.trim and

Array.forEach.

When developing your polyfill, you may encounter situations where some utility you
need in the browser (such as a common JavaScript method) isn’t supported. To address
this, you can choose to either leverage some other approach that is supported across
browsers, or you can build a polyfill for this utility.

If you choose to take the latter approach, I recommend taking a look at the Mozilla
Developer Network which, in addition to having the best docs on the Web for frontend
developers, is also a great resource for quick utility polyfills. For many of their JavaScript
docs, MDN provides great information about current browser support, in addition to
a quick snippet that can be used to polyfill support for that API across all browsers. An
example can be seen in Example 3-15.

Example 3-15. A simple Array.forEach polyfill

if (!Array.prototype.forEach) {

 Array.prototype.forEach = function (fn, scope) {

 'use strict';

Building Utility Polyfills | 49

https://developer.mozilla.org/
https://developer.mozilla.org/

 var i, len;

 for (i = 0, len = this.length; i < len; ++i) {

 if (i in this) {

 fn.call(scope, this[i], i, this);

 }

 }

 };

}

This example is a simple polyfill for the Array.forEach method. First, I’ll check for the

existence of the forEach method on the Array prototype. If the method exists, we do

nothing. If not, we’ll add our polyfill, which is a simple for loop that iterates over each
element of the array. For my HTML5 Forms polyfill, I’ve included this and other utility
polyfills in a standalone source file that is included in my combined and minified pro‐
duction build.

Polyfilling Visual Features With CSS
With the input type refactor done, adding support for most of the remaining types

(including datetime, date, time, and month) is pretty straightforward and not really
worth covering in this book. There are a few quirks here and there with some of the
date/time types, especially when it comes to the proper way to format date attribute
values, but as long as you ensure you’re properly handling date and time strings as
covered in the spec, you should be fine. Your author failed to do so when he first started
building his HTML5 Forms polyfill, so do take my word for it. Not coincidentally, it
was this experience that lead yours truly to make “Read the Spec” the first principle of
responsible polyfill development, as covered in Chapter 2.

Rather than covering the rest of the HTML5 input types explicitly, let’s turn our focus
to a different part of the HTML5 Forms spec, and take a look at a scenario where adding
polyfill support requires JavaScript and CSS to get the job done. While there are a few

areas of the HTML5 spec that require us to delve into CSS, the placeholder attribute
is probably the best example of this type of feature. According to the Placeholder section
of the spec, this attribute “represents a short hint (a word or short phrase) intended to

aid the user with data entry when the control has no value.” In contrast to the <label>

element, the placeholder attribute is intended to contain hint text that is overlaid on
or displayed inside input controls, and that disappears when a user enters a value.

Since the spec is pretty straightforward about this attribute, it enjoys pretty broad
browser support. However, IE8 and previous don’t support this attribute, and most of
us still support these browsers in our sites and apps, so it makes sense to polyfill this
feature in our library.

50 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/datestring
http://bit.ly/placeholder-spec
http://bit.ly/placeholder-spec

To do so, I’m going to start by adding a new CSS file in my project, under the src/css/
directory, and I’ll call it kendo.forms.css. Then, I’ll add the CSS in Example 3-16.

Example 3-16. CSS for polyfilling placeholder support

label.placeholder {

 color: gray;

 display: block;

 font-size: small;

 padding-top: 3px;

 position: relative;

 text-indent: 5px;

}

input.placeholder {

 background-color: transparent;

 left: 0;

 position: absolute;

 top: 0;

 z-index: 1;

}

input.relPlaceholder {

 position: relative;

}

input.placeholder:focus, input.placeholder:first-line {

 background-color: white;

}

span.hidden {

 opacity: 0;

}

My strategy for polyfilling the placeholder will be to create a <label> that contains the

same text as the placeholder attribute. The label will be overlaid on top of the input
when the element is empty and does not have focus, and will be hidden when it does.
The CSS is adding a few classes and pseudo elements that I’ll need in order to manipulate

elements that my polyfill will be creating at runtime. The label.placeholder selector

applies to an element that I’ll create to hold placeholder text, while the input.place

holder selector applies to the original input for which I’m polyfilling attribute support.
The remaining selectors cover positioning and visibility for elements and content.

With our CSS in place, I’ll add the JavaScript needed for placeholder support. First, I’ll
need to add a feature test for this attribute in order to make sure that I don’t do any
unnecessary work (which will include some DOM interaction) if the browser already
supports it. Since I know that this won’t be the only attribute my polyfill will need to

test for—it will also need to support new attributes like required, pattern, and more
—I’ll go ahead and create a generic test function, just as I did for the input types:

Polyfilling Visual Features With CSS | 51

function isAttributeSupported(attr) {

 return attr in document.createElement('input') &&

 attr in document.createElement('textarea');

}

In the case of HTML5 attributes, testing for support is a simple matter of creating a new

in-memory input (and textarea), and checking for the presence of an attribute via

JavaScript’s in property operator. If the attribute is available on both input types, our

test will return true; otherwise, it returns false. Now we can leverage our test and, if
not supported, add in some logic to activate placeholder support (as shown in
Example 3-17).

Example 3-17. Polyfilling placeholder support with CSS and JavaScript

if(!isAttributeSupported('placeholder')) {

 form.find('[placeholder]').each(function(index, val) {

 var el = $(val);

 // Strip CR and LF from attribute vales, as specified in

 // www.w3.org/TR/html5/forms.html#the-placeholder-attribute

 var placeholderText = el.attr('placeholder').replace(/(\\r\\n|\\n|\\r)/gm,'');

 // When the field loses focus, clear out the placeholder if

 // the input contains a value.

 el.on('blur', function() {

 var $el = $(this);

 var labelNode = this.previousSibling;

 if (this.value) {

 labelNode.nodeValue = '';

 $el.addClass('relPlaceholder');

 } else if (labelNode.nodeValue !== placeholderText) {

 labelNode.nodeValue = placeholderText;

 $el.removeClass('relPlaceholder');

 }

 });

 el.wrap('<label class="placeholder">' + placeholderText + '</label>');

 el.addClass('placeholder');

 });

}

Let’s walk through this sample step-by-step and take a look at what’s going on. First, I’m

grabbing all of the inputs with a placeholder attribute from my form. The rest of this
block contains the callback for each placeholder-containing element. I start by caching
the jQuery object for the element, and then grab the placeholder value. The RegEx on
that line serves to strip out any newlines that might sneak into the placeholder attribute.
This requirement is explicitly covered in the spec and since we’re polyfilling to the spec,
it’s a no-brainer to add this support.

Once I have a sanitized attribute value, I’ll bind my element to a blur event, wrap my

element in a new <label> that contains the placeholder text, and then add the place

holder class to that label and the original element, which applies the CSS I defined in

52 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://bit.ly/placeholder-spec

Example 3-16. The CSS rules give my label some contrast so that it’s obvious to the user
that this is not input text (again, as per the spec) while also adding a rule to slide the
label over to sit on top of my input.

The final piece of the puzzle is my blur event, which clears out the dummy placeholder
label if the user has entered text in the input. Without this event, my placeholder text
would show up over any text the user enters after navigating off the element.

Of course, this is all fine in theory, but as with every other feature we’ve had so far, it
doesn’t mean a thing until we test this new feature in a nonsupporting browser. However,

since placeholder support is so darn good, it’s not as simple as testing in one of the
new browsers installed on your machine. Often, testing polyfill support means getting
your hands on IE6, 7, or 8, and we’ll discuss how to do that in the next section.

At this point, you might be wondering why we’re switching gears to testing when we’ve
not yet built our entire polyfill. We could go through the exercise of building the entire
HTML5 Forms polyfill, but it’s a mostly repetitive task now that we’ve covered the basics
of input type support. There are other complexities to be solved, like forms validation,
but in the interest of time and space in this short book, I decided to spend some time
focusing on unit testing, performance, and refactoring over the next few chapters. These
aspects of polyfill development are just as important as how you go about building the
features themselves. That said, if you want to dig deeper into the guts of the HTML5
Forms polyfill we’ve started in this chapter, you’re welcome to do so in the online repos‐
itory.

Testing Your Work Across Browsers
Thus far, we’ve been testing out our polyfill by viewing the sample HTML form in
modern browsers like Chrome, Firefox, Opera, Safari, and IE9+. If you’re following
along, you’ve probably even been testing using just a single browser, which tends to be
my own manual testing workflow as well. And while this strategy is fine when you’re
getting up and running and just trying to get things to work, eventually you’re going to
need to test in more than one browser. In fact, you’re going to need to test in all of them,
and often. In Chapter 4, I’ll discuss some strategies for automating your cross-browser
testing, but let’s first look at a few ways that you can get started.

Installing the Evergreen Browsers
First, I recommend that you install every single browser that you can get your hands on
for your OS. This might seem obvious, but it can’t be overstated. When building cross-
browser polyfills, you’re venturing into the weeds so that other developers don’t have
to, so you’d better have access to every browser you can.

And I don’t just mean the consumer release of every browser, but also the betas, dev
channel, nightly releases, and platform previews of all of these. You need to know what

Testing Your Work Across Browsers | 53

http://bit.ly/kendo-ui
http://bit.ly/kendo-ui

your polyfill needs to support not only today, but tomorrow as well. Sometimes browser
updates will modify their support for a feature in ways that will actually break your
polyfill (spec API changes and vendor prefixes are two examples), and you’ll want to be
covered.

Modern, self-updating browsers are commonly referred to as evergreen, because they’re
always considered new and up-to-date. Nearly every major browser vendor now sup‐
ports a self-updating model, and Table 3-2 lists all of these browsers and where to find
them, as well as prerelease versions of these.

Table 3-2. Evergreen and prerelease desktop browsers

Browser Update Cadence Download URL

Chrome ~6 Weeks https://www.google.com/intl/en/chrome/browser/

Chrome Beta ~6 Weeks https://www.google.com/intl/en/chrome/browser/beta.html

Chrome Canary Nightly https://www.google.com/intl/en/chrome/browser/canary.html

Firefox ~6 Weeks https://www.mozilla.org/en-US/firefox/new/?icn=tabz

Firefox Beta ~6 Weeks http://www.mozilla.org/en-US/firefox/beta/

Firefox Nightly Nightly http://nightly.mozilla.org/

Internet Explorer Varies http://windows.microsoft.com/en-us/internet-explorer/download-ie

IE Platform Preview Varies http://ie.microsoft.com/testdrive/

Opera Varies http://www.opera.com/

Opera Next Varies http://www.opera.com/computer/next

Safari Varies http://www.apple.com/safari/

Safari Beta Varies https://developer.apple.com/technologies/safari/

While many of the names in this table are pretty straightforward,
Chrome Canary isn’t very self-explanatory. Canary is Google’s “night‐
ly” browser, which is updated once per day and represents the most
cutting-edge work being done to Google Chrome.

Testing in OldIE
In addition to testing out your polyfill in the latest version of all of the browsers listed
—not to mention mobile browsers if you’re supporting those—I highly recommend
hands-on testing with Internet Explorer 6, 7, and 8. If you’re a Windows user, you might
be tempted to use the Browser Mode and Document Mode features in IE’s F12 Developer
Tools to simulate IE7 and 8. I humbly ask that you resist that temptation but for the
simplest of tests. These modes do a decent job of simulating the behaviors of oldIE, sure,
but they aren’t foolproof. For example, Figure 3-6 and Figure 3-7 illustrate the differ‐
ences I see when running my HTML5 Forms polyfill test suite (which I’ll introduce in
the next chapter) in IE11, with simulation, and in IE8. It’s the same code and same test

54 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

www.allitebooks.com

https://www.google.com/intl/en/chrome/browser/
https://www.google.com/intl/en/chrome/browser/beta.html
https://www.google.com/intl/en/chrome/browser/canary.html
https://www.mozilla.org/en-US/firefox/new/?icn=tabz
http://www.mozilla.org/en-US/firefox/beta/
http://nightly.mozilla.org/
http://windows.microsoft.com/en-us/internet-explorer/download-ie
http://ie.microsoft.com/testdrive/
http://www.opera.com/
http://www.opera.com/computer/next
http://www.apple.com/safari/
https://developer.apple.com/technologies/safari/
http://www.allitebooks.org

suite for both, and even though Document Mode is providing me an IE8 experience in
theory, you’ll find that this is not always the case in practice.

Figure 3-6. Testing IE8 via IE11’s Browser Mode simulator

Thankfully, testing oldIE doesn’t require that you buy old Windows Vista and XP li‐
censes and install these browsers on the old hardware sitting in your closet. On the
contrary, Microsoft hosts a fantastic site called modern.ie that’s purpose-built around
the idea of providing developers with all the tools they need to support and test the
various Internet Explorer browsers. In addition to providing tools like a page-scanning
service and documentation on standards support for newer versions of the browser, the
site provides free virtual machines for testing all versions of IE, including 6, 7, and 8.
Whether you use VirtualBox, VMWare, Parallels, Virtual PC, or Hyper-V, there are free
VMs available for you to download, fire up, and use to test out your hard work. To grab
a VM, just head over to modern.ie and click the “Test Across Browsers” menu option.

Testing Your Work Across Browsers | 55

http://modern.ie

Figure 3-7. Testing IE8 via an actual IE8 installation

Cross-Browser Testing and Verification with Online Services
In addition to testing with your own browsers, and testing oldIE with VMs, there are a
growing number of online services available that you can use to easily test your work
across browsers without installing another browser or running a VM. One popular
service is BrowserStack, which allows you to test public and internal URLs across a
variety of OSs and browsers from within a browser window. You can also automate
BrowserStack tests via Selenium for automated testing. The only catch with Browser‐
Stack is that the service is not free, so it’s not likely to be an option for most open source
cross-browser polyfills.

Another great option for cross-browser testing is Testling, a CI server that tests your
code across browsers each time you push to your remote repo. Testling requires some
form of automated unit test suite, but I consider this to be a plus because automated
testing across the 18 versions Testling supports is far more ideal than manual tests, in
my opinion. We’ll discuss setting up unit and cross-browser tests in the next chapter.

In this chapter, we covered the basics of getting your polyfill project set up, and we also
added basic features, did a simple refactor to improve polyfill maintenance, and even

added support for the placeholder forms attribute in oldIE. We’ve come a long way
already, and I hope you’ve learned a thing or two about putting those principles of
responsible polyfill development into practice.

56 | Chapter 3: Building Your First Polyfill, Part 1: Getting Started

http://www.browserstack.com/
http://ci.testling.com/

As great as our progress has been so far, though, you might find yourself bothered by
the fact that a) our polyfill isn’t terribly easy to test and b) we don’t really have a strategy
in place for linting our code, performing minification, or doing anything else that a good
project should do before releasing production-quality code. In Chapter 4, we’re going
to cover all of these and more.

Testing Your Work Across Browsers | 57

CHAPTER 4

Building Your First Polyfill, Part 2: Build
Workflows and Cross-Browser Testing

In Chapter 3, you got your first taste of cross-browser polyfill development via the
construction of an HTML5 Forms polyfill. We managed to cover a lot of ground in a
short time, but there’s no doubt that our polyfill is missing some critical pieces. Some
of these relate to our build and deploy process, while others relate to improving the
quality and performance of the code itself with some unit and performance tests. Over
these next two chapters, we’ll round out the construction of our first polyfill. In this
chapter, we’ll cover the ins and outs of setting up your build process and performing
automated testing. Then, in Chapter 5, we’ll discuss how to deal with hairy edge cases
in a spec, and testing/refactoring for performance.

Setting Up Your Project Workflow
In Chapter 3, we got right to work building our polyfill without considering much
beyond simple project and source control setup. At this point, I’d like to back up and
discuss some important workflow considerations that polyfill developers should address
when starting up a project. Specifically, we want to begin with the end in mind. That is,
before we write a single line of code, we should think about how we plan to distribute
our hard work, and how we expect other developers to leverage our polyfill in their
apps, and even how we can enable others to contribute to our project. All of these
considerations can be addressed at the start of a project with a solid development work‐
flow, which includes several core pieces:

• Source control and collaboration

• Package and dependency management

• Build and workflow management

59

• Automated and cross-browser testing

• Continuous integration

Source control and collaboration were discussed in Chapter 3, so let’s look next at pack‐
age and dependency management.

Package and Dependency Management
Once you’ve chosen a source control solution, you’ll want to think about how to manage
dependencies. By dependencies, I’m not referring to “this polyfill depends on jQuery,”
but, rather, the third-party libraries that your polyfill depends on for things like static
analysis, minification, testing, and more. We’ll talk about those specific tools in a bit,
but before you start using these, you need to think about how you plan to include them
in your project, and how to declare those dependencies for others who download your
work. In the world of JavaScript development, there’s no better general-purpose package
manager than npm, or node packaged modules. If you have Node.js installed, you al‐
ready have npm. If not, head over to the Node.js site and grab the appropriate installer
for your OS. You’ll be using Node and npm heavily throughout your polyfill project,
and these tools are also a prerequisite for the next few items on our list.

Build and Workflow Management
Developing open source software, including polyfills, is about more than just throwing
together a quick sample, some basic tests, and a source file. Sure, it’s possible to put
something online that consists of only these things; I’ve even done it myself before. Five
years ago, it was a common practice among frontend developers. But as our community
has matured, our tools and our processes have evolved.

As a frontend developer, I have a workflow that’s shared by many others. I write tests. I
write code until those tests pass. I repeat. I test across browsers. I write some more code.
During development, I keep my source files small and separate, but I want the code I
distribute to be in a single file, minified and ready to use in production environments.

Executing all of these tasks—from testing to minification—by hand is a pain. Thankfully,
there are great build and workflow tools out there for frontend devs. These tools, which
you integrate into your project, can quickly perform these tasks on your behalf, either
at your command or when a change to a project file is observed.

One such tool is Grunt, a simple JavaScript task runner created by Ben Alman. Grunt
is a bit of a youngster in the build system world, but it’s caught fire among frontend
developers and, with lots of community participation, has managed to achieve a good
deal of stability in a short time.

60 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

http://npmjs.org
http://nodejs.org
http://gruntjs.com/

I use Grunt in my projects and will do so in this book as well. The tool can be installed

via npm (npm install -g grunt-cli). For more information, see the online getting
started guide. We’ll walk through configuring an initial Grunt setup in a moment.

Automated and Cross-Browser Testing
If you’re building a frontend library, testing is important, and it’s vitally important if
you’re building a shim or polyfill. Almost every programming language out there has
one or more options for unit testing, and JavaScript is no different. Unit testing (that is,
the act of writing and executing code that exercises program code and performs asser‐
tions to verify that the program functioned as expected) has become quite popular over
the last decade, especially in agile, eXtreme Programming, and Lean Software circles.
Not only does unit testing aid developers in properly shaping the API and behavior of
their libraries by writing code (via tests) in the mindset of the consumer, but a suite of
tests, over time, serve as a wonderful safety net. With this net in place, developers are
free to refactor, rework, and otherwise enhance their libraries, and remain confident in
the fact that their tests will catch any regressions that fall through the cracks.

In the world of JavaScript development, there are countless unit-testing libraries. I prefer
Jasmine, a BDD-style unit testing library. Other popular options include QUnit, which
is maintained by the jQuery team, and NodeUnit.

Unit testing is a great foundation, but we also need to consider cross-browser testing
for this project. It is a cross-browser polyfill, after all. As such, our project will also need
to include an automated tool that can launch multiple browsers and load our unit tests
up in each, thereby ensuring at least basic test coverage across browsers. The tool that
I prefer to use for such a task is Karma, which you can also install via npm. There’s a bit
of setup involved in getting Karma up and running the way I like, and we’ll cover that
in this chapter.

Continuous Integration
The last tool you should consider for your initial project setup is a remote CI server.
This step is completely optional, so if you want to take my advice on items 1–4 and
ignore me on this one, that’s OK. That said, the biggest advantage of a remote CI server
for an open source project is, in my mind, the ability to run basic project setup and unit
tests in a clean environment. Doing so ensures that you properly declare dependencies
via npm and that you never check in code that fails one or more tests and just walk away.
It’s better to get the news that you did something wrong from a CI server than from a
human struggling to run the latest bits from your project.

For my projects, I prefer to use Travis, a CI server used by many in the open source
community. It’s easy to set up and configure, and you can even place status badges on
your project’s home page signifying its current pass/fail status on the server. Another,

Setting Up Your Project Workflow | 61

http://gruntjs.com/getting-started
http://gruntjs.com/getting-started
http://bit.ly/jas-lib
http://qunitjs.com
http://bit.ly/nodeunit
http://bit.ly/karma-js
https://travis-ci.org/

newer option that I’ve recently discovered is Wercker. I’ll be using Travis for this book,
but Wercker is certainly worth checking out for your next project, open source or
otherwise.

Jump-Starting Your Workflow
In Chapter 3, I covered initial project setup, including a recommended directory struc‐
ture and essential files. With your basic project structure in place, your next key work‐
flow steps are to configure npm and Grunt, which we’ll cover in this section.

Configuring npm
To configure npm, I’ll run npm init inside my project directory and follow the inter‐
active prompts. You can see the result of running the command in my terminal in
Figure 4-1. Once done, npm will create a package.json file that looks similar to
Example 4-1. While this file isn’t strictly required unless you plan to publish your polyfill
to npm, it will make it easier to work with Grunt, which we’ll set up next.

Example 4-1. Sample package.json file

{

 "name": "html5-forms-polyfill",

 "version": "0.0.1",

 "description": "A cross-browser polyfill for HTML5 forms features",

 "repository": {

 "type": "git",

 "url": "git://github.com/bsatrom/html5-forms-polyfill.git"

 },

 "keywords": [

 "html5",

 "polyfill",

 "forms",

 "validation"

],

 "author": "Brandon Satrom",

 "license": "MIT",

 "readmeFilename": "README.md",

 "gitHead": "4a2f3578443f539d52c645563fe47824bf4fb377"

}

62 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

http://wercker.com/

Figure 4-1. Running npm init to configure your package.json file

Configuring Grunt
Now, let’s install Grunt. Before you run the Grunt config step, you’ll need to add the
following to your package.json, within the outer curly brace of the root object literal,

and run npm install from the terminal. The settings in Example 4-2 will make sure
that the Grunt command-line interface is available in your project.

Jump-Starting Your Workflow | 63

Example 4-2. Grunt dependencies in package.json

"devDependencies": {

 "grunt": "~0.4.1",

 "grunt-contrib-jshint": "~0.6.0",

 "grunt-contrib-uglify": "~0.2.2",

 "grunt-contrib-concat": "~0.3.0",

 "grunt-contrib-cssmin": "~0.6.1"

}

Once you’ve installed Grunt, configuring the tool is a bit more manual. While there are

several grunt-init tasks available, I find it easier to start with a very basic gruntfile,
which you can pull from Example 4-3. Create a new file at the project root called
gruntfile.js and copy the contents of Example 4-3 into that new file.

Example 4-3. Starter gruntfile.js for our polyfill

module.exports = function(grunt) {

 // Project configuration.

 grunt.initConfig({

 pkg: grunt.file.readJSON('package.json'),

 concat: {

 options: {

 separator: ';',

 banner: '// kendo-ui-forms v<%= pkg.version %> \n'

 },

 dist: {

 src: ['src/js/*.js'],

 dest: 'dist/js/kendo.forms.js'

 }

 },

 uglify: {

 options: {

 banner: '// kendo-ui-forms v<%= pkg.version %> \n'

 },

 dist: {

 files: {

 'dist/js/kendo.forms.min.js': '<%= concat.dist.dest %>'

 }

 }

 },

 cssmin: {

 options: {

 banner: '// kendo-ui-forms v<%= pkg.version %> \n'

 },

 combine: {

 files: {

 'dist/css/kendo.forms.css': 'src/css/*.css'

 }

 },

 minify: {

 expand: true,

64 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

http://bit.ly/gruntscaff

 cwd: 'src/css/',

 src: ['*.css', '!*.min.css'],

 dest: 'dist/css/',

 ext: '.forms.min.css'

 }

 },

 jshint: {

 files: ['gruntfile.js', 'src/**/*.js', 'spec/js/*.js'],

 options: {

 globals: {

 jQuery: true,

 console: true,

 module: true,

 document: true

 }

 }

 }

 });

 // Plug-ins for other grunt tasks.

 grunt.loadNpmTasks('grunt-contrib-uglify');

 grunt.loadNpmTasks('grunt-contrib-jshint');

 grunt.loadNpmTasks('grunt-contrib-concat');

 grunt.loadNpmTasks('grunt-contrib-cssmin');

 // Default task(s).

 grunt.registerTask('default', ['jshint']);

 grunt.registerTask('minify', ['jshint', 'concat', 'cssmin', 'uglify']);

};

Combines all of the JavaScript files in the src/ directory into a single file

Minifies the concatenated JavaScript file

Combines and minifies any CSS files defined in src/

Performs static analysis on my JavaScript source files to make sure I’m following
a consistent coding style. See JSHint for more information

Though it seems like there’s a lot going on here, a gruntfile is pretty easy to parse once

you get the hang of it. A gruntfile is made up of a series of named tasks, like concat,

uglify, and the like. Each task tells Grunt what actions to perform, and which files to
perform those actions on when that task is executed.

At the bottom of my gruntfile, I’ve also defined two additional tasks: a default task,

which runs when I execute the grunt command with no other task, and a custom minify
command, which is a combination of several commands defined in the preceding code.

Once your gruntfile is complete and the options match your project, run grunt from
the terminal. If your gruntfile checks out, you’ll get a “Done, without errors” message,

Jump-Starting Your Workflow | 65

http://jshint.com

which means we can continue on! If not, Grunt will point you in the direction of the
problem, which is usually a minor syntax issue. Now, let’s get some unit tests set up!

Adding Unit Tests to Your Polyfill
Testing is critical for a good, “responsible” polyfill, and I recommend that your own
project be covered by a good set of unit tests. Testing frameworks like Jasmine and QUnit
are easy to set up and configure and, once you get going with them, you’ll be glad that
you have a full suite of tests backing up your polyfill development.

Configuring Unit Tests with Jasmine
To start using Jasmine for my unit tests, I’ll create a lib directory inside my spec/ directory
and place the Jasmine bits inside. I’m also going to include the jasmine-jquery library,
which I’ll need in order to automatically execute my tests.

Next, I’ll create a runner.html file at the root of the spec/ folder, and I’ll populate it with
the contents of Example 4-4. Many JavaScript frameworks, Jasmine included, use an
HTML file as their test runner by loading up dependencies and the project source, and
then executing those tests against DOM interactions on the page. On this page, we’ll
specify all of the CSS and JavaScript dependencies for our polyfill, including jQuery and
Kendo UI for widgets and framework features, and then load up our tests via fix‐
tures.js. Note that, for external dependencies, I’m following the directory structure out‐
lined in Chapter 3.

Example 4-4. Jasmine’s main runner.html file

<!DOCTYPE html>

<html>

 <head>

 <title>Kendo UI Forms Test Runner (Jasmine)</title>

 <meta charset="UTF-8">

 <!-- Styles -->

 <link rel="shortcut icon" type="image/png"

 href="lib/jasmine-1.3.1/jasmine_favicon.png">

 <link rel="stylesheet" type="text/css" href="lib/jasmine-1.3.1/jasmine.css">

 <link rel="stylesheet" href="../lib/css/kendo.common.min.css" />

 <link rel="stylesheet" href="../lib/css/kendo.default.min.css" />

 <!-- Jasmine and Jasmine-jQuery -->

 <script type="text/javascript" src="lib/jasmine-1.3.1/jasmine.js"></script>

 <script type="text/javascript" src="lib/jasmine-1.3.1/jasmine-html.js"></script>

 <script src="../lib/js/jquery.min.js"></script>

 <script type="text/javascript" src="lib/jasmine-jquery.js"></script>

 <!-- Kendo UI -->

 <script src="../lib/js/kendo.web.min.js"></script>

 <script src="../src/js/kendo.forms.js"></script>

66 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

http://bit.ly/jas-jq

 <!-- Specs -->

 <script src="js/fixtures.js"></script>

 </head>

 <body>

 <!-- Jasmine -->

 <script type="text/javascript">

 (function() {

 var jasmineEnv = jasmine.getEnv();

 jasmineEnv.updateInterval = 1000;

 var htmlReporter = new jasmine.HtmlReporter();

 jasmineEnv.addReporter(htmlReporter);

 jasmineEnv.specFilter = function(spec) {

 return htmlReporter.specFilter(spec);

 };

 var currentWindowOnload = window.onload;

 window.onload = function() {

 if (currentWindowOnload) {

 currentWindowOnload();

 }

 execJasmine();

 };

 function execJasmine() {

 jasmineEnv.execute();

 }

 })();

 </script>

 </body>

</html>

These two lines include the Kendo UI CSS styles

The main source file for Kendo UI Web, which our polyfill needs for UI widgets
and framework features

This is the main source file for our polyfill

This file contains all of our test fixtures

With the runner done, let’s create the key file for our testing, fixtures.js. Example 4-5
contains an initial test file with a couple of tests. You’ll notice that Jasmine uses functions

like describe, it, and expect, and that my test names are written in narrative form.
Because Jasmine is a BDD-style testing framework, you’ll hopefully find, as I do, that
it’s easy to write readable test names and assertions that make sense, not just now, but
when you’re hunting down regressions later.

Adding Unit Tests to Your Polyfill | 67

Example 4-5. A basic Jasmine fixtures.js file for our polyfill

describe('Kendo Forms Widget Test Suite', function() {

 describe('Form initialization tests', function() {

 describe('Form Widget initialization', function() {

 it('should exist in the kendo.ui namespace', function() {

 expect(kendo.ui.Form).toBeDefined();

 });

 it('should be able to perform imperative initialization with JavaScript', function() {

 expect($('#imperative-form').kendoForm).toBeDefined();

 });

 });

 });

});

With this setup done, let’s go ahead and run these tests in the browser. First, if you’re
following along and you created the kendo.forms.js source file in Chapter 3, the pre‐
ceding tests should pass. That’s nice, but for the sake of exploration, let’s delete every‐
thing from that file and rerun our tests. If Jasmine is properly configured, you should
see two failing tests, as we do in Figure 4-2. So we have successfully configured our
testing framework. Now, let’s go make these tests pass!

Figure 4-2. Jasmine running in the browser

68 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

Red to Green: Making the First Tests Pass
When I start a new project, or add unit tests to an existing project, I like to start small
and try to get a few quick win tests under my belt. This is partly because I’m still feeling
out functionality in the early stages of a project, but also because I want to see my test
suite running and passing as quickly as possible. It’s far easier to suss out problems with
my test suite setup with a smaller number of tests.

With that in mind, the first two failing specs we’ve added to my project are minor and
easy to fix, but they help lay the foundation for my polyfill. As discussed in Chapter 3,
Kendo UI itself exposes its UI widgets to developers in two ways, and the preceding
tests are designed to exercise that behavior. The tests in Example 4-5 are looking for key
pieces of information. First, we check to make sure that our polyfill exists as a widget

in the Kendo UI namespace, as kendo.ui.Form. Next, we want to ensure that the polyfill
widget is available as a jQuery plug-in. To make those tests pass, we can create the initial
skeleton of our polyfill in a new file (in src/) called kendo.forms.js and add the code in
Example 4-6, or add the code back in if you already did so in Chapter 3.

Example 4-6. Creating the core widget definition for our Kendo UI Forms polyfill in
kendo.forms.js

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget,

 formWidget;

 var Form = Widget.extend({

 init: function(element, options) {

 // base call to widget initialization

 Widget.fn.init.call(this, element, options);

 },

 options: {

 // the name is what will appear in the kendo namespace (kendo.ui.Form).

 // The jQuery plug-in would be jQuery.fn.kendoForm.

 name: 'Form'

 }

 });

 ui.plugin(Form);

} (jQuery, kendo));

We added a lot more code to this file in Chapter 3 before all was said and done, but this
skeleton code we’ve written so far lays the foundation for my library, and it’s also enough
to make my first tests pass, as you can see in Figure 4-3.

Adding Unit Tests to Your Polyfill | 69

Figure 4-3. Basic Jasmine tests passing

Running Jasmine Tests via Grunt
So far, we’ve gotten Jasmine configured for our unit tests, and we’ve even gotten a couple
of failing tests to pass. This is a great start, but all of our work is in the browser, and
running our tests requires that we refresh a browser tab to verify. This is probably fine
for many projects, but I’d like to be able to execute my tests in both the browser and via
the command line, the latter of which is required when I start working with Karma and
Travis CI later. This also allows me to streamline my development workflow by auto‐
matically running tests whenever I save certain files in my project.

Thankfully, I’m not alone in my desire for console-based JavaScript testing, and there
just so happens to be a Grunt plug-in for Jasmine that I can add to my project. First, I’ll

want to configure Jasmine by adding a few lines to my gruntfile. I’ll add the grunt-

contrib-jasmine task declaration to the bottom of the file, like so:

grunt.loadNpmTasks('grunt-contrib-jasmine');

Then, I need to add a Jasmine task to the initConfig section of the file, as shown in
Example 4-7. This task definition tells Jasmine where to look to find my project source,
the specs to run, and finally, any third-party vendor libraries that should also be loaded.

Example 4-7. Adding a Jasmine Grunt task to gruntfile.js

jasmine: {

 src: ['lib/**/*.js', 'src/js/kendo.forms.utils.js',

 'src/js/kendo.forms.types.js',

 'src/js/kendo.forms.features.js',

 'src/js/kendo.forms.js'

],

 options: {

 specs: 'spec/js/*.js',

 vendor: [

70 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

 'spec/lib/jasmine-jquery.js'

]

 }

}

Next, I’ll want to install the Jasmine Grunt plug-in via the following terminal command:

npm install grunt-contrib-jasmine --save-dev

Once I’ve done so, I can run the command grunt jasmine via the console, and I’ll get
a result that looks like Example 4-8.

The --save-dev switch will automatically save the package as a de‐
velopment dependency in your package.json file, ensuring that oth‐
er devs and your CI environment can quickly replicate your setup.

Example 4-8. Running Jasmine via the console

$ grunt jasmine

Running "jasmine:src" (jasmine) task

Testing jasmine specs via phantom

..

2 specs in 0.001s.

>> 0 failures

Done, without errors.

Now I’ve got Jasmine running in the browser, and in the terminal, which is nice! Un‐
fortunately, our configuration work isn’t quite done yet. Everything works great so far
because neither of our initial tests access the DOM. Once we need to access the DOM,
though, things get a bit tricky, so I’ll need to add a little more configuration to keep this
happy testing party going.

Let’s add our third test, and the first to access the DOM. I’ll open fixtures.js back up and
add the test in Example 4-9.

Example 4-9. Testing declarative form initialization in fixtures.js

it('should be able to perform declarative initialization with data attributes',

 function() {

 kendo.init(document.body);

 expect($('#declarative-form').data('kendoForm')).not.toBe(null);

});

As discussed previously, Kendo UI widgets can be declared one of two ways: either using

JavaScript, or via data-role declaration and calling kendo.init on a container, which
creates widgets for every element inside that container. The preceding test calls

Adding Unit Tests to Your Polyfill | 71

kendo.init on document.body, which will look for every element with a data-role
attribute, and initialize that element accordingly.

When I first add this test and refresh the browser, it will fail, but I can make it pass by

adding the code in Example 4-10 to the runner.html file, just inside the <body> element.

Example 4-10. Declarative initialization of a Form widget in runner.html

<form id="declarative-form" data-role="form"></form>

Configuring Jasmine for the Browser and the Console
After adding the markup in Example 4-10, all three of my tests will pass. That’s nice, but

in the spirit of keeping our test options open, let’s rerun the grunt jasmine command
and see what happens. Spoiler alert: it looks like Figure 4-4. That’s a failing test. Why
did our test fail in my terminal, even though it worked in the browser? The answer lies
in the DOM, or lack thereof, that is. When I’m using Jasmine via the console, there is
no DOM available for my tests, so in order to leverage the DOM for testing, I need to
do a bit of additional setup. For that, I’ll use the jasmine-jquery library, which allows
me to load HTML files into my specs and execute my tests against them.

Figure 4-4. Running Jasmine DOM tests in the console

First, I’ll need to move the form tag from Example 4-10 into a standalone HTML file
named declarative-form.html, and I’ll place that file in a spec/javascripts/fixtures/ di‐
rectory—the location is a convention jasmine-jquery uses. Then, I need to add the
jasmine-jquery fixture loader to my fixtures.js file, so I’ll add the path shown in
Example 4-11 to line 4.

Example 4-11. Setup for loading external fixtures from fixtures.js

var fixtures = jasmine.getFixtures();

if (document.location.pathname.indexOf('runner.html') > 0) {

 // We're running jasmine in the browser

 fixtures.fixturesPath = '../spec/javascripts/fixtures';

}

72 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

http://bit.ly/jas-jq

In order to run Jasmine in multiple environments, I do have to add a bit of path ma‐
nipulation, as you can see in the preceding sample. If I’m running my tests in the console,
the default path (spec/javascripts/fixtures) works for loading fixtures. If I’m in the
browser, however, I need to adjust things a little. Finally, in my latest test,

Example 4-9, I’ll add a call to jasmine-jquery’s load method to load up my HTML fixture.
The complete test is listed in Example 4-12.

Example 4-12. Loading an external fixture from fixtures.js

it('should be able to perform declarative initialization with data attributes',

 function() {

 fixtures.load('declarative-form.html');

 kendo.init(document.body);

 expect($('#declarative-form').data('kendoForm')).not.toBe(null);

});

When I rerun grunt jasmine in the console, I should see all green. I can also rerun the
tests in my browser, where everything also passes with flying colors.

I now have a complete unit test setup that works in the browser and via the console,
which is about to come in quite handy!

Automating Cross-Browser Polyfill Testing
Now that we have a good testing setup with Jasmine and Grunt, let’s take this party to
the next level and add in some cross-browser testing. While automated cross-browser
testing might be considered overkill for some types of projects, it’s a must when building
a polyfill. As you build your polyfill, you’ll quickly discover cases where a certain test
isn’t needed in your everyday development browser because the feature is present, but
the feature still needs a good solid test because your polyfill provides capabilities for
another browser to leverage. Performing automated testing across several installed
browsers can be a quick sanity check to ensure that development of your polyfill is
progressing along without a hitch and, thankfully, there are some great tools out there
that we can pair with our existing Grunt workflow. My tool of choice is Karma, a simple
test runner that can call out to all major browsers using test runner plug-ins and also
integrates nicely with Grunt.

As I discussed in Chapter 3, automated cross-browser testing is a great
safety net for the polyfill developer, but it’s no substitute for real, actual
testing across browsers, especially those older versions of IE, where
browser quirks lie in wait.

Automating Cross-Browser Polyfill Testing | 73

http://bit.ly/karma-js

Configuring Cross-Browser Tests with Karma
To get started with Karma, I’ll need to install grunt-karma via npm:

npm install grunt-karma --save-dev

Both Karma and grunt-karma will be installed, and a series of Karma-related depen‐
dencies will be added to your package.json file. Next, you’ll want to add the line

grunt.loadNpmTasks(grunt-karma); to the end of the loadNpmTasks calls in your
gruntfile. Then, I’ll add the Karma task to my gruntfile, starting with a bit of logic to
populate an array of browsers I want to test with, at the top of the file, as shown in
Example 4-13.

Example 4-13. Adding a browser array to gruntfile.js

var browsers;

(function() {

 var os = require('os');

 browsers = ['Chrome', 'Firefox', 'Opera'];

 if (os.type() === 'Darwin') {

 browsers.push('ChromeCanary');

 browsers.push('Safari');

 }

 if (os.type() === 'Windows_NT') {

 browsers.push('IE');

 }

})();

In this snippet, I’m using Node to figure out which OS I’m testing. If I’m using OS X
(which reports as Darwin), I’ll add Chrome Canary and Safari. If, on the other hand,
I’m on Windows, I’ll add IE to my browsers array.

Both Internet Explorer and, recently, Safari are single-OS browsers,
meaning that they run only on Windows and Mac OS X, respective‐
ly. This means that it’s not possible to run a complete set of cross-
browser tests for your polyfills on a single OS. You’ll need either a few
Windows VMs on hand for various versions of IE, or a cheap Mac
OS X box for Safari testing if either of these is not your primary
operating system.

Next, I’ll add a task for Karma to the grunt.initConfig method, as shown in
Example 4-14:

Example 4-14. Adding a Karma task to gruntfile.js

karma: {

 options: {

 configFile: 'conf/karma.conf.js',

74 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

 keepalive: true

 },

 forms: {

 browsers: browsers

 }

}

Key in this section is the configFile property, which accepts a path to a separate Karma
configuration file. Karma has a lot of configuration options, so placing these in a separate
file is usually a good approach. The contents of my karma.conf.js can be found in
Example 4-15.

Example 4-15. karma.conf.js Karma configuration file for our forms polyfill

module.exports = function(config) {

 config.set({

 // base path that will be used to resolve files and exclude

 basePath: '../',

 // list of files / patterns to load in the browser

 files: [

 'lib/js/*.js',

 'dist/js/kendo.forms.min.js',

 {pattern: 'lib/js/jquery.min.js', watched: false, served: true,

 included: true},

 {pattern: 'spec/lib/jasmine-jquery.js', watched: false, served: true,

 included: true},

 {pattern: 'src/js/*.js', watched: true, served: true,

 included: false},

 {pattern: 'spec/**/*.html', included: false},

 'spec/js/*.js',

],

 // list of files to exclude

 exclude: [],

 frameworks: ['jasmine'],

 reporters: ['progress'],

 port: 9876,

 runnerPort: 9100,

 colors: true,

 logLevel: config.LOG_INFO,

 autoWatch: true,

 browsers: ['ChromeCanary'],

 captureTimeout: 50000,

 singleRun: true,

 reportSlowerThan: 500,

 preprocessors: {},

 plugins: [

 'karma-jasmine',

Configuring Cross-Browser Tests with Karma | 75

 'karma-chrome-launcher',

 'karma-firefox-launcher',

 'karma-safari-launcher',

 'karma-opera-launcher',

 'karma-ie-launcher',

 'karma-script-launcher'

]

 });

};

This file contains a couple of key sections. First, the files array contains all of the source
files from my project that Karma needs to know about in order to properly execute my
tests. Next, I include a series of options regarding the test runner (Jasmine), which ports
to use, and the like. Finally, I specify a series of Karma plug-ins, which the framework
needs to communicate with my test runner and browsers. By default, Karma includes
the launchers for Firefox and Chrome, so I’ll need to install the Opera, Safari, and IE
launchers to use them:

npm install karma-opera-launcher --save-dev

npm install karma-safari-launcher --save-dev

npm install karma-ie-launcher --save-dev

Making Karma, Jasmine, and the Browser Play Nice
Once I’ve installed those two additional launchers, I should be able to run Karma using

Grunt with the grunt karma command. If I do that, I should see all of my browsers
launch, but one of my three initial tests will fail. Can you guess which ones? That’s right,
the DOM test. Much as I did for Jasmine in the console, I need to add a path condition
for Karma to my fixtures.js file, as shown in Example 4-16.

Example 4-16. Modifying the fixtures.js external fixtures load path for Karma

if (document.location.pathname === '/context.html') {

 // Karma is running the test, so change the base

 fixtures.fixturesPath = 'base/spec/javascripts/fixtures';

} else if (document.location.pathname.indexOf('runner.html') > 0) {

 // We're running jasmine in the browser

 fixtures.fixturesPath = '../spec/javascripts/fixtures';

}

With this additional condition, I’m looking for context.html in my path, which is the

environment under which Karma runs. If that value is found, I’ll adjust the base fix

turesPath to account for the location from which Karma loads these files. Otherwise,
I’ll look for my in-browser runner.html, as before. And that’s it. I can return to the

console and run grunt karma and watch all my tests pass in five browsers, as shown in
Figure 4-5. It’s a thing of beauty!

76 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

Figure 4-5. Running cross-browser tests with Karma

Automating Polyfill Development with Grunt Tasks
Thus far in this chapter, we’ve set up a new polyfill project, we’ve configured npm and
Grunt for our development workflow, and we’ve added Jasmine and Karma for unit and
cross-browser testing. All of these moving pieces work great alone, but we’re now going
to bring them together for a killer polyfill development workflow. As mentioned earlier,
Grunt gives you the ability to create custom tasks that chain together predefined tasks

in interesting ways. One example is the minify task in Example 4-3, which automatically

runs JSHint, concatenates your source files, and then runs uglifyJS to minify them.

Now that we’ve added some testing, let’s add a few more custom tasks that combine our
test frameworks with our JSHint and magnification tasks, as shown in Example 4-17.

Example 4-17. Adding tasks to gruntfile.js

grunt.registerTask('test', ['minify', 'jasmine']);

grunt.registerTask('x-test', ['minify', 'jasmine', 'karma:forms']);

Now I can run grunt test in the console and have my files linted, minified, combined,

and tested, or I can run grunt x-test, which will do all of the above and then run my
tests across all browsers using Karma.

Configuring Cross-Browser Tests with Karma | 77

Linting is the practice of checking source code for syntax errors or
style violations. In the JavaScript space, two popular code-linting tools
are JSLint and JSHint.

While task customization is nice, what I’d really like to be able to do is execute a Grunt
command once, and have that command watch my source files for changes. Then, when
one of those files is saved, Grunt will execute one or more tasks automatically. Sounds

awesome, right? It is, and with Grunt, it’s built in. All I need is the grunt-contrib-

watch plug-in, which I can install via npm:

npm install grunt-contrib-watch --save-dev

Once I’ve installed this plug-in, I’ll include the task via a call to loadNpmTasks:

grunt.loadNpmTasks('grunt-contrib-watch');

And finally, I’ll add the task to grunt.initConfig:

watch: {

 scripts: {

 files: ['<%= jshint.files %>'],

 tasks: ['test'],

 options: {

 nospawn: true

 }

 }

}

Now I can run grunt watch before I begin working on my polyfill. As I make changes
to important files, Grunt will pick those up, lint the files, and run my Jasmine tests
automatically, as shown in Figure 4-6.

78 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

http://jslint.com
http://jshint.com

Figure 4-6. Developing iteratively with grunt watch

Performing Remote Testing with Travis CI
Before we wrap up this chapter, there’s one final piece of setup I suggest you perform
when building a cross-browser polyfill: configuring a CI server to run your tests and
provide you with that extra-level sanity check. As I said previously, I prefer Travis CI
because the service is free for open source projects, and it’s dead-simple to configure.
In fact, all I need in my project is to add a file called .travis.yml with a few options, as
shown in Example 4-18.

Example 4-18. A Travis CI configuration file, .travis.yml, for our Forms polyfill

language: node_js

node_js:

 - "0.10"

 - "0.8"

before_script:

 - npm install -g grunt-cli

This file, which I’ll include in my Git repository and push to GitHub, tells Travis that
I’m running a NodeJS app, and that I’d like to test it using Node v0.10 and v0.8. I’ve also

included the before_script option to ensure that the CI server has the Grunt CLI
installed, which I need to run my tests. Once I’ve added this file and pushed it to GitHub,

Configuring Cross-Browser Tests with Karma | 79

I can head over to the Travis website and follow their Getting Started guide to configure
my project with their service.

Once everything is set up, any time I push a commit to my repo from GitHub to Travis,
the service will spin up and run my tests, giving me that extra measure of defense for
my polyfill. Figure 4-7 shows an example status screen for my HTML5 Forms polyfill.
Looks like a success!

Figure 4-7. The Travis dashboard with test results for our polyfill

Since there are so many moving pieces involved in getting cross-browser testing set up,
I’ve purposely kept our fixtures file small, covering only three tests. However, the full

kendo-ui-forms polyfill contains a much larger test suite, and I suggest you check it
out for yourself when venturing into testing for your own polyfills.

The Bottom Line: Use What Works for You!
We’ve covered a ton of ground in this chapter, and while much of it is not specific to
polyfill development, I felt this chapter was an important one to include because a great
polyfill needs tests—and lots of ‘em—and a rock-solid development workflow. As you’ll
see in the next chapter, polyfill development can get hairy at times, especially as you
delve into oldIE, so the more thorough your tests and your workflow, the better off you’ll
be as you head down the narrow road.

80 | Chapter 4: Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing

http://travis-ci.org
http://bit.ly/trav-started
http://bit.ly/fixturejs
http://bit.ly/fixturejs

In this chapter, I mentioned a lot of third-party and open source technologies that I
prefer to use when building polyfills. Some of these might work for you as well, while
in other cases you have a personal favorite you like to use. That’s OK! All that matters
is that you get a good dev and test workflow in place early on, no matter which tools
you choose to use.

Now that our development and testing workflow is in place and we’ve built a nice cross-
browser polyfill, let’s take a look at edge cases, performance considerations, and finally,
how to release your polyfill into the wild.

The Bottom Line: Use What Works for You! | 81

CHAPTER 5

Building Your First Polyfill, Part 3:
Performance and Edge-Case Testing

Over the last two chapters, we’ve built a pretty nice cross-browser polyfill from the
ground up, and we’ve even added a complete testing setup to ensure that your library
always works as expected. So while Chapters 3 and 4 were about making sure that your
polyfill works, this chapter is about making sure that it works well. In particular, we’re
going to discuss optimizing your polyfill for performance, as well as how to handle
quirky, browser-specific edge cases that can reveal themselves from time to time.

Building for Performance
In Chapter 2, I introduced several principles of responsible polyfill development. One
of these was “Build with performance in mind.” The spirit of this principle is to en‐
courage polyfill developers to go beyond only delivering a functional equivalent to a
native browser feature via their library, but to ensure that this equivalent is also as fast
as it can possibly be.

This is a high bar, for sure. Your polyfill’s performance baseline is the native rendering
capabilities of the browser. Chances are, your library won’t be able to match the speed
of a native feature, and attempting to do so should not be your focus. Instead, you should
instead strive to pass the frontend developers’ noticeability test. It’s a simple test. If, after
including your library in a developer’s application, that app runs noticeably slower, you
can expect that your polyfill will be dropped on the floor, quickly. That, or the developer
will contact you and complain. Remember, polyfills are designed to emulate native
browser capabilities, so you should consider it your solemn duty not to be noticed by
developers, or end users, for that matter. And while the noticeability test itself is both
far from scientific and something that varies from developer to developer, there are
some strategies you can adopt to increase the chances that you’ll pass this test:

83

1. Setup performance benchmarks.

2. Don’t execute code too early or too often.

3. Iterate until you’re happy and then iterate some more.

We’ll look at each of these, in turn.

1. Set Up Performance Benchmarks
First things first: if you want to build for performance, you need to be able to test and
assess the performance of your polyfill. You certainly could eyeball it and judge your
library by how fast it “feels” to you, but I suggest being a bit more intentional if you can
stand it. Specifically, I suggest using JSPerf to benchmark and test your polyfill, not only
at the start, but as you continue to iterate and make changes. JSPerf, which is based on
the open source Benchmark.js library, is a quick and easy way to set up tests of your
library’s features and functionality. Alternatively, you could use Benchmark.js directly,
the grunt-benchmark Grunt plug-in, or just use the DevTools in your favorite browser
to run ad hoc tests, but I find that JSPerf has everything I need to run performance tests
and comparisons across revisions to my polyfills. Plus, it has pretty charts, courtesy of
Browserscope. In the next section, I’ll walk through setting up a simple JSPerf test to
show the delta after a simple tweak to my polyfill.

2. Don’t Execute Code Too Early or Too Often
The next strategy we can employ to pass the noticeability test is to make sure that our
polyfill doesn’t execute any code it doesn’t have to. This is especially important if your
library is a drop-in or opt-in polyfill that performs its own feature detection. For in‐
stance, our HTML5 Forms polyfill needs to test for browser support of several input
types. In Chapter 3, we perform feature detection as we loop over each input in a form,
as shown in Example 5-1.

Example 5-1. Form support with feature detection in kendo.forms.js

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget;

 var typeUpgrades = [

 {

 type: 'color',

 upgrade: function(inputs) {

 inputs.kendoColorPicker({ palette: 'basic' });

 }

 },

 {

 type: 'number',

 upgrade: function(inputs) {

84 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

http://jsperf.com
http://benchmarkjs.com
http://bit.ly/grunt-ben
http://browserscope.org

 inputs.kendoNumericTextBox();

 }

 },

 {

 type: 'range',

 upgrade: function(inputs) {

 inputs.kendoSlider({

 showButtons: false,

 tickPlacement: 'none'

 });

 }

 }];

 var Form = Widget.extend({

 init: function(element, options) {

 var form = $(element),

 that = this;

 var i, len;

 // base call to widget initialization

 Widget.fn.init.call(this, element, options);

 function isFormTypeSupported(type) {

 if (type === 'text') { return true; }

 if (that.options.alwaysUseWidgets) {

 return false;

 }

 var input = document.createElement('input');

 input.setAttribute('type', type);

 return input.type !== 'text';

 }

 for (i = 0, len = typeUpgrades.length; i < len; i++) {

 var typeObj = typeUpgrades[i];

 if (!isFormTypeSupported(typeObj.type)) {

 var inputs = form.find('input[type=' + typeObj.type + ']');

 typeObj.upgrade(inputs);

 }

 }

 },

 options: {

 // the name is what will appear in the kendo namespace (kendo.ui.Form).

 // The jQuery plug-in would be jQuery.fn.kendoForm.

 name: 'Form',

 alwaysUseWidgets: false

 }

 });

Building for Performance | 85

 ui.plugin(Form);

} (jQuery, kendo));

Test each feature before “upgrading”

In this snippet, I create an array called typeUpgrades to represent each form input type
and the “upgrade” logic needed to convert these into Kendo UI widgets. Then I create
a custom widget for my polyfill and specify the logic to perform when that widget is
initialized, which iterates over each type, finds any form fields that match, and finally,
upgrades each field based on its type.

The first perf tweak: caching feature tests

The preceding approach works, but perhaps you noticed that we perform the feature
detection test—creating an in-memory input element and setting its type—each and

every time. So, if I have 20 inputs on my form with the new color type, I’ll perform this
dance 20 times. This is unnecessary. The user’s browser won’t change in the middle of
a page load, so there’s really no reason for me to perform these feature tests each time
through. Instead, it makes more sense to test each feature when my library loads, and
cache the result of each test as a Boolean that I can access later. Example 5-2 shows an
example of this for my HTML5 Forms polyfill.

Example 5-2. Caching feature tests at first run in kendo.forms.js

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget;

 var typeUpgrades = [

 {

 type: 'color',

 upgrade: function(inputs) {

 inputs.kendoColorPicker({ palette: 'basic' });

 }

 },

 {

 type: 'number',

 upgrade: function(inputs) {

 inputs.kendoNumericTextBox();

 }

 },

 {

 type: 'range',

 upgrade: function(inputs) {

 inputs.kendoSlider({

 showButtons: false,

 tickPlacement: 'none'

 });

 }

 }];

86 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

 function isFormTypeSupported(type) {

 var input = document.createElement('input');

 input.setAttribute('type', type);

 return input.type !== 'text';

 }

 var featureDetects = {

 color: isFormTypeSupported('color'),

 number: isFormTypeSupported('number'),

 range: isFormTypeSupported('range')

 };

 var Form = Widget.extend({

 init: function(element, options) {

 var form = $(element),

 that = this;

 var i, len;

 // base call to widget initialization

 Widget.fn.init.call(this, element, options);

 for (i = 0, len = typeUpgrades.length; i < len; i++) {

 var typeObj = typeUpgrades[i];

 if (!featureDetects[typeObj.type] || that.alwaysUseWidgets) {

 var inputs = form.find('input[type=' + typeObj.type + ']');

 typeObj.upgrade(inputs);

 }

 }

 },

 options: {

 // the name is what will appear in the kendo namespace (kendo.ui.Form).

 // The jQuery plug-in would be jQuery.fn.kendoForm.

 name: 'Form',

 alwaysUseWidgets: false

 }

 });

 ui.plugin(Form);

} (jQuery, kendo));

Test and cache each feature test during the initial script load

Access the cached test value during the “upgrade” process

In Example 5-2, I moved the isFormTypeSupported function outside my widget initi‐

alization code, and created a local featureDetects object to hold the cached Boolean
values for each test. Finally, in my main initialization loop, I access those cached values,
and bypass repeated code paths.

Building for Performance | 87

This is nice in theory, and it certainly looks a bit cleaner, but just how fast is it? To answer
that question, I can head over to JSPerf and create a test.

Using JSPerf

JSPerf can seem a bit daunting if you’ve only ever viewed others’ tests before, but it’s
actually quite simple to create tests of your own. The basic idea behind JSPerf is to create
multiple test cases that execute blocks of JavaScript code—performing operations, mu‐
tating the DOM, and so forth—which the tool then executes over and over again in
order to determine which operations are fastest and slowest. JSPerf takes care of all of
the looping and reruns, so all you need to do is specify the test cases, and any setup or
teardown that should happen before or after each test run.

In order to test just how much feature test caching improves the performance of our
code, I created the test shown in Figure 5-1. You can also access the test online, and run
it yourself, if you so desire.

The “Preparation code” section in Figure 5-1 shows the setup and teardown code that
will run before each test. This code does not impact the timing of the tests. Here, I create

a global feature test method, isFormTypeSupported, as well as a global featureDe

tects object, similar to Example 5-2.

The “Test Runner” section in Figure 5-1 contains my actual tests. The “Test Each Time”

section does exactly what it says: each time that block is called, it will call the isType

Supported method. This block mimics my original functionality in Example 5-1. The
“Cache Tests” section in Figure 5-1, on the other hand, simply accesses the cached feature
test values once. If I run these tests a few times, I’ll get a result similar to Figure 5-2,
which shows the test case from Figure 5-1 after I’ve run the test several times through
in Chrome.

As you can see in Figure 5-2, caching my feature tests is not only faster, it’s nearly 60
times faster on Chrome than performing feature tests each time! It’s important to note
that since JSPerf runs each test case several dozen times over, reported numbers aren’t
indicative of raw, overall performance gains in my library. Rather, JSPerf is most valuable
as a measure of relative performance between options. I should also point out that
performance gains—or losses—will vary from one browser to the next. In the preceding
example, our gains in Chrome are far higher than IE, so it’s important to test across
browsers to get an accurate picture of changes. The bottom line, in this case, is that we
know that caching feature tests is faster and thus an excellent refactoring choice for my
library.

88 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

http://jsperf.com
http://jsperf.com/feature-test-cache

Figure 5-1. JSPerf test for feature test caching

Building for Performance | 89

Figure 5-2. JSPerf test results for feature test caching

So far in this section, we’ve avoided executing unnecessary code by ensuring that feature-
detection tests run only once when my library is loaded. Another important optimiza‐
tion I can perform is to ensure that my library doesn’t perform any unnecessary initi‐
alization or setup. Any features or functionality that my library might not need for all
browsers should remain dormant until it’s needed. Obviously, stylesheets and JavaScript

90 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

will need to be parsed when they are included, but I try to execute as little of that code
as possible, until my library is called upon. In the case of my polyfill, the only code that
runs before I initialize a form widget is my now cached feature tests, which I’ve deemed
necessary to run up front since the performance gains are considerable.

3. Iterate Until You’re Happy, Then Iterate Some More
The final strategy to keep your library performing well under the watchful eyes of con‐
suming devs is to iterate, test, and iterate again. This is a bit of a hunt-and-peck exercise,
where I look for micro- and macro-optimizations in my library, make changes, and then
test those against the last version, using JSPerf. Some changes will make no difference
in the performance of my library, while others will make a noticeable difference. Some
might even harm performance, innocent as they may seem. The key is to code, test,
iterate, and then test some more.

There’s no science to this process, unfortunately, so I can’t give you a bunch of tried-
and-true tweaks that can be made to every library under the sun. I can, however, show
you a couple of tweaks I made to my HTML5 Forms polyfill to give you an idea of what
minor and major improvements might look like. Beyond these, your best bet is to pay
attention to JavaScript best practices, as well as the proven practices of the libraries or
frameworks you’re utilizing. Best practices are often named as such because they pro‐
mote maintenance, readability of code, and good performance, so you’ll benefit from
these even if they don’t show considerable gains in your performance tests.

Before we proceed with the next few performance tweaks, I want to share the code
samples for the complete HTML5 Forms polyfill. Thus far, I’ve included snippets only
for three new input types. However, to properly show the impact of the next couple of
refactors, we need to look at the complete source. In the production version of my
polyfill, the source is broken into three modules, or files, that I concatenate during my
build process. Those files are as follows:

kendo.forms.types.js
Contains all of the input types supported by my polyfill, and the logic used to “up‐
grade” each to use a Kendo UI widget. The full source of this file can be viewed in
Example 5-3.

kendo.forms.features.js
Feature detection tests for my polyfill. The full source of this file can be viewed in
Example 5-4.

kendo.forms.js
The main source file for my polyfill. Contains widget initialization code and de‐
pends on kendo.forms.types.js and kendo.forms.features.js. The full source of this
file can be viewed in Example 5-5.

Building for Performance | 91

Example 5-3. Contents of kendo.forms.types.js

(function (kendo) {

 kendo.forms = kendo.forms || {};

 var typeUpgrades = [

 {

 type: 'color',

 upgrade: function(index, val) {

 $(val).kendoColorPicker({ palette: 'basic' });

 }

 },

 {

 type: 'number',

 upgrade: function(index, val) {

 $(val).kendoNumericTextBox();

 }

 },

 {

 type: 'range',

 upgrade: function(index, val) {

 $(val).kendoSlider({

 showButtons: false,

 tickPlacement: 'none'

 });

 }

 },

 {

 type: 'file',

 upgrade: function(index, val) {

 $(val).kendoUpload();

 }

 },

 {

 type: 'datetime',

 upgrade: dateTimeUpgrade

 },

 {

 type: 'datetime-local',

 upgrade: dateTimeUpgrade

 },

 {

 type: 'time',

 upgrade: function(index, val) {

 var input = $(val),

 dummyDate = '2013-10-04T';

 input.kendoTimePicker({

 value: input.val().length > 0 ? new Date(dummyDate + input.val())

 : null,

 min: input.attr('min') ? new Date(dummyDate + input.attr('min'))

 : new Date(2049, 0, 1, 0, 0, 0),

 max: input.attr('max') ? new Date(dummyDate + input.attr('max'))

92 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

 : new Date(2099, 11, 31, 0, 0, 0),

 // Step attribute is seconds, interval in minute

 interval: input.attr('step') ?

 Math.round(parseInt(input.attr('step'), 10)/60) : 30

 });

 }

 },

 {

 type: 'month',

 upgrade: function(index, val) {

 var input = $(val),

 value = convertMonthPartToDate(input.val()),

 min = convertMonthPartToDate(input.attr('min')),

 max = convertMonthPartToDate(input.attr('max'));

 input.kendoDatePicker({

 // Set the start and depth properties to year, which means

 // that only month values are displayed.

 start: 'year',

 depth: 'year',

 // If the conversion returned a NaN, use the default values

 value: isNaN(value) ? null : new Date(value),

 min: isNaN(min) ? new Date(1900, 0, 1) : new Date(min),

 max: isNaN(max) ? new Date(2099, 11, 31) : new Date(max)

 });

 }

 },

 {

 type: 'week',

 upgrade: function(index, val) {

 var input = $(val),

 value = getDateFromWeekString(input.val()),

 min = getDateFromWeekString(input.attr('min')),

 max = getDateFromWeekString(input.attr('max'));

 input.kendoDatePicker({

 // Set the start and depth properties to month, which means

 // that only day/week values are displayed.

 depth: 'month',

 // If the conversion returned a null date, use the default values

 value: value,

 min: min === null ? new Date(1900, 0, 1) : min,

 max: max === null ? new Date(2099, 11, 31) : max

 });

 }

 },

 {

 type: 'date',

 upgrade: function(index, val) {

 var input = $(val);

 var defaults = getDateTimeDefaults(input);

 input.kendoDatePicker(defaults);

Building for Performance | 93

 }

 }];

 function convertMonthPartToDate(val) {

 // Add dummy day of month for valid date parsing

 val = val + '-' + new Date().getDate();

 return Date.parse(val);

 }

 function getDateFromWeekString(weekString) {

 var week, year,

 dateParts = weekString.split('-');

 if (dateParts.length < 2) {

 return null;

 }

 year = dateParts[0];

 week = dateParts[1].replace(/w/gi, '');

 if (isNaN(parseInt(week, 10)) || isNaN(parseInt(year, 10))) {

 return null;

 }

 // Jan 1 + 7 days per week

 var day = (1 + (week - 1) * 7);

 return new Date(year, 0, day);

 }

 function dateTimeUpgrade(index, val) {

 var input = $(val);

 // Step attribute is seconds, interval in minute

 var defaults = getDateTimeDefaults(input);

 defaults.interval = input.attr('step') ?

 Math.round(parseInt(input.attr('step'), 10)/60) : 30;

 input.kendoDateTimePicker(defaults);

 }

 function getDateTimeDefaults(input) {

 return {

 value: input.val().length > 0 ? new Date(input.val()) : null,

 min: input.attr('min') ? new Date(input.attr('min'))

 : new Date(1900, 0, 1),

 max: input.attr('max') ? new Date(input.attr('max'))

 : new Date(2099, 11, 31)

 };

 }

 kendo.forms.types = typeUpgrades;

} (kendo));

94 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

Example 5-4. Contents of kendo.forms.features.js

(function (kendo) {

 kendo.forms = kendo.forms || {};

 function detectFormTypeSupport(type) {

 var input = document.createElement('input');

 input.setAttribute('type', type);

 return input.type !== 'text';

 }

 function detectDateTimeFields(type) {

 var dummyVal = ':(';

 var i = document.createElement('input');

 i.setAttribute('type', type);

 // Credit to Mike Taylor //gist.github.com/miketaylr/310734

 i.value = dummyVal;

 return (i.value !== dummyVal);

 }

 var featureDetects = {

 color: detectFormTypeSupport('color'),

 number: detectFormTypeSupport('number'),

 range: detectFormTypeSupport('range'),

 file: detectFormTypeSupport('file'),

 datetime: detectDateTimeFields('datetime'),

 datetime_local: detectFormTypeSupport('datetime-local'),

 time: detectFormTypeSupport('time'),

 month: detectFormTypeSupport('month'),

 week: detectFormTypeSupport('week'),

 date: detectFormTypeSupport('date'),

 placeholder: (function() {

 return 'placeholder' in document.createElement('input') &&

 'placeholder' in document.createElement('textarea');

 }())

 };

 kendo.forms.features = featureDetects;

} (kendo));

Example 5-5. Contents of kendo.forms.js

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget,

 typeUpgrades = kendo.forms.types;

 var Form = Widget.extend({

 init: function(element, options) {

 var that = this;

 var form = $(element);

 var i, len;

Building for Performance | 95

 var upgradeFormType = function(type, callback) {

 var modType = type.replace(/-/g,'_');

 if (!kendo.forms.features[modType] ||that.options.alwaysUseWidgets) {

 form.find('input[type=' + type + ']').each(callback);

 }

 };

 // base call to widget initialization

 Widget.fn.init.call(this, element, options);

 if (that.options.styleInputs) {

 form.find('input, button').each(function(index, val) {

 // Add the k-input class to each form element (or

 // k-button for buttons), providing Kendo UI styling

 // to all elements, not just those the widget will transform.

 var el = $(val);

 if (val.type === 'button' ||

 val.type === 'submit' ||

 val.type === 'reset') {

 el.addClass('k-button');

 } else {

 el.addClass('k-input');

 }

 });

 }

 // Add basic support for form types defined in the typeUpgrades array

 for (i = 0, len = typeUpgrades.length; i < len; i++) {

 var typeObj = typeUpgrades[i];

 upgradeFormType(typeObj.type, typeObj.upgrade);

 }

 // Add placeholder support if not provided by the browser

 if(!kendo.forms.features.placeholder) {

 form.find('[placeholder]').each(function(index, val) {

 var el = $(val);

 // Strip CR and LF from attribute vales, as specified in

 // www.w3.org/TR/html5/forms.html#the-placeholder-attribute

 var placeholderText = el.attr('placeholder')

 .replace(/(\\r\\n|\\n|\\r)/gm,'');

 // When the field loses focus, clear out the placeholder if

 // the input contains a value.

 el.on('blur', function() {

 var $el = $(this);

 var labelNode = this.previousSibling;

 if (this.value) {

 labelNode.nodeValue = '';

 $el.addClass('relPlaceholder');

96 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

 } else if (labelNode.nodeValue !== placeholderText) {

 labelNode.nodeValue = placeholderText;

 $el.removeClass('relPlaceholder');

 }

 });

 el.wrap('<label class="placeholder">' + placeholderText + '</label>');

 el.addClass('placeholder');

 });

 }

 },

 options: {

 // The name is what will appear in the kendo namespace (kendo.ui.Form).

 // The jQuery plug-in would be jQuery.fn.kendoForm.

 name: 'Form',

 alwaysUseWidgets: false,

 styleInputs: true

 }

 });

 ui.plugin(Form);

} (jQuery, kendo));

As we go through the next three performance tweaks, we’ll make minor and major
changes to the preceding sources. Once we’re done with all three, I’ll create another
JSPerf test to compare each change so that we can measure the relative impact to per‐
formance. Let’s take a look, first, at an easy change.

The second perf tweak: caching DOM elements

As you probably know, accessing and mutating the DOM is one of the most expensive
operations you can make in JavaScript. Whether you’re using a library like jQuery or a

raw DOM selector method, such as getElementById or querySelector, selecting ele‐
ments from your page is a memory-hogging, thread-blocking process that you want to
perform with caution. This is not to say, of course, that you should avoid interacting
with the DOM, because that would be silly. Rather, you should keep this reality in mind
as you build your polyfills and do your best to minimize DOM interactions as much as
possible.

While there are many ways to minimize DOM interactions in our JavaScript apps and
polyfills, the two most common best practices are as follows:

• Minimize DOM reads by caching the result of selection operations into local vari‐
ables.

• Minimize DOM writes by batching mutation operations together.

As an example of the batching approach, let’s assume that I’m iterating over some col‐

lection of values in JavaScript and building up an HTML list (or). Instead of

Building for Performance | 97

appending each row () to my list, one at a time, a batching approach would lead

me to build up the entire list in a string or DOM DocumentFragment and append the
entire collection to the list container a single time. With this approach, I’m mutating
the DOM—and triggering the browser’s expensive layout, paint, and render operations
—a single time, instead of once for each list item.

Chances are, if you’ve been doing frontend work for a while, this approach isn’t news
to you. We know that DOM writes are slow, and we take necessary precautions to avoid
them. DOM reads, on the other hand, are a bit less worrisome, but still worth mini‐
mizing. As such, we address these by creating local variables for the result of DOM reads
and operate on these variables when we need to access page elements.

An example of this element-caching approach with jQuery can be seen in
Example 5-5. On line 10, you’ll see the following:

var form = $(element);

In this case, element represents the <form> that I’m calling the Kendo UI widget con‐

structor on (new kendoForm()). The jQuery method gives me the <form> element,

which I then assign to the form variable.

Further down the sample, you’ll notice that I then access this variable three additional

times, each time calling form.find to further refine the list. In this case, even though
the form itself is cached, jQuery has to return to the DOM to give me the collection of

elements that match my find selector. Since all of my find operations are meant to
operate on HTML input elements, I can make my cached variable a bit more targeted,
which I’ve done in Example 5-6. Note that I’ve clipped some code from the source that’s
not relevant to the current discussion.

Example 5-6. kendo.forms.js polyfill main logic refactored to cache form inputs

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget,

 typeUpgrades = kendo.forms.types;

 var Form = Widget.extend({

 init: function(element, options) {

 var that = this;

 var inputs = $(element).find('input, button');

 var i, len;

 var upgradeFormType = function(type, callback) {

 // replace dash with underscore for features object lookup

 var modType = type.replace(/-/g,'_');

 if (!kendo.forms.features[modType] || that.options.alwaysUseWidgets) {

 inputs.filter('input[type=' + type + ']').each(callback);

 }

98 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

 };

 // base call to widget initialization

 Widget.fn.init.call(this, element, options);

 if (that.options.styleInputs) {

 inputs.each(function(index, val) {

 /* clipped */

 });

 }

 for (i = 0, len = typeUpgrades.length; i < len; i++) {

 var typeObj = typeUpgrades[i];

 upgradeFormType(typeObj.type, typeObj.upgrade);

 }

 // Add placeholder support if not provided by the browser

 if(!kendo.forms.features.placeholder) {

 /* clipped */

 }

 },

 options: { /* clipped */ }

 });

 ui.plugin(Form);

} (jQuery, kendo));

Cache the collection of <input> and <button> elements in my form

Use jQuery’s filter method to get only the inputs that match the current type

No need to filter here since the full collection is already cached.

Instead of caching the entire form in a local variable, I cache all of the <input> and

<button> elements, since those are the only parts of the form I’m interested in at this

point. With that new collection in hand, I’ll use jQuery’s filter method to refine the
collection when I’m operating on a smaller subset. It’s a small change, but it cleans up
the DOM reads for my polyfill and makes things a bit more readable to boot. Now,
before we test the performance impact of this change, let’s make a few more tweaks so
that we can view everything side by side at once.

The third perf tweak: ordering of arguments

The next change I’m going to make is a very small one, but it harkens back to the idea
of avoiding unnecessary code paths as a way to get micro-optimizations in our code.

Many times, these unneeded paths can be found in if statements that access one or

more values before taking action. In Example 5-5, you’ll notice the following if state‐
ment on line 17:

Building for Performance | 99

if (!kendo.forms.features[modType] || that.options.alwaysUseWidgets)

This statement determines whether the current input type (number) is supported by the

user’s browser or if the developer passed the alwaysUseWidgets option into the widget
constructor. If either is true, we upgrade all instances of that input type on the form.

When dealing with multiconditioned if statements, it’s always a good idea to consider
how the order of arguments affects code execution. For instance, since the feature tests
appear first, these will always be evaluated. If, however, I reorder these arguments, I can

ensure that my feature test object will be accessed only if alwaysUseWidgets is false:

if (that.options.alwaysUseWidgets || !kendo.forms.features[modType])

Had I not already refactored my feature tests to run once during script evaluation, this
would likely be a noticeable performance gain. As it stands now, each feature is returning
a simple Boolean, so I don’t expect to see much difference. Even still, I’m making this

change to “future proof ” my polyfill a bit. The alwaysUseWidgets option will always be
a simple Boolean, but my feature tests could grow and become more complex as my
library matures. Making this change now will keep me from introducing unintended
performance costs down the road.

While the preceding example is a simple case for ordering arguments, it’s always a good

idea to order your simple Booleans first in your if statements. When performing an or

(||) evaluation, this will ensure that the right-hand arguments aren’t assessed unless the

simple Boolean is false. When performing an and (&&) evaluation, right-hand arguments
aren’t assessed unless the simple Boolean is true. In both cases, your more complex
method-call Booleans won’t be evaluated unless their values are needed to fulfill or reject
the condition in question.

The fourth perf tweak: minimizing loops

The final performance change I plan to make to my polyfill is a larger one, and is also
a change that I expect to impact performance quite a bit. If you take a look at Example 5-5

a final time, you’ll notice that I’m looping (with for or jQuery’s each method) no less
than four times during widget initialization. This can’t be the best approach, so I’m going
to refactor my polyfill to loop as infrequently as possible.

In Example 5-5, I’m looping over the typeUpgrades collection defined in ken

do.forms.types, and then separately looping over each input that matches that type.
What’s more, I’m looping over each input to determine whether it needs separate widget
styling (provided via CSS classes that Kendo UI uses to style “vanilla” inputs) and, finally,

looping over each element that contains a placeholder attribute and upgrading those
as well, if not supported by the browser.

As we built up our polyfill in Chapter 3, each of these additions made sense, and they
do fulfill the functional requirements of my library. And yet, it all seems so inefficient.

100 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

This inefficiency was likely introduced as a result of my initial decision to loop first over
input types and second over elements. At the time, this made sense because it allowed

me to simultaneously upgrade all of the color, number, or datetime inputs on the form

using jQuery’s each method. But as I add other features, it becomes clear that my library
will need to operate on each input individually, upgrading its type, dealing with attribute
support, and even adding validation after I expand my library with that functionality.

So, to shift from several loops to a single loop, I need to move a few things around. For

starters, my kendo.forms.types object needs to change. As illustrated in
Example 5-7, I’ve changed the object from an array of type objects to a single object of
key-value pairs. This will make it much easier for me to work with each type. You’ll also
notice that I moved some of the “upgrade” logic for vanilla inputs and buttons out of
my main file and into this object as well.

Example 5-7. Refactored kendo.forms.types source

(function (kendo) {

 kendo.forms = kendo.forms || {};

 var typeUpgrades = {

 text: function(val) {

 $(val).addClass('k-input');

 },

 color: function(val) {

 $(val).kendoColorPicker({ palette: 'basic' });

 },

 number: function(val) {

 $(val).kendoNumericTextBox();

 },

 range: function(val) {

 $(val).kendoSlider({

 showButtons: false,

 tickPlacement: 'none'

 });

 },

 file: function(val) {

 $(val).kendoUpload();

 },

 /* clipped */

 };

 /* clipped */

 kendo.forms.types = typeUpgrades;

} (kendo));

Building for Performance | 101

Next, I’ll make some changes to the core widget logic for my polyfill, as illustrated in

Example 5-8. Not only have I collapsed things down into a single loop (in

puts.each()), but I’ve also cleaned up my init method and moved some of the core

logic into helper methods (shouldUpgradeType, upgradeInputType, upgradePlace

holder).

Example 5-8. kendo.forms.js refactored to use a single loop

(function($, kendo) {

 var ui = kendo.ui,

 Widget = ui.Widget,

 typeUpgrades = kendo.forms.types,

 features = kendo.forms.features,

 vanillaInputRegEx = /text|button|submit|reset/i;

 var Form = Widget.extend({

 init: function(element, options) {

 var that = this;

 var inputs = $(element).find('input, button');

 Widget.fn.init.call(this, element, options);

 inputs.each(function(index, el) {

 that.upgradeInputType(that, el);

 if (el.getAttribute('placeholder') &&

 !kendo.forms.features.placeholder) {

 that.upgradePlaceholder(el);

 }

 });

 },

 shouldUpgradeType: function(type) {

 /* clipped */

 },

 upgradeInputType: function(that, el) {

 var type = el.getAttribute('type');

 if (!type && el.nodeName === 'BUTTON') {

 type = 'button';

 }

 if(vanillaInputRegEx.test(type) && that.options.styleInputs) {

 typeUpgrades[type](el);

 }

 if (that.shouldUpgradeType(type)) {

 typeUpgrades[type](el);

 }

 },

 upgradePlaceholder: function(el) {

 /* clipped */

102 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

 },

 options: {

 name: 'Form',

 alwaysUseWidgets: false,

 styleInputs: true

 }

 });

 ui.plugin(Form);

} (jQuery, kendo));

Single loop for evaluating all form inputs

Core upgrade functionality, refactored into an external function

Upgrade functionality for the placeholder attribute, refactored into an external
function

I think you’ll agree that this is much cleaner, but is it any faster? For that matter, have
any of these changes made a difference? Let’s take a look in the next section.

Running Performance Benchmarks
One of the nice things about JSPerf is that, with a little bit of setup, it’s easy to do side-
by-side testing of revisions to your code. Along those lines, I created a new JSPerf test
that includes all of the tweaks we’ve made in this chapter, and you can view it online.

You can also append /edit to the end of the URL if you want to see how the test was
set up, or make edits of your own.

For this test, I included the same sample form that we created in Chapter 3, and used
JSPerf ’s setup capability to load a different version of my polyfill source, depending on
the individual test case. All told, I created four tests:

• A baseline test, before any changes were made

• A test for the element-caching refactor

• A test of the argument-ordering refactor

• A test for the single loop refactor

The results can be seen in Figure 5-3. The results for an individual run can be seen in
the top part of the image, with summary results for all browsers at the bottom. There
are a couple of things to take away from this image:

1. Individual test runs can give different results, so be sure to run your tests several
times, and in as many browsers as possible. In the last image, my element-cache
refactor looks like the slowest test, though it’s still well within the standard deviation
(+/–) of 4.96% indicated by JSPerf. If you look at the bar charts at the bottom of the

Building for Performance | 103

http://bit.ly/jsperftest

image, you’ll note that, over a larger sample size, the element-cache refactor (in
yellow) is faster than my baseline test (in red) in most browsers.

2. For most browsers, the argument-reordering change isn’t much faster than the
element-cache refactor. I expected this; so as long as it’s not noticeably slower, it’s a
worthwhile change. However, it does seem to be visibly faster in the current version
of Chrome (at the time of writing), so I’ll take it.

3. Finally, as expected, the single-loop refactor yielded the largest gains across most
browsers, especially Chrome. It’s faster in Opera and Safari, though because of the
huge speed improvements in modern browsers, the IE8 row looks empty. Surpris‐
ingly, these changes are all about even on Firefox but, again, since performance isn’t
markedly worse, I’m OK with an outlier or two.

Tune It But Don’t Overdo It
As I have mentioned before, there’s not really much science involved in making per‐
formance tweaks to your polyfill. It’s more an exercise of trial and error with the goal
of finding micro- and macro-optimizations that make your library faster. In the pre‐
ceding examples, I made some small and large changes based on my knowledge of good
JavaScript practices, and it turned out that those changes yielded some gains in most
browsers.

Before I close this section, a word of caution: performance tuning is important, and it’s
something you should spend time on, but I suggest being careful with it. It’s easy to
make common sense changes that you might have missed in initial development, but
once you’ve made a handful of obvious or even non-obvious tweaks, diminishing re‐
turns will start to set in, and you’ll be spending far too much time making changes to
eke out an extra tenth of a percent speed improvement. When it starts to feel like each
change isn’t moving the performance needle enough, or even moving it in the wrong
direction, it’s time to feel confident that you’ve done your best, and move on.

Dealing with Browser-Specific Edge Cases
Now that we’ve talked about general performance testing, I’ll close this chapter with a
brief discussion about browser-specific edge cases. As you can see from the previous
sections, it’s possible to set up a very robust process for testing performance across
several browsers. This is useful, but there will always be outliers in both performance
and functionality (in our case, IE7 and 8). Once we’ve identified these, it’s time to in‐
vestigate with some additional, manual tests.

104 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

Figure 5-3. JSPerf test for tweaks 2–4

Regardless of your build and automated testing workflow, there’s no substitute for
hands-on actual testing with certain browsers, especially oldIE. While it’s still important
to test IE7 and 8 for most kinds of sites and apps, it’s critically important when you are
building polyfills. More often than not, IE7 and 8 will need the functionality your polyfill
provides, so you’ll want to test on these browsers early and often.

Dealing with Browser-Specific Edge Cases | 105

After making each of the performance tweaks listed in this chapter, I was sure to run all

of my automated tests with the grunt test and grunt x-test commands I set up in
Chapter 4. Everything looks great in the latest browsers, but when I open up a VM with
IE8 or IE7, I see something that looks more like Figure 5-4.

Figure 5-4. Testing my polyfill with IE8

In spite of all of my testing, I still have a handful of failing tests in IE7 and 8. Digging
deeper, however, I see that they’re all date- and time-related tests, which suggests a
common cause for all of these. Let’s take a look at the first failing test, which is listed in
Example 5-9.

106 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

Example 5-9. DateTime Jasmine test block in fixtures.js

describe('DateTime and datetime-local type Support', function() {

 it('should apply the datetime attributes (val, min, max, step) to the widget',

 function() {

 fixtures.load('datetime-type.html');

 $('#datetime-form').kendoForm();

 var datetimeInput = $('#datetime');

 var datetimeObject = datetimeInput.data('kendoDateTimePicker');

 var dateRegex = /\/|-| /g;

 var valParts = datetimeInput.val().split(dateRegex);

 var minParts = datetimeInput.attr('min').split(dateRegex);

 var maxParts = datetimeInput.attr('max').split(dateRegex);

 expect(datetimeObject.value()).not.toBeNull();

 expect(datetimeObject.value().getMonth()+1).toEqual(

 parseInt(valParts[0], 10));

 expect(datetimeObject.value().getDate()).toEqual(

 parseInt(valParts[1], 10));

 expect(datetimeObject.value().getFullYear()).toEqual(

 parseInt(valParts[2], 10));

 // Run Same tests for min and max date values

 // ...

 });

}

This test fails here in IE7 and 8

This test, which I’ve clipped for readability, is designed to make sure that the Kendo UI

DateTime widget is properly initialized with the date input’s value attribute. In IE7 and

8, this test fails at the second expect. Upon further investigation, it appears that the

dateTimeObject variable is null because my DateTime widget wasn’t properly initial‐
ized. That means that the problem is in my “upgrade” function, which I’ve included in
Example 5-10.

Example 5-10. DateTime upgrade logic added to kendo.forms.features.js

var typeUpgrades = {

 datetime: function (val) {

 var input = $(val);

 // Step attribute is seconds, interval in minute

 var defaults = getDateTimeDefaults(input);

 defaults.interval = input.attr('step') ?

 Math.round(parseInt(input.attr('step'), 10)/60) : 30;

 input.kendoDateTimePicker(defaults);

Dealing with Browser-Specific Edge Cases | 107

 }

 /* Other upgrades */

};

function getDateTimeDefaults(input) {

 return {

 value: input.val().length > 0 ? new Date(input.val()) : null,

 min: input.attr('min') ? new Date(input.attr('min'))

 : new Date(1900, 0, 1),

 max: input.attr('max') ? new Date(input.attr('max'))

 : new Date(2099, 11, 31)

 };

}

kendo.forms.types = typeUpgrades;

The issue, it would seem, is with the getDateTimeDefaults helper function, which takes
my input and returns an object with date values that I then pass to the Kendo UI

kendoDateTimePicker method. If you look closely, you’ll notice that I’m not properly
sanitizing my attribute values to make sure that they contain a valid date. Instead, I’m

merely checking for the presence of any value before calling the new Date() constructor
on that value. Even still, these are my own unit tests, and I’m passing only perfectly valid
ISO date strings, as per the forms section of the HTML5 spec, so why in the world are
my tests failing?

The answer is deceptively simple: IE7 and 8 don’t support the ISO Date standard when
parsing date strings. Welcome to the world of cross-browser polyfill development, my
friends! Thankfully, it’s a relatively simple fix. If I wanted to take an external dependency,
I could include a library like Moment.js to handle the hassle of date parsing. I can also
leverage built-in features of Kendo UI or jQuery to help. For the sake of completeness,

however, in this case, I’m going to add my own fix. First, I’ll add a new createDateFro

mInput method to the kendo.forms.types.js file, as shown in Example 5-11.

Example 5-11. Handling ISO and non-ISO date formats for oldIE in kend.forms.fea‐
tures.js

function createDateFromInput(val, defaultDate, prefix) {

 if (!val) { return defaultDate; }

 if (prefix) { val = prefix + val; }

 if (!Date.parse(val)) {

 // Valid ISO Dates may not parse on some browsers (IE7,8)

 var altDate = new Date(val.replace(/-/g, '/'));

 if (altDate) {

 // If this alternate value is valid, add a day

 // to account for UA parsing

 return new Date(altDate.setDate(altDate.getDate() + 1));

108 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

http://moment.js

 }

 return defaultDate;

 }

 return new Date(val);

}

This simplistic solution takes a string value, a defaultDate, and an optional prefix value,

which I’ll need to parse the HTML5 time and month input types. If the passed-in value

parses correctly, I’ll return a new Date object with that value. If not, I’ll replace the dashes

(–) with slashes (/) and attempt to parse again, which should resolve my issues in IE7
and 8.

Next, I can modify my getDateTimeDefaults function to use this new function:

function getDateTimeDefaults(input) {

 return {

 value: createDateFromInput(input.val(), null),

 min: createDateFromInput(input.attr('min'), new Date(1900, 0, 1)),

 max: createDateFromInput(input.attr('max'), new Date(2099, 11, 31))

 };

}

With this in place, my datetime and datetime-local tests will pass. The remaining

failing tests relate to similar problems with the time and month input types, and as soon
as I modify those upgrade functions to use my new helper method, I should see all
passing tests in IE7 and 8, as shown in Figure 5-5.

Much like performance testing, cross-browser issues are hard to generalize. Each
browser has its own quirks and edge cases that behave differently from all the rest. IE7
and 8 certainly aren’t alone in this regard. Modern specs have done a great job of min‐
imizing these types of differences in newer browsers, but you should expect to encounter
hairy issues from time to time as you build cross-browser polyfills. Thankfully, these
quirks and their workarounds are often well documented, so you shouldn’t need to go
far to find a fix.

Dealing with Browser-Specific Edge Cases | 109

Figure 5-5. All tests passing in IE8

Mobile-Specific Considerations
In this chapter, we’ve focused mostly on overall JavaScript and DOM rendering per‐
formance considerations. While this is important for all browsers, you’ll often find that
you need to focus specifically on mobile for polyfills that are meant to be used on devices.
In addition to the tips shared previously, let’s look at a couple of mobile-specific per‐
formance recommendations:

• File size matters.

• Always test on devices.

File Size Matters
While also true for the desktop, it’s critical that you pay attention to overall file size when
building polyfills for mobile and devices. Not only does the size of a JavaScript or CSS
file affect the rendering time on devices—which often have browser engines that don’t
perform as fast as their desktop counterparts—but a larger file means more bytes for
the mobile device to download from the network, which has a cost on both the user’s
battery and data plan.

110 | Chapter 5: Building Your First Polyfill, Part 3: Performance and Edge-Case Testing

Web developers are becoming increasingly aware of the performance impact on app
resources, so do your fellow developers a favor and make sure that your polyfill is as
small as possible, both by including only the needed functionality and also by delivering
a minified production version of your library. If your polyfill is broad in scope, as is the
case of the HTML5 Forms Library, you might even consider providing functionality in
modules that can be delivered separately or combined via a custom build process.

In the case of our Forms polyfill, it’s also important for me to think about the file size
of my dependencies. Specifically, in the case of Kendo UI Web, I’m using only a subset
of all of the widgets and features available in this library, so it doesn’t make sense to
require the end user to download that entire file. Thankfully, Kendo UI provides its
widgets in a modular form, and I can use these to create a custom build of the library
that uses only the widgets required, and then ship this with the source of my polyfill.

Always Test on Devices
Perhaps it goes without saying, but in today’s mobile world, testing across browsers
means testing device browsers, too. And even though the device browsers are mobile
versions of their desktop counterparts, it doesn’t mean that every feature available in
Chrome for the desktop is also available in Chrome for mobile. What’s more, because
the speed and performance of your library is just as important as its functionality, it’s
critical that you regularly run your tests on physical mobile devices to ensure that you’re
delivering a great polyfill experience.

Unfortunately, it’s not possible to use Karma to automatically test mobile browsers—
BrowserStack does have mobile emulators, but it’s a paid product—so you’ll likely need
to rely on friends, family, and the goodwill of developers working with your polyfill to
test across devices. Even better, if you live in a city with an open device lab, consider
scheduling regular visits for testing. Finally, there are paid services—for example, De‐
viceAnywhere—for accessing physical devices for testing, but since you’re not likely to
be building your polyfill for profit, it’s probably not worth the steep cost of these services.

Over the last three chapters, we’ve discussed many of the ins and outs of building your
own cross-browser polyfills. In Chapter 3, we explored some practices for project struc‐
ture and explored the ins and outs of adding initial functionality and a bit of refactoring.
Then, in Chapter 4, we configured a solid build and test environment that allowed us
to test our polyfill in the browser and via command-line tools like Grunt, Jasmine, and
Karma. Finally, we looked at performance and edge-case tuning, and explored some
examples using JSPerf to fine-tune the speed of our polyfill. Collectively, you should
have a solid foundation to use for building your own polyfills, and I can’t wait to see
what you’ll come up with!

Next, we’ll turn the discussion to future polyfilling, or the practice of adding new APIs
and functionality to our browsers, for the purpose of vetting and testing out what’s next
for the web platform.

Mobile-Specific Considerations | 111

PART II

Prollyfilling and the Future
of the Web Platform

In Part I, we looked at polyfilling in its original context: a strategy for “filling in the gaps”
of older browsers with modern web APIs and technologies. In Part II, we’ll shift our
focus from the past and present and look toward the future. Specifically, we’ll talk about
a variation of polyfilling that enables developers to experiment with not-yet-
standardized APIs and developer-driven ideas that could make their way into the
browsers in the future. In Chapter 6, I’ll introduce the future of polyfilling, the prollyfill,
and will provide several examples of popular and notable prollyfilling libraries that push
the boundaries of the web platform. Then, in Chapter 7, I’ll close this book with a hands-
on exploration of prollyfill construction, and how it compares to our polyfill construc‐
tion exercise in Part I.

CHAPTER 6

The Future of Polyfilling

As our browsers release updates at a faster and faster clip, and legacy browsers like IE6–
8 decline in global use, it’s easy to fall into the trap of thinking that polyfilling, as an idea,
is becoming increasingly irrelevant. And while it’s true that “classical” polyfills for pop‐
ular HTML5 and CSS3 features are being used less and less, for every mainstream feature
in the web platform, like CSS3 animations, we’re seeing three or four new ideas and
technologies introduced via the W3C or WHATWG and landing in one or more brows‐
ers. HTML5 and friends may have modernized the Web and our browsers in key ways,
but don’t think for a moment that they also brought feature parity along for the ride.

Polyfilling: Not Just For Older Browsers
The bottom line is this: each new feature that’s supported in Firefox but has yet to be
implemented in Chrome, IE, or Safari needs a polyfill just as much as that local storage
feature you’d like to offer to IE7 users. If newer technologies are to take off and become
accepted by developers, we need to use them on actual sites. In some cases, we might
take a forked experience approach and support the feature only where native to the
browser. In many cases, however, new features bring capabilities that we wish to share
with as many of our users as possible. In this case, pollyfilling is a must.

Prollyfilling: Extending the Web Forward
Sometimes, pollyfilling specified features isn’t always enough for us, as web developers.
We’re a smart, ambitious bunch, and this is our platform too. Most of the time, we think
we’re just as qualified as browser vendors when it comes to determining what capabilities
the web platform, and our browsers, really need.

In Chapter 1, I mentioned something called the Extensible Web Manifesto, a rallying
cry of sorts for frontend developers. It’s one that calls us to “extend the Web forward”
by working on speculative and cutting-edge ideas in our browsers. It also calls upon

115

http://bit.ly/exwebman

browser vendors to unlock low-level capabilities in the browser (for instance, the
browser’s networking stack or its HTML parser) and allow developers to write their own
JavaScript libraries and APIs on top of those capabilities. The core idea that the mani‐
festo argues for is that, with access to these low-level APIs, developers can experiment
with real-world ideas that solve real-world problems. I use the term real-world here,
because, on occasion, the W3C will pursue ideas that, while academically sound, are
rejected by developers when subjected to actual use.

Take the oft-maligned Application Cache, for instance. This specification, which enjoys
wide support across all modern desktop and mobile browsers, was introduced as a
declarative API intended to solve the very real problem of caching websites and appli‐
cations for offline use. It’s a fantastic idea, and developers everywhere applauded the
introduction of the technology when it was first introduced several years ago.

But the honeymoon hasn’t lasted. After being subjected to real-world use on sites and
applications of all sizes, developers discovered that AppCache is plagued by a series of
bugs and bug-like features that make the technology difficult or sometimes impossible
to rely on. Ironically, while the Application Cache seems well suited for content-driven
and static sites, it is weakest when used for dynamic web-based applications.

If the authors and advocates of the Extensible Web Manifesto have their way, new tech‐
nologies like Application Cache would not be introduced for full-blown standardization
without first spending some time in the hands of developers. And by unlocking certain
low-level browser APIs, like those mentioned previously, developers can not only vet
new ideas, but can also be a source of new ideas and feature proposals.

At its core, this idea is referred to as forward polyfilling, or prollyfilling, the latter term
being half-jokingly coined by Alex Sexton to describe building a polyfill for a not-yet-
standardized API (ostensibly, this term is a mixture of “probably” and “polyfill”). Prol‐
lyfilling builds on the core ideas of polyfilling, building cross-browser functionality on
which developers can rely, but places it square in the mix of the standardization process,
which I believe will make the practice critical to the success of the web platform over
the next decade.

Prollyfills In Action: Prollyfilling CSS
So what does a prollyfill look like? It varies, and sometimes pretty widely. There are
prollyfills in use today that not only provide experimental JavaScript APIs to developers,
but also allow developers to author custom HTML or CSS. We’ll look at examples of all
three types of prollyfills in this chapter, starting with a library that allows developers to
try out experimental CSS features, and even create some of our own.

If you’re a CSS aficionado, you know that there are some great new features on the
horizon, like filter effects, grid layout, regions, exclusions, and more. Another exciting
set of enhancements are being proposed in the CSS Selectors Level 4 specification,

116 | Chapter 6: The Future of Polyfilling

http://bit.ly/selectors4

through which the CSS Working Group hopes to add a bevy of new, powerful selectors,
while also upgrading some selectors introduced with CSS3.

For example, consider the new :matches pseudoclass selector. This selector allows de‐
velopers to group matching elements with simpler syntax than is possible currently. For
instance, consider the following:

ul.tasks li a:link,

ul.tasks li a:hover,

ul.tasks li a:visited,

ul.tasks li a:focus {

 color: blue;

}

With the new :matches pseudoclass selector, this rule could be shortened, like so:

ul.tasks li a:matches(:link, :hover, :visited, :focus) {

 color: blue;

}

It’s a simple change, but it greatly cleans up the authoring experience, while also making

your CSS just a bit more readable, which is nice. :matches is just one example of the
great new CSS selectors in the Level 4 spec. The only problem is that we can’t exactly
try these experimental new selectors out for ourselves because they’re still being dis‐
cussed in the CSS Working Group and have not yet landed in any browser. But in the
meantime, wouldn’t it be great if we could actually start using new pseudoclass selectors

like :matches and even try out a few of our own? And not just to be early adopters, but
to really try these new features on for size and see if they work as designed.

Using HitchJS to Experiment with CSS
This sounds like a sweet spot for prollyfilling and, thankfully, there’s a library available
that allows you to experiment with CSS selectors and even define your own. The library
is called HitchJS because it allows you to “hitch new capabilities to the browser,” ac‐
cording to its creator Brian Kardell. Out of the box, Hitch provides support for a series

of experimental selectors like oneof, anyof, and allof, and also provides a mechanism
that allows you to define your own hitches that activate whatever CSS selectors you
define. We’ll create our own hitch in the next section, but first, let’s take a look at how
you can get started with Hitch and use some of the built-in features.

First things first: you’ll need to download Hitch, which is distributed as a script file, and
then include a reference to the file anywhere in your page:

<script src="js/hitch-0.6.3.min.js"></script>

Next, you activate Hitch by decorating <style> and <link> tags with the data-hitch-

interpret attribute, which tells Hitch to scan the CSS at the location for library-specific
selectors:

Prollyfills In Action: Prollyfilling CSS | 117

http://hitchjs.com

<link rel="stylesheet" href="css/styles.css" data-hitch-interpret>

In this example, I’m telling Hitch to look for rules in the styles.css file. Example 6-1
contains the contents of that file.

Example 6-1. Custom CSS using HitchJS’s built-in rules

#todo-list li:-hitch-anyof(.urgent, .overdue) label {

 color: red;

}

#todo-list li:-hitch-noneof(.urgent, .overdue) label {

 color: green;

}

#todo-list li:-hitch-allof(.urgent, .overdue) label {

 font-weight: bold;

}

Notice the pseudoclass selectors that start with -hitch-. All three of these, -hitch-

anyof, -hitch-noneof, and -hitch-allof are selectors that Hitch provides out of the

box. Anyof will match any element in the comma-delimited list; noneof is a negation

selector that will apply the rule only if the li has none of the classes in the list; and allof

is inclusive (only li elements with both classes will match and apply the rule).

Now let’s take a look at the source HTML (in Example 6-2), which is a list of to-dos
decorated with classes where the to-do is urgent, overdue, or both:

Example 6-2. To-do list HTML

<ul id="todo-list">

 <li class="">

 <div class="view">

 <input class="toggle" type="checkbox">

 <label>Take out the trash</label>

 </div>

 <li class="">

 <div class="view">

 <input class="toggle" type="checkbox">

 <label>Wash the cars</label>

 </div>

 <li class="overdue">

 <div class="view">

 <input class="toggle" type="checkbox">

 <label>Buy stamps</label>

 </div>

 <li class="urgent overdue">

 <div class="view">

 <input class="toggle" type="checkbox">

118 | Chapter 6: The Future of Polyfilling

 <label>Pay taxes</label>

 </div>

 <li class="urgent" id="next-action">

 <div class="view">

 <input class="toggle" type="checkbox">

 <label>Catch up on Breaking Bad</label>

 </div>

With everything in place, I should be able to load my to-do list and see the additional
styling that my Hitch-based rules provide, as illustrated in Figure 6-1.

Figure 6-1. To-do list with HitchJS-based styling

You might notice a flash of unstyled content as you load a page that
uses Hitch.js features. Because Hitch processes custom CSS rules
after the rest of the CSS in the document has been applied, this is to
be expected. What’s more, since we’re testing ideas here and not
building production apps with our prollyfills, I think we can live with
this.

Prollyfills In Action: Prollyfilling CSS | 119

As you can see, HitchJS is easy to get started with and use in your own apps. By default,

Hitch provides support for four logical selectors (:-hitch-anyof, :-hitch-

allof, :-hitch-oneof, :-hitch-noneof) and one structural selector (:-hitch-has),
but the library also provides a great extensibility story so that you can create your own
selector support in the form of hitches that are imported and processed by HitchJS. In
the next section, we’ll create our own hitch to mimic a new CSS Selector.

Building Your Own Hitches
Earlier in this chapter, I introduced the new :matches pseudoclass selector being con‐
sidered for inclusion in the Selectors Level 4 spec. Rather than waiting for one or more
browsers to implement support for this new selector, I’d like to try it on for size in my
own apps—and possibly even share my experiences with other developers and members
of the CSS Working Group. HitchJS allows me to do this. I should probably note that,

functionally, the -hitch-anyof selector is very similar to how :matches is specified. I’m
building our own hitch, however, to adhere to the name and also experiment with my
own implementations. With the library as a dependency, I can create a hitch, or a Java‐
Script module of my own that defines the logic for my selector. I then import that custom
logic into my app, and when HitchJS is activated, it calls my module to determine
whether the element in question matches my custom selector.

So, to define my custom hitch for the CSS :matches selector, I’ll first need to create a
new file called selector-matches.js in my project. Then, I’ll add the initial module defi‐
nition that Hitch requires, as illustrated in Example 6-3.

Example 6-3. Creating a hitch for the matches selector in selector-matches.js

var matchesHitch = {

 name: "matches",

 base: "*",

 type: "selector",

 filter: function(el, arguments){

 // Hitch logic here

 }

};

Hitch.add(matchesHitch);

The matchesHitch object contains all of the properties that HitchJS requires when I

define my own hitches. Most important, the name represents the CSS selector value, and

the filter represents a function that runs against every element that matches the base
selector, but that needs to be filtered further by my hitch. This method should contain
the core logic for my hitch and should return a Boolean after I determine whether the
element in question meets the filter criteria.

To emulate the CSS Selectors Level 4 :matches pseudoclass selector, I’ll need to test a

comma-delimited string of class and id values against an element. If the element

120 | Chapter 6: The Future of Polyfilling

contains any of the values specified in the :matches selector, I’ll return true, at which
point Hitch will apply the CSS defined inside my custom selector. The source for my
Hitch’s filter method can be found in Example 6-4.

Example 6-4. Custom matches selector method in selector-matches.js

filter: function(el, selectorArgs){

 var i, len,

 match = false,

 args = selectorArgs.split(','),

 list = el.parentElement;

 for (i = 0, len = args.length; i < len; i++) {

 var q = list.querySelector(args[i].trim());

 if (q && q === el) {

 match = true;

 }

 }

 return match;

}

After setting up some helper variables, I split my selectorArgs variable, which contains

the comma-delimited list of classes and ids into an array. Then, I loop over that array
and attempt to match each selector argument against the current element. If the element

has all of the values defined in the selectorArgs array, I’ll return true, and the styles

inside the :matches-dependent rule will be applied.

Now that we have our custom hitch, let’s try out our new rule in CSS. First, I’ll need to

import my hitch by using Hitch’s @-hitch-requires directive at the top of my styles.css
file:

@-hitch-requires ../js/selector-matches.js;

Then, I’ll add a new rule using my hitch:

#todo-list li:matches(.urgent, #next-action) label {

 font-weight: bold;

 color: blue;

}

With this rule, I’m instructing my custom hitch to look for any li with a class of urgent

and an id of next-action, and to style the label for that li to be bold and have a blue

color. And with that, we have prollyfill-based support for the CSS :matches rule, cour‐
tesy of HitchJS! The result can be seen in Figure 6-2. Note that the styles in the image
are taken from the fantastic TodoMVC project. If you’re following along at home and
want to emulate the same styles, you can grab them from any of the samples in the
project website.

Prollyfills In Action: Prollyfilling CSS | 121

http://todomvc.com

Figure 6-2. Our custom hitch in action

HitchJS is a versatile library, and now that you’ve seen how easy it is to create your own
hitches, you’ve got everything you need to try our experimental CSS features, or even
prototype and play with your own!

Prollyfills in Action: ServiceWorker
In the previous section, we explored how prollyfills can be useful for experimenting
with new or unstable CSS selectors. Next, we’ll shift focus to JavaScript prollyfilling.
Specifically, we’ll look at a proposal for one of those low-level APIs that could open up
a wealth of new opportunities for frontend developers: ServiceWorker.

ServiceWorker is a proposal, spearheaded by Alex Russell of Google and others, de‐
signed to make the browser’s networking stack more programmable via JavaScript.
Specifically, a ServiceWorker enables developers to use JavaScript to cache and handle
every inbound request for resources in an app, even when the user is offline.

If you’re thinking that this is starting to sound a lot like a JavaScript-based version of
the oft-maligned Application Cache, you’d be right, and also wrong at the same time.
Because ServiceWorker is meant to be a low-level API, it’s far broader than an imperative
AppCache. It can certainly be used to handle application asset and resource caching,

122 | Chapter 6: The Future of Polyfilling

http://bit.ly/servicework

but it’s also far broader than that. In a very general sense, a ServiceWorker is a script
that, when installed in your app, listens for network events. When those events occur,
a ServiceWorker can intercept the network request and serve cached resources before
the browser ever attempts to connect to a remote server.

The first step in using a ServiceWorker is to install a worker on a page after a user visits
for the first time. This means that the page, and all of its resources, will be served from
the network at least once before the worker takes over. Example 6-5 shows an example
of what the API for creating a new worker could look like.

At the time of writing, ServiceWorker is not available in any browser.
As such, the following snippets are not runnable.

Example 6-5. Creating a new ServiceWorker object

<!DOCTYPE html>

<!-- http://www.gifsemporium.com/index.html -->

<html>

 <head>

 <link rel="stylesheet" href="/css/base.css">

 <script src="/js/app.js"></script>

 <script>

 navigator.registerServiceWorker("/*", "sWorker.js").then(

 function(serviceWorker) {

 // Use the worker right away

 window.location.reload();

 },

 function(err) {

 console.error("Worker install failed:", err);

 });

 </script>

 </head>

 <body>

 <h1>Animated Gifs Galore!</h1>

 </body>

</html>

The key snippet here is the call to navigator.registerServiceWorker, which takes
two parameters: a route or set of routes to handle with our ServiceWorker, and the path
to a JavaScript file that contains the worker logic. The API is also promise-based, so I

can call then() on the API with success and error handlers and notify the system of a
successful or failed worker registration. A sample sWorker.js file can be found in
Example 6-6.

Prollyfills in Action: ServiceWorker | 123

Example 6-6. A sample ServiceWorker controller

// hosted at: js/sWorker.js

var base = "http://www.gifsemporium.com";

var inventory = new URL("/services/gifs.json", base);

this.addEventListener("install", function(e) {

 // this worker can handle fetch events

 e.services = ["fetch"];

});

this.addEventListener("fetch", function(e) {

 var url = e.request.url;

 // If we already have the data, load from cache

 if (url.toString() == inventory.toString()) {

 e.respondWith(new SameOriginResponse({

 statusCode: 200,

 body: JSON.stringify({

 gifs: { /* ... */ }

 })

 }));

 }

});

The ServiceWorker exposes several events that workers can respond to, if they wish. If

a worker is installed and has registered a fetch listener, as we have in this example, the
worker is allowed to handle the network request on behalf of the browser. In this case,
we’re checking to see whether the URL being requested matches an existing resource

and, if so, we’ll use the new respondWith method on the fetch event to construct a
cached response containing the data requested by the browser, and the network never
even needs to be consulted!

The public API for the ServiceWorker proposal can be found in a TypeScript file in the
project’s GitHub repository, and I also recommend checking out the explainer docu‐
ment put together by the people working on the proposal. ServiceWorker is still in its
early days, so it doesn’t yet enjoy browser support, but the proposal is exactly the kind
of API described in the Extensible Web Manifesto: a set of low-level browser capabilities
that provide developers with ground-floor access to building robust, JavaScript-based
prollyfills and APIs that push the Web forward faster than ever.

Prollyfills in Action: Web Components
So far, we’ve looked at how prollyfills can help us work with experimental CSS and
JavaScript, but what about experimenting with HTML itself? Before you laugh me out
of town and put down the book, bear with me.

124 | Chapter 6: The Future of Polyfilling

http://bit.ly/serviceworker
http://bit.ly/serviceworker
http://bit.ly/serv-explainer
http://bit.ly/serv-explainer

As it turns out, there are a handful of W3C specifications that have been in the making
for the last few years that do just that: provide an official way for developers and site
authors to extend the semantics of HTML for apps. These specifications are typically
referred to using the umbrella term of Web Components. According to the W3C, “Web
components enable web application authors to define widgets with a level of visual
richness and interactivity not possible with CSS alone, and ease of composition and
reuse not possible with script libraries today.”

Widgets? Composition? Reuse? If you’ve been a developer for any length of time, these
terms are familiar to you, but did you ever think you’d hear them in the context of
HTML? Me neither, and yet here we are, talking about ways to bring a first-class widget
construction workflow to the Web.

Web Components are made up of five key, standalone W3C specifications. One of these,
Decorators is the least relevant to our discussion and the most raw of the specs, so I’ll
skip it. Here’s a brief summary of the other four.

Templates
Templates are defined as “inert chunks of markup” that can be activated for use later.
This spec will be the most familiar to developers because it essentially formalizes what

we’ve long accomplished using <script> elements with a non-JavaScript type attribute.

Example 6-7 shows a simple <template> element and the JavaScript activation code.

Example 6-7. An example use of the <template> element

<template id="commentTemplate">

 <div>

 <div class="comment-text"></div>

 </div>

</template>

<script>

function addComment(imageUrl, text) {

 var t = document.querySelector("#commentTemplate");

 var comment = t.content.cloneNode(true);

 // Populate content.

 comment.querySelector('img').src = imageUrl;

 comment.querySelector('.comment-text').textContent = text;

 document.body.appendChild(comment);

}

</script>

In this example, I’ve created a simple <template> element to hold some DOM that
represents a comment block on a blog. The block contains a source-less image and an

empty div for the text. In the next script block, I have an addComment function that takes
an image URL and some text. The function then selects my template block, clones it

Prollyfills in Action: Web Components | 125

http://bit.ly/web-comps
http://bit.ly/w3-decor
http://bit.ly/w3-templates

into a new HTMLElement object, sets the image and text values, and then appends the
DOM fragment to the body of the document. At that final step, the browser parses and
renders the template-based content.

As I said, it should seem familiar, because it is. Thankfully, having first-class template
support in the browser means we can put all of those templating libraries to rest and
use speedy, built-in functionality.

Shadow DOM
The next Web Components spec is Shadow DOM, a feature that allows developers to
encapsulate DOM subtrees and hide widget implementation details. It sounds a bit
cryptic, I know, so let’s take a look at Shadow DOM in the context of an HTML element

already using this capability: the HTML <video> tag.

Take a look at Figure 6-3. What do you see? A rectangle with a video canvas and several
controls, right? Right, but have you ever wondered how the browsers actually implement

tags like <video> and <audio>?

Figure 6-3. An HTML <video> element in action

With the Chrome Developer Tools, you can find out. All you need to do is open your
Chrome DevTools and click the gear icon in the lower-right corner. Then, look for the
“Show Shadow DOM” option and make sure that it’s checked. Then, you can navigate

to any page with a <video> tag, right-click it, and select “Inspect Element.”

126 | Chapter 6: The Future of Polyfilling

http://bit.ly/dom-shadow

What you’ll see looks like Figure 6-4. Inside the innocent-looking <video> tag lies

<divs>, <inputs>, buttons, and more. Browser vendors like Google actually use stan‐
dard HTML tags and inputs—though the specific tags are up to the vendor—to create

complex visual elements like <video>. Shadow DOM is, simply put, the technology that
allows Chrome and other browsers to hide those implementation details behind a single
tag that developers can rely on.

Figure 6-4. Shadow DOM in action

By making Shadow DOM developer-accessible and supported in the browsers, we can
do the same. We can build our own complex widgets and features that are easy for
developers to use, but that also hide their implementation details and can even prevent
unauthorized access to subelements and widget styles.

Custom Elements
The next Web Components technology is Custom Elements. Custom Elements provide
a formal way for developers to create their own valid HTML tags and define the API
for those elements. You can also extend the semantics and behavior of existing elements,
as shown in Example 6-8.

Example 6-8. Defining a custom element that extends the <button> element

<!-- Define the element -->

<element extends="button" name="fancy-button">

 <style>

 @host {

Prollyfills in Action: Web Components | 127

http://bit.ly/custom-ele

 font-size: 20em; /* make it huge */

 color: salmon; /* make it BOLD! */

 }

 </style>

 <content></content>

</element>

<!-- Put it to use -->

<button is="fancy-button">Do something fancy</button>

Here, I’m using the new <element> element to define a Custom Element that extends

<button> with a larger font size and a default color. Then, when I want to put my Custom

Element to use, I’ll create a <button> element on the page—if this was a completely new

element, I’d use my custom tag—and use the is attribute to tell the parser that this is
my Custom Element. With Custom Elements, it’s that easy to add your own semantics
and behavior to HTML.

HTML Imports
The final piece of the Web Components umbrella is HTML Imports. This is the most
straightforward of the Web Components specs. Simply put, Imports provide a mecha‐
nism for importing Templates and Custom Elements into a site or app. For instance,
let’s say that I define my fancy-button element from Example 6-8 in a separate file called
fancy-button.html. HTML Imports provide the mechanism for, well, importing this
element into my app, as shown in Example 6-9.

Example 6-9. Using imports with custom elements

<!DOCTYPE html>

<html>

 <head>

 <link rel="import" href="fancy-button.html">

 </head>

 <body>

 <button is="fancy-button"></button>

 <!-- Element definition is in fancy-button.html -->

 </body>

</html>

Imports are enabled via a new rel value of import on the HTML link element. When
this value is encountered, the browser will load the linked element and make it available
to my app. HTML Imports are a simple concept, but an important one because they
enable me to manage Custom Elements and Templates in separate files.

Web Components hold a lot of promise for the future, but because most of the ideas are
still very cutting edge, they don’t enjoy wide browser support. Templates and Shadow
DOM are supported in Chrome and Firefox, but, at the time of writing, there’s not a
single browser that supports all four of the specs. If we want to start building and using

128 | Chapter 6: The Future of Polyfilling

http://bit.ly/html-imports

Custom Elements today, we need a prollyfill! At present, there are two ways to start
working with Custom Elements: one approach that’s available via a popular open source
library, and another that requires adopting a bleeding-edge prollyfill provided by mem‐
bers of the Google Chrome team.

Creating Custom Elements with AngularJS
If the idea of creating your own semantics in HTML is appealing, but you’re not as
concerned with formally prollyfilling Web Components, you might want to take a look
at AngularJS. If you’re familiar with AngularJS, you’re no doubt aware of the directives
feature of the library, which allows you to link imperative functionality to declarative
semantics via HTML elements and attributes. For instance, let’s say that I want to create

a <calendar> element that will, via an AngularJS directive, create a Kendo UI Calendar
widget. The Angular code I need to enable this can be seen in Example 6-10.

Example 6-10. Creating custom elements via AngularJS directives

<div ng-app="myApp">

 <calendar></calendar>

</div>

<script>

angular.module('myApp', []).directive('calendar', function() {

 return {

 restrict: 'E',

 link: function(scope, element, attrs) {

 $(element).kendoCalendar();

 }

 }

});

</script>

Notice that AngularJS enables me to go all out and use my directive via a <calendar>
element on my page. It’s a nice trick, for sure, but it’s not valid HTML. What’s more,
AngularJS’s approach wasn’t built with Web Components in mind, so we couldn’t classify
it as a prollyfill. If we’re interested in something that’s built with Web Components in
mind, we need to look no further than the Polymer project.

Creating Custom Elements with Polymer
Polymer is a Google-sponsored project designed to speed up the adoption of cutting-
edge web platform technologies by providing a series of robust prollyfills that work
across evergreen browsers. The Polymer project actually provides a number of prolly‐
fills, but the core of the offering is support for Shadow DOM, Templates, Custom Ele‐
ments, and HTML Imports.

In our discussion on Web Components, I shared some code snippets meant to com‐
municate the “perfect world” approach for building components, as defined by the

Prollyfills in Action: Web Components | 129

http://polymer-project.org

current draft of each spec. Polymer enables us to create Web Components using much
of the same syntax, with only a few small differences.

At the time of writing, the Polymer authors are careful to note that the library is in an
Alpha state. You’ll want to keep this in mind when using, or even installing, the library.

Let’s say, for instance, and in keeping with our previous AngularJS example, that I want

to create a custom <calendar> element that provides a declarative way of working with
a Kendo UI Calendar widget. To create my custom element with Polymer, I’ll create a
new file called x-calendar.html and populate it with my custom element definition, as
illustrated in Example 6-11:

Example 6-11. Creating a <calendar> custom element with Polymer

<script src="jquery-1.10.2.min.js"></script>

<!-- Kendo UI Scripts -->

<script src="kendo.web.min.js"></script>

<polymer-element name="x-calendar" attributes="selected">

 <link rel="stylesheet" href="kendo.common.min.css">

 <link rel="stylesheet" href="kendo.default.min.css">

 <!-- Element Here -->

 <template>

 <div id="calendar"></div>

 </template>

 <script>

 Polymer('x-calendar', {

 selected: new Date(),

 created: function() {

 $(this.$.calendar).kendoCalendar({

 value: this.selected

 });

 }

 });

 </script>

</polymer-element>

While the syntax for my element is similar to the Custom Elements spec, there are a few

key differences. First, instead of using the proposed <element> element, I use <polymer-

element>. Inside my <polymer-element> declaration, I give my element a name that,

according to the Custom Elements spec, must always contain a dash. I use the at

tributes attribute to specify a list of properties that I want to publish on my element.
Published attributes become part of the public API for my element, which allows them
to be set declaratively via HTML or JavaScript.

The second Polymer-specific aspect to this element is the call to the Polymer method.
This method formally registers my custom element so that it can be used in my app

130 | Chapter 6: The Future of Polyfilling

while also setting the default values for properties (selected) and subscribing to ele‐

ment life-cycle events. In this example, I’m subscribing to the created event, which fires
when a new instance of my custom element is used in an app. When my event callback
fires, I create a new Kendo UI Calendar from the current element and set its current
date to either the default date or the user-specified date.

The rest of the process of working with custom elements in Polymer is pretty straight‐
forward, as illustrated in Example 6-12. In this sample, the key difference is in the

<head>, where I include the minified Polymer source. When included, Polymer does
everything required to work with my custom element import, process the element, and
then render the element when called upon. The end result of the snippet in Example 6-12
is a full Kendo UI Calendar with a selected date of October 5, 2013. To the component-
consuming developer, it’s a totally declarative approach that works great across brows‐
ers, thanks to Polymer.

Example 6-12. Using Polymer elements

<!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Polymer Calendar</title>

 <script src="lib/js/polymer.min.js"></script>

 <!-- Import Calendar -->

 <link rel="import" href="components/x-calendar.html">

 </head>

 <body>

 <div class="container">

 <div class="jumbotron">

 <!-- Calendar here -->

 <h1>What day is it?</h1>

 <x-calendar selected="2013/10/05"></x-calendar>

 </div>

 </div>

 </body>

</html>

Strategies for Polyfilling Experimental APIs
Over the course of this chapter, we’ve discussed a handful of great prollyfilling libraries
that allow us to experiment with new and cutting-edge ideas in CSS, HTML, and Java‐
Script. In the next and final chapter of this book, we’re going to try our hand at con‐
structing our own prollyfill. But before we do, let’s look briefly at a few things to keep
in mind when building prollyfills for untested or experimental APIs.

Strategies for Polyfilling Experimental APIs | 131

Expect the API to Change
One of the key differences between classical polyfills and future-leaning prollyfills is in
the API. As we discussed in early chapters, a key to building a robust, responsible polyfill
is in respecting the specified API for the feature you’re looking to fill. Prollyfills, however,
are built to work with bleeding-edge features. Sometimes there is no specified API be‐
cause you’re the first person to explore this idea. In other cases, the specification is so
new and unstable that you can expect the API to change before things settle down. In
either case, you’re building your prollyfill against something of a moving target, so it’s
important to think about how to design with a flexible API in mind. There are no quick
answers here other than to make sure that the public API for your prollyfill is flexible
from the outset, easy to change, and, when it does change, that you can quickly change
your online samples, docs, and demos.

Don’t Be Afraid to Try Something New
Prollyfilling is all about experimentation. It’s about taking cutting-edge ideas and build‐
ing a library that allows you and other developers to put those ideas to the test. It’s about
refining those ideas, suggesting changes, and even taking those ideas in a totally new
direction. If you’re building a prollyfill, you’re likely not doing so with the goal of getting
some new web platform feature into your production apps tomorrow. Instead, you’ve
probably undertaken a prollyfill because you want to play a role in moving the Web
forward. In that spirit, you should feel free to think and innovate well outside the box
as you work on your library. If, when building a prollyfill for a new spec or proposal,
you encounter something you don’t like in the spec, or a new feature you want to see
added, build your argument right into the library. Code speaks louder than words on
the Web, and if you can communicate a counter proposal, changes, or a new idea in the
context of a working sample that also highlights some aspects of a specified feature, you
make your argument that much more powerful.

Now that we’ve explored the ins and outs of prollyfilling, and some high-level strategies
for building our own prollyfills, let’s turn our attention to building a prollyfill of our
own. In the next chapter, we’ll take a brand new web platform feature and craft a simple
prollyfill for it.

132 | Chapter 6: The Future of Polyfilling

CHAPTER 7

Building Your First Prollyfill

In Chapters 3 through 5, I walked you through the exercise of building a polyfill for the
HTML5 Forms spec. Over the course of those three chapters, we talked about how to
make a plan for building a polyfill, how to go about initial development, how to con‐
figure your library for automated and cross-browser testing, and finally, how to build
your polyfill for performance.

In Chapter 6, I introduced the concept of the prollyfill and walked through several
examples of popular prollyfilling libraries. In this chapter, we’re going to build on that
knowledge, along with what we learned earlier in the book, and build our own prollyfill
to test out an experimental web platform feature. Along the way, you’ll learn the ways
that building polyfills and prollyfills are similar, and the ways they differ.

Prollyfills vs. Polyfills: What’s the Difference?
Prollyfills, as we discussed in Chapter 6, are quite similar to polyfills in many ways, the
biggest difference being that they often target proposals or specifications with in-flux
APIs. Sometimes they even target untested or unspecified ideas altogether. In both cases,
much of the ideas that surround the prollyfill, including the API, are expected to change
greatly as the idea is debated, tested, and possibly accepted for standardization.

In addition, the purpose of building a prollyfill differs from that of a polyfill. Polyfills
are typically built to allow developers to rely on new features and APIs across all brows‐
ers. They are meant, for the most part, to be used in production apps by everyday
developers. Prollyfills are different. In many ways, these libraries are experiments. They
are built to test out unproven concepts, or ideas for standardization that need developer
feedback or real-world application. Prollyfills are, for the most part, meant to be used
in development and test settings, and not in production apps.

That key difference between prollyfills and polyfills—their purpose for being—tells us
a great deal about how these libraries can and should be built by developers. As you’ll

133

see in this chapter, much of the construction process remains the same. You’ll still want
to set up unit tests and cross-browser tests and plan out the scope of your library, but
you’ll also need to build flexibility into the API of the library, which you should expect
to change. You’ll want to pay attention to performance, of course, but it’s less critical
with a prollyfill since these libraries are meant to test ideas. Often prollyfills will lead
you to create implementations that can’t be optimized for speed, but as you’ll see in this
chapter, that’s perfectly OK.

The Resource Priorities Prollyfill
For the rest of this chapter, we’re going to go through a brief exercise and build our own
prollyfill for a brand-new W3C proposal. The name of the specification we’ll be targeting
is Resource Priorities. Resource priorities are meant to provide developers with new
HTML attributes and a CSS property that can be used to specify the download priority
of a resource like an image, script, or media element. The two attributes and property
are as follows:

lazyload

A Boolean HTML attribute that tells the browser to delay loading resources speci‐
fied by the element in question until all elements that do not have this attribute have
started downloading.

postpone

A Boolean HTML attribute that tells the browser to delay loading resources speci‐
fied by the element in question until the element or its container are visible in the
viewport.

resource-priorities

A CSS property that can be used to set the download priority (lazyload or post

pone) of a resource associated with an element or another CSS property.

You’re probably wondering what the point of this spec is, especially in light of HTML5’s

defer and async attributes. For starters, defer and async are available only to <script>

elements, whereas lazyload and postpone are available to all HTML elements that can

download resources, including script, link, img, audio, video, iframe, and more.

More important, though, resource priorities provide developers with a way to pro‐
grammatically give the browser hints as to the importance of external resources. At the
present, download priority for the browser is based solely on document order—scripts,
stylesheets, and images are loaded in the order that they appear. But document order,
especially for visual resources, is often more a function of document location and not
resource importance. As a result, it’s difficult for developers to control the real and
perceived performance of their pages without script-based hacks.

134 | Chapter 7: Building Your First Prollyfill

http://bit.ly/reso-prior
http://bit.ly/rp-lazy
http://bit.ly/rp-postp
http://bit.ly/priorities-att

Let’s take a look at an example. The page in Example 7-1 contains several resources: two
stylesheets, a video, several images, and a few scripts. The way this document is struc‐

tured, all media will be downloaded in document order, and our script at app.js, which
presumably is important to the function of the page, won’t start executing until those

downloads have at least initiated. What’s more, if our app.js script is relying on a

document.load event or jQuery’s load event, our application script won’t load until
those resources have been loaded.

Example 7-1. An example HTML page, sample.html, with document-order prioritized
resources

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" type="text/css" src="styles.css" />

 <link rel="stylesheet" type="text/css" src="animations.css" />

 </head>

 <body>

 <ul class="gallery">

 <video class="promo">

 <source src="/videos/promo.mp4">

 <source src="/videos/promo.ogv">

 <source src="/videos/promo.webm">

 </video>

 <script src="app.js" ></script>

 <script src="GoogleAnalytics.js"></script>

 </body>

</html>

The lazyload and postpone properties provide us an alternative that allows us to pre‐
serve our page structure, while also providing programmatic hints as to the importance

of page resources. Elements with lazyload and postpone will be loaded either when all
other resources have been loaded or when the viewport enters the bounding box of the
element in question, respectively. Elements without either of these properties, on the
other hand, will continue to load in document order, as before. Example 7-2 shows these
features in action.

The Resource Priorities Prollyfill | 135

Example 7-2. An example HTML page, sample.html, with prioritized resources

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" type="text/css" src="styles.css" />

 <link rel="stylesheet" type="text/css" src="animations.css" lazyload />

 <style>

 video.promo source {

 resource-priorities: postpone;

 }

 </style>

 </head>

 <body>

 <ul class="gallery">

 <video class="promo">

 <source src="/videos/promo.mp4">

 <source src="/videos/promo.ogv">

 <source src="/videos/promo.webm">

 </video>

 <script src="app.js" ></script>

 <script src="GoogleAnalytics.js" lazyload></script>

 </body>

</html>

In this sample, which will also serve as our base demo page for the prollyfill, you can

see both attributes and the property in action. First, in the <style> tag, we have a single

CSS selector for the source values of any <video> tags containing the class promo. Inside

the selector is our resource-priorities property, which tells the browser to set the

postpone value on the video source elements, which will ensure that the video on my
page doesn’t begin loading until the user scrolls to that location on the screen.

Throughout the rest of the sample, I’ve applied the lazyload attribute to those resources
that I want to have downloaded as soon as core page resources are loaded, and the

postpone attribute to those resources that need to be loaded only when in the user’s
visible viewport. The end result is a page with clear instructions to the browser as to the
loading priority of all resources in the document.

136 | Chapter 7: Building Your First Prollyfill

Resource priorities are a great idea, but since they are so new, there aren’t any native
browser implementations. So we’ll build our own prollyfill, which will allow us and
other developers to put this spec through its paces and offer feedback to spec authors
and the W3C. Let’s get started building that prollyfill, which I’ve decided to call slack‐
er.js in what was probably a misguided attempt to be clever.

Specifying the API and Deciding What to Build
Before beginning construction of our prollyfill, it’s important to take a moment and
consider the purpose and goals of the project, what you will and won’t take on, as well
as the API of the library. As I did in Chapter 2 with the HTML5 Forms polyfill, the first

thing I did with slacker.js was to define the purpose and goals of the project, as
described here:

Purpose and Goals

The purpose of this project is to serve as a complete prollyfill for the draft Resource
Priorities spec, including support for new HTML attributes (lazyload and postpone), a
new CSS property (resource-priorities), and a DOM event (lazyloaded). This project
includes built-in feature detection and, by default, will polyfill only those forms features
not present in the user’s browser.

As a prollyfill, this library’s primary purpose is to serve as a proof-of-concept and test
bed for conversations around the Resource Priorities specification, and not to serve as a
cross-browser polyfill ready for production use.

This library will function as both a drop-in and opt-in prollyfill, depending on the features
being used. For the lazyload and postpone properties, this library will manage resources
when these attributes are included in a document and the data-href or data-src attribute
is used. When using the resource-priorities CSS property, link and style elements
should be decorated with an attribute (data-slacker-interpret) that will indicate use of
this property to the prollyfill.

Goals

• Provide a complete Resource Priorities solution that allows developers to experi‐

ment with new attributes, CSS properties, and DOM events, as defined in the spec.

• Provide a test bed for specified and experimental features. As a prollyfill, the API

surface of this library is not limited to those features already contained in the spec.
Where it makes sense to propose new or changed features, this library can be used
as a POC for those proposed changes.

• Adapt quickly to specification changes, including those to the spec’s API. We expect

this spec to change, and this library should be built in such a way that API changes
are easy to absorb.

Specifying the API and Deciding What to Build | 137

http://bit.ly/slacker-js

Non-Goals:

• This library is intended to serve as a proof-of-concept for a cutting-edge web plat‐

form feature, and as such is not meant for production use.

• As a proof-of-concept, this library will not be performance-tuned.

• This library may diverge from the Resource Priorities spec in order to add conve‐

nience features, nonstandard behaviors, or experimental APIs for consideration by
spec authors.

As you can see, this section has a lot of similarities to and differences from our Forms
polyfill. Like the Forms Library, this section contains a summary of the purpose of the
project, as well as a few bullets covering the goals and non-goals of the project. The
differences are clear in the content, however. Our prollyfill is an experiment intended
to drive discussion, and you can see that reflected in the preceding text.

Once I’ve clearly defined the purpose and goals of my library, I’ll turn my attention next
to its API. For this, I like to sit down with the spec and draft a features matrix so that I
can outline the major features my library should provide, as well as any feature-specific
caveats, opt-in features, or quirks that the library should account for. Table 7-1 illustrates

my initial features matrix for slacker.js.

Table 7-1. Features matrix for slacker.js

Feature Opt-in Workflow and Exceptions Supported Elements

Support for lazy

load attribute

Yes (data-

src/data-

href)

Remove src of elements with lazyload and place in

an array. When document.load is fired, reset the

src for each element. For script, if defer is used

with lazyload, it has no effect. For script, if

async is set to false, lazyload has no effect; for

svg reImage, if externalResourcesRe

quired is set to true, lazyload has no effect.

img, audio, video,

script, link, embed,

iframe, object, svg fe

Image, svg use, svg

script, svg tref

Support for post

pone attribute

Yes (data-

src/data-

href)

Remove src of elements with postpone and place in

an array. On scroll or when an element with the dis

play:none property becomes visible, determine if any

elements are within the bounding box of the page and

if so, reset the src for each visible element. For au

dio, postpone works only if the controls

attribute has been set; for svg reImage, if exter

nalResourcesRequired is set to true, post

pone has no effect.

img, audio, video,

script, link, embed,

iframe, object, svg re

Image, svg use, svg

script, svg tref

138 | Chapter 7: Building Your First Prollyfill

http://bit.ly/reso-prior

Feature Opt-in Workflow and Exceptions Supported Elements

Support for

resource-

priorities

CSS property

Yes (data-

slacker-

interpret)

Parse all link and style elements that use the

data-slacker-interpret attribute and find all

instances of the resource-priorities property.

Remove src values for related elements, and any CSS

properties that specify a source (like background-

image). No exceptions.

img, audio, video,

script, link, embed,

iframe, object, svg re

Image, svg use, svg

script, svg tref,

background-image,

border-image-source,

content, cursor, list-

style-image, @font-

face src

Support for lazy

loaded event

No Once the src has been reset for resources with the

lazyload attribute, fire the lazyloaded event. If

no such elements exist, fire immediately after docu

ment.load. No exceptions.

N/A

Even though there are really only four major features to the Resource Priorities spec,
there’s quite a lot going on for what seems like a relatively straightforward prollyfill. In
addition to needing to support new attributes, a CSS property, and a DOM event, we
have to consider how to support these new features across a dozen HTML elements and
a handful of resource-loading CSS properties. We also have to take into account the

interaction between lazyload/postpone and defer and async when used on script
elements. Since there’s a lot to consider when building my prollyfill, I’m going to create
a road map for major features, just as I did for my HTML5 Forms polyfill. The road

map for slacker.js can be seen here:

• v0.1—support for the lazyload attribute and lazyloaded event

• v0.2—support for the postpone attribute

• v0.5—support for the resource-priorities CSS property

• v1.0—full spec support (v0.5 + bug-fixes and enhancements)

With a clearly defined set of goals, features, and a road map for my library, I’m now

ready to get started. In the next section, we’ll set up the initial project for slacker.js
and start building out our polyfill.

Setting Up Your Prollyfill Project
In Chapter 3, I provided some tips on how to set up the initial project structure for your
polyfill, including essential documentation files (README, LICENSE, CHANGELOG,
CONTRIBUTING) and essential directories for your source, third party dependencies,
tests, and distribution files. In Chapter 4, we expanded on this list with a discussion on
configuring project builds with Grunt and setting up unit and cross-browser testing via
Jasmine, Karma, and Travis. For a prollyfill, much of this process remains the same, so

Setting Up Your Prollyfill Project | 139

I won’t repeat it here. Instead, I encourage you to check out Chapters 3 and 4 if you
haven’t already to get an overview of how I’ve chosen to configure both my HTML5
Forms polyfill and my Resource Priorities prollyfill.

Adding Prollyfill Features
For slacker.js, I’m going to use Jasmine for my unit tests, just as I did for the HTML5
Forms polyfill earlier in the book. Once I’ve configured Jasmine, including the Grunt-
and Karma-dependent steps outlined in Chapter 4, I’m ready to add my first test.

The First Test: Feature Detection
In the road map for my prollyfill, which I shared previously, I decided to first focus on

supporting the lazyload attribute. Along those lines, my first test makes sure that my

prollyfill is performing feature detection for the lazyload attribute. I know, of course,
that no browser currently supports this attribute, but I don’t know how long that will
be the case, or how long my library will stick around, so the responsible thing to do is
to always perform feature detection, if possible, even when building prollyfills.
Example 7-3 contains the source for my first test.

If you’re using Chrome, some tests will fail because of cross-domain restrictions. To
work around this, you’ll want to either run your tests using a local web server, or run

Chrome with the --allow-file-access-from-files terminal command.

For OS X, run open -a /Applications/Google\ Chrome.app --args --allow-file-

access-from-files.

And for Windows, run C:\Users\[UserName]\AppData\Local\Google\Chrome[SxS]

\Application\chrome.exe --allow-file-access-from-files.

Example 7-3. First test in fixtures.js for the slacker.js prollyfill

var path = 'javascripts/fixtures/';

describe('lazyload attribute tests', function() {

 it('should test for the lazyload attribute before acting', function() {

 var s = document.createElement('script');

 var lazyloadSupported = 'lazyload' in s;

 var slackerFrame = document.querySelector('iframe#slackerFrame'),

 loaded = false;

 slackerFrame.src = path + 'lazyload.html';

 slackerFrame.addEventListener('load', function() {

 loaded = true;

 });

 waitsFor(function() {

 return loaded;

140 | Chapter 7: Building Your First Prollyfill

http://bit.ly/jas-lib

 }, 'iframe load event never fired', 2000);

 runs(function() {

 expect(lazyloadSupported)

 .toEqual(slackerFrame.contentWindow.slacker.features.lazyload);

 slackerFrame.src = '';

 });

 });

});

There’s quite a lot going on here, so let’s unpack this sample. The first thing you’ll notice
is that I’m getting a reference to an iframe in my main document. This is key. Because
my prollyfill is meant to operate on entire documents, I feel that I should simulate these
conditions as much as possible in my tests. In order to do that, I load an external HTML
file, the source of which is shown in Example 7-4, and inject it as the source of my iframe,
which causes my prollyfill to run. Once I’ve loaded the iframe and set its new source, I
need to wait for the page to fully load before running my tests, so I add an event listener

for the frame and use the Jasmine waitsFor and runs methods to make sure that the
tests don’t run until I’m good and ready.

Example 7-4. The lazyload.html source

<!DOCTYPE html>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="styles.css" />

 <link rel="stylesheet" type="text/css" data-href="animations.css" lazyload />

</head>

<body>

 <script src="../../../../src/slacker.features.js"></script>

 <script src="../../../../src/slacker.js"></script>

</body>

</html>

When I first run this test, it will fail, of course. In order to make it pass, I’ll add a test

for the lazyload attribute to my source in a new file called slacker.features.js, as shown
in Example 7-5.

Example 7-5. lazyload feature test in slacker.js

(function() {

 window.slacker = window.slacker || {};

 var resourcePrioritiesFeatures = {

 lazyload: (function () {

 var s = document.createElement('script');

 return 'lazyload' in s;

 })()

Adding Prollyfill Features | 141

 };

 window.slacker.features = resourcePrioritiesFeatures;

}());

This module, which will serve as the core module for all feature tests in my prollyfill,

starts with an IIFE before setting the global window.slacker namespace that I’ll be using
for the library. Next, I create an object literal to hold my feature tests, and add a test for

the lazyload. As discussed in Chapter 3, I can test for official support for new HTML
attributes by creating an in-memory element and checking to see whether the attribute

exists. Once I’ve added my features module and the lazyload test, my first test should
pass.

The Second Test: Initial lazyload Functionality
Now that I have my feature testing in place, I can shift to the lazyload attribute itself.
The next test, as illustrated in Example 7-6, will make sure that my prollyfill detects the

presence of this attribute and removes whatever value is specified in the data-href

attribute of my <link> element.

Example 7-6. Testing data-href attribute removal in fixtures.js

it('should detect the lazyload attribute and remove data-href',

function() {

 var slackerFrame = document.querySelector('iframe#slackerFrame'),

 loaded = false;

 slackerFrame.src = path + '/lazyload.html';

 slackerFrame.addEventListener('load', function() {

 loaded = true;

 });

 waitsFor(function() {

 return loaded;

 }, 'iframe load event never fired', 2000);

 runs(function() {

 var stylesheet = slackerFrame.contentDocument.querySelectorAll('link[lazyload]');

 expect(stylesheet.length).not.toBe(0);

 expect(stylesheet[0].getAttribute('data-href')).toEqual('');

 slackerFrame.src = '';

 });

});

This test is similar to our first in that it does some async work to prepare an iframe—
and we’ll clean up this duplication in a bit—before running the actual test. The test pulls

the <link> element from the DOM and checks to see that its data-href attribute is

142 | Chapter 7: Building Your First Prollyfill

null. As with our first test, this test will fail on first run because I haven’t added any
functionality yet. Let’s do that, first by creating a slacker.js source file in the src/ directory

for my project, and then by adding the src removal functionality, as illustrated in
Example 7-7.

Example 7-7. Creating the lazyload src removal feature in slacker.js

(function() {

 window.slacker = window.slacker || {};

 var i, len,

 lazyLoaded = [];

 //Test for the presence of the lazyload attribute.

 //If it's not supported, let's get to work.

 if (!window.slacker.features.lazyload){

 var elements = document.querySelectorAll('[lazyload]');

 for (i = 0, len = elements.length; i < len; i++) {

 var el = elements[i];

 if (el.nodeName === 'LINK') {

 lazyLoaded.push(el.getAttribute('data-href'));

 el.setAttribute('data-href','');

 }

 }

 }

}());

At this point, our prollyfill is pretty simple, but it’s enough to make our second test pass.

I’m simply looking for every element with the lazyloaded attribute and then looping

over each. If the nodeName of the current element is LINK, I remove that element’s data-

href attribute and place it into an array. If I run my tests again, they should now pass.

The First Refactor: Cleaning Up the Tests
At this point, our prollyfill is nowhere near functional, but we’re off to the right start. A

logical next step would be to round out basic lazyload support by setting my link

element’s href after the page load. We’ll get to that, of course, but first I need to clean
up some duplication of code in my tests in order to simplify things.

If you take a look at Example 7-3 and Example 7-6, you’ll notice a lot of boilerplate test
code that I have to duplicate each time through. I’d like to clean this up to make my
subsequent tests cleaner, so I’ll create a local function in my fixtures.js file to manage all
of the frame loading. The source of this helper method can be found in Example 7-8.

Adding Prollyfill Features | 143

Example 7-8. The test runner helper method in fixtures.js

function loadFrame(test) {

 var slackerFrame = document.querySelector('iframe#slackerFrame'),

 loaded = false;

 slackerFrame.src = path + 'lazyload.html';

 slackerFrame.addEventListener('load', function() {

 loaded = true;

 });

 waitsFor(function() {

 return loaded;

 }, 'iframe load event never fired', 2000);

 runs(function() {

 if (test && typeof test === 'function') {

 test(slackerFrame);

 }

 slackerFrame.src = '';

 });

}

With this method, I’m able to abstract away much of the iframe logic and keep my test

methods clean so that they have to pass in only the spec-specific setup and expect
statements. As an example, my refactored version of Example 7-3 can be seen in
Example 7-9. It’s much cleaner and will make adding subsequent tests much simpler.

Example 7-9. A refactored iframe test in fixtures.js

it('should test for the lazyload attribute before acting', function() {

 var s = document.createElement('script');

 var lazyloadSupported = 'lazyload' in s;

 loadFrame(function(frame) {

 expect(lazyloadSupported)

 .toEqual(frame.contentWindow.slacker.features.lazyload);

 });

});

The Third Test: Modifying the Public API
So far, we’ve been building our prollyfill to the Resource Priorities spec, and things look
pretty good. However, as a prollyfill developer, you might encounter situations where
you have an idea for a feature of your library that might actually make sense as a part
of the official spec. In this section, we’ll explore the addition of one such feature to

slacker.js.

As I worked on the initial functionality for slacker.js, I found myself wishing that the

collection of deprioritized elements—as in, those decorated with the lazyload or

144 | Chapter 7: Building Your First Prollyfill

postpone attributes—were available in some form of collection that I could inspect from
my tests. I also thought that a collection like this would be useful to app developers, so
since this is a prollyfill for a draft specification, what better way to test out this idea than
to add the feature to my prollyfill and try it out?

To add this functionality, I’ll start with a simple test, as illustrated in Example 7-10. Here,

I’m specifying that I expect for my slacker object to hold an array called lazyLoaded
and that this array should have a length of 2, which corresponds to the two elements

(one <link> and one) in my lazyload.html test file.

Example 7-10. Testing for brand-new functionality in fixtures.js

it('should hold the resource source in the lazyLoaded array', function() {

 loadFrame(function(frame) {

 var win = frame.contentWindow;

 expect(win.slacker.lazyLoaded.length).toEqual(2);

 });

});

Once I’ve added this test and run my tests in the browser to verify failure, I’ll head back

over to slacker.js to add the following line just after the for loop:

window.slacker.lazyLoaded = lazyLoaded;

With this line, my tests and apps can now obtain access to an array of lazyLoaded
elements. Is this a good idea? Maybe or maybe not. All that matters in this case is that,
as a prollyfill developer, I should feel free to experiment and play with ideas like this,
and even pitch them to the spec authors for inclusion. If they say yes, I’ve contributed
to a future web platform standard! And if not, no harm, no foul. I can simply remove
the API from my prollyfill and move on, confident that I’ve still contributed to the
standardization process by encouraging conversation.

Of course, if this new API were to be added to the spec, it would no doubt live as an

object on window and would probably have a different name. I’m adding it to my slack

er namespace to be clear about the API for my prollyfill. If and when I propose this new
addition, I can use the API of my library as a reference, while suggesting additions or
changes to the spec.

The Fourth Test: Supporting Additional Element Types
My test in Example 7-10 will still fail at this point, and if you look at the source in

Example 7-7, it’s easy to see why. My test file contains two lazyload elements, an image,

and a stylesheet, but my prollyfill supports only the <link> element, so I’ll need to

modify the library to support the element as well. Example 7-11 contains the new

source of my for loop.

Adding Prollyfill Features | 145

Example 7-11. Supporting a second element type in slacker.js

for (i = 0, len = elements.length; i < len; i++) {

 var el = elements[i];

 if (el.nodeName === 'LINK') {

 lazyLoaded.push(el.getAttribute('data-href'));

 el.setAttribute('data-href','');

 } else if (el.nodeName === 'IMG') {

 lazyLoaded.push(el.getAttribute('data-src'));

 el.setAttribute('data-src','');

 }

}

Once I’ve added this code, the test in Example 7-10 will pass, meaning that I have starter

support for two element types and a public object that holds my lazyLoaded URLs. This
is great, but since there’s some code duplication—and I hate duplication—it’s time for
another refactor.

The Second Refactor: Completing Element Type Support
With only two elements to support, my if statement isn’t too unwieldy. That said, ac‐
cording to the Resource Priorities spec, I need to support 13 element types. What’s more,

I still have to add support for postpone, which also supports 13 elements. I really don’t

want to keep adding if statements, so it’s time for another refactor.

Since the only real difference between the elements I need to support is the source

attribute they use (href or src), I can do a lot to abstract away the clearing of attributes
into a local helper method, while placing each element I want to support into a local

object. The new source for slacker.js once I’ve made this change can be found in
Example 7-12.

Example 7-12. Refactoring to add multiple element support in slacker.js

(function() {

 window.slacker = window.slacker || {};

 var i, len,

 lazyLoaded = [];

 function clearSourceAttribute(el, attr) {

 lazyLoaded.push(el.getAttribute(attr));

 el.setAttribute(attr,'');

 }

 var elementReplacements = {

 LINK: function(el) {

 clearSourceAttribute(el, 'data-href');

 },

 IMG: function(el) {

 clearSourceAttribute(el, 'data-src');

146 | Chapter 7: Building Your First Prollyfill

 }

 };

 //Test for the presence of the lazyload attribute.

 //If it's not supported, let's get to work.

 if (!window.slacker.features.lazyload){

 var elements = document.querySelectorAll('[lazyload]');

 for (i = 0, len = elements.length; i < len; i++) {

 var el = elements[i];

 if (el.nodeName in elementReplacements) {

 elementReplacements[el.nodeName](el);

 }

 }

 //Make the array of lazyLoaded elements publicly available

 //for debugging.

 window.slacker.lazyLoaded = lazyLoaded;

 }

}());

By moving most of the attribute support and element-specific logic into module-level

functions, I get a much cleaner for loop. It’s also much easier to add support for the rest
of the elements in the spec. Let’s add another one of those now, first via a test, as shown
in Example 7-13.

Example 7-13. Testing for <script> element support in fixtures.js

it('should support the script element', function() {

 loadFrame(function(frame) {

 var stylesheet = frame.contentDocument.querySelectorAll('script[lazyload]');

 expect(stylesheet.length).not.toBe(0);

 expect(stylesheet[0].getAttribute('data-src')).toEqual('');

 });

});

Similar to my initial test for the link attribute, I’m making sure that my <script>

element is in the page, and that my prollyfill removes its data-src attribute. After ver‐

ifying that it fails, I can add support to the slacker.js source by adding a new function

for the <script> element, as shown in Example 7-14. Once I’ve added this function, I
can rerun my tests and confirm that they pass.

Example 7-14. Adding support for the <script> element in slacker.js

var elementReplacements = {

 LINK: function(el) {

 clearSourceAttribute(el, 'data-href');

 },

 IMG: function(el) {

Adding Prollyfill Features | 147

 clearSourceAttribute(el, 'data-src');

 },

 SCRIPT: function(el) {

 clearSourceAttribute(el, 'data-src');

 }

};

The Fifth Test: Completing Initial Support
Now that I have some initial functionality to remove resource source attributes, and I
have a clean way to add support for all element types, it’s time to complete initial support

for the lazyloaded attribute by adding functionality to properly set the href attribute

on my link tag after the page load is complete. First, just as we’ve done every time thus
far, I’ll create my failing test, which can be seen in Example 7-15.

Example 7-15. Test for full lazyload attribute support in fixtures.js

it('should re-apply the lazyload attribute after the document.load event', function() {

 loadFrame(function(frame) {

 var stylesheet = frame.contentDocument.querySelectorAll('link[lazyload]');

 expect(stylesheet[0].getAttribute('href')).not.toBe(null);

 });

});

As per the spec, once the document.load event has fired, I expect my prollyfill to go to

work and set the src and href properties for my elements. If things work properly, this

test will confirm that my test document’s link element has been modified accordingly.

To make this test pass, and round out initial support for the lazyloaded attribute, I’ll
need to make some pretty extensive changes to my prollyfill source, as shown in
Example 7-16.

Example 7-16. Adding complete support for the lazyloaded attribute in slacker.js

(function() {

 window.slacker = window.slacker || {};

 var i, len,

 lazyLoaded = [];

 function clearSourceAttribute(el, attr) {

 lazyLoaded.push({

 el: el,

 source: el.getAttribute('data-' + attr)

 });

 el.setAttribute('data-' + attr,'');

 }

 var elementSource = {

 LINK: 'href',

148 | Chapter 7: Building Your First Prollyfill

 IMG: 'src',

 SCRIPT: 'src'

 };

 //Test for the presence of the lazyload attribute.

 //If it's not supported, let's get to work.

 if (!window.slacker.features.lazyload){

 var elements = document.querySelectorAll('[lazyload]');

 for (i = 0, len = elements.length; i < len; i++) {

 var el = elements[i];

 if (el.nodeName in elementSource) {

 clearSourceAttribute(el, elementSource[el.nodeName]);

 }

 }

 //Make the array of lazyLoaded elements publicly available

 //for debugging.

 window.slacker.lazyLoaded = lazyLoaded;

 //When the page has finished loading, loop through

 //the collection of lazyloaded elements and set their

 //attributes accordingly.

 window.addEventListener('load', function() {

 for (i = 0, len = lazyLoaded.length; i < len; i++) {

 var element = lazyLoaded[i];

 element.el.setAttribute(elementSource[element.el.nodeName], element.source);

 }

 });

 }

}());

The key piece of this sample is toward the end, where I’ve defined a load event listener

on the current window. Once that event fires, I know it’s time for me to add source

properties back on the lazyloaded elements, so I’ll loop through my collection of ele‐

ments and set its src or href property accordingly. If you look closely, you’ll also notice

that I refactored the clearSourceAttribute function, as well as the elementSource
object to support clearing and setting of attributes cleanly. With these changes, all my
tests will pass, and all I need to do to support the rest of the specified elements is to add

them to the elementSource object. I’ll leave that as an exercise for you, though you can
also check the public GitHub repo for slacker.js if you want to see what the completed
prollyfill looks like.

The Final Test: Supporting the lazyloaded Event
Before we close this chapter and our journey into polyfills and prollyfills, there’s one
more specified feature I want to add. According to the Resource Priorities spec, the

browser should fire a lazyloaded DOM event after the download of all the lazyload-

Adding Prollyfill Features | 149

http://bit.ly/slacker-js

marked documents has been initiated. It should be easy enough to add this, so I’ll start
again with a failing test (shown in Example 7-17).

Example 7-17. Testing for the lazyloaded event in fixtures.js

it('should fire the lazyloaded event after src replacement is complete', function() {

 loadFrame(function(frame) {

 var lazyloaded = false;

 frame('lazyloaded', function() {

 lazyloaded = true;

 });

 waitsFor(function() {

 return lazyloaded;

 }, 'iframe lazyloaded event never fired', 2000);

 runs(function() {

 expect(lazyloaded).toBe(true);

 });

 });

});

After I load my test document, I’ll add a listener for the lazyloaded event, and then add

the Jasmine waitsFor and runs functions so that I give the iframe plenty of time to fire
the event before I execute the test.

To implement this function, I can add a single line just after the for loop in Example 7-16:

var evt = new CustomEvent('lazyloaded');

window.dispatchEvent(evt);

And that’s it! All my tests should pass, and I’ve now added experimental support for the

lazyload portion of the Resource Priorities specification.

What’s Next?
We breezed through a lot in this chapter for our slacker.js prollyfill, but the work is
just beginning. From here, I still need to add support for the remaining nine element

types, deal with some element-specific edge cases, and then add support for the post

pone attribute and the resource-priorities CSS property. On the infrastructure side,
I’ll also need to make some changes to account for automated and cross-browser testing.
Just like polyfilling, prollyfilling is hard work, and there’s still a lot left to do! You can

just check out the slacker.js GitHub repo to see the remaining prollyfill features that
I didn’t have space to cover here.

Hopefully, over the course of this chapter on building a real-world prollyfill, you got a
glimpse into both the similarities and differences between polyfills and prollyfills. The
two library types are a lot alike, with the key differences being how you handle the public

150 | Chapter 7: Building Your First Prollyfill

http://bit.ly/slacker-js

API and performance considerations for each. In this section, I’ll briefly recap those
differences.

Suggesting an API Modification
As we’ve talked about repeatedly in this book, the public API for a stable feature is set,
and should be considered gospel by the polyfill developer. Prollyfills, on the other hand,
are in flux, by definition. When building prollyfills, you should respect the API to some
extent, while also feeling free to innovate and experiment with new ideas. Adding a

lazyLoaded collection to slacker.js is an example of this.

But no experiment is complete without the reporting of results, so if you like the results
of your modifications to an in-flux spec, you should feel free to get in touch with the
appropriate working group, mailing list, or directly with the spec authors to get their
feedback. As I said in the previous chapter, backing up your ideas with runnable code
in a prollyfill is the best way to encourage the right kind of discussion around those
ideas.

Building for Performance
As I mentioned earlier in this chapter, when building a prollyfill, your goal is to build
something that tests out an experimental API, not to build something meant for cross-
browser adoption by developers. As such, performance won’t and shouldn’t be your
primary concern. What’s more, sometimes creating prollyfills for experimental APIs
requires us to do bad things to HTML, JavaScript, and CSS in order to create something
halfway functional, and these bad things often cause performance to fly right out the
window. Chalk this up to another reason that access to those “low-level APIs” described
in the Extensible Web Manifesto are so critical, as these would allow developers to build
prollyfills that also perform reasonably well. Until then, we do the best we can.

But just because performance isn’t your primary concern when building a prollyfill
doesn’t mean it shouldn’t be a concern at all. While I don’t recommend spending time
building comparative JSPerf tests and mining your browser’s developer tools in an effort
to squeeze out that extra few dozen milliseconds of speed, it is important to pay at least
some attention to how your library performs, and apply common sense practices to its
construction.

One of the best ways to pay attention to performance in any project, including a prollyfill,
is by taking a test-driven development approach to adding features. I’ve used this ap‐
proach throughout this book. The basic idea is to first write a failing test for new func‐
tionality, to write just enough code to make that test pass, and finally, to consider any
refactoring that needs to take place in order to improve the code.

The last step is critical, and I’ve shown you examples of it in both this chapter and
Chapters 4 and 5. On the surface, refactoring might seem like an ascetic preference, but

What’s Next? | 151

much of the time, the work I put in to improve the code also improves its performance.
By removing duplication and looking for opportunities for reuse in my code, I’m en‐
couraging myself to pay attention to ways to also improve that code’s performance.
When building a prollyfill, taking a TDD approach will ensure that your library per‐
forms as well as it can.

Over the course of this short book, we’ve covered a lot of ground. We spent some time
early on talking about why polyfills still matter, and I shared some principles for re‐
sponsible polyfill development. Then, I put those principles in action and walked you
through the creation of a polyfill for the HTML5 Forms specification. Finally, we talked
about prollyfills and the opportunity that these present for developers to have a tangible
impact on the future of the web platform.

It’s an exciting time for the web platform, and it’s an exciting time to be a frontend
developer. More and more, developers are being given an opportunity to step up to the
plate and participate in the standardization and browser evolution processes. Building
polyfills is just one of the many ways that developers can participate, but it is unique
because it is one backed by actual code and experience. It’s a powerful tool that I hope
you’ll consider wielding as we work to extend the Web forward, together.

152 | Chapter 7: Building Your First Prollyfill

About the Author
Brandon Satrom has been a web developer for close to 15 years and has worked with
countless web technologies and browsers during that time. He’s worked as a Microsoft
Web Evangelist, and currently serves as the Lead Program Manager for Telerik’s Cross-
Platform Tools and Services, which includes Kendo UI, a library for building rich, in‐
teractive web and hybrid mobile applications with HTML, JavaScript, and CSS. He co-
wrote Building Windows 8 Apps with JavaScript, which was published in January of 2013
(Addison-Wesley Professional).

Colophon
The animal on the cover of Building Polyfills is a beech marten (Martes foina), a small
mammal native to Europe and central Asia. It is also known as a stone marten or white-
breasted marten. It is very adaptable: it lives in both open and forested habitats, and is
omnivorous. While plants, nuts, and fruit make up a high percentage of their diet, beech
martens also eat eggs, mice, rats, and small birds. Occasionally, they will hunt domestic
chickens and rabbits.

Beech martens have coarse brown fur and a white patch on their throat and chest. Not
including their long bushy tails (which average around 10 inches long), they are usually
16-19 inches long and weigh 3-5 pounds. They are about the size of a house cat, albeit
with a more slender body.

The homes of beech martens can be found in rock crevices, abandoned burrows, tree
holes, and even nooks within human buildings—they do not dig their own dens. Beech
martens are nocturnal, most active between 6 p.m. to midnight. They are typically soli‐
tary animals, except during the summer mating season. Male territories often overlap
with those of females, allowing them access to multiple potential mates. Kits aren’t born
until the following spring: implantation is delayed until roughly 230 days after mating,
and gestation takes another month.

In the fur trade, beech marten pelts aren’t viewed as of high a quality as related species
like the pine marten or sable. Nevertheless, they are still hunted in areas where more
valuable furred animals aren’t present. There is a population of beech martens in North
America—particularly, the state of Wisconsin—descended from animals who escaped
from a commercial fur farm in the 1940s.

The cover image is from A History of British Quadrupeds. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Foreword
	Part I. Building Polyfills
	Chapter 1. The Current State of Web Polyfills
	Polyfilling: Past, Present, and Future
	What Is a Polyfill (and What Is It Not)?
	Types of Polyfills
	The Shim
	The Opt-In Polyfill
	The Drop-In Polyfill
	The Forward Polyfill

	Why Polyfills Still Matter

	Chapter 2. Principles and Practices of Polyfill Development
	Building Responsible Polyfills
	The Polyfill Vision Statement

	Principles of Responsible Polyfill Development
	Read the Spec
	Respect the API, If Possible
	Mind (Only) the Gaps
	Think Like A Browser Developer
	Build With Performance in Mind
	Plan for Obsolescence

	Chapter 3. Building Your First Polyfill, Part 1: Getting Started
	The HTML5 Forms Polyfill
	Why Use a Library?

	Setting Up Your Polyfill Project
	Choosing a Source Control Solution
	Setting Up the Initial Project Structure

	Specifying the API
	Initializing an Opt-In Polyfill

	Deciding What to Build
	Adding Basic Features
	Creating a Sample Form
	Color Support
	To Feature Detect or Not to Feature Detect
	Adding Opt-In Overrides to Your Polyfill

	Beefing Up Your Polyfill with Additional Features
	Adding Support for the Number Type
	Refactoring Type Support
	Adding Input Types 3-n

	Building Utility Polyfills
	Polyfilling Visual Features With CSS
	Testing Your Work Across Browsers
	Installing the Evergreen Browsers
	Testing in OldIE
	Cross-Browser Testing and Verification with Online Services

	Chapter 4. Building Your First Polyfill, Part 2: Build Workflows and Cross-Browser Testing
	Setting Up Your Project Workflow
	Package and Dependency Management
	Build and Workflow Management
	Automated and Cross-Browser Testing
	Continuous Integration

	Jump-Starting Your Workflow
	Configuring npm
	Configuring Grunt

	Adding Unit Tests to Your Polyfill
	Configuring Unit Tests with Jasmine
	Red to Green: Making the First Tests Pass
	Running Jasmine Tests via Grunt
	Configuring Jasmine for the Browser and the Console

	Automating Cross-Browser Polyfill Testing
	Configuring Cross-Browser Tests with Karma
	Making Karma, Jasmine, and the Browser Play Nice
	Automating Polyfill Development with Grunt Tasks
	Performing Remote Testing with Travis CI

	The Bottom Line: Use What Works for You!

	Chapter 5. Building Your First Polyfill, Part 3: Performance and Edge-Case Testing
	Building for Performance
	1. Set Up Performance Benchmarks
	2. Don’t Execute Code Too Early or Too Often
	3. Iterate Until You’re Happy, Then Iterate Some More
	Running Performance Benchmarks
	Tune It But Don’t Overdo It

	Dealing with Browser-Specific Edge Cases
	Mobile-Specific Considerations
	File Size Matters
	Always Test on Devices

	Part II. Prollyfilling and the Future of the Web Platform
	Chapter 6. The Future of Polyfilling
	Polyfilling: Not Just For Older Browsers
	Prollyfilling: Extending the Web Forward
	Prollyfills In Action: Prollyfilling CSS
	Using HitchJS to Experiment with CSS
	Building Your Own Hitches

	Prollyfills in Action: ServiceWorker
	Prollyfills in Action: Web Components
	Templates
	Shadow DOM
	Custom Elements
	HTML Imports
	Creating Custom Elements with AngularJS
	Creating Custom Elements with Polymer

	Strategies for Polyfilling Experimental APIs
	Expect the API to Change
	Don’t Be Afraid to Try Something New

	Chapter 7. Building Your First Prollyfill
	Prollyfills vs. Polyfills: What’s the Difference?
	The Resource Priorities Prollyfill
	Specifying the API and Deciding What to Build
	Setting Up Your Prollyfill Project
	Adding Prollyfill Features
	The First Test: Feature Detection
	The Second Test: Initial lazyload Functionality
	The First Refactor: Cleaning Up the Tests
	The Third Test: Modifying the Public API
	The Fourth Test: Supporting Additional Element Types
	The Second Refactor: Completing Element Type Support
	The Fifth Test: Completing Initial Support
	The Final Test: Supporting the lazyloaded Event

	What’s Next?
	Suggesting an API Modification
	Building for Performance

	About the Author

