
Joshi

•
•
•
•

•
•

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Introduction ... xxi

Chapter 1: The JavaScript You Need to Know ■ ...1

Chapter 2: A First Look at jQuery ■ ..33

Chapter 3: ASP.NET Controls and jQuery Selectors ■ ..63

Chapter 4: Event Handling ■ ...103

Chapter 5: DOM Manipulation and Dynamic Content ■ ...135

Chapter 6: Traversal and Other Useful Methods ■ ..157

Chapter 7: Effects and Animations ■ ..179

Chapter 8: Ajax Techniques ■ ...193

Chapter 9: Creating and Using Plugins ■ ..231

Chapter 10: jQuery UI and jQuery Mobile ■ ..255

Chapter 11: Useful jQuery Recipes for ASP.NET Applications ■ ..281

Appendix: Learning Resources ■ ..301

Index ...303

www.allitebooks.com

http://www.allitebooks.org

xxi

Introduction

Welcome to the exciting world of jQuery! If you’re an ASP.NET developer looking to turbocharge your ASP.NET
applications with jQuery, you picked the right book. Modern web applications leverage browsers’ resources through
client-side scripting. Although JavaScript is a de facto standard as far as client-side scripting is concerned, there are
several libraries built on top of JavaScript that help developers accomplish their job quickly and easily. jQuery is one
of the most popular JavaScript libraries available today. If you want to develop Ajax-driven, dynamic, and
cross-browser web applications using ASP.NET, understanding jQuery is an invaluable skill.

While using jQuery in ASP.NET Web Forms and ASP.NET MVC projects, you need to combine the power of
jQuery with server controls, controllers, services, and APIs. It is crucial to understand how jQuery can be used
efectively in combination with ASP.NET features and technologies.

To that end, this book teaches you how to harness the power of the jQuery library in your ASP.NET Web Forms
and MVC applications. It helps you understand the foundations of jQuery from the perspective of an ASP.NET
developer in a clear, step-by-step way, so that you can quickly ensure you have this invaluable skill under your belt.

Who This Book Is For
his book is for ASP.NET web developers who want to tap the power of jQuery in their existing or new web
applications. his book doesn’t teach you ASP.NET features. I assume that you’re already comfortable working with
ASP.NET and doing web application development in general.

All the code samples discussed in this book use C# as the server-side programming language, so you should
also know C#. Although no prior knowledge of jQuery is expected, I assume that you’re familiar with the basics of
JavaScript.

he examples illustrated throughout the book use SQL Server and Entity Framework. Although you need not
have a detailed understanding of these technologies, you should at least be familiar with them.

he book uses Visual Studio as the development tool. You should know how to work with Visual Studio to
perform basic tasks such as creating projects and debugging code.

Software Required
To work through the examples in this book, you need the following software:

Visual Studio 2013•

SQL Server 2012•

jQuery, jQuery UI, and jQuery Mobile library iles•

Web browsers: Internet Explorer 9+, Firefox, Chrome, Opera, and Safari•

Although I used Visual Studio Ultimate 2013 to develop the book’s examples, most of the examples can also be
developed using Visual Studio Express 2013 for Web.

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xxii

All the data-driven examples were developed using SQL Server 2012 Express Edition. I use the Northwind sample
database in many examples, and I suggest you install it. You can download the Northwind database and its script from
the MSDN downloads web site.

I used jQuery 2.0.3 to write the examples presented in this book. You should consider downloading the latest
versions of jQuery, jQuery UI, and jQuery Mobile from their oicial web sites.

It’s always a good idea to test the client scripts you write in all the major browsers. So you might consider
installing the latest versions of Internet Explorer, Firefox, Chrome, Opera, and Safari.

How This Book Is Structured
his book is organized into 11 chapters and one appendix. Here’s a quick overview:

Chapter 1• gives you a quick recap of JavaScript programming. You can brush up on your
JavaScript skills before taking on jQuery.

Chapter 2• gives you a peek into jQuery. You learn the basics, such as downloading and
installing jQuery on your machine. You also develop a simple application in ASP.NET Web
Forms and MVC.

Chapter 3• gives you a detailed understanding of jQuery selectors. You learn to match DOM
elements using powerful and lexible selectors. his chapter also details techniques to deal
with server controls while selecting them in the jQuery code.

Chapter 4• teaches you one of the most commonly used features: event handling. It covers
commonly used events such as window, keyboard, and mouse events. Some advanced concepts
relating to event handling, such as passing custom data to the event handler, are also covered.

Chapter 5• is about DOM manipulation using jQuery. Topics covered include applying CSS
styles, working with attributes, and manipulating DOM elements.

Chapter 6• covers DOM navigation and iltering techniques, including tree traversal, iterating,
searching, working with custom data attributes, and more.

Chapter 7• teaches you how to apply jQuery efects and animations to Web Form controls
and page elements. You learn to apply fancy efects such as fade-in, fade-out, slide-up and
slide-down. You also learn to apply custom animation efects to page elements.

Chapter 8• covers an important topic: Ajax techniques ofered by jQuery. his chapter discusses
how ASMX web services, WCF services, MVC action methods, and the Web API can be called
from the jQuery code. It also discusses the JSON format and its use in Ajax communication.

Chapter 9• discusses plugins—a technique to extend the jQuery core. You can develop plugins
to enhance and extend the core functionality ofered by jQuery. he chapter discusses the
steps involved in building a plugin and gives you some recommendations to be followed
during the process.

Chapter 10• gives you an overview of jQuery UI and jQuery Mobile. jQuery UI provides various
widgets that you can add to ASP.NET web applications to provide professional user interface
elements such as dialogs, menus, accordions, and sliders. jQuery Mobile helps you develop
web applications targeted at mobile devices.

Chapter 11• presents a few recipes that you will ind useful in real-world applications. he
recipes covered include implementing Ajax-based paging, client-side sorting, ile upload,
autocomplete text box, and cascading drop-down lists.

he Appendix lists some jQuery learning resources.•

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xxiii

Downloading the Source Code
he complete source code for the book is available for download at the book’s companion web site. Visit
http://www.apress.com and go to the book’s information page at http://www.apress.com/9781430263043. You can
then download the source code from the Source Code/Downloads section.

Contacting the Author
You can reach me via my web site: http://www.binaryintellect.net. You can also follow me on popular
social-networking web sites such as Facebook and Twitter (visit my web site for details).

www.allitebooks.com

http://www.apress.com
http://www.apress.com/9781430263043
http://www.binaryintellect.net
http://www.allitebooks.org

1

CHAPTER 1

The JavaScript You Need to Know

JavaScript is a programming language that adds interactivity and dynamic content to otherwise static HTML pages.
Behind most fancy frills such as mouseover effects, animations, drop-down menus, and form validations, you will
usually find JavaScript being used in some way or another. jQuery is a JavaScript library that simplifies your client-side
programming tasks and uses the same programming constructs as JavaScript for variables, branching, and looping.
While writing jQuery code, you often need to use these JavaScript programming constructs. Therefore, before you
delve into jQuery programming, you must refresh your JavaScript skills. This chapter is intended to give you a quick
overview of commonly used JavaScript features so that you can use the knowledge gained in this chapter in the
remainder of the book. If you are already familiar with JavaScript, you can skip this chapter, or glance over its content
and jump to the next chapter.

Specifically, you will learn how to do the following:

Understand basic programming constructs used in JavaScript for branching and looping•

Work with JavaScript variables and data types •

Use built-in string, number, and date functions•

Create and use your own functions•

Note ■ Although this chapter is intended to give you an overview of the JavaScript language, it does not

cover all JavaScript features. For more information on JavaScript programming, see

https://developer.mozilla.org/en-US/docs/Web/JavaScript.

Your First JavaScript Program
In this section, you will develop a simple ASP.NET Web Form that makes use of JavaScript to seek a confirmation
from the end user. Although the application is not very sophisticated, it does throw light on some basics of JavaScript.
Figure 1-1 shows the Web Form you will develop.

www.allitebooks.com

https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://www.allitebooks.org

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

2

As shown in Figure 1-1, the Web Form consists of a couple of Label controls, a TextBox, and a Button server
control. Once you enter a name and hit the Submit button, a confirmation dialog is shown that seeks your consent to
submit the form. Depending on your choice, either the form submission is canceled or the form is submitted to the
server. Upon postback, the entered name is displayed in a Label control.

To begin developing this application, create a new ASP.NET Web Application based on the Empty project template using
Visual Studio (see Figure 1-2).

Figure 1-1. Your first JavaScript program

Figure 1-2. Creating a new ASP.NET Empty Web Application using Visual Studio

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

3

Add a new Web Form to the project and name it FirstJS.aspx. Design the Web Form as shown in Figure 1-1 by
dragging and dropping the respective server controls from the toolbox. The HTML and server control markup of the
Web Form is shown in Listing 1-1.

Listing 1-1. Markup of FirstJS.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="FirstJS.aspx.cs" Inherits="Chapter_01.
FirstJS" %>
...

<body>
 <form id="form1" runat="server">
 <h1>First JavaScript Program</h1>
 <asp:Label ID="Label1" runat="server" Text="Enter your name :"></asp:Label>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:Button ID="Button1" runat="server" Text="Submit" OnClick="Button1_Click" />

 <asp:Label ID="Label2" runat="server" Font-Bold="True" ForeColor="Red"></asp:Label>
 </form>
</body>
</html>

The markup contains two Label controls: one that acts as the prompt for the name text box, and the other that is
placed below the Submit button. The server-side click event handler of Button1 simply outputs the name entered by
the user in Label2. Listing 1-2 shows this event handler.

Listing 1-2. Submit Button Server-Side Click Event Handler

protected void Button1_Click(object sender, EventArgs e)
{
 Label2.Text = "Hello " + TextBox1.Text;
}

So far, the application doesn’t use any JavaScript. In the next step, you add some JavaScript code that is invoked
when the user clicks the Submit button. To do so, modify the markup of the Submit button as shown here:

<asp:Button ID="Button1" runat="server" Text="Submit" OnClientClick="return confirmName();" ... />

You can add the OnClientClick attribute in two ways: you can either switch to the source view of Visual Studio
IDE and key in the markup shown in bold letters, or set the OnClientClick property of Button1 in the Properties
window. The OnClientClick property is used to specify the client-side (JavaScript) code that is to be executed when
the button is clicked. In this case, you set the OnClientClick property to return confirmName(). confirmName() is a
custom JavaScript function that you will write next.

Go into the <head> section of the Web Form and add a <script> block, as shown in Listing 1-3.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

4

Listing 1-3. confirmName() Function

<script type="text/javascript">
 function confirmName() {
 var textbox = document.getElementById("TextBox1");
 var flag = window.confirm("You entered : " + textbox.value + "\n\nDo you wish to continue?");
 if (flag) {
 return true;
 }
 else {
 return false;
 }
 }
</script>

The <script> block shown in Listing 1-3 contains a custom JavaScript function named confirmName(). The
confirmName() function is intended to seek confirmation from the end user and accordingly cancel or continue with
the form submission. First, it grabs a reference to the text box using the getElementById() method of the document
object. The document object represents the current web page loaded in the browser window. The getElementById()
method accepts an ID of an HTML element and returns a Document Object Model (DOM) object representing the
element. The return object is stored in a JavaScript variable named textbox. Notice the use of the var keyword to
declare a variable.

Note ■ The Document Object Model, or DOM, is a tree structure of the entire HTML page loaded in the browser

window. Each HTML element from the page has a corresponding object in the DOM tree that can be used to manipulate

the underlying HTML element.

The next line declares a JavaScript variable named flag to store the return value of a built-in function:
window.confirm(). The confirm() function belongs to the window object and allows you to display a dialog to the user
with a developer-defined message. The dialog has OK and Cancel buttons. If the user selects OK, confirm() returns
a Boolean value of true; otherwise, it returns false. The window object represents the container of the document being
displayed (the browser window or a tab in which the page is loaded).

In this example, you display the name entered by the user. Notice the use of the escape sequence \n\n in the
message string to add new lines in the message. The value property of the text box DOM element returns the text
entered in the text box. An if-else block checks the flag variable. If flag is true, the if block returns true; otherwise,
the else block returns false. Depending on the value returned by the confirmName() function, the form is submitted
(true) or the form submission is canceled (false).

Note ■ Although confirm() is a method of the window object, in most of the browsers you can simply call it as if it

were a stand-alone function. So, window.confirm() and confirm() mean the same thing in your JavaScript code.

Refer to Figure 1-1 again. Can you see the timestamp printed in the footer of the Web Form? That’s the job of
another <script> block that you place just above the </body> (the end body tag). Listing 1-4 shows this <script> block.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

5

Listing 1-4. Outputting the Timestamp in the Page Footer

...

...
 </form>
 <script type="text/javascript">
 document.write("<hr />");
 document.write("Page rendered on " + new Date().toString());
 </script>
</body>

This time, you use another method of the document object: write(). The write() method accepts a string
and writes it in the document at the place where the call to write() is placed. In this case, the first call to write()
outputs a horizontal rule; the second call outputs the timestamp. Notice how the timestamp is obtained: you use the
JavaScript Date object and invoke its toString() method to get a string representation of the current date and time.

This completes your code. Run the Web Form in the browser, enter a name in the text box, and click the Submit
button. Figure 1-3 shows a sample run of the Web Form.

Figure 1-3. Sample run of the Web Form

Notice that the name entered by the user is displayed, followed by new lines and then the message seeking
confirmation.

Basic Programming Constructs
Like most other programming languages such as C# and Visual Basic, JavaScript has its own language constructs.
These constructs form the building blocks for writing simple to complex programs. By using these constructs, you
accomplish programming tasks such as conditional execution of your code and looping. This section discusses some
constructs you will use every day while working with JavaScript.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

6

Statements
A JavaScript program consists of one or more statements. Simply put, a statement is an instruction to the JavaScript
engine to do something. Every statement ends with a semicolon (;). For example, here are a couple of statements:

document.write("Hello World!");
var textbox = document.getElementById("TextBox1");

The first statement uses the write() method of the document object to output a string: Hello World! The second
statement declares a variable named textbox and stores a reference to the TextBox1 DOM element in it.

Comments
Comments are used to add explanatory text to your program. As a good developer, you should place comments in
your code so that you and fellow developers can understand the code at some later stage. JavaScript has two types
of comments: single line comments and block comments. The syntax for both of them is exactly the same as C#
commenting syntax. The following example makes it clear:

// this is a single line comment

/*
This is a block comment
That can span multiple lines
*/

Keep in mind that JavaScript code gets downloaded from the web server to the client browser. Every line
of comment that you add to the code also adds to the overall network bandwidth, so you should use ASP.NET’s
“minification” feature to strip away comments to make the resulting code compact and tidy. Of course, during
development you can place comments as required to ease the overall debugging experience and apply minification to
the release version of the JavaScript code.

Note ■ Minification of JavaScript involves many steps, including removal of white spaces, new line characters,

comments, and so on. Of course, the minification process preserves the original functionality of the code.

Built-in Functions
Earlier in this chapter, you created a function called confirmName(). This was a developer defined function. JavaScript
also has several built-in functions that you can use in your code. Just like any .NET Framework method, a JavaScript
function encapsulates certain functionality so you need not rewrite it. For example, the confirmName() function that
you created earlier uses a built-in function, confirm(), which displays a developer defined message to the end user
and seeks confirmation in the form of OK and Cancel. Two more JavaScript functions that you will find yourself using
often are alert() and prompt().

Let’s modify the confirmName() function to use these two functions. Listing 1-5 shows the modified
confirmName() function that makes use of alert() and prompt().

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

7

Listing 1-5. Using alert() and prompt()

function confirmName() {
 var textbox = document.getElementById("TextBox1");
 alert("You will now be asked to enter your name.");
 var enteredName = prompt("Please enter your name below:", "name goes here...");
 var flag = confirm("You entered : " + enteredName + "\n\nDo you wish to continue?");
 if (flag) {
 textbox.value = enteredName;
 return true;
 }
 else {
 return false;
 }
}

Notice the lines marked in bold. The first line uses alert() to display a message box to the user with a specified
text. The alert dialog has an OK button. The second line uses the prompt() function to prompt the user to enter a
name. The prompt() function displays a dialog with a text box and has OK and Cancel buttons. The two parameters
supplied to prompt() are the prompt text and a default value for the text box. Figure 1-4 shows how these two dialogs
are displayed in Chrome.

Figure 1-4. The alert() and prompt() functions displayed in Chrome

Notice that the prompt dialog displays a default value in the text box. Once the user clicks OK, the prompt()
function returns the entered value (or the default value if the user didn’t make any changes). If the user clicks Cancel,
prompt() returns null. In the previous example, after the user clicks the OK button of the prompt dialog, you seek a
confirmation from the user about the form submission. If a user wants to submit the form, you assign the enteredName to
the text box’s value property. This way, the server-side code still finds the value entered by the user in the prompt dialog.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

8

Tip ■ JavaScript contains many built-in objects and functions. This section merely touches on a few of them. As you

continue through the book, you will come across other built-in functions that will be discussed.

Data Types
Unlike .NET languages such as C# and Visual Basic, JavaScript doesn’t offer a plethora of data types. Broadly speaking,
data involved in JavaScript can be of the string, number, Boolean, and object data types.

String

The string data type is used often in JavaScript programs. JavaScript strings are enclosed in either double quotes (“...”)
or single quotes ('...'). This is unlike C#, in which strings are always enclosed in double quotes, and a character is
enclosed in single quotes. A string enclosed in quotes can include quotes as part of the string data. However, you need
to use the escape character (\) to embed quotes into a string. The following are a few examples of JavaScript strings:

"Hello World!"
'Hello Universe!'
"Hello 'Tom'"
'Hello "Jerry"'
"Hello \"Tom & Jerry\""

The first two examples are quite straightforward. The third string embeds single quotes inside a double quote,
and the third string embeds double quotes inside single quotes. Although this process doesn’t create any problem for
the code, if you want to embed double quotes in a string that uses double quotes as the enclosure, you need to escape
the embedded double-quote characters (as shown in the last example). The same principle applies to single-quote
characters embedded in a string enclosed by single quotes.

Number

Just like C#, you can use numbers in JavaScript. Unlike C#, in which there are different data types such as int, float,
decimal, and double to represent a number, JavaScript treats all types of numeric values as numbers. A number can be
an integer or a floating point number, and it can be positive or negative. Unlike strings, numbers don’t use enclosures.
Following are a few examples of JavaScript numbers:

100
1.23
-200

Boolean

Boolean data types can hold one of the two values: true or false. Commonly Boolean values are used while
conditionally checking something. They are also used as flags to indicate some state within a program. JavaScript
Boolean values are quite similar to the C# bool data type.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

9

Object

In addition to the string, number, and Boolean data types, JavaScript code often uses objects. An object can be built-in
or developer defined. For example, while working with dates and times, you use the JavaScript Date object. While
making Ajax calls to the server you often send and receive data as a custom object. These are developer defined
objects and are often referred to as JavaScript Object Literals or plain objects.

Variables
In .NET languages such as C#, you normally declare a variable of a specific data type to store some value. For example,
a variable of type int is declared in C# as follows:

int a = 100;

Unlike C#, JavaScript doesn’t allow you to declare a variable with a specific data type; it has the keyword var for
declaring any type of variable. Depending on whether you store a string, a number, or a Boolean value in the variable,
it is treated as a string, a number, or a Boolean. Consider the following variables:

var name = "Tom";
var age = 25;
var flag = true;

In the preceding example, name is a string variable, age is a numeric variable, and flag is a Boolean variable. It is
not necessary to assign a value to a variable at the time of declaring it. If no value is assigned to a variable, it is treated
as undefined. Have a look at the following code fragment:

var myvariable;
alert(typeof myvariable);
myvariable = "Tom";
alert(typeof myvariable);
myvariable = 100;
alert(typeof myvariable);

The first line of the code block declares a variable named myvariable. It then uses alert() and the typeof
operator to display the type of the variable. Because myvariable is not yet assigned, the first alert() displays
‘undefined’. Then the code assigns a string "Tom" to myvariable, and the second alert() displays the type of
myvariable as ‘string’. Then a value of 100 is assigned to myvariable, and the third alert() displays the type of
myvariable as ‘number’. Notice that the same variable is treated first as a string and then as a number, depending on
the value it holds.

Caution ■ Although you can store different types of data in the same variable (string and number, for example),

you should avoid doing so because it makes your code hard to understand and can introduce errors that are difficult

to trace.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

10

Although you can name your JavaScript variables anything you want, the names you choose must adhere to the
following basic rules:

Just like C#, JavaScript variable names are case sensitive (e.g., • FNAME and fname are treated as
different variables).

Variable names can contain only letters, numbers, _, and $ (e.g., • age, _fname, $age2),

Variable names must begin with a letter, _, or $ (e.g., • 123age is an invalid variable name).

Caution ■ It is important that you give readable and meaningful names to JavaScript variables; otherwise, your code

may become difficult to understand. Also, use a consistent naming convention for your variables throughout the application.

Arrays
JavaScript arrays allow you to store multiple values together in the form of a list. An array consists of zero or more
items called elements. Each element is capable of storing a value. An array element can be accessed by its sequence
number, called the array index, which starts from 0 (the first element can be accessed at index 0, the second at index 1,
and so on). The total number of elements in an array is referred to as its length or size. Although JavaScript arrays are
similar to C# arrays in many ways, C# arrays are fixed in size, and you can’t add or remove array elements dynamically.
JavaScript allows you to add or remove elements even after an array is declared, dynamically changing its size.

Arrays come in handy when you are dealing with too many variables that are related. For example, suppose that
you are dealing with a calendaring application that deals with month names. One option is to declare 12 independent
variables to hold the month names (January, February, and so on). Although this is possible, doing so makes your
code difficult because you need to track 12 different variables. Alternatively you can declare an array and store all
12 month names in it. Another example is when you don’t know the number of variables in advance. In such cases,
arrays can be useful because you can dynamically add data to them.

To understand how arrays are created and used, let’s develop a simple Web Form (see Figure 1-5).

Figure 1-5. Web Form dealing with arrays

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

11

As shown in Figure 1-5, the Web Form consists of a text box and three button controls. Clicking the Store button
stores the value specified in the text box into an array. The text box serves two purposes: it specifies a string that
gets stored in the array and specifies an array index while retrieving an array element. Clicking the Remove button
removes the last array element (the array gets truncated from the bottom, one element at a time). Clicking the Retrieve
button retrieves an array element whose index is specified in the text box. At the bottom of the Web Form is a Label
control that displays the total number of elements in the array at a given point in time. Listing 1-6 shows the relevant
markup from the Web Form.

Listing 1-6. Markup of Web Form Dealing with Arrays

<form id="form1" runat="server">
 <asp:TextBox ID="TextBox1" runat="server" Width="235px"></asp:TextBox>

 <asp:Button ID="Button1" runat="server" OnClientClick="return storeData();" Text="Store" Width="75px" />
 <asp:Button ID="Button2" runat="server" OnClientClick="return retrieveData();" Text="Retrieve"
Width="75px" />
 <asp:Button ID="Button4" runat="server" OnClientClick="return removeData();" Text="Remove"
Width="75px" />

 <asp:Label ID="Label1" runat="server" Font-Bold="True" ForeColor="Red"></asp:Label>
</form>

Notice the OnClientClick property of the button controls. It is set to call the storeData(), retrieveData(), and
removeData() JavaScript functions, respectively. These three functions go in a <script> block placed in the head
section of the Web Form (see Listing 1-7).

Listing 1-7. Declaring and Manipulating an Array

var myData = ["This","is","Array"];

function storeData() {
 var data = document.getElementById("TextBox1").value;
 myData.push(data);
 document.getElementById("Label1").innerHTML = "Array contains " + myData.length + " elements";
 return false;
}

function retrieveData() {
 var index = document.getElementById("TextBox1").value;
 alert(myData[index]);
 return false;
}

function removeData() {
 myData.pop();
 document.getElementById("Label1").innerHTML = "Array contains " + myData.length + " elements";
 return false;
}

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

12

The code begins by declaring an array variable named myData. Notice how myData is initialized to some default
values. You use [and] to enclose all the initial elements that go in the array. In this case, you store three string
elements: This, is, and Array, respectively. If you want to create an empty array, you can use [] (square brackets
without any default values). There is an alternative syntax for declaring an array:

var myData = new Array("This","is","Array");

This line does the same thing as before, but uses an Array object and its constructor to specify initial elements.
The myData variable is declared globally because you need to access it in all three functions.

Tip ■ For the sake of simplicity, this example doesn’t perform any checks to see whether the array indexes are within

permissible values. In a real-world application, of course, you will add such checks and associated error handling.

The storeData() function stores user-specified values in the myData array. It first grabs the value entered by the
user into the text box using the getElementById() method and value property. It then calls the push() method on the
array. The push() method accepts a new element and adds it at the bottom of the array. Notice how the number of
elements in the array is displayed. The length property of myData returns the total number of elements in the array. You
then display this count in the Label. To set the Label value, use the innerHTML property of the Label1 DOM element.

The retrieveData() function retrieves an array element based on an index entered in the text box. First, it grabs
the index entered in the text box and stores it in a variable named index. It then retrieves an array element at that
index using the myData[index] syntax. So, if a user enters 2 in the text box, myData[2] returns the third element from
the array. The array element thus retrieved is displayed to the user using an alert().

The removeData() function calls the pop() method on myData. The pop() method removes the last element from
the array. In other words, it truncates the array one element at a time. removeData() then displays the total number of
array elements again.

All three functions—storeData(), retrieveData(), and removeData()—return false because you don’t want to
submit the form in this example.

Tip ■ The unshift() and shift() methods are similar to push() and pop(). The unshift() method adds an array

element at the beginning of the array, and the shift() method removes an element from the beginning.

Conditional Checking
One of the most frequently needed tasks in a JavaScript program is checking for some condition. For example, you
may want to see whether values entered in various form controls have the appropriate format (valid e-mail, URLs,
phone numbers, and so on) so you can proceed with or cancel the form submission. Just like C#, JavaScript has an
if-else construct to check for conditions. The following code fragment shows a simple if-else block:

var textbox = document.getElementById("TextBox1");
if (textbox.value == "Blue")
{
 //display something in blue color
}
else
{
 //display something in default color
}

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

13

The code consists of an if-else block that checks a value entered in a text box for some condition. The if keyword
is followed by a condition in brackets. In this case, the condition says “If the textbox value is equal to Blue, perform
some developer defined task”. You can have multiple conditions in the if block, as shown here:

if(textbox.value == "Blue" || textbox.value == "Red")
{
 //do something
}

This example uses the OR operator (||). Other operators are summarized in Table 1-1.

Table 1-1. Comparison Operators

Operator Name Description

== Equal to Compares two values for equality.

!= Not equal to Checks whether two values are not the same.

> Greater than Checks whether the value on the left side is greater than the value
on the right side.

< Less than Checks whether the value on the left side is less than the value on
the right side.

>= Greater than or equal to Checks whether the value on the left is greater than or equal to the
value on the right side.

<= Less than or equal to Checks whether the value on the left side is less than or equal to
the value on the right side.

=== Strict equal to Checks the left side and right sides not only for equality of value
but also for equality of data type. For example, if(3==“3”) evaluates
to true because the value is the same. However, if(3===“3”)
evaluates to false because although the values are the same, their
data types aren’t. The left side is a number; the right side is a string.

!== Strict not equal to Compares values as well as data types of the left and right sides
for inequality. For example, if(3!= “3”) evaluates to false, and
if(3!== “3”) evaluates to true because of different data types.

Notice the Strict equal to and Strict not equal to operators shown in Table 1-1. They don’t have any
direct equivalent in C#. Although the normal Equal to and Not equal to operators compare values, these operators
compare data types as well as values.

The else block specifies a piece of code that you want to execute if the condition specified in the if block
evaluates to false. You can have a series of conditions specified using if-else if-else blocks, as shown here:

if (textbox.value == "Blue")
{
 //some code here
}

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

14

else if (textbox.value == "Red")
{
 //some code here
}
else if (textbox.value == "Green")
{
 //some code here
}
else
{
 //some code here
}

In this case, you first check whether the textbox value is Blue; if not, you then check whether it is Red, and so on.
If none of the conditions matches, the code in the else block is executed.

Although a series of if-else if-else blocks is a great way to check for multiple conditions in sequence, there is an
alternative that you can use: the switch statement. It allows you to compare a source value against a series of target
values and then a block of code is executed according to the matched value. You can use string, number, or Boolean
types in switch statements, but they always check the values using the equality operator. The following example shows
how the same if-else if-else block can be rewritten using a switch statement:

switch(textbox.value)
{
 case "Blue":
 // some code here
 break;
 case "Red":
 // some code here
 break;
 case "Green":
 // some code here
 break;
 default:
 // some code here
}

A switch statement has one or more case blocks and an optional default block. Each case block contains code
for that specific value (Blue, Red, and so on). The previous code checks whether the value entered in the textbox
equals Blue, Red, or Green. Accordingly, the appropriate code block is executed.

If the value is other than Blue, Red, or Green, code from the default block is executed. Notice the break
statement at the end of each case block. If you forget to include the break statement, the execution runs through that
block, but instead of halting before the next case, it continues with the following case until a break is found or until the
end of the switch statement is reached.

Looping
JavaScript programs often need to perform repetitive tasks, which is where looping comes into the picture. JavaScript
looping constructs allow you to execute the same set of instructions repeatedly until some condition evaluates to true.
There are three looping constructs in JavaScript:

while loop•

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

15

do-while loop•

for loop•

A while loop executes a block of code as long as a certain condition evaluates to true. For example, consider the
following while loop that iterates through all the array elements of an array named myData:

var i = 0;
while (i < myData.length) {
 //do something here
 i++;
}

Here, you declare a variable named i that holds an initial value of 0. You then run a while loop. The terminating
condition for the while loop says, “Run this loop while i is less than the length of the myData array. Thus, if myData
contains three elements, the code inside the while loop is executed three times. It is important to increment the value
of i inside the while loop; otherwise, the while loop never terminates. Just like an if block, the while loop can also
use multiple conditions and the same set of operators.

In the case of a while loop, the terminating condition is checked first, and depending on its outcome, the loop
is entered. There is another flavor of looping (do-while) that checks for the terminating condition after executing the
block of statements. So unlike the while loop, a do-while loop runs at least once. The following code shows how a do-
while loop can be used:

do {
 //some code here
 i++;
} while (i < myData.length);

The block following the do keyword defines one or more code statements, and the while condition is placed
at the end.

The third type of looping construct, the for loop, comes in handy for iterating through an array or collection
where index is relevant in the code. It requires an iterator variable that increments or decrements from a start value
to an end value. The statements enclosed within a for loop are executed that many times (the difference between the
start and end values). The following example shows how a for loop can be used to iterate through a myData array:

for (var i = 0 ; i < myData.length ; i ++)
{
 // do something
}

The for loop specifies three parts, separated by a semicolon (;). The first part declares an iterator variable i that
has an initial value of 0. The second part specifies the terminating condition. In this case, as long as the value of i is
less than the total number of elements in myData, the code is executed. The third part increments (or decrements) the
iterator variable by a certain amount. In this case, it increments i by one after every iteration.

Working with Strings
String data types are often used in JavaScript code and they have many uses. For example, you may want to find
out whether a string contains certain characters or you may want to convert a string from lowercase to uppercase
characters. Luckily, JavaScript offers many functions that allow you to play with strings. This section explores some of
JavaScript’s most frequently used string functions.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

16

Finding String Length
Sometimes you need to find out the length of a string. For example, you might have a user registration page and want
to ensure that the first name, last name, username, and password all meet certain requirements of minimum and
maximum length. In such cases, knowing how many characters a string contains becomes necessary. The length
property of a String object allows you to do just that. The following example shows how the length property is used:

var firstName = document.getElementById("txtFirstName").value;
if (firstName.length < 3 || firstName.length > 50)
{
 alert("Invalid First Name! ");
}

This code retrieves the value entered in the txtFirstName text box and stores it in a variable: firstName. Because
you store a string value in the firstName variable, you can call any of the String object methods and properties on it.
In this case, an if statement is used to check the length property of firstName. If the length is fewer than 3 characters
or more than 50 characters, an error message is shown using an alert dialog.

Finding a String within Another String
Sometimes you need to search for a string within another string. For example, you may want to find out whether an
e-mail address contains an @ character or whether a URL contains www. JavaScript offers two methods that can be
used in such situations: indexOf() and lastIndexOf(). The indexOf() method accepts a string to be searched within
another string and then returns the start position of the first occurrence of that string. The position starts from 0. The
lastIndexOf() method is similar to indexOf(), but it searches for the last occurrence of a given string. Both these
methods return -1 if the specified string cannot be found. The following code shows how they are used:

var url="http://www.somewebsite.com";
var result=url.indexOf("www");
alert(result);
result = url.lastIndexOf(".");
alert(result);

The first line of the code creates a variable named url and stores a URL string in it. The indexOf() method is
then called on the url variable for searching www. The return value of indexOf() is stored in the variable. An alert()
displays the result to the user. In this example, indexOf() returns 7 because www begins at the seventh position
(positioning starts from 0).

Next, the lastIndexOf() method is called on the url variable to find out the last occurrence of a dot. In this case,
the result is 22 because the last dot is found just before com.

Extracting Part of a String
JavaScript provides two ways to extract a portion of a string: substr() and substring(). The substr() method
accepts two parameters: the start index within the string where the extraction should begin (again, counting from
0 for the first character) and the total number of characters to be extracted. If the second parameter is omitted, the
rest of the string is extracted. The substring() method is similar, but with a minor difference. The second parameter
of substring()specifies the end index (not the length) before which the extraction should stop. The following code
shows how these methods are used:

var data = "hello world";
var result = data.substr(1,3);

http://www.somewebsite.com/

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

17

alert(result);
result = data.substring(1,7);
alert(result);

The first line of this code declares a data variable and stores a string (hello world) into it. It then calls the
substr() method. The start index is specified as 1, and the number of characters to extract is mentioned as 3.
Thus, the first alert() outputs ell.

The code then proceeds to call the substring() method on the data variable. The first parameter of substring()
is the start index, and the second parameter is the end index. In this case, substring() returns hello w. Notice that at
the seventh position is the letter o (from world) and it is excluded from the extraction.

Replacing Part of a String
Sometimes you need to look for a string within another string and then replace that string with something else.
JavaScript provides the replace() method to do just that. The replace() method takes two parameters. The
first parameter indicates a string that is to be searched, and the second parameter indicates a string that is to be
substituted in place of the first string. If there are multiple occurrences of a search string, only the first occurrence is
substituted. The following code shows how the replace() method can be used:

var data = "hello world";
var result = data.replace("world", "universe");
alert(result);

The first line of the code declares the data variable and stores hello world into it. It then calls the replace()
method on the data variable with an intention to replace world with universe. The replace() method returns the
substituted string as a new string that is displayed using alert(). In this example, the result is hello universe.

Getting an Array from a String
Sometimes you need to convert a comma or | delimited string into an array. You can, of course, use string
manipulation functions discussed so far to devise such a mechanism, but that’s too much work. Luckily, JavaScript
offers the split() method that does this job for you. The split() method accepts a delimiter character or string as
a parameter and then returns an array by splitting the string at all the occurrences of the delimiter. split() can also
accept an optional second parameter that controls the maximum number of elements in the array. The following code
shows how the split() method can be used:

var data = "blue,red,green,yellow";
var result = data.split(",");
for (var i = 0; i < result.length; i++) {
 alert(result[i]);
}
result = data.split(",", 3);
for (var i = 0; i < result.length; i++) {
 alert(result[i]);
}

The first line of the code declares the data variable and stores a comma separated list of colors into it. It then calls
the split() method, specifying comma (,) as the separator. This results in an array with four elements, as confirmed
by the first for loop. The second call to the split() method specifies 3 as the maximum number of elements in the
array, so it now contains only three elements: blue, red, and green.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

18

Note ■ An array object has the join() method that does the reverse of split(): it returns a string after joining all the

elements of the array with a specified separator.

Changing String Character Casing
The toUpperCase() and toLowerCase() String object methods allow you to convert character casing of a string to
uppercase and lowercase, respectively. The following code fragment shows how they are used:

var data = "Hello World";
var result = data.toUpperCase();
alert(result);
result = data.toLowerCase();
alert(result);

The first line of the code creates a data variable and stores Hello World into it. Then the toUpperCase() method
is called on data, and the uppercase string returned is stored in the result variable. The first alert() confirms that
the string is indeed converted into uppercase and outputs HELLO WORLD. The toLowerCase() method is called on data,
and the result is stored in the result variable. This time, the alert() displays hello world, which indicates that the
string has been converted to lowercase characters.

Removing White Spaces from the Beginning and End of a String
Sometimes strings contain leading and trailing white spaces that are undesirable. For example, a user registration
page might accept a first name from the end user, but that user might add leading or trailing white spaces to the name.
While processing this data or sending it to the server, it is necessary to remove these white spaces, and the trim()
method allows you to do just that. The following code shows how trim() can be used:

var data = " Hello World ";
var result = data.trim();
alert("'" + result + "'");

The data variable stores a string with leading and trailing white spaces. It then calls the trim() method on data
and stores the returned string in the result variable. The alert() function confirms that leading and trailing white
spaces are indeed removed by the trim() method.

Working with Numbers
While working with JavaScript, you may need to deal with numeric data. Unlike string data, which “just works” in
almost all cases, dealing with numbers can be a bit tricky and prone to errors (for example, if you accept numeric
data in a text box, and a user enters a string instead of a number). There can also be calculation-related errors such as
dividing by zero. Additionally, you may want to convert numbers to some fixed format (currency, for example) for the
sake of displaying it on the page.

Luckily, JavaScript provides many functions that can be useful while dealing with numbers. This functionality
comes in two ways: standard JavaScript functions and Math object methods. This section doesn’t cover all the
methods, but a few frequently used methods for dealing with numbers are discussed.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

19

Converting a String into a Number
You often accept numeric data as string values. For example, you may accept information such as a user’s age and
salary in text boxes. Any value entered in a text box is essentially a string, and you may want to convert it into a
number before processing it any further. What happens if such a conversion is not done? Have a look at the following
code that illustrates this:

var val1 = document.getElementById("TextBox1").value;
var val2 = document.getElementById("TextBox2").value;
alert(val1 + val2);

The first two lines of the code grab values entered in two text boxes—TextBox1 and TextBox2—and store them
in variables val1 and val2 respectively. The alert() outputs the addition of val1 and val2. If you enter numbers, say
10 and 20, into the text boxes, you probably expect the alert() to show you 30. But because anything entered in a text
box is a string, val1 and val2 are treated as string variables, and (val1 + val2) returns 1020!

To convert a string into a number, JavaScript offers three useful functions: Number(), parseInt(), and
parseFloat(). The Number() function accepts a value and returns a number after converting the value into a number.
If for some reason the Number() fails to convert the value into a number, it returns a special value NaN, which stands
for “not a number.” Number() deals with integers as well as floating point numbers. The following code shows how the
Number() function can be used:

var val1 = Number(document.getElementById("TextBox1").value);
var val2 = Number(document.getElementById("TextBox2").value);
alert(val1 + val2);

In the code, the Number() function is used to convert the values entered in TextBox1 and TextBox2 into the
corresponding numbers. Assuming that you entered 10 and 20 in these text boxes, this time the alert() correctly
outputs 30.

The Number() function works great if the source value contains a string representation of only the number under
consideration. Sometimes a number may accompany some text. For example, in a salary text box, the user may enter
“5000 dollars per month” instead of just 5000. In this case, Number() will fail to convert the number because the numeric
data has some text appended to it. That is where parseInt() and parseFloat() come into the picture. These functions
parse a string and return an integer or floating point number, respectively. The following code shows how they are used:

var val1 = parseInt(document.getElementById("TextBox1").value);
var val2 = parseFloat(document.getElementById("TextBox2").value);
alert("Age : " + val1);
alert("Salary : " + val2);

The code assumes that TextBox1 is intended to specify age, and TextBox2 is used to specify salary. Age being
an integer value, the first line calls the parseInt() method to parse the value entered in TextBox1. The second line
uses parseFloat() because salary can be a floating point number. If you enter age as “25 years” and salary as “5000
dollars” in the text boxes, the alerts show 25 and 5000, respectively.

As mentioned earlier, if conversion from a string to a number fails for any reason, the result is NaN. To check
whether a value is NaN, JavaScript provides the isNaN() function. The following code shows how isNaN() can be used:

if (!isNaN(val1) && !isNaN(val2)) {
 var result = val1 + val2;
 alert(result);
}

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

20

The code uses the isNaN() function to check whether val1 and val2 are valid numbers. If so, it adds val1 and
val2 and displays the result.

Deciding the Number of Digits after the Decimal Point
When you work with currencies, a common task is to convert numbers into a string maintaining a specified number of
digits after the decimal point. The resulting value is often used for onscreen display purposes. You can use the toFixed()
method to accomplish this task. The toFixed() method accepts a number indicating the number of decimals and
returns a string representation of the number. Consider the following piece of code that shows how toFixed() is used:

var salary = 20000.12345;
var amount = salary.toFixed(2);
alert(amount);

The code stores a floating point number with five decimal places in the salary variable. The toFixed() method
is called on the salary variable by passing a value of 2. This indicates that you intend to convert the salary value to a
two-decimal number. The alert() shows 20000.12 as its output.

Determining the Total Number of Digits in a Number
Although the toFixed() method deals with decimal places, there is another method, toPrecision(), that deals with
the total number of digits in a number. The toPrecision() method accepts the total number of digits in a number
and converts a number into a string with that much length. The following code shows how toPrecision() works:

var salary = 20000.12345;
var amount = salary.toPrecision(6);
alert(amount);

The first line of code stores 20000.12345 in the salary variable. The second line calls the toPrecision() method
and specifies 6 as the total number of digits in the resulting value. In this case, the amount variable will be 20000.1, as
outputted by alert().

Note ■ You can also use the toString() method on a number to convert it into a string. However, in most of the cases

in which a number is concatenated with string data, calling toString() explicitly is not needed.

Working with Dates and Times
JavaScript offers the Date object to work with dates and times. JavaScript dates are counted as the number of
milliseconds since midnight on January 1, 1970. The Date object has many methods that allow you to access various
parts of a date such as year, month, day, and hour. You can create Date objects in several ways, as shown here:

var dt1 = new Date();
var dt2 = new Date(2013, 3, 15);
var dt3 = new Date(2013, 1, 20, 10, 29, 0, 0);

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

21

The first line creates a Date object that represents the current date and time. You can create a Date object that
represents a specific date and time by passing parameters to the Date constructor, as shown in the next two lines.
The second line creates a Date object by passing a year, month, and date. Month numbers start from 0 (January is 0,
February is 1, and December is 11). Date values are between 1 and 31. So the second line of code represents April
15, 2013. On the same lines, hours take values between 0 and 23, minutes between 0 and 59, and seconds between
0 and 59. Thus, the third Date object represents February 20, 2013 at 10:29:00 a.m. Table 1-2 lists some of the most
commonly used Date object methods.

Table 1-2. Date Object Methods

Method Description

getFullYear() Returns a full year from a Date object (e.g., 2013).

setFullYear(val) Sets the year of a Date object.

getMonth() Returns the month from a Date object. Month values are between 0 and 11 (January is 0,
and December is 11).

setMonth(val) Sets the month in a Date object.

getDate() Returns the day of the month from a Date object. Date values are between 1 and 31.

setDate(val) Sets the day of the month in a Date object.

getDay() Returns the day of the week from a Date object. Weekday values are between 0 and 6, 0
being Sunday and 6 being Saturday.

setDay(val) Sets the weekday of a Date object.

getHours() Returns the number of hours from a Date object. Hour values are between 0 and 23.

setHours(val) Sets the number of hours of a Date object.

getMinutes() Returns the number of minutes from a Date object. Minute values are between 0 and 59.

setMinutes(val) Sets the number of minutes of a Date object.

getSeconds() Returns the number of seconds from a Date object. Second values are between 0 and 59.

setSeconds(val) Sets the number of seconds of a Date object.

getTime() Returns the total number of milliseconds since midnight on January 1, 1970.

toString() Returns the string representation of a Date object that includes date, time, and time zone
information (e.g., Mon Apr 15 2013 10:29:00 GMT+0530 [Indian Standard Time]).

toDateString() Returns just the date part of a Date object as a string (e.g., Mon Apr 15 2013).

toTimeString() Returns just the time part of a Date object as a string (e.g., 10:29:00 GMT+0530
[Indian Standard Time]).

The following code illustrates how some of the methods listed in Table 1-2 are used:

var dt = new Date();
alert(dt.getDate() + " - " + (dt.getMonth() + 1) + " - " + dt.getFullYear());
dt.setFullYear(2010);
dt.setMonth(3);
dt.setDate(10);
alert(dt.toDateString());

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

22

The first line of code creates a new Date object that holds the current date and time. The second line calls the
getDate(), getMonth(), and getFullYear() methods and displays the date in the dd-MM-yyyy format using alert().
The getMonth() and getDate() methods return integers and can be single digit or two digits depending on the
month and day number. The code then sets year, month, and date of the same Date object using the setFullYear(),
setMonth(), and setDate() methods. The toDateString() method then outputs the new Date using an alert(). In
this case, the new date is outputted as Sat Apr 10 2010.

Many times you need to convert a string into a Date object. For example, you might accept a date from the end
user in dd-MM-yyyy format and then want to convert it into a Date object for further processing. Here’s a simple way
to do this:

var str = "30/12/2013";
var dtArray = str.split("/");
var dt = new Date(dtArray[2],dtArray[1]-1,dtArray[0]);
alert(dt.toDateString());

The first line of code stores a date in a dd-MM-yyyy format str variable. It then uses the split() method to split
the date string and retrieve an array. It constructs a Date object by passing the appropriate elements of the array.
Notice that the second parameter of the Date object is reduced by one because month values are between 0 and 11.
Finally, toDateString() displays the string representation of the date as Mon Dec 30 2013.

Writing Functions
In the preceding sections, you created simple custom functions. A JavaScript program can consist of dozens of
functions, which provide a way to reuse your code across the application. A JavaScript function is similar to a C#
method in that it allows you to reuse your code easily. However, unlike C#, in which methods always belong to a class,
a JavaScript function is just a stand-alone piece of code that you create for convenience and to promote reuse. The
general syntax of a JavaScript function is as follows:

function function_name([parameter list])
{
 //code goes here
 //optionally return some value
 return <return_value>;
}

A function definition begins with the function keyword followed by a function name. A function may or may
not have parameters. If a function takes some parameters, a comma separated list of parameters is placed inside the
round brackets (and). Otherwise, an empty () is placed. A function may or may not return a value. If a function
returns a value, the return value is passed from the function to the calling code using a return statement.

To illustrate what has been discussed so far, let’s create a Web Form that allows users to enter a temperature value
in Celsius and then convert it to the equivalent in Fahrenheit. Figure 1-6 shows what the Web Form looks like:

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

23

The Web Form consists of a text box and a button. The user enters a temperature value in the text box and clicks
the Convert to Fahrenheit button. Doing so displays the result of conversion in an alert box.

Begin by creating a new ASP.NET web site and add a Web Form to it. Drag and drop a TextBox server control and
a button control on it, and design the Web Form as shown in Figure 1-6. Set the Text property of the button to Convert
to Fahrenheit and the OnClientClick property of the button control to return calculate();. Listing 1-8 shows the
relevant markup of the Web Form.

Listing 1-8. Markup of Web Form Converting Celsius to Fahrenheit

<form id="form1" runat="server">
 <asp:Label ID="Label1" runat="server" Text="Enter temperature value in Celsius :"></asp:Label>

 <asp:TextBox ID="TextBox1" runat="server" Width="136px"></asp:TextBox>

 <asp:Button ID="Button1" runat="server" OnClientClick="return calculate();" Text="Convert to
Fahrenheit" />
</form>

Once the Web Form is ready with the text box and the button, add a <script> block in the head section of the
Web Form and write the two functions shown in Listing 1-9.

Listing 1-9. calculate() and celsiusToFahrenheit() Functions

<script type="text/javascript">
 function calculate() {
 var result = celsiusToFahrenheit();
 alert("Result = " + result + " degrees Fahrenheit");
 return false;
 }

 function celsiusToFahrenheit() {
 var textbox = document.getElementById("TextBox1");
 var celsius = textbox.value;
 var fahrenheit = (celsius * 1.8) + 32;

Figure 1-6. Web Form to convert temperature values from Celsius to Fahrenheit

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

24

 return fahrenheit;
 }

 </script>

The calculate() function declares a variable named result and stores the return value of the
celsiusToFahrenheit() function in it. The celsiusToFahrenheit() function is another custom function that is
shown below the calculate() function. The value returned in the result variable is then displayed to the user using
alert(). The calculate() function returns false to cancel the form submission to the server.

The celsiusToFahrenheit() function gets a reference to the text box DOM object using the getElementById()
method. It then stores the value entered in the text box in the celsius variable. It then converts this Celsius value into
Fahrenheit using a formula. The result of the formula is stored in the fahrenheit variable. Finally, the value of the
fahrenheit variable is returned to the caller.

Run the Web Form, enter a temperature value in the text box and click the Convert to Fahrenheit button. You
should see an alert box with the converted value. Figure 1-7 shows a sample run of the Web Form.

Figure 1-7. Temperature conversion in action

As you can see, the text box has a value of 100. This value in Celsius is converted to 212 degrees Fahrenheit and
displayed to the user.

Now let’s try to improve the code written in the preceding example so that it becomes more independent and
reusable. In the preceding example, the celsiusToFahrenheit() function grabbed the value entered in the text box.
To make the celsiusToFahrenheit() function more independent of the Web Form and its controls, it is better if
celsiusToFahrenheit() accepts the temperature value in Celsius as a parameter. This way, celsiusToFahrenheit()

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

25

need not include any code to extract the temperature values from the form controls; it can come from form controls,
or you can supply it programmatically. To do this, modify the calculate() and celsiusToFahrenheit() functions as
shown in Listing 1-10.

Listing 1-10. CelsiusToFahrenheit() Now Accepts a Parameter

function calculate() {
 var textbox = document.getElementById("TextBox1");
 var result = celsiusToFahrenheit(textbox.value);
 alert("Result = " + result + " degrees Fahrenheit");
 return false;
}

function celsiusToFahrenheit(celsius) {
 var fahrenheit = (celsius * 1.8) + 32;
 return fahrenheit;
}

The calculate() function now grabs a reference to the text box using the getElementById() method. It then
passes textbox.value to the celsiusToFahrenheit() function. Notice the new signature of celsiusToFahrenheit():
it now accepts one parameter named celsius. Inside, it uses the parameter value to calculate the temperature in
Fahrenheit.

In its current form, celsiusToFahrenheit() can be used only to convert temperatures from Celsius to
Fahrenheit. What if you also need to convert Fahrenheit to Celsius? Wouldn’t it be nice to have a function that does
both types of conversion? Let’s code such a function and use it in place of celsiusToFahrenheit(). Listing 1-11 shows
such a function.

Listing 1-11. convertTemperature() Function

function convertTemperature(value, scale) {
 var convertedValue;
 if (scale == "C") {
 convertedValue = (value * 1.8) + 32;
 } else if (scale == "F") {
 convertedValue = (value - 32) / 1.8;
 }
 else {
 convertedValue = NaN;
 }
 return convertedValue;
}

The convertTemperature() function accepts two parameters: value and scale. The value parameter indicates
the temperature value to be converted; the scale parameter indicates whether the value is in Celsius ("C") or
Fahrenheit ("F"). Inside, the function has an if-else if-else statement to check the scale of the value. If the scale is
passed as "C", it converts the value into Fahrenheit; if the scale is passed as "F", it converts the value into Celsius.
The converted value is stored in a variable named convertedValue. If anything else is passed as the scale parameter,
it stores NaN in convertedValue, indicating an error. You can call the convertTemperature() function from the
calculate() function or from any other part of the Web Form like this:

var result = convertTemperature(100, "C");

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

26

It is possible to invoke a JavaScript function that accepts parameters without supplying one or more parameter
values. for example, you could have called convertTemperature(), as shown here:

var result = convertTemperature(100);

What happens in such cases? What value is assumed for the missing parameters? It is important to remember
that such a call is perfectly valid and in the preceding example you would have received -1 as the result because the
if-else if block would have been skipped.

Sometimes you want to find out from within the function body whether a particular parameter has been
supplied. When you don’t supply a parameter while calling a function, its value is undefined, and you can check the
value of a parameter as shown in Listing 1-12.

Listing 1-12. Checking for Missing Parameters

function convertTemperature(value, scale) {
 if (typeof scale == "undefined") {
 scale = "C";
 }
 var convertedValue;
 if (scale == "C") {
 convertedValue = (value * 1.8) + 32;
 } else if (scale == "F") {
 convertedValue = (value - 32) / 1.8;
 }
 else {
 convertedValue = -1;
 }
 return convertedValue;
}

In its modified form, convertTemperature() checks the scale parameter against undefined using the typeof
keyword. If a parameter is not supplied, it is undefined and you can set its value to be "C". This time, calling
convertTemperature() with just the first parameter returns 212 because the scale is assumed to be Celsius.

Tip ■ There are several ways to determine whether all the function parameters have been supplied. The example

shown here is one common approach.

Writing JavaScript Code in a Separate File
So far in this chapter, you wrote JavaScript code right into the Web Form .aspx file. Although this approach is common
practice and serves the purpose, there are a few shortcomings, as follows:

As your JavaScript code grows, placing a huge amount of JavaScript in a web page hampers •
the readability of the web page markup due to a lack of separation between page markup and
JavaScript code.

A piece of JavaScript code placed inside a web page can be used only by that web page, not by •
any other pages.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

27

If the web page and JavaScript code are being developed by two different developers, merging •
them in a single page and dealing with future modifications can be difficult.

Putting JavaScript code in a separate file also enables the browser to cache the script file so •
that the same file need not be downloaded again for other pages that need it.

It is recommended to place your JavaScript code in a separate file if it grows to a considerable size. To do so, you
can add a new JavaScript file to a project using the Add New Item dialog of Visual Studio (see Figure 1-8).

Figure 1-8. Adding a new JavaScript file to an ASP.NET project

The dialog shows a new file being added named JavaScript1.js. Once you add a JavaScript file, you can write all
the code inside the file. Remember not to include the <script> blocks inside the file. How do you use the code from a
JavaScript file into your web page? You need to use a <script> tag that points to the JavaScript file like this:

<script src = "JavaScript.js" type="text/javascript"></script>

In this example, a web page contains a <script> tag in the <head> section, and its src attribute is pointing to the
JavaScript file. The type attribute is used to identify the scripting language used inside the script and is specified as the
MIME type. Some possible values include text/javascript (JavaScript) and text/ecmascript (ECMA script). If you
don’t include the type attribute, by default script is assumed to be JavaScript. Just like a <script> block, a script
reference usually appears in the <head> section. After referencing a JavaScript file, you can use any of the code inside
the file as if it were in the same page.

Tip ■ Although not mandatory, it is common practice to store all the JavaScript files in a folder named Scripts. ASP.NET

project templates, for example, follow this folder-naming convention.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

28

Error Handling
As the complexity of your JavaScript code grows, the chances of runtime errors also increase. Many kinds of error can
occur in your code—the ones you anticipated while writing the code as well as the ones that you never imagined. If
an error condition is generated at runtime, either your code won’t behave as expected or it can cause the browser to
throw errors to the end users. Therefore, it is good programming practice to handle errors at the code level whenever
possible. Just like C#, JavaScript has try-catch-finally keywords at your disposal. The general syntax of these blocks is
shown below:

try
{
 //attempt some code here
}
catch (err)
{
 // write what should happen in the event of an error here
}
finally
{
 //execute some code that needs to be executed in any case
}

The try block contains JavaScript code that can potentially cause an exception. It can be a misspelled function
name or even an error thrown by the developer. To understand how try-catch-finally blocks are used, let’s develop a
simple Web Form (see Figure 1-9).

Figure 1-9. Web Form illustrating error handling

The Web Form consists of two text boxes for entering numbers. A drop-down list allows you to select a
mathematical operation such as addition, subtraction, multiplication, or division. Clicking the Calculate button
triggers the operation selected in the list. If any errors occur while the code executes, an alert() displays information
about the error. Finally, a label displays the calculation result.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

29

Listing 1-13 shows the relevant Web Form markup.

Listing 1-13. Web Form Markup

<form id="form1" runat="server">
 <asp:Label ID="Label2" runat="server" Text="Enter numbers and operation :"></asp:Label>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 <asp:DropDownList ID="DropDownList1" runat="server" Font-Bold="True" Font-Size="12px" Width="75px">
 <asp:ListItem>+</asp:ListItem>
 <asp:ListItem>-</asp:ListItem>
 <asp:ListItem>*</asp:ListItem>
 <asp:ListItem>/</asp:ListItem>
 </asp:DropDownList>
 <asp:TextBox ID="TextBox2" runat="server"></asp:TextBox>

 <asp:Button ID="Button1" runat="server" Text="Calculate" OnClientClick="return calculate();" />

 <asp:Label ID="lblMsg" runat="server" Font-Bold="True" ForeColor="Red"></asp:Label>
</form>

Most of the markup of the Web Form is trivial. Notice that the OnClientClick property of the button is set to
return calculate();. The calculate() function is shown in Listing 1-14.

Listing 1-14. Handling and Throwing Errors

function calculate() {
 var result;
 try {
 var val1 = document.getElementById("TextBox1").value;
 var val2 = document.getElementById("TextBox2").value;
 var operator = document.getElementById("DropDownList1").value;
 switch (operator) {
 case "+":
 result = val1 + val2;
 break;
 case "-":
 result = val - val2;
 break;
 case "*":
 result = val1 * val2;
 break;
 case "/":
 result = val1 / val2;
 break;
 }

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

30

 if (isNaN(result)) {
 result = undefined;
 throw new Error("Result is not a number!");
 }
 if (!isFinite(result)) {
 result = undefined;
 throw new Error("Result is infinity!");
 }
 }
 catch (err) {
 alert(err.name + "\n" + err.message);
 }
 finally {
 var label = document.getElementById("lblMsg");
 var resultMsg = "Result of calculation : ";
 if (typeof result === "undefined") {
 resultMsg += " -- ERROR -- ";
 }
 else {
 resultMsg += result;
 }
 label.innerHTML = resultMsg;
 }
 return false;
}

The calculate() function begins by declaring a result variable for storing the result of the calculation. It then
places a try block, followed by a catch block and a finally block. This usage of try-catch-finally closely matches
C# error handling. The try block retrieves the values entered in the text boxes using the getElementById() method
and value property. The values are stored in two local variables: val1 and val2. A switch statement checks for the
required mathematical operation; and addition, subtraction, multiplication, or division is then carried out. JavaScript
doesn’t throw exceptions for operations such as divide by zero.

The code uses two built-in functions: isNan() and isFinite(). The isNaN() function accepts a value and returns
true if the value is not a number. In this example, if you enter some text in the text boxes instead of a number, the
resulting operation produces NaN. The isFinite() function returns true if the supplied number is a finite number.
This function takes care of finding out whether there was any divide by zero attempt, in which case the result is
Infinity. If a value is NaN or Infinity, the code sets the result variable to undefined and throws a developer defined
error using the throw keyword. The throw keyword is followed by a new instance of the Error object, which is a built-
in type provided by JavaScript. The constructor of the Error object accepts an error message that is passed along with
the object. Throwing an error using the throw keyword is quite similar to throwing exceptions in C# using throw.

If any of the exceptions is generated by the code in the try block, the control shifts to the catch block, which
receives the Error object associated with the exception. This example uses the name and message properties of the
Error object to display an alert()to the end user. Thus, the catch block handles the exception raised from within the
try block. Figure 1-10 shows a sample run of the Web Form that causes an error.

CHAPTER 1 ■ THE JAVASCRIPT YOU NEED TO KNOW

31

The finally block is executed even if there was an error. In this case, the finally block does a good job
displaying the result of the calculation to the end user. It checks whether the result variable is undefined. If so, it
appends ERROR to a resultMsg variable; otherwise, it appends the result to the resultMsg. The innerHTML property of
the lblMsg DOM element is set to the resultMsg variable.

Summary
jQuery is a JavaScript library that uses the same programming constructs as JavaScript. Any jQuery developer should
master these JavaScript basics in order to effectively use jQuery in ASP.NET applications. These fundamentals include
data types, variables, conditional statements, looping, and creating custom functions.

This chapter provided a quick overview of all these features. Although many of these features closely match C#,
there are certain differences that you should keep in mind while programming in jQuery. With the knowledge gained
from this chapter under your belt, you are ready to take your first peek at jQuery in the next chapter.

Figure 1-10. Error message shown to the user

33

CHAPTER 2

A First Look at jQuery

In the first chapter, you learned that jQuery is a JavaScript library, so whatever you can do using jQuery can also be
done using plain JavaScript code. What’s the benefit of using jQuery? The biggest benefit is that it is easy to use and
allows you to accomplish the same task in fewer lines of code. The official jQuery web site (http://jquery.com)
rightly puts it: write less, do more. As you will see in the rest of this book, jQuery takes away the complexity of using
JavaScript so that even seemingly hard to achieve tasks can be performed with ease.

This chapter is intended to give you a first peek inside the jQuery library. Specifically, you will learn about the
following:

What jQuery is and what it can do for you•

Installing jQuery using various options•

Visual Studio features that make working with jQuery easier•

Writing basic jQuery programs in ASP.NET Web Forms and MVC applications•

What Is jQuery?
The official web site for jQuery (http://jquery.com) defines jQuery as follows:

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML document
traversal and manipulation, event handling, animation, and Ajax much simpler with an easy-
to-use API that works across a multitude of browsers. With a combination of versatility and
extensibility, jQuery has changed the way that millions of people write JavaScript.

Let’s try to understand this definition of jQuery in a bit more detail.

jQuery Is a JavaScript Library
As an ASP.NET developer, you have probably used JavaScript in one way or another while developing ASP.NET web
sites. Plain JavaScript helps you code rich, interactive, and more-responsive web pages, but the amount of code that
you need to write is often too great. For example, if you want to write a client script that shows a fancy pop-up menu
complete with animation effects using plain JavaScript, it will be a time-consuming task. To simplify your client-side
scripting and make you more productive, several JavaScript libraries are available, and jQuery is one of them. (Others
include Mootools, Prototype, and Dojo.) The fact that Microsoft is using jQuery extensively in ASP.NET projects clearly
indicates its popularity. As you would expect, jQuery works across a multitude of browsers and supports all leading
browsers, including Internet Explorer, Firefox, Chrome, Opera, and Safari.

http://jquery.com/
http://jquery.com/

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

34

Note ■ While learning about JavaScript libraries like jQuery, you may come across two terms: cross-browser and

multi-browser. A script is said to be cross-browser when it works in all browsers. A multi-browser script, on the other

hand, works only with a set of predefined browsers. Read http://en.wikipedia.org/wiki/Cross-browser,

http://en.wikipedia.org/wiki/JQuery and http://jquery.com/browser-support for more details.

jQuery Is Fast, Small, and Feature-Rich
jQuery is a highly optimized library and quite small in size. This compactness means less data to be downloaded at
the client side without compromising on UI effects. jQuery is not just a fast and compact library but it is also
 feature-rich, as explained in the next few sections of this chapter.

jQuery Simplifies HTML Document Traversing, Event Handling, Animating,
and Ajax Interactions
jQuery simplifies HTML Document Object Model (DOM) navigation and manipulation considerably. It offers many
ways to traverse DOM trees and parent-child elements. Most of the JavaScript functionality goes in client-side event
handlers. jQuery is handy when it comes to event handling. jQuery also allows you to make Ajax calls to ASP.NET Web
Services, Page Methods, WCF services, and MVC controller actions.

jQuery Is Designed to Change the Way You Write JavaScript
jQuery dramatically changes the way you write JavaScript code. If you have never used jQuery before, initially you may
find its syntax bit odd, but once you get hang of it you will probably never use any other library (or at the very least,
you won't want to go back to writing plain JavaScript code). For example, a common JavaScript file contains too many
small to huge functions, and you have to keep calling them individually whenever required. With jQuery, the “chain”
of operations makes your code compact and handy.

What Can jQuery Do for You?
Before using jQuery in ASP.NET applications, you should be aware of its capabilities. Knowing what jQuery can do
for you helps you plan your script and client-side features well. Let’s see some of the most important areas in which
jQuery can be a huge help.

Selecting HTML DOM Elements
While writing client-side script, you often need to select one or more DOM elements. jQuery offers a very powerful
mechanism to select DOM elements aptly named jQuery selectors. jQuery selectors allow you to select elements
based on various criteria such as their IDs, CSS classes, tag names, parent-child relationships, and more. Once they’re
selected, you can process the DOM elements per your requirements.

Handling Events
Event handling is one of the most frequently used features in client script. What should happen when a user clicks the
Submit button? How should the page respond when a user changes selections from a drop-down list? What kind of
validation do you want to run when a user submits a form? These and many other tasks can be performed by handling
events such as click, dblclick, mousedown, and keypress. Although plain JavaScript allows you to write and wire
event handlers to their respective events, jQuery allows you to do so in a consistent and easy manner.

http://en.wikipedia.org/wiki/Cross-browser
http://en.wikipedia.org/wiki/JQuery
http://jquery.com/browser-support

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

35

Manipulating DOM Elements and Their Content
Sometimes you need to render a dynamic layout in the browser. Adding or removing DOM elements on the fly becomes
important in such cases. jQuery offers a rich set of functions to add or remove DOM elements to and from a page.
Moreover, you can manipulate the content within DOM elements and modify, replace, or remove it as necessary.

Adding Fancy Effects and Animations to Web Pages
Adding fancy frills such as sliding effects, hiding and showing content, and eye-catching animations is quite easy in
jQuery because jQuery has methods specifically designed for these requirements. Although not all web pages need
them, you have the option to add them to your web site whenever required. Examples of practical uses of these effects
include fancy accordions, pull-down and hover menus, and progress animations.

Making Ajax Calls to Server-Side Resources
For ASP.NET developers, the one feature that is invaluable is making Ajax calls to server-side resources. Modern web
applications rely heavily on Ajax and use partial page postback to get the job done. In such cases, you need to call
ASP.NET web services, page methods, generic handlers (.ashx), MVC action methods, and Web API from the
client-side script. jQuery provides very rich and flexible ways to make Ajax calls to the server.

jQuery 1.x and 2.x
Currently, jQuery is available in two lines: 1.x and 2.x. Although most of the core application programming interface
(API) remains the same across these two lines, there is an important change in the 2.x line that you should be aware
of: jQuery 2.x doesn’t support Internet Explorer (IE) 6, 7, and 8. If you expect your clients to use any of these versions
of IE, it is recommended to stick with the 1.x line. Due to elimination of this support, jQuery can now avoid patches
needed exclusively for IE 6, 7, and 8, resulting in a reduction in size compared to jQuery 1.9.

Throughout this book, you will use 2.x line of the jQuery library. However, remember that the API of 2.x is the
same as 1.9, so merely changing the jQuery library script references from 2.x to 1.9 should work fine without needing
any change in the code. Refer to the official jQuery web site (http://jquery.com) for more details.

Adding jQuery to ASP.NET Projects
Before you use any jQuery features, you need to add it to your ASP.NET Web Forms and MVC projects. You can add
the jQuery library to your projects in three ways:

Add a copy of the jQuery library to a local folder.•

Add the jQuery library using the jQuery NuGet package.•

Add a reference to the jQuery library from the Content Delivery Network (CDN).•

Let’s see how each of these types of installations can be performed.

Adding a Copy of the jQuery Library to a Local Folder
This is probably the most basic way to add the jQuery library to your project. In this approach, you first get a copy of
the jQuery library from the official jQuery web site (http://jquery.com) and then place that copy in your ASP.NET
project. Figure 2-1 shows the official jQuery web site and the download area.

www.allitebooks.com

http://jquery.com/
http://jquery.com/
http://www.allitebooks.org

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

36

When you click the Download jQuery button, you are taken to a page where you can select the version of jQuery
to download. As of this writing, there are two branches of jQuery versions: 1.x and 2.x. As mentioned earlier, although
jQuery versions from both of these branches support all the leading browsers such as Firefox, Chrome, Opera, Safari,
and IE, the versions from the former branch support IE 6-10 and the versions from the later branch support only IE 9
and later. Although the API is largely the same across these two branches, this book uses 2.x for most of the examples.

All the jQuery downloads are available in two flavors:

Compressed production version•

Uncompressed development version•

The compressed version is smaller than the uncompressed one and is also referred to as a minified version.
Minification techniques such as stripping comments and whitespaces are applied to the compressed version to
produce a file with a smaller size. This version is suitable for production use where debugging is not needed.

The uncompressed version includes comments, white spaces, and line breaks, making it more readable than the
compressed version. The uncompressed version is larger, but it is suitable to use during development phases.

While downloading the jQuery library, you can save the file with any name. However, it is strongly recommended
that you follow the default naming conventions. For example, when you download jQuery version 2.0.3, its file name
should be this:

jquery-2.0.3.js
jquery-2.0.3.min.js

Figure 2-1. Downloading jQuery from the official web site

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

37

The first file represents the uncompressed version and has the version number included in the file name, making
it quite clear to developers. The compressed version adds .min to the end of version number, making it clear that it is a
compressed version.

It is recommended that you create a subfolder named Scripts inside your project and place jQuery library files
there instead of immediately inside the root folder or any other folder. ASP.NET project templates use this convention.
For example, if you create a new ASP.NET Web Forms or MVC project, you will find a folder named Scripts that
includes certain versions of the jQuery library. Figure 2-2 shows the Scripts folder from a Web Forms project.

Figure 2-2. Scripts folder and jQuery library files

Notice that by default ASP.NET projects use jQuery version 1.10.2. You need to place your copy of the jQuery
library in the same folder using the Add Existing Item dialog of Visual Studio. If you plan to use the newly added
jQuery library file throughout a project, you can remove the other versions of jQuery from the Scripts folder;
otherwise, you can leave the other versions as they are.

Adding the jQuery Library Using the jQuery NuGet Package
There is an alternative way of adding a local copy of jQuery: via a NuGet package. To do so, select the Manage NuGet
Packages menu option from the PROJECTS menu. In the Manage NuGet Packages dialog, search for jQuery. Figure 2-3
shows the jQuery library NuGet package in the dialog.

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

38

Once you click the Install button, the NuGet package manager adds the compressed and uncompressed versions
of the jQuery library in the Scripts folder. Note that the jQuery NuGet package may not include the latest version of
jQuery. For the sake of the examples illustrated in this book, however, any version from the 2.x branch suffices.

Referencing the jQuery Library from a Content Delivery Network (CDN)
The two ways described previously create a local copy of the jQuery library in your projects. However, there is a third
way to access jQuery: using a CDN. Unlike the other methods, the CDN approach doesn’t create a local copy of the
jQuery library; instead, you refer to the jQuery library hosted on CDN servers.

A CDN is a network of servers situated at key locations across the globe. This network maintains cached copies
of files that are to be delivered to the client. When a client tries to access any file that is being maintained by the CDN,
the server nearest to the requesting client fulfills the request. This technique is known as edge caching because the
servers toward the “edge” supply the content.

There are many CDNs available at your disposal, including these:

jQuery CDN (• http://code.jquery.com/)

Microsoft Ajax CDN (• http://www.asp.net/ajaxlibrary/cdn.ashx)

Google CDN (• https://developers.google.com/speed/libraries)

To use jQuery library files from these CDNs, you need to know the URLs to the respective jQuery files, which can
be found on the web sites of the respective CDNs. For example, jQuery CDN URLs for jQuery 2.0.3 are as follows:

http://code.jquery.com/jquery-2.0.3.js
http://code.jquery.com/jquery-2.0.3.min.js

Figure 2-3. Installing the jQuery NuGet package

http://code.jquery.com/
http://www.asp.net/ajaxlibrary/cdn.ashx
https://developers.google.com/speed/libraries
http://code.jquery.com/jquery-2.0.3.js
http://code.jquery.com/jquery-2.0.3.min.js

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

39

So instead of having a local copy of the jQuery library, you can refer to one hosted at code.jquery.com.

Caution ■ As with the NuGet package, you should check the version numbers of the jQuery libraries available on the

CDN you want to use. Because these CDNs are maintained by third parties, it is quite possible that they don’t yet host the

latest versions of jQuery.

Benefits of Using a CDN

Although it might seem like a deviation from the main subject of this chapter, you should know how using a CDN
instead of local copies of jQuery can improve application performance. Beginners often overlook this aspect and
prefer using local copies of jQuery, as explained in the earlier sections. Although local copies are great during
development and for intranet applications in which machines are not connected to the Internet all the time, a CDN
can be a good performance booster for public web sites.

To understand how using CDN can be beneficial to your web application, let’s assume that you have a web server
located in the United States. Your web site, developed in ASP.NET, is hosted on that server and is using the jQuery library.
Now let’s further assume that clients from India are trying to use your web site. Without any CDN in the picture, all
requests for the jQuery library are served by the single web server located in the United States. The files needed by the
clients from India will be downloaded all the way from the U.S.–based web server. Figure 2-4 shows a CDN at work.

Figure 2-4. How a CDN works

http://code.jquery.com

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

40

Suppose that you have introduced CDN for jQuery files, and these libraries are now hosted in edge cache servers.
Further assume that one of the edge cache servers is located in India. Now when a request originating from India is
received, there is no need to fetch the files from the U.S.–based web server. Instead, they can be readily served by the
nearest edge cache server located in India. This process will obviously improve the overall performance of your web
site. If the edge cache server located in India is unavailable, the requests can be routed to other servers in the network,
ensuring high availability.

Using a CDN also lessens the load on the web server. Let’s say your Web Form is making use of five JavaScript
files. In the absence of a CDN, each client sends at least six requests (one for the Web Form and five for the JavaScript
files) to the web server software (IIS, as far as ASP.NET is concerned). However, with a CDN in place, only the Web
Form request reaches the web server. The other five requests are served by the CDN. This process reduces the load on
the web server considerably.

Consider a case in which you have developed two web sites, both making use of jQuery, and you are not using
a CDN. If the same client tries to use both of the web sites, the client browser downloads the jQuery library files
twice—once for each web site (see Figure 2-5).

Figure 2-5. Not using a CDN causes a performance penalty

Figure 2-5 shows two web sites—localhost:49326 and localhost:49382—making use of the jquery-2.0.3.min.js
file. Because the web sites are not using a CDN, the browser downloads the same file for each web site, as shown by
the FireFox cache entries. With a CDN in place, both web sites reference the jquery-2.0.3.min.js file from the CDN.
Now the browser downloads just one copy of jquery-2.0.3.min.js because both web sites are pointing to the same
file (the same URL).

Referencing jQuery from Web Forms and Views
Once you decide how to consume the jQuery library, the next step is to reference it from your web pages. To reference
the jQuery library in your web pages, use the <script> tag in the head section of a web page, as shown here:

<script src = "/scripts/jquery-2.0.3.min.js" type = "text/javascript"> </script>

The src attribute of the script element points to the jQuery library. In ASP.NET applications, you can place the
<script> tag in any of the following:

Web Form (• .aspx) files

MVC views•

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

41

Master page, view master page and layout page files•

User control, view user control and partial page files•

In case your Web Forms use a master page, it is better to place the jQuery reference in the master page than the
Web Forms. Whenever you add a reference to the jQuery library, you can make use of ASP.NET’s built-in methods to
generate a correct URL to the jQuery library. In Web Forms, you can use the Page.ResolveUrl() method that accepts
a virtual URL and returns one relative to the web site root. The following line of code shows how this is done:

<script src='<%= Page.ResolveUrl(" ~/scripts/jquery-2.0.3.min.js") %>'></script>

The call to ResolveUrl() returns /script/jquery-2.0.3.min.js. This way, even if you move your pages from
one folder to another, you need not make any adjustments to the jQuery path.

In ASP.NET MVC applications, you can use the Url.Content() method to accomplish the same thing. The following
line of code shows how:

<script src='@Url.Content("~/scripts/jquery-2.0.3.min.js")'></script>

The Content() method of the UrlHelper class accepts a relative URL and returns a path relative to the root folder.

Note ■ Included in the ASP.NET project templates is another way of specifying URLs: Scripts.Render(). The Scripts

class comes from the System.Web.Optimization namespace and is often used with the bundling and minification

features of ASP.NET.

In Web Forms applications, you can add a <script> tag programmatically in of the following ways:

Use the • RegisterClientScriptInclude() method

Add a • HtmlGenericControl to the head section

Let’s see how the first technique is used. See Listing 2-1, which shows how RegisterClientScriptInclude() can
be used to emit a <script> block referencing jQuery.

Listing 2-1. Adding a <script> Reference Using RegisterClientScriptInclude()

protected void Page_Load(object sender, EventArgs e)
{
 Page.ClientScript.RegisterClientScriptInclude(this.GetType(),
 "jquery", Page.ResolveUrl("~/scripts/jquery-2.0.3.min.js"));
}

The Page_Load event handler has a call to the Page.ClientScript.RegisterClientScriptInclude() method.
The RegisterClientScriptInclude() method registers a script with the Page object using a key and a URL. The key is
a developer-defined unique identifier for the script. The URL can be obtained with ResolveUrl(), as discussed earlier.

The RegisterClientScriptInclude() method emits a <script> tag inside the <form> section of the Web Form.
In most cases, this doesn’t create any problems, but if you want to add the <script> section in the head section
instead of <form>, you can resort to the second technique. Listing 2-2 shows how the second approach works.

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

42

Listing 2-2. Adding a <script> Tag to the Head Section Programmatically

protected void Page_Load(object sender, EventArgs e)
{
 HtmlGenericControl control = new HtmlGenericControl("script");
 control.Attributes.Add("src", Page.ResolveUrl("~/scripts/jquery-2.0.3.min.js"));
 control.Attributes.Add("type", "text/javascript");
 Page.Header.Controls.Add(control);
}

The code begins by creating an instance of HtmlGenericControl, which represents a generic HTML markup;
in this case, a <script> tag name is passed in its constructor. Then two attributes, src and type, are added to the
Attributes collection of HtmlGenericControl. The src attribute points to the jQuery library, whereas the type
attribute specifies the MIME type of the script. The control is finally added to the header of the Page object using the
Add() method of the Controls collection, which adds a <script> tag in the head section.

There is yet another way to reference the jQuery library: you can use the ScriptManager control and add a
ScriptReference to the jQuery library. To do so, you can add ScriptResourceMapping for jQuery:

void Application_Start(object sender, EventArgs e) {
 ScriptManager.ScriptResourceMapping.AddDefinition("jquery", new ScriptResourceDefinition {
 Path = "~/scripts/jquery-2.0.3.min.js",
 DebugPath = "~/scripts/jquery-2.0.3.js",
 CdnPath = "http://ajax.microsoft.com/ajax/jQuery/jquery-2.0.3.min.js",
 CdnDebugPath = "http://ajax.microsoft.com/ajax/jQuery/jquery-2.0.3.js"
 });
}

This code from the Application_Start event adds a definition named jquery that uses the Path, DebugPath,
CdnPath, and CdnDebugPath properties to point to jQuery files. The Path and CdnPath properties are used during
release mode and point to the minified versions of jQuery. The DebugPath and CdnDebugPath properties point to
development versions of jQuery.

Once ScriptResourceMapping is ready, you can use the ScriptManager control on an ASP.NET Web Form or
master page like this:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="jquery" />
 </Scripts>
</asp:ScriptManager>

The ScriptManager control has a ScriptReference that uses the jQuery ScriptResourceMapping you
added earlier.

Visual Studio IDE and jQuery Code
Although jQuery code can be written in any text editor, when you work with ASP.NET projects, you generally use
the Visual Studio IDE for writing jQuery code. The Visual Studio IDE provides help for writing jQuery code in the
following ways:

Code formatting and navigation•

IntelliSense•

http://ajax.microsoft.com/ajax/jQuery/jquery-2.0.3.min.js
http://ajax.microsoft.com/ajax/jQuery/jquery-2.0.3.js

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

43

Reference directives•

Debugging jQuery code•

Let’s examine these features in detail. Note that many of these features are applicable to any JavaScript code;
they are not specific to the jQuery library.

Code Formatting and Navigation
While writing jQuery code, you need to pay attention to proper formatting for the sake of better readability.
Formatting includes things such as code indentation and curly bracket matching. The Visual Studio IDE automatically
indents and arranges curly brackets, as shown in Figure 2-6.

Figure 2-6. Automatic code formatting in the Visual Studio IDE

As shown in Figure 2-6, the statements of the confirmName() function are automatically indented as you type.
Also notice that the start curly bracket and end curly bracket are automatically formatted. When you go to a start or
end curly bracket, the matching end or start curly bracket is highlighted, making it easy for you to know the code block
enclosed by that pair of curly brackets. You can also expand and collapse a block of code using the left side collapse
and expand nodes of the editor.

If your script consists of several functions, you may need to jump from one function definition to another
function definition. You can easily do this by using the Go To Definition shortcut menu option (see Figure 2-7).

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

44

Suppose that you have two functions—Function1() and Function2()—and inside Function1() you are calling
Function2(). If you right-click the Function2() call and select Go To Definition, you will land on the function
definition of Function2(), which makes code navigation easier.

IntelliSense
One of the most useful features of the Visual Studio IDE to jQuery developers is IntelliSense, which shows a list of
properties and methods of an object, function signatures, function overloads, and more as you start coding in the
IDE. IntelliSense also makes you more productive because you can select various code items from the autocomplete
window rather than keying them in. Figure 2-8 shows how IntelliSense lists members of a document object.

Figure 2-7. Go To Definition menu option

Figure 2-8. IntelliSense window for a document object

The IntelliSense window lists the members of the document object, and you can easily select one from the list
to incorporate it in the code. The beauty of the IntelliSense feature is that it not only works for built-in JavaScript
objects but also for the jQuery library without any special configuration. For example, Figure 2-9 shows IntelliSense
for jQuery code.

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

45

To get IntelliSense for jQuery code, you don’t need to do anything other than add a <script> reference for the
jQuery library.

Reference Directives
Sometimes your script is large enough to go in multiple script files. Suppose that you have a script in two files:
JavaScript1.js and JavaScript2.js. While coding in JavaScript2.js, IntelliSense shows all the functions
contained in JavaScript2.js only, by default. If you want to get functions contained in JavaScript1.js in
IntelliSense, you need to add a reference directive, which is an XML comment (///) followed by a <reference> tag.
The path attribute of the <reference> tag points to the other JavaScript file (JavaScript1.js) that you want to refer to
in the current file. The <reference> tag must appear before any other code statements (this process is quite similar to
using C# statements). You can place more than one reference directive in a file.

Have a look at Figure 2-10, which shows how a reference directive is used.

Figure 2-9. IntelliSense for jQuery code

Figure 2-10. Using a reference directive

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

46

Figure 2-10 shows the HelloWorld2() function from JavaScript2.js being written in Visual Studio. At the top of
the file, a reference directive is placed using the XML comment syntax (///). Notice that the <reference> tag points
to the JavaScript1.js file via the path attribute. The JavaScript1.js file contains the definition of the HelloWorld()
function (not shown in the figure). Because a reference to JavaScript1.js has been added in the JavaScript2.js
file, the IntelliSense window shows HelloWorld() as well as HelloWorld2().

Reference directives are quite useful when you are writing jQuery code in a separate JavaScript file (.js) and
want to get IntelliSense for jQuery code. In such cases, all you need to do is add a reference to the jQuery library file
using a <reference> tag.

Debugging JavaScript and jQuery Code
Visual Studio offers a very powerful debugger that helps you tremendously while writing and debugging code. This
powerful debugger can also be used to debug JavaScript and jQuery code. Just as you do in server–side C# code,
you can set breakpoints, use a Watch window to add watch variables, and so on.

However, there is a catch: Visual Studio JavaScript debugging works only with IE. It’s still a great help because of
the ease of debugging and ability to use most of the features the debugger offers to managed code. Figure 2-11 shows
the confirmName() function that you developed in Chapter 1 being debugged in the Visual Studio IDE. You can set a
breakpoint, see a variable value in the Watch window, step through the code, and more.

Figure 2-11. Debugging JavaScript code in Visual Studio

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

47

A breakpoint has been set at the first line of the confirmName() function. By pressing the F10 and F11 keys, you
can step over and step into the code. The Watch window shows the flag and textbox variables being observed.

Tip ■ If you want to run client-side script in browsers other than IE, you can use external tools for debugging your

JavaScript and jQuery code. Browsers such as Chrome and IE9/10 come with developer tools that allow you to examine

and debug your client script in addition to many other aspects of the page being viewed. Popular add-ons such as Firebug

can be used for debugging client script in Firefox.

Writing Your First jQuery Program in ASP.NET Web Forms
Now that you have a basic understanding of what jQuery is and what it can do for you, it’s time to dive into the
code-level details of using jQuery. In this section, you will develop a simple Web Forms application that makes use of
jQuery to set the CSS properties of DOM elements. The main Web Form of the application is shown in Figure 2-12.

Figure 2-12. Setting the CSS properties of a DOM element using jQuery

The application allows you to specify values of font, font size, text color, and background color. It then displays
the specified text in a <div> element. CSS properties such as font and color are applied to the <div> so the text is
displayed with those properties.

Because this is your first jQuery program, you will develop it in a step-by-step manner to understand what’s
happening at each step. You’ll then test the application.

 1. Download the latest uncompressed version of the jQuery library from the official jQuery
web site at http://jquery.com and save it in a local folder on your machine. The rest
of this example assumes that you have downloaded version 2.0.3 of jQuery and saved it
as jQuery-2.0.3.js on your local machine.

http://jquery.com/

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

48

 2. Start Visual Studio and select the New Project menu option from the FILE menu. This will
open the New Project dialog shown in Figure 2-13.

Figure 2-13. New Project dialog of Visual Studio

 3. In the New Project dialog, select Web under Visual C# templates and then select ASP.NET
Web Application template. Name the project jQueryDemo and click OK. You will be asked
to select a project template (see Figure 2-14).

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

49

 4. Select Empty project template and also check the Web Forms check box under the Add
folders and core references for section.

Note ■ In the remainder of the book, whenever you are asked to create an ASP.NET Web Forms application, follow the

previous procedure to create the project.

 5. Right-click the project in Solution Explorer and add a new folder to the project named
Scripts using the Add ➤ New Folder shortcut menu option.

 6. Right-click the Scripts folder and select the Add ➤ Existing Item shortcut menu option.
In the Add Existing Item dialog, select the jQuery-2.0.3.js file you downloaded earlier to
add it to the project. Figure 2-15 shows the Scripts folder after the jQuery library is added.

Figure 2-14. Selecting a project template with folders and core references for Web Forms

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

50

 7. Add a new Web Form to the project and name it WebForm1.aspx.

 8. Design the Web Form shown in Figure 2-12 by dragging and dropping various server
controls on the Web Form. Listing 2-3 shows the markup of the Web Form (unnecessary
markup has been removed for the sake of clarity).

Listing 2-3. Markup of a Web Form using jQuery

<form id="form1" runat="server">
 <table cellpadding="3" cellspacing="0" class="auto-style1">
 <tr><td>
 <asp:Label ID="Label1" runat="server" Text="Font :"></asp:Label>
 </td><td>
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 </td></tr><tr><td>
 <asp:Label ID="Label2" runat="server" Text="Font Size :"></asp:Label>
 </td><td>
 <asp:TextBox ID="TextBox2" runat="server"></asp:TextBox>
 </td></tr><tr><td>
 <asp:Label ID="Label3" runat="server" Text="Fore Color :"></asp:Label>
 </td><td>
 <asp:DropDownList ID="DropDownList1" runat="server">
 <asp:ListItem>Blue</asp:ListItem>
 <asp:ListItem>Red</asp:ListItem>
 <asp:ListItem>Green</asp:ListItem>
 </asp:DropDownList>
 </td></tr><tr><td>
 <asp:Label ID="Label4" runat="server" Text="Background Color :"></asp:Label>
 </td><td>
 <asp:DropDownList ID="DropDownList2" runat="server">
 <asp:ListItem>Blue</asp:ListItem>
 <asp:ListItem>Red</asp:ListItem>
 <asp:ListItem>Green</asp:ListItem>
 </asp:DropDownList>
 </td></tr><tr><td>

Figure 2-15. Adding the downloaded jQuery library to an ASP.NET project

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

51

 <asp:Label ID="Label5" runat="server" Text="Text :"></asp:Label>
 </td><td>
 <asp:TextBox ID="TextBox3" runat="server" Width="296px"></asp:TextBox>
 </td></tr><tr><td>
 <asp:Button ID="Button1" runat="server" Text="Show Text" />
 </td><td> </td></tr>
</table>
<div id="container"></div>
</form>

The Web Form consists of three TextBox controls for entering font, font size, and text.
The two DropDownList controls allow users to pick text color and background color,
respectively. Clicking the Show Text button displays the text specified in TextBox3 in a
<div> element with the container ID. The CSS properties such as font, font size, and color
are applied to the container <div> element.

 9. In the <head> section of the Web Form, add a <script> reference to the jQuery library,
as shown here:

<script src="Scripts/jquery-2.0.3.js"></script>

 10. Just below the <script> reference, add an empty <script> block for writing your jQuery

code:

<script type="text/javascript">
</script>

 11. Add the following line inside the <script> block:

 $(document).ready(OnReady);

Notice that the previous line of code begins with a $ symbol. The jQuery library is actually
implemented as a JavaScript function. In the context of jQuery, $ refers to the base jQuery
function. You can also use the literal word jQuery in place of $. So, the line of code can also
be written as follows:

jQuery(document).ready(OnReady);

Most developers prefer $ over jQuery because it saves them some typing. What goes in
the brackets following the $ symbol is called a selector (you will learn more about selectors
in Chapter 3). As its same suggests, a selector selects zero or more DOM elements. In this
case, the code selects the document element of the page being displayed. The jQuery
ready() method is then invoked, and a function is passed to it as a parameter. The
ready() method is called by the jQuery library when the page being accessed is loaded
in the browser and is ready for accessing and manipulation. OnReady() is a developer-
defined function that you will write in the next step.

 12. Add the OnReady() function definition at the end of the previous line of code. It looks like this:

function OnReady() {
 $("#Button1").click(OnButtonClick);
}

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

52

The OnReady() function contains just one line of code. This time, it uses $, followed
by the ID selector to get a reference to the Show Text button. Notice the jQuery way of
referring to DOM element IDs. The actual ID—Button1—is prefixed with the
symbol. This selector is similar to the document object’s getElementById() method
and instructs the jQuery library to retrieve a DOM element whose ID attribute is
specified. Once the element is retrieved, you can perform some action on it. In this case,
you call a click() method on the button element and pass the OnButtonClick function
as its parameter. Just like ready(), click() is a built-in jQuery method that wires the
supplied function as the click event handler of the underlying DOM element. So after
the Show Text button is clicked, the OnButtonClick() function is called. You will write the
OnButtonClick() function next.

 13. Now add the OnButtonClick() function below the OnReady() function. The
OnButtonClick() function is shown in Listing 2-4.

Listing 2-4. OnButtonClick Function

function OnButtonClick(evt) {
 var font = $("#TextBox1").val();
 var fontSize = $("#TextBox2").val();
 var foreColor = $("#DropDownList1").val();
 var backColor = $("#DropDownList2").val();
 var text = $("#TextBox3").val();
 $("#container").css("font-family", font);
 $("#container").css("font-size", fontSize);
 $("#container").css("color", foreColor);
 $("#container").css("background-color", backColor);
 $("#container").html(text);
 evt.preventDefault();
}

The OnButtonClick() function accepts an evt parameter that represents an event object
passed to the event handler. The event object gives more information about the event.
Inside, five local variables are declared: font, fontSize, foreColor, backColor and text.
The code retrieves values entered or selected in the text boxes and the drop-down lists
by selecting the corresponding element with the ID selector and then calling the val()
method. The val() method is another jQuery method that returns the value entered or
selected in form elements such as a text box or drop-down list.

Once all the values are retrieved and stored in the local variables, the code assigns the CSS
properties of the container <div> element. This is done by selecting the container <div>
element using its ID and then calling the css() method on it. jQuery’s css() method
accepts two parameters: the first parameter indicates the CSS property that you want to
assign, such as font-family and color; the second parameter indicates the value of the
CSS property. In this case, values are picked from the local variables.

Once the CSS properties are set, the code invokes the html() method on the <div>
element. The html() method accepts a string and sets the inside content of the selected
element to that string. In this case, whatever has been entered in TextBox3 is assigned as
the content of the container <div> element.

The last line of code—evt.preventDefault()—cancels the default action of the button.
In this case, because the Show Button is a submit button, the default action is to cause a
postback. Calling preventDefault() cancels the form submission. The form submission
needs to be canceled for correct functioning of the application.

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

53

 14. Save the Web Form file and set breakpoints at the ready() method call, OnReady()
function, and OnButtonClick() function.

 15. Set the browser to Internet Explorer in Visual Studio and press F5 to start debugging the
application.

Visual Studio now runs the Web Form in an instance of Internet Explorer and halts the
execution at the first breakpoint. You can now use F10 and F11 to step over and step into
the code.

 16. After checking the debugging feature, press F5 to continue the execution and load the page
in the browser.

Enter some valid values in various text boxes, select color values from the drop-down lists, and click the Show
Text button to display the text with the specified CSS property values.

Anonymous Functions
In the preceding example, you used named functions such as OnReady() and OnButtonClick(). Although doing so is
technically correct, there is a more compact and popular way of doing the same thing: using anonymous functions.
An anonymous function is a function that doesn’t have any name and can be passed directly wherever a function is
expected or can be assigned to a variable. Thus, instead of creating separate named functions such as OnReady() and
OnButtonClick(), you can create an anonymous function and pass it in as the respective method parameter. The
code in Listing 2-5 shows how anonymous functions can be used.

Listing 2-5. Using Anonymous Functions

$(document).ready(function () {

 $("#Button1").click(function (evt) {

 var font = $("#TextBox1").val();
 var fontSize = $("#TextBox2").val();
 var foreColor = $("#DropDownList1").val();
 var backColor = $("#DropDownList2").val();
 var text = $("#TextBox3").val();

 $("#container").css("font-family", font);
 $("#container").css("font-size", fontSize);
 $("#container").css("color", foreColor);
 $("#container").css("background-color", backColor);
 $("#container").html(text);

 evt.preventDefault();
 });
});

Now the code doesn’t have any named functions. Instead, anonymous functions are directly passed at their
respective places. If you’ve never used them before, they may look a bit strange to you. But make sure you understand
them thoroughly because you will find them used everywhere in jQuery—from event handlers to method parameters
to Ajax calls.

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

54

Chaining jQuery Methods
Another interesting feature of jQuery is method chaining. Listing 2-5 used the css() and html() methods against the
container element on five separate lines. Each line selected the container <div> element using the same selector; the
corresponding method was then invoked on the element. Instead of selecting an element and calling a method on it
separately on each line, you can chain multiple method calls one after the other. For example, the css() and html()
method calls from Listing 2-5 can also be written like this:

$("#container").css("font-family", font)
 .css("font-size", fontSize)
 .css("color", foreColor)
 .css("background-color", backColor)
 .html(text);

Now four calls to the css() method and one call to the html() method are made in the same code statement.
(The entire statement is broken on multiple lines only for the sake of readability; you could have written everything
as one long line of code.) In jQuery, when you append a method call to another method call, the latter call is invoked
against the base selector (#container in this case), not against the outcome of the previous method call. Method
chaining helps you write compact and tidy code.

Server Control IDs and the jQuery ID Selector
The preceding example used the jQuery ID selector to select ASP.NET server controls such as Button, TextBox, and
DropDownlist. This was quite easy because the controls were placed directly in the Web Form. At runtime, ASP.NET
converts your server controls to a set of HTML markup and assigns the element the same ID as the server-side control.
For example, if you set the ID property of the Button server control to Button1, ASP.NET creates an <input> element of
type Submit and sets its ID attribute to Button1. The following lines of code make this conversion clear:

<asp:Button ID="Button1" runat="server" Text="Show Text" />
<input type="submit" name="Button1" value="Show Text" ID="Button1" />

The Button control has an ID of Button1, and the HTML markup rendered in the browser has the same ID.
Therefore, you can safely use the ID of the server controls in your jQuery code. This arrangement works well as long
as the client-side ID generated by ASP.NET is exactly same as the server control ID. However, suppose that server
controls are placed inside a Web User control, or a master page has been attached to the Web Form. In such cases,
the client-side ID isn’t be the same as the server-side ID of the control because ASP.NET automatically generates the
client-side IDs for such server controls to ensure that there are no duplicate IDs across the whole page. Consider the
following example:

<asp:Button ID="Button1" runat="server" Text="Show Text" />
<input type="submit" name="WebUserControl11$Button1" value="Show Text" ID="WebUserControl11_Button1" />

The code example assumes that a Button server control is placed inside a Web User control named
WebUserControl1.ascx. The server-side ID of the Button control is Button1. When this button gets rendered in the
browser, its ID becomes WebUserControl11_Button1. This ID autogeneration can create problems if you use server-side
IDs in the jQuery code because jQuery can’t find any control matching the given ID. To deal with such situations, you can
either use jQuery attribute selectors (discussed in the next chapter) or assign static IDs to the server controls housed
inside the Web User control.

To assign a static ID to a server control, you use the ClientIDMode property of the control. Figure 2-16 shows how
this property can be set in the Visual Studio Properties window.

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

55

Setting ClientIDMode to Static ensures that the ID is not autogenerated at runtime. So if you set the
ClientIDMode property of the Button server control to Static, the client-side markup will look like this:

<input type="submit" name="WebUserControl11$Button1" value="Show Text" ID=" Button1" />

The ID of the submit button is now Button1. Now you can use the same server-side ID in your jQuery code
because ASP.NET no longer autogenerates it.

There is another way to grab the client-side IDs of server controls inside the jQuery code. You can use the <%= %>
code block to emit the ClientID property value of a server control. The following code shows how this is done:

<asp:Button ID="Button1" runat="server" Text="Show Text" />
$("#<%= Button1.ClientID %>").click(...);

The first line of code shows the server control markup for a Button server control with an ID of Button1. If this
button is part of a Web User control, the client-side ID will be different, as explained earlier. You can get the client-side
ID of the button inside jQuery code by using the <%= Button1.ClientID %> code block. The ClientID property of
a server control returns its client-side ID, and that ID is then emitted in the jQuery code. The click() method then
wires a click event handler to the button’s client-side click event.

Writing Your First jQuery Program in ASP.NET MVC
Now that you have some knowledge about jQuery under your belt, let’s see how jQuery can be used with ASP.NET
MVC projects. The process remains basically the same; the main difference is that you don’t have server controls to
deal with. Instead you work with plain HTML elements.

In this section, you will develop the ASP.NET MVC application shown in Figure 2-17.

Figure 2-16. Setting ClientIDMode property server controls

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

56

The application consists of an Index view that has a button on it. Clicking the button fetches an HTML table with
employee details such as EmployeeID, FirstName, and LastName; and displays the table in a <div>. An alert() notifies
the user about the success of the operation.

Let’s begin the step-by-step development of this application:

 1. Open Visual Studio and select New Project from the FILE menu.

 2. In the New Project dialog, select ASP.NET Web Application, as in the previous example,
and name the project FirstjQueryAppMVC. Click OK.

 3. In the Project Template dialog, select the Empty project template, check the MVC check
box under Add folders and core references for section, and click OK (see Figure 2-18).

Figure 2-17. ASP.NET MVC application that loads server-side data using jQuery

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

57

Note ■ In the remainder of the book, whenever you are asked to create an ASP.NET MVC application, you need to

follow this procedure.

 4. Once the project is created, select Manage NuGet Packages from the PROJECT menu.

 5. In the resulting dialog, search for jQuery and install the jQuery NuGet Package
(see Figure 2-19).

Figure 2-18. Selecting a project template with folders and core references for MVC

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

58

 6. Installing the jQuery NuGet package creates a Scripts folder inside the newly created
project and places jQuery 2.0.3 files in the Scripts folder (see Figure 2-20).

Figure 2-20. The jQuery NuGet package adds the Scripts folder and jQuery files

Figure 2-19. Installing the jQuery NuGet Package

 7. Right-click the Models folder and select Add ➤ New Item. Select ADO.NET Entity Data
Model in the Add New Item dialog. In the dialog, name the model Northwind.edmx
and click OK.

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

59

 8. A wizard guides you through the creation of the Entity Framework data model for
the Northwind database. Select the Employees table. Your data model should
resemble Figure 2-21.

Figure 2-21. Data model class for the Employees table

Figure 2-22. Adding the HomeController class

 9. Right-click the Controllers folder and add a new empty controller class named
HomeController (see Figure 2-22).

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

60

 10. The HomeController contains the Index() action method by default. Add another action
below it called GetEmployeeTable(), which returns an HTML table in the form of a string
to the caller. The HTML table contains three employee details: EmployeeID, FirstName,
and LastName. Listing 2-6 shows the complete code of the GetEmployeeTable() action
method.

Listing 2-6. GetEmployeeTable() Action Method

public string GetEmployeeTable()
{
 NorthwindEntities db = new NorthwindEntities();
 var data = from e in db.Employees
 orderby e.EmployeeID
 select e;

 StringBuilder sb = new StringBuilder();
 sb.Append("<table border='1'>");
 foreach (Employee e in data)
 {
 sb.Append("<tr><td>");
 sb.Append(e.EmployeeID);
 sb.Append("</td><td>");
 sb.Append(e.FirstName);
 sb.Append("</td><td>");
 sb.Append(e.LastName);
 sb.Append("</td></tr>");
 }
 sb.Append("</table>");
 return sb.ToString();
}

The GetEmployeeTable() action method begins by creating an instance of the
NorthwindEntities data context class. It then runs a LINQ to Entities query that fetches
all the records from the Employees table. The data variable holds the LINQ to Entities
query. A foreach loop iterates through the Employee collection and generates an HTML
table. The HTML markup is stored in a StringBuilder for efficiency. The code inside the
foreach loop adds three columns to the table: EmployeeID, FirstName, and LastName.
Finally, the ToString() method of the StringBuilder is called, and the HTML markup is
returned to the caller.

 11. After creating the GetEmployeeTable() action method, right-click the Index() action
method and select Add View from the shortcut menu.

 12. In the Add View dialog, give the View name as Index. Uncheck all the check boxes, and
click OK (see Figure 2-23).

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

61

 13. Open the view file and add the following HTML markup to it:

<body>
 <input type="button" id="Button1" value="Get Employee Data" />

 <div id="container"></div>
</body>

The HTML markup consists of an <input> element of type button. The id of the
button is Button1 and its value is Get Employee Data. There is also a <div> element
with the id container, which is intended to display the HTML table returned by the
GetEmployeeTable() action method.

 14. Add a <script> reference to the jQuery library in the head section, as shown here:

<script src='@Url.Content("~/Scripts/jquery-2.0.3.js")'></script>

The Content() method of UrlHelper is used to get the full URL of the jQuery library.

 15. Add a <script> block below the jQuery script reference you just added and key in the code
shown in Listing 2-7.

Listing 2-7. Using the jQuery load() Method

<script type="text/javascript">
 $(document).ready(function () {
 $("#Button1").click(function () {
 $("#container").load("/home/getemployeetable", function () {
 $("#container").css("font-family", "Arial");
 $("#container").css("font-size", "20px");

Figure 2-23. Adding the Index view

CHAPTER 2 ■ A FIRST LOOK AT JQUERY

62

 $("#container td").css("padding", "6px");
 alert("Employee data loaded successfully!");
 });
 });
});
</script>

The jQuery script begins with a call to the ready() method and uses an anonymous
function as its parameter. The anonymous function in turn wires another anonymous
function as the click event handler of Button1. This is done by selecting Button1 with the
jQuery ID selector and then calling the click() method on it. This time, the event handler
doesn’t accept the event parameter because Button1 is a button type and doesn’t cause
any postback. Naturally, you don’t need to call the preventDefault() method as in the
Web Forms example.

The click event handler for Button1 selects the container <div> using the ID selector and calls
the load() method on it. (The jQuery load() method is used to load any arbitrary HTML data
from the server inside the selected element.) The load() method makes an Ajax request to
the server. The first parameter of the load() method is the URL that returns the
HTML markup. In this example, the URL points to the GetEmployeeTable() action method:
/home/getemployeetable. The second parameter of the load() method is a callback function
invoked after the request completes. Because load() is being called on the container <div>
element, the markup returned from the URL is loaded in the container <div> element.

The callback function passed in the load() method sets the font-family and font-size CSS
properties using the css() method. It also sets the padding of all the <td> elements using the
css() method. Notice that the selector is specified for the line that sets padding CSS property.
The selector is $("#container td"), which is the ID selector followed by a white space and
then followed by td. This selector indicates that all the <td> elements that are children to the
container element are to be selected. Once the CSS properties are assigned, an alert() is
displayed that informs the user that the load() operation is complete.

 16. Save the Index view and run the application by pressing F5. Test the application by clicking
the Get Employee Data button to see whether the HTML table is displayed inside the
container <div> element.

Summary
jQuery is a flexible and feature-rich JavaScript library. This chapter gave you a glimpse at what jQuery is and how it
can be used in Web Forms and MVC projects. You can reference the jQuery library in an ASP.NET project in three
ways: by manually downloading it from the official jQuery web site, via a NuGet package, and through a CDN. You
may find the CDN approach appealing because it can improve application performance.

Once the jQuery library is referenced, you are all set to use its functionality. Most commonly, the jQuery ready()
method is called to perform some initialization work as the page loads. You will also use the ready() function to wire
event handlers to various controls such as buttons and drop-down lists.

The Visual Studio IDE offers many features that enhance your programming experience with jQuery, including
IntelliSense, code formatting, navigation, reference directives, and client-side script debugging.

This chapter concluded with two ASP.NET projects (an ASP.NET Web Forms project and an MVC project) that
showed you what jQuery code looks like and how jQuery is used alongside ASP.NET.

In this chapter, you used jQuery’s ID selector, but plenty of other selectors are available. When you use jQuery
selectors, you can precisely control which elements are selected for further processing. The next chapter will discuss
jQuery selectors in detail.

63

CHAPTER 3

ASP.NET Controls and jQuery
Selectors

To perform operations such as event handling, changing CSS properties, or getting or setting the element content
of any DOM element, you first need to get that element. In situations where only one element is involved, things are
quite easy because JavaScript and the HTML DOM allow you to access elements by their IDs. However, life is not
always that simple. Often you need to select elements from a web page based on some complex criteria.

That is where jQuery selectors come into the picture. jQuery selectors are the jQuery constructs that allow you
to select DOM elements based on variety of criteria. Many of the jQuery selectors are based on CSS (versions 1–3)
selectors, and jQuery adds more to the list. jQuery selectors are so rich that they are grouped in eight main categories.
This chapter discusses all these selectors in detail. Specifically, you will learn the following:

What selectors are and how to use them in ASP.NET applications•

How to use basic jQuery selectors •

How to use advanced jQuery selectors •

How to use jQuery selectors while working with ASP.NET controls such as •
DropDownList, Button, and GridView

Overview of jQuery Selectors
jQuery selectors allow you to select DOM elements based on certain criteria. Once selected, you can manipulate the
selected elements according to your needs. For example, you might want to select a text box with the ID TextBox1 and
retrieve the text entered in it for the sake of performing validation or you might want to select all the <input> elements
from a web page that are of type Submit and disable them unless a certain condition is fulfilled. The kind of operation
you perform on DOM elements depends on the nature of the application you are developing and can vary a lot from
one application to another, but they all have one task in common: selecting the necessary DOM elements for further
processing. This is where jQuery selectors come in handy.

jQuery selectors are extremely powerful in that they allow you to select DOM elements based on complex
conditions. jQuery offers a plethora of selectors; due to their richness, they are often categorized as shown in Table 3-1.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

64

The jQuery selectors listed in Table 3-1 can be used against any HTML elements. While working with ASP.NET
Web Forms, you mainly work with ASP.NET server controls such as TextBox, Button, and GridView. It is important to
know what HTML markup these controls render in the browser because in your jQuery code you need to specify the
details of the HTML elements, not the server controls. For example, the ASP.NET GridView control is represented by
the following markup in the server-side code:

<asp:GridView ID="GridView1" runat="server"></asp:GridView>

The server-side tag that represents a GridView is <asp:GridView>. However, when the GridView is rendered in
the browser, it is rendered as an HTML table. So if you want to select a GridView or any of its constituent elements
using jQuery selectors, you should use the <table> tag in your jQuery code, not the <asp:GridView> tag. The same is
applicable to other ASP.NET server controls.

Table 3-2 lists a few commonly used ASP.NET server controls, their server-side markup tags, and their HTML tags
as rendered in the browser.

Table 3-1. Types of jQuery Selectors

Selector Type Description

Basic selector Allows you to select DOM elements based on certain basic conditions. Some of these basic
conditions include selecting based on element ID, selecting based on element tag name, and
selecting based on presence of a CSS class.

Basic filter Allows you to filter a set of DOM elements by applying predefined filters. These filters make it
possible for you to select odd or even DOM elements as well as DOM elements greater than,
less than, or equal to a certain index and more.

Attribute selector Allows you to select elements based on their attribute values. You can select elements
not just on “equal to” conditions but also conditions such as “starts with,” “ends with,”
and “contains.”

Child filter Allows you to filter elements from a set of elements based on their position with respect to
a parent element. For example, you can select an element that is the first or last child of its
parent.

Content filter Allows you to filter elements from a set of elements based on their content. For example, you
may select elements that contain a specific text or a specific element.

Form filter Allows you to filter elements from an HTML form. For example, you may filter <input>
elements that are of type Submit or Password.

Hierarchy filter Allows you to filter elements from a set of elements that meet a certain hierarchy criterion.
The hierarchy criterion could be parent-child relationship, ancestor-descendant relationship,
or sibling relationship.

Visibility filter Allows you to select elements based on their visibility status (i.e., visible or hidden).

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

65

ASP.NET MVC applications use raw HTML markup in many places. Additionally, developers use HTML helpers
to render form elements such as text boxes and drop-down lists. The previous discussion is applicable to HTML
helpers, too. As a developer, you should be aware which HTML tags an HTML helper is emitting. This is relatively
straightforward because most of the HTML helpers map directly to the corresponding form element types
(Html.TextBox() and Html.DropDownList(), for example). This is the reason why this chapter presents most of the
examples using ASP.NET Web Forms. (The concluding example in this chapter illustrates how jQuery selectors are
used with HTML helpers in an MVC application.)

Now that you know what selectors are, let’s discuss each category of the selectors listed in Table 3-1.

Basic Selectors
Basic selectors allow you to select DOM elements based on certain basic conditions. Some of these basic conditions
include selecting based on element ID, element tag name, and presence of a CSS class. In all, there are five selectors in
this category (see Table 3-3).

Table 3-2. ASP.NET Server Controls and HTML Elements

Server Control Server-side Tag HTML Tag

TextBox <asp:TextBox> <input type="text" />

DropDownList, ListBox <asp:DropDownList>
<asp:ListBox>

<select>
 <option>
</select>

Button <asp:Button> <input type="submit">

Label <asp:Label>

RadioButton <asp:RadioButton> <input type="radio" />

RadioButtonList <asp:RadioButtonList> <table>
<input type="radio"
name="radio1" />
<input type="radio"
name="radio1" />
</table>

GridView, DetailsView, FormView <asp:GridView>
<asp:DetailsView>
<asp:FormView>

<table>

HyperLink <asp:HyperLink> <a>

Image <asp:Image>

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

66

To understand many of the basic selectors listed in Table 3-3, you will develop the ASP.NET application shown
in Figure 3-1.

Table 3-3. Basic Selectors

Selector Description Example

All selector Selects all the DOM elements from a web page. $("*")

Element selector Selects all the DOM elements matching a specified tag name. $("p")

ID selector Selects a DOM element matching a specific ID. $("#TextBox1")

Class selector Selects all the DOM elements that have a specified CSS class applied
to them.

$(".Class1")

Multiple selector Allows you to specify a comma-separated list of any other selectors and
then returns a result that is a combination of the result of the individual
selectors in the list.

$("p,span,td")

Figure 3-1. Application showing basic selector use

The application consists of a Web Form that houses several server controls. At the top are three TextBox server
controls that accept font name, font size, and target elements, respectively. Notice the Apply Font To text box. This text
box accepts one of the basic selectors such as *, a tag name, an ID, or a CSS class name. Clicking the Set Font button
applies the specified font to the specified target elements.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

67

The main area of the Web Form is occupied by a GridView control that displays data from the Employees table
of the Northwind database. The GridView contains a single TemplateField and displays the EmployeeID, FirstName,
LastName, and Notes columns of the Employees table.

To begin developing this application, create an empty ASP.NET Web Forms application. Add a new ADO.NET Entity
Data Model to the web application and configure it to generate the Employee data model class (refer to Chapter 2 for
more details about generating the data model). Figure 3-2 shows what the Employee data model class looks like.

Figure 3-2. Employee data model class

Then add a new Web Form to the project and design it as shown in Figure 3-1. The arrangement of labels and text
boxes is quite straightforward and is shown in Listing 3-1.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

68

Listing 3-1. Markup of Labels and Text Boxes

<asp:Label ID="lblFontName" runat="server" Text="Font Name : "></asp:Label>
<asp:TextBox ID="txtFontName" runat="server" Columns="5"></asp:TextBox>
<asp:Label ID="lblFontSize" runat="server" Text="Font Size : "></asp:Label>
<asp:TextBox ID="txtFontSize" runat="server" Columns="5"></asp:TextBox>
<asp:Label ID="lblTarget" runat="server" Text="Apply Font to : "></asp:Label>
<asp:TextBox ID="txtTarget" runat="server" Columns="5"></asp:TextBox>
<asp:Button ID="btnSetFont" runat="server" Text="Set Font" />

The markup consists of three Label controls, three TextBox controls and a Button control. The text boxes
txtFontName, txtFontSize, and txtTarget allow the end user to enter a font name, font size, and target, respectively.
Clicking the Set Font button changes the font of the target elements to the specified values.

Designing the GridView requires some explanation. To design the GridView, drag and drop one on the Web Form.
Using the Edit Columns option from the smart tag, add a TemplateField to the GridView. Figure 3-3 shows what the
GridView Fields dialog looks like.

Figure 3-3. GridView Fields dialog

Set the HeaderText property to Employee Details and design the ItemTemplate of the GridView as shown in
Listing 3-2.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

69

Listing 3-2. GridView ItemTemplate

<asp:GridView ID="GridView1" runat="server" SelectMethod="SelectEmployees"
ItemType="BasicSelectors.Employee">
 <Columns>
 <asp:TemplateField HeaderText="Employee Details">
 <ItemTemplate>
 <div>#<%# Item.EmployeeID %></div>
 <asp:Label ID="Label1" runat="server" Text="<%# Item.FirstName %>"></asp:Label>
 <asp:Label ID="Label2" runat="server" Text="<%# Item.LastName %>"></asp:Label>
 <p>
 <%# Item.Notes %>
 </p>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 <RowStyle CssClass="Row" />
 <AlternatingRowStyle CssClass="AlternateRow" />
</asp:GridView>

The GridView SelectMethod property is set to SelectEmployees, which is a custom method that you will write
shortly. The ItemType property is set to the fully qualified name of the Employee data model class. Make sure to
change the ItemType depending on your project namespace. The ItemTemplate uses HTML tags such as <div> and
<p> as well as Label server controls to render Employee details such as EmployeeID, FirstName, LastName, and Notes.
Notice the use of the Item object inside <%# and %>.

Based on the ItemType specified for the GridView, the Item object shows the corresponding properties in the
IntelliSense. The RowStyle and AlternatingRowStyle elements set the CssClass of rows and alternating rows to Row
and AlternateRow, respectively. You will create these CSS classes shortly.

Next, go in the code behind of the Web Form and add the SelectEmployees() method as shown in Listing 3-3.

Listing 3-3. SelectEmployees() Method

public List<Employee> SelectEmployees()
{
 NorthwindEntities db=new NorthwindEntities();
 var data = from e in db.Employees
 orderby e.EmployeeID ascending
 select e;
 return data.ToList();
}

The SelectEmployees() method returns a generic List of Employee objects. Inside, it creates an instance of the
NorthwindEntities data context class. A LINQ to Entities query is then used to select all the employees from the
database. The ToList() method of the data dynamic variable returns a generic List of Employee objects that are then
returned to the caller. Calling the ToList() method executes the LINQ to Entities query you wrote earlier and fetches
the required data. This way, GridView gets all the Employee objects for the sake of displaying in the browser.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

70

Add a new CSS file in the root folder of the project and name it StyleSheet1.css. Define two CSS classes, Row and
AlternateRow, in StyleSheet1.css, as shown here:

.Row {
 background-color:silver;
}

.AlternateRow {
 background-color:white;
}

The Row CSS class sets the background color of GridView rows to silver, whereas the AlternateRow CSS class sets
the background to white. Make sure to link StyleSheet1.css in the head section of the Web Form.

Next, add a Scripts folder to the project and place the jQuery library in it. Then add a <script> reference to the
jQuery library in the head section of the Web Form. Further, add a <script> block and key-in the jQuery code, as
shown in Listing 3-4.

Listing 3-4. jQuery Code Using Basic Selectors

$(document).ready(function () {
 $("#btnSetFont").click(function (evt) {
 var target = $("#txtTarget").val();
 var fontName=$("#txtFontName").val();
 var fontSize=$("#txtFontSize").val();
 $(target).css("font-family", fontName).css("font-size", fontSize);
 evt.preventDefault();
 });
});

The jQuery code shown in Listing 3-4 attaches a click event handler function to the Set Font button. The first
line of code inside the click event handler uses the ID selector to retrieve the txtTarget text box. The ID selector is
formed by prefixing the ID of an element with #. The val() method returns the value entered in a text box. Along the
same lines, values entered in txtFontName and txtFontSize are obtained in local variables fontName and fontSize,
respectively.

Then the code uses the value of the target variable as a jQuery selector and applies the font-family and
font-size CSS properties using the css() method. In this case, the value of the target variable depends on a value
entered in the txtTarget text box. Depending on this value, one of the basic selectors (the all selector, element
selector, ID selector, or class selector) will be used to select the DOM elements. The css() method will then change
the font-family and font-size of the selected DOM elements.

Table 3-4 shows some sample values that you can enter in txtTarget while testing.

Table 3-4. Basic Selector Examples

Value Description

* Causes the all selector to be used.

td Causes the element selector to be used.

#GridView1 Causes the ID selector to be used.

.Row / .AlternateRow Causes the class selector to be used.

p,span Causes the multiple selector to be used.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

71

The last line of code calls the preventDefault() method on the event object so that the form submission is
prevented. Figure 3-4 shows what the Web Form looks like when an element selector is used.

Figure 3-4. Basic selectors in action

Notice that only the notes are displayed in Arial 30px because the target text box specified p (an element selector)
as the selector.

Note ■ This example and the examples that follow don’t perform any validation on the data being entered in various

controls. This is done purely to keep the code simple and clutter-free.

Basic Filters
Basic filters allow you to filter the results of other selectors. In the process, they enhance selectors by providing
additional selection logic. For example, an element selector can select all the <td> elements from a table. But to work
with the first or last <td> element, additional filtering is necessary, which is provided by basic filters. Table 3-5 lists
some of the most commonly used jQuery basic filters.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

72

To understand how basic selectors can be used, let’s build the application shown in Figure 3-5.

Table 3-5. Basic Filters

Basic Filter Description Example

First selector Selects the first element matching a selection criterion. $("td:first")

Last selector Selects the last element matching a selection criterion. $("td:last")

Odd selector Selects only odd elements from a set of DOM elements. Elements use
a zero-based index. Thus, the odd selector returns elements at indexes
second, fourth, sixth, and so on.

$("td:odd")

Even selector Selects only even elements from a set of DOM elements. Elements use
a zero-based index. Thus, the even selector returns elements at indexes
first, third, fifth, and so on.

$("td:even")

Lt selector Selects all the elements whose index in the matched set is less than a
specified value. The index is zero based.

$("td:lt(3)")

Gt selector Selects all the elements whose index in the matched set is greater than a
specified value. The index is zero based.

$("td:gt(5)")

Eq selector Selects the element at a specified index. $("td:eq(3)")

Not selector Selects all the elements from a matched set that do not match the
specified selector.

$("td:not(.Class1)")

Figure 3-5. Web Form making use of basic filters

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

73

The application consists of a Web Form that has a DropDownList, a TextBox and a Button at the top. Below is
a GridView that displays records from the Employees table. The DropDownList allows the user to select one of the
options: First, Last, Odd, Even, Less Than, Greater Than, or Equal. A value entered in the text box is relevant only if the
DropDownList selection is Less Than, Greater Than, or Equal. Clicking the Mark button marks one or more GridView
rows with highlighting.

To develop this application, create an empty ASP.NET Web Forms project and add a Web Form to it. Design the
Web Form as shown in Figure 3-5 and add a Scripts folder to the project as in the previous example. Add a CSS file to
the project with the following CSS class:

.Highlight {
 background-color:navy;
 color:white;
 font-weight:bold;
}

Add a <script> reference to the jQuery library followed by a <script> block. Listing 3-5 shows the jQuery code
that goes inside this <script> block.

Listing 3-5. Using jQuery Basic Filters

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 var target = $("#DropDownList1").val();
 var index = $("#TextBox1").val();
 $(".Highlight").removeClass("Highlight");
 switch (target) {
 case "FR":
 $("tr:first").addClass("Highlight");
 break;
 case "LR":
 $("tr:last").addClass("Highlight");
 break;
 case "OD":
 $("tr:odd").addClass("Highlight");
 break;
 case "EV":
 $("tr:even").addClass("Highlight");
 break;
 case "LT":
 $("tr:lt(" + index + ")").addClass("Highlight");
 break;
 case "GT":
 $("tr:gt(" + index + ")").addClass("Highlight");
 break;
 case "EQ":
 $("tr:eq(" + index + ")").addClass("Highlight");
 break;
 }
 evt.preventDefault();
 });
});

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

74

The code in Listing 3-5 wires an event handler function to the click event of the Mark button (Button1). Inside
the click event handler, the selection from the DropDownList is retrieved using the ID selector and val() method. The
selection is stored in a local variable: target. Similarly, the value entered in the TextBox1 is stored in an index variable.

The code then selects all the DOM elements that have the Highlight CSS class applied. Once selected, the
Highlight class is removed from those elements using the jQuery removeClass() method. The removeClass()
method removes a specified CSS class from the selected DOM elements. This way, the GridView is cleared of any
highlighted rows from the previous run of the code.

A switch statement then tests the target variable against various possible values such as FR (First Row), LR (Last
Row), OD (Odd), EV (Even), LT (Less Than), GT (Greater Than), and EQ (Equal). In each of the case blocks, a jQuery
basic selector is used to select the corresponding <tr> elements. Remember that GridView is rendered as an HTML
table in the browser, so to access any GridView row from jQuery, you need to filter elements on the basis of the <tr>
element. For example, consider the OD block. It uses the odd selector to select odd GridView rows: $("tr:odd").
(Remember that the index starts from zero, so the odd rows such as second, fourth, sixth, and so on are selected.)
Once the odd rows are selected, the code applies a CSS class to those rows using the jQuery addClass() method. The
addClass() method accepts the name of a CSS class and applies that class to the selected elements.

Notice that the :lt(), :gt(), and :eq() selectors use the index variable to specify a zero-based index number.
Note that the GridView header row is also a <tr> element and will count toward all the operations performed by the
basic filters. So if you specify 3 as an index for the :eq() selector, the code will highlight the record for Janet Leverling.

Attribute Selectors
Attribute selectors allow you to match attributes of HTML elements with certain criteria. It is not just an “equal-to”
kind of matching; several other options are available as outlined in Table 3-6.

Table 3-6. Attribute Selectors

Attribute Selector Description Example

Attribute Equals selector Selects the element whose specified attribute value
exactly equals a specific string value.

$('img[src="foo.png"]')

Attribute Not Equal selector Selects the element whose specified attribute
value doesn’t match a specific string value, or if the
specified attribute is missing.

$('img[src!="foo.png"]')

Attribute Starts With selector Selects the element whose specified attribute value
begins with a specific value.

$('img[src^="foo"]')

Attribute Ends With selector Selects the element whose specified attribute value
ends with a certain string value.

$('img[src$="png"]')

Attribute Contains selector Selects the element whose specified attribute value
contains a specific string.

$('img[src*="foo"]')

Attribute Contains Word
selector

Selects the element whose specified attribute value
contains a specific string as a whole word (i.e., the
value is separated by whitespace).

$('img[src~="foo"]')

Attribute Contains Prefix
selector

Selects the element whose specified attribute value
is exactly equal to the specified value, or that starts
with the specified value followed by a - (hyphen).

$('img[src|="foo"]')

Has Attribute selector Selects the element if a specified attribute is present. $('img[src]')

Multiple Attribute selector Is a combination of multiple attribute selectors. $('img[id][src$="png"]')

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

75

To understand how attribute selectors can be used, let’s develop the ASP.NET Web Forms application shown
in Figure 3-6.

Figure 3-6. Application using attribute selectors

The Web Form contains a GridView with a list of download links, which include products, white papers, and
software components. At the top of the Web Form is a drop-down list that allows you to filter the download links
based on the category (product, white paper, component, and so on). You can select a download category from the
drop-down list and click the Show button to filter the available downloads in that category. Listing 3-6 shows the
relevant markup from the Web Form.

Listing 3-6. Markup of the Download Web Form

<form id="form1" runat="server">
...
 <asp:DropDownList ID="DropDownList1" runat="server">
 <asp:ListItem Value="A">All Downloads</asp:ListItem>
 <asp:ListItem Value="P">Products</asp:ListItem>
 <asp:ListItem Value="WP">White Papers</asp:ListItem>
 <asp:ListItem Value="C">Components</asp:ListItem>
 </asp:DropDownList>
...
 <asp:Button ID="Button1" runat="server" Text="Show" />
...
 <asp:GridView ID="GridView1" runat="server" CellPadding="10"
...
 <Columns>
 <asp:HyperLinkField DataNavigateUrlFields="URL" DataTextField="Title" HeaderText="Downloads" />
 </Columns>
...
 </asp:GridView>
</form>

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

76

Notice the Value property of the <asp:ListItem> elements. The values for all downloads, products, white papers,
and components are "A", "P", "WP", and "C", respectively. The GridView consists of a single HyperLinkField that is
bound with Title and URL properties. Figure 3-7 shows the properties of HyperLinkField that you need to set.

Figure 3-7. Setting HyperLinkField properties

The HeaderText property of the HyperLinkField is set to Downloads. More importantly, its
DataNavigateUrlFields property is set to URL, and the DataTextField property is set to Title. The hyperlinks will
display the Title property value of the Download object, and they will point to a URL as indicated by the URL property
of the Download object.

The data displayed in the grid is not coming from any database; it is coming from an object collection. To
represent a download, you need to define a Download class, as shown in Listing 3-7.

Listing 3-7. Download Class Stored as Download.cs

public class Download
{
 public Download()
 {
 }

 public Download(string title, string url)
 {
 this.Title = title;
 this.URL = url;
 }

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

77

 public string Title { get; set; }
 public string URL { get; set; }
}

The Download class consists of two properties, Title and URL, which represent the title of the file being
downloaded and the URL to the file. The overloaded constructor of the Download class accepts title and url
parameters and sets the corresponding properties.

Sample data needed to run the application is created in the Page_Load event handler, and the data is then bound
with the GridView. Listing 3-8 shows how this is done.

Listing 3-8. Binding Sample Data with the GridView

protected void Page_Load(object sender, EventArgs e)
{
 List<Download> items = new List<Download>();
 items.Add(new Download("SQL Server Backup Tool", "products/Product1.aspx"));
 items.Add(new Download("Visual Studio Add-In", "products/Product2.aspx"));
 items.Add(new Download("Understanding DNA Architecture", "Paper-Topic1.aspx"));
 items.Add(new Download("In-depth XML and JSON Serialization", "Paper-Topic2.aspx"));
 items.Add(new Download("Data Access Component", "Component1-comp.aspx"));
 items.Add(new Download("Mass Mailing Component", "Component2-comp.aspx"));
 GridView1.DataSource = items;
 GridView1.DataBind();
}

The code inside the Page_Load event handler creates a generic List of Download objects. It then adds a few
sample Download objects to the items generic List. Notice the URLs of the files being added. The product downloads
are stored in the Products folder. The white paper URLs begin with a prefix of Paper and the software-component-
related download URLs end with –comp. These URLs allow you to use and test many of the attribute selectors
discussed earlier in this section.

Now add the jQuery code shown in Listing 3-9 that hides or shows GridView rows.

Listing 3-9. Using jQuery Attribute Selectors

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 switch ($("#DropDownList1").val()) {
 case "A":
 $("#GridView1 tr a").parent().css("display", "block");
 break;
 case "P":
 $("#GridView1 tr a[href *= 'products/']").parent().css("display", "block");
 $("#GridView1 tr a[href |= 'Paper']").parent().css("display", "none");
 $("#GridView1 tr a[href $= '-comp.aspx']").parent().css("display", "none");
 break;
 case "WP":
 $("#GridView1 tr a[href *= 'products/']").parent().css("display", "none");
 $("#GridView1 tr a[href |= 'Paper']").parent().css("display", "block");
 $("#GridView1 tr a[href $= '-comp.aspx']").parent().css("display", "none");
 break;

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

78

 case "C":
 $("#GridView1 tr a[href *= 'products/']").parent().css("display", "none");
 $("#GridView1 tr a[href |= 'Paper']").parent().css("display", "none");
 $("#GridView1 tr a[href $= '-comp.aspx']").parent().css("display", "block");
 break;
 }
 evt.preventDefault();
 })
})

The main jQuery code goes inside the click event handler of the Show button (Button1). The switch statement
checks for the value of the item selected in the drop-down list. So far, you used only one selector while working with
elements. In this example, you will use multiple selectors. For example, consider the selector $("#GridView1 tr a").
This selector consists of an ID selector that filters elements for an ID equal to GridView1. It also uses a descendant
selector to select the <tr> elements that are descendants of GridView1. The descendant selector (you’ll learn more
later in this chapter) is represented by #GridView1 followed by a white space and then followed by <tr>. All the <a>
elements that are descendants of the <tr> element are filtered. Using a descendant selector ensures that only the links
housed inside the GridView rows are selected for further manipulation.

If the selected value is "A", set the display CSS property of all the table rows containing the anchor elements to
block using the css() method. The hyperlinks are housed inside table rows; for proper functioning of the application,
you should hide the entire table row by using the parent() method on the selected anchor elements. Doing so will
return table rows that are parents of the anchor elements. In this case, you simply use a combination of an ID selector
and element selector to select all anchor elements. The code ensures that all types of downloads (products, white
papers, and components) are shown in the grid.

If the selected value is "P", use the Attribute Contains selector (*=) to match all the anchor elements with an href
attribute that contains the string "products/". In the download URLs, only two entries match this criterion. You then
set the display of those table rows to block.

Use the Attribute Contains Prefix selector (|=) to select white paper downloads. Notice that URLs for white papers
begin with "Paper-", but you specified only "Paper" in the selector because the Attribute Contains Prefix selector
selects values that are equal to or begin with the specified value plus a hyphen (-). The relevant table rows are kept
hidden by setting their display CSS property to none.

Finally, filter the component-related links using the Attribute Ends With selector ($=) and hide their parent
table rows just like the white paper links. Recall that the component links end with –comp, so the Attribute Ends With
selector uses –comp in the selection criteria.

The other cases of the switch block ("WP" and "C") are similar to the "P" case block discussed previously. The
only difference is that they show the white paper and component links and hide the others.

Note ■ You will learn more about the parent() method in Chapter 6. For the sake of this example, it is enough to know

that parent() method refers to the parent DOM element of an element under consideration.

Child Filters
Child filters allow you to work with child elements of their respective parents. Using child filters, you can get specific
child elements such as first child, last child, and a child at a specific position. Table 3-7 shows the jQuery child filters.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

79

Remember that child filters use a 1-based index to specify element positions. Child filters can be grouped as
“child” selectors and “type” selectors. The former selectors return any element type (here element type refers to the
tag name of the element such as p, span, and td) that meets the child selector criteria. The later selectors, on the
other hand, return an element that meets the child selector criteria, additionally ensuring that the element is of a
specific type.

To understand how child filters are used, let’s develop the ASP.NET Web Forms application shown in Figure 3-8.

Table 3-7. jQuery Child Filters

Child Filter Description Example

First child selector Selects elements that are first child elements of
their parent.

$("td:first-child")

Last child selector Selects elements that are last child elements of
their parent.

$("td:last-child")

Nth-child selector Selects elements that are n-th child elements
of their parent where n is a 1-based index
number.

$("td:nth-child(3)")

Nth-last-child selector Selects elements that are n-th child elements
of their parent, counting back from the last
element.

$("td:nth-last-child(3)")

Only child selector Selects elements that are the only child
elements of their parent.

$("div:only-child")

First-of-type selector Selects elements that are the first among siblings
of the same element type.

$("div:first-of-type")

Last-of-type selector Selects elements that are the last among siblings
of the same element type.

$("div:last-of-type")

Nth-of-type selector Selects elements that are the n-th child of their
parent with respect to other siblings of the same
element type.

$("div:nth-of-type(3)")

Nth-last-of-type selector Selects elements that are the n-th child,
counting from the last element, of their parent,
with respect to other siblings of the same
element type.

$("div:nth-last-of-type(3)")

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

80

The application consists of a Web Form that displays records from the Employee table in a GridView control.
At the bottom of the Web Form are four buttons—First, Previous, Next, and Last—that provide VCR navigation to the
grid. Depending on the current navigation position, that record is rendered with a highlight.

To develop this application, create an empty ASP.NET Web Forms project and add a Web Form to it. Place a
GridView control and a SQL Data Source control on the Web Form. Configure the SQL Data Source control to fetch the
EmployeeID, FirstName, and LastName columns from the Employees table of the Northwind database (see Figure 3-9).

Figure 3-8. Application using child filters

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

81

Drag and drop four buttons (Button1, Button2, Button3, and Button4) at the bottom of the Web Form, as shown
in Figure 3-8. Then add a CSS file to the project and define the following CSS class in it:

.HighlightedRow
{
 background-color:navy;
 color:White;
}

The HighlightedRow CSS class defines the look and feel of the row being highlighted. Add a reference to this CSS
file as well as to the jQuery library in the head section of the Web Form. Then add a <script> block and key in the
code shown in Listing 3-10.

Figure 3-9. Configuring SQL Data Source to fetch data from Employees table

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

82

Listing 3-10. jQuery Code Using Child Filters

var counter = 1;
$(document).ready(function () {
 $("#Button1").click(function (event) {
 counter = 1;
 $("#GridView1 tr").removeClass("HighlightedRow");
 $("#GridView1 tr:first-child").addClass("HighlightedRow");
 event.preventDefault();
 });

 $("#Button2").click(function (event) {
 if (counter > 1) {
 counter--;
 }
 $("#GridView1 tr").removeClass("HighlightedRow");
 $("#GridView1 tr:nth-child(" + counter + ")").addClass("HighlightedRow");
 event.preventDefault();
 });

 $("#Button3").click(function (event) {
 if (counter < $("#GridView1 tr").length) {
 counter++;
 }
 $("#GridView1 tr").removeClass("HighlightedRow");
 $("#GridView1 tr:nth-child(" + counter + ")").addClass("HighlightedRow");
 event.preventDefault();
 });

 $("#Button4").click(function (event) {
 counter = $("#GridView1 tr").length;
 $("#GridView1 tr").removeClass("HighlightedRow");
 $("#GridView1 tr:last-child").addClass("HighlightedRow");
 event.preventDefault();
 });
})

The code shown in Listing 3-10 begins by declaring a global variable (counter) to keep track of the current record
being highlighted. The ready() method handler wires event handlers for the click events of Button1, Button2,
Button3, and Button4, respectively.

When the First button is clicked (Button1), the counter variable is set to 1. The counter is set to 1 because you
don’t want the table header to be included during the navigation. All the table rows of the grid are selected using the
$("#GridView1 tr") selector and then the HighlightedRow CSS class is removed from them using the removeClass()
method. This way, if any row was highlighted previously it will lose its highlight. Then the first child selector is used to
select the first row of the table (the header row) and HighlightedRow class is applied to it using the addClass() method.

In the click event handler of the Previous button (Button2), the counter variable is decremented. This time, the
nth child selector is used to select a table row at index equal to the counter value. The code in the click event handler
of Button3 is quite similar to that of Button2 except that the counter variable is incremented because it is the Next
button.

In the click event of the Last button, the counter variable is set to the total number of rows in the grid. The Last
child selector is then used to select the last table row. The last table row is highlighted by applying the HighlightedRow
class to the row using the addClass() method.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

83

Content Filters
Content filters allow you to filter elements based on their content. For example, you can select elements that contain
certain text or you can select elements that contain some other elements. Table 3-8 lists all the content filters.

Table 3-8. Content Filters

Content Filter Description Example

Contains selector Selects all elements that contain the specified text. $("p:contains('ASP.NET')")

Empty selector Selects all the elements that are empty (i.e., the elements that
don’t have any child elements).

$("div:empty")

Has selector Selects all the elements that contain elements matching a
given selector.

$("div:has(span)")

Parent selector Selects all the elements that are parents (i.e., contain one or
more child elements).

$("div:parent")

To use some of the content filters, you will develop an example Web Form (see Figure 3-10).

Figure 3-10. Application using content filters

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

84

The application consists of a Web Form that has a Label, TextBox, and a Button at the top and a GridView below.
The text box allows you to enter some search phrase. When the Search button is clicked, notes for all the Employee
records are searched for the specified text. The table row of those Employee records that contains the search phrase is
highlighted to indicate the successful search.

To develop this application, create an empty Web Forms project and add a Web Form in it. Place a Label, a
TextBox, and a Button at the top of the Web Form as shown in Figure 3-10. Drag and drop a SQL Data Source control
and configure it to select the EmployeeID, FirstName, LastName, and Notes columns from the Employees table. Then place
a GridView below the SQL Data Source and set its data source to the SQL Data Source control you just configured.
Add a single TemplateField to the GridView and design the template as shown in Listing 3-11.

Listing 3-11. GridView TemplateField

<asp:TemplateField HeaderText="Employee Details">
 <ItemTemplate>
 <table cellpadding="3" cellspacing="0">
 <tr><td>
 <asp:Label ID="Label1" runat="server" Text='<%# Eval("EmployeeID") %>'></asp:Label>
 </td></tr>
 <tr><td>
 <asp:Label ID="Label2" runat="server" Text='<%# Eval("FirstName") %>'></asp:Label>

 <asp:Label ID="Label3" runat="server" Text='<%# Eval("LastName") %>'></asp:Label>
 </td> </tr><tr><td>
 <p><%# Eval("Notes") %></p>
 </td>
 </tr>
 </table>
 </ItemTemplate>
</asp:TemplateField>

Although the template markup is simple, notice that the Notes column is being displayed in a paragraph (<p>)
element. The other columns are displayed using <asp:Label>. Next, add a <script> reference to the jQuery library
and also add a <script> block for writing your jQuery code. Then key in the code shown in Listing 3-12 inside the
<script> block.

Listing 3-12. Using Content Filters

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 var searchString = $("#TextBox1").val();
 $("#GridView1 tr").removeClass("HighlightedRow");
 $("#GridView1 tr:has(p:contains('" + searchString + "'))").addClass("HighlightedRow");
 evt.preventDefault();
 });
});

The code wires a click event handler for the Search button (Button1). The click event handler retrieves the
value entered in the search text box using the ID selector and val() method. It then calls the removeClass() method
on all the table rows inside GridView1 to remove any highlight from the previous application run. Remember that the
searching should happen only within the Notes column. The code, therefore, selects only those table rows that have a
paragraph element containing the specified text.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

85

Notice that the :has() and :contains() content filters are used in nested fashion to select the desired rows.
The searchString is passed to the :contains() filter so that all the <p> elements containing the searchString are
selected. Further, the result of :contains() is fed to :has() filter. This way, the <tr> elements that have <p> elements
containing the searchString get filtered. The HighlightedRow CSS class is applied to the selected table rows using the
addClass() method.

Form Filters
Form selectors allow you to select <form> elements based on their type (such as text box, check box, and radio button)
or their status (such as selected, checked, and disabled). Form selectors are widely used when developing data-driven
web applications and also when data-bound ASP.NET controls, such as GridView and DetailsView, are being used.
Table 3-9 lists all the available Form selectors.

Table 3-9. Form Selectors

Form selector Description Example

Button selector Selects all <button> elements as well as <input> elements of the
type button.

$("input:button")

Checkbox selector Selects all <input> elements that are of type checkbox. $("input:checkbox")

Checked selector Selects all checkboxes, radio buttons, and select elements that
are selected.

$("input:checked")

Disabled selector Selects all the form elements that are disabled. $("input:disabled")

Enabled selector Selects all the form elements that are enabled. $("input:enabled")

File selector Selects all <input> elements that are of type file. $("input:file")

Focus selector Selects an element if it is having focus. $(":focus")

Image selector Selects all <input> elements that are of type image. $("input:image")

Input selector Selects all the <input> elements. $(":input")

Password selector Selects all the <input> elements that are of type password. $("input:password")

Radio selector Selects all the <input> elements that are of type radio. $("input:radio")

Reset selector Selects all the <input> elements that are of type reset. $("input:reset")

Selected selector Selects all the <option> elements that are selected. $(":selected")

Submit selector Select all the <input> elements that are of type submit. $("input:submit")

Text selector Selects all the <input> elements whose type attribute is text. $("input:text")

To understand how form selectors can be used, you will develop a web application as shown in Figure 3-11.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

86

The application consists of a Web Form that has a GridView on it. The GridView is bound with the Employees
table of the Northwind database. In all, the GridView has seven columns and exhibits the following features:

The first column is a • TemplateField that has a CheckBox placed in its ItemTemplate and
HeaderTemplate. You can select multiple rows of the GridView by checking the respective
check box.

Clicking the header check box toggles the checked status of all the check boxes. •

The second column is a • TemplateField with a RadioButton control placed in its
ItemTemplate. Because ASP.NET generates a unique ID and name for all the constituent
controls of a GridView, all the radio buttons behave in an independent manner, and you can
select multiple radio buttons from the GridView. By using jQuery code, however, you ensure
that only one radio button is selected at a time.

Columns three through six are • TemplateField columns and display the EmployeeID,
FirstName, LastName and Country columns.

The • Country column has a DropDownList in its EditItemTemplate that is bound with distinct
country names from the Employees table. The DropDownList also has a default item, Please
Select, and actual countries get appended to it.

The last column is a • CommandField of type Edit, Update, Cancel.

Figure 3-11. Application using form selectors

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

87

When a grid row is in edit mode, jQuery code ensures that some value is entered in the •
FirstName and LastName text boxes, and a country other than the default value is selected in
the DropDownList. If no data is entered in the text boxes, an error message is displayed to the
user in an alert dialog.

At the bottom of the Web Form is an • ImageButton (not shown in the figure) that simply
displays how many check boxes and radio buttons are selected.

Although this example doesn’t do anything special with the rows selected, by using a check box or radio button,
you can access them from the server-side code for further processing.

To develop this application, begin by creating an empty ASP.NET Web Forms application. Add a Web Form to
it and place two SQL Data Source controls on it. Configure the first SQL Data Source control (SqlDataSource1)
to select EmployeeID, FirstName, LastName, and Country columns from the Employees table. Configure the other
SQL Data Source control (SqlDataSource2) to select distinct Country rows from the Employees table. Then place a
GridView on the Web Form and bind it with SqlDataSource1. Add TemplateField columns to the GridView, as shown
in Figure 3-11, and data bind them with the respective columns of the Employees table.

While designing the first column, set the ID of the CheckBox in the ItemTemplate to chkRow and ID of the
CheckBox in the HeaderTemplate to chkHeader. Similarly, set the ID of the RadioButton control placed inside the
ItemTemplate of the second column to radRow. Also, set the ID property of the FirstName text box, LastName text box,
and Country drop-down list to TextBox1, TextBox2, and DropDownList1, respectively. Listing 3-13 shows the complete
markup for the GridView templates.

Listing 3-13. GridView Markup

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False" CellPadding="10"
DataKeyNames="EmployeeID" DataSourceID="SqlDataSource1">
 <Columns>
 <asp:TemplateField>
 <HeaderTemplate>
 <asp:CheckBox ID="chkHeader" runat="server" />
 </HeaderTemplate>
 <ItemTemplate>
 <asp:CheckBox ID="chkRow" runat="server" />
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:RadioButton ID="radRow" runat="server" />
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID" InsertVisible="False"
ReadOnly="True" SortExpression="EmployeeID" />
 <asp:TemplateField HeaderText="FirstName" SortExpression="FirstName">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox1" runat="server" Text='<%# Bind("FirstName") %>'></asp:TextBox>
 </EditItemTemplate>
 <ItemTemplate>
 <asp:Label ID="Label2" runat="server" Text='<%# Bind("FirstName") %>'></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

88

 <asp:TemplateField HeaderText="LastName" SortExpression="LastName">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox2" runat="server" Text='<%# Bind("LastName") %>'></asp:TextBox>
 </EditItemTemplate>
 <ItemTemplate>
 <asp:Label ID="Label3" runat="server" Text='<%# Bind("LastName") %>'></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Country" SortExpression="Country">
 <EditItemTemplate>
 <asp:DropDownList ID="DropDownList1" runat="server" DataSourceID="SqlDataSource2"
DataTextField="Country" DataValueField="Country" SelectedValue='<%# Bind("Country") %>'
AppendDataBoundItems="True">
<asp:ListItem>Please select</asp:ListItem>
 </asp:DropDownList>
 </EditItemTemplate>
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server" Text='<%# Bind("Country") %>'></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:CommandField ButtonType="Button" ShowEditButton="True" />
 </Columns>
</asp:GridView>

Notice that the Edit, Update, and Cancel CommandField has ButtonType property set to Button. This way, the
GridView will emit <input> tags with type set to submit.

Once the GridView is designed, add an ImageButton at the bottom of the Web Form and set its ImageUrl property
to some image. Now add a <script> reference to jQuery library and also add a <script> block. Key in the jQuery code
shown in Listing 3-14 in the <script> block.

Listing 3-14. jQuery Form Selectors for Check Box and Radio Button Functionality

$(document).ready(function () {
 $("#GridView1 input:checkbox[name$='chkHeader']").click(function () {
 if ($("#GridView1 input:checkbox[name$='chkHeader']").is(":checked")) {
 $("#GridView1 input:checkbox").prop("checked", true);
 }
 else {
 $("#GridView1 input:checkbox").prop("checked",false);
 }
 });
 $("#GridView1 input:radio").click(function (evt) {
 var currentRadioId = this.id;
 $("#GridView1 input:radio").each(function () {
 if (this.id != currentRadioId) {
 $(this).prop("checked",false);
 }
 });
 });

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

89

$("#form1 input:image").click(function (evt) {
 var chkCount = $("#GridView1 input:checkbox:checked").length;
 var radCount = $("#GridView1 input:radio:checked").length;
 alert(chkCount + " checkboxes and " + radCount + " radio buttons are selected!");
 evt.preventDefault();
 });
});

The code shown in Listing 3-14 consists of three important pieces: the click event handler of the header check
box, the click event handler of the radio buttons, and the click event handler of the image button. The click event
handler of the header check box toggles the checked state of all the check boxes to checked or unchecked, depending
on the state of chkHeader check box. Notice that a check box selector is used along with an Attribute Ends With
selector to get the chkHeader check box. Once the reference to chkHeader is obtained a click event handler is wired to
its click event using the click() method.

Inside the click event handler, you see whether chkHeader is checked by using the is() method. The is()
method accepts a selector (:checked in this case) and returns true if any of the elements from the current matched
set match with the specified selector. In this case, if chkHeader is checked, all check boxes from the grid are selected
using the :checkbox selector. Once selected, their checked DOM property is set to true using the prop() method.
The prop() method accepts the name of the DOM element property that you want to set (checked in this case) and its
value (true in this case). If chkHeader is not checked, the checked property of all the check boxes is set to false.

Note ■ You will learn more about the prop()and is() methods in Chapter 5 and Chapter 6, respectively.

The click event handler of the radio button is attached using the :radio selector. Inside the click event handler,
the ID of the radio button being clicked is retrieved using the this.id property and is stored in the currentRadioId
variable. Because you need to ensure that only one radio button is selected, you iterate through all the radio buttons
using the each() method and :radio selector. The each() method accepts a function that gets executed for every
matched element. Inside the each() function, this refers to the element being iterated. If a radio button is not the one
that is being clicked, its checked property is set to false using the prop() method. This way, only the radio button that
is being clicked is checked; others are unchecked.

The image button is selected using the :image selector and a click event handler is wired to its click event.
Inside the click event handler, you find out how many check boxes and radio buttons are checked using the
:checkbox:checked and :radio:checked selectors. The former selector returns all the check boxes that are checked
and the latter returns all the radio buttons that are checked. The length property returns the number of matched
elements in each of the cases. An alert() is then displayed informing the user about the number of check boxes and
radio buttons selected.

This completes the check box and radio button–related functionality of the Web Form. Let’s add the validation
logic inside the ready() handler to ensure that text boxes and drop-down lists contain valid values. Listing 3-15 shows
the jQuery code responsible for this validation.

Listing 3-15. Validating Text Box Values and Drop-down List Selection

$("#form1").submit(function (evt) {
 if ($("#GridView1 input:text").length > 0) {
 if ($("#form1 :input[name$='TextBox1']").val() == "") {
 alert("Please enter first name!");
 evt.preventDefault();
 }

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

90

 if ($("#GridView1 :input[name$='TextBox2']").val() == "") {
 alert("Please enter last name!");
 evt.preventDefault();
 }
 if ($("#GridView1 :selected").val() == "Please select") {
 alert("Please select a country!");
 evt.preventDefault();
 }
 }
});

The code shown in Listing 3-15 begins by wiring an event handler function to the submit event of the form.
This is done by using the ID selector and submit() method. The submit event is raised when a form is submitted to
the server. Inside, the event handler first check whether any text box is being displayed. This is necessary because
GridView renders text boxes and drop-down lists only in edit mode. If the :text selector returns more than zero
elements, the grid is in edit mode.

You can then use the :input selector in combination with the Attribute Ends With selector to get TextBox1. You
use the Attribute Ends With selector because at runtime GridView generates names of the GridView1$ctl02$TextBox1
form. Using the Attribute Ends With selector allows you to pick the text box by its name because the text box name
gets added at the end.

Once you get a reference to TextBox1 (the FirstName text box), you can check whether it’s empty by using the
val() method. If the text box is empty, you display an alert() to the user and call preventDefault() on the evt
object to cancel the form submission. Similarly, you ensure that the LastName text box also contains some value.

Finally, the :selected selector is used to select the <option> element that is selected in the drop-down list. If the
option is Please Select, an error message is displayed asking the user to select a valid country and the form submission
is cancelled by calling the preventDefault() method on the evt object.

Figure 3-12 shows how validation error messages are displayed.

Figure 3-12. Validation of text boxes and drop-down list in action

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

91

Table 3-10. List of Hierarchy Selectors

Hierarchy Selector Description Example

Child selector Selects all the child elements of a parent
that are direct children.

$("#GridView1 > tr") will select all
<tr> elements that are direct children of
#GridView1

Descendant selector Selects all the elements that are
descendants of an ancestor element.

$("#GridView td") will select all the
<td> elements that are descendants of
#GridView1

Next Adjacent selector Selects all the elements matching a
selector that immediately follow a
given sibling.

$("div + span") will select a that is
immediately next to a <div>.

Next Siblings selector Selects all the elements matching a
selector that follow a given sibling.

$("div ~ span") will select all the
elements that are after a <div>.

Hierarchy Filters
As the name suggests, hierarchy selectors allow you to work with child and sibling elements. You might be surprised
to know that you already used one of the hierarchy selectors in the preceding example. Whenever you used
$("#GridView1 tr"), you were actually using one of the hierarchy selectors: the Descendant selector. Table 3-10 lists
all the hierarchy selectors available to you.

To understand how hierarchy selectors are used, let’s develop the web application shown in Figure 3-13.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

92

The application consists of a Web Form that represents a data entry screen for a hypothetical table. Various data
entry controls are grouped using Panel server controls. When the page loads, hierarchy selectors are used to access
various form elements, and some CSS properties (such as border and background color) are applied to them. The
markup of the Web Form relevant to this example is shown in Listing 3-16.

Listing 3-16. Web Form Markup

<form id="form1" runat="server">
<asp:Panel ID="Container" runat="server">
<asp:Panel ID="Panel1" runat="server" GroupingText="Basic Details">
<asp:Label ID="Label5" runat="server" Text="First Name : " Width="100px"
style="text-align:right"></asp:Label>
<asp:TextBox ID="TextBox6" runat="server"></asp:TextBox>

Figure 3-13. Application using hierarchy selectors

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

93

<asp:Label ID="Label6" runat="server" Text="Last Name : " Width="100px"
style="text-align:right"></asp:Label>
<asp:TextBox ID="TextBox7" runat="server"></asp:TextBox>
</asp:Panel>

<asp:Panel ID="Panel2" runat="server" GroupingText="Contact Information" style="text-align:center">
<asp:Panel ID="Panel3" runat="server" GroupingText="Address" Width="300px">
<asp:Label ID="Label1" runat="server" Text="Street 1 : " Width="100px"
style="text-align:right"></asp:Label>
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:Label ID="Label2" runat="server" Text="Street 2 : " Width="100px"
style="text-align:right"></asp:Label>
<asp:TextBox ID="TextBox2" runat="server"></asp:TextBox>

<asp:Label ID="State" runat="server" Text="State : " Width="100px"
style="text-align:right"></asp:Label>
<asp:TextBox ID="TextBox3" runat="server"></asp:TextBox>

<asp:Label ID="Label3" runat="server" Text="Pin Code : " Width="100px"
style="text-align:right"></asp:Label>
<asp:TextBox ID="TextBox4" runat="server"></asp:TextBox>

<asp:Label ID="Label4" runat="server" Text="Landmarks : " Width="100px"
style="text-align:right"></asp:Label>

<asp:TextBox ID="TextBox5" runat="server" TextMode="MultiLine" Width="250px"></asp:TextBox>
</asp:Panel>
<asp:Panel ID="Panel4" runat="server" GroupingText="Telephones" Width="300px">
<asp:Label ID="Label7" runat="server" Text="Home :" Width="100px"></asp:Label>
<asp:TextBox ID="TextBox8" runat="server"></asp:TextBox>

<asp:Label ID="Label8" runat="server" Text="Office :" Width="100px"></asp:Label>
<asp:TextBox ID="TextBox9" runat="server"></asp:TextBox>
</asp:Panel>
<asp:Panel ID="Panel5" runat="server" GroupingText="Social Networking" Width="300px">
<asp:Label ID="Label9" runat="server" Text="Facebook :" Width="100px"></asp:Label>
<asp:TextBox ID="TextBox10" runat="server"></asp:TextBox>

<asp:Label ID="Label10" runat="server" Text="Twitter :" Width="100px"></asp:Label>
<asp:TextBox ID="TextBox11" runat="server"></asp:TextBox>

<asp:Label ID="Label11" runat="server" Text="Google + :" Width="100px"></asp:Label>
<asp:TextBox ID="TextBox12" runat="server"></asp:TextBox>
</asp:Panel>
</asp:Panel>

</asp:Panel>
<asp:Button ID="Button1" runat="server" Text="Submit" />
</form>

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

94

There are six Panel controls in all. The outermost panel houses two sibling Panel controls: Basic Details and
Contact Information. The Basic Details panel contains Label and TextBox controls for entering basic details such as
First Name and Last Name. The Contact Information panel houses three child Panel controls: Address, Telephones,
and Social Networking. Notice that the GroupingText property of the Panel control governs the caption of the
respective panel.

The jQuery code that makes the application functional is shown in Listing 3-17.

Listing 3-17. jQuery Code Using Hierarchy Selectors

$(document).ready(function () {
 $("#Container > div").css("border", "solid navy 2px");
 $("#Panel2 fieldset > div").css("border", "solid red 2px").css("margin", "10px");
 $("span + :text").css("background-color", "silver").css("border", "solid gray 1px");
 $("span ~ :text").css("font-family", "courier");
})

The Container panel has an ID set to Container. The second line of code selects all the direct child <div>
elements of this Container panel. Remember that the ASP.NET Panel control is rendered as a <div> element in the
browser. Because you want direct child <div> container elements, use the Child selector, which furnishes two panels
(Panel1, Basic Details and Panel2, Contact Information); then set their border color to navy.

To get the panels that are inside the Contact information panel (Panel2), you again use the Child selector
in combination with the Descendant selector. You have set the GroupingText property of all the panels to some
meaningful text (Basic Details, Contact Information, and so on). When you set the GroupingText property, ASP.NET
emits the <fieldset> and <legend> elements, as shown here:

<div id="Panel2" style="text-align:center">
 <fieldset>
 <legend>
 Contact Information
 </legend>
 <div id="Panel3" style="width:300px;">
...

So Panel3, Panel4, and Panel5 are not direct child elements of Panel2. They are child elements of the <fieldset>
element. Hence, you need to use the <fieldset> element in the selector. Once selected, their border is set to red.

The Next Adjacent selector is now used to select all the text boxes. In this Web Form, Label controls and TextBox
controls are placed side by side. If you want to select all the text boxes that are immediately next to labels, "span +
:text" will do the job. The "span + :text" selector simply grabs all the text boxes that are placed immediately after
span elements. Notice that because you used the Next Adjacent selector, the textarea won’t get selected because there
is a line brake (
) between the Landmarks label and the textarea (they are not adjacent. So the "span + :text"
selector returns 11 text boxes (2 from Panel1, 4 from Panel3, 2 from Panel4, and 3 from Panel5). You then set the
background color for these text boxes to silver and the border color to gray.

Finally, you used the Next Siblings selector "span ~ :text". This selector simply grabs all the text boxes that are
anywhere after the span elements. Because the Next Siblings selector selects all the next siblings of an element, this
time even the textarea will be selected. You then set the font-family of all the text boxes to courier.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

95

Table 3-11. Visibility Filters

Visibility selector Description Example

Hidden selector Selects all the elements that are hidden. $("tr:hidden")

Visible selector Selects all the elements that are visible. $("tr:visible")

To understand how visibility filters can be used, you’ll develop the web application shown in Figure 3-14.

Figure 3-14. Application using visibility filters

The application consists of a Web Form that houses a Button, a Label and a GridView control. The GridView
control displays all the records from the Employees table by default. Clicking a table cell (<td> element) hides that
complete row. The Label at the top shows the number of table rows that are visible and hidden. Clicking the Show All
button makes all the table rows visible.

Visibility Filters
Visibility filters allow you to select either hidden or visible elements. An element is considered hidden if it has the CSS
display property set to none, it is an <input> element with type hidden, or its height and width are both 0. The setting
of the CSS visibility property is not taken into account when deciding whether an element is visible or hidden. The
selectors included in this category are given in Table 3-11.

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

96

To develop this application, create an empty ASP.NET Web Forms application. Add a Web Form to it and design
it as shown in Figure 3-14. The GridView is bound with SQL Data Source control, so add one to your Web Form and
configure it to select the EmployeeID, FirstName, LastName and Country columns from the Employees table.

Add a <script> reference and a <script> block to the jQuery library. Key in the code shown in Listing 3-18 in the
<script> block.

Listing 3-18. jQuery Code Using Visibility Filters

$(document).ready(function () {
 $("td").click(function (evt) {
 $(evt.target).parent().css("display", "none");
 var visibleCount = $("tr:visible").length;
 var hiddenCount = $("tr:hidden").length;
 $("#Label1").html(visibleCount + " rows are visible.
" + hiddenCount + " rows are
hidden.");
 });
 $("#Button1").click(function (evt) {
 $("tr").css("display", "block");
 var visibleCount = $("tr:visible").length;
 var hiddenCount = $("tr:hidden").length;
 $("#Label1").html(visibleCount + " rows are visible.
" + hiddenCount + " rows are
hidden.");
 evt.preventDefault();
 });
});

The code wires a click event handler for all the table cells by selecting the element selector for <td> elements
and then attaching an event handler function using the click() method. Even if a user is clicking a table cell, you
want to hide that entire row. Inside the click event handler, you grab the parent row of the table cell being clicked
using the parent() method and then set its display CSS property to none. This way, the entire row will be hidden.
You then use the :visible selector and :hidden selector to find out the total number of visible and hidden table rows.
A message is displayed in the Label1 span element, informing the user about the hidden and visible rows.

The click event handler of the Show All button (Button1) simply sets the display CSS property of all the <tr>
elements to block. This way all the table rows are made visible again. Details about the visible and hidden rows are
again shown in Label1.

Using Selectors in ASP.NET MVC
So far in this chapter, you used various jQuery selectors in ASP.NET Web Forms applications. Let’s conclude this
chapter with an example that illustrates how they are used in ASP.NET MVC applications. Before you actually develop
this example, take a look at some of the commonly used HTML helpers and the HTML tags emitted by them
(see Table 3-12).

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

97

As in the case of server controls, keep in mind the HTML tags outputted by these helpers while accessing them in
jQuery code.

In this section, you develop an MVC view like the one shown in Figure 3-15.

Table 3-12. ASP.NET MVC HTML Helpers and HTML Elements

HTML Helper Server-side Tag HTML Tag

ActionLink Html.ActionLink() <a>

Form Html.BeginForm()
Html.EndForm()

<form>
</form>

Checkbox Html.CheckBox()
Html.CheckBoxFor()

<input type="checkbox" />

DropDownList Html.DropDownList()
Html.DropDownListFor()

<select>

ListBox Html.ListBox()
Html.ListBoxFor()

<select multiple="multiple">

Password Html.Password()
Html.PasswordFor()

<input type="password" />

RadioButton Html.RadioButton()
Html.RadioButtonFor()

<input type="radio" />

TextArea Html.TextArea()
Html.TextAreaFor()

<textarea>

TextBox Html.TextBox()
Html.TextBoxFor()

<input type="text" />

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

98

The view represents a typical contact us form that allows the user to enter a first name, last name, e-mail address,
subject, message, and a reason for the contact. Clicking the Send button sends the contact form details to a web
site administrator through an email. When a user clicks the Send button, jQuery code ensures that the FirstName,
LastName, Email, and Subject text boxes have some value entered and the Reason drop-down list has a reason selected.

To begin developing this application, create a new ASP.NET MVC application based on the empty project
template. Then add HomeController to the Controllers folder and key in the action methods as shown in Listing 3-19.

Listing 3-19. Index() and ProcessForm() Action Methods

public ActionResult Index()
{
 List<string> reasons = new List<string>();
 reasons.Add("Please select");
 reasons.Add("General Feedback");
 reasons.Add("Billing related");
 reasons.Add("Technical query");
 SelectList list = new SelectList(reasons);
 ViewData["Reason"] = list;
 return View();
}

Figure 3-15. Contact Us view showing validation errors

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

99

public ActionResult ProcessForm(ContactForm data)
{
 string msg = "";
 msg += data.Message + "\n\n";
 msg += "—" + data.FirstName + " " + data.LastName + "\n\n";
 SmtpClient client = new SmtpClient();
 client.Send(data.Email, "admin@somewebsite.com", data.Subject, msg);
 return View();
}

The Index() action method creates a generic list of strings for storing the options for the Reason drop-down
list. It then forms a SelectList object based on this generic List. The SelectList object is stored in a ViewData key
named Reason. It then returns the Index view.

The Contact Us form is submitted to the ProcessForm() action method, and the method accepts a parameter of
type ContactForm. The ContactForm class is a simple class with six public properties corresponding to the form fields.
It is added to the Models folder:

public class ContactForm
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public string Subject { get; set; }
 public string Message { get; set; }
 public string Reason { get; set; }
}

Inside the ProcessForm() method, an e-mail message is formed using various properties of the ContactForm
class. Although not shown in the code above, in a real world application you should perform validations on
ContactForm properties to ensure that the data is in correct format. Then an instance of the SmtpClient class is
created to send an e-mail. The Send() method of SmtpClient accepts four parameters—sender, recipient, subject,
and message—and sends an e-mail to the recipient. Of course, you should change the recipient parameter according
to your e-mail setup. The ProcessForm() method then returns the ProcessForm view informing the user about the
successful form submission.

Add the Index view to the project and key in the markup shown in Listing 3-20.

Listing 3-20. Index view Markup

<h1>Contact Us</h1>
 @using(Html.BeginForm("ProcessForm","Home",FormMethod.Post)){
 <table>
 <tr>
 <td>@Html.Label("FirstName")</td>
 <td>@Html.TextBox("FirstName")</td>
 </tr>
 <tr>
 <td>@Html.Label("LastName")</td>
 <td>@Html.TextBox("LastName")</td>
 </tr>

http://admin@somewebsite.com/

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

100

 <tr>
 <td>@Html.Label("Email")</td>
 <td>@Html.TextBox("Email")</td>
 </tr>
 <tr>
 <td>@Html.Label("Subject")</td>
 <td>@Html.TextBox("Subject")</td>
 </tr>
 <tr>
 <td>@Html.Label("Message")</td>
 <td>@Html.TextArea("Message")</td>
 </tr>
 <tr>
 <td>@Html.Label("Reason")</td>
 <td>@Html.DropDownList("Reason")</td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" value="Send" />
 <ul id="message">
 </td>
 </tr>
 </table>
 }

The Index view uses HTML helpers such as Label(), BeginForm(), TextBox(), TextArea(), and DropDownList().
The BeginForm() helper specifies the action method name as ProcessForm, the controller name as Home, and the form
method as Post. Usage of most of the HTML helpers is straightforward. The name parameter provided in all the HTML
helpers indicates the name of the resultant HTML element. Notice that names of various HTML elements match the
various properties of the ContactForm class. This way, MVC model binding can map field values with the ContactForm
properties. Also notice that the DropDownList() helper automatically uses the Reason ViewData object you added
earlier as the source of data to generate <option> elements. The message element is intended to display
validation error messages, if any.

Now add a <script> reference to jQuery and a <script> block in the head section. Add the code shown in
Listing 3-21 to the <script> block.

Listing 3-21. Validating form using jQuery

$(document).ready(function () {
 $("#message").css("color", "red");
 $("input:submit").click(function (evt) {
 $("input:text").each(function () {
 if ($(this).val() == "") {
 $(this).css("border", "1px solid red");
 $("#message").append("Please fill in " + $(this).attr("name") + " field.");
 evt.preventDefault();
 }
 else
 {
 $(this).css("border-width", "0px");
 }
 });

CHAPTER 3 ■ ASP.NET CONTROLS AND JQUERY SELECTORS

101

 if ($(":selected").val() == "Please select") {
 $("select").css("border", "1px solid red");
 $("#message").append("Please select a reason for contacting us.");
 evt.preventDefault();
 }
 else
 {
 $("select").css("border-width", "0px");
 }
 });
});

The ready() handler function selects the message element using the ID selector and sets its color CSS
property to red. It then selects the submit button using the input:submit selector and wires its click event handler.
The click event handler of the submit button selects all the <input> elements with type text using the input:text
selector. The each() method then iterates through the selected text boxes to find out whether a value has been entered
by using the val() method. If a text box doesn’t contain a value, its border is set to red and an element is added to
the using the append() method. The preventDefault() method of the event object is called to prevent the form
submission. If a text box contains a value, its border is removed by setting the border-style CSS property to 0px.

The :selected selector is used to retrieve the <option> element selected in the drop-down list. The val()
method then returns the value of this element. If the value of the selected element is Please Select, the user has not
made a valid selection from the drop-down list. The <select> element is then displayed with a red border. An error
message is also added in the message using the append() method. As before, the form submission is canceled by
calling the preventDefault() method of the evt object. If the drop-down list contains a valid selection, its border is
removed by setting the border-style CSS property to 0px.

Now run the application and test whether the jQuery code performs the necessary validations.

Summary
jQuery selectors provide a powerful and flexible way to select DOM elements that match certain criteria. They can
be categorized in eight main groups: basic selectors, basic filters, child filters, content filters, attribute selectors,
form selectors, hierarchy selectors, and visibility filters. Out of all the available selectors, the basic selectors and form
selectors are the ones widely used in ASP.NET web applications. Working with selectors in a Web Forms application
requires understanding how server controls are mapped to HTML elements.

Once the controls are selected, you often want to process them in some manner. One of the most common tasks
is to handle the events of the selected elements. Although this chapter gave you a peek into jQuery’s event handling
capabilities, there are many more aspects to consider. To that end, the next chapter will take you straight to the heart
of event handling in jQuery.

103

CHAPTER 4

Event Handling

One of the most common uses of jQuery in web applications is event handling. As an ASP.NET developer, you are
already familiar with the concepts of events and event handling. Events raised by ASP.NET server controls, however,
are server-side events. They are raised on the server after postback takes place. Events that you handle using jQuery
are client-side events. JavaScript (and hence jQuery) offers a much richer set of events to developers than ASP.NET
offers on the server side. These events are raised in the client browser and are also handled in the client browser.
Events such as clicking a button, changing a selection from a drop-down list, or entering text into a text box are some
of the examples of client-side events—and there are many more.

Because event handling is one of the most commonly performed tasks in client-side script, jQuery tries to offer
a simplified mechanism to handle events. This chapter discusses several aspects of jQuery event handling in detail.
Specifically, you will learn the following:

What the commonly used JavaScript events are•

How to wire event handlers to events•

How to obtain information about an event•

How to perform advanced operations such as stopping event propagation, passing custom •
data to an event handler, and unwiring event handlers

Overview of Event Handling
An event is some action, usually performed by the end user, on a web page as a whole or on a Document Object Model
(DOM) element contained within the web page. For example, when a web page finishes loading in the browser,
this is an event applicable to the web page as a whole; whereas a user clicking a submit button is an example of an
event being raised on a particular DOM element. Whenever any event is raised, there are a couple of possibilities:

The web page developer might have written some code that deals with that event.•

The event might not have been dealt with by the web page developer.•

The code that deals with an event is referred as an event handler. In the former case, a developer attaches an
event handler to an event through code. This process is also referred to as registering an event handler or wiring an
event handler. If an event has an event handler attached to it, the handler code gets executed whenever that event is
raised. An event can also have more than one event handler; although you may not use this feature frequently, it can
be useful when multiple independent pieces of code are to be conditionally wired to the same event.

If the event doesn’t have an event handler attached with it, it is bubbled up to the parent element to see whether
any other handlers are available. If so, they are executed and the bubbling process continues. Figure 4-1 shows this
event bubbling pictorially.

CHAPTER 4 ■ EVENT HANDLING

104

Figure 4-1 shows a <button> element housed inside a <div> element that is, in turn, placed inside the <body>
of the HTML page. If you click the button, the click event is raised on the <button> element. Once the click event
handler of the button is executed (if one is found), the event is bubbled to the <div> element. If the <div> element has
any click event handler, it gets executed and the event is bubbled up to the <body> element. If the <body> has wired
any click event handler, that also gets executed. Thus, the click event gets bubbled up from the innermost element
(<button>) to the outermost element (<body>).

Note ■ Event bubbling can also be canceled from your code (you’ll learn about it in later sections of the chapter).

Here it is enough to know that some events can potentially be handled at more than one level depending on the DOM

tree structure and nesting.

The events discussed in the remainder of this chapter are grouped into the following categories:

Window and document events•

Mouse events•

Keyboard events•

Form events•

Miscellaneous events•

The window and document events are raised by a browser’s window and document object, respectively. For
example, when a user scrolls the web page in the browser window, the scroll event is raised by the window object.
Along the same lines, when a web page finishes loading in the browser, a load event is raised.

Mouse events are raised when a mouse button is pressed, released or clicked. For example, clicking a mouse
button once raises a click event. Other mouse events include dblclick, mouseup and mousedown. Events related to
drag-and-drop operations are also mouse events, in a way. Drag-and-drop events include events such as dragstart,
drag, dragenter, and drop.

Figure 4-1. JavaScript event bubbling

CHAPTER 4 ■ EVENT HANDLING

105

Keyboard events are raised when a key is pushed down, released, or pressed. Events such as keypress, keydown,
and keyup belong to this category.

Form events are related to HTML form and form fields. For example, the submit event is raised when a form is
submitted from the browser. Events such as submit, input, change, focus, and blur belong to this category.

Miscellaneous events are the events that do not fit into any of the other categories. For example, HTML5 audio
and video elements offer many events, such as play and pause, which notify you when a media file is played or
paused in the browser.

Now that you have a basic understanding of client-side events, let’s go on to the jQuery way of handling events
in the next couple of sections.

Handling and Raising Events
Handling an event involves attaching an event handler code to the event. Traditionally, web developers used HTML
event attributes to attach event handler functions to their respective events. For example, consider the following piece
of HTML markup:

<input id="button1" type="button" onclick ="OnClick()" value="Click Me" />

This markup represents an input element of the button type. Notice that the onclick attribute of the element
is attaching the OnClick() JavaScript function as an event handler for the click event. This way, when the button
is clicked, the OnClick() function gets invoked. The same task can be accomplished using plain JavaScript code,
as follows:

document.getElementById('button1').onclick = OnClick;

Here, you first get a reference to the button using the getElementById() method and then set the onclick
property to a function named OnClick.

jQuery has a more elegant and easy way of attaching event handlers to events. For most of the common events,
such as click, dblclick, and keypress, jQuery offers built-in methods for registering event handlers. For example,
the click() method allows you to wire a click event handler to the click event. In Chapters 2 and 3, you already
used some of these methods. The general syntax of these built-in methods is as follows:

$(<jquery_selector>).event_method(event_handler)

Events are attached to DOM elements. So, the jQuery event methods are called on some DOM elements. These
DOM elements are selected using some jQuery selector such as the ID selector or element selector. For most of the
standard events, jQuery has event methods. Some of the event methods are click(), dblclick(), and keypress().
These methods are discussed in detail later in this chapter. Each event method accepts an event handler as its
parameter. Consider the following code:

$("#button1").click(function () {
 alert('Inside OnClick event handler');
});

The previous code uses an ID selector to select button1. The click() method is then called to register an
anonymous function as a handler for the click event. One immediate advantage of jQuery’s way of attaching event
handlers is that you can attach event handlers to more than one DOM element by selecting them with jQuery
selectors.

Most of the time, an event is raised by some user action and your job is to handle it in your jQuery code using
the technique you just learned. However, sometimes you need to programmatically call registered event handlers.
For example, you may want to toggle the state of check boxes in the form when a button is clicked. One easy way to

CHAPTER 4 ■ EVENT HANDLING

106

accomplish this task is to trigger the click event handler of all those check boxes programmatically. That way, all the
check boxes toggle their checked state. To trigger an event handler programmatically rather than as a result of user
action, you use the same event methods without any parameters. The following line of code makes this clear:

$("#button1").click();

This line of code triggers the button1 click event handler through code.

Obtaining Event Information
Sometimes you need more information about the event being handled inside an event handler. For example, suppose
that you are developing a custom blog engine that has a web page for entering a blog post. For the sake of ease of use,
you want to provide certain shortcuts to the users; for example, Ctrl+S for saving the draft, Ctrl+B to mark the selected
text in bold letters, and so on. In this case, you need to figure out whether the user is holding down the Ctrl key.
Luckily, the event handling mechanism of jQuery passes an event object to all the event handlers that simplify your
job. The Event object exposes several properties and methods that can be used in your code.

Table 4-1 lists some of the commonly used properties of the Event object.

Table 4-1. Properties of the Event Object

Property Description

currentTarget A reference to the current DOM element that is receiving the event within the event bubbling chain.

data An object passed to the event handler while attaching an event handler. Passing the data object
is optional.

pageX The x coordinate of the mouse pointer relative to the left edge of the document.

pageY The y coordinate of the mouse pointer relative to the top edge of the document.

target A reference to the DOM element that initiated the event.

type The type of event; for example, click, keypress, and so on.

which For mouse events, returns the mouse button that was clicked (1—left button, 2—middle button,
and 3—right button). For keyboard events, indicates the key code of the key that was pressed.

altKey Boolean property, returns true if the Alt key is pressed during mouse or keyboard events;
false otherwise.

ctrlKey Boolean property, returns true if the Ctrl key is pressed during mouse or keyboard events;
false otherwise.

shiftKey Boolean property, returns true if the Shift key is pressed during mouse or keyboard events;
false otherwise.

Out of all the properties listed in Table 4-1, the keyboard-related properties such as which, altKey, ctrlKey, and
shiftKey come in handy to detect the key pressed and the status of the Alt, Ctrl, and Shift keys. For example, in a
keydown event handler, you may detect the key being pressed by checking the which property. You can also determine
whether any of the special keys (Alt, Ctrl and Shift) are being pressed if the altKey, ctrlKey, or shiftKey properties
return true.

The event object also has a few useful methods that allow you to alter the default behavior of an element as well
as event bubbling. These methods are listed in Table 4-2.

CHAPTER 4 ■ EVENT HANDLING

107

Specifying an event object in the event handler function signature is optional, but if you need any of the pieces of
information mentioned in Table 4-1, you must include the event object in the event handler signature. For example,
consider this code:

$("#button1").click(function (evt) {
 alert(' DOM element with ID ' + evt.target.id + ' was clicked.');
});

The code wires an event handler function to the click event of a button. Notice that the event handler function
specifies evt as the parameter (this parameter name can be any valid JavaScript variable name). Inside, the event
handler uses the evt.target property to find out the id of the DOM element being clicked. In this case, evt.target.id
returns “button1”. You will use many other properties of the event object while learning mouse and keyboard events
later in this chapter.

Working with Common Events
Now that you are familiar with jQuery event handling, let’s delve into more details. In the following sections, you will
investigate each of the categories of the events listed earlier. You will also develop a working example of each category
that makes use of the knowledge you learned in each section.

Window and Document Events
Window events are related to the browser window and are raised on the window object. The document events, on the
other hand, are related to the web page being displayed in a browser window and are raised on the document object.
To handle window and document events, jQuery offers the event methods listed in Table 4-3.

Table 4-2. Event Object Methods

Method Description

preventDefault() Cancels the default action of an element. For example, the default action for a
submit button is to submit a form and that of an anchor element is to navigate to the
specified link. Calling preventDefault() on these elements cancels the respective
default actions.

stopPropagation() Stops an event from bubbling up in the DOM tree so that the parent event handlers
are not invoked.

isDefaultPrevented() Returns true if preventDefault() was ever called on the instance of the event object
under consideration; false otherwise.

isPropagationStopped() Returns true if the stopPropagation() method was ever called on the instance of the
event object under consideration; false otherwise.

CHAPTER 4 ■ EVENT HANDLING

108

To understand how scroll(), resize(), and ready() are used, you will develop an application as shown
in Figure 4-2.

As you can see from Figure 4-2, the application consists of a Web Form that displays a notification bar at the top
(it is referred to as InfoBar in this example. Widgets such as the InfoBar are commonly used on web sites to display
notifications or alerts to users. A peculiar feature of InfoBar is that it always remains docked to the top edge of the
browser window, even if the page is scrolled up or down. If a user clicks the Close button, the InfoBar is closed.

To remember the user’s choice of closing the InfoBar, a cookie is issued with a flag that will be read during
future runs of the page, so the InfoBar remains visible or hidden. Although this example uses a plain text message
on the InfoBar, you can substitute anything there: Twitter or Facebook “follow us” buttons, custom graphics, or
advertisements.

Table 4-3. Window and Document Events

Method Window/Document Description

scroll() window Binds an event handler to the scroll JavaScript event. The scroll event
is raised when a browser window is scrolled. scroll() is also used to
trigger the scroll event handler programmatically. This event is primarily
applicable to the window object. Additionally, DOM elements with the
overflow CSS property set to scroll cause this event to be raised.

resize() window Binds an event handler to the resize JavaScript event, which is raised when
a browser window is resized. It is also used to trigger the resize event
handler programmatically.

ready() document Doesn’t have any direct equivalent in JavaScript, but is similar to the
JavaScript load event. Unlike load event, which is raised when all the
DOM elements are fully loaded, the ready() method invokes the supplied
function when the DOM tree is fully constructed, the tree may or may not
be fully loaded. ready() is commonly used to wire event handlers to various
events and to perform web page initialization.

Figure 4-2. InfoBar application using the scroll(), resize(), and ready() methods

CHAPTER 4 ■ EVENT HANDLING

109

Note ■ Browsers use their own infobars to display notifications. The jQuery InfoBar developed in this example is not

related to the browser infobars except that the jQuery InfoBar also docks at the top of the document being shown.

To begin developing the InfoBar application, create an empty ASP.NET Web Forms application. Add a Scripts
folder to the project and place the jQuery library into it. Then add a new Web Form to the project and add the markup
shown in Listing 4-1 to it.

Listing 4-1. InfoBar HTML Markup

<form id="form1" runat="server">
 <asp:Panel ID="infobarDiv" runat="server" CssClass="InfoBar">
 This is InfoBar developed in ASP.NET and jQuery.

 <asp:Button ID="closeBtn" runat="server" Text="Close" />
 </asp:Panel>
 ...
 ...
</form>

The infobar is made of an <asp:Panel> control with the ID of infobarDiv. The InfoBar CssClass controls
the look and feel of the infobar and is stored in a style sheet file. The infobar panel contains a text message: This is
InfoBar developed in ASP.NET and jQuery. It also includes a Close button in the form of a Button server control.
The InfoBar CSS class that is applied to the CssClass property of the infobarDiv panel is shown here:

.InfoBar
{
 background-color: silver;
 color: #333333;
 font-weight: bold;
 position: absolute;
 width: 100%;
 top: 0px;
 left: 0px;
 text-align: center;
 border-bottom-width: 2px;
 border-bottom-color: #666666;
 border-bottom-style: solid;
 text-align:center;
 padding:10px;
}

Remember that at runtime <asp:Panel> will be rendered as a <div> element whereas <asp:Button> will be
rendered as an <input> element of type submit. Now add a <script> reference to the jQuery library and also add
a <script> block. Write the code shown in Listing 4-2 in the <script> block.

CHAPTER 4 ■ EVENT HANDLING

110

Listing 4-2. InfoBar jQuery Code

$(document).ready(function () {
 $(window).scroll(function () {
 if (GetCookieValue("ShowInfoBar") == null) {
 $("#infobarDiv").css("marginTop", $(window).scrollTop());
 }
 });

 $(window).resize(function () {
 if ($(window).width() < 300) {
 $("#infobarDiv").css('display', 'none');
 }
 else {
 $("#infobarDiv").css('display', 'block');
 }
 });

 $("#closeBtn").click(function (evt) {
 $("#infobarDiv").slideUp('slow');
 document.cookie = "ShowInfoBar=false;path=/";
 evt.preventDefault();
 });

 if (GetCookieValue("ShowInfoBar") == null) {
 $("#infobarDiv").css('display', 'block');
 }
 else {
 $("#infobarDiv").css('display', 'none');
 }
});

The code in Listing 4-2 consists of five important parts: the ready() method, scroll() method, resize()
method, click() method, and cookie checking code. Let’s discuss each part in detail.

The code begins by a call to the jQuery ready() method. As discussed earlier, the ready() method gets called
when the DOM tree is fully constructed. The ready() method accepts a handler function that gets invoked when the
DOM is fully constructed. (Notice that the ready() method is called on the document element). The handler function
binds event handlers for scroll and resize events of the window object. A handler for the click event of the Close
button is also wired. The handler function then checks whether a cookie called ShowInfoBar exists on the client
machine with the GetCookieValue() helper function. The GetCookieValue() function looks like this:

var GetCookieValue = function (name) {
 var cookieName = name + "=";
 var cookieArray = document.cookie.split(';');
 for (var i = 0; i < cookieArray.length; i++) {
 var c = cookieArray[i];
 while (c.charAt(0) == ' ')
 c = c.substring(1, c.length);
 if (c.indexOf(cookieName) == 0)
 return c.substring(cookieName.length, c.length);
 }
 return null;
}

CHAPTER 4 ■ EVENT HANDLING

111

The GetCookieValue() function accepts the cookie name as its parameter. Inside, it creates an array of cookies
using the document.cookie property and split() method. A for loop iterates through all the cookies from the array.
If a cookie with the specified name is found (ShowInfoBar, in this case), its value is returned to the caller. The
GetCookieValue() function returns null if a cookie with the specified name doesn’t exist.

If the ShowInfoBar cookie is not found on the client machine, the infobarDiv element is displayed by setting its
display CSS property to block. If the ShowInfoBar cookie is found, it indicates that the user previously opted to close
the InfoBar, so the infobarDiv element is kept hidden by setting its display CSS property to none.

The scroll() method is used to bind a scroll event handler to the scroll event of the window object. The
scroll event is raised whenever the browser window is scrolled in any direction. The scroll handler function first
checks whether ShowInfoBar cookie is present on the client machine. If the cookie doesn’t exist, the infobar should
be displayed to the user. The marginTop CSS property of the infobarDiv element is set to a value returned by the
scrollTop() method called on the window object. The marginTop CSS property indicates the top margin of an
element. The scrollTop() method returns the current vertical scroll position of the scrollbar. The vertical scroll
position is the number of pixels that are currently hidden from view and above the scrollable area. This way, the
infobar always docks at the top edge of the document window.

The resize() method is used to bind a resize event handler to the resize event of the window object. The
resize event is raised whenever the browser window is resized. The resize handler function uses the width() method
on the window object to find the height of the window. If the window height is less than 300 pixels, the infobarDiv is
kept hidden by setting its display CSS property to none; otherwise, infobarDiv is displayed by setting its display CSS
property to block.

The click() method is used to bind a click event handler to the Close button click event. Unlike the scroll
and resize event handler functions, the click event handler accepts an event parameter: evt. Inside, the click
handler function calls the jQuery slideUp() method that rolls up the infobarDiv element with slow speed. slideUp()
has been used here just to add a fancy effect while hiding the infobar. (You could have set the display CSS property to
none to hide it.)

A cookie called ShowInfoBar is set with a value of false. Notice how this cookie is issued. The cookie property of
the document object is set to a string containing a cookie name and value pair. The path of the cookie is set to the root
folder (/). The click event handler needs to cancel the form submission by calling the preventDefault() method of
the Event object. If you don’t call preventDefault(), the form will be submitted to the server because the ASP.NET
Button server control causes a postback.

Now run the Web Form and see what the infobar looks like. Try scrolling down and verify that the infobar indeed
remains docked to the top edge of the document. Also check whether clicking the Close button hides the infobar.
Finally, check whether the infobar becomes invisible when the browser width is reduced to a value that has fewer than
300 pixels.

Mouse Events
The mouse is possibly the most commonly used device for making selections and actions in a web page. Many of the
fancy effects provided by the client-side script make use of mouse movements and actions performed by the user
on a web page and its elements. Naturally, there are many events that deal with mouse operations. jQuery offers
event methods for all these events and additionally adds a few more to simplify certain operations. The jQuery event
methods that deal with mouse operations are listed in Table 4-4.

CHAPTER 4 ■ EVENT HANDLING

112

Besides the events discussed in Table 4-4, JavaScript also has a few more events related to mouse operations.
In particular, HTML5 drag-and-drop events such as dragstart, dragenter, dragover, dragleave, drag, drop, and
dragend are dependent on mouse operations. Although jQuery doesn’t have event methods that wrap these events,
you can attach event handlers for these events using another technique, which is discussed later in this chapter.

Now that you know the mouse event methods, let’s develop an application that illustrates how many of them
can be used. The main Web Form of the application is shown in Figure 4-3.

Table 4-4. jQuery Mouse Event Methods

Event Method Description

click() Binds an event handler for the JavaScript click event. It can also be used to trigger the click
event handler programmatically. A click event is raised when the mouse button is pressed and
released on an element.

dblclick() Binds an event handler for the JavaScript dblclick event. It can also be used to trigger the
dblclick event handler programmatically. The dblclick event is raised when the same
element is clicked twice in succession.

mousedown() Binds an event handler for the JavaScript mousedown event. It can also be used to trigger the
mousedown event handler programmatically. The mousedown event is raised when any of the
mouse buttons are pressed on an element. You can use the event object's which property
to find out which button was pressed.

mouseup() Binds an event handler for the JavaScript mouseup event. It can also be used to trigger the
mouseup event handler programmatically. The mouseup event is raised when any of the mouse
buttons that were pressed on an element are released.

mouseenter() Binds a handler function that gets executed when the mouse pointer enters an element. It
can also be used to trigger the mouseenter handler programmatically. The mouseenter event
handler is executed only when the mouse pointer enters an element it is bound to, not when
the mouse pointer enters any of its child elements.

mouseleave() Binds a handler function that gets executed when the mouse pointer leaves an element. It can
also be used to trigger the mouseleave event handler programmatically. The mouseleave event
handler is executed only when the mouse pointer leaves an element it is bound to, not when
the mouse pointer leaves any of its child elements.

mouseover() Binds an event handler for the JavaScript mouseover event. It can also be used to trigger the
mouseover event handler programmatically. The mouseover event is raised when the mouse
pointer enters an element. The mouseover event differs from mouseenter in that the former is
raised when the mouse pointer enters the element as well as any of its child elements.

mouseout() Binds an event handler for the JavaScript mouseout event. It can also be used to trigger the
mouseout event handler programmatically. The mouseout event is raised when the mouse
pointer leaves an element. The mouseout event differs from mouseleave in that the former is
raised when the mouse pointer leaves the element as well as any of its child elements.

mousemove() Binds an event handler for the JavaScript mousemove event. It can also be used to trigger the
mousemove event handler programmatically. The mousemove event is raised when the mouse
pointer moves inside an element.

hover() Binds event handlers for the mouseenter and mouseleave events in one go.

CHAPTER 4 ■ EVENT HANDLING

113

The application consists of a Web Form that has a GridView control on it. If you hover your mouse pointer over
any row of the GridView except the header row, that row is highlighted. Taking the mouse pointer away from that
row removes the highlight. You can right-click the GridView to reveal a shortcut menu that contains three anchor
elements. These elements represent the three actions that can be performed on the GridView row: Show Bold, Show
Italics, and Show Underlined. Clicking any of the three anchor elements displays the text from that GridView row
per the selected effect. When you move your mouse pointer over an anchor element, that element is highlighted to
indicate the active selection. Clicking anywhere on the GridView or document removes the shortcut menu.

To begin developing this application, create an empty ASP.NET Web Forms application and add a new Web Form
to it. Then place an SQL data source control and a GridView control on the Web Form. Configure the SQL data source
control to select the EmployeeID, FirstName, LastName, and Country columns from the Employees table.

Set the DataSourceID property of the GridView to the ID of the SQL data source control you just configured.
Then add a bulleted list below the GridView and add three LinkButton controls as the bulleted list items. The
bulleted list markup is shown in Listing 4-3. (Because GridView markup doesn’t include anything specific to jQuery,
it’s not shown here.)

Figure 4-3. Application showing mouse event methods

CHAPTER 4 ■ EVENT HANDLING

114

Listing 4-3. Menu Items Bulleted List

<ul class="menu">

<asp:LinkButton ID="bold" CssClass="menuItem" runat="server">Show Bold</asp:LinkButton>

<asp:LinkButton ID="italic" CssClass="menuItem" runat="server">Show Italics</asp:LinkButton>

<asp:LinkButton ID="underline" CssClass="menuItem" runat="server">Show Underlined</asp:LinkButton>

Notice that the element has the menu CSS class applied to it, and the LinkButton controls have the menuItem
CSS class applied to them through the CssClass attribute. The menu, menuItem, and a few more CSS classes are defined
in a style sheet. Although the actual CSS rules are not listed here for lack of space, their purpose will be discussed as
and when they are encountered. The menu CSS class defines the look and feel for the whole shortcut menu, whereas
the menuItem CSS class defines styles for the anchor elements (the LinkButton control is rendered as an anchor tag
in the browser).

Now add a <script> reference to the jQuery library and link the style sheet to the Web Form. Add a <script>
block and the ready() handler function, as shown in Listing 4-4.

Listing 4-4. ready() Handler Function

var currentRow=null;
$(document).ready(function () {
 $(".menu").css("display", "none");
 $("#GridView1").contextmenu(function () { return false; });
...
...
});

The code from Listing 4-4 declares a global variable (currentRow) to store a reference to a row in which the user
clicks the right mouse button. (This variable is used later in the mousedown event.) The ready() handler function uses
a CSS selector to select all the elements that have the menu CSS class attached to them. In this example, the selector
returns the element representing the shortcut menu. Initially when the page loads, the shortcut menu is kept
hidden by setting its display CSS property to none. Additionally, the contextmenu() method is called on GridView1
(GridView is rendered as a table in the browser), which is used to specify a handler function that cancels the browser’s
built-in shortcut menu. This is done by returning false from the handler method.

The shortcut menu is displayed to the user in the mousedown event handler, which is wired in the ready()
method. The complete code of the mousedown event handler function is shown in Listing 4-5.

Listing 4-5. Handling the mousedown Event

$("#GridView1").mousedown(function (evt) {
 if (evt.which == 3) {
 $(".menu").css("left", evt.pageX)
 .css("top", evt.pageY);
 $(".menu").css("display", "block");
 currentRow = $(evt.target).parent();
 }
});

CHAPTER 4 ■ EVENT HANDLING

115

The mousedown() method is called on the GridView1 table. The event handler function accepts the event object
(evt) as a parameter. Inside, it checks whether the right mouse button has been pressed with the help of the evt.which
property. The value of 3 indicates that the right mouse button was pressed. If so, the code selects the shortcut menu
 element by its class (menu) and then sets the left and top CSS properties to evt.pageX and evt.pageY by
using the css() method. So when the shortcut menu is displayed, it is positioned at the coordinates at which the
mouse button was clicked. The shortcut menu is then displayed by setting its display CSS property to block. When
a user presses the right mouse button, the underlying table cell (<td> element) becomes the target of the event. For
highlighting, you need the table row that contains this target cell. A reference to the table row is obtained by calling
the parent() method on the evt.target selector. The reference is stored in the currentRow variable declared earlier.

Now you add code that highlights a GridView row and the menu items. This code also goes inside the ready()
handler (see Listing 4-6).

Listing 4-6. Highlighting GridView Row and Menu Items

$("#GridView1 tr:gt(0)").hover(function () {
 $(this).addClass("highlightedRow");
 }, function () {
 $(this).removeClass("highlightedRow");
});

$(".menuItem").mouseenter(function (evt) {
 $(evt.target).addClass("highlightedMenuItem");
});

$(".menuItem").mousemove(function (evt) {
 $(evt.target).addClass("highlightedMenuItem");
});

$(".menuItem").mouseleave(function (evt) {
 $(evt.target).removeClass("highlightedMenuItem");
});

To highlight a GridView row, you can use the hover() method. Because the GridView header need not participate
in the process, the selector selects the table rows whose index is greater than 0. This is done using the :gt selector with
an index of 0. The hover() method accepts two handler functions: the first one is called when the mouse enters a row;
the second one gets called when the mouse leaves a row. Inside the former function, the addClass() method is used
to add the highlightedRow CSS class to the row. Inside the function, this keyword points to the table row. Inside the
second function, the highlightedRow CSS class is removed by calling the removeClass() method on that row.

For menu item anchor elements, highlight is added and removed using an alternative technique. Instead
of using the hover() method, as discussed previously, the code uses the mouseenter(), mousemove(), and
mouseleave() methods. The handler functions specified in the mouseenter() and mousemove() methods add the
highlightedMenuItem CSS class to evt.target (the anchor element under consideration) using the addClass()
method. The mouseleave() handler removes the highlightedMenuItem CSS class by using the removeClass()
method.

In the final installment, you will add code that actually performs the action on the GridView row based on the
menu item selected by a user. The relevant code goes in the click() method handler and is placed inside the ready()
handler, as is shown in Listing 4-7.

CHAPTER 4 ■ EVENT HANDLING

116

Listing 4-7. Taking Action Based on Menu Item Selection

$(".menuItem").click(function (evt) {
 if (evt.currentTarget.id == "bold") {
 $(currentRow).removeClass("italicRow")
 .removeClass("underlineRow")
 .addClass("boldRow");
 }
 if (evt.currentTarget.id == "italic") {
 $(currentRow).removeClass("boldRow")
 .removeClass("underlineRow")
 .addClass("italicRow");
 }
 if (evt.currentTarget.id == "underline") {
 $(currentRow).removeClass("boldRow")
 .removeClass("italicRow")
 .addClass("underlineRow");
 }
 $(".menu").css("display", "none");
 evt.preventDefault();
});

$(document).click(function () {
 $(".menu").css("display", "none");
});

A jQuery class selector is used to select all the elements that have the menuItem CSS class. In this case, the
selector returns all the anchor elements acting as menu items. The click() method handler checks the ID of the
anchor element being clicked. If the ID of the element is bold, it indicates that the text from that GridView row is to
be displayed in bold letters. To achieve this styling, the italicRow and underlineRow CSS classes are removed from
the currentRow element, and the boldRow CSS class is added to currentRow. The boldRow CSS class displays text from
the GridView row in bold letters. The italicRow CSS class displays the text in italics, whereas underlineRow CSS class
displays the text as underlined. The other two if blocks do something similar. The only exception is that they remove
and add corresponding CSS classes.

Once CSS classes are added and removed from currentRow, the shortcut menu is discarded. It is done by setting
the display CSS property of the element to none. The LinkButton control is a postback causing control, so calling
evt.preventDefault() is necessary. This prevents the form submission.

Note ■ To save some space, the CSS classes used in this example are not given here. You can find the complete

CSS file in the source code download for this chapter.

If a user clicks anywhere else on the document, the shortcut menu should be discarded, which ensures that the
menu is hidden if a user opens it and then does some other action without making any selection. To accomplish this,
the click() method is called on the document object that wires a click handler function. The click handler function
simply sets the display CSS property of the element to none.

You can now run the Web Form and test whether various mouse events are dealt with correctly.

CHAPTER 4 ■ EVENT HANDLING

117

Keyboard Events
Keyboard events are raised whenever any keyboard key is pressed. Keyboard is the most common means to input text
into HTML elements, especially form fields. Keyboard events allow you to trap the keyboard–related user actions such
as a key being pressed down, a key being pressed, and a key being released. jQuery offers event methods that allow
you to wire event handlers to these events. Table 4-5 lists these jQuery event methods.

Now that you know what keyboard events are and what jQuery methods can be used to handle them, let’s create
an application that puts these methods to use. Figure 4-4 shows a character counter application that displays a
character counter as you enter text in a <textarea> element.

You have seen character counters in blogging and social networking sites that allow you to post comments or
short text messages. The Web Form that makes this application consists of a TextBox control, a few Label controls, and
a Button control. As you start keying in text in the text box, a character counter below the text area displays the total
number of characters that can be still entered in the text box. The character counter is displayed in a Label control.

Table 4-5. Keyboard Event Methods

Event Method Description

keydown() The keydown() method binds an event handler for a JavaScript keydown event. It can also be
used to trigger the keydown event handler programmatically. The keydown event is raised when
any keyboard key is first pressed.

keypress() The keypress() method binds an event handler for a JavaScript keypress event. It can also be
used to trigger a keypress event handler programmatically. The keypress event is raised when
any keyboard key is pressed. The keypress event is not raised for modifier and nonprinting keys
such as Shift, Alt, Ctrl and Backspace.

keyup() The keyup() method binds an event handler for a JavaScript keyup event. It can also be used to
trigger a keyup event handler programmatically. The keyup event is raised when any keyboard
key is released.

Figure 4-4. Application that uses keyboard events to display a character counter

CHAPTER 4 ■ EVENT HANDLING

118

Below the submit button are three Label controls that display whether the Shift, Ctrl and Alt keys are pressed.
The figure shows the Shift and Ctrl keys being pressed, whereas the Alt key is not. Clicking the submit button causes
a postback, and a message is displayed in another Label.

To begin developing this application, create an empty ASP.NET web application and add a Web Form to it. Then
place a TextBox control on the Web Form and set its TextMode property to Multiline. Setting the TextMode property to
Multiline renders the text box as a <textarea> element in the browser. Set the Rows and Columns properties to 5 and
50, respectively, to set the number of rows and columns that the text area contains. Then drag four Label controls and
a Button control, and arrange them as shown in Figure 4-3: one Label for displaying character count, and the other
three to display the status of the Shift, Ctrl, and Alt keys.

Listing 4-8 shows the relevant markup from the completed Web Form.

Listing 4-8. Markup of the Character Counter Web Form

<form id="form1" runat="server">
...
 <asp:TextBox ID="TextBox1" runat="server" Columns="50" Rows="5"
 TextMode="MultiLine"></asp:TextBox>
...
 <asp:Label ID="lblCounter" runat="server" CssClass="NormalCounter"></asp:Label>
...
 <asp:Button ID="Button1" runat="server" OnClick="Button1_Click" Text="Submit" />
...
 <asp:Label ID="lblShift" runat="server" CssClass="SpecialKeysOff" >[Shift]</asp:Label>
 <asp:Label ID="lblCtrl" runat="server" CssClass="SpecialKeysOff" >[Ctrl]</asp:Label>
 <asp:Label ID="lblAlt" runat="server" CssClass="SpecialKeysOff" >[Alt]</asp:Label>
...
 <asp:Label ID="Label2" runat="server" Font-Bold="True" ForeColor="Red"></asp:Label>
</form>

Notice that the CssClass property of lblCounter is set to NormalCounter; whereas that of lblShift, lblCtrl,
and lblAlt are set to SpecialKeysOff. You will create these CSS classes shortly, along with a few more.

Now add a CSS style sheet to the project and the CSS rules to it, as shown in Listing 4-9.

Listing 4-9. CSS Rules for Label Controls

.NormalCounter
{
 font-family:Arial;
 font-size:25px;
 color:Navy;
}

.WarningCounter
{
 font-family:Arial;
 font-size:25px;
 color:Red;
}

CHAPTER 4 ■ EVENT HANDLING

119

.SpecialKeysOn
{
 font-family:'Courier New';
 font-size:15px;
 color:red;
 font-weight:bold;
}

.SpecialKeysOff
{
 font-family:'Courier New';
 font-size:15px;
 color:#808080;
 font-weight:bold;
}

Listing 4-9 shows four CSS classes: namely NormalCounter, WarningCounter, SpecialKeysOn, and
SpecialKeysOff. The NormalCounter CSS class controls the styling of the lblCounter when the text area holds a
number of characters fewer than the maximum permissible length. The WarningCounter CSS class controls the
styling of the lblCounter when the text area exceeds the number of permissible characters. The SpecialKeysOn and
SpecialKeysOff CSS classes govern the styling of the lblShift, lblCtrl, and lblAlt whenever the respective keys
are pressed and released.

Next, add a <script> reference and a <script> block to the jQuery library. Listing 4-10 shows the ready()
method handler and a few global variables.

Listing 4-10. The ready() Method Handler and Variable Declaration

var maxLength = 20;
var allowOverflow = true;
var counterType = 'Remaining';

$(document).ready(function () {
 $("#TextBox1").keydown(OnKeyDown);
 $("#TextBox1").keyup(OnKeyUp);
})

The code shown in Listing 4-10 declares three variables: maxLength, allowOverflow, and counterType. The
maxLength variable holds the maximum number of characters that can be entered in the text box. In this example,
maxLength is set to 20. The allowOverflow Boolean value indicates the behavior of the text box in case the character
counter exceeds the permissible behavior. The value of true indicates that if the number of characters exceeds the
maxLength value, the user can still enter text, but the counter label will be displayed using the WarningCounter CSS
class in an attempt to grab the user’s attention. If allowOverflow is set to false, you cannot enter any text beyond the
limit set by the maxLength value. The counterType variable controls how the counter should be displayed. The value
of Remaining means that the counter should display the remaining number of characters that can still be entered. The
other possibility is Total, which means the counter will display the total number of characters that are entered in the
text box.

The ready() handler function wires keydown and keyup event handlers of Textbox1. This is done using the
corresponding event methods keydown() and keyup(), respectively. For the sake of easy readability, event handler
functions of these event methods are written as functions: OnKeyDown() and OnKeyUp(). But you could also have
written them as anonymous functions.

CHAPTER 4 ■ EVENT HANDLING

120

The main logic that displays the character counter as per the set configuration goes inside the keyup event
handler function OnKeyUp(). This event handler is shown in Listing 4-11.

Listing 4-11. OnKeyUp() Event Handler Function

function OnKeyUp(evt) {
 var text = $("#TextBox1").val();
 if (text.length > maxLength) {
 if (!allowOverflow) {
 $("#TextBox1").val(text.substring(0, maxLength));
 }
 }
 var diff = 0;
 if (counterType == 'Remaining') {
 diff = maxLength - $("#TextBox1").val().length;
 if (diff < 0) {
 $("#lblCounter").removeClass("NormalCounter");
 $("#lblCounter").addClass("WarningCounter");
 }
 else {
 $("#lblCounter").removeClass("WarningCounter");
 $("#lblCounter").addClass("NormalCounter");
 }
 }
 if (counterType == 'Total') {
 diff = $("#TextBox1").val().length;
 if (diff > maxLength) {
 $("#lblCounter").removeClass("NormalCounter");
 $("#lblCounter").addClass("WarningCounter");
 }
 else {
 $("#lblCounter").removeClass("WarningCounter");
 $("#lblCounter").addClass("NormalCounter");
 }
 }
 $("#lblCounter").text(diff);
 ...
}

The OnKeyUp() function first grabs the text entered in TextBox1 using the ID selector of the jQuery and val()
method. It then checks the length property of the TextBox to see whether it’s greater than the maxLength value. If so,
it further checks the allowOverflow setting to decide whether the text entry is to be accepted. If allowOverflow is set
to false, the text is truncated to the size of maxLength using the substring() method. The truncated value is stored in
the text box using the val() method.

The code then proceeds to declare a diff variable intended to hold the difference between the length of the
entered text and the maxLength value. If the counterType is Remaining, an if-else block checks the value of the diff
variable. If it is less than 0, it indicates that the length of the text entered in the text box has exceeded the maxLength
value, and the counter Label is displayed with the WarningCounter CSS class applied to it. If the diff variable is
greater than 0, the NormalCounter CSS class is applied to the Label. The CSS classes are added and removed using the
addClass() and removeClass() methods, respectively. Both of these methods accept the name of a CSS class that is to
be added or removed from the element under consideration.

CHAPTER 4 ■ EVENT HANDLING

121

If the counterType is Total, the diff variable simply holds the total number of characters entered in the text box.
If this value is greater than maxLength, the counter Label is displayed with the WarningCounter CSS class applied;
otherwise, the NormalCounter CSS class is applied to the counter Label. Finally, the value of the diff variable is
displayed in the counter variable using the text() method, which accepts a string and sets the text content of an
element to that string value.

To display the status of the Shift, Ctrl and Alt keys, you need to trap both the keydown and keyup events of the text
box. In the keydown event handler, you check the which property of the evt parameter to determine which key was
pressed. Listing 4-12 shows the OnKeyDown() function that acts as a keydown event handler.

Listing 4-12. OnKeyDown() Event Handler Function

function OnKeyDown(evt) {
 if (evt.which == 16) {
 $("#lblShift").addClass("SpecialKeysOn");
 $("#lblShift").removeClass("SpecialKeysOff");
 }
 if (evt.which == 17) {
 $("#lblCtrl").addClass("SpecialKeysOn");
 $("#lblCtrl").removeClass("SpecialKeysOff");
 }
 if (evt.which == 18) {
 $("#lblAlt").addClass("SpecialKeysOn");
 $("#lblAlt").removeClass("SpecialKeysOff");
 }
}

The OnKeyDown() event handler checks the value of the evt.which property. The which property returns the
key code of a key being pressed. If the Shift key is pressed (key code 16), the SpecialKeysOn CSS class is added to
the corresponding Label control and the SpecialKeysOff CSS class is removed. Similarly, the statuses of the Ctrl
(key code 17) and Alt (key code 18) keys are checked, and CSS classes are added and removed from the Label
controls accordingly.

Tip ■ To find out the key codes of the UTF-8 character set, visit http://en.wikipedia.org/wiki/UTF-8.

To finish the Web Form, you need to place code similar to the OnKeyDown() at the end of the OnKeyUp() event
handler. The only difference is that you will remove the SpecialKeyOn CSS class and add a SpecialKeysOff CSS class.

Note ■ In this example, you didn’t use a keypress event because you also need to display the counter when the

Backspace and Delete keys are pressed. The keypress event is not raised for these keys. Also, note that for the sake of

simplicity, this example doesn’t check for other possibilities of entering data such as copy-paste or cut-paste operations.

You can add that functionality by handling events such as cut, copy, and paste.

http://en.wikipedia.org/wiki/UTF-8

CHAPTER 4 ■ EVENT HANDLING

122

The server–side click event of the submit button simply displays a success in a Label as shown here:

protected void Button1_Click(object sender, EventArgs e)
{
 Label2.Text = "Data received successfully!";
}

The server–side click event handler sets the Text property of Label2 to "Data received successfully!"
You can now run the Web Form and test whether the character counter works as expected.

Form Events
As an ASP.NET developer, you need to deal with HTML forms day in and day out. Although ASP.NET validation
server controls perform a good job validating form fields, at times you need to take things into your own hands.
For example, consider a user registration page that allows a user to create an account with a web site. When the user
hits the submit button, you need to make an Ajax call to the server to figure out whether the user ID specified by
the user is still available or somebody has already grabbed it. You can’t achieve this functionality using the built-in
validation controls.

Another example is when you want to display detailed help text or preview to users as they start entering data
in various controls. Because these features run on the client side, ASP.NET server controls aren’t useful here. In such
cases, handling form events becomes necessary. Form events are primarily applicable to <form> element and form
controls such as <input> and <select>.

jQuery offers event methods that allow you to wire event handlers to form events. These event methods are listed
in Table 4-6.

Table 4-6. Form Event Methods

Event Method Description

blur() Binds an event handler for a JavaScript blur event. It can also be used to trigger a blur event
handler programmatically. A blur event is raised when an element loses focus.

change() Binds an event handler for a JavaScript change event. It can also be used to trigger a change event
handler programmatically. A change event is raised when a value or selection in a control changes.
For <select> elements, radio buttons, and check boxes, a change event is raised immediately upon
change in the value; a change event is raised for text boxes and text areas when the element loses
focus.

focus() Binds an event handler for a JavaScript focus event. It can also be used to trigger a focus event
handler programmatically. A focus event is raised when an element gets focus.

focusin() Binds an event handler for a JavaScript focusin event. It can also be used to trigger a focusin event
handler programmatically. A focusin event is raised when an element or any of its child elements
get focus.

focusout() Binds an event handler for a JavaScript focusout event. It can also be used to trigger a focusout
event handler programmatically. A focusout event is raised when an element or any of its child
elements loses focus.

select() An event handler for a JavaScript select event. It can also be used to trigger a select event handler
programmatically. A select event is raised when a user selects text inside of a text box or text area.

submit() An event handler for a JavaScript submit event. It can also be used to trigger a submit event handler
programmatically. A submit event is raised when a form is submitted.

CHAPTER 4 ■ EVENT HANDLING

123

Now that you have some idea about the form events and related jQuery event methods, let’s put them to use by
building an application. In this section, you will develop a Web Form as shown in Figure 4-5.

As shown in Figure 4-5, the application consists of a FormView control. The FormView displays records from
the Employees table and also allows you to edit them. When a text box or text area gets the focus, it is highlighted
by applying a CSS class to it. As soon the text box or text area loses focus, the highlight is also removed. If the user
attempts to submit the form without entering any of the text boxes, an error message is displayed and the form
submission is canceled. When the user changes the employee’s country, a confirmation is sought about the change,
and accordingly the data is changed or the changes are discarded. Clicking the cancel button doesn’t trigger the text
box validation described previously.

Note ■ The popular jQuery Validation Plugin can be used to perform many of form validations. You can read more about

this plugin at http://jqueryvalidation.org.

To begin developing this Web Form, create an empty ASP.NET Web Forms application and add a Web Form to it.
Then drag and drop a SQL Data Source Control on the Web Form and configure it to select the EmployeeID, LastName,
FirstName, Country, and Notes columns from the Employees table of the Northwind database. Figure 4-6 shows the
configuration wizard of the SQL Data Source control.

Figure 4-5. Application making use of form event methods

http://jqueryvalidation.org/

CHAPTER 4 ■ EVENT HANDLING

124

Make sure that the Generate INSERT, UPDATE, and DELETE Statements check box is selected under the Advanced
options so that the SQL Data Source control can modify the employee data. Then add one more SQL Data Source
control and configure it to select unique countries from the Employees table. The first SQL Data Source control
will be data bound with the FormView, whereas the second SQL Data Source will be data bound with the country
DropDownList. Next, place a FormView control on the Web Form and set its data source to the first SQL Data Source
control. You need to design ItemTemplate and EditItemTemplate of FormView to resemble Figure 4-5. These templates
are shown in Listing 4-13. (To improve readability, any unnecessary table markup has been deleted from the listing.)

Listing 4-13. FormView ItemTemplate and EditItemTemplate

<ItemTemplate>
...
<td align="right">EmployeeID : </td>
<td><asp:Label ID="EmployeeIDLabel" runat="server" Text='<%# Eval("EmployeeID") %>' />
...
<td align="right">LastName : </td>
<td><asp:Label ID="LastNameLabel" runat="server" Text='<%# Eval("LastName") %>' />
...
<td align="right">FirstName : </td>
<td><asp:Label ID="FirstNameLabel" runat="server" Text='<%# Eval("FirstName") %>' /></td>

Figure 4-6. Configuring a SQL Data Source control to work with the Employees table

CHAPTER 4 ■ EVENT HANDLING

125

...
<td align="right">Country : </td>
<td><asp:Label ID="CountryLabel" runat="server" Text='<%# Eval("Country") %>' /></td>
...
<td align="right" valign="top">Notes :</td>
<td><asp:Label ID="NotesLabel" runat="server" Text='<%# Eval("Notes") %>' /></td>
...
<asp:Button ID="Button1" runat="server" CommandName="Edit" Text="Edit" Width="75px" />
...
</ItemTemplate>
<EditItemTemplate>
...
<tr><td align="right">EmployeeID : </td>
<td><asp:Label ID="EmployeeIDLabel" runat="server" Text='<%# Eval("EmployeeID") %>' />
...
<td align="right">LastName : </td>
<td><asp:TextBox ID="TextBox1" runat="server" Text='<%# Bind("LastName") %>'></asp:TextBox>
...
<tr><td align="right">FirstName : </td>
<td><asp:TextBox ID="TextBox2" runat="server" Text='<%# Bind("FirstName") %>'></asp:TextBox>
...
<tr><td align="right">Country : </td>
<td><asp:DropDownList ID="DropDownList1" runat="server" DataSourceID="SqlDataSource2"
DataTextField="Country" DataValueField="Country" SelectedValue='<%# Bind("Country") %>'>
 </asp:DropDownList>
...
<tr><td align="right" valign="top">Notes :</td>
<td><asp:TextBox ID="TextBox4" runat="server" Columns="30" Rows="3" Text='<%# Bind("Notes") %>'
TextMode="MultiLine"></asp:TextBox>
...
<tr><td colspan="2">
<asp:Button ID="Button1" runat="server" CommandName="Update" Text="Update" Width="75px" />
<asp:Button ID="Button2" runat="server" CommandName="Cancel" Text="Cancel" Width="75px"
CausesValidation="False" />
...
</EditItemTemplate>

The ItemTemplate displays the EmployeeID, LastName, FirstName, Country, and Notes columns in the Label
controls. Observe the Button control placed at the bottom of ItemTemplate. The CommandName property of the Edit
button is set to Edit. Setting CommandName property to Edit ensures that the FormView switches from ItemTemplate
to EditItemTemplate when this button is clicked. Because ItemTemplate displays data in read-only mode, the Label
controls are data bound using the Eval() data binding expression.

The EditItemTemplate displays EmployeeID using a Label control, LastName and FirstName columns using
TextBox controls, a Country column using a DropDownList control, and a Notes column using a TextBox control
with TextMode property set to Multiline. These controls are data bound with EmployeeID, LastName, FirstName,
Country, and Notes columns, respectively. While performing the databinding, the Bind() method is used because
EditItemTemplate allows the users to edit data. The DropDownList control is bound with the other SQL Data Source
so it displays the unique countries from the Employees table. Notice the Update and Cancel buttons placed at the end
of EditItemTemplate. These buttons have their CommandName property set to Update and Cancel, respectively. Due to
these CommandName values, clicking the Update button saves the data to the database, and clicking the Cancel button
takes the FormView from edit mode to read-only mode.

CHAPTER 4 ■ EVENT HANDLING

126

Next, add a script reference to jQuery and add a <script> block in the head section of the Web Form. The
<script>block contains the ready() method handler. Inside the ready() method handler, event handlers are
attached for focus, blur, change, click, and submit events. Listing 4-14 shows the focus and blur event handlers.

Listing 4-14. Using the focus() and blur() Methods

$("input:text,textarea").focus(function (evt) {
 $(evt.target).addClass("Highlight");
});
$("input:text,textarea").blur(function (evt) {
 $(evt.target).removeClass("Highlight");
});

The code in Listing 4-14 is responsible for adding a highlight to the text boxes when they get focus and removing
the highlight when they lose focus. The :text form selector and <textarea> element selector are used to select
<input> elements of type text as well as <textarea> elements. Notice that these two selectors are separated by a
comma, indicating that multiple selectors are to be used while matching the elements.

To handle focus and blur, the JavaScript events focus() and blur() methods are used. These methods accept
an event handler function as their parameter. Inside the focus() method handler, the function Highlight CSS class
is added to the target element using the addClass() method. The target element is obtained as the evt.target
property. Inside the blur() method handler, the function Highlight CSS class is removed from an element using
removeClass() method.

Changing the country in the DropDownList should prompt the user to confirm the change. This is accomplished
by handling the change event of the <select> element (the ASP.NET DropDownList control is rendered as the
<select> element in the browser). Listing 4-15 shows how the change event is handled.

Listing 4-15. Using the change()method

$("select").change(function (evt) {
 if (!confirm("You are changing country of an employee. Are you sure?")) {
 evt.preventDefault();
 }
});

The select element selector matches the DropDownList from the form. The change() method is then used to
wire an event handler to the change event of the matched element. Inside the handler function, a confirm() dialog
is displayed to the user, asking whether the country is really to be changed or not. If the user selects Cancel, the
preventDefault() method of the event object is called. Calling preventDefault() will cancel the country change
in the <select> element.

Now, let’s discuss the code that performs the validation that all the text boxes contain some value. This validation
is performed using the submit() method. Listing 4-16 shows the relevant code.

Listing 4-16. Using the submit() Method

var cancel = false;
$("#Button2").click(function () {
 cancel = true;
});

$("#form1").submit(function (evt) {
 if (!cancel) {
 $("input:text,textarea").each(function () {

CHAPTER 4 ■ EVENT HANDLING

127

 if ($(this).val() == "") {
 $("#Label1").text("All fields must be filled before submitting the form!");
 $(this).focus();
 evt.preventDefault();
 return;
 }
 });
 cancel = false;
 }
});

The code from Listing 4-16 begins by declaring a global variable: cancel. This variable is intended to store a
Boolean value that indicates whether the Cancel button was clicked (true) or not (false). The cancel variable is
set inside the click event handler of the Cancel button (Button2). The ID selector matches Button2. By using the
click() method, it wires an event handler function to the click event of the button. The event handler simply sets
the cancel variable to true.

Next, the ID selector is used to match form1; the submit() method is then used on the matched element to wire
an event handler function to the submit event of the form. The event handler checks whether the Cancel button was
clicked by checking the value of the cancel variable. If so, the :text selector and <textarea> element selectors are
used to match <input> elements with the type text as well as <textarea> element.

The each() method iterates through all the matched elements. The function supplied as a parameter to the
each() method checks the value of the element under consideration. Inside the each() method handler function,
the keyword this points to the current element from the matched set that is being iterated at a given point in time.
So the val() method returns the text entered in a text box. If the text box is empty an error message is displayed in
the Label using the text() method.

To highlight the element causing this error, that element is given the current focus by using the focus() method.
Recall from the earlier discussion that any event method called without any parameters triggers that event. Calling
preventDefault() on the event object ensures that the form submission is canceled. After the iteration, the cancel
variable is set to false so a new attempt to save the data can be made.

That’s it! Run the Web Form and test all the event methods discussed here.

Note ■ Although performing validations using client-side script provides a better user experience, you should also

consider a situation in which a client script is disabled in a browser or a malicious user is submitting a form through

some automated tool. To take care of such situations, it is recommended that you also perform server-side validations

on the data being submitted.

Advanced Event Handling Concepts
By now, you have a good understanding of jQuery event handling. Although the knowledge you gained so far is most
commonly needed in web applications, there are a few advanced techniques that you need to master to tap into the
full power of jQuery event handling. For example, jQuery offers built-in event methods for commonly used events
such as click and keypress. However, there are events such as play that do not have corresponding jQuery event
methods.

CHAPTER 4 ■ EVENT HANDLING

128

How are these events handled? To deal with them and a few other situations, this section introduces you to some
advanced techniques. Specifically you will learn the following:

How to cancel the default action of an event•

How to cancel event bubbling•

How to pass custom data to event handler functions•

How to wire event handlers for events that do not have corresponding jQuery event methods•

You may not need these techniques in each and every application, but it is worthwhile to know them so that you
can apply these techniques as and when required.

Stopping Default Event Behavior
Many HTML elements have some default behavior associated with them. Consider a submit button, for example.
When you click a submit button, it submits the form. So, submitting a form to the server is the default behavior for
the submit button. Similarly, navigating to a page specified in the href attribute is the default action for an anchor
element.

Although default actions are usually fine, sometimes you may want to prevent a default behavior from taking
place. For example, if a form contains invalid data, you may not want to submit it even if a submit button is clicked.
Another example is an anchor element that acts like a button rather than a link (the LinkButton control is actually
that). In these cases, the default behavior needs to be canceled. Luckily, jQuery provides easy ways to deal with such
situations. The two methods of event objects—preventDefault() and stopPropagation()—are used to prevent the
default action from taking place and to cancel the event bubbling, respectively. Although you are already familiar
with the preventDefault() method, for the sake of completeness let’s develop an example that makes use of both
methods.

Have a look at Figure 4-7, which shows a Web Form using these two methods.

Figure 4-7. Web Form using the preventDefault() and stopPropagation() methods

CHAPTER 4 ■ EVENT HANDLING

129

The Web Form consists of a Button server control placed inside a Panel server control. The Button server control
is rendered as an <input> element with the type submit, and the Panel server control is rendered as a <div> element.
When a user clicks the button, a confirmation is sought for submitting the form. If the user proceeds with the form
submission, a message displays to inform the user that the form is being submitted; otherwise, no message displays.
The jQuery code responsible for the functionality just described is shown in Listing 4-17.

Listing 4-17. Using preventDefault() and stopPropagation()

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 if (!confirm("Do you want to submit this form?")) {
 evt.preventDefault();
 evt.stopPropagation();
 }
 });

 $("#Panel1").click(function (evt) {
 if (evt.isDefaultPrevented()) {
 alert("You cancelled the form submission!");
 }
 else {
 alert("You are submitting this form!");
 }
 });
});

The click() method is called on Button1 and Panel1 to wire a click event handler to the respective elements.
When a user clicks the button, the click event of the button is raised. The event is bubbled to the parent element
(the Panel1 <div> element in this case). So clicking the button raises the click event handler of Button1 as well as
Panel1 unless you cancel the event bubbling.

The click event handler of Button1 prompts the user with a confirm() dialog asking whether the form is to
be submitted. If the user decides to cancel the form submission, the preventDefault() and stopPropagation()
methods are called on the event object. For a submit button, submitting a form is the default action, but calling
preventDefault() cancels that operation. Similarly, by default, the click event of a button gets bubbled up to its
parent element, but calling stopPropagation() stops the event bubbling. Because the event bubbling is canceled,
Panel1 doesn’t get a chance to handle its click event.

The control reaches the click event handler of Panel1 only if the user decides to submit the form. Although not
necessary in this example, the click event handler of Panel1 checks whether the default action is prevented by using
the isDefaultPrevented() method. This method returns true if the default action has been prevented previously;
it returns false otherwise. Accordingly, a message is displayed to the user in an alert dialog.

Note ■ Just like isDefaultPrevented(), there is another method, isPropagationStopped(), which returns true

if event bubbling has been canceled previously.

Passing Event Data
So far, all the event handlers you wrote were self-contained in that they could grab all the data they needed on their
own. That may not always be the case, however. At times, you may want to pass some custom data to the event
handlers so that they can use it in some way.

CHAPTER 4 ■ EVENT HANDLING

130

You can see this by revising the character counter example you developed earlier. In Listing 4-10, you see three
global variables declared as follows:

var maxLength = 20;
var allowOverflow = true;
var counterType = 'Remaining';

These variables supply the settings for the character counter displayed on a web page. The character counter also
often uses CSS class names. Although this configuration works well in simple scenarios, there are other situations in
which it doesn’t work so well.

What if the counter settings are to be fetched from the server? What if these settings are being returned from
another function or library? Rather than making event handlers such as OnKeyUp() dependent on these variables or
fixed values, wouldn’t it be nice if you can pass the counter settings to the OnKeyUp() event handler function? That
way, the event handler need not look here or there to figure out these settings; they will be readily available to the
event handler function. That’s where needing to pass custom data to an event handler comes into the picture.

All the jQuery event methods—such as click(), keyup(), and keydown()—allow you to pass a custom JavaScript
object as the first parameter, followed by the event handler function. This custom object consists of one or more
key-value pairs. Consider Listing 4-18, which illustrates how such a custom object can be created.

Listing 4-18. Creating a Custom Object to Pass to Event Handlers

var options = {};
options.MaxLength = 20;
options.AllowOverflow = true;
options.CounterType = "Remaining";
options.NormalCssClass = "NormalCounter";
options.WarningCssClass = "WarningCounter";
options.SpecialKeysOnCssClass = "SpecialKeysOn";
options.SpecialKeysOffCssClass = "SpecialKeysOff";

A variable named options is declared at the top. (Notice the {} syntax, which indicates that the variable holds
an object.) Next, you assign values to various properties of the options variable. These properties are developer
defined and you are free to name them per your requirements. Notice that all the settings, such as maximum length
and CSS classes, are now stored in the options object. Once the options object is ready, you can pass it in the event
methods, as shown in Listing 4-19.

Listing 4-19. Passing Custom Data to Event Methods

$(document).ready(function () {
 $("#TextBox1").keydown(options,OnKeyDown);
 $("#TextBox1").keyup(options,OnKeyUp);
})

The event methods such as keydown() and keyup() now pass options object as the first parameter. The options
object passed in these methods can be accessed inside the event handler functions by using the data property of
the event object. Listing 4-20 makes this clear.

CHAPTER 4 ■ EVENT HANDLING

131

Listing 4-20. Accessing Custom Data Inside Event Handlers

function OnKeyUp(evt) {
 var text = $("#TextBox1").val();
 if (text.length > evt.data.MaxLength) {
 if (!evt.data.AllowOverflow) {
 $("#TextBox1").val(text.substring(0, evt.data.MaxLength));
 }
 }
...
...
}

Notice that the if conditions use the evt.data property to access the options object properties such as
MaxLength and AllowOverflow.

Using on(), off, and trigger()
So far in this chapter you wired event handlers to events using jQuery event methods. However, not every event is
covered by these event methods. For example, events such as play and pause or events related to drag-and-drop don’t
have any equivalent jQuery event methods.

How to wire event handlers for these events? jQuery offers three methods that come in handy in such situations:
on(), off(), and trigger(). These methods are described in Table 4-7.

To understand how on(), off(), and trigger() are used, let’s develop the application shown in Figure 4-8.

Table 4-7. Event Wiring Methods

Method Description

on(event, handler) Used to bind an event handler to one or more events of selected elements. You can also
pass custom data (optional) while performing the binding.

off(event) Unbinds an event handler from one or more events of selected elements.

trigger(event) Triggers an event handler attached with an event programmatically.

Figure 4-8. Application using on(), off(), and trigger()

CHAPTER 4 ■ EVENT HANDLING

132

The application consists of a Web Form that houses an <audio> element and a Label control below it. Whenever
the audio file is played, paused, or completed, an appropriate message is displayed in the Label. The application
also traps F7, F8, and F9 key presses. Pressing F7 and F8 plays and pauses the audio player, respectively. Pressing F9
removes event handlers attached with the events of the audio player. The markup of the audio element and Label
is as follows:

<form id="form1" runat="server">
 <audio src="media/audio1.mp3" controls="controls"></audio>

 <asp:Label ID="spanMsg" runat="server" Font-Bold="True" ForeColor="Red"></asp:Label>
</form>

The <audio> element has its src attribute set to the media/audio1.mp3 file. The jQuery code responsible for
attaching event handlers to various events of the <audio> element is shown in Listing 4-21.

Listing 4-21. Handling play, pause, and ended Events

$(document).ready(function () {
 $("audio").on("play pause ended", function (evt) {
 switch (evt.type) {
 case "play":
 $("#spanMsg").text("Audio is playing.");
 break;
 case "pause":
 $("#spanMsg").text("Audio has been paused.");
 break;
 case "ended":
 $("#spanMsg").text("Audio has completed.");
 break;
 }
});

The code from Listing 4-21 uses an element selector to match the <audio> element. Then it uses the on() method
to attach an event handler function to three events: play, pause, and ended. Notice that multiple event names are
separated by a white space. The play event is raised when a file is played in the audio player. The pause event is raised
when a file is paused, and the ended event is raised when a file has played completely in the player. All three events are
wired to a common event handler function. Inside the event handler function, the code checks the type property of
the event object. The type property returns the type of an event such as play or pause. Based on the type of an event,
a message is displayed in the spanMsg Label control.

To program the function keys F7, F8, and F9, you need to handle the keydown event of the whole document.
Listing 4-22 shows how this is done.

Listing 4-22. Handling the Document keydown Event

$(document).keydown(function (evt) {
 switch (evt.which) {
 case 118:
 $("audio").trigger("play");
 break;

CHAPTER 4 ■ EVENT HANDLING

133

 case 119:
 $("audio").trigger("pause");
 break;
 case 120:
 $("audio").off("play pause ended");
 $("#spanMsg").text("Event handlers are removed.");
 break;
 default:
 alert('F7 - Play, F8 - Pause, F9 - Off');
 break;
 }
});

The keydown event handler checks the which property of the event object to determine which key was pressed.
If F7 (118) was pressed, the <audio> element is selected, and the trigger() method is called on it. Because pressing
F7 is supposed to play the audio file, the parameter of the trigger() method is passed as play. This way, pressing
F7 triggers the play event of the audio player.

Along the same lines, the pause event is triggered when F8 (119) is pressed. If a user presses F9 (120), the off()
method is called on the <audio> element to remove the event handlers of play, pause, and ended events. A message
is displayed in the Label informing the user that the event handlers have been removed. If any key other than F7, F8,
or F9 is pressed, an alert dialog is displayed with a list of valid function keys and their operation.

That’s it! Run the application and first test the play, pause, and ended events by playing/pausing the player.
Then use the F7 and F8 function keys to see whether the play and pause events are triggered programmatically.

You will find that pressing these keys also displays the correct message in the Label, indicating that the event
handler is correctly invoked. Press F9 to remove the event attachment and then play and pause the player again.
This time the Label won’t reflect the messages because the event handlers have been removed.

Summary
Client–side event handling is an important and frequently necessary operation in ASP.NET applications. Things
such as validations, fancy mouseover effects, keyboard shortcuts, and more call for handling various events of DOM
elements. jQuery offers a rich set of event methods that allow you to attach event handlers to JavaScript events. Event
methods such as click(), keypress(), and focus() allow you to easily handle corresponding JavaScript events. The
event handlers can be passed a custom object that encapsulates the data needed by the event handler.

I hope that this chapter gave you a thorough understanding of mouse, keyboard, and form events. Additionally
you learn advanced techniques such as stopping the default action of an element, canceling event bubbling, and
using on(), off(), and trigger() methods to attach, remove, and trigger event handlers via code.

Although event handling allows you to respond to user actions, you also have to frequently manipulate the
values of DOM elements or DOM elements. Changing DOM object properties, dynamically adding or removing DOM
elements, and changing page content on the fly are some of such tasks. These tasks and more are the subjects of the
next chapter.

135

CHAPTER 5

DOM Manipulation and
Dynamic Content

Although HTML pages are static by nature, jQuery can be used to make them dynamic in many ways. Using jQuery
you can not only change the content of Document Object Model (DOM) elements but also add, remove, or replace
DOM elements on the fly. This makes your web page dynamic in terms of its content and DOM structure. Consider a
situation in which you are fetching data residing in SQL Server using the Ajax technique and then want to display this
data to the end user in a table. Because you don’t know how many rows will be returned by the server, you have to add
rows and columns to the table dynamically. The DOM manipulation techniques discussed in this chapter are handy
in such situations.

This chapter discusses all these techniques in detail. Specifically you will learn the following:

How to work with CSS classes and CSS style properties•

How to manipulate the content of a DOM element•

How to add, remove, and replace DOM elements in a web page•

You used some of these techniques in earlier chapters (especially those dealing with CSS), but this chapter
focuses on them in more detail.

CSS Classes and Styles
Working with CSS classes and CSS properties is a common need in web applications, especially when CSS classes and
properties are to be accessed from client-side script.

So far in this book, you used methods such as addClass(), removeClass(), and css() to deal with CSS styles.
In addition to these methods, there a few more that jQuery has to offer. Using these methods, you can perform three
main operations:

Add, remove, or check the existence of a CSS class on a DOM element.•

Set or retrieve CSS properties on one or more DOM elements.•

Set or retrieve height and width CSS properties for DOM elements.•

Note that although the second and third operations seem to overlap somewhat, there is a difference. The jQuery
methods involved in the third operation are mainly used when height and width are needed for a mathematical
calculation. These methods return their values as a number without any unit, such as px (pixels). The second operation
changes the style of an element in some way. The jQuery methods involved in the first operation are listed in Table 5-1.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

136

Out of all the methods listed in Table 5-1, addClass() and removeClass() are most commonly used. Moreover,
you will often use them in combination. For example, to add a fancy mouseover effect to a button, you may add a CSS
class to it when the mouse is on the button element and you may remove the previously added class as the mouse
pointer leaves the element. Let’s quickly see an example of using each of these methods.

Suppose that you have a <div> element with an ID of div1 and you want to add a CSS class named MyClass to it.
To accomplish this task, use the addClass() method as follows:

$("#div1").addClass("MyClass");

If you want to add more than one class (say MyClass1 and MyClass2) to div1, write this:

$("#div1").addClass("MyClass1 MyClass2");

If you want to remove MyClass from the div1 element, the following line of code does the job:

$("#div1").removeClass("MyClass");

If you want to add the CSS class MyClass2 only if MyClass1 has already been applied to it, write this:

if($("#div1").hasClass("MyClass1")){
 $("#div1").addClass("MyClass2");
}

If you want to add MyClass to div1 if it isn’t added already and you want to remove MyClass from div1 if it is
added already, toggleClass() does the trick:

$("#div1").toggleClass("MyClass");

The methods listed in Table 5-1 are quite handy when you have CSS classes defined for various elements and
want to add or remove them via jQuery code. However, sometimes you may want to manipulate only a specific CSS
property (or a set of a few). In such cases, you need to resort to other methods that jQuery offers. These methods are
summarized in Table 5-2.

Table 5-1. Methods that Deal with CSS Classes

Method Description

addClass() Adds one or more CSS classes to a set of selected elements. Class names to be added are
specified as a parameter. Multiple class names are separated by a white space.

removeClass() Removes one or more classes from a set of selected elements. The class name to be removed
can be specified as a parameter. Multiple class names are separated by a white space. If no class
name is supplied as a parameter, all the CSS classes are removed.

hasClass() Returns true if a specified CSS class is assigned to any of the selected elements; false
otherwise.

toggleClass() Adds or removes one or more classes from a set of selected elements, depending on whether
the CSS class is present. Alternatively, you can also specify whether the class is to be added or
removed.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

137

Figure 5-1 gives a visual representation of the height- and width-related methods from Table 5-2.

Table 5-2. Methods to Deal with CSS Properties

Method Description

css() Gets or sets a value of a CSS style property for the selected elements.

height() Gets or sets the CSS height property of an element. The height returned by the height()
method is the content height that excludes things such as the border and padding.

innerHeight() Returns the height of an element excluding the border, but including padding.

outerHeight() Returns the height of an element including the border, padding, and optionally the margin.

width() Gets or sets the CSS height property of an element. The width returned by the width() method
is content width, and excludes things such as the border and padding.

innerWidth() Returns the width of an element, excluding the border but including padding.

outerWidth() Returns the width of an element, including the border, padding, and optionally the margin.

scrollLeft() Gets or sets the horizontal scroll position, which is the number of pixels that are hidden from
view to the left of the scrollable area. If an element is not scrollable, or if the scrollbar thumb is
toward the extreme left, scrollLeft() will return 0.

scrollTop() Gets or sets the vertical scroll position, which is the number of pixels that are hidden from view
from the top of the scrollable area. If an element is not scrollable, or if the scrollbar thumb is
toward the extreme top, scrollTop() will return 0.

position() Returns an object that gives information about the x and y coordinates of an element. The
returned object has two properties: left and top. The coordinates are returned relative to the
offset parent, which is the one that is a closed container to the target element.

offset() Gets or sets x and y coordinates of an element relative to the document. The coordinates are
specified as an object with two properties: left and top.

Figure 5-1. Height and width methods

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

138

In the center of Figure 5-1 is a DOM element. The padding of the DOM element is shown around it, and its
border is shown outside that. The margin from the surrounding is the final layer in the picture. Notice how the values
returned by height(), innerHeight(), outerHeight(), width(), innerWidth(), and outerWidth()are shown. The
outerHeight() and outerWidth() methods accept an optional Boolean parameter that controls whether the margin
is included in the returned value. If the Boolean parameter is omitted or passed as false, only padding and border are
included while calculating the resultant height and width, respectively. Otherwise, the margin is also included in the
calculated height and width.

You have used the css() method before. Let’s see some of its variations. Have a look at the code that sets
background-color CSS property for a <div> element div1 to red:

$("div1").css("background-color","red");

If you want to add multiple CSS style properties at one go, you can call the css() method in a chain like this:

$("div1").css("background-color","red").css("border","2px solid blue");

There is, however, an alternative way to accomplish the same in just one call to the css() method. Have a look at
the following code:

$("div1").css({"background-color" : "red", "border-top" : "2px solid blue"});

In this case, multiple CSS properties are passed to the css() method as a JavaScript object. A JavaScript object is
a collection of key-value pairs in which the key (background-color and border-top, in this example) is referred as a
property of the object. A property and its value are separated by a colon (:) character. Multiple property-value pairs are
separated by commas (,).

If you want to remove a CSS style property, set its value to an empty string ("") like this:

$("div1").css("background-color","");

The css() method is not limited to setting the values. You can also retrieve CSS style values using the css()
method. The following code shows how this is done:

$("div1").css("background-color","red");
var style = $("div1").css("background-color");
alert(style) // returns rgb(255,0,0)

Notice that the code sets the background-color property to a string value: red. However, the value is returned
in the form of the CSS rgb() function. It should be noted that the css() method doesn’t support shorthand CSS
properties such as border and padding. You should instead use the specific CSS property names such as
border-top-width and padding-top.

The other properties of Table 5-2 are best understood by example because they are used when calculating height
and width programmatically.

To understand how many of the methods listed in Table 5-2 are used, you will develop an application as shown
in Figure 5-2.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

139

The application consists of a Web Form that has a button called Show Dialog. Clicking the Show Dialog button
displays a modal dialog that collects the name from the end user. Clicking the OK button of the modal dialog closes
the dialog, submits the form, and displays the name in another Label. Clicking the Cancel button closes the modal
dialog and cancels the form submission.

Although this functionality is simple and straightforward, what is more important is that the modal dialog is
actually a Panel server control and is displayed at the center of the browser window using the methods listed in
Table 5-2. The modal dialog is centered even if the browser window is resized.

To begin developing the application, create an empty ASP.NET Web Forms project and add a Web Form to it.
Design the Web Form as shown in Figure 5-2.

The markup for the Web Form is shown in Listing 5-1.

Listing 5-1. Web Form Markup

<form id="form1" runat="server">
 This is sample text
 ...
 <asp:Button ID="Button1" runat="server" Text="Show Dialog" />
 <asp:Label ID="Label2" runat="server" Font-Bold="True"
 ForeColor="Red"></asp:Label>
 <div id="backgroundDiv"></div>
 <asp:Panel ID="Panel1" runat="server">
 <asp:Label ID="Label1" runat="server" Text="Enter your name :">
 </asp:Label>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

Figure 5-2. Application using CSS class and style methods

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

140

 <asp:Button ID="Button2" runat="server" Text="OK" Width="75px"
 OnClick="Button2_Click" />
 <asp:Button ID="Button3" runat="server" Text="Cancel" Width="75px" />
 </asp:Panel>
</form>

Notice that in addition to server controls such as Label, TextBox, Button, and Panel, the markup also contains a
<div> with an ID of backgroundDiv. This <div> is displayed in the background to the user when the modal dialog is
visible. It adds the semitransparent gray background effect.

Now add a <script> reference to the jQuery library and also add a <script> block below it. When the Web Form
is loaded, initially the Panel that makes the modal dialog should be hidden from the end user. This is achieved by
applying a certain CSS class to it in the ready() method handler. Listing 5-2 shows how this is done.

Listing 5-2. Hiding the Modal Dialog when the Page Loads

$(document).ready(function () {
 $("#Panel1").addClass("dialogHidden");
});

The ready() method handler function assigns the dialogHidden CSS class to Panel1 using the addClass()
method. The ready() method handler also contains a few event handlers. The most important event handler from the
point of application functionality is the click event handler of the Show Dialog button. This event handler is shown
in Listing 5-3.

Listing 5-3. Displaying the Modal Dialog in the click Event Handler

$("#Button1").click(function (evt) {
 var top = 0;
 var left = 0;
 if ($("#Panel1").hasClass("dialogHidden")) {
 $("#Panel1").removeClass("dialogHidden");
 }
 $("#Panel1").addClass("dialogVisible");
 var windowHeight = $(window).height();
 var windowWidth = $(window).width();
 var dialogHeight = $("#Panel1").outerHeight();
 var dialogWidth = $("#Panel1").outerWidth();
 top = ((windowHeight - dialogHeight) / 2 +
 $(window).scrollTop()) + "px";
 left = ((windowWidth - dialogWidth) / 2 +
 $(window).scrollLeft()) + "px";
 $("#Panel1").css("top", top);
 $("#Panel1").css("left", left);
 $("#backgroundDiv").addClass("dialogBackground")
 .height(windowHeight)
 .width(windowWidth)
 .css("display", "block");
 evt.preventDefault();
});

The click event handler function declares two variables—top and left—to hold the top and left coordinates of
the modal dialog. These coordinates are calculated dynamically based on the current window height and width.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

141

The code then checks whether Panel1 already has the dialogHidden CSS class applied to it by using the hasClass()
method. The dialogHidden class hides the modal dialog. If this class is already applied, the removeClass() method is
used to remove the dialogHidden class so that the modal dialog can now be displayed. The look and feel of the modal
dialog when it is displayed is controlled by the dialogVisible CSS class. This class is added to Panel1 using addClass()
method.

The next six lines of code determine the top and left coordinates where the modal dialog is to be displayed.
The windowHeight and windowWidth variables store the window height and width, respectively. The window height
and width is obtained by using the height() and width() methods. Because the modal dialog is to be displayed
at the center of the screen for calculations, its coordinates outerHeight() and outerWidth() are used to retrieve
its total height (including borders and padding) and total width. The total height and total width are stored in the
dialogHeight and dialogWidth variables.

The top coordinate of the modal dialog is calculated by subtracting dialogHeight from windowHeight and
dividing the result by 2. A value equal to scrollTop() is then added to the result to account for a scrollable region,
if any. The left coordinate of the modal dialog is calculated by subtracting dialogWidth from windowWidth and then
dividing the result by 2. This time, a value of scrollLeft() is added to the result. Notice that all the methods used in
the calculation return numbers and "px" is appended to the final result.

Once the top and left coordinates are calculated, the css() method is called on Panel1 to set the top and left CSS
properties. When the modal dialog is displayed the background should appear grayed-out. This is accomplished by
adding the dialogBackground CSS class to backgroundDiv with the help of the addClass() method. The backgroundDiv
should cover the entire window, so its height and width are set to the window height and width, respectively. This time,
the height() and width() methods are used to set the height and width of backgroundDiv. The css() method is used to
set the display mode of backgroundDiv to block. This way, backgroundDiv becomes visible. Finally, preventDefault() is
called to cancel the form submission (Show Dialog is a Button control and causes a postback).

The code discussed so far takes care of showing the modal dialog at the center of the window when the Show
Dialog button is clicked. But what if the dialog is already being displayed, and the browser window is resized? In this
case, the resize event of the window object needs to be handled. Listing 5-4 shows how this is done.

Listing 5-4. Centering the Modal Dialog when the Window is Resized

$(window).resize(function () {
 if ($("#Panel1").hasClass("dialogVisible")) {
 $("#Button1").click();
 }
});

The resize() method wires an event handler function for the resize event of the window. Inside the event
handler, the hasClass() method checks whether the modal dialog is already visible. This is done by hasClass(),
which checks for the existence of the dialogVisible CSS class on Panel1. The presence of this class indicates that the
modal dialog is displayed; the click() method is called on Button1 to simulate its click event. This process invokes
the code from the click event handler again, and the left and top coordinates of the modal dialog will be recalculated.

The final piece of code deals with the scenario in which a user clicks the Cancel button of the modal dialog. In
this case, the form submission is to be canceled and the modal dialog is to be made invisible. Listing 5-5 shows how
this is done.

Listing 5-5. Handling the click Event of Cancel Button

$("#Panel1 input:submit[value='Cancel'] ").click(function (evt) {
 if ($("#backgroundDiv").hasClass("dialogBackground")) {
 $("#backgroundDiv").removeClass("dialogBackground")
 .css("display", "none");
 }

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

142

 if ($("#Panel1").hasClass("dialogVisible")) {
 $("#Panel1").removeClass("dialogVisible");
 }
 $("#Panel1").addClass("dialogHidden");
 evt.preventDefault();
});

The code from Listing 5-5 selects the Cancel submit button using a combination of :submit form selector and
an attribute equals selector. The click event handler is wired using the click() method. The click event handler
checks whether dialogBackground CSS class is applied to backgroundDiv element. This is done using the hasClass()
method. If dialogBackground class is applied it is removed from backgroundDiv using the removeClass() method.
The css() method call ensures that the backgroundDiv is now hidden because the modal dialog is to be closed. The
code then checks whether the dialogVisible CSS class is added to Panel1 and if so the dialogVisible CSS class is
removed from Panel1 using the removeClass() method. Then the dialogHidden CSS classes is added to Panel1 using
the addClass() method so that Panel1 is now hidden from the end user. Finally, the form submission is canceled by
calling preventDefault() on the event object.

The CSS classes discussed in the preceding example are shown here for your quick reference:

.dialogBackground {
 background-color:rgba(0, 0, 0,0.7);
 opacity:0.5;
 position:fixed;
 left:0;
 top:0;
}

.dialogVisible {
 opacity:1;
 position:fixed;
 border:5px solid #ff6a00;
 background-color:white;
 font-weight:bold;
 padding:30px;
}

.dialogHidden {
 display:none;
}

Before you run this example, write the server-side click event handler for the OK button (Button2) as
shown below:

protected void Button2_Click(object sender, EventArgs e)
{
 Label2.Text = TextBox1.Text;
}

As you can see, the click event handler simply sets the Text property of Label2 to the value entered in the
text box.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

143

Working with Attributes and Properties
Most HTML elements have one or more attributes that can be used to define either the look and feel or behavior of
the element under consideration. For example, the <input> element has the type attribute, which governs the type
of control rendered in the browser. Similarly, <table> has the border attribute, which can draw a border for the table
and its cells. Although attributes are assigned some value at design time, sometimes it becomes necessary to change
their values at runtime.

Suppose that you are building a custom HTML media player that allows the user to select a media file from a list
and then plays the selected file. Further assume that you are using HTML5 <audio> and <video> elements to build
the media player. In this case, you need to change the src attribute of the <audio> and <video> elements on the fly,
depending on the selection made.

To manipulate HTML attributes and properties, jQuery offers a set of methods. Before discussing these methods,
it is important to understand the difference between an attribute and a property. An attribute is always associated
with some HTML markup element; a property is always associated with a DOM element. Because the DOM tree
is built based on HTML elements, many attributes have the corresponding DOM property. For example, the type
attribute of the <input> element is represented by the type property of the input DOM element. Not all DOM
properties have equivalent attributes, however. For example, the select DOM element has the selectedIndex
property, which returns the index of the item selected in the element. However, the <select> HTML element doesn’t
have any equivalent attribute. Another example is the defaultSelected property of an option DOM element. This
property reflects the selected attribute of the <option> element.

Now that you have an idea about what attributes and properties are, let’s see what jQuery has to offer to
manipulate them. Table 5-3 shows a list of jQuery methods that allow you to retrieve or assign attribute and property
values.

Table 5-3. Methods to Manipulate Attributes and Properties

Method Description

attr() Allows you to get or set the value of an attribute for the selected element. If the attribute is not
specified on an element, undefined is returned.

removeAttr() Removes an attribute from a selected element.

prop() Allows you to get or set the value of a DOM property for the selected element. If the property is
not assigned for the DOM element, undefined is returned.

removeProp() Removes a property from a selected element.

val() Used to get or set values of input, select, and textarea elements.

The attr(), prop(), and val() methods allow you to retrieve as well as assign values depending on the usage
syntax. For example, the following code snippet shows how the src attribute of an img element is first assigned and
then retrieved using attr() method.

$("#img1").attr("src","images/flower.png");
var imgSrc = $("#img1").attr("src");

Here, the ID selector selects an element whose ID is img1 and then uses the attr() method to set its
src attribute. The first parameter is the name of the attribute to set, and the second parameter is its value. The next
line retrieves the value of the same attribute and stores it in the imgSrc variable. In this version, the attr() method
accepts just one parameter that indicates the attribute whose value is to be retrieved. The usage syntax for prop() is
quite similar. The only difference is that the prop() method deals with a property instead of an attribute.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

144

The val() method is used to assign or retrieve the value of an input, select, or textarea element. The following
code shows how it can be used to set and get values:

$("#text1").val("Hello World!");
var value = $("#text1").val();

The first line of code grabs a text box with the ID text1 using an ID selector. The val() method is then called to
assign a value of "Hello World!" to the text box. The second line retrieves the value of the same text box using the
val() method without any parameters.

Now let’s develop a simple application that illustrates how many of the methods listed in Table 5-3 can be used.
The main Web Form of the application is shown in Figure 5-3.

Figure 5-3. Application that uses attribute and property manipulation methods

The Web Form consists of a DropDownList at the top that lists available audio files. Upon selecting a file from
the list, that file is played using the <audio> element. The three check boxes Show Controls, Play in Loop, and Mute
control the behavior of the player. The Show Controls check box toggles the display of the <audio> element controls
such as the play/pause button and volume slider. The Play in Loop check box controls whether the audio file is played
over and over again. The Mute check box controls whether sound is played. Four elements (a DropDownList and three
check boxes) manipulate various attributes of the <audio> element to obtain the desired behavior.

To begin developing the application, create an empty ASP.NET Web Forms application and add a new Web Form to
it. Design the Web Form as shown in Figure 5-3. The relevant HTML markup of the Web Form is shown in Listing 5-6.

Listing 5-6. Markup of the Web Form

<form id="form1" runat="server">
 <asp:Label ID="Label1" runat="server" Text="Select file to play :">
 </asp:Label>
 ...
 <asp:DropDownList ID="DropDownList1" runat="server">
 <asp:ListItem>Please Select</asp:ListItem>
 <asp:ListItem>Audio1.mp3</asp:ListItem>
 <asp:ListItem>Audio2.mp3</asp:ListItem>
 <asp:ListItem>Audio3.mp3</asp:ListItem>
 </asp:DropDownList>
 ...

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

145

 <asp:CheckBox ID="CheckBox1" runat="server" Text="Show Controls" />
 ...
 <asp:CheckBox ID="CheckBox2" runat="server" Text="Play in loop" />
 ...
 <asp:CheckBox ID="CheckBox3" runat="server" Text="Mute" />
 ...
 <audio id="audio1"></audio>
</form>

The Web Form markup is straightforward and needs no explanation. Notice that there is an <audio> element at
the end of the form for playing the selected audio file.

Add a <script> reference and a <script> block to the jQuery library. The ready() event handler function
attaches four event handlers: one for the change event of DropDownList1 and three for the click event of the three
check boxes. The change event handler function is shown in Listing 5-7.

Listing 5-7. DropDownList change Event Handler

$("#DropDownList1").change(function () {
 var selectedIndex = $("#DropDownList1").prop("selectedIndex");
 if (selectedIndex > 0) {
 $("#audio1").attr("src", "media/" + $("#DropDownList1").val());
 $("#audio1").get(0).play();
 }
});

The change event handler function begins by retrieving the index of the selected option from the drop-down list
with the help of the prop() method. The selectedIndex property of the selected DOM element returns a zero-based
index of the option that has been selected. The selected index is stored in the selectedIndex variable.

The first option in the drop-down list is Please Select, which is not associated with any audio file. An if block
checks whether the selectedIndex is greater than zero. If it is, the audio1 element’s src attribute is set to the path of
the file selected in the drop-down list. (Note that the code assumes that files are located inside the media folder.)

Change this path per your folder structure. To get the value selected in the drop-down list, the val() method is
used. Once the file selection changes, the newly selected file is played using the <audio> element’s play() method.
Notice the use of the jQuery get() method to retrieve the first element from the selection. This is necessary because
jQuery selectors return zero or more matched elements as a collection.

The click event handlers of the three check boxes add or remove controls and loop and muted attributes from
the <audio> element. These event handlers are shown in Listing 5-8.

Listing 5-8. Manipulating Controls and Loop and Muted Attributes

$("#CheckBox1").click(function () {
 if ($("#CheckBox1").prop("checked")) {
 $("#audio1").attr("controls", "controls");
 }
 else {
 $("#audio1").removeAttr("controls");
 }
});

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

146

$("#CheckBox2").click(function () {
 if ($("#CheckBox2").prop("checked")) {
 $("#audio1").attr("loop", "loop");
 }
 else {
 $("#audio1").removeAttr("loop");
 }
});

$("#CheckBox3").click(function () {
 if ($("#CheckBox3").prop("checked")) {
 $("#audio1").attr("muted", "muted");
 }
 else {
 $("#audio1").removeAttr("muted");
 }
});

All the click event handlers are quite similar, so I’ll discuss just the first one. The click event handler of CheckBox1
(Show Controls) checks the checked property of CheckBox1 using the prop() method. The prop() method returns a true
if the check box is checked; false otherwise. If the check box is checked, the attr() method is used to add the
controls attribute to the <audio> element. Setting the controls attribute to controls displays the play/pause controls of
the audio player. If the check box is unchecked, the removeAttr() method is used to remove the controls attribute from
the <audio> element. The other two click event handlers add or remove <audio> element loop and muted attributes.

Changing the Contents of DOM Elements
When it comes to manipulating DOM elements, jQuery offers a plethora of methods. This section discusses jQuery
methods that allow you to change the whole content of a DOM element. This content can be HTML markup or plain
text. Methods discussed in this section come in handy to get or set contents of an element. (You already used some of
them in earlier chapters.)

Table 5-4 lists these methods for your reference.

Table 5-4. Methods to Change Contents of a DOM Element

Method Description

text() Gets or sets text content of an element. While returning the text content, it returns the summation of text
content of all the descendent elements. While setting the content, the text is HTML encoded.

html() Gets or sets HTML content of an element. While returning the HTML content, the entire HTML markup
making the selection is returned. While setting the HTML content, all the existing content of the selected
element is replaced with the supplied HTML markup.

empty() Empties an element by removing all its content.

The text() method is intended to deal with the text content of an element. Consider the following markup:

<div id="container">
 Hello World!
</div>

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

147

The markup consists of a <div> element with an ID of container. It further contains some HTML markup
consisting of and elements. Now, look at the following jQuery code that uses the text() method to
manipulate the previous markup:

alert($("#container").text());
$("#container").text("Hello Universe!")
alert($("#container").text());
$("#container").text("Hello Universe!")
alert($("#container").text());

The first line of code retrieves the text content of the container <div> element and outputs Hello World! in the
alert dialog. The second line of code uses the text() method and passes a "Hello Universe!" string as its parameter.
This sets the text content of the container <div> to Hello Universe! as confirmed by the alert dialog. The fourth line
of code uses the text() method and passes a string with some HTML markup as the parameter. Because the text()
method HTML-encodes the strings, the alert dialog displays the text as is (i.e., the text won’t appear bold, but the
literal tags and are displayed).

Now, let’s use the html() method instead of text() in the preceding code. Here is the modified version of
the code:

alert($("#container").html());
$("#container").text("Hello Universe!")
alert($("#container").html());
$("#container").html("Hello Universe!")
alert($("#container").html());

In this case, the first line of code uses the html() method to retrieve the HTML content of the container, and the
alert dialog displays Hello World!. The second line uses the html() method to set the
content of the container <div> to Hello Universe!, and this is confirmed by the alert dialog that follows. The fourth line
of code again uses the html() method, but this time passes an HTML fragment as the parameter. Because the html()
method sets the HTML content of the container <div>, the string is displayed in bold letters. The final alert() simply
outputs the new HTML content of the <div> element.

The empty() method is quite straightforward. It takes no parameters and empties an element by removing all its
child elements—element nodes as well as text nodes. The following line shows how it can be used:

$("#container").empty();

Here the container <div> is emptied.

Adding and Removing DOM Elements
Although the text() and html() methods work with the whole content of selected elements, at times you need to
add, remove, or replace elements inside another element. jQuery offers many ways to add and remove elements as
outlined in Table 5-5.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

148

Most of the methods listed in Table 5-5 are pairs that do the same task with their source and target interchanged.
Consider, for example, the append() and appendTo() methods. Suppose you have a table with an ID of table1, and
you want to append a row to this table. This task can be accomplished by using the append() method like this:

$("#table1").append("<tr><td>Hello World!</td></tr>");

The ID selector selects table1, and then append() is called on the result. The append() method accepts the
HTML markup for a table row and adds that row as the last child of the table. The same task can be performed by
using the appendTo() method as follows:

$("<tr><td>Hello World!</td></tr>").appendTo("#table1");

Here the markup of the new row to be added is the selector, and this markup is appended to the target. The target
is retrieved using the ID selector.

The same pattern of usage can be seen in the prepend(), prependTo, after(), insertAfter(), before(), and
insertBefore() methods.

Copying DOM Elements
Sometimes you need to create a copy of selected DOM elements. For example, let’s say you want to display multiple
previews of certain content on the page. In such cases, you may need to copy the DOM elements. Such a copy can be
created using the clone() method. The following code shows how the clone() method can be used:

var clonedElement = $("div.class1").clone();
$("#divTarget").append(clonedElement);

The first line of code uses the class selector to select the <div> element with the class1 CSS class applied. It then calls
the clone() method on it to create a deep copy of the element. Deep copy means that all the child elements (including
text) will be cloned. The cloned elements are appended to the divTarget element using the append() method.

Table 5-5. Adding, Removing, and Replacing DOM Elements

Method Description

append() Adds the specified content at the end of the selected element.

appendTo() Adds the selected elements at the end of the specified target.

prepend() Adds the specified content at the beginning of the selected element.

prependTo() Adds the selected elements at the beginning of the specified target.

after() Adds the specified content after the selected element.

insertAfter() Adds the selected elements after the specified target.

before() Adds the specified content before the selected element.

insertBefore() Adds the selected elements before the specified target.

replaceWith() Replaces selected elements with the specified content.

replaceAll() Replaces the target with the content from the selected elements.

remove() Removes the selected elements from the DOM tree.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

149

The clone() method without any parameters copies the elements, but not the event handlers attached with the
elements. You can pass a Boolean parameter to indicate whether event handlers are also to be copied (true) or not
(false). Note that using clone() on elements that have ID attributes specified causes duplicate elements with the same
ID and can create problems for further processing. So it is recommended to avoid such cloning operations or use
some other selection criteria that will guarantee the unique selection of an element.

Creating an RSS Reader Widget
Now that you have a reasonable understanding of the various DOM manipulation methods offered by jQuery, let’s
develop a web application that puts many of them to use. In this section, you will develop a web application that reads
an RSS feed and outputs the feed content in a <div> element. We will refer to this application as an RSS widget. The
RSS widget renders the feed content based on several configurable parameters such as title, text, background color,
and number of feed items. Figure 5-4 shows the part of the Web Form that accepts these configuration settings.

Figure 5-4. Web Form that accepts RSS Widget settings

As shown in Figure 5-4, the Web Form consists of a series of text boxes, drop-down lists, and a list box. The RSS
Feed URL text box accepts the URL of an RSS feed. You can either enter some test feed URL or enter some live feed
URL. The Desired Title text box allows you to specify a title for the RSS feed items. You can also specify how many feed
items are to be displayed in the widget by using the Item Count text box. Whether to open the individual feed items in
the same browser window or open a new window is governed by the Open URLs in New Window check box. The text
alignment for the feed items is controlled by the Alignment drop-down list. The Height and Width text boxes specify
the height and width of the <div>. The Sequence list box allows you to specify how the feed items are displayed. Using
this list box and the Up and Down buttons placed below it, you can arrange the sequence of Item Title, Description,
Publication Date, and URL. Clicking the Generate button fetches the RSS feed items and displays them in a <div>,
as shown in Figure 5-5.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

150

Below the data entry controls and the <div> element is a text area (not shown in the figure) that outputs the raw
HTML markup of the <div>. Because the Web Form shown in Figure 5-4 and Figure 5-5 contains lengthy markup,
the entire markup is not given here. Instead, Table 5-6 lists the various controls and elements that are used on the Web
Form and that are important for the functioning of the application.

Figure 5-5. RSS feed displayed in a <div>

Table 5-6. Controls and Elements from the RSS Widget Web Form

Control / Element ID Type Description

txtURL TextBox Allows the user to enter a URL to any RSS feed.

txtTitle TextBox Allows the user to specify the title for the feed items.

txtItemCount TextBox Specifies the number of feed items to be displayed.

chkTarget Checkbox Controls whether feed items will be displayed in the same browser
window (unchecked) or opened in a new browser window (checked).

ddlAlign DropDownList Contains three values—Left, Right, and Center—that control the
alignment of the feed items.

txtHeight TextBox Specifies the height of the <div> element.

txtWidth TextBox Specifies the width of the <div> element.

(continued)

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

151

Now let’s get going. Begin by creating an empty ASP.NET Web Forms application and add a new Web Form to it:
RssWidget.aspx. Design the Web Form as shown in Figure 5-4 and Figure 5-5. You can refer to Table 5-6 to assign
IDs to various controls and HTML elements. Add the Scripts folder to the project and place the jQuery library into it.

Now add a <script> reference to the jQuery library and also add a <script> block in the head section. The
ready() method handler binds event handler function to three buttons (btnUp, btnDown, and btnGenerate), shown
in Listing 5-9.

Listing 5-9. ready() Method Handler

$(document).ready(function () {
 $("#btnUp").click(OnUp);
 $("#btnDown").click(OnDown);
 $("#btnGenerate").click(OnGenerate);
});

The code shown in Listing 5-9 uses the click() method on the three btnUp, btnDown, and btnGenerate buttons
to wire the event handler functions OnUp, OnDown, and OnGenerate, respectively. For the sake of simplicity and
readability, these three event handlers are created as separate functions instead of anonymous functions.

The OnUp() function performs the task of moving the selected item from lstSequence up in the list when the Up
button is clicked. This function is shown in Listing 5-10.

Listing 5-10. Using insertBefore() to Move an Item Up

function OnUp(evt) {
 $('#lstSequence option:selected').each(function () {
 $(this).insertBefore($(this).prev());
 });
 evt.preventDefault();
}

The code picks up an <option> from the lstSequence drop-down list that is currently selected by the user. This
is done using a combination of the ID selector and :selected selector. The each() method iterates through all the
matched elements (in this case, only one element is selected). Inside the each() method function, the insertBefore()
method is called to insert the current <option> before its previous item. Notice the use of the prev() method called
on this to retrieve the previous sibling <option> element. Inside the function, this refers to the current item being
iterated (the selected <option> in this case). To prevent the form submission, the preventDefault() method of the
evt object is called.

Control / Element ID Type Description

lstSequence ListBox Contains four values—Item Title, Description, Publication Date, and
Link to Full Store—that are part of a feed item.

btnUp Button A button to move the items from lstSequence up.

btnDown Button A button to move the items from lstSequence down.

btnGenerate Button A button to trigger the RSS fetching operation.

RssBox <div> Once RSS feed items are retrieved, they are displayed inside this <div>
element.

HtmlSource <textarea> This text area displays the raw HTML markup contained in RssBox.

Table 5-6. (continued)

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

152

The counterpart of the OnUp() function is the OnDown() function that is responsible for moving the selected item
down in the list. The OnDown() function is shown in Listing 5-11.

Listing 5-11. Using insertAfter() to Move an Item Down

function OnDown(evt) {
 $('#lstSequence option:selected').each(function () {
 $(this).insertAfter($(this).next());
 });
 evt.preventDefault();
}

The OnDown() function is quite similar to the OnUp() function, except that it uses the insertAfter() method, so
the selected <option> is inserted after the next option. Notice the use of the next() method to obtain the next sibling
of the selected <option>.

After the Generate button is clicked, you must fetch the RSS feed items at the specified URL. This is done in the
click event handler function OnGenerate(), as shown in Listing 5-12.

Listing 5-12. Fetching RSS Feed Items

function OnGenerate(evt) {
 var SourceUrl = "RssReader.aspx?feedUrl=" + $("#txtURL").val();
 $.get(SourceUrl, OnSuccess);
 evt.preventDefault();
}

The OnGenerate() function retrieves the URL entered by the user in the txtURL text box using the val()
method. This URL is appended as a querystring parameter to RssReader.aspx, and the resultant URL is stored in the
SourceUrl variable. RssReader.aspx will retrieve the RSS feed and return it to RssWidget.aspx. The RSS feed is an XML
markup, so the response from RssReader.aspx will be in XML form. You will develop RssReader.aspx shortly. Just for
your understanding, the structure of XML elements that make a feed item is given here:

<item>
 <title>title goes here</title>
 <link>URL goes here</link>
 <description>description goes here</description>
 <pubDate>publication date goes here</pubDate>
</item>

The $.get() method of jQuery is used to make an Ajax GET request to RssReader.aspx. The $.get() method
takes two parameters: the URL that is to be accessed and a callback function that is invoked upon the successful
completion of the request. The OnSuccess() function is shown in Listing 5-13.

Listing 5-13. OnSuccess() Function

function OnSuccess(feedData) {
 $("#RssBox").empty();
 $("#RssBox").append("<div>" +
 $("#txtTitle").val() +
 "</div>")
 .append("<hr />")
 .css("width", $("#txtWidth").val())

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

153

 .css("height", $("#txtHeight").val())
 .css("overflow", "auto")
 .css("text-align", $("#ddlAlign").val())
 .css("padding", "10px");
 $(feedData).find("item").each(ProcessFeedItem);
 }
}

The OnSuccess() function receives a parameter (feedData) that holds all the feed data. This data will be sent
by RssReader.aspx. The OnSuccess() function begins by emptying the RssBox <div> element by using the empty()
method and ensures that the widget works correctly even if the Generate operation is triggered multiple times. The
title is retrieved from txtTitle and added to RssBox using the append() method. A series of css() calls is used to add
CSS style attributes for height, width, text alignment, and so on. Notice that the overflow CSS attribute is also set so
that scrollbars are displayed to the RssBox <div> element whenever necessary.

Once the look and feel of RssBox is configured, the code proceeds to read the feedData returned by RssReader.aspx.
RSS feeds contain XML data, and each feed item is represented by an <item> element. The find() method is used on
feedData to search for all the <item> elements. The search results are iterated upon by using the each() method.
The each() method takes the ProcessItem() function as its parameter. The ProcessItem() function is discussed next
(see Listing 5-14).

Listing 5-14. ProcessItem() Function

function ProcessFeedItem(index) {
 if (index >= $("#txtItemCount").val()) {
 return;
 }
 var item = $(this);
 var title = item.find("title").text();
 var link = item.find("link").text();
 var description = item.find("description").text();
 var pubDate = item.find("pubDate").text();
 var newDiv = $("<div></div>");
 for (var i = 1; i <= $("#lstSequence option").length; i++) {
 switch ($("#lstSequence option:nth-child(" + i + ")").val()) {
 case "title":
 $("" + title + "
").appendTo(newDiv);
 break;
 case "date":
 $("Posted on : " + pubDate + "
").appendTo(newDiv);
 break;
 case "desc":
 $("<p>" + description + "</p>").appendTo(newDiv);
 break;
 case "link":
 $("<a href='" + link + "' target='" +
 ($("#chkTarget").is(":checked") ? '_blank' : '_self') + "'>
 Full story...

").appendTo(newDiv);
 break;
 }
 }

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

154

 $("#RssBox").append(newDiv);
 var clonedRssBox = $("#RssBox").clone();
 $("#HtmlSource").val($(clonedRssBox).html());
}

The ProcessItem() function accepts an index of the element being iterated. Inside, it checks whether this index is
greater than or equal to the feed item count specified in txtItemCount. If so, the control is returned without performing
any further processing. Otherwise, the code grabs values from the <title>, <description>, <pubDate>, and <link>
elements. Notice that these elements are found by calling the find() method on the current <item> element (in this
context, it refers to the current <item>). To extract the values of these elements, the text() method is used.

Each feed item is added to the RssBox as a child <div> element. This child <div> is formed dynamically like this:
$("<div></div>"). A for loop then iterates through all the options of lstSequence. With every iteration, a switch
statement checks the value of the <option> element using the nth-child() selector and val() method. Based on the
option element, title, description, pubDate, and link values are appended to the newDiv using the appendTo() method.
Compare the usage of append() and appendTo() to see how source and target switch their positions.

If the Open URL In New Window check box is checked, the hyperlink should open in a new window. To accomplish
this, the behavior target attribute is added to the <a> element. Notice the use of the is() method to determine whether
the check box is checked. The is() method accepts a selector (:checked in this case) and returns true if at least one
of the source elements (in this case, the source element is chkTarget) matches the selector; it returns false otherwise.
Accordingly, the target attribute is added to the anchor element with a value of _blank or _self.

The dynamically formed <div> element (newDiv) is added to the RssBox using the append() method. This way,
all the feed items are added to RssBox and are displayed on the Web Form.

Finally, the code creates a clone of RssBox by calling the clone() method on it. The html() method called on
the clonedRssBox returns the HTML content of the element. The HTML content thus returned is assigned to the
<textarea> using the val() method.

This completes RssWidget.aspx. The small task that still remains is to create the RssReader.aspx file that does
the job of pulling the RSS feed items from the specified URL. This form is quite straightforward and contains the code
shown in Listing 5-15 in its Page_Load event handler.

Listing 5-15. Generating RSS Feed and Sending it to the Client

protected void Page_Load(object sender, EventArgs e)
{
 string url = Request.QueryString["feedUrl"];
 XmlReader reader = XmlReader.Create(url);
 Rss20FeedFormatter formatter = new Rss20FeedFormatter();
 formatter.ReadFrom(reader);
 reader.Close();
 Response.ContentEncoding = System.Text.Encoding.UTF8;
 Response.ContentType = "text/xml";
 XmlWriter rssWriter = XmlWriter.Create(Response.Output);
 formatter.WriteTo(rssWriter);
 rssWriter.Close();
 Response.End();
}

The code from Listing 5-15 uses classes from the System.Xml and System.ServiceModel.Syndication classes.
The code retrieves the URL entered in the txtURL using the querystring parameter. Although not shown in the code,
you should consider validating this URL before processing it further for security reasons. Recall that this query string
parameter is passed from the OnGenerate() function while making a $.get() call to RssReader.aspx. Although
detailed discussions of these classes are out of the scope of this book, suffice it to say that these classes essentially read
an RSS feed and write it back on the response stream.

CHAPTER 5 ■ DOM MANIPULATION AND DYNAMIC CONTENT

155

You might be wondering why the RSS feed is to be read on the server end instead of accessing the feed URL
directly from the client script. It is necessary because browsers prohibit cross-domain Ajax calls. On the server side,
you can easily create an XmlReader that reads a specified URL. The Rss20FeedFormatter is used to extract the feed
data. Finally, the XmlWriter is used to write the feedback to the response stream.

That’s it! Run the RssWidget.aspx and test it by entering a feed URL and configuration information.

Summary
Manipulating DOM is often required in web pages that change the content dynamically. jQuery offers a plethora of
methods to add, remove, and replace DOM elements, attributes, and CSS styles. Methods such as attr() and prop()
allow you to read and write attributes and properties, respectively. The methods such as css(), addClass(), and
removeClass() allow you to manipulate CSS styling properties. Methods such as text() and html() allow you to deal
with the contents of an element. Finally, methods such as append(), remove(), insertAfter(), and insertBefore()
allow you to add or remove DOM elements.

The next chapter covers a few miscellaneous jQuery techniques such as data storage and collection
manipulation.

157

CHAPTER 6

Traversal and Other Useful Methods

While working with DOM using jQuery, you often need to travel through a set of elements. There are different types
of traversals, including traversing various child nodes of a given parent element and iterating though a set of DOM
elements. jQuery offers a rich set of methods to accomplish this task. To that end, this chapter covers these methods in
detail. Additionally, this chapter covers some miscellaneous techniques such as data storage, searching, and filtering
DOM elements. Finally, this chapter also discusses some handy utility methods that simplify your coding. Specifically,
the chapter covers the following topics:

How to traverse through a DOM tree•

How to filter, search, and iterate through DOM elements•

How to work with HTML5 custom data attributes•

Using utility methods offered by jQuery•

Tree Traversal
DOM arranges various elements in the form of a tree. You may need to access these elements based on their
relationship or hierarchy (for example, parent, child, or siblings). jQuery tree traversal methods allow you to do just
that. You typically use these methods to traverse the DOM tree or a branch of it. Table 6-1 lists the jQuery methods in
this category.

Table 6-1. jQuery Tree Traversal Methods

Method Description

children() Returns immediate child elements of one or more selected elements.

parent() Returns the immediate parent element of one or more matched elements.

parents() Returns all the elements in the hierarchy that are parent for the matched elements.

closest() Returns an element that is the closest ancestor of the matched element.

siblings() Returns all the elements that are siblings of the matched elements.

next() Returns the next sibling element of the matched elements.

nextAll() Returns all the sibling elements that follow the matched elements.

prev() Returns the element immediately preceding the matched elements.

prevAll() Returns all the preceding elements of the matched elements.

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

158

Let’s see how some of the methods outlined in Table 6-1 can be used. Suppose that you have a bulleted list placed
in a Web Form:

<ul id="root">
 C#
 Windows Forms
 <li id="level1">ASP.NET
 <ul id="level2">
 <li id="level3">Web Forms
 MVC
 Configuration

 .NET Framework
 Security

The markup consists of an outer element with the root ID. It has five direct child elements. The
element with the level1 ID contains another element with the level2 ID. The level2 element contains
three child elements.

If you want to get all the direct child elements of the root element, this code will do the job:

var children = $("#root").children();

This line of code uses the ID selector to match the root element and then calls the children() method on
it. This returns five child elements: C#, Windows Forms, ASP.NET, .NET Framework, and Security.

If you want to get the parent elements of the level2 element, you could write this:

var parent = $("#level2").parent();
var parents = $("#level2").parents();

The first line of code returns the immediate parent element of level2: the element containing
'ASP.NET'. The second line of code, however, returns all the parent elements of level2 in the hierarchy (i.e., level1,
root, <form>, <body>, and <html>.

If you want to work with siblings of the level1 element, you can access them using any of these methods:

var siblings = $("#level1").siblings();
var nextSiblings = $("#level1").next();
var nextAllSiblings = $("#level1").nextAll();
var prevSiblings = $("#level1").prev();
var prevAllSiblings = $("#level1").prevAll();

The first line of code returns four sibling elements of level1: the elements containing C#, Windows Forms,
.NET Framework, and Security. The second line returns the immediate next sibling element of level1 (i.e., the
containing .NET Framework. The third line of code returns all siblings of level1 that follow it (i.e., elements
containing .NET Framework and Security. The fourth and fifth lines of code return the sibling immediately preceding
level1 (the element containing Windows Forms) and all the siblings that precede level1 (the elements
containing Windows Forms and C#), respectively.

Finally, to get the closest element of level3, write this:

var closest = $("#level3").closest("ul");

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

159

Here, the closest() method called on level3 specifies a element selector and hence returns the closest
 element (the level2 element).

Using Tree Traversal Methods
Now that you know the basics of jQuery tree traversal methods, let’s develop a more realistic example based on the
knowledge you’ve gained so far. Figure 6-1 shows the Web Form that makes this example.

Figure 6-1. Application that uses tree traversal methods

Although the application may seem like the one you developed in the earlier chapters, this time you will use the
tree traversal methods to accomplish several things. First, whenever you hover your mouse pointer over any GridView
row, that row gets highlighted. Taking the mouse away from that row removes the highlight. When the GridView enters
edit mode, all the table cells being edited are shown with a different CSS styling to indicate the editable row. If you
try to update a row with empty values in any of the text boxes, that text box gets a red border and that table cell is also
highlighted. Although one row is being edited, the remaining rows of the GridView are dimmed to focus user attention
to the editable row.

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

160

To begin developing this application, create an empty ASP.NET Web Forms application. Add a new Web Form in
it and drag-and-drop a SQL Data Source control. Configure the SQL Data Source control to select the EmployeeID,
FirstName, LastName, and Country columns from the Employees table of the Northwind database. Make sure to
select the Generate INSERT, UPDATE, and DELETE statements option from the Configuration Wizard. Now place a
GridView control on the Web Form and from its smart tag set its data source to the SQL Data Source control you just
configured.

Next, add the Scripts folder to the project and place the jQuery library in it. Then add a <script> reference and a
<script> block to the jQuery library. Add an empty ready() handler function and write the code shown in Listing 6-1.

Listing 6-1. Adding Hover Functionality

$("#GridView1 td").hover(function () {
 $(this).parent().addClass("Highlight");
 }, function () {
 $(this).parent().removeClass("Highlight");
});

The code selects all the table cells from GridView1 and wires event handler functions using the hover() method.
When the mouse pointer is moved over a table cell, the first function is called; when the mouse pointer is moved out,
the second function is called. The first function uses the parent() method on this selector to return the parent row of
the current table cell. The addClass() method is used to add a Highlight CSS class to the table row. The Highlight
CSS class looks like this:

.Highlight {
 background-color:navy;
 color:white;
}

The removeClass() method is used in the second function to remove the Highlight CSS class from the parent
table row.

Now, add the code shown in Listing 6-2 inside the ready() function handler.

Listing 6-2. Validating Data Before Updating a Row

$("#GridView1 input:submit[value='Update']").click(function (evt) {
 var row = $(evt.target).parent().parent();
 var children = $(row).children();
 $(children).each(function () {
 if ($("input:text", this).val() == "") {
 $("input:text", this).addClass("Error");
 $(this).closest("td").removeClass("EditCell");
 $(this).closest("td").addClass("ErrorCell");
 evt.preventDefault();
 }
 else {
 $("input:text", this).removeClass("Error");
 $(this).closest("td").removeClass("ErrorCell");
 }
 });
});

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

161

The code selects the Update button using a combination of the ID selector, :submit selector, and attribute equals
selector. Then a click event handler function is wired to handle the client-side click event of the Update button.
Inside the click event handler, a reference to the table row is obtained using the parent() method. The Update
button is placed inside a table cell so the first call to parent() will return this table cell. Calling parent() on this table
cell will return the table row. Then all the table cells of the row are retrieved using the children() method.

In this example, the children() method returns five table cells. The each() method is used to iterate through all
the table cells. With each iteration, the value of the text box inside a table cell is checked. Notice how the value of the
text boxes is obtained. The input:text selector selects the text box within the context of this. In this case, this refers
to a table cell being iterated. So, matching for input:text happens only within that table cell.

If the text box value is empty, the Error CSS class is added to the text box. The closest() method is used to get
a reference to the table cell that houses the text box, and the EditCell CSS class is removed from it. (Notice that td
is specified as the parameter to the closest() method to retrieve the closest table cell.) The ErrorCell CSS class is
added to the table cell. Because empty text boxes indicate validation errors, the form submission is halted by using
the preventDefault() method. If the text boxes contain some value, the else block gets executed, and the Error and
ErrorCell CSS classes are removed from the respective elements.

The Error and ErrorCell CSS classes are shown here:

.Error {
 border:2px solid red;
}
.ErrorCell {
 background-color:#cec5c5;
}

Next, add the code shown in Listing 6-3 inside the ready() handler.

Listing 6-3. Highlighting the Editable Row

if ($("#GridView1 input:submit[value='Update']").length > 0) {
 var cell = $("#GridView1 input:submit[value='Update']").parent();
 var siblings = $(cell).siblings();
 $(siblings).each(function () {
 $(this).addClass("EditCell");
 });
 var row = $(cell).parent();
 $(row).nextAll("tr").addClass("NonEditableRow");
 $(row).prevAll("tr").addClass("NonEditableRow");
}

The code shown in Listing 6-3 gets executed every time the Web Form is loaded (either during the first request
or as a result of postback). It checks whether the GridView is in update mode by seeing if the Update button can
be selected successfully (length > 0). If so, a table cell reference that houses the Update button is obtained using
the parent() method. Then the siblings() method is used on this table cell to retrieve all the other cells from the
same row. The each() method loops through all the sibling table cells, and the EditCell CSS class is added to the
respective table cell. Then a reference to the parent table row is obtained using the parent() method on the cell
containing the Update button. All the next table rows of the row being edited are obtained using the nextAll()
method, and the NonEditableRow CSS class is added to them. Similarly, all the preceding table rows of the row being

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

162

edited are obtained using the prevAll() method and NonEditableRow CSS class is added to them. The EditCell and
NonEditableRow CSS classes look like this:

.EditCell {
 background-color:#ffd800;
}
.NonEditableRow {
 background-color:rgba(0, 0, 0,0.5);
 opacity:0.5;
}

Notice how the rgba() function and opacity CSS property are used to specify the opacity of the target elements.
This completes the application. Figure 6-2 shows how the application behaves when the update operation is

attempted while the Country text box is empty.

Figure 6-2. GridView with some errors

The editable row is highlighted, and the remaining rows are dimmed. The Country text box has a red border
because it is empty.

Note ■ Some of the tasks from the previous example could have been accomplished by using selectors alone.

However, because the example aimed at illustrating the use of the jQuery tree traversal methods, methods were used

instead of selectors.

Tree traversal methods can be useful when you want to access and manipulate tree structures such as a TreeView
or an organizational chart. Consider, for example, that you are building a web page that displays organizational
hierarchies in the form of a TreeView or chart. In such cases, you can access the individual hierarchy level or nodes
using the tree traversal methods discussed in this section. Another example is when XML files are loaded and
displayed in some tree structure (for example, a web-based XML editor), and you want to access and manipulate
various nodes of that tree.

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

163

Filtering
Although selectors allow you to pick elements matching a condition, sometimes you need more. You may want to
select a set of elements and then work with a subset from those elements. For example, you may use an element
selector to match all the table rows from a table and then access only a few rows from the result to perform some
processing. jQuery filtering methods allow you to filter matched elements to return a subset that can be accessed for
further processing. Table 6-2 lists the filtering methods offered by jQuery.

Table 6-2. jQuery Filtering Methods

Method Description

first() Returns the first element from the selected DOM elements.

last() Returns the last element from the selected DOM elements.

eq() Returns an element at specified index (zero-based) from the selected DOM elements.

has() Returns all the elements from a set of DOM elements that have a given element as their descendant.

is() Returns true if at least one element matches the criteria specified in the parameter; returns false
otherwise.

not() Returns all the elements that do not match the criteria specified in the parameter.

slice() Returns all the elements between a zero-based start index and an end index (or until the end if the
end index is not specified).

filter() Returns all the elements from the selected DOM elements that match the specified condition.

map() Used to pass each element from the selected DOM elements though a function and get the return
values of the function calls.

To understand the usage syntax of these methods, consider the following markup that represents a bulleted list:

 C#
 Windows Forms
 ASP.NET

 <li class="sublist">Web Forms
 <li class="sublist">MVC
 <li class="sublist">Configuration

 .NET Framework
 Security

The markup is quite similar to what you used in the preceding section, except all the sublist items have the
sublist CSS class attached with them. Assuming that you have selected all elements and now want to work with
the first element from the matched elements, this is how to use the first() method:

var first = $("li").first();

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

164

This line of code selects all the elements using the element selector and then retrieves the first element
using the first() method. This first variable contains an element indicated by C#. You can retrieve the last element
using the last() method like this:

var last = $("li").last();

To retrieve an element at a specific index, you can use the eq() method as shown here:

var fourth = $("li").eq(3);

This line of code returns a second element (the index is zero-based) using the eq() method and stores it in a
variable. This fourth variable will hold a reference to the Web Forms element.

If you want to filter the selection so that only first-level elements are returned, write the following code:

var sublist = $("li").not(".sublist");

The above code uses the not() method to filter all the elements that do not have the sublist CSS class
attached to them. Notice that the CSS class selector is specified as a parameter to the not() method. After executing
this statement, the sublist variable will contain elements representing Web Forms, MVC, and Configuration.

The is() method is commonly used with check boxes to figure out whether a check box is checked. Of course,
you can also use it for other purposes. For example, if you want to determine whether any of the matched elements
have the sublist CSS class attached to them, you can write the following:

var flag = $("li").is(".sublist");

In this case, flag contains a Boolean value of true because there are elements with the sublist CSS class. Note
that unlike most of the other filter methods, is() returns a Boolean value, not a jQuery object.

To slice the matched elements so that only the first two elements are returned, the following code can be used:

var sliced = $("li").slice(0,2);

The slice() method takes two parameters: the first parameter specifies the start index of an element at which
slicing should begin; the second parameter indicates the end index of an element before which the slicing should
stop. Both the indices are zero-based. In the preceding example, the sliced variable contains elements representing
C# and Windows Forms. If you omit the end index, all the elements starting from the start index until the end of the
selection are returned.

To run a custom filter on the selected elements so that only those having the sublist CSS class attached to them
are returned, the following code can be used:

var sublist = $("li").filter(".sublist");

Here, the filter() method specifies a CSS class selector as its parameter, and hence the results of the first
selector are filtered to retrieve only the elements having the sublist CSS class attached.

Suppose that you want to retrieve all the leaf-level list items as a comma-separated list, the following code does
the trick:

var result = $("li").map(function () {
 if ($(this).children().length == 0) {
 return $(this).text();
 }
});
var finalResult = result.get().join(",");

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

165

This code uses the map() method and specifies a function as its parameter. Inside the function, this represents
the current element being passed to the function. The function checks whether the element being passed has any
child elements by using the children() method. If the element doesn’t have a child element, the text of that element
is retrieved using the text() method and returned. When all the elements are passed through the map() method,
the collective result of all the function invocations is stored in the result variable as the jQuery object. The get()
method is used to retrieve the result as an array, and then the join() method is called on it to get a comma-separated
string of values. The previous code will store C#, Windows Forms, Web Forms, MVC, Configuration, .NET Framework,
and Security in the resultant string.

Using Filtering Methods
In this section, you develop a Web Form that illustrates a more meaningful example of using filter methods. Figure 6-3
shows the Web Form that you will develop in this example.

Figure 6-3. Application using filter methods

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

166

The Web Form consists of a <div> element at the top that shows some statistics about the records being shown in
the GridView below it. The GridView displays records from the Employees table of the Northwind database. The <div>
element shows information such as total number of rows in the grid, total number of employees from the USA and
their names, and the total number of employees living outside the USA and their names. It also tells whether there is
at least one employee from USA or not. A quick glance at the GridView will tell you that the Country table cells for USA
employees are highlighted.

To begin developing this Web Form, create an empty ASP.NET Web Forms application and add a Web Form to it.
Add the jQuery library to the Scripts folder and add a <script> reference to it in the head section of the Web Form.
Then place a SQL Data Source control and a GridView on the Web Form. Configure the SQL Data Source control
to pick EmployeeID, FirstName, LastName, and Country from the Employees table of the Northwind database. From
the <smart> tag of the GridView, set its data source to the SQL Data Source control you just configured. Also add
a <div> element and set its CSS class to InfoPanel. To highlight the Country cells for USA employees, handle the
RowDataBound event of the GridView control, as shown in Listing 6-4.

Listing 6-4. RowDataBound Event Handler

protected void GridView1_RowDataBound(object sender,
 GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 if (e.Row.Cells[3].Text == "USA")
 {
 e.Row.Cells[3].CssClass = "HighlightCountry";
 }
 else
 {
 e.Row.Cells[3].CssClass = "OtherCountry";
 }
 }
}

The RowDataBound event is raised for each and every row of a GridView, including header and footer, when the
row is data bound. That is why a check is performed to see whether a row is a DataRow. This is done with the RowType
property and DataControlRowType enumeration. If a row is a DataRow, another if condition checks whether the third
cell of the row (the Country column) contains USA. If so, the HighlightCountry CSS class is attached to that cell by
using its CssClass property. Otherwise, the OtherCountry CSS class is attached to that cell.

Now add a <script> block in the header section and an empty ready() handler function as before. Add the code
shown in Listing 6-5 in the ready() handler function.

Listing 6-5. Total Table Rows

$(document).ready(function () {
 var infoHtml = "";
 var totalRows = $("#GridView1 tr");
 var dataRows=$(totalRows).slice(1);
 infoHtml += "Total Rows : " + $(dataRows).length + "
";
});

The code begins by declaring the infoHtml variable for storing the HTML markup that will go inside the <div>
element. Then all the table rows are selected from GridView1 and stored in the totalRows variable. This matched set
becomes the basis for further processing. The totalRows variable will contain all the table rows, including the header

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

167

row. To get only the data rows, the slice() method is used. The index value of 1 means that slicing will begin from
second row and will continue until the end. The total number of data rows is then found using the length property of
the dataRows variable.

Now add the code shown in Listing 6-6 inside the ready() handler.

Listing 6-6. Finding USA Employees

var usa = $(totalRows).has(".HighlightCountry");
infoHtml += "Employees from USA : " + $(usa).length;
infoHtml += " (";
var usaEmp = $(usa).map(function () {
 var children = $(this).children();
 return $(children).eq(1).text();
});
infoHtml += $(usaEmp).get().join(",");
infoHtml += ")
";

The code shown in Listing 6-6 uses the has() method to filter all the rows from totalRows that have the
HighlightCountry CSS class attached to them. Remember that only those cells that contain USA have this CSS class.
So the usa variable will contain only those rows that have the Country cell with the HighlightCountry CSS class.

The total number of employees residing in the USA is then found by using the length property. The map()
method is used on usa to obtain the FirstName column values of all the employees residing in the USA. Inside the
map() callback function, the children() method is used to get all the table cells of the row under consideration (here
it points to that row). To retrieve the FirstName value, the eq() method is called on the children with an index of 1
(FirstName is the second column in the GridView).

The text() method returns the FirstName value for an employee. Next, the get() method is used on usaEmp
to convert the return value of map() into an array; then the join() method is called on the array to generate a
comma-delimited string of FirstName values. To get the number of employees not residing in the USA and to
output their names, a similar process is used. The only exception is that instead of the has() method checking for
HighlightCountry, it checks for OtherCountry like this:

var others = $(totalRows).has(".OtherCountry");

Now add the code shown in Listing 6-7 below the code just discussed.

Listing 6-7. Checking for at Least One USA Employee

if ($("#GridView1 td").is(".HighlightCountry")) {
 infoHtml += "(At least one USA employee record present.)";
}
$(totalRows).first().addClass("HeaderRow");
$(".InfoPanel").html(infoHtml);

The code selects all the table cells and then uses the is() method to determine whether at least one of the cells
has the HighlightCountry CSS class attached with it. If the is() method returns true, there is at least one employee
residing in the USA. Accordingly, a string is added to the infoHtml variable.

To display the header row in a different way, the HeaderRow CSS class is added to it. To get a reference to the
header row, the first() method is called on totalRows and then the addClass() method is used to attach the
HeaderRow CSS class to it. Finally, the HTML markup stored in the infoHtml variable is assigned as the content of the
<div> element using the html() method. The HighlightCountry, InfoPanel, and HeaderRow CSS classes are shown in
Listing 6-8.

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

168

Listing 6-8. CSS Classes in the Application

.HighlightCountry {
 background-color:red;
 color:white;
 font-weight:bold;
}
.InfoPanel {
 border:2px solid rgb(128, 128, 128);
 background-color:#cec5c5;
 font-weight:bold;
 padding:10px;
}
.HeaderRow {
 background-color:navy;
 color:white;
 font-weight:bold;
}

You can add these classes to a style sheet and then link that style sheet from the head section of the Web Form
using the <link> tag.

Filtering methods can be useful whenever you want to filter the selected elements and work with that subset.
Suppose that you are building a Web Form that allows a user to generate custom reports. The page might display a
whole set of data, but the user can filter it based on some conditions and then generate an onscreen report based on
the filtered data.

Iterating and Searching
You often need to iterate through a set of DOM elements and may also want to search for certain elements. The jQuery
each() and find() methods are used for these very purposes, respectively. Although you have used each() and
find() before, this section examines them in more detail, along with an example.

Let’s discuss the each() method first. It allows you to iterate through a set of DOM elements and execute a
custom callback function on each object being iterated upon. The function receives a zero-based index of the element
being iterated and the DOM element as the parameters. Inside the callback function, the keyword this represents the
element being iterated. If you want to explicitly break the looping operation for some reason, you should return false
from the callback function. Listing 6-9 shows how the each() method can be used to iterate through all elements
and perform processing on each of them.

Listing 6-9. Using the each() Method

$(document).ready(function () {
 $("li").each(function (index) {
 $(this).css("font-weight", "bold");
 if (index > 3) {
 return false;
 }
 });
});

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

169

The code shown in Listing 6-9 selects all elements from a web page and iterates through them using the
each() method. The callback function passed to the each() method takes index as its parameter. Inside, the function
constructs a jQuery object using the this keyword and calls the css() method on it to set the font-weight CSS
property to bold. Here, this points to the element being iterated. An if condition checks whether the index of
the element is greater than 3; if so, it breaks the each() operation. Thus running this code will cause the first
elements to be shown with font-weight of bold and the remaining will be unaffected.

The find() method allows you to search for and retrieve elements within a set of matched elements. Thus,
find() searches all the descendant elements for a matching condition. For example, suppose that you have selected a
set of table rows and want to find only those table cells that have certain CSS class attached. You can accomplish this
task by using the find() method, as shown in Listing 6-10.

Listing 6-10. Using the find() Method

var results = $("tr").find(".class1");
 $(results).each(function () {
 $(this).addClass("class2");
});

The code uses the find() method on a set of matched <tr> elements and searches for all the descendant
elements with the class1 CSS class attached with them. In this case, all the table cells and their contents will be
searched, and the elements matching the search criteria are stored in results variable. The each() method is used
to iterate through the search results, and the class2 CSS class is added to each found element using the addClass()
method.

Using each() and find()
Now that you understand the each() and find() methods, you can develop a Web Form that illustrates how they can
be used. The Web Form that makes this example is shown in Figure 6-4.

Figure 6-4. Application using each() and find()

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

170

The application consists of a Web Form that has a DropDownList at the top and a GridView below it. The
DropDownList displays all the OrderIDs from the Order Details table of Northwind database. The GridView below
shows ProductID, UnitPrice and Quantity for the selected OrderID. What is more important is the footer of GridView
that renders the total order amount by multiplying UnitPrice with Quantity. This total amount is calculated using the
each() and find() methods as discussed shortly.

Begin by creating an empty ASP.NET Web Forms application and add a new Web Form to it. Drag and drop a SQL
Data Source control and a DropDownList on the form. Configure the SQL Data Source control to select the OrderID
column from the Orders table of the Northwind database. Data bind the DropDownList with the SQL Data Source
you just configured so that it displays the OrderID column. Drag and drop another SQL Data Source control and a
GridView on the Web Form.

Configure this SQL Data Source control to select rows from the Order Details table for the OrderID selected in
the DropDownList. You can do so by adding a control parameter in the Add WHERE clause dialog of the second SQL
Data Source control. Data bind the GridView with the second SQL Data Source control. Configure the ItemTemplate
for the UnitPrice and Quantity columns to set the CssClass property to Price and Qty, respectively. Set the CssClass
property of the header and footer to Header and Footer, respectively (these classes are quite straightforward, so are
not discussed here to save some space).

Next, add a <script> reference to the jQuery library and also add an empty <script> block. Add the code shown
in Listing 6-11 inside the <script> block.

Listing 6-11. Calculating the Order Total with each() and find()

$(document).ready(function () {
 var totalAmount = 0;
 $("tr").each(function () {
 if (!$(this).hasClass("Header") && !$(this).hasClass("Footer")) {
 var price = $(this).find(".Price").text();
 var qty = $(this).find(".Qty").text();
 totalAmount += (price * qty);
 }
 if ($(this).hasClass("Footer")) {
 $(this).empty();
 $(this).append("<td colspan='3' align='right'>TOTAL : "
 + totalAmount.toFixed(2) + "</td>");
 }
 });
});

The code in Listing 6-9 consists of the ready() handler function. The function begins by declaring the
totalAmount variable intended to store the total order amount. Then an element selector is used to select all table
rows. The each() method iterates through all the rows. With every iteration, the code checks whether the row being
iterated has Header or Footer CSS classes added by using the hasClass() method.

The header and footer row needs to be skipped from the amount calculation logic because these rows don’t
contain any order details. Inside the if block, the find() method is used to search for a table cell that has Price CSS
class attached with it. Calling the text() method on the return value of find() will give the UnitPrice for that row.
Similarly, Quantity is found out using the find() method to look for the Qty CSS class. After UnitPrice and Quantity
are known, they are multiplied and added to the totalAmount value.

The second if block checks whether the row being iterated has the Footer CSS class added to it. If so, it empties
that row using the empty() method. By default, the footer row of the GridView contains the same number of table cells
as the columns shown in the GridView (three cells in this case). Because you want to display the total amount in the
footer, these three cells are removed by using the empty() method. Finally, a table cell with a colspan of 3 is added to
the footer row using the append() method. Notice the use of the toFixed() method to display totalAmount with only
two decimals.

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

171

The methods discussed in this section are useful whenever you want to do some custom processing for each
element from the matched set. Suppose, for example, that you select a set of customers and want to display order
details for certain customers from that set. You can use find() to retrieve the customers for which order information
is needed and then use each() to iterate through each customer. Inside the each() callback, you can make an
Ajax request to the server and retrieve order information for that customer. The retrieved order details can then be
displayed onscreen or used for further processing.

Accessing Custom Data Attributes
HTML markup elements use attributes to specify configuration information. For example, the height and width
attributes of the <div> element govern the height and width of the <div> when displayed in the browser. Most of the
attributes of HTML elements affect the user interface or visual display of the element under consideration.

When developing web applications, developers may need to emit metadata about an element to the client
browser. Such metadata doesn’t affect the display of the element directly. Nevertheless, the metadata holds pieces of
information relating to that element.

Consider an example in which an HTML form is to be validated using jQuery code. When the jQuery code
validates the form fields, it is supposed to display validation errors if any of the fields hold invalid values. Often, the
error message text is directly embedded in the JavaScript code. But what if the error message text is to be changed
after the deployment?

Embedding the error message text directly in the script calls for editing the script. This in turn amounts to changing
the application’s code-base. In such situations, it’s helpful if the error message text is stored separately from the web
pages (in a database table, for example). At runtime, the error messages can be retrieved from the database and emitted
to the client. These emitted messages form the metadata of the HTML elements. If any change is required in the error
messages, you change the database entries, and the application begins using the new values from the next run.

Prior to HTML5, there wasn’t a standard to deal with such metadata information. HTML5 introduces custom
data attributes that can be used to define metadata about elements. The HTML5 custom data attributes are special
attributes that take the following form:

data-<name>="value"

Custom data attributes always begin with data- followed by a developer-defined name. For example, for the
custom validation scenario discussed earlier, you can create a custom data attribute named data-errormessage.

The developer-defined name can contain a hyphen (-). For example, data-customer-id and data-customer-name
are valid custom data attributes.

Note ■ Custom data attributes are also referred as data-* attributes due to the naming convention they follow.

A custom data attribute can be assigned a value just like any other HTML attribute. Unlike standard HTML
attributes, custom data attributes don’t affect the visual look and feel of the element. You need to programmatically
access them and execute the intended logic on them. An HTML element can have any number of custom data
attributes defined on it. Listing 6-12 shows some sample HTML markup that uses custom data attributes.

Listing 6-12. Using Custom Data Attributes

<table border="1" cellpadding="3">
 <tr id='emp1' data-employeeid='1' data-title='Sales Representative'>
 <td>Nancy</td>
 <td>Davolio</td>
 </tr>

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

172

 <tr id='emp2' data-employeeid='2' data-title='Vice President, Sales'>
 <td>Andrew</td>
 <td>Fuller</td>
 </tr>
 ...
</table>

This listing shows an HTML table containing employee data. Each table row contains the name of the employee
and has two custom data attributes: data-employeeid and data-title. The data-employeeid attribute stores the
employee’s EmployeeID, and the data-title attribute stores the employee’s job title.

jQuery provides the data() method for accessing custom data attributes. Listing 6-13 shows how you can use
jQuery to get and set custom data attributes.

Listing 6-13. Using jQuery to Access Custom Data Attributes

alert('Employee ID : ' + $("#emp1").data('employeeid'));
alert('Title : ' + $("#emp1").data('title'));

$("#emp1").data('employeeid', '100');
$("#emp1").data('title', 'Senior Manager');

alert('Employee ID : ' + $("#emp1").data('employeeid'));
alert('Title : ' + $("#emp1").data('title'));

The jQuery library provides the data() method to access custom data attributes. To retrieve a custom data
attribute, call data() on the underlying DOM element and pass the attribute name without data-. For example,
Listing 6-13 uses data('employeeid') to retrieve the value of the data-employeeid attribute. To assign a value to a
custom data attribute, call the data() method and supply an attribute name without data- and its new value. In the
previous example, data-employeeid is set to 100, and data-title is set to Senior Manager.

If the custom data attribute contains a hyphen (-) in the name (data-employee-birthdate, for example), you can
access it using camel-casing syntax, as shown here:

alert('Title : ' + $("#emp1").data('employeeBirthdate'));

If you call data() without any parameters, it returns an object of key-value pairs containing all the custom data
attributes of that element and their values. Listing 6-14 shows how to use this variation of the data() method.

Listing 6-14. Using the data() Method to Obtain Custom Data Attributes as an Object

var obj = $("#emp1").data();
alert('Employee ID : ' + obj.employeeid);
alert('Title : ' + obj.title);
alert('Birth Date : ' + obj.employeeBirthdate);

As you can see, the data() method is called without any parameters. Doing so returns an object with key-value
pairs. To read a particular custom data attribute, you can use its name without data- against the object returned.

Using data() Method
Now that you know how to use custom data attributes, let’s develop a Web Forms application that illustrates how you
can implement the validation scenario discussed at the beginning of this section. You will develop a Web Form as
shown in Figure 6-5.

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

173

The Web Form shows employee names from the Employees table of the Northwind database along with their
BirthDate and HireDate values. The user can select the respective dates and click the Save button. Clicking Save
triggers validation logic that checks whether the employee is at least 18 years old at the time of hiring. If not, an error
message is displayed in an alert box. The validation message isn’t embedded anywhere in the code; it is stored in a
database table named ErrorMessages.

To begin developing this application, create an empty ASP.NET Web Forms project and add a new Web Form
to it. Then add a local SQL Server database (you can either use SQL Express or LocalDB) and create a table named
ErrorMessages. You also need to create an Entity Framework data model for this table. The ErrorMessages table has a
simple structure, as shown in its Entity Framework data model (see Figure 6-6).

Figure 6-5. Application using custom data attributes for validation

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

174

The ErrorMessages table contains three columns: Id, ErrorCode, and ErrorMessageText. The ErrorCode column
contains a short code for an error (such as INVALIDDATE), and the ErrorMessageText column holds the descriptive
error message (for example, "The Hire Date must be later than Birth Date"). Add a SQL Data Source control
on the Web Form and configure it to select the EmployeeID, BirthDate, and HireDate columns of the Employees table.
Next, place a Repeater control on the Web Form and design it to resemble Figure 6-5. Listing 6-15 shows the markup
for the ItemTemplate of the Repeater server control that renders the employee list.

Listing 6-15. Web Form Markup Showing the Employee List

<ItemTemplate>
 <tr id='<%# Eval("EmployeeID","emp{0}") %>'
 data-employeeid='<%# Eval("EmployeeID") %>'>
 <td><%# Eval("FirstName") %> <%# Eval("LastName") %></td>
 <td><asp:TextBox ID="txtBirthDate" runat="server"
 CssClass="birthdate" TextMode="Date"
 Text='<%# Eval("BirthDate") %>'
 data-error-invaliddate=
 '<%# GetValidationMessage("INVALIDDATE") %>'>
 </asp:TextBox>
 </td>
 <td><asp:TextBox ID="txtHireDate" runat="server" CssClass="hiredate"
 TextMode="Date"
 Text='<%# Eval("HireDate") %>'
 data-error-invaliddate=
 '<%# GetValidationMessage("INVALIDDATE") %>'>
 </asp:TextBox>
 </td>
 <td><input type="button" value="Save"/></td>
 </tr>
</ItemTemplate>

This markup consists of two TextBox server controls that display the BirthDate and HireDate column values,
respectively. The TextMode property of these text boxes is set to Date, so the browsers supporting the HTML5
date input type can display a date-picker to select the dates. Each text box has a custom data attribute named

Figure 6-6. Entity Framework data model for ErrorMessages table

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

175

data-error-invaliddate. The value of this attribute comes from the GetValidationMessage() method, which picks
up the ErrorMessageText from the ErrorMessages table based on the ErrorCode passed:

public string GetValidationMessage(string errorCode)
{
 ValidationDbEntities db = new ValidationDbEntities();
 var data = from item in db.ErrorMessages
 where item.ErrorCode == errorCode
 select item.ErrorMessageText;
 return data.SingleOrDefault();
}

The jQuery code that performs the validation and displays the validation error, if any, resides in the Save button’s
click event handler. This code is shown in Listing 6-16.

Listing 6-16. Validating Employee’s Age

$("input[value='Save']").click(function () {
 var birthDateTxtbox = $(this).closest('tr').find(".birthdate");
 var hireDateTxtbox = $(this).closest('tr').find("hiredate");
 var birthDate = ToDate($(birthDateTxtbox).val());
 var hireDate = ToDate($(hireDateTxtbox).val());
 birthDate.setFullYear(birthDate.getFullYear() + 18);
 if ((hireDate.getTime() - birthDate.getTime()) < 0) {
 alert($(birthDateTxtbox).data('errorInvaliddate'));
 return;
 }
 //make Ajax request to update the database
 alert('Data saved!');
});

The Save button’s click event handler begins by grabbing a reference to the BirthDate and HireDate input
fields. The closest() method returns the row that holds the input fields and the Save button. The find() method
then searches for elements with the birthdate and hiredate CSS classes attached.

The input fields hold the date value in yyyy-MM-dd format. These dates are converted into JavaScript Date objects
using the ToDate()custom function. The ToDate() function looks like this:

function ToDate(input) {
 var parts = input.match(/(\d+)/g);
 return new Date(parts[0], parts[1] - 1, parts[2]);
}

The ToDate() function parses the supplied input value using the JavaScript match() method and returns a
JavaScript Date object that represents that value. The match() method called on a string accepts a regular expression
as its parameter. It then matches the string against that pattern and returns an array containing the matched parts
from the string. In this case, the first array element contains year, the second element contains month and the third
element contains day. Based on these elements, a Date object is created and returned to the caller.

Next, the code checks the difference between the HireDate and BirthDate to determine whether the employee is
at least 18 years old at the time of hiring. If not, an error message, as specified in the data-error-invaliddate custom
data attribute, is displayed to the user in an alert dialog. The data() method is used to retrieve the value of the
data-error-invaliddate attribute. Although the code doesn’t actually save the changed data to the server, you can
add that functionality if the age validation succeeds. In Listing 6-16, a success message is displayed after the age check
is successful.

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

176

Other Useful Methods
Most of the methods discussed so far in this chapter participate in the processing of the DOM elements in some way
or another. They allow you to read, write, or reach a particular set of DOM elements. The methods (and a property)
discussed in this section are types of helper methods. These methods perform tasks such as obtaining the total
number of elements in a matched set, obtaining DOM elements from a matched set, and so on. Table 6-3 lists these
methods for your quick reference.

Table 6-3. Miscellaneous jQuery Methods

Method / Property Description

get() Returns the DOM element(s) matched by the jQuery object under consideration. It can take
a zero-based index to retrieve just an object at that index.

index() Returns a zero-based index of a DOM element with respect to its siblings. It can also take a
selector or element as its parameter and return the index of the matching element.

toArray() Returns a JavaScript array from a matched set of elements.

length Returns the number of elements in a matched set.

The get() method comes in handy when you need to access the DOM elements from a set of matched elements.
Suppose, for example, that you are working with an <audio> element and want to call the play() method of the
element. You can use the get() method to do so:

var audio = $("#audio1").get(0);
audio.play();

This code uses the ID selector to select an <audio> element with an ID of audio1. It then calls the get() method
and passes an index value of 0. Thus, the audio variable contains a reference to the audio1 DOM element. You can
then call the play() method on the audio object to play the audio file. If you don’t specify an index while calling the
get() method, all the matched elements are returned as an array. The following code shows how this is done:

var audioList = $("audio").get();
for (var i = 0; i < audioList.length; i++) {
 audioList[i].play();
}

This code retrieves all the <audio> elements from the page by using the element selector. The get() method is
called on the matched set to return the elements as an array. A for loop iterates through the array and calls the play()
method on each audio DOM element.

The get() method accepts an index and returns a DOM element. The index() method does the opposite. It
returns an index of a DOM element. Suppose that you have a series of elements as part of a bulleted list like this:

<ul id="root">
 C#
 Windows Forms
 <li id="level1">ASP.NET
 .NET Framework
 Security

CHAPTER 6 ■ TRAVERSAL AND OTHER USEFUL METHODS

177

If you want to know the index of an element with the ID of level1, you can write this:

var idx = $("#level1").index();

This line of code uses the ID selector to select the level1 element. Calling the index() method on the matched
set returns the index of the element with respect to its siblings. In this case, because the level1 element is third in the
list, the index() method will return 2. If you have a reference to the element whose index is to be determined, you can
also write this:

var item = $("#level1");
var idx = $("li").index(item);

In this case, the item variable holds a reference to level1. The second line of code selects all the elements
and then calls the index() method on the matched set by passing the item as a parameter. This will return the index of
the supplied object with respect to the matched set (2 in this case).

The toArray() method doesn’t accept any parameters and returns an array of the matched elements:

var arr = $("li").toArray();

This line of code gets an array from the matched set and stores it in a variable. Thus, the arr variable is an array
with five elements.

The length property is quite straightforward, and you have used it before. It simply returns the number of
elements in a matched set:

var count = $("li").length;

This line selects all the elements and uses the length property to retrieve the number of elements in the
matched set. In this case, the count is five.

Summary
This chapter covered tree traversal methods and several methods that allow you to access DOM elements. The tree
traversal methods such as children(), parents(), and siblings() allow you to navigate and access through a
hierarchy of DOM elements. The jQuery filter methods allow you to filter a matched set based on some condition.
Methods such as first(), last(), eq(), has(), and not() fall in this category. A common task while working with
jQuery is iterating through a set of elements, and the each() method does that for you. The find() method comes in
handy when it comes to searching a matched set for a certain condition. The HTML5 custom data attributes (data-*)
allow you to attach metadata information to DOM elements. These attributes can be accessed by using the data()
method. Finally, you learned some handy helper methods such as get() and index(), and the length property.

To grab users’ attention and keep them interested while they surf web sites, developers often resort to fancy
effects, including sliding, fading, and animations. jQuery offers many ways to add such jazz to your web pages. To that
end, the next chapter teaches you to develop great-looking pages using jQuery effects and animations.

179

CHAPTER 7

Effects and Animations

Modern web applications are a lot more than a bunch of static HTML pages. Web designers and developers always
look for innovative ways to keep visitors glued to their web sites. There are many aspects to keeping a visitor interested
and engaged in web sites, including interactive design, user interface elements, and content usefulness. One area that
is quite popular in this regard is addition of fancy effects and animations to web pages. And jQuery has a nice set of
methods to offer. Although mouseover effects developed using plain JavaScript are not at all uncommon, what makes
jQuery special is its capability to add fancy effects and animations with ease. In many situations, just a few lines of
code are sufficient to produce an eye-catching effect. To that end, this chapter dissects jQuery effects and animation
techniques. Specifically, you’ll learn the following:

How to hide and show elements•

How to add sliding and fading effects•

How to add custom animations to web pages•

How to terminate animations being played•

Showing and Hiding Elements
One of the simplest forms of animation effect is hiding and showing DOM elements. Although you can always hide
or show a DOM element using CSS properties such as display and visibility, jQuery offers readymade methods
that make your job easy. Table 7-1 lists jQuery methods that deal with the element visibility.

Table 7-1. Methods that Show and Hide Elements

Method Description

hide() Hides selected elements.

show() Shows selected elements.

toggle() Hides selected elements if they are visible and shows them if they are hidden.

All three methods—hide(), show(), and toggle()—mentioned in Table 7-1 allow you to configure the duration of
the effect under consideration, the easing function, and the completion callback function.

The hide() method hides the selected elements. If you call hide() without any parameters, the element is
hidden immediately. The hide() method can also take three optional parameters: duration, easing, and complete.

The duration parameter specifies the number of milliseconds for which the hiding effect should be played. This
means that instead of an element being hidden immediately, it will be progressively hidden over a certain period specified
by the duration parameter, by progressive reduction in its height, width, and opacity. Instead of specifying the duration as
a number, you can also specify it using built-in string constants: fast (200 milliseconds) and slow (600 milliseconds).

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

180

The easing parameter specifies the name of an easing function to be used while the animation effect plays. An
easing function controls the speed of an animation effect at different stages within the animation being played. The
values of the easing parameter are swing (default) and linear. The linear easing function progresses at a constant
speed throughout the duration of an animation effect; the swing easing function increases the speed of an animation
at the beginning and at the end. In addition to these two built-in easing functions, you can also write custom easing
functions or use easing functions that are part of the jQuery UI. Discussion of custom easing functions is beyond the
scope of this book. Refer to the jQuery documentation for more information about the easing functions.

The complete parameter is a callback function that gets invoked when the element is hidden. Inside the callback,
the keyword this refers to the element being hidden. The following code samples show how hide() can be used:

$("#div1").hide();
$("#div1").hide(3000);
$("#div1").hide("slow",function(){ alert('Done!'};);

The first line of code hides a DOM element with the ID of div1. Because no parameters are supplied to hide(),
the element is hidden immediately. The second line of code specifies the duration parameter to be 3000 milliseconds,
which hides the element in 3 seconds rather than immediately. Finally, the third line of code specifies the animation
duration as slow and also passes a callback function. The callback function simply displays a message using an
alert dialog.

The show() method shows a set of matched elements. The show() method takes the same three parameters
(duration, easing, and complete) that the hide() method takes. The following code illustrates how show() can be used:

$("#div1").show();
$("#div1").show(3000);
$("#div1").show("slow",function(){ alert('Done!'};);

The first call to show() shows the div1 element immediately. The second call shows it progressively after
3000 milliseconds. In the case of the show() height, width, and opacity are progressively increased during the time
span specified by the duration parameter. The third call to show() shows the element using slow duration and also
supplies a callback function.

The toggle() method hides an element if the element is visible and shows the element if it is hidden. The toggle()
method takes the same three optional parameters that hide() and show() take.

Now let’s build a Web Form that illustrates a more meaningful use of the hide() and show() methods. Figure 7-1
shows this Web Form.

Figure 7-1. Application using hide() and show()

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

181

The Web Form consists of a Repeater control that displays records from the Employees table of the Northwind
database. What is interesting about this Repeater is that unlike its normal behavior, it doesn’t display all the records at
once; instead, only one employee record is displayed at a time and the next record is displayed like a slide show. The
slide show loops continuously as long as the Web Form is displayed in the browser. Converting the Repeater items
into a slide show is accomplished by using the jQuery hide() and show() methods.

To begin developing this form, create an empty ASP.NET Web Forms application and add a new Web Form to it.
Then drag and drop an SQL Data Source control on the Web Form and configure it to select the FirstName, LastName,
Title, TitleOfCourtesy, and Notes columns from the Employees table. Then place a Repeater control on the Web
Form and set its data source to the SQL Data Source control you just configured. Then design the <ItemTemplate> of
the Repeater, as shown in Listing 7-1.

Listing 7-1. Repeater <ItemTemplate>

<asp:Repeater ID="Repeater1" runat="server" DataSourceID="SqlDataSource1">
 <ItemTemplate>
 <div class="Panel">
 <%# Eval("TitleOfCourtesy") %>
 <%# Eval("FirstName") %>
 <%# Eval("LastName") %>

 <%# Eval("Title") %>

 <%# Eval("Notes") %>
 </div>
 </ItemTemplate>
</asp:Repeater>

As you can see, each Employee record is placed in a <div> element that has the CSS Panel class attached to it.
ASP.NET databinding expression syntax (<%# ... %>) is used to display various column values inside elements.

Add a reference to the jQuery library and add a <script> block in the head section. Immediately inside the
<script> block, declare four global variables as shown here:

var index = 0;
var panels = null;
var visibleTime = 2000;
var animationTime = 1000;

The index variable indicates an index of a <div> that is to be displayed at a given point in time. The panels
variable holds reference to all the <div> elements that show the Employee records. The visibleTime and
animationTime variables govern the amount of time for which the employee record is displayed to the user and the
duration of the hide/show animation effect. Now add the ready() handler as shown in Listing 7-2.

Listing 7-2. Retrieving <div> Elements

$(document).ready(function () {
 panels = $(".Panel").get();
 $(".Panel").hide();
 $(panels[0]).show();
 setTimeout(ShowSlide, visibleTime);
});

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

182

The code shown in Listing 7-2 retrieves all the <div> elements using the CSS class selector. The get() method
returns them as an array of DOM elements. All the <div> elements are then hidden using the hide() method. The first
Employee record is then displayed to the user by calling the show() method on the first element of the panels array.
The setTimeout() method is called to invoke the ShowSlide() function after a duration, as indicated by visibleTime.
The ShowSlide() function is shown in Listing 7-3.

Listing 7-3. ShowSlide() Function

function ShowSlide() {
 $(panels[index]).hide(animationTime, function () {
 index++;
 if (index >= panels.length) {
 index = 0;
 }
 $(panels[index]).show(animationTime, function () {
 setTimeout(ShowSlide, visibleTime);
 });
 });
}

The ShowSlide() function hides the <div> element per the index value using the hide() method. The
animationTime variable is passed as the duration parameter. The completion callback function increments the index
by 1 with each run of ShowSlide(). To loop the slide show once the last Employee is displayed, the value of index is
checked with the total number of panels. If index is greater than or equal to the total number of panels, it is reset to
0. The show() method is called on the next panel by passing animationTime as its duration. The completion callback
function uses setTimeout() to recursively call the ShowSlide() function.

Adding Sliding Effects
The slideUp(), slideDown(), and slideToggle() jQuery methods allow you to add a sliding motion effect to DOM
elements. During the sliding-up operation, an element’s height is progressively reduced to give the desired effect.
As soon as the height becomes zero, the element is hidden. During sliding-down operations, the element’s height is
progressively increased from zero to the height of the element. Table 7-2 describes these three methods.

Table 7-2. Methods that add Sliding Effects

Method Description

slideUp() Hides selected elements with a sliding motion.

slideDown() Shows selected elements with a sliding motion.

slideToggle() Displays selected elements if they are hidden and hides the selected elements if they are visible.
The sliding motion is applied during both of the operations.

The slideUp(), slideDown(), and slideToggle() methods accept three optional parameters: duration, easing,
and complete. The significance of these three parameters is the same, as discussed in the preceding section.

Assuming that you have a <div> element on the page and you want to animate it with the slideUp() method, you
can use any of the following variations:

$("#div1").slideUp();
$("#div1").slideUp(3000);
$("#div1").slideUp("slow", function () { alert('done'); });

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

183

The first line of code selects div1 and calls the slideUp() method on it. Because no duration is mentioned,
a default of 400 milliseconds is assumed, and the sliding motion effect is applied to the element for that long. The
second and third lines of code specify the duration as 3000 milliseconds and slow respectively. .

To display a <div> element using the slideDown() method, you can write this:

$("#div1").slideDown();
$("#div1").slideDown (3000);
$("#div1").slideDown ("slow", function () { alert('done'); });

The slideDown() method is quite similar to slideUp(), except that it applies a sliding-down effect and shows the
element at the end of the animation. The slideToggle() method is also similar in terms of signature to slideUp()
and slideDown(). However, it toggles between slide-up and slide-down effects. depending on whether an element is
visible or hidden.

Now that you understand how a sliding effect can be applied to elements, let’s create an application that puts this
knowledge to use. The Web Form that you develop is shown in Figure 7-2.

Figure 7-2. Accordion menu with sliding effects

Figure 7-2 displays an accordion menu rendered in a Web Form. A peculiar feature of an accordion menu is
that only one of the menus will be fully expanded at a time. For example, if you click ASP.NET menu, it will expand
to reveal its menu items and previously expanded menu (if any) will be collapsed. As the menus are expanding and
collapsing, you can add sliding effects to them to make them more appealing and fancier.

To develop this Web Form, begin by creating an empty ASP.NET Web Forms application. Then place a Repeater
control on the Web Form and design its ItemTemplate as shown here:

<asp:Repeater ID="Repeater1" runat="server" ClientIDMode="AutoID" OnItemDataBound="Repeater1_
ItemDataBound">
 <ItemTemplate>
 <asp:Panel ID="Panel1" runat="server" CssClass="Menu">
 <asp:Label ID="lblText" runat="server" Text='<%# Eval("Text") %>'>
 </asp:Label>
 <asp:Panel ID="menuItemGroup" runat="server" CssClass="MenuItem">
 </asp:Panel>
 </asp:Panel>
 </ItemTemplate>
</asp:Repeater>

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

184

The Repeater has its ClientIDMode set to AutoID so that the IDs of the constituent controls, such as Panel,
consist of three parts: the ID of the Repeater, an incrementing value, and the ID of the constituent control. For
example, the client-side ID of the first menuItemGroup will be Repeater1_ctl00_menuItemGroup. The ItemTemplate
consists of an outer Panel control that houses a Label and a Panel. The Label is used to display menu text such as
ASP.NET. The Panel menuItemGroup acts as a container to all the menu items (hyperlinks) belonging to that menu.
The outer Panel has the Menu CSS class attached to it, and the inner Panel has the MenuItem CSS class attached to it.
You need to handle the ItemDataBound event of Repeater to add menu items for each menu. Listing 7-4 shows the
ItemDataBound event handler.

Listing 7-4. ItemDataBound Event Handler

protected void Repeater1_ItemDataBound(object sender,
RepeaterItemEventArgs e)
{
 if (e.Item.ItemType == ListItemType.Item ||
 e.Item.ItemType==ListItemType.AlternatingItem)
 {
 Label l = (Label)e.Item.FindControl("lblText");
 Panel p = (Panel)e.Item.FindControl("menuItemGroup");
 HyperLink l1 = new HyperLink();
 HyperLink l2 = new HyperLink();
 HyperLink l3 = new HyperLink();
 switch (l.Text)
 {
 case "ASP.NET":
 l1.Text="Web Forms";
 l1.NavigateUrl = "~/webform.aspx";
 l2.Text="MVC";
 l2.NavigateUrl = "~/mvc.aspx";
 l3.Text="Security";
 l3.NavigateUrl = "~/security.aspx";
 break;
 case "Windows Forms":
 ...
 break;
 case "C# Language":
 ...
 break;
 }
 p.Controls.Add(l1);
 p.Controls.Add(new LiteralControl("
"));
 p.Controls.Add(l2);
 p.Controls.Add(new LiteralControl("
"));
 p.Controls.Add(l3);
 }
 }
}

The ItemDataBound event handler first checks whether the item being rendered is an Item or AlternatingItem.
This is necessary because menu items are to be added only if the item type is Item or AlternatingItem. Then a
reference to lblText and menuItemGroup is obtained by using the FindControl() method, which accepts the name of
the control to be searched inside the item and returns its reference. A set of HyperLink controls is then created.

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

185

A switch statement checks the Text property of lblText to determine which menu is being rendered. Accordingly,
the Text and NavigateUrl properties of the HyperLink controls are set. Finally, all the HyperLink controls are added
to the Controls collection of the menuItemGroup Panel using the Add() method. Notice that in addition to HyperLink
controls, the LiteralControls are also being added for the line break (
) element.

The Repeater is bound with a generic List of Menu objects. Each Menu object supplies the Text of the menu. The
Menu class and the Page_Load event handler are shown in Listing 7-5.

Listing 7-5. Menu Class and Page_Load Event Handler

public class Menu
{
 public Menu(string text)
 {
 this.Text = text;
 }
 public string Text { get; set; }
}

protected void Page_Load(object sender, EventArgs e)
{
 List<Menu> list = new List<Menu>();
 list.Add(new Menu("ASP.NET"));
 list.Add(new Menu("Windows Forms"));
 list.Add(new Menu("C# Language"));
 Repeater1.DataSource = list;
 Repeater1.DataBind();
}

The Menu class consists of a single property (Text) that represents the menu text. The Page_Load event handler
creates a generic List of Menu objects and adds three Menu instances to it: ASP.NET, Windows Forms, and C# Language.
The generic List is then bound with the Repeater by using its DataSource property and the DataBind() method.

Although the server-side code fills up the Repeater with all the menus and menu options, on the client side you
need to display the Repeater as an accordion menu. This is done by adding sliding effects to menuItemGroup panels.
So, add a <script> reference to the jQuery library and also add a <script> block. Then write the code shown in
Listing 7-6 inside the <script> block.

Listing 7-6. Converting the Repeater into an Accordion Menu

$(document).ready(function () {
 $("div[id $= 'menuItemGroup']").hide();
 $(".Menu").click(function (evt) {
 $("div[id $= 'menuItemGroup']").slideUp(1000);
 if (evt.target.tagName == "DIV") {
 var child = $(evt.target).children("div[id $=
 'menuItemGroup']").eq(0);
 }
 else {
 var child = $(evt.target).parent().children("div[id $=
 'menuItemGroup']").eq(0);
 }
 $(child).slideDown(1000);
 });
});

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

186

The code shown in Listing 7-6 consists of the ready() handler that hides all the <div> elements whose IDs end
with menuItemGroup. You need to use the attribute ends with selector here because Repeater automatically generates
unique IDs for the controls it houses. The hide() method is used to hide the selected <div> elements. Then a CSS
class selector is used to select all the elements with the Menu CSS class added (remember that the outer Panel from
the Repeater’s ItemTemplate has this CSS class).

The click() method is used to wire a click event handler to the click event of the selected elements. When a
user clicks the menu before expanding it, all the other menus need to be collapsed. The slideUp() method is used to
apply a slide-up effect to all the menus. A user can click the outer <div> element or the displaying the menu
text (Label is rendered as a tag). So the evt.target property can be either a <div> or a . The if block
checks the evt.target.tagName property to figure out whether a <div> or a was clicked. If it was a <div>, a
reference to the menuItemGroup child element is obtained using the children() and eq() methods. If a was
clicked, a reference to the menuItemGroup child element is obtained through the parent of the element. The
slideDown() method is used to apply a sliding-down effect to the menuItemGroup.

Note ■ Although the preceding example deals with a fixed set of menu items, you can easily transform it into a

database-driven accordion.

Adding Fading Effects
Fading involves progressively decreasing or increasing an element’s opacity. The opacity value varies between 0 and 1,
where 0 means fully transparent and 1 means fully opaque. Decreasing the opacity from 1 to 0 gives a fade-out effect,
whereas increasing the opacity from 0 to 1 gives a fade-in effect. jQuery offers four methods that add fading effects to
DOM elements: fadeIn(), fadeOut(), fadeToggle(), and fadeTo(). These methods are described in Table 7-3.

Table 7-3. Methods that Add Fading Effects

Method Description

fadeIn() Gradually increases the opacity of the selected elements from the current value to 1 so that those
elements are displayed with a final opacity value of 1.

fadeOut() Gradually decreases the opacity of the selected elements from the current value to 0 so that those
elements are hidden with a final opacity value of 0.

fadeToggle() Toggles between fade-in and fade-out effects, depending on whether an element is hidden or
visible.

fadeTo() Increases or decreases the opacity of the selected elements to a specified value.

The fadeIn(), fadeOut(), and fadeToggle() methods accept the same three parameters (duration, easing, and
completion callback) as the methods discussed in earlier sections.

Suppose that you want to apply a fade-in effect to a hidden <div> element whose ID is div1. You can use the
following code:

$("#div1").fadeIn();
$("#div1").fadeIn(3000);
$("#div1").fadeIn("slow", function () { alert('done'); });

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

187

The three calls to the fadeIn() method use a default duration of 400 milliseconds, 3000 milliseconds, and slow,
respectively.

The fadeOut() and fadeToggle() methods are quite similar to fadeIn() in terms of method parameters. The
fadeTo() method is slightly different in that it allows you to explicitly specify the final opacity of the selected elements.
For example, if you want to set the opacity of a fully opaque <div> element to 0.7, you can write this:

$("#div1").fadeTo(3000, 0.7,function () { alert('done'); });

This line of code calls the fadeTo() method on div1 and specifies that the effect is to be applied in 3000
milliseconds. The final opacity is specified as 0.7.

Now let’s develop a simple application that illustrates a more realistic use of fading effects. Figure 7-3 shows a
Web Form that makes use of the fading effects to display a progress indicator to the end user.

Figure 7-3. Displaying a progress indicator using fading effects

The Web Form consists of a button and a panel that houses a Label control. Clicking the Start Processing button
invokes an ASP.NET generic handler. The generic handler is supposed to be doing some lengthy processing and then
returns a success message to the Web Form. As soon as the user clicks the button, the button is disabled and a wait
message starts flashing on the page. The blinking of the wait message stops and the button is enabled again once the
generic handler returns successfully.

To develop this application, begin by creating an empty ASP.NET Web Forms application and add a new Web
Form to it. Place a Button and a Panel control on it. Place a Label inside the panel. Set the Text property of the Label
to some progress message. Add a <script> reference to the jQuery library and add a <script> block. Then add the
code shown in Listing 7-7 inside the <script> block.

Listing 7-7. Flashing Wait Message Using fadeToggle().

var handle;
$(document).ready(function () {
 $("#Panel1").hide();
 $("#Button1").click(function (evt) {
 $("input:submit").prop("disabled", true);
 handle=setTimeout(Wait, 1000);
 var xhr = new XMLHttpRequest();
 xhr.open("POST", "ProcessingHandler.ashx");
 $(xhr).on("load", function (evt) {
 clearTimeout(handle);
 $("#Panel1").hide();
 $("input:submit").prop("disabled", false);
 alert(evt.target.responseText);
 });

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

188

 xhr.send();
 evt.preventDefault();
 });
});

function Wait() {
 $("#Panel1").fadeToggle("slow");
 handle=setTimeout(Wait, 1000);
}

The ready() handler first uses the hide() method to hide Panel1 so that no wait message is displayed to the user
when the page loads. Then the code uses the .click() method to wire an event handler to the click event of the Start
Processing button. The click event handler disables the Start Processing button so that users can’t click it multiple
times when the processing is already in progress. This is done with the :submit selector and the prop() method. The
prop() method .sets the disabled property to true.

The code then uses the JavaScript setTimeout() method .to invoke the Wait() function after a delay of 1000
milliseconds. The setTimeout() method returns a numeric handle that is saved in the handle variable for later use.
It them proceeds to create a new instance of the XMLHttpRequest object, which is used to make asynchronous requests
to server-side resources. In this case, XMLHttpRequest makes a POST request to ProcessingHandler.ashx using the
open() method. The load event of the XMLHttpRequest is raised when the request completes.

A load event handler is wired using the jQuery on() method. The load event handler calls the clearTimeout()
method to clear the timeout previously set by the code. The handle of the previous setTimeout() method is passed as
a parameter to the clearTimeout() method. .

Because the request has been successfully completed, Panel1 is hidden using the hide() method. The Start
Processing button is enabled, again by using the prop() method. .This time, the prop() method sets the disabled
property to false. The response from the generic handler is displayed to the user in an alert dialog. The request is
initiated using the XMLHttpRequest send() method.

Note ■ jQuery Ajax techniques use the XMLHttpRequest object internally for their functioning. You will learn about

jQuery Ajax techniques in Chapter 8.

The Wait() function is where fading effects are added to the contents of Panel1. This is done using the
fadeToggle() method on Panel1. At the end of the toggle operation, Wait() is called recursively using the
setTimeout() method. .This way, the Label appears to be flashing in the browser.

Now add a generic handler to the project and name it ProcessingHandler.ashx. ProcessingHandler.ashx is
supposed to contain some lengthy processing. For the sake of this example, add Thread.Sleep() to substitute the
processing time. Listing 7-8 shows the code that goes inside ProcessingHandler.ashx.

Listing 7-8. Code Inside ProcessingHandler.ashx

public void ProcessRequest(HttpContext context)
{
 //add your processing here and remove the Sleep() call
 System.Threading.Thread.Sleep(10000);
 context.Response.ContentType = "text/plain";
 context.Response.Write("Processing is over!");
}

The ProcessRequest() method of the generic handler calls the Thread.Sleep() method and specifies the sleep
duration of 10000 milliseconds, so the execution will halt for 10 seconds. The ProcessRequest() method then simply
returns a success message using the Response.Write() method.

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

189

Performing Custom Animations
So far, you have used jQuery methods that readily add animation effects such as slide-up, slide-down, fade-in, and
fade-out. However, there is more to the story. jQuery also allows you to play custom animations by changing the CSS
properties of DOM elements. In situations where other effects prove to be inadequate, you can write your own logic of
animating CSS properties. To that end, the animate() method comes to your rescue.

The animate() method allows you to specify one or more CSS properties to animate along with their expected
final values. Those CSS properties are then progressively adjusted from their current values to their final values,
producing an animation effect. For example, let’s say you have a <div> element whose height is 200px. You can call
the animate() method in the click event handler of the <div> and specify that its height be changed to 20px. The
animate() method will gradually reduce the height of the <div> from 200px to 20px to produce an animation effect.
Of course, just like other animation effects learned so far, you can also specify a duration in which the transition should
take place.

The animate() method takes four optional parameters: a set of CSS properties to animate, duration, easing, and
completion callback. A set of CSS properties is passed as a JavaScript object. For example, to pass height and width
CSS properties to the animate() method, you would write:

$("#div1").animate({height:"20px",width:"20px"});

This line of code adds an animation effect to div1 by gradually changing its height and width to 20px. Because no
duration is specified, a default of 400 milliseconds is used. You can specify the duration either as a number or string
constants—fast and slow. The following line of code shows how:

$("#div1").animate({height:"20px",width:"20px"},"slow");

Note that not all properties can be animated; the numeric properties are the primary candidates for adding
animation effects. The significance of easing and completion callback parameters is the same as in the case of
methods such as slideUp(), slideDown(), and fadeIn().

Now let’s put your knowledge about the animate() method to use by developing a Web Form (see Figure 7-4).

Figure 7-4. A Web Form using the animate() method

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

190

Figure 7-4 shows a DataList control that displays records from the Employees table. What is special about the
display is the employee photo. When the page is loaded in the browser, only EmployeeID, FirstName, and LastName
are displayed, along with a photo as indicated by the PhotoPath column. If you move your mouse onto an employee
photo, the photo shrinks to the left-bottom corner of that table cell, revealing Notes for that employee. When you
move the mouse pointer away from the record, the photo again grows back to its original size and position, thus
hiding the note. This shrinking and growing effect is added by using the animate() method. In Figure 7-4, the first
record shows how the Note column is revealed after shrinking of the photo; the second record shows the photo
covering the Note column.

To begin developing this Web Form, create an empty ASP.NET Web Forms application; then drag and drop a SQL
Data Source control and a DataList on the Web Form. Configure the SQL Data Source control to select data from the
Employees table and design the ItemTemplate of the DataList control as shown in Listing 7-9.

Listing 7-9. ItemTemplate DataList Control

<asp:DataList ID="DataList1" runat="server" CellPadding="6" DataKeyField="EmployeeID"
DataSourceID="SqlDataSource1" GridLines="Both" RepeatDirection="Horizontal">
 <ItemStyle Width="225px" />
 <ItemTemplate>
 <asp:Label ID="lblEmployeeID" runat="server" Text='<%#
 Eval("EmployeeID","#{0}") %>' />
 <asp:Label ID="lblFirstName" runat="server" Text='<%#
 Eval("FirstName") %>' />
 <asp:Label ID="lblLastName" runat="server"
 Text='<%# Eval("LastName") %>' />

 <div class="Notes" style="height:225px;width:225px;overflow:auto">
 <asp:Label ID="lblNotes" runat="server"
 Text='<%# Eval("Notes") %>' />
 </div>
 <asp:Image ID="Image1" runat="server"
 ImageUrl='<%# Eval("PhotoPath")%>' />
 </ItemTemplate>
</asp:DataList>

The ItemTemplate binds four Label controls to the EmployeeID, FirstName, LastName, and Notes columns,
respectively. Then an Image control is bound with the PhotoPath column. (Note that you may need to change the
PhotoPath values from the database to use local image files.)

Then add a <script> reference to the jQuery library and add a <script> block in the head section. Write the
code shown in Listing 7-10 in the <script> block.

Listing 7-10. Adding Custom Animation Effects with animate()

$(document).ready(function () {
 $("img").each(function () {
 var top = $(this).prev(".Notes").position().top;
 var left = $(this).prev(".Notes").position().left;
 $(this).css("position","absolute").css("top", top).css("left", left);
 });

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

191

 $("img").hover(function () {
 var top = $(this).prev(".Notes").position().top;
 $(this).animate({ top: (top + 225) + 'px', height: '0px' }, 500);
 }, function () {
 var top = $(this).prev(".Notes").position().top;
 $(this).animate({ top: top + 'px',height:'225px' }, 500);
 });
});

The ready() handler selects all the elements using the element selector and then iterates through all of
them using the each() method. For every element, the top and left coordinates of the <div> showing Notes
are determined. A reference to the Notes <div> is obtained using the prev() method and the .Notes CSS selector is
supplied to it. The position() method is then used to retrieve the top and left coordinates of the <div> element.

The css() method calls are used to set the position, left, and right CSS properties of the element being
iterated. This way, the image covers the employee notes.

The hover() method is used to attach the mouseenter and mouseleave event handlers to the element. The
mouseenter handler uses the animate() method to animate the top and height CSS properties of the image. Because
the image is to be shrunk to the left-bottom area of the cell, the final top coordinate is set to (top + 225), where 225 is
the height of the images, and the height is set to 0 pixels. The duration of the animation is set to 500 milliseconds.

The mouseleave handler is similar to the mouseenter handler. except that the animate() method sets the final top
and height to the original values.

Note ■ To produce advanced and highly customized animations, jQuery also offers methods such as queue() and

dequeue(). Coverage of these advanced techniques is beyond the scope of this book, but you can refer to the official jQuery

documentation at http://api.jquery.com for more details about these techniques.

Stopping the Animation
Sometimes you may need to stop currently running animations. jQuery offers two methods that allow you to do this:
stop() and finish().

When you call the stop() method on a set of matched elements, the currently running animation, if any, is
immediately stopped. If more animation effects are waiting to be applied to the element (suppose that you have
called the animate() method multiple times on an element), the next animation begins after stopping the current
animation. The following code shows how stop() can be used:

$("#div1").stop();

This line of code calls the stop() method on div1 to stop any currently running animation and proceed to the
next animation in the sequence.

The finish() method is quite similar to stop() in that it stops the animations. The difference between stop()
and finish() is that finish() stops current as well as all pending animations. Additionally, the CSS properties of the
target element are set to their final values, as indicated by all the animations involved. Thus all the animations are
immediately finished. The following code shows how finish() can be used.

$("#div1").finish();

This line of code calls the finish() method on div1 and finishes all the animations being applied on it.

http://api.jquery.com/

CHAPTER 7 ■ EFFECTS AND ANIMATIONS

192

Summary
jQuery allows you to add fancy effects to your web pages using various animation effects. The slideUp() and
slideDown() methods animate elements by gradually changing their height. Similarly, the fadeIn() and fadeOut()
methods animate elements by changing their opacity.

If you need custom animations, you can use the animate() method, which animates a set of CSS properties
of elements. All the jQuery animation effects can be fine-tuned by specifying an effect duration and a completion
callback.

So far in this book you used jQuery to perform client-side operations. However, you can also use jQuery to access
server-side resources through Ajax. The next chapter discusses several Ajax techniques and how to use them in ASP.NET
Web Forms as well as ASP.NET MVC applications.

193

CHAPTER 8

Ajax Techniques

So far in this book, most of the examples involved only the client browser. The jQuery code you wrote executed inside
the browser window and was totally disconnected from the server-side resources such as a SQL server database.
Although this behavior works for things such as mouseover effects and animations, it is far from adequate for modern
web applications. Modern web applications often need to access some server-side resources from the client script.
That’s where Asynchronous JavaScript and XML (Ajax) steps in. With Ajax you can communicate between the client
browser and the server. To that end, jQuery offers several methods that help you to accomplish this goal. This chapter
discusses them in detail.

Specifically, you will learn the following:

What Ajax is and its benefits•

How jQuery allows you to make Ajax calls•

The role of JSON and Json.NET in Ajax communication•

How to call Web Services, Windows Communication Foundation (WCF) services, controller •
actions, and the Web API using jQuery Ajax methods

Ajax Overview
Ajax was originally meant to be an acronym for Asynchronous JavaScript and XML. However, over the years, its
meaning and use has evolved to a new level. Ajax is not a new invention; it’s a way of communication that harnesses
the power of existing technologies such as HTML, XML, and JavaScript.

To understand Ajax, you need to understand what an asynchronous communication is. Suppose that you have a
data entry page that allows you to enter some data and then submit that data to the server. The server processes the
submitted data and sends the result of the processing back to the client. Assuming that this form doesn’t use any Ajax
techniques, its function can be represented by Figure 8-1.

CHAPTER 8 ■ AJAX TECHNIQUES

194

Figure 8-1 shows how a request-response cycle works for a Web Form. When a user initially requests the Web Form,
the server serves the form to the user, and it is loaded in the client browser. The user can now interact with the form and
fill it up with necessary data. When the form is filled, the user clicks the Submit button to submit the data to the server.

At this point, a POST request is made to the server, and the data entered by the user is also sent along with the
request. Once the POST request is made, the user can no longer interact with the form because the browser is waiting
for the response to arrive from the server. The server then processes the submitted data and sends the result of the
processing back to the browser. When the response is received and the form is reloaded in the browser, the user
can interact with the form again. The user interaction is interrupted during the postback, which is a synchronous
operation because data entry and processing activities happen serially, one after the other.

Now assume that the same form is built using an asynchronous processing technique. Figure 8-2 shows the new
way in which the form is processed.

Figure 8-1. Synchronous processing

Figure 8-2. Ansynchronous processing

CHAPTER 8 ■ AJAX TECHNIQUES

195

As shown in Figure 8-2, when the user initially requests the data entry form, the form is loaded in the browser.
The user can now interact with the form and fill it up with necessary data. Once the data is entered, the user can
submit the data to the server.

This time, however, the POST request is made in an asynchronous fashion. That means the user can interact with
the form even after making the request to the server. Of course, at this point the result of the processing isn’t available
to the client. The asynchronous request is triggered by some client-side event (such as a button click).

The server processes the data as before and sends the processing result back to the client. Once the response
from the server is received by the client browser, it notifies the user that the operation is complete. In asynchronous
processing, user interaction remains uninterrupted between request-response cycles because user interaction and
server processing occur in parallel.

In Figure 8-1 the data is sent from the client to the server as a part of POST request body. You need not worry
about how the browser packs this data and which format is being used while sending it to the server. However, in
Figure 8-2 since you are making the request programmatically you need to decide upon the format in which the data
is packed and sent to the server.

At the heart of Ajax is the XMLHttpRequest object implemented by all the modern browsers. This object is
responsible for establishing communication between the client and the server. It allows you to make Ajax requests
to server-side resources such as Web Services, WCF services, controller actions, and the Web API.

Under Ajax, the asynchronous request is made using JavaScript and the XMLHttpRequest object. The format for
data transfer can be XML or JSON. An Ajax request can be initiated as a result of user interaction (such as a button
click) or some developer-defined process that doesn’t depend on user interaction (such as periodically polling a
server resource).

Although Ajax originally meant to use XML as the format for data transfer between the client and the server,
most of the modern web applications using Ajax rely on JSON as the data format. You will learn more about JSON later
in this chapter.

Benefits of Using Ajax
Now that you have a basic understanding of Ajax, let’s see some of its core benefits. Although these benefits are
interdependent, understanding them individually is essential to understanding how Ajax enriches your web
applications.

Performance
When you make a GET or POST request using traditional form submission techniques, all the data from the web page is
submitted to the server. And when a response is sent by the server, the entire web page is sent to the client browser.

Consider a case in which a user can open a web site account by filling in a registration page. Let’s say that as
a step of the validation process, you need to check whether the user ID requested by the user has been taken by
somebody else. Under traditional form submission, the entire registration page needs to be submitted to the server,
only to return the error of a duplicate user ID. Using Ajax, you can send only the data needed for the server-side
processing at a given point in time (user ID, in this case). This process greatly reduces the amount of data transferred
between the client and the server. Because fewer bytes of data travel over the wire, the performance of the Ajax–based
web pages is better than that of pages using traditional form-submission techniques.

Interactive User Interface
In traditional client-to-server communication techniques, there is often a period for which the user interface is
unavailable to the user. When the user clicks the submit button, the page refresh begins in the browser. From this
point until the response from the server is reloaded, the user interface is unavailable to the user, which can be
annoying, especially on slower Internet connections. Under Ajax, the full page doesn’t need any refresh because Ajax
requests are being made programmatically, thus enabling the user to keep interacting with the user interface even
after submitting the data for processing.

CHAPTER 8 ■ AJAX TECHNIQUES

196

User Experience
Ajax often enhances the end user’s experience with your web application. Think of a situation in which a huge table
will be displayed on the page. With the traditional approach, the process might take several seconds, and the user
can’t do anything with your page in the meantime. With Ajax, you can load the data in the background, and the user is
free to interact with the page while the data is being populated in the table.

Creative developers have endless opportunities to use Ajax to improve the user experience. If you look at web
applications such as Gmail, Twitter, and Facebook, you’ll see Ajax being used in variety of ways to provide better user
experience.

Understanding the JSON Format
As mentioned in the preceding section, the two commonly used formats for transferring data during Ajax
communication are XML and JSON. As an ASP.NET developer, you are already aware of XML because ASP.NET uses
XML extensively in the web.config file, and ASP.NET server control markup also closely resembles XML. The JSON
format needs special attention because most modern web applications prefer to use JSON over XML.

JSON, which stands for JavaScript Object Notation, is a lightweight text-based format for data interchange.
By using the JSON format, you can pack the data that needs to be transferred between the client and the server. JSON
supports strings, numbers, Booleans, objects, and arrays. (If you want to represent any other data type, you must
represent it in a supported format.)

Note ■ A frequently used data type that’s not supported by JSON is DateTime. You can use a string representation of

DateTime during the serialization and deserialization process. Although you can use any date format when dealing with

dates in JSON, I recommend that you stick with the ISO date format (YYYY-MM-DD for date and hh:mm:ss for time).

Although the recommended way to represent dates is the ISO date format, you should be aware of the date format used

by older frameworks such as ASP.NET AJAX. It represents a date as \/Date(ticks)\/, where ticks is the number of millisec-

onds since 1 January 1970. The Json.NET component, discussed later, uses the ISO date format.

An object in JSON format typically consists of one or more name-value pairs. The object begins with { and ends
with }. The name-value pairs are placed in-between. A property name and its value (if string type) are enclosed in
double quotes ("..."). A property and its value are separated by a colon (:). Multiple name-value pairs are delimited
by commas (,). The following code shows an object represented in JSON format:

var employee={
 "EmployeeID":1,
 "FirstName":"Nancy",
 "LastName":"Davolio",
 "IsContract":false;
 };

After a JSON object is created, you can use it like a JavaScript object. For example, the following code retrieves the
FirstName and LastName properties of the employee object and displays them in an alert dialog:

alert(employee.FirstName + employee.LastName);

CHAPTER 8 ■ AJAX TECHNIQUES

197

The first line of code displays the FirstName and LastName properties of the employee object, and the alert
displays Nancy Davolio. If you want to create an array of employee objects, you can write the following:

var employeeArray =[
 {
 "EmployeeID":1,
 "FirstName":"Nancy",
 "LastName":"Davolio",
 "IsContract":false;
 },
 {
 "EmployeeID":2,
 "FirstName":"Andrew",
 "LastName":"Fuller",
 "IsContract":true;
 }
];

This code creates an array with two employee objects as its elements. Just like a JavaScript array, a JSON array also
begins with [and ends with]. Multiple JSON objects that make the array elements are separated by commas (,).

Using the JSON format, you represent objects. In that respect, JSON objects are quite similar to JavaScript objects.
However, it is important to remember that although JavaScript objects and JSON objects look quite similar, the two
formats are not exactly the same. For example, JavaScript object properties can be enclosed in single quotes ('...')
or double quotes ("..."), or you can omit using quotes altogether. The JSON format, on the other hand, requires you to
enclose property names in double quotes.

Sometimes JavaScript objects from your jQuery code need to be transferred to the server during an Ajax
communication. Considering the inconsistency between JavaScript object syntax and the JSON format, you should
ensure that JavaScript objects are encoded in JSON format before you send them to the server. To accomplish this
task, all the modern browsers provide a JSON object, which has two methods: stringify() and parse(). The
stringify() method accepts a JavaScript object and returns its JSON representation as a string. The parse() method
does exactly the opposite; it accepts a JSON string and parses into a JavaScript object. The following code shows how
both of these methods are used:

var obj = {Name:'Andrew',Age:45};
var strObj = JSON.stringify(obj);
alert(strObj);
var obj2 = JSON.parse(strObj);
alert(obj2.Name);

The first line of code creates a JavaScript object with two properties: Name and Age. Notice that property names are
not enclosed at all. Then JSON.stringify() is used to encode obj into its JSON representation. This strObj variable
contains '{"Name":"Andrew","Age":45}'. The alert dialog confirms that this is the case. JSON.parse() is used to
parse strObj into a JavaScript object. Another alert dialog correctly shows the value of the Name property as Andrew.

Note ■ Keep in mind that when I use the phrase “JSON object” in the context of the stringify() and parse() methods,

I am reffering to the JSON object provided by the browser. At other times “JSON object” means an object represented

in JSON format.

CHAPTER 8 ■ AJAX TECHNIQUES

198

Understanding Json.NET
Although the JSON.stringify() and JSON.parse() methods come in handy inside your client-side script, you might
also have to deal with JSON format inside your server-side code. For example, you might be receiving data from some
service in JSON format and want to process that JSON data in your server-side code. Or you might want to send data
in JSON format to the client browser so that it can be processed in the client script. Luckily, there is a popular library—
Json.NET—that comes to your rescue. Using Json.NET, you can easily serialize and deserialize JSON data from .NET
applications. Json.NET is also used in the latest versions of ASP.NET MVC and the Web API, which underline its
popularity.

To use Json.NET, you need to install it in your project. Json.NET is available as a NuGet package and can be
installed using the Manage NuGet Packages menu option from the PROJECT menu. Figure 8-3 shows Json.NET listed
in the NuGet Package Manager dialog.

Figure 8-3. Json.NET listed in the NuGet Package Manager

Once Json.NET is installed, you can use its classes to serialize and deserialize JSON data. The following code
shows how JSON data can be deserialized into a .NET object:

string strJson = "{\"Name\":\"Andrew\",\"Age\":45}";
Employee emp= JsonConvert.DeserializeObject<Employee>(strJson);

This code stores a JSON object with two properties—Name and Age—in a string variable. The
DeserializeObject() method of the JsonConvert class accepts a JSON string and parses it into a .NET object of
generic type argument (Employee in this case). The JsonConvert class is provided by the Json.NET framework and
resides in the Newtonsoft.Json namespace. The preceding example assumes that the Employee class is already
defined in your server-side code and has two public properties: Name and Age.

CHAPTER 8 ■ AJAX TECHNIQUES

199

The preceding example deserializes a JSON string into a .NET object. The reverse can also be done by using
the SerializeObject() method of JsonConvert. The following code shows how:

Employee emp = new Employee();
emp.Name = "Nancy";
emp.Age = 35;
string strJson = JsonConvert.SerializeObject(emp);

This code creates an Employee object and assigns its Name and Age properties. It then calls the SerializeObject()
method of JsonConvert to convert the.NET object emp to its equivalent JSON representation.

jQuery Ajax Methods
At the heart of Ajax communication is the XMLHttpRequest object, which enables you to programmatically make
HTTP requests—such as GET, POST, PUT, and DELETE—to the web server. The XMLHttpRequest object was first
introduced by Internet Explorer, but it was soon absorbed in all the other browsers. Today, XMLHttpRequest is
supported by all the leading browsers. Although XMLHttpRequest can be used in synchronous as well as asynchronous
mode, asynchronous mode is more commonly used.

jQuery wraps the XMLHttpRequest object into a set of easy-to-use methods. These methods are intended to serve
different purposes, although they all use Ajax. These methods are listed in Table 8-1.

Table 8-1. jQuery Ajax Methods

Technique Request Method Description

$.ajax() GET/POST/other HTTP
verbs also supported

Generic function that can be used to make AJAX calls to the server.
All the other techniques listed here internally use $.ajax() to
perform their operations.

$("...").load() GET / POST Fetches HTML markup or text from the server dynamically and then
sets it to the contents of a selected DOM element.

$.get() GET Makes generic GET requests to the server. For example, by using the
$.get() method, you can make a request to an MVC action method
and fetch data from the database.

$.post() POST Makes generic POST requests to the server. For example, by using the
$.post() method, you can submit a form to an action method for
further processing.

$.getJSON() GET Makes GET requests to the server and fetches data in JSON format.

$.getScript() GET Loads remote scripts dynamically so you can execute them further in
the code.

Notice that all methods in the table except load() use $. before the method name. This means that such methods
are called on the jQuery object rather than on the matched elements. Thus, $.ajax() is the same as jQuery.ajax().
The load() method, however, is called on a matched set of DOM elements.

CHAPTER 8 ■ AJAX TECHNIQUES

200

Your method selection for the purpose of making an Ajax request generally depends on the type of request
(GET, POST, and so on) you want to make and how much control you need of the overall Ajax operation. For example,
if you want to make an Ajax request to a web page that returns JSON data, $.getJSON() might do the job. However,
if you want to make DELETE or PUT requests to a Web API and need to fine-tune the overall Ajax operation, $.ajax()
would be more suitable. Note that $.ajax() is the mother of all the other Ajax methods; the rest of the methods
internally use $.ajax() to get their job done.

At a minimum, all the jQuery Ajax methods expect a URL to the server-side resource that needs to be accessed.
As far as ASP.NET applications are concerned, the most commonly used resources are these:

A Web Form (.aspx)•

A web service (ASMX)•

A web method residing inside a Web Form (often called a page method)•

A Windows Communication Foundation (WCF) service•

A controller action in MVC applications•

A Web API•

A generic handler (.ashx)•

Of course, these methods can also request plain HTML pages, XML files, and script files whenever needed.
All the Ajax methods except $.getScript() can send data along with the request. The data can be sent as a

JavaScript object or a string. The data type of the response can also be specified; the possible formats are XML,
JSON, HTML, or script. You can wire a success handler with all the Ajax methods that get executed when the request
completes successfully.

Now that you know the basics of Ajax and jQuery support for Ajax, let’s see all the methods listed in Table 8-1 in
action by developing a few sample applications.

Note ■ A browser enforces the same origin policy on Ajax calls made by a web page. This is done for security reasons

and ensures that an Ajax call is made only to resources belonging to the same origin as that of the page initiating the Ajax

request. An origin consists of the combination of scheme, host, and port. Thus http://www.website1.com/page1.aspx

and http://www.website2.com/page2.aspx belong to different origins.

Loading HTML Markup Using load()
In this section, you use the load() method to load HTML markup dynamically through a client-side script. The Web
Form that loads the HTML markup is shown in Figure 8-4.

http://www.website1.com/page1.aspx
http://www.website2.com/page2.aspx

CHAPTER 8 ■ AJAX TECHNIQUES

201

The Web Form consists of two text boxes that accept values for employee country, and title, respectively. Clicking
the Load button makes an Ajax request to another Web Form and passes the country and title entered by the user as
request data. The other Web Form retrieves the employees residing in the specified country or having the specified
title. The HTML table is then generated dynamically based on these results. The HTML markup thus generated is then
loaded inside a <div> element, and an alert notification is also displayed to the user.

To begin developing this application, create an empty ASP.NET Web Forms application and add a Web Form to it.
Design the Web Form as shown in Figure 8-4. Listing 8-1 shows the markup of this Web Form.

Listing 8-1. LoadMethod.aspx Markup

<form id="form1" runat="server">
 <asp:Label ID="Label1" runat="server" Text="Country :"></asp:Label>
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 <asp:Label ID="Label2" runat="server" Text="Title :"></asp:Label>
 <asp:TextBox ID="TextBox2" runat="server"></asp:TextBox>
 <asp:Button ID="Button1" runat="server" Text="Load" />
 ...
 <div id="container"></div>
</form>

The markup consists of two Label controls, two TextBox controls, a Button control, and a <div> element.
The HTML table containing the employee details will be rendered in the <div> container.

Now add a script reference to the jQuery library and add a script block. Then write the code shown in Listing 8-2
inside the script block.

Figure 8-4. Application using the load() method

CHAPTER 8 ■ AJAX TECHNIQUES

202

Listing 8-2. Using load() to Load HTML Markup

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 var data = {};
 data.Country = $("#TextBox1").val();
 data.Designation = $("#TextBox2").val();
 $("#container").load("LoadTarget.aspx", data, function () {
 alert("HTML markup loaded successfully!");
 });
 evt.preventDefault();
 });
});

Listing 8-2 shows the click event handler of the Load button. The click handler creates a JavaScript object and
stores it in a data variable. Then the code sets its two properties: Country and Designation. These properties get their
values from TextBox1 and TextBox2, respectively. An ID selector is used to match the <div> container element, and
the load() method is called on the matched element.

The load() method takes three parameters. The first parameter is a URL to the remote resource that is to be
accessed. In this example, LoadTarget.aspx is requested. The second parameter is optional and specifies the data
accompanying the request. If the data parameter is an object, the load() method makes a POST request to the remote
resource; otherwise, a GET request is made.

In this example, the data JavaScript object is passed in the second parameter. The third parameter is also
optional and indicates a callback function that is invoked when the loading operation is complete. In this example, an
alert dialog with a notification message is displayed by the completion function. The content of the container element
is set to the HTML markup returned by LoadTarget.aspx.

Next, add an entity framework data model for the Employees table. Also, add another Web Form to the project and
name it LoadTarget.aspx. The LoadTarget.aspx filters Employee objects that have Country or Title that matches the
user-supplied values. The code that does this filtering goes in the Page_Load of the Web Form and is shown in Listing 8-3.

Listing 8-3. Generating HTML Markup Dynamically

protected void Page_Load(object sender, EventArgs e)
{
 string country=Request.Form["Country"];
 string title = Request.Form["Designation"];
 NorthwindEntities db = new NorthwindEntities();
 var data = from emp in db.Employees
 where emp.Country == country || emp.Title == title
 select emp;
 Response.Clear();
 Response.Write("<table border='1' cellpadding='6'>");
 foreach (var obj in data)
 {
 Response.Write("<tr><td>" + obj.FirstName +
 "</td><td>" + obj.LastName +
 "</td></tr>");
 }
 Response.Write("</table>");
 Response.Flush();
 Response.End();
}

CHAPTER 8 ■ AJAX TECHNIQUES

203

This code retrieves the Country and Designation values entered in the text boxes using the Request.Form
collection. It then proceeds to select Employee records in which either Country is equal to the supplied country value
or Title is equal to the supplied designation value. The response buffer is then cleared by using the Clear() method of
the Response object.

An HTML table is written on the response stream by using the Response.Write() method. A foreach loop
iterates through all the filtered records and emits the FirstName and LastName values of the Employee objects. Finally,
the Flush() method flushes the response buffer to ensure that all markup is pushed to the client, and the End()
method is called to flag the end of the response.

Loading and Executing a Script Using $.getScript()
While the load() method loads the HTML markup or text data from the server, the $.getScript() method loads
and executes script files. You can use $.getScript() to dynamically load and execute scripts based on some logic.
The $.getScript() method takes two parameters: a URL to a remote resource and a success callback function. Once
the script returned by the URL is loaded, it is executed just like any other script. If the request succeeds, the callback
function indicated by the second parameter is invoked. Specifying a callback function is optional.

To understand how $.getScript() can be used, let’s develop a simple Web Form as shown in Figure 8-5.

Figure 8-5. Web Form displaying an advertisement using getScript()

The Web Form shown in Figure 8-5 displays an advertisement in all the elements that have the CSS adspace class
attached to them. As soon as the page is loaded, a script file is requested using the $.getScript() method. The script
included in the script file renders the advertisement. A callback function simply displays a notification to the user in
an alert dialog.

CHAPTER 8 ■ AJAX TECHNIQUES

204

To develop the Web Form, create an empty ASP.NET Web Form application. Add a Web Form to the project and add
the following code in a <script> block:

$(document).ready(function () {
 $.getScript("Scripts/AdScript.js", function () {
 alert("Ad script executed successfully!");
 });
});

This code uses the $.getScript() method inside the ready() handler and requests the AdScript.js file. The
callback function simply displays an alert dialog to the user. The AdScript.js file contains jQuery code, as shown here:

$(".adspace").html("<h1>Buy ONE get one FREE!!!</h1>")
 .css("background-color", "yellow")
 .css("border", "2px solid orange")
 .css("text-align", "center")
 .css("padding", "10px");

As you can see, the code selects all the elements that have the CSS adspace class attached to them. A typical
candidate for displaying an advertisement can be a <div> or a . It then sets the HTML content of the elements
to some advertisement text (Buy ONE get one FREE!!!, in this case) by using the html() method. It also sets a few
CSS styles (such as background-color, border, text-align, and padding to control the overall look and feel of the
advertisement.

Before you run the Web Form, add one or two <div> elements in the Web Form and set their class attribute to
adspace. When the Web Form is loaded, the AdScript.js file is loaded and also executed. As a result, all the <div>
elements display the advertisement as expected.

Making GET Requests Using $.get()
In the preceding sections, you used load() and $.getScript() to request HTML markup and scripts, respectively.
But sometimes you may want to make a generic GET request to a server-side resource. Suppose, for example, that you
want to retrieve the latest news items from the server in HTML, XML, or JSON format. In this case, load() isn’t be
useful because you want the raw data of news items; you might not want to directly load it in a DOM element. Also,
$.getScript() isn’t useful because you aren’t requesting a script file. In such cases, you can use the $.get() method.

The $.get() method takes four parameters and its general signature is shown here:

$.get(url, data, success_callback, data_type);

Except for url, all the parameters are optional. The significance of each of the parameters is outlined here:

The first parameter is the URL of the resource you want to access using a • GET request.

The second (optional) parameter is data that needs to accompany the request. Because a • GET
request is being made, this data is passed in the query string.

The third (optional) parameter is a success callback function that gets invoked upon •
successful completion of the request. The callback function receives the data returned from
the server as its parameter.

The fourth (optional) parameter is the type of data expected from the server. Possible values •
for this parameter are html, xml, json, and script. If no data type is specified, jQuery attempts
to identify it through intelligent guessing.

CHAPTER 8 ■ AJAX TECHNIQUES

205

Now, let’s build a Web Form that illustrates the use of the $.get() method. Figure 8-6 shows the Web Form
you’ll develop in this example.

Figure 8-6. Searching employees by using $.get()

The Web Form shown in Figure 8-6 may seem similar to the one developed while illustrating the load() method.
It performs the same task of searching the employees based on Country and Title values, but there are a few
significant differences in the way it works. First, clicking the Get button causes a GET request to be sent to the server
using the $.get() method. Second, the search results are not directly loaded in any element; they are received by a
callback function. The callback function then iterates through them and adds them into a table. The search results are
retrieved as JSON objects, not as HTML markup.

To begin developing this Web Form, create an empty ASP.NET Web Forms application and add a Web Form to
it. Design the Web Form as shown in Figure 8-6. Then add a script reference to the jQuery library and a script block.
Then add the code shown in Listing 8-4 to the script block.

Listing 8-4. Using $.get() to Make a GET Request

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 var data = {};
 data.Country = $("#TextBox1").val();
 data.Designation = $("#TextBox2").val();
 $.get("GetTarget.aspx", data, function (data) {
 $("#container").empty();
 for (var i = 0; i < data.length; i++) {
 $("#container").append("<tr><td>" +
 data[i].EmployeeID + "</td><td>" +
 data[i].FirstName + "</td><td>" +
 data[i].LastName + "</td></tr>");
 }

CHAPTER 8 ■ AJAX TECHNIQUES

206

 alert("Employee data retrieved successfully!");
 },"json");
 evt.preventDefault();
 });
});

The click event handler of the Get button creates a JavaScript object and stores the Country and Designation
values. It then calls the $.get() method and passes GetTarget.aspx as the URL to be accessed using the GET request.
The data object is passed as the second parameter. A callback function is also specified to process the search results.
The fourth parameter is set to a value of json, indicating that the request will fetch data in JSON format.

The callback function receives the returned JSON data in the data parameter. The data is an array of JSON
objects. A for loop iterates through this array and appends employee details to a container table using the append()
method.

The GetTarget.aspx file reads the data accompanying the GET request and fetches employee data based on the
filter criteria. Listing 8-5 shows the code that goes inside the GetTarget.aspx Page_Load.

Listing 8-5. Fetching Employee Data

protected void Page_Load(object sender, EventArgs e)
{
 string country = Request.QueryString["Country"];
 string title = Request.QueryString["Designation"];
 NorthwindEntities db = new NorthwindEntities();
 var data = from emp in db.Employees
 where emp.Country == country || emp.Title == title
 select new EmployeeSearchResult{
 EmployeeID=emp.EmployeeID,
 FirstName=emp.FirstName,
 LastName=emp.LastName};
 List<EmployeeSearchResult> list = data.ToList();
 Response.Clear();
 Response.Write(JsonConvert.SerializeObject(list));
 Response.Flush();
 Response.End();
}

This code is similar to the one you wrote in the example illustrating the load() method. In this case, the Country
and Designation values are retrieved by using the Request.QueryString collection because the $.get() method
makes a GET request to the server-side resource. Note that not all the properties of Employee are selected; only
EmployeeID, FirstName, and LastName are selected as the EmployeeSearchResult object. The EmployeeSearchResult
class looks like this:

public class EmployeeSearchResult
{
 public int EmployeeID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

The query results are converted into a generic list of EmployeeSearchResult objects. What’s more interesting is
that this time the data is sent to the client in JSON format. This is done using the SerializeObject() method of the
JsonConvert class and passing the generic list as its parameter. This way, the generic list is serialized as a JSON array.

CHAPTER 8 ■ AJAX TECHNIQUES

207

Note ■ This example makes an Ajax request to a Web Form. Although you can make an Ajax request to any ASP.NET

resource, it is recommended that you place your processing logic inside a service (ASMX/WCF/Web API) and then call that

service from Ajax. The latter sections of this chapter discuss how services can be consumed using Ajax.

Making GET Requests Using $.getJSON()
When you use the $.get() method, you can retrieve data as html, xml, json, or script. When you want to retrieve
data only in JSON format, the $.getJSON() method comes in handy. The $.getJSON() method is similar to $.get() in
that it issues a GET request to a server-side resource. However, it expects that the response will be in JSON format only.
The $.getJSON() method accepts the first three parameters that the $.get() method accepts. Because $.getJSON()
exclusively uses JSON format, the fourth parameter (data type) doesn’t apply.

In the preceding example employee data was returned in JSON format. You can rewrite the same jQuery code
using $.getJSON(), as shown in Listing 8-6.

Listing 8-6. Using the getJSON() method

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 var data = {};
 data.Country = $("#TextBox1").val();
 data.Designation = $("#TextBox2").val();
 $.getJSON("GetTarget.aspx", data, function (data) {
 $("#container").empty();
 for (var i = 0; i < data.length; i++) {
 $("#container").append("<tr><td>" +
 data[i].EmployeeID + "</td><td>" +
 data[i].FirstName + "</td><td>" +
 data[i].LastName + "</td></tr>");
 }
 alert("Employee data retrieved successfully!");
 });
 evt.preventDefault();
 });
});

Notice the line of code highlighted in bold. It uses the $.getJSON() method to call GetTarget.aspx. The rest of
the code is the same as in the preceding example.

Making POST Requests Using $.post()
To make GET requests, you can use the $.get() method; to make POST requests, you can use the $.post() method.
Apart from the difference in the method of making a request, $.post() is quite similar to $.get() in terms of
parameters. It takes the same four parameters that the $.get() takes: URL, data, success callback, and data type.
Normally, post() is preferred over $.get() when the amount of data to be sent along with the request is large.

Let’s modify the preceding example to use the $.post() method. Listing 8-7 shows the modified code of the
click handler.

CHAPTER 8 ■ AJAX TECHNIQUES

208

Listing 8-7. Using the post() Method

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 var data = {};
 data.Country = $("#TextBox1").val();
 data.Designation = $("#TextBox2").val();
 $.post("PostTarget.aspx", data, function (data) {
 $("#container").empty();
 for (var i = 0; i < data.length; i++) {
 $("#container").append("<tr><td>" +
 data[i].EmployeeID + "</td><td>" +
 data[i].FirstName + "</td><td>" +
 data[i].LastName + "</td></tr>");
 }
 alert("Employee data retrieved successfully!");
 });
 evt.preventDefault();
 });
});

The code uses the $.post() method to post some data to PostTarget.aspx. The PostTarget.aspx Web Form
is quite similar to GetTarget.aspx, developed earlier. The only difference is that it uses Request.Form collection to
retrieve Country and Designation values, as shown here:

protected void Page_Load(object sender, EventArgs e)
{
 string country = Request.Form["Country"];
 string title = Request.Form["Designation"];
 ...
 ...
}

PostTarget.aspx uses the Request.Form collection because $.post() issues a POST request. It then forms a generic
list of EmployeeSearchResult objects and returns it after converting it into a JSON array.

Using the $.ajax() Method
As mentioned earlier, $.ajax() is the mother of all Ajax methods. Methods such as $.get() and $.post() internally
use $.ajax() to get their job done. Although the $.get(), $.post(), $.getJSON(), and $.getScript() methods
provide an easy way to make Ajax requests, they lack some advanced features. For example, none of these methods
allows you to take action when a request fails for some reason. This configuration option and many others are
available when you use the $.ajax() method. In its most common form, $.ajax() looks like the following:

$.ajax({property1:value,property2:value})

As shown in the preceding syntax, the $.ajax() method accepts a JavaScript object as its parameter. The
JavaScript object contains various configuration settings (the names property1 and property2 are merely used for the
sake of showing the syntax) to be used while making an Ajax request.

Table 8-2 lists some of the frequently used $.ajax() configuration settings.

CHAPTER 8 ■ AJAX TECHNIQUES

209

In the preceding section, you issued a POST request to PostTarget.aspx. The same task can be accomplished
using $.ajax(), as shown here:

$.ajax({
 url: "PostTarget.aspx",
 type: "POST",
 data: data,
 contentType:"application/x-www-form-urlencoded;charset=UTF-8",
 dataType: "json",
 success: function (result,status,jqXHR) {
 $("#container").empty();
 for (var i = 0; i < result.length; i++) {
 $("#container").append("<tr><td>" +
 result[i].EmployeeID + "</td><td>" +
 result[i].FirstName + "</td><td>" +
 result[i].LastName + "</td></tr>");
 }
 alert("Employee data retrieved successfully!");
 },
 error: function (jqXHR,status,err) {
 alert("ERROR : " + status);
 }
});

Table 8-2. ajax() Configuration Settings

Setting Description

async Governs whether Ajax requests are made asynchronously or synchronously. By default, ajax()
requests are asynchronous, and async is true. If you set it to false, a request is made in a
synchronous fashion.

contentType Sets the MIME content type of the data that accompanies a request.

data Holds the data accompanying a request. If a GET request is being made, the data is sent as a query
string; otherwise, data is sent as a part of the request body.

dataType Allows you to specify the type of data expected from the server as a response. Possible values are
html, xml, json, or script. If you don’t specify this parameter, jQuery attempts to detect the data
type using intelligent guessing.

error Allows you to wire a function that gets called if a request fails. Error details are passed as the
parameters of the function.

username Allows you to specify a username in case the request needs authentication.

password Allows you to specify a password in case a request needs authentication.

success Allows you to wire a function that gets called when a request is successful. It receives the data
returned from the server as its parameter.

timeout Specifies the timeout duration in milliseconds. If a request takes more time than this value, it is cancelled.

type Allows you to specify the type of request: GET, POST, PUT, or DELETE. If you don’t specify this option,
GET is assumed.

url Points to a resource on the server to which the request is to be made. Typically this is a Web Form,
controller action, service, or generic handler.

CHAPTER 8 ■ AJAX TECHNIQUES

210

Notice that various configuration options are specified as a JavaScript object and that contentType is specified as
application/x-www-form-urlencoded for the data object being sent. Also observe the success and error functions;
they both receive the jQuery XMLHttpRequest (jqXHR) object, along with other parameters. The jqXHR object is a
wrapper over the underlying XMLHttpRequest object and provides access to its features if needed.

The jqXHR Object
Before you move on to using $.ajax() to develop more complete examples, I’ll quickly discuss an object that was
silently working behind the scenes for all the Ajax methods: the jQuery XMLHttpRequest or jqXHR object. As mentioned
earlier, jqXHR is a wrapper over the browser’s XMLHttpRequest object. Additionally it implements the Promise
interface. JavaScript promises are objects that represent a pending result of an Ajax operation. You can use Promises
to wire callback functions when the Ajax call completes. Most of the methods discussed in this chapter—$.get(),
$.getJSON(), $.getScript(), $.post(), and $.ajax()—return a jqXHR object that can be used to wire success,
error, and completion callbacks.

Consider the following code:

var jqXHR = $.ajax({...})
.done(function() {...})
.fail(function() {...})
.always(function() {...});

This code shows the $.ajax() method being used. The return value of $.ajax() is a jqXHR object and is stored
in a variable. Three callback functions are wired to the jqXHR object using done(), fail(), and always(). The done()
function is invoked when an Ajax request completes successfully; the fail() function is invoked when an Ajax
request fails; and the always() function is invoked after completion of an Ajax request, whether it succeeded or not.

Although you can usually live without using the jqXHR object because the methods allow you to wire these
functions as a part of their signature, you can use it if you need to. In some of the examples discussed later, you will
use jqXHR to wire success, failure, and completion callbacks.

Making Ajax Call to an ASMX Web Service
In this section, you create an ASMX web service and call it by using $.ajax(). The web service does a simple job of
converting temperature values from Celsius to Fahrenheit and vice versa. Figure 8-7 shows the Web Form that calls
the web service.

Figure 8-7. Web Form calling a temperature conversion web service

CHAPTER 8 ■ AJAX TECHNIQUES

211

The Web Form consists of a TextBox to enter temperature value to convert and a DropDownList to select the scale
of the temperature value. Clicking Convert button converts the value into the other scale. The result of the conversion
is displayed below the Convert button.

To begin developing this application, create an empty ASP.NET Web Forms project and add a new ASMX web
service using the Add New Item dialog (see Figure 8-8).

Figure 8-8. Adding a new ASMX web service to the project

Give the web service the name of TemperatureService.asmx and add a web method to the web service named
Convert. The Convert() web method is shown in Listing 8-8.

Listing 8-8. Convert() Web Method

[WebMethod]
public decimal Convert(decimal t, char scale)
{
 switch (scale)
 {
 case 'C':
 t = (t * 1.8m) + 32;
 break;
 case 'F':
 t = (t - 32) / 1.8m;
 break;
 }
 return t;
}

CHAPTER 8 ■ AJAX TECHNIQUES

212

Notice that the Convert() method is decorated with the [WebMethod] attribute and accepts two parameters:
the first parameter represents a temperature value, and the second parameter indicates its scale (C for Celsius and F
for Fahrenheit). Inside, it checks the scale of the temperature and accordingly calculates its value in the other scale.
The converted value is returned to the caller.

Add a Web Form in the project and design it as shown in Figure 8-7. Listing 8-9 shows the essential markup from
the Web Form.

Listing 8-9. Temperature Conversion Web Form Markup

<form id="form1" runat="server">
 <asp:Label ID="Label1" runat="server" Text="Enter Temperature :">
 </asp:Label>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 <asp:DropDownList ID="DropDownList1" runat="server">
 <asp:ListItem Value="C">Celsius</asp:ListItem>
 <asp:ListItem Value="F">Fehrenheit</asp:ListItem>
 </asp:DropDownList>

 <asp:Button ID="Button1" runat="server" Text="Convert" />

 <asp:Label ID="lblResult" runat="server" ForeColor="Red">
 </asp:Label>
</form>

The Web Form consists of a TextBox, a DropDownList, a Button, and a couple of Label controls. The
DropDownList contains two temperature scales with values of C and F. Clicking the Convert button calls the web
service, and lblResult displays the result of conversion.

Add a <script> reference to jQuery and add a <script> block in the head section of the Web Form. Add the
jQuery code shown in Listing 8-10 inside the <script> block.

Listing 8-10. Calling TemperatureService.asmx Using $.ajax()

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 var options = {};
 options.url = "TemperatureService.asmx/ConvertSimpleType";
 options.type = "POST";
 options.data = JSON.stringify(
 { t: $("#TextBox1").val(),
 scale: $("#DropDownList1").val() });
 options.contentType = "application/json";
 options.dataType = "json";
 options.success = function (data) {
 if ($("#DropDownList1").val() == "C") {
 $("#lblResult").html("Value in Fahrenheit = " + data.d);
 }
 else {
 $("#lblResult").html("Value in Celsius = " + data.d);
 }
 };

CHAPTER 8 ■ AJAX TECHNIQUES

213

 options.error = function (jqXHR, status, err) { alert(status); };
 $.ajax(options);
 evt.preventDefault();
 });
});

The code in Listing 8-10 shows the click event handler of Button1. The code creates an options JavaScript
object and assigns its various properties. The url property points to TemperatureService.asmx/Convert. This way, an
Ajax call is made to the Convert() web method from TemperatureService.asmx. The type property indicates that a
POST request is being made. The Convert() web method accepts two parameters, t and scale, which are passed as a
JSON object through the data property.

Notice the use of JSON.stringify() to convert a JavaScript object into a JSON string. Also notice that the code
uses the same parameter names (t and scale) as those of the web method while constructing the JSON object. This
is necessary for proper mapping of parameter values while invoking the web method. The values of t and scale are
obtained from TextBox1 and DropDownList1, respectively. Because the data property holds data in JSON format, the
contentType property is set to application/json. The web method returns its value in JSON format, so dataType
property is set to json.

The success function receives the return value of the web method. Inside the function a message is formed based
on the scale selected in the DropDownList. Notice how the actual return value is accessed: data.d. The actual return
value is wrapped in a data object and can be accessed using its d property. The result is then displayed in lblResult.
The error function is called if an error occurs while calling the web service and displays the status returned from the
server in an alert dialog.

Once the options object is configured, the $.ajax() method is called, and the options object is passed to it. The
postback is prevented by calling preventDefault() on the evt object.

Making an Ajax Call to a Page Method
In the preceding example, you created an ASMX web service that contained the Convert() method. Creating a web
service is useful when the service is consumed by many Web Forms. If you want to consume a web method from only
a single Web Form, you can create it as a page method rather than an ASMX web service. (A page method is a web
method that is housed inside a Web Form.) You can then call this page method using $.ajax(). Consider the code
shown in Listing 8-11.

Listing 8-11. Convert() Page Method

[WebMethod]
public static TemperatureData Convert(TemperatureData data)
{
 TemperatureData resultData = new TemperatureData();
 switch (data.Scale)
 {
 case 'C':
 resultData.Value = (data.Value * 1.8m) + 32;
 resultData.Scale = 'F';
 break;
 case 'F':
 resultData.Value = (data.Value - 32) / 1.8m;
 resultData.Scale = 'C';
 break;
 }
 return resultData;
}

CHAPTER 8 ■ AJAX TECHNIQUES

214

The Convert() method shown in Listing 8-11 is a static method that is also decorated with the [WebMethod]
attribute. This makes it a page method that can be called from jQuery code. This time, the temperature value
and its scale is passed as a TemperatureData object rather than a simple type. The Convert() method returns the
TemperatureData object with the converted value instead of a decimal value. The TemperatureData class contains
only two properties: Value and Scale (see the following code):

public class TemperatureData
{
 public decimal Value { get; set; }
 public char Scale { get; set; }
}

To call the Convert() method from the Web Form, write the code shown in Listing 8-12.

Listing 8-12. Calling a Page Method Using $.ajax()

$("#Button1").click(function (evt) {
 var options = {};
 options.url = "PageMethodClient.aspx/Convert";
 options.type = "POST";
 options.data = JSON.stringify(
 { data: { Value: $("#TextBox1").val(),
 Scale: $("#DropDownList1").val() } });
 options.contentType = "application/json";
 options.dataType = "json";
 options.success = function (data) {
 if ($("#DropDownList1").val() == "C") {
 $("#lblResult").html("Value in Fahrenheit = " + data.d.Value);
 }
 else {
 $("#lblResult").html("Value in Celsius = " + data.d.Value);
 }
 };
 options.error = function (jqXHR, status, err) { alert(status); };
 $.ajax(options);
 evt.preventDefault();
});

Most of the code involved in calling the Convert() page method remains the same as in the preceding
example. Notice the code marked in bold letters. The url property of the options object is pointing to
PageMethodClient.aspx/Convert. This time, you are passing the value for a complex type (TemperatureData) from
the client side. This value is encapsulated in a JavaScript object with two properties: Value and Scale. This object
is to be passed as a value of the data parameter. Hence, the data object is constructed as shown by the second bold
line of code.

The return value of the Convert() page method is the TemperatureData object. This object is sent to the client in
JSON format, and its Value and Scale properties can be accessed as data.d.Value and data.d.Scale, respectively.

Making an Ajax Call to a WCF Service
Although calling a WCF service is quite similar to calling an ASMX service, you need to create a WCF service (.svc) and
write the Convert() method as an [OperationContract]. To add a new WCF service to your project, you can use the
Add New Item dialog and select WCF Service (Ajax-enabled) from the list (see Figure 8-9).

CHAPTER 8 ■ AJAX TECHNIQUES

215

Name the service TemperatureService.svc and add the Convert() method to it, as shown in Listing 8-13.

Listing 8-13. Convert() Method of a WCF Service

[OperationContract]
public TemperatureData Convert(TemperatureData data)
{
 TemperatureData resultData = new TemperatureData();
 switch (data.Scale)
 {
 case 'C':
 resultData.Value = (data.Value * 1.8m) + 32;
 resultData.Scale = 'F';
 break;
 case 'F':
 resultData.Value = (data.Value - 32) / 1.8m;
 resultData.Scale = 'C';
 break;
 }
 return resultData;
}

As you can see, the Convert() method is quite similar to the one you used previously. This time, however, it is
decorated with the [OperationContract] attribute. To call the Convert() method from the jQuery code, write the
code shown in Listing 8-14.

Figure 8-9. Adding an Ajax-enabled WCF Service to a project

CHAPTER 8 ■ AJAX TECHNIQUES

216

Listing 8-14. Calling a WCF Service Using $.ajax()

$("#Button1").click(function (evt) {
 var options = {};
 options.url = "TemperatureService.svc/Convert";
 options.type = "POST";
 options.data = JSON.stringify(
 { data: { Value: $("#TextBox1").val(),
 Scale: $("#DropDownList1").val() }});
 options.contentType = "application/json";
 options.dataType = "json";
 options.success = function (data) {
 if ($("#DropDownList1").val() == "C") {
 $("#lblResult").html("Value in Fahrenheit = " + data.d.Value);
 }
 else {
 $("#lblResult").html("Value in Celsius = " + data.d.Value);
 }
 };
 options.error = function (jqXHR, status, err) { alert(status); };
 $.ajax(options);
 evt.preventDefault();
});

The only change needed this time is in the url property of the options object. As shown by bold highlighting, the
url property now points to TemperatureService.svc/Convert.

Making an Ajax Call to a Controller Action
So far, you used $.ajax() to call ASMX and WCF services that were part of a Web Forms project. You can also use
jQuery Ajax methods to call ASP.NET MVC action methods. This section discusses how. The overall process of making
an Ajax call remains the same, but there are a few differences that you should be aware of.

Begin by creating an empty ASP.NET MVC application. Right-click the Controllers folder and choose the
Add ➤Controller option to add an empty controller (see Figure 8-10).

Figure 8-10. Adding the HomeController

Name the controller HomeController and click the Add button to add it to the project. The HomeController
class has the Index() action method by default. Add the Convert() method inside the home controller, as shown
in Listing 8-15.

CHAPTER 8 ■ AJAX TECHNIQUES

217

Listing 8-15. Adding Convert() Inside the Home Controller

public JsonResult Convert (decimal t, char scale)
{
 switch (scale)
 {
 case 'C':
 t = (t * 1.8m) + 32;
 break;
 case 'F':
 t = (t - 32) / 1.8m;
 break;
 }
 return Json(t);
}

The Convert() method shown in Listing 8-15 is quite similar to the one you developed in the ASMX web service
example earlier in this chapter. The only difference is that Convert() is an action method. Because you want to pass
the result of the temperature conversion in JSON format, the return type of the Convert() method is specified as
JsonResult (usually an action method returns ActionResult). The calculation result is t, which is then returned to
the caller using the Json() method. The Json() method accepts any .NET object and returns its JSON representation,
which is then sent back to the client.

To call the Convert() action method, you need to add the Index view by right-clicking the Index() action method
and then choosing the Add View option. In the View name field, add Index (see Figure 8-11).

Figure 8-11. Adding the Index view

CHAPTER 8 ■ AJAX TECHNIQUES

218

The Index view contains HTML markup that renders the same user interface as you used earlier. Listing 8-16
shows this markup.

Listing 8-16. Index View Markup

<form id="form1">
 Enter Temperature :

 <input type="text" id="TextBox1" />
 <select id="DropDownList1">
 <option value="C">Celsius</option>
 <option value="F">Fehrenheit</option>
 </select>

 <input id="Button1" type="button" value="Convert" />

</form>

The markup is straightforward and consists of a text box, a drop-down list, a button, and a couple of span
elements. Now add a jQuery <script> reference in the head section of the view. Also add a <script> block and key in
the code shown in Listing 8-17.

Listing 8-17. Calling an Action Method Using $.ajax()

$(document).ready(function () {
 $("#Button1").click(function (evt) {
 var options = {};
 options.url = "/Home/Convert";
 options.type = "POST";
 options.data = JSON.stringify(
 { t: $("#TextBox1").val(),
 scale: $("#DropDownList1").val() });
 options.contentType = "application/json";
 options.dataType = "json";
 options.success = function (data) {
 if ($("#DropDownList1").val() == "C") {
 $("#lblResult").html("Value in Fahrenheit = " + data);
 }
 else {
 $("#lblResult").html("Value in Celsius = " + data);
 }
 };
 options.error = function (jqXHR, status, err) { alert(status); };
 $.ajax(options);
 });
});

Most of the code shown in Listing 8-17 should look familiar to you. Notice the code marked in bold highlighting.
This time, the url property points to the Convert() action as Home/Convert. The return value of the Convert()
method can be directly accessed using the data parameter of the success function.

CHAPTER 8 ■ AJAX TECHNIQUES

219

In the example just discussed, the Convert() method accepts parameters of simple types. You can also pass
(and return) object data to the Convert() method as shown in Listing 8-18.

Listing 8-18. Passing Object Data to Convert()

public JsonResult Convert(TemperatureData data)
{
 TemperatureData resultData = new TemperatureData();
 switch (data.Scale)
 {
 case 'C':
 resultData.Value = (data.Value * 1.8m) + 32;
 resultData.Scale = 'F';
 break;
 case 'F':
 resultData.Value = (data.Value - 32) / 1.8m;
 resultData.Scale = 'C';
 break;
 }
 return Json(resultData);
}

The Convert() action method now accepts the TemperatureData object and returns a TemperatureData object
containing the converted value. The Json() method is used as before to convert the resultData object into its JSON
form. To call the modified Convert() method from the client script, modify the jQuery code, as shown in Listing 8-19.

Listing 8-19. Calling Convert(), which Returns a TemperatureData Object

$("#Button1").click(function (evt) {
 var options = {};
 options.url = "/Home/Convert";
 options.type = "POST";
 options.data = JSON.stringify(
 { Value: $("#TextBox1").val(),
 Scale: $("#DropDownList1").val() });
 options.contentType = "application/json";
 options.dataType = "json";
 options.success = function (data) {
 if ($("#DropDownList1").val() == "C") {
 $("#lblResult").html("Value in Fahrenheit = " + data.Value);
 }
 else {
 $("#lblResult").html("Value in Celsius = " + data.Value);
 }
 };
 options.error = function (jqXHR, status, err) { alert(status); };
 $.ajax(options);
});

CHAPTER 8 ■ AJAX TECHNIQUES

220

Notice the code marked in bold highlighting. This time, the data property of the options object is set to
a JavaScript object with two properties: Value and Scale. The TemperatureData object is returned in its JSON
equivalent form and the resulting object is received as the data parameter of the success function. Then the
data.Value and data.Scale properties give the value and scale of the returned object.

Making an Ajax call to a Web API
Modern applications often rely on RESTful services for the purpose of consuming the services exposed by them.
Commonly a web application invokes these RESTful services using Ajax. Although this chapter is not about REST, a
brief discussion REST is worthwhile.

REST stands for REpresentational State Transfer. REST is not a standard; it’s a way of architecting your services.
Unlike ASMX web services that use complex mechanisms such as Simple Object Access Protocol (SOAP) and Web
Services Description Language (WSDL), RESTful services harness the simplicity and power of HTTP.

Here are some fundamental characteristics of RESTful services:

REST services use the HTTP protocol.•

REST services make HTTP requests (using meaningful HTTP verbs such as • GET, POST, PUT, and
DELETE) to fetch and submit data.

REST services are stateless in nature.•

REST exposes services as resources-accessible and discoverable through URLs.•

REST services typically transfer data in XML or JSON format.•

The ASP.NET Web API is a .NET way of developing RESTful services. To invoke a Web API from the client-side
script, developers commonly use an Ajax technique such as $.ajax().

Note ■ The HTTP verbs such as GET, POST, PUT, and DELETE indicate the desired action to be performed on a resource.

If a service performs create, read, update, and delete (CRUD) operations on a database, you could use POST to indicate an

INSERT operation, GET to indicate a SELECT operation, PUT to indicate an UPDATE operation and DELETE to indicate a

DELETE operation. However, merely using a specific verb won’t enforce the principle that only a particular type of operation

is allowed. It’s up to you to implement these verbs in a service depending on application’s requirements.

Now let’s develop an application that demonstrates how a Web API can be consumed using $.ajax().
Figure 8-12 shows the main view of the application.

CHAPTER 8 ■ AJAX TECHNIQUES

221

The view represents a data entry page for the Employees table. At the top is a drop-down list with existing
EmployeeID values. After an EmployeeID is selected, its details are displayed in the other text boxes. You can then
modify and update the data with the Update button.

To add a new Employee, you need to enter a new EmployeeID in the text box placed beside the drop-down list
and fill in the other text boxes. Clicking the Insert button adds that Employee to the database. Selecting an EmployeeID
from the drop-down list and clicking the Delete button deletes that Employee. A success or error message is displayed
at the bottom of the table, depending on the outcome of the operation. Although the data entry page is rendered by an
ASP.NET MVC view, the CRUD operations on the Employees table are performed through a Web API.

To develop this application, begin by creating a new ASP.NET Web Application based on the Web API project
template (see Figure 8-13).

Figure 8-12. Application consuming a Web API

CHAPTER 8 ■ AJAX TECHNIQUES

222

Once the project is created, right-click the Models folder and add an ADO.NET Entity Data Model to the project.
Let the wizard generate a model for the Employees table residing in the Northwind database. Figure 8-14 shows the
Employee model class.

Figure 8-13. Creating an ASP.NET Web API project

CHAPTER 8 ■ AJAX TECHNIQUES

223

The Employee class has properties representing all the columns from the Employees table. However, for the sake
of this example, you need only six of them: EmployeeID, FirstName, LastName, BirthDate, HireDate, and Country.
To avoid transferring the data of unused columns, you can create the EmployeeData class that has just six properties.
Although the Employee class is used in LINQ to Entities queries, the EmployeeData class is used to transfer the data
between the client and the server.

The EmployeeData class is shown here:

public class EmployeeData
{
 public int EmployeeID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime? BirthDate { get; set; }
 public DateTime? HireDate { get; set; }
 public string Country { get; set; }
}

The EmployeeData class has six properties for holding the pieces of information you need as part of a data
transfer. By default, a newly created Web API project has two controllers: HomeController and ValuesController. The
HomeController is a normal MVC controller, whereas ValuesController is an ApiController and represents the Web
API. Rename the ValuesController to EmployeesController and add the skeleton code shown in Listing 8-20 to the
EmployeesController.

Figure 8-14. Employee model class

CHAPTER 8 ■ AJAX TECHNIQUES

224

Listing 8-20. Skeleton of EmployeesController

public class EmployeesController : ApiController
{
 NorthwindEntities db = new NorthwindEntities();
 public List<EmployeeData> GetEmployees() {}
 public EmployeeData GetEmployeeByID(int id) {}
 public string PostEmployee(EmployeeData empData) {}
 public string PutEmployee(int id, EmployeeData empData) {}
 public string DeleteEmployee(int id) {}
}

The Employees Web API consists of five methods: GetEmployees(), GetEmployeeByID(), PostEmployee(),
PutEmployee(), and DeleteEmployee().

Note ■ If you are not familiar with ASP.NET Web API consider visiting http://www.asp.net/web-api for more details.

Notice the nomenclature of these methods. Each method starts with an HTTP verb: Get, Post, Put, or Delete. The
Web API framework automatically maps a request to an appropriate Web API method based on the HTTP verb used in
the request. For example, a GET request with no data accompanying it is handled by the GetEmployees() method, and
a POST request is handled by PostEmployees() method.

The GetEmployees() method returns a generic List of EmployeeData objects and handles GET requests that do not
carry any data with them. The GetEmployeeByID() method accepts id as its parameter and returns an EmployeeData
for the specified EmployeeID. GET requests that carry EmployeeID information are handled by the GetEmployeeByID()
method.

The PostEmployee() method handles POST requests and is indented to add a new Employee in the database. It
accepts the EmployeeData object and returns a string indicating a success message.

The PutEmployee() method handles PUT requests and is intended to update an existing Employee from the
database. It accepts id and the EmployeeData object as its parameters and returns a string indicating a success
message.

The DeleteEmployee() method handles DELETE requests and is intended to delete an Employee from the
database. It accepts id as a parameter and returns a string indicating a success message. The EmployeesController
class also declares a database context variable (db) at the top that is used by all the methods to perform their
respective operations.

All the EmployeesController methods aren’t discussed here for the want of space. It suffices to see and discuss a
couple of methods for the sake of better understanding. Listing 8-21 shows the GetEmployees() method.

Listing 8-21. GetEmployees() Method

public List<EmployeeData> GetEmployees()
{
 var data = from e in db.Employees
 orderby e.EmployeeID
 select new EmployeeData {
 EmployeeID=e.EmployeeID,
 FirstName=e.FirstName,
 LastName=e.LastName,
 BirthDate=e.BirthDate,

http://www.asp.net/web-api

CHAPTER 8 ■ AJAX TECHNIQUES

225

 HireDate=e.HireDate,
 Country=e.Country };
 List<EmployeeData> list = data.ToList();
 return list;
}

The GetEmployees() method creates a LINQ to Entities query that fetches all the Employee objects from the
Employees DbSet. The query also shapes the results into the EmployeeData object using projection. This way,
the query returns a collection of EmployeeData objects. The query results are transformed into a generic List of
EmployeeData objects and then returned to the caller.

The PutEmployee() method updates an existing Employee and is shown in Listing 8-22.

Listing 8-22. PutEmployee() Method

public string PutEmployee(int id, EmployeeData empData)
{
 Employee emp = db.Employees.Find(id);
 emp.FirstName = empData.FirstName;
 emp.LastName = empData.LastName;
 emp.BirthDate = empData.BirthDate;
 emp.HireDate = empData.HireDate;
 emp.Country = empData.Country;
 db.SaveChanges();
 return "Employee updated successfully!";
}

The PutEmployee() method finds an Employee object from the Employees DbSet using the Find() method.
The Find() method returns an existing Employee whose EmployeeID is same as id. The code assigns the FirstName,
LastName, BirthDate, HireDate and Country properties of the Employee object with the respective properties of the
EmployeeData object. The changes are saved to the database by calling the SaveChanges() method of the context.
A success message is then returned to the caller.

You can also complete the GetEmployeeByID(), PostEmployee(), and DeleteEmployee() methods. Once the
methods are created, open the HomeController class, right-click its Index() action method, and select the Add View
menu option to add the Index view to the project. The Index view should resemble Figure 8-12 and can be designed
using HTML helpers. Listing 8-23 shows the Index view markup.

Listing 8-23. Index View Markup

<form method="post">
 <table border="1" cellpadding="6">
 <tr>
 <td>@Html.Label("EmployeeID","EmployeeID :")</td>
 <td>
 <select id="ddlEmployeeID"></select>
 OR
 @Html.TextBox("EmployeeID","", new { size="5" })
 </td>
 </tr>
 <tr>
 <td>@Html.Label("FirstName","First Name :")</td>
 <td>@Html.TextBox("FirstName")</td>
 </tr>

CHAPTER 8 ■ AJAX TECHNIQUES

226

 <tr>
 <td>@Html.Label("LastName","Last Name :")</td>
 <td>@Html.TextBox("LastName")</td>
 </tr>
 <tr>
 <td>@Html.Label("BirthDate","Birth Date :")</td>
 <td>@Html.TextBox("BirthDate", "", new { type="date" })</td>
 </tr>
 <tr>
 <td>@Html.Label("HireDate","Hire Date :")</td>
 <td>@Html.TextBox("HireDate", "", new { type="Date" })</td>
 </tr>
 <tr>
 <td>@Html.Label("Country","Country :")</td>
 <td>@Html.TextBox("Country")</td>
 </tr>
 <tr>
 <td colspan="2">
 <input id="btnInsert" type="button" value="Insert" />
 <input id="btnUpdate" type="button" value="Update" />
 <input id="btnDelete" type="button" value="Delete" />
 </td>
 </tr>
 <tr>
 <td colspan="2">

 </td>
 </tr>
 </table>
</form>

The markup is quite straightforward and uses the Label() and TextBox() Html helpers to render field labels
and text boxes, respectively. Notice that names used as the first parameter of the TextBox() helper are identical to
the property names of the EmployeeData class, so MVC can automatically map text box values to the EmployeeData
properties.

The BirthDate and HireDate text boxes use the HTML5 Date input type so that a browser capable of displaying a
date-picker (Chrome, for example) can display the respective fields as date-pickers. Since the application uses Ajax to
insert, update and delete an employee, the type of btnInsert, btnUpdate, and btnDelete is set to button. You will call
the Employees Web API through $.ajax().

Once the Index view is designed, add a <script> reference to jQuery library and also add a <script> block in the
head section. When the view loads in the browser, you have to fill in the EmployeeIDs in the drop-down list, which is
done using the code shown in Listing 8-24.

Listing 8-24. Filling in EmployeeIDs in the Drop-down List

$(document).ready(function () {
 var options = {
 url: "/api/Employees",
 type: "GET",
 contentType:"application/json",
 dataType: "json"
 };

CHAPTER 8 ■ AJAX TECHNIQUES

227

 $.ajax(options).done(function (employees) {
 for (var i = 0; i < employees.length; i++) {
 $("#ddlEmployeeID").append("<option>" +
 employees[i].EmployeeID + "</option>");
 }
 }).fail(function (jqXHR, status, err) {
 $("#lblMessage").html(err);
 });
});

This code creates JavaScript options object inside the ready() handler and sets its various properties.

Note ■ The url property is set to /api/Employees. This is the URL at which the Employees Web API is accessible. Unlike

ASMX and WCF service URLs, this URL doesn’t include the method names anywhere. This is because the HTTP verb

(GET, POST, and so on) decides the method to be called. Because you want to invoke the GetEmployees() method, you

set the type to GET. The other event handlers also use the same options object while making Ajax calls.

The options object is passed to the $.ajax() call. This time, the success and error functions are wired to the
jqXHR object returned by $.ajax(). Notice that these functions are wired immediately after the $.ajax() call so that
they are immediately available to handle the respective conditions.

The function supplied to the done() method receives the EmployeeData objects returned by GetEmployees() as
the employees parameter. The employees parameter is a JSON array that holds JSON objects that mimic the original
EmployeeData object. Thus, all the properties such as EmployeeID are also available for these employee objects. A for
loop iterates through the employees array, and EmployeeID values are added to the drop-down list using the append()
method.

The function supplied to the fail() method is called if the Web API call fails and displays an error message in the
lblMessage element.

When an EmployeeID is selected in the drop-down list, its details are displayed in the other text boxes by invoking
the GetEmployeeByID() Web API method in the change event handler of the drop-down list. The change event handler
is shown in Listing 8-25.

Listing 8-25. Calling the GetEmployeeByID() Web API Method

$("#ddlEmployeeID").change(function () {
 options.url = "/api/Employees/" + $("#ddlEmployeeID").val();
 options.type = "GET";
 $.ajax(options).done(function (employee) {
 $("#FirstName").val(employee.FirstName);
 $("#LastName").val(employee.LastName);
 $("#BirthDate").val(employee.BirthDate.substring(0, 10));
 $("#HireDate").val(employee.HireDate.substring(0, 10));
 $("#Country").val(employee.Country);
 }).fail(function (jqXHR, status, err) {
 $("#lblMessage").html(err);
 });
});

CHAPTER 8 ■ AJAX TECHNIQUES

228

The change event handler function sets the url property to /api/Employees/<emp_id> where emp_id is the
EmployeeID selected in the drop-down list. The type of request is still GET, but because of the URL pattern (the GET
request accompanying the EmployeeID data), the Web API invokes the GetEmployeeByID() method.

The options object is passed to $.ajax() to invoke the Web API. The done() handler function receives a single
employee object mimicking the EmployeeData object. The values of various text boxes are then set to the respective
properties of the employee object.

Notice how the values of the BirthDate and HireDate text boxes are being set. The BirthDate and HireDate
properties are DateTime properties on the server. When these values are sent to the client, they are converted to ISO
date format (YYYY-MM-DDThh:mm:ss). The input fields of the date type expect their value in YYYY-MM-DD format,
so the BirthDate and HireDate values are trimmed up to ten characters from the beginning. The fail() handler
simply displays an error message in the lblMessage element.

The click event handlers of btnInsert, btnUpdate, and btnDelete call the Employees Web API after setting
the request type to POST, PUT, and DELETE, respectively. (These event handlers are not discussed here for the want of
space.) The click event handler for btnUpdate is shown in Listing 8-26.

Listing 8-26. Click Event Handler for btnUpdate

$("#btnUpdate").click(function () {
 var employee = {};
 employee.FirstName = $("#FirstName").val();
 employee.LastName = $("#LastName").val();
 employee.BirthDate = $("#BirthDate").val();
 employee.HireDate = $("#HireDate").val();
 employee.Country = $("#Country").val();

 options.url = "/api/Employees/" + $("#ddlEmployeeID").val();
 options.type = "PUT";
 options.data = JSON.stringify(employee);

 $.ajax(options).done(function (result) {
 $("#lblMessage").html(result);
 }).fail(function (jqXHR, status, err) {
 $("#lblMessage").html(err);
 });
});

The click event handler of btnUpdate invokes the PutEmployee() method of the Web API. The code creates
a JavaScript object to hold the employee data. This object mimics the EmployeeData object on the server. The
FirstName, LastName, BirthDate, HireDate, and Country properties of this employee object are set to the values
entered in the respective text boxes. The url property of the options object is in the form/api/Employees/<emp_id>
where emp_id is the EmployeeID selected in the drop-down list. This time, the type of request is set to PUT.

The employee JavaScript object is converted into its JSON representation using the JSON.stringify() method
and then assigned to the data property of the options object. Remember that the PutEmployee() method has two
parameters: id and EmployeeData. The id parameter is supplied through the url property of the options object,
whereas the EmployeeData parameter is supplied by the data property of the options object.

An Ajax call is then made to the Web API by passing the options object to $.ajax(). The done() handler function
receives a success message from the PutEmployee() method, which is then displayed in lblMessage.

You can complete the click event handlers for btnInsert and btnDelete on similar lines. Once they are
completed, you can run the application and test whether the CRUD operations are being performed as expected.

CHAPTER 8 ■ AJAX TECHNIQUES

229

Summary
Ajax is increasingly being used in modern web applications. Ajax applications make asynchronous requests to
server-side resources and can update parts of a web page without causing a full page postback. This also makes Ajax
applications faster compared with the ones using the full page postback model.

jQuery offers many methods to make Ajax requests to server-side resources. These methods include load(),
$.get(), $.getJSON(), $.getScript(), $.post(), and $.ajax().

The $.ajax() method is the mother of all Ajax methods because the other methods internally use $.ajax() to
get their job done. Using jQuery Ajax techniques, you can consume ASMX web services, page methods, WCF services,
controller actions, and the Web API.

So far in this book, you have written a lot of jQuery code that used built-in jQuery methods. However, there is
more to the story. You can also extend the jQuery functionality by creating your own plugins. Once created, a plugin
can be used across multiple pages of an application or across multiple web applications. The next chapter looks into
this aspect of jQuery.

231

CHAPTER 9

Creating and Using Plugins

So far in this book, you have learned about features that are integral to the jQuery library. However, the story doesn’t
end there. jQuery also allows you to extend its core functionality through plugins. A plugin is an extension that adds
some custom functionality to jQuery. For example, you may want to add fancy tooltips to a web page or display
masked text boxes that accept input in a specific format. This functionality isn’t available in the core jQuery library,
but you can create a plugin that encapsulates the code required to display such fancy tooltips and then use that plugin
on any web page.

This chapter discusses what plugins are and how to create your own plugin. Specifically you learn the following:

How to use existing plugins•

How to create a plugin•

Guidelines to follow while building plugins•

Understanding jQuery Plugins
Simply put, a plugin is an extension to the core jQuery library. Most of the time, a plugin is developed to offer some
functionality that’s not available as a part of the jQuery library. A plugin can also do the job of enhancing an existing
piece of functionality. Suppose, for example, that you want to display a slideshow in your ASP.NET Web Forms or MVC
views. The slide images and associated data, such as title and description, are stored in a SQL server database. The
slideshow also needs to have configurable settings such as delay between two slides, transition effect, playing slides in
loopback mode, and so on.

A straightforward way of developing such a slideshow is to write the necessary code in the web page. This
approach, although workable, suffers from drawbacks that the code you write is specific to that web page. If you ever
need to use the slideshow on multiple pages of the same application or across different applications, you can’t reuse
the code easily. You can overcome this problem by placing the code in a separate JavaScript file. This approach,
although better than the previous one, suffers from the drawback that the resultant code is merely a collection of
functions and lacks the structure of a framework. Selecting target DOM elements to participate in the slideshow and
configuration information (delay and transition effect, for example) are totally developer defined and dependent on
how a developer decides to wrote them.

A plugin need not restrict itself merely to adding jazzy effects to a web page. What can go as a plugin is governed
by a web application under consideration and a developer’s choice. Consider the following extensions to jQuery code
that can go as plugins (and they are just a few!):

Commonly used form validations•

Uploading files to server•

CHAPTER 9 ■ CREATING AND USING PLUGINS

232

Customizable date, time, font, and color pickers•

Zooming in and out of images and DOM elements•

Masked text boxes that restrict input to a specified format•

A plugin follows a structure and usage pattern that is familiar to any developer working with jQuery. You may
bundle all the functionality of the slideshow into a plugin named SlideShow, for example. You can then use that
plugin in any web page. You may find the concept of plugins somewhat analogous to ASP.NET custom server controls
and components.

A jQuery plugin exhibits the following features:

A plugin promotes a structured way of extending and enhancing the core jQuery library. •
So your code follows the same coding and usage patterns as that of the core jQuery framework.

A plugin provides a reasonable set of default configuration options and allows you to override •
them by supplying the configuration from the code external to the plugin.

A plugin allows you to provide the designated functionality to one or more DOM elements. •
These DOM elements are selected using any of the jQuery selectors. Thus the target DOM
elements are supplied by the code external to the plugin.

A plugin resides in a JavaScript (• .js) file and is referenced in ASP.NET Web Forms and views
along with the jQuery library.

Now that you have some idea of what jQuery plugins are, let’s see how to use an existing plugin in your ASP.NET
web application.

Using the PowerTip Plugin
In order to use a jQuery plugin, you need to have its JavaScript (.js) file and associated files such as style sheets and
images. Of course, all the plugins might not have CSS and image files. You can get a plugin either from a known plugin
developer or from a plugin repository. The jQuery Plugin Registry (plugins.jquery.com) is a huge registry in which
hundreds of plugins can be found categorized based on the kind of functionality they offer. Figure 9-1 shows the main
page of this web site.

http://plugins.jquery.com

CHAPTER 9 ■ CREATING AND USING PLUGINS

233

On the left side, various categories of plugins can be found based on their tags. You can also search the registry
for a particular plugin.

To learn how a plugin can be used, let’s use a plugin called PowerTip. The PowerTip plugin displays fancy tooltips
when the mouse pointer is moved over the target DOM elements. It can be used to display help text or provide
additional information about an application-specific feature or functionality. You can easily customize PowerTip to
control its placement and appearance. To get PowerTip plugin files, search plugins.jquery.com for PowerTip and
locate its page from the plugin registry (see Figure 9-2).

Figure 9-1. The jQuery Plugin Registry

http://plugins.jquery.com

CHAPTER 9 ■ CREATING AND USING PLUGINS

234

On the right side are various links, such as Download now, View Homepage, and Read the Docs. Download the
PowerTip plugin files by clicking the Download link and unzip them in a folder. Figure 9-3 shows the files that are
obtained after extracting the zip file into a folder.

Figure 9-2. PowerTip plugin page from the plugin registry

Figure 9-3. PowerTip plugin files

The jquery.powertip.js and jquery.powertip.min.js files are the core JavaScript files of the plugin. The css folder
contains style sheets that you may need to include in your project to control the appearance of the tooltips. The
LICENSE.txt file also details the licensing terms of the PowerTip plugin.

Figure 9-4 shows a sample ASP.NET Web Form that shows the PowerTip plugin in action.

CHAPTER 9 ■ CREATING AND USING PLUGINS

235

The Web Form consists of a GridView control that displays records from the Employees table of the Northwind
database. The FirstName and LastName columns are rendered as hyperlinks. Moving your mouse pointer over these
links displays a PowerTip tooltip showing the Title and Country of the employee under consideration.

To begin developing this Web Form, create an empty ASP.NET Web Forms application and add a Web Form to it.
Then create a Scripts folder in the project and place the jQuery library and jquery.powertip.js file inside the Scripts
folder. Place the jquery.powertip.css file inside the root folder of the project.

Note ■ Although you can add references to jQuery using alternate techniques such as the Content Delivery Network

(CDN), this example assumes that you have a local copy of the jQuery library.

Then add <script> references to the jQuery library and PowerTip plugin, as shown here:

<script src="Scripts/jquery-2.0.3.js"></script>
<script src="Scripts/jquery.powertip.js"></script>

Figure 9-4. PowerTip plugin being used on a Web Form

CHAPTER 9 ■ CREATING AND USING PLUGINS

236

Although it is obvious, note that the reference to the jQuery library appears prior to the reference to jquery.powertip.js.
This is necessary because PowerTip is dependent on core jQuery for its functionality. Also, add a link to a CSS file that
ships with the download of PowerTip, as follows:

<link href="jquery.powertip.css" rel="stylesheet" />

The jquery.powertip.css file supplies various CSS classes that control the look and feel of the resultant tooltips.
You can even change the CSS rules defined in this style sheet to customize the appearance of the tooltips.

Drag and drop a SQL Data Source control on the Web Form and configure it to select the EmployeeID, FirstName,
LastName, Title, and Country columns from the Employees table. Then place a GridView on the Web Form and add a
BoundField column and two TemplateField columns to it. Design the GridView as shown in Listing 9-1.

Listing 9-1. GridView markup

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False" CellPadding="10"
DataKeyNames="EmployeeID" DataSourceID="SqlDataSource1">
<Columns>
 <asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID"
 InsertVisible="False" ReadOnly="True" SortExpression="EmployeeID" />
 <asp:TemplateField HeaderText="FirstName">
 <ItemTemplate>
 <asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl='#'
 Text='<%# Eval("FirstName") %>'
 data-powertip='<%# Eval("Title") + " (" + Eval("Country") + ")" %>'>
 </asp:HyperLink>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="LastName">
 <ItemTemplate>
 <asp:HyperLink ID="HyperLink2" runat="server"
 NavigateUrl='#'
 Text='<%# Eval("LastName") %>'
 data-powertip='<%# Eval("Title") + " (" + Eval("Country") + ")" %>'>
 </asp:HyperLink>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

The BoundField is bound to the EmployeeID column, whereas the two TemplateField columns display
FirstName and LastName respectively. The templates contain a HyperLink control whose Text property is bound with
the FirstName and LastName columns using the Eval() databinding expression. Notice that the NavigateUrl property
points to # because you don’t want to navigate away as such. More importantly, notice that both HyperLink controls
have the data-powertip attribute added to them. The data-powertip attribute is a custom data attribute, and its value
comes from Title and Country columns. The data-powertip attribute supplies the content of the PowerTip tooltip.

Once you finish designing the GridView, add a <script> block below the <script> references added earlier and
key in the code shown in Listing 9-2.

CHAPTER 9 ■ CREATING AND USING PLUGINS

237

Listing 9-2. Showing PowerTip Tooltips

$(document).ready(function () {
 $("a").powerTip();
});

The code in Listing 9-2 selects all the hyperlinks from the page (which means all the FirstName and LastName
hyperlinks, in this case) and initializes the powerTip() plugin on them. This is all it takes to make the PowerTip
tooltips functional.

Customizing PowerTip Tooltips
In the preceding section, you used PowerTip plugin with its default configuration. You can customize many aspects of
PowerTip plugin by doing the following:

Specifying options while initializing the plugin•

Modifying the CSS style sheet•

The first way to customize the plugin is important because it reflects a standard way of supplying configuration
settings to any jQuery plugin. The PowerTip documentation describes various settings of the plugin that can be
changed. Although you won’t use all of them, a few are used, as listed here:

• placement: This option controls the placement of the tooltip. Some of the possible values are e
(east), w (west), n (north), and s (south).

• offset: This option controls the gap between the DOM element being hovered and the tooltip.

• fadeInTime: This option controls the duration of the fade-in effect applied while displaying a
tooltip.

• fadeOutTime: This option controls the duration of the fade-out effect applied while hiding a
tooltip.

These configuration options can be passed to the plugin as a JavaScript object:

$(document).ready(function () {
 $("a").powerTip({
 placement: 'e',
 offset:20,
 fadeInTime: 300,
 fadeOutTime:300
 });
});

As shown here, a JavaScript object encapsulates placement, offset, fadeInTime, and fadeOutTime settings. The
placement of the tooltip is set to e (east), and its offset from the FirstName and LastName hyperlinks is set to
20 pixels. The fadeInTime and fadeOutTime settings are set to 300 milliseconds.

The second form of customization changes the appearance of the PowerTip tooltips using CSS. To change the
tooltip appearance, open the jquery.powertip.css file and locate the CSS rule shown here:

#powerTip {
 cursor: default;
 background-color: #333;
 background-color: rgba(0, 0, 0, 0.8);

CHAPTER 9 ■ CREATING AND USING PLUGINS

238

 border-radius: 6px;
 color: #fff;
 display: none;
 padding: 10px;
 position: absolute;
 white-space: nowrap;
 z-index: 2147483647;
}

This CSS rule governs the look and feel of the tooltip. There are many other CSS rules defined by the style sheet
that contribute to the appearance of the tooltip, but the preceding code is the main CSS rule for changing tooltip
background color and text color. For the sake of testing, change the background-color and color CSS properties to
different values.

Figure 9-5 shows what the tooltips look like after the customization.

Figure 9-5. PowerTip tooltips after customization

As you can see from Figure 9-5, the background color of the tooltips is now changed to dark blue, and the text
color is white. The tooltips are displayed toward the east of the hyperlinks, and their fade-in and fade-out duration is
now 300 milliseconds.

CHAPTER 9 ■ CREATING AND USING PLUGINS

239

Overview of JavaScript Function Prototypes
Before you learn how to create your own jQuery plugins, it is worthwhile to take a quick look at JavaScript function
prototypes that form the basis of plugin development.

Note ■ This section is not intended to give you a thorough understanding of JavaScript prototypes. It discusses only

the minimum information necessary to carry on the plugin development discussed in the later sections.

It may sound bit confusing, but a JavaScript function is actually an object (a function object, to be specific) and
it gets a few prebuilt properties. One of these properties is the prototype property. The prototype property—often
referred to as a function prototype—allows you to add properties and methods to the function under consideration.
(Remember what was just mentioned: functions are objects and hence can have properties and methods!) Here’s an
example. Consider the piece of code shown here:

function Employee() {
 this.employeeID = 0;
 this.firstName = '';
 this.lastName = '';
};

The code declares a function named Employee. The Employee function declares three members—employeeID,
firstName, and lastName—intended to store employee ID, first name, and last name, respectively. Once created,
you can instantiate and use Employee like this:

var objEmp1 = new Employee();
objEmp1.employeeID = 1;
objEmp1.firstName = 'Nancy';
objEmp1.lastName = 'Davolio';
alert('#' + objEmp1.employeeID + ' ' + objEmp1.firstName +
 ' ' + objEmp1.lastName);

This code creates an instance of Employee and stores it in an objEmp1 variable. When you instantiate an Employee,
its members assume the values as assigned in the Employee() function. This is analogous to a constructor in C#. The
code then assigns employeeID, firstName, and lastName members of Employee to 1, Nancy, and Davolio, respectively.
Finally, values of the members are displayed using an alert dialog. You can add more members to Employee by using
its prototype property as illustrated here:

Employee.prototype.hireDate = null;
Employee.prototype.getEmploymentPeriod = function () {
 var currentDate=new Date();
 var timePeriod = Math.abs(currentDate.getTime() - this.hireDate.getTime());
 var dayPeriod = Math.ceil(timePeriod / (1000 * 60 * 60 * 24));
 return dayPeriod;
};

The code accesses the prototype property of the Employee object and adds a hireDate member to store the
hire date of an employee. Then the code defines the getEmploymentPeriod() method on the Employee object. The
getEmploymentPeriod() method is intended to calculate the period of employment in days for a given employee.
The getEmploymentPeriod() method calculates the period of employment by subtracting the hire date from the current

CHAPTER 9 ■ CREATING AND USING PLUGINS

240

date. The getTime() function returns the number of milliseconds since 1 January 1970. The Math.abs() function
returns the absolute value after the subtraction. This value is in milliseconds; to convert it into days, timePeriod is
divided by (1000 * 60 * 60 * 24). The Math.ceil() function returns the smallest integer greater than or equal to the
supplied value. Finally, the number of days thus calculated is returned from getEmploymentPeriod() method.

Once you add the properties and methods to the function prototype, you can instantiate and use the Employee
object as follows:

var objEmp2 = new Employee();
objEmp2.employeeID = 2;
objEmp2.firstName = 'Andrew';
objEmp2.lastName = 'Fuller';
objEmp2.hireDate = new Date(1992, 8, 14);
var daysEmp2 = objEmp2.getEmploymentPeriod();
alert(objEmp2.firstName + ' ' + objEmp2.lastName + ' is employed for ' +
 daysEmp2 + ' days.');

This code created an object named objEmp2 that is of type Employee. The code then sets the employeeID,
firstName, lastName, and hireDate properties of the object and calls its getEmploymentPeriod() method. The
firstName, lastName, and employment period are displayed in an alert dialog.

You can also use the newly defined properties and methods with the instances of Employee created earlier. The
following code shows how:

objEmp1.hireDate = new Date(1992, 5, 1);
var daysEmp1 = objEmp1.getEmploymentPeriod();
alert(objEmp1.firstName + ' ' + objEmp1.lastName + ' is employed for ' +
 daysEmp1 + ' days.');

This code uses the same objEmp1 that you declared earlier and sets its hireDate property. It then calls the
getEmploymentPeriod() method on objEmp1. The alert correctly shows the employment period for the employee
represented by objEmp1.

Now let’s see how this whole prototype thing is related to jQuery plugin development. Suppose that the initial
Employee object is supplied to you by some third party. You find the Employee object inadequate and want to extend
it to have more properties and methods. How can you do that? You can add your own code that adds properties and
methods to the function prototype of the Employee object.

Thus the code that adds properties and methods will be written by you. The exact same analogy holds true for
jQuery plugin development. jQuery offers you certain built-in functionality that is accessible through a jQuery object
(or jQuery function), and you can extend it by adding more methods to the function prototype of the core jQuery
object. These additional methods you create are plugins!

Creating Your Own Plugin
Now that you have a fair idea about jQuery plugins, let’s develop one that illustrates the overall process of creating
plugins. In this section you develop a plugin called myPlugin that does an easy task: it applies a CSS class to the
selected DOM elements. Although the functionality accomplished by myPlugin isn’t rocket science, this simple plugin
makes you aware of several recommended guidelines you should follow while developing any jQuery plugin. You will
also use what you learn from this example to create a more interesting plugin (popupAd) in the sections that follow.

Figure 9-6 shows a Web Form that uses myPlugin.

CHAPTER 9 ■ CREATING AND USING PLUGINS

241

The Web Form consists of a GridView control displaying records from the Employees table. Notice that the
FirstName column is displayed with different styling. This styling is applied by myPlugin. Let’s get going!

Defining a Basic Plugin
Begin by creating an empty ASP.NET Web Forms application. Add a Scripts folder to the project and place the
jQuery library into it. Add a new JavaScript file to the folder and name it jquery.myplugin.js. This file will contain
the plugin code and later will be referenced in a Web Form. Then add the code shown in Listing 9-3 inside the
jquery.myplugin.js file.

Listing 9-3. Basic myPlugin Code

///<reference path="jquery-2.0.3.js" />

$.fn.myPlugin = function () {
 this.addClass("myplugin");
}

Figure 9-6. myPlugin used in a Web Form

CHAPTER 9 ■ CREATING AND USING PLUGINS

242

You might be surprised, but the code from Listing 9-3 represents a functional jQuery plugin! The code begins by
a <reference> to the jQuery library. This way, you get IntelliSense for jQuery methods inside your plugin code. Of
course, this line is optional, and the plugin is not directly dependent on it. Then the myPlugin plugin is defined using
$.fn.myPlugin syntax. What is this strange looking $.fn? It is a pointer to the jQuery’s prototype property. If you
open the jQuery library in any text editor, somewhere you will come across this piece of code:

jQuery.fn = jQuery.prototype = {...}

This code means that fn is pointing to the jQuery.prototype object. Recall from the discussion about JavaScript
function prototypes that you can add properties and methods to the prototype object. So the second line from
Listing 9-3 adds a new method called myPlugin() to the jQuery’s prototype object ($ is an alias to jQuery, and fn is
an alias to prototype). In other words, you are extending the jQuery core by adding the myPlugin() method to it. The
myPlugin() method is referred to as a plugin. The myPlugin function then uses the addClass() method to add the
myplugin CSS class to this. What is this here? Here, “this” points to the jQuery collection of DOM elements matched
using some selector. So this.addClass() adds the specified CSS class to all the matched DOM elements. A sample
myplugin CSS class is shown here:

.myplugin {
 font-weight: bold;
 color: red;
 font-style: italic;
}

The myplugin CSS class simply sets font-weight to bold, font-style to italic, and color to red. Add a style
sheet (jquery.myplugin.css) to the project root folder and place the myplugin CSS class inside it.

Now add a new Web Form to the project and place a SQL Data Source control on it. Configure the SQL Data
Source to select the EmployeeID, FirstName, LastName, and Country columns from the Employees table. Then place a
GridView on the Web Form and design it as per the markup given in Listing 9-4.

Listing 9-4. GridView Markup

<asp:GridView ID="GridView1" runat="server" DataKeyNames="EmployeeID" DataSourceID="SqlDataSource1" >
 <Columns>
 <asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID" />
 <asp:TemplateField HeaderText="FirstName">
 <ItemTemplate>
 <asp:Label ID="lblFirstName" runat="server" CssClass="firstname"
 Text='<%# Bind("FirstName") %>'>
 </asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="LastName" HeaderText="LastName" />
 <asp:BoundField DataField="Country" HeaderText="Country" />
 </Columns>
</asp:GridView>

Most of the markup shown in Listing 9-4 is straightforward. Notice the line marked in bold letters. The FirstName
is a TemplateField and its ItemTemplate consists of a Label control bound with the FirstName column. The Label has
CssClass property set to firstname. You will use this class name later in a jQuery selector to match DOM elements.

CHAPTER 9 ■ CREATING AND USING PLUGINS

243

Next, add references to script and CSS files:

<link href="jquery.myplugin.css" rel="stylesheet" />
<script src="Scripts/jquery-2.0.3.js"></script>
<script src="Scripts/jquery.myplugin.js"></script>

The first line references the jquery.myplugin.css style sheet. The jQuery library is referenced, and finally the
jquery.myplugin.js is referenced. Now add a <script> block in the head section of the Web Form and key in the code
shown in Listing 9-5.

Listing 9-5. Using myPlugin on a Web Form

$(document).ready(function () {
 $(".firstname").myPlugin();
});

The code selects all the DOM elements that have the firstname CSS class attached with them. In this case, all
the FirstName elements get selected. myPlugin() is then called on the matched elements. For all the selected
 elements, myPlugin() is called and the myplugin CSS class gets applied to them. You can load the Web Form
in a browser and confirm that myPlugin is indeed working as expected. In the preceding example, you used the
jQuery CSS class selector to match certain elements. You could have used any other selector to match elements,
and myPlugin would have added the myplugin CSS class to them.

Supporting Chaining
Although myPlugin developed in the preceding section works as expected, there is a flaw: you can’t use jQuery
method chaining with the current implementation of myPlugin. For example, suppose that you write the following
line of code:

$(".firstname").myPlugin().css("text-decoration", "underline");

This code uses the method chaining syntax to call the css() method on the matched elements. The css()
method sets the text-decoration CSS style property to underline the FirstName values. Such method chaining works
with most of the built-in jQuery methods. However, the previous line fails because myPlugin doesn’t participate in the
method chaining yet.

To support method chaining in your plugin, you should return the matched set from the plugin. You can modify
the myPlugin() method as shown in Listing 9-6.

Listing 9-6. Supporting Method Chaining in a Plugin

$.fn.myPlugin = function () {
 this.addClass("myplugin");
 return this;
}

The myPlugin() method now returns the matched DOM elements back to the caller. This way, the same DOM
elements are available to the next method in the chaining (the css() method, for example). Once you add chaining
support to myPlugin, the css() method works as expected (see Figure 9-7).

CHAPTER 9 ■ CREATING AND USING PLUGINS

244

The FirstName column values are now underlined due to the successful call to the css() method.

Preserving the Meaning of $
So far, so good. Although myPlugin is meeting its expectations, if you are serious about plugin development, you
should also think about the real-world scenarios in which your plugin might be used. In the myPlugin code, so far
you have assumed that $ is an alias to jQuery, but it might not be true in all cases. There are many JavaScript libraries
out there, and some use $ for their own functionality. If your web application is using such a library in addition to
jQuery, myPlugin may fail because $ is being redefined by some other library and is no longer pointing to jQuery.
As a precaution, ensure that your plugin code explicitly points $ to jQuery. Listing 9-7 shows how this can be done.

Listing 9-7. Preserving the Meaning of $

(function ($) {
 $.fn.myPlugin = function () {
 this.addClass("myplugin");
 return this;
 }
})(jQuery);

Listing 9-7 uses the same myPlugin code, but this time it is wrapped inside an anonymous function call. The
anonymous function accepts a single parameter ($). Remember that in JavaScript, $ is a valid parameter name.
The whole function definition is enclosed in round brackets (), and immediately the jQuery object is passed as the

Figure 9-7. myPlugin after adding chaining support

CHAPTER 9 ■ CREATING AND USING PLUGINS

245

parameter to the function. This way, the function is invoked as soon as it is encountered during the script loading
process. So you pass jQuery object to an anonymous function. The anonymous function receives it as a $ parameter.
The myPlugin() method is placed inside this anonymous function. Thus anywhere inside myPlugin, $ always points
to the jQuery object, and $.fn holds the same meaning as before.

Adding Actions to Plugins
If your plugin is doing something complex, chances are it may need to expose additional methods to the external
world. An immediate solution that may cross your mind is to create additional methods similar to myPlugin() and
then call them from the Web Form. Although this approach may work, it makes your code messy, and the overall
footprint of your plugin becomes larger. The recommended approach is to pass actions you want to perform to the
core plugin method and let the plugin method invoke appropriate logic based on the action specified. For example,
in its current form, myPlugin always adds the myplugin CSS class to the selected DOM elements.

What if you want to remove myplugin class so that the elements are reset to their initial state? This can be
accomplished by making myPlugin() accept a parameter that tells the plugin whether to add myplugin class or
remove it. Listing 9-8 shows the modified myPlugin code.

Listing 9-8. myPlugin with actions

(function ($) {
 $.fn.myPlugin = function (action) {
 if (action == "reset") {
 this.removeClass("myplugin");
 }
 else {
 this.addClass("myplugin");
 }
 return this;
 }
})(jQuery);

The code shown in Listing 9-8 shows that myPlugin() accepts a parameter: action. Inside the function, an if
block checks whether the action is reset; if so, the removeClass() method is called on the selected elements. For any
other action, the addClass() method is called. In this case, myPlugin() has only two actions: adding a CSS class or
removing it. If you want to have more actions, you can add a series of if blocks or a switch statement to check for an
action. In the preceding example, if you don’t pass any parameter to myPlugin(), the else block will get executed,
and the myplugin CSS class will be added to the elements.

To test the reset action, place a button on the Web Form and handle its click event handler as shown here:

$("#button1").click(function () {
 $(".firstname").myPlugin("reset");
});

This code assumes the presence of a button whose ID is button1 on the Web Form. The click() method wires a
click event handler to the click event of the button. Inside the click handler, myPlugin() is called on all the DOM
elements having the firstname CSS class. Notice that this time, the action parameter is supplied as reset. This will
cause the plugin to remove the myplugin CSS class from the selected elements. Figure 9-8 shows a sample run of the
Web Form when button1 is clicked.

CHAPTER 9 ■ CREATING AND USING PLUGINS

246

The FirstName column no longer has the myplugin CSS class applied. The FirstName values are still underlined
due to the call made to the css() method while the page was displayed initially.

Iterating Through the Selected DOM Elements
In the examples discussed so far, you added or removed the myplugin CSS class to a whole set of selected elements.
What if you want to add or remove a CSS class conditionally? This calls for examining each element from the selection
and processing it to obtain the desired effect. If you need such a functionality, you can resort to the each() method.

Suppose that you want to add the myplugin CSS class only to employees residing in the USA (or want to apply
different CSS classes based on their country of residence). To identify the employees residing in the USA, you can add
a custom data attribute, data-country, to the FirstName Label control. This is done by handling the RowDataBound
event of the GridView (see Listing 9-9).

Figure 9-8. Invoking a reset action

CHAPTER 9 ■ CREATING AND USING PLUGINS

247

Listing 9-9. RowDataBound event handler of GridView

protected void GridView1_RowDataBound(object sender,
 GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 Label l = (Label)e.Row.FindControl("lblFirstName");
 l.Attributes.Add("data-country", e.Row.Cells[3].Text);
 }
}

The code looks for lblFirstName in all the data rows. This is the Label control that displays FirstName (refer to
the GridView markup discussed at the beginning of this example). The code then adds the data-country attribute to
the Label using its Attributes collection. Now you can modify the plugin code as shown in Listing 9-10.

Listing 9-10. Using each() to iterate through the selected elements

(function ($) {
 $.fn.myPlugin = function (action) {
 if (action == "reset") {
 return this.removeClass("myplugin");
 }
 else {
 return this.each(function () {
 var country = $(this).data("country");
 if (country == "USA") {
 $(this).addClass("myplugin");
 }
 });
 }
 }
})(jQuery);

Have a look at the else block. It uses the each() method to iterate through the selected DOM elements one by
one. With each iteration, the data-country attribute is retrieved using the data() method. Notice that inside the
each() method function, this points to the DOM element being iterated upon. Hence it is used as $(this) before
calling any jQuery methods on it. Then the country of an employee, as returned by the data-country attribute, is
checked. If the country is USA only, the myplugin CSS is added using the addClass() method. If you run the Web
Form with the modified version of myPlugin, it should resemble Figure 9-9.

CHAPTER 9 ■ CREATING AND USING PLUGINS

248

As you can see, the FirstName values of the employees residing in the USA are applied myplugin CSS class.

Making a Plugin Configurable
In the myPlugin code, you see the country name (USA) and CSS class name (myplugin) hardcoded. But what if you
need to run the plugin for employees residing in other countries? What if you want to apply a different CSS class?

To take care of such requirements, your plugin should be configurable. And to make a plugin configurable there
has to be a provision to pass configuration settings from the external world. This is done by making your plugin accept
an options parameter (in addition to the action parameter you added earlier). The options parameter accepts a
JavaScript object. Inside the plugin, use the settings supplied by this object. As a recommended practice, you should
provide a default configuration so that if the consumer of the plugin supplies an options object, those values are used;
otherwise, the default configuration is used. Listing 9-11 shows the modified version of myPlugin that accepts the
options parameter.

Figure 9-9. Only employees from the USA have the myplugin CSS class applied

CHAPTER 9 ■ CREATING AND USING PLUGINS

249

Listing 9-11. myPlugin now accepts the options parameter

(function ($) {
 $.fn.myPlugin = function (action,options) {
 var defaultOptions = {"className":"myplugin","country":"USA"};
 var settings = $.extend({},defaultOptions, options);
 if (action == "reset") {
 return this.removeClass("myplugin");
 }
 else {
 return this.each(function () {
 var country = $(this).data("country");
 if (country == settings.country) {
 $(this).addClass(settings.className);
 }
 });
 }
 }
})(jQuery);

The myPlugin() method now accepts the options parameter in addition to action. Inside, it declares the
defaultOptions object with two properties: className and country. The defaultOptions object holds the default
settings for the plugin. It is possible that the object passed as the options parameter may specify values for only a few
configuration settings. In all the configuration settings for which no values are supplied by the options parameter,
you should use the default values. To arrive at the resultant set of configuration settings, the $.extend() method
is used. The $.extend() method accepts two or more objects and merges their content into the first object. The
$.extend() method also returns the resultant object as its return value. In this example, the first parameter is an
empty object ({}), the second parameter is defaultOptions, and the third parameter is options. Thus, the settings
object contains the resultant configuration settings. The else block no longer uses the hardcoded country name and
CSS class name. Instead, it uses the settings.country and settings.className properties. Listing 9-12 shows how
options can be passed to the plugin from the Web Form.

Listing 9-12. Passing options to the plugin

$(document).ready(function () {
 var options= { className: "myplugin2", country: "UK" };
 $(".firstname").myPlugin("set",options)
 .css("text-decoration", "underline");
});

The code creates an options object and specifies className and country properties as myplugin2 and UK,
respectively. Then myPlugin is invoked by passing the action "set" and the options parameter. Figure 9-10 shows
what the GridView looks like.

CHAPTER 9 ■ CREATING AND USING PLUGINS

250

This time, employees residing in the UK are highlighted with the myplugin2 CSS class.

Developing a popupAd Plugin
In the initial part of this chapter, you used the PowerTip plugin, and you might have wondered how it works.
You might have even opened the JavaScript source code file of the plugin to see its internal workings. How about
concluding this chapter by developing your own plugin that does something similar?

In this section, you will develop a popupAd plugin that displays a pop-up advertisement when the mouse
is hovered over DOM elements. The purpose of this plugin is to show an advertisement when a user hovers the
mouse pointer over a selected DOM element. The user can read the advertisement and may decide to navigate to
the link provided in the advertisement. Of course, the popupAd plugin won’t be as feature rich and complete as a
professionally written plugin, but developing such an example will help you understand the process. Figure 9-11
shows what the popupAd plugin looks like in the browser.

Figure 9-10. myPlugin being invoked with options parameter

CHAPTER 9 ■ CREATING AND USING PLUGINS

251

As you can see, the Web Form consists of the same GridView that you used in the preceding example. This
time, however, moving your mouse pointer on the FirstName values displays a pop-up advertisement. The pop-up
advertisement is displayed using the popupAd plugin mentioned earlier. Various aspects of the advertisement, such
as the CSS class being applied, advertisement text, advertisement link, and fade effect duration are configurable.

Begin by creating an empty ASP.NET Web Forms application. Add a new Web Form and design it in exactly the
same way as in the preceding example. Then add the Scripts folder to the project and place the jQuery library into it.
Add the jquery.popupad.js JavaScript file to the Scripts folder. Then add the basic skeleton of the popupAd plugin,
as shown in Listing 9-13.

Listing 9-13. Skeleton of popupAd plugin

(function ($) {
 $.fn.popupAd = function (options) {
 var defaultOptions = {
 adText: "This is ad text",
 adLink: "http://www.website.com",
 adCssClass: "ad",
 offset: 5,
 fadeInterval:200
 };
 var settings = $.extend({}, defaultOptions, options);
 }
})(jQuery);

Figure 9-11. popupAd plugin in action

http://www.website.com/

CHAPTER 9 ■ CREATING AND USING PLUGINS

252

The code from Listing 9-13 defines the popupAd plugin that accepts the options parameter. The defaultOptions
object holds the default values for five configuration settings: adText, adLink, adCssClass, offset, and fadeInterval.
The adText setting holds the advertisement text. The adLink contains a hyperlink to be displayed as a part of the
advertisement. The adCssClass setting specifies the CSS class to be applied to the advertisement pop-up. The offset
value indicates the top and left padding between the element being hovered and the advertisement pop-up. The
advertisement pop-up is made visible by applying a fade-in effect and is hidden by applying a fade-out effect. The
fadeInterval setting controls the duration in milliseconds for which the fade-in and fade-out effect is applied to
the advertisement pop-up. The $.extend() method merges defaultOptions and options into an empty object. The
resultant object is stored in the settings variable.

The advertisement pop-up is created dynamically by adding a <div> tag to the document at runtime (see Listing 9-14).
You need to place this code after the line that creates the settings object.

Listing 9-14. Creating an advertisement pop-up dynamically

var adMarkup = $("<div class='" + settings.adCssClass + "'>" +
 settings.adText +
 "
" +
 "" +
 settings.adLink + "" +
 "</div>");
$(document.body).append(adMarkup);

The adMarkup variable contains a jQuery object for the <div> markup. Notice that various settings are added to
the <div> definition. The <div> contains the adText and a hyperlink pointing to the adLink. Also, the adCssClass is
applied to the <div> to control its appearance. Once the <div> is created, it is added to the document body by using
the append() method.

When an advertisement pop-up is displayed, a user might move the mouse pointer away from a target element. If so,
the advertisement pop-up should be made invisible. However, if a user moves the mouse pointer onto the advertisement
pop-up, the advertisement should be kept visible. This is accomplished by supplying handlers to the hover() method,
as shown in Listing 9-15. You need to place this code below the line that appends adMarkup to the body.

Listing 9-15. Supplying handlers to the hover() method

var flag = false;
adMarkup.hover(function () {
 flag = true;
 $("." + settings.adCssClass).show();
 }, function () {
 flag = false;
 $("." + settings.adCssClass).hide();
});

The code declares a flag variable that indicates whether the mouse pointer is over the advertisement pop-up.
The flag variable is set to true in the first function supplied to the hover() method. Additionally, the first function
displays the advertisement pop-up by calling the show() method on a <div> that has adCssClass attached with it.
Similarly, the second function supplied to the hover() method sets flag to false and hides the advertisement pop-
up by calling the hide() method. The flag variable assigned inside the hover() functions is used later in the code
while fading out a pop-up ad (as discussed shortly).

When a user hovers the mouse pointer over the selected DOM elements, the advertisement pop-up will be
displayed. This is accomplished as shown in Listing 9-16. You need to place this code after the line that calls hover()
on adMarkup.

CHAPTER 9 ■ CREATING AND USING PLUGINS

253

Listing 9-16. Displaying or hiding the advertisement pop-up

this.hover(function (evt) {
 $("." + settings.adCssClass).css("top", $(this).position().top +
 $(this).height()+
 settings.offset);
 $("." + settings.adCssClass).css("left", $(this).position().left +
 settings.offset);
 $("." + settings.adCssClass).fadeIn(settings.fadeInterval);
}, function (evt) {
 window.setTimeout(function () {
 if (!flag) {
 $("." + settings.adCssClass).fadeOut(settings.fadeInterval);
 }
 }, 1000)
});
return this;

The code from Listing 9-16 supplies mouse-in and mouse-out functions to the hover() method. Notice that
hover() is called directly on this because you want to handle these events for all the selected elements.

The mouse-in function supplied to the hover() method sets the top CSS property of the advertisement pop-up.
Notice that inside the function, this refers to the current DOM object, so it is used as $(this) to call any jQuery
methods on it. The top coordinate is calculated by finding the top coordinate of the element being hovered and then
adding height() and the offset value to it. Similarly, the left coordinate is determined by finding the left coordinate
of the element being hovered and then adding the offset value to it. Then the advertisement pop-up is made visible
by calling the fadeIn() method. The fadeInterval setting is supplied to the fadeIn() method to control the duration
of the fade-in effect.

The mouse-out function hides the advertisement pop-up by calling the fadeOut() method. Notice that
window.setTimeout() is used to delay the fadeOut() for 1,000 milliseconds. If this is not done, the pop-up will be
made invisible even if the mouse pointer is on the pop-up. Adding the delay gives the mouse-in function of the
advertisement pop-up a chance to set the flag variable. The pop-up is made invisible only if flag is false (that is, the
mouse pointer is not on the pop-up). Finally, this is returned from the popupAd() method so that it supports chaining.

This completes the popupAd plugin. Now add a style sheet (jquery.popupad.css) and add the ad CSS class to it as
shown here:

.ad {
 position:absolute;
 background-color:silver;
 border:2px solid gray;
 display:none;
 padding:10px;
}

The ad CSS class is simple to understand and sets the style properties such as position, display, padding, and
background-color. Next, add the references to the CSS file and script files in the Web Form you developed earlier:

<link href="jquery.popupad.css" rel="stylesheet" />
<script src="Scripts/jquery-2.0.3.js"></script>
<script src="Scripts/jquery.popupad.js"></script>

As before, the jQuery library is referenced first, followed by the jquery.popupad.js file. Finally, add a <script>
to invoke the plugin, as shown in Listing 9-17.

CHAPTER 9 ■ CREATING AND USING PLUGINS

254

Listing 9-17. Using the popupAd Plugin

$(document).ready(function () {
 var options = {
 adText: "Buy ONE, get one FREE!!!",
 adLink: "http://somewebsite.com",
 offset:10
 };
 $(".firstname").popupAd(options);
});

The code creates the options object and specifies custom values for the adText, adLink, and offset settings.
Then the CSS class selector is used to match all the DOM elements that have the .firstname CSS class attached to
them. Finally, popupAd() is called by supplying the options object as its parameter.

That’s it! You can now run the Web Form and test whether the pop-up advertisements are displayed as expected.

Summary
jQuery not only offers rich built-in functionality but also allows you to extend the library through plugins. jQuery
plugins are methods that you add to the prototype of jQuery to extend its core functionality. Before you decide to
create a jQuery plugin yourself, make sure to search the jQuery plugins registry because somebody might have already
developed what you are looking for. While authoring a plugin, you should follow the recommended guidelines to
make it fall in line with thousands of other plugins and make it structured. If you feel so inclined, you can also submit
your plugin to the jQuery plugin registry (see plugins.jquery.com for more details).

So far in this book, you learned about the core jQuery library. There are a couple of other projects that are
developed on top of the jQuery library and are worth exploring: jQuery Mobile and jQuery UI. To that end, the next
chapter gives you an overview of these popular libraries.

http://somewebsite.com/
http://plugins.jquery.com

255

CHAPTER 10

jQuery UI and jQuery Mobile

So far, you have used the jQuery library to accomplish various tasks. Although this book primarily focuses on the
jQuery core, there are two popular libraries built on top of the jQuery core that are worth noting: jQuery UI and jQuery
Mobile. jQuery UI is a JavaScript library that provides themeable widgets and effects that can be used in your web
pages. jQuery Mobile is a JavaScript library intended for web applications targeting mobile phones and tablets. This
chapter will give you an overview of these two libraries. Specifically you will learn the following:

How to add jQuery UI widgets such as Accordion, Autocomplete, Menu, Datepicker, and Tabs •
to ASP.NET Web Forms and MVC views

How to use jQuery Mobile in ASP.NET to build mobile-friendly web applications•

How to detect a request coming from mobile device in Web Forms and MVC applications•

A thorough coverage of jQuery UI and jQuery Mobile is beyond the scope of this book, however. In this chapter,
you will become familiar with these two libraries so that you can code basic scenarios with them. The official jQuery UI
and jQuery Mobile web sites provide good documentation, so for a deeper understanding of these libraries, consider
reading their documentation.

Overview of jQuery UI
When developing real–world web applications, you often need professional-looking user interface (UI) elements such
as menus, tabs, progress bars, sliders, dialog boxes, and more. You can develop these UI elements from the ground up,
but that would be a time-consuming and tedious process. How about utilizing UI elements that were created by
experts and are being used by thousands of fellow developers? That’s what jQuery UI is about. The official jQuery UI
web site (http://jqueryui.com) defines jQuery UI like this:

jQuery UI is a curated set of user interface interactions, effects, widgets, and themes built on top of
the jQuery JavaScript Library.

As is clear from the definition, jQuery UI is a selected set of UI elements. Although jQuery UI includes a bunch
of things including interactions, effects, widgets, and themes, the primary piece of jQuery UI is widgets. As of this
writing, the following widgets are available as a part of jQuery UI:

• Accordion: Displays collapsible panels of content. It comes in handy when you need to
present lot of information in a limited screen space.

• Autocomplete: Typically associated with a text box; allows users to quickly find and select
from a list of values as they key in the text.

http://jqueryui.com/

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

256

• Button: Enhances the appearance of button elements and allows you to build pushbuttons,
toolbars, split buttons, and more.

• Datepicker: Presents a pop-up or inline datepicker.

• Dialog: Shows content in a dialog box that is displayed on top of other content.

• Menu: Shows a menu that can be operated with a mouse or keyboard.

• Progressbar: Shows the progress of a process. The process can have a definite or indefinite
end value.

• Slider: Allows you to pick a value from a range of values. The slider can be displayed
horizontally or vertically.

• Spinner: Allows you to display a text box with up or down arrows to increment or decrement
numbers.

• Tabs: Displays a tabbed user interface that has one or more tabbed panels showing content to
the user.

• Tooltip: Shows a tooltip that replaces the default tooltip of an element.

The jQuery UI not only provides these widgets but also comes with a theming framework. You can easily
customize the look and feel of these widgets using built-in or custom themes. You can even develop your own widgets.

Note ■ At this point, you might be tempted to compare widgets with plugins. Although they are similar in that they

extend the core jQuery library, they are not the same. A plugin may or may not occupy screen space, but a widget does.

You can think of a widget as a special case of plugin that occupies some screen real estate. An analogy from .NET world

is the difference between a component and a control. All controls are components in a way, but the term control implies

that they have some visual existence.

Although jQuery UI also offers interactions, effects, and utilities, this chapter focuses on jQuery widgets. Visit
http://jqueryui.com for more details and documentation.

Downloading and Referencing jQuery UI
Before you use any of the jQuery UI features, you have to download the jQuery UI library. You can grab jQuery UI
using any of the following three options (for more information on these methods, refer to Chapter 2):

Download the jQuery UI library in a local folder and use that local copy.•

Refer jQuery UI from a Content Delivery Network (CDN).•

Install jQuery UI as a NuGet package.•

When you include the whole jQuery UI library in your project, you are incorporating everything that jQuery UI
has to offer. However, you might be using only a few widgets or features of jQuery UI, which is why the jQuery UI web
site enables you to create a custom download that includes just the features you need in an application. Figure 10-1
shows the Download Builder section of the jQuery UI web site.

http://jqueryui.com/

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

257

As you can see, the Download Builder allows you to pick only the widgets and features you want to include in a
web application.

When the download is complete, you can add a reference to the jQuery UI library as you did for the jQuery core.
For example, the following markup shows the jQuery UI files referenced using the static <script> tag:

<link href="jquery-ui.css" rel="stylesheet" />
<script src="Scripts/jquery-2.0.3.js"></script>
<script src="Scripts/jquery-ui.js"></script>

This markup references the jquery-ui.css file because that file supplies the default CSS styling rules. The jQuery
library is referenced first because jQuery UI requires the jQuery core. Finally, jquery-ui.js is referenced. The default
theme also uses certain images that you need to place in the Images folder. These images are available as a part of the
jQuery UI download. Figure 10-2 shows the folder structure and a typical placement of these files.

Figure 10-1. jQuery UI Download Builder

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

258

Once you reference jQuery UI, you can use any of its features. For example, with the preceding markup in place,
you can use the datepicker widget like this:

<head runat="server">
 ...
 <script>
 $(document).ready(function () {
 $("#datepicker").datepicker();
 });

 </script>
</head>
<body>
 <form id="form1" runat="server">
 Select Date : <input type="text" id="datepicker" />
 </form>
</body>
</html>

This markup contains a text box whose ID is datepicker. The ready() handler selects this text box using the
ID selector and initializes the datepicker widget on it. If you move the keyboard focus to the text box, you will see a
datepicker popping out of the text box (see Figure 10-3).

Figure 10-2. Placement of jQuery UI files

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

259

The datepicker assumes a default coloring and uses images for navigating the months because of the CSS file and
images you included.

Using the Accordion Widget
Now that you know the basics of jQuery UI, let’s build an ASP.NET Web Forms application that uses the accordion
widget. Figure 10-4 shows what the Web Form looks like.

Figure 10-3. Using the jQuery UI datepicker widget

Figure 10-4. Accordion displaying employee data

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

260

The Web Form consists of the jQuery accordion widget. The header of each accordion panel displays the
Employee FirstName and LastName values. Click an accordion header; the accordion panel expands and reveals the
Notes for the employee under consideration. The accordion panels are generated on the fly using a Repeater control.

What is more interesting is that the Notes of an employee record are loaded in “lazy” fashion, which means
that the Notes for all the employees are not fetched and loaded at once. When a user clicks an accordion header,
an Ajax call is made to the server and the Notes for that employee are fetched and loaded in the associated accordion
panel. Although the Employee table doesn’t contain too many records, such a lazy loading is quite helpful when the
accordion needs to display a lot of information. Rather than loading all the content of all the accordion panels, loading
it only as and when required will boost the initial load time of the Web Form.

Note ■ The official jQuery UI web site provides detailed API documentation that covers the options, methods, events,

and theming of each widget. Only the options actually used in the example are discussed here. (You can refer to the

documentation at http://api.jqueryui.com to learn more.)

To begin developing this Web Form, create an empty ASP.NET Web Forms application and add a new Web Form
to it. Then create a Scripts folder under the project root folder and place the jQuery library and jQuery UI library
inside it. Place the jQuery UI default style sheet file in the project root folder. Create an Images folder inside the
project root folder and place all the image files needed by jQuery UI into it. Next, add references to the jQuery library,
jQuery UI library, and jQuery UI style sheet in the head section as shown here:

<link href="jquery-ui.css" rel="stylesheet" />
<script src="Scripts/jquery-2.0.3.js"></script>
<script src="Scripts/jquery-ui.js"></script>

Add an ADO.NET Entity Data Model into the project and configure it to create the model class for the Employees
table of the Northwind database. Then place a Repeater control on the Web Form and design its templates as shown
in Listing 10-1.

Listing 10-1. Repeater with HeaderTemplate, FooterTemplate, and ItemTemplate

<asp:Repeater ID="Repeater1" runat="server"
 SelectMethod="Repeater1_GetData">
 <HeaderTemplate>
 <div id="accordion">
 </HeaderTemplate>
 <ItemTemplate>
 <h3><%# Eval("FirstName") %> <%# Eval("LastName") %></h3>
 <div>
 <input type="hidden" class="hidden"
 value="<%# Eval("EmployeeID") %>" />
 </div>
 </ItemTemplate>
 <FooterTemplate>
 </div>
 </FooterTemplate>
</asp:Repeater>

http://api.jqueryui.com/

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

261

To display the accordion correctly, you need to arrange its content in a specific way. The general arrangement
of the accordion is like this:

<div id="accordion">
 <h3>Panel1 Heading</h3>
 <div>Panel1 content</div>
 <h3>Panel2 Heading</h3>
 <div>Panel2 content</div>
 ...
</div>

The outermost <div> element acts as the container for all the accordion panels. Each accordion panel has an
associated heading represented with a <h3> tag by default (you can deviate from this default, as you will learn later).
The contents of an accordion panel are wrapped inside another <div> that immediately follows the heading.
To render such a markup, the Repeater control is useful.

The <HeaderTemplate> of the Repeater control contains the start <div> tag of the accordion container, and the
<FooterTemplate> contains the corresponding </div> tag. The <ItemTemplate> consists of an <h3> element that
displays FirstName and LastName values using the Eval() databinding expression. The <div> that follows contains
a hidden element for storing the EmployeeID belonging to that accordion panel. This EmployeeID is used later while
making an Ajax call to retrieve the Notes. To quickly select this hidden field from jQuery code, a CSS class (hidden)
is attached with it. The Repeater can be data bound with the Employee records by setting its SelectMethod to
Repeater1_GetData.

The Repeater1_GetData method looks like this:

public IQueryable Repeater1_GetData()
{
 NorthwindEntities db = new NorthwindEntities();
 var data = from e in db.Employees
 select new { e.EmployeeID,e.FirstName,e.LastName };
 return data;
}

The Repeater1_GetData() method selects all the Employee objects from the Employees DbSet and returns an
IQueryable. Because you need only the EmployeeID, FirstName, and LastName values for databinding purposes, only
those properties are selected in the query.

Now add a <script> block in the head section of the Web Form and key in the code shown in Listing 10-2.

Listing 10-2. Configuring the Accordion Widget

$(document).ready(function () {
 var options = {};
 options.heightStyle = "content";
 options.collapsible = true;
 options.header = "h3";
 options.active = 0;
 options.beforeActivate = function (evt, ui) {...};
 options.create = function (evt, ui) {...};
 $("#accordion").accordion(options);
});

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

262

The ready() handler creates an object for storing various accordion widget configuration options. The
heightStyle setting controls the height of the accordion and its panels. A value of content indicates that the accordion
panels will have height sufficient to accommodate their contents. By default, an accordion shows at least one
expanded, and the collapsible option controls whether all the panels are allowed to be collapsed. Setting its value to
true means that all the panels can be collapsed. The header option specifies a selector matching the header elements.
Setting it to h3 means that <h3> elements are selected as accordion panel headers. The active option indicates an
index of the panel that is initially expanded. Setting it to 0 (default) means than the first panel will be visible.

Handling beforeActive and create Events

beforeActive and create are accordion widget events. The beforeActive event is raised just before activating
an accordion panel. An active panel is the one that’s being expanded or collapsed. In this example, you use the
beforeActive event to make an Ajax call to the server and fetch the Notes for an Employee under consideration.

The create event is raised when the accordion is created; it takes place when an accordion comes into existence
on a web page. In this example, you use the create event to fetch and display the Notes of the first Employee as soon
as the accordion is displayed.

The beforeActive and create event handler functions receive two parameters: event object and ui object. The
ui object provides information specific to the widget, such as the new header and the panel being expanded.

Finally, the accordion container is selected using the jQuery ID selector, and the accordion widget is initialized
on it. While initializing the accordion widget, the options object is passed as the parameter.

Complete the beforeActive event handler function as shown in Listing 10-3.

Listing 10-3. beforeActive Event Handler

options.beforeActivate = function (evt, ui) {
 if ($(ui.newPanel).find(".hidden").val()) {
 $.ajax({
 url: "AccordionDemo.aspx/GetNotes",
 type: "POST",
 data: JSON.stringify({
 employeeid: $(ui.newPanel).find(".hidden").val()
 }),
 dataType: "json",
 contentType: "application/json",
 success: function (result) {
 $(ui.newPanel).find(".notes").remove();
 $(ui.newPanel).append("<div class='notes'>" +
 result.d + "</div>");
 },
 error: function (xhr, status, err) { alert('Error' + err); }
 });
 }
};

The beforeActive event handler first checks whether a panel has EmployeeID in a hidden field. This is done by
selecting the panel being activated by using the ui.newPanel property and then finding an element with a hidden CSS
class attached with it by using find() method. If the hidden field is found and has a value assigned to it, an Ajax call is
made to a page method using $.ajax().

Various configuration options needed by $.ajax() are passed as an object while making the call. Notice that
the url points to AccordionDemo.aspx/GetNotes, where GetNotes() is a page method with a single parameter:
employeeid. (You will create GetNotes() shortly.) The data property passes the employeeid value needed by the
GetNotes() method. This value is obtained from the hidden field as before.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

263

The success function receives the Notes returned by the GetNotes() method. To display the notes, you
dynamically create a <div> element that has its content set to the result.d value (i.e., Notes). The newly created
<div> is appended to the newPanel object by using the append() method.

Notice that an accordion panel can be activated multiple times, so it is necessary to first remove the <div>
element displaying the notes (if any). This is accomplished by finding the element that has the notes CSS class
attached with it and then removing it with the remove() method. The error handler simply displays the error message
in an alert dialog.

The GetNotes() page method used by the beforeActive event handler is shown in Listing 10-4.

Listing 10-4. GetNotes() Page Method

[WebMethod]
public static string GetNotes(int employeeid)
{
 NorthwindEntities db = new NorthwindEntities();
 var data = from e in db.Employees
 where e.EmployeeID == employeeid
 select e.Notes;
 return data.SingleOrDefault();
}

The GetNotes() method is a static method and is decorated with the [WebMethod] attribute so it can be called
from the jQuery code using the $.ajax() method. The GetNotes() method accepts an EmployeeID whose Notes
are to be retrieved. Inside, the method selects the Notes of an Employee whose EmployeeID matches the supplied
employeeid parameter.

Because EmployeeID is the primary key, the LINQ to Entities query will return just a single value, so the
SingleOrDefault() method is used to retrieve and return that value to the caller. The create event handler is quite
similar to beforeActive event handler in that it makes an Ajax call to GetNotes() and retrieves Notes for the first
EmployeeID. Listing 10-5 shows the create event handler.

Listing 10-5. create Event Handler

options.create = function (evt,ui) {
 $.ajax({
 url: "AccordionDemo.aspx/GetNotes",
 type: "POST",
 data: JSON.stringify(
 { employeeid: $(ui.panel).find(".hidden").val() }),
 dataType: "json",
 contentType: "application/json",
 success: function (result) {
 $(ui.panel).find(".notes").remove();
 $(ui.panel).append("<div class='notes'>" +
 result.d + "</div>");
 },
 error: function (xhr, status, err) { alert('Error' + err); }
 });
};

The code inside the create event handler is almost identical to the beforeActive event handler, except that the
ui parameter of the event handler has a panel property that gives a reference to the active panel.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

264

Changing the Default Theme

You can alter the default theming of the accordion widget by modifying the default style sheet. The CSS classes related
to the accordion widget are as follows:

• ui-accordion: This style is applied to the outer accordion container.

• ui-accordion-header: This style is applied to the headers of the individual accordion panels.

• ui-accordion-content: This style is applied to the content panels of an accordion.

Although a detailed discussion of jQuery UI theming is beyond the scope of this book, let’s quickly alter some
basic UI attributes of the accordion. Open the jquery-ui.css file and modify the CSS classes as shown here:

.ui-accordion .ui-accordion-header {
 display: block;
 cursor: pointer;
 position: relative;
 margin-top: 2px;
 padding: .5em .5em .5em .7em;
 min-height: 0; /* support: IE7 */
 background-color:#cd0a0a;
 color:white;
}
.ui-accordion .ui-accordion-content {
 padding: 1em 2.2em;
 border-top: 0;
 overflow: auto;
 background-color:yellow;
}

In this CSS markup, the lines shown in bold letters indicate the additions to the default style rules. Figure 10-5
shows the accordion after making the changes.

Figure 10-5. Theming the accordion widget

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

265

Now the accordion header and accordion content panels assume the background color and text color per the
theming rules specified in the modified CSS classes.

JUICE UI

Although ASP.NET developers have been using jQuery UI in their web sites, one downside of the jQuery UI from

an ASP.NET perspective is that it is purely a client-side library. ASP.NET Web Forms often rely on server-side

processing, and configuring. The script-based jQuery UI widgets don’t have any server-side counterparts, so it can

become tedious to use them in certain cases. Juice UI components address this deficiency by wrapping jQuery

UI widgets into ASP.NET server controls to be accessed in server-side code just like any other ASP.NET server

controls. The following excerpts from the Juice UI web site (http://juiceui.com) summarize what it has to offer

to ASP.NET developers:

Juice UI is an open-source collection of WebForms components that brings jQuery UI Widgets to your project

with ease. Start leveraging the power of the world’s most popular JavaScript UI library while working with

familiar code in your ASP.NET projects.

Juice UI allows you to create flexible, interactive web applications quickly. Entice your users with behaviors

such as drag & drop, resizing, sorting and selecting. Build first class apps with accordions, autocompletes,

datepickers, sliders, and more. Juice UI provides the simplicity needed for prototyping and the robustness

needed for enterprise class production applications.

Juice UI is an open source library and can be installed by using the NuGet package manager.

Overview of jQuery Mobile
Because the use of mobile devices such as smartphones and tablets is increasing rapidly, keep in mind that a web
application might be used from traditional desktops or mobile devices. Developing a mobile–friendly web application
is challenging due to two primary reasons:

Device screen dimensions•

Browser feature support•

Mobile devices offer small screen real estate to display web page content as compared with a desktop computer.
The size makes it difficult to design a user interface that can be accessed with ease from mobile devices. Moreover,
mobile browsers may not support all the features of the desktop browsers. So a web page that works in a desktop
browser may not work exactly in the same fashion in a mobile browser.

Developing Mobile Web Applications
To cope with these challenges, developers resort to one of the following approaches when building
mobile–friendly web applications:

• Version dedicated to mobile devices: In this approach, a separate web site or module is
developed to be accessed from mobile devices. Two versions of a web application are created:
one to be accessed from desktop computers and one to be used from mobile devices.

• Same version, dealing with desktops and mobiles: In this approach, the web pages detect
whether the requesting device is a desktop computer or a mobile device and then change the
layout, navigation, and UI elements accordingly.

http://juiceui.com/

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

266

The former approach is often called an m-dot approach because the mobile version is often made available at a
URL matching this form:

m.some_domain.com

The desktop version of the web application is available at some_domain.com and mobile version is made available
at m.some_domain.com.

Although this approach works, you need to maintain two different versions. When features get added or changed
in the main web application, you have to also change the mobile version of the application. This process can be
tedious and prone to error.

Therefore, the modern trend is to use the second option listed, which is known as responsive web design (RWD).
It offers an advantage that the same codebase serves multiple target devices such as mobile phones, tablets, and
desktop computers. So maintaining the web site codebase is easy when compared with the former approach.

Now that you have background information, let’s see where jQuery Mobile fits in. The official jQuery Mobile
web site (http://jquerymobile.com) says the following:

jQuery Mobile is a touch-optimized Web Framework for Smartphones & Tablets. A unified, HTML5-
based user interface system for all popular mobile device platforms, built on the rock-solid jQuery
and jQuery UI foundation. Its lightweight code is built with progressive enhancement, and has a
flexible, easily themeable design.

This description highlights the fact that jQuery Mobile uses jQuery core to get its job done. jQuery Mobile offers
touch-friendly UI elements, making it easy to navigate and use web applications on smartphones and tablets. jQuery
Mobile follows progressive enhancement and responsive web design principles. Moreover, jQuery Mobile uses
themeable design, making it easy for developers to customize the default look and feel of various UI elements.

Note ■ Progressive enhancement uses web technologies such as HTML5, CSS, and JavaScript in a layered fashion.

All users can access the basic functionality of a web application, regardless of the richness of browser features and

network connectivity. Users who have feature-rich browsers and fast Internet connections are served an enhanced

version of a web page.

A typical web application using jQuery Mobile consists of the following elements:

Pages and dialogs•

Ajax navigation and transitions•

UI widgets and form elements•

Themes•

Unlike traditional web development, in which one page refers to one .htm or .aspx file, a jQuery Mobile page
refers to a <div> element that houses some content or UI elements and occupies the browser window. A single .htm or
.aspx page can contain more than one jQuery Mobile page. A page can be displayed in a modal fashion, in which case
it is referred to as a dialog.

jQuery Mobile uses Ajax-based navigation and form submission, which helps to avoid frequent window refreshes
when a user navigates between pages or submits a form. Between the navigation transitions, effects can also be
applied to the window.

A jQuery Mobile page can contain any standard HTML markup and form elements; and also UI widgets such as
buttons, accordions, pop-ups, and dialogs.

http://m.some_domain.com/
http://www.some_domain.com/
http://m.some_domain.com/
http://jquerymobile.com/

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

267

jQuery Mobile has a rich theme framework that supports up to 26 sets of toolbar, content, and button colors. Each
individual set is referred to as a swatch. The default theme comes with five swatches, named “a” to “e”.

Note ■ This chapter only briefly introduces you to jQuery Mobile because a detailed coverage of jQuery Mobile is

beyond the scope of this book. For more information, see the official documentation for jQuery Mobile at

http://api.jquerymobile.com.

Downloading and Installing jQuery Mobile
Just like jQuery core and jQuery UI, jQuery Mobile can be downloaded from the jQuery Mobile official web site,
a CDN, or a NuGet package. Figure 10-6 shows the files installed by the jQuery Mobile NuGet package in an
ASP.NET MVC project.

Figure 10-6. jQuery Mobile files

Figure 10-6 shows script, style sheet, and images for jQuery Mobile 1.3.2. The Scripts folder contains the
compressed and uncompressed versions of the jQuery Mobile library (jquery.mobile-1.3.2.min.js and
jquery.mobile-1-3-2.js). The style sheet files needed for proper theming of various UI elements are stored in the
Content folder. The Images subfolder of the Content folder contains the images referenced by the style sheets.

http://api.jquerymobile.com/

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

268

Using jQuery Mobile
Now you can develop a web application that puts jQuery Mobile to use. Although you can use jQuery Mobile in both
Web Forms and MVC projects, here you will develop an ASP.NET MVC project. ASP.NET MVC is a popular choice for
developing mobile web applications because of the lightweight nature of the views and display modes support
(more information on display modes can be found at the end of this chapter).

Figure 10-7 shows the Index view of the application displayed in the Opera Mobile Emulator.

Figure 10-7. Index view using jQuery Mobile

As shown in the Index view, a list of employees from the Employees table is displayed to the user. The employee
names are clickable links, and clicking an employee name takes the user to Edit view, in which employee details can
be edited. The Edit view is divided into three logical “pages”: Basic Details, Address Details, and Notes. The Basic
Details page of the Edit view is shown in Figure 10-8.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

269

The three pages present typical wizard navigation to a user, and the final page allows a user to save the data.
The final step also validates that none of the fields is left empty.

Note ■ Throughout this section, the term page refers to a jQuery Mobile page, whereas the term view refers to a

physical MVC view file that is being rendered in the browser.

To begin developing this application, create an empty ASP.NET MVC application. Place the jQuery library and
jQuery Mobile library files in the Scripts folder. Also place the style sheet file and image files for jQuery Mobile in the
Content folder (refer to the earlier discussion for detailed folder structure).

Creating the Home Controller
The application uses the Entity Framework data model for the Employees table of the Northwind database. Add
an ADO.NET Entity Data Model for the Employees table inside the Models folder. Next, add HomeController to the
Controllers folder and add three action methods to it, as shown in Listing 10-6.

Figure 10-8. Basic Details page of Edit view

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

270

Listing 10-6. HomeController Action Methods

public class HomeController : Controller
{
 NorthwindEntities db = new NorthwindEntities();
 public ActionResult Index()
 {
 var data = from e in db.Employees
 select e;
 return View(data.ToList());
 }
 public ActionResult Edit(int id)
 {
 var data = from e in db.Employees
 where e.EmployeeID == id
 select e;
 return View(data.SingleOrDefault());
 }
 [HttpPost]
 public ActionResult Update(Employee emp)
 {
 Employee existing = db.Employees.Find(emp.EmployeeID);
 existing.FirstName = emp.FirstName;
 existing.LastName = emp.LastName;
 existing.Address = emp.Address;
 existing.Country = emp.Country;
 existing.Notes = emp.Notes;
 db.SaveChanges();
 return View();
 }
}

The code consists of three action methods: Index(), Edit(), and Update(). The Index() action method executes
a LINQ to Entities query that selects all the Employee objects from the Employees DbSet. The Employee objects are
obtained as a generic List using the ToList() method of the data variable and passed to the Index view as its model.

The Edit() method accepts an EmployeeID as its parameter. It then selects an Employee whose EmployeeID
matches the supplied id. The Employee object is obtained by using the SingleOrDefault() method and is passed to
Edit view as its model.

The Edit view is submitted to the Update() action method, so the Update() method is marked with the
[HttpPost] attribute. The Update() method accepts the Employee object as its parameter and returns the Update
view. Inside, it retrieves an existing Employee based on the EmployeeID of the employee being updated. Various
properties of the existing Employee (FirstName, LastName, Address, Country, and Notes) are updated with their
respective values from the Employee object received as the parameter. Finally, the SaveChanges() method of the
database context is called to save the changes back to the database. The Update view simply displays a
success message.

Now that you have completed the HomeController class, you can create Index, Edit and Update views.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

271

Developing the Index View
The Index view displays a list of employees, so a particular employee can be selected for editing its details. Add the
Index view to the project, and add a <script> reference and a style sheet reference to its head section like this:

<link href="../../Content/jquery.mobile-1.3.2.css" rel="stylesheet" />
<script src="../../Scripts/jquery-2.0.3.js"></script>
<script src="../../Scripts/jquery.mobile-1.3.2.js"></script>

As you can see, the <link> tag points to jquery.mobile-1.3.2.css, which is the default style sheet that comes
with the jQuery Mobile download. Then a <script> tag points to jquery-2.0.3.js. Another <script> tag points
to jquery.mobile-1.3.2.js. Notice that the head section also contains this important markup line:

<meta name="viewport" content="width=device-width" />

Mobile browsers sometimes load a web page inside a virtual window called viewport. This way, a mobile browser
doesn’t need to reduce the dimensions of the web page being viewed. Instead, a user can zoom in and out of the web
page as necessary. The viewport meta tag allows developers to control the viewport dimensions. The width property
(see the content attribute of the meta tag) sets the viewport width. The width can be a fixed number such as 480 or a
special value (device-width) that means full available width for the device.

Set the model for the Index view to a List of Employee objects like this:

@model List<jQueryMobileDemos.Models.Employee>

Notice that the model for the view is set to List<jQueryMobileDemos.Models.Employee>. Make sure to change
the namespace name of the Employee model class according to your project setup.

Key in the markup shown in Listing 10-7 inside the <body> section of the view.

Listing 10-7. Displaying a List of Employees in the Index View

<div data-role="page" id="home" data-theme="e">
 <div data-role="header">Employee List</div>
 <div data-role="content">
 <ul data-role="listview">

 @foreach (var employee in Model)
 {
 @Html.ActionLink(employee.FirstName +
 " " + employee.LastName, "Edit",
 new { id = employee.EmployeeID },
 new { rel = "external" })
 }

 </div>
 <div data-role="footer">Copyright (C) 2013. All rights reserved.</div>
</div>

jQuery Mobile uses HTML5 custom data attributes (data-*) extensively to specify metadata information that is
then used by the framework. Of course, you can also do most of the tasks through code, but a markup-based approach
is a convenient way to initialize and configure various widgets.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

272

The markup from Listing 10-7 creates a jQuery Mobile page. A page consists of a <div> element whose data-role
attribute is set to page. The data-role attribute indicates the type of widget a <div> represents. The id attribute of the
<div> is set to home. You can refer a page from the other markup using its id. The data-theme attribute specifies the
theme to be used. By default, themes a to e are included in the style sheet. Setting data-theme to e sets the theme as
shown in Figure 10-7 earlier.

A jQuery Mobile page can have a header, a footer, and content regions. A page header is represented by the
data-role of header and typically includes the title and navigation buttons. In this case, the header <div> contains
the title of the page: Employee List. A page footer is represented by the data-role of footer. In this example, the
footer displays a copyright notice.

The page content is where you add HTML markup that makes up the primary part of the page. A content area
is indicated by the data-role of content. Inside the content <div> is a element whose data-role is set to
listview, which creates a Listview widget. The Listview widget displays a list of items and is often used to present a
menu of options to the user. The individual items of the Listview (elements) come from the model of the Index
view. A foreach loop iterates through the List of Employee objects accessible through the Model property. With every
iteration, a hyperlink is generated that points to the Edit action method and passes EmployeeID in the route. The
hyperlink is generated using the ActionLink() Html helper.

The first parameter of the ActionLink() is the text to be displayed in the link; in this case, the FirstName and
LastName values are displayed. The second parameter is the name of the action method and is set to Edit. The third
parameter is used to pass route values. In this case, you need to pass EmployeeID to the Edit method (Home/Edit/1);
an anonymous object with the id property set to an EmployeeID is passed. The fourth parameter is an anonymous
object that passes additional HTML attributes to be added to the resultant hyperlink. In this case, the rel attribute
with a value of external is passed, ensuring that the full page is refreshed in the browser.

The Index view is complete. If you run the application, you should get a list of employees displayed in the
browser. Of course, clicking any link won’t do anything meaningful because the Edit view is not yet created.

Creating the Edit View
The Edit view allows a user to edit details of an employee selected on the Index view. Add the Edit view to the project
and also add script and style sheet references as with the Index view. The model of the Edit view is set to the Employee
object, as shown here:

@model jQueryMobileDemos.Models.Employee

Notice that the model is set to jQueryMobileDemos.Models.Employee. Make sure to change the model
namespace per your project setup. The Edit view displays its user interface like a wizard. The entire UI is divided
into three logical pages: Basic Details, Address Details, and Notes. These pages have the IDs step1, step2 and step3,
respectively. Because the Edit view is a data entry form, the three pages are placed inside a <form> rendered using the
BeginForm() Html helper:

@using (Html.BeginForm("Update", "Home", FormMethod.Post)){
...
}

The first parameter of BeginForm() is the action method name (Update in this case), the second parameter is the
controller name (Home in this case), and the third parameter is the form submission method (FormMethod.Post in this
case). The markup of all three pages goes inside this form.

Let’s see the markup that makes the Basic Details page (step1). This markup is shown in Listing 10-8.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

273

Listing 10-8. Basic Details Page

<div data-role="page" id="step1" data-theme="b">
 <div data-role="header">Basic Details</div>
 <div data-role="content">
 <div>@Html.LabelFor(e => e.EmployeeID)</div>
 <div>@Html.TextBoxFor(e => e.EmployeeID,
 new { @readonly = "readonly" })</div>
 <div>@Html.LabelFor(e => e.FirstName)</div>
 <div>@Html.TextBoxFor(e => e.FirstName)</div>
 <div>@Html.LabelFor(e => e.LastName)</div>
 <div>@Html.TextBoxFor(e => e.LastName)</div>
 List
 Next
 </div>
</div>

The Basic Details page consists of a <div> whose data-role attribute is set to page and its id to step1. Notice that
data-theme is set to b. The page contains header and content sections. The header section displays the page heading:
Basic Details. The content section displays the values of EmployeeID, FirstName, and LastName. It uses a series of
LabelFor() and TextBoxFor() Html helper calls to display text boxes and their associated labels. The LabelFor()
Html helper displays the field label, whereas the TextBoxFor() Html helper displays text boxes for entering the
corresponding fields. Because EmployeeID is a primary key, the corresponding text box is made readonly.

Notice the hyperlinks at the bottom of the page. The first hyperlink points to /home/index and allows the user
to navigate to the launching page of the application. Its data-role is set to button, indicating that it will be rendered
like a button rather than a plain hyperlink (see Figure 10-8 again). The second hyperlink points to #step2, the Address
Details page. The data-inline attribute added to both hyperlinks indicates that the buttons will be placed side by
side instead of on new line.

Now add the markup of Address Details page, as shown in Listing 10-9.

Listing 10-9. Address Details Page

<div data-role="page" id="step2" data-theme="b">
 <div data-role="header">Address Details</div>
 <div data-role="content">
 <div>@Html.LabelFor(e => e.Address)</div>
 <div>@Html.TextBoxFor(e => e.Address)</div>
 <div>@Html.LabelFor(e => e.Country)</div>
 <div>@Html.TextBoxFor(e => e.Country)</div>
 Previous
 Next
 </div>
</div>

The Address Details page is similar to the Basic Details page in terms of its overall setup. However, it displays
Address and Country fields for editing. The two hyperlinks at the bottom point to #step1 and #step3, respectively.

The Notes field is displayed on the final page (step3). The markup of the Notes page is shown in Listing 10-10.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

274

Listing 10-10. Notes Page

<div data-role="page" id="step3" data-theme="b">
 <div data-role="header">Notes</div>
 <div data-role="content">
 <div>@Html.LabelFor(e => e.Notes)</div>
 <div>@Html.TextAreaFor(e => e.Notes, new { rows = "5", cols = "30" })</div>
 Previous
 <input type="submit" value="Save Changes" data-inline="true" />
 <div data-role="popup" id="errpopup" class="ui-content"></div>
 </div>
</div>

The Notes page uses the TextAreaFor() Html helper to display a <textarea> with 5 rows and 30 columns. It also
has a submit button that posts the form to the Update() action method. Notice the last <div> element: its data-role is
set to popup. This <div> is meant to be used as a Popup widget and will display validation errors. The pop-up is displayed
through jQuery code placed in a <script> block inside the head section. Listing 10-11 shows how this is done.

Listing 10-11. Displaying Validation Errors in a Pop-up

$(document).ready(function () {
 $("form").submit(function (evt) {
 var html="";
 $("input:text").each(function () {
 if ($(this).val() == "") {
 html += "Must enter value for " + this.name + "
";
 }
 });
 if (html != "") {
 $("#errpopup").html(html);
 $("#errpopup").popup("open");
 evt.preventDefault();
 }
 });
});

The code wires an event handler for the submit event of the form. Inside, the :text selector is used to select all
the text boxes. The each() method iterates through the text boxes to see whether they are empty. Note that this jQuery
code will select all the text boxes from all three pages. If the value of a text box is empty, an error message is appended
to the html variable.

Once all the text boxes are checked, an if block checks to see whether the html variable contains any error
messages. If so, the <div> popup is selected using the ID selector, and the popup() widget is initialized on it. The value
of open passed to the popup widget indicates that the pop-up is to be displayed. evt.preventDefault() cancels the
form submission if there are any validation errors.

Figure 10-9 shows a sample run of the Edit view displaying a pop-up with validation errors.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

275

The pop-up informs a user that values for the LastName and Country fields must be supplied. Clicking anywhere
on the page discards the pop-up.

Creating the Update View and Testing the Application
In this section, you’ll finish the application by adding the Update view. You will also test the application in two mobile
emulators, as discussed shortly.

Creating the Update view is quite straightforward. Simply add the Update view to the project and add script and
style sheet references as before. Then add the HTML markup to the body section, as shown in Listing 10-12.

Listing 10-12. Update View

<div data-role="page" data-theme="b">
 <div data-role="header">Success</div>
 <div data-role="content">
 <div>Data saved successfully!</div>
 Back To List
 </div>
</div>

Figure 10-9. Edit view showing validation errors in pop-up

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

276

The markup should be familiar: it contains a page that displays a success message to the user. A hyperlink at the
bottom displays the Back To List button, so the user can navigate back to the landing page after updating an employee.

This completes the application. Although you can run this application in any desktop browser, it is better to use
some mobile emulator (or actual mobile device if you make the web site live!). Fortunately, two such emulators can be
quickly used to test your web application: the Safari browser and Opera Mobile Emulator.

Note ■ To download Safari, visit http://www.apple.com/safari/. To download the Opera Mobile Emulator visit

http://www.opera.com/developer/mobile-emulator.

If you run the web application in Safari, by default it uses the default user agent to access the application. You can
change the user agent using the Develop ➤ User Agent menu option. Figure 10-10 shows the menu that allows you to
select a user agent.

Figure 10-10. Selecting a user agent in Safari

Note ■ If the Develop menu is not visible in your installation of Safari, go to Edit ➤ Preferences. Then switch to

Advanced options and check the Show Develop Menu in Menu Bar check box.

http://www.apple.com/safari/
http://www.opera.com/developer/mobile-emulator

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

277

Figure 10-11. Opera Mobile Emulator main window

You can choose a profile depending on the target device of your choice and click the Launch button to open its
window. Figure 10-12 shows what a sample emulator window looks like.

Notice that the user agent is set to iPhone. This causes Safari desktop browser to send a user agent string for
iPhone to the server, and your web application will respond as if iPhone is making a request. You can also specify a
custom user agent string using the Others menu option.

You can use the Opera Mobile Emulator to test your web application for mobile devices that support the Opera
browser. Figure 10-11 shows the main window of the emulator, in which you can select a target device.

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

278

Once the window is open, you can enter the web application URL in the address bar at the top; click Enter to load
the web page. Test the web application by changing the data-theme value to a different theme.

Note ■ You can use IE10’s Developer Tools to test the mobile version. Although you can easily set Windows Phone as

the user agent, other user agents need to be specified manually.

Detecting Mobile Device in ASP.NET
In the initial sections of the chapter, you learned about the two approaches for developing a mobile web application:
m-dot and responsive web design (RWD). Each of these approaches has its own advantages and disadvantages.
Luckily, ASP.NET allows you to combine the good features of each while building a web site.

From the m-dot approach, you can choose to build different UIs for different devices, and from the RWD
approach you can choose to have a common code base. So while developing ASP.NET web applications, you can have
the same codebase (or at least as identical as possible) as far as server-side code is concerned. However, you develop
different UIs when targeting different devices (that means .aspx markup for Web Forms and views for MVC).

In the preceding sections, you developed a “mobile only” web application, which means that you use the same
jQuery Mobile–powered version of the web site regardless of whether the web application is accessed from desktop

Figure 10-12. Opera Mobile Emulator window

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

279

browsers or mobile browsers. However, sometimes you may want to present different layout and UI elements for
different devices.

For example, if a Web Form is being accessed from a desktop computer, you may want to attach a master page that
displays a three-column layout to the user. If it is being accessed from a smartphone, you may want to attach a master
page that displays a single-column layout. Moreover, you may want to use jQuery Mobile only if a web page is being
accessed by a mobile device. This calls for device detection in your server-side code so that you can respond differently
depending on the requesting device. Although this book doesn’t develop an example that uses device-detection
techniques, the next couple of sections discuss these techniques so that you can use them if the situation arises.

Detecting a Mobile Device in Web Forms
If you are developing an ASP.NET Web Forms application, you can easily see whether the requesting device is a
mobile device by using the Request.Browser object. The Request.Browser object, which is an instance of the
HttpBrowserCapabilities class, gives you a lot of information about the capabilities of the requesting browser.
In particular, the IsMobileDevice property of the Request.Browser object tells you whether the requesting device
is a mobile device.

A few more properties of the Request.Browser object can also come in handy for developing mobile applications
(see Table 10-1).

Figure 10-13. Using Request.Browser to detect a mobile device

Table 10-1. Properties of the Request.Browser Object

Property Description

IsMobileDevice Returns true if the requesting browser is mobile device; false otherwise

MobileDeviceManufacturer Returns the name of the mobile device manufacturer (if known)

MobileDeviceModel Returns the model name of a mobile device (if it is known)

ScreenPixelsHeight Returns the height of the display in pixels

ScreenPixelsWidth Returns the width of the display in pixels

Figure 10-13 shows a sample Web Form that outputs the properties listed in Table 10-1 and is being accessed
using the Safari desktop browser and an iPhone (via the Safari browser emulator).

CHAPTER 10 ■ JQUERY UI AND JQUERY MOBILE

280

A Web Form accessed using the Safari desktop browser returns IsMobileDevice as False, whereas the same Web
Form when accessed from an iPhone returns True.

Note ■ Because this Web Form is quite straightforward, it’s not discussed here. You can have a look at the source code

of the Web Form from the source code download for this chapter.

Detecting a Mobile Device in MVC
Mobile device detection using Request.Browser also works with ASP.NET MVC applications. However, MVC4 has
a more elegant mechanism for detecting requesting devices and rendering an appropriate user interface: display
modes. Simply put, the display modes feature automatically picks up a view file that is appropriate for the
requesting device.

Consider, for example, an MVC application that has the Index() action method inside the HomeController class:

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
}

Assuming that you want to target desktop computers and mobile phones, you will need to create two views:
Index.cshtml and Index.mobile.cshtml. Now if a user tries to access /home/index from a desktop computer,
Index.cshtml will be served to the user. However, if a user tries to access /home/index over a mobile phone,
Index.mobile.cshtml is served. This device detection and serving of content happens automatically based on
display modes.

Summary
This chapter introduced you to two distinct libraries—jQuery UI and jQuery Mobile—that are built on the solid
foundation of jQuery core. jQuery UI offers several widgets, such as accordions, tabs, and sliders, to help you develop
jazzy web pages. You can also integrate these widgets with your server-side code. jQuery Mobile offers a unified
interface for all the popular mobile browsers and also offers features such as pages and widgets. Developing a mobile
application is always challenging, but jQuery Mobile is helpful for developing your applications easily and quickly.

You are now familiar with various aspects of the jQuery library. The concluding chapter of this book will take you
through a few more interesting recipes that can be useful for developing real-world ASP.NET web applications.

281

CHAPTER 11

Useful jQuery Recipes for
ASP.NET Applications

This book took you through the aspects and features of jQuery—from selectors to event handling to Ajax to plugins.
You developed many examples that illustrated the topics at hand. This final chapter discusses six recipes that you will
find useful while developing real—world web applications. These recipes also use multiple jQuery features together,
giving you an opportunity to refresh the knowledge you’ve already acquired.

The recipes discussed in this chapter include the following:

Converting • GridView data to comma separated values (CSV)

Implementing paging using Ajax•

Implementing client-side sorting for an HTML table•

Creating cascading drop-down lists•

Providing autocomplete for text boxes•

Using Ajax for file uploads•

Recipe 1: Converting GridView Data to CSV
Sometimes you’ll want to export data being displayed in an ASP.NET GridView control to comma separated values
(CSV). This is needed when the data needs to be imported into another system or into software applications such as
Microsoft Excel.

One approach to converting GridView data to CSV is to do it in the server-side code, but this approach calls for an
additional postback. Using jQuery, you can convert GridView data into CSV format on the client side, thus avoiding
additional postback.

To illustrate how this is done, you can develop a Web Form as shown in Figure 11-1.

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

282

The Web Form consists of a GridView that displays EmployeeID, FirstName, LastName, Title, and Country
columns. An Export To CSV button on the top allows you to convert GridView data into CSV format. The CSV data
is then displayed in a multiline TextBox above the GridView. You can copy/paste this data directly to another
application or save it to a disk file for later use.

To develop this application, create an empty ASP.NET Web Forms application and add a new Web Form to it.
Then place a Button, a TextBox, and a GridView as shown in Figure 11-1. Set the TextMode property of the TextBox
to Multiline, the Rows property to 10, and the Columns property to 50. Drag and drop a SQL Data Source control on
the Web Form and configure it to select the EmployeeID, FirstName, LastName, Title, and Country columns from the
Employees table of the Northwind database.

Listing 11-1 shows the Web Form markup of the resultant form.

Listing 11-1. Web Form Markup

<form id="form1" runat="server">
 <asp:Button ID="Button1" runat="server" Text="Export to CSV" />
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommand="SELECT [EmployeeID], [FirstName], [LastName], [Title],
 [Country] FROM [Employees]"></asp:SqlDataSource>
 <asp:TextBox ID="TextBox1" runat="server" TextMode="MultiLine"

Figure 11-1. Exporting GridView data to CSV

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

283

 Columns="50" Rows="10" Width="99%"></asp:TextBox>

 <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 CellPadding="10" DataKeyNames="EmployeeID"
 DataSourceID="SqlDataSource1" Width="100%">
 <Columns>
 <asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID"
 InsertVisible="False" ReadOnly="True" />
 <asp:BoundField DataField="FirstName" HeaderText="FirstName"
 SortExpression="FirstName" />
 <asp:BoundField DataField="LastName" HeaderText="LastName" />
 <asp:BoundField DataField="Title" HeaderText="Title" />
 <asp:BoundField DataField="Country" HeaderText="Country" />
 </Columns>
 </asp:GridView>
</form>

Add a <script> reference to the jQuery library and also add a <script> block in the head section. Key in the code
shown in Listing 11-2.

Listing 11-2. Exporting GridView Data to CSV

$(document).ready(function () {
 $("#TextBox1").hide();
 $("#Button1").click(function (evt) {
 var rows = [];
 var str = '';
 $("#GridView1").find("tr").each(function () {
 if ($(this).find("th").length) {
 var headerArray = [];
 $(this).find("th").each(function () {
 str = $(this).text().replace(/"/g, '""');
 headerArray.push('"' + str + '"');
 });
 rows.push(headerArray.join(','));
 } else {
 var dataArray = [];
 $(this).find("td").each(function () {
 str = $(this).text().replace(/"/g, '""');
 dataArray.push('"' + str + '"');
 });
 rows.push(dataArray.join(','));
 }
 });
 var csv = rows.join('\n');
 $("#TextBox1").val(csv);
 $("#TextBox1").slideDown("slow");
 evt.preventDefault();
 });
});

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

284

The ready() handler function first hides TextBox1 using the hide() method. This way, initially, when there is no
CSV data, the TextBox is kept hidden. The main code that converts GridView data to CSV goes inside the click event
handler of Button1. The click handler function declares a rows array to hold the combined CSV data for the header
and the item rows of the GridView. The str variable holds the CSV data for one row of the grid. Then the find()
method is used to find all the <tr> elements from GridView1. The each() method then iterates through all the table
rows. An if statement checks whether a row is a header row or an item row by checking for <th> elements in a row.
The presence of the <th> element indicates that it is a header row; otherwise, it is an item row.

If a row is the header row, the headerArray variable is declared to store header row values. All the <th> elements
of the header row are found using the find() method and are iterated over using the each() method. Remember
that this points to the element being iterated. If a column value contains a double quote character, two double quote
characters are substituted using the text() and replace() methods. The resultant column value is then pushed into
headerArray using the push() method. Notice that while a value is pushed, it is enclosed inside double quotes.

Once all the column values are pushed inside headerArray, the values from headerArray are pushed into the
rows array by calling the join() method on headerArray, passing a comma (,) as a delimiter, and then calling push()
on the rows array to store CSV from a row.

The else block contains similar code, but it searches for <td> elements instead of <th> elements and uses the
dataArray variable to store values. Just like the header row, the item rows are also pushed to the rows array.

After all the GridView rows are converted to CSV, the elements from the rows array are joined using the newline
character (\n). This way, you get a string that contains CSV data for all the rows. The CSV data from each row is
separated by a newline character, and the value of TextBox1 is set to this string variable using the val() method.
The TextBox is shown by applying a slide-down effect to it using the slideDown() method. To prevent the form
submission, the preventDefault() method of the evt object is called.

Recipe 2: Implementing Ajax Based Paging
ASP.NET Web Forms can use data-bound controls such as GridView and DetailsView that are capable of displaying
data in one or more pages. This default paging mechanism is a server-side technique and requires an extra postback.
ASP.NET MVC applications need to implement paging on their own.

Using jQuery $.ajax(), you can implement paging in an HTML table in Web Forms as well as MVC. This second
recipe discusses how paging can be implemented in ASP.NET MVC using Ajax techniques. The view that you develop
in this recipe is shown in Figure 11-2.

Figure 11-2. Paging implemented for an HTML table

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

285

As you can see, there is an HTML table that displays records from the Employees table. More importantly, the
data is displayed in pages, with each page containing three records. At the bottom of the table is a pager that displays
hyperlinks to navigate to different pages of data. The current page number is displayed as plain text, whereas other
page numbers are displayed as hyperlinks.

To develop this application, create an empty ASP.NET MVC application and add an ADO.NET Entity Data Model for
the Employees table in the Models folder. Then add the HomeController in the Controllers folder. The HomeController
has the Index() action method by default. You need to add two more action methods: GetTotalRows() and GetPageData().
The former method returns the total number of rows in the Employees table, whereas the latter method returns
Employee data belonging to a specified page. These methods are shown in Listing 11-3.

Listing 11-3. GetTotalRows() and GetPageData() Methods

[HttpPost]
public JsonResult GetTotalRows()
{
 NorthwindEntities db = new NorthwindEntities();
 return Json(db.Employees.Count());
}

[HttpPost]
public JsonResult GetPageData(int pageIndex, int pageSize)
{
 NorthwindEntities db = new NorthwindEntities();
 var data = (from e in db.Employees
 orderby e.EmployeeID
 select new {e.EmployeeID,
 e.FirstName, e.LastName,
 e.Title, e.Country })
 .Skip(pageIndex * pageSize)
 .Take(pageSize);
 return Json(data);
}

The GetTotalRows() action method is called from jQuery code, so it returns JsonResult to the caller. Inside, it
instantiates the NorthwindEntities context and then calls the Count() method on its Employees DbSet. The returned
count is converted into its JSON representation using the Json() method.

The GetPageData() action method also returns JsonResult and accepts two integer parameters: pageIndex
and pageSize. The pageIndex parameter indicates a zero–based page number whose data is to be retrieved. The
pageSize parameter indicates the number of records to be displayed per page. Inside, the method instantiates the
NorthwindEntities context and executes a query against the Employees table.

Look at the query carefully: it selects the EmployeeID, FirstName, LastName, Title, and Country columns using
projection and then uses the Skip() and Take() methods to retrieve only the records for a specified pageIndex. The
Skip() method accepts a number indicating the number of elements to be skipped from the beginning of the results.
In this case, (pageIndex * pageSize) is passed to Skip(). So if pageIndex is 1 (the second page) and pageSize is 3,
Skip() will skip three elements. The Take() method then picks up the three elements, starting from the fourth
element. Thus elements 4, 5, and 6 are selected. The selected data is returned to the caller in its JSON format by using
the Json() method as before.

Now add the Index view to the project and place a table in it, as shown in Listing 11-4.

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

286

Listing 11-4. Index View Markup

<table id="tblGrid" border="1" cellpadding="10">
 <tr>
 <th>EmployeeID</th>
 <th>FirstName</th>
 <th>LastName</th>
 <th>Title</th>
 <th>Country</th>
 </tr>
 <tr>
 <td colspan="5"></td>
 </tr>
</table>

The tblGrid table consists of two rows: the first row contains the column headings, and the second row consists
of a single cell spanning five columns. This cell is used to display the pager. At runtime, page data is retrieved using
$.ajax(), and rows are inserted between the header and pager row.

Add a <script> reference to jQuery and a <script> block in the head section. The <script> block consists of a
couple of variable declarations, two helper functions, and a ready() handler. The ready() handler and the variable
declarations are shown in Listing 11-5.

Listing 11-5. Calling the GetTotalRows() Action Method

var pageSize = 3;
var pageCount = 0;

$(document).ready(function () {
 var options = {};
 options.url = "home/gettotalrows";
 options.type = "POST";
 options.dataType = "json";
 options.contentType = "application/json";
 options.success = function (count) {
 pageCount = count / pageSize;
 renderPager(0);
 getPageData(0);
 };
 options.error = function (xhr, status, err) { alert(err); };
 $.ajax(options);
});

The code from Listing 11-5 declares two variables—pageSize and pageCount—to store page size and total
number of pages, respectively. The default value for pageSize is set to 3, and that for pageCount is set to 0.
The pageSize variable is not changed further in the code, but pageCount is assigned a value returned from the
GetTotalRows() method.

The ready() handler calls the GetTotalRows() action method using $.ajax(). It first creates an options object
to store various settings to be used while making the Ajax request. The url property is set to /home/gettotalrows, and
the type property is set to POST, indicating that a POST request will be made.

dataType and contentType are set to json and application/json, respectively. The success function receives
the total number of records as the count parameter. The pageCount variable is then assigned value equal to
(count / pageSize). Two helper functions, renderPager() and getPageData(), are then called. The renderPager()

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

287

function displays the pager row, whereas the getPageData() function retrieves the data needed to be displayed on a
page. These functions accept the current page index as their parameter. Because the first page of data is to be initially
displayed, 0 is passed to both of these functions (you will create these functions shortly). The error handler simply
displays the error message, if any, to the user in an alert dialog. Finally, an Ajax call is made using the $.ajax()
method by passing the options object as its parameter.

Next, add the renderPager() function to the <script> block, as shown in Listing 11-6.

Listing 11-6. renderPager() Function

function renderPager(currentPageIndex) {
 var html = '';
 for (var i = 0; i < pageCount; i++) {
 if (i == currentPageIndex) {
 html += "" + (i + 1) + " ";
 }
 else {
 html += "" +
 (i + 1) + " ";
 }
 }
 $("#tblGrid tr:last td").html(html);
 $("a").click(function (evt) {
 var pageIndex = $(this).data("pageIndex");
 getPageData(pageIndex);
 evt.preventDefault();
 });
}

The renderPager() function accepts the current page index as its parameter. Inside, a for loop is run from 0 to
pageCount, and with each iteration, a page number is added to the html variable. If it matches the currentPageIndex,
that page number is displayed using a tag; otherwise, that page number is displayed as a hyperlink. Notice that
the pager hyperlinks point to # because they don’t actually take the user away from the page. Moreover, all the pager
hyperlinks have the data-page-index attribute added.

The data-page-index attribute stores the zero-based index of a page, whereas the link text displays one–based
page numbers. Once the html variable is ready with the pager markup, the last row of tblGrid is selected using the
tr:last selector, and the generated pager markup is added to its cell using the html() method. Then a click event
handler is wired to all the anchor elements (all the hyperlinks from the pager). The click event handler retrieves the
value of the data-page-index attribute using the data() method and calls the getPageData() function by passing the
value of data-page-index to it.

Now add the getPageData() method to the <script> block, as shown in Listing 11-7.

Listing 11-7. getPageData() method

function getPageData(index) {
 var options = {};
 options.url = "home/getpagedata";
 options.type = "POST";
 options.data = JSON.stringify(
 { pageIndex: index, pageSize: this.pageSize }
);
 options.dataType = "json";
 options.contentType = "application/json";

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

288

 options.success = function (employees) {
 $("#tblGrid").find("tr:gt(0)").remove("tr:not(:last)");
 for (var i = 0; i < employees.length; i++) {
 var html = "<tr>";
 html += "<td>" + employees[i].EmployeeID + "</td>";
 html += "<td>" + employees[i].FirstName + "</td>";
 html += "<td>" + employees[i].LastName + "</td>";
 html += "<td>" + employees[i].Title + "</td>";
 html += "<td>" + employees[i].Country + "</td>";
 html += "</tr>";
 $("#tblGrid tr").eq(i).after(html);
 }
 renderPager(index);
 };
 options.error = function (xhr, status, err) { alert(err); };
 $.ajax(options);
}

The getPageData() function accepts the current page index as its parameter and displays data belonging to that
page. The options object stores all the configuration settings needed while making an Ajax call to the GetPageData()
action method. The url property points to /home/getpagedata, and the type is set to POST.

Remember that the GetPageData() action method accepts the current page index and page size as its
parameters. Hence, the data property is set to an object in JSON format containing two properties: pageIndex and
pageSize. The dataType and contentType properties are set to json and application/json, respectively.

The success function receives an array of JSON objects, and each element of that array represents an object
with the EmployeeID, FirstName, LastName, Title, and Country properties. Inside, all the rows of the table except the
header and pager row are removed by finding rows with the index greater than 0 (tr:gt(0)) and then removing all the
rows that are not the last row (tr:not(:last)).

A for loop then iterates through the employee array, and each iteration generates an HTML markup for a table
row. The resultant row is added to the tblGrid using the eq() and after() methods. The eq() method returns an
element at a specified index, and the after() method inserts the supplied markup after that element. Thus rows are
added one after the other between the header and pager rows. After the for loop, renderPager() is called to display
the pager, considering the current page index. The error handler simply displays the error message, if any, to the
user in an alert dialog. Finally, an Ajax call is made to the server using the $.ajax() method and passing the options
object as its parameter.

Recipe 3: Client-Side Sorting in a Table
Sorting, as provided by data-bound controls such as a GridView, is a server-side feature. You can implement client-
side sorting for an HTML table using the jQuery code. The client-side sorting doesn’t need any postbacks because it
sorts data on the client side. Figure 11-3 displays an MVC view that shows the client-side sorting in action.

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

289

The table in Figure 11-3 shows the EmployeeID, FirstName, and LastName columns. You can click any of
the column headings to sort the table on that column. For example, Figure 11-3 shows the table sorted on the
FirstName column.

To begin developing this application, create an empty ASP.NET MVC application. Then add an ADO.NET Entity
Data Model for Employees table in the Models folder as before. Also add HomeController to the Controllers folder.
Modify the default Index() action method from the HomeController, as shown in Listing 11-8.

Listing 11-8. Index() Action Method

public ActionResult Index()
{
 NorthwindEntities db = new NorthwindEntities();
 var data = from e in db.Employees
 orderby e.EmployeeID
 select e;
 return View(data.ToList());
}

Figure 11-3. Client-side sorting in action

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

290

The Index() action method instantiates the NorthwindEntities context. A LINQ to Entities query is then
constructed for retrieving Employees sorted on EmployeeID. This is the initial sorting of the data. A generic List of
Employee objects is then obtained by calling the ToList() method on the data variable. The Employee list is passed to
the Index view as its model. Now add the Index view to the project and key in the markup shown in Listing 11-9 to it.

Listing 11-9. Markup of Index View

<table id="tblGrid" border="1" cellpadding="10">
 <tr>
 <th>EmployeeID</th>
 <th>FirstName</th>
 <th>LastName</th>
 </tr>
 @foreach(var emp in Model){
 <tr>
 <td>@emp.EmployeeID</td>
 <td>@emp.FirstName</td>
 <td>@emp.LastName</td>
 </tr>
 }
</table>

As you can see, the tblGrid has one fixed header row. Depending on the Employee objects available in the Model,
rows are dynamically added to the table with the help of a foreach loop that iterates through the Model. Each iteration
generates a table row that displays EmployeeID, FirstName, and LastName. Next, add a <script> reference to jQuery
and also add a <script> block in the head section. Write the code shown in Listing 11-10 inside the <script> block.

Listing 11-10. Sorting a Table

$(document).ready(function () {
 $("th").click(function () {
 var columnIndex = $(this).index();
 var tdArray = $(this).closest("table")
 .find("tr td:nth-child(" + (columnIndex + 1) + ")");
 tdArray.sort(function (p, n) {
 var pData = $(p).text();
 var nData = $(n).text();
 return pData < nData ? -1 : 1;
 });
 tdArray.each(function () {
 var row = $(this).parent();
 $("#tblGrid").append(row);
 });
 });
});

The code shown in Listing 11-10 shows the ready() handler. Inside, the code wires a click event handler for all
the table headings (<th>). The click event handler retrieves the zero-based index of the column whose heading is
being clicked using the index() method. This index is stored in the columnIndex variable. Then all the <td> elements
belonging to that column are retrieved. This is done by first retrieving the table reference using the closest() method
on this and then using the find() method. The returned elements are stored in the tdArray variable.

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

291

The sort() method is called on tdArray, and a compare function is passed to the sort() method. The compare
function receives array elements in pairs. If the compare function returns a value less than 0, p is sorted to a lower
index than n. If the compare function returns 0, the position of p and n with respect to each other is kept unchanged.
If the compare function returns a value greater than 0, p is sorted to a higher index than n. Inside the compare function,
the text() method of the p and n elements are compared, and accordingly, 1 or -1 is returned. After calling the sort()
method, tdArray holds the same elements but in a sorted manner.

The tdArray is then iterated upon by using the each() method. With each iteration, the parent row of the table
cell under consideration is found by using the parent() method. Finally, the table row thus obtained is appended to
tblGrid using the append() method.

Recipe 4: Creating Cascading Drop-Down Lists
Sometimes you need to display drop-down lists in your ASP.NET MVC views so that values in one drop-down list are
dependent on the value selected in another drop-down list. The most common example of this is when countries and
states drop-down lists are presented together, and, based on a selected country, you need to populate the states drop-down
list. This recipe shows how such a cascading drop-down list can be developed using ASP.NET MVC and jQuery.

Figure 11-4 shows the view with two cascading drop-down lists.

Figure 11-4. Cascading drop-down lists showing countries and states

As you can see, the view consists of two drop-down lists. The first drop-down list contains a list of countries
along, with the first entry: Please Select. Initially, the states drop-down list is disabled because no country is selected.
After a country is selected, the second drop-down list is populated with a list of states.

To begin developing this example, create an empty ASP.NET MVC application. Then add a new SQL Server
database (SQL Express or LocalDB) to the App_Data folder and create two tables (Countries and States) in it.
The Countries table has two columns, CountryId and CountryName; the States table has three columns: StateId,
CountryId, and StateName.

Add some sample records in both tables for testing purpose. Then create an ADO.NET Entity Data Model for
these two tables in the Models folder. Figure 11-5 shows this data model.

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

292

Next, add HomeController to the Controllers folder and add the Index() method to it, as shown in Listing 11-11.

Listing 11-11. HomeController Index() Method

public ActionResult Index()
{

 CountryStateDbEntities db = new CountryStateDbEntities();
 var data = from c in db.Countries
 orderby c.CountryName ascending
 select c;
 List<Country> items = data.ToList();
 items.Insert(0, new Country() {CountryId=-1,CountryName="Please Select" });
 SelectList countries = new SelectList(items,"CountryId","CountryName");
 ViewData["countries"] = countries;
 return View();
}

This code instantiates the CountryStateDbEntities context and then constructs a query to fetch all the
Country objects from the Countries DbSet. The Country objects are obtained as a generic List by calling the
ToList() method on the data variable. An item is added at the beginning of the list that holds a CountryId of -1 and
a CountryName of Please Select. This item doesn’t come from the database and it doesn’t represent a real country as
such. You are adding it just for the sake of having the Please Select entry in the drop-down list.

You display the Country drop-down list using the DropDownList MVC HTML helper. To supply countries to the
DropDownList helper, you create a SelectList object based on the country list you just created. The SelectList
object is stored in the ViewData dictionary with the countries’ key names.

The states will be fetched from the database using Ajax requests. Hence, you need an action method that returns
JsonResult and that will be called from jQuery code. Listing 11-12 shows the GetStates() method that does just that.

Listing 11-12. GetStates() Action Method

public JsonResult GetStates(int countryid)
{
 CountryStateDbEntities db=new CountryStateDbEntities();
 var data = from s in db.States
 where s.CountryId == countryid
 orderby s.StateName
 select new { s.StateId, s.StateName };
 return Json(data.ToList());
}

Figure 11-5. Data model for Country and State tables

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

293

The GetStates() action method accepts a CountryId and returns a generic List of strings containing states
for that country. Inside, it instantiates the CountryStateDbEntities context and prepares a query that fetches the
StateName values from the States DbSet for a specified countryid. The data is selected as an anonymous object with
two properties: StateId and StateName. The data is obtained as a generic List using the ToList() method. The
Json() method is then used to convert this generic List to its JSON representation.

Now add the Index view to the project and key in the markup shown in Listing 11-13 in it.

Listing 11-13. Index View Markup

@using(Html.BeginForm()){
 <div>Select Country :</div>
 @Html.DropDownList("country", ViewData["countries"] as SelectList)

 <div>Select States :</div>
 <select id="state"></select>
 }

The Index view uses the BeginForm() helper to define an HTML form. The DropDownList helper is used to render
a <select> element for selecting a country. The first parameter of the DropDownList helper indicates the name of
the resultant <select> element, whereas the second parameter indicates the SelectList that supplies data to the
DropDownList. Notice that the countries ViewData variable needs type casting to SelectList because ViewData
stores everything as an object. The DropDownList for states is rendered using the <select> element because items are
added to this DropDownList on the fly.

Now, add a <script> reference to jQuery and also add a <script> block. Then add the code shown in Listing 11-14
to the <script> block.

Listing 11-14. Retrieving States Using $.ajax()

$(document).ready(function () {
 $("#state").prop("disabled", true);
 $("#country").change(function () {
 if ($("#country").val() != "-1") {
 var options = {};
 options.url = "/home/getstates";
 options.type = "POST";
 options.data = JSON.stringify({ countryid: $("#country").val() });
 options.dataType = "json";
 options.contentType = "application/json";
 options.success = function (states) {
 $("#state").empty();
 for (var i = 0; i < states.length; i++) {
 $("#state").append("<option value='" + states[i].StateId + "'>" +
 states[i].StateName + "</option>");

 }
 $("#state").prop("disabled", false);
 };
 options.error = function () { alert("Error retrieving states!"); };
 $.ajax(options);
 }

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

294

 else {
 $("#state").empty();
 $("#state").prop("disabled", true);
 }
 });
});

The code in Listing 11-14 shows the ready() handler function, which initially disables the state DropDownList
by setting its disabled property to true with the prop() method. It then wires a change event handler to the country
DropDownList. This event handler gets called whenever the selection in the country DropDownList changes. Inside,
the change handler checks the value being selected in the country DropDownList. If the value is anything other than
-1 (remember that -1 represents the Please Select item of the drop-down list), an Ajax call is made to the GetStates()
method to retrieve the states.

The settings for making the Ajax request are stored in the options object. The url property points to /home/getstates.
The type property is set to POST. The GetStates() method accepts countryid as a parameter. This parameter value
is picked up from the country DropDownList using the val() method and then passed to the GetStates() action
method in JSON format.

The dataType and contentType properties are set to json and application/json, respectively. The success
function receives the return value of GetStates() as its parameter. Inside, it first empties the states DropDownList and
then adds states from the array to the states DropDownList by iterating through the states array. The states are added
as an <option> element.

The value of the <option> element being added is set to the StateId property; it displays StateName to the user.
Once the states are filled in, the states DropDownList is enabled by setting its disabled property to false using the
prop() method. The error handler simply displays an error message, if any, to the user in an alert dialog. Finally, an
Ajax request is made to the server by using $.ajax() and by passing the options object as its parameter.

If the country DropDownList contains Please Select, the states DropDownList is emptied and disabled.

Recipe 5: Creating an Autocomplete Text Box
When you expect a user to specify a fixed value from a set of values (for example, one country from a set of countries),
you normally use <select> to display a list of valid options to the user. However, sometimes you want the user to enter
a value or select a value from a list. For example, you may want a user to enter a search phrase into a search box of
your web site. Considering the diversity of the data being entered, you can’t expect the user to pick a search phrase
from a fixed set of values. Hence you can’t use the <select> element in such cases because it element doesn’t allow
you to enter values.

An autocomplete text box can help. An autocomplete text box is an enhanced text box that allows you to enter
data into it and pick a value from a set of values. As you start typing, a list of options is presented, based on the text you
entered so far. You can then pick a value from the presented options or continue entering it.

In this recipe, you develop an autocomplete text box that resembles Figure 11-6.

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

295

The Web Form shown in Figure 11-6 consists of a Label and a TextBox. As you start typing in the text box, a list is
displayed with options starting with the text you entered. You can then pick a value from the list or continue entering
the value.

To develop this application, begin by creating an empty ASP.NET Web Forms project. Then add an ADO.NET
Entity Data Model for the Employees table to the project. Place a Label control and a TextBox control on the Web
Form so that it resembles Figure 11-6. Add a <datalist> element to the form, as shown in Listing 11-15.

Listing 11-15. Web Form Markup

<form id="form1" runat="server">
 <asp:Label ID="Label1" runat="server" Text="Enter Title :"></asp:Label>

 <asp:TextBox ID="TextBox1" runat="server" list="titles"></asp:TextBox>
 <datalist id="titles"></datalist>
</form>

As you can see, the Web Form markup contains a <datalist> element in addition to Label and TextBox markup.
The HTML5 <datalist> element allows you to associate a list of options with a TextBox. Notice that the TextBox1
list attribute is set to the ID of the <datalist> element (titles). You can specify values in the <datalist> by using
<options> elements.

In this example, you populate the options dynamically by making Ajax requests to the server, so <datalist> is
kept empty.

Switch to the code-behind file of the Web Form and add a web method, as shown in Listing 11-16.

Listing 11-16. Web Method Returning datalist Options

[WebMethod]
public static List<string> GetTitles(string title)
{
 NorthwindEntities db = new NorthwindEntities();
 var data = (from e in db.Employees
 where e.Title.StartsWith(title)
 orderby e.Title
 select e.Title).Distinct();
 return data.ToList();
}

Figure 11-6. Autocomplete text box in action

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

296

The GetTitles() method accepts a string parameter (title) that indicates the text entered in a text box. It
returns a List of strings that start with the specified title text. Notice that GetTitles() is a static method and is
decorated with the [WebMethod] attribute. This enables you to call GetTitles() using jQuery Ajax techniques.

Inside, the code instantiates the NorthwindEntities context and prepares a query that fetches Title values from
the Employees table that start with the supplied title. Notice the use of the StartsWith() method to filter the titles that
begin with a specified text. Also notice the use of the Distinct() method to avoid any duplicate Title values. The
ToList() method obtains the query results as a List of strings.

Add a <script> reference to the jQuery library and also add a <script> block in the head section of the Web
Form. Then add the code shown in Listing 11-17 in the <script> block.

Listing 11-17. Calling GetTitles() Using $.ajax()

$(document).ready(function () {
 $("#TextBox1").on("input", function (evt) {
 var options = {};
 options.url = "WebForm1.aspx/gettitles";
 options.data = JSON.stringify({title:$(evt.target).val()});
 options.type = "POST";
 options.dataType = "json";
 options.contentType = "application/json";
 options.success = function (result) {
 $("#titles").empty();
 for (var i = 0; i < result.d.length; i++) {
 $("#titles").append("<option>" + result.d[i] + "</option>");
 }
 };
 options.error = function (xhr, status, err) { alert(err); };
 $.ajax(options);
 });
});

The code consists of a ready() handler that wires an input event handler to TextBox1. The input event is raised
whenever text is entered into a TextBox. The on() method binds the input event handler to TextBox1. Inside, the
options object stores various settings needed to make an Ajax request.

The url property points to WebForm1.aspx/gettitles. The type property is set to POST, indicating that a POST
request will be made. The data property contains the value of the title parameter of GetTitles() in JSON format.
Notice that the value entered in the text box is obtained using the val() method called on evt.target. The dataType
and contentType properties are set to json and application/json, respectively.

The success handler function receives the matched titles as its parameter. It then empties the titles datalist
using the empty() method. A for loop iterates through the titles returned by the GetTitles() method and adds
<option> elements in the datalist using the append() method. Displaying the <datalist> when a user starts
entering text in the TextBox is taken care of by the browser. The error handler simply displays an error message, if any,
in an alert dialog. Finally, an Ajax call is made to the server by using the $.ajax() method and by passing the options
object as its parameter.

Recipe 6: Uploading Files
One common task in web applications is allowing users to upload files from the client machine to the server.
Usually files are uploaded along with a form submission. However, you can also accomplish that task using jQuery
and Ajax. In such cases, you can allow a user to select files using the FileUpload server control of ASP.NET and then
upload those files to the server through an Ajax request to a generic handler.

This recipe illustrates how to do this. The Web Form that you’ll develop in this section is shown in Figure 11-7.

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

297

The Web Form consists of a FileUpload server control. You can select one or more files using this control and
then click the Upload Selected File(s) button. During the upload operation, which can be a long-running task, a
progress indicator is displayed to the user with an animated GIF image. Once the upload operation completes, the
progress indicator is hidden, and a success message is displayed to the user.

To develop this application, begin by creating an empty ASP.NET Web Forms application. Then add a new Web
Form to the project and design it as shown in Figure 11-7. The markup of the Web Form is shown in Listing 11-18.

Listing 11-18. Web Form Markup

<form id="form1" runat="server">
 <asp:FileUpload ID="FileUpload1" runat="server" AllowMultiple="true" />

 <asp:Image ID="progress" runat="server"
 ImageUrl="~/images/progress.gif" />
 <asp:Button ID="Button1" runat="server"
 Text="Upload Selected File(s)" />
</form>

The Web Form consists of a FileUpload server control. The AllowMultiple property of the FileUpload control is
set to true so that multiple files can be selected by the user. The ImageUrl property of the Image control is set to
~/images/progress.gif—an animated GIF image. The Button control is used to initiate the file upload operation.

Now add a <script> reference to jQuery and also add a <script> block in the head section of the Web Form.
Then write the code shown in Listing 11-19 to the <script> block.

Listing 11-19. Uploading Files Using jQuery

$(document).ready(function () {
 $("#progress").hide();
 $("#Button1").click(function (evt) {
 var fileUpload = $("#FileUpload1").get(0);
 var files = fileUpload.files;
 var data = new FormData();
 for (var i = 0; i < files.length; i++) {

Figure 11-7. Web Form for uploading files to the server

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

298

 data.append(files[i].name, files[i]);
 }
 var options = {};
 options.url = "FileUploadHandler.ashx";
 options.type = "POST";
 options.data = data;
 options.contentType = false;
 options.processData = false;
 options.beforeSend = function () {
 $("#progress").show();
 };
 options.success = function (result) { alert(result); };
 options.error = function (err) { alert(err.statusText); };
 options.complete = function () {
 $("#progress").hide();
 }
 $.ajax(options);
 evt.preventDefault();
 });
});

As soon as the page is loaded in the browser, the ready() handler hides the progress indicator image using the
hide() method. It then wires the click event handler of Button1. The code inside the click event handler gets the
FileUpload control by using the ID selector. Calling the get() method returns the underlying DOM element. The
files property of the fileUpload object returns a list of files selected by the user. Then a FormData object is created to
store the form data for sending it to the server. The FormData object allows you to add arbitrary name-value pairs that
can be sent to the server.

A for loop iterates through the files array; with each iteration, a file is added to the FormData object using the
append() method. The first parameter of append() is the name assigned to the value being added, and the second
parameter is the value itself. In this case, file name is added as the name parameter, and the actual file contents are
added as the second parameter.

Once the FormData object is ready with all the files added to it, the options object is created with various settings
for making an Ajax request. The url property points to a generic handler: FileUploadHandler.ashx. (You’ll develop
FileUploadHandler.ashx shortly.)

The type of request is specified as POST using the type property. The data property is set to the data FormData
object you created earlier. Note that this time you aren’t sending data in JSON format. Files being uploaded can
contain data in any form (text, binary, and so on), and that data must be submitted to the server as is. That’s why
the processData and contentType properties are set to false. Setting these properties to false ensures that these
properties don’t assume their default values of true and "application/x-www-form-urlencoded", respectively,
during the form-submission process.

The beforeSend, success, error, and complete handler functions are wired. The beforeSend handler is called
just before making the Ajax request. Inside the beforeSend handler, the progress indicator image is made visible
by calling the show() method. This way, as soon as the Ajax request is made, the animated GIF starts showing the
progress indicator.

The success handler simply displays the message returned by the generic handler in an alert dialog. The error
handler displays an error message, if any, in an alert dialog. The complete handler is called when the Ajax request
completes (with or without errors) and hides the progress indicator image using the hide() method. Finally, an
Ajax request is made to the FileUploadHandler.ashx by using $.ajax() and by passing the options object as its
parameter.

Now add a new generic handler to the project and name it FileUploadHandler.ashx. Then modify its
ProcessRequest() method as shown in Listing 11-20.

CHAPTER 11 ■ USEFUL JQUERY RECIPES FOR ASP.NET APPLICATIONS

299

Listing 11-20. Saving Uploaded File to the Server

public void ProcessRequest(HttpContext context)
{
 if (context.Request.Files.Count > 0)
 {
 HttpFileCollection files = context.Request.Files;
 for (int i = 0; i < files.Count;i++)
 {
 HttpPostedFile file = files[i];
 string fname = context.Server.MapPath
 ("~/uploads/" + file.FileName);
 file.SaveAs(fname);
 }
 }
 context.Response.ContentType = "text/plain";
 context.Response.Write("File(s) Uploaded Successfully!");
}

The code inside the ProcessHandler() method does the job of saving the files submitted by the client on the
server. It first checks whether the incoming request contains any files by checking the Count property of the context.
Request.Files collection. If the count is greater than 0, the files variable stores a reference to the Files collection.
Notice that the files object is of type HttpFileCollection. Each element of HttpFileCollection is of type
HttpPostedFile.

A for loop then iterates through the Files collection, and with each iteration the file under consideration is
saved to the Uploads folder of the application. Although not incorporated in this example, in a real-world situation
you should consider performing security checks (maximum size, permissible file types, virus scanning, and so on) on
the files being uploaded. This is done using the SaveAs() method of the HttpPostedFile object.

Notice that the full physical path of a file is obtained by appending the FileName to the path returned by the
Server.MapPath() method. Once all the files are saved on the server, a success message is sent to the client using the
Response.Write() method.

Summary
This chapter covered several jQuery recipes that are very useful and tap the power of client-side and server-side
processing. Although jQuery is a JavaScript library, it can be meshed with server-side code using Ajax techniques.
A modern web application developed in ASP.NET needs to harness the power of client-side scripting as well as
server-side processing. And jQuery allows you to do that easily. This book covered a wide spectrum of jQuery
features, and this final chapter showed you how various features of jQuery can go hand in hand to handle a more
complex task.

Learning any programming language or library involves understanding the language syntax and features and
also the practical experience of using those features. This book showed you the jQuery library so that you get a good
understanding of its features and constructs. It also presented many real-world examples to make the topic being
discussed more relevant and practical. With this knowledge under your belt, you can leverage the full power and
flexibility of this popular JavaScript library.

301

APPENDIX

Learning Resources

Official jQuery Projects Websites
jQuery Learning center
http://learn.jquery.com

jQuery API Documentation
http://api.jquery.com

jQuery UI Documentation
http://api.jqueryui.com

jQuery Mobile Documentation
http://api.jquerymobile.com

jQuery Official Blog
http://blog.jquery.com

Author’s Website
Articles on ASP.NET, HTML5 & jQuery
http://www.binaryintellect.net

http://learn.jquery.com/
http://api.jquery.com/
http://api.jqueryui.com/
http://api.jquerymobile.com/
http://blog.jquery.com/
http://www.binaryintellect.net/

APPENDIX ■ LEARNING RESOURCES

302

Other Websites
JavaScript on the Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/JavaScript

Learning jQuery
http://www.learningjquery.com

jQuery For Designers
http://jqueryfordesigners.com

The jQuery Plugin Registry
http://plugins.jquery.com

https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://www.learningjquery.com/
http://jqueryfordesigners.com/
http://plugins.jquery.com/

A, B���������
Accordion widget, 259

beforeActive events, 262
append() method, 263
ind() method, 262
GetNotes() page method, 262–263
remove() method, 263
SingleOrDefault() method, 263
ui objects, 262

coniguration, 261
create events, 262–263

ui objects, 262
ui parameter, 263

default theme, 264
css classes, 264
ui-accordion, 264
ui-accordion-content, 264
ui-accordion-header, 264

image folder, 260
ready () handler, 262
Repeater1_GetData() method, 261
Repeater control, 260–261
web form, 259

$.ajax()method
ASMX web service, 210

Convert() method, 211–213
JSON.stringify(), 213
preventDefault(), 213
TemperatureService.asmx, 211
web form, 210

HomeController, 216
Convert() method, 218–219
Index view, 218
Json() method, 217, 219

jqXHR object, 210
done() function, 210
XMLHttpRequest object, 210

Page method(), 213
Convert()page method, 214
TemperatureData object, 214

WCF service, 215
Convert() method, 215
TemperatureService.svc, 215

web API, 220
application, 221
ASP.NET web application creation, 222
DeleteEmployee() method, 224
done() method, 227–228
Drop-down list, 226
Employee class, 223
EmployeeData class, 223
EmployeesController, 224
EmployeesController methods, 224
fail() method, 227–228
GetEmployeeByID()

method, 225, 227–228
GetEmployees()methods, 224–225
JSON.stringify() method, 228
Label() helpers, 226
PostEmployee() method, 224
PutEmployee() method, 224–225, 228
REST, 220
RESTful services, 220
Savechanges() method, 225
TextBox() helpers, 226

Ajax techniques, 193
$.ajax() method, 208

ASMX web service, 210
coniguration settings, 209
Homecontroller, 216
jqXHR object, 210
Page method, 213
PostTarget.aspx, 209
WCF service, 214
web API, 220

Index

303

asynchronous process, 194–195
beneits, 195

performance, 195
user experience, 196
user interface, 195

JQuery methods, 199
$ ajax() method, 199–200
$.getJSON() method, 200, 207
$.get() method, 204
$.getScript() method, 200, 203
load() method, 199–200
$.post() method, 207
XMLHttpRequest object, 199

JSON format, 196
Json.NET, 198
parse() method, 197
serialization and deserialization process, 196
stringify() method, 197

POST request, 194–195
synchronous process, 194
XMLHttpRequest object, 195

Animations. See jQuery animations
Application programming interface (API), 35
Array index, 10
ASP.NET controls, jQuery selectors. See jQuery selectors
ASP.NET MVC, jQuery, 55, 268

FirstjQueryAppMVC, 56
GetEmployeeTable() action method, 60
Homecontroller, 60
load() Method, 61
server-side data, 56

ASP.NET Web Form, 1, 35
HTML and server control markup, 3
OnClientClick property, 3
output, 5
server-side click event handler, 3
timestamp, Page Footer, 4
using Visual Studio, 2
write() method, 5

ASP.NET Web Forms, jQuery, 47
Content Delivery Network (CDN), 38
Content() method, 41
CSS property, 47
event handling, 62
forms and views, 40
HtmlGenericControl, 41
ID Selector, 54
jQuery’s.css() method, 52
to Local folder, 35

compressed production version, 36
naming conventions, 36
scripts folder, 37
uncompressed development version, 36

NuGet Packages, 37
OnButtonClick Function, 52

OnReady(), 53
Page.RegisterClientScriptInclude() method, 41
Page.ResolveUrl() method, 41
Scripts.Render(), 41
Server Control ID Selector, 54
server control markup, 50
val() method, 52

Asynchronous JavaScript and XML (Ajax), 193
Attribute selectors

contains preix selector, 78
contains selector, 78
css() method, 78
descendant selector, 78
Download class, 76
download links, 75
ends with selector, 78
HyperLinkField properties, 76
page_load event handler, 77
switch statement, 78
types, 74

C���������
Children() method, 157–158
Closest() method, 157–158
Content delivery network (CDN), 38, 235, 256

beneits, 39
Google CDN, 38
jQuery CDN, 38
Microsoft Ajax CDN, 38
performance penalty, 40
working principle, 39

Custom data attributes access, 171
data() method, 174

data validation, 175
employee’s age validation, 175
Entity Framework data model, 174
ErrorMessages table, 174
match() method, 176
ToDate() function, 176
Web form, 173–174
Web form markup, 174–175

D���������
<div> element, 166
Document Object Model (DOM), 4, 103, 135

add and remove elements, 147
clone() method, 148
content changes, 146

empty() method, 147
html() method, 147
text() method, 146

CSS Classes and Styles, 135, 137
addClass() method, 135
border, 138

■INDEX

304

Ajax techniques (cont.)

click event handler, 140
click() method, 142
css() method, 135, 138
Height and width methods, 137
padding, 138
ready() method, 140
removeClass() method, 135
resize() method, 141
Web Form markup, 139

manipulation
attributes and properties, 143
controls, 145
DropDownList, 145
loop and muted attributes, 146
Web Form markup, 144

replace elements, 147
RSS Widget, 149

Controls and Elements, 150
feed item, fetching, 152
generating and sending to client, 154
insertAfter(), 152
insertBefore(), 151
OnSuccess() function, 152
ProcessItem() function, 153
ready() method, 151

E���������
Each() method, 168–169
Efects. See jQuery efects
Eq() method, 163–164
Event bubbling, 104
Event Handling

concepts, 127
of() method, 133
on() method, 132
Passing Event Data, 129
preventDefault(), 128
stopPropagation() method, 128
trigger() method, 133

Document Object Model (DOM), 103
Event bubbling, 104
Event object, 106

methods, 107
properties, 106

Form events, 105, 122
appilcation, 123
blur() method, 126
change()method, 126
each()method, 127
focus() method, 126–127
ItemTemplate and EditItemTemplate, 124
submit()method, 126

infobar, 109
GetCookieValue() function, 111
HTML Markup, 109

jQuery code, 110
ShowIniBar cookie, 111

Keyboard events, 105, 117
application, 117
CSS classes, 119
OnKeyUp() Function, 120
ready() method, 119, 121
Web Form markup, 118

Miscellaneous events, 105
Mouse events, 104, 111

application, 113
hover() method, 115
jQuery class selector, 116
methods, 112
mousedown() method, 115
ready() method, 114

OnClick(), 105
overview, 103
registering, 103
window and document events, 104, 107

click()method, 111
resize() method, 111
scroll()method, 111

F���������
Filtering, 163

eq() method, 163–164
ilter() method, 163–164
irst() method, 163–164
has() method, 163
is() method, 163–164
last() method, 163
map() method, 163, 165
markup, 163
not() method, 163
sample application creation, 166

CSS classes, 168
<div> element, 166
has() method, 167
RowDataBound Event Handler, 166
single USA employee inding, 167
text() method, 167
total table rows, 166–167
USA employee inding, 167
Web form, 165–166

slice() method, 163–164
Filter() method, 163–164
Find() method, 169–170
First() method, 163–164
Form ilters

check box and radio button selectors, 88
click() method, 89
each() method, 89
employees table creation, 87
error messages, 90

■INDEX

305

features, 86
GridView markup, 87
image selector, 89
input selector, 90
is() method, 89
prop() method, 89
selected selector, 90
submit() method, 90
text selector, 90
types, 85

G���������
Get() method, 176–177

H���������
has() ilter, 85
Has() method, 163
Hierarchy ilters

child selector, 94
Next Adjacent selector, 94
Next GroupingText property, 94
Next Siblings selector, 94
types, 91
Web Form markup, 92

Hover() method, 160

I���������
Index() method, 176
Is() method, 163–164
Iteration, 168

each() method, 168–169
sample application creation, 170

empty() method, 171
hasClass() method, 170
order total calculation, 170
text() method, 171
Web form, 169–170

J, K���������
JavaScript

array, 10
declaration and manipulation, 11
removeData() function, 12
retrieveData() function, 12
storeData() function, 12
Web Form, 10

ASP.NET Web Form, 1
built-in functions

alert(), 7
prompt(), 7

conditional checking, 12
operators, 13
switch statement, 14

constructs
built-in functions, 6
comments, 6
statement, 6

data types, 8
Boolean, 8
number, 8
object, 9
string, 8

Date and Time, 20
Document object model (DOM), 4
dynamic content, 1
error handling, 28

calculate(), 30
isFinite(), 30
isNan(), 30
try block, 28

function, 22
calculate(), 24
celsisusToFahrenheit(), 24
convertTemperature(), 25

interactivity, 1
jQuery, 1
looping, 14

do while loop, 15
for loop, 15
while loop, 15

numbers, 18
Number(), 19
parseFloat(), 19
parseInt(), 19
toFixed(), 20
toPrecision(), 20

strings, 15
indexOf() and lastIndexOf(), 16
length property, 16
replace(), 17
split(), 17
substr() and substring(), 16
toUpperCase() and toLowerCase(), 18
trim(), 18

variables, 9
Window object, 4

JavaScript library
jQuery mobile, 255
jQuery UI, 255

JavaScript Object Notation (JSON), 196
jQuery, 33

1 x and 2.x, 35
Ajax calls to server, 35
Ajax interactions, 34
Animation, 34

■INDEX

306

Form ilters (cont.)

ASP.NET Web Forms, 35
beneits, 33
client-side scripting, 33
data() method

get() method, 176–177
index() method, 176
length() method, 176–177
miscellaneous methods, 176
toArray() method, 176–177

deinition, 33
DOM Element manipulation, 35
efects and animation, Web Pages, 35
event handling, 34 (see also Event Handling)
fast and small, 34
feature-rich, 34
iltering (see Filtering)
HTML Document Traversing, 34
HTML DOM Element selection, 34
JavaScript code, 34
Method chaining, 54
ScriptResourceMapping, 42
selectors, 34
server control markup, 55
tree traversal (see Tree traversal)
Validation Plugin, 123
Visual Studio IDE

Code Formatting and Navigation, 43
Code Reference Directives, 45
ConirmName(), 46
debugging, 46
IntelliSense, 44

jQuery animations, 179
animate() method, 189

css() method, 191
custom animation efects, 190
DataList control, 190
dequeue() method, 191
fadeIn methods, 189
hover() method, 191
parameters, 189
queue() method, 191
ready() handler, 191
slideDown methods, 189
slideUp methods, 189
SQL Data Source control, 190

stop animation, 191
inish() method, 191
stop() method, 191

jQuery efects, 179
fading efects, 186

clearTimeout() method, 188
click() method, 188
fadeIn() method, 186–187
fadeOut() method, 186–187
fadeToggle() method, 186–188

fadeTo() method, 186–187
lashing wait message, 187
ProcessingHandler.ashx, 188
ProcessRequest() method, 188
progress indicator, 187
prop() method, 188
ready() handler, 188
Response.Write() method, 188
setTimeout() method, 188
XMLHttpRequest send()

method, 188
show and hide elements, 179

duration parameter, 179
easing parameter, 180
get() method, 182
hide() method, 179–180
index variable, 181
linear easing function, 180
panels variable, 181
ready() handler, 181
Repeater control, 181
setTimeout() method, 182
show() method, 180
ShowSlide() function, 182
swing easing function, 180
toggle() method, 180
web form application, 180

sliding efects, 182
click() method, 186
DataBind() method, 185
DataSource property, 185
FindControl() method, 184
hide() method, 186
ItemDataBound event handler, 184
Item Template, 183–184
menuItemGroup, 184–186
Page_Load event handler, 185
ready() handler, 185–186
Repeater control, 183–184
slideDown() method, 182–183, 186
slideToggle() method, 182–183
slideup() method, 182–183, 186
web form, 183

jQuery methods
$.get() method

append() method, 206
fetches employee data, 206
getJSON() method, 207
GET Request, 205
post() method, 207
SerializeObject() method, 206

$.getScript() method, 203
html() method, 204
ready() handler, 204
web form, 203

■INDEX

307

load() method, 200–201, 203
aspx markup, 201
clear() method, 203
HTML markup, 202
Page_Load web form, 202
Response.Write() method, 203

jQuery mobile, 255, 265, 268
ASP.NET MVC application, 268–269
browser feature support, 265
device-detection techniques, 278

MVC applications, 279
web forms, 278

device screen dimensions, 265
download and install, 267
edit view, 269, 273

address details page, 274
BeginForm() Html helper, 273
each() method, 275
evt.preventDefault(), 275
LabelFor() Html helper, 273
note pages, 275
Pop-up widget, 275
TextAreaFor() Html helper, 275
TextBoxFor() Html helper, 273
validation errors, 272

HomeController creation, 269–270
Edit() action method, 270
Entity Framework data model, 269
Index() action method, 270
SaveChanges() method, 270
Update() action method, 270

index view, 268, 271
Opera Mobile Emulator, 276
update view, 275
web applications, 265

Ajax navigation and transitions, 266
m-dot approach, 266
pages and dialogs, 266
responsive web design (RWD), 266
same version, 265
themes, 267
UI elements, 266
UI widgets and form elements, 266
version dedicated, 265

jQuery plugins, 231
extensions, 231
features, 232
JavaScript ile, 231
JavaScript prototypes, 239

Employee () function, 239
getEmploymentPeriod() method, 239–240
getTime() function, 240
Math.abs() function, 240
Math.ceil() function, 240
prototype property, 239

jazzy efects, 231
jQuery library, 231
plugin creation, 240

chaining, 243
coniguration, 248
DOM elements, 246
$ parameter, 244
plugin actions, 245
plugin code, 241
web form, 241

popupAd plugin, 250–251
adMarkup variable, 252
append() method, 252
$.extend() method, 252
fadeIn() method, 253
fadeOut() method, 253
hover() method, 252–253
options parameter, 251–252
popupAd() method, 253–254
show() method, 252
style properties, 253

PowerTip plugin, 232, 234
BoundField, 236
data-powertip attribute, 236
GridView control, 235–236
plugin registry, 233–234
powerTip() plugin, 237
TemplateField, 236
tooltips, 237
web form, 235

slideshow, 231–232
SQL server database, 231

jQuery recipes, 281
autocomplete text box, 294

datalist options, 295
GetTitles() method, 296
ready() handler, 296
Web Form markup, 295

cascading drop-down lists, 291
ADO.NET Entity Data Model, 291
$.ajax(), 293
countries and states, 291
GetStates() Action method, 292
GetStates() method, 294
HomeController Index()

method, 292
Index View Markup, 293
ready() handler function, 294

client-side sorting, 288
Index() action method, 289
Index View markup, 290
sort() method, 290

converting GridView data to CSV, 281
each() method, 284
ind() method, 284
ready() handler function, 284

■INDEX

308

jQuery methods (cont.)

<script> reference, 283
text() and replace() methods, 284
Web Form, 281

paging, 284
GetTotalRows() Action method, 286
GetTotalRows() and GetPageData()

methods, 285
HTML table, 285
Index View Markup, 285
renderPager() and getPageData()

functions, 286
Skip() and Take() methods, 285

uploading iles, 296
jQuery, 297
ProcessRequest() method, 298
Web Form, 297

jQuery selectors, 63
ASP.NET MVC applications, 96

contact form, 98
HTML helpers and HTML

elements, 97
Index()action methods, 98–99
Index view markup, 99
preventDefault() method, 101
ProcessForm() action methods, 99
ready() handler function, 101
selected selector, 101
Send() method, 99
text selector, 101

attribute selectors (see Attribute selectors)
basic ilters, 71, 73

addClass() method, 74
CSS class, 73
DropDownList, 73
removeClass() method, 74
switch statement, 74
types, 72
val() method, 74
zero-based index number, 74

basic selectors, 65
AlternateRow CSS class, 70
css() method, 70
employee data model class, 67
GridView control, 67
GridView ields dialog, 68
GridView ItemTemplate, 69
labels and text boxes,

markup, 68
preventDefault() method, 71
Row CSS class, 70
sample values, 70
SelectEmployees() method, 69
TextBox server controls, 66
ToList() method, 69
types, 66
val() method, 70

child ilters, 78, 82
irst child selector, 82
HighlightedRow CSS class, 81
last child selector, 82
nth child selector, 82
ready() method, 82
SQL data source control, 80–81
types, 79
VCR navigation, 80

content ilters, 83
form ilters (see Form ilters)
GridView control, 64
hierarchy ilters (see Hierarchy ilters)
and HTML elements, 65
types, 64
visibility ilters, 95

jQuery UI, 255
download builder, 256–257

content delivery network (CDN), 256
datepicker widget, 259
image folder, 258
jquery-ui.css ile, 257
library, 256
NuGet package, 256
ready() handler, 258

widgets, 255–256
accordion, 255
accordion (see Accordion widget)
autocomplete, 255
button, 256
datepicker, 256
dialog, 256
menu, 256
progressbar, 256
slider, 256
spinner, 256
tabs, 256
tooltip, 256

Json.NET, 198
DeserializeObject() method, 198
JsonConvert class, 198
JSON.parse() method, 198
JSON.stringify() method, 198
NuGet Package Manager, 198
SerializeObject() method, 199

L���������
Last() method, 163
Length() method, 176–177

M���������
Map() method, 163, 165
m-dot approach, 266, 278
Method chaining, 54

■INDEX

309

N, O���������
NextAll() method, 157–158
Next() method, 157–158
Not() method, 163

P, Q���������
Parent() method, 157–158
Parents() method, 157
Plugin creation

chaining
css() method, 243
myPlugin() method, 243

coniguration
$.extend() method, 249
myPlugin() method, 249
options parameter, 248

DOM elements
addclass() method, 247
each() method, 246–247
label control, 247
myplugin CSS class, 246

$ parameter, 244
plugin actions

click() method, 245
myPlugin() method, 245

plugin code
addClass() method, 242
GridView, 242
jquery.myplugin.js ile, 241
jquery.prototype object, 242
label control, 242
myPlugin() method, 242–243

PowerTip plugin
tooltips, 237

CSS rules, 238
customization, 237–238
fadeInTime option, 237
fadeOutTime option, 237
ofset option, 237
placement option, 237

PrevAll() method, 157–158
Prev() method, 157–158

R���������
RemoveClass() method, 160
REpresentational State

Transfer (REST), 220

Request.Browser object, 278
Responsive web design (RWD), 266, 278
RowDataBound Event Handler, 166

S���������
Searching, 168
Searching methods

empty() method, 171
ind() method, 169–170
hasClass() method, 170
order total calculation, 170
sample application creation, 170
text() method, 171
Web form, 169–170

Siblings() method, 157–158
Slice() method, 163–164

T���������
ToArray() method, 176–177
Tree traversal, 157

children() method, 157–158
closest() method, 157–158
nextAll() method, 157–158
next() method, 157–158
parent() method, 157–158
parents() method, 157
prevAll() method, 157–158
prev() method, 157–158
sample application creation, 159

children() method, 161
closest() method, 161
data validation, row updation, 160
EditCell and NonEditableRow CSS classes, 162
Error and ErrorCell CSS classes, 161
GridView, Update operation, 162
highlighting editable row, 161
hover() method, 159–160
parent() method, 161
preventDefault() method, 161
removeClass() method, 160
tree structures, 162
Update button, 161
Web form, 159

siblings() method, 157–158

U, V, W, X, Y, Z���������
User interface (UI), 255

■INDEX

310

Beginning jQuery 2 for
ASP.NET Developers

Using jQuery 2 with ASP.NET Web Forms

and ASP.NET MVC

Bipin Joshi

Beginning jQuery 2 for ASP.NET Developers: Using jQuery 2 with ASP.NET Web Forms and ASP.NET MVC

Copyright © 2013 by Bipin Joshi

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6304-3

ISBN-13 (electronic): 978-1-4302-6305-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Gwenan Spearing
Technical Reviewer: Alex hissen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

James DeWolf Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo
Copy Editor: Nancy Sixsmith
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com
www.apress.com/bulk-sales
http://www.apress.com
www.apress.com/source-code/

At the holy feet of Lord Shiva.

—Bipin Joshi

vii

Contents

About the Author .. xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Introduction ... xxi

Chapter 1: The JavaScript You Need to Know ■ ...1

Your First JavaScript Program ...1

Basic Programming Constructs ...5

Statements .. 6

Comments ... 6

Built-in Functions .. 6

Data Types ... 8

Variables .. 9

Arrays .. 10

Conditional Checking ... 12

Looping .. 14

Working with Strings ...15

Finding String Length ... 16

Finding a String within Another String .. 16

Extracting Part of a String ... 16

Replacing Part of a String .. 17

Getting an Array from a String ... 17

Changing String Character Casing ... 18

Removing White Spaces from the Beginning and End of a String ... 18

■ CONTENTS

viii

Working with Numbers ..18

Converting a String into a Number .. 19

Deciding the Number of Digits after the Decimal Point ... 20

Determining the Total Number of Digits in a Number .. 20

Working with Dates and Times ..20

Writing Functions ..22

Writing JavaScript Code in a Separate File ...26

Error Handling ...28

Summary ...31

Chapter 2: A First Look at jQuery ■ ..33

What Is jQuery? ...33

jQuery Is a JavaScript Library .. 33

jQuery Is Fast, Small, and Feature-Rich .. 34

jQuery Simplifies HTML Document Traversing, Event Handling, Animating, and Ajax Interactions 34

jQuery Is Designed to Change the Way You Write JavaScript .. 34

What Can jQuery Do for You? ..34

Selecting HTML DOM Elements ... 34

Handling Events ... 34

Manipulating DOM Elements and Their Content ... 35

Adding Fancy Effects and Animations to Web Pages ... 35

Making Ajax Calls to Server-Side Resources ... 35

jQuery 1.x and 2.x ...35

Adding jQuery to ASP.NET Projects ..35

Adding a Copy of the jQuery Library to a Local Folder .. 35

Adding the jQuery Library Using the jQuery NuGet Package ... 37

Referencing the jQuery Library from a Content Delivery Network (CDN) .. 38

Referencing jQuery from Web Forms and Views ...40

Visual Studio IDE and jQuery Code ..42

Code Formatting and Navigation ... 43

IntelliSense .. 44

■ CONTENTS

ix

Reference Directives ... 45

Debugging JavaScript and jQuery Code .. 46

Writing Your First jQuery Program in ASP.NET Web Forms ..47

Anonymous Functions ... 53

Chaining jQuery Methods .. 54

Server Control IDs and the jQuery ID Selector ... 54

Writing Your First jQuery Program in ASP.NET MVC ...55

Summary ...62

Chapter 3: ASP.NET Controls and jQuery Selectors ■ ..63

Overview of jQuery Selectors ..63

Basic Selectors ..65

Basic Filters ...71

Attribute Selectors ..74

Child Filters ...78

Content Filters ...83

Form Filters ...85

Hierarchy Filters ..91

Visibility Filters ..95

Using Selectors in ASP.NET MVC ...96

Summary ...101

Chapter 4: Event Handling ■ ...103

Overview of Event Handling ..103

Handling and Raising Events ... 105

Obtaining Event Information .. 106

Working with Common Events ..107

Window and Document Events .. 107

Mouse Events .. 111

Keyboard Events .. 117

Form Events ... 122

■ CONTENTS

x

Advanced Event Handling Concepts ..127

Stopping Default Event Behavior ... 128

Passing Event Data .. 129

Using on(), off, and trigger() .. 131

Summary ...133

Chapter 5: DOM Manipulation and Dynamic Content ■ ...135

CSS Classes and Styles ...135

Working with Attributes and Properties ..143

Changing the Contents of DOM Elements ...146

Adding and Removing DOM Elements ...147

Copying DOM Elements ...148

Creating an RSS Reader Widget ..149

Summary ...155

Chapter 6: Traversal and Other Useful Methods ■ ..157

Tree Traversal ..157

Using Tree Traversal Methods .. 159

Filtering ...163

Using Filtering Methods ... 165

Iterating and Searching ...168

Using each() and find().. 169

Accessing Custom Data Attributes ..171

Using data() Method .. 172

Other Useful Methods ..176

Summary ...177

Chapter 7: Effects and Animations ■ ..179

Showing and Hiding Elements ..179

Adding Sliding Effects ...182

Adding Fading Effects ...186

■ CONTENTS

xi

Performing Custom Animations ...189

Stopping the Animation ...191

Summary ...192

Chapter 8: Ajax Techniques ■ ...193

Ajax Overview ...193

Benefits of Using Ajax ...195

Performance .. 195

Interactive User Interface .. 195

User Experience ... 196

Understanding the JSON Format ...196

Understanding Json.NET ... 198

jQuery Ajax Methods ...199

Loading HTML Markup Using load() .. 200

Loading and Executing a Script Using $.getScript() .. 203

Making GET Requests Using $.get() .. 204

Making GET Requests Using $.getJSON() ... 207

Making POST Requests Using $.post() .. 207

Using the $.ajax() Method ...208

The jqXHR Object ... 210

Making Ajax Call to an ASMX Web Service .. 210

Making an Ajax Call to the Page Method ... 213

Making an Ajax Call to a WCF Service ... 214

Making an Ajax Call to a Controller Action ... 216

Making an Ajax call to a Web API ... 220

Summary ...229

Chapter 9: Creating and Using Plugins ■ ..231

Understanding jQuery Plugins ...231

Using the PowerTip Plugin ... 232

Customizing PowerTip Tooltips .. 237

■ CONTENTS

xii

Overview of JavaScript Function Prototypes ...239

Creating Your Own Plugin ..240

Defining a Basic Plugin .. 241

Supporting Chaining .. 243

Preserving the Meaning of $... 244

Adding Actions to Plugins .. 245

Iterating Through the Selected DOM Elements .. 246

Making a Plugin Configurable .. 248

Developing a popupAd Plugin..250

Summary ...254

Chapter 10: jQuery UI and jQuery Mobile ■ ..255

Overview of jQuery UI ..255

Downloading and Referencing jQuery UI ... 256

Using the Accordion Widget ... 259

Overview of jQuery Mobile ..265

Developing Mobile Web Applications ... 265

Downloading and Installing jQuery Mobile .. 267

Using jQuery Mobile ..268

Creating the Home Controller .. 269

Developing the Index View... 271

Creating the Edit View ... 273

Creating the Update View and Testing the Application .. 275

Detecting Mobile Device in ASP.NET ..278

Detecting a Mobile Device in Web Forms .. 278

Detecting a Mobile Device in MVC ... 279

Summary ...280

Chapter 11: Useful jQuery Recipes for ASP.NET Applications ■ ..281

Recipe 1: Converting GridView Data to CSV ..281

Recipe 2: Implementing Ajax Based Paging ..284

Recipe 3: Client-Side Sorting in a Table ..288

■ CONTENTS

xiii

Recipe 4: Creating Cascading Drop-Down Lists ..291

Recipe 5: Creating an Autocomplete Text Box ...294

Recipe 6: Uploading Files ..296

Summary ...299

Appendix: Learning Resources ■ ..301

Official jQuery Projects Websites ..301

jQuery Learning center .. 301

jQuery API Documentation ... 301

jQuery UI Documentation ... 301

jQuery Mobile Documentation ... 301

jQuery Official Blog .. 301

Author’s Website ...301

Articles on ASP.NET, HTML5 & jQuery .. 301

Other Websites ..302

JavaScript on the Mozilla Developer Network ... 302

Learning jQuery ... 302

jQuery For Designers .. 302

The jQuery Plugin Registry .. 302

Index ...303

xv

About the Author

Bipin Joshi is an author, blogger, and IT trainer who writes about seemingly unrelated topics: yoga and technology!
He conducts professional training programs to help developers learn .NET and web technologies better and faster.
Bipin has been programming since 1995 and has worked with the .NET framework since its inception. He is a
published author and has authored or co-authored more than a half-dozen books and numerous articles on .NET
technologies. He runs http://www.binaryintellect.net, a web site dedicated to articles, tutorials, and code
samples on ASP.NET and other cutting–edge web technologies. Bipin was a Microsoft Most Valuable Professional
(MVP) and a Microsoft Certiied Trainer (MCT) during 2002–2008. Bipin has also penned a few books on yoga.
Having embraced the yoga way of life, he enjoys the intoxicating presence of God and writes about yoga on his blog.
He can be reached at http://www.bipinjoshi.com.

http://www.binaryintellect.net
http://www.bipinjoshi.com

xvii

About the Technical Reviewer

Alex hissen has spent several years working as a Microsoft Certiied Trainer and
trained and coached many developers in small and large development teams.
Currently, he is principal architect for the largest insurance company in he
Netherlands. He started working with the .NET Framework in 2001 during the
early betas. Alex has written various articles for a number of magazines such as the
Dutch .NET Magazine, SDN Magazine, Oice Magazine and Visual Basic Group
and is a book reviewer for Apress.

He is a frequent speaker at events from community groups like Software
Developer Network, VBCentral, and DotNed. He also makes a regular appearance
at Microsoft events and is an international speaker for INETA. He likes just about
anything related to .NET, but tries to focus on web application development with a
mix of architecture, technology and security.

Alex is Microsoft Regional Director for he Netherlands and has received the
Microsoft MVP award for Visual C# since 2007.

xix

Acknowledgments

Although the name of an author alone appears on the book, many contribute to the process directly or indirectly.
I must express my deep feeling of devotion toward Lord Shiva. Without His blessings and yogic teachings, this would
not have been possible.

Writing a book is about teamwork. Input from the technical reviewer, Alex hissen, was very useful in rendering
the book accurate. he whole team at Apress was very helpful. hank you, team, for playing your part wonderfully.

	Beginning jQuery 2 for ASP.NET Developers
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

