
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Authors ... xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Chapter 1: Introduction to Groovy ■ ...1

Chapter 2: Groovy Basics ■ ..15

Chapter 3: More Advanced Groovy ■ ..57

Chapter 4: Introduction to Grails ■ ...89

Chapter 5: Building the User Interface ■ ..125

Chapter 6: Building Domains and Services ■ ...155

Chapter 7: Security in Grails ■ ..189

Chapter 8: Web 2.0—Ajax and Friends ■ ..217

Chapter 9: Web Services ■ ..241

Chapter 10: Reporting ■ ...257

Chapter 11: Batch Processing ■ ...279

Chapter 12: Deploying and Upgrading Grails Applications ■ ..291

Chapter 13: Introduction to Griffon ■ ..305

Index ...333

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Introduction to Groovy

Modern Java programmers live in the dissonance of two conflicting schools of thought. On one hand, dynamic
languages such as Groovy, JRuby, and Jython offer advances in expressive power. On the other, many Java purists
reject these languages as too impractical. Groovy with its new version addresses this conflict, establishing itself as
an expedient language.

Anachronistically, as programming languages evolve in a benign continuum, one or the other contender
language is impeached upon on its performance merits. However, with progressive enhancements of compilers,
runtime systems, or even processing power, it became apparent that the performance penalties were not so big
as envisaged. The contender language not only survived, but also had rather favorable consequences on the
programming sphere. It is now apparent that Groovy is not a fad that will fade away next year or the year after.

Beautifully-engineered Groovy seamlessly integrates with the existing Java libraries and aims at dynamicity to
Java without introducing a steep learning curve for Java developers. Groovy, however, is not alone in the new feature-
rich JVM landscape—other languages such as JRuby, Jython, Jaskell, Clojure, Scala are its contemporaries. All these
languages are designed to, when not leveraging Java, assuage some of Java’s problems. But there are a few factors that
ascertain Groovy’s position as first among equals. Groovy was designed from scratch to run on Java virtual machines,
as were Clojure and Scala, which gives Groovy, Clojure, and Scala few notches. Jython and JRuby were ported on
JVM. Jaskell is a JVM counterpart of pure functional language Haskell. Other than execution environment, all these
languages except Groovy lack Java’s immense libraries. Groovy is designed to be both source-compatible and binary-
compatible with Java. This means that a Groovy class could extend a Java class or implement a Java interface, and that
a Java class could extend a Groovy class or implement a Groovy interface. Grails, the leading next-generation Groovy-
based framework, is built on widely-held Spring and Hibernate frameworks. Griffon, another Groovy-based MVC
framework, brings a revolution in the world of desktop applications. Groovy’s source and binary compatibility with
Java, combined with two Groovy-powered next-generation frameworks supported by the starfleet of SpringSource,
strongly indicates that Groovy’s future is assured. It is only logical.

In this chapter, we will introduce the Groovy language, describe how to install it, and give you an idea of the benefits
of Groovy over Java by working through an example. Then we will give you a general overview of key features of the
Groovy language.

Installation
Groovy comes bundled as a .zip file or platform-specific installer for Windows, Ubuntu, and Debian (as well as
openSUSE until recent versions). This section explains how to install the zipped version, since it covers the most
platforms.

To install Groovy:

1. Download the most recent stable Groovy binary release .zip file from http://groovy.
codehaus.org/Download.

2. Uncompress groovy-binary-X.X.X.zip to your chosen location.

www.allitebooks.com

http://groovy.codehaus.org/Download
http://groovy.codehaus.org/Download
http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO GROOVY

2

3. Set a GROOVY_HOME environment variable to the directory in which you uncompressed the
.zip file.

4. Add the %GROOVY_HOME%\bin directory to your system path.

To validate your installation, open a console and type the following:

>groovy -v

You should see something like this:

Groovy Version: 2.0.0 JVM: 1.6.0_31 Vendor: Sun Microsystems Inc. OS: Windows 7

Groovy by Example
The best way to grasp the power and elegance of Groovy is to compare it to Java using an example. In the remainder
of this chapter, we will show you how to convert the simple Java class in Listing 1-1 into Groovy. Then we will
demonstrate how to adapt the code to use common Groovy idioms.

Listing 1-1. Simple Java Class

1. package com.apress.bgg;
2.
3. import java.util.List;
4. import java.util.ArrayList;
5.
6.
7. public class Todo {
8. private String name;
9. private String note;
10.
11. public Todo() {}
12.
13. public Todo(String name, String note) {
14. this.name = name;
15. this.note = note;
16. }
17.
18. public String getName() {
19. return name;
20. }
21.
22. public void setName(String name) {
23. this.name = name;
24. }
25.
26. public String getNote() {
27. return note;
28. }
29.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO GROOVY

3

30. public void setNote(String note) {
31. this.note = note;
32. }
33.
34. public static void main(String[] args) {
35. List<Todo> todos = new ArrayList<Todo>();
36. todos.add(new Todo("1", "one"));
37. todos.add(new Todo("2", "two"));
38. todos.add(new Todo("3","three"));
39.
40. for(Todo todo : todos) {
41. System.out.println(todo.getName() + " " + todo.getNote());
42. }
43. }
44. }

If you have any Java experience, you will recognize Listing 1-1 as a basic Todo JavaBean. It has getters and setters
for name and note attributes, as well as a convenience constructor that takes a name and note for initializing new
instances. As you would expect, this class can be found in a file named Todo.java in the com.apress.bgg package.
The class includes a main() method, which is required for Java classes to be executable and is the entry point into
the application. On line 35, the main() method begins by creating an instance of a java.util.ArrayList to hold
a collection of Todos. On lines 36–38, three Todo instances are created and added to the todos list. Finally, on
lines 40–43, a for statement iterates over the collection and prints the Todo's name and note to System.out.

Converting Java to Groovy
To convert the Java Todo class in Listing 1-1 to Groovy, just rename the file to Todo.groovy. That’s right, Groovy
derives its syntax from Java. This is often referred to as copy/paste compatibility. So congratulations, you are a Groovy
developer (even if you didn’t know it)! This level of compatibility, along with a familiar API, helps to reduce the Groovy
learning curve for Java developers. It also makes it easier to incorporate Java examples found on the Internet into a
Groovy application and then refactor them to make them more Groovylike, which is what we will do with Listing 1-1.

To run this Groovy application, from the command line, type the following:

> groovy com\apress\bgg\Todo.groovy

If you are coming from a Java background, you may be a little surprised that you did not need to first compile the
code. Here’s the Java equivalent:

> javac com\apress\bgg\Todo.java
> java com.apress.bgg.Todo

Running the Java application is a two-step process: Compile the class using javac, and then use java to run
the executable class in the JVM. But Groovy will compile to byte code at runtime, saving a step in the development
process and thereby increasing Groovy’s productivity. Groovy provides a lot of syntactic sugar and is able to imply
more than Java. You’ll see this in action as we make our Groovy application more Groovy by applying some of the
Groovy idioms.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO GROOVY

4

Converting a JavaBean to a GroovyBean
Let’s begin by simplifying the JavaBean, which could also be referred to as a Plain Old Java Object (POJO). Groovy
has the GroovyBean, which is a JavaBean with a simpler Groovy syntax, sometimes referred to as a Plain Old Groovy
Object (POGO). GroovyBeans are publicly scoped by default. Listing 1-2 shows our example using a GroovyBean.

Listing 1-2. Simple Example Using a GroovyBean

1. package com.apress.bgg;
2.
3. import java.util.List;
4. import java.util.ArrayList;
5.
6.
7. public class Todo {
8.
9. String name;
10. String note;
11.
12. public static void main(String[] args) {
13. List <Todo> todos = new ArrayList<Todo>();
14. todos.add(new Todo(name:"1", note:"one"));
15. todos.add(new Todo(name:"2", note:"two"));
16. todos.add(new Todo(name:"3", note:"three"));
17.
18. for(Todo todo : todos) {
19.
20. System.out.println(todo.name + " " + todo.note);
21. }
22. }
23. }

Listing 1-2 is significantly shorter than Listing 1-1, primarily because Groovy has a concept of native properties,
which means getters and setters do not need to be declared. By default, all class attributes—such as the name and
note attributes on lines 9 and 10—are public properties and automatically generate corresponding getters and setters
in the byte code. So if the class is used from Java code, or reflection is used to interrogate the class, you will see the
getters and setters. These properties also have a more intuitive usage model. They can be assigned or used directly,
as on line 20, where the name and note properties, rather than the getters, are used to generate the output. Also,
rather than needing to explicitly create a convenience constructor for initializing a GroovyBean, you can pass named
parameters in the constructor to initialize any properties you want, as in lines 14–16.

GroovyBeans have a very useful initialization feature called Named parameters. We can pass a Map to the
constructor of a bean that contains the names of the properties, along with an associated initialization value. Every
GroovyBean has this built-in Map constructor, which works by iterating the map object and calling the corresponding
property setter for each entry in the map.

Suppose we have a GroovyBean Book, which has the properties id and title. We can initialize such bean with a map:

map = [id: 1, title: "Beginning Groovy, Grails and Griffon"]
Book = new Book(map)
We can pass the map directly to the bean:
Book = new Book (id: 1, title: "Beginning Groovy, Grails and Griffon")

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO GROOVY

5

Simplifying the Code
Some of the syntax sugar included in the Groovy language is making semicolons, parentheses, and data typing
optional. Other interesting features to simplify code include implicit imports like the java.util.* package, common
methods like println() applying to all objects including Java objects, and more flexible strings. Listing 1-3 applies
these features to our example.

Listing 1-3. Simple Example Applying Syntactic Sugar, Implicit Imports, Common Methods,and String Features

1. package com.apress.bgg;
2.
3. public class Todo {
4.
5. String name
6. String note
7.
8. public static void main(String[] args) {
9. def todos = new ArrayList()
10. todos.add(new Todo(name:"1", note:"one"))
11. todos.add(new Todo(name:"2", note:"two"))
12. todos.add(new Todo(name:"3", note:"three"))
13.
14. for(Todo todo : todos) {
15.
16. println "${todo.name} ${todo.note}"
17. }
18. }
19. }

In Listing 1-3, under the package declaration we no longer need to import java.util.List, java.util.
ArrayList, and java.util.Iterator. These are implicitly imported since they are in the java.util.* package. Other
implicitly included packages are java.lang.*, java.net.*, java.io.*, groovy.lang.*, and groovy.util.*. Also
notice that, other than in the for statement (which we will clean up in the next round of refactoring), all the semicolons
were removed. On line 16, we used optional parentheses with the implicit println() method. But that is not the only
change to line 16. The println() method was modified to use Groovy’s GString format, which is similar to the Apache
Ant property format, rather than concatenating two strings. We’ll cover Groovy strings in Chapter 2. At this point, just
notice how much simpler this is to read. Line 9 has been changed to use optional typing. The variable todos is no
longer typed to List. Groovy uses “duck typing,” which means if it sounds like a duck and walks like a duck, it must
be a duck. Do you really care what the type of an object is, as long as you can pass it a message and it will handle the
request if it can? If the object cannot handle the request, you will receive a groovy.lang.MissingMethodException or
groovy.lang.MissingPropertyException. Of course, where you think typing is necessary, you always have the option
of explicitly typing variables.

Using Groovy Collection Notation and Closure
The next step in refactoring the example is to take advantage of Groovy’s collection and map notation, as well as
replace the ugly for statement with a more elegant closure. Listing 1-4 shows this version.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO GROOVY

6

Listing 1-4. Example with the Groovy Collection Notation and Closure

1. package com.apress.bgg;
2.
3. public class Todo {
4.
5. String name
6. String note
7.
8. public static void main(String[] args) {

9. def todos = [
10. new Todo(name:"1", note:"one"),
11. new Todo(name:"2", note:"two"),
12. new Todo(name:"3", note:"three")
13.]
14.
15. todos.each {
16. println "${it.name} ${it.note}"
17. }
18. }
19. }

Notice how the ArrayList was replaced with []. Again, this is just syntactic sugar; Groovy really is instantiating
an ArrayList. Similarly, we can create maps with the [:] syntax. To make the code more clean, we can initialize the
list without needing to call the add() method for each entry. Then to simplify the iteration, we call the each() method,
passing a closure that prints out the string. Notice that, by default, the iteration variable is it. Chapter 2 will provide
more explanations and examples of Groovy lists, maps, and closures.

Getting Rid of main()
One bit of Java ugliness left in our example is the main() method. After all these improvements, the main() method
now stands out. Fortunately, Groovy has a concept of scripts as well as classes, and we can turn this into a script,
removing the need for the main() method. To begin, the file must be renamed to something like Todos.groovy. This
is because a script will also be compiled to a class, and if we didn’t change the name, there would be a name clash
between the Todo class and the Todo script. Then we simply move the code that currently exists in the main() method
outside the Todo class. Note that, in Groovy, any code that is not inside a class is called a script. When the script is run,
it will behave the same as before. Listing 1-5 shows the script version.

Listing 1-5. Example as a Script

1. package com.apress.bgg;
2. public class Todo {
3. String name
4. String note
5. }
6. def todos = [
7. new Todo(name:"1", note:"one"),
8. new Todo(name:"2", note:"two"),
9. new Todo(name:"3", note:"three")
10.]

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO GROOVY

7

11. todos.each {
12. println "${it.name} ${it.note}"
13. }

Finally, we have elegant, easy-to-read code at a fraction of what we started with in Java. It should be obvious that
if we had started with the Groovy idioms to begin with, the Groovy approach would have been much more productive.

Groovy Language Key Features
This section gives a general overview of the language features that make Groovy a commendable extension to the Java
platform. A detailed treatment of all these features is given in subsequent chapters.

Assertion
An assertion is used to validate that an expected condition is true. Assertions in Groovy are more powerful than in
Java because assertion in Java works only on Boolean, whereas assertion in Groovy can accept any type. Assertions
in Java can be disabled, whereas assertions in Groovy are always executed and are recommended to be used in
the production code.

Listing 1-6. Assertion Example

def list = [1, 2, 'x'] // list of 3 elements
assert list.size() == 3

Annotations for AST Transformation
When the Groovy compiler compiles Groovy scripts and classes, the Groovy parser (the front end of the compiler)
creates an Abstract Syntax Tree (AST) before generating the final byte code for the class. The AST is the in-memory
representation of the source code, comprising class, method, property, statement, and variables. AST transformation
is the capability to add new code (methods, checks) into source code before the final byte code is generated. The objective
of the AST transformation is to let developers structure their code while focusing more on the business code rather
than on boilerplate code or cross-cutting concerns. Groovy provides annotations you can use to annotate code
structures for AST transformation. Here is one example of AST transformation using @Singleton annotation provided
by Groovy:

Listing 1-7. Using Annotations for AST Transformation

@Singleton
class SomeSingleton
{
//..
}

The @Singleton annotation creates a private constructor and a static method, which gives us an instance of the
Singleton through AST transformations.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO GROOVY

8

Builder
Generating the simplest XML document in Java is enormously difficult and time consuming. Groovy simplifies
generating XML by providing built-in builder classes that make it possible to build a tree-like structure from within the
code itself. That is, the structure of the code itself resembles the tree-like structure we are trying to build, thus making
the task of generating tree-like structure painless.

Listing 1-8. Tree-like Structure in XML

<employee>
<name>John Doe</name>
<gender>male</gender>
</ employee >

Listing 1-9. Groovy Code to Generate Preceding Tree-like Structure

def builder = new groovy.xml.MarkupBuilder()
builder.employee {
name 'John Doe'
gender 'male'
}

Closure
A Groovy closure is a block of reusable code within curly braces {}, which can be assigned to a property or variable, or
passed as a parameter to a method. The code within the curly braces is executed when the closure is invoked.

Listing 1-10. Using Closure

def name = "Chris"
def printClosure = { println "Hello, ${name}" }
printClosure()
name = "Joseph"
printClosure()

Here is the output:

Hello, Chris
Hello, Joseph

GDK
Groovy as a whole comprises Groovy language, libraries specific to Groovy-specific libraries, and GDK. The GDK is
Groovy’s extension to some of the existing classes in the JDK. You can access the full API specification at
http://groovy.codehaus.org/groovy-jdk.

Metaprogramming
Metaprogramming means writing a program that creates, queries, and manipulates other programs or (more often)
itself. Metaprogramming can occur at either compile-time or runtime.

http://groovy.codehaus.org/groovy-jdk

CHAPTER 1 ■ INTRODUCTION TO GROOVY

9

The covenant of compile-time metaprogramming is byte-code generation. In Groovy, compile-time
metaprogramming lets you modify the AST before generating final byte code. We illustrated an example of compile-
time metaprogramming in the “Annotations for AST Transformation” section. Runtime metaprogramming is
centered on enabling dynamic method-invocation and synthesis of methods and classes. In Groovy, runtime
metaprogramming is realized using meta-object protocol. The MOP, in Groovy, comprises categories, expandos,
and metaclasses.

Listing 1-11. Runtime Metaprogramming

String.metaClass.firstUpper = {−>

 return delegate[0].toUpperCase() + delegate[1..delegate.length() - 1]
}

println "iiii".firstUpper()

Listing 1-11 shows how you can add an additional method to a class on the fly. We added an additional method
to String class, which is immutable.

Here is the output:

Iiii

Native JSON Support
JSON (JavaScript Object Notation) is a lightweight data interchange format, used as an alternative to XML for
serializing and transmitting structured data over a network.

As a simple example, data about an employee can be written in JSON as follows:

Listing 1-12. Example of JSON

var person= {
 "name" : "John Doe",
 "age" : "40"
};

This creates an object that can be accessed using the employee variable. Groovy 1.8 introduced native JSON
support through JsonSlurper for reading JSON and JsonBuilder for writing JSON.

Listing 1-13. Reading JSON

import groovy.json.JsonSlurper
 def slurper = new JsonSlurper()
 def result = slurper.parseText('{"person":{"name":"John Doe","age":40,"cars":["bmw","ford"]}}')

 println result.person.name
 println result.person.age
 println result.person.cars.size()
 println result.person.cars[0]
 println result.person.cars[1]

CHAPTER 1 ■ INTRODUCTION TO GROOVY

10

Here is the output:

John Doe
40
2
bmw
ford

Native Support for Lists and Maps
Java has no language-level support for collections that it has for arrays. Groovy enhanced the Java collection classes by
adding and improving the declaration syntax and additional methods.

Groovy contains first-class constructs for List and Map. It also adds the new collection type—Range—at the
language level, which provides special-purpose syntax for managing ranges of values.

Listing 1-14. Support for Lists as a Language Feature

authors = ['Vishal', 'Chris', 'Joseph', 'Jim']
println authors
println authors[0]

Here is the output:

["Vishal", "Chris", "Joseph", "Jim"]
Vishal

Native Support for Regular Expression
Groovy builds regular expression handling right into the language via the =~ operator and matcher objects.

Object Orientation: Everything is an Object in Groovy
Unlike Java, everything in Groovy is an object; there are no primitive types. As a result, in Groovy, no auto boxing is
needed because everything is an object.

For example, Groovy executes 2 + 2 as 2.plus(2). The plus operator is implemented via the plus() method. In
Groovy, all operators are method calls. This makes it possible to apply object-orientation to operators; for example, it
is possible to overload/override any operator to give a new implementation.

String interpolation
String interpolation is the ability to substitute an expression or variable within a string. Java doesn’t support string
interpolation. You must manually concatenate the values. Here is an example of the type of code you need to write in Java:

Listing 1-15. String Concatenation in Java

String lastName= "Layka";
String fullname= "Vishal " + lastName;
System.out.println(fullname);

CHAPTER 1 ■ INTRODUCTION TO GROOVY

11

Listing 1-16. String Interpolation in Groovy

def lastName = "Layka"
def fullname = "Vishal ${lastName} " // string interpolation (also called Gstring)
println fullname

Static and Dynamic Typing
Groovy supports both static and dynamic typing when declaring variables. Dynamic typing can be achieved by using
the def keyword.

Listing 1-17. Dynamic and Optional Typing in Groovy

def var = 10
var = "It's a String"

The def keyword is optional in scripts.

Listing 1-18. Static and Optional Typing in Groovy

String s1 = " A String " // static
 s2 = "Another String " // optional typing :type is left to be determined at the time of assignment.

Static Type Checking
Groovy 2.0 introduces a @TypeChecked annotation, which annotates a method or a class that needs to be static type
checked. This type-checked mode, enabled through annotation, indicates the errors at compile time.

The static type checker is built using Groovy’s existing powerful AST transformation mechanisms. Being an
optional feature, you are not forced to use it if you don’t need it. To trigger static type checking, just use the
@TypeChecked annotation on a method or on a class to turn on checking.

Listing 1-19. Using TypeChecked Annotation

import groovy.transform.TypeChecked

void doIt() {}

@TypeChecked
void test() {

 dott ()//compilation error:cannot find matching method dott()

 }

Figure 1-1 illustrates the @Typechecked annotation in action in Eclipse.

CHAPTER 1 ■ INTRODUCTION TO GROOVY

12

Static Compilation
Groovy 2.0 also makes it possible to enable static compilation via @CompileStatic. This mode eliminates the runtime
overhead of dynamic dispatch.

Listing 1-20. Using CompileStatic Annotation

import groovy.transform.CompileStatic

@CompileStatic
int doubleIt(int num) {
 2* num
}

assert doubleIt(2) == 4

Using @CompileStatic will statically compile the code, and the generated byte code will run just as fast as java’s byte
code. Like the @TypeChecked annotation, @CompileStatic can annotate classes and methods, and @CompileStatic(SKIP)
can bypass static compilation for a specific method when its class is marked with @CompileStatic.

Optional Syntax
Now let’s look at the optional syntax.

Figure 1-1. Using the @TypeChecked annotation

CHAPTER 1 ■ INTRODUCTION TO GROOVY

13

Access Modifiers

In Groovy, classes without an access modifier are considered public. Attributes without an access modifier are considered
private. Methods without an access modifier are public. This is in contrast with Java, where methods and fields default to
package access. The reason Groovy chose to make the public access modifier the default is that it is the most frequently
used modifier, whereas package access is used far less frequently.

Checked Exceptions

In Groovy, checked exceptions need not be declared or caught, as Groovy automatically wraps exceptions as a
RuntimeException.

Getters and Setters

Similar to JavaBeans, Groovy introduces GroovyBeans, which support the notion of properties. Properties in
GroovyBeans look just like public fields, with no need to define explicit getters and setters.

Listing 1-21. Properties in Groovy

class Employee{
String name
}
Employee emp = new Employee()
emp.setName("John Doe")

println emp.name

Import Statements

By default, Groovy always imports the following packages:

groovy.lang.*
groovy.util.*
java.lang.*
java.util.*
java.util.regex.*
java.net.*
java.io.*
java.math.BigDecimal, java.math.BigInteger

Parentheses and Semicolons

Parentheses and semicolons are optional in Groovy. The following statements are valid in Groovy:

Listing 1-22. Optional Semicolons and Parentheses

println ("hello");
println "hello"

CHAPTER 1 ■ INTRODUCTION TO GROOVY

14

Return Type and the return Keyword

In Groovy, the return type for a method and the return keyword as the last statement in the method are optional. The
result value of the last statement is always returned from a method call.

Listing 1-23. Optional return Keyword

String greeting() {
result = "Hello world"
result
}
println greeting()

Listing 1-23 shows that return keyword is optional.
If the def keyword is used as a return type, Groovy dynamically figures out the return type during runtime

depending on the value returned.

Listing 1-24. Optional Return Type

def greeting() {
result = "Hello world"
result
}
println greeting()

Listing 1-24 shows that Return type is dynamic.
In both Listing 1-23 and Listing 1-24, the output is:

Hello world

Note ■ It appears that removing constructs like parentheses and semicolons is unessential and rather mundane, but

as you will see in domain-specific languages, one of the key areas of Groovy, removing these constructs brings code

close to the natural language.

Summary
The purpose of this chapter was to provide a preview of some key features of Groovy. We demonstrated how you can
dramatically reduce the code it takes to write the equivalent Java class in Groovy, while increasing the readability and
expressiveness. In the next chapter, we will continue exploring Groovy by looking at its basic language features.

15

Chapter 2

Groovy Basics

Chapter 1 introduced you to Groovy, its relationship to Java, and where the two languages differ. This chapter will
delve into the Groovy language. First, you will learn about Groovy scripts, including compiling and running Groovy
scripts using the command Line, Groovy Shell, and Groovy Console. Then we will focus on specific aspects of the
Groovy language: assertions, strings, regular expressions, collections, ranges, control structures, methods, closures,
and operators.

Scripts
You will be using the Groovy language to build domain objects, controllers, and services. But that isn’t the only way to
use Groovy. In addition to building classes, you can use Groovy as a scripting language. You will see detailed examples
of scripts in subsequent chapters. But here we’ll start with a simple script.

Listing 2-1 is an example of a very simple Groovy “Hello” script that takes an argument and uses it to print a
message.

Listing 2-1. A Simple Groovy Script: Hello.groovy

println "Hello ${args[0]}, may Groovy be with you."

Execute the script by typing the following on the command Line:

>groovy Hello "Luke Skywalker"

The script will output the results:

Hello Luke Skywalker, may Groovy be with you.

On execution of the script, Groovy generates a class with the same name as the script source file, including a
main method that contains the script source. The equivalent Java application would look like Listing 2-2.

Listing 2-2. The Java Version: HelloJava.java

package com.apress.beginninggrails.cli.scripts;
public class HelloJava {
 public static void main(String[] args) {
 System.out.println("Hello "+ args[0]+", may Java be with you.");
 }
}

CHAPTER 2 ■ GROOVY BASICS

16

Notice how much more verbose the Java version is compared to the Groovy version. With Java, you need to
define a class and a main method. You also must fully qualify the println method, add parentheses, and terminate it
with a semicolon. Then you need all of the closing curly braces. Even if you are a Java fan, you have to admit that the
Groovy example is a good bit shorter and easier to read! Furthermore, you don’t need to go through a separate step of
compiling Groovy before it is executed.

Using Script Functions
Like with most scripting languages, you can organize Groovy scripts into blocks of reusable code. In scripts, these
blocks are called functions. Listing 2-3 is an example of creating and using a function. It creates a simple function to
print a name and calls the function with two different names.

Listing 2-3. A Script Function:PrintFullName.groovy

def printFullName(firstName, lastName) {
println "${firstName} ${lastName}"
}
printFullName('Luke', 'SkyWalker')
printFullName('Darth', 'Vader')

This example defines the printFullName function, which takes two parameters. Next, the function is invoked
twice: once to print Luke Skywalker and again to print Darth Vader.

Compiling Groovy
In the previous examples, we let Groovy compile the script on the fly. Like with Java, you can compile Groovy to Java
byte code. Listing 2-4 illustrates compiling the Groovy script from Listing 2-1.

Listing 2-4. Compiling Groovy with groovyc

groovyc Hello.groovy

As you might expect, compiling Hello. Groovy results in Hello.class. Because Groovy compiles to Java bytecode,
you can use the Java command line to execute it.

Listing 2-5. Running the Groovy Program Using Java

java -cp %GROOVY_HOME%/embeddable/groovy-all-2.0.0.jar;. Hello "Luke Skywalker"

Here is the output:

Hello Luke Skywalker

Being able to run the Groovy program using Java proves it—Groovy is Java. If you look at Listing 2-5, you’ll see that
the only thing special required to run the Groovy compilers to include groovy-all-<version>.jar on the classpath.

The Groovy compiler is a joint compiler. It can compile Groovy and Java code at the same time. The joint
compiler first became available in Groovy 1.5 through a generous donation by JetBrains, the makers of IntelliJ IDEA.
The joint compiler allows you to compile Groovy and Java files with a single compile statement. Listings 2-6 and 2-7
are a Groovy file and a Java file, respectively, to demonstrate joint compilation.

CHAPTER 2 ■ GROOVY BASICS

17

Listing 2-6. A Sample Groovy File: Name.groovy

class Name
{
String firstName
String toString() { return "Hello ${firstName}, Java calling Groovy" }
}

Listing 2-7. A Sample Java File:SayHello.java

public class SayHello
{
 public static void main(String args[])
 {
 Name name = new Name();
 name.setFirstName(args[0]);
 System.out.println(name.toString());
 }
}

The Java class, SayHello, instantiates the Groovy class Name and sets the firstName property to a value passed in
on the command Line. Listing 2-8 illustrates compiling and executing the programs.

Listing 2-8. Joint Compile and Execute

groovyc *.groovy *.java
java -cp %GROOVY_HOME%/embeddable/groovy-all-2.0.0.jar;. SayHello "Luke"

Here is the output:

Hello Luke, Java calling Groovy

Compiling the Groovy and Java classes is accomplished by telling groovy to compile files matching the file pattern
ending in .groovy and .java. You run the program in the same way that you run any other Java program—just include
groovy-all-<version>.jar in the classpath.

Running Groovy
You can run Groovy scripts and classes through the command Line, Groovy Shell, or Groovy Console. Let’s look at
each technique.

Command Line

To run Groovy from the command line, you have several options:

Use Groovy directly by typing • groovy MyPgm at the command line.

If you are running a script, Groovy will generate a class with a main method containing the
script commands, compile the script, and execute it. If you don’t want to recompile the file
each time it is run, you can use the third option.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ GROOVY BASICS

18

Compile the file using groovy into a class and execute it using Java. You saw an example of this •
approach in the previous section.

If you’re in the Windows environment and Groovy was installed with the Windows installer •
with the PATHEXT option, you can omit the leading groovy and just type MyPgm.groovy.
The PATHEXT option associates files ending with .groovy to the Groovy runtime. On Unix
platforms, you can use a shebang at the top of the file to get the same result:

#!/usr/bin/groovy
println "Hello ${args[0]}, may Groovy be with you."

Groovy Shell

The Groovy Shell is an interactive command-line application (shell) that allows you to create, run, save, and load
Groovy scripts and classes. To start the Groovy Shell, run groovysh. Figure 2-1 illustrates using the Groovy Shell to
execute a simple script.

Figure 2-1. Using the Groovy Shell

As you can see, the script prints vishal. Then you see ===> null. As a matter of convention, Groovy always returns
the results of methods. In this case, there is no result, so null is returned.

The Groovy Shell contains a built-in help facility that you can use to learn more about the shell. To access it, type
help at the prompt. Figure 2-2 shows the help listing.

CHAPTER 2 ■ GROOVY BASICS

19

Groovy Console

The Groovy Console, shown in Figure 2-3, is a graphical version of the Groovy Shell. It is written using SwingBuilder, a
Groovy module that makes building a Swing user interface easier.

Figure 2-2. Groovy Shell help information

CHAPTER 2 ■ GROOVY BASICS

20

Figure 2-4 shows the Groovy Console with the output detached. You can start the Groovy Console in a number of
ways, depending on your environment and how you installed Groovy. The easiest way is to execute Groovy Console,
which is located in the Groovy bin directory.

Figure 2-3. Groovy Console

CHAPTER 2 ■ GROOVY BASICS

21

The console provides the ability to create, save, load, and execute classes and scripts. Some of the nice features of
the console are undo/redo and the ability to inspect variables. If you have to choose between using the Groovy Shell
and the Groovy Console, we recommend the Groovy Console.

Assertions
As a developer, if you have used JUnit (or any of the flavors of JUnit), you already have some idea what an assertion
is. An assertion is used to validate that an expected condition is true. If the expected condition is not true, a
java.lang.AssertionError is thrown. You test that the expected condition is true by using Groovy expressions.
Listing 2-9 illustrates the Java and Groovy versions of assert.

Listing 2-9. Java and Groovy Assertions

// Java assert
assert 1==2 : "One isn't Two";
// Groovy assert
assert 1==2 : "One isn't Two"

As you can see, the Groovy assert syntax is the same as Java’s, except for the ending semicolon. The message is to
the right of the expression and separated by a colon. As with Java, the message portion of the assert is optional.

Figure 2-4. Groovy Console with detached output

CHAPTER 2 ■ GROOVY BASICS

22

Tip ■ As a best practice, when you are using assertions, you should include a message. It will help the next person

maintaining your code to understand its intent.

When an assertion fails, Groovy throws a java.lang.AssertionError. Listing 2-10 is the output of the failing
Groovy assertion in Listing 2-9.

Listing 2-10. Assertion Failure

Caught: java.lang.AssertionError: One isn't Two. Expression: <1 == 2>
java.lang.AssertionError: One isn't Two. Expression: <1 == 2>
 at Hello.run<Hello.groovy:2>

D:\groovy\groovy-2.0.0>

Power Asserts
Groovy’s assert keyword just checks that the expression passed to it is true or false. If false, it just tells you the
expression was false, and gives the value of variables used in the expression, but nothing more. With Power Asserts,
the output of the assert provides a visual representation of the value of each sub expression of the expression being
asserted, as illustrated in Listing 2-11.

Listing 2-11. Power Assert Feature

assert new File('HelloWorld.txt') == new File('Hello.txt')

Caught: Assertion failed:

assert new File<'HelloWorld.txt'> == new File<'Hello.txt'>
 ¦ ¦ ¦
 HelloWorld.txt ¦ Hello.txt
 false

Assertion failed:

assert new File<'HelloWorld.txt'> == new File<'Hello.txt'>
 ¦ ¦ ¦
 HelloWorld.txt ¦ Hello.txt
 false

 at Hello.run<Hello.groovy:2>

Assertions are very handy and one of the cornerstones of good testing. They also do a great job of clarifying
intentions. You will see assertions in many of the examples throughout this book.

Strings
Groovy supports two kinds of strings: regular Java strings and GStrings. A string in Groovy is an instance of
java.lang.String if it is surrounded by single quotes or if it is surrounded by double or triple quotes with no
unescaped dollar sign ($).

CHAPTER 2 ■ GROOVY BASICS

23

GStrings
GStrings are an instance of groovy.lang.GString and allow placeholders to be included in the text. GStrings are not
a subclass of String because the String class is final and can’t be extended. A GString is just like a normal string, but
it allows the embedding of variables within it using ${..}. The curly braces are only required if the embedded variable
is a placeholder for an expression.

Groovy supports a concept found in many other languages such as Perl and Ruby called string interpolation.
String interpolation is the ability to substitute an expression or variable within a string. If you have experience
with Unix shell scripts, Ruby, or Perl, this should look familiar. Java doesn’t support string interpolation. You must
manually concatenate the values.

Listing 2-12 is an example of the type of code you need to write in Java.

Listing 2-12. Building Strings with Java

String name = "Jim";
String helloName = "Hello " + name;
System.out.println(helloName);

Listing 2-13. String Interpolation in Groovy/GString

1. str1= "Jim"
2. str2 = "Hello "
3. println "$str2$str1"

In Line 3, curly braces are not used because curly braces are only required if the embedded variable is a
placeholder for an expression.

When Groovy sees a string defined with double quotes or slashes and an embedded expression, Groovy
constructs an org.codehaus.groovy.runtime.GStringImpl instead of a java.lang.String. When the GString
is accessed, the expression is evaluated. Notice that you can include any valid Groovy expression inside the ${}
notation; this includes method calls or variable names.

Single Line Strings
Single line strings can be single quoted or double quoted. A string enclosed in single quotes is taken literally. Strings
defined with single quotes do not interpret the embedded expressions, as illustrated in Listing 2-14.

Listing 2-14. Single Quote String does not Interpret Embedded Expressions

name = "vishal"
s1 = 'hello $name'
println s1

Here is the output:

hello $name

Listing 2-15. Nested Double Quote in Single Quote

s1 = 'hello "vishal"'
println s1

CHAPTER 2 ■ GROOVY BASICS

24

Here is the output:

hello "vishal"

Strings defined using double quotes will interpret embedded expressions within the string, as illustrated in
Listing 2-16.

Listing 2-16. Double Quote Strings Interpret Embedded Expressions

def name = "vishal"
s1 = "hello $name"
println s1

Here is the output:

hello vishal

Listing 2-17. Nested Single Quote in Double Quote

s1 = "hello 'vishal'"
println s1

Here is the output:

hello 'vishal'

Multiline Strings
Groovy supports strings that span multiple lines. A multiline string is defined by using three double quotes or three
single quotes.

Multiline string support is very useful for creating templates or embedded documents (such as XML templates,
SQL statements, HTML, and so on). For example, you could use a multiline string and string interpolation to build the
body of an e-mail message, as shown in Listing 2-18. String interpolation with multiline strings works in the same way
as it does with regular strings: Multiline strings created with double quotes evaluate expressions, and single-quoted
strings don’t.

Listing 2-18. Using Multiline Strings

def name = "Jim"
def multiLineQuote = """
Hello, ${name}
This is a multiline string with double quotes
"""
println multiLineQuote
println multiLineQuote.class.name
def multiLineSingleQuote = '''
Hello, ${name}
This is a multiline string with single quotes
'''
println multiLineSingleQuote
println multiLineSingleQuote.class.name

CHAPTER 2 ■ GROOVY BASICS

25

Running the code in Listing 2-18 results in the following output:

Hello, Jim
This is a multiline string with double quotes

org.codehaus.groovy.runtime.GStringImpl

Hello, ${name}
This is a multiline string with single quotes

Java.lang.String

Slashy Strings
As mentioned earlier, slashes can be used to define strings. The slashy notation has a very nice benefit: Additional
backslashes are not needed to escape special characters. The only exception is escaping a backslash: \/. The slashy
notation can be helpful when creating a regular expression requiring a backslash or a path. Listing 2-19 illustrates the
difference between using regular quotes and slashes to define a regular expression to match a file system path.

Listing 2-19. Using Slashy Strings

def winpathQuoted='C:\\windows\\system32'
def winpathSlashy=/C:\windows\system32/
println winpathSlashy // C:\windows\system32
assert winpathSlashy ==~ '\\w{1}:\\\\.+\\\\.+'
assert winpathSlashy ==~ /\w{1}:\\.+\\.+/

Listing 2-19 defines two variables and assigns them to a directory path. The first variable definition,
winpathQuoted, uses the single-quote notation to define a string. Using the single-quote notation requires that the
embedded backslash be escaped using an additional backslash. The first assert statement, which tests the regular
expression defined using single quotes, also requires the addition of an extra backslash to escape a backslash.

Notice how using the slashy notation doesn’t require the additional backslashes.
Clearly, it is easier to write and read winpath Slashy, and the second regular expression is easier to write and read

as well. Regular expressions and the ==~ operator will be covered in more detail in the “Regular Expressions” section
later in this chapter.

Multiline Slashy Strings
Slashy strings can also span multiple lines. This is particularly useful for multiline regexs when using the regex
free-spacing comment style.

Listing 2-20. Using Multiline Slashy Strings

1. def name = "vishal"
2. def path= "c:/groovy"
3. def multilineSlashy = /
4. Hello $name
5. path= $path

CHAPTER 2 ■ GROOVY BASICS

26

6. dollar = $
7. path = c:\/groovy
8. /
9. println multilineSlashy

Here is the output:

Hello vishal
path= c:/groovy
dollar = $
path = c:/groovy

Let’s take a look at Listing 2-20 in a little more detail:

Line 1 defines a variable, • name, and assigns the value “vishal” to it.

Line 2 defines a variable, • path, and assigns the value “c:/groovy” to it.

Line 3 defines a variable, • multilineSlashy, and assigns a multiline string to it that includes up
to Line 8, between the slashes.

Line 4 has an expression, • $name, that is evaluated to vishal, as shown in the output.

Line5 has an expression, • $path, that is evaluated to c:/groovy, as shown in the output.

Line 6 has a • $ sign but it is not an expression, so it is displayed in the output.

Line 7 has a slash, which needs to be escaped.•

Dollar Slashy Strings
In multiline slashy strings, a slash still needs to be escaped. Moreover, in multiline slashy strings, an unescaped dollar
sign that is not an expression results in a MissingPropertyException, as illustrated in Listing 2-21.

Listing 2-21. MissingPropertyException in Multiline Slashy String

1. def name = "vishal"
2. def path= "c:/groovy"
3.
4. def multilineSlashy = /
5. Hello $name
6. path= $path
7. dollar = $test
8. path = c:\/groovy
9. /
10. println multilineSlashy

Caught: groovy.lang.MissingPropertyException: No such property: test for class:
Hello
groovy.lang.MissingProperyException: No such property: test for class: Hello
 at Hello.run<Hello.groovy:4>

CHAPTER 2 ■ GROOVY BASICS

27

In Listing 2-21, there is no such property as test; $test in Line 7 is interpreted as an expression, which results in a
MissingPropertyException.

Now, let us look at the code in the Listing 2-22, specifically Line 7.

Listing 2-22. Unescaped Dollar Sign in Multiline Slashy String

1. def name = "vishal"
2. def path= "c:/groovy"
3.
4. def multilineSlashy = /
5. Hello $name
6. path= $path
7. dollar = $ test
8. path = c:\/groovy
9.
10. /
11.
12. println multilineSlashy

This time Groovy does not interpret $ test in Line 7 as an expression, as there is an empty space between $ and
test, and renders the output as follows:

Hello vishal
path= c:/groovy
dollar = $ test
path = c:/groovy

With dollar slashy string, you are no longer required to escape slash with a preceding backslash (multiline slashy
strings require the slash to be escaped) and you can use $$ to escape a $ or $/ to escape a slash if needed, as illustrated
in Listing 2-23.

Listing 2-23. Using Dollar Slashy String

1. def name = "vishal"
2. def path= "c:/groovy"
3.
4. def dollarSlashy = $/
5. Hello $name
6. path= $path
7. dollar = $$test // escaping $test with a $
8. path = c:/groovy
9. /$
10. println dollarSlashy

Hello vishal
path= c:/groovy
dollar = $test
path = c:/groovy

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ GROOVY BASICS

28

Let’s take a look at Listing 2-23 in more detail:

Line 4 defines a • dollarSlashy string that includes up to Line 9.

Line 7 has a • $test, which had caused a MissingPropertyException in the case
of the multiline slashy string in Listing 2-21, which we now escape using a $.

Regular Expressions
Regular expressions, sometimes referred to regex, are a technique for identifying and manipulating text using a
pattern notation. They have been popular in scripting languages such as Unix shell scripting and Perl for a long time,
and were added to Java in version 1.4.

Note ■ Regular expressions are extremely robust and powerful. This section discusses Groovy’s support of regular

expressions. For a full exploration of regular expressions, refer to a book devoted to that subject. You can also find many

useful tutorials on the Internet.

A regular expression is a sequence of characters to create a pattern that is applied to a string. The pattern is
defined by a pattern language. Table 2-1 shows some of the more common patterns in the Java regular expression
language.

Table 2-1. Summary of Regular-Expression Constructs

Construct Matches

Characters

x The character x

\\ The backslash character

\t The tab character (\u0009)

\n The newline (line feed) character (\u000A)

\r The carriage-return character (\u000D)

\f The form-feed character (\u000C)

\e The escape character (\u001B)

Character Classes

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z] (subtraction)

(continued)

CHAPTER 2 ■ GROOVY BASICS

29

Construct Matches

Predefined Character Classes

. Any character (may or may not match line terminators)

\d A digit: [0–9]

\D A nondigit: [^0–9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A nonword character: [^\W]

Boundary Matchers

^ The beginning of a line

$ The end of a line

\b A word boundary

\B A nonword boundary

\A The beginning of the input

\G The end of the previous match

\Z The end of the input but for the final terminator, if any

\z The end of the input

Greedy Quantifiers

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactly n times

X{n,} X, at least n times

X{n,m} X, at least n but not more than m times

Reluctant Quantifiers

X?? X, once or not at all

X*? X, zero or more times

X+? X, one or more times

X{n}? X, exactly n times

X{n,}? X, at least n times

X{n,m}? X, at least n but not more than m times

Table 2-1. (continued)

(continued)

CHAPTER 2 ■ GROOVY BASICS

30

Groovy Regular Expression Operators
Groovy leverages Java’s regular expression support and makes it easier through Groovy’s String support. Groovy also
adds three convenience operators:

The match operator (• ==~)

The find operator (• =~)

The pattern operator (• ~string)

Match Operator

The match operator (==~) returns true if the regular expression exactly matches the subject.
Listing 2-24 shows some examples of using the match operator.

Listing 2-24. Using the Match Operator

1. assert "abc" ==~ 'abc'
2. assert "abc" ==~ /abc/
3. assert "abcabc" ==~ /abc/ // Fails – not an exact match
4. assert "abc" ==~ /^a.c/ // Starts with a, 1 char, ends with c
5. assert "abc" ==~ /^a../ // Starts with a, 2 chars
6. assert "abc" ==~ /.*c$/ // One or more chars end with c
7. assert "abc" ==~ ".*c\$" // Slashy string is better

Line 3 shows that unless it is an exact match, the match will fail (return false). Lines 4–6 illustrate a couple of ways
of defining a regular expression that matches the subject. Line 7 is another example of defining the regular expression
on Line6, except it uses double quotes instead of slashes. The important thing to note is that using the double quotes
requires the $ to be escaped using a (==~)backslash.

Construct Matches

Possessive Quantifiers

X?+ X, once or not at all

X*+ X, zero or more times

X++ X, one or more times

X{n}+ X, exactly n times

X{n,}+ X, at least n times

X{n,m}+ X, at least n but not more than m times

Logical Operators

XY X followed by Y

X|Y Either X or Y

(X) X, as a capturing group

Table 2-1. (continued)

CHAPTER 2 ■ GROOVY BASICS

31

Find Operator

The find operator (=~) returns a java.util.regex.Matcher. A matcher is a component that applies a regular
expression to a string. The result is a two-dimensional array of matches.

The first dimension contains the match, and the second dimension contains the groups within the match.
A group is defined within the regular expression using parentheses. In the example in Listing 2-25, the regular
expression defines four groups. When the expression is applied to a string, the groups are individually accessible. This
is useful for identifying and accessing portions of a string.

Listing 2-25. Using the Find Operator

1. def winpath=/C:\windows\system32\somedir/
2. def matcher = winpath =~ /(\w{1}):\\(\w+)\\(\w+)\\(\w+)/
3. println matcher
4. println matcher[0] // ["C:\windows\system32\somedir", "C", "windows",
5. // "system32", "somedir"]
6. println matcher[0][1] // C
7. def newPath = matcher.replaceFirst('/etc/bin/')
8. println newPath // /etc/bin

Here is the output:

java.util.regex.Matcher[pattern=(\w{1}):\\(\w+)\\(\w+)\\(\w+) region=0,27
lastmatch=]
["C:\windows\system32\somedir", "C", "windows", "system32", "somedir"]
C
/etc/bin/

Line 1 defines winpath as a directory path string. Line 2 applies a regular expression to the winpath variable
using the find operator and returns a java.util.regex.Matcher. The regular expression is set up as a series of
group-capturing expressions. Referring to Table 2-1, you can see that \w is a word character and the + means one or
more. When the regular expression matches the variable, the individual group values are available from the matcher.
When Line 3 is invoked, you can see that matcher is in fact a java.util.regex.Matcher and the pattern matches.
Lines 4 and 5 illustrate printing the contents of the first match using an index notation. In this example, there will be
only one match. If winpath had been a multiline string with multiple directory paths, then matcher would have had
multiple matches. Line 6 shows accessing the first group within the match using a second index. Now that you have a
match, you can start applying java.util.regex.Matcher methods. Line 7 is an example of replacing the first match
with a new value. When you replace a match, it returns a new string.

Pattern Operator

The pattern operator (~string) transforms a string into a pattern (java.util.regex.Pattern), which is a compiled
regular expression. When you plan to use a regular expression over and over, consider creating a pattern. Reusing a
pattern will give the application a performance boost.

Listing 2-26. Creating and Using a Pattern

1. def saying = """Now is the time for all good men (and women) to come to the aid
2. of their country"""
3. def pattern = ~/(\w+en)/
4. def matcher = pattern.matcher(saying)

CHAPTER 2 ■ GROOVY BASICS

32

5. def count = matcher.getCount()
6. println "Matches = ${count}"
7. for(i in 0..<count) {
8. println matcher[i]
9. }

Here is the output:

Matches = 2
["men", "men"]
["women", "women"]

Lines 1 and 2 assign a famous quote to the saying variable. Line 3 defines a regular expression pattern that should
find the words that end in en, such as men and women.

Caution ■ Notice the space between the = and ~ for the pattern operator in Listing 2-26. Without the space, it would be

the find operator.

Line 4 applies the pattern to the saying and returns a matcher that contains the results.
Lines 5 and 6 print the number of matches. Lines 7–9 loop through and print the matches.

Common Uses of Regular Expressions
By now, you are starting to get an idea of how regular expressions work. Now let’s see how they can be applied in
real-world scenarios. It is common for web applications to allow the user to enter personal information such as a
telephone number. Two common tasks are to check that the phone number is a valid format and to parse the phone
number into the individual parts. Listing 2-27 is an example of using the match operator to validate a phone number.

Listing 2-27. Validating a Phone Number

def phoneValidation = /^[01]?\s*[\(\.-]?(\d{3})[\)\.-]?\s*(\d{3})[\.-](\d{4})$/
assert '(800)555-1212' ==~ phoneValidation
assert '1(800) 555-1212' ==~ phoneValidation
assert '1-800-555-1212' ==~ phoneValidation
assert '1.800.555.1212' ==~ phoneValidation

In this example, you see the same phone number in four different valid formats. The regular expression to
validate the phone number format is assigned to the variable phoneValidation. The match operator is used to validate
the phone numbers by applying the regular expression to the phone number. If the phone number is valid, the match
operator returns true.

Another common task is parsing a phone number so that the values can be put into a domain class. Listing 2-28
illustrates parsing the phone number into the individual parts and loading it in the domain class.

Listing 2-28. Parsing the Phone Number

class Phone {
String areaCode
String exchange
String local
}

CHAPTER 2 ■ GROOVY BASICS

33

def phoneStr = '(800)555-1212'
def phoneRegex = ~/^[01]?\s*[\(\.-]?(\d{3})[\)\.-]?\s*(\d{3})[\.-](\d{4})$/
def matcher = phonePattern.matcher(phoneStr)
def phone = new Phone(
areaCode: matcher[0][1],
exchange: matcher[0][2],
local: matcher[0][3])
println "Original Phone Number: ${phoneStr}"
println """Parsed Phone Number\
\n\tArea Code = ${phone.areaCode}\
\n\tExchange = ${phone.exchange}\
\n\tLocal = ${phone.local}"""

In this example, the Phone object, the phone number to parse (phone1), and the phone regular expression
pattern (phoneRegex) are defined. Next, the phone pattern is applied to the phone number to be parsed. The pattern
is defined with groups, which allows the regular expression to be used to parse the phone number into the individual
parts. The construction of the Phone object illustrates accessing the individual parts using the second index. Lastly, we
print out the phone number to prove that the parsing worked.

Collective Datatypes
Groovy supports a number of different collections, including arrays, lists, maps, ranges, and sets. Let’s look at how to
create and use each of the collection types.

Arrays
A Groovy array is a sequence of objects, just like a Java array. Groovy makes working with arrays a little easier, but you
have the same limitations as with Java arrays.

Listing 2-29. Creating and Using Arrays

1. def stringArray = new String[3]
2. println stringArray.size()
3. stringArray[0] = "Chris"
4. println stringArray // {"Chris", null, null}
5. stringArray[1] = "Joseph"
6. stringArray[2] = "Jim"
7. println stringArray // {"Chris", "Joseph", "Jim"}
8. println stringArray[1] // Joseph
9. stringArray.each { println it} // Chris, Joseph, Jim
10. println stringArray[-1..-3] // ["Jim", "Joseph", "Chris"]

Line 1 creates a string array of size 3. Lines 3–8 use an index to access the array. Line9 illustrates using the each()
method to iterate through the array. That deserves a second look. Yes, the each() method is available on the array,
which is very convenient. The each() method is used to iterate through and apply the closure on every element.
A closure always has at least one argument, which will be available within the body of the closure via the implicit
parameter it if no explicit parameters are defined. Both the each() method and the it variable are discussed in
detail in the Closures section of this chapter. Line 10 also shows something interesting—it uses a range, which will be
discussed shortly, to access the array. In this case, the example goes one step further and shows accessing the array
from left to right.

CHAPTER 2 ■ GROOVY BASICS

34

Lists
A Groovy list is an ordered collection of objects, just as in Java. It is an implementation of the java.util.List interface.
In the course of building Grails applications, it is common to see lists returned from the controllers and services.
Listing 2-30 illustrates creating a list and common usages.

Listing 2-30. Creating and Using Lists

1. def emptyList = []
2. println emptyList.class.name // java.util.ArrayList
3. println emptyList.size // 0
4.
5. def list = ["Chris"] // List with one item in it
6. // Add items to the list
7. list.add "Joseph" // Notice the optional () missing
8. list << "Jim" // Notice the overloaded left-shift operator
9. println list.size // 3
10.
11. // Iterate over the list
12. list.each { println it } // Chris Joseph Jim
13.
14. // Access items in the list
15. println list[1] // Joseph // Indexed access
16. list[0] = "Christopher"
17. println list.get(0) // Christopher
18.
19. list.set(0, "Chris") // Set the 0 item to Chris
20. println list.get(0) // Chris
21.
22. list.remove 2
23. list-= "Joseph" // Overloaded - operator
24. list.each { println it } // Chris
25.
26. list.add "Joseph"
27. list+="Jim" // Overloaded + operator
28. list.each { println it } // Chris Joseph Jim
29. println list[-1] // Jim

On Line 1 of Listing 2-30, an empty list is created by assigning a property the value of [] . Line 2 prints out the
list’s class name so that you can see that it is a java.util.ArrayList. Line 3 prints the list’s size, which is 0. Lines 5–9
create a list with an item already in it and show two ways to add items to the list.

Line 12 iterates over the list, invoking the closure to print out the contents. The each() method provides the
ability to iterate over all elements in the list, invoking the closure on each element. This is an example of using
a closure as a parameter to a method. Lines 15–17 illustrate using an index to access a list. Lists are zero-based.
Line 15 shows accessing the second item in the list. Line 16 shows using an index to assign position() the value
“Christopher”. Line 17 accesses the list using the get() method. Lines19–20 use the set() method to assign the
first position in the list and then print it out. Lines 22–24 remove items from the list using the remove() method
and the minus operator. Lines 26–28 add items to the list using the add() method and the plus operator. Line 29 is
interesting—it uses the index value -1. Using a negative index value causes the list to be accessed in the opposite
order, or from last to first.

CHAPTER 2 ■ GROOVY BASICS

35

Maps
A Groovy map is an unordered collection of key/value pairs, where the key is unique, just as in Java. It is
an implementation of java.util.Map. By default, unless you specify otherwise, a Groovy map is a
java.util.LinkedHashMap. If you are familiar with LinkedHashMap maps, you know that they are ordered by insert.
If you need a map other than a LinkedHashMap, you can create any type of map by instantiating it; for example,
def aTreeMap = new TreeMap(). In general, we encourage you to think of it as a regular map.

Listing 2-31 illustrates creating maps and common usages.

Listing 2-31. Creating and Using Maps

1. def emptyMap = [:]
2. // map.class returns null, use getClass()
3. println emptyMap.getClass().name //java.util.LinkedHashMap
4. println emptyMap.size() // 0
5.
6. def todos = ['a':'Write the map section', 'b':'Write the set section']
7. println todos.size() // 2
8. println todos["a"] // Write the map section
9. println todos."a" // Write the map section
10. println todos.a // Write the map section
11. println todos.getAt("b") // Write the set section
12. println todos.get("b") // Write the set section
13. println todos.get("c", "unknown") // unknown, Notice "c" wasn't defined
14. // and now it is
15. println todos // ["a":"Write the map section", "b":"Write the set section",
16. // "c":"unknown"]
17.
18. todos.d = "Write the ranges section"
19. println todos.d // Write the ranges section
20. todos.put('e', 'Write the strings section')
21. println todos.e // Write the strings section
22. todos.putAt 'f', 'Write the closure section' // Notice () are optional
23. println todos.f // Write the closure section
24. todos[null] = 'Nothing Set' // Using null as a key
25. println todos[null] // Nothing set
26.
27. // Print each key/value pair on a separate Line
28. // Note: it is an implicit iterator
29. todos.each { println "Key: ${it.key}, Value: ${it.value}" }
30. // Print each key/value pair on a separate Line with index
31. todos.eachWithIndex { it, i -> println "${i} Key: ${it.key},Value: ${it.value}" }
33. // Print the value set
34. todos.values().each { println it }

In Line 1, an empty map is created by assigning a property the value [:]. Compare the creation of an empty list to
the creation of an empty map. An empty list is created using the value []; an empty map is created using the value [:].
You can see from Line 2 that the map is implemented as a java.util.LinkedHashMap.

Line 6 illustrates defining a map with multiple entries. When using the square bracket notation, the colon
separates the key from the value. Line 6 is [key1: value1,key2 : value2].

CHAPTER 2 ■ GROOVY BASICS

36

Lines 8–16 show several different techniques for accessing the map. The most interesting is Line 10. It shows
using the key as a property to the map. You can use this technique to read an item from the map and put an item into
the map.

Lines 18–25 show several different techniques for putting items into the map. You can see that they mirror the
techniques used on lines 8–16.

Lines 29, 31, 32, and 34 illustrate iterating. Line 29 iterates over the map to print the key and value. Lines 31 and
32 iterate with an index. Line 34 iterates over the map values.

Ranges
A range is a list of sequential values. Logically, you can think of it as 1 through 10 or a through z. As a matter of fact,
the declaration of a range is exactly that: 1..10, or 'a'.'z'. A range is a list of any objects that implements java.lang.
Comparable. The objects have next() and previous() methods to facilitate navigating through the range. This means
that with a bit of work, it is possible to use your own Groovy objects within a range. Listing 2-32 illustrates some of
things you can do with ranges.

Listing 2-32. Creating and Using Ranges

1. def numRange = 0..9
2. println numRange.size() // 10
3. numRange.each {print it} // 0123456789
4. println ""
5. println numRange.contains(5) // true
6.
7. def alphaRange = 'a'..'z'
8. println alphaRange.size() // 26
9. println alphaRange[1] // b
10.
11. def exclusiveRange = 1..<10
12. println exclusiveRange.size() // 9
13. exclusiveRange.each {print it} // 123456789
14. println ""
15. println exclusiveRange.contains(10) // false
16.
17. def reverseRange = 9..0
18. reverseRange.each {print it} // 9876543210

Lines 1, 7, 11, and 17 illustrate defining ranges. Line 1 defines an inclusive range of numbers. Line 7 defines
an inclusive range of lowercase letters. Line 11 defines an exclusive list of numbers. The range results in a range
of numbers 1–9, excluding 10. Line 17creates a range in reverse order, 9 through 0.Frequently, ranges are used for
iterating. In Listing 2-32, each() was used to iterate over the range. Listing 2-33 shows three ways you could use a
range to iterate: one Java and two Groovy.

Listing 2-33. Iterating with Ranges

1. println "Java style for loop"
2. for(int i=0;i<=9;i++) {
3. println i
4. }
5.

CHAPTER 2 ■ GROOVY BASICS

37

6. println "Groovy style for loop"
7. for (i in 0..9) {
8. println i
9. }
10.
11. println "Groovy range loop"
12. (0..9).each { i->
13. println i
14. }

Listing 2-33 starts off by showing a classic Java style for loop. Lines 7–9 are an example of the same loop using the
Groovy style for loop. The for loop syntax is discussed in detail in the next section. Lines 12–14 illustrate yet another
technique for looping, by using a range and the each() method. The each() method is used to iterate through and
apply the closure on every element. A closure always has at least one argument, which will be available within the
body of the closure via the implicit parameter it if no explicit parameters are defined. Both the each() method and it
variable are discussed in detail in Closures section of this chapter.

Sets
A Groovy set is an unordered collection of objects, with no duplicates, just as in Java. It is an implementation of
java.util.Set. By default, unless you specify otherwise, a Groovyset is a java.util.HashSet. If you need a set other
than a HashSet, you can create any type of set by instantiating it; for example, def aTreeSet = new TreeSet(). In
general, we encourage you to think of it as a regular set. Listing 2-34 illustrates creating sets and common usages.

Listing 2-34. Creating and Using Sets

1. def emptySet = [] as Set
2. println emptySet.class.name // java.util.HashSet
3. println emptySet.size() // 0
4.
5. def list = ["Chris", "Chris"]
6. def set = ["Chris", "Chris"] as Set
7. println "List Size: ${list.size()} Set Size: ${set.size()}" // List Size: 2 Set
 Size: 1
8. set.add "Joseph"
9. set << "Jim"
10. println set.size() // 3
11. println set // ["Chris", "Jim", "Joseph"]
12.
13. // Iterate over the set
14. set.each { println it }
15.
16. set.remove 2
17. set-= "Joseph" // Overloaded - operator
18. set.each { println it } // Chris
19. set+= "Joseph"
20. set+= "Jim"
21. set.each { println it } // Chris Joseph Jim
22.
23. // Convert a set to a list

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ GROOVY BASICS

38

24. list = set as List
25. println list.class.name // java.util.ArrayList
26. println set.asList().class.name // java.util.ArrayList
27. println set.toList().class.name // java.util.ArrayList

Creating an empty set is similar to creating an empty list. The difference is the addition of the as Set clause.
Lines 5–7 illustrate that a list allows duplicates and a set doesn’t. Lines 8–21 shouldn’t be any surprise. One of the
important differences between a list and a set is that a list provides indexed-based access and a set doesn’t. Lines 24
and 26 show two different techniques to convert a set into a list.

Control Structure
Groovy provides the same control structures as in Java and makes them simpler. The control structures evaluate the
expression and determine if the result of the expression is true or false, and on the basis of that alters the flow
of control.

Groovy Truth
In Groovy, any expression can be evaluated, unlike in Java where only boolean variables and expressions can evaluate
to true or false. In Groovy truth, null Object references evaluate to false. Non-empty collections, arrays, and maps,
strings with non-zero length, and non-zero numbers will all evaluate to true. This is very helpful, especially with
strings and collections, as illustrated in Listing 2-35.

Listing 2-35. Null Check for Collections and Strings in Java

if (collection != null && !collection.isEmpty()) { ... } // collection
if (str != null && str.length() > 0) { ... }// string

Listing 2-36. Null Check for Collections and Strings in Groovy

if (collection) { ... } // collection
if (str) { ... }// string

In Groovy, it is possible to provide a method for coercion to boolean in your own classes. Listing 2-37 illustrates
how Groovy offers the ability to coerce SomeClass instances to true or false, using the implementation of the boolean
asBoolean() method.

Listing 2-37. Using asBoolean() Method

class SomeClass{
boolean value
boolean asBoolean() { value }
}
assert new Test(value: true)
assert !new Test(value: false)

CHAPTER 2 ■ GROOVY BASICS

39

Logical Branching
Groovy has three conditionals: the if statement, the ternary operator, and the switch statement. The if statement
and ternary operator are the same as in Java, though Groovy enhances the ternary operator with the Elvis operator.
The Elvis operator is discussed in Chapter 3. The switch statement is more powerful in Groovy than in Java, in that
the switch accepts any kind of object (unlike Java), as illustrated in Listing 2-38.

Listing 2-38. Using switch

def x = 3.14
def result = ""

switch (x) {
 case "foo": result = "String"

 case [4, 5, 6]:
 result = "List"
 break

 case 12..30:
 result = "Range"
 break

 case Integer:
 result = "Integer"
 break

 case Number:
 result = "Number"
 break

 default:
 result = "Default"
}

assert result == "Number"

Looping
In addition to supporting Java for loops, Groovy also provides a much simpler for loop that works with any kind of
array collection, as illustrated in Listing 2-39.

Listing 2-39. Using the for Loop

for (i in 'Hello')Iterate over a string
 println i

for (i in 0..10) //Iterate over a range
 println i

CHAPTER 2 ■ GROOVY BASICS

40

for (i in [1,2,3,4]) //Iterate over a list
 println i

authors = [1:'Vishal', 2:'Jim', 3: 'Chris', 4:'Joseph']

for (entry in map) //Iterate over a map
 println entry.key + ' ' + entry.value

Listing 2-39 shows the for loop for iterating over string, range, list, and map using the in operator as a shortcut
for the contains method in a collection.

Exception Handling
Exception handling in Groovy is the same as in Java. Just as in Java, you can specify a try-catch-finally sequence of
blocks, or just try-catch, or just try-finally. In addition to that, in Groovy, declarations of exceptions in the method
signature are optional, even for checked exceptions, and a type declaration is optional in the catch expression.

In Groovy it is possible for try/catch/finally blocks to return a value when they are the last expression in a
method or a closure. There is no need to explicitly use the return keyword inside these constructs, as long as they are
the latest expression in the block of code. If an exception is thrown in the try block, the last expression in the catch
block is returned instead. finally, blocks don’t return any value, as illustrated in Listing 2-40.

Listing 2-40. Returning Value from try/catch/finally

def method(bool) {
 try {
 if (bool) throw new Exception("foo")
 1
 } catch(e) {
 2
 } finally {
 3
 }
}

assert method(false) == 1
assert method(true) == 2

In Groovy, it is also possible to define several exceptions to be catch and treated by the same catch block with the
multi-catch block, as illustrated in Listing 2-41.

Listing 2-41. Multi-catch Block

try {
 /* ... */
} catch(IOException | NullPointerException e) {
 /* one block to handle 2 exceptions */
}

CHAPTER 2 ■ GROOVY BASICS

41

Methods
Listing 2-42 illustrates defining a method in Groovy the Java way.

Listing 2-42. Defining aMethod the Java Way

public String hello(String name) {
return "Hello, " + name;
}

Listing 2-43 illustrates defining the method using the Groovy idiom.

Listing 2-43. Defining aMethod Using the Groovy Idiom

def hello(name) {
"Hello, ${name}"
}

The Groovy way of defining a method is a bit more compact. It takes advantage of a couple of Groovy’s optional
features:

The return type and the return statement are not included in the body of the method. Groovy •
always returns the results of the last expression—in this case, the GString “Hello, . . .".

The access modifier public is not defined. By default, unless you specify otherwise, Groovy •
defaults all classes, properties, and methods to public access.

Note ■ Strictly speaking, the Groovy version of the hello method (Listing 2-43) is not exactly like the Java version

(Listing 2-42). The corresponding Java signature of the method would be: public Object hello (Object name). But,

functionally, they are almost the same.

Closures
In Old Times on the Mississippi, Mark Twain wrote: “When I was a boy of 14, my father was so ignorant I could hardly
stand to have the old man around. But when I got to be 21, I was astonished at how much the old man had learned in
seven years.”

Functional programming is the old man who comes to the rescue when learning to write robust concurrent
software. Functional programming gives you the right foundation to think about concurrency. The three keystones
of this foundation are referential transparency, higher-order functions, and immutable values. Understanding these
key elements is crucial to understanding closures (and other functional features recently introduced in Groovy)
and to that end we will give a brief introduction to functional programming. This introduction is by no means
comprehensive, but sufficient enough to see Groovy in the functional light.

Groovy is not a pure functional language like Haskell, but we can still apply functional principles with it.
Functional programming is built on the premise of pure functions. In mathematics, functions are pure in that they
lack side effects. Consider the classic function sin(x): y = sin(x). No matter how many times sin(x) is called, no global
or contextual state is modified internally by sin(x). Such a function is pure, free of side effects and oblivious to the
context. This obliviousness to the surrounding context is known as referential transparency. If no global state is
modified, concurrent invocation of the function is steadfast.

CHAPTER 2 ■ GROOVY BASICS

42

In functional programming, functions are first-class citizens, meaning functions can be assigned to variables,
functions can be passed to other functions, and functions can be returned as values from other functions. And such
functions, which take functions as arguments or return a function, are called higher-order functions.

Referential transparency, higher-order functions, and immutable values together make functional programming
a better way to write concurrent software. Though functional languages are all about eliminating side effects, a
language that never allowed for side effects would be useless. As a matter of fact, introducing side effects is crucial
to any language. All functional languages have to provide mechanisms for introducing side effects in a controlled
manner because even though functional languages are about pure programming, a language that does not sanction
side effects would be useless, as input and output is essentially the ramification of side effects. One of the techniques
to introduce side effects in a controlled manner is closure. A closure definition in Groovy follows the syntax:

{ [closure parameters ->] closure body}

Where [closure parameters->] is an optional comma-delimited list of arguments, and closure body can be an
expression as well as 0 or more Groovy statements. The arguments look similar to a method’s parameter list, and these
arguments may be typed or untyped.

A Groovy closure is a block of reusable code within curly braces {}, which can be assigned to a property or a
variable, or passed as a parameter to a method. A closure is executed only when it is called—not when it is defined.
Listing 2-44 illustrates this.

Listing 2-44. Calling a Closure

1. def closureVar = {println 'Hello world'}
2. println "closure is not called yet"
3. println " "
4. closureVar.call()

Line 1 has the closure with no parameters and consists of a single • println statement. As
there are no parameters, the parameter List and the -> separator are omitted. The closure is
referenced by the identifier closureVar.

Line 4 uses the explicit mechanism using the • call() method to invoke the Closure. You may
also use the implicit nameless invocation approach:closureVar().

As can be seen from the output, closure prints “Hello world” when it is called in Line 4, not when it is defined in Line 1.
Here is the output:

closure is not called yet

Hello world

Listing 2-45 illustrates the same closure as in Listing 2-44, but with the parameter.

Listing 2-45. Closure with Parameter

1. def closureVar = {param -> println "Hello ${param}"}
2. closureVar.call('world')
3. closureVar ('implicit world')

Line 2 is an explicit call with the actual argument ‘world’.•

Line 3 is an implicit call with the actual argument ‘implicit world’.•

CHAPTER 2 ■ GROOVY BASICS

43

Here is the output:

Hello world
Hello implicit world

As Listing 2-46 illustrates, the formal parameters to a closure may be assigned default values.

Listing 2-46. Parameters with Default Values

1. def sayHello= {str1, str2= " default world" -> println "${str1} ${str2}" }
2. sayHello("Hello", "world")
3. sayHello("Hello")

In Line 1, the • sayHello closure takes two parameters, of which one parameter, str2, has
a default value.

In Line 3, only one actual parameter is provided to the closure and the default value of the •
second parameter is used.

Here is the output:

Hello world

Hello default world

Closures always have a return value. The value may be specified via one or more explicit return statement in
the closure body, as illustrated in Listing 2-47, or as the value of the last executed statement if return is not explicitly
specified, as illustrated in Listing 2-48.

Listing 2-47. Using Return Keyword

1. def sum = {list -> return list.sum()}
2. assert sum([2,2]) == 4

Listing 2-48. Return Keyword Optional

1. def sum = {list -> list.sum()}
2. assert sum([2,2]) == 4

There are several ways to declare a closure. But before that, let’s look deeper into the mechanics of closure. To
understand closure, you have to understand the concept of free variables. A closure is formed when the body of a
function refers to one or more free variables. Free variables are variables that are not local to the function and are
not passed as arguments to the function, but are defined in the enclosing scope where the function is defined. Thus,
closures refer to variables not listed in their parameter list (free variables). They are “bound” to variables within the
scope where they are defined. Listing 2-49 illustrates this.

Listing 2-49. Free Variables

1. def myConst = 5
2. def incByConst = { num -> num + myConst }
3. println incByConst(10) // => 15

The runtime “closes over” the free variable (myConst in Listing 2-49) so that it is available when the function is
executed. That is, the compiler creates a closure that envelops the external context of free variables and binds them.

CHAPTER 2 ■ GROOVY BASICS

44

Implicit Variables
Within a Groovy closure, several variables are defined that have special meaning:

it

If only one argument is passed to the closure, the arguments list and the -> symbol can be omitted and the closure will
have access to it that represents that one argument, illustrated in the Listing 2-50.

Listing 2-50. Using it

def clos = {println "Hello ${it}"}
clos.call('world')

Here is the output:

Hello world

A closure always has at least one argument, which will be available within the body of the closure via the implicit
parameter it if no explicit parameters are defined. The developer never has to declare the it variable—like the this
parameter within objects, it is implicitly available. If a closure is invoked with zero arguments, then it will be null.

this, owner, and delegate

The this refers to the instance of the enclosing class where a closure is defined. If the closure is defined within the
scope of a script, the enclosing class is the script class. The owner is the enclosing object of the closure. The owner is
similar to this except in the case of nested closures where the enclosing object is the outer closure. The delegate is
by default the same as owner, but changeable; for example, in a builder or ExpandoMetaClass. Listing 2-51 illustrates
these three implicit variables.

Listing 2-51. Using this, owner, and delegate

1. class Class1{
2. def closure = {
3. println "---in closure---"
4. println this.class.name
5. println owner.class.name
6. println delegate.class.name
7. def nestedClosure = {
8. println "---in nestedClosure---"
9. println this.class.name
10. println owner.class.name
11. println delegate.class.name
12. }
13. nestedClosure()
14. }
15. }
16.
17. def clos = new Class1().closure
18. clos()
19. println ""
20. println "===changing the delegate==="
21. clos.delegate = this

CHAPTER 2 ■ GROOVY BASICS

45

22. clos()
23. println ""
24.
25. def closure2 = {
26. println "--- closure outside the class(in the script)---"
27. println this.class.name
28. println delegate.class.name
29. println owner.class.name
30.
31. }
32.
33. closure2()

In Listing 2-51, the implicit variables • this, owner, and delegate occur inside the outer closure
from Line 4 to Line 6, inside the nested closure from Line 9 to Line 11, outside the class
(closure2) from Line 27 to Line 29.

The • this, owner, and delegate inside the outer closure from Line 4 to Line 6 refer to the class
name; for example, Class1.

The • this inside the nested closure from Line 9 to Line 11 refers to the class name (for example,
Class1), and the owner and delegate refer to the closure class of the outer closure; for
example, Class1$_closure1.

The • this, owner, and delegate outside the class from Line 27 to Line 29 refer to the name of
the script; for example, Hello.

In Line 21 we change the • delegate of the closure (the outer closure in Class1) to the this, as
we mentioned that the delegate is changeable.

Here is the output:

---in closure---
Class1
Class1
Class1
---in nestedClosure---
Class1
Class1$_closure1
Class1$_closure1

===changing the delegate===
---in closure---
Class1
Class1
Hello
---in nestedClosure---
Class1
Class1$_closure1
Class1$_closure1

--- closure outside the class<in the script>---
Hello
Hello
Hello

CHAPTER 2 ■ GROOVY BASICS

46

Explicit Declaration of Closure
All closures defined in Groovy are essentially derived from the type Closure. Because groovy.lang is automatically
imported, we can refer to Closure as a type within our code. This is explicit declaration of closure. The advantage of
declaring closure explicitly is that a non-closure cannot be inadvertently assigned to such variable.

Listing 2-52. Explicit Declaration of Closure

Closure clos = { println it }

Reusing the Method as a Closure
Groovy provides the method closure operator (.&) for reusing the method as a closure. The method closure operator
allows the method to be accessed and passed around like a closure. Listing 2-53 illustrates this.

Listing 2-53. Reusing the Method as a Closure

1. def list = ["Vishal","Chris","Joseph","Jim"]
2. list.each { println it }
3. String printName(String name) {
4. println name
5. }
6. list.each(this.&printName)

Listing 2-53 creates a list of names and iterates through the list to print out the names. In Line 6, the method
closure operator (.&) causes the method printName to be accessed as a closure.

Here is the output:

Vishal
Chris
Joseph
Jim
Vishal
Chris
Joseph
Jim

A closure is an object. You can pass closures around just like any other objects. A common example is iterating
over a collection using a closure.

Listing 2-54. Passing a Closure As a Parameter

def list = ["Chris", "Joseph", "Jim"]
def sayHello = { println it }
list.each(sayHello)

Notice that sayHello is a property whose value is a closure. It is passed to the each() method so that as each()
iterates over the list, the sayHello closure is invoked.

CHAPTER 2 ■ GROOVY BASICS

47

Closures and Collection
Lists, Maps, and Ranges include a number of methods (GDK methods) that have a closure parameter, which makes it
effortless to iterate over the elements of the collection or range. We will discuss any, collect, each, every, and find
methods.

any

The any method iterates through each element of a collection, checking whether a condition is valid for at least one
element. The condition is provided by a closure. The signature of the any method is:

boolean any(Closure closure)

Listing 2-55. Using the any Method

def anyElement= [1, 2, 3, 4].any {element -> element > 2}
assert anyElement == true

The any method in Listing 2-55 iterates through the list and returns true if any element is greater than 2.

collect

The collect method iterates through a collection, converts each element into a new value as specified in the closure
and returns a new List. It has the signature:

List collect(Closure closure)

Listing 2-56. Using the collect Method

def doubled = [1, 2, 3, 4].collect {element -> return 2*element}
assert doubled == [2,4,6,8]

each

The each method is used to iterate through a collection and apply the closure on every element. The signature of the
each method is:

void each(Closure closure)

Listing 2-57. Using the each Method

[1, 2, 3].each {println it}

Listing 2-50 prints the values 1, 2, 3 on separate lines.
Here is the output:

1
2
3

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ GROOVY BASICS

48

every

The every method is used to iterate through a collection to check if all the elements in the collection matches the
condition specified in the closure. The signature of the every method is:

boolean every(Closure closure)

Listing 2-58. Using the every Method

def allElements1 = [1, 2, 3, 4].every {element -> element > 1}
assert allElements1 == false

def allElements2 = [2, 3, 4, 5].every {element -> element > 1}
assert allElements2 == true

find

The find method finds the first value in a collection that matches some condition as specified in the closure. The
signature of the find method is:

Object find(Closure closure)

Listing 2-59 illustrates using the find method to find the first element that is greater than 2.

Listing 2-59. Using the find Method

def foundElement = [1, 2, 3, 4].find {element -> element > 2}
assert foundElement == 3

Closures as Map Keys and Values
It’s possible to put closures in a map, both as keys and values. You can use a closure as a key and as a value and call
that closure as if it were a method on the map. However, when putting it into the map, you must escape it by enclosing
it in parentheses. When accessing the value of the closure in the map, you must use get(key) or map[key], as map.
Key will treat key as a string.

Listing 2-60. Using Closure as Key and Value

1. key1 = { println "closure as key" }
2. map1 = [(key1): 100]
3.
4. println map1.get(key1)
5. println map1[key1]
6.
7. map1 = [key1: { println "closure as value" }]
8. map1.key1()

CHAPTER 2 ■ GROOVY BASICS

49

The output is:

100
100
closure as value

In Line 1, a closure is used as a key: • key1.

In Line 2, • key1 is stored in the map and the value is 100.

Line 4 prints the value stored in the map.•

Line 5 is another technique to retrieve the value.•

In Line 7, a closure is used as a value.•

Line 8 calls the closure stored as the value and prints “closure as value”.•

Currying Closure
Currying is the technique of transforming a function that takes multiple arguments in such a way that it can be called
as a chain of functions, each with a single argument. In Groovy, you can use the curry() method to form curried
closures.

Listing 2-61. Using Closure

1. def add= { x, y -> return x + y }
2. assert add(1,2) == 3

Line 1 defines an add closure that takes two parameters and adds them.•

Line 2 replaces the formal parameter • x with the value 1, replaces y with the value 2, and
asserts that the sum is 3.

Now consider that instead of providing actual values to both formal parameters (x and y), we only provide a value
to one of the parameters. The definition of the new closure with one actual value looks like this:

 newAdd= { 1, y -> return 1 + y }

We just defined a new closure (newAdd) by providing actual value 1 to a formal parameter (x) of the closure add.
This is what curry() method does for us; for example, we can define the closure newAdd by calling curry() on closure
add, and provide the actual value 1 to one of the formal parameters, like so:

 newAdd = add.curry(1)

The definition of this closure newAdd is still the same; for example, newAdd= {1,y -> 1+y}. We can fix the value
of y in the same way by calling curry() on the closure newAdd; for example, newAdd.curry().

Listing 2-62. Currying Closure

1. def add= { x, y -> return x + y }
2. def newAdd = closure.curry(1)
3. assert "${ newAdd(2)}" == 3

CHAPTER 2 ■ GROOVY BASICS

50

Closure Trampoline
As we discussed earlier, in functional programming, because of the immutability of variables, it is not possible to have
loop counters that change through a loop on each pass. The pure functional way of implementing such loop counter is
through recursion.

Recursion, in a large measure, plays a crucial role in functional programming. That said there are two latent
problems associated with recursion: the performance penalty of repetitive function calls and the probability of stack
overflow. Performance penalty associated with repetitive function calls can be addressed with memorization, as
discussed next. Stack overflow can be avoided by converting the recursive calls into a loop called trampoline.

Listing 2-63. Stack Overflow Error in Recursion

1. def factorial
2. factorial={n,BigInteger acc=1->
3. n == 1 ? acc:
4. factorial(n-1, n*acc)
5. }
6. factorial(1000)

A trampoline is a loop that works through a list of functions, calling each one in turn. In Groovy, a trampoline is
formed by adding . trampoline() to a closure declaration, as illustrated in Listing 2-64.

Listing 2-64. Using Trampoline

1. def factorial
2.
3. factorial={n, BigInteger acc=1->
4.
5. n == 1 ? acc:
6. factorial.trampoline(n-1, n*acc)
7. }.trampoline()
8.
9. factorial(1000)

Closure Memoization
Performance penalty associated with repetitive function calls in recursion can be addressed with memoization.

Memoization is a technique used to perform internal optimizations by caching previously computed values.
Caching introduces side effects, in otherwise side effect free, pure functional programming, as the state of the cache is
modified.

Listing 2-65. Using Memoization

1. closure = {param1, param2 -> sleep(100); param1 + param2 }
2.
3. memoizedClosure = closure.memoize()
4.
5. def testTime(param1, param2) { begin = System.currentTimeMillis()
6. memoizedClosure(param1, param2)
7. timeElapsed = System.currentTimeMillis()
8. println "param1 = $param1, param2 =
 $param2 time :${timeElapsed - begin } ms."

CHAPTER 2 ■ GROOVY BASICS

51

9. }
10.
11. testTime(1, 2)
12. testTime(3, 4)
13. testTime(1, 2)

The output is:

param1 = 1, param2 = 2 time :153 ms.
param1 = 3, param2 = 4 time :100 ms.
Param1 = 1, param2 = 2 time :0 ms.

Listing 2-65 illustrates memoization in action. In Line 3, closure is memoized. That is why the testTime closure
call in Line 13 with the same parameters as in Line 11 takes 0 ms.

Operators
You use operators every day. They probably have become so familiar to you that you don’t even think of them
anymore. Common operators include = for assignment, + to add two numbers, * to multiply two numbers, and ++ to
increment a number. Of course, there are many more, but you get the idea.

Operator Overloading
Operator overloading has been around for some time, but absent from Java. Operator overloading was omitted from
Java because of the bad experiences it brought with its usage in C++. Groovy embraces operator overloading and
makes it easy to define and use. An overloaded operator executes a method on object. Groovy has predefined the
relationship between the overloaded operator and the object method. Table 2-2 lists the Groovy operators and their
corresponding methods. When an overloaded operator is encountered, the corresponding method is invoked.

Table 2-2. Operator Overloading

Operator Method

a + b a.plus(b)

a - b a.minus(b)

a * b a.multiply(b)

a ** b a.power(b)

a / b a.div(b)

a % b a.mod(b)

a | b a.or(b)

a & b a.and(b)

a ^ b a.xor(b)

a++ or ++a a.next()

a-- or --a a.previous()

(continued)

CHAPTER 2 ■ GROOVY BASICS

52

At first glance, you may not see the benefits of operator overloading. Groovy uses operator overloading to
create shortcuts that make Java friendlier. For example, adding an object to a list in Java looks like this: myList.
add(someObject). The corresponding Groovy way of adding an object to a list is myList << someObject. Operator
overloading isn’t limited to the predefined instances that Groovy supplies; you can add operator overloading to your
Groovy classes by implementing the corresponding method.

Specialized Operators
Groovy includes many of the standard operators found in other programming languages, as well as operators that are
specific to Groovy that enable it to be so powerful.

Spread Operator

The spread operator (*.) is a shorthand technique for invoking a method or closure on a collection of objects.
Listing 2-66 illustrates the usage of the spread operator for iterating over a list.

Listing 2-66. Using the Spread Operator

1. def map = [1:"Vishal", 2:"Chris", 3:"Joseph", 4:"Jim"]
2. def keys = [1, 2, 3, 4]
3. def values = ["Vishal", "Chris", "Joseph", "Jim"]
4. assert map*.key == keys
5. assert map*.value == values

Line 4 and Line 5 use the spread operator to access keys and values of the map.

Elvis Operator

The Elvis operator (?:) is a shorthand version of the Java ternary operator. An example of using the Java-style ternary
operator is a == 1 ? "One" : "Not One" . If a is equal to 1, then “One” is returned; otherwise “Not One” is returned.
It is literally a shorthand "if-then else."

Operator Method

a[b] a.getAt(b)

a[b] = c a.putAt(b, c)

a << b a.leftShift(b)

a >> b a.rightShift(b)

switch(a) { case(b) : } b.isCase(a)

~a a.bitwiseNegate()

-a a.negative()

+a a.positive()

Table 2-2. (continued)

CHAPTER 2 ■ GROOVY BASICS

53

As with most Java constructs, you can use the Java ternary operator in Groovy. In addition to the Java ternary
operator, you can use an even shorter notation in Java: the Elvis operator. This can be very useful in defaulting values
if they are not already set, meaning that they evaluate to null or false; that is, b= a ?: 1 could be interpreted as:

if(a != 0)
 b = a
else
 b = 1

Listing 2-67 illustrates using the Java ternary and Elvis operators in Groovy.

Listing 2-67. Using the Elvis Operator

def firstName = user.firstName == null ? "unknown" : user.firstName // Java ternary
def firstName2 = user.firstName ?: "unknown" // Groovy Elvis

In both cases, if the user.firstName is null, then the firstName is set to “unknown”. The user.firstName
portion of the Elvis operator example is known as the expression. If the expression evaluates to false or null, then the
value after the : is returned. The two lines in the example are logically equivalent.

Safe Navigation/Dereference Operator

The safe navigation/dereference operator (?.) is used to avoid NullPointerExceptions, so it is incredibly handy.
Consider the situation where you have a User object and you want a print the firstName. If the User object is null
when you access the firstName property, you will get a NullPointerException.

Listing 2-68. Using the Safe Navigation/Dereference Operator

class User {
 String firstName
 String lastName
 def printFullName = {
 println "${firstName} ${lastName}"
 }
}
User user
println user.firstName

The code in Listing 2-68 throws a NullPointerException. In Java, we add a null check this way:

if (user != null) {
 println "Java FirstName = ${user.firstName}"
}

Listing 2-69 illustrates adding the null-check using the safe-navigation/dereference operator in Groovy.

CHAPTER 2 ■ GROOVY BASICS

54

Listing 2-69. Using the Safe Navigation/Dereference Operator

class User {
 String firstName
 String lastName
 def printFullName = {
 println "${firstName} ${lastName}"
 }
}
User user
println "Groovy FirstName = ${user?.firstName}"

Field Operator

In Chapter 1, you learned about properties on a class and how Groovy automatically supplies a getter. You also
learned that in the event that special logic is required, you can provide your own getter. While not recommended
because it is a major violation of encapsulation, Groovy provides a way to bypass the getter and access the underlying
field directly.

Listing 2-70 shows an example of using the field operator (.@).

Listing 2-70. Using the Field Operator

class Todo {
 String name
 def getName() {
 println "Getting Name"
 name
 }
}
def todo = new Todo(name: "Jim")
println todo.name
println todo.@name

Here is the output:

Getting Name
Jim
Jim

In this example, the first println uses the getter to access name, and the second println bypasses the getter to
access name directly.

Method Closure Operator

Earlier in the chapter, you learned about closures and how some of the Groovy functions accept a closure as input.
But what if you would like to pass a method around in the same way that you can pass a closure? Groovy provides the
method closure operator (.&) for just this scenario. The method closure operator allows the method to be accessed
and passed around like a closure.

CHAPTER 2 ■ GROOVY BASICS

55

Listing 2-71. Using the Method Closure Operator

def list = ["Chris","Joseph","Jim"]
// each takes a closure
list.each { println it }
String printName(String name) {
 println name
}
// & causes the method to be accessed as a closure
list.each(this.&printName)

Here is the output:

Chris
Joseph
Jim
Chris
Joseph
Jim

This example creates a list of names and iterates through the list to print out the names. You have seen this
before. A printName() method is created that prints the name parameter. Lastly and the main point of this example,
the list is iterated, executing the printName() method as a closure.

Now because this is a really simple example, you may be thinking, “Big deal.” Well actually it is, especially if you are
building a domain-specific language (DSL), which you will learn more about in Chapter 3.The method really invokes
System.out.println. How did the Groovy team get println to do that? The answer is that they used the method closure
operator to assign System.out.println to a global property, as in def println = System.out.&println(). That is
extremely powerful. Using the method closure operator, you are able to expose Java methods as closures.

Diamond Operator

In order to avoid the repetition of parameterized types, Groovy introduced the diamond operator. The parameterized
types can be omitted and replaced with pointy brackets, which look like a diamond. Listing 2-72 shows a usual
verbose way of defining a list.

Listing 2-72. A Simple Groovy Script: Hello.groovy

List<List<String>> list1 = new ArrayList<List<String>>()

Groovy allows us to use the diamond operator instead of a parameterized type to avoid repetition, as illustrated
in Listing 2-73.

Listing 2-73. Using the Diamond Operator

List<List<String>> list1 = new ArrayList<>()

This means you can avoid specifying the <List<String>> on either side of the definition.

CHAPTER 2 ■ GROOVY BASICS

56

Summary
The focus of this chapter was Groovy language basics. The goal was to teach you enough Groovy to get you started
with Grails. In this chapter, you created a simple program (script) and compared it to doing the same thing in Java.
Then you learned how-to turn the script into a Groovy class, compile it, and run it using Java. Once you learned about
Groovy scripts and classes, we took a quick look at the Groovy Shell and Groovy Console. The shell and console are
handy for writing and testing simple programs. With some basic Groovy tooling under your belt, it was time to start
taking a look at the Groovy language. Your journey into the Groovy language started with learning about Groovy’s
support of strings, closures, and methods, and collections (lists, maps, sets, arrays, and ranges). Next, you had a
high-level overview of Groovy’s regular expression support.

We covered the find (=~), match (==~), and pattern (~string) operators. Lastly, you learned about operator
overloading and specialized operators. They are a major source of Groovy’s power. This chapter is by no means a
comprehensive study of Groovy. Groovy is a broad and deep topic. The goal here was to give you enough Groovy
knowledge to start building an application and know where to look for more information. The next chapter will
introduce you to more advanced Groovy topics.

57

Chapter 3

More Advanced Groovy

Chapters 1 and 2 offered a glimpse into the power and capabilities of Groovy by providing a basic explanation of
its language features and tools. But there is far more to know about Groovy. For example, Groovy provides an ideal
framework for creating unit tests. It makes working with XML simple and straightforward, and it includes a great
framework for templating text. Finally, Groovy has a metaprogramming model that you can use to do amazing things,
such as enabling the creation of domain-specific languages and adding methods and functionality to the Java API
classes, including classes that are marked as final.

This chapter covers a variety of unrelated or loosely related advanced Groovy topics. It starts off by introducing
the object-orientation in Groovy, shows you how to use Groovy to write and execute unit tests, compares how to
process XML documents with both Java and Groovy, and explains how you can use Groovy’s templating to generate
e-mails. The chapter concludes with metaprogramming topics: implementing expando classes, extending classes with
metaobject protocol (MOP), AST transformations, and creating domain-specific languages (DSLs).

Object Orientation in Groovy
Few Java purists like to engage in reductio ad absurdum in this manner: “Because you can write scripts in Groovy and
scripting is not real programming, Groovy is just a scripting language.” (Note the emphasis on “just.”)This is absolutely
not the case. Groovy supports all object-oriented (OO) programming concepts that are well-known to Java developers:
classes, objects, interfaces, inheritance, polymorphism, and others. In fact, unlike Java, Groovy is a pure OO language
in which everything is an object. You can fully organize your code into classes and packages and still use scripts with
classes. The Groovy compiler will convert such scripts into Java classes; that is to say, you can mix scripts with classes.

Classes and Scripts
As Larry Wall says:

“Suppose you went back to Ada Lovelace and asked her the difference between a script and a
program. She’d probably look at you funny, and then say something like: ‘Well, a script is what you
give the actors, but a program is what you give the audience.’ ”

A lot of entities in Groovy are classes. Lists, sets, maps, strings, patterns, scripts, closures, functions, and expandos
are all implemented under the hood as classes. Classes are the building blocks of Groovy. In Groovy, any code that
is not inside a class is called a script. You cannot have any Java code outside of a class. In Java, you can have only
one public class in a single file, and the name of that class must match the name of the file. In Groovy, in addition to
classes, you can have scripts and the same file can include one or more classes in addition to scripting code. Unlike
Java, Groovy also allows you to have more than one public class in the same file, and none of the public classes in the
same file need to match the name of the containing file.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ MORE ADVANCED GROOVY

58

Listing 3-1 illustrates a file named Hello.groovy with a script but no classes. The compiler will generate a class
for the scripting code based on the filename. Compiling this file via groovyc will generate one class: Hello.class.

Listing 3-1. Hello.groovyFile with Script but no Classes

println "hello"

Listing 3-2 illustrates a file named Hello.groovy with a script and one class. Compiling this file via groovyc will
generate one class: Hello.class (for scripting code based on the filename) and HelloWorld.class.

Listing 3-2. Hello.groovy File with Script and One Class

class HelloWorld{
 def hello(){
 println "hello world"
 }
}
println "hello world"

Listing 3-3 illustrates a file named Hello.groovy with a script and one class with the name same as the file name.
This file will not get compiled. By default the compiler generates a class for the scripting code based on the filename,
and because we already defined a class with that name, the compiler will throw an exception.

Listing 3-3. Hello.groovy File with Script and One Classwith the Same Name as the File Name

class Hello{
 def hello(){
 println "hello world"
 }
}
println "hello world"

Listing 3-4 illustrates a file named Hello.groovy with a script and two classes. Compiling this file will generate
three classes: Hello.class, HelloWorld1.class, and HelloWorld2.class.

Listing 3-4. Hello.groovy File with Script and TwoClasses

class HelloWorld1{
 def hello(){
 println "hello world"
 }
}
class HelloWorld2{
 def hello(){
 println "hello world"
 }
}
println "hello world"

Listing 3-5 illustrates a file named Hello.groovy with no script and one class. Compiling this file will generate
one class: HelloWorld.class, as there is no script in the file.

CHAPTER 3 ■ MORE ADVANCED GROOVY

59

Listing 3-5. Hello.groovy File with no Script and One Class

class HelloWorld{
 def hello(){
 println "hello world"
 }
}

Listing 3-6 illustrates a file named Hello.groovy with no script and two classes. Compiling this file will generate
two classes: HelloWorld1.class and HelloWorld2.class.

Listing 3-6. Hello.groovy File with no Script and TwoClasses

class HelloWorld1{
 def hello(){
 println "hello world"
 }
}
class HelloWorld2{
 def hello(){
 println "hello world"
 }
}

Listing 3-7 illustrates a file named Hello.groovy with no script and one class with the same name as the file.
Compiling this file will generate one class: Hello.class. Hazard a guess as to why the compiler does not throw an
exception this time. It is because there is no script in the file.

Listing 3-7. Hello.groovy File with no Script and One Classwith the Same Name as File Name

class Hello{
 def hello(){
 println "hello world"
 }
}

Groovy Constructors
In Groovy, a constructor can be called in several ways. Listing 3-8 illustrates calling the constructor Java style. The
preferred way is to use named parameters, as illustrated in Listing 3-9.

Listing 3-8. Calling the Constructor Java Style

class Test{
 def i
 def j
 Test(i, j){
 this.i = i
 this.j = j
 }

}

CHAPTER 3 ■ MORE ADVANCED GROOVY

60

def test = new Test(1, 2)
assert test.i == 1
assert test.j == 2

Listing 3-9 illustrates calling the constructor using named parameters. As discussed earlier in Chapter 1, Groovy
uses the map object to initialize each property. The map is iterated and the corresponding setter is invoked for each
map element.

Listing 3-9. Using Named Parameters

1. class Test{
2. def i = 0
3. def j = 0
4. }
5. def test1 = new Test(i:1, j:2)
6. assert test1.i == 1
7. assert test1.j == 2

As can be seen in Line 5 of Listing 3-9, when we pass a map object to a constructor, the parentheses [], which is
the part of the map syntax, can be skipped.

We can also list the property values in any order, like so:

def test2= new Test(j:2, i:1)
assert test2.i == 1
assert test2.j == 2

If a property is excluded, the corresponding setter will not be called and the default value is preserved, like so:

def test3 = new Test(i:1)
assert test3.i == 1
assert test3.j == 0

A class can have more than one constructor, as illustrated in Listing 3-10.

Listing 3-10. Class with More than One Constructor

1. class A{
2. def list= []
3. A(){
4. list<< "A constructed"
5. }
6. A(int i){
7. this()
8. list<< "A constructed with $i"
9. }
10. A(String s){
11. this(5)
12. list<< "A constructed with '$s'"
13. }
14. }
15. def a1= new A()
16. assert a1.list == ["A constructed"]

CHAPTER 3 ■ MORE ADVANCED GROOVY

61

17. def a2= new A(7)
18. assert a2.list.collect{it} == [
19. "A constructed",
20. "A constructed with 7",
21.]
22. def a3= new A('test')
23. assert a3.list.collect{it} == [
24. "A constructed",
25. "A constructed with 5",
26. "A constructed with 'test'",
27.]

In Listing 3-10, class A has three constructors:

In Line 7, constructor • A(int i) calls default parameterless constructor A() in its first statement.

In Line 11, • A(String s) calls A(int i) in its first statement, which in turn calls constructor
A() in its first statement.

In Line 18, when the constructor • A(7) is invoked, the list will have two elements, one from
A(int i) and one from A(). Note the collect method of list in Line 19. The collect method
accepts a list and a closure argument.

Inheritance
As shown in Listing 3-11, Groovy enables one class to extend another, just as interfaces can, though classes extend at
most one class.

Listing 3-11. Extending class

1. class A{}
2. class B extends A{}
3. def b = new B()
4. assert b in B && b in A

In Line 4, we test for extended classes with the in operator.
The in operator is a shortcut for the contains() method in a collection. The snippet below illustrates the usage of

the in operator.

assert 1 in [1, 2, 3]

Public instance fields, properties, and methods defined on an extended class are also available on the extending
class, as shown in Listing 3-12:

Listing 3-12. Inherited Methods and Properties

1. class A{
2. int x
3. int y
4. String methodA(int n){ "value ${x= y= n}" }
5. }
6. class B extends A{
7. String methodB(int n){ "value $n" }
8. }

CHAPTER 3 ■ MORE ADVANCED GROOVY

62

9. def b= new B()
10. assert b.methodB(10) == 'value 10'
11. assert b.methodA(20) == 'value 20'
12. assert b.x == 20
13. assert b.y == 20
14. b.y= 5
15. assert b.y == 5
16. assert b.getY() == 5

In Line 11, we call method • A() on extending class B.

In Lines 12–16 we assert • x and y on extending class B.

We can define an abstract class, a class with only some methods defined, the others being only declarations just
like in interfaces. As shown in Listing 3-13, an abstract class and each method declaration in it must be modified with
the abstract keyword:

Listing 3-13. Using Abstract Class

1. interface X{
2. def x()
3. }
4. interface Y{
5. def y()
6. }
7. abstract class A{
8. def a(){ println 1 }
9. abstract b()
10. }
11. class B extends A implements X, Y{
12. def x(){ println 2 }
13. def y(){ println 3 }
14. def b(){ println 4 }
15. }

In Line 8, a method • a() is defined.

In Line 9, a method • b() is declared.

Line 14 provides the definition to method • b().

Interface and abstract methods cannot be declared static. Whether a method is static is part of its definition, as
shown in Listing 3-14, but not its declaration.

Listing 3-14. Interface and Abstract Methods

1. interface X{
2. def x()
3. //static x1()
4. }
5. interface Y{
6. def y()
7. }
8. abstract class A{
9. static a(){ println 1 }
10. abstract b()

CHAPTER 3 ■ MORE ADVANCED GROOVY

63

11. abstract c()
12. //abstract static c1()
13. }
14. class B extends A implements X, Y{
15. static x(){ println 2 }
16. def y(){ println 3 }
17. static b(){ println 4 }
18. def c(){ println 5 }
19. }

Line 3 is commented, as interface methods cannot be declared static.•

Line 12 is commented, as abstract methods cannot be static.•

A final class cannot be extended; a final method cannot be overridden:

Listing 3-15. Using Final Class

1. class A{
2. final a(){ 11 }
3. def b(){ 12 }
4. }
5. final class B extends A{
6. //def a(){ 15 }
7. def b(){ 16 }
8. }
9. //class C extends B{}

Line 6 is commented, as method • a() in class A is final and cannot be overridden.

Line 9 is commented, as class • B is final and cannot be extended.

Just as a class’s constructor can call another constructor as we discussed in Listing 3-10, so also it can call a
constructor on the superclass, as shown in Listing 3-16:

Listing 3-16. Calling Constructor of the Superclass

1. class A{
2. def list= []
3. A(){
4. list<< "A constructed"
5. }
6. A(int i){
7. this()
8. list<< "A constructed with $i"
9. }
10. }
11. class B extends A{
12. B(){
13. list<< "B constructed"
14. }
15. B(String s){
16. super(5)
17. list<< "B constructed with '$s'"
18. }
19. }

CHAPTER 3 ■ MORE ADVANCED GROOVY

64

20. def b1= new B('test')
21. assert b1.list.collect{it} == [
22. "A constructed",
23. "A constructed with 5",
24. "B constructed with 'test'",
25.]
26. def b2= new B()
27. assert b2.list == [
28. "A constructed",
29. "B constructed",
30.]

In Line 16, a constructor can call its 'superclass's constructor if it's the first statement.•

In Line 27, default parameterless constructor is called, as • super() is not called.

Polymorphism
Groovy does not really need interfaces because of dynamic typing but still includes support for them. In Groovy,
polymorphism is simply a matter of matching method names. Two objects belonging to two unrelated classes can be
sent in the same message, provided that the method is defined by each class, as illustrated in Listing 3-17.

Listing 3-17. A Polymorphism Example

1. class Square{
2. def display() {
3. assert "length:${length} width:${width}" == "length:10 width:10"
4. }
5. def length
6. def width
7. }
8. class Rectangle{
9. def display() {
10. assert "length:${length} width:${width}" == "length:10 width:12"
11. }
12. def length
13. def width
14. }
15. def shapes= [new Square(length : 10, width : 10),
16. new Rectangle(length : 10, width : 12)
17.]
18. shapes.each { item -> item.display() }

The two classes • Square and Rectangle in Line 1 and Line 8 do not share a common superclass
or implement the same interface (in our example).

Line 18 iterates over the shapes collection and on each object in the collection, the • display()
method specific to that object is called.

Groovy Unit Testing
One of Groovy’s best value propositions is unit testing. Using Groovy to unit-test Groovy or Java code can make the
code easier to read and maintain. Unit testing is a common way to introduce Groovy to an organization, because

CHAPTER 3 ■ MORE ADVANCED GROOVY

65

it doesn’t affect the production runtime. Once developers and managers get comfortable with Groovy in a testing
capacity, they eventually begin using it in production.

Unit testing is so fundamental to Groovy that it’s built right in. You don’t need to download a separate framework.
Groovy already includes and extends JUnit, which is a popular Java unit testing framework. The primary extension
is groovy.util.GroovyTestCase, which inherits from junit.framework.TestCase and adds the additional assert
methods found in Table 3-1.

Table 3-1. GroovyTestCase Assert Methods

Assert Method Description

assertArrayEquals Asserts two arrays are equal and contain the same values

assertContains Asserts an array of characters contains the given characters or an array of ints
contains a given int

assertEquals Asserts two Objects or two Strings are equal

assertInspect Asserts the value of the inspect() method

assertLength Asserts the length of char, int, or Object arrays

assertScript Asserts script runs without any exceptions being thrown

assertToString Asserts the value of toString()

JUnit (and therefore Groovy unit testing) works by creating a class that inherits from TestCase or one of its
descendants. GroovyTestCase is the appropriate class to extend for unit testing in Groovy. Notice that GroovyTestCase
is found in the groovy.util package, so it is implicitly available and doesn’t even require any imports. Tests can then
be added by creating methods that have a name that begins with test and is followed by something descriptive about
the test. For example, you could use testAlphaRanges for a test that validates the Groovy language feature of ranges.
These test methods should take no parameters and return void. Unlike with JUnit tests written in Java, these methods
don’t have to declare exceptions that could be thrown, because Groovy naturally converts all checked exceptions into
unchecked exceptions. This makes tests more readable than the equivalent Java implications.

Unit tests often require objects to be put into a known state. In addition, tests should be good test-harness
citizens and clean up after themselves. Like JUnit tests, all Groovy tests can override the setUp() and tearDown()
methods.

Unit tests are also a great way to learn new frameworks, libraries, and languages such as Groovy. You can use unit
tests to validate your understanding of how they work. Listing 3-18 is a unit test used to validate some assumptions
about Groovy ranges, including whether a range from 'a'..'z' contains uppercase letters and whether ranges can be
concatenated.

Listing 3-18 shows a unit test that extends from GroovyTestCase and contains two variables that include a range
of lowercase letters on Line 3 and a range of uppercase letters on Line 4. The test case also contains three tests.

Listing 3-18. Example Unit Test That Validates Assumptions About Groovy Ranges

1. class RangeTest extends GroovyTestCase {
2.
3. def lowerCaseRange = 'a'..'z'
4. def upperCaseRange = 'A'..'Z'
5.
6. void testLowerCaseRange() {
7. assert 26 == lowerCaseRange.size()
8. assertTrue(lowerCaseRange.contains('b'))

CHAPTER 3 ■ MORE ADVANCED GROOVY

66

9. assertFalse(lowerCaseRange.contains('B'))
10. }
11.
12. void testUpperCaseRange() {
13. assert 26 == upperCaseRange.size()
14. assertTrue(upperCaseRange.contains('B'))
15. assertFalse(upperCaseRange.contains('b'))
16. }
17.
18. void testAlphaRange() {
19. def alphaRange = lowerCaseRange + upperCaseRange
20. assert 52 == alphaRange.size()
21. assert alphaRange.contains('b')
22. assert alphaRange.contains('B')
23. }
24. }

The first test in Listing 3-18, shown on Lines 6–10, asserts that the range has a size of 26, representing each of the
letters in lowercase. It also asserts that a lowercase 'b' is in the range but that an uppercase 'B' is not. The second
test, shown on Lines 12–16, is basically the same test but uses the uppercase range. The third test, on the other hand,
validates that the two ranges can be concatenated to produce a new range that includes both. Therefore, the new
range is twice the size and includes both the lowercase 'b' and the uppercase 'B'.

Running a Groovy unit test is just like running a script. To run this test, execute the following:

> groovy RangeTest

Because a JUnit test runner is built into Groovy, the results of the tests are printed to standard out. The results
identify how many tests ran, how many failed, and how many errors occurred. Failures indicate how many tests
did not pass the assertions, and errors indicate unexpected occurrences such as exceptions. In addition, because
GroovyTestCase extends JUnit, you can easily integrate the Groovy tests into automated test harnesses such as Apache
Ant and Apache Maven builds so they can be run continually.

Working with XML
Extensible Markup Language (XML) is a general-purpose markup language commonly used in enterprise applications
to persist or share data. Historically, creating and consuming XML documents has been easier than working with
other types of formats, because XML is text-based, follows a standard, is in an easily parseable format, and features
many existing frameworks and libraries to support reading and writing documents for many different programming
languages and platforms.

Most of these frameworks, however, are based on the World Wide Web Consortium’s (W3C) Document Object
Model (DOM), which can cause the code that manipulates XML documents to become difficult to write and read. Due
to the popularity and complexity of working with XML, Groovy includes a framework that uses XML in a natural way.
The next section demonstrates how complicated it is to write simple XML with standard Java code, then shows you
how to process XML in the simple and elegant Groovy way.

Writing XML with Java
Generating a simple XML document like the one found in Listing 3-19 in Java is difficult, time consuming, and a
challenge to read and maintain.

CHAPTER 3 ■ MORE ADVANCED GROOVY

67

Listing 3-19. Simple XML Output for Todos

<todos>
 <todo id="1">
 <name>Buy Beginning Groovy Grails and Griffon</name>
 <note>Purchase book from Amazon.com for all co-workers.</note>
 </todo>
</todos>

Listing 3-20 shows the minimum Java code necessary to generate the XML shown in Listing 3-19.

Listing 3-20. Java Code to Generate the Simple Todo XML Found in Listing 3-19

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.Source;
import javax.xml.transform.Result;
import javax.xml.transform.TransformerException;
import javax.xml.transform.dom.DOMSource;

/**
 * Example of generating simple XML in Java.
 */
public class GenerateXML {
 public static void main (String[] args)
 throws ParserConfigurationException, TransformerException {
 DocumentBuilder builder =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document doc = builder.newDocument();
 Element todos = doc.createElement("todos");
 doc.appendChild(todos);

 Element task = doc.createElement("todo");
 task.setAttribute("id", "1");
 todos.appendChild(task);

 Element name = doc.createElement("name");
 name.setTextContent("Buy Beginning Groovy Grails and Griffon");
 task.appendChild(name);
 Element note = doc.createElement("note");
 note.setTextContent("Purchase book from Amazon.com for all co workers.");
 task.appendChild(note);
 // generate pretty printed XML document
 TransformerFactory tranFactory = TransformerFactory.newInstance();
 Transformer transformer = tranFactory.newTransformer();

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ MORE ADVANCED GROOVY

68

 transformer.setOutputProperty(OutputKeys.INDENT, "yes");
 transformer.setOutputProperty(
 "{http://xml.apache.org/xslt}indent-amount", "2");
 Source src = new DOMSource(doc);
Result dest = new StreamResult(System.out);
 transformer.transform(src, dest);
 }
}

Notice how difficult it is to read Listing 3-20. It begins by using DocumentBuilderFactory to create a new
DocumentBuilder. With DocumentBuilder, the newDocument() factory method is called to create a new Document.
Elements are created using DocumentBuilder's factory methods, configured by adding attributes or text content,
and then finally appended to their parent element. Notice how difficult it is to follow the natural tree structure of the
XML document by looking at the Java code. This is partly because most elements require three lines of code to create,
configure, and append the element to its parent.

Finally, outputting the XML into a human readable nested format isn’t straightforward. Much like creating
the document itself, it begins by getting a TransformerFactory instance and then using the newTransformer()
factory method to create a Transformer. Then the transformer output properties are configured to indent, and the
indent amount is configured. Notice that the indent amount isn’t even standard. It uses an Apache Xalan–specific
configuration, which may not be completely portable. Ultimately, a source and result are passed to the transformer to
transform the source DOM into XML output.

Groovy Builders
Groovy simplifies generating XML by using the concept of builders, based on the builder design pattern from the
Gang of Four. Groovy builders implement a concept of Groovy-Markup, which is a combination of Groovy language
features such as MOP (discussed later in the chapter), closures, and the simplified map syntax to create nested
tree-like structures. Groovy includes five major builder implementations, as defined in Table 3-2. They all use the
same format and idioms, so knowing one builder pretty much means you’ll be able to use them all.

Table 3-2. Groovy Builders

Name Description

AntBuilder Enables the script and execution of Apache Ant tasks

DOMBuilder Generates W3C DOMs

MarkupBuilder Generates XML and HTML

NodeBuilder Creates nested trees of objects for handling arbitrary data

SwingBuilder Creates Java Swing Uls (discussed in detail in Chapter 13)

In general, you start using a builder by creating an instance of the builder. Then you call a named closure
to create the root node, which could represent a root XML element, a Swing component, or a specific
builder-appropriate node. You add nodes by nesting more named closures. This format makes it easy to read the
hierarchical structures.

You add attributes by using Groovy’s map syntax to pass name-value pairs into the named closures. Under the
covers, MOP interprets the message passed to the object, usually to determine which method to invoke. When it
realizes there is no method by that name, it creates the associated node or attribute.

http://xml.apache.org/xslt}indent-amount

CHAPTER 3 ■ MORE ADVANCED GROOVY

69

Writing XML with Groovy MarkupBuilder
As noted in Table 3-2, you use MarkupBuilder to create XML and HTML. Listing 3-21 shows the Groovy code in action
for creating the XML shown in Listing 3-19.

Listing 3-21. Groovy Code to Generate the Simple Todo XML Found in Listing 3-19

1. def writer = new StringWriter()
2. def builder = new groovy.xml.MarkupBuilder(writer)
3. builder.setDoubleQuotes(true)
4. builder.todos {
5. todo (id:"1") {
6. name "Buy Beginning Groovy Grails and Griffon"
7. note "Purchase book from Amazon.com for all co-workers."
8. }
9. }
10.
11. println writer.toString()

Looking at Listing 3-21, you can see how much easier it is to read than the Java equivalent shown in Listing 3-20.
The example begins by creating StringWriter, so the final XML can be printed to system out on Line 11. Then
MarkupBuilder is created using StringWriter. By default, MarkupBuilder uses single quotes for attribute values, so
Line 3 changes the quotes to double quotes to comply with the XML specification. Lines 4–9 actually build the XML
document using named closures and map syntax. You can easily see that todos contains a todo with an id attribute of
1 and nested name and note elements.

Reading XML with XmlSlurper
Groovy makes reading XML documents equally as easy as writing XML documents. Groovy includes the XmlSlurper
class, which you can use to parse an XML document or string and provide access to a GPathResult. With the
GPathResult reference, you can use XPath-like syntax to access different elements in the document.

Listing 3-22 shows how to use XmlSlurper and GPath to interrogate a todos XML document.

Listing 3-22. Reading XML in Groovy

1. def todos = new XmlSlurper().parse('c:/todos.xml')
2. assert 3 == todos.todo.size()
3. assert "Buy Beginning Groovy Grails and Griffon" == todos.todo[0].name.text()
4. assert "1" == todos.todo[0].@id.text()

Listing 3-22 begins by using XmlSlurper to parse a todos.xml file containing three todo items. Line 2 asserts there
are three todos in the document. Line 3 shows how to access the value of an element, while Line 4 shows how to
access the value of an attribute using @.

Native JSON support
As JSON becomes a natural choice for data- interchange format, Groovy added native support for JSON.

CHAPTER 3 ■ MORE ADVANCED GROOVY

70

Reading JSON
A JsonSlurper class allows you to parse JSON payloads, and access the nested Map and List data structures
representing that content. We illustrated JsonSlurper for reading JSON in Chapter 1.

JsonBuilder
Groovy introduces JsonBuilder to produce JSON content, as illustrated in Listing 3-23.

Listing 3-23. Reading XML in Groovy

1. import groovy.json.*
2. def builder = new groovy.json.JsonBuilder()
3. def root = builder.Book{
4. Groovy{
5. title 'Beginning Groovy, Grails and Griffon'
6. Authors(
 1: 'Vishal',
 2: 'Chris',
 3: 'Joseph',
 4: 'James',
7.)
8. }
9. }
10. println builder.toString()

The output is:

{"book":{"groovy":{"title":"Beginning Groovy, Grails and Griffon", "authors":{"1"
:"Vishal","2":"Chris","3":"Joseph","4":"James"}}}}

Prettyprinting JSON Content
As you can see, the output of Listing 3-23 is difficult to read. When given a JSON data structure, you may wish to
prettyprint it, so that you can more easily inspect it, with a friendlier layout. So for instance, if you want to prettyprint
the result of the previous example, there are two ways to fix it. We can use either the JsonBuilder or JsonOutput.

In the case of JsonBuilder, we can just replace Line 16 in Listing 3-23 with:

println builder.toPrettyString()

In the case of JsonOutput, replace Line 16 in Listing 3-23 with this line:

println JsonOutput.prettyPrint(builder.toString())

CHAPTER 3 ■ MORE ADVANCED GROOVY

71

Either of these ways gives the same output:

{
 "book": {
 "groovy": {
 "title": "Beginning Groovy, Grails and Griffon",
 "authors": {
 "1": "Vishal",
 "2": "Chris",
 "3": "Joseph",
 "4": "James"
 }
 }
 }
}

Generating Text with Templates
Many web applications generate text for e-mails, reports, XML, and even HTML. Embedding this text in code can
make it difficult for a designer or business person to maintain or manage. A better method is to store the static portion
externally as a template file and process the template when the dynamic portions of the template are known.

Table 3-3. Groovy Template Engines

Name Description

SimpleTemplateEngine Basic templating that uses Groovy expressions as well as JavaServer Pages (JSP)
<% %> script and <%= %> expression syntax

GStringTemplateEngine Basically the same as SimpleTemplateEngine, except the template is stored
internally as a writable closure

XmlTemplateEngine Optimized for generating XML by using an internal DOM

As shown in Table 3-3, Groovy includes three template engines to make generating text easier.
The SimpleTemplateEngine usually is appropriate for most templating situations. Listing 3-24 shows an HTML

e-mail template that we’ll use in Chapter 11 for sending e-mail during a nightly batch process.

Listing 3-24. HTML E-mail Template Found in nightlyReportsEmail.gtpl

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>
 Collab-Todo Nightly Report for
 ${String.format('%tA %<tB %<te %<tY', date)}
</title>
</head>

<body bgcolor="#FFFFFF" style="margin:0;padding:0;">
<div style="padding: 22px 20px 40px 20px;background-color:#FFFFFF;">
<table width="568" border="0" cellspacing="0" cellpadding="1"
 bgcolor="#FFFFFF" align="center">
<tr>
<td>

CHAPTER 3 ■ MORE ADVANCED GROOVY

72

 Dear ${user?.firstName} ${user?.lastName},
<p />
 Please find your attached nightly report for
 ${String.format('%tA %<tB %<te %<tY', date)}.
</td>
</tr>
</table>
<!-- static HTML left out for brevity -->
</div>
</body>
</html>

The template in Listing 3-24 is mostly HTML with a couple of Groovy expressions thrown in for the dynamic
portions of the e-mail, such as formatting the date and user’s name. The e-mail produces the image shown in Figure 3-1.

Figure 3-1. HTML e-mail

To process the template, you create an instance of a template engine and use the overloaded createTemplate()
method, passing it a File, Reader, URL, or String containing the template text to create a template. Now with
the template loaded and parsed, you call the make() method, passing it a map that binds with the variables in the
template that are based on the names in the map. Listing 3-25 shows what the code that generates the e-mail in
Figure 3-1 looks like.

Listing 3-25. E-mail Template-Processing Code

1. import groovy.text.SimpleTemplateEngine
2.
3. /**
4. * Simple User Groovy Bean.
5. */
6. class User {
7. String firstName;
8. String lastName;
9. }
10.
11. def emailTemplate = this.class.getResource("nightlyReportsEmail.gtpl")
12. def binding = [
13. "user": new User(firstName: "Christopher", lastName: "Judd"),
14. "date": new Date()
15.]
16. def engine = new SimpleTemplateEngine()
17. def email = engine.createTemplate(emailTemplate).make(binding)
18. def body = email.toString()
19.
20. println body

CHAPTER 3 ■ MORE ADVANCED GROOVY

73

Listing 3-25 begins by importing the SimpleTemplateEngine on Line 1 so you have access to it on Line 16.
Lines 6–9 declare a simple User GroovyBean. The template is loaded from the nightlyReportsEmail.gtpl file
found on the classpath on Line 11. It contains the template text found in Listing 3-24. Lines 12–15 create the map
containing the passed user and date data, which will be bound to the template when the template is processed.
SimpleTemplateEngine, created on Line 16, is used on Line 17 to create and process the template.

Runtime Metaprogramming
With metaprogramming you can inspect, intercept, and alter the behavior of a program at runtime. In general,
statically typed languages discard their type information during compilation, and thus are incapable of reflection.
Some static languages (such as Java) exhibit ability to change the runtime behavior of a program; however, this ability
is only limited or restrictive in order to prevent subverting or destabilizing the type system. The key features that
contribute to runtime dynamicity are introspection (the ability of a program to examine itself) and intercession (the
ability of a program to alter its structure).Dynamic languages such as Groovy provide these capabilities through the
metaobject protocol (MOP).

Metaobject Protocol
The metaobject protocol was originally defined as an interface to a programming language to give the user of the
language the ability to modify the language’s behavior and even its implementation. Before long, programming
languages were more or less abstractions with constructs you could build on top of them. The metaobject protocol
approach draws a distinction by opening up languages to the user to regulate, so you can fine-tune the language’s
behavior and implementation. MOP, formally, is the collection of rules of how a request for a method call will be
handled by the Groovy runtime system. Every method call that you write in Groovy is redirected to MOP. Even if
the call-target (the target of the method call) was compiled with Groovy or Java, the method call is still redirected
to MOP; for example, the Groovy compiler generates byte code for the method call that calls into the MOP. The key
responsibility of MOP is finding and selecting the target and handling the case when the target cannot be found. In
order to discover the call-target for the method call, MOP needs information, which is stored in metaclasses.

Metaclass
A metaclass provides the means of reflection and dynamic invocation. Groovy never calls methods directly in the byte
code but always through the object’s metaclass. In Groovy, all classes, including all Java classes, have a property of
metaClass of type groovy.lang.MetaClass. When dispatching a message to an object, the metaclass not only helps
to determine which behavior should be invoked, but also prescribes behavior if the class does not implement the
requested behavior. As shown in Listing 3-26, the metaclass of any class can be found by accessing its .metaClass
property.

Listing 3-26. Accessing Metaclass

1. class Book {
2. String title
3. }
4. def groovyMetaclass = Book.metaClass

Line 4 illustrates how to access the metaclass of class Book.
All Groovy objects implement the groovy.lang.GroovyObject interface, which exposes a getMetaClass()

method for each object. Each Groovy object has an associated MetaClass that can be returned via a call to
getMetaClass() in the GroovyObject interface, as shown in Listing 3-27.

CHAPTER 3 ■ MORE ADVANCED GROOVY

74

Listing 3-27. GroovyObject Interface

public interface GroovyObject {
 Object invokeMethod(String name, Object args);
 Object getProperty(String propertyName);
 void setProperty(String propertyName, Object newValue);
 MetaClass getMetaClass();
 void setMetaClass(MetaClass metaClass);
}

invokeMethod(), getProperty(), and setProperty() make Groovy objects dynamic. You can use them to work
with methods and properties created on the fly.

Using invokeMethod() and get/setProperty()
Groovy supports the ability to intercept method and property access via invokeMethod() and get/setProperty().

Overriding invokeMethod

In any Groovy class you can override invokeMethod(), which will essentially intercept method calls. When you a call
a method on a Groovy object, the method invocation is dispatched to the invokeMethod() of the object, as illustrated
in Listing 3-28.

Listing 3-28. Overriding invokeMethod

1. class Item{
2. int itemNumber
3. String itemName
4. int qty
5. Object invokeMethod(String name, Object args) {
6. if (name == "test"){
7. this.properties.each {
8. println " " + it.key + ": " + it.value
9. }
10. }
11. }
12. }
13. def item1 = new Item(itemNumber: 1, itemName:"Item 1", qty:100)
14. def item2= new Item(itemNumber:2, itemName:"Item 2", qty:200)
15. def itemList = [item1, item2]
16. itemList.each { it.test()}

In Line 16, the • test() method is invoked, which does not exist.

In Line 5, the • invokeMethod() added to the Item class allows for intercept method invocations
and responds to calls to test(), even though this method does not exist.

Here is the output from Listing 3-28:

CHAPTER 3 ■ MORE ADVANCED GROOVY

75

class: class Item
itemName: Item 1
qty: 100
itemNumber: 1
class: class Item
itemName: Item 2
qty: 200

itemNumber: 2

Overriding getProperty and setProperty

You can also override property access using the getProperty and setProperty of the GroovyObject interface
illustrated in Listing 3-29.

Listing 3-29. Overriding getProperty/setProperty

1. class Expandable {
2. def storage = [:]
3. def getProperty(String name) { storage[name] }
4. void setProperty(String name, value) { storage[name] = value }
5. }
6. def e = new Expandable()
7. e.foo = "bar"
8. println e.foo

Using methodMissing()
methodMissing() is only invoked in the case of a failed method dispatch. Listing 3-30 illustrates the usage of
methodMissing().

Listing 3-30. Using methodMissing

1. class Missing{
2. def methodMissing(String name, args) {
3. "$name method does not exist"
4. }
5. }
6. Missing m = new Missing()
7. assert m.test() == "test method does not exist"

When you call a method on a POGO(plain old Groovy Object):

1. Groovy looks for the method in the metaclass of the POGO.

2. If the method is not found in the metaclass, then Groovy looks for the method in the
POGO itself.

3. If the method is not found in POGO as well, then Groovy looks to see if the POGO has
methodMissing(); if it is there, it is called.

CHAPTER 3 ■ MORE ADVANCED GROOVY

76

4. If methodMissing() is not there, Groovy looks to see if the POGO has implemented
invokeMethod(). If the POGO has implemented invokeMethod(), it is called.

5. If the POGO has not implemented invokeMethod(), then the default implementation of
invokeMethod() is called, which throws a MissingMethodException.

Expandos
The Expando class is found in the groovy.util package and is a dynamically expandable bean, meaning you can
add properties or closures to it at runtime. In some situations we need an object to hold interim behaviors. In such
situations, instead of creating a class merely for such behaviors, expandos come in handy so we can create objects
dynamically at runtime, as illustrated in Listing 3-31.

Listing 3-31. Using Expando

1. def multiplier = new Expando()
2. multiplier.value = 5
3. multiplier.doubleIt = { −> multiplier.value = multiplier.value* 2}
4. multiplier.doubleIt()
5. assert multiplier.value == 10

Line1: We create an expando.•

Line 2: A state ‘5’ is assigned to not-yet-existing property • value.

Line 3: New behavior is assigned to the not-yet-existing property • doubleIt as a closure. After
the assignment, it can be called as if it was a method.

Line 7: Asserts that a new state ‘10’ is assigned to not-yet-existing property • value.

Expandos, when combined with Groovy’s duck typing, are also a great way to implement mock objects during
unit testing.

Note ■ Duck typing refers to the concept that if it walks like a duck and talks like a duck, it must be a duck. In Groovy

speak, if an object has properties and methods similar to another object, the two objects must be of the same type.

The reason for explaining the Expando class here is that there is an expando metaclass in Groovy that is a
metaclass that works like an expando. You can add new state (properties) and new behavior (methods) in the
metaclass by simply assigning a closure to a property of the metaclass.

ExpandoMetaClass
Groovy has a special metaclass called an ExpandoMetaClass that allows you to add methods, constructors, and
properties at runtime by assigning a closure to a property of the metaclass. Every java.lang.Class is supplied with a
special metaClass property that, when used, gives you a reference to an ExpandoMetaClass instance.

Borrowing Methods from Other Classes

With ExpandoMetaClass you can also use Groovy’s method pointer syntax to borrow methods, as shown in
Listing 3-32, from other classes.

CHAPTER 3 ■ MORE ADVANCED GROOVY

77

Listing 3-32. Borrowing Methods from Other Classes

1. class Author{
2. String name
3. }
4. class Greet{
5. def sayHello() {
6. "hello vishal"
7. }
8. }
9. def hello = new Greet()
10. Author.metaClass.greet = hello.&sayHello
11. def author = new Author()
12. assert author.greet() == "hello vishal"

In Line 1, class • Author does not have any method and class Greet has a method sayHello().

Line 10 uses the method closure operator that we introduced in Chapter • 2 to assign the
sayHello() method to Author using ExpandoMetaclass.

On Line 12 we call the method • Greet() on Author class. This Greet() method does not exist in
Author class and has been borrowed from the Greet class, dynamically creating method names.

Since Groovy allows you to use strings as property names, this in turns allows you to dynamically create method
and property names at runtime.

To create a method with a dynamic name, simply use Groovy’s feature of reference property names as strings, as
shown in Listing 3-33.

Listing 3-33. Dynamically Creating Method Names

1. class Test{
2. String name = "foo"
3. }
4. def newName = "bar"
5. Test.metaClass."changeNameTo${newName}" = {−> delegate.name = "bar" }
6. def m = new Test()
7. assert m.name == "foo"
8. m.changeNameTobar()
9. assert m.name == "bar"

In Line 5, we use string interpolation to generate the name of the method, which, when called, •
will change the name in the test class from “foo” to “bar”.

Note that within the scope of the closure, the delegate variable is equivalent to • this in a
standard method.

In Line 8, we use the method • changeNameTobar(), which will be generated at run-time.

In Line 9, we assert the new value of name, implying the dynamically generated method •
changed the name as expected.

Adding Constructors

Adding constructors is a little different than adding a method with ExpandoMetaClass. Essentially you use a special
constructor property and either use the << or = operator to assign a closure, as shown in Line 4 in Listing 3-34.

CHAPTER 3 ■ MORE ADVANCED GROOVY

78

Listing 3-34. Adding Constructors

1. class Book {
2. String title
3. }
4. Book.metaClass.constructor << { String title -> new Book(title:title) }
5. def b = new Book("Beginning Groovy, Grails and Griffon")
6. assert "Beginning Groovy, Grails and Griffon" == b.title

Adding Properties

In Listing 3-35, class Book has only one property: title. We will add the author property to the Book class dynamically.

Listing 3-35. Addiing Properties

1. class Book {
2. String title
3. }
4. Book.metaClass.constructor << { String title -> new Book(title:title) }
5. Book.metaClass.getAuthor << {−> "Vishal Layka" }
6. def b = new Book("Beginning Groovy, Grails and Griffon")
7. assert "Beginning Groovy, Grails and Griffon"== b.title
8. assert "Vishal Layka" == b.author

Line 4adds a constructor that will initialize the property • title in Book class

Line 5adds the property • author and assigns it the value “Vishal Layka”.

Line 7asserts the existing property • title as “Beginning Groovy, Grails and Griffon”.

Line 8asserts the non-existing property • author as “Vishal Layka”.

Adding Methods on Interfaces

It is possible to add methods onto interfaces with ExpandoMetaClass. However, you must enable this ability globally
using the ExpandoMetaClass.enableGlobally() method before application startup.

Listing 3-36 illustrates adding a new method to all implementers of java.util.List:

Listing 3-36. Adding Methods on Interfaces

1. List.metaClass.sizeDoubled = {−> delegate.size() * 2 }
2. def list = []
3. list << 1
4. list << 2
5. assert 4 == list.sizeDoubled()

In Line 1, we add a new method • sizeDoubled(), which we replace using = operator to the
size()method of the list multiplied by 2.

In Lines 3-4, we append two elements to the list so the size of the list is 2.•

In Line 5, we assert • sizeDoubled() returns 4.

CHAPTER 3 ■ MORE ADVANCED GROOVY

79

Adding or Overriding Instance Methods

With ExpandoMetaClass adding or overriding instance methods is effortless, as illustrated in Listing 3-37.

Listing 3-37. Adding Instance Methods

1. class Book {
2. String title
3. }
4. Book.metaClass.titleInUpperCase << {−> title.toUpperCase() }
5. def b = new Book(title:"Beginning Groovy, Grails and Griffon")
6. assert "BEGINNING GROOVY, GRAILS AND GRIFFON" == b.titleInUpperCase()

In Line 4, the left shift • << operator is used to “append” the new method. If the method already
exists, an exception is thrown. If you want to replace an instance method, you can use the =
operator:

Book.metaClass.toString = {−> title.toUpperCase() }

In Line 6, we assert by invoking the newly added • titleInUpperCase(), which operates on the
String title, the toUpperCase() assigned to it in Line 4.

Adding or Overriding Static Methods

As shown in Listing 3-38, you can also add static methods using the same technique as instance methods with the
addition of the static qualifier before the method name:

Listing 3-38. Adding a Static Method

1. class Book {
2. String title
3. }
4. Book.metaClass.static.create << { String title -> new Book(title:title) }
5. def b = Book.create("Beginning Groovy, Grails and Griffon")
6. assert "Beginning Groovy, Grails and Griffon" == b.title

In Line 5, we add a static qualifier before the • create method. This method creates a new book
object with the title “Beginning Groovy, Grails and Griffon”.

Categories
Categories are used to add methods to an existing class on the fly. A category can be added to any class at runtime, by
using the use keyword. To create a category for class, we define a class containing static methods that take as their first
parameter an instance of the class that we want to extend. The category can be applied to any closure by using the use
keyword denoting a use method, which Groovy adds to java.lang.Object. This use method takes two parameters: a
category class and a closure. Listing 3-39 shows how you can add a method to the string class.

Listing 3-39. Using Categories

1. class StringExtended {
2. static String firstUpper(String self) {
3. return self[0].toUpperCase() + self[1..self.length() - 1]
4. }
5. }

CHAPTER 3 ■ MORE ADVANCED GROOVY

80

6. use (StringExtended){
7. assert "aaaa".firstUpper() == "Aaaa"
8. }

In Listing 3-39, the category method is the static • firstUpper() in Line 2, which takes an
instance of the class that we want to extend as its parameter. Conventionally this parameter
is named as self. So in this case we are extending the class String (which is final, but we are
metaprogrammers!).

In Line 6, we pass the category class and a closure to the • use() method.

In Line 7, we invoke the category method on the string.•

Runtime Mixins
In Java as well as Groovy:

A class can inherit only one other class even though it can implement many interfaces.•

A class cannot inherit from a final class.•

Mixin can solve both these problems. Mixins are designed for sharing features while not modifying any existing
behavior of the receiver. Features can build on top of each other and merge and blend with the receiver. This can be
best illustrated by example in Listing 3-40.

Listing 3-40. Using a Run-time Mixin

1. class A{
2. String genericfeatureNeededByClassB(){}
3. }
4. class B extends A{
5. String getName() { "class B which already extends class A" }
6. }
7. final class C{
8. static test(A self) { "I'm the final class C and reused by ${self.name} !" }
9. }
10. B.mixin C
11. println new B().test()

Note the following:

Lines 1–3: Shows class • A, which has the method genericfeatureNeededByClassB().

Lines 5–7: Shows class • B, which needs to extend class A, so now it cannot extend any
other class.

Lines 9–11: Shows a final class • C. So now inheriting from this class is out of question. This class
has a test() method.

Line 10: Shows mixin syntax for merging classes.•

Line 11: Shows that • test() of final class C is available in class B.

With this we complete the journey through the runtime programming in Groovy. Now that you have grasped the
concepts of dynamic programming, let us go back in time—not too far, just to a previous section so we can apply our
recently acquired knowledge. We will revisit the code from Listing 3-25 and make it dynamic. For quick reference,
Listing 3-25 is repeated here.

CHAPTER 3 ■ MORE ADVANCED GROOVY

81

Listing 3-25. E-mail Template-Processing Code

1. import groovy.text.SimpleTemplateEngine
2.
3. /**
4. * Simple User Groovy Bean.
5. */
6. class User {
7. String firstName;
8. String lastName;
9. }
10.
11. def emailTemplate = this.class.getResource(“nightlyReportsEmail.gtpl”)
12. def binding = [
13. “user”: new User(firstName: “Christopher”, lastName: “Judd”),
14. "date": new Date()
15.]
16. def engine = new SimpleTemplateEngine()
17. def email = engine.createTemplate(emailTemplate).make(binding)
18. def body = email.toString()
19.
20. println body

The code that we will make dynamic is in bold. The simple user GroovyBean, from Lines 6–9 is used simply to
pass data to the template engine; it provides no other value, so it’s a great candidate for an expando object.

Listing 3-41 shows code that creates the user GroovyBean from Listing 3-25 using expandos rather than a
concrete class.

Listing 3-41. Alternative to the User GroovyBean

1. def user = new Expando()
2.
3. user.firstName = 'Christopher'
4. user.lastName = 'Judd'
5.
6. user.greeting = { greeting ->
7. "${greeting} ${firstName} ${lastName}"
8. }
9.
10. assert user.greeting("Hello") == 'Hello Christopher Judd'

Listing 3-41 uses an expando as a replacement for a concrete GroovyBean class. On Line 1, a new instance of the
expando is created. On Lines 3 and 4, the firstName and lastName properties are added to the object dynamically and
assigned values. Properties are not the only things that you can add. You can also add behaviors using closures. Lines
6–8 create and assign a closure to the greeting that concatenates the greeting parameter with the properties for the
first and last names. Finally, line 10 executes greeting.

You can also initialize expandos with properties using the overloaded constructor that takes a map. Listing 3-42
uses this technique to re-implement the template example found on Line 13 in Listing 3-25.

CHAPTER 3 ■ MORE ADVANCED GROOVY

82

Listing 3-42. Template Example Using Expandos Instead of User GroovyBean

import groovy.text.SimpleTemplateEngine
def emailTemplate = this.class.getResource("nightlyReportsEmail.gtpl")
def binding = [
 "user": new Expando([firstName: 'Christopher', lastName:'Judd']),
 "date": new Date()
]
def engine = new SimpleTemplateEngine()
def template = engine.createTemplate(emailTemplate).make(binding)
def body = template.toString()
println body

Notice that Listing 3-42 reduces the amount of code and increases the readability of the earlier template example
by replacing the User class definition with expando, which contains the firstName and lastName properties.

Now we refactor Line 11 of Listing 3-25, which seems a little more like Java than Groovy, so we will groovify it.

def emailTemplate = this.class.getResource("nightlyReportsEmail.gtpl")

Listing 3-43 shows how MOP could make this a little more Groovy by adding the getResourceAsText() method
to java.lang.Class, which actually loads the file and gets the contents of the file as text rather than just the URL to
the file.

Listing 3-43. Adding the getResourceAsText() Method to java.lang.Class

1. import groovy.text.SimpleTemplateEngine
2.
3. Class.metaClass.getResourceAsText = { resource ->
4. this.class.getResourceAsStream(resource).getText()
5. }
6.
7. def emailTemplate = this.class.getResourceAsText('nightlyReportsEmail.gtpl')
8. def binding = [
9. "user": new Expando([firstName: 'Christopher', lastName:'Judd']),
10. "date": new Date()]
11. def engine = new SimpleTemplateEngine()
12. def template = engine.createTemplate(emailTemplate).make(binding)
13. def body = template.toString()
14.
15. println body

Notice how Line 7 expresses much more explicitly that it is loading the template as text and not as a URL. This is
accomplished by extending the final java.lang.Class on Lines 3–5 by accessing the metaClass property and adding
the getResourceAsText() method that takes a parameter of resource, which is the name of a file on the classpath. The
implementation of this method found on Line 4 uses the getResourceAsStream() technique to load a file as a stream. This
is generally safer than using a URL, because not everything is easily addressable with a URL. The closure then finishes by
using the getText() method, which Groovy includes in the Groovy JDK on all java.io.InputStreams by means of MOP.
Finally, Line 7 shows what a call to the getResourceAsText() method would look like on java.lang.Class. There are
additional ways in which you might want to do the same thing and make Listing 3-25 a little more expressive. Listing 3-44
shows another implementation of doing the same thing by adding behavior to java.lang.String, which is also a class
marked as final.

CHAPTER 3 ■ MORE ADVANCED GROOVY

83

Listing 3-44. Adding the fileAsString() Method to java.lang.String

1. String.metaClass.fileAsString = {
2. this.class.getResourceAsStream(delegate).getText()
3. }
4.
5. println 'nightlyReportsEmail.gtpl'.fileAsString()

Listing 3-44 begins by adding the fileAsString() method to the metaClass property of the java.lang.String
class, similar to the previous example. However, it uses a delegate variable instead of a passed-in parameter. The
delegate is a reference to the object instance of which the method was called, which in this case would be the string
containing the file name to be loaded. Notice how nicely Line 5 reads. It is almost like reading an English sentence.
It is not a mere coincidence, as we will discover in the domain-specific language section, but before that we will
examine another form of metaprogramming.

Compile-time Metaprogramming
Compile-time metaprogramming provides the user of a programming language, a mechanism to interact with the
compiler to allow the construction of arbitrary program fragments; for instance, to add new features to a language or
apply application-specific optimizations. Many of the new Groovy features use compile-time metaprogramming to
eliminate redundant or verbose code. Compile-time metaprogramming can be very useful, but is less flexible than
runtime metaprogramming and should only be used if you must; that is, only if you cannot find a runtime solution for
the problem at hand.

AST Transformations
AST stands for Abstract Syntax Tree: a representation of code as data. When the Groovy compiler compiles Groovy
scripts and classes, the Groovy parser(the front end of the compiler) creates an AST before generating the final byte
code for the class. The AST is the in-memory representation of the source code, comprising class, method, property,
statement, and variables. AST transformation is the capability to add new code (methods and checks) into source
code before the final byte code is generated. Groovy ships with many annotations for AST transformations that you
can readily use to avoid code repetition.

The objective of an AST transformation is to let developers structure code while focusing more on the business
code rather than on boilerplate code or cross-cutting concerns. Groovy offers several approaches to accomplishing
AST transformations: using annotations shipped with Groovy for AST transformations, local AST transformation, and
global AST transformations.

Built-in AST Transformations
To use the built-in AST transformation feature of Groovy, you just need to annotate a class or a method with the
annotations provided by Groovy. You don’t have to know anything about compilers or Groovy internals before using
the annotations, which we describe in this section. We will cover the most popular AST transformations annotations
provided by Groovy. Using all Groovy built-in AST transformations and writing your own custom transformations is a
broad subject and merits a book of its own. A detailed explanation on all built-in transformations can be found on the
Groovy site (http://groovy.codehaus.org/Compile-time+Metaprogramming+−+AST+Transformations).

Delegate Transformation

A delegate is a relationship between two classes; for example, one class will contain a reference to another class.
Listing 3-45 shows a simple usage of @Delegate that wraps an existing class, delegating all calls to the delegate:

http://groovy.codehaus.org/Compile-time+Metaprogramming+<2212>+AST+Transformations

CHAPTER 3 ■ MORE ADVANCED GROOVY

84

Listing 3-45. Using @Delegate

1. class Author{
2. String authorName
3. }
4. class Book {
5. @Delegate Author author
6. String title
7. }
8. def author= new Author(authorName: "vishal")
9. def book= new Book(title: "Beginning Groovy,Grails and Griffon", author: author)
10. assert book.title == "Beginning Groovy,Grails and Griffon"
11. assert book.authorName == "vishal"

Line 5: • @Delegate annotation forms a ‘has a’ relationship. The class Book has a reference to
class Author.

Lines 8–9: • Author is initialized and passed to book.

Line 11: Field • authorName is accessible from the book object because of the @Delegate
annotation.

Immutable Transformation

Immutable objects are ones ’that don’t change after initial creation. Immutability implies the following:

The class must be final.•

Fields must be private and final.•

• equals(), hashCode(), and toString() must be implemented in terms of the fields in order
to be able to compare objects or use them as keys in maps.

Immutable transformation allows you to write classes in the shortened form, as illustrated in Listing 3-46.

Listing 3-46. Adding the getResourceAsText() Method to java.lang.Class

1. @groovy.transform.Immutable class Book{
2. String title
3. Collection authors
4. }
5. def book1 = new Book(title:'Beginning Groovy, Grails and Griffon', authors:['Vishal', 'Chris',

'James', 'Joseph'])
6. def book2 = new Book('Beginning Groovy, Grails and Griffon', ['Vishal', 'Chris', 'James',

'Joseph'])
7. assert book1 == book2

The @Immutable annotation instructs the compiler to execute an AST transformation, which adds the necessary
getters, constructors, equals(), hashCode(), and other helper methods that are typically written when creating
immutable classes with the defined properties.

Lazy Transformation

Sometimes, you want to handle the initialization of a field of your class lazily, so that its value is computed only on
first use, often because it is time-consuming or memory-expensive to create. In Groovy, you can now use the @Lazy
annotation for that purpose:

CHAPTER 3 ■ MORE ADVANCED GROOVY

85

If you run the code in Listing 3-47, you will get an exception as shown.

Listing 3-47. Using @Lazy

1. class Groovy {
2. @Lazy authors= ['Vishal', 'Christopher', 'Joseph', 'James']
3. }
4. def g = new Groovy()
5. assert g.dump().contains('Vishal')

Caught: Assertion failed:

assert g.dump<>.contains<'Vishal'>
 ¦ ¦ ¦
 ¦ ¦ false
 ¦ <Groovy@8ee016 $authors=null>
 Groovy@8ee016

Assertion failed:

assert g.dump<>.contains<'Vishal'>
 ¦ ¦ ¦
 ¦ ¦ false
 ¦ <Groovy@8ee016 $authors=null>

 Groovy@8ee016

The power assert notifies us that the authors list is null, even if the authors list in Line 2 is not null.
This happens because of the @Lazy annotation. The @Lazy field annotation delays field instantiation until the

time when that field is first used. In Line 5, authors is not initialized due to the @lazy annotation, which is corrected
in Listing 3-48.

Listing 3-48. Using @Lazy Annotation

1. class Groovy {
2. @Lazy authors= ['Vishal', 'Christopher', 'Joseph', 'James']
3. }
4. def g = new Groovy()
5. assert g.authors.size() == 4
6. assert g.dump().contains('Vishal')

Logging Transformation

For logging, Groovy includes @Log, @Log4j, @Slf4j, and @Commons. Listing 3-49 illustrates using @Log annotation.

Listing 3-49. Using @Log

1. @groovy.util.logging.Log
2. class Test {
3. def someMethod() {
4. log.fine(complexMethod())

CHAPTER 3 ■ MORE ADVANCED GROOVY

86

5. }
6. }
7. new Test().someMethod ()

Line 1:The • @Log annotation first creates a logger based on the name of the class.

Line 4: The log method is wrapped with a conditional check whether • FINE level is enabled
before trying to execute the complexMethod().

The result is equivalent to wrapping the logging call in the following condition:

if (logger.isEnabled(LogLevel.FINE))

Newify Transformation

The @Newify transformation proposes two new ways of instantiating classes.
Listing 3-50 shows a Ruby-like approach to create instances with a new() class method:

Listing 3-50. Using @Newify for Ruby-like Approach to Create Instances

@Newify rubyLikeNew() {
 assert Integer.new(42) == 42
}

rubyLikeNew()

Listing 3-51. Creating a tree

class Tree {
 def elements
 Tree(Object... elements) { this.elements = elements as List }
}

class Leaf {
 def value
 Leaf(value) { this.value = value }
}

def buildTree() {
 new Tree(new Tree(new Leaf(1), new Leaf(2)), new Leaf(3))
}

buildTree()

The creation of the tree in Listing 3-51 is not very readable because of all those new keywords spread across the
line. The Ruby approach in this case would not be more readable either, since a new() method call for creating each
element is needed. But by using @Newify, we can improve our tree building slightly for visual clarity, using ’Python’s
approach by omitting the new keyword altogether. Listing 3-52 illustrates a Python-like approach to create instances.

Listing 3-52. Using @Newify for Python-like Approach to Create Instances

@Newify([Tree, Leaf]) buildTree() {
 Tree(Tree(Leaf(1), Leaf(2)), Leaf(3))
}

CHAPTER 3 ■ MORE ADVANCED GROOVY

87

Singleton Transformation

We’re used to creating a private constructor, a getInstance() method for a static field, or even an initialized public
static final field. The singleton pattern requires a private constructor, and a public static method to access the
single instance.

So instead of writing Java code, as illustrated in Listing 3-53, you just need to annotate your type with the
@Singleton annotation, as shown in Listing 3-54:

Listing 3-53. A Singleton Class

public class T {
 public static final T instance = new T();
 private T() {}
}

Listing 3-54. Using @Singleton

@Singleton class T {}

The singleton instance can then simply be accessed with T.instance (direct public field access).
You can also have the lazy loading approach, shown in Listing 3-55, with an additional annotation parameter:

Listing 3-55. Using @Singleton with Lazy Loading

@Singleton(lazy = true) class T {}

The code in Listing 3-55 becomes more or less equivalent to the Groovy class created in Listing 3-56:

Listing 3-56. Groovy Class representationof @Singleton

class T {
 private static volatile T instance
 private T() {}
 static T getInstance () {
 if (instance) {
 instance
 } else {
 synchronized(T) {
 if (instance) {
 instance
 } else {
 instance = new T ()
 }
 }
 }
 }
}

CHAPTER 3 ■ MORE ADVANCED GROOVY

88

Domain-Specific Languages
The dichotomy of generic and specific manifests itself in the programming sphere. Domain-specific languages (DSLs)
are one of the forms of the manifestations of this dichotomy. Domain-specific languages are just what they are called:
domain specific.

All programming languages are domain-specific languages when they come into existence, but that changes as
they evolve. Domain-specific languages are created to solve problems in a certain area (or more precisely, in a certain
domain) but as they gradually evolve to solve problems in several domains, the line that distinguishes them as specific
blurs. Thus, such a language transgresses from the specific to the generic.

DSLs are focused on the domain or problem and can be of external or internal types.
An external DSL defines a new language with its own custom grammar and parser. An internal DSL defines a

new language as well, but within the syntactical boundaries of another language. No custom parser is necessary for
internal DSLs. Instead, they are parsed just like any other code written in the language.

Ant, which uses XML, is an example of an external DSL. Gant, on the other hand, uses Groovy to solve the same
problem and is an example of an internal DSL. Groovy with its metaprogramming capabilities and flexible syntax is
better suited to designing and implementing internal DSLs.

As an illustration, using Groovy’s optional parameters and MOP, you can turn this code that only a programmer
can love:

println this.class.getResourceAsStream('readme.txt').getText()
into:
write 'readme.txt'.contents()

Notice that with the second option, even a nonprogrammer has a chance of understanding the intent of the code.
Listing 3-57 shows how to implement this simple DSL for writing files.

Listing 3-57. Implementation of a Simple DSL

1. String.metaClass.contents = {
2. this.class.getResourceAsStream(delegate).getText()
3. }
4.
5. def write = { file ->
6. println file
7. }
8.
9. write 'readme.txt'.contents()

Lines 1–3 use the same metaprogramming implementation from the previous section to add a contents closure to
the String class. The contents closure loads a file from the classpath as text based on the value of the String. Lines 5–7
implement a closure named write that simply does a println on whatever is passed as a parameter. This ultimately
enables Line 9 to read like a sentence when the optional parentheses for the write call are not included.

Summary
Combined with the Groovy topics from the previous chapters, the advanced Groovy topics in this chapter—such as
unit testing, XML processing, templates, expandos, and metaprogramming—have prepared you for developing
web-based and desktop-based applications using the Groovy-based Grails and Griffon framework that is the focus
of the remainder of the book.

89

Chapter 4

Introduction to Grails

Let’s face it: developing web applications is hard. This problem has been exacerbated in today’s environment,
where applications deemed to fall into the Web 2.0 category involve lots of technologies, such as HyperText Markup
Language (HTML), Cascading Style Sheets (CSS), Asynchronous JavaScript and XML (Ajax), XML, web services, Java,
and databases. Then on top of the technologies sit lots of open source framework choices like model-view-controller
(MVC) frameworks and Ajax frameworks. To make matters worse, while the complexity of building applications
continues to grow, expected turnaround times continue to shrink.

In recent years, the Java community has tried solving these issues by building applications using Java Platform,
Enterprise Edition (Java EE) and its predecessor, Java 2 Platform, Enterprise Edition (J2EE). While these platforms
have proven to be scalable and robust, they don’t allow for rapid, agile development. Java EE has proven over and
over again that it was not written with an application level of abstraction but rather with a much lower technical
level. These shortcomings led to the development of recent application frameworks and the subsequent popularity
of frameworks such as Struts, Spring, and Hibernate. Furthermore, the development cycle of coding, compiling,
packaging, deploying, testing, and debugging takes entirely too long for any real productivity and requires developers
to switch context too frequently.

Enter Grails. Grails is an open source web development framework that packages best practices (such as
convention over configuration and unit testing) with the best-of-the-best open source application frameworks (such
as Spring, Hibernate, and SiteMesh). Together with the productivity of the Groovy scripting language, everything runs
on top of the robust Java and Java EE platforms.

In this chapter, you will learn about the features and open source frameworks included with Grails. Then you’ll
learn how to take advantage of Grails’ powerful scaffolding feature to build your first Grails application.

What Is Grails?
Grails is not only an open source web framework for the Java platform, but a complete development platform as well.
Like most web frameworks, Grails is an MVC framework, but it’s not your average Java MVC framework. Like other
Java MVC frameworks, it does have models (referred to in Grails as domain classes) that carry application data for
display by the view. However, unlike other MVC models, Grails domain classes are automatically persistable and can
even generate the underlying database schema. Like other MVC frameworks, Grails controllers handle the requests
and orchestrate services or other behavior.

Unlike most MVC frameworks, though, services and other classes can be automatically injected using
dependency injection based on naming conventions. In addition, Grails controllers are request-scoped, which means
a new instance is created for each request. Finally, the default view for Grails is Groovy Server Pages (GSP) and it
typically renders HTML. The view layer also includes a flexible layout, a templating feature, and simple tag libraries.

Other Grails advantages include minimal configuration and a more agile development cycle. Grails eliminates
most of the standard MVC configuration and deployment descriptors by using initiative conventions. Also, because
Grails takes advantage of Groovy’s dynamic language features, it is usually able to shorten the development cycle to

CHAPTER 4 ■ INTRODUCTION TO GRAILS

90

just coding, refreshing, testing, and debugging. This saves valuable development time and makes development much
more agile than with other Java MVC frameworks or Java EE.

As a complete development platform, Grails includes a web container, database, build system, and test harness
out of the box. This combination can reduce project startup time and developer setup time to minutes rather than
hours or days. With Grails, you typically don’t have to find and download a bunch of server software or frameworks to
get started. You also don’t have to spend time creating or maintaining complicated build scripts. Everything you need
to get started comes bundled in one simple-to-install package.

Grails has an impressive list of features and is able to provide so much functionality by integration of proven open
source projects.

Grails Features
Most modern web frameworks in the Java space are convoluted, full of twists and turns, and disregard the Don’t
Repeat Yourself (DRY) principles. Grails, built on the concepts brought to the fore by dynamic frameworks like Rails,
Django, and TurboGears, dramatically reduces the complexity of building web applications on the Java platform,
leveraging already established Java technologies like Spring and Hibernate. Grails is a full stack framework and
attempts to solve as many pieces of the web development puzzle through the core technology and its associated
plugins. Its features include:

An easy-to-use Object Relational Mapping (ORM) layer built on Hibernate•

An expressive view technology called Groovy Server Pages (GSP)•

A controller layer built on Spring MVC•

A command line scripting environment built on the Groovy-powered Gant•

An embedded Tomcat container configured for on-the-fly reloading•

Dependency injection with the built-in Spring container•

Support for internationalization (i18n) built on Spring’s core MessageSource concept•

A transactional service layer built on Spring’s transaction abstraction•

All of these are made easy to use through the power of the Groovy language and the extensive use of Domain
Specific Languages (DSLs).

Grails really has too many features to mention them all. In this section, we’ll highlight some of the more
important ones.

Convention over Configuration

Rather than using lots of XML configuration files, Grails relies on conventions to configure itself, thus making
application development easier and more productive. The conventions relate to the directory structure, meaning
that the name and location of files is used instead of explicit configuration. This essentially means that instead of
wiring in XML configuration files, you can create a class, following the Grails conventions, and Grails will wire it into
Spring or treat it as a Hibernate entity thereof. For example, if you create a new domain class called User, Grails will
automatically create a table called user in the database. This convention over configuration feature is centered on
its directory structure. By using the convention-over-configuration paradigm, Grails can figure out a component’s
responsibilities, inspecting its name and its location in the directory structure, and thus enable you to configure a
particular aspect of a component only when that configuration deviates from the standard. In this way, adhering to
well-known conventions, you can create an application more quickly, because you will spend less time configuring it.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

91

Unit Testing

Unit testing is now recognized as a critical best practice to improving the quality of software deliverables and enabling
long-term maintainability of an application. Furthermore, unit testing is even more important for applications written
using dynamically typed languages such as Groovy, because identifying the effects of changes without the help of the
compiler and unit tests can be difficult. This is why unit testing is a major Grails convention.

Grails separates its unit tests into two categories: unit and integration. Grails unit tests are free standing unit tests
with no dependencies other than possibly mock objects. Integration tests, on the other hand, have access to the entire
Grails environment, including the database.

Scaffolding

As you’ll see in the second half of this chapter, Grails has a scaffolding framework that generates applications with
create, read, update, and delete (CRUD) functionality with very little code, allowing you to focus on defining the Groovy
domain by creating classes with properties, behaviors, and constraints. At either runtime or development time, Grails
can generate the controller behavior and GSP views associated with the domain classes for CRUD functionality. At the
same time, it can even generate a database schema, including tables for each of the domain classes.

Object Relational Mapping

Grails includes a powerful object relational mapping framework called Grails Object Relational Mapping (GORM).
Like most object-relational mapping (ORM) frameworks, GORM can map objects to relational databases and
represent relationships between those objects, such as one-to-one or one-to-many. But what sets GORM apart from
other ORMs is the fact that it is built for a dynamic language like Groovy. It injects the CRUD methods right into the
class without having to implement them or inherit from persistent super classes. Once more, it is able to provide an
ORM DSL for dynamic finder methods and search criteria. You will learn more about GORM in Chapter 6.

Plugins

Grails does not propose to have all the answers to every web development problem. Instead, it provides a plugin
architecture and a community where you can find plugins for things like security, Ajax, testing, searching, reporting,
and web services. This plugin architecture makes it easy to add complicated functionality to your application. We will
discuss plugins in more detail in “Grails Plugins,” later in this chapter.

Integrated Open Source
Grails does not suffer from the Not Invented Here (NIH) syndrome. Rather than reinvent the wheel, it integrates the
best of the best industry-standard and proven open source frameworks, several of which are briefly described in
this section.

Groovy

Groovy is one of the pillars of Grails. Grails 2.0 comes with Groovy 1.8. As you learned in Chapters 1-3, Groovy is
a powerful and flexible open source language that stands on its own. However, its integration with Java, dynamic
scripting features, and simple syntax makes it a perfect complement to Grails and provides the agile nature of the
entire solution.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

92

Spring Framework

Spring Framework is best described by its creator Rod Johnson as providing an application level of abstraction on
top of the Java EE API. For example, rather than having to deal with the details of handling transactions, Spring
provides a means for declaring transactions around regular Plain Old Java Objects (POJOs) so that you can focus on
implementing business logic. In addition, because Spring brings Java EE features to POJOs, you’re able to develop
and test your application code outside a Java EE container, thereby increasing productivity. Along with Hibernate,
Spring was a major influence on the new Enterprise JavaBeans (EJB) 3.0 spec, which attempts to simplify Java EE
development.

Grails implicitly handles much of the Spring integration. However, in Chapter 6, you will learn how to explicitly
configure and integrate with Spring if you find it necessary.

Hibernate

Hibernate is an object-relational persistence framework that provides the foundation for GORM. It’s able to map
complex domain classes written as POJOs or POGOs (Plain Old Groovy Objects) to relational database tables, as well
as map relationships between the tables. As mentioned in the previous section, Hibernate had a big influence on the
EJB 3.0 specification, specifically the Java Persistence API (JPA). Hibernate is one of the many JBoss projects. For more
information about Hibernate, go to http://www.hibernate.org.

SiteMesh

SiteMesh is a web page layout framework that implements the decorator design pattern for rendering HTML
with constant components such as the header, footers, and navigation. It is one of the components found in the
OpenSymphony suite and is hosted on the OpenSymphony site. Grails hides most of the SiteMesh details from you as
a developer, but in Chapter 5, you’ll see how to create page layouts and other web components such as GSP. You can
find detailed information about SiteMesh at http://wiki.sitemesh.org/display/sitemesh/Home.

Ajax Frameworks

By default, Grails includes the jQuery library, but also provides support for other frameworks such as Prototype, Dojo,
Yahoo UI, and the Google Web Toolkit through the plugin system. Chapter 8 will explain how to add Ajax functionality
to your application to increase usability.

Tomcat

Grails 2.0 replaces Jetty with an embedded Tomcat container that is configured for on-the-fly reloading. Chapter 12
will explain how to deploy Grails applications to other containers.

H2

Grails 2.0 now uses the H23 database instead of HSQLDB, and enables the H2 database console in development mode
(at the URI /dbconsole) so that the in-memory database can be easily queried from the browser. By default, Grails
uses the embedded in-memory configuration, so that each time the application is run, the database is rebuilt from
scratch and all data is lost. Chapter 12 will explain how to configure Grails to use other databases such as MySQL. We
will discuss H2 further in “H2 Console,” later in this chapter. To find out more about H2, including how to download it,
go to http://www.h2database.com/html/main.html.

http://www.hibernate.org
http://wiki.sitemesh.org/display/sitemesh/Home
http://www.h2database.com/html/main.html

CHAPTER 4 ■ INTRODUCTION TO GRAILS

93

Grails Architecture
Now that you know some of the features and open source frameworks included in Grails, you are more prepared to
understand the Grails architecture, which is illustrated in Figure 4-1.

Figure 4-1. Grails architecture

In Figure 4-1, notice that the foundation of Grails is the Java Virtual Machine (JVM).Also, notice the separation in
the architecture from the Java language and the JVM. In the past couple of years, the Java community has seen a rash
of new and ported languages being run on the JVM. This is particularly important in Grails, because in the next level
up from the JVM, you see that both the Java and Groovy languages are used.

The final layer of the architecture is the applications you will build with Grails. Typically, this layer follows the
MVC pattern. Grails also makes it easy to organize your application to make coarse-grained services.

To simplify development, Grails includes a command-line tool for creating many Grails artifacts and managing
Grails projects. The Grails command line is built on top of Gant, a build system that uses the Groovy language to script
Apache Ant tasks rather than Ant’s XML format. You will learn more about Gant and adding your own scripts to the
Grails command line in Chapter 12.

From a runtime perspective, you can think of Grails out of the box as looking like Figure 4-2.

Figure 4-2. Grails default runtime

CHAPTER 4 ■ INTRODUCTION TO GRAILS

94

In Figure 4-2, you see a web browser making a request to a Tomcat web container. The container forwards the
request on to a controller in a similar fashion to the standard MVC model. The controller may set or use data from a
domain class (model). As mentioned earlier, all Grails domain classes are persistable through the GORM framework.

You don’t need to use a Data Access Object (DAO) pattern or write SQL to persist objects. In Chapter 6, you will
learn how to take full advantage of the persistable domain classes.

Out-of-the-box Grails uses an embedded H2 database, which means the database runs in the same JVM as your
application and the Tomcat web container. When the controller is done, it forwards the request to a GSP, which is the
view technology to render the HTML that is returned to the requesting browser.

Installing Grails
Considering the alternative to using Grails—downloading and installing a web container or application server,
database, and MVC framework—installing Grails seems almost too easy. All you need to do is uncompress a file
and set up some environment variables, and you’re done. Most everything is self-contained. Grails does require two
prerequisites, though: you must have a JDK 1.6 or above, and you must have the JAVA_HOME environment variable
configured for that JDK. In this book, we will use Grails 2.1.0

Follow these steps to install Grails:

1. Download the latest Grails .zip or .tar/.gz file release from http://grails.codehaus.org/Download.

2. Extract the archive to your preferred location.

3. Create a GRAILS_HOME environment variable that points to the path where the Grails
archive was extracted.

4. Append the GRAILS_HOME\bin directory to the PATH environment variable.

Once you complete these steps, the Grails command line will be available. You can use it to create the project,
create artifacts, run the application, and package the application.

To validate your installation, open a command window and type the command grails -version:

> grails –version

If you have successfully installed Grails, the command will output the following:

Grails version: 2.1.0

Collab-Todo Application
Throughout this book, we’ll use a single web application example to demonstrate how to write a web application
using the Grails framework. Intermittently we will use stand-alone examples to introduce some concepts so that the
learning of Grails does not get tightly coupled with the application we build in the process. The application that we
will use in this book is a collaborative Web 2.0 to-do application and is called Collab-Todo. The application allows
users to create and manage todos in categories. It also allows users to create buddy lists of other Collab-Todo users to
make it easy to assign tasks to other users. In addition, it includes reports and batch e-mails, along with a thick client
and web service access.

http://grails.codehaus.org/Download

CHAPTER 4 ■ INTRODUCTION TO GRAILS

95

It is important for you to experience for yourself the power and productivity of Grails early on, so for the
remainder of this chapter, you will be learning to take advantage of Grails conventions and scaffolding to create a
simple but functional version of the Collab-Todo application. This initial version of the application will not be
a production-suitable application from a usability and design perspective. However, the Grails scaffolding is able
to render a simple but functional CRUD web application with almost no code besides your domain class code. In
addition, Grails will generate a database schema and populate a database with the schema when the application
is run. This scaffolding-based version of the application is suitable for testing domain objects as well as quick
application prototyping.

Figure 4-3 shows an example of what the CRUD todo pages will look like by the end of the chapter.

Figure 4-3. Todo List page

As you can see in Figure 4-3, the Todo List page provides the ability to view all the todos in the database as well as
create new todos or delete existing todos. It also provides a link to the edit page, where you can create a new todo or
update an existing todo.

Figure 4-4 shows the Edit Todo page, which is basically the same page used for updating and creating todos.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

96

As you can tell from Figures 4-3 and 4-4, this is not the most attractive application, and you probably won’t want
to release this to your users. In Chapter 5, you’ll learn how to make the application more usable and pleasing to your
users’ eyes, and in Chapter 8, you’ll learn how to make it even better by adding Web 2.0 features.

Figure 4-5 is a Unified Modeling Language (UML) diagram of a subset of the Collab-Todo domain classes you’ll
be creating in this chapter.

Figure 4-4. Edit Todo page

CHAPTER 4 ■ INTRODUCTION TO GRAILS

97

Notice the domain model in Figure 4-5 is very simple and includes only three domain classes. In Chapter 6, you will
extend this domain model and learn about the Grails persistence framework, GORM. Initially, the domain consists of a
User class, which has a Todo (task) class, and user defined Category classes used for organizing todos into logical groups.

Creating Collab-Todo application
To create the Collab-Todo application, you need to execute the create-app target using an optional project name on
the command line, as shown here:

> grails create-app collab-todo

The entire line in the preceding command line is a command, where create-app is a target. A target is a specific
task that you want Grails to execute.

If you don’t supply the project name when using create-app, you will be prompted for one. On execution of this
command, Grails downloads the dependencies and creates the application. The output of executing the create-app
target is shown here:

|Downloading: D:\grails-2.1.0\lib\org.springframework.uaa\org.springframework.u
| Downloading: D:\grails-2.1.0\lib\com.google.protobuf\protobuf-java\ivy-2.4.1.x
| Downloading: D:\grails-2.1.0\lib\org.bouncycastle\bcpg-jdk15\jars\bcpg-jdk15-1
.........
 Created Grails Application at D:\devl\workspace/collab-todo

Instead of creating the application from command line, you can use the IDE of your choice. We recommend the
Groovy/Grails Tool Suite (GGTS), which you can download from http://www.springsource.org/downloads/sts-ggts.
This book uses the latest version: GGTS 3.0. GGTS provides the best Eclipse-powered development environment for
building Groovy and Grails applications. GGTS provides support for the latest versions of Groovy and Grails, and comes
on top of the latest Eclipse releases.

User

Todo

Category

-userName : String -name : String

-description : String

-user : User

-belongsTo

1

1 0..*

0..*

0..*

1

-owner : User

-name : String

-note : String

-priority : String

-status : String

-createdDate : Date

-dueDate : Date

-completedDate : Date

-firstName : String

-lastName : String

-belongsTo

Figure 4-5. Subset of the Collab-Todo domain classes

http://www.springsource.org/downloads/sts-ggts.This

CHAPTER 4 ■ INTRODUCTION TO GRAILS

98

To create a new project in GGTS, use the menu options File ➤ New ➤ Grails Project and enter the project
name as “collab-todo”.

After the create-app target has run, or after creating a new project using GGTS, you have a new directory
matching the name of your project. This is the root of your new project, and you must make all subsequent Grails
command-line calls from within this directory. It’s a good idea to use the cd command to get into the directory
now so you don’t forget. Within the new project directory, you will find a structure matching the directory structure
shown in Figure 4-6.

Figure 4-6. Directory structure created by running the create app target

As mentioned earlier, the directory structure generated from the create-app target is a part of the Grails practice
of convention over configuration. The target provides locations for placing common artifacts. Throughout the book,
you will learn details about each directory. For now, Table 4-1 provides a summary of the more important directories.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

99

Table 4-1. Important Directories in the Grails Convention

Directory Description

grails-app/conf Common configuration files such as bootstrapping, logging, data source, and URL
mapping (see the “Configurations” sidebar)

grails-app/conf/hibernate Custom Hibernate mappings, which are rarely needed (covered in Chapter 6)

grails-app/conf/spring Custom Spring mapping files

grails-app/controllers Application controllers that handle requests (covered in Chapter 5)

grails-app/domain Domain model classes (covered in Chapter 6)

grails-app/i18n Internationalized message bundles (covered in Chapter 5)

grails-app/services Services (covered in Chapter 6)

grails-app/taglib Custom dynamic tag libraries

grails-app/views GSP (covered in Chapter 5)

grails-app/views/layout Commonly shared page layouts (covered in Chapter 5)

lib Third-party JAR files, such as database drivers

scripts Gant script for automating tasks (covered in Chapter 12)

src/java Additional Java source files

src/groovy Additional Groovy files

test/integration Integration tests

test/unit Unit tests (introduced later in this chapter)

web-app Web artifacts that will ultimately comprise a web application archive (WAR)
(many of the artifacts are covered in Chapter 5)

web-app/css Cascading Style Sheets (covered in Chapter 5)

web-app/images Web graphics (covered in Chapter 5)

web-app/js JavaScript (covered in Chapter 8)

web-app/WEB-INF Common Servlet specification WEB-INF directory containing private artifacts such
as configuration files like web.xml, the Spring application context, and the
SiteMesh config

Running the Application
At this point, you have a functional application that you can run and access via a web browser. It does not do much
yet, but running it now will enable you to get instant feedback as you add domain and controller classes.

To run a Grails application, execute the run-app target from your project root directory as shown here:

> grails run-app

The output of executing the run-app target is shown here:

Server running. Browse to http://localhost:8080/collab-todo

http://localhost:8080/collab-todo

CHAPTER 4 ■ INTRODUCTION TO GRAILS

100

To run the application in GGTS, click on “Grails Command History” as highlighted in Figure 4-7, type “run-app”
on the command window, and hit Enter.

Figure 4-7. Running the application in GGTS

Figure 4-8. Default Grails page

Running the run-app target performs some initial project setup by copying files into your web application’s
WEB-INF directories. Then it starts a Tomcat web container that listens on localhost port 8080. Tomcat then loads the
application, causing the Grails internal classes to get initialized for filtering URL mappings and requests along with
GrailsDispatchServlet. To test your app, point your web browser to that URL, as shown in Figure 4-8.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

101

Figure 4-8 shows the default Grails page. As you can see, it is not very interesting; it looks like a static page.
However, as you’ll see soon, there is some dynamism to this page. If you want to modify this page, it is the GSP
grails-app\views\index.gsp.

Creating the Controller
A controller handles requests and creates or prepares the response. A controller can generate the response directly
or delegate to a view. To create a controller class, use the Grails create-controller target. This creates a new Grails
controller class in the grails-app/controllers directory, as well as the unit test for the controller class in test/unit. It also
creates a grails-app/views/<controller name> directory if it doesn’t exist already.

To create the TodoController class, you need to execute the create-controller target using an optional class name,
as shown here:

> grails create-controller todo

If you don’t supply the class name, you are prompted for one. The output of executing the create-controller target
is shown here:

| Created file grails-app/controllers/collab/todo/TodoController.groovy
| Created file grails-app/views/todo
| Created file test/unit/collab/todo/TodoControllerTests.groovy

Notice that when running the create-controller with the optional class name, you can leave the class name in
lowercase, and Grails will automatically uppercase it for you so that it follows the standard Groovy class naming convention.

To create the controller using GGTS, click on the controllers in the collab-todo project hierarchy, and then use
New ➤ Controller as shown in Figure 4-9. Type “Todo” in the create–controller wizard as illustrated in Figure 4-10.

Figure 4-9. Creating a controller

CHAPTER 4 ■ INTRODUCTION TO GRAILS

102

This creates the controller as well as the unit test for the controller, as illustrated in Figure 4-11.

Figure 4-10. Controller name

Figure 4-11. Controller and unit test

CHAPTER 4 ■ INTRODUCTION TO GRAILS

103

Listing 4-1 shows the generated TodoController class.

Listing 4-1. Grails-Generated TodoController Class

package collab.todo
class TodoController {

 def index() { }
}

The TodoController class in Listing 4-1 contains an empty index action. Chapter 5 will explain actions on the
controller. We will print a simple response using one of the implicit methods, the render method, which comes with
controllers in Grails, as illustrated in Listing 4-2.

Listing 4-2. Using the render Method

package collab.todo
class TodoController {

 def index() {
 render "create new tasks"
 }
}

Now run the application by typing “run-app” in the command window as explained earlier. After changing
TodoController to look like it does in Listing 4-2, refresh your browser to reveal a new TodoController link on the
initial page, as shown in Figure 4-12. Clicking on the controller shows the response, as illustrated in Figure 4-13.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

104

Figure 4-12. Initial Grails page with the TodoController link added

CHAPTER 4 ■ INTRODUCTION TO GRAILS

105

Testing the Controller
At the time of creating the controller, Grails also creates unit tests for the controller as discussed earlier. Listing 4-3
illustrates the unit test generated by Grails, and Listing 4-4 tests the controller.

Listing 4-3. Generated Test

package collab.todo

import grails.test.mixin.*
import org.junit.*

/**
 * See the API for {@link grails.test.mixin.web.ControllerUnitTestMixin} for usage instructions
 */
@TestFor(TodoController)
class TodoControllerTests {

 void testSomething() {
 fail "Implement me"
 }
}

The TodoController class in Listing 4-2 renders a textual response. To test this controller, we assert the value of
the response as illustrated in Listing 4-4.

Figure 4-13. Rendering the response

CHAPTER 4 ■ INTRODUCTION TO GRAILS

106

Listing 4-4. Testing the Controller

package collab.todo

import grails.test.mixin.*
import org.junit.*

/**
 * See the API for {@link grails.test.mixin.web.ControllerUnitTestMixin} for usage instructions
 */
@TestFor(TodoController)
class TodoControllerTests {

 void testSomething() {
 controller.index()
 assert "create new tasks" == response.text
 }
}

To run the test, we use the same command window that we use to run the application. Instead of typing “run-app”
in the command window, type “test-app” (you can also type this target on the command line) and browse to the URL
presented in the console to view the test report as illustrated in Figure 4-14.

Figure 4-14. Test report

CHAPTER 4 ■ INTRODUCTION TO GRAILS

107

Scaffolding
Scaffolding lets you auto-generate a whole application for a given domain class including views and controller actions
for CRUD operations. Scaffolding can be either static or dynamic; both types of scaffolding generate the exact same
code. The main difference is that in static scaffolding, the generated code is available to the user prior to compile time
and can be easily modified if necessary. In dynamic scaffolding, however, the code is generated in memory at runtime
and is not visible to the user. We will explain both dynamic and static scaffolding, but before that we will create a
domain class and then auto-generate a whole application for it using scaffolding.

Creating a Domain Class
At this point, the application we created doesn’t really do anything; it just renders a simple textual response. We will
move on by creating a domain class. To create a domain class, use the Grails create-domain-class target. This creates a
new Grails domain class in the grails-app/domain directory, as well as a unit test for the domain class in test/unit.

To create the Todo domain class, you need to execute the create-domain-class target using an optional class
name, as shown here:

> grails create domain-class todo

If you don’t supply the class name, you are prompted for one. The output of executing the create-domain-class
target is shown here:

| Created file grails-app/domain/collab/todo/Todo.groovy
| Created file test/unit/collab/todo/TodoTests.groovy

Notice that when running the create-domain-class target with the optional class name, you can leave the class
name in lowercase, and Grails will automatically uppercase it for you so that it follows the standard Groovy class
naming convention.

To create the domain class using GGTS, click domain in the project hierarchy and then use New ➤ Domain Class
as illustrated in Figure 4-15.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

108

Listing 4-5 shows the generated Todo domain class.

Listing 4-5. Grails-Generated Todo Domain Class

package collab.todo
class Todo {

 static constraints = {
 }
}

The Todo domain class in Listing 4-5 appears to be the most basic of Groovy classes. As you will learn in the next
couple of sections and in the next two chapters, there is more to Grails domain classes than meets the eye.

Listing 4-6 shows the Todo domain class after adding the fields shown in the UML diagram in Figure 4-5.

Listing 4-6. Todo Domain Class After Adding Attributes, Constraints, and the toString() Method

 1. class Todo {
 2.
 3. String name
 4. String note
 5. Date createdDate
 6. Date dueDate
 7. Date completedDate
 8. String priority
 9. String status
10.

Figure 4-15. Creating Domain class

CHAPTER 4 ■ INTRODUCTION TO GRAILS

109

11. static constraints = {
12. name(blank:false)
13. createdDate()
14. priority()
15. status()
16. note(maxSize:1000, nullable:true)
17. completedDate(nullable:true)
18. dueDate(nullable:true)
19. }
20.
21. String toString() {
22. name
23. }
24. }

In Listing 4-6, you see that lines 3-9 are several fields of both String and Date types that you would expect to
find in a Todo domain class. However, there are some additional properties you don’t see that are implicit to a Grails
domain class by convention. They include the id and version properties.

The id property, as you might expect, represents a unique auto-incrementing identifier and is null until the
object is initially saved. The version property is a Hibernate mechanism for managing optimistic locking. Each
time an object is saved, its version number gets incremented, and like the id, it is initially null. Before Hibernate
saves any object, it first checks the version number in the database, and if the versions don’t match the object
about to be saved—meaning it was already modified since the last read—Hibernate will throw an org.hibernate.
StaleObjectStateException.

Lines 11-19 demonstrate the Grails construct of constraints. These are basically rules governing the values of
the properties. For example, line 12 states the name property is required and may not be empty using a blank:false
constraint, while the note, completedDate, and dueDate properties on lines 16-18 are allowed to be null. Also, note
that the note property on line 16 has a maximum length of 1,000 characters. In addition to constraining the properties,
the constraints dictate the order of fields on the edit pages as well as the types of HTML form fields rendered by the
Grails scaffolding. The order of the constraints represents the order of the fields on the page. While a String is usually
represented by an HTML input field of type text, a String property with a maxSize is usually rendered as an HTML
input field of a text area to support the larger amounts of input data.

Domain classes can also have behavior implemented as methods. Lines 21-23 show the toString() method being
overridden. The default toString() behavior of a Grails domain class is to print the class name followed by a colon and
the object ID. To make the toString() a little more helpful, line 21 prepends the name property of the Todo instance.

This section has not even scratched the surface of domain classes. You will learn more about them in Chapter 6.

Dynamic Scaffolding
As explained earlier, the dynamic scaffolding generates controller actions and views for CRUD applications at
runtime. To dynamically scaffold a domain class, we need a controller. We created a controller (TodoController) in
Listing 4.1. To use the dynamic scaffolding, change the index action to a scaffold property and assign it the domain
class, as shown in Listing 4-7. That’s all there is to it. This causes List Page, Create Page, Edit Page, and Show Page
views, as well as delete functionality, to be generated for the specified domain class.

Listing 4-7. Dynamic Scaffolding-Enabled TodoController

package collab.todo
 class TodoController {
 static scaffold = Todo
}

CHAPTER 4 ■ INTRODUCTION TO GRAILS

110

After changing TodoController to look like it does in Listing 4-7, refresh your browser and click the
TodoController link on the welcome page.

Selecting the TodoController link brings you to the Todo List page shown in Figure 4-16.

Figure 4-17. Create Todo page

Figure 4-16. Todo List page

From the list page shown in Figure 4-16, you have the ability to create new domain objects (as shown in Figure 4-17)
by clicking the New Todo button on the navigation bar.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

111

The save page displays the list of properties in the order in which the constraints are ordered as shown in the
Create Todo page in Figure 4-17. Note that the Grails scaffolding displays the edit fields in the appropriate date type
format. A string is displayed as an HTML text input field, while createdDate is displayed as a series of drop-downs for
the day of month, month, year, hour, and seconds. In addition, the note property is displayed as an HTML text area
input due to the maxSize constraint. That’s not all: the Grails scaffolding is also smart enough to use the constraints
for doing form validation, as shown in Figure 4-18.

Figure 4-18. Validation errors

CHAPTER 4 ■ INTRODUCTION TO GRAILS

112

Notice in Figure 4-18 that a validation message is displayed at the top of the page if the form is submitted with an
empty name. The blank:false constraint makes the name property required.

Figure 4-19 shows a read-only view.

Figure 4-19. Show Todo page

The Show Todo page displays all the properties and values. It also provides access to the Edit Todo page, as
shown in Figure 4-20, where you can delete the domain object.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

113

The Edit Todo page, shown in Figure 4-20, is really the same as the Create Todo page, except the data is
repopulated with the domain object values, and it has Update and Delete buttons at the bottom of the page.

Static Scaffolding
Dynamic scaffolding is particularly useful in testing the domain class and developing the prototype, but you may want
to customize the logic and views. You can use static scaffolding for this purpose. Static scaffolding can also serve as a
great learning tool, for instance, to understand the mechanics of a CRUD application. To generate the controller for
the domain class Todo using static scaffolding, use the following command:

> grails generate-controller collab.todo.Todo

Figure 4-20. Edit Todo page

CHAPTER 4 ■ INTRODUCTION TO GRAILS

114

With this command, Grails generates the TodoController class inside grails-app/controllers. The generate-controller
command is different from the create-controller command introduced earlier, in that the create-controller command
creates an empty controller with a default action index(), while the generate-controller command creates the controller
with all the code for the CRUD operation. Similarly, to generate views, use the following command:

> grails generate-views collab.todo.Todo

With this command, Grails generates .gsp files inside grails-app/views/todo.
Grails also provides the possibility to generate both controllers and views in one command, like so:

> grails generate-all collab.todo.Todo

One important thing to keep in mind when using static scaffolding: because all the controller code and views
code are generated for the domain class, Grails will not update this code if the domain class is changed, and will
relinquish this responsibility to the developer.

Finishing the Remaining Domains

Now that you’ve created the Todo domain and controller classes, you can repeat the steps for creating the domain
classes and controller classes for the remaining domain and controllers: Category and User. Then you can add the
relationships between the domain classes.

As illustrated in the UML diagram in Figure 4-5, the Category class is very simple. Listing 4-8 shows the code after
generating the class using the Grails create-domain-class target and adding the properties from the UML diagram.

Listing 4-8. Category Domain Class

package collab.todo
class Category {
 String name
 String description

 static constraints = {
 name(blank:false)
 }

 String toString() {
 name
 }
}

In Listing 4-8, you see the Category class has just name and description properties and an overloaded toString()
method that returns the name property. This overloaded toString() method becomes important later, because it is
used to populate an HTML select field. Without it, the select field would only display the category’s id, making it
difficult to differentiate categories in the list. The Category class also includes a constraint, which requires the name
property.

The User domain class follows the same pattern as both the Todo and Category classes. Listing 4-9 shows the
code after generating the class with the Grails create-domain-class target and adding the properties from
the UML diagram.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

115

Listing 4-9. User Domain Class

package collab.todo
class User {
 String userName
 String firstName
 String lastName

 static constraints = {
 userName(blank:false,unique:true)
 firstName(blank:false)
 lastName(blank:false)
 }

 String toString () {
"$lastName, $firstName"
 }
}

In Listing 4-9, the User class contains userName, firstName, and lastName properties. It also contains constraints
that make all properties required and it forces the userName property to be unique in the database. Finally, the
overridden toString()method returns the user’s name in a last-name-first format.

Finishing the Remaining Controllers

The controller classes are carbon copies of TodoController. Listing 4-10 shows CategoryController after it was created
with the Grails create-controller target and the scaffolding variable set.

Listing 4-10. CategoryController

package collab.todo
class CategoryController {

 static scaffold = Category
}

Listing 4-11 shows UserController.

Listing 4-11. UserController

package collab.todo
class UserController {

 static scaffold = User
}

CHAPTER 4 ■ INTRODUCTION TO GRAILS

116

After completing the Category and User domain and controller classes, the application start page displays all
three controllers. In addition, CRUD pages for both Category and User are available when clicking on the respective
controller links. Grails also provides the means to do statistics. At the command prompt, type grails stats, and you
should see output similar to the following:

D:\devl\workspace\collab-todo>grails stats

 +−−--------------------+−−-----+−−-----+
 | Name | Files | LOC |
 +−−--------------------+−−-----+−−-----+
Controllers	3	12
Domain Classes	3	54
Unit Tests	6	60
+−−--------------------+−−-----+−−-----+		
Totals	12	126
 +−−--------------------+−−-----+−−-----+

Creating Domain Relationships
At this point, you have three standalone domain classes—Todo, Category, and User—with no relationships between
them. But remember that the UML diagram in Figure 4-5 showed that users had user-defined categories as well as
todos that were organized by categories. Now it’s time to represent those one to-many relationships between the
domain classes using the belongsTo and hasMany properties.

Listing 4-12 shows the new Todo class, which shows the relationships with User and Category.

Listing 4-12. Todo Domain Class with Relationships to the User and Category Domain Classes

class Todo {
 String name
 String note
 Date createdDate
 Date dueDate
 Date completedDate
 String priority
 String status
 User owner
 Category category

 static belongsTo = [User, Category]

 static constraints = {
 name(blank:false)
 createdDate()
 priority()
 status()
 note(maxSize:1000, nullable:true)
 completedDate(nullable:true)
 dueDate(nullable:true)
 }

CHAPTER 4 ■ INTRODUCTION TO GRAILS

117

 String toString() {
 name
 }

}

Notice in Listing 4-12 that the relationship is defined with the belongsTo property to the User and Category
classes. We’ve also added new owner and category properties. belongsTo tells GORM to delete the todo if either the
associated user or the category is deleted. Scaffolding renders these relationships as the select fields on the Create
Todo and Edit Todo screens, as shown in Figure 4-21.

Figure 4-21. Create Todo edit page with Category and Owner select fields

CHAPTER 4 ■ INTRODUCTION TO GRAILS

118

Like the Todo class, the Category class has a belongsTo relationship with User, but it also has a collection of
Todos, as shown in Listing 4-13.

Listing 4-13. Category Domain Class with Relationships to the User and Todo Domain Classes

class Category {
 String name
 String description
 User user
 static belongsTo = User
 static hasMany = [todos: Todo]

 static constraints = {
 name(blank:false)
 }

 String toString() {
 name
 }

}

Notice that in addition to belongsTo associated with User, Category contains a hasMany property, which is a map
designating a one-to-many relationship with the Todo class. Also, the collection is available via the todos property.

Finally, the User class in Listing 4-14 has now defined its relationships with Todo and Category.

Listing 4-14. User Domain Class with Relationships to the Todo and Category Domain Classes

class User {
 String userName
 String firstName
 String lastName

 static hasMany = [todos: Todo, categories: Category]

 static constraints = {
 userName(blank:false,unique:true)
 firstName(blank:false)
 lastName(blank:false)
 }

 String toString () {
 "$lastName, $firstName"
 }

}

As shown in Listing 4-14, the changes required to include the relationships with the Todo and Category classes
only take a single line. The hasMany property identifies collections named todos and categories.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

119

Note■ We’ll discuss relationships in more detail in Chapter 6.

As stated earlier, when you run the application, Hibernate creates a database schema based on domain classes.
Figure 4-22 shows an entity relational diagram of the domain classes so far.

Figure 4-22. Entity relational diagram

Notice that the entity relational diagram looks almost identical to the UML diagram shown in Figure 4-5.
Hibernate creates three tables with table names based on the class names. It also creates fields for each of the
properties using underscores instead of CamelCase. Also, notice the id and version columns are the Hibernate
columns for object identity and optimistic locking. Hibernate also creates foreign keys to represent the relationships
between the domain classes.

During development, out-of-the-box Grail uses a Tomcat web container and an embedded H2 database.
However, many operational environments use other web containers or applications servers and use server-based
databases. In Chapter 12, we will look at how to package and deploy an application to an alternative operating
environment.

H2 Console
As discussed earlier, Grails 2.0 enables the H2 database console in development mode (at the URI /dbconsole)
so that the in-memory database can be easily queried from the browser. To see the dbconsole in action, browse to
http://localhost:8080/collab-todo/dbconsole. The default log in parameters should match the default in
grails-app/ conf/Datasource.groovy, as illustrated in Figure 4-23.

http://localhost:8080/collab-todo/dbconsole

CHAPTER 4 ■ INTRODUCTION TO GRAILS

120

Now, create a user, category, and todo task in our Collab-Todo application and then enter SELECT * from USER in
the database console. The user we created in the application will show up, as illustrated in Figure 4-24.

Figure 4-23. H2 console

CHAPTER 4 ■ INTRODUCTION TO GRAILS

121

Grails Plugins
In Grails, there is the likelihood that a plugin already exists that does what you need, so you may want to find out
which plugins are already available. To see a list of available plugins, call the list-plugins command target:

> grails list-plugins

This command establishes a network connection to a remote server. Invoking the list-plugins target displays a
table of all plugins, along with the following output:

.....
To find more info about plugin type 'grails plugin-info [NAME]'
To install type 'grails install-plugin [NAME] [VERSION]'
For further info visit http://grails.org/Plugins

You may want to know more about a particular plugin without installing it. This can be accomplished by calling
the plugin-info command target with the plugin’s name as a parameter.

D:\devl\workspace\collab-todo>grails plugin-info quartz

Figure 4-24. Querying the table in H2

http://grails.org/Plugins

CHAPTER 4 ■ INTRODUCTION TO GRAILS

122

Invoking the command yields the output as shown:

Downloading: quartz-1.0-RC2.pom
Information about Grails plugin
--
Name: quartz | Latest release: 1.0-RC2
--
Quartz plugin for Grails
--
Author: Sergey Nebolsin, Graeme Rocher
--
Author's e-mail: nebolsin@gmail.com
--
Find more info here: http://grails.org/plugin/quartz
--
This plugin adds Quartz job scheduling features to Grails application.
Dependency Definition
--
 :quartz:1.0-RC2
Required Repositories
--
 http://plugins.grails.org
 http://repo.grails.org/grails/plugins/
 http://repo.grails.org/grails/core/
 http://svn.codehaus.org/grails/trunk/grails-plugins
 http://repo1.maven.org/maven2/
Transitive Dependencies
--
 org.hibernate:hibernate-core:3.6.10.Final (compile)
 org.quartz-scheduler:quartz:1.8.4 (compile)
To get info about specific release of plugin 'grails plugin-info [NAME] [VERSION]'
To get list of all plugins type 'grails list-plugins'
To install latest version of plugin type 'grails install-plugin [NAME]'
To install specific version of plugin type 'grails install-plugin [NAME] [VERSION]'
For further info visit http://grails.org/Plugins

Installing a plugin from the command line is just as easy. For example, to install quartz, type the following on the
command line:

> grails install-plugin quartz

To remove a plugin, call the uninstall-plugin command target. To uninstall the quartz plugin:

> grails uninstall-plugin quartz

http://grails.org/plugin/quartz
http://plugins.grails.org
http://repo.grails.org/grails/plugins/
http://repo.grails.org/grails/core/
http://svn.codehaus.org/grails/trunk/grails-plugins
http://repo1.maven.org/maven2/
http://grails.org/Plugins

CHAPTER 4 ■ INTRODUCTION TO GRAILS

123

To install a plugin in GGTS, right-click on plugins under the project hierarchy and then open the Grails Plugin
Manager, which is shown in Figure 4-25.

Figure 4-25. Grails plugin manager

Grails Interactive Mode
Until this point, all of the Grails commands that we have seen have been executed by running grails and passing a
command name as an argument. With Grails interactive mode, there is no need to prefix every command with grails.
For example, you might type something like the following on the command line:

grails create-domain-class collab.todo.Task

However, in interactive mode, you can type the shorter:

create-domain-class collab.todo.Task

To start interactive mode, enter the "grails" command with no arguments, as shown in Figure 4-26.

CHAPTER 4 ■ INTRODUCTION TO GRAILS

124

In interactive mode, type “crea” followed by pressing Tab. Interactive mode returns a list of all available
commands that start with “crea”, as shown in Figure 4-28.

Figure 4-28. Tab-completion for “crea” and “ru” in interactive mode

Figure 4-26. Grails interactive mode

Figure 4-27. Shorter commands in interactive mode

To exit interactive mode, type “exit” at the interactive mode prompt. Interactive mode keeps the JVM running and
allows for quicker execution of commands, thereby increasing developer productivity.

Summary
In this chapter, you learned that Grails is a new web development framework that combines the best of Java open
source, conventions, the Groovy dynamic language, and the power of the Java platform.

You also saw how easy it is to develop a fully functional application using Grails scaffolding to do most of the
work. In Chapter 5, you will learn how to make the application pretty and customize its look and feel, as well as how to
make the controllers more functional. Then in Chapter 6, you will learn how to enhance the domain classes, including
accessing more of the persistence features of GORM.

125

Chapter 5

Building the User Interface

Chapter 4 introduced the layering and components of Grails, and it showed you how to create a simple application
using Grails scaffolding. In this chapter, you’ll use the domain objects from Chapter 4 to start the process of creating
an attractive, full-featured application using the Collab-Todo wireframe.

You will learn how to use Groovy Server Pages (GSP), Grails tags, Grails templates, and CSS to create a common
look and feel across the application. You will create the login view and the controller actions to support it. Next,
you will start to focus on user experience. You will look at validation, errors, and messages, and you’ll learn how to
customize them. To support the application, you will create a simple audit logging facility that leverages the Grails log
controller property.

Starting with the End in Mind
The goal for this chapter is to create the look and feel for the Collab-Todo application’s layout. Figure 5-1 shows a
wireframe to give you an idea of how the application is laid out.

Figure 5-1. The Collab-Todo wireframe

CHAPTER 5 ■ BUILDING THE USER INTERFACE

126

The wireframe follows a common format: two columns centered on the page, gutters on both sides for spacing,
and a header and footer. Table 5-1 describes each component.

Table 5-1. Wireframe Components

Component Description

gutter Provides whitespace on the edges of the browser so that the main content area is centered in
the browser.

topbar Provides the ability to log in and log out, and displays the user’s first and last name when
logged in.

header Displays the application’s title, “Collab-Todo.”

content This is the main content area of the application. The majority of the application data is
displayed here.

right sidebar In Chapter 8, we will use the right sidebar to display buddy list information.

footer Displays copyright information.

Like most modern view technologies, Grails uses a layout and template-based approach to assemble
the view/UI. A template is a view fragment that resides in the grails-app/views directory and starts with an
underscore. The underscore is Grails’ convention for signifying that GSP is a template. Best practices dictate that
you should put templates that are associated with a specific domain, such as User, in the domain’s view directory,
such as grails-app/views/user/_someTemplate.gsp. You should put templates that are more generic or shared
across views in a common place, such as grails-app/views/common.

A layout assembles the templates and positions them on the page. You create the layout using main.gsp
(grails-app/views/layouts/main.gsp) and CSS (web-app/css/main.css). Create a couple of templates
(_topbar.gsp and _footer.gsp) that will be common across all views, and then apply some CSS styling and
leverage it in main.gsp.

Let’s start with a simple footer to illustrate the point.

Creating the Footer
The goal is to display a simple copyright notice at the bottom of every page in the web site. As you might have guessed,
you need to create a GSP fragment named _footer.gsp in the grails-app/views/common directory, and then add the
_footer.gsp template to the layout using the <g:render template="/common/footer" />tag. You then need to style
the footer by adding a <div> section to the main layout using a style class that you define in the main.css. Listing 5-1
shows what you need to do.

Listing 5-1. The Footer Template (_footer.gsp)

© 2012 Beginning Groovy, Grails and Griffon: From Novice to
Professional

Vishal Layka, Christopher Judd, Joseph Faisal Nusairat, and James Shingler

You need to add the copyright to the main layout (main.gsp) so that it’s included on every page. This is where the
<g:render> tag comes to your aid. You use the <g:render> tag, which has a template attribute, to insert templates into
GSPs. All you have to do is add <g:render template="/common/footer" /> to the bottom of main.gsp

CHAPTER 5 ■ BUILDING THE USER INTERFACE

127

Note ■ By convention, the underscore and .gsp are omitted from the template attribute.

Figure 5-2 shows what happens when you reload the home page.

Figure 5-2. Adding a copyright notice

It would be nice if the copyright was centered and had a separator. You could just put the style information
directly in the footer template, but a better solution, and a best practice, is to use CSS. To do so, add a <div> tag
with the id attribute set to footer in the main layout, and define the footer style in main.css. Listing 5-2 shows the
changes you need to make to main.gsp.

Listing 5-2. The Enhanced Main Layout (main.gsp)

<div id="footer">
 <g:render template="/common/footer" />
</div>

Listing 5-3 shows how to define the footer style.

Listing 5-3. The Footer Style

#footer {
 clear:both;
text-align: center;
 padding: 3px;
border-top: 1px solid #333;
}

Remove the application status block from index.gsp. Figure 5-3 shows the results.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

128

Let’s review how to add the footer. First, create the _footer.gsp template and locate it in the grails-app/views/common
directory. Second, add the _footer.gsp template to the layout using the <g:render template="/common/footer" /> tag.
Third, style the footer by adding a <div> section to the main layout using a style class that you defined in the main.css.

Now, let’s take what you learned by creating the footer and start building the login/logout functionality

Creating the Topbar
You create the topbar by adding a topbar (_topbar.gsp) template to the main layout. The topbar template is common
and should be located in the grails-app/views/common directory. Listing 5-4 shows the content of the topbar template.

Listing 5-4. The Topbar Template (_topbar.gsp)

1. <div id="menu">
2. <nobr>
3. <g:if test="${session.user}">
4. ${session.user?.firstName} ${session.user?.lastName} |
5. <g:link controller="user" action="logout">Logout</g:link>
6. </g:if>
7. <g:else>
8. <g:link controller="user" action="login">Login</g:link>
9. </g:else>
10. </nobr>
11. </div>

Listing 5-4 uses three Grails tags: <g:if>,1 <g:else>,2 and <g:link>.3 The <g:if> and <g:else> tags work
together to create if-then-else logic. The <g:link> tag creates a hypertext link (for example, http://localhost:8080/
collab-todo/user/logout). Lines 3-6 check if the session has a User object. If it does, the user’s name followed
by a | and a Logout link is printed. Lines 7-9 shows the else condition of the if statement, which displays the Login
link. Listing 5-5 shows how to add the topbar to the main layout.

Figure 5-3. Styling the footer

1http://www.grails.org/GSP+Tag+−+if
2http://www.grails.org/GSP+Tag+−+else
3http://www.grails.org/Tag+−+link

http://localhost:8080/collab-todo/user/logout).Lines
http://localhost:8080/collab-todo/user/logout).Lines
http://www.grails.org/GSP%2bTag%2b%e2%88%92%2bif
http://www.grails.org/GSP+Tag+<2212>+else
http://www.grails.org/Tag+<2212>+link

CHAPTER 5 ■ BUILDING THE USER INTERFACE

129

Listing 5-5. Enhancing the Main Layout for the Topbar (main.gsp)

<html>
 . . .
<body>
 . . .
<div id="topbar">
<g:render template="/common/topbar" />
</div>
 . . .

Now add the CSS fragments found in Listing 5-6 to main.css.

Listing 5-6. The Topbar Styles

#topbar {
text align:left;
 width: 778px;
 margin: 0px auto;
 padding: 5px 0;
}
#topbar #menu {
 float: right;
 width: 240px;
 text align: right;
 font-size: 10px;
}

Figure 5-4 shows the results.

Figure 5-4. Adding the topbar template

Notice that the Login/Logout link is located in the upper-right corner of the browser.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

130

Adding More Look and Feel
Now you need to finish the transformation so that Collab Todo has its own look and feel instead of appearing as if it
came right out of the box. Do this by adding the right sidebar, replacing the Grails header, and setting the default title.
Start off with some CSS styling by adding the CSS snippet in Listing 5-7 to the main style sheet (main.css).

Listing 5-7. CSS Styling

#header {
 width: 778px;
 background: #FFFFFF url(../images/header_background.gif) repeat-x;
 height: 70px;
 margin: 0px auto;
}
#header h1 {
font family:Arial,sans-serif;
 color: white;
 padding: 20px 0 0 6px;
 font-size:1.6em;
}
body {
 margin: 0px;
 padding: 0px;
text-align:center;
 font family: "Trebuchet MS",Arial,Helvetica,sans-serif;
font style: normal;
 font variant: normal;
font weight: normal;
 font size: 13px;
 line-height: normal;
 font size-adjust: none;
 font stretch: normal;
 color: #333333;
}
#page {
 width: 778px;
 margin: 0px auto;
 padding: 4px 0;
text-align:left;
}

#content {
 float: left;
 width: 560px;
 color: #000;
}
#sidebar {
 float: right;
 width: 200px;

CHAPTER 5 ■ BUILDING THE USER INTERFACE

131

 color: #000;
 padding: 3px;
}

Note ■ You can find header_background.gif in the project source.

Now, take advantage of the CSS styling in the main layout (main.gsp), as shown in Listing 5-8.

Listing 5-8. Finishing the Layout (main.gsp)

.....
1. <body>
2. <div id="page">
3. <div id="spinner" class="spinner" style="display: none;">
4. <img src="${createLinkTo(dir:'images', file:'spinner.gif')}"
5. alt="Spinner" />
6. </div>
7. <div id="topbar">
8. <g:render template="/common/topbar" />
9. </div>
10. <div id="header">
11. <h1>Collab-Todo</h1>
12. </div>
13.
14. <div id="content">
15. <g:layoutBody />
16. </div>
17.
18. <div id="sidebar">
19. <g:render template="/common/buddies" />
20. </div>
21.
22. <div id="footer">
23. <g:render template="/common/footer" />
24. </div>
25. </div>
26. </body>

CHAPTER 5 ■ BUILDING THE USER INTERFACE

132

Add the following snippet to the /common/_buddies.gsp template:

<div id="buddies">
<div class="title">Buddies</div>
</div>

Let’s talk about the changes you made to the layout. Line 2 adds a <div> that uses the page style. Together with
the body style, the page style creates a container that’s 778 pixels wide and centered on the page. Lines 10-12 replace
the Grails header with the Collab-Todo header. If you look carefully at the CSS header style, you’ll see that it defines
a header image (header_background.gif). Lines 14 and 16 wrap the view’s body with the content style. This means
that pages decorated by main.gsp are inserted here. The content style creates a container 560 pixels wide and left-
aligns it within the page container. Lines 18-20 wrap the buddies template with the sidebar style, which creates a
container 200 pixels wide and right-aligns it within the page container.

You can see the results of your work in Figure 5-5. Now you have just one more thing to do. You won’t use the
default index page for long, but let’s change “Welcome to Grails” and the body. You can find the HTML for this in
web-app/index.gsp. Replace the contents of index.gsp with the contents found in Listing 5-9.

Figure 5-5. The completed layout

BUDDIeS teMpLate

Listing 5-9. A New Index Page (index.gsp)

1. <html>
2. <head>
3. <title>Welcome to Collab-Todo</title>
4. <meta name="layout" content="main" />
5. </head>

CHAPTER 5 ■ BUILDING THE USER INTERFACE

133

6. <body>
7. <h1 style="margin-left:20px;">Welcome to Collab Todo</h1>
8. <p style="margin-left:20px;width:80%">
9. Welcome to the Collab Todo application. This application was built
10. as part of the Apress Book, "Beginning Groovy, Grails and Griffon."
11. Functionally, the application is a collaborative "To-Do"
12. list that allows users and their buddies to jointly
13. manage "To-Do" tasks.</p>

14. <p style="margin-left:20px;width:80%">Building the Collab-Todo
15. application is used to walk the user through using Grails 2 to
16. build an application. Below is a list of controllers that are
17. currently deployed in this application. Click on each to execute
18. its default action:</p>
19.

20. <div class="dialog" style="margin-left:20px;width:60%;">
21.
22. <g:each var="c" in="${grailsApplication.controllerClasses}">
23. <li class="controller">
24. ${c.fullName}
25. </g:each>
26.
27. </div>
28. </body>
29. </html>

A couple of items in the file deserve explanation. Lines 22-25 illustrate the usage of <g:each>, an iteration tag. In
this case, it is iterating over a collection of all controller classes that are a part of the application to display the name of
the controller class in a list.

Line 4 is an example of using layouts by convention. In this case, the layout metatag causes the “main” layout
(main.gsp) to be applied to the page. You might recall that all layouts reside within the grails-app/views/layouts
directory.

You have created the layout, and it’s looking good. You can see the results of your work in Figure 5-5.
Setting up the wireframe exposes layouts, templates, CSS, and a couple of Grails tags to you. Grails, like all

modern web frameworks, supports tag libraries. The Grails tag library is similar to the JavaServer Pages Standard Tag
Library (JSTL) and Struts tags. It contains tags for everything from conditional logic to rendering and layouts. The
following section provides a quick overview of the Grails tags. You can find a detailed reference of Grails tags here:
http://www.grails.org/GSP+Tag+Reference.

Grails Tags
Part of Grails’ strength in the view layer is its tag library. Grails has tags to address everything from conditional logic
and iterating collections to displaying errors. This section provides an overview of the Grails tags.

Logical Tags

Logical tags allow you to build conditional “if-elseif-else” logic. Listing 5-5 demonstrated the use of the <g:if> and
<else> tags in topbar.gsp. Table 5-2 contains an overview of the logical tags.

http://www.grails.org/GSP+Tag+Reference

CHAPTER 5 ■ BUILDING THE USER INTERFACE

134

Iteration Tags

Iteration tags are used to iterate over collections or loop until a condition is false. The <g:each> tag was used in
index.gsp in Listing 5-10. Table 5-3 contains an overview of the iteration tags.

Table 5-2. Grails Logical Tags

Tag Name Tag Description

<g:if> Logical switch based upon a test expression

<g:else> The else portion of an if statement

<g:elseif> The elseif portion of an if statement

Table 5-3. Grails Iteration Tags

Tag Name Tag Description

<g:while> Executes a loop while a test condition is true

<g:each> Iterates over a collection

<g:collect> Iterates over a collection and transforms the results as defined in the expr parameter

<g:findAll> Iterates over a collection where the elements match the GPath defined in the expr parameter

<g:grep> Iterates over a collection where the elements match the filter defined in the expr parameter

Table 5-4. Grails Assignment Tags

Tag Name Tag Description

<def> (deprecated) Defines a variable to be used within the GSP page; use <set> instead

<set> Sets the value of a variable used within the GSP page

Assignment Tags

You use assignment tags to create and assign a value to a variable. Table 5-4 contains an overview of assignment tags.

Linking Tags

Linking tags are used to create URLs. The <g:link> tag was used in topbar.gsp (shown in Listing 5-5), and
<g:createLinkTo> was used as an expression in main.gsp (shown in Listing 5-9). Table 5-5 contains an overview of
the linking tags.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

135

Ajax Tags

You can use Ajax tags to build an Ajax-aware application. Chapter 8 uses some of these tags to enhance the user
interface. Table 5-6 contains an overview of the Ajax tags.

Table 5-5. Grails Linking Tags

Tag Name Tag Description

<g:link> Creates an HTML link using supplied parameters

<g:createLink> Creates a link that you can use within other tags

<g:createLinkTo> Creates a link to a directory or file

Table 5-6. Grails Ajax Tags

Tag Name Tag Description

<g:remoteField> Creates a text field that invokes a link when changed

<g:remoteFunction> Creates a remote function that is called on a DOM event

<g:remoteLink> Creates a link that calls a remote function

<g:formRemote> Creates a form tag that executes an Ajax call to serialize the form elements

<g:javascript> Includes JavaScript libraries and scripts

<g:submitToRemote> Creates a button that executes an Ajax call to serialize the form elements

Form Tags

Form tags are used to create HTML forms. Table 5-7 contains an overview of form tags.

Table 5-7. Grails Form Tags

Tag Name Tag Description

<g:actionSubmit> Creates a submit button

<g:actionSubmitImage> Creates a submit button using an image

<g:checkBox> Creates a check box

<g:currencySelect> Creates a select field containing currencies

<g:datePicker> Creates a configurable date picker for the day, month, year, hour, minute, and second

<g:form> Creates a form

<g:hiddenField> Creates a hidden field

<g:localeSelect> Creates a select field containing locales

<g:radio> Creates a radio button

<g:radioGroup> Creates a radio button group

(continued)

CHAPTER 5 ■ BUILDING THE USER INTERFACE

136

UI Tags

You use UI tags to enhance the user interface. The only official UI Grails tag is the rich text editor, but several UI tags
built by the Grails community are available as plug-ins. Table 5-8 contains an overview of the UI tag.

Tag Name Tag Description

<g:select> Creates a select/combo box field

<g:textField> Creates a text field

<g:textArea> Creates a text area field

<g:timeZoneSelect> Creates a select field containing time zones

Table 5-7. (continued)

Table 5-8. Grails UI Tag

Tag Name Tag Description

<g:richTextEditor> Creates a rich text editor, which defaults to fckeditor

Table 5-9. Grails Render and Layout Tags

Tag Name Tag Description

<g:applyLayout> Applies a layout to a body or template

<g:encodeAs> Applies dynamic encoding to a block of HTML to bulk-encode the content

<g:formatDate> Applies a SimpleDateFormat to a date

<g:formatNumber> Applies a DecimalFormat to number

<g:layoutHead> Displays a decorated page’s header, which is used in layouts

<g:layoutBody> Displays a decorated page’s body, which is used in layouts

<g:layoutTitle> Displays a decorated page’s title, which is used in layouts

<g:meta> Displays application metadata properties

<g:render> Displays a model using a template

<g:renderErrors> Displays errors

<g:pageProperty> Displays a property from a decorated page

<g:paginate> Displays Next/Previous buttons and breadcrumbs for large results

<g:sortableColumn> Displays a sortable table column

Render and Layout Tags

Render and layout tags are used to create the layouts and render templates. As you might expect, several render and
layout tags were used in main.gsp. Table 5-9 contains an overview of the render and layout tags.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

137

Validation Tags

Validation tags are used to display errors and messages. Table 5-10 contains an overview of the validation tags.

Table 5-10. Grails Validation Tags

Tag Name Tag Description

<g:eachError> Iterates through errors

<g:hasErrors> Checks if errors exist within the bean, model, or request

<g:message> Displays a message

<g:fieldValue> Displays the value of a field for a bean that has data binding

Static Resources
Grails 2.0 integrates with the Resources plugin to provide sophisticated static resource management. This plugin is
installed by default in new Grails applications. The basic way to include a link to a static resource in your application
is to use the resource tag. This simple approach, as shown below, creates a URI pointing to the file.

<g:resource dir="css" file="main.css" />

However, for modern applications with dependencies on multiple JavaScript and CSS libraries and frameworks
(as well as dependencies on multiple Grails plugins), Grails provides r:require and r:layoutResources to enable
you to easily create highly optimized web applications that run the same in development and in production. Next we
illustrate the usage of r:require and r:layoutResources.

r:require

To use resources, your GSP page must indicate which resource modules it requires. For example, to use jQuery in any
page on your site with the jQuery plugin, which exposes a jquery resource module, simply add:

<html>
<head>
<r:require module="jquery"/>
<r:layoutResources/>
</head>
<body>
 ...
<r:layoutResources/>
</body>
</html>

This will automatically include all resources needed for jQuery, including them at the correct locations in the
page. However, you cannot use r:require in isolation: as per the examples, you must have the <r:layoutResources/>
tag to actually perform the render.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

138

r:layoutResources

When you have declared the resource modules that your GSP page requires, the framework needs to render the links
to those resources at the correct time. To achieve this correctly, you must include the r:layoutResources tag twice in
your page, or more commonly, in your GSP layout:

<html>
<head>
<g:layoutTitle/>
<r:layoutResources/>
</head>
<body>
<g:layoutBody/>
<r:layoutResources/>
</body>
</html>

Making the Topbar Functional
Now that you have the layout, let’s make the topbar functional. You want the topbar to provide the user the ability to
log in. Once the user has logged in, the topbar should display the username and provide the ability for the user to log
out. When the user selects the Login link, he should be presented with a Login form.

Note ■ The login functionality you are building initially is simply to identify who is using the system. It’s not meant to

provide a full, robust security system.

The Login View
Creating the login view requires you to create a GSP in the appropriate directory. The GSP contains a form that has a
single selection field of usernames and a submit button. When the user submits the selection, the form invokes the
handleLogin action on the UserController. Figure 5-6 illustrates the login view.

Figure 5-6. The login view

CHAPTER 5 ■ BUILDING THE USER INTERFACE

139

Let’s take a look at the Login link, <g:link controller="user" action="login">Login</g:link>. When the
user selects the Login link, the login action on the UserController is invoked. We’ll explain the login action in the
next section.

Based upon convention, login.gsp should go in the grails-app/views/user directory. Listing 5-10 shows the
contents of login.gsp.

Listing 5-10. The Login View (login.gsp)

1. <html>
2. <head>
3. <title>Login Page</title>
4. <meta name="layout" content="main" />
5. </head>
6. <body>
7. <div class="body">
8. <g:if test="${flash.message}">
9. <div class="message">
10. ${flash.message}
11. </div>
12. </g:if>
13. <p>
14. Welcome to Your ToDo List. Login below
15. </p>
16. <g:form action="handleLogin" method="post" >
17.
18. <label for="login">
19. Sign In:
20. </label>
21.
22. <g:textField name="userName" value="${user?.userName}" />
23.
24.

25. <div class="buttons">
26.
27. <g:actionSubmit value="Login" action="handleLogin"/>
28.
29. </div>
30. </g:form>
31. </div>
32. </body>
33. </html>

Let’s review the form. Lines 1-5 define the title and determine that the page is decorated by the main layout.
This means that main.gsp acts as a container for login.gsp. Take a look at line 14 in Listing 5-8. In this case, the
body of login.gsp is inserted at the <g:layoutBody> tag. Remember that the main layout contains a default title,
<g:layoutTitle default="CollabTodo" />. When login.gsp is decorated with the main layout, the title in login.
gsp is used instead of the default that was defined in the layout.

Lines 6-31 define the body of the page. Lines 9-12 display flash messages, which we’ll cover shortly in the “Flash
and Flash Messages” section. Lines 16-29 create the form with a selection field. Line 16 specifies that when the form is
submitted, the handleLogin action of the UserController is invoked. In lines 22-23, the Grails select tag creates an
HTML selection element. The name attribute sets the selection name to userName (which in turn is passed to the login
action). When evaluated, the form attribute results in a collection that Grails uses to create the options. optionKey and

CHAPTER 5 ■ BUILDING THE USER INTERFACE

140

optionValue are special attributes used to create the HTML <option> element ID and the text display in the selection
field. Lines 25-28 use the Grails <g:actionSubmit> tag to create a form submission button.

If you run the application and access the view right now, you’ll get a 404 error. This is because the topbar links to
the login view via the UserControllerlogin action, which hasn’t been created yet.

The login Action
Currently, the UserController is set up with dynamic scaffolding. You will continue to use the dynamic scaffolding
and add the login action to it. Listing 5-11 shows the updated version of the UserController class.

Listing 5-11. The login Action

class UserController {
static scaffold = User
def login() {}
}

A common best practice on the Web is to use actions as a redirection mechanism. By convention, Grails uses the
name of the action to look up a GSP of the same name.

If you click on the Login link now, the login view is displayed, and the User Name selection field is blank. Test the
functionality of the form by creating two users. From the home page, select UserController ➤ New User. Now when
you select Login, the User Name selection field is populated (see Figure 5-7).

Figure 5-7. A logged-in user

Next, you need to implement the login logic through the UserControllerhandleLogin action.

Handling the Login and Logout Actions
You call the handleLogin action to log in a user. When you call the action, the Login form is passed the userName of the
user to be signed in. Logging in is accomplished by adding the user object associated with the userName to the session.
If the user cannot be found, an error message is created, and the user is redirected to the login view. In this particular
example, there shouldn’t be any way for the login to fail, but it is still good practice to code defensively. You use the
logout action to remove the user from the session, so she can log out.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

141

Listing 5-12 shows how you enhance the UserController.

Listing 5-12. Enhanced UserController

class UserController {
static scaffold = User
 def login() {}
defhandleLogin() {
def user = User.findByUserName(params.userName)
if (!user) {
flash.message = "User not found for userName: ${params.userName}"
redirect(action:'login')
return
} else {
session.user = user
redirect(controller:'todo')
 }
}

def logout() {
if(session.user) {
session.user = null
redirect(action:'login')
 }
 }
}

Now, when the user logs in, she is taken to the Todo List and the topbar shows the user’s first name, last name,
and a Logout link.

Externalizing Strings
Like all modern Java web frameworks, Grails supports the concept of message bundles. It uses the <g:message>
tag to look up a properties file for the text to display. For example, say you’re having a difficult time deciding if the
topbar should say “Login” or “Sign In.” You could externalize the string and simply change the messages.properties
file whenever you change your mind. Grails uses the message bundles to display errors. So, if you don’t like the
error message you’re getting back, you can make it friendlier by modifying the message in the message bundle. The
messages.properties file is located in the grails-app/i18n directory. Listing 5-13 shows the default contents of the
messages.properties file.

Listing 5-13. messages.properties

default.doesnt.match.message=Property [{0}] of class [{1}] with value [{2}] does \
not match the required pattern [{3}]
default.invalid.url.message=Property [{0}] of class [{1}] with value [{2}] is not \
a valid URL
default.invalid.creditCard.message=Property [{0}] of class [{1}] with value [{2}] \
is not a valid credit card number
default.invalid.email.message=Property [{0}] of class [{1}] with value [{2}] is \
not a valid e-mail address
default.invalid.range.message=Property [{0}] of class [{1}] with value [{2}] \

CHAPTER 5 ■ BUILDING THE USER INTERFACE

142

does not fall within the valid range from [{3}] to [{4}]
default.invalid.size.message=Property [{0}] of class [{1}] with value [{2}] does \
not fall within the valid size range from [{3}] to [{4}]
default.invalid.max.message=Property [{0}] of class [{1}] with value [{2}] \
exceeds maximum value [{3}]
default.invalid.min.message=Property [{0}] of class [{1}] with value [{2}] is \
less than minimum value [{3}]
default.invalid.max.size.message=Property [{0}] of class [{1}] with value \
[{2}] exceeds the maximum size of [{3}]
default.invalid.min.size.message=Property [{0}] of class [{1}] with value \
[{2}] is less than the minimum size of [{3}]
default.invalid.validator.message=Property [{0}] of class [{1}] with value
[{2}] does not pass custom validation
default.not.inlist.message=Property [{0}] of class [{1}] with value [{2}] is \
not contained within the list [{3}]
default.blank.message=Property [{0}] of class [{1}] cannot be blank
default.not.equal.message=Property [{0}] of class [{1}] with value [{2}] \
cannot equal [{3}]
default.null.message=Property [{0}] of class [{1}] cannot be null
default.not.unique.message=Property [{0}] of class [{1}] with value [{2}] \
must be unique
default.paginate.prev=Previous
default.paginate.next=Next

Now we’ll demonstrate how to externalize strings. Take a look at Listing 5-4to see the current topbar template.
Change lines 5 and 8 to use the <g:message> tags. When completed, the topbar template should look something like
what’s shown in Listing 5-14.

Listing 5-14. Topbar Template with Messages

<div id="menu">
<nobr>
<g:if test="${session.user}">
${session.user?.firstName} ${session.user?.lastName} |
<g:link controller="logout"><g:message code="topbar.logout" /></g:link>
</g:if>
<g:else>
<g:link controller="login" action="auth">
<g:message code="topbar.login" /></g:link>
</g:else>
</nobr>
</div>

Now just add topbar.logout and topbar.login to the messages bundle:

topbar.login=Login
topbar.logout=Logout

You can easily change the text to display whatever you want without modifying the GSP. You still have to be
careful, though. Depending upon how you modify the text associated with the message code, you may have to adjust
the WebTest if it is looking for specific text. In a sophisticated application, you will have to make some decisions about

CHAPTER 5 ■ BUILDING THE USER INTERFACE

143

functional testing. You need to ask yourself, “Should the functional test be run against a single locale or multiple
locales?” If you decide on multiple locales, you will have to write a more robust functional test and pay particular
attention to the usage of verifyText.

If you’re an experienced web developer, you won’t be surprised to find out that using the <g:message> tag also
starts you on the path of internationalizing the application. The <g:message> tag is locale-aware; the i18n directory’s
name is a giveaway (and that is where the messages.properties file lives). By default, the tag uses the browser’s locale
to determine which message bundle to use.

Now that you understand message bundles, you can change the default messages that are displayed when errors
occur to something more user friendly.

Errors and Validation
In this section, you’ll learn the difference between errors and flash messages, and how to customize the messages.

If you try to submit a user form without entering a username, you can see error messages in action. When you
violate a domain object’s constraints, the red text that you see is an example of an error message. Figure 5-8 shows
an example.

Figure 5-8. Error message

CHAPTER 5 ■ BUILDING THE USER INTERFACE

144

This screen shows the default error messages. As you saw previously in Listing 5-13, you can customize the
message using the messages.properties file located in the grails-app/i18n directory. To get a better understanding
of how this works, you need to switch the views and the controller from dynamic scaffolding to static scaffolding.
Grails generates dynamic scaffolding on the fly when the application starts. If Grails can generate the code at runtime,
it makes sense that it can generate the code at development time so you can see it. Take a precaution against losing
the existing implementation of the UserController by making a backup copy before proceeding.

You can create the views for the User domain object by executing the command:

> grails generate-views User

The command uses Grails templates to generate four new GSP pages in the grails-app/views/user directory:
create.gsp, edit.gsp, list.gsp, and show.gsp. Now you need to create static scaffolding for the controller. You can
create the controller for the User domain object by executing the command:

> grails generate-controller User

Grails will detect that you already have an implementation of the controller and ask for permission to overwrite
it. Give it permission; this is why you made a backup copy. After the UserController is generated, copy the login,
handleLogin, and logout actions from the backup to the newly generated controller. Listing 5-15 contains the
contents of the save action.

Listing 5-15. The UserController.save Action

1. def save() {
2. def user = new User()
3. user.properties = params
4. if(user.save()) {
5. flash.message = "User ${user.id} created."
6. redirect(action:show,id:user.id)
7. }
8. else {
9. render(view:'create',model:[user:user])
10. }
11. }

The save action is called when the user clicks the Create button from the New User view. When line 4 is executed,
Grails validates the user constraints before attempting to persist the user in the database. If validation succeeds, the
user is redirected to the Show User view with the message “User ${user.id} created.” If the save fails, the Create User
view is rendered so that you can correct the validation errors without losing the previous input. When validation fails,
Grails inserts an error message in the user object’s metadata, and the user object is passed as a model object to the
view. When the Create User view is rendered, it checks to see if there are any errors and displays them if appropriate.
Listing 5-16 contains a short snippet that shows how to display the errors.

Listing 5-16. Display Errors

<g:hasErrors bean="${user}">
<div class="errors">
<g:renderErrors bean="${user}" as="list" />
</div>
</g:hasErrors>

CHAPTER 5 ■ BUILDING THE USER INTERFACE

145

As you can see, the generated GSP uses the <g:hasErrors> and <g:renderErrors> tags to detect and display
the errors. The <g:hasErrors> tag uses the bean attribute to detect errors in the user object. If errors are detected,
the body of the tag is evaluated, which results in the error being displayed by the <g:renderErrors> tag. The
<g:renderErrors> tag iterates through the errors in the user object and displays them as a list. The display process
knows that it is receiving an error code and error attributes. The tag looks up the error code in the message bundle,
and the attributes are substituted in the message before it is displayed.

This technique works because the page is rendered from the controller. Take another look at line 6 in Listing 5-15.
In the case of a redirect, the controller instructs the browser to go to the Show User view. The browser does this by
calling the show action on the UserController. The controller then executes the show action and renders show.gsp.
With all of this back and forth between the controller and the browser, can you imagine what it would take to make sure
that all of the message information stays intact so it can be displayed by show.gsp? Well, this is where flash messages
come to your rescue.

Flash and Flash Messages
What is flash scope and why do you need it? The short answer is that it is a technique implemented by Grails to make
passing objects across redirects much easier. In other words, it addresses the problem described at the end of the
previous section. Table 5-11 illustrates various scopes associated with controllers in Grails.

Table 5-11. Scopes Associated with Controllers

Scope Description

flash Flash only allows the storage of objects for the current and next request.

params Mutable map of incoming request query string or POST parameters.

request The request object allows the storage of objects for the current request only.

servletcontext This scope lets you share state across the entire web application.

session The session allows associating state with a given user and typically uses cookies
to associate a session with a client.

The flash object is a Map (a hash) that you can use to store key value pairs. These values are transparently stored
inside the session and then cleared at the end of the next request. This pattern lets you use HTTP redirects (which is
useful for redirect after post) and retain values that can be retrieved from the flash object. Figure 5-9 illustrates the
problems associated with normal techniques of passing information from the controller to the view when a redirect
is involved.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

146

On a redirect, if you try to use the request to carry the message to the Show view, the message gets lost when the
browser receives the redirect. Another option is to stick the message in the session and have the Show view pick it
up from the session. However, in the Show view, you have to remember to delete the message from the session once
it has been displayed; otherwise, the same message might be displayed on multiple views. The problem with this
approach is that it depends upon you doing the right thing, and it’s tedious.

This is where Grails comes to the rescue: it takes the last option and implements it for you and makes it part of
the Grails framework. This is the flash scope. The flash scope works just like the other scopes (application, session,
request, and page) by operating off a map of key/value pairs. It stores the information in the session and then removes
it on the next request. Now you don’t have to remember to delete the object in the flash scope. Figure 5-10 illustrates
the concept of the flash scope.

Save User

The request parameter is handed

off for processing by show.gap.

However, because this is a new

request, the message is blank and

evaluates to null, and there is

nothing to be displayed

Upon saving the user, redirect the

user to the Show view with the

message “User Created.”

request.message=

User Created

request.message=

null

Show User

Show User

Save User

RequestClient UserController

Redirect to Show View

Show View

Figure 5-9. Redirect problem

CHAPTER 5 ■ BUILDING THE USER INTERFACE

147

The Show view can access the flash scope objects—a message, in this case—and display them using the tags and
techniques illustrated in Listing 5-17.

Listing 5-17. Access and Display a Flash Message

<g:if test="${flash.message}">
<div class="message">${flash.message}</div>
</g:if>

Grails isn’t the only modern web framework that implements this technique. Ruby on Rails (RoR) developers
should find this familiar.

Accessing a message from a flash scope looks pretty easy, but how do you put a message in flash? Listing 5-18
illustrates how the save action on the UserController puts a message into the flash scope.

Listing 5-18. Putting a Message in the Flash Scope

...
if(user.save()) {
 flash.message = "User ${user.id} created."
 redirect(action:show,id:user.id)
}
...

RequestClient UserController Session Flash

Save User

Show User

Show User

Save User

Put in Flash

Get Flash

Flash

Upon saving the user, redirect the

user to the Show view and put

message“User Created.” in flash scope.

The request parameter is handed

off for processing by show.gap.

Grails checks to see if there is

anything in the flash scope; if there

is, it pulls it out for processing.

flash.message=

“User Created”

flash.message=

“User Created”

Redirect to Show View

Show View

Figure 5-10. Flash scope

CHAPTER 5 ■ BUILDING THE USER INTERFACE

148

Grails implements a flash scope using a map. In this case, message is the key, and "User ${user.id} created."
is the value.

What if you need to internationalize the code or want to change the message without editing the GSP? (Currently,
the message is essentially hard-coded.) You can set it up to use message bundles just like errors do. Earlier in the
chapter, you used the <g:message>tag to pull error messages from message bundles. You can do the same thing
for flash messages using a couple of attributes. Listing 5-19 illustrates how to use the <g:message> tag to display
flash messages.

Listing 5-19. Using the <g:message> Tag to Display a Flash Message

<g:message code="${flash.message}" args="${flash.args}"
 default="${flash.defaultMsg}"/>

Listing 5-20 illustrates the enhancements to the save action to set the values that the message tag will use.

Listing 5-20. Setting Values in a Flash Scope for Use by the <g:message> Tag

 ...
 if(user.save()) {
 flash.message = "user.saved.message"
 flash.args = [user.firstName, user.lastName]
 flash.defaultMsg = "User Saved"
 redirect(action:show,id:user.id)
 }
...

The flash.message property is the message code to look up in the message bundle, flash.args are the
arguments to substitute into the message, and flash.defaultMsg is a default message to display in the event
of a problem.

Only one thing left to do: create an entry in the message bundle with the user.saved.message code and whatever
you would like the text to be. See Listing 5-21 for an example.

Listing 5-21. Flash Message Code Example

user.saved.message=User: {0} {1} was saved

The results should look something like what’s shown in Figure 5-11.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

149

Note■ Any action can call or redirect to the Show view. At this point, you may be wondering what happens if

flash.args and flash.defaultMsg aren’t set. The <g:message> tag is pretty smart; it does the logical thing. It displays

the contents of flash.message. To see it in action, update an existing user and take a look at the message displayed.

Now that you know about the flash scope and messages, you can create customized and internationalized
application messages with a minimal investment.

You have learned quite a bit about Grails user interfaces and have established the basic look and feel. Now it’s
time to start implementing some logic and control.

Creating an Audit Log Using Action Interceptors
Occasionally, you’ll have problems with the application. When this happens, it is useful to know the input and results
of the actions being executed. This entails displaying the inputs to the action before the action is executed and the
results before control is passed to the next step in the process. You could modify every action to print the inputs before
executing the body of the action and then again at the end of the action. However, that’s way too much work and
difficult to maintain.

Grails provides a mechanism called action interceptors that you can use to provide the desired functionality.
Experienced developers will see that this is similar to aspect-oriented programming (AOP). If you aren’t familiar with
AOP, you might be familiar with servlet filter interceptors for servlets, which are similar. The good news is that Grails
makes it easier than either one of these.

Note■ Ruby on Rails developers will recognize this as a Rails filter.

Figure 5-11. Using Flash scope

CHAPTER 5 ■ BUILDING THE USER INTERFACE

150

Grails provides before and after interceptors. You will use both to provide the audit log functionality. You will
use a before interceptor to log the userName, controller, action, and input parameters. To accomplish this, add the
beforeInterceptor closure to the TodoController. Listing 5-22 is an example of the beforeInterceptor for you to
add to the controller.

Listing 5-22. beforeInterceptor

def beforeInterceptor = {
 log.trace("${session?.user?.userName} Start action ${controllerName}
 Controller.${actionName}() : parameters $params")
}

If defined and unless otherwise instructed, the beforeInterceptor is called just before the action is invoked.
Since it is a closure, it has full access to all of the controller properties as well as to the request parameters. It uses
logging (see the “Logging” sidebar) to output the audit information. Notice that it’s using the ?. safe dereference
operator. The safe dereference operator checks to see if the current expression so far is null before evaluating the next
portion of the expression. So, if the session or user is null, userName will never be accessed. This helps you avoid the
infamous NullPointerException.

beforeInterceptor allows you to perform logic before an action is invoked, while afterInterceptor allows you
to perform logic after the action has executed. Listing 5-23 is an example of the afterInterceptor for you to add to
the controller.

Listing 5-23. afterInterceptor

def afterInterceptor = { model ->
 log.trace("${session?.user?.userName} End action
 ${controllerName}Controller.${actionName}() : returns $model")
 }

As you would expect, the afterInterceptor looks similar to the beforeInterceptor. The one additional piece is
the passing of the model object to the interceptor; this allows you to output it to the audit log.

Caution ■ This implementation of audit logging is a potential security hole for sensitive data. If the parameters or

model contain sensitive data, take extra care to filter it out before logging any audit information.

beforeInterceptor and afterInterceptor are invoked for every action in the controller. Suppose you didn’t
want to invoke the audit log for every action. What if you didn’t want to collect audit log information for the list
action? You could write an if statement around the log statement. That would work, and it would work well.
Grails provides an additional mechanism, called interceptor conditions, which allow interceptors to be applied
conditionally. Listing 5-24 is an example of the before and after interceptors using conditions to exclude the list
action from the audit log.

Listing 5-24. Before and After Interceptors with Conditions

def beforeInterceptor = [action:this.&beforeAudit,except:['list']]
def afterInterceptor = [action:{model ->this.&afterAudit(model)},
 except:['list']]
def beforeAudit = {
 log.trace("${session?.user?.userName} Start action
 ${controllerName}Controller.${actionName}() : parameters $params")
}

4

CHAPTER 5 ■ BUILDING THE USER INTERFACE

151

def afterAudit = { model ->
 log.trace("${session?.user?.userName} End action
 ${controllerName}Controller.${actionName}() : returns $model")
}

Note ■ The Definitive Guide to Grails 2 from Apress shows you how to use action interceptors to build a simple

security framework.

Using Filters
Filters are similar to action interceptors in that they give you the ability to execute logic before and after an action.
They differ from action interceptors in that they are more flexible and can be used in situations other than actions. For
example, you can define a filter that applies across multiple controllers. Filters can be applied across a whole group of
controllers, a URI space, or to a specific action. Filters are far easier to plugin and maintain, and are useful for all sorts
of cross-cutting concerns such as security, logging, and so on.

To create a filter, create a class that ends with the convention Filters in the grails-app/conf directory. Within this
class, define a code block called filters that contains the filter definitions:

class SampleFilters {
 def filters = {
 // your filters here
 }
}

Each filter you define within the filters block has a name and a scope. The name is the method name and the
scope is defined using named arguments.

Let’s see how you can use filters to simplify the UserController. The UserController’s edit, delete, and
update actions all contain guard logic that allows users to edit only their own user data. The actions contain logic
similar to Listing 5-25.

Listing 5-25. User Modification Guard

. . .
 if (session.user.id != params.id) {
 flash.message = "You can only edit yourself"
 redirect(action:list)
 return
 }
. . .

While the logic in Listing 5-35 isn’t complex, it would be repeated for each action that requires a guard. You
can use filters to extract and centralize the logic to a single location. This may sound familiar to those of you who
have worked with AOP. The basic idea is to extract the logic to a central location and then configure when to apply
that logic.

In Grails, you extract the logic into a class ending with the name Filters.groovy and place it in the grails-app/conf
directory. Each filter is contained within a method that takes parameters to define the scope of the filter, when it is applied.
Listing 5-26 shows how to centralize the user modification logic.

CHAPTER 5 ■ BUILDING THE USER INTERFACE

152

Listing 5-26. Filter Scope

class UserFilters {
 def filters = {
 userModificationCheck(controller: 'user', action: '*') {

 . . .
 }
 someOtherFilter(uri: '/user/*') { }
 }
}

The userModificationCheck filter is scoped and applied to the UserController on all actions. Another way of
scoping the filter is to use a URL. You can see an example of this option on the someOtherFilter filter.

Next, you need to determine if the filter should be applied before the action, after the action, and/or afterView
rendering. In this case, the goal is to determine if the person using the system should be allowed to modify the user.
This means the guard logic should be applied before the edit, update, and delete actions. Listing 5-27 illustrates
how to specify the before condition.

Listing 5-27. before Filter

class UserFilters {
 def filters = {
 userModificationCheck(controller: 'user', action: '*') {
before = {
 . . .
 }
 }
 }
}

Finally, you need to limit the guard logic to the edit, update, and delete actions. Listing 5-28 shows the complete
userModificationFilter.

Listing 5-28. User Modification Filter

1. class UserFilters {
2. def filters = {
3. userModificationCheck(controller: 'user', action: '*') {
4. before = {
5. defcurrActionName = actionName
6. if (currActionName == 'edit' ||
7. currActionName == 'update' ||
8. currActionName == 'delete') {
9. String userId = session?.user?.id
10. String paramsUserId = params?.id
11. if (userId != paramsUserId) {
12. flash.message = "You can only modify yourself"
13. redirect(action: 'list')

CHAPTER 5 ■ BUILDING THE USER INTERFACE

153

14. return false
15. }
16. }
17. }
18. }
19. }
20. }

Let’s review the new lines. Line 5 gets the current action. Remember, you should apply the filter to the edit,
update, and delete actions, as shown in lines 6-8.

Line 11 determines if the person attempting the modification—the logged-in user—is modifying his own user
record. If not, an appropriate flash message is created, and the user is redirected to the UserController list action.
Line 14 returns false to tell Grails that it shouldn’t execute any other filters.

Now that you have the userModificationCheck filter, you can remove the redundant guard code from the edit,
update, and delete actions.

LOGGING

While everyone uses println from time to time, a more mature approach is to use logging. Grails controllers are

preconfigured with a log property. Each controller receives its own instance of org.apache.commons.logging.log.

Apache Commons Logging component (http://commons.apache.org/logging) is an abstraction that allows you to

plug in different logging packages. Grails comes prepackaged with log4j (http://logging.apache.org/log4j). The

Apache Commons Logging abstraction provides the interface seen in the following code.

public interface log {
 void debug(java.lang.Object message)
 void debug(java.lang.Object message, java.lang.Throwable t)
 void error(java.lang.Object message)
 void error(java.lang.Object message, java.lang.Throwable t)
 void fatal(java.lang.Object message
 void fatal(java.lang.Object message, java.lang.Throwable t
 void info(java.lang.Object message)
 void info(java.lang.Object message, java.lang.Throwable t)
 void trace(java.lang.Object message)
 void trace(java.lang.Object message, java.lang.Throwable t)
 void warn(java.lang.Object message)
 void warn(java.lang.Object message, java.lang.Throwable t)
 boolean isDebugEnabled()
 boolean isErrorEnabled()
 boolean isFatalEnabled()
 boolean isInfoEnabled()
 boolean isTraceEnabled()
 boolean isWarnEnabled()
}

http://commons.apache.org/logging
http://logging.apache.org/log4j).The

CHAPTER 5 ■ BUILDING THE USER INTERFACE

154

Messages have a severity level. The possible severity levels (from least severe to most severe) are:

Trace •

Debug •

Info •

Warning •

Error •

Fatal •

Grails uses its common configuration mechanism to provide the settings for the underlying log4j log system, so all

you have to do is add a log4j setting to the file grails-app/conf/Config.groovy.

log4j = {
 error 'org.codehaus.groovy.grails.web.servlet', // controllers
 'org.codehaus.groovy.grails.web.pages' // GSP warn 'org.apache.catalina'
}

This says that for loggers whose name starts with org.codehaus.groovy.grails.web.servlet or

org.codehaus.groovy.grails.web.pages, only messages logged at error level and above will be shown.

Loggers with names starting with org.apache.catalina only show messages at the warn level and above.

For more information on logging configuration, see the online log configuration documentation at

http://www.grails.org/Logging.

Summary
Views and controllers are broad and deep topics. We used the construction of the Collab-Todo wireframe and
customization of the views and controllers to help you learn about some of the more important aspects to these
topics. In the process of building the Collab-Todo application, you learned how to use layouts, templates, and CSS
to build the wireframe. The wireframe was composed of topbar, header, content, sidebar, and footer components.
Building the wireframe also exposed you to some of the Grails tag libraries.

Once you built the wireframe, you learned how to build a temporary login facility that allowed you to exercise
the topbar login/logout functionality. Building the login facility involved creating a customized view and customized
actions on the UserController.

You also learned about errors, validation, and flash messages. This gave you insights into how Grails renders
errors and messages, and how you can control them. You also learned about the redirect message problem and how
using flash-scoped messages solves the problem.

You learned how to use interceptors for things like auditing. Finally, you created a simple audit log using action
interceptors and logging.

It’s important to remember that even though we covered a lot, there are even more advanced things you can do
with views and controllers. We’ll cover more of the advanced topics in the coming chapters. The next step on your
journey is to learn more about domain models and services.

http://www.grails.org/Logging

155

Chapter 6

Building Domains and Services

KING ARTHUR. The Lady of the Lake, her arm clad in the purest shimmering samite, held aloft
Excalibur from the bosom of the water, signifying by divine providence that I, Arthur, was to carry
Excalibur. THAT is why I am your king.

DENNIS, interrupting. Listen, strange women lyin’ in ponds distributin’ swords is no basis for a
system of government. Supreme executive power derives from a mandate from the masses, not from
some farcical aquatic ceremony.

Just as King Arthur and his knights embarked on a quest to find the Holy Grail in Monty Python and the Holy Grail, the
next step in our discovery of Grails is to search for its very heart and soul . . . or in Java terms, its domain.

You received your first taste of the domain in Chapter 4 when you learned how to scaffold the application. In
Chapter 5, we broke out a few of those controllers to show actual calls against the domain. However, we didn’t delve
into the functionality of the domain. Here is where we dig deeper.

We’ll show you the full power of Grails database persistence and explain all the options available to you. In
addition, we’ll discuss the idea of services—something that should be familiar to any enterprise developer. Unlike
controllers, services don’t contain any specific web knowledge like sessions and request parameters do.

GORM
We’ve shown you how to interact with the database, but we’ve left the process a bit nebulous until now. In this chapter,
we’ll go over the specifics behind how GORM works. Most frameworks, especially those straight out of the box, have
their own mechanism for persisting to the database. Ruby on Rails uses ActiveRecord as the persistence mechanism.
Java EE frameworks use the JPA (which, if you’re on JBoss Application Server, is simply Hibernate underneath the
covers). WebSphere uses iBATIS.

Grails uses GORM. However, GORM is not its own creation; like JBoss, it uses Hibernate for its persistence
implementation. GORM simply wraps Hibernate in Groovy layers. This is a blessing, because Hibernate gives
GORM all of the necessary plumbing code, allowing GORM to focus on the usability instead. In fact, if you’re
familiar with ActiveRecord and Hibernate, you should be about 95% good to go when it comes to writing domain
objects in Grails. GORM truly is an amalgamation of the ActiveRecord and Hibernate, giving you the best of both
worlds. As we move along with examples on how to use GORM, the similarities and differences will become more
apparent. GORM is a broad topic and requires a book of its own; we refer you to the well written documentation
(http://grails.org/doc/latest/guide/GORM.html), along with this chapter.

http://grails.org/doc/latest/guide/GORM.html

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

156

Collab-Todo’s Domain
Before going into depth about how to create domains in Groovy, let’s start by explaining what you’ll be creating.
In Chapter 4, we gave you the base of the domain structure with the Todo, Category, and User classes. However, this
application wouldn’t be that interesting if we kept just those three domain objects. We decided to wait to show you the
entire domain for two major reasons:

We didn’t want to overwhelm you with the domain when you were just starting to learn •
the system.

Without more background, you might not be entirely familiar with the way the domain •
is created.

However, now it’s time introduce you to the entire domain. We’ll start by going over what the Java class domain
looks like. Then we’ll explain the options for creating and configuring the domain components. Finally, we’ll show you
the database you’ll create with the domain configurations.

Figure 6-1 shows a class-level diagram filled with connectors and columns. This should give you an overview of
the application you’ll build and explain what the individual parts mean. Also look at the source code to get an idea of
how you’ll transition from the diagram in Figure 6-1 to the actual code you’ll use throughout the book. (You can find
the code samples for this chapter in the Source Code/Download area of the Apress web site [www.apress.com].) Please
note that this diagram contains two domains that we’ll use in the next chapter as part of the security apparatus.

id

id id

id

id

id

todo_tbl

associated_file

category_id

complete_date

create_date

due_date

last_modified_date

name_str

note_str

owner_id

priority

start_date

status

contentType

fileName
category buddy_list_member

version

description

name

user_id

version

active

address_address_line1

address_address_line2

address_city

address_country

address_state

address_zip_code

email

first_name

last_name

password

user_name

class

department

version

description

name

owner_id

version

description

name

version

buddy_list_id

nick_name

user_id

user

todo_tbl_keyword

keyword

Keywords_id

todos_id

buddy_list

Figure 6-1. Class-level diagram of the domain

http://www.apress.com

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

157

Note ■ We’re using the domain model to map the database; we’re not using the database to map the domain model.

This is becoming a fairly standard practice, although you’re more than welcome to do the reverse.

A few of these tables should seem familiar to you. Table 6-1 provides a list of each domain object and a brief
description of its purpose.

Table 6-1. Domain Classes Used for the Collab -Todo Application

Domain Name Description

Address An inner domain object to store inside the User.groovy file, because you’ll use it as an
embedded class anyway.

Admin Extends the User class. You’ll use it for administrators, where you’ll track what department
they are with. You will not use this class in permissioning, though.

BuddyList Defines the buddy lists for each of the users.

BuddyListMember Each person the users want in their buddy lists must be referenced in this class. The other
purpose of this class is to assign nicknames.

Category Creates specific names to categorize todos by.

Keyword Creates keywords to differentiate the individual todos.

Todo The holder for all the todos. This is the main object of the application.

User Stores information about the person creating the todo.

As we move through this chapter, we will add various relations and constraints to the domain model. Let’s start
with how you actually create the domain object.

Creating Domain Objects
Because we’re discussing how to create the domain objects that create the database, it’s best to start small by
examining just one table at first. In the previous two chapters, we showed you how to start the domain collection
and add to it. Now we’ll dive into all the options and the specifics of how domain creation works. Luckily, even if
you’ve never worked with Hibernate or Java Data Objects (JDO), learning how to use GORM will be easy. For one, it’s
intuitive. For example, with normal JDOs, you have to memorize what many-to-one, one-to-one, and so on mean. With
GORM, relationships are easier to define. The relationships are defined in a DSL syntax so that domain A belongs to
domain B or domain A has many domain Bs associated with it. GORM was built with a DSL, so the terms you use to
create the area sound like how you speak.

We’ll take a few steps back before going forward. We’ll start with basic domain creation, and investigate what’s
going on under the covers. Then we’ll go into more advanced settings for the domain, including how to create
complex object types and how to overwrite the storage of the domain. By the end of this section, you should be ready
to create and customize almost any domain object you need.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

158

Basic Domain Creation
Figure 6-1 showed the domain model you’ll use, and in the previous chapters, you saw the implementation of a
few domain objects. However, we have not detailed how you create a domain object of your own, your options in
creating it, or even how it affects the underlying database. It’s time to expand your knowledge. We’ll detail two
sets of concepts:

Creating a fully functional domain model with constraints and relationships•

Understanding how these domain objects create and interact with the database•

First, let’s re create the Todo domain object. We’re not doing this to waste your time, or because we get paid by
the page (we don’t). We’re doing this because you should see what’s occurring to the database when you create the
tables we defined for Collab Todo application. While it’s nice that the GORM tools isolate you from having to create the
database tables directly with SQL commands, you still need to have a grasp on what happens behind the scenes.

If you have ever created a domain object in EJB3 or Hibernate, this will seem familiar. Let’s refresh our memory of
the Todo domain and see how it interacts with the database. Listing 6-1 contains a partial listing of the domain; we’re
only showing the domain properties.

Listing 6-1. Revisiting the Todo Domain

class Todo {

 static belongsTo = [User, Category]

 User owner
 Category category
 String name
 String note
 Date createdDate
 Date dueDate
 Date completedDate
 String priority
 String status

 ...
}

You might be wondering, “What is GORM doing when it stores the domain in the database?” Well, that’s actually
pretty simple. Figure 6-2 shows a snapshot of the table from a MySQL database. Note how it is the implementation of
the todo table seen in Figure 4-17 from Chapter 4.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

159

If you compare this table to the domain, you’ll notice a few differences. Let’s break them down into a few areas.

New Columns

Probably the first things you’ll notice are the auto-generated primary key ID and the version. The ID is always used
as the reference for the primary key; you can access it off the domain object at any time. The ID ties the particular
detached domain object to the persisted one. Hibernate also uses a version field for transactional integrity and to
support optimistic locking. This works much like ActiveRecord in Rails, which allows you to have the primary key and
version created for you; unfortunately, the downside is that you cannot overwrite the primary key by hand.

Note■ It may seem like a downside that the primary key is set for you by default, but in practice, using a single unique

ID primary key with Hibernate allows for the best performance when interacting with the database. We’ll show you how to

use mappings to change the primary key in the “Changing the Primary Key” section of the chapter.

Naming

Next, notice that the table name and column names are assigned. The names that were in CamelCase before are now
switched to snake_case (lowercased and separated by an underscore).

Foreign Keys

In most databases, foreign keys or foreign key indexes are created between the User and Category tables. GORM
sets up the foreign key by taking the class that has the belongsTo reserved word—in this case, the Category class has
belongsTo = User—and saving the user_id column in the category table to the database. The user_id column is the
concatenation of the belongsTo table name with _id.

Data Type

For the most part, data types are derived from the types you set in the domain itself. So Strings become VARCHARs,
Dates become DATETIMEs, and so on. Of course, the exact type is dependent on the actual database you’re using and
the constraints applied to the property.

Figure 6-2. The todo table

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

160

Setting Default Values

Many applications have a default value to store in the database if you don’t select one for them. Setting a default
value is easy in GORM; simply set the value as you would to a normal domain object. In general, a status usually has a
starting value. In the Collab-Todo application, your value will not be "Completed" from the get-go, so start the status at
Started. If the user wants to change this upon creation, he can. Listing 6-2 showcases the updated change.

Listing 6-2. The Todo with a Default Value for Status

class Todo {

 static belongsTo = [User, Category]

 User owner
 Category category
 String name
 String note
 Date createdDate
 Date dueDate
 Date completedDate
 String priority
 String status = "Started"

 ...
}

Large Object Types

Before we move on to relationships, let’s discuss the treatment of large object types. Large objects are generally binary
large objects (BLOBs) and character large objects (CLOBs) that get persisted to the database. Although we’re storing
objects to the database as an example and will be using it to highlight features in Chapter 8 on downloading and
uploading files, we don’t necessarily suggest using a database to store files. Files can be very large, and unless you
need to version those files, it is unwise to waste the database as a storage place. Instead, use the file system to keep
files. Remember that the point of a file system is to store files.

Of course, there are legitimate reasons to store files in the database, so if you want to store BLOBs, simply set the
datatype to byte[]. Note that we’ve added an item to Todo called associatedFile. When you update the database in
MySQL, you will notice that the object type created is TINYBLOB. In addition, setting the maxSize on the constraints
produces a longtext column in the database when using MySQL.

Creating Relationships
Unless you’re building a domain structure with only a few classes, you’re bound to have relations to other classes.
For example, the Todo object belongs to one Category and one User. Conversely, a User can have many Todos. We’ll
discuss the following four relationship types:

One-to-one•

One-to-many•

Many-to-one•

Many-to-many•

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

161

Writing relationships in Grails is relatively easy. In fact, the syntax and usage are virtually identical to Ruby on
Rails’ ActiveRecord. Knowing that GORM is based on Hibernate, you might expect the syntax and usage to be more
like Hibernate or JPA, but this isn’t the case. With standard JPA, you can create relations using annotations solely on
one side of the bean. However, these annotations can get entirely too complex. For example, take the many-to-many
relationship in JPA shown in Listing 6-3.

Listing 6-3. Example of aMany-to-Many Relationship in JPA

@ManyToMany
@JoinTable(name="COURSE_TO_STUDENT_TBL",
 joinColumns=@JoinColumn(name="courseId"),
 inverseJoinColumns=@JoinColumn(name="studentId"))
private Collection<Student> students;

Note that there are different annotations for each type of relationship. In reality, JPA configures more from the
database level, whereas GORM is programmed more from the verbal level. First, we’ll review the players involved, and
then we’ll show you how to create the relationships.

Players Involved

As you saw in Chapter 4, creating relationships is quite easy. However, we’ll provide an example for those who need a
refresher. You’ll need to modify only two pieces of code in your classes. You’ll use the following two keywords:

• hasMany

• belongsTo

The next section shows examples of these in action.

One-to-One

A one to-one relationship exists when one record in table A references exactly one record in table B, and vice versa. For
example, the User table contains a reference to the Address table. There is exactly one user at one particular address.
Listing 6-4 shows an example of each table.

Listing 6-4. Example of a One to-One Relationship

class User {
 ...
 Address address
}
class Address {
 User user
}

Note ■ The code for the book doesn’t contain a reference to User in Address, because we’re going to treat Address as

an embedded class. This is merely one way of doing it. We actually have no pure one to-one relationships in our code base.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

162

One-to-Many

A one to-many relationship exists when a record in table A can reference many records in table B, but when those
records in table B can only reference one record in table A. Our application contains many examples of one to-many
relationships, one of which is the relationship between the user and the buddy lists. A user can have multiple buddy
lists, but the buddy list can only be referenced to one user. Listing 6-5 shows an example of this in the code.

Listing 6-5. Example of a One to-Many Relationship

class User {
 ...
 static hasMany = [buddyLists: BuddyList]
}
class BuddyList {
 static belongsTo = User
}

hasMany, which is put on the consuming domain, tells you that this domain “has many” of this domain. The
belongsTo keyword is on the other side of the object—in this case, the BuddyList. The belongsTo keyword refers to
what the properties are referencing.

Let’s look at another example in the BuddyList domain that has many BuddyListMembers, as shown in
Listing 6-6.

Listing 6-6. Defining hasMany on BuddyListMember

class BuddyList {
 static hasMany = [members: BuddyListMember]
 ...
}

Here, members references the variable name you’ll use to retrieve the BuddyListMembers from the BuddyList
object. This is just one side of the relationship. The other side is actually the more important side and it ties the
constraints together in the database.

Listing 6-7 shows how to define belongsTo on the BuddyList object.

Listing 6-7. Defining belongsTo on BuddyListMember

class BuddyListMember {
 static belongsTo = BuddyList
}

Putting this static reference on belongsTo tells the BuddyListMember class to put a reference to BuddyList in
BuddyListMember’s table upon database creation.

Managing Relationships

Adding to the relationships is quite easy and makes use of Groovy dynamic syntax. Listing 6-8 shows how to add and
remove members from BuddyList.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

163

Listing 6-8. Adding BuddyList to and Removing BuddyList from BuddyListMember

BuddyList myList
myList.addToMembers(someMember)
myList.removeFromMembers(someMember)

Many-to-One

As you’ve probably guessed, a many to-one relationship is the inverse of the one to-many relationship. Listing 6-5
shows a many to-one relationship from the point of view of the buddy list. This is an example of what we meant when
we said that GORM is more intuitive than JPA. JPA would have included an @ManyToOne annotation.

Many-to-Many

The many to-many relationship further demonstrates the distinction between the way GORM and JPA implement
relationships. A many to-many relationship looks much different and is more readable than the many-to-many
relationships in JPA. Readability is one benefit of using dynamic languages such as Groovy and Ruby.

In a many-to-many relationship, a record in table A can reference multiple records in table B. Conversely, a
record in table B can reference multiple records in table A. To set this up, use the same keywords you used previously,
so you have nothing new to learn. Both records contain hasMany, because they both reference many records in the
other table. In addition, at least one class needs belongsTo to create the relation (it doesn’t matter which one).
Listing 6-9 shows an example of implementing a many-to-many relationship between the Todo and Keyword domains.

Listing 6-9. Example of aMany to-Many Relationship

class Todo {
 static hasMany = [keywords: Keyword]
}
class Keyword {
 static belongsTo = Todo
 static hasMany = [todos: Todo]
}

Here, you can add and remove the keywords the same way you did in Listing 6-8.

Overwriting Default Settings
Now that we’ve established the basic rules of domain creation, you should be able to do everything you need to create
your domain objects. There are a few items we have not covered yet, such as constraints, but we’ll wait until the
“Validation” section. Here, we’ll go over a few “advanced” settings for domain items. First, we’ll show you how to
fine-tune your tables, columns, and indexes for specific names and values. You could configure these items in a Hibernate
configuration file, but we’ll show you how to configure them in DSLs. In addition, we’ll show you how to add properties
to domains that are not persisted, and explain how to fire events when inserting, updating, and deleting a table.

Adjusting the Mappings

GORM allows you to adjust names of the tables and columns on the database itself in a DSL way without the need for
extra configuration files, as Hibernate requires. To demonstrate, we’ll customize the Todo domain. By the end, you’ll
see those changes reflected in the domain.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

164

To make these adjustments, you need to add a static mapping closure to the domain object. The additional code
simply adds to those static mappings. Check out the adjustment to Todo in Listing 6-10.

Listing 6-10. Todo with the Mapping Closure Defined

class Todo {
 ...
 static mapping = {
 // insert mappings here
 }
}

Now you can start adding to the static mappings, slowly growing the mapping for added functionality.

Table and Column Naming

First, change the table name and a column name; these are common changes an enterprise environment. To change
the table name persisted from todo to todo_tbl, add the following line to the mapping:

table 'todo_tbl'

This simply tells GORM that the table is named todo_tbl.
That was easy enough. Now, let’s update the column names. Because a table can have multiple columns, column

names are grouped under one sub-block in the mapping. Change the name of the name and note to name_str and
note_str. This naming convention is somewhat common for DBAs, who like to see the column type simply by
glancing at the column name. To do this, add the following code to the mapping:

columns {
 name column:'name_str'
 note column:'note_str'
 }

GORM reads this as, “For columns, the name property references column name_str.”

Changing the Primary Key

Earlier versions of Grails provided no easy way of changing the primary key. Even worse, you couldn’t change the
generation method. While this probably didn’t affect smaller shops, it likely affected large companies, many of which
demanded that DBAs use stored procedures or other techniques to generate a primary key. First, we’ll go over how to
change the generator, and then we’ll discuss how to change the primary key itself.

By default, the generator uses the native implementation of the database. This could be an identity or a sequence,
depending on the database. However, let’s say you want to change it to use a high-low method of determining the
number. You would add this entry to your mapping:

id generator:'hilo', params:[table:'hi_value',column:'next_value',max_lo:100]

This entry starts off with identifying itself by referencing to the id property, which is the default property on
the domain. Next, generator defines the generator to be used, and params defines the parameters to pass into the
generator. For a high-low calculation, the generator needs a table name, a column in the table, and a maximum low.
Remember, this is all based on what Hibernate expects as parameters for each of the generations.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

165

The other common approach to creating primary keys is to use a composite key, which has multiple attributes. In
the example, this could be a combination of the name and the due date, the name and the user ID, and so on. Before
we explain how to change the primary key to a composite key, we recommend that you don’t do this unless you have
to. Many would think of it as just poor design; however, the more important reason not to change it from a single ID is
the fact that Hibernate performs best when using a primary key generated by one column.

This said, let’s look at how to do it. Suppose you want the primary key to be the name plus the due date, because
you cannot have the same named item due on the same date. Defining it is as simple as adding a composite ID entry
in the mapping:

id composite:[create 'name','dueDate']

Note ■ You cannot define a composite ID with a generated ID. In addition, because you can’t have two different primary

key techniques on one table, we’ve only made use of the generated ID for this chapter’s source code.

Disabling Versioning

By default, GORM is configured with optimistic locking enabled and uses versioning to help maintain a version
number in the database. Having versions is Hibernate’s way of checking to make sure that as you’re updating a
record, someone doesn’t update it underneath you. Whenever you update a record in the table, the version number is
incremented. Before the actual save occurs, Hibernate checks the version for the record you’re trying to save against
the record in the database. If they’re different, Hibernate doesn’t allow the save to occur.

While this sounds great, there may be legitimate reasons you don’t want to use versioning. In some applications,
it may not matter if the record is updated by two people at the same time. To turn off versioning, simply type this
command in the mapping:

static mapping = {
 version false
}

This eliminates the column version from your table, and Hibernate will no longer perform any version checking.

Changing Eager Fetching and Locking

When you retrieve embedded domains from the database, GORM tells Hibernate to fetch them lazily. However, if you
want to fetch them eagerly, you must disable lazy fetching for the column.

The Todo object offers no good exasmple of this, so we’ll use the User object, which has an embedded address
property. In Listing 6-11, you can see an example of Todo with the embedded address domain being fetched eagerly.

Listing 6-11. Todo with the Embedded Address Fetched Eagerly

class User {
 static mapping = {
 columns {
 address lazy:false
 }
 }
}

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

166

Creating Database Indexes

You can also tune the database indexes from the GORM domain level. DBAs can then create these by hand in the
database, but many people (especially those without full-time database architects) find it easier to tune them via the
application framework. This ensures that if you’re using the automatic update feature of the database, the indexes will
also get updated.

In the example, you’ll define the name and createDate indexes. Name the first index Name_Idx, and name the
createDate index Name_Create_Date_Idx. Listing 6-12 shows you how to define the index in the columns section.

Listing 6-12. Defining Indexes for the Todo Domain

class Todo {
static mapping = {
 columns {
 name index:'Name_Idx, Name_Create_Date_Idx'
 createDate index:'Name_Create_Date_Idx'
 }
 }
}

Class Inheritance

It’s typical of a domain diagram to have class inheritance, but this concept isn’t always typical in database design.
Luckily, with GORM, it’s literally as easy as extending a class. For the data model, the Admin class extends the User
class. Listing 6-13 shows the Admin class.

Listing 6-13. The Admin Class That Extends the User Class

class Admin extends User {
 String department
}

There are two different strategies, called table-per-hierarchy or table-per-subclass, for implementing the
inheritance. With table-per-hierarchy mapping, one table is shared between the parent and all child classes, while
table-per-subclass uses a different table for each subclass.

By default GORM, classes use table-per-hierarchy inheritance mapping.

static mapping = {
 tablePerHierarchy true
}

This has the disadvantage that columns cannot have a NOT-NULL constraint applied to them at the database level
but you’re forced to have not-null constraints on all child columns because they share the same table.

The table-per-subclass might be seen as the better strategy, since each subclass is in its own table.

static mapping = {
 tablePerHierarchy false // table-per-subclass
}

The main drawback of table-per-subclass is that the JOIN queries used to obtain the results from all the parents of
a given child in a too-deep inheritance hierarchy might lead to performance issues.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

167

Turning on the Cache

One of the big pluses with Hibernate is its ability to use second-level caching, which stores data associated with
the domain class to the Hibernate cache. The advantage to this is that if you retrieve the data, it will pull it from the
cache instead of making a call to the database. This is a great mechanism for retrieving data that is accessed often
and is rarely changed. To configure the second level cache, you have to follow a few steps. First, update the
DataSource.groovy file, then update the domain object in question.

Configuring the cache in the data source is easy. Add the code from Listing 6-14 into your DataSource.groovy file.

Listing 6-14. The Entry to Initialize the Hibernate Second Level Cache

hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=true
 cache.provider_class='org.hibernate.cache.EhCacheProvider'
}

This tells Hibernate that you want to use second-level caching and that the provider you’ll use is
EhCacheProvider. You can swap this line out with another provider if you like; this just happens to be the de facto
Hibernate cache.

Next, initialize the cache for the individual domain objects with which you want to associate it. Initialize it for
Todo by inserting the cache entry into the mapping constraints. Add the following line to your mapping:

static mapping = {
 ...
 cache true
}

When using true, it signals that the object should be stored in the cache and it will configure a “read-write” cache
that includes both lazy and non-lazy properties. However, you can further adjust the cache settings to be read-only,
transactional, or non-lazy. To do this, you use a similar entry to the previous one, but with more specifics:

cache usage:'read-only', include:'non-lazy' // or cache usage: 'transactional'

Besides configuring the cache at the class level, you can also configure it for embedded classes at the domain
level. The configuration is virtually identical to what you did previously, except you specify the column that will be
cached, as shown in Listing 6-15.

Listing 6-15. Configuring the Cache for the Address on the User

class User {
 static mapping = {
 address cache:true
 }

Transient Properties

In JPA and GORM, all the properties on your domain (or entity) objects are persisted to the database by default. This
can be disadvantageous when you want to have properties on your domains that either are amalgamations of other
properties or simply don’t need to be persisted. Luckily, in GORM, you can easily mark properties to not be persisted.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

168

In GORM and JPA, properties that you don’t want to persist are called transient properties. In JPA, you mark each
property with the @Transient annotation. In GORM, you create a transient mapping of all these properties.

For the example, use the User table. Inside User, you want to have a confirmPassword property, so you can make
sure the user typed in the correct password. Obviously, you don’t need the password persisted twice, so you mark it as
transient. In Listing 6-16, you can see that you add confirmPassword to the transients mapping.

Listing 6-16. User Object with the Transient confirmPassword

class User {
 static transients = ["confirmPassword"]

 String firstName
 String lastName
 String userName
 String password
 String email
 String confirmPassword
}

As you can see, you still add the confirmPassword to the normal domain, but you also add it to a list of strings
called transients, marking it as transient.

GORM Events

Often in normal domain and DAO architectures, you could have base save/update/delete methods. However, if you
ever want to add a universal concept for a particular domain, such as updating timestamps or writing to a log, you
could overwrite the method, add your own custom needs, and then call the parent method. However, GORM and
some of these other more modern frameworks eliminate the need for the DAO classes and allow you to access the
domain class directly. However, this can pose a problem, because now the individual developers are responsible for
updating fields (such as a last-modified date) that always need to be run when updating, and writing to the log file.
Yuck; this could lead to disaster.

Luckily, GORM has an answer to this problem. It gives you the ability to define these types of transitions at the
domain level. Todo has lastModifiedDate and createDate. In GORM, you can add two methods to the domain that
are automatically called before inserting and before updating the database. Obviously, the beforeInsert method is
called before insertion, and beforeUpdate is called before updating. Listing 6-17 shows the code you need to add to
Todo in order to have your dates modified at insertion and creation.

Listing 6-17. Code for Adding the Automatic Events for Todo

def beforeInsert = {
 createDate = new Date()
 lastModifiedDate = new Date()
}
def beforeUpdate = {
 lastModifiedDate = new Date()
}

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

169

Now whenever a save or update is called, these two methods are called regardless from where the save or update
is called from. In addition, a beforeDelete event is called before a deletion.

Do you detect a pattern here? Having create and modify dates is a fairly standard pattern. In order to have this
same functionality on more than one class, you would have to add those seven lines of code plus the two lines to
define the domains in each of your domain classes.

Luckily, as you may have guessed, GORM has a way around this. If you have lastUpdated and dateCreated
named properties, you can configure GORM to automatically update them by adding the following line in the
mapping:

static mapping = {
 ...
 autoTimestamp false
}

Note that the properties have to be named lastUpdated and dateCreated. In addition, lastUpdated only gets
updated when the domain is actually updated and not on a creation like before.

Finally, there is one other way to adjust items, and that is on the actual loading of the item, or rather after the item
has been loaded and all the properties have been set. Listing 6-18 contains a method that displays a message upon
loading the domain object.

Listing 6-18. Method Called upon Loading the Domain

def onLoad = {
 print 'We have loaded the item'
}

Database Model

Before moving onto validation, let’s see how all the updates to the domain model affect a MySQL database.
In Figure 6-3, you can see the output of the database structure after being created by GORM.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

170

Note ■ We kept the modifications to the generator, and we included the lack of versioning and the name change,

so Figure 6-3 includes some extra tables you might not have expected.

Validation
In the previous chapters, you saw that when you executed save() on the Todo instance, GORM would only persist
the data if the validations (set in the constraints) passed for the domain. The save() would return a true or false
depending on whether persisting was successful. Now the real question is, “How do you know what to validate?”

Constraints are somewhat of a dual-use item. Their main functionality is to validate items before they’re persisted
to the database, but they can also adjust some of the settings on the database itself for the column. For example, if you
mark a column in your constraints as nullable or set a maximum length, then these changes will be reflected at the
database level as well. Out of the box, GORM comes with quite a few validations, and it even provides the framework
for creating a few custom validations of your own.

PK, FK1, FK2

PK, FK1, FK2, FK3

PK, FK1, FK2

PK

category buddy_list_member

user

todo_tbl

todo_keyword todo_tbl_keyword

keyword

buddy_list

PK id

id

id

id

id

idPK

associated_file

category_id

complete_date

create_date

due_date

last_modified_date

name_str

note_str

owner_id

priority

start_date

status

version

description

name

user_id

version

description

name

owner_id

version

description

name

version

buddy_list_id

nick_name

user_id

todos_id

keywords_id

keywords_id

todos_id

version

active

address_address_line1

address_address_line2

address_city

address_country

address_state

address_zip_code

email

first_name

last_name

password

user_name

class

department

Figure 6-3. The database model after being created by GORM

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

171

For the purpose of the sample application, you only need a small subset of those validations, so while we will list
all of them here, you’ll only use a few. In addition, just like any application, it would be impossible for all the built-in
validations to cover every situation, so we’ll also introduce the idea of custom validations. We will then close with a
discussion about how to change the messages to something more meaningful.

Constraints
You’ve already seen constraints in Chapter 4. These were used to determine whether some properties had to be filled
in on the domain object, and also to set the order of display when scaffolding the domain. Let’s look at other features
for which you can use constraints.

You have seen the nullable constraint, which not only verifies that the object is not null, but also sets the
database property to “not null” (in Figure 6-2, you can see many properties are set to “not null”). Of course, this
assumes you’re using GORM to create or update your database.

Let’s start with the familiar Todo object, since this is the object to which you’ll apply the most validations. Start
with the basic skeleton shown in Listing 6-19.

Listing 6-19. The Todo Object with the Validation Constraints

1. class Todo {
2. ...
3. static constraints = {
4. owner(nullable:false)
5. name(blank:false)
6. }
7. }

In line 3, static constraints = { starts the constraint area. This line makes sense when you think about it.
Constraints are static because they span multiple instances. The next two lines define two of the constraints for you.
Line 4 tells you that the owner cannot be nullable; however, it could be a blank string. Line 5 not only doesn’t allow
for nulls, but it also doesn’t allow the name to be blank.

Using Built-In Constraints

You can add many different constraints to your domain object, including everything from null checking to credit-card
validation. In our application, we will use quite a few of these validations, although there’s no way for us to use them
all. Table 6-2, however, shows all the possible constraints provided by GORM.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

172

Of course, it is impossible for the Grails team to predict all the possible constraints needed by an application.
Using pre-created constraints is the easy part. In the next section, we’ll show you how to create your own customized
constraints using closures.

Creating Custom Constraints

Let’s take another look at that Todo object and what other constraints you need to define for it. Let’s examine the
startDate property and see what you need to constrain on it. For starters, you don’t want to allow users to use start
dates in the past. The purpose of this application is to create tasks that start now or in the future; in theory, this is
something that is probably created at the beginning and never changed. Nothing in the built-in constraints shown in
Table 6-2 does what you need, so you need to create your first custom constraint. You need to allow the constraint to
be null, and if the constraint is filled in, you need to make sure the date doesn’t occur in the past.

To define custom constraints in GORM, mark the custom constraint with a validator. Take a look at this in
action in Listing 6-20.

Listing 6-20. Applying a Simple Custom Validator to Todo

static constraints = {
 ...
 startDate(nullable:true,
 validator: {
 if (it?.compareTo(new Date()) < 0) {
 return false
 }

Table 6-2. Constraints Built into GORM

Name Description

blank Validates that the string either is or is not blank

creditCard Validates that the string either is or is not a valid credit card number

email Validates that the string either is or is not a valid e-mail address

inList Validates that the constraint is contained within the supplied list

matches Validates that the object matches the supplied regular expression

max Validates that the number is not larger than the supplied maximum value

min Validates that the number is not smaller than the supplied minimum value

minSize Validates that the object’s string’s length or collection’s size is larger than the supplied amount

maxSize Validates that the object’s string’s length or collection’s size is smaller than the supplied amount

notEqual Validates that the object is not equal to the supplied object

nullable Validates that the object is not null

range Validates that the object falls within the given range

scale Constrains the supplied number to a particular decimal place

size Validates that the object’s string’s length or collection’s size is equal to the supplied amount

url Validates that the supplied string is formatted as a valid URL

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

173

 return true
 })
}

As you can see, this starts off like normal validations with nullable:true, but then it adds custom validation.
All custom validators start with the word validator, followed by a closure. Inside the closure, you need to return true
if the validation passes, and false if the validation doesn’t pass. Of course, you cannot create a decent validation
with a random closure that has no information. However, that is why you have access to the property, demarked with
it, inside the validator closure. The it represents the item that is being validated. For our validation, we are going
to check that the start date doesn’t occur before the current date. As you can see, it’s pretty easy to create a custom
validation, but you can make it even more advanced.

For this next example of functionality, let’s take a look at the completeDate field. It makes sense that
completeDate has to occur after startDate. To create a custom validator to show this, you need to have access to the
startDate object. No problem. Check out its implementation in Listing 6-21.

Listing 6-21. Applying aMore Complex Validator to Todo

static constraints = {
 ...
COMPLETEDATE(NULLABLE:TRUE,
 validator: {
 val, obj ->
 if (val != null) {
 return val.after(obj.createDate)
 }
 return true
 })
}

As you can see, this looks similar to the validator you defined in Listing 6-20, with one small change: you also
pass in the variables val, obj ->. val is the variable that is passed in; the previous example, it represented the value
of startDate. In addition, you’re now also passing in obj, which is the domain object you’re using—in this case, the
Todo object. This allows you to compare completeDate directly with that domain’s createDate.

This gives you a fairly dynamic way of creating validations. In fact, you can even create queries inside the
validator, allowing for some slick validations. Let’s take a look at the Keyword domain, which is one of the constraints.
To reduce redundancy, you want to put a constraint on the name, because you don’t want to have any names that are
also used as names for the description. You can easily make the name a unique field, but you also want to make sure
that no description is the same as the name. If there is, you’re probably creating a name twice or not properly defining
the other one. Listing 6-22 shows how to find all the instances of description to make sure it doesn’t have the same
text as the name property.

Listing 6-22. A Custom Constraint That Performs aQuery

class Keyword {
 ...
 String name
 String description
 static constraints = {
 name(validator: {
 if (Keyword.findAllByDescription(it).size() > 0) {
 return false
 }

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

174

 return true
 })
 }
}

Calling the Validator
Validation is called behind the scenes when you do a save or when there is an update to the domain object. Of course,
this prevents you from persisting objects that don’t pass your own validations. However, there may be times when you
want to call the validator manually, so you can do some additional checking on it or test that specific messages get
returned. Listing 6-23 shows a simple check for a validation that is called twice. The first time, it fails; the second time,
it passes.

Listing 6-23. Example of aValidation Called Twice

void testValidationsOnTodo() {
 def todo = new Todo(
 owner: user1, name: "Validation Test", note:"Detailed web app description",
 createDate: new Date(), dueDate: new Date(), lastModifiedDate:
 new Date(), priority: '1', status: '1')
 assert true == todo.validate()

 // shouldn't validate
 todo.completeDate = new Date() - 1
 todo.name = null
 assert false == todo.validate()

 // readjust the date to be in the future
 todo.completeDate = new Date() + 3
 assert true == todo.validate()
}

In this example, you can see that you set completedDate to the past, which is not allowed with the constraints.
When the first validation fails, you update the completed date to the future; now, as you can see, the validation passes.
This example shows you how you can use validation in your test cases to make sure you have an item that works. This
isn’t as necessary for out-of-the-box validators, but for your custom validators, you’ll want to use this to make sure you
wrote the validation correctly.

Validation Messages
In Chapters 4 and 5, we showed the error messages that Grails provides when a validation fails on a page. In
Chapter 5, we went over more extensively how to write the error outputs to the page without using scaffolding.
However, we haven’t yet explained how those message names are derived. Now that we’ve gone over constraints,
we’ll explain the validation messages.

As you may have guessed from looking at the messages in messages.properties and looking at the constraints,
there is a roughly one-to-one ratio between constraints and messages, with an added error message for the custom
constraints.

Let’s take a look at the Todo example. We’ll be focusing on three constraints: name, priority, and completeDate.
Listing 6-24 shows what those three validations look like.

t

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

175

Listing 6-24. The name, priority, and completeDate Validations in Todo

name(blank:false)
priority(blank:false)
completeDate(nullable:true,
 validator: {
 val, obj ->
 if (val != null) {
 return val.after(obj.createDate)
 }
 return true
 }
)

Querying the Database
Starting in Chapter 4, we gave you a fully functioning web site with database persistence. In this chapter, we have
expanded that relatively crude database, and now you essentially have a fully functioning schema complete with
constraints and relations. Now that you have this wonderful database to use, it’s time to start using it. We’ll assume
that if you’re reading this book, you have at least cursory knowledge of creating SQL queries. However, if that’s not the
case, don’t worry. Grails has made creating SQL queries extremely easy—in fact, it’s almost too easy, if you ask us.

To begin, we’ll go over five different ways to query the database. This might seem like an excessive way of
querying the database, but in the end, you will find that you have the flexibility to create a query with as little or as
much information as you need to provide.

We’ll show you how to do simple CRUD operations. We demonstrated this in the previous two chapters, but we’ll
briefly rehash it so you can see how to build up your querying ability. We’ll then explain how GORM really shows off
its DSL capabilities by being able to create dynamic queries in the form of method names. You saw a bit of this in the
earlier chapters when we did findBy, but now we’ll show you all the options and parameters. We’ll cover this for both
straight single retrievals and for retrieving multiple objects.

Finally, we’ll show you how to use Hibernate Query Language (HQL) queries instead of the more dynamic DSL
queries. Sometimes using HQL is the only way to get the query you want.

GORM’s CRUD Support
When interacting with a database, you need to know how to do basic CRUD operations. Most Java developers reading
this are probably used to the standard DAO domain model, where after you create the domain, you create a DAO
with various operations. These DAO models usually have the standard void delete(Domain d) and get(String
primaryKey) methods. Before Hibernate, these methods would usually interact with the database directly with
straight SQL calls. This methodology made sense when you had to write the SQL code directly, but with today’s tools
and a dynamic language like Groovy, these constraints are no longer necessary.

Hibernate helped eliminate the problem of having to hard-code SQL by allowing you to use more abstract
terminology to persist to the database. But that solved only half the problem. Why do you even need DAO at that
point? It’s still a waste of programmers’ time to create these DAO objects, and time is money.

Because we’re using Groovy as the underlying language for Grails, we now have more options available to us.
We’ll start by looking at a test case that steps through the individual CRUD operations. Afterward, we’ll discuss the
ease of operations. Listing 6-25 shows a test case for updating the User object.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

176

Listing 6-25. Performing CRUD Operations on the User

void testCRUDOperations() {
 // Let's create the user
 def userTemp = new User(userName: 'testUser', firstName:'John',
 lastName:'Smith', password:'pass',
 email:"smith@gmail.com")

 // Create - let's save it
 userTemp.save()
 // grab the user id
 def userId = userTemp.id

 // Update - since we are still within the session we caught it
 // we shouldn't need to do anything explicit
 userTemp.password = 'A new password'
 // let's see if it got updated
 userTemp = User.get(userId)
 assert "A new password" == userTemp.password
 assert "John" == userTemp.firstName

 // let's show the delete
 userTemp.delete()
 // let's make sure it got deleted
 assert null == User.get(userId)
}

As you can see, creating, updating, and deleting are as easy as pie. None of the domain objects have a get,
delete, or save method, and there are no base classes. So how does this work? It’s a simple method interception, as
we discussed in Chapter 3. Grails has the ability to intercept methods and provide functionality for them. The same
functionality of retrieving, deleting, and saving could be done in straight Java with aspects or dynamic proxies, but
you wouldn’t be able to get that far, because the previous tests wouldn’t compile in straight Java. Using a dynamic
language like Groovy gives you the best of both worlds. It keeps the object a lightweight object for passing between
layers and storing into HttpSession, and it gives you the functionality of a bloated object with the get, save, and delete
methods on it.

CRUD operations don’t give you everything you’ll need to do in an application, so you still need to create some
dynamic queries. You need the options to select one or more than one record. You also may want to select records
based on parameters or by interacting with multiple tables. In the next section, we’ll go over creating these dynamic
queries.

Creating Queries
To create the code for the Collab-Todo project, you have to create many dynamic queries throughout the book. You’ll
use these queries later on for a variety of things, from creating user-registration pages to creating the fancier Ajax
items in Chapter 8. All of these actions require various types of dynamic support, and although the query portion is
not the focus of those chapters, you’ll need to understand how those queries are created and how to create some of
your own queries.

Queries in GORM are different than queries in ActiveRecord or in EJB3. Because we’re using Hibernate as the
back end, they’re obviously more like Hibernate queries. Actually, GORM has more options than Hibernate, because
it makes use of Groovy’s dynamic ability to make some DSL type queries. The number of options you have are the

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

177

same here. Each type serves its own purpose. If you want to become a Grails guru, it’s important to understand the
different types. GORM supports a number of powerful ways to query as described in the next few sections:

Dynamic queries•

HQL queries•

Criteria queries•

Detached criteria•

Where queries•

GORM’s Dynamic Queries

As you just saw, creating dynamic CRUD queries is fairly easy. However, you’re only able to do a simple retrieval based
on the primary key (the ID). While this is necessary to most applications, you obviously need to do more than that. In
the example application, you’ll need to retrieve not only lists, but also lists of people and ever more specific queries.

In the upcoming sections, we’ll go over multiple types of queries, ranging from fairly simple single finds to lists,
criteria queries, and HQL queries. The criteria queries will make use of Groovy the most by allowing you to create a
DSL of the query you want to create. This makes for some wonderfully easy queries to create. The downside is, unlike
with the HQL queries, the criteria queries are limited to querying off only one class.

We’ll start by showing you how to grow some single result-set queries, and then we’ll go over how they work. We’ll
list the options for creating the queries, and finally, we’ll show you how to create the query lists.

Counts

Probably the easiest query to create is to do a simple count. The code in Listing 6-26 counts the amount of Todos.

Listing 6-26. Counting the Amount of Todos

Todo.count()

Besides the standard count, you can also count the amount of Todos where the columns equal a particular value.
Listing 6-27 counts the amount of Todos that have a priority of "1".

Listing 6-27. Example of a countBy Query

Todo.countByPriority('1')

Single Result-Set Queries

Now we’ll take a look at queries that return a single result set. You use these when you want to find one item. We’ll go
over these two types in this section:

• findBy

• findWhere

Although there are two different ways of performing a query, the end result and the usefulness are mostly equal.
The main difference is how the query looks and how you pass the values into the query.

Let’s take a look first at the findBy example, as shown in Listing 6-28. In this query, you find that Todo has a
priority of 2 and a status of 3.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

178

Listing 6-28. Example of a findBy Query

Todo.findByPriorityAndStatus("2", "3")

As you can imagine, there is no method called findByPriorityAndStatus on Todo. This is one of our first
examples of a dynamic query. In Figure 6-4, we broke up this query into its individual parts.

Figure 6-4. The dynamic query broken up into its parts

As you can see, the DSL method starts with a static findBy call. It then has a property name separated with an And
and another property name. In fact, we could have added a few more Ands if we wanted to; you’re only limited by the
amount of properties on the domain object. Additionally, you can separate the properties with either an And or an Or.

This approach is useful, especially if you want to mix Ands and Ors. However, if you want to build something
simpler that contains only Ands, you can use the query shown in Listing 6-29.

Listing 6-29. Example of a findWhere Query

Todo.findWhere(["priority": "1", status: "2"])

Although a bit simpler than the previous example, this example passes the properties and values into the class as
a map. You pass the name of the domain’s property as the key, and you pass the item you want it to equal as the value.
This query is also more useful if you received a map of name values from another call.

Multiple Results Queries

The previous queries were only able to return single results; they would have thrown errors much like Hibernate
does if you returned multiple results. In this section, we’ll show you how to return multiple results. The way these are
written looks much like the previous examples, except they return much more. In this section, we’ll also add a few
more select types:

• findAllBy

• findAllWhere

• getAll

• listOrderBy

• list

findAllBy

The findAllBy call is similar in functionality and use to the findBy method we used earlier. Listing 6-30 shows an
example of two findAllBys.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

179

Listing 6-30. Two Examples of a findAllBy Query

Todo.findAllByName("Our First Web App")
Todo.findAllByPriorityOrStatus("2", "4")

In the first one, you’re finding all records where the name equals one item; in the second, you’re separating the
retrieval with an Or, to denote if a record has a priority of “2” or a status of “4”. As with findBy, this query is able to
use And or Or operations to separate the domain properties.

findAllWhere

Again, findAllWhere is similar to the previously defined findWhere. Listing 6-31 shows an example of using
findAllWhere to retrieve all Todos that have a priority of 1 and a status of 2.

Listing 6-31. Example of a findAllWhere Query

Todo.findAllWhere(["priority": "1", status: "2"])

getAll

getAll is much like the get method we covered in the “GORM’s CRUD Support” section. However, get retrieves one
item for an ID, while this method allows multiple items to be passed through. This is a basic convenience method
when you already have the IDs. Listing 6-32 shows an example of retrieving three Todos with the IDs of 1, 3, and 5.

Listing 6-32. Retrieving Three Todos

Todo.getAll(1,3,5)
Todo.getAll([1,3,5])

This code contains two examples, because you can pass in the objects either as a comma-separated list or
as a map.

List

The next method is probably the most basic type of retrieval: retrieving all records. This returns all the items of the
domain. Listing 6-33 retrieves all the items in Todo.

Listing 6-33. Example of a list Query

Todo.list()

listOrderBy

listOrderBy also retrieves the complete list of records from a domain, but it lets you arrange them by column. Listing
6-34 retrieves the entire list, ordering by the name column.

Listing 6-34. Example of a listOrderBy Query

Todo.listOrderByName()

Filtering Queries

We haven’t gone over all the options for queries, because there are some overlapping configurations. In this section,
we’ll look at those overlapping configurations, which provide the ability to set the maximum results, the fetch modes,

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

180

what to sort on, and the ordering. We’ll only show the code for one type, but you can use the query types equally with
any of these options:

• list

• listOrderBy

• findAllBy

findBy•

Some of this code is useful when you want to get a partial set of records back—for example, when doing
pagination. Listing 6-35 gets results that should be 20 through 30, sorting on priority and in descending order.

Listing 6-35. Example of Filtering the Results

Todo.list(max: 10, offset: 20, sort: "priority", order "desc")

HQL Queries

The previous methods for query creation allowed you to use powerful DSLs to create simple user queries. However,
using these queries is like eating sushi—an hour later, you’re hungry for more. These GORM dynamic queries could
not perform anything too complex, such as ranges, and more importantly, they can only query off themselves.

In many applications, you not only need to query other tables to get the data, but you often want bits and pieces
of the data back—for example, a few columns from table A mixed with a few columns from table B. With HQL queries,
you can perform this task easily.

Once again, if you’re familiar with Hibernate, this will be second nature to you. However, if you’re new to
Hibernate, understanding HQL is simply realizing that you’re creating a query based on what the domain says as
opposed to what is actually in the database (like in an SQL query).

In the “GORM’s Dynamic Queries” section, we went over two sets of queries: returning one result set and
returning multiple result sets. With HQL queries, you have the same scenario, plus a more general query mechanism
with executeQuery:

• find

• findAll

• executeQuery

find

The first query type we’ll look at is find. Listing 6-36 shows a few examples of setting up a find query.

Listing 6-36. An HQL Query with find

1. Todo.find("From Todo as t order by t.priority asc")
2. Todo.find("From Todo as t
 where t.name = ?
 and t.priority = ?
 order by t.priority asc", ["Test", "2"])
3. Todo.find("From Todo as t
 where t.name = :name
 and t.priority = :priority
 order by t.priority asc", [priority :"2", name : "Test"])

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

181

4. def todo = new Todo()
 todo.name = "Test"
 todo = Todo.find(todo)

As you can see, the one thing they all have in common is an HQL query. In the first example, the find retrieves
all the items in the database. However, being that this is only a find, you better hope you have only one item in the
database. The next three queries are much more specific. In the second and third ones, you’re searching for a query
with the name Test and the priority of 2. The difference between the two is how you label the variables. In second
one, you do it by the order of variables. This works well in the example, because we know the order. However, if you
had more of a dynamic query coming in from another source, the key/value map of the third one might be a better fit.
The fourth example is what is called a query by example. Basically, you pass in a partially completed Todo, and GORM
finds a match based off the items passed in.

findAll

findAll looks the same as the examples in Listing 6-36, except this time, you’re able to return multiple entries. As you
were able to filter your list and other queries previously, now you will be able to do the same here with max, offset,
and so on. For example, if you took the example in Listing 6-35 and converted it to a findAll HQL query, you would
get the following code:

Todo.findAll("From Todo t", max: 10, offset: 20, sort: "priority", order "desc")

If you’d like, you could even add a selection based on priority with this query:

Todo.findAll("From Todo t where t.priority = ?",

 ["1"], max: 10, offset: 20, sort: "priority", order "desc")

executeQuery

executeQuery is a bit different than the other queries, because you don’t necessarily need to retrieve an actual
domain object. You can simply return columns off the domain. For example, if you want to get the names of every
Todo with a priority of "1", you would use the query shown in Listing 6-37.

Listing 6-37. Query to Find the Names of All the Todos with a Priority of “1”

Todo.executeQuery("select t.name from Todo t where t.priority = ? ", "1")

In addition, all the normal rules of passing parameters work for executing the query.

Hibernate’s Criteria Queries

If you’ve ever worked with Hibernate, you’re probably familiar with Hibernate’s Criteria API. Perhaps you tried to do
some of the concepts of projections and so on, but got confused. Sometimes the simplest criteria query seems overly
complex. For those of you not familiar with the Criteria API, it’s a Hibernate API designed to provide elegance to
creating dynamic queries. You might be wondering why this is necessary. Well, let’s think back to the HQL queries we
previously created.

What if you want to create a dynamic query? Doing so would require multiple dynamic where clauses, which
would require you to do multiple string concatenations and a bunch of if-then-else statements. Yuck! That just gets
messy fast, and lends itself to easy runtime SQL errors—and that’s never a good thing. Using the Criteria object allows
you to abstract away creating the query and make it in a readable DSL way.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

182

As we said, creating the Criteria queries in pure Hibernate is a bit of a pain; however, with the Groovy language,
GORM has created some fairly smooth ways for creating these queries. In this section, we’ll go over how to create
advanced Criteria queries. First, we’ll show a small example that demonstrates the difference between creating a
query with Criteria and creating a query with HQL.

Our first example is a relatively simple problem that you could have with any web application—even ours. Take
Todo—what if you want to search based on the note, the description, or another field? This requires you to create a
dynamic query. You need to store the possible values in the map where the key is the name of the field and where the
value is the value.

We’ll build this in a few steps to make this as easy as possible. First, we’ll create the base test methods for
TodoTest. Next, we’ll show you the implementation of this logic in HQL. Finally, we’ll show you how to do this the
proper way in Criteria.

You’ll create a query that can take in this map and do multiple ands of it on the key/value pair. Listing 6-38 shows
the parameters to pass through to the query runners.

Listing 6-38. The Entry Test Case

void testFindingTodosWithHQL() {
 def params = [name: '%Second%', status: '4']
 def todos = executeHQLQuery(params)
 assert todos[0].name == "Our Second Web App"
}

void testFindingTodosWithCriteria() {
 def params = [name: '%Second%', status: '4']
 def todos = executeCriteriaQuery(params)
 assert todos[0].name == "Our Second Web App"
}

These tests are relatively simple; they look on the Todo list for a name with the word "Second" in it and a status
of 4. With our sample data, this should only return one record with the name "Our Second Web App". This is the easy
part. Now let’s take a look at how to implement this for an HQL query. Listing 6-39 defines executeHQLQuery.

Listing 6-39. The Dynamic HQL Query

List executeHQLQuery(def params) {

 def hqlQuery = "Select t From Todo t "

 if (params.size() > 0) {
 def first = true
 params.each { key, value ->
 if (first) {
 hqlQuery += ' where '
 } else {
 hqlQuery += ' and '
 }
 first = false
 hqlQuery += " t.${key} like :${key} "
 }
 }
 return Todo.executeQuery(hqlQuery, params)
 }

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

183

We won’t try to claim that this is the only way of creating the necessary query, but it is one of the ways.
The solution contains multiple steps:

1. Create the select—in this case, Select t From Todo t.

2. Check whether there are any parameters. This is necessary because you don’t want
a where clause if there are no parameters.

3. Add where or and depending on whether it’s the first or subsequent property you’re selecting.

4. Add the comparison. The key is the name of the property, and the value is the value to
compare against. You see the word key twice, because the second instance will be replaced
by a prepared statement when executeQuery is called.

5. Execute the query, pass in the supplied parameters, and voilà.

If you look at that code and explanation, you’ll see that it’s not a pretty way of performing that query. Luckily,
Hibernate has an easier solution: the Criteria query. With this, you can write dynamic queries without ever having
to write any SQL or HQL code. And with Groovy, this gets even easier, because you get to use builders to create your
Criteria query instead. Listing 6-40 defines the method you’ll use for creating the Criteria query.

Listing 6-40. The Criteria Query

List executeCriteriaQuery(def params) {
 def todos = Todo.createCriteria().list {
 and {
 params.each {key, value ->
 like(key, value)
 }
 }
 }
 }

Not only does this look better, but it’s much easier to read as well. Here’s the breakdown for this one:

1. Create a dynamic query on the Todo domain.

2. Use and to define a closure that then allows you to iterate through a list of expressions.

3. Set like with a name/value pair without any formatting.

As you can see, this is much easier than creating a dynamic HQL query. Once you’re familiar with creating
Criteria queries in your average Java code, you’ll see that the ability to use the Groovy builder with closures is cleaner
and more robust. This will become even more apparent when we increase the complexity of our Criteria examples
throughout the book.

Detached Criteria

Detached Criteria, commonly used to create common reusable criteria queries, are not associated with any given
database session/connection and are constructed using a grails.gorm.DetachedCriteria class that accepts a
domain class as the only argument to its constructor:

import grails.gorm.*
...
def criteria = new DetachedCriteria(User)

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

184

You can execute criteria queries or where queries (discussed in the next section)on a detached criteria instance
to build up the appropriate query. To build a normal criteria query, you can use the build method as illustrated in
Listing 6-41.

Listing 6-41. Building the Criteria

def criteria = new DetachedCriteria(User).build {
 eq 'lastName', ''Smith'
}

You can also execute dynamic finders on DetachedCriteria just like on domain classes, as illustrated in
Listing 6-42.

Listing 6-42. Executing Dynamic Finders on Detached Criteria

def criteria = new DetachedCriteria(User).build {
 eq 'lastName', 'Smith'
}
def bart = criteria.findByFirstName("John")

Where Queries

The where queries provide compile-time checked query DSL for common queries. The object returned by the where
query is a Detached criteria instance, which makes it possible to define common queries at the class level, or execute
batch operations such as batch updates and deletes.

The where method accepts a closure that defines the logical criteria, as illustrated in 6-43.

Listing 6-43. Using a where Query

def query = User.where {
 firstName == "John"
}
Person vishal = query.find()

Listing 6-44 illustrates using the where method to define queries at the class level.

Listing 6-44. Using the where Method to Define Queries at the Class Level

class User{
 static smiths = where {
 lastName == "Smith"
 }
 ...
}
...
User.smiths.each {
 println it.firstname
}

Listing 6-45 illustrates using the where method to execute batch operations.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

185

Listing 6-45. Using the where Method to Execute Batch Operations

def query = Person.where {
 lastName == 'Simpson'
}
int total = query.deleteAll()

Services
If you’re a Java developer who has spent the last few years doing “enterprise development” work, you’ll have to get
used to the idea of controllers. It might be hard to get used to putting so much business logic inside the controller. On
top of that, sometimes this is not even the correct answer. Many times, it is necessary to send the code off to a service
class where you can also control the transactioning of it, the scope, and so on.

Enter Grails services. These classes are stored in the grails-app/services directory. Like other Groovy objects
in Grails, these classes are simple POJOs.

Of course, the next logical question is, “If they’re Groovy POJO scripts, why use them instead of controllers? Is it
segregation for segregation’s sake?” As you can guess, the answer is no. Controllers differ by the fact that they are the
only items accessible directly via the GSP UI. As such, they’re where the bulk of your initial interactions should go.
However, imagine something like e-mail, which needs to be reused over and over again. Why would you want it in a
controller? The answer is, you wouldn’t. (By the way, we mention an e-mail service as an example here, because that’s
exactly what we’re going to build in Chapter 8.)

Besides the ability to segregate reusable data, services serve two other purposes as well: one is controlling
transactioning, and the other is controlling the context for the service.

Creating a Service
Creating a service is a relatively simple task, and like other Grails items, there is a command-line call. To make a todo
service, type the following command:

> grails create-service todo

This creates the service class, as illustrated in Listing 6-46.

Listing 6-46. The TodoService and TodoServiceTests Classes

class TodoService {

 def serviceMethod() {

 }
}

In the service, you can do whatever you’d want to do in a controller: you can call other classes, access the domain,
pass in parameters, and so on.

Calling the Service
As we said earlier, you still have to go through the controller first when calling from a web page. To access the service,
you use simple injection. In Listing 6-47, the controller accesses the service you just created.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

186

Listing 6-47. TodoController Accesses todoService

class TodoController {

 def todoService

 def process() = {
 todoService.serviceMethod()
 }
}

If you’ve used Spring, Seam, HiveMind, or any other injection framework, this concept should be familiar to you.

Injecting into the Service
In addition to being able to inject the service into the controller, you can inject other services into the service as well.
If want to use Spring, or if you have some legacy Spring code, you can also inject Spring beans into the service.

If you had the following bean defined in spring\resources.xml:

<bean id="customBean" class="com.CustomBeanImpl"/>

you could inject this bean into your bean using the ID as the name. Simply define it as def customBean inside
your service. This works by using Spring’s functionality to auto-wire by name.

Initializing the Service
If you recall, Spring and EJB don’t always rely on constructors for initialization. The main reason for this is because often
a constructor might rely on items that need to be injected (like Spring services), but these items may not be available
during instantiation. If you have any items that need to be looked up at creation, use Spring’s InitializingBean, which
calls the afterPropertiesSet() method. Listing 6-48 shows TodoService with a post initialization method.

Listing 6-48. TodoService with a Post Initialization Method

import org.springframework.beans.factory.InitializingBean

class TodoService implements InitializingBean
{
 boolean transactional = true
 void afterPropertiesSet()
 {
 println "Post Initialization"
 }

 def serviceMethod() {
 println "TodoService - serviceMethod"
 }
}

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

187

Table 6-3. Available Contexts for Services

Name Description

prototype Every time the service is injected in a new class, a new service is instantiated.

request Each time a request to the server is made, a service is instantiated.

flash The service is instantiated for the current and next requests only.

flow The service lives for the lifetime of a controller’s web flow.

conversation The service lives for the lifetime of a controller’s web flow and subflows.

session The service is instantiated and kept for the life of the user’s HttpSession.

singleton This default service is treated like a singleton and shared across the application scope.

The bold areas are the new sections. As you can see, calling an initialize method is simple to do, and you have
access to any other services that have been injected into that service.

Setting a Bean to Be Transactional
As you might have noticed, transactional = true exists everywhere. You can control the transaction boundaries of
items inside the services. When set to true, Grails defaults the service to PROPAGATION_REQUIRED. Within the services,
you can even inject the data sources and get even finer-grain control.

Service Context Available in the Service
The last subject we’ll cover is service contexts. Contexts have been around for a while; for a long time, we’ve had
application, request, session, and page contexts. However, in recent years with frameworks such as Seam and, more
recently, Spring, contexts have expanded to include the conversation context and others.

You can think of the conversation context as more than a request and less than a session. The data has a start,
a middle, and an end. For example, take a credit card application, which can take multiple pages to complete. It
contains data that you’ll want to have until the end.

We won’t cover conversation contexts (also known as flows) in this book. However, here we’ll show you how you
can set the service for these contexts. By default, every context is a singleton, meaning that the whole application
shares this one instance. This means that you don’t want to have any data as a global property with its state specific to
the user. To adjust the context of a service, add the following line to your service:

static scope = "singleton"

The singleton is the default, and if you don’t define the scope, the service is automatically assumed to be a
singleton. Table 6-3 provides a list of the available contexts.

CHAPTER 6 ■ BUILDING DOMAINS AND SERVICES

188

Summary
In this chapter, we covered quite a bit of ground in a relative short amount of space. Database interaction is an
important piece of the framework puzzle, and many books and sites are devoted to it alone.

We showed you how to create domain objects, and we explained the options used to create them. This is important
to understand, so you know how our domains operate. Hopefully, you’ll be able to create some of your own.

From there, we showed you how to query the domains; as you saw, there are quite a few options. Throughout the
rest of this book, we will use bits and pieces of each, picking the best one that suits our needs at the time. Hopefully,
you’ve gotten an idea of when to use each, but be forewarned that for many, there is no one right answer.

Lastly, we dove into services. We will use them in various forms as the book progresses. In future chapters, you’ll
see how services can be useful and how the different scopes can boost your application’s performance, especially
when coupled with web flows.

Now that the domain is all ready to go, we’ll dive into more interesting code in the next few chapters. First,
though, you need to secure the application so you don’t have other people changing your Todos. That’s what we’ll
tackle next in Chapter 7.

189

Chapter 7

Security in Grails

Now that you have a good foundation in Grails, it’s time to move on in our programming adventure. After creating a
basic application and completing the domain model, what’s next? The answer: addressing security.

Security concerns can range from actually securing a server to securing the application itself. Since this is a
book about the Grails application framework, we will discuss only the latter. So when you read about “securing the
application” or “security,” we are referring to application-level security.

So far, we have not addressed security at all. In Chapter 5, we used an extremely unsafe generic login, which
allowed you to choose which user to log in as. This was certainly easy to implement, but now we can move to a more
mature approach to web security.

So, what are the goals of security? One goal is to allow the ability to sign on as a specific user. We will want to
know how to secure certain pages for those who have logged in. In addition, many web sites require different levels of
access for different users. Designing your security model can get fairly convoluted, depending on your application’s
needs, and it can reach the point where the application’s design is wrapped around the security. The security needs
of this book’s sample application, Collab-Todo, are middle ground—requiring access control but nothing so complex
that we need to build an entire system from scratch.

The security apparatus we will use is not just to meet the needs of the application we have created so far, but also
the needs of the application going forward. Let’s quickly examine what those needs are:

• Domain/model-level security for a user: We need to make sure that when users retrieve their
todos, they are retrieving theirs and no one else’s. If users could view others’ todos, our
application would be very unpopular.

• Administrator vs. regular user access: In Chapter 10, we will create a few reports that are
only for administrators. This means we need to be able to secure certain pages of the site for
administrators.

• Basic access authentication: For the web services we’ll add in Chapter 9, we need to secure the
site so it can be accessed through basic URL authentication.

If we dove straight into a solution for just our sample application’s security needs, not only would that be a bit
dull, but it also wouldn’t help if your application happens to have different requirements.

In some Java frameworks, like JBoss Seam, there is a built-in security framework. That is not the case for Grails.
However, quite a few security plugins are available for Grails. In this chapter, we will go over three of the plugins, along
with our very own custom security implementation for the application. But before we start looking at the different
security solutions, let’s take a step back and review what we actually mean by security.

What Is Security?
Before we dive into our security examples with Grails, we should reach a common understanding of what security
means for a web application and the issues involved with adding security to a web application. Depending on your
experience in web development, this may or may not be familiar.

CHAPTER 7 ■ SECURITY IN GRAILS

190

Although there are many aspects to security, two techniques are very common: authentication and access
control. These two basic areas will serve as the core aspects for each of the security plugins and the custom solution
covered in this chapter.

Authentication
Even part time web surfers are familiar with authentication, which is the process of logging into and out of a site.
A client (typically the user on a web browser) sends over a username and a password. The client is then either
authenticated and forwarded to a welcome screen or rejected and kept on the login page. Figure 7-1 illustrates
basic authentication.

Figure 7-1. Basic authentication

The login username and password sent to the server typically correspond with entries in a database. Since this
information is in a database, it is not that secure, so most web sites will not store the password in clear text. Generally,
the password is hashed, and the hash of it is saved. The value of using a hash is that it is only a one way manipulation
of the data, as opposed to encryption, where data can be scrambled and then unscrambled given the right key.
When a password is hashed, if someone gains access to the database and retrieves the password in an illegal way
(like hacking the box), he will need to spend some trying to determine what the original string was.

CHAPTER 7 ■ SECURITY IN GRAILS

191

When creating authentication for a corporate web site, you don’t want to overburden the user with the need to
remember a lot of login credentials, nor do you want to overburden yourself with the task of managing them. If you
are creating an internal site for a big business, or even an external site where multiple business entities can interact,
you probably do not want a person to need to create a new username and password for each site. For one thing, it’s
annoying. For another, if you need to remove someone’s login credentials (for example, because she left her job and
should no longer be able to log in to an internal site), it would be difficult to contact every single business unit with
which she has an account and get them to delete her. That is why many companies use a centralized authentication
server, something like a Lightweight Directory Access Protocol (LDAP) server.

As we go through each of the solutions in this chapter, you will notice that there are slightly different ways to
authenticate a user.

Access Control
So now that we have discussed the ability to log in, what’s next? We also need some sort of permissions mechanism.
The following are common forms of access control:

Session validation: This is probably the simplest form of authentication. It just involves
checking if there is a valid session. Generally, this is used in conjunction with user
authentication. For the Collab-Todo site, we will take this approach to make sure that users
have been authenticated and their session is active.

haShING teChNIQUeS

Throughout this chapter, we will be hashing passwords prior to storing them in the database. Hashing is a

cryptographic technique to take a string and output a fixed-length string that is unintelligible. Here are two

examples of hashing a word with Message Digest algorithm 5 (MD5), a commonly used hash function:

password - 5f4dcc3b5aa765d61d8327deb882cf99
josephsPassword - 32c6f5140cbd510d57e87bc5aeea1f60

As you can see, although the lengths of the strings to be hashed differ, the hash length is the same—a

32-character hex string.

A variety of techniques to produce hashes are available. The more secure the hash, the longer it will take to

create and the more space it will consume in the database.

For hashing in Java, and specifically Grails, a common technique is to use DigestUtils in the package

org.apache.commons.codec.digest.DigestUtils. This class contains a variety of methods to produce

different types of hashes. Let’s take a quick look at the three methods we will be using in this chapter:

• DigestUtils.md5(java.lang.String data): This method produces a 16-element byte[]
using MD5 as its digest mechanism.

• DigestUtils..md5Hex(java.lang.String data): This method also uses MD5, but creates a
32-character hex string.

• DigestUtils.shaHex(java.lang.String data): This method creates a 32-character hex string
as well, but uses SHA-1 as the digest mechanism.

See the DigestUtils API for other hashing options.1

1http://commons.apache.org/codec/apidocs/org/apache/commons/codec/digest/DigestUtils.html.

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/digest/DigestUtils.html

CHAPTER 7 ■ SECURITY IN GRAILS

192

User: One way to secure pages and data is on the user level itself. Many web sites that
require authentication use data at the user level to retrieve items that are specific to a
particular user. With this level, you store user data to the session, and then whenever you
need to do a query against a back-end system, you retrieve only the data for that user. This
is how our application will work.

Roles: You can assign users to roles to provide coarse grained permissions to pages or even
just areas of a page. An internal site may have roles like manager, developer, trainee, and so
on. For example, a site that handles work orders could allow a worker to work on a variety
of tickets, but the page that assigns or approves the tickets is accessible only to the manager.
In addition, the ticket itself may have a Delete button available only to the manager. A more
common approach, and the one we will take for our application, is to have two roles: an
admin and a regular user. The admin role can access more functionality than is available to
the regular user role. The nice thing about roles is that you can assign multiple people to a
single role, and even provide multiple roles to a single user. Unfortunately, roles do not, in
general, provide for fine-grained control.

Permissions: For fine grained control, we turn to permissions. With permissions, you can
give only certain users access to certain portions of a site. Returning to the example of work
order tickets, what if you wanted to allow some users to create and delete tickets; others to
just view them; and others to create, edit, and delete them? This could be accomplished
with roles, but you would need a lot of them, so it would get messy fast. Both assigning and
managing all those roles would be a burden. Using permissions is easier.

Rules: Some sites use a rule-based access control. Systems like JBoss Seam use a rules
engine (like JBoss Drools) to determine authentication privileges while also using
permissions and roles. This provides for an extremely flexible authentication mechanism.
However, it also requires more configuration and general knowledge of how to use the
rules engine.

These are basic security concepts. As you may have noticed, each successive one provides more flexibility, but
with the added flexibility comes more overhead. So the trick for you as the developer is to pick the items you need
that give you a balance between flexibility and ease of implementation. Keep this in mind as we discuss each security
solution in this chapter.

BOOtStrappING

One of the directories that Grails creates for you when you create a Grails application is grails-app/ conf. This

directory contains configuration files, including a bootstrap file, Bootstrap.groovy. We have not made use of

this file yet; however, that will change in this chapter. If you are familiar with the Java Persistence API (JPA), the

Bootstrap.groovy is much like the import.sql file, only smarter and more powerful.

The traditional Java EE bootstrapping mechanism is to preload the database. This could be to populate a

preferences type table or to load some sample data. However, Grails not only allows for the population of the

database, but also to the servlet context if desired. You can use actual Groovy code for the bootstrap file, as

opposed to just SQL code, as in JPA.

When we add security in this chapter, we will want to do some prepopulation of the database. One reason is that

we are going to store permissions in the database. Additionally, we want to have a few users prepopulated for

the examples.

CHAPTER 7 ■ SECURITY IN GRAILS

193

Bootstrapping itself is relatively easy. Here is an example of the bare minimum code in the Bootstrap.groovy

file:

 class BootStrap {
 def init = { servletContext ->
 }
 }

The init method is the method the application will call, passing in the servletContext. This will allow us

to have access to the servlet context in case we need to add data to it. Within this context, we can do normal

database insertions to add sample data. For example, to insert a user, you would add the following line:

new User(userName: 'joseph', firstName: 'Joseph', lastName: 'Nusairat',
 email: 'jnusairat@integrallis.com', password: pass).save()

You just instantiate a new User and then save it. This method of adding data will be the same throughout this

chapter and the rest of the book.

While using the bootstrap file can be a useful tool to warm the database, if you are using this in a full

development, test, or production environment, you should consider one additional item. If you are using it to

prepare static tables like roles or permission names, these are, across the board, global constraints. However,

if you are going to prepare sample data, like users and todos, you do not want this data in your production

database. Luckily, within Grails, there is an easy way to configure your bootstrap file to only write to different

environments. You can detect the environment for which you packaged the application and specify that variable in

the bootstrap file. For example, using the following code, you can create common methods or custom methods for

the development and production environments:

import grails.util.GrailsUtil
. . .

switch(GrailsUtil.environment) {
 case "development":
 configureForDevelopment()
 break
 case "production":
 configureForProduction()
 break
}

In this chapter, we will not present all of the Bootstrap.groovy file, but will show bits and pieces of what we are

adding to it.

An Overview of Grails Security Solutions
Two popular shows on TV right now are Project Runway and Hell’s Kitchen. These shows have experts in their fields
(either designers or chefs) who are given the task of creating something unique and awesome, and then their efforts
are judged. It’s decided which is best, or at least, which one each judge likes the best. Security, and especially security
in Grails, is something like that. You have many experts in the field creating different security frameworks, each with
pluses and minuses, and you must judge which one is better.

CHAPTER 7 ■ SECURITY IN GRAILS

194

Grails is truly a unique Java framework. While some frameworks suffer from the underlying code being unstable,
Grails does not have this problem since it uses two well-established frameworks at its core (JBoss Hibernate and Spring).
However, it suffers from being new, which brings about a lack of 100% mature plugins for it. Although the developers of
these plugins are working hard to keep up with changes in Grails, all of the plugins are relatively new, as indicated by
their .1 or .2 statuses. Therefore, when you deal with these plugins, you may encounter some not-so-polished features.

Much like our favorite TV shows, when it comes to security plugins, there is rarely a clear winner, and odds are, there
never will be. Each plug in serves a particular niche market. Which one you choose depends on your specific requirements.

The Grails security plugins we will examine in this chapter are CAS and Spring Security. Additionally, we will
demonstrate how to implement your own custom security, which can work well for either simple sites or very complex
sites where control is strict.

We will start with the custom security implementation, and then move on to the different plugins (note that the
order in which we discuss the solutions is purely arbitrary and does not infer that any is superior). In the end, we will
use the Spring Security plugin as our solution, because it meets the needs outlined at the beginning of this chapter.

Because our approach in this chapter is to show you multiple paths but only go with one, we decided to do something
a bit different with the code examples in this chapter. In the previous chapter, we added quite a bit to our domain model.
Most of this is unnecessary from a pure security point of view. We feel it’s not necessary to add that complexity here.

One of the first items you will notice when we talk about the plugins is that many have their own User classes.
This can pose a problem, because you will want to tie your User object on your domain to the plugin’s user class. You
will want to tackle this problem during authentication, and there are essentially two ways to solve this problem:

If the domain model is created after plugin creation, the set of user domain objects the plugin •
creates can either be moved into the grails-app/domain directory or referenced directly in
your application. The only reason to move them is if you want to make changes to the domain.

You can have the plugin’s domain object and your domain object linked by username after •
authentication. Since this is a unique field, after authentication is verified, you can look up
your user in the database and save your user to the session. This provides a nice balance of
keeping your application uncoupled while at the same time totally relying on the plugin for
security. This is the approach we’ll take in this chapter.

Custom Security Implementation
We start with the most basic approach to securing a web site, which is our custom security implementation. But using
a simple security apparatus does not means your web site is simple. The two are not really related. It is just about
picking the right security for your application.

Note ■ The term custom implementation may be a bit confusing. This approach is not truly “custom.” Many

applications use this same approach. In fact, it’s a very common implementation. We call it custom because it doesn’t

use a security plugin (other than the CAPTCHA one).

One of the main needs of any user-based application is to authenticate the users. With our application, the
majority of the pages are driven by which user is accessing the page. The todos that appear are only for the logged-
in user, users add buddy lists for themselves, and so on. We also need to make sure the user is authenticated before
accessing any page except the login page. This is a fairly simple authentication pattern, and we will be using a User
object in the session to check the access to the pages. (We will use the User object in the session in the other plugins,
but the difference is we are not using it for page-level authentication purposes.)

In this section, we will adjust the user-creation procedure. Note that for our custom security implementation, we
do not need any new domain classes. We will use the domain classes we created in Chapter 5. Our main focus is on
manipulating the User class. Now we will add a password confirmation and a CAPTCHA challenge.

CHAPTER 7 ■ SECURITY IN GRAILS

195

CaptCha

While you may not be familiar with the term CAPTCHA, you probably have encountered such a challenge. For

example, you may have gone to a web site and seen an image like this:

This image is part of a CAPTCHA (for Completely Automated Public Turing Test to Tell Computers and Humans

Apart). You’re asked to type in the text you see in the image. The purpose is to help prevent automated computer

programs from gaining access to your site, and for the most part, CAPTCHAs work. They are not unbreakable,

but depending on the complexity of the CAPTCHA, decoding the image requires a fairly complex neural network.

CAPTCHAs are used on a variety of sites. For example, ticketmaster.com has a fairly complex set (and we admit

to missing a few on that site).

Even simple sites are subject to spammers. When we launched our company’s web site at http://www.

integrallis.com, within a few days, we were getting hit by spam via our Contact Us link. Now that we have

added the CAPTCHA, the only e-mail we get is from real people.

In order to create the custom security solution, we will cover three aspects of its design and implementation:

Registering a user•

Logging users in and out•

Securing the controllers•

Registering a User
In order to register a user, we need to add two items: a registration page (register.gsp) and an action to register
the user in the UserController. As noted, we will use a CAPTCHA challenge on the registration page, so we need to
install the plugin for that.

Installing the Captcha Plugin

The CAPTCHA is added only to the registration page because it is the only page on the site that could be easily
affected by spammers. The other parts of the application require authentication before users even get to the page.

For the registration page with the CAPTCHA, we will use the Simple Captcha plugin2 for the creation of the
CAPTCHA. To install the plugin from command-line or GGTS’ command line, use the following command:

> grails install-plugin simple-captcha

Or you can use Grails Plugin Manager instead, as shown in Figure 7-2.

2http://grails.org/Simple+Captcha+Plugin.

http://www.integrallis.com
http://www.integrallis.com
http://grails.org/Simple+Captcha+Plugin

CHAPTER 7 ■ SECURITY IN GRAILS

196

JCaptCha

Figure 7-2. Installing thesimple-captchaplugin using Grails Plugin Manager

There actually is another, more advanced CAPTCHA plug in out there called JCaptcha.3 It allows for more

customization on the output of the look of the CAPTCHA. It also lets you use a .wav file CAPTCHA (for web users

with vision difficulties).

JCaptcha does require a bit more configuration, and we did not include it here for that reason. But we highly

recommend it for a production site, as there have been lawsuits against sites that are not usable by the blind.

Now that the Grails Captcha plugin and the domain objects from the previous chapter are installed, it’s time to get

this working. Let’s start with the registration page section.

Implementing the Registration Page

Our registration page will look like the page where you add a user, except it will have a field to confirm the password
and the CAPTCHA image. So, we start by copying the file views/user/add.gsp to register.gsp. This allows us to
preserve the add.gsp page.

Listing 7-1 shows the code for register.gsp, with the new sections for the password confirmation and the
CAPTCHA link in bold.

Listing 7-1. The Form Section of register.gsp

<g:form action="handleRegistration" method="post">
<div class="dialog">
<table>
<tbody>
<tr class='prop'>
<td valign='top'class='nameClear'>
<label for="login">Login:</label>
</td>

3http://grails.org/JCaptcha+Plugin.

http://grails.org/JCaptcha+Plugin

CHAPTER 7 ■ SECURITY IN GRAILS

197

<td valign='top'
 class='valueClear ${hasErrors(bean:user,field:'userName','errors')}'>
<input type="text" name="userName" />
</td>
</tr>
<tr class='prop'>
<td valign='top' class='nameClear'>
<label for="password">Password:</label>
</td>
<td valign='top'
 class='valueClear ${hasErrors(bean:user,field:'password','errors')}'>
<input type="password" name="password" />
</td>
</tr>
<tr class='prop'>
<td valign='top' class='nameClear'>
<label for="confirm">Confirm Password:</label>
</td>
<td valign='top'
 class='valueClear
 ${hasErrors(bean:user,field:'password','errors')}'>
<input type="password" name="confirm" />
</td>
</tr>
<tr class='prop'>
<td valign='top' class='nameClear'>
<label for="firstName">First Name:</label>
</td>
<td valign='top'
 class='valueClear
 ${hasErrors(bean:user,field:'firstName','errors')}'>
<input type="text" name="firstName" />
</td>
</tr>
<tr class='prop'>
<td valign='top' class='nameClear'>
<label for="lastName">Last Name:</label>
</td>
<td valign='top'
 class='valueClear ${hasErrors(bean:user,field:'lastName','errors')}'>
<input type="text" name="lastName" />
</td>
</tr>
<tr class='prop'>
<td valign='top' class='nameClear'>
<label for="email">Email:</label>
</td>
<td valign='top'
 class='valueClear ${hasErrors(bean:user,field:'email','errors')}'>
<input type="text" name="email" />
</td>
</tr>

CHAPTER 7 ■ SECURITY IN GRAILS

198

<tr class='prop'>
<td valign='top' class='nameClear'>
<label for="code">Enter Code:</label>
</td>
<td valign='top' class='valueClear'>
<input type="text" name="captcha">

</td>
</tr>
</tbody>
</table>
</div>

<div class="buttons">

<input class="save" type="submit" value="Register"></input>

</div>
</g:form>

The line with the CAPTCHA reference is the plugin’s CAPTCHA controller. The controller will create a word, save
the word in clear text to a session variable, and then output the image in a distorted manner. Figure 7-3 shows the
registration page.

Figure 7-3. The register.gsp page with the password confirmation and CAPTCHA image

CHAPTER 7 ■ SECURITY IN GRAILS

199

Adding the Registration Action to the Controller

Putting the CAPTCHA on the GSP is only half the battle in creating our CAPTCHA challenge. The other half is
handling it on the server side. Unfortunately, there is nothing that automatically intercepts the CAPTCHA when used
to verify the image. We need to code this by hand.

In our UserController registration action, we will add a check to make sure the CAPTCHA the user entered
matches the CAPTCHA given. You can see our registration action in Listing 7-2. This checks that the CAPTCHA
matches, and then if it passes validation, allows the user to register.

Listing 7-2. The Action to Register a User in the UserController

def handleRegistration(){
 def user = new User()
 log.info("HANDLE REGISTRATION")
 // using the log.info here will only print out the object, not a listing of it
 println params
 // create the property object
 user.properties = params
 // Process the captcha request
 boolean captchaValid = simpleCaptchaService.validateCaptcha(params.captcha)
 if (captchaValid) {
 if(params.password != params.confirm) {
 flash.message = "The two passwords you entered dont match!"
 render(view:'register', model:[user:user])
 }
 else if (user.password?.length() <= 3) {
 flash.message = "The password length is under 3 characters."
 render(view:'register', model:[user:user])
 } else {
 log.info "before save"
 // lets hash the password
 user.password = DU.md5Hex(user.password)

 if(user.save()) {
 // also add this user to the authority system
 //def userAuth = Authority.findByAuthority("ROLE_USER")
 //userAuth.addToPeople(user)
 // not sure if the save is necessary.
 //userAuth.save()

 // send a confirmation email
 //sendAcknowledgment (user)
 log.info "saved redirecting to user controller"

 // they will be prompted to login when they
 // go to an internal place anyway.
 redirect(controller:'todo')
 }

CHAPTER 7 ■ SECURITY IN GRAILS

200

 else {
 log.info "didn't save"
 println "didn't save"
 flash.user = user
 render(view:'register', model:[user:user])
 }
 }
 }
 else {
 log.info "Captcha Not Filled In"
 flash.message = "Access code did not match."
 render(view: 'register', model:[user:user])
 }
 }

You may notice that the CAPTCHA created is in the session scope. Unfortunately, at the time of this writing, this
was necessary to allow the image to spawn multiple requests (with some of the new service-level scopes written after
the plugin’s creation, this requirement may change in the future). We have overcome this issue slightly by saving the
data from the session to a local variable, and then removing the CAPTCHA information from that session.

In addition, you will notice that, as a convenience factor, we set the session.user to the user that was just
created. We did this because once users are logged in, we want other pages to know that. This information can be used
to display the username or simply to get the ID for querying.

Also notice that we’ve hashed the password. As mentioned earlier in the chapter, hashing is a critical step,
because we do not want to keep a password in the database in clear text form.

Note ■ Remember that many people use the same password for multiple sites. If you stored a clear text password and

your site was compromised, you could potentially expose users’ passwords to all sorts of sites and therefore valuable

data. The one downside (and it’s arguable if it’s a downside) is that if you have a password-reminder routine, it cannot

remind people of their password; instead, it will simply need to reset the password to a random string.

Logging In and Out
Now that the user is registered, the next step is to log the user in and out. This could be difficult depending on
your back-end system. Logging in could involve going through an LDAP server or whatever other systems you use.
However, for our example, logging in is relatively simple, as we are just authenticating against a local database.

We will preserve the general feel of the login page we had before, except now instead of choosing from a
drop-down list, the user must actually enter a proper username and password. The modified login page is shown
in Figure 7-4.

CHAPTER 7 ■ SECURITY IN GRAILS

201

As you see in Listing 7-3, we check the user and the password in the database for a match, hashing the password
passed in by the front end with an MD5 hash. If a user is not found, we send a message to the page and redirect back
to the login page. If a match is found, we set the user in the session and redirect to the todo page.

Listing 7-3. The handleLogin Action of the LoginController

def handleLogin(){
println "Handle Login"
 def hashPassd = DU.md5Hex(params.password)
println params.userName
println params.password

 // find the user name
 def user = User.findByUserNameAndPassword(params.userName, hashPassd)

 if (!user) {
 flash.message = "User not found for userName: ${params.userName}"
 redirect(action:'index')
 return
 } else {
 session.user = user
 redirect(controller:'todo')
 }
 }

Note ■ You will notice that we send one generic message back. Some sites will search for the user first, and then

do a check against the password. This is done so that a more specific message is sent back to the user. While this

can be helpful for the user, it is also another point of exposure—it can tell a would-be hacker which part of his attempt

was successful.

Figure 7-4. The login page with username and password validation

CHAPTER 7 ■ SECURITY IN GRAILS

202

Logging out is a fairly universal process in web design, and the way we do it here will more than likely look the
same as you’ve seen in other web applications. The only differences can lie in preprocessing before logging out, such
as sending notifications, writing to an events table, and so on. However, we do not need any of that for our system. We
will just invalidate the session and redirect to the index page. The code for the logout action is shown in Listing 7-4.

Listing 7-4. The Logout Action of the LogoutController

def logout() {
log.info 'logout'
 if(session.user) {
 session.user = null
 session.invalidate()
 redirect(controller:'login')
 }
 }

Securing the Controllers
So far, we have covered the ability to log in and out of the site and to register a user. These are the first two steps in
securing the site. Now what’s left? We need to secure the actual controller pages so that a nonauthenticated user
cannot access the TodoController and other controllers. The registration and logging in and out were relatively
simple to code. Controller security is a slightly more difficult piece of our authentication model.

We will control access to the pages using tried-and-true servlet technology: filters. Filters are great for simple,
all-encompassing procedural captures. And since all but three pages (the index, login, and registration pages are the
exceptions) require a session, filters are the cheapest and most effective way to implement access control.

Filters are relatively easy to create in Grails. Unlike servlet filters, they do not require any web.xml configuration.
Here, we will walk through the steps to create the filter.

Note ■ We will use filters in the other security solutions covered in this chapter. The configuration here applies to those

other solutions as well.

Let’s start with the filter’s name and location. Filters must be placed in the grails-app/conf directory, and the
name of the Groovy class must end with the word Filters. Since our filters are for security, we will name the file
SecurityFilters:

class SecurityFilters {
}

The next part is defining the filters. We will be defining an action called filters. This is the method that the
Grails framework will use to look for any and all filters we have created:

class SecurityFilters {
 def filters = {
 }
}

With the framework set up for the filters, now we define the filters. We can have one or more filters defined inside
the same class. If you have programmed regular servlet filters before, you will realize that this is a huge advantage;

CHAPTER 7 ■ SECURITY IN GRAILS

203

with regular servlet filters, you must define a different class for each filter. You can create a new set of filters in a class
called grails-app/conf/SecurityFilters.groovy by running:

> grails create-filters security

As a result of running this command, the SecurityFilters class shown in Listing 7-5 is generated.

Listing 7-5. Creating the Security Filter

class SecurityFilters {

 def filters = {
 all(controller:'*', action:'*') {
 before = {

 }
 after = { Map model ->

 }
 afterView = { Exception e ->

 }
 }
 }
}

You can create two types of filters:

The more traditional type, where you define the URI to be intercepted, like this: •
uriCheck(uri: /user/*). The method defining this check is intercepted anytime anyone
calls anything with the /user URI.

Capture based on the controller and action. This way, you can capture all controllers and •
actions or just selective ones. This is the approach we will take here.

For our application, we can either capture all controllers or be selective and individually capture certain
controllers. We opted for the capture-all approach and will ignore the login and registration page in the code.
Otherwise, if we added more controllers later, we would need to keep adding the login check code to each filter, which
could get messy fast, depending on how much functionality we add to the site. Listing 7-6 shows the final definition of
the filter.

Listing 7-6. The Filter for Securing the Application

 def filters = {
 collabTodoFilter(controller:'*', action:'*') {
 before = {
 if(!session.user
 && !controllerName.equals('login')
 && !controllerName.equals('captcha')
 && (!controllerName.equals('user')
 && !actionName.equals("register"))
) {

CHAPTER 7 ■ SECURITY IN GRAILS

204

 // There is no log access in the filter
 //log.info('Redirect to login page')
 redirect(controller:'login')
 return false
 }
 }
 }
 }

Here, we are checking the session as well as the controller and action names. The controllerName tells us which
controller was just accessed. The actionName tells us the action that was accessed. Grails injects several properties
and makes them accessible in the filters, including the following:

• request

• response

• session

• servletContext

• applicationContext

• params

Our custom security solution is a fairly lightweight security wrapper. For many applications, all you need to worry
about is whether users are logged in, and this solution handles that.

However, some applications have more complex requirements. For example, a banking application might have
an administration portion of the site. The admin could log in to the same application as the regular user, so that he
could mimic being a particular user if necessary (such as to assist a customer if she were having a problem with the
online application). At the same time, you wouldn’t want the admin to be able to do some things, such as actually
submitting a payment. Creating such a solution requires more than just a simple authenticated validation. It requires
assigning roles and permissions, and then giving each task access based on the roles and permissions. The plugins
covered in the remainder of this chapter provide mechanisms for this type of security.

CAS
Our third option is unique from our other choices in that it is the only one that cannot work as a stand-alone solution.
The CAS Grails plugin is a fairly simple wrapper for the Java CAS client4 for use with a CAS server.

CAS is the Central Authentication Server developed at Yale. It is designed to allow for a single authentication
system. This is useful when you have numerous organizations or systems that want to authenticate against the same
system. For example, an insurance company could be selling home insurance, auto insurance, investment accounts,
and term life insurance. Each of these items could be run from different business units. Each of these business
units will be developing its own web site, so their users have access to their individual accounts. One of the biggest
challenges of companies that have this type of setup is to avoid having the sites look like they are totally separate. They
should allow a single sign-on. Users would get annoyed if they had to keep registering and using different usernames
and passwords for the various systems.

Another issue with corporate multiple-application development is that the applications may not all be written
using the same language. CAS is provider agnostic and can be consumed by a variety of languages. This means you
could have a .NET application, Java application, and Rails application, with all using the same authentication.

4http://www.ja-sig.org/products/cas/client/javaclient/index.html

http://www.ja-sig.org/products/cas/client/javaclient/index.html

CHAPTER 7 ■ SECURITY IN GRAILS

205

Since our application is not part of a multiple-application environment, the level of sophistication provided by
CAS is unnecessary. In this section, we will go over some basic implementations and usage of the plugin itself. While
you will be able to deploy and run the sample code, it will not actually authenticate against anything (we don’t have a
CAS server).

Note ■ This section is provided to demonstrate the use of the plugin, and should not be considered a CAS client/server

tutorial. A basic understanding of the CAS client/server architecture may be needed in order to fully understand the plugin.

To learn more, check out the main CAS web site.5

CAS Installation
The installation for the CAS plugin is straightforward and does not create any additional artifacts in the
grails-app directory; all that is created is in the plugins directory. You can download the plugin at
http://grails.org/CAS+Client+Plugin or install it with the following command:

> grails install-plugin cas-client

CAS Configuration
Since this application is using an outside authentication system, configuring it is rather simple. You just need to define
the URLs of the CAS servers. These definitions will go in grails-app/conf/Config.groovy, as shown in Listing 7-7.

Listing 7-7. The Config.groovy File with the CAS Configurations

// cas client configuration, required by CasClientPlugin
cas {
 urlPattern = '/someurl/*'
// urlPattern = ['/oneurl/*', '/another', '/anotheranother/*']
 disabled = false
}

// log4j configuration
log4j {
 // . . . removed for brevity . . .
}
environments {
 development {
 cas.loginUrl = 'https://localhost:8080/casSecurity/login'
 cas.validateUrl = 'https://localhost:8080/casSecurity/serviceValidate'
 cas.serverName = 'localhost:8080'
 cas.serviceUrl = 'http://dev.casclient.demo.com/access'
 log4j {

5http://www.ja-sig.org/products/cas/.

http://grails.org/CAS+Client+Plugin
http://grails.org/CAS+Client+Plugin
https://localhost:8080/casSecurity/login
https://localhost:8080/casSecurity/serviceValidate
http://dev.casclient.demo.com/access
http://www.ja-sig.org/products/cas/

CHAPTER 7 ■ SECURITY IN GRAILS

206

 logger {
 grails.'app.controller'="trace,stdout,logfile"
 grails.app="error,stdout"
 }
 }
 }
 // . . . production and test removed . . .
}

Here, we added two sections to the Config.groovy file. The first one is a required item for the CAS plug in, which
defines a URL pattern. The second is in the environments section, and it is important when you want to access the
CAS server itself. It defines all the URLs to be used for filtering. These attributes once again go into web.xml, but they
are automatically added during compilation of the Grails application. Table 7-1 shows the additional configuration
options as well as the corresponding web.xmlinit-param values.

Table 7-1. CAS URL Definition Entries

Config.groovy Entry Required Web.xml Reference Value

cas.urlPattern Yes

cas.loginUrl Yes edu.yale.its.tp.cas.client.filter.loginUrl

cas.validateUrl Yes edu.yale.its.tp.cas.client.filter.validateUrl

cas.serverName Yes edu.yale.its.tp.cas.client.filter.serverName

cas.serviceUrl Yes edu.yale.its.tp.cas.client.filter.serviceUrl

cas.proxyCallbackUrl No edu.yale.its.tp.cas.client.filter.proxyCallbackUrl

cas.authorizedProxy No edu.yale.its.tp.cas.client.filter.authorizedProxy

cas.renew No edu.yale.its.tp.cas.client.filter.renew

cas.wrapRequest No edu.yale.its.tp.cas.client.filter.wrapRequest

cas.disabled No

Caution ■ cas.serverName and cas.serviceUrl are mutually exclusive. You need to fill in one or the other, but not both.

In addition, Listing 7-7 defines one other field—the cas.disabled flag. It works as you may have guessed. If you
set it to true, the plugin is disabled; if it is set to false, the plugin is enabled.

CAS Usage
The usage of the CAS security is entirely up to you. The main goal is to pull the name of the logged in user for the
controller. You can then secure the controllers either through filters or by extending the base controller classes.
Listing 7-8 illustrates how to pull the user from the session.

Listing 7-8. Retrieving the Username from the Session

def username = session?.getAttribute(CASFilter.CAS_FILTER_USER)

CHAPTER 7 ■ SECURITY IN GRAILS

207

You could then use this in a base class’s interceptor to perform a validation, or you could use it in a custom filter
to perform the check.

The CAS security plugin is quite easy to use and allows for simple authentication against a middle system. As we
pointed out, this can be very useful in a big corporate system where you care about authentication.

Spring Security
Last but not least, we will discuss how to implement security in Grails with a tried-and-true favorite from the Spring
Portfolio: Spring Security. The Spring Security framework is a subproject of the Spring Framework and was designed
to give developers a single place to go for security when using Spring.

The flexibility of Spring Security is one of the main reasons for its growing popularity when it comes to securing
Spring applications. (Remember that Grails uses Spring as its Inversion of Control, or IoC, pattern, and, as such, Grails
is in many ways a glorified Spring application.) The Spring Security plugin simplifies the integration of Spring Security
(formerly Acegi Security) into Grails applications. The plugin provides defaults with many configuration options for
customization. The Spring Security plugin maintains its configuration in the standard Config.groovy file. Default
values are in the plugin’s grails-app/conf/DefaultSecurityConfig.groovy file, and you add application-specific
values to the grails-app/conf/Config.groovy file. The two configurations will be merged, with application values
overriding the defaults.

Installation of the spring security-core plugin is a relatively painless process. Either use Grails Plugin Manager
(shown in Figure 7-5) or issue the following command:

> grails install-plugin spring-security-core

Figure 7-5. Installing the spring-security-core plugin using Grails Plugin Manager

Security Domain Classes
By default, the plugin uses regular Grails domain classes to access its required data. To use the standard user lookup
you’ll need, at a minimum, a “person” and an “authority” domain class. In addition, if you want to store URL<−>Role
mappings in the database, you need a “requestmap” domain class. If you use the recommended approach for
mapping the many-to-many relationship between “person” and “authority,” you also need a domain class to map the
join table. We can use the s2-quickstart script to create the initial domain classes as explained next. The general
format of the script is:

> grails s2-quickstart DOMAIN_CLASS_PACKAGE USER_CLASS_NAME ROLE_CLASS_NAME [REQUESTMAP_CLASS_NAME]

CHAPTER 7 ■ SECURITY IN GRAILS

208

For example, in the command shown in GGTS in Figure 7-6, Chapter 7 is the package name, SecurityUser is the
user class, and the Role is the role class. The request map class is optional in the command and we will discuss it later
in this section.

Figure 7-6. Running the s2-quickstart script

The output is:

| Loading Grails 2.1.0
| Configuring classpath.
| Environment set to development.....
| Packaging Grails application.....
| Compiling 1 source files.....

Creating User class SecurityUser and Role class Role in package chapter7.
| generated D:\devl\workspace\chapter7\grails-app\domain\chapter7\SecurityUser.groovy.
| generated D:\devl\workspace\chapter7\grails-app\domain\chapter7\Role.groovy.
| generated D:\devl\workspace\chapter7\grails-app\domain\chapter7\SecurityUserRole.groovy.....
| ***
* Created domain classes, controllers, and GSPs. Your *
* grails-app/conf/Config.groovy has been updated with ** the class names of the configured domain
classes; *
* please verify that the values are correct. *

The s2-quickstart script creates a user and role class (and optionally a requestmap class) in the specified
package. We specify the package and class names in the script, and it creates the corresponding domain classes. We
can also customize the script by adding unlimited fields, methods, and so on, as long as the core security-related
functionality remains. In the next few sections we will go through these initial domain classes.

Person Class

Spring Security uses an Authentication object to determine whether the current user has the right to perform a
secured action, such as accessing a URL, manipulating a secured domain object, accessing a secured method, and
so on. This object is created during login. Typically overlap occurs between the need for authentication data and the
need to represent a user in the application in ways that are unrelated to security. By default, the plugin uses a Grails
“person” domain class to manage this data. The class name is Person, and username, enabled, and password are the
default names of the required properties. You can easily plug in your own implementation, and rename the class,
package, and fields. In addition, you should define an authorities property to retrieve roles; this can be a public
field or a getAuthorities() method, and it can be defined through a traditional GORM many-to-many or a custom
mapping. Listing 7-9 shows the User class generated by the s2-quickstart script.

CHAPTER 7 ■ SECURITY IN GRAILS

209

Listing 7-9. The Person Class Generated by the s2-quickstart Script

package chapter7

class SecurityUser {

 transient springSecurityService

 String username
 String password
 boolean enabled
 boolean accountExpired
 boolean accountLocked
 boolean passwordExpired

 static constraints = {
 username blank: false, unique: true
 password blank: false
 }

 static mapping = {
 password column: 'password'
 }

 Set<Role> getAuthorities() {
 SecurityUserRole.findAllBySecurityUser(this).collect { it.role } as Set
 }

 def beforeInsert() {
 encodePassword()
 }

 def beforeUpdate() {
 if (isDirty('password')) {
 encodePassword()
 }
 }

 protected void encodePassword() {
 password = springSecurityService.encodePassword(password)
 }
}

The getAuthorities() method is analogous to defining static hasMany = [authorities: Authority] in a
traditional many-to-many mapping. This way GormUserDetailsService can call user.authorities during login to
retrieve the roles without the overhead of a bidirectional many-to-many mapping.

CHAPTER 7 ■ SECURITY IN GRAILS

210

Authority Class

The Spring Security plugin also requires an “authority” class to represent a user’s role(s) in the application. In general,
this class restricts URLs to users who have been assigned the required access rights. A user can have multiple roles to
indicate various access rights in the application, and should have at least one. Like the “person” class, the “authority”
class has a default name, Authority, and a default name for its one required property, authority. If you want to use
another existing domain class, it simply has to have a property for the name. As with the name of the class, the names
of the properties can be whatever you want—they’re specified in grails-app/conf/Config.groovy.

Listing 7-10 shows the Authority class generated by the s2-quickstart script.

Listing 7-10. The Authority Class generated by the s2-quickstart Script

package chapter7

class Role {

 String authority

 static mapping = {
 cache true
 }

 static constraints = {
 authority blank: false, unique: true
 }
}

PersonAuthority Class

The typical approach to mapping the relationship between “person” and “authority” is a many-to-many. Users
have multiple roles, and roles are shared by multiple users. This approach can be problematic in Grails, because a
popular role, for example, ROLE_USER, will be granted to many users in your application. GORM uses collections to
manage adding and removing related instances and maps many-to-many relationships bidirectionally. Granting a
role to a user requires loading all existing users who have that role because the collection is a Set. So even though no
uniqueness concerns may exist, Hibernate loads them all to enforce uniqueness. The recommended approach in the
plugin is to map a domain class to the join table that manages the many-to-many, and using that to grant and revoke
roles to users.

Like the other domain classes, this class is generated for you, so you don’t need to deal with the details of
mapping it.

Besides these domain classes, the s2-quickstart script also creates the login and logout functionality. In order
to test the secured log in functionality created by s2-quickstart script, we will add the test data to conf/Bootstrap.
groovy, as illustrated in Listing 7-11.

Listing 7-11. Test Data in Bootstrap.groovy

import chapter7.*

class BootStrap {

 def init = { servletContext ->

CHAPTER 7 ■ SECURITY IN GRAILS

211

 def userRole = new Role(authority: 'ROLE_USER').save()
 String password = 'password'
 def user = new SecurityUser(username: 'testUser', password: password, enabled:
true).save()
 SecurityUserRole.create user, userRole, true
 }

 def destroy = {
 }
}

Now you can run the application using run-app and click on the LoginController link, which renders the
screen shown in Figure 7-7. You can test the login functionality using the username:testUser we created in
Bootstrap.groovy.

Figure 7-7. Login functionality

Requestmap Class

Optionally, use this class to store request mapping entries in the database instead of defining them with annotations
or in Config.groovy. This option makes the class configurable at runtime; you can add, remove, and edit rules
without restarting your application.

CHAPTER 7 ■ SECURITY IN GRAILS

212

Securing URLs
Securing URLs entails mapping URL patterns to the roles required to access those URLs. You can choose one of the
following approaches to configuring request mappings for secure application URLs.

• @Secured annotations (default approach)

A simple Map in • Config.groovy

Requestmap domain class instances stored in the database•

URLs and Authorities

In each approach of securing URLs, you configure a mapping for a URL pattern to the role(s) that are required to
access those URLs; for instance, /admin/user/** requires ROLE_ADMIN. In addition, you can combine the role(s) with
tokens such as IS_AUTHENTICATED_ANONYMOUSLY, IS_AUTHENTICATED_REMEMBERED, and IS_AUTHENTICATED_FULLY.

Table 7-2. Preconfigured Requestmap Attributes

Attribute Description

IS_AUTHENTICATED_FULLY Requires the user to be fully authenticated with an explicit login

IS_AUTHENTICATED_REMEMBERED Requires the user to be authenticated through a remember-me
cookie or an explicit login

IS_AUTHENTICATED_ANONYMOUSLY Signifies that anyone can access this URL

Annotations and the Config.groovy Map are less flexible because they are configured once in the code and
you can update them only by restarting the application (in prod mode anyway). In practice this limitation is minor,
because security mappings for most applications are unlikely to change at runtime.

On the other hand, storing requestmap entries enables runtime configurability. This approach gives you a
core set of rules populated at application startup that you can edit, add to, and delete as needed. However, it
separates the security rules from the application code, which is less convenient than having the rules defined in
grails-app/conf/Config.groovy or in the applicable controllers using annotations.

Defining Secured Annotations

You can use an @Secured annotation (either the standard org.springframework.security.access.annotation.Secured
or the plugin’s grails.plugins.springsecurity.Secured, which also works on controller closure actions) in
your controllers to configure which roles are required for which actions. To use annotations, specify
securityConfigType="Annotation", or leave it unspecified because it’s the default:

grails.plugins.springsecurity.securityConfigType = "Annotation"

You can define the annotation at the class level, meaning that the specified roles are required for all actions, or at
the action level, or both. If the class and an action are annotated, the action annotation values are used since they’re
more specific.

CHAPTER 7 ■ SECURITY IN GRAILS

213

Simple Map in Config.groovy

To use the Config.groovy Map to secure URLs, first specify securityConfigType="InterceptUrlMap":

grails.plugins.springsecurity.securityConfigType = "InterceptUrlMap"

Define a Map in Config.groovy:

grails.plugins.springsecurity.interceptUrlMap = [
 '/secure/**': ['ROLE_ADMIN'],
 '/finance/**': ['ROLE_FINANCE', 'IS_AUTHENTICATED_FULLY'],
 '/js/**': ['IS_AUTHENTICATED_ANONYMOUSLY'],
 '/css/**': ['IS_AUTHENTICATED_ANONYMOUSLY'],
 '/images/**': ['IS_AUTHENTICATED_ANONYMOUSLY'],
 '/*': ['IS_AUTHENTICATED_ANONYMOUSLY'],
 '/login/**': ['IS_AUTHENTICATED_ANONYMOUSLY'],
 '/logout/**': ['IS_AUTHENTICATED_ANONYMOUSLY']
]

When using this approach, make sure that you order the rules correctly. The first applicable rule is used, so for
example if you have a controller that has one set of rules but an action that has stricter access rules (such as in the
following code), this would fail.

'/secure/**': ['ROLE_ADMIN', 'ROLE_SUPERUSER'],
'/secure/reallysecure/**': ['ROLE_SUPERUSER']

It would fail because it wouldn’t restrict access to /secure/reallysecure/list to a user with ROLE_SUPERUSER
since the first URL pattern matches, so the second would be ignored. The correct mapping is:

'/secure/reallysecure/**': ['ROLE_SUPERUSER']
'/secure/**': ['ROLE_ADMIN', 'ROLE_SUPERUSER'],

Requestmap Instances Stored in the Database

With this approach, you use the Requestmap domain class to store mapping entries in the database. Requestmap
has a url property that contains the secured URL pattern and a configAttribute property containing a comma-
delimited list of required roles and/or tokens such as IS_AUTHENTICATED_FULLY, IS_AUTHENTICATED_REMEMBERED, and
IS_AUTHENTICATED_ANONYMOUSLY.

To use Requestmap entries, specify securityConfigType="Requestmap":

grails.plugins.springsecurity.securityConfigType = "Requestmap"

You create Requestmap entries as you create entries in any Grails domain class:

new Requestmap(url: '/js/**', configAttribute:'IS_AUTHENTICATED_ANONYMOUSLY').save()
new Requestmap(url: '/css/**', configAttribute:'IS_AUTHENTICATED_ANONYMOUSLY').save()
new Requestmap(url: '/images/**', configAttribute:
'IS_AUTHENTICATED_ANONYMOUSLY').save()
new Requestmap(url: '/login/**', configAttribute:
'IS_AUTHENTICATED_ANONYMOUSLY').save()
new Requestmap(url: '/logout/**', configAttribute:

CHAPTER 7 ■ SECURITY IN GRAILS

214

'IS_AUTHENTICATED_ANONYMOUSLY').save()
new Requestmap(url: '/*', configAttribute: 'IS_AUTHENTICATED_ANONYMOUSLY').save()
new Requestmap(url: '/profile/**', configAttribute: 'ROLE_USER').save()
new Requestmap(url: '/admin/**', configAttribute: 'ROLE_ADMIN').save()
new Requestmap(url: '/admin/role/**', configAttribute: 'ROLE_SUPERVISOR').save()
new Requestmap(url: '/admin/user/**', configAttribute: 'ROLE_ADMIN,ROLE_SUPERVISOR').save()
new Requestmap(url: '/j_spring_security_switch_user',
 configAttribute: 'ROLE_SWITCH_USER,IS_AUTHENTICATED_FULLY').save()

The configAttribute value can have a single value or multiple comma-delimited values. In this example, only
users with ROLE_ADMIN or ROLE_SUPERVISOR can access /admin/user/** URLs, and only users with ROLE_SWITCH_USER
can access the switch-user URL (/j_spring_security_switch_user) and in addition, must be authenticated fully;
for example, not using a remember-me cookie. Note that when specifying multiple roles, the user must have at least
one of them, but when combining IS_AUTHENTICATED_FULLY, IS_AUTHENTICATED_REMEMBERED, or IS_AUTHENTICATED_
ANONYMOUSLY with one or more roles means the user must have one of the roles and satisfy the IS_AUTHENTICATED rule.

SecurityTagLib
The plugin includes GSP tag libraries to support conditional display based on whether the user is authenticated, and/
or has the required role to perform a particular action. These tags are in the sec namespace and are implemented in
grails.plugins.springsecurity.SecurityTagLib.

Table 7-3. Spring Security Core Plugin Tag Libraries

Tag Description

sec:ifLoggedIn Displays the inner body content if the user is authenticated.

sec:ifNotLoggedIn Displays the inner body content if the user is not authenticated.

sec:ifAllGranted Displays the inner body content only if all of the listed roles are granted.

sec:ifAnyGranted Displays the inner body content if at least one of the listed roles are
granted.

sec:ifNotGranted Displays the inner body content if none of the listed roles are granted.

sec:username Displays the value of the authentication username field if logged in.

sec:ifSwitched Displays the inner body content only if the current user switched from
another user.

sec:ifNotSwitched Displays the inner body content only if the current user has not switched
from another user.

sec:loggedInUserInfo Displays the value of the specified authentication field if logged in.

sec:access Renders the body if the specified expression evaluates to true or specified
URL is allowed.

sec:noAccess Renders the body if the specified expression evaluates to false or URL isn’t
allowed.

sec:switchedUserOriginalUsername Renders the original user’s username if the current user switched from
another user.

CHAPTER 7 ■ SECURITY IN GRAILS

215

Summary
Security is important to any application. While most of the Grails security plugins are relatively new, they all are
based on frameworks that have been built over time. Security has a broad spectrum in which a variety of options
are available. A framework like Spring Security can make it easy to add access control. The coverage of other plugins
should help you select which plugin is best for your own application.

Now that we have security in place, we can embrace more user functionality in the next chapter, which covers
Ajax and other fun Web 2.0 items.

217

Chapter 8

Web 2.0—Ajax and Friends

So far in this book, we have relied on a few basic items to create our site, and, as of right now, it is fully functioning.
Users have the ability to log in, create todos, and so on. And while these make for a good application, good applications
will not generate revenue. The Web is filled with many bad applications, a lot of good ones, and very few excellent ones.
In this and the following two chapters, we will try to add some excellence to our web application by applying some
Web 2.0 techniques.

What do we mean by excellence? Some developers try to cram every Ajax component and every Web 2.0 concept
under the sun into their applications. Many times, this approach fails. You end up complicating the page and making
it difficult to use. In this chapter’s examples, we will try to toe the line between enhancing the page and making it
unmanageable. Each component we add will supply functionality that the users should be able to enjoy.

We will start slowly, with basic plugins that add some Web 2.0 functionality. From there, we will add a mail
service, which we will use in this chapter and in Chapter 10 (which covers reporting). After that, we will dive into some
good old-fashioned Ajax and demonstrate the flexibility of Ajax in Grails. We will finish up with an RSS feed, which
can be useful if you want to be able to displayyour todoson an RSS reader like iGoogle.

Advanced Presentation Components
In this section we will focus on three areas to enrich the presentation:

Allow for the use of rich text in the todo notes.•

Make the todos searchable.•

Allow for uploading a file associated with a todo.•

To add these features, we will make use of an ever-growing list of plugins for Grails.

Adding RichText Capabilities
Currently, todo note entry is limited. You cannot style text (such as italics or boldface) or format it (say, into a bulleted
list). Adding a rich text editor can provide near Microsoft Word–type functionality to a web site. Not only can you allow
rich text, but you can also let the users upload images, Flash movies, and even files to your web application. The CK
editor plugin1 is a good example of this sort of editor. You can install ckeditor using this command:

>grails install-plugin ckeditor

Or you can use Grails Plugin Manager, as shown in Figure 8-1.

1 http://grails.org/plugin/ckeditor

http://grails.org/plugin/ckeditor

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

218

To start using the plugin, add the ckeditor tag in the head and page sections as illustrated in Listing 8-1
and Listing 8-2:

Listing 8-1. Adding ckeditor Tag to head

<head>
. . .
<ckeditor:resources/>
. . .
</head>

Listing 8-2. Adding ckeditor Tag to page

<ckeditor:editor name="myeditor" height="400px" width="80%">
${initialValue}
</ckeditor:editor>

Figure 8-2 shows an example of the CK editor embedded into an application. Although this is, as Borat would say,
“very nice,” it is overkill for our needs. Not only that, it might break some of the smooth lines of our page.

Figure 8-1. Installing CK editor plugin using Grails Plugin Manager

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

219

Adding Search Capabilities
Currently, the only way to search for a particular task is to literally open up every task and see what is in there.
While this may work if you have a small number of tasks, it quickly becomes cumbersome as the application
grows—especially if you’re looking for akeyword that is buried in the notes.

As in previous chapters, we are not only going to make use of a plugin, but a plug in that is based on tried and-true
Java technologies. The Searchable plugin is based on the OpenSymphony Compass Search Engine framework, which
in turn uses Apache Luceneunder the covers.

The Searchable plugin is supplied with Grails. Install it by issuing the following command:

> grails install-plugin searchable

Or you can use Grails Plugin Manager, as shown in Figure 8-3.

Figure 8-2. The CK editor plugin in action

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

220

The Searchable plugin is a snap to set up and use. The plugin allows you to decide which domain objects should
be searchable. We want to make the todos searchable, so we add the line static searchable = true to our Todo
domain object, as shown in Listing 8-3.

Listing 8-3. Marking Our Todo as Searchable in domain/Todo.groovy

class Todo {
 static searchable = true
 // . . . continued . . .
}

And that is all we need to do. So what does that give us? If you go to http://localhost:8080/collab-todo/
searchable, you see the default searchable page (see Figure 8-4).

Figure 8-3. Installing searchable plugin using Grails Plugin manager

Figure 8-4. Default searchable

To see the searchable plugin in action, let’s search through the list of tasks shown in Figure 8-5.

http://localhost:8080/collab-todo/searchable
http://localhost:8080/collab-todo/searchable

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

221

You can type in a word to search for and get the results. Figure 8-6 shows the results of searching for task.

Figure 8-5. List of tasks

Figure 8-6. The results of searching for the word “task”

Allowing File Uploads
Some web applications allow users to upload files. For our application, we’ll add the ability to upload a file for each
of the todos, and then retrieve (download) that file later. The uploaded files can be stored either on the application
server or the database itself. For our example, we wantto store the file in the database, mainly since that’s easy and
because we’re working with only one file, so space is not an issue.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

222

Uploading the File

Grails will use Spring’s file upload capability to help upload the file. Uploading a file is a fairly simple process,
requiring the following steps:

1. Review necessary properties on the Todo domain.

2. Add a link to upload it in our list page.

3. Add configurations to the Spring resources.xml file.

4. Create the necessary code in our controller to store and retrieve the file.

In order to store the data, all you are required to have is a byte[] for data. But when you return the data, the end
user probably wants to have the original name of the file. In addition, being specific about the type of data returned
will help the browser know how to process the data. For example, if it’s a PDF, the browser automatically knows
to open it as a PDF. To handle this, we added the variable associatedFile byte[] and Strings of filename and
contentType to our Todo domain object, as shown in Listing 8-4.

Listing 8-4. Updating the Todo Domain Object (in domain/Todo.groovy)

class Todo {
 User owner
 Category category
 String name
 String note
 Date createDate
 Date startDate
 Date dueDate
 Date completeDate
 Date lastModifiedDate
 String priorityf
 String status
 byte[] associatedFile
 String fileName
 String contentType
 . . .
}

Once you restart the server, it automatically creates the entry in the database as a BLOB, or TINYBLOB if you are
using MySQL.

The next part is to add a section to our page to upload the file. As shown in Listing 8-5, we add a file upload tag
after the due date.

Listing 8-5. The File Upload Tag for the Todo (in views/todo/list.gsp)

<tr class='prop'>
<td valign='top' class='name'><label for='dueDate'>File:</label></td>
<td valign='top'
 class='value ${hasErrors(bean:todo,field:'asociatedFile','errors')}'>
<input type="file" name="associatedFile" />
</td>
</tr>

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

223

Performing file uploads also requires a change in the form tag itself. You must change the form to a multipart
request. To do this, add the attribute shown in Listing 8-6 to the form tag.

Listing 8-6. The Multipart Tag for the Form (in views/todo/list.gsp)

enctype="multipart/form-data"

Figure 8-7 shows an example of the result of our additions: a todo is created, with a file selected to upload.

Figure 8-7. Choosing a file to upload with a new todo

As we said earlier, we make use of Spring for our file upload capability, and you cansee when we update the
controller, next, that there are calls to Spring objects. However, in order to use the Spring objects, we need to add a
bean in Spring’s resources.xml file. This is where we define Spring resources to be used in Grails. Add the following
linesto conf/spring/resources.xml.

<bean class="org.springframework.web.multipart.commons.CommonsMultipartResolver">
<property name="maxUploadSize"><value>1000000</value></property>
</bean>

The final step is to actually save the file. This is not complicated, but it does require making use of some Spring
objects. We will cast the request coming in as a MultipartHttpServletRequest and retrieve the items off the file as
necessary. Listing 8-7 shows the new method to handle the file upload.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

224

Listing 8-7. The uploadFileData Method on the TodoController (in controllers/TodoController.groovy)

import org.springframework.web.multipart.MultipartHttpServletRequest;
import org.springframework.web.multipart.commons.CommonsMultipartFile;
. . .
def uploadFileData = { todo ->
 if (request instanceof MultipartHttpServletRequest) {
 MultipartHttpServletRequest multiRequest
 = (MultipartHttpServletRequest)request;
 CommonsMultipartFile file =
 (CommonsMultipartFile)multiRequest.getFile("associatedFile");
 // Save the object items.
 todo.fileName = file.originalFilename
 todo.contentType = file.contentType
 todo.associatedFile = file.bytes
 }
}

Simply call this method before you persist on your save method in order to set the appropriate properties on
the Todo.

Downloading the File

Now that it is stored, we want to be able to retrieve the file on the fly. The file that is returned from the database is in a
byte[], hence you can use any common method of response rendering to render the returned item. When you return
a file, you put the byte[] into the output stream of the response, setting some header data. A basic example of a file
return is shown in Listing 8-8.

Listing 8-8. A Download File Method for TodoController (in controller/TodoController.groovy)

def downloadFile = {
 def todo = Todo.get(params.id)
 response.setHeader("Content-disposition",
"attachment; filename=${todo.fileName}")
 response.contentType = todo.contentType
 response.outputStream << todo.associatedFile
}

This method can be called by a link on our todo page, just by passing in the ID of the todo. As you can see in the
method, the header and contentType returns are why we needed to save those two items in the first place.

Adding Mail Services

Another common feature of web sites is the ability to send e-mail from them. We will add this capability to our
application. For now, we will use the mail service to send an e-mail when a user registers. In Chapter 10, we will use it
again to send reports.

If you are familiar with the Spring e-mail service, you will be right at home with the Grails system, since it uses
Spring Mail underneath.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

225

We will create an e-mail service, and then adjust our user registration process to call it and send an e-mail. This
requires the following steps:

1. Create the service to send an e-mail.

2. Create the authenticator to use for logging in to an SMTP server.

3. Update the Spring resources.xml file.

Creating the E-Mail Service

Because Grails uses Spring’s e-mail support, we will use the org.springframework.mail. MailSender class to
actually send the e-mail. In order to make this easier for all of us, we will wrap the call to the class in a service. The
service will provide an easy, generic set of parameters to send the e-mail. That way, the callers do not need to worry
about creating MIME messages. Listing 8-9 shows the EMailAuthenticatedService.

Listing 8-9. The EMailAuthenticatedService, Responsible for Sending E-Mail

 1. import org.apache.log4j.Logger;
 2 .
 3. import org.springframework.core.io.InputStreamResource
 4. import org.springframework.core.io.ByteArrayResource
 5.
 6. import org.springframework.mail.MailException
 7. import org.springframework.mail.MailSender
 8. import org.springframework.mail.javamail.MimeMessageHelper
 9.
10. import javax.mail.internet.MimeMessage
11. import javax.mail.internet.InternetAddress;
12.
13. class EMailAuthenticatedService {
14. boolean transactional = false
15. MailSender mailSender
16.
17. def sendEmail = { mail, eMailProperties, attachements ->
18. MimeMessage mimeMessage = mailSender.createMimeMessage()
19.
20. MimeMessageHelper helper
 = new MimeMessageHelper(mimeMessage, true, "ISO-8859-1")
21. helper.from = eMailProperties.from
22. helper.to = getInternetAddresses(mail.to)
23. helper.subject = mail.subject
24. helper.setText(mail.text, true);
25. if(mail.bcc) helper.bcc = getInternetAddresses(mail.bcc)
26. if(mail.cc) helper.cc = getInternetAddresses(mail.cc)
27.
28. attachements.each { key, value ->
29. helper.addAttachment(key, new ByteArrayResource(value))
30. }
31.
32. mailSender.send(mimeMessage)
33. }
34.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

226

35. private InternetAddress[] getInternetAddresses(List emails) {
36. InternetAddress[] mailAddresses = new InternetAddress[emails.size()]
37. emails.eachWithIndex {mail, i ->
38. mailAddresses[i] = new InternetAddress(mail)

39. }
40. return mailAddresses
41. }
42. }

On line 15, we have a reference to MailSender. Since this is not set explicitly, you can assume it will be injected by
Grails. You will see later how we reference MailSender in Spring’s resources.xml file.

The only public method starts on line 17. This is the method that any clients using the service will use. The
parameters passed to it are simple. We will send a mail object, which will be passed to the method as a Map.

Creating the Mail Sender

The EMailAuthenticatedSender has a MailSender as an injectable component. This is relatively easy to create but
does require a few steps. We need to add a few entries into resources.xml and one new service. We will work this sort
of in reverse by building up the top entries, and then going through their dependents.

We begin by defining the mailSender in resources.xml, as shown in Listing 8-10.

Listing 8-10. mailSender Defined in resources.xml

<bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
<property name="host" value="smtp.apress.com" />
<property name="session" ref="mailSession" />
</bean>

As you can see, the mailSender itself defines two variables: a host and a session. The host is a String bean
identifying the host through which we send the e-mail. For a production server, it could easily be localhost or anther
host on the network. In our example, we use a fictional Apress SMTP server.

The session is a bit more complex and requires us to define another injectable object. So, we need to add another
bean, mailSession, in our resources.xml file, as shown in Listing 8-11.

Listing 8-11. mailSession Defined in resources.xml

<bean id="mailSession" class="javax.mail.Session" factory-method="getInstance">
<constructor-arg>
<props>
<prop key="mail.smtp.auth">true</prop>
<!-- If SSL needed. . .
<prop key="mail.smtp.socketFactory.port">465</prop>
<prop key="mail.smtp.socketFactory.class">
 javax.net.ssl.SSLSocketFactory
</prop>
<prop key="mail.smtp.socketFactory.fallback">
 false
</prop>
 -->
</props>

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

227

</constructor-arg>
<constructor-arg ref="smtpAuthenticator" />
</bean>

Here, we defined the session to work with a non SSL source, but as you can see by the commented-out code,
switching to an SSL source is quite easy as well.

As you may have guessed, we have yet another item to inject, the smtpAuthenticator. We need to create an
object and define the bean for it. First, let’s define the bean in resources.xml, as shown in Listing 8-12.

Listing 8-12. smtpAuthenticator Defined in resources.xml

<bean id="smtpAuthenticator" class="SmtpAuthenticator">
<constructor-arg value="xxx@xxx.net" />
<constructor-arg value="xxxxxx" />
</bean>

We defined a constructor that takes in a username and a password (blanked out because, well, we don’t need
everyone checking our e-mail).

Now we need to create a bean for this. We’ll create this class in the services folder, and simply extend
javax.mail.Authenticator. Listing 8-13 shows our authentication bean.

Listing 8-13. The Custom SmtpAuthenticator Bean

import javax.mail.Authenticator

class SmtpAuthenticator extends Authenticator {

 private String username;
 private String password;

public SmtpAuthenticator(String username, String password) {
 super();
 this.username = username;
 this.password = password;
 }

 public javax.mail.PasswordAuthentication getPasswordAuthentication() {
 return new javax.mail.PasswordAuthentication(username, password);
 }
}

Updating the Registration Page

Now that our bean and all of its subcomponents are defined, it’s time to put it to use. We will modify the registration
page to send an e-mail message. Listing 8-14 shows the method that we will use.

Listing 8-14. Registration Page to Send E-mail (in controller/UserController.groovy)

private sendAcknowledgment = { user ->
 // Let's first design the email that we want to send
 def emailTpl = this.class.classloader.getResource(
"web-app/WEB-INF/templates/regisrationEmail.gtpl")

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

228

 def binding = ["user": user]
 def engine = new SimpleTemplateEngine()
 def template = engine.createTemplate(emailTpl).make(binding)
 def body = template.toString()

 // Set up the email to send.
 def email = [
 to: [user.email],
 subject: "Your Collab-Todo Report",
 text: body
]

 try {
 // Check if we "need" attachments
 eMailAuthenticatedService.sendEmail(email, [])
 } catch (MailException ex) {
 log.error("Failed to send emails", ex)
 return false
 }
 true
 }

This e-mail call is actually relatively simple. We will pass in a map defining the To and Subject lines and text. The
email message body is generated by using a Groovy template engine on the file registrationEmail.gptl.

Note that you can reuse this code in other places to send e-mail messages.

Tag Libraries
Tag libraries provide sets of custom actions that you perform inside pages. Generally, the actions are repetitive or
would be too long to write scriptlets within the page.

You have seen many of the Grails built-in tag libraries in use in our examples so far. We have used these tags
to output data, render lists, and so on, and we will continue to use them throughout the book. See the “Grails Tags”
section in Chapter 5 for an overview of the Grails tags.

Here, we cover how to create your own custom tag library. If you created tag libraries in the past with Java
frameworks, you know that it is actually quite a pain. Your tag library class must extend a base class. You then need to
define the tag and its attributes in your tag library definition. Optionally, you can then reference that tag library in the
web.xml. Finally, you reference the specific tag you are using in the page itself. Wow—that’squite a bit of work just to
create something that may be only a formatter. Fortunately, creating a tag library with Grails is simpler than that.

You may have noticed that on our application’s todo page, the option to add a todo is always shown. But users
may go to that page and just want to see the list. It would be good to be able to hide the add section and open it when
necessary. We can create a tag library to handle this. It will mark an area with div tags and allow the user to click a
JavaScript link to open that section. Creating this will require two sets of code segments: one to display the JavaScript
and the other to actually call that JavaScript for any div section. Normally, with JSP, this requires two classes and a
host of XML. Thanks to Grails, we can handle this with one class and no XML.

Creating the Tag Library
Tag libraries reside in the grails-app/taglib folder, so that is where we will create our new tag library. Listing 8-15
shows the outline of our tag library with all the global objects we will use.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

229

Listing 8-15. The ShowHideTagLib Outline

class ShowHideTagLib {
}

As you can see, this doesn’t contain much; that’s because this is all we need for the basic outline.
We are actually creating two separate tag libraries. While this is normally done with different classes, with Grails,

we merely have separate methods. Listing 8-16 shows the methods we are adding to ShowHideTagLib.

Listing 8-16. The Contents of ShowHideTagLib

 def showHide = { attrs, body ->

 def divId = attrs['update']
 out <<"""${body()}"""
 }
 def preLoadShowHide = { attrs, body ->
 out <<"""<script language="javascript">
<!--
 function showhide(layer_ref) {
 // Let's get the state.
 var state = document.getElementById(layer_ref).style.display;
 if (state == 'block') {
 state = 'none';
 } else {
 state = 'block';
 }
 if (document.all) { //IS IE 4 or 5 (or 6 beta)
 eval("document.all." + layer_ref + ".style.display = state");
 }
 if (document.layers) { //IS NETSCAPE 4 or below
 document.layers[layer_ref].display = state;
 }

 if (document.getElementById &&!document.all) {
 hza = document.getElementById(layer_ref);
 hza.style.display = state;
 }
 }
 //-->
</script>
"""
 }

Here, we have two tag library calls. Each of them shows how great it is to use Groovy when creating tag libraries.
Since creating tag libraries requires the output of the code to be HTML markups, this generally involves a

lotof string building. Not only that, but when you have output with quotation marks, you need to escape them with
backslashes (\) throughout the code. Yuck! However, with Groovy, we can use triple quotes. The triple quote style
allows us to not only fully embed strings with markups, but also to return characters and referenced values.

The first method, showHide, passes in two objects: attrs and body. The body is simply the section of the page
between the opening and closing bracket of your tag library. The attrs is a map of attributes you want to pass into the
method. With regular JSP tag libraries, you need define them individually as getters and setters on the page, and in

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

230

the tag library XML. With Grails and Groovy, that is not necessary. As you can see, we mapped a value called update,
which is the div tag section we want activated.

The second method, preLoadShowHide, doesn’t contain any dynamic code per se. We are simply outputting the
JavaScript in there.

Referencing the Tag Library
Referencing the tag library is simple as well. By default, the tag library is referenced in the g namespace—the same
one in which all the built-in Grails tags are referenced. Then the method name is used as the tag’s reference name.
Listing 8-17 shows the calls to the tags in todo/list.gsp.

Listing 8-17. Excerpts from todo/list.gsp Showing the Calls to the Custom Tags

<g:preLoadShowHide/>
<g:javascript library="scriptaculous" />
<div class="body">
<h2>Todo List<g:showHide update="addToDo">
<img border=0 src="${createLinkTo(dir:'images',file:'add_obj.gif')}"
 alt="[ADD]"/>
</g:showHide>

But what if you don’t want to use the g namespace? Perhaps you are bundling the application as a tag library
and are worried about name conflicts, or you simply want to remember it’s not part of the core Grails functionality.
In order to change the namespace used, add a static namespace reference in your tag library. For example, to use the
namespace todo for our code, you would add the following line to ShowHideTagLib:

static namespace = 'todo'

Ajax in Grails
We certainly could not have a Web 2.0 chapter without including a discussion of Ajax. Ajax stands for Asynchronous
JavaScript and XML, which oddly enough, is not a 100% accurate definition. Although Ajax is usually asynchronous,
usually written in JavaScript, and often deals with transmission of XML, none of these items is a must for it. You can
send Ajax messages synchronously, you do not have to use JavaScript to send them, and your response can be an XML
file but can also be a regular string.

Note■ The term Ajax was originally coined by Jesse James Garrett. But the technology was first developed by

Microsoft in an attempt to deal with remote scripting.

One of the biggest “secrets” about Ajax is that, for the most part, it’s not that complex, at least conceptually. There
is nothing you can do with Ajax that you could not do in a normal application; however, using Ajax can help your
application not only perform better, but also give a richer user experience.

The core of Ajax is just sending data to the server and parsing the data on the return without forcing the display to
refresh. The complexity lies in making use of the data, and this is where you start to see frameworks emerge. The fact
is that these frameworks are not 100% Ajax—if they were, they wouldn’t be very big. Instead, these frameworks wrap
Ajax with JavaScript UI enhancements. Some of the calls won’t even involve Ajax. However, here we will refer to these
frameworks as Ajax frameworks.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

231

Using Ajax Frameworks in Grails
Popular Ajax frameworks include Prototype, Dojo:http://dojotoolkit.org/, script.aculo.us, and Yahoo! User
Interface (YUI) Library:http://developer.yahoo.com/yui/. Even Google has come onboard with its own rather
complex Ajax framework, Google Web Toolkit (GWT).

Most of the popular web frameworks have implemented Ajax. The majority of these did not create their own Ajax
framework, but merely wrapped code from previous Ajax frameworks. Ruby on Rails uses script.aculo.us, Tapestry’s
Tacos uses Dojo, and so on. So what does Grails use? The answer is all of the above.

In an effort to provide maximum flexibility, Grails currently accepts all of the frameworks out there. So what does this
mean? Is this good or bad? It’s a bit of both. While it allows us more flexibility in choosing a framework, in the end, we need
to write more code than other frameworks usually demand, especially when it comes to the JavaScript UI portions of the
Ajax items. If you are familiar with other Java or Rails Ajax uses, this will become apparent to you in the upcoming examples.

By default, Grails ships with the jQuery library, but through the Plugin system provides support for other
frameworks such as Prototype, DojoYahoo UI, and the Google Web Toolkit.

Each of these frameworks has its own custom UI components. If you are familiar with Rails or Tapestry’s Tacos,
you know that they generally provide complete support for the underlying framework. In other words, there is usually
a tag library wrapper for the whole framework. This makes it easy to not only support the Ajax components, but also
the JavaScript components. Unfortunately, this is not the case in Grails.

Grails includes several Ajax tags, which call a controller action and update a page element with the results. Grails
supports a variety of popular JavaScript libraries with regard to its Ajax tags. To use these tags, we need to tell Grails
which library we are using. We do this with the <g:javascript> tag and its library attribute. This tag is placed in the
<head> section of a page.

In Grails we extensively use GSP templates to render the response to Ajax calls. A GSP template is a GSP file that
begins with an underscore (_example.gsp). GSP templatesprovide an easy way to share common code across multiple
pages. You can include a GSP template in a GSPpage with the <g:render> tag, like this:

<g:render template="sampleTemplate" />

This line would render a template called _sampleTemplate.gsp in the same directory as the page from which it is
called.

Grails supports just the standard Ajax components, as listed in Table 8-1. However, this does give us a good
subset of components to use.

Table 8-1. Ajax Components in Grails

Tag Description

remoteField Creates a text field that sends its value to a remote link when it changes

remoteFunction Creates a remote JavaScript function that can be assigned to a DOM event

remoteLink Creates a link that calls a remote function

formRemote Creates a form that executes an Ajax call on submission

javascript Loads a JavaScript function

submitToRemote Creates a button that submits the form as an Ajax call

Using remoteField

This tag creates an input field that fires an Ajax request when its value changes (typically when the user presses Return
inside the field). We will use the controller in Listing 8-18 to illustrate the usage of the remoteField tag, as shown in
Listing 8-19.

http://dojotoolkit.org/
http://developer.yahoo.com/yui/

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

232

Listing 8-18. Example Controller for the Usage of remoteField Tag

class CategoryController {
def changeDescription() {
 def cat = Category.get(params.id)
 cat.description = params.value
 cat.save()
 }
}

Listing 8-19. Using remoteField Tag

<g:remoteField action="changeDescription" update="descDiv"
 name="description" value="${category?.description}" />
<div id="descDiv">
This div is updated
</div>

By default the parameter name sent is called value as shown in Listing 8-19; you can change this by specifying a
paramName attribute.

Using remoteFunction

This tag creates a remote Javascript function call that fires an Ajax request to call the remote method. We will use the
controller in Listing 8-20 to demonstrate the usage of the remoteFunction tag.

Listing 8-20. Example UserController for the Usage of Ajax Tags

class UserController {
def list() {
 [users: User.list(params)]
 }
def show() {
 [user: User.get(params.id)]
 }
def byFirstName() {
 [user: User.findByName(params.firstName)]
 }
 def byLastName() {
 [users: User.findByName(params.lastName, params)]
 }
}

Listing 8-21. Using remoteFunction Tag

$('mydiv').onclick = <g:remoteFunction action="show" id="1" />

Using remoteLink

This tag creates an HTML link to a controller action that generates an Ajax request when it is clicked. Listing 8-22
illustrates the usage of the submitToRemote tag for the controller in Listing 8-20.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

233

Listing 8-22. Using remoteLink Tag

<g:remoteLink action="show" id="1">Test 1</g:remoteLink>
<g:remoteLink action="show" id="1" update="[success:'success',failure:'error']"
 on404="alert('not found');">Test 2</g:remoteLink>

Using formRemote

This tag creates a form that fires an Ajax request when it is submitted, serializing the form elements and falling back
to a normal form submit if JavaScript is not supported. Listing 8-23 illustrates the usage of the submitToRemote tag for
the controller in Listing 8-20.

Listing 8-23. Using formRemote Tag

<g:formRemote name="myForm" on404="alert('not found!')" update="updateDiv"
 url="[controller: user, action:'show']">
User Id: <input name="id" type="text" />
</g:formRemote>
<div id="updateDiv">this div is updated with the result of the show call</div>

Using javascript

This tag Includes JavaScript libraries and scripts as well as providing a kind of shorthand for inline JavaScript, as
illustrated in Listing 8-24.

Listing 8-24. Using javascript Tag

1. <g:javascript src="script.js" />
2. <g:javascript library="scriptaculous" />
3. <g:javascript>alert('hello')</g:javascript>

Listing 8-24 illustrates three different uses of the javascript tag. The tag on line 1 actually imports script.js,
and the tag on Line 2 imports all the necessary js for the scriptaculous library. The tag on line 3 does not include a
library or src attribute but instead provides a body; the result is an inline script.

Using submitToRemote

This tag creates a submit button that fires an Ajax request when it is pressed and submits the containing form as a
remote Ajax call, serializing the fields into parameters. Listing 8-25 illustrates the usage of the submitToRemote tag for
the controller in Listing 8-20.

Listing 8-25. Using submitToRemote Tag

<g:form action="show">
 Login: <input name="login" type="text" />
<g:submitToRemote update="updateDiv" />
</g:form>
<div id="updateDiv ">this div will be updated with the form submit response</div>

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

234

Handling Ajax Events

Specific JavaScript can be called if certain events occur. All the events start with the “on” prefix and let you give
feedback to the user where appropriate, or take other action.

Listing 8-26. Handling Ajax Events

<g:remoteLink action="show"
 id="1"
 update="success"
 onLoading="showProgress()"
 onComplete="hideProgress()">
Show task 1
</g:remoteLink>

The code in Listing 8-26 executes the showProgress() function, which may show a progress bar or whatever is
appropriate.

Table 8-2 shows the different events.

Table 8-2. Ajax Events

Field Name Description

onSuccess The JavaScript function to call if successful

onFailure The JavaScript function to call if the call failed

on_ERROR_CODE The JavaScript function to call to handle specified error codes

onUninitialized The JavaScript function to call if the Ajax engine failed to initialize

onLoading The JavaScript function to call when the remote function is loading the response

onLoaded The JavaScript function to call when the remote function hascompleted loading the response

onComplete The JavaScript function to call when the remote function is complete, including any updates

Dynamic Rendering of Data
Our first example demonstrates using one of the most basic and popular types of Ajax components. This is where you
type data into the page, submit it, remotely call the server, process the data, and re-render only a portion of the page.
For our example, we will modify the todo add page to do a partial page re-rendering. Now when adding a new todo,
instead of doing an entire page refresh, the page will dynamically render the todo list section of the page.

In order to perform this, we need to take a few steps, the first of which is not necessarily Ajax-specific:

1. Move the list section of the page into its own page (called a template or partial page).

2. Change our current add call to do an Ajax remote call instead of submitting the whole page.

3. Change the TodoController’s return to render the new page we created instead of the
whole page.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

235

Note ■ One of the big issues you will run into when performing the dynamic rendering of data is partial page updates.

Partial page updating refers to re-rendering a part of the page. Some frameworks, like Tapestry’s Tacos, allow you to perform

this in line. However, the majority of web frameworks, including Grails and Ruby on Rails, force you to call to another page. In

reality, this is not a big deal. It does add to the number of GSPs you need to write, but on the plus side, it keeps the GSPs clean.

Rendering a Template

Rendering a page from another page is fairly simple to do. First, we need a page to call from, which obviously must be
a GSP page. We will use the <g:render /> tag library to define the area of the page that will call out to another GSP
page. Grails refers to these partial pages as templates.

Our first step is to take our list of todos in todo/list.gsp and pull that section out to its own page. We will replace the
list with what is in Listing 8-27. Also, instead of taking the entire code, we will take everything but the for loop. This
is because we can tell the renderer to render a collection.

Listing 8-27. A Template of todo/list.gsp with the Modified Todo List Display

<div id="todoList">
<g:render template="detail" var="todo" collection="${todoList}" />
</div>

Here, we simply tell Grails to take our collection labeled todoList and iterate through the list, rendering the
detail page each time for every item in the collection. The item in the collection is then referenced in the page by the
variable var.

Creating a Template

The name of the page we are creating will not actually be detail.gsp. Instead, Grails chooses the page to render by
taking the rendered template attribute and adding underscores at the beginning to indicate the page is a template.
The page must also be located in the same directory as the calling controller. Thus, for this example, we will create
_detail.gsp in the todo directory, as shown in Listing 8-28.

Listing 8-28. The _detail.gsp Page

<div id="todoDetail${todo.id}" class="todo">

<div class="todoTitle">${todo.name?.encodeAsHTML()}
<g:link action="edit" id="${todo.id}">
<img border=0
 src="${createLinkTo(dir:'images',file:'write_obj.gif')}" alt="[EDIT]"/>
</g:link>
<g:remoteLink
 action="removeTask"
 id="${todo.id}"
 update="todoDetail$todo.id"
 onComplete="highlight('todoDetail$todo.id');">
<img border=0 src="${createLinkTo(dir:'images',file:'delete_obj.gif')}"
 alt="[EDIT]"/>
</g:remoteLink>

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

236

<g:showHide update="todoDetailFull${todo.id}">
<img border=0
 src="${createLinkTo(dir:'images',file:'add_obj.gif')}"
 alt="[Show All]"/></g:showHide>
</div>

<div id="todoDetailFull${todo.id}" class="todo" style="display:none">
 Status: ${todo.status?.encodeAsHTML()}

 Priority: ${todo.priority?.encodeAsHTML()}

 Created date: ${todo.createDate?.encodeAsHTML()}

 Last Modified date: ${todo.lastModifiedDate?.encodeAsHTML()}

<g:if test="${todo.completeDate == null}">
 Complete Task: <input type="checkbox"
 onclick="${remoteFunction(
 action:'completeTask',
 id:todo.id,
 update:'todoDetail' + todo.id,
 onComplete:'highlight(\'todoDetail' + todo.id+'\')'
)};"/>

</g:if>
<g:else>
 Completed Date: ${todo.completeDate?.encodeAsHTML()}

</g:else>
<!-- show notes -- mark in the code that we should use a todo -->
<g:radeoxRender>${todo?.note}</g:radeoxRender>
<!-- update:[success:'great', failure:'ohno'], -->
<!--

<g:remoteLink action="showNotes" id="${todo.id}"
 update="todoDetailNote${todo.id}">
 Notes
</g:remoteLink>

<div id="todoDetailNote${todo.id}">
</div>
 -->
</div>
</div>

Our first step is complete. In reality, there is nothing in the page that is Ajax-enabled yet. Right now, the page
works exactly as it did before, and in theory, you could have used these techniques to help segregate the code.

Making the Page Dynamic

Now we will do the partial page form rendering, which is a two-step process:

1. Change the form to take an Ajax form tag.

2. Have the save call on the controller render the tag instead of the whole page.

For the first part, change the form encapsulation in list.gsp to the code shown in Listing 8-29.

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

237

Listing 8-29. Adding an Ajax Form Tag (in views/todo/list.gsp)

<g:formRemote name="todoForm"
 url="[controller:'todo',action:'save']"
 update="todoList"
 onComplete="showhide('addToDo')"
 enctype="multipart/form-data">
 . . .
</g:formRemote>

This calls the save action on our TodoController, and then on completion, hides the add section. In addition,
the update attribute will tell us which <div> section we are updating. In Listing 8-27 notice that we surrounded our
rendered items with the <div> tag todoList. This is the section that the Ajax JavaScript will re-render upon return.

The changes to the save action are equally as easy. Instead of the standard return, where we redirect to the list
page, we have a line to get the collection and call out to render the GSP we marked, as shown in Listing 8-30.

Listing 8-30. Rendering Just the Tag (in views/todo/list.gsp)

render(TEMPLATE:'DETAIL', VAR: 'TODO', COLLECTION:LISTBYOWNER())

As you can see, besides having to move some data, this was all relatively simple. And that is all that is needed.
If you go back to the page now, it will do an update without needing to return the whole page.

RSS Feeds
RSS feeds have become an increasingly popular feature to incorporate on a web site. Contributing to RSS feed
popularity is the increasing number of RSS readers out there, including the new iGoogle2 and the RSS Web Clip
in Gmail. So we will go over creating a basic RSS reader. This will be an extremely basic example; in a real-world
application, you would want to add more items for security checking.

Creating an RSS feed basically requires creating an XML output in a fairly strict format. The reader then takes that
XML and parses it for content.

We could do this by hand, but the format based on the feeds can be somewhat complex, and you would also
need to write quite a bit of repetitive code. Luckily, there is aplugin that will help us cheat a bit and create the feeds.
The Feeds plugin3 shown in Figure 8-8 supports creating feeds in the popular RSS and Atom formats (with multiple
versions of each supported). Start by installing the plugin:

> grails install-plugin feeds

2 http://www.google.com/ig.
3http://grails.codehaus.org/Feeds+Plugin.

http://www.google.com/ig
http://grails.codehaus.org/Feeds+Plugin

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

238

The next step is to create a controller with one method in it. This method will be rendering the XML in a way that
the renderer can understand. For this example, we will use the Atom format to format the output. Listing 8-31 shows
our RSSControllerwith a feed method.

Listing 8-31. Our RSSController with the feed Method (in controller/RssController.groovy)

import feedsplugin.FeedBuilder
class RssController {

 def feed = {
 render(feedType:"atom") { // optional - , feedVersion:"2.0") {
 title = "Todo List"
link = "http://localhost:8080/collab-todo/rss"

 Todo.list(sort: "name", order: "asc").each {
 def todo = it
 entry(it.name) {
 title = "${todo.name}"
 link = "http://localhost:8080/collab-todo/todo/view/${todo.id}"
 author = "${todo.owner.lastName}, ${todo.owner.firstName}"
 }
 }
 }
 }
}

Here we use a standard renderer, and in it we define a few items. We define the title and the link. Then we iterate
through a list of items queried from the database sorted in ascending order. For each item, we need to define an entry.
The entry has three items on it: itstitle, its URL link, and its contents. Table 8-3 lists a few of the common fields you
would expect to have in a feed.

Figure 8-8. Installing feeds plugin using Grails Plugin Manager

i

http://localhost:8080/collab-todo/rss
http://localhost:8080/collab-todo/todo/view/${todo.id

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

239

In our example, we used title, link, and author. We sorted based on creation date (actually, we could have
sorted based on anything). Note that if you supply publishedDate, your feeder may automatically sort on that date
instead. An example of the output for this example is shown in Figure 8-9.

Figure 8-9. Our RSS reader in a Safari browser

Table 8-3. Some Common Fields for a Feed

Field Name Description

publishedDate The date the entry of the field is published

categories The list of categories related to the entry

author The name of the author of the entry

link The link to a full description of the entry

title The title of the entry

CHAPTER 8 ■ WEB 2.0—AJAX AND FRIENDS

240

Summary
This chapter was the start of transforming our working todo application into a more robust application. We added
features that not only make it more useful, but also make it more visually appealing. These characteristics are
extremely important for a web site.

The purpose of this chapter was to expose you to a variety of more advanced webstyling techniques for our
application, taking advantage of the Ajax framework. There are more Ajax techniques and plugins available on the
Grails site. We suggest taking a peek to see if any meet your needs. And if they don’t, you always have the option of
creating your own plugin and joining the Grails community that way.

In the next few chapters, we will expand the todo application and add even more functionality, including
reporting and batch jobs.

r

241

Chapter 9

Web Services

Up until this point, you have seen how you can use Grails to develop user-oriented web applications. This chapter
focuses on how to use web services to expose your application functionality to other applications. You can also use the
techniques discussed in this chapter to drive Web 2.0 Ajax enabled web applications, like those discussed in Chapter 8.

Originally, web services grew in popularity as a means for system integration. But with the recent popularity of
sites such as Google Maps and Amazon.com, and social networking sites like Facebook, there is an expectation that
public APIs should be offered so users can create new and innovative client applications. When these clients combine
multiple services from multiple providers, they are referred to as mashups.(See http://en.wikipedia.org/wiki/
Mashup_(web_application_hybrid) for more information.) They can include command-line applications, desktop
applications, web applications, or some type of widget.

In this chapter, you will learn how to expose your application functionality as a Representational State Transfer
(REST) web service by extending the Collab- Todo application to provide access to domain objects. This RESTful web
service will be able to return either XML or JavaScript Object Notation (JSON), depending on the needs of the client
application. This web service will also be designed to take advantage of convention over configuration for exposing
CRUD functionality for any Grails domain model, similar to the way Grails scaffolding uses conventions to generate
web interfaces. Finally, you will discover how to write simple client applications capable of taking advantage of the
web service.

RESTful Web Services
REST is not a standard or specification. Rather, it is an architectural style or set of principles for exposing stateless
CRUD-type services, commonly via HTTP. Web services are all about providing a web API onto your web. That is,
setting the web services for the application makes the application a source of data that other web applications can use.
These web services can be implemented in either REST or SOAP. In the case of SOAP, the data exchange happens in a
specialized XML with a SOAP-specific header and body, which adds to the complexity of building web services. Rest
supports regular old XML (POX) as well as JSON for data exchange.

Unlike SOAP, the web services based on REST are resource-oriented. For example, if we implement a web service
in the Collab-Todo application that returns an XML representation of the user, the URI to this web service, http://
localhost:8080/collab-todo/todo/user, is resource oriented, as the user in the URI is a resource(noun). If the URI
was like http://localhost:8080/collab-todo/todo/showuser , it was not resource-oriented, as the showuser is a
method (verb) and such a URI is service-oriented. In addition to resource-oriented URI, in the RESTful web service,
the access is achieved via standard methods such as HTTP’s GET, POST, PUT, and DELETE. To understand this, we
will first implement a web service that is not RESTful. The quickest way to get POX or JSON output from your Grails
application is to import the grails.converters.* package and add a closure, as shown in Listing 9-1 and Listing 9-2,
with output shown in Figure 9-1 and Figure 9-2, respectively.

http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid
http://localhost:8080/collab-todo/todo/user
http://localhost:8080/collab-todo/todo/user
http://localhost:8080/collab-todo/todo/showuser

CHAPTER 9 ■ WEB SERVICES

242

Figure 9-1. A POX output

Listing 9-1. Implementing a Non-RESTful Web Service for POX Output

import grails.converters.*

class UserController{
 def showUser = {
 render User.list() as XML
 }

 ...
}

CHAPTER 9 ■ WEB SERVICES

243

Listing 9-2. Implementing a Non-RESTful Web Service for JSON Output

import grails.converters.*

class UserController{
 def showUser = {
 render User.list() as JSON
 }

 ...
}

Figure 9-2. JSON output

A RESTful web service in the Collab-Todo application, which we will discuss in later sections, might look like this:

http://localhost:8080/collab-todo/todo/1

In this example, a representation of the Todo object with an id of 1 could get returned as XML, as shown in
Listing 9-3.

Listing 9-3. POX Representation of a Todo Object Returned from a RESTful Web Service

<todo id="1">
<completedDate>2012-08-11 11:08:00.0</completedDate>
<createDate>2012-08-11 00:15:00.0</createDate>
<dueDate>2012-08-11 11:08:00.0</dueDate>
<name>Expose Web Service</name>
<note>Expose Todo domain as a RESTful Web Service.</note>
<owner id="1"/>
<priority>1</priority>
<status>1</status>
</todo>

Another alternative might be to return a representation as JSON, like the example shown in Listing 9-4.

Listing 9-4. JSON Representation of a Todo Object Returned from a RESTful Web Service

{
"id": 1,
"completedDate": new Date(1197389280000),
"status": "1",

http://localhost:8080/collab-todo/todo/1

CHAPTER 9 ■ WEB SERVICES

244

"priority": "1",
"name": "Expose Web Service",
"owner": 1,
"class": "Todo",
"createDate": new Date(1197350100000),
"dueDate": new Date(1197389280000),
"note": "Expose Todo domain as a RESTful Web Service."
}

In both Listings 9-3 and 9-4, you see that the Todo representation includes all the properties of the object,
including the IDs of referenced domain models like owner. The one difference is the lack of the action, or verb.
RESTful accessed via HTTP uses the standard HTTP methods of GET, POST, PUT, or DELETE to specify the action.
Table 9-1 provides a mapping of CRUD actions to SQL statements, HTTP methods, and Grails URL conventions.

Table 9-1. Relationship Between SQL Statements, HTTP Methods, and Grails Conventions

Action SQL Statements HTTP Method Grails Convention

Create INSERT PUT create

Read SELECT GET show

Update UPDATE POST update

Delete DELETE DELETE delete

Collection SELECT list

The relationships described in Table 9-1 are self-explanatory and follow the REST principles, except for the last
action of the collection. Because REST is purely focused on CRUD, it doesn’t really address things like searching or
returning lists. So the collection is borrowed from the Grails concept of the list action and can easily be implemented
by doing a REST read without an ID, similar to the following:

http://localhost/collab-todo/todo

The result of this URL would include a representation of all Todo objects as XML, as shown in Listing 9-5.

Listing 9-5. POX Representation of a Collection of Todo Objects Returned from a RESTful Web Service

<list>
<todo id="1">
<completedDate>2012-08-11 11:08:00.0</completedDate>
<createDate>2012-08-11 00:15:00.0</createDate>
<dueDate>2012-08-11 11:08:00.0</dueDate>
<name>Expose Web Service</name>
<note>Expose Todo domain as a RESTful Web Service.</note>
<owner id="1"/>
<priority>1</priority>
<status>1</status>
</todo>
<todo id="2">
<completedDate>2012-08-11 11:49:00.0</completedDate>
<createDate>2012-08-11 00:15:00.0</createDate>
<dueDate>2012-08-11 11:49:00.0</dueDate>

http://localhost/collab-todo/todo

CHAPTER 9 ■ WEB SERVICES

245

<name>Expose Collection of Todo objects</name>
<note>Add a mechanism to return more than just a single todo.</note>
<owner id="1"/>
<priority>1</priority>
<status>1</status>
</todo>
</list>

Notice that in Listing 9-5, two Todo objects are returned within a <list> element representing the collection.

RESTful in Grails
Grails provides several features that make implementing a RESTful web service in Grails easy. First, it provides the
ability to map URLs. In the case of RESTful web services, you want to map URLs and HTTP methods to specific
controller actions. Second, Grails provides some utility methods to encode any Grails domain object as XML or JSON.

In this section, you will discover how you can use the URL mappings, encoding, and the Grails conventions to
create a RestController, which returns XML or JSON representations for any Grails domain class, similar to how
scaffolding is able to generate any web interface.

URL Mappings
As you learned in the previous section, URLs are a major aspect of the RESTful web service architectural style. So it
should come as no surprise that URL mappings are involved. But before we explain how to map RESTful web services,
let’s look at the default URL mappings.

Default URL Mappings

You can find the URL mappings’ configuration file, UrlMappings.groovy, with the other configuration files in
grails-app/conf/. It uses a simple domain-specific language to map URLs. Listing 9-6 shows the default contents
of the file.

Listing 9-6. Default UrlMappings.groovy

1. class UrlMappings {
2. static mappings = {
3. "/$controller/$action?/$id?"{
4. constraints {
5. // apply constraints here
6. }
7. }
8. "500"(view:'/error')
9. }
10. }

In case you thought the Grails URL convention was magic, well, it isn’t. Line 3 of Listing 9-6 reveals how the
convention is mapped to a URL. The first path element, $controller, as explained in Chapters 4 and 5, identifies
which controller handles the request. $action optionally (as noted by the ? operator, similar to the safe dereferencing
operator in Groovy) identifies the action on the controller to perform the request. Finally, $id optionally specifies the
unique identifier of a domain object associated with the controller to be acted upon.

CHAPTER 9 ■ WEB SERVICES

246

Listing 9-6 shows how this configuration file maps the default URLs. It is completely customizable if you don’t
like the default or if you want to create additional mappings for things such as RESTful web services. Mappings are
explained in the next section.

RESTful Mappings

The basic concept behind RESTful URL mappings involves mapping a URL and an HTTP method to a controller and
an action.

Listing 9-7. RESTful URL Mapping

static mappings = {
 "/user/$id?"(resource:"user")
}

This maps the URI /user onto a UserController. Each HTTP method such as GET, PUT, POST, and DELETE map to
unique actions within the controller. You can alter how HTTP methods are handled by using URL Mappings to map to
HTTP methods, as shown in Listing 9-8.

Listing 9-8. URL Mappings to Map to HTTP Methods

"/user/$id"(controller: "user") {
 action = [GET: "show", PUT: "update", DELETE: "delete", POST: "save"]
}

As we discussed earlier, Grails provides automatic XML or JSON marshalling. However, unlike the resource
argument used in Listing 9-7, Grails will not provide automatic XML or JSON marshalling in the case of Listing 9-8,
unless you specify the parseRequest argument as shown in Listing 9-9.

Listing 9-9. URL Mappings to Map to HTTP Methods with Auto Marshalling

"/product/$id"(controller: "product", parseRequest: true) {
 action = [GET: "show", PUT: "update", DELETE: "delete", POST: "save"]
}

This technique also simplifies making the generic RestController in the next section, because using a common
base URL can always be mapped to the RestController. So the URL to invoke a RESTful web service that returns an
XML representation like that found in Listing 9-3 would look like this:

http://localhost:8080/collab-todo/rest/todo/1

The URL for returning a JSON representation like that found in Listing 9-4 would look like this:

http://localhost:8080/collab-todo/json/todo/1

You can implement this mapping by adding an additional URL mapping to UrlMappings.groovy. Listing 9-10
shows what the mapping looks like.

Listing 9-10. Using rest Format Type

1. "/$rest/$controller/$id?"{
2. controller = "rest"

http://localhost:8080/collab-todo/rest/todo/1
http://localhost:8080/collab-todo/json/todo/1

CHAPTER 9 ■ WEB SERVICES

247

3. action = [GET:"show", PUT:"create", POST:"update", DELETE:"delete"]
4. constraints {
5. rest(inList:["rest","json"])
6. }
7. }

Line 1 of Listing 9-10 shows the format of the URL. It includes a required $rest, which is the resulting format
type, followed by the required $controller and an optional $id. Because $rest should only allow the two format
types we are expecting, line 5 uses an inList constraint much like the constraints discussed in the GORM discussions
of Chapter 6. Anything other than a “rest” or a “json” will cause an HTTP 404 (Not Found) error. Line 2 specifies
that the RestController will handle any URL with this mapping. Finally, line 3 maps the HTTP methods to Grails
conventional actions on the RestController.

Content Negotiation
Content negotiation is a mechanism defined in the HTTP specification that makes it possible to deal with different
incoming requests to serve different versions of a resource representation at the same URI. Grails has built-in support
for content negotiation using either the HTTP Accept header, an explicit format request parameter, or the extension of
a mapped URI.

With the content negotiation, a controller can automatically detect and handle the content type requested by
the client. Before you can start dealing with content negotiation, you need to tell Grails what content types you wish
to support. By default, Grails comes configured with a number of different content types within grails-app/conf/
Config.groovy using the grails.mime.types setting, as shown in Listing 9-11.

Listing 9-11. Default Content Types

grails.mime.types = [xml: ['text/xml', 'application/xml'],
 text: 'text-plain',
 js: 'text/javascript',
 rss: 'application/rss+xml',
 atom: 'application/atom+xml',
 css: 'text/css',
 csv: 'text/csv',
 all: '*/*',
 json: 'text/json',
 html: ['text/html','application/xhtml+xml']
]

The above bit of configuration allows Grails to detect to format of a request containing either the
'text/xml' or 'application/xml' media types as simply 'xml'.

Content Negotiation using the Accept Header

Every browser that conforms to the HTTP standards is required to send an Accept header. The Accept header contains
information about the various MIME types the client is able to accept. Every incoming HTTP request has a special
Accept header that defines what media types (or mime types) a client can “accept.” Listing 9-12 illustrates an example
of a Firefox Accept header.

CHAPTER 9 ■ WEB SERVICES

248

Listing 9-12. Example of Accept Header

text/xml, application/xml, application/xhtml+xml, text/html;q=0.9,
text/plain;q=0.8, image/png, */*;q=0.5

Grails parses this incoming format and adds a property to the response object that outlines the preferred
response format.

To deal with different kinds of requests from Controllers, you can use the withFormat method, which acts as kind
of a switch statement, as shown in Listing 9-13.

Listing 9-13. Using withFormat Method

import grails.converters.XML
class UserController {
 def list() {
 def users = User.list()
 withFormat {
 html userList: users
 xml { render users as XML }
 }
 }
 }

If the preferred format is html, Grails executes the html() call only. If the format is xml, the closure is invoked
and an XML response is rendered. When using withFormat, make sure it is the last call in your controller action, as
the return value of the withFormat method is used by the action to dictate what happens next. The request format
is dictated by the CONTENT_TYPE header and is typically used to detect if the incoming request can be parsed into
XML or JSON, while the response format uses the file extension, format parameter, or Accept header to attempt to
deliver an appropriate response to the client. The withFormat available on controllers deals specifically with the
response format. To add logic that deals with the request format, use a separate withFormat method on the request, as
illustrated in Listing 9-14.

Listing 9-14. Using withFormat with Request

request.withFormat {
 xml {
 // read XML
 }
 json {
 // read JSON
 }
 }

Content Negotiation with the Format Request Parameter

Another mechanism of content negotiation is to use the format request parameter, which is used to override the
format used in the request headers by specifying a format request parameter:

/user/list?format=xml

CHAPTER 9 ■ WEB SERVICES

249

You can also define this parameter in the URL Mappings definition:

"/user/list"(controller:"user", action:"list") {
 format = "xml"
}

Content Negotiation with URI Extensions

Grails also supports content negotiation using URI extensions. For example, suppose you have the following URI:

/user/list.xml

In this case, Grails will remove the extension and map it to /user/list instead, while simultaneously setting
the content format to xml based on this extension. This behavior is enabled by default; to turn it off, set the
grails.mime.file.extensions property in grails-app/conf/Config.groovy to false:

grails.mime.file.extensions = false

RestController
Because Grails already has conventions around CRUD as well as dynamic typing provided by Groovy, implementing
a generic RESTful controller that can return XML or JSON representations of any domain model is relatively simple.
We’ll begin coverage of the RestController by explaining the common implementation used by all actions. We’ll then
explain each action and its associated client, which calls the RESTful service.

Common Functionality

The common functionality of the RestController is implemented as an interceptor, as discussed in Chapter 5, along
with two helper methods. Listing 9-15 contains a complete listing of the common functionality.

Listing 9-15. RestController

import static org.apache.commons.lang.StringUtils.*
import org.codehaus.groovy.runtime.InvokerHelper
import org.codehaus.groovy.grails.commons.GrailsDomainClass
import Error

/**
 * Scaffolding like controller for exposing RESTful web services
 * for any domain object in both XML and JSON formats.
 */
class RestController {
 private GrailsDomainClass domainClass
 private String domainClassName

 // RESTful actions excluded

CHAPTER 9 ■ WEB SERVICES

250

 def beforeInterceptor = {
 domainClassName = capitalize(params.domain)
 domainClass = grailsApplication.getArtefact("Domain", domainClassName)
 }

 private invoke(method, parameters) {
 InvokerHelper.invokeStaticMethod(domainClass.getClazz(), method, parameters)
 }

 private format(obj) {
 def restType = (params.rest == "rest")?"XML":"JSON"
 render obj."encodeAs$restType"()
 }
}

The beforeInterceptor found in Listing 9-15 is invoked before any of the action methods are called. It’s
responsible for converting the $controller portion of the URL into a domain class name and a reference to a
GrailsDomainClass, which are stored into private variables of the controller. You can use the domainClassName later
for logging and error messages. The name is derived from using an interesting Groovy import technique. Since the
controller in the URL is lowercased, you must uppercase it before doing the lookup. To do this, use the static Apache
Commons Lang StringUtilscapitalize() method. Rather than specifying the utility class when the static method
is called, an import in Groovy can also reference a class, making the syntax appear as if the static helper method is
actually a local method. A reference to the actual domain class is necessary so the RestController can call dynamic
GORM methods. Getting access to that domain class by name involves looking it up. However, because Grails domain
classes are not in the standard classloader, you cannot use Class.forName(). Instead, controllers have an injected
grailsApplication with a getArtefact() method, which you can use to look up a Grails artifact based on type.
In this case, the type is domain. You can also use this technique to look up controllers, tag libraries, and so on.

Note■ The RestController class is framework-oriented, so it uses some more internal things such as

grailsApplication.getArtefact() and InvokerHelper to behave generically. If you get into writing Grails plugins,

you will use these type of techniques more often than in normal application development.

In Listing 9-15, the helper methods are the invoke() method and format() method. The invoke() method uses
the InvokerHelper helper class to simplify making calls to the static methods on the domain class. The methods on
the domain class that are invoked by the RestController are all GORM-related. The format method uses the $rest
portion of the URL to determine which Grails encodeAsXXX() methods it will call on the domain class. Grails includes
encodeAsXML() and encodeAsJSON() methods on all domain objects.

There is one other class involved in the common functionality, and that is the Error domain class found in
Listing 9-16.

Listing 9-16. Error Domain Class

class Error {

 String message
}

CHAPTER 9 ■ WEB SERVICES

251

Yes, the Groovy Error class in Listing 9-16 is a domain class found in the grails-app/domain directory.
Making it a domain class causes Grails to attach the encoding methods, therefore enabling XML or JSON to be
returned if an error occurs during the invocation of a RESTful web service.

RESTful show

The show action has double duty. It displays both a single domain model and a collection of domain models.
Listing 9-17 exhibits the show action implementation.

Listing 9-17. show Action

def show = {
 def result
 if(params.id) {
 result = invoke("get", params.id)
 } else {
 if(!params.max) params.max = 10
 result = invoke("list", params)
 }

 format(result)
}

In Listing 9-17, you should notice that the action uses params to determine if an ID was passed in the URL. If it
was, the GORM get() method is called for that single domain model. If it wasn’t, the action calls the GORM list()
method to return all of the domain objects. Also, notice that just like scaffolding, the action only returns a maximum
of 10 domain objects by default. Using URL parameters, you can override that, just like you can with scaffolding. So
adding ?max=20 to the end of the URL would return a maximum of 20 domain classes, but it does break the spirit
of REST.

Listing 9-18 contains example code of a client application that calls the show action and returns a single domain
model.

Listing 9-18. RESTful GET Client (GetRestClient.groovy)

import groovy.util.XmlSlurper

def slurper = new XmlSlurper()

def url = "http://localhost:8080/collab-todo/rest/todo/1"
def conn = new URL(url).openConnection()
conn.requestMethod = "GET"
conn.doOutput = true

if (conn.responseCode == conn.HTTP_OK) {
 def response

 conn.inputStream.withStream {
 response = slurper.parse(it)
 }

http://localhost:8080/collab-todo/rest/todo/1

CHAPTER 9 ■ WEB SERVICES

252

 def id = response.@id
 println "$id - $response.name"
}
conn.disconnect()

There are a couple of things to notice in Listing 9-18. First, the example uses the standard Java URL and
URLConnection classes defined in the java.net package. This is true of all client applications through the rest of
the chapter. You could also use other HTTP client frameworks, such as Apache HttpClient.1 Second, notice that the
request method of GET was used. Finally, the Groovy XmlSlurper class was used to parse the returned XML. This
allows you to use the XPath notation to access things such as the name element and the id attribute of the result.

RESTful delete

Because DELETE is so similar to GET, both the action code and the client code are similar to that shown in the previous
show action section. Listing 9-19 shows the delete action implementation.

Listing 9-19. delete Action

def delete = {

 def result = invoke("get", params.id);

 if(result) {
 result.delete()
 } else {
 result = new Error(message: "${domainClassName} not found with id ${params.id}")
 }

 format(result)
}

In Listing 9-19, the GORM get() method is called on the domain class. If it is found, it is deleted. If it isn’t, it will
return an error message. Listing 9-20 shows the client code that calls the delete RESTful web service.

Listing 9-20. RESTful DELETE Client (DeleteRestClient.groovy)

def url = "http://localhost:8080/collab-todo/rest/todo/1"
def conn = new URL(url).openConnection()
conn.requestMethod = "DELETE"
conn.doOutput = true

if (conn.responseCode == conn.HTTP_OK) {
 input = conn.inputStream
 input.eachLine {
 println it
 }
}
conn.disconnect()

1http://jakarta.apache.org/httpcomponents/httpclient-3.x/

http://localhost:8080/collab-todo/rest/todo/1
http://jakarta.apache.org/httpcomponents/httpclient-3.x/

CHAPTER 9 ■ WEB SERVICES

253

The only differences between Listing 9-20 and Listing 9-18 are that the request method used in Listing 9-20 is
DELETE, and instead of using the XmlSlurper, the contents of the result are just printed to the console, which is either
an XML or JSON result of the deleted domain.

RESTful update

A POST is used to update the existing domain models in the RESTful paradigm. Listing 9-21 shows the implementation
of the method that updates the domain models.

Listing 9-21. update Action

def update = {
 def result
 def domain = invoke("get", params.id)
 if(domain) {
 domain.properties = params
 if(!domain.hasErrors() && domain.save()) {
 result = domain
 } else {
 result = new Error(message: "${domainClassName} could not be saved")
 }
 } else {
 result = new Error(message: "${domainClassName} not found with id ${params.id}")
 }
 format(result)
}

Like previous examples, Listing 9-21 invokes the GORM get() method to return the domain model to update. If a
domain model is returned, all the parameters passed from the client are copied to the domain. Assuming there are no
errors, the domain model is saved. Listing 9-22 shows a client that calls the POST.

Listing 9-22. RESTful POST Client (PostRestClient.groovy)

def url = "http://localhost:8080/collab-todo/rest/todo"
def conn = new URL(url).openConnection()
conn.requestMethod = "POST"

conn.doOutput = true
conn.doInput = true

def data = "id=1¬e=" + new Date()

conn.outputStream.withWriter { out ->
 out.write(data)
 out.flush()
}

http://localhost:8080/collab-todo/rest/todo

CHAPTER 9 ■ WEB SERVICES

254

if (conn.responseCode == conn.HTTP_OK) {
 input = conn.inputStream
 input.eachline {
 println it
 }
}
conn.disconnect()

Notice that Listing 9-22 uses a POST method this time. Also, pay attention to the fact that the data is passed to the
service as name/value pairs separated by &s. At a minimum, you must use the id parameter so the service knows on
which domain model to operate. You can also append other names to reflect changes to the domain. Because this is a
POST, the container automatically parses the name/value pairs and puts them into params. The result will either be an
XML or a JSON representation of the updated domain.

RESTful create

Finally, the most complicated of the RESTful services: the create service. Listing 9-23 shows the implementation.

Listing 9-23. create Action

def create = {
 def result
 def domain = InvokerHelper.invokeConstructorOf(domainClass.getClazz(), null)

 def input = ""
 request.inputStream.eachLine {
 input += it
 }

 // convert input to name/value pairs
 if(input && input != '') {
 input.tokenize('&').each {
 def nvp = it.tokenize('=');
 params.put(nvp[0],nvp[1]);
 }
 }
 domain.properties = params

 if(!domain.hasErrors() && domain.save()) {
 result = domain
 } else {
 result = new Error(message: "${domainClassName} could not be created")
 }

 format(result)
}

CHAPTER 9 ■ WEB SERVICES

255

Listing 9-23 begins by using InvokerHelper to call a constructor on the domain class. Unlike POST, PUT’s input
stream of name/value pairs is not automatically added to the params. You must do this programmatically. In this
case, two tokenizers are used to parse the input stream. After that, the rest of the implementation follows the update
example found in Listing 9-21. Listing 9-24 demonstrates a client application that does a PUT.

Listing 9-24. RESTful PUT Client (PutRestClient.groovy)

def url = "http://localhost:8080/collab-todo/rest/todo"
def conn = new URL(url).openConnection()
conn.requestMethod = "PUT"

conn.doOutput = true
conn.doInput = true

def data = "name=fred¬e=cool&owner.id=1&priority=1&status=1&"+
"createDate=struct&createDate_hour=00&createDate_month=12&" +
"createDate_minute=15&createDate_year=2012&createDate_day=11"

conn.outputStream.withWriter { out ->
 out.write(data)
 out.flush()
}
if (conn.responseCode == conn.HTTP_OK) {
 input = conn.inputStream
 input.eachLine {
 println it
 }
}
conn.disconnect()

Listing 9-24 is nearly identical to Listing 9-22, except that the PUT request method and a more complicated set
of data are passed to the service. In this example, the data includes the created date being passed. Notice that each
element of the date/time must be passed as a separate parameter. In addition, the createDate parameter itself must
have a value of struct. The result is either an XML or JSON representation of the created domain object.

Summary
In this chapter, you learned about the architectural style of RESTful web services, as well has how to expose domain
models as RESTful web services. As you build your applications, look for opportunities to expose functionality to your
customers in this way. You may be amazed at the innovations you never even imagined. In Chapter 13, you will see
one such innovation of a Groovy desktop application.

http://localhost:8080/collab-todo/rest/todo

257

Chapter 10

Reporting

In most projects, reporting is often overlooked until the last minute. Everyone is focused on getting information into
the system and making the views look and feel right. Then someone starts using the application and says, “Wouldn’t
it be nice if users could print out a copy of the information to take with them?” “Oops, we didn’t think about that.”
(Insert chirping crickets here.)

It makes sense that users would want to take their todo information with them. But you’re in a hurry and want to
get this application rolled out quickly. What do you do?

In this chapter, you will learn how to create a reporting facility using the Collab-Todo domain and a popular open
source reporting engine, JasperReports.1 Creating a reporting facility will give you a slightly different view of Grails.
You will use dynamic invocation to retrieve data for the report and pass the data to JasperReports. Along the way, you
will see how easy it is to use third-party libraries in a Grails application.

The Report
The goal of this chapter is to allow users to run a report that contains their lists of todo items.

Start by adding some technical constraints to help frame the solution:

You want to be able to create multiple reports.•

Reports should be available in multiple formats, including PDF, HTML, TXT, RTF, XLS, CSV, •
and XML.

You believe in the DRY principle and want to maintain a separation of concerns and •
encapsulation.

You’ll leverage the Grails domain model and dynamic methods to retrieve the report data.•

Taking these technical constraints into consideration, you can construct the solution illustrated in Figure 10-1.

1http://www.jasperforge.org

http://www.jasperforge.org

CHAPTER 10 ■ REPORTING

258

The first component in the top-left of Figure 10-1 represents an HTML page. The HTML page needs to provide a
way for users to indicate that they want to generate a report. You accomplish this by creating a report tag. You could
just hard-code all the logic required to invoke the next step in the process, but since there are multiple reports, that
would be a lot of copying, pasting, and tweaking. It wouldn’t be very user friendly to the HTML developer either. By
creating a tag, you’re able to encapsulate all of the invocation knowledge.

Just like most links in Grails, a tag invokes an action on a controller. If you consider the technical constraints, the
controller should have very little knowledge about the actual report to be created. It should control (pun intended) the
execution of the reporting process. In this case, it calls the TodoController to gather the data for the report.

The TodoController uses dynamic finder methods on the Todo class to retrieve the report data from the
database, and returns the result to the ReportController. Now that the ReportController has data for the report, it
calls the ReportService to create the report.

The ReportService prepares the data, locates the appropriate report template, and invokes the report engine,
JasperReports. The report engine merges the data and the template to create the report. It returns the report to the
ReportService, which in turn returns the report to the ReportController. The ReportController then wraps the
report in the appropriate headers and returns it to the browser to be displayed.

This is just an overview. The rest of the chapter will explore each step in more detail and will hopefully answer
most, if not all, of your questions.

<g:reprot controller= “TodoController”

action= “report1”

PDF

PDF

10

1 2

3
4

5

8

96

7

DB

TodoControllerReportController

ReportService

userTodo.jasper

JasperReports

Figure 10-1. Reporting facility overview

CHAPTER 10 ■ REPORTING

259

A question that needs to be addressed straightaway is, “Why does the ReportController pass the report data

to the report instead of the report looking up the data using a simple SQL statement embedded in the report

template?” The answer is pretty simple. That would be a perfectly legitimate approach in many situations (see the

“An Alternate Approach” section at the end of the chapter), but using the dynamic finder and the domain model

provides a couple of advantages.

First, when the domain model becomes more complicated, writing the SQL to navigate all of the tables and

relationships is error-prone and difficult. You already defined all of this information in the domain model using

GORM, so why not just reuse it?

Second, your goal is to learn Grails, and using embedded SQL would cause you to miss out on using dynamic

finders and dynamically calling the appropriate action on the TodoController to gather the data.

Now that you have an idea of how to approach creating the reporting facility, you need to add JasperReports
to the application and create the report template. The next couple of sections will take you through that process.
With that accomplished, you will construct the individual components and tie everything together. By the end of
this chapter, you will have a pretty nice reporting facility that will allow you to easily create reports in multiple
output formats.

Reporting Tools
In this section, you will receive a high-level overview of JasperReports (the runtime reporting engine) and iReports
(the report designer). You will install iReports and add the appropriate JasperReports libraries to the application.

Overview
JasperReports is a popular open source Java reporting engine from JasperSoft.2 You can use JasperReports to define
robust, professional reports that include graphics and charts. You set up and define JasperReports reports using XML.
The reporting engine uses the report definition and a data source to produce a report in a variety of output formats,
including PDF, XML, HTML, CSV, XLS, RTF, and TXT.

JasperReports uses third-party libraries to render reports. The engine itself is not an executable application. It is
intended to be embedded into a client or server-side application. The application is responsible for passing the XML
report definition, data source, parameters, and configuration information to a report exporter. The exporter returns a
ByteArrayOutputStream containing the report content to the application. In the case of a typical server application,
the application sets the appropriate content type on an HTML response and streams the results to the browser.

Tip ■ JasperReports relies on Abstract Window Toolkit (AWT) to render the report. If you intend to run

Collab-Todo in a Linux/Unix environment without graphics support, you will need to specify the headless environment

by setting -Djava.awt.headless=true. You can do this by setting the JAVA_OPT environmental variable (e.g.,

JAVA_OPT='–Djava.awt.headless=true').

DYNaMIC FINDerS Or eMBeDDeD SQL?

2http://www.jaspersoft.com

http://www.jaspersoft.com

CHAPTER 10 ■ REPORTING

260

The XML report definition, known as a report template in Jasper terms, defines the content and layout of the
report. You can define the report by hand using an XML editor, but this is time-consuming and error-prone. Luckily,
JasperSoft created iReports, a graphic report designer for JasperReports that defines and compiles JasperReports. It is
much easier to build reports using iReports than it is to build the XML report definition by hand.

Note ■ A full exploration of JasperReports and iReports is beyond the scope of this book. In addition to the JasperSoft

web site, the Apress books The Definitive Guide to JasperReports 3 and The Definitive Guide to iReports 4 are good sources

of information.

Installing JasperReports and iReports
Installing JasperReports and iReports is easy. You can download iReports from the iReports home page5 or from
SourceForge.6 Download and execute the Windows installer version.

Note ■ If you’re using an operating system other than Windows, you need to download the .zip or.tar file and install

it manually by unzipping or unpacking it into an appropriate location.

The Windows installer installs iReports in the directory of your choice; remember where it’s installed.
iReports includes JasperReports and all of the required third-party libraries. Copy the following files from the
iReports/lib directory to the collab-todo/lib directory:

• poi-x.x.x-FINAL-x.jar

• commons-beanutils-x.x.jar

• commons-collections-x.x.jar

• commons-dbcp-x.x.x.jar

• commons-digester-x.x.jar

• commons-logging-x.x.x.jar

• commons-logging-api-x.x.x.jar

• commons-pool-x.x.jar

• itext-x.x.x.jar

• jasperreports-x.x.x.jar

Grails uses these JAR files to invoke JasperReports.

3TeodorDanciu and Lucian Chirita, The Definitive Guide to JasperReports (Berkeley, CA: Apress, 2007).
4GiulioToffoli, The Definitive Guide to iReports (Berkeley, CA: Apress, 2007).
5http://jasperforge.org/sf/projects/ireport
6http://sourceforge.net/projects/ireport

http://jasperforge.org/sf/projects/ireport
http://sourceforge.net/projects/ireport

CHAPTER 10 ■ REPORTING

261

Creating the Todo Report
Now that iReports is installed, you’re ready to build the todo report, as shown in Figure 10-1. You will take the
following steps to create the report:

1. Define a JavaBeans data source for Collab-Todo.

2. Create the first iteration of the report using the iReport Wizard.

3. Enhance the report.

4. Compile the report.

Defining the Data Source
If you recall from the overview, the ReportController gathers the report data from another controller and ultimately
passes the data to the reporting engine. This means that instead of using a JDBC database connection, the report uses
a JavaBeans data source. Let’s define the data source:

1. From iReports, select the Data ➤ Connections/Data Sources menu option. A list of
currently defined and example data sources is shown.

2. Click the New button to define a new data source. The “Connections properties” dialog
box opens.

3. Select the “JavaBeans set data source” option from the list of available data sources, and
click the Next button. The “JavaBeans set data source” options are shown.

4. Set the name to Collab-Todo and blank out the factory class and static method fields.
Figure 10-2 shows the contents of this page.

Figure 10-2. The “JavaBeans set data source” page

CHAPTER 10 ■ REPORTING

262

5. Click the Save button. You should see your new data source in the list of available data
sources.

6. Close this window.

You’re now ready to define the report using the wizard.

Using iReports
Now that you’ve defined a data source, you’re ready to start building the report. If you’re already familiar with
iReports, you can skim through this section and move on to the “The Report Tag” section.

MaKING IrepOrtS aWare OF the COLLaB-tODO CLaSSeS

iReports uses the Collab-Todo domain class to create the report, so you need to make iReports aware of the

domain classes. Ideally, you would just add the location of the Collab Todo classes to the iReports classpath. At the

time of writing, however, a bug in iReports prevents this from working as expected. You have to decide whether to

manually describe the JavaBean fields within iReports, or create a JAR file of the classes and put it in the iReports

lib directory.

For our purposes, it’s easier and less error prone to create a JAR file of the Collab-Todo classes. By default, the

Collab-Todo classes should be located in workspace\collab-todo\target. You can use your favorite JAR/ZIP

tool to create a JAR of the classes and place it in the iReports lib directory. This will make iReports aware of the

Collab-Todo domain classes.

If you’re familiar with iReports, you can go ahead and create the report however you see fit. However, we’re
assuming that you’re new to iReports, so follow these steps to use the iReports Wizard.

1. Select the File ➤ Report Wizard menu option.

2. Specify the data that you want in the report. For your purposes, you want to set the
Connections/Data Sources field to Collab-Todo, if it isn’t already. This tells iReports that
you’re using a JavaBeans data source.

3. Specify which domain class contains the data. You’re creating a todo report, so the
“JavaBean class” field should be set to Todo. The wizard should look something like
Figure 10-3.

CHAPTER 10 ■ REPORTING

263

4. Assuming that you followed the instructions in the “Making iReports Aware of the Collab-
Todo Classes” sidebar, when you click the Next button, you select the fields that should be
included in the report. The wizard should look something like Figure 10-4.

Add all of the fields except for the class and metaClass, and click the Next button. The metaClass is internal Grails
metadata and isn’t appropriate for a report. The next screen lists the fields and their datatypes. Click the Next button
to continue.

Figure 10-3. Specifying the data source

Figure 10-4. Selecting fields

CHAPTER 10 ■ REPORTING

264

5. You should now be on step 3, “Group by.” You don’t have any work to do here, so click the
Next button to move to step 4, Layout.

6. The wizard lets you pick from predefined layouts. As a starting point, check “Columnar
layout” and highlight classicC.xml. Your screen should look something like Figure 10-5.

7. Click the Next button to move to step 5, Finish. Click the Finish button to generate the
report template. You should have a report template that looks like Figure 10-6.

Figure 10-5. Selecting the layout

Figure 10-6. The todo report template

CHAPTER 10 ■ REPORTING

265

Congratulations; you have your first report. It isn’t pretty, but it is functional. At this point, you could compile
the report and run it. If that’s what you want to do, skip forward to “Compiling the Report.” Otherwise, let’s make the
report a little more usable first.

As you can see, iReports used the attribute names to create the labels. As a first step in making the report more
usable, type in your own text for the labels. You may have to resize the field by dragging the right side of the label.

Enhancing the Report
As you can see, iReports used the Todo property names to create the labels. You should rearrange the labels and fields
to an order that makes more sense. You may want to copy the example shown in Figure 10-7.

The report is starting to look better, but you could do more. Follow these steps to enhance the report:

1. Take a good look at the Note field. It’s a little small, so expand it by dragging the bottom
edge of the field down.

2. The title could use a little work, so add the username, which is passed to the report as
a parameter. To define the username, right-click the parameter entry in the Document
Structure window and select Add ➤ Parameter. iReports displays a pop-up window that
lets you input the parameter name. Set the Parameter Name field to userName, as shown
in Figure 10-8.

Figure 10-7. Rearranged labels and fields

CHAPTER 10 ■ REPORTING

266

3. Now that you defined the parameter, you can use it in the report header. Insert the
userName parameter into the header by dragging it from the list of parameters in the
Document Structure window to the report header. Also, change the current text to read
“Todo for:”. Figure 10-9 shows an example of the new header.

Figure 10-8. Setting up the parameter

Figure 10-9. The new header

4. Save the report as userTodo.jrxml in the Collab-Todo application directory.

You’re now ready to compile the report and start integrating it into the application.

Compiling the Report
Now that you’ve set up the report, it’s time to make it available to the application. You need to compile it and copy the
compiled file to the appropriate application directory.

CHAPTER 10 ■ REPORTING

267

Select Build ➤ Compile in iReports. You will see the results of the compilation at the bottom of iReports in the
output console. Hopefully, the build is successful the first time, but if it isn’t, work through the error messages and
try again. Once you have a successful build, copy the userTodo.jasper file from the iReports home directory to the
collab-todo/web-app/reports directory.

The Report Tag
You have used several tags, but now it’s time to create your own. If you have developed tags before, you will be
pleasantly surprised by how easy it is in Grails. You will create a report tag library to hold the report tag and then
implement the tag as a closure.

Tag Library Overview
It is a best practice to group tags by topic into a tag library. In this case, all report tags are grouped in the
grails-app/taglib/ReportTagLib.groovy. Notice the Grails conventions again: tag libraries end with
TagLib.groovy and are located in the grails-app/taglib directory. The following command illustrates creating
the tag library:

> grails create-tag-lib Report

The results of the command can be seen here:

| Created file grails-app/taglib/collab/todo/ReportTagLib.groovy
| Created file test/unit/collab/todo/ReportTagLibTests.groovy

As you have come to expect, Grails created the tag library and a unit test. The next step is to create the tag.

Creating the Tag
As you saw in Chapter 8, a tag is a closure that has two arguments: a map of tag attributes and the body of the tag.
Listing 10-1 illustrates the tag library class.

Listing 10-1. Tag Library Class

class ReportTagLib {

 def report = { attrs, body ->

 ...

 }
}

Now you have to figure out what to put between the curly braces. You know you have to let the users choose in
which format they want to receive the report, and you know that you have to invoke the ReportController to generate
the report. With this in mind, you can start designing the tag inputs. Let’s take a look at it from a usage point of view.
Listing 10-2 illustrates how that tag might look inside a view.

CHAPTER 10 ■ REPORTING

268

Listing 10-2. Report Tag

<g:report id="todoReport" controller="TodoController"
 action="userTodo" report="userTodo"
 format="PDF,HTML,CSV,XLS,RTF,TXT,XML">
<input type="hidden" name="userName" value="${todoList[0]?.owner}" />
</g:report>

Based upon the requirements, this should make some sense. The report tag has an id attribute to uniquely
identify it. The controller and action attributes work together to specify which action to run to get the report data.
The report attribute specifies which report to generate, and the format attribute supplies a list of report formats
for users to select. The hidden input determines which user’s information to gather. With this information, you can
turn your attention back to the tag implementation. The tag body gives you a hint about the implementation. The tag
generates a <form> element that invokes the ReportController’s index action. The format attribute is used to display
icons representing each of the report formats. Listing 10-3 contains the implementation of the report tag.

Listing 10-3. Report Tag Implementation

1. def report = { attrs, body ->
2.
3. validateAttributes(attrs)
4. def appPath = grailsAttributes.getApplicationUri(request)
5.
6. out <<"""
7. <form id=\"${attrs['id']}\" name=\"${attrs['report']}\"
8. action=\"${appPath}/report\">
9. <input type=\"hidden\" name=\"format\"/>
10. <input type=\"hidden\" name=\"file\" value=\"${attrs['report']}\"/>
11. <input type=\"hidden\" name=\"_controller\"
12. value=\"${attrs['controller']}\"/>
13. <input type=\"hidden\" name=\"_action\" value=\"${attrs['action']}\"/>
14. """
15. TreeSet formats = attrs['format'].split(",")
16. formats.each{
17. out <<"""
18. <a href=\"#${attrs['report']}Report\"
19. onClick=\"document.getElementById('${attrs['id']}').
20. format.value = '${it}';
21. document.getElementById('${attrs['id']}').submit()\">
22. <img width=\"16px\" height=\"16px\" border=\"0\"
23. src=\"${appPath}/images/icons/${it}.gif\" />
24.
25. """
26. }
27. out << body()
28. out <<"</form>"
29. }
30.
31. private void validateAttributes(attrs) {
32. //Verify the 'id' attribute
33. if(attrs.id == null)
34. throw new Exception("The 'id' attribute in 'report' tag mustn't be 'null'")
35.

CHAPTER 10 ■ REPORTING

269

36. //Verify the 'format' attribute
37. def availableFormats = ["CSV","HTML","RTF","XLS","PDF","TXT","XML"]
38. attrs.format.toUpperCase().split(",").each{
39. if(!availableFormats.contains(it)){
40. throw new Exception("""Value ${it} is a invalid format attribute.
41. Only ${availableFormats} are permitted""")
42. }
43. }
44.

Let’s take a look at the tag implementation line by line. In line 1, the tag takes two arguments: an attribute map
and the body. Because you specified the report formats on the tag, the tag in line 3 has to validate that you specified
supported report formats. Line 4 creates a local variable for the application path. Lines 6-14 create the form and
hidden input fields to allow tag attributes to be passed to the ReportController. But wait, where was out defined?
The out variable is a handle to the output stream that is injected by Grails.

Lines 15-25 iterate over the tag format attribute to create icons for each of the report formats. Looking
closely, note that when the user selects the report format, the hidden input field format is set and the form is
submitted. Line 27 outputs the tag body, and line 28 completes the form definition. Lines 31-44 are the body of the
validateAttributes method called on line 3. This method iterates through the tag format attribute to validate that
you specified valid report formats.

The ReportController and the ReportService
The ReportController follows these three steps to create the report:

1. Gather data for the report by invoking a controller/action.

2. Locate a compiled report.

3. Ask the ReportService to generate the report, and wrap the output with the appropriate
content type.

Start by running the following code to create the ReportController:

> grails create-controller Report

Now you need to implement the three previously listed steps. Listing 10-4 illustrates gathering the report data

Listing 10-4. Gathering the Report Data

 def index() {
 // Gather data for the report.
 // 1) Find the controller
 ApplicationContext ctx = (ApplicationContext) session.
 getServletContext().
 getAttribute(GrailsApplicationAttributes.APPLICATION_CONTEXT);
DEF CONTROLLER = CTX.GETBEAN("${PARAMS._CONTROLLER}");

 // 2) Invoke the action
 def inputCollection = controller."${params._action}"(params)
 params.inputCollection = inputCollection
...
}

CHAPTER 10 ■ REPORTING

270

The first step in gathering data for the report is to dynamically invoke the action supplied by the report tag. The
tag specifies the controller and the action to be invoked to gather the data. The controller and the action to invoke are
passed in the params map. The problem is that the values are just strings. You use the Spring application context to get
an instance of the controller. Then you invoke the action on the controller, passing the params map to it.

Next, you need to locate the report. The compiled reports are located in the web-app/reports directory.
Listing 10-5 illustrates using the servletContext to locate and load the report.

Listing 10-5. Locating and Loading the Report

// Find the compiled report
def reportFileName = reportService.reportFileName("${params.file}")
def reportFile = servletContext.getResource(reportFileName)

 if(reportFile == null){
 throw new FileNotFoundException("""\"${reportFileName}\" file must be in
 reports repository.""")
}

Finally, you need to generate the report and wrap the output with the proper content type. The
ReportController calls the ReportService to generate the report. You could collapse the service into the controller,
but the controller’s purpose is to control, not do the actual work. The controller should delegate the actual work
to some other component. Delegating the actual report generation to the report service maintains a separation of
concerns and encapsulates knowledge of the JasperReports libraries into a single location, the ReportService.
Listing 10-6 illustrates delegating to the ReportService and wrapping the output in the appropriate context type.

Listing 10-6. Calling the ReportService

// Call the ReportService to invoke the reporting engine
 switch(params.format){
 case "PDF":
 createPdfFile(reportService.generateReport(reportFile,
 reportService.PDF_FORMAT,params).toByteArray(),params.file)
 break
 case "HTML":
 render(text:reportService.generateReport(reportFile,
 reportService.HTML_FORMAT,params),contentType:"text/html")
 break
 case "CSV":
 render(text:reportService.generateReport(reportFile,
 reportService.CSV_FORMAT,params),contentType:"text")
 break
 case "XLS":
 createXlsFile(reportService.generateReport(reportFile,
 reportService.XLS_FORMAT,params).toByteArray(),params.file)
 break
 case "RTF":
 createRtfFile(reportService.generateReport(reportFile,
 reportService.RTF_FORMAT,params).toByteArray(),params.file)
 break

CHAPTER 10 ■ REPORTING

271

 case "XML":
 render(text:reportService.generateReport(reportFile,
 reportService.XML_FORMAT,params),contentType:"text")
 break
 case "TXT":
 render(text:reportService.generateReport(reportFile,
 reportService.TEXT_FORMAT,params),contentType:"text")
 break
 default:
 throw new Exception("Invalid format")
 break
 }
}

/**
* Output a PDF response
*/
def createPdfFile = { contentBinary, fileName ->
 response.setHeader("Content-disposition", "attachment; filename=" +
 fileName + ".pdf");
 response.contentType = "application/pdf"
 response.outputStream << contentBinary
}

/**
* Output an Excel response
*/
def createXlsFile = { contentBinary, fileName ->
 response.setHeader("Content-disposition", "attachment; filename=" +
 fileName + ".xls");
 response.contentType = "application/vnd.ms-excel"
 response.outputStream << contentBinary
}

/**
* Output an RTF response
*/
def createRtfFile = { contentBinary, fileName ->
 response.setHeader("Content-disposition", "attachment; filename=" +
 fileName + ".rtf");
 response.contentType = "application/rtf"
 response.outputStream << contentBinary
}

Now that you have the controller, you need to set up the ReportService. You can create the ReportService by
running this command:

> grails create-service Report

CHAPTER 10 ■ REPORTING

272

The main functionality in the ReportService is encapsulation of the logic to generate the report using the
JasperReports API. Listing 10-7 contains the ReportService.

Listing 10-7. ReportService

1. import java.io.ByteArrayOutputStream
2. import java.io.InputStream
3. import java.sql.Connection
4. import java.sql.Timestamp
5. import java.util.HashMap
6.
7. import net.sf.jasperreports.engine.JRException
8. import net.sf.jasperreports.engine.JRExporter
9. import net.sf.jasperreports.engine.JasperPrint
10. import net.sf.jasperreports.engine.JasperFillManager
11. import net.sf.jasperreports.engine.JRExporterParameter
12. import net.sf.jasperreports.engine.export.JRCsvExporter
13. import net.sf.jasperreports.engine.export.JRHtmlExporter
14. import net.sf.jasperreports.engine.export.JRHtmlExporterParameter
15. import net.sf.jasperreports.engine.export.JRPdfExporter
16. import net.sf.jasperreports.engine.export.JRXlsExporter
17. import net.sf.jasperreports.engine.export.JRXmlExporter
18. import net.sf.jasperreports.engine.export.JRRtfExporter
19. import net.sf.jasperreports.engine.export.JRTextExporter
20. import net.sf.jasperreports.engine.export.JRTextExporterParameter
21. import net.sf.jasperreports.engine.data.JRBeanCollectionDataSource
22.
23. class ReportService {
24.
25. boolean transactional = true
26.
27. int PDF_FORMAT = 1;
28. int HTML_FORMAT = 2;
29. int TEXT_FORMAT = 3;
30. int CSV_FORMAT = 4;
31. int XLS_FORMAT = 5;
32. int RTF_FORMAT = 6;
33. int XML_FORMAT = 7;
34.
35.
36.
37. /**
38. * Generate the Report
39. */
40. def generateReport = {jasperFile, format, parameters ->
41.
42. // Setup the Data Source
43. JRBeanCollectionDataSource ds = new JRBeanCollectionDataSource(
44. parameters.inputCollection);
45.
46. InputStream input = jasperFile.openStream()
47. JRExporter exporter

CHAPTER 10 ■ REPORTING

273

48. ByteArrayOutputStream byteArray = new ByteArrayOutputStream()
49. JasperPrint jasperPrint = JasperFillManager.fillReport(input, parameters,ds)
50. switch (format) {
51. case PDF_FORMAT:
52. exporter = new JRPdfExporter()
53. break
54. case HTML_FORMAT:
55. exporter = new JRHtmlExporter()
56. exporter.setParameter(JRHtmlExporterParameter.
57. IS_USING_IMAGES_TO_ALIGN, FALSE)
58. break
59. case CSV_FORMAT:
60. exporter = new JRCsvExporter()
61. break
62. case TEXT_FORMAT:
63. exporter = new JRTextExporter()
64. exporter.setParameter(JRTextExporterParameter.CHARACTER_WIDTH,
65. new Integer(10));
66. exporter.setParameter(JRTextExporterParameter.CHARACTER_HEIGHT,
67. new Integer(10
68. break
69. case XLS_FORMAT:
70. exporter = new JRXlsExporter()
71. break
72. case RTF_FORMAT:
73. exporter = new JRRtfExporter()
74. break
75. case XML_FORMAT:
76. exporter = new JRXmlExporter()
77. break
78. default:
79. throw new Exception("Unknown report format
80. }
81. exporter.setParameter(JRExporterParameter.OUTPUT_STREAM, byteArray)
82. exporter.setParameter(JRExporterParameter.JASPER_PRINT, jasperPrint)
83. exporter.exportReport()
84. return byteArray
85. }
86.
87. def reportFileName = { reportName ->
88. return "/reports/"+reportName+".jasper"
89. }
90. }

Let’s walk through this. Line 40 is the beginning of the generateReport closure. As you can see, generateReport
takes three input parameters: the report template, the report format, and parameters. Lines 42-44 define and populate
a JavaBeans collection data source. Looking closely, note that the data source is populated from an input collection
contained with the parameters. This is the collection that the ReportController created.

Lines 46-48 do some additional setup. Line 49 passes the report template, parameters, and JavaBeans data source
to the reporting engine. Lines 50-80 set up the appropriate rendering component based upon the report format type
requested, while lines 81-82 set some additional parameters on the renderer. Line 83 is where the real magic happens:
it causes the report to be generated. The results are returned to the caller on line 84.

CHAPTER 10 ■ REPORTING

274

In Listing 10-5, you may recall seeing something like the following:

reportService.reportFileName($params.file)

Lines 87-89 contain the implementation of this method, which, as you can tell, is pretty basic. You simply
prepend the directory and append the file extension to create the report file name. You could easily have done this in
the ReportController, but you really don’t want the ReportController to know that you’re using JasperReports. By
doing it this way, you maintain a separation of concerns and encapsulation.

You’re now ready to tie it all together and see the result of your work.

Tying It All Together
You’re about to see the result of your work. You installed iReports and copied the appropriate libraries to
the application. You created the report and the report tag library. You created the ReportService and the
ReportController. The only thing left to do is to write the code that gathers the report data and hook the report tag
into the application.

Gathering the Report Data
Recall from “The Report Tag” section that the tag allows you to specify the controller and the action to call to gather
the report data. In this case, you’ll specify the TodoController and the userTodo action, so you’ll need to create a
userTodo action on the TodoController. Listing 10-8 contains the content of the action.

Listing 10-8. Gathering the Report Data

def userTodo = {
 def user = User.get(session.user.id)
 return Todo.findAllByOwner(user)
}

The code in Listing 10-8 finds all of the todos for the current user and returns the results. Now, you have to hook
the report tag into the application.

Adding the Report Tag to the Application
The last step is to add the report tag to the Todo List view and then edit the Todo List view (grails-app/views/todo/
list.gsp). At the bottom of the file, after the paginate logic, add the report tag. Follow Listing 10-9 as an example.

Listing 10-9. Adding the Report Tag

 ...
<div class="paginateButtons">
<g:paginate total="${Todo.count()}" />
</div>
<g:report id="todoReport" controller="TodoController"
action="userTodo" report="userTodo"
format="PDF,HTML,CSV,XLS,RTF,TXT,XML">
<input type="hidden" name="userName" value="${todoList[0]?.owner}" />

CHAPTER 10 ■ REPORTING

275

</g:report>
</div>
</body>
</html>

Now let’s take a look at the results. Start the application, log in, and select the PDF icon. Figure 10-10 shows
the report.

Figure 10-10. The report

Congratulations, you successfully built a reporting facility. Now that you have one, it would be a shame to not
reuse it.

The Report List
You did a lot of good work; you constructed all of the core components of a reporting facility and enhanced a view
with the report tag to give users access to reports. You also saw how to use the following command to pass report
parameters to the data collection action:

<input type="hidden" name="userName" value="${todoList[0]?.owner}" />

In this case, the parameter was a hidden field, but it could have just as easily been a visible input field.
It would be reasonable for users expect to be able to specify a due-date range and only see todo items that are

within the range. What would it take to fulfill such a request? Well, you would need to construct a Reports List view
and hook it into the application. This view would need to list all of the available reports. If a report doesn’t require
any additional parameters, you could execute it directly from the Reports List view. If a report requires additional
parameters, it will launch another page that allows users to specify the input parameters for the report.

CHAPTER 10 ■ REPORTING

276

The best thing is, you can reuse all of the components you just created. Pretty cool. Given that this is all a rehash
of everything you have learned, we will leave this as an exercise for you to develop on your own.

An Alternate Approach
Earlier in the chapter, we discussed using the domain model to give data to the reports or using embedded SQL. We
decided to use the domain model approach for several good reasons, but the alternative is worth considering.

Marcos Fábio Pereira created a Jasper plugin for Grails. As a matter of fact, Marcos’ work provided some of the
inspiration for this chapter. So here is a big shout out to Marcos: thank you Marcos; your good work is appreciated.

The Jasper plugin takes the embedded SQL approach. Depending upon your circumstances, this may be a good
solution for you. You can take a look at the Jasper plugin by running Grails Plugin Manager as shown in Figure 10-11.

Figure 10-11. Installing the Jasper plugin

This installs the Jasper plugin as shown in the output:

| Loading Grails 2.1.0
| Configuring classpath.
| Environment set to development.....
| Resolving plugin jasper. Please wait…
| Installing zip jasper-1.5.2.zip.....
| Installed plugin jasper-1.5.2
| Resolving plugin JAR dependencies.....
| Plugin installed.

Similar to the approach we discussed in the previous section, to create a report from Jasper, we need to create a
.jrxml and compile it to the .jasper report file. In addition, we use jasperReport tags as illustrated in Listing 10-10.

Listing 10-10. Using the jasperReport Tag

<g:jasperReport controller="todo" action="todoReport" jasper="userTodo" format="PDF" />
<g:jasperReport controller="todo" action="todoReport" jasper="userTodo" format="XLS" />

CHAPTER 10 ■ REPORTING

277

The controller and action attributes of the jasperReport tag work together to specify which action to run to get
the report data. The jasper attribute specifies which report to generate, and the format attribute supplies a format/
list of report formats for users to select. Listing 10-11 illustrates the action todoReport fragment.

Listing 10-11. Action Attribute of the jasperReport Tag

def createReport() {
 def todos = Todo.list()
 chain(controller:'jasper',action:'index',model:[data:todos],params:params)
}

Figure 10-12 shows the result of using Listing 10-10 and Listing 10-11.

As we added the jasperReport tag in the list.gsp, the Todo list screen shows the pdf and xls icons for PDF and
XLS reports.

Summary
You accomplished a lot in this chapter. Instead of building a static solution for one report, you built a dynamic reporting
facility that supports multiple reports and multiple formats, and accepts input to drive the selection of report data.

In the process of building the reporting facility, you installed and configured the JasperReports reporting engine
and the iReports report designer. You used iReports to define and compile the report template.

You then moved on to creating a report tag library. You created the ReportController for the report tag to call.
The ReportController took care of facilitating the data collection and invoking the ReportService to generate the
report. In the ReportService, you wrapped the Todo domain objects in a JavaBeans data source, and you passed the
data source, parameters, and report template to the JasperReports reporting engine for processing. The reporting
engine returned a binary version of the report, which the ReportController then returned to the user.

This chapter allowed you to learn some new things, and it reinforced some things you learned earlier. It showed
you how to build a reporting facility that supports multiple reports and formats. The next chapter leverages the
ReportService in a nightly batch job to generate and e-mail user todo reports.

Figure 10-12. pdf and xls icons for reports

279

Chapter 11

Batch Processing

Grails is more than just a web framework—it is an application framework. And almost all applications contain
functionality that must be executed on a periodic basis (every 15 minutes, once an hour, twice a day, daily, weekly,
month, quarterly, or yearly). This is known as batch processing. The Grails team anticipated the need for batch
processing and decided to leverage a popular open source third-party enterprise job scheduling library: Quartz1. Since
the Spring Framework is a core component of Grails, and the Spring Framework already includes a Quartz integration,
this was a natural choice. A Quartz Grails plugin makes it easy to use the Quartz library.

Quartz is similar to the Unixcron facility in that it provides the ability to execute a job in the future. However,
Quartz is different from the Unixcron facility because it runs within the application server and has full access to all of
the application components.

This chapter explores batch-processing functionality. We will start by installing the Quartz plugin and creating a
simple job. Then we will move on to creating a sample batch reporting facility.

Installing the Quartz Plugin
As we mentioned, Grails leverages Quartz for job-scheduling functionality. The Quartz plugin integrates Quartz into
Grails and makes Quartz easy to use.

To begin, from within the project directory, execute the following command:

> grails install-plugin quartz

Or you can use the plugin manager of GGTS. This will yield the output as illustrated in Figure 11-1.

1http://www.quartz-scheduler.org/

http://www.quartz-scheduler.org/

CHAPTER 11 ■ BATCH PROCESSING

280

Installing the plugin created the jobs directory under grails-app.

Creating a Job
A job is a program that contains the code you wish to run. In Grails, the job defines what to do and when to do it.

As a simple demonstration of Quartz in action, let’s create a job that prints a message and the current time. The
first step is to create the job, as follows:

> grails create-job first

The command generates the FirstJob class, in the grails/job directory:

package collab.todo
class FirstJob {
static triggers = {
simple repeatInterval: 5000l // execute job once in 5 seconds
 }

def execute() {
 // execute job
 }
}

Note ■ Look closely at the timeout value, and you’ll see an l after the 5000. The l makes the variable a Long. Also notice that

create-job follows conventions just like other create-* commands, and appends the suffix Job to the end of the job name.

Figure 11-1. Installing Quartz

CHAPTER 11 ■ BATCH PROCESSING

281

The create-job command creates a skeleton job that is preconfigured to run once, five seconds after the
application server starts. So, five seconds after the server starts, the code in the execute() method is executed. Add
the following code to the execute() method:

println "Hello from FirstJob: "+ new Date()

Listing 11-1 shows the completed FirstJob class.

Listing 11-1. Completed FirstJob

package collab.todo
class FirstJob {
static triggers = {
simple repeatInterval: 5000l // execute job once in 5 seconds
 }

def execute() {
println "Hello from FirstJob: "+ new Date() }
}

Start the application by issuing the following command:

> grails run-app

While you could interpret the comment for the timeout property in Listing 11-1 to mean that the FirstJob is
executed only once, you can see from the output in Figure 11-2 that it is executed every five seconds.

Figure 11-2. Output every five seconds

CHAPTER 11 ■ BATCH PROCESSING

282

Now that you’ve seen how to create a simple job, let’s move on to something a bit more useful: a batch-reporting
facility.

Building a Batch-Reporting Facility
As an example, we will build a batch-reporting facility that generates todo reports and e-mails them to the user
nightly. We will leverage a couple of services created in earlier chapters: EMailAuthenticatedService from Chapter 8
and ReportService from Chapter 10. Figure 11-3 shows an overview of the nightly reporting process.

NightlyReportJob BatchService
1

2

3

4

5

6

7

8

9

User

Todo

ReportService

EmailAuthenticatedService

Figure 11-3. Nightly reporting process

The process starts with the NightlyReportJob. When the NightlyReportJob is invoked by Quartz, it immediately
invokes the BatchService. The BatchService is the main control routine. It facilitates the interaction with other
solution components. First, the BatchServiceretrieves all User objects that have an e-mail address. For each user, the
BatchService retrieves the Todo objects. The BatchService then uses the ReportService to generate a PDF report.
Finally, the BatchService uses the EmailAuthenticatedService to send the user an e-mail attachment of the report.

Building the batch-reporting facility requires the following steps:

1. Create and configure the execution of the NightlyReportJob.

2. Retrieve the user’s todos.

3. Invoke the report service (created in Chapter 10).

4. Invoke the e-mail service (created in Chapter 8).

CHAPTER 11 ■ BATCH PROCESSING

283

Creating a Nightly Reporting Job
Issue the following command to create the NightlyReportJob:

> grails create-job NightlyReport

In addition to the timeout property, which you saw earlier in the FirstJob job, you can use several additional
properties to control job execution.

Setting the Name and Group

You can use the name and group properties to help you identify jobs when interacting with the Quartz scheduler:

class NightlyReportJob {
 def name = "NightlyReport" // Job name
 def group = "CollabTodo" // Job group

Controlling Execution Frequency

There are two techniques for controlling the job execution frequency:

Use the • startDelay and timeout properties: these two properties allow you to control the
execution frequency of the job. The startDelay property delays starting the job for a number
of milliseconds after the application starts. This can be useful when you need to let the system
start up before the job starts. Grails defaults the startDelay property to 0. The timeout
property is the number of milliseconds between executions of the job. Grails defaults the
timeout property to 60,000 milliseconds, or 1 minute.

Use the • cronExpression property: for all of the Unix geeks out there, this works just as you would
expect. It is a string that describes the execution frequency using a crontab format. If you’re not
familiar with this approach, don’t worry—we’ll explain the format in more detail here.

Both techniques have their place in controlling execution frequency. Determining which technique to use
depends on the job requirements. If the job can be handled by a timer, setting the startDelay and timeout properties
should be sufficient, as in this example:

def startDelay = 20000 // Wait 20 seconds to start the job
def timeout = 60000 // Execute job once every 60 seconds

If the job is very time sensitive, using the cronExpression property is probably more appropriate. But note that
during development and initial testing of the job, you will probably want to use the startDelay/timeout technique,
and then switch to the cronExpression approach later.

Caution ■ Depending on the execution frequency and duration of the job, it’s possible to have multiple instances of a

job executing concurrently. This could happen if a job is long running and still running when the cronExpression property

causes it be invoked again. Having jobs running concurrently may or may not be desirable. By default, the Quartz plugin

permits the job to run concurrently. Most of the time, you probably won’t want to allow a job to run concurrently. You can

change this behavior by setting the concurrent property on the job to false.

A cron expression tells the job scheduler when to run the job. The cronExpression property value is composed
of six fields, separated by whitespace, representing seconds, minutes, hours, day, month, day of week, and an optional
seventh field for the year. A cron expression expresses the fields left to right:

Seconds Minutes Hours DayOfMonth Month DayOfWeek Year

CHAPTER 11 ■ BATCH PROCESSING

284

For example, we define a cronExpression property to have the job run 1:00 a.m. every day as follows:

def cronExpression = "0 0 1 * * *" // Run every day at 1:00 a.m.

Table 11-1 describes the cron expression fields, and Table 11-2 summarizes some of the more commonly used
special characters. (See the Quartz documentation for a more complete explanation of the special characters:
http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger.)

Table 11-1. Cron Expression Fields

Field Values Special Characters

Seconds 0–59 , - * /

Minutes 0–59 , - * /

Hours 0–23 , - * /

DayOfMonth 1–31 , - * ? / L W

Month 1–12 or JAN–DEC , - * /

DayOfWeek 1–7 or SUN–SAT , - * ? / L#

Year (optional) Empty or 1970–2099 , - * /

Table 11-2. Cron Expression Special Characters

Character Function Example

* All values–matches all allowed values
within a field.

* in the Hours field matches every hour of the day,
0–23.

? No specific value–used to specify something
in one of the two fields in which it is
allowed, but not the other.

To execute a job on the tenth day of the month, no
matter what day of the week that is, put 10 in the
DayOfMonth field and ? in the DayOfWeek field.

- Used to specify a range of values. 2–6 in the DayOfWeek field causes the job to
be invoked on Monday, Tuesday, Wednesday,
Thursday, and Friday.

, Used to create a list of values. MON, WED, FRI in the DayOfWeek field causes the
job to be invoked on Monday, Wednesday, and
Friday.

/ Used to specify increments. The character
before the slash indicates when to start.
The character after the slash represents the
increment.

0/15 in the Minutes field causes the job to be
invoked on the quarter hour—0, 15, 30, and
45 minutes.

Cron expressions are very powerful. With a little imagination, you can specify a multitude of times. Table 11-3
shows some sample cron expressions.

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

CHAPTER 11 ■ BATCH PROCESSING

285

Listing 11-2 shows the definition for the NightlyReportJob. Notice that it includes both techniques for
controlling execution frequency, with the startDelay/timeout definitions commented out.

Listing 11-2. NightlyReportJob Name, Group, and Execution Frequency Configuration

class NightlyReportJob {
 def cronExpression = "0 0 1 * * *" // Run every day at 1:00 a.m.
 def name = "Nightly" // Job name
 def group = "CollabTodo" // Job group

// def startDelay = 20000 // Wait 20 seconds to start the job
// def timeout = 60000 // Execute job once every 60 seconds

You can see why the Grails team chose to integrate Quartz instead of creating something new. It is very powerful.
Armed with this knowledge, you are ready to move on and implement the core logic of the nightly report job.

Retrieving the User’s Todos
The next step is to leverage Spring’s auto-wired dependency injection to inject the BatchService into the job, as
follows:

> grails create-service Batch

Listing 11-3 illustrates injection and execution of the BatchService.

Table 11-3. Cron Expression Examples

Expression Meaning

0 0 1 * * ? Invoke at 1:00 a.m. every day

0 15 2 ? * * Invoke at 2:15 a.m. every day

0 15 2 * * ? Invoke at 2:15 a.m. every day

0 15 2 * * ? * Invoke at 2:15 a.m. every day

0 15 2 * * ? 2008 Invoke at 2:15 a.m. every day during the year 2008

0 * 13 * * ? Invoke every minute starting at 1 p.m. and ending at 1:59 p.m., every day

0 0/5 14 * * ? Invoke every 5 minutes starting at 2 p.m. and ending at 2:55 p.m., every day

0 0/5 14,18 * * ? Invoke every 5 minutes starting at 2 p.m. and ending at 2:55 p.m., and invoke every
5 minutes starting at 6 p.m. and ending at 6:55 p.m., every day

0 0–5 14 * * ? Invoke every minute starting at 2 p.m. and ending at 2:05 p.m., every day

0 10,45 14 ? 3 WED Invoke at 2:10 p.m. and at 2:45 p.m. every Wednesday in the month of March

0 15 2 ? * MON-FRI Invoke at 2:15 a.m. every Monday, Tuesday, Wednesday, Thursday, and Friday

0 15 2 15 * ? Invoke at 2:15 a.m. on the fifteenth day of every month

0 0 12 1/5 * ? Invoke at 12 p.m. (noon) every 5 days every month, starting on the first day of the month

0 11 11 25 12 ? Invoke every December 25 at 11:11 a.m.

CHAPTER 11 ■ BATCH PROCESSING

286

Listing 11-3. NightlyReportJob with Batch Service

class NightlyReportJob {
 def cronExpression = "0 0 1 * * *" // Run every day at 1:00 a.m.
 def name = "Nightly" // Job name
 def group = "CollabTodo" // Job group

// def startDelay = 20000 // Wait 20 seconds to start the job
// def timeout = 60000 // Execute job once every 60 seconds

 def batchService
 def execute() {
 log.info "Starting Nightly Job: "+new Date()
 batchService.nightlyReports.call()
 log.info "Finished Nightly Job: "+new Date()
 }
}

The code is straightforward. It defines when the job is to run and delegate to the BatchService.
The next step is to create the nightly closure on the batch service. It will contain the code to retrieve the user’s

todos. Listing 11-4 illustrates adding the nightly closure and retrieving the user’s todos.

Listing 11-4. Batch Service Nightly Closure

class BatchService

 . . .

 /*
 * Runs nightly reports
 */
 def nightlyReports = {
 log.info "Running Nightly Reports Batch Job: "+new Date()
 // 1. Gather user w/ email addresses.
 def users = User.withCriteria {
 isNotNull('email')
 }

 users?.each { user ->
 // 2. Invoke report service for each user.
 // Can't reuse ReportController because it makes too
 // many assumptions, such as access to session.class.
 //
 // Reuse Report Service and pass appropriate params.
 // Gather the data to be reported.
 def inputCollection = Todo.findAllByOwner(user)

 // To be completed in the next section

 }

 log.info "Completed Nightly Reports Batch Job: "+new Date()
 }

CHAPTER 11 ■ BATCH PROCESSING

287

The BatchService.nightlyReports gets all users with an e-mail address, and then for each user, gets their todos
and prepares to invoke the report service.

Invoking the Report Service
In Chapter 10, you used JasperReports to build a report facility. You can reuse components of the report facility to
create a todo report PDF to attach to the e-mail.

Your first thought might be to use the ReportController. Well, that doesn’t work. The report controller is
dependent on the HTTP session and renders the PDF to the output stream. You need to go one level deeper and use
the ReportService directly.

We have already retrieved the user’s todos. Now all we need to do is pass the todos, report template, and a
username parameter to the report service. The highlighted section of Listing 11-5 illustrates the required steps.

Listing 11-5. Invokingthe Report Service

class BatchService {
ReportServicereportService // Inject ReportService

 def nightlyReports = {

. . .

 users?.each { user ->
 // 2. Invoke Report Service for each user.
 // Reuse Report Service and pass appropriate params.
 // Gather the data to be reported.
 def inputCollection = Todo.findAllByOwner(user)
 Map params = new HashMap()
 params.inputCollection = inputCollection
 params.userName = user.firstName+""+user.lastName

 // Load the report file.
 def reportFile = this.class.getClassLoader().getResource(
 "web-app/reports/userTodo.jasper")
 ByteArrayOutputStream byteArray = reportService.generateReport(reportFile,
 reportService.PDF_FORMAT,params)
 Map attachments = new HashMap()
 attachments.put("TodoReport.pdf", byteArray.toByteArray())

 // 3. Email results to the user.
 sendNotificationEmail(user, attachments)

 }
 }

CHAPTER 11 ■ BATCH PROCESSING

288

The new code works as follows:

1. Injects the ReportService into the BatchService.

2. Creates a HashMap of parameters that will be passed to the ReportService. The parameters
include the list of todos for the current user.

3. Loads the JasperReports template from the classpath.

4. Invokes reportService.generateReport to pass the report template, report format (PDF),
and parameters.

Now that you have a PDF report, the next step is to e-mail it to the user.

Invoking the E-Mail Service
In Chapter 8, you implemented an SMTP e-mail service, called EMailAuthenticatedService. You can use your e-mail
service to send the todo report to the user. Listing 11-6 contains the code required to create and send the e-mail.

Listing 11-6. Sending the E-mail

1. class BatchService implements ApplicationContextAware {
2. boolean transactional = false
3.
4. public void setApplicationContext(ApplicationContext applicationContext) {
5. this.applicationContext = applicationContext
6. }
7. def ApplicationContext applicationContext
8. def EMailAuthenticatedService EMailAuthenticatedService // injected
9.
10. ReportService reportService
11.
12. def nightlyReports = {
13.
14. ...
15.
16. // Load the report file
17. def reportFile = this.class.getClassLoader().getResource(
18. "web-app/reports/userTodo.jasper")
19. ByteArrayOutputStream byteArray =
20. reportService.generateReport(reportFile,
21. reportService.PDF_FORMAT,params)
22.
23. Map attachments = new HashMap()
24. attachments.put("TodoReport.pdf", byteArray.toByteArray())
25.
26. // 3. Email results to the user.
27. sendNotificationEmail(user, attachments)
28. }
29. log.info "Completed Nightly Batch Job: "+new Date()
30. }
31.

CHAPTER 11 ■ BATCH PROCESSING

289

32. def private sendNotificationEmail = {User user, Map attachments ->
33. def emailTpl = this.class.getClassLoader().getResource(
34. "web-app/WEB-INF/nightlyReportsEmail.gtpl")
35. def binding = ["user": user]
36. def engine = new SimpleTemplateEngine()
37. def template = engine.createTemplate(emailTpl).make(binding)
38. def body = template.toString()
39. def email = [
40. to: [user.email],
41. subject: "Your Collab Todo Report",
42. text: body
43.]
44. try {
45. EMailProperties eMailProperties =
46. applicationContext.getBean("eMailProperties")
47. eMailAuthenticatedService.sendEmail(email, eMailProperties, attachments)
48. } catch (MailException ex) {
49. log.error("Failed to send emails", ex)
50. }
51. }
52. }

The highlighted lines contain the changes made to the batch service. Lines 1 and 4-7 make the batch service
(Spring) application context-aware; in other words, the Spring application context is injected into the service. You will
use the application context later to look up some information. Line 8 takes advantage of Spring auto-wiring to inject
the EmailAuthenticatedService. Lines 23 and 24 add the PDF report to a map of attachments for e-mail. Line 27
invokes a local sendNotificationEmail closure.

Lines 32-51 contain the code to send the todo report e-mail to the user. Line 33 loads an e-mail template.
Lines 36-38 use the Groovy SimpleTemplateEngine2 to generate the e-mail body. Lines 39-43 define a map of
e-mail parameters that are passed to the e-mail service. Line 45 uses the Spring application context to look up
e-mail properties, including the “from” address. Line 47 invokes the e-mail service, sending the e-mail map, e-mail
properties, and the attachments.

Summary
This chapter demonstrated Grails’ ability to reuse open source, third-party Java libraries. You installed the Quartz
plugin, created a simple job, and saw how to control the frequency of execution using the timeout property.

Next, you started to build the batch reporting facility. You created a NightlyReportJob and configured it to run at
1:00 a.m. using the cronExpression property. You learned that cron expressions are robust and provide fine-grained
control over when the NightlyReportJob is invoked.

The NightlyReportJob delegated to a batch service that was injected using Spring auto-wiring and invoked
nightlyReports. nightlyReports iterated through a list of users, gathered their todos, invoked the report
service built in Chapter 10 to generate a PDF attachment, and e-mailed the attachment to the user using the

EmailAuthenticatedService built in Chapter 8.

2http://groovy.codehaus.org/Groovy+Templates

http://groovy.codehaus.org/Groovy+Templates

291

Chapter 12

Deploying and Upgrading Grails
Applications

The previous chapters were related to developing Grails applications. One of the strengths of Grails is that it comes
bundled with everything you need to begin developing and testing your application. Grails embeds a web container
(Tomcat) and a relational database (H2). All you have to do is execute the Grails run-app target, and you have your
entire runtime environment. However, at some point in time, you will want to expose your application to your users.
The embedded runtime environment is for development and testing only, and it is not intended to scale or support
the load necessary in a production environment.

This chapter focuses on deploying Grails applications to Java EE application servers and more robust database
servers. It also covers some other miscellaneous, operational aspects, such as upgrading a Grails application when a
new version of the Grails framework is released and automating tasks using Gant.

Deploying Grails Applications
Deploying a Grails application involves three steps:

1. Configure the application. This typically involves environment specific configurations.

2. Package the application. For Grails applications, this means bundling all the code and
related artifacts into a Web Application Archive (WAR) file.

3. Deploy the application to an application server or web container.

Using Environments
Many organizations have multiple environments or gates that an application must pass through before reaching
production and users. At a minimum, each application should have to pass through development, test, and
production environments. The development environment is the developer’s machine. In the test environment,
which mimics production, somebody other than the developer completes quality assurance by validating that
the application meets requirements and generally works. The production environment is where real users use the
application. In each of these environments, you’re likely to have environment-specific configurations and, rarer,
behavioral differences. For example, in development, you may want to point to a local H2 in-memory database,
but in the test and production environments, you may need to point at a remote server database such as MySQL.1

1http://dev.mysql.com/

http://dev.mysql.com/

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

292

As you might expect, Grails follows these best practices and is aware of these three environments. You can use
these environments when calling the grails command line as the second parameter or in configuration files such as
DataSource.groovy, BootStrap.groovy, and Config.groovy, which you’ll see in the next section. Table 12-1 shows
the mapping per environment.

Table 12-1. Environment Mappings

Environment Command Line Configuration File Reference

Development dev development

Test test test

Production prod production

Depending on the size of the organization and the criticalness of the application or the system, you may have
additional environments such as integration testing (IT), user acceptance testing (UAT), and performance testing
(PT). You can use custom environments as well. The only requirement is that the grails.env system property must
be passed to the Grails command line. For example, the following specifies the performance environment:

> grails -Dgrails.env=PT run-app

Grails supports the concept of per-environment configuration. The Config.groovy, DataSource.groovy, and
BootStrap.groovy files in the grails-app/conf directory can use per-environment configuration, as illustrated in the
default dataSource definition provided by Grails and shown in Listing 12-1.

Listing 12-1. Using Per-Environment Configuration

dataSource {
 pooled = false
 driverClassName = "org.h2.Driver"
 username = "sa"
 password = ""
}
environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 url = "jdbc:h2:mem:devDb"
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb"
 }
 }
}

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

293

In Listing 12-1, notice how the common configuration is provided at the top level and then an environments
block specifies per-environment settings for the dbCreate and url properties of the dataSource. We will revisit this
code in the dataSource section of this chapter.

Within a Gant script or a bootstrap class, explained later in this chapter, you can detect the environment using the
Environment class, as illustrated in the Listing 12-2.

Listing 12-2. Detecting the Environment

import grails.util.Environment
......
switch (Environment.current) {
 case Environment.DEVELOPMENT:
 configureForDevelopment()
 break
 case Environment.PRODUCTION:
 configureForProduction()
 break

}

Understanding Grails Configurations
With Grails’ default settings, you can actually develop an application without doing any configuration whatsoever, but
it’s important to learn where and how to override the conventions when you need to.

For general configuration, Grails provides two files:

• grails-app/conf/BuildConfig.groovy

• grails-app/conf/Config.groovy

The BuildConfig.groovy file is for settings that are used when running Grails commands and the Config.groovy
file is for settings that are used when your application is running. This means that Config.groovy is packaged with
your application, but BuildConfig.groovy is not. Grails contains four primary configuration categories. The first is
URL mapping, which we explained in earlier chapters, so we won’t revisit it here. The second is behavior when the
application starts up and shuts down. The third and fourth are data source and logging configurations. You can find all
these configurations in the grails-app/config directory.

Startup and Shutdown Behavior

Sometimes when an application starts up and/or shuts down, you need to do things such as acquire and release
resources, respectively, or cache data. Grails makes this possible in the grails-app/config/BootStrap.groovy file.

Listing 12-3 is an example of a BootStrap.groovy file. It includes comments where startup and shutdown code
should go.

Listing 12-3. Using BootStrap.groovy to Perform Startup and Shutdown Activities

classBootStrap {
 definit = { servletContext ->
 // perform startup activities here
 }
 def destroy = {
 // perform shutdown activities here
 }
}

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

294

In Listing 12-3, the init action is invoked when the application starts up or is redeployed. The javax.servlet.
ServletContext2 is passed in, providing access to the application attributes, initialization parameters configured in
web.xml, the context path, and more. The destroy action is invoked when the application is shut down, but it is not
guaranteed to be called. For example, it is not likely the destroy method will be called when the application server is
shut down, but it is likely to be called when the application is redeployed or undeployed.

Data Source Configurations

By default, Grails is configured out of the box to use an embedded, in-memory H2 database. This is not likely to be the
database used in the test and production environments and possibly not even in most development environments.
This is because, as you’ve seen, each time the application restarts, the database gets re-created in memory and is
therefore empty. It’s more likely that an application will use a server database such as MySQL, Oracle,3 DB2,4 Microsoft
SQL Server,5 or maybe even Apache Derby.6

You can set database and Hibernate configurations in the grails-app/config/DataSource.groovy file.
Listing 12-4 shows an example of a DataSource.groovy file that was customized to include a production database
configuration for a local MySQL database.

Listing 12-4. DataSource.groovy Containing a MySQL Production Configuration

1. dataSource {
2. pooled = true
3. driverClassName = "org.h2.Driver"
4. username = "sa"
5. password = ""
6. }
7. hibernate {
8. cache.use_second_level_cache=true
9. cache.use_query_cache=false
10. cache.region.factory_class = 'net.sf.ehcache.hibernate.EhCacheRegionFactory'
11. }
12. // environment specific settings
13. environments {
14. development {
15. dataSource {
16. dbCreate = "create-drop" // one of 'create', 'create-drop','update', 'validate', "
17. url = "jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
18. }
19. }
20. test {
21. dataSource {
22. dbCreate = "update"
23. url = "jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
24. }
25. }
26. production {

2http://www.oracle.com/technetwork/java/javaee/servlet/index.html
3http://www.oracle.com
4http://www.ibm.com/db2/
5http://www.microsoft.com/sql/
6http://db.apache.org/derby/

http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com
http://www.ibm.com/db2/
http://www.microsoft.com/sql/
http://db.apache.org/derby/

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

295

27. dataSource {
28. pooled = true
29. driverClassName = "com.mysql.jdbc.Driver"
30. username = "root"
31. password = "<password>"
32. dbCreate = "update"
33. url = "jdbc:mysql://localhost:3306/collab_todo"
34. dialect = org.hibernate.dialect.MySQL5InnoDBDialect
35. properties {

 maxActive = −1
 minEvictableIdleTimeMillis=1800000
 timeBetweenEvictionRunsMillis=1800000
 numTestsPerEvictionRun=3
 testOnBorrow=true
 testWhileIdle=true
 testOnReturn=true
 validationQuery="SELECT 1"
 . . .
 }
36. }
37. }
38. }

The configuration file in Listing 12-2 is separated into three main parts: dataSource (lines 1–6), hibernate
(lines 7–11), and environment-specific settings (lines 12–38). The dataSource section provides default database
settings that environment specific settings may override or append to. Other than the pooled property, these default
settings all relate to standard JDBC configuration information, such as the JDBC driver class name, the username, and
the password for the database.

The hibernate section relates to Hibernate-specific settings. By default, it configures Hibernate caching settings.
See the Hibernate documentation7 for more configuration options.

The environment-specific settings can provide specific data source or Hibernate configurations for a particular
named environment. Notice in lines 28–33 that the productiondataSource is configured to use a MySQL database by
setting the driverClassName and url to be MySQL-specific. It also overrides the pooled property by setting it to true,
since most production environments have more concurrent needs than a developer’s workstation.

Finally, note that the dbCreate property is configured only for update. This means that at deployment time,
Hibernate will update any of the tables it is able to, but it will leave the existing data intact. On the other hand,
the default development configuration will create the table at startup and destroy the tables and data when the
application is shut down. In line 35, properties set extra properties on the dataSource bean.

The dbCreate property of the dataSource definition in line 32 is important, as it dictates what Grails should do at
runtime with regard to automatically generating the database tables from GORM classes. The options are described in
the dataSource section:

create•

create-drop•

update•

validate•

no value•

7http://www.hibernate.org/docs

http://www.hibernate.org/docs

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

296

In development mode, dbCreate is by default set to create-drop, but at some point in development (and certainly
once you go to production), you’ll need to stop dropping and re-creating the database every time you start up your server.

Logging Configurations

Logging is an important part of gathering feedback about the state of an application. As you learned earlier, Grails
provides logging support using the Apache Commons Logging component8 and Apache log4j.9 You can create the
log4j configurations, as well as a couple other configurations, in grails-app/config/Config.groovy. Listing 12-5
shows the default version of Config.groovy.

Listing 12-5. Config.groovy File Containing Logging Configurations

1. // log4j configuration
2. log4j {
3. appender.stdout = "org.apache.log4j.ConsoleAppender"
4. appender.'stdout.layout'=""org.apache.log4j.PatternLayout"
5. appender.'stdout.layout.ConversionPattern'='[%r] %c{2} %m%n'
6. rootLogger="error,stdout"
7. logger {
8. grails="info,stdout"
9. org {
10. codehaus.groovy.grails.web.servlet="off,stdout" // controllers
11. codehaus.groovy.grails.web.pages="off,stdout" // GSP
12. codehaus.groovy.grails.web.sitemesh="off,stdout" // layouts
13. codehaus.groovy.grails."web.mapping.filter"="off,stdout" // URL mapping
14. codehaus.groovy.grails."web.mapping"="off,stdout" // URL mapping
15. codehaus.groovy.grails.commons="off,stdout" // core / classloading
16. codehaus.groovy.grails.plugins="off,stdout" // plugins
17. codehaus.groovy.grails.orm.hibernate="info,stdout" // hibernate integration
18. springframework="off,stdout"
19. hibernate="off,stdout"
20. }
21. }
22. additivity.'default' = false
23. additivity {
24. grails=false
25. org {
26. codehaus.groovy.grails=false
27. springframework=false
28. hibernate=false
29. }
30. }
31. }
32.
33. // The following properties have been added by the Upgrade process. . .
34. grails.views.default.codec="none" // none, html, base64
35. grails.views.gsp.encoding="UTF-8"

8http://commons.apache.org/logging/
9http://logging.apache.org/log4j/2.x/

http://commons.apache.org/logging/
http://logging.apache.org/log4j/2.x/

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

297

Listing 12-3 does the following:

Lines 2–31 configure log4j, while the remaining lines set some default configurations for views. •
When the application logs a message, something has to be done with the message.

Lines 3–5 configure a • ConsoleAppender, which takes the message and writes it to standard out,
with the format defined by the pattern in line 5.

Line 6 instructs log4j to send only messages with severities of • error or greater to the appender
unless explicitly overwritten.

Lines 7–20 show examples of overriding some logging. For example, on line 8, the • grails
logger says to include anything with a log level of info or above, while line 10 turns off
org.codehaus.groovy.grails.web.servlet completely.

Note ■ There are a lot of options for log4j. Check out “Short Introduction to log4j.”10

Grails provides some special loggers for the different types of artifacts that it already understands by conventions.
Table 12-2 documents the special loggers you will find helpful for seeing your log messages.

Table 12-2. Special Grails Artifact Loggers

Logger Description

grails.app.controller Configures logging for all your controllers

grails.app.domain Configures logging for all your domains

grails.app.service Configures logging for all your services

grails.app.tagLib Configures logging for all your tag libraries

The most likely log configuration you will want to make is adding environment-specific logging for your artifacts;
you can use the loggers described in Table 12-2. For example, in your development environment, you may want to log
messages at a debug level (as shown in Listing 12-6), but in your production environment, you may want to log fewer
messages for performance reasons and to ensure that the log file doesn’t consume all your disk space.

Listing 12-6. Example of Adding Logging Specific to Your Development Environment

environments {
 development {
 log4j {
 logger {
 grails {
 app.controller="debug"
 }
 }
 }
 }
}

10http://logging.apache.org/log4j/2.x/manual/

http://logging.apache.org/log4j/2.x/manual/

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

298

Listing 12-6 shows an example of logging all controllers at a debug level. You can simply add this configuration
to the end of the Config.groovy file and then restart the application for the new development-specific logging
configuration to take effect.

Packaging the Application for Deployment
The run-app command is thus best suited for development only. For deployment onto a production system, use a
packaged WAR file. Deploy your application by setting up Grails on your production environment and simply type:

grails> run-war

This command packages up Grails as a WAR file and then runs Tomcat using the packaged WAR.
The run-war command shown above is convenient, but you might want more control over your deployment

environment, or you might want to deploy onto another container, such as BEA WebLogic, instead of Tomcat. What
you need in these cases is a WAR file. To create a WAR archive, use Grails’ war command:

grails> war

After you complete the application functionality for an iteration or a release, you or your build master need to
package your application so it can be deployed on a machine other than your computer. At the most basic level, all
you have to do is run the Grails war target to create a deployable WAR file. In reality, though, you should follow a more
disciplined process to make it easier to identify the version of your application as it goes through environments. We
recommended you follow this procedure for milestone releases:

1. Update the code from your version control repository to make sure it’s in sync with the
head/trunk.

2. Run unit and smoke tests to verify that the release is ready.

3. Increment the app.version property in application.properties either manually or by
using the grails set-version target to identify a milestone release number, such as X.X.X.

4. Clean the project using the grails clean target to make sure there are no leftover
artifacts.

5. Package the application into a WAR file using the Grails war target and an environment
designation—for example, grails prod war. This creates a WAR file in the root of the
project with a name containing the project name and version number.

6. Increment the app.version property and append a -SNAPSHOT in application.
properties either manually or by using the grailsset-version target to indicate this
version is a work in progress and not a milestone release.

7. Commit the application.properties file back into your version control repository.

Now you have a WAR file ready for deployment. We’ll discuss how to deploy it in the next section.

Deploying to an Application Server
A Grails application packaged as a WAR file can be deployed to Java EE application servers such as JBoss, GlassFish,
Apache Geronimo, BEA WebLogic, or IBM WebSphere, or to a web container such as Apache Tomcat or Jetty.
Deployment between containers varies greatly, so consult your application server or web container documentation
for details. However, standard mechanisms include special deployment directories where the WAR can be copied, a

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

299

web-based administrator console, a command-line client, and/or Apache Ant tasks. Grails does not provide anything
for simplifying deployments, so now we’ll discuss how you can write your own script to automate the process.

Note ■ The Grails FAQ (http://www.grails.org/FAQ) has specific configurations and tips for deploying Grails

applications to some common application servers.

httpS

Many applications require that the information passed from the browser to the server be encrypted to ensure

the data is not intercepted along the way. This is usually done using a secure HTTP connection, otherwise

known as HTTP over Secure Socket Layer (SSL), or HTTPS. Configuring HTTPS is an application server–specific

configuration, so you should check your application server documentation to learn how to configure it. However,

it can be critical to test your application within an HTTPS context, so Grails provides the ability to start your Grails

application using HTTPS instead of HTTP. Instead of executing grails run-app, you use run-app -https. This

starts your server so it is available under port 8080 as well as port 8443 using an HTTPS protocol—for example,

https://localhost:8443/collab-todo/. Running the server in this mode causes a temporary certificate to be

generated, as shown in the following figure. You’ll be prompted with an unknown certifying authority error, which

makes this method unsuitable for production use but fine for testing.

http://www.grails.org/FAQ
https://localhost:8443/collab-todo/

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

300

Development is full of cycles and repetitive tasks, such as compiling, packaging, and deploying. Performing
such tasks manually can be boring and error prone. It is considered a best practice to automate such tasks. Many
books have been written to this effect, and many frameworks were developed to solve the problem. In fact, one of
the primary conventions for Grails is the Grails command line, which is used to automate common tasks in Grails
development. The Grails command line utilizes Gant,11 a build system that uses the Groovy language to script Apache
Ant tasks rather than Ant’s XML format. Ant, and therefore Gant, are primarily made up of name collections of tasks
referred to as targets, which you can execute to complete a unit of work.

As you have seen throughout this book, the Grails command line provides a lot of functionality. However, it may
not automate every task you perform during your development. For example, there is no task for deploying, and yet it
is common to deploy your application to infrastructure that matches the application server and database you use in
a production environment. So from time to time, you may want to simplify your development efforts by creating your
own Gant scripts or modifying existing ones.

Grails makes it easy to incorporate your scripts into your development process. After all, every Grails command-
line task is itself a Gant script already. The Grails command line uses the following directories to locate scripts for
execution and incorporate them into the help system:

• USER_HOME/.grails/scripts

• PROJECT_HOME/scripts

• PROJECT_HOME/plugins/*/scripts

• GRAILS_HOME/scripts

After writing your Gant script, you can place it in one of these directories, and it will automatically be available
from the Grails command line and in the Grails help list.

Grails does not include a deployment script, because there are too many application servers and configuration
options to keep up. Listing 12-7 shows an example of a simple script you can use to deploy a WAR file to an application
server that supports automatic deployments via a deployment directory like JBoss has.

Listing 12-7. Basic Deployment Script Deploy.groovy

1. /**
2. * Gant script that copies a WAR file to an application
3. * server deployment directory.
4. */
5.
6.
7.
8.
9. includeTargets <<grailsScript("War")
10.
11. target ('default':'"Copies a WAR archive to a Java EE app server's deploy
12. directory.
13.
14. Example:
15. grails deploy
16. grails prod deploy
17. "") {
18. deploy()
19. }
20.

11http://gant.codehaus.org

http://gant.codehaus.org

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

301

21. target (deploy: "The implementation target") {
22. depends(war)
23.
24. def deployDir = ant.antProject.properties.'deploy.dir'
25.
26. ant.copy(todir:"${deployDir}", overwrite:true) {
27. fileset(dir:"${basedir}", includes:"*.war")
28. }
29.
30. event("StatusFinal", ["Done copying WAR to ${deployDir}"])
31. }

In the Deploy.groovy script shown in Listing 12-7, line 9 imports another Gant script—specifically, the
War.groovy script. The deploy script is dependent on the War.groovy script to build the WAR file, so it has
something to deploy.

Lines 11–19 represent the first of two targets in this script. The first target is the default target, which means if
no other target is specified, this will be the one executed. Since Grails calls the default target, it will definitely be the
one executed. Notice that the default name is in single quotes; this is because the word default is a reserved word
in Groovy. Quotes are not normally needed for target names. Following the name is the target description, which the
Grails help system uses. The only behavior the default target has is to call the deploy target.

The deploy target, shown on lines 21–31, does all the real work. It begins by calling the war target from the
War.groovy script. After the WAR file is created, it looks up the deploy.dir property. It then copies the WAR file to the
location of this property. You can put the destination of the WAR file in the application.properties file, since the
Grails command line automatically loads it. Lines 26–28 use the Ant copy task to copy all WAR files to the deployment
directory. Finally, a message is printed to the system out to indicate to the user that the script is complete and in
which directory the WAR file was copied.

Running the following target performs the deployment by copying the WAR file to your application server:

> grails deploy

Upgrading Grails Applications
Early in the development of the Grails framework, it must have become obvious that the framework would go through
many iterations and that some mechanism was needed to ensure that applications could migrate easily to new
releases of the Grails framework. As with many of the Grails conventions, this is accomplished through a Grails target,
upgrade. This section gives a brief summary of what you might encounter when upgrading to Grails 2. The detailed
description can be found in Grails documentation.12

Grails 2.0 contains updated dependencies including Servlet 3.0, Tomcat 7, Spring 3.1, Hibernate 3.6, and
Groovy 1.8. This means that certain plugins and applications that depend on earlier versions of these APIs may
no longer work. For example, the Servlet 3.0 HttpServletRequest interface includes new methods, so if a plugin
implements this interface for Servlet 2.5 but not for Servlet 3.0, then said plugin will break. The same can be said of
any Spring interface. Grails 2 does not work on JDK 1.4, so if you wish to continue using Grails, use Grails 1.0.x until
you are able to upgrade your JDK.

12http://grails.org/doc/latest/guide/upgradingFromPreviousVersionsOfGrails.html

http://grails.org/doc/latest/guide/upgradingFromPreviousVersionsOfGrails.html

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

302

Configuration Changes
The following settings have been moved from grails-app/conf/Config.groovygrails to app/conf/BuildConfig.
groovy:

• grails.config.base.webXml

• grails.project.war.file (renamed from grails.war.destFile)

• grails.war.dependencies

• grails.war.copyToWebApp

• grails.war.resources

Command Line Changes
The run-app-https and run-war-https commands no longer exist and have been replaced by an argument
to run-app:

> grails run-app -https

H2
HSQLDB was replaced with H2 as default in-memory database, but it is still bundled with Grails. Upgrade options
include replacing HSQLDB references in DataSource.groovy with H2 references or adding HSQLDB as a runtime
dependency for the application.

If you want to run an application with different versions of Grails, add HSQLDB as a runtime dependency, which
you can do in BuildConfig.groovy, as illustrated in Listing 12-8.

Listing 12-8. Adding HSQLDB as a Runtime Dependency

grails.project.dependency.resolution = {
 inherits("global") {
 }
 repositories {
 grailsPlugins()
 grailsHome()
 grailsCentral()
 } dependencies {
 // Add HSQLDB as a runtime dependency
 runtime 'hsqldb:hsqldb:1.8.0.10'
 }
}

jQuery
jQuery Replaces Prototype. The Prototype JavaScript library was removed from Grails core and now new Grails
applications have the jQuery plugin configured by default. This will only impact you if you are using Prototype with
the adaptive Ajax tags in your application (for example, <g:remoteLink/>) because those tags will break as soon as
you upgrade. To resolve this issue, simply install the Prototype plugin in your application. If you want you can also
remove the prototype files from your web-app/js/prototype directory.

CHAPTER 12 ■ DEPLOYING AND UPGRADING GRAILS APPLICATIONS

303

Controller Public Methods
As of Grails 2.0, public methods of controllers are now treated as actions in addition to actions defined as traditional
closures. If you were relying on the use of methods for privacy controls or as helper methods, then this could result
in unexpected behavior. To resolve this issue, mark all methods of your application that you do not want to expose as
actions as private methods.

Unit Test Framework
Grails 2 introduces a new unit testing framework that is simpler and behaves more consistently than the old one. The
old framework based on the GrailsUnitTestCase class hierarchy is still available for backward compatibility, but it
does not work with the new annotations. Migrating unit tests to the new approach is non-trivial, but recommended.
Here are a set of mappings from the old style to the new:

1. Remove extends *UnitTestCase and add a @TestFor annotation to the class
if you’re testing a core artifact (controller, tag lib, domain class, and so on) or
@TestMixin(GrailsUnitTestMixin) for non-core artifacts and non-artifact classes.

2. Add @Mock annotation for domain classes that must be mocked and use new
MyDomain().save() in place of mockDomain().

3. Replace references to mockRequest, mockResponse, and mockParams with request,
response, and params.

4. Remove references to renderArgs and use the view and model properties for view
rendering, or response.text for all others.

5. Replace references to redirectArgs with response.redirectedUrl. The latter takes
into account the URL mappings as it is a string URL rather than a map of redirect()
arguments.

6. The mockCommandObject() method is no longer needed, as Grails automatically detects
whether an action requires a command object or not.

Summary
This chapter covered a lot of the operational aspects of developing Grails applications. Many of the topics related
to things that happen after the code is written or described ways to facilitate the development process. The topics
included packaging and deploying the application, as well as configuring environmental data sources and logging.
It also covered how to automate your daily development processes and upgrade your applications to work with new
versions of Grails. This chapter also ends the server-side discussion of Grails.

305

Chapter 13

Introduction to Griffon

The griffon is a mythological creature with the body of a lion and the head and wings of an eagle. As the lion was
traditionally considered the king of the beasts and the eagle was the king of the birds, the griffon was thought to be an
especially powerful and majestic creature. Similar to this majestic mix, Griffon, a Model-View-Controller (MVC)-based
desktop application framework, uses Grails, the web application framework, as its foundation to enable the developer
to switch between web and desktop development. The knowledge acquired in one transmutes to the other, thus
bringing you the best of both worlds. Both frameworks share a lot of traits, Griffon’s MVC design and plugin facility is
based on those provided by Grails, and the command-line tools and scripts found in one framework can also be found
in the other.

Inspired by Grails, Griffon follows the “convention over configuration” paradigm, paired with an intuitive MVC
architecture and a command line interface. Griffon also follows the spirit of the Swing Application Framework, which
defines a simple yet powerful application life cycle and event publishing mechanism. Grails developers should feel
right at home when trying out Griffon. Many of Grails’ conventions and commands are shared with Griffon.

The Griffon framework is extensible via plugins, and there are many to choose from. For example, you’ll find
plugins for third-party Swing components like SwingX, Jide, and Macwidgets; persistence-related plugins like
DataSource, GSQL, and Hibernate, among others; and 3D graphics and animation support is possible via JOGL and
LWJGL. Griffon also supports additional UI toolkits like JavaFX and SWT.

This chapter, by no means comprehensive, introduces you to the basics of Griffon. For a detailed treatment on
Griffon, we recommend:

• Griffon in Action (Manning Publications, 2012), co-authored by James Shingler, also the
co-author of this book

The Griffon documentation (• http://griffon.codehaus.org/guide/latest/)

Installing Griffon
The first step to getting up and running with Griffon is to install the distribution. To do so, follow these steps:

1. Download a binary distribution of Griffon and extract the resulting zip file to a location
of your choice from here:http://griffon.codehaus.org/Download. This chapter uses
Griffon 1.1.0.

2. Set the GRIFFON_HOME environment variable to the location where you extracted the
zip file. On Unix/Linux based systems, this is typically a matter of adding something like
export GRIFFON_HOME=/path/to/griffon to your profile. On Windows, you typically set
an environment variable under My Computer ➤ Advanced ➤ Environment Variables.

3. Now you need to add the bin directory to your PATH variable. On a Unix/Linux base system,
you can do this by adding export PATH="$PATH:$GRIFFON_HOME/bin". On Windows, modify
the Path environment variable under My Computer ➤ Advanced ➤ Environment Variables.

http://griffon.codehaus.org/guide/latest/
http://griffon.codehaus.org/Download

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

306

If Griffon is working correctly, you should now be able to type griffon in the terminal window and see output
similar to the below:

Welcome to Griffon 1.1.0 - http://griffon-framework.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /usr/local/griffon-1.1.0
No script name specified. Use 'griffon help' for more info

If you type griffon help at your command prompt as specified below, a list of available Griffon commands is
displayed, confirming that GRIFFON_HOME was set as expected and that the griffon command is available on your path.

> griffon help

The output should be similar to this:

Welcome to Griffon 1.1.0 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /opt/griffon

Note ■ Griffon may produce output in addition to this, especially when you run it for the first time, when Griffon makes

sure it can locate all the required dependencies, which should be available in the folder where Griffon was installed.

Now you’re ready to start building your first application. You’ll start with a default Griffon application and then
enhance it using plugins.

Creating Your First Application
To create a Griffon application, use the following griffon command, which is similar to Grails, as Grails developers
will notice.

> griffon create-app user

The create-app command creates the appropriate directory structure, the application, and even skeleton code
that you can use to launch the application. To launch the application, navigate to the application directory and call the
run-app command:

> griffon run-app

This command should compile all sources and package the application. After a few seconds, you’ll see a result
similar to Figure 13-1.

http://griffon-framework.org/
http://griffon.codehaus.org/

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

307

This does not look much of an application so far, but it is a full Griffon application with the complete directory
structure created as explained in the next section. The griffon run-app command runs the application in the
stand-alone mode, but it is not the only way to run your application. Every Griffon application can be deployed in
three modes: stand-alone, Web Start, and applet.

Java Web Start is a framework developed by Sun Microsystems (now Oracle) that allows users to start application
software for the Java Platform directly from the Internet using a web browser. Using JavaWS, desktop applications
can be delivered across network. To launch the current application in Web Start mode in Griffon, use the
following command:

> griffon run-webstart

Finally, you can run the application in applet mode with the following command:

> griffon run-applet

In both the cases, Web Start mode and applet mode, the result is similar, as depicted in Figure 13-1.
As we mentioned earlier, the create-app command creates the appropriate directory structure, the application,

and even skeleton code. We will go through the directory structure next.

Directory Structure
One of the strengths of the Grails framework is its convention over configuration paradigm. Along the same lines,
Griffon’s conventions are dictated by the common application structure shared by all applications; this structure was
created when you invoked the Griffon create-app command.

Let’s see what else is created by that command. The core of the application resides in the griffon-app directory,
as illustrated in Figure 13-2. There you can find the code for all models, views, and controllers, which together are the
mainstay of the application. You’ll also find other useful artifacts there.

Figure 13-1. The default view

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

308

Table 13-1 shows a breakdown of the contents of each directory. As you develop more and more Griffon
applications, you’ll come to appreciate that the applications all follow a common structure and layout. It makes
moving between applications much easier. You don’t have to spend time to search your way through the application
to see where the views, models, and controllers might be located. You just know where they are located.

Figure 13-2. Application directory structure

Table 13-1. Important Directories in the Griffon Convention

Directory Description

griffon-app Core Griffon artifacts

griffon-app/conf Configuration sources

griffon-app/conf/keys JAR signing keys

griffon-app/conf/dist Package specific files

griffon-app/conf/dist/shared Common files to all packaging targets

(continued)

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

309

Let’s now navigate through the MVC Triad created by Griffon in the models, views, and controllers directory
named after the application. Griffon follows the MVC pattern (Model-View-Controller). The smallest unit of
structure in a Griffon application is an MVC group. An MVC group is a set of three components, one for each
member of the MVC pattern: model, view, and controller. Each member follows a naming convention that’s easy
to follow. Griffon created an initial MVC group for the application when you issued the create-app command. We
begin with looking at the view: the part of the application the user can touch and feel (in the literal sense). This file is
located at griffon-app/view/user/UserView.groovy, as illustrated in Listing 13-1.

Listing 13-1. The Default View

package user
application(title: 'user',
 preferredSize: [320, 240],
 pack: true,
 //location: [50,50],
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
// add content here
 label('Content Goes Here') // delete me
}

Directory Description

griffon-app/conf/metainf Files that should go in META-INF inside the application/addon JAR

griffon-app/conf/webstart Webstart templates

griffon-app/controllers Controllers

griffon-app/models Models

griffon-app/services Services

griffon-app/resources Images, properties files, and so on

griffon-app/views GSP

lib Third-party JAR files, such as database drivers

scripts Build-time scripts

src Supporting sources

src/main Other Groovy/Java sources

test Unit and integration tests

test/integration Integration tests

test/unit Unit tests

test/cli Directory for command line tests

Table 13-1. (continued)

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

310

The view script in the Listing 13-1 is a fairly straightforward SwingBuilder script. Griffon will execute this
Groovy script in the context of its UberBuilder, a compositing FactoryBuilderSupport class, which allows seamless
merging of existing Builders. From this code, you can see that the create-app command defines an application titled
User with a default size of 320 by 240, some icons, and a Content Goes Here label. The application node resolves to
a javax.swing.JFrame instance when run in stand-alone mode and a javax.swing.JApplet instance when run in
applet mode. After the code sets some basic properties, such as the title and the location, in the application node,
the label component resolves to javax.swing.JLabel.

Listing 13-2 illustrates the model class UserModel created by Griffon in the models directory.

Listing 13-2. Default UserModel Generated by Griffon

package user

import groovy.beans.Bindable

class UserModel {
 // @Bindable String propName
}

As you can see in Listing 13-2, the model in Griffon is Groovy-powered to map the fields to the properties
following the JavaBeans convention. The Groovy compiler will generate the appropriate bytecode for a pair of
methods (the getter and setter) and a private field. Also, notice the @Bindable attribute, which sets up Griffon data
binding. The @Bindable annotation is on the individual fields. We can also move the @Bindable up to the class level,
to make all the fields observable properties. We’ll look at binding in the next section. (If you are wondering about
“observable” properties are, rest assured that we will cover them later in this chapter.) Now, let’s go through the
default controller, as shown in Listing 13-3.

Listing 13-3. Default UserController Generated by Griffon

package user

class UserController {
 // these will be injected by Griffon
 def model
 def view

 // void mvcGroupInit(Map args) {
 // // this method is called after model and view are injected
 // }

 // void mvcGroupDestroy() {
 // // this method is called when the group is destroyed
 // }

 /*
 Remember that actions will be called outside of the UI thread by default. You can change
this setting of course.Please read chapter 9 of the Griffon Guide to know more.
 def action = { evt = null ->
 }
 */
}

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

311

As you can see, Listing 13-3 includes a lot of comments in the cod. The commented code and the comments
are created by Griffon when it creates the controller for the default application. The fields model and view in the
controller will be injected by the Griffon framework. This allows us to access the view widgets and the model data if
needed. At this point, the astute reader might notice that Griffon is an MVC framework blended with avant-garde
concepts like injection and convention over configuration. The two methods in Listing 13-3 serve as initialization and
destruction hooks respectively for any MVC member. We will discuss these methods in the controller section later
in this chapter. As mentioned earlier, Griffon creates an initial MVC group for the application when you issue the
create-app command. Listing 13-4 illustrates the MVC group configuration created in Application.groovy located
in griffon-app/conf in the application’s structure.

Listing 13-4. Application.groovy in the default application

application {
 title = 'User'
 startupGroups = ['user']

 // Should Griffon exit when no Griffon created frames are showing?
 autoShutdown = true

 // If you want some non-standard application class, apply it here
 //frameClass = 'javax.swing.JFrame'
}
mvcGroups {
 // MVC Group for "user"
 'user' {
 model = 'user.UserModel'
 view = 'user.UserView'
 controller = 'user.UserController'
 }

}

In Listing 13-4, the user MVC group was created when the application was created and serves as the master
group of the whole application. The property named application.startup-Groups serves as a list of the MVC groups
that should be automatically started up when the application framework starts up. By default, the MVC group created
as a part of the initial application is added to the list of startup groups. You can add any number of groups that you
declare later. To create a new MVC group, invoke the following command from the command prompt from inside the
user project.

> griffon create-mvc userDetails

The execution of create-mvc command generates four files, each in the appropriate functional directory: a
model, a view, a controller, and a test file. Each of the files also has a name derived from the MVC group name.

C:\workspace\ch013\user>griffon create-mvc userDetails
Welcome to Griffon 1.1.0 - http://griffon-framework.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: D:\griffon-1.1.0

http://griffon-framework.org/

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

312

Base Directory: C:\workspace\ch013\user
Running script D:\griffon-1.1.0\scripts\CreateMvc.groovy
Resolving dependencies...
Dependencies resolved in 404ms.
Environment set to development
Resolving framework plugin dependencies ...
Framework plugin dependencies resolved in 376 ms.
Resolving plugin dependencies ...
Plugin dependencies resolved in 344 ms.
Created Model for UserDetails
Created View for UserDetails
Created Controller for UserDetails
Created Tests for UserDetails

Apart from generating MVC member files, the create-mvc command also changes the configuration files to tell
the framework that you have a new MVC group as illustrated in Listing 13-5.

Listing 13-5. Application.groovy after running create-mvc command

application {
 title = 'User'
 startupGroups = ['user']

 // Should Griffon exit when no Griffon created frames are showing?
 autoShutdown = true

 // If you want some non-standard application class, apply it here
 //frameClass = 'javax.swing.JFrame'
}
 mvcGroups {
 // MVC Group for "userDetails"
 'userDetails' {
 model = 'user.UserDetailsModel'
 view = 'user.UserDetailsView'
 controller = 'user.UserDetailsController'
 }

 // MVC Group for "user"
 'user' {
 model = 'user.UserModel'
 view = 'user.UserView'
 controller = 'user.UserController'
 }

}

As you can see in Listing 13-5, Griffon added a new MVC group for the userDetails, but it did not add the
userDetails MVC group to list of startup groups. You may choose to add the new MVC group to the startup group to
instantiate it automatically or you can instantiate it manually using methods available to every MVC member and the
application instance: buildMVCGroup(), createMVCGroup(), and withMVCGroup(). We will discuss these methods in
the controller section later in this chapter.

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

313

Now we will enhance the default application by modifying the view, model, and controller to create the
application, which allows us to create new users. The form used to create the user will look as shown in Figure 13-3.

Figure 13-3. View of enhanced application

Looking at Figure 13-3, it’s easy to see that the model will have the following properties: firstName and lastName.
Also, we will enable the create button if the user provides both a first name and last name. Listing 13-6 illustrates the
model that churns this out.

Listing 13-6. Enhancing the UserModel

package user

import groovy.beans.Bindable
import griffon.transform.PropertyListener
import static griffon.util.GriffonNameUtils.isBlank

@Bindable
@PropertyListener(clos)
class UserModel {

 String firstName
 String lastName
 boolean create
 private clos = { event->
 create = !isBlank(firstName) &&
 !isBlank(lastName)
 }
}

The model in Listing 13-4 is quite simple. Other than the @Bindable annotation, which looks familiar since Griffon
created it for us in the default model, there is another annotation: @PropertyListener. The @PropertyListener
annotation registers a PropertyChangeListener that handles change events. The @PropertyListener is set up
at the class level to listen to all property-change events associated with the class. The @Bindable annotation adds
PropertyChangeSupport to all fields of the class. This means that when any of the field values change, a property
change event is fired. When an event is fired, the closure is invoked with the event. The closure clos takes an event as
input. The closure uses the isBlank helper to determine the value of the boolean create. isBlank is a utility method
provided by the Griffon runtime to check if the field is blank.

Now let’s enhance the view. Referring to Figure 13-3, we need two labels, two text fields, and one button.
Listing 13-7 illustrates the code for the view.

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

314

Listing 13-7. Enhancing the View

package user
actions { action(id: 'createAction', name: 'Create', enabled: bind{ model.create }, closure:
controller.create) }
application(title: 'User',
 preferredSize: [320, 240],
 pack: true,
 //location: [50,50],
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {

gridLayout(cols: 2, rows: 3)
label 'First Name:'
textField columns: 20,
text: bind(target: model, 'firstName', mutual: true)
label 'Last Name:'
textField columns:20,
text: bind(target: model, 'lastName', mutual: true)
label ''
button createAction, constraints: 'span 2, right'

}

As illustrated in Listing 13-7, the view components are associated with the model property using the binding.
The textField bindings contain an extra parameter, mutual. Setting mutual to true creates a bi-directional binding.
When the view is changed, the model is updated, and when the model is changed, the view is updated. You also
see that when the user clicks a button, the associated createAction is invoked on the controller. Let’s look at the
controller next. Listing 13-8 illustrates the code for the UserController.

Listing 13-8. Enhancing the Controller

package user

class UserController {
 def model
 def view

 def create = {
 println "First Name: ${model.firstName}"
 println "Last Name: ${model.lastName}"
 }
}

The controller in Listing 13-8 is trivial: when the Create button is clicked, the action in controller prints the
model values.

Now you can the run the application using the following command:

> griffon run-app user

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

315

The Figure 13-4 depicts the running application. The create button is not enabled until the user fills the lastName.
We will show you how to enhance the look and feel of the application in the next section but before that we will cover
the topic that is important in terms of the facilities that must be provided by an application framework: the application
life cycle.

Figure 13-4. The enhanced application

Griffon Application Life Cycle
Griffon is an open source, rich client platform framework. In a rich client application, the client not only provides
the UI (user interface), but is also responsible for data processing. Rich client applications are generally built on
a framework, are extensible with the help of plugins, and can be seamlessly updated with globally distributed
applications. The desktop applications share common features, such as menus, toolbars, and so on. For such features,
a rich client platform provides a framework with which the features can quickly be rolled and assembled. The rich
client platform also provides the configuration and extension infrastructure with which features such as menus can be
declaratively loaded by the framework, thus allowing developers to focus on the core business of the application.
To this end, one of the key concerns of the desktop applications is the lifecycle management of its components.

The desktop application should be responsible for bootstrapping itself, allocating resources to the components
being loaded, and instantiated and relinquishing the allocated resources when they are not needed. Griffon addresses
all these concerns with its well-defined life cycle management. Every Griffon application goes through the same
life cycle phases no matter in which mode they are running, with the exception of applet mode, where there is an
additional phase.. Every phase has an associated life cycle script that will be invoked at the appropriate time and these
scripts are located in the griffon-app/lifecycle in the application’s structure. The phases are as follows:

Initialization•

Startup•

Ready•

Shutdown•

Stop•

Initialization
The initialization phase is the first to be called by the application’s life cycle. The application instance was just created
and its configuration was read but you can’t access any MVC members yet. This phase is typically used to tweak the
application for the current platform, including its look and feel. Listing 13-9 illustrates the code in the script for this
phase (Initialize.groovy).

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

316

Listing 13-9. Initialize.groovy

import groovy.swing.SwingBuilder
import static griffon.util.GriffonApplicationUtils.isMacOSX

SwingBuilder.lookAndFeel((isMacOSX ? 'system' : 'nimbus'), 'gtk', ['metal', [boldFonts: false]])

The code in this script configures the look and feel using a list of names that resolve to a particular lookAndFeel
setting.

Startup
The Startup phase is responsible for instantiating all MVC groups that have been defined in the application’s
configuration (Application.groovy) and that also were marked as startup groups in the same configuration file.

Ready
The Ready phase is called right after Startup with the condition that no pending events are available in the UI queue.
The application’s main frame is displayed at the end of this phase. The application is fully initialized at this point; no
further life cycle scripts will be called until the application is ready to shut down in the next life cycle phase.

Shutdown
The Shutdown phase begins when the application is about to close. Any artifact can invoke the shutdown sequence
by calling shutdown() on the app instance. This is the last life cycle script called by Griffon. The shutdown phase
represents the last chance for freeing used resources, saving configuration settings, and closing any connections your
application might have opened.

Stop
The Stop phase is only available when running in applet mode. It is called when the applet container invokes
destroy() on the applet instance.

These are all the phases in the Griffon application lifecycle. It’s simple, but it’s a powerful feature in Griffon’s
arsenal against painful desktop application development. Instead of figuring out when and how each of these tasks
should be invoked, you let Griffon call the phase-handler scripts when needed. These scripts are guaranteed to be
invoked inside the UI thread (the Event Dispatch Thread in Swing). The script names match each phase name; you’ll
find them inside griffon-app/lifecycle. In the next section, we’ll dig into views.

Note ■ The Swing toolkit has a rule: all long computations must be performed outside of the Event Dispatch Thread

(or EDT for short). This rule also states that all interaction with UI components must be done inside the EDT, including

building a component and reading/writing component properties. More information on concurrency in swing can be

obtained from http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html.

http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

317

Views
Groovy can do anything Java can do. If you think about the goal of developing the user interface from a Java
perspective, you have two options: Swing or Standard Widget Toolkit (SWT). Either choice would work. You could just
start coding Groovy and use Swing or SWT the same way you would in a normal Java program. However, if you’ve ever
coded Swing or SWT, you probably aren’t too excited right now.

Groovy uses builders1 to make the job easier. It has both the Swing family of builders (SwingBuilder,2 SwingXBuilder,
and JideBuilder3) and the SWT builder (SwtBuilder4). Using Groovy and a builder will make it much easier to create a
client application. In general, Java developers are more likely to be familiar with Swing than SWT. Therefore, we’ll show
you how to use Swing as the presentation technology and SwingXBuilder to make it easier. SwingXBuilder extends
SwingBuilder and provides access to all of the power of SwingBuilder, plus the Swing components from the folks at
SwingLabs.5

Builder Overview
A Swing user interface can be thought of as a composite or a tree of graphical components. If you have programmed
with Swing, you’re undoubtedly familiar with the never ending pattern of adding a component to its parent. It can be a
complex, verbose mess. Groovy tackles the mess using builders.

If you have spent any time with Groovy, you have probably seen or used MarkupBuilder to construct an HTML or
XML document. Builders can be used equally as well to build a Swing UI.

The easiest way to gain appreciation for SwingXBuilder is to see an example. Listing 13-10 shows how to use
SwingXBuilder to create a simple user interface.

Listing 13-10. Creating a Simple UI Using SwingXBuilder

import groovy.swing.SwingXBuilder
import static javax.swing.WindowConstants.EXIT_ON_CLOSE
import javax.swing.*

class SimpleUI {

 static void main(args) {
 def simpleUI = new SimpleUI()
 simpleUI.run()
 }
 def swing
 def count = 0

 def run = {
 swing = new SwingXBuilder()
 swing.lookAndFeel('system')

1Refer to Chapter 3 for a review of builders.
2http://groovy.codehaus.org/Swing+Builder
3http://groovy.codehaus.org/JideBuilder
4http://groovy.codehaus.org/GroovySWT
5http://www.swinglabs.org

http://groovy.codehaus.org/Swing+Builder
http://groovy.codehaus.org/JideBuilder
http://groovy.codehaus.org/GroovySWT
http://www.swinglabs.org

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

318

 // create the actions
 swing.action(id: 'exitAction',
 name: 'Exit',
 closure: this.&exit,
 mnemonic: 'x',
 accelerator: 'F4',
 shortDescription: 'Exit SimpleUI'
)
 swing.action(id: 'aboutAction',
 name: 'About',
 closure: this.&showAbout,
 mnemonic: 'A',

 accelerator: 'F1',
 shortDescription: 'Find out about SimpleUI'
)
 swing.action(id: 'clickAction',
 name: 'Click',
 closure: this.&click,
 shortDescription: 'Increment the Click Count'
)

 // Define the Frame
 swing.frame(id:'simpleUIFrame', title: 'SimpleUI',
 location: [100,100],
 defaultCloseOperation: EXIT_ON_CLOSE
) {
 // Define the Menubar
 menuBar {
 menu(text: 'File', mnemonic: 'F') {
 menuItem(exitAction)
 }
 glue()
 menu(text: 'Help', mnemonic: 'H') {
 menuItem(aboutAction)
 }
 }

 // Define some stuff
 button(id:'clickButton', text:"Click Me", action: clickAction)
 // INSERT MORE STUFF HERE
 }

 swing.simpleUIFrame.pack()
 swing.simpleUIFrame.show()
 }

 void click(event) {
 count++
 swing.clickButton.text = "Clicked ${count} time(s)."
 }

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

319

 void showAbout(event) {
 JOptionPane.showMessageDialog(swing.simpleUIFrame,
'"This is the SimpleUI Application''')
 }
 void exit(event) {
 System.exit(0)
 }
}

Executing the SimpleUI application creates the user interface shown in Figure 13-5.

Figure 13-5. The SimpleUI application

The SimpleUI application creates a Swing user interface that features a menu bar that contains a File menu, a Help
menu, and a button in the content area. The text on the button changes every time the user clicks it. When the program
starts, it invokes the run closure to build the UI. The run closure sets up the builder, and then uses the builder to create
three actions that will be used within the UI. Then the closure uses the builder to create the frame. The frame contains a
menu bar, which contains the File and Help menus. Each of the menus contains menu items that reference the previously
created actions. The frame also contains a button labeled Click Me, and a reference to the clickAction action.

If you take a closer look at the actions, you will notice that a parameter named closure was passed to the
builder when creating the actions. In the case of clickAction, the closure to be executed is click. The click closure
increments a counter and sets the button’s text.

Griffon View
Views are usually written as Groovy scripts that create the UI by composing elements using builder nodes. Griffon
supports all nodes provided by SwingBuilder by default.

Additional nodes can be configured in griffon-app/conf/Builder.groovy; the Griffon runtime will make sure
to correctly setup the builder.

Listing 13-11 shows Builder.groovy located in the griffon-app/conf in the application’s structure.

Listing 13-11. Builder.groovy

root {
 'groovy.swing.SwingBuilder' {
 controller = ['Threading']
 view = '*'
 }
}

In Listing 13-11 the root node is the top-level node used to mark the default namespace used by the builder.
If you need to expose additional nodes to a controller, add a new builder to Builder.groovy and place all the
libraries and dependencies of the new builder in your application’s lib directory. Listing 13-12 illustrates adding
MacWidgetsBuilder (http://griffon.codehaus.org/MacWidgetsBuilder) to Builder.groovy.

http://griffon.codehaus.org/MacWidgetsBuilder

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

320

Listing 13-12. Adding MacWidgetsBuilder to Builder.groovy

root {
 'groovy.swing.SwingBuilder' {
 controller = ['Threading']
 view = '*'
 }
 'griffon.builder.macwidgets.MacWidgetsBuilder'{
 view = '*'
 }
}

You can also append the following line to the default Builder.groovy file as an alternative to the
MacWidgetsBuilder block in Listing13-10.

root.'griffon.builder.macwidgets.MacWidgetsBuilder'.view = '*'

Adding builders to your builder configuration can be automated via plugins. All the builders shown at
http://griffon.codehaus.org/Builders have companion plugins that adds the builder automatically so that you
do not have to add it manually. Besides, there are many plugins (see http://artifacts.griffon-framework.org/
plugins/) that can contribute additional nodes that you can use on views.

You can also get the list of all available plugins by invoking the list-plugins command target at your
command prompt.

> griffon list-plugins

Invoking this command displays a table of all available plugins as shown in Figure 13-6

Figure 13-6. List of available plugins

http://griffon.codehaus.org/Builders
http://artifacts.griffon-framework.org/plugins/
http://artifacts.griffon-framework.org/plugins/

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

321

To get plugin specific information you can use plug-info command target with plugin’s name as the parameter.

> griffon plug-info jide-builder

Invoking this command displays the plugin details with documentation information along with the author’s
name and email address, as shown in Figure 13-7.

Figure 13-7. plugin details

Now we will enhance the look and feel of the view using plugins - JideBuilder and MigLayout. We will use the
JideBuilder nodes for setting up the top banner and MigLayout to organize the components as illustrated
in Listing 13-13.

Listing 13-13. View using JideBuilder and MigLayout

package user
import java.awt.Color
actions {
 action(id: 'loginAction',
 name: 'Login',
 enabled: bind{ model.enabled },
 closure: controller.login)
}
application(title: 'User', pack:true,
 locationByPlatform:true,
 iconImage: imageIcon('/griffon-icon-48x48.png').image,

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

322

 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 migLayout(layoutConstraints: 'fill')
 bannerPanel(constraints: 'span 2, growx, wrap',
 title: 'Login',
 subtitle: 'Please enter your credentials',
 titleIcon: imageIcon('/griffon-icon-48x48.png'),
 border: lineBorder(color: Color.BLACK, thickness: 1),
 subTitleColor: Color.WHITE,
 background: new Color(0,0,0,1),
 startColor: Color.WHITE,
 endColor: Color.BLACK,
 vertical: true)
 label 'Username:', constraints: 'left'
 textField columns: 20, text: bind('username', target: model), constraints: 'wrap'
 label 'Password:', constraints: 'left'
 passwordField columns: 20, text: bind('password', target: model), constraints: 'wrap'
 button loginAction, constraints: 'span 2, right'
}

You’ll need to install twoplugins if you intend to run this application: jide-builder and miglayout, using the
following commands:> griffon install-plugin miglayout

> griffon install-plugin jide-builder

The code in Listing 13-13 generates the screen shown in Figure 13-8. The code in Listing 13-14 and Listing 13-15
illustrates the model and the controller used for this application.

Figure 13-8. View Using JideBuilder and MigLayout

Listing 13-14. UserModel for Login Application

package user
import groovy.beans.Bindable
import griffon.transform.PropertyListener
@PropertyListener(enabler)

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

323

class UserModel {
 @Bindable String username
 @Bindable String password
 @Bindable boolean enabled
 private enabler = { evt ->
 if(evt.propertyName == 'enabled') return
 enabled = username && password
 }
}

Listing 13-15. Controller for Login Application

package user

import javax.swing.JOptionPane
class UserController {
 def login = {
 JOptionPane.showMessageDialog(app.windowManager.windows[0],
 """
 username = $model.username
 password = $model.password
 """.stripIndent(14).toString())
 }
}

Special Nodes
There are many Swing components and it would be a daunting task to find and make a SwingBuilder node for each
one for them. Instead of tracking down each Swing component for their node names, drop the first J from the class
name and uncapitalize the next character; for instance, JButton => button, JLabel => label. This rule applies to
all Swing classes available in the JDK. In addition, SwingBuilder includes a few extra nodes that aren’t related to a
particular Swing class, but prove to be useful when you need to insert a custom Swing component. In this section,
we’ll look at six special nodes:

Application•

Container•

Widget•

Bean•

Noparent•

Root•

Application

This node is provided by Swing plugin and defines a top level container depending on the current running mode. Of
all the properties suggested by the default template, you’ll notice iconImage and iconImages. The first property is a
standard property of JFrame. It usually defines the icon to display at the top of the frame (on platforms that support
such a setting). The second property (iconImages) is a JDK 6addition to java.awt.Window. This property instructs the
window to select the most appropriate icon according to platform preferences. Griffon ignores this setting if it’s running
in JDK 5. This property overrides the setting specified for iconImage if it’s supported in the current JDK and platform.

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

324

Container

This node is provided by SwingBuilder and is a pass-through node that accepts any UI component as a value.
This node allows for nesting of child content. It’s quite useful when you need to embed a custom component for
which a node is not available. Listing 13-16 illustrates its usage.

Listing 13-16. Using Container Node

container(new CustomPanel()) {
 label 'custom label'
}

Widget

This node is provided by SwingBuilder and is a pass-through node that accepts any UI component as a value. As
opposed to container, this node does not allow nesting of child content. It’s quite useful when you need to embed a
custom component for which a node is not available. Listing 13-17 illustrates its usage.

Listing 13-17. Using Widget Node

widget(new CustomDisplay(), title: 'custom title') {

Bean

This node is provided by SwingBuilder and is a catch-all node. It allows you to set properties on any object using the
builder syntax. Listing 13-18 illustrates its usage for setting up bindings on a model.

Listing 13-18. Using Bean Node

textField columns: 20, id: username
bean(model, value: bind{ username.text })

Noparent

This node is provided by SwingBuilder. Child nodes are always attached to their parents, but there are times when
you don’t want that to happen. In these cases, wrap those nodes with noparent, as illustrated in Listing 13-19.

Listing 13-19. Using Noparent Node

panel {
 gridLayout(cols: 2, rows: 2)
 button('Click 1', id: b1')
 button('Click 2', id: b2')
 button('Click 3', id: b2')
 button('Click 4', id: b4') // the following line will cause the buttons
 // to be reordered
 // bean(button1, text: 'Click 11')
 noparent {
 // this is safe, buttons do not change places
 bean(button1, text: 'Click 11')
 }
}

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

325

Root

This node is provided by Griffon and it identifies the top level node of a secondary View script. View scripts are
expected to return the top level node, but there may be times when further customizations prevent this from
happening; for example, when wiring up a custom listener. When that happens, the result has to be made explicit;
otherwise the script will return the wrong value. Using the root() node avoids forgetting this fact while also providing
an alias for the node. Listing 13-20 illustrates its usage.

Listing 13-20. Using Root Node

root(
 tree(id: 'mytree')
)mytree.addTreeSelectionModel(new DefaultTreeSelectionModel() {
 ...
})

Models and Bindings
Swing uses the model-view-controller architecture (MVC) as the fundamental design behind each of its components.
Essentially, MVC divides GUI components into three elements—the model, the view, and the controller. Each of these
elements plays a crucial role in how the component behaves. The model encloses the state data for each component.

There are different models for different types of components. For example, the model of a menu may contain a
list of the menu items from which the user can select. Note that this information remains the same no matter how the
component is drawn on the screen; model data always exists independent of the component’s visual representation.
The view refers to how you see the component on the screen.

The controller is the portion of the user interface that dictates how the component interacts with events. Events
come in many forms; for example, a mouse click or a keyboard event. The controller decides how each component
will react to the event.

With MVC, each of the three elements requires the services of another element to keep itself continually updated.
Likewise, the view determines if the component is the recipient of user events, such as mouse clicks. The view passes
these events on to the controller, which decides how to handle them best. Based on the controller’s decisions, the
values in the model may need to be altered.

Griffon automates the creation of the model, view, and controller classes both at build time and at runtime. It
configures them via injection to follow the original convention of paths of references, observed updates, and user
interactions. It also has conventional file locations for the created groups and other conventions relating to the life
cycle of the MVC group.

The MVC pattern is found in Griffon both at the architectural level and the presentation layer. In Griffon,
any MVC member can be registered as a listener on a model class, by means of PropertyChangeListeners and
PropertyChangeEvents. The responsibility of Models is to hold data that can be used by both Controller and View
to communicate with each other. The Griffon Models are observable; all the properties in a Griffon model are
observable. This means that whenever the value of any of the properties changes, an event is fired. To make a property
observable, all you need to do is annotate the property with the @Bindable annotation. The @Bindable annotation,
facilitated by Groovy’s AST transformation, instructs the Groovy compiler to inject the byte code that makes the
annotated property observable and ensure that a PropertyChangeEvent is fired for each observable property
whenever the value of this observable property is changed. This considerably simplifies setting up bindings so that
changes in the UI can automatically be sent to model properties and vice versa

When creating Swing UIs, you’re often interested in monitoring the changes of value of certain UI elements.
For this purpose, the usual approach is to use JavaBeans PropertyChangeListeners to be notified when the value
of a class field changes. You then end up writing this very common boilerplate code in your Java beans, as illustrated
in Listing 13-21.

-

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

326

Listing 13-21. Javabean Without @Bindable Annotation

import java.beans.PropertyChangeSupport;
import java.beans.PropertyChangeListener;

public class MyBean {
 private String prop;

 PropertyChangeSupport pcs = new PropertyChangeSupport(this);

 public void addPropertyChangeListener(PropertyChangeListener l) {
 pcs.add(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 pcs.remove(l);
 }

 public String getProp() {
 return prop;
 }

 public void setProp(String prop) {
 pcs.firePropertyChanged("prop", this.prop, this.prop = prop);
 }
}

Using @Bindable annotation in Groovy, the code in Listing 13-21 can be greatly simplified, as illustrated
in Listing 13-22.

Listing 13-22. Bean with @Bindable Annotation

class MyBean {
 @Bindable String prop
}

Another annotation, @PropertyListener, helps you register PropertyChangeListeners without so much effort.
The @PropertyListener accepts the in-place definition of a closure or reference of a closure property defined in the
same class or a List of any of both.

The Code in Listing 13-23 is greatly simplified using @PropertyListener annotation, as illustrated
in Listing 13-24.

Listing 13-23. Bean Without @PropertyListener Annotation

import groovy.beans.Bindable
import java.beans.PropertyChangeListener
class UserModel {
 def controller
 @Bindable String firstName
 @Bindable String lastName
def snoopAll = { evt -> ... }

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

327

UserModel() {
 addPropertyChangeListener(snoopAll as PropertyChangeListener)
 addPropertyChangeListener('lastName', {
 controller.someAction(it)
 } as PropertyChangeListener)
 }
}

Listing 13-24. Bean with @PropertyListener Annotation

import griffon.transform.PropertyListener
import groovy.beans.Bindable
@PropertyListener(snoopAll)
class MyModel {
 def controller
 @Bindable String name
 @Bindable @PropertyListener({controller.someAction(it)})
 String lastname def snoopAll = { evt -> ... }
}

Binding in Griffon is achieved by leveraging JavaBeans’ PropertyChangeEvent and their related classes.
Thus binding will work with any class that fires this type of event, regardless of its usage (or non-usage(of @Bindable.
The SwingBuilder class in Groovy contains bind node that allows you to cleanly bind the state of two objects.
A simple TestBean with two properties, property1 and property2, is shown below:

class TestBean {
 @Bindable String property1
 String property2
}

You can bind the field property2 to be the same value as property1 using the following:

bind(source: testBean, sourceProperty: 'property1',
 target: testBean, targetProperty: 'property2')

As a result of this binding, the value of the property2 is same as the value of the property1 and if the value of the
property1 is changed, the change is reflected in the property2.

There are the three options for writing a binding using the bind node:

Long. The most complete of all three, you must explicitly specify both ends of the binding. •
The following snippet sets a unidirectional binding from bean1.prop1 to bean2.prop2.

bind(source: bean1, sourceProperty: 'prop1', target: bean2, targetProperty: 'prop2')

Contextual. This type of binding can assume either the sources or the targets depending on •
the context. When used in this way, either sourceProperty: or targetProperty: can be
omitted and considered implicit; the bind node's value becomes the property name.

bean(bean1, prop1: bind('prop2', target: bean2))

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

328

Short. This type of binding is only useful for setting implicit targets. It expects a closure as the •
definition of the binding value.

bean(bean2, prop2: bind{ bean1.prop1 })

Controllers
Controllers are the entry point for your application’s logic. The controller has properties and methods injected by
Griffon, hooks for post- initialization and handler actions. Some of the properties, methods, actions are created
by Griffon when we created the default application, as shown in Listing 13-3. Along with these properties, we will
introduce several other properties and methods in this section.

Injected Properties
The injected properties you need to understand are as follows:

• App—The app property points to the current running application, through which
you can access the application’s configuration. Using this property, an application
can expose its configuration, controllers, views, models, and builders in the form of
app.config, app.controllers, app.views, app.models, and app.builders.

• Builder—The builder property points to the builder used to create the view related to
this controller. The view and the builder may share the same variables, but they’re two
distinct objects: the view is a script that tells you what you just built, and the builder is a
CompositeBuilder instance that allows the controller to build new UI components if needed.

• Model—The model property, when defined, lets the controller access the model that’s
related to its group. A controller usually updates the view via the model, assuming the proper
bindings are put into place. But there’s no strict requirement for a controller to always have a
model. If you think your controller doesn’t require a model, you can safely delete this property
from the code; there won’t be an error, because Griffon will check for the property declaration
before setting the value.

• View—The view property references the third member of the MVC triad: the view. Like the
model, this property is optional. In some cases the controller may interact with the view solely
by updating the model, in which case it’s safe to delete this property from the code.

Injected Methods
The following sections provide examples of the injected methods you’ll be using.

createMVCgroup

This method lets you create new instances of a MVC group. It always returns three elements: Model, View, and
Controller, in that order.

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

329

Listing 13-25. Usage of createMVCgroup

class SampleController {
 def action = { evt = null ->
 def (m, v, c) = createMVCGroup('Other')
 }
}

This method is a restricted version of the more general buildMVCGroup(), explained next.

buildMVCgroup

This method lets you create new instances of an MVC group. Listing 13-26 illustrates its usage.

Listing 13-26. Usage of buildMVCgroup

class SampleController {
 def action = { evt = null ->
 MVCGroup group = buildMVCGroup('Other')
 }
}

This method is used when building a group that may contain additional MVC members, as createMVCGroup()
returns strict MVC members only (Model, View, Controller).

destroyMVCgroup

The destroyMVCGroup() method removes the group reference from the application. Listing 13-27 shows its usage.

Listing 13-27. Usage of destroyMVCgroup

class SampleController {
 def action = { evt = null ->
 destroyMVCGroup('Other')
 }
}

This method performs the following steps in the following specified order:

1. Calls mvcGroupDestroy() on each MVC member that is not a Script.

2. Calls dispose() on the associated builder.

3. Removes all references of the MVC members from the applications cache.

4. Fires a DestroyMVCGroup event.

Once a group is destroyed, you cannot use it again.

withMVCgroup

This method lets you create new instances of a MVC group that is short-lived; for example, one that creates a dialog
box. The withMVCGroup() method is a mix of createMVCGroup() and destroyMVCGroup() that makes sure the created
group is destroyed immediately after it’s no longer of use. Listing 13-28 illustrates its usage.

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

330

Listing 13-28. Usage ofwithMVCgroup

class SampleController {
 def action = { evt = null ->
 withMVCGroup('Other') { m, v, c ->
 // configure the group
 }
 }
}

Create a new MVC group instance, and then discard it once it is no longer of use.

newInstance

This method creates a new instance of a particular class and type. It is a convenience method that fires an event after
the instance is created; the application will not perform additional management for an instance created in this way.
Listing 13-29 illustrates its usage.

Listing 13-29. Usage of newInstance()

class SampleController {
 def action = { evt = null ->
 def myService = newInstance(MyServiceClass, 'service')
 }
}

Initialization and Destruction Hook
Other than listening to application events, creating and destroying MVC groups or holding references to service,
controllers in Griffon can also react to MVC Initialization/Destruction through mvcGroupInit and mvcGroupDestroy
methods which we will explain next.

mvcGroupInit

This method serves as an initialization hook for any MVC member that is neither a script nor a CompositeBuilder
instance. It will be called right after an instance is created.

The signature of the method is this:

void mvcGroupInit(Map<String, Object> args)

The args parameter holds any additional data that has passed to either createMVCGroup() or buildMVCGroup().
Listing 13-30 shows its usage.

Listing 13-30. Usage of mcvGroupInit

class SampleController {
 def someProperty
 def mvcGroupInit(Map args) {
 someProperty = args.random
 }
}

CHAPTER 13 ■ INTRODUCTION TO GRIFFON

331

mvcGroupDestroy

This method serves as a destruction hook for any MVC member that is neither a script nor a CompositeBuilder
instance. It will be called when the instance is about to be removed from the application’s cache during the destroy
sequence of an MVC group. Listing 13-31 shows the usage of mvcGroupDestroy().

Listing 13-31. Usage of mvcGroupDestroy

class SampleController {
 def mvcGroupDestroy() {
 // perform cleanup
 }
}

Actions
Controller actions are usually defined using a closure property form, as illustrated in Listing 13-32.

Listing 13-32. Actions in Controller

class MyController {
 def someAction = { evt = null ->
 // do some stuff
 }
}

An action is nothing more than a closure property or a method that follows a conventional set of arguments,
which is the event generated by the UI.

Summary
You started this chapter by setting up your development environment and using the Griffon create-app command to
create your first Griffon application. You took a brief tour of how Griffon’s convention-over-configuration paradigm
makes the application structure predictable and easy to follow. You saw that data binding between views and
controllers comes naturally with Griffon. The view components display the current status of the model, whereas the
related controllers change them.

Finally, you saw how the power and expressiveness of Groovy help you write concise, expressive, powerful code.
Our goal was to give you a sample of what is possible with Griffon. You are only limited by your imagination.

333

Index

n a
Abstract class, 62
Abstract Syntax Tree (AST) transformations

business code, 83
delegate, 83
immutable, 84
in-memory source code representation, 83
lazy transformation, 84
logging, 85
newify, 86
singleton, 87

Abstract Window Toolkit (AWT), 259
Accept header, 247
Access control, 191–192
Access modiier, 13
Apache Commons Logging component, 296
Apache log4j, 296
Application-level security

access control, 191–192
administrator vs. regular user access, 189
apparatus, 189
authentication, 190
basic access authentication, 189
bootstrapping, 193
CAS, 205–206

client/server architecture, 205
coniguration, 205–206
installation, 205
usage, 206

custom security solution, 194–195, 200–203
controllers, securing, 202–204
logging in and out, 200–202
user class manipulation, 194
user-creation procedure, 194
user registration, 195

domain/model-level security
for user, 189

goals, 189

hashing techniques, 191
plugins, 194
spring security, 207

Aspect-oriented programming (AOP), 149
asperReports, 259
Auto marshalling, 246

n B
Batch processing

building batch-reporting facility, 283, 285,
287–288

invoking e-mail service, 288
invoking report service, 287
nightly reporting job, 283
retrieving user’s todos, 285

creating a job, 281
installing the Quartz plugin, 280

Binary large objects (BLOBs), 160
@Bindable annotation, 310
Bootstrapping, 193
Buddies template, 132
Building domains and services

adjusting the mappings, 165–166
changing eager fetching and locking, 165
changing the primary key, 164–165
class inheritance, 166
creating database indexes, 166
disabling versioning, 165
static mappings, 164
table and column naming, 164

basic domain creation, 158–160
data type, 159
foreign keys, 159
naming, 159
new columns, 159
revisiting todo domain, 158
setting default values, 160
todo table, 158–159

 ■ INDEX

334

calling the service, 185
creating a service, 185
creating relationships, 161–163

many-to-many relationship, 163
many-to-one relationship, 163
one-to-many relationship, 162
one-to-one relationship, 161
relationship in JPA, 161

database model, 169–170
GORM events, 168
initializing the service, 186–187
injecting into the service, 186
querying the database, 175–177, 180–181, 183–184

detached criteria, 183–184
GORM’s CRUD support, 175–176
GORM’s dynamic queries, 177
hibernate’s criteria queries, 181, 183
HQL queries, 180
where queries, 184–185

service context, 187
transactional bean, 187
transient properties, 167–168
turning on the cache, 167
validation, 171–172, 174

built-in constraints, 171–172
calling the validator, 174
creating custom constraints, 172, 174
messages, 174–175
todo object constraint, 171

n C
Central authentication server (CAS)

client/server architecture, 205
coniguration, 205–206
installation, 205
usage, 206

changeNameTobar() method, 77
Character large objects (CLOBs), 160
Checked exceptions, 13
CK editor, 218–219
Class-level diagram, 156
Collab-Todo application, 241

controller creation, 101–104
controller name, 102
create-controller target, 101
render method, 103
standard Groovy class naming convention, 101
TodoController class, 101, 103
TodoController link, 103–104
unit test, 102

controller testing, 105–106
create-app target, 97
default Grails page, 100–101

directories, 98–99
edit todo page, 96
GGTS, 97
Grails Command History, 100
run-app target, 99–100
scafolding, 95
subset, UML diagram, 96–97
todo list pages, 95

Collab-Todo classes
data source, 263
ields selection, 263
iReports, 262
JAR/ZIP tool, 262
layout, 264
todo report template, 264

Collab-Todo’s domain, 156
Completely Automated Public Turing Test to

Tell Computers and Humans Apart
(CAPTCHA), 195

ConsoleAppender, 297
contains() method, 61
Content negotiation

using the Accept header, 248
default content types, 247
format request parameter, 248
with URI extensions, 249

countBy query, 177
create-job command, 281
Create, read, update, and delete (CRUD)

functionality, 91, 241
cronExpression property, 283
Currying closure, 49
Custom SmtpAuthenticator bean, 227

n D
Data Access Object (DAO) pattern, 94
dbCreate property, 295
Delegate transformation, 83
Deploy target, 301
Diamond operator, 55
DocumentBuilder, 68
DocumentBuilderFactory, 68
Dollar slashy strings, 26
Domain-speciic languages (DSLs), 88
Don’t Repeat Yourself (DRY) principles, 90
Duck typing, 5

n e
each() method, 33
Elvis operator, 52
encodeAsXML() and encodeAsJSON() methods, 250
Enterprise JavaBeans (EJB), 92
Error domain class, 250

Building domains and services (cont.)

■ INDEX

335

executeQuery, 181
Expando class, 76
ExpandoMetaClass

borrowing methods, 76
categories, 79
constructors addition, 77
instance methods, 79
methods on interfaces, 78
properties addition, 78
runtime Mixins, 80
static methods, 79

ExpandoMetaClass.enableGlobally() method, 78
Extensible Markup Language (XML)

builders, 68
Java, 66
MarkupBuilder, 69
XmlSlurper, 69

n F
ileAsString() method, 83
File upload capability

choose ile, new todo, 223
ile handling, 223
multipart tag, form, 223
storage, 221
tag, 222–223
Todo domain object, 222

Final class, 63
indAllBy query, 179
indAll query, 181
indAllWhere query, 179
indBy query, 178
ind query, 180
indWhere query, 178
irstUpper(), 80
lash object, 145
Foreign keys or foreign key indexes, 159
Format request parameter, 248

n G
Gant script, 300
GDK, 8
genericfeatureNeededByClassB() method, 80
getAuthorities() method, 209
getInstance() method, 87
getMetaClass() method, 73
getResourceAsText() method, 82, 84
get/setProperty(), 74
Getters and Setters, 13
getText() method, 82
GORM, 155
GORM events, 168–169
GORM’s CRUD Support, 175

GORM’s dynamic queries
counts, 177
iltering queries, 179
multiple results queries, 178
single result-set queries, 177

Grails
advantages, 89
Ajax frameworks, 92
architecture, 93–94
Collab-Todo application, 94
controllers, 89
features, 90–91

convention over coniguration
feature, 90

ORM framework, 91
plugins, 91
scafolding framework, 91
unit testing, 91
web development puzzle, 90

Groovy, 91
GSP, 89
H2 console, 119–121
H2 database, 92
hibernate, 92
installation, 94
interactive mode, 123–124
plugins, 121–123
scafolding, 107
SiteMesh, 92
spring framework, 92
Tomcat, 92

Grails application
deploying, 293, 296, 298

to an application server, 298
BuildConig.groovy ile, 293
Conig.groovy ile, 293
data source conigurations, 296
environmentspeciic coniguration, 291
logging conigurations, 298
packaging the application, 298
startup and shutdown behavior, 293

upgrading, 302–303
command line changes, 302
coniguration changes, 302
controller public methods, 303
H2 replacing HSQLDB, 302
jQuery, 302
unit test framework, 303

Grails artifact loggers, 297
Grails tags

Ajax tags, 135
assignment, 134
form tags, 135–136
iteration, 134
linking, 134

 ■ INDEX

336

logical, 133–134
render and layout, 136
UI, 136
validation, 137

greet() method, 77
<g:message> tag, 143, 148–149
<g:renderErrors> tag, 145
Grifon

application life cycle, 315–316
data processing, 315
desktop application, 315
initialization phase, 315
phases, 315
Ready phase, 316
Shutdown phase, 316
Startup phase, 316
Stop phase, 316
user interface, 315

convention over coniguration, 305
creation, 307

applet mode, 307
create-app command, 306
default view, 306–307
grifon command, 306
grifon run-app command, 307
run-app command, 306
Web Start mode, 307

deinition, 305
directory structure, 308

application, 308
application.groovy, 311
code, 314
controller, 314
contents breakdown, 308–309
create-app command, 307
create-mvc command, 311–312
default UserModel, 310
default view, 309–310
enhanced application view,

313, 315
MVC pattern, 309
UserController, 310–311
UserModel enhancement, 313

installation, 305
distribution, 305
GRIFFON_HOME, 306

models and bindings, 325–330
actions in controller, 331
@Bindable annotation, 325–326
buildMVCgroup, 329
controller, 325
createMVCgroup, 328
destroyMVCgroup, 329
GUI components, 325

injected properties, 328
Javabean, 326
MVCGroupInit method, 330
MVCGroupDestroy method, 331
MVC pattern, 325
newInstance() method, 330
property1 and property2, 327
@PropertyListener annotation, 326
sourceProperty/targetProperty, 327
TestBean, 327
withMVCgroup, 330

MVC design and plugin facility, 305
views, 317, 320–325

bean node, 324
builder, 317
Builder.groovy, 319
container node, 324
controller, login application, 322–323
documentation information, 321
Java perspective, 317
JDK 6 addition, 323
JFrame, 323
JideBuilder and MigLayout, 321–322
MacWidgetsBuilder, 320
noparent node, 324
plugins, 320
root node, 325
special nodes, 323
Swing, 317
SWT, 317
UserModel, login application, 322
widget node, 324

GRIFFON_HOME environment variable, 305
Groovy

assertions, 21–22
failure, 22
Java and Groovy versions, 21
java.lang.AssertionError, 21
JUnit, 21
power assert feature, 22

closures, 41–44, 46–50
any method, 47
call() method, 42
collect method, 47
currying, 49
each method, 47
every method, 48
explicit declaration, 46
ind method, 48
free variables, 43
functional programming, 41
it, 44
map keys and values, 48
memorization, 50
owner and delegate, 44

Grails tags (cont.)

 ■ INDEX

337

parameter, 42
referential transparency, 42
return keyword, 43
reusable code, 42
reusing, 46
single println statement, 42
trampoline, 50

collection notation and closure, 6
control structure, 38–40

asBoolean() method, 38
exception handling, 40
logical branching, 39
loops, 39
true or false, 38

converting JavaBean to GroovyBean, 4
converting Java to Groovy, 3
datatypes collection, 33–37

array, 33
lists, 34
maps, 35
ranges, 36
sets, 37

domain-speciic languages, 88
ExpandoMetaClass, 76
Expandos, 76
installation, 1
JSON, 69
language key features, 7–13

access modiiers, 13
annotations for AST transformation, 7
assertion, 7
built-in builder, 8
checked exceptions, 13
closure, 8
GDK, 8
getters and setters, 13
import statements, 13
metaprogramming, 8
native JSON support, 9
object orientation, 10
parentheses and semicolons, 13
return type and the return

keyword, 14
static and dynamic typing, 11
static compilation, 12
static type checking, 11–12
string interpolation, 10
support for lists and maps, 10
support for regular expression, 10

metaprogramming, 73
methods, 41
object orientation, 57, 59, 61, 64

classes and scripts, 57
constructors, 59

inheritance, 61
polymorphism, 64

operators, 51
regular expressions, 28, 30–32

ind operator, 31
match operator, 30
pattern language, 28
pattern operator, 31
phone number, 32

scripts, 15
script without main(), 6
simplifying the code, 5
strings, 23–26

dollar slashy, 26
GStrings, 23
multiline, 24
multiline slashy, 25
single line, 23
slashy, 25

text generation with templates, 71–72
e-mail template-processing

code, 72
HTML E-mail template, 71
template engines, 71

unit testing, 64
XML, 66, 68–69

builders, 68
Java, 66
MarkupBuilder, 69
XmlSlurper, 69

GroovyBean, 4
GroovyBean class, 81
Groovy/Grails Tool Suite (GGTS), 97
GroovyObject interface, 74
Groovy Server Pages (GSP), 89,

125–126
Groovy SimpleTemplateEngine, 289
GroovyTestCase, 65
GStrings, 23

n h
Hashing techniques, 191
H2 console, 119–121
H2 database, 302
Hibernate’s criteria queries, 181–183
Hibernate-speciic settings, 295
HQL queries

executeQuery, 181
indAll query, 181
ind query, 180–181
HSQLDB database, 302

HTTP over Secure Socket Layer
(SSL), 299

 ■ INDEX

338

n I
Immutable transformation, 84
Import statement, 13
Inherited methods, 61
Interface and abstract methods, 62
invokeMethod(), 76

n J, K
JasperReports, 287
jasperReport Tag, 276
JavaBeans set data source, 261
java.lang.AssertionError, 21
Java Persistence API (JPA), 92
JavaScript Object Notation (JSON), 9
JavaServer Pages Standard Tag Library (JSTL), 133
Java Virtual Machine (JVM), 93
JCaptcha, 196
Job execution frequency, 283
JPA, 155
jQuery, 302
jquery resource module, 137
JSON

JsonBuilder, 70
prettyprinting content, 70
reading, 70

JUnit, 65–66

n L
Lazy transformation, 84
Library Class, 267
LinkedHashMap, 35
listOrderBy query, 179
list query, 179
Logging conigurations, 296
Logging transformation, 85

n M
MarkupBuilder, 69
Memoization, 50
Metaclass, 73
Metaobject protocol (MOP), 73
Metaprogramming, 8

compile-time, 83
runtime

dynamic languages, 73
getProperty and setProperty, 75
invokeMethod(), 74
metaclass, 73
metaobject protocol, 73
methodMissing(), 75
static languages, 73

Method closure operator, 54
methodMissing(), 75
MissingMethodException, 76
@Mock annotation, 303
Multi-catch block, 40
Multiline slashy strings, 25
Multiline strings, 24

n N
newDocument() factory method, 68
Newify transformation, 86
newTransformer() factory method, 68
Nightly reporting job

controlling execution frequency, 285
overview, 282
setting name and group, 283

nightlyReportsEmail.gtpl, 71, 73

n O
Object-relational mapping (ORM) frameworks, 91
OpenSymphony Compass Search Engine

framework, 219
Operators

diamond, 55
Elvis operator, 52
ield, 54
method closure, 54
overloading, 51
safe navigation/dereference, 53
spread operator, 52

n p
PATH variable, 305
Per-Environment coniguration, 292
Plain Old Groovy Objects (POGO), 75, 92
Plain Old Java Object (POJO), 4, 92

n Q
Quartz plugin, 279

n r
Recursion, 50
Reporting

Collab-Todo classes, 262–264
data source, 263
ields selection, 263
iReports, 262
JAR/ZIP tool, 262
layout, 264
todo report template, 264

 ■ INDEX

339

embedded SQL, 259
Jasper plugin, 276
jasperReport tags, 276
List view, 275
locate and load, 270
overview, 258
pdf and xls icons, 277
ReportController, 269, 274
ReportService, 270–271, 273
tags, 267–269

creation, 267
implementation, 268–269
library overview, 267
report, 268

technical constraints, 257
TodoController, 258
todo report creation

compilation , 266
Data Source, 261–262
enhance, 265–266
iReports, 262

tools
JasperReports and iReports, 260
overview, 259

tying, 274–275
Representational State Transfer (REST)

web service
data exchange, 241
in Grails, 245
JSON output, 243
POX output, 241
resource-oriented, 241
SQL statements, HTTP methods, and Grails

conventions, 244
Todo object representation, 243–245
resources.xml, 226–227

RESTful in Grails
content negotiation, 247
RestController

common functionality, 249, 251
create action, 254–255
delete action, 252–253
show action, 251–252
update action, 253–254

URL mappings
default mappings, 245–246
RESTful mappings, 246

RESTful URL mappings, 246
r:layoutResources tag, 138

n S
Safe navigation/dereference operator, 53
save action, 144
sayHello() method, 77

Scafolding
domain class creation, 107–109
domain relationships

Category Domain class with User and Todo
Domain Classes, 118

Create Todo and Edit Todo
screens, 117

entity relational diagram, 119
Todo Domain class with User and Category

Domain classes, 116
User Domain class with Todo and Category

Domain classes, 118
dynamic scafolding

controller actions and views, 109
Create Todo page, 110–111
Edit Todo page, 113
Show Todo page, 112
TodoController, 109
Todo List page, 110
validation errors, 111

static scafolding
CategoryController, 115
Category Domain class, 114
controllers and views generation, 114
UserController, 115
User Domain class, 115

Scripts
compiling groovy, 16
Hello.groovy, 15
Java version, 16
print FullName function, 16
run

command line, 17
Groovy Console, 19
Groovy Shell, 18

Search capabilities
default method, 220
grails plugin manager, 219–220
list of tasks, 220–221
OpenSymphony Compass Search Engine

framework, 219
results, 221
Todo domain object, 220

ShowHideTagLib, 229
SimpleTemplateEngine, 71, 73
SimpleUI application, 319
Single line strings, 23
Singleton transformation, 87
sizeDoubled() method, 78
size()method, 78
Slashy strings, 25
Spring security

domain classes, 208–210
authority class, 210
person and authority, 207

 ■ INDEX

340

PersonAuthority class, 210–211
person class, 208–209
Requestmap class, 207, 211
s2-quickstart script, 208

lexibility, 207
plugin installation, 207
SecurityTagLib, 214
URL

authorities, 212
Conig.groovy Map, 213
Requestmap, 213–214
@Secured annotation, 212

Standard Widget Toolkit (SWT), 317
startDelay property, 283
Static and dynamic typing, 11
Static type checker, 11
String interpolation, 10
StringWriter, 69
Superclass, 63
SwingXBuilder, 317–318
Switch statement, 39

n t
Tag libraries

creation, 228–229
grails built-in, 228
JavaScript, 228
reference, 230
set of custom actions, 228

test() method, 80
Timeout value, 280
titleInUpperCase(), 79
Todos, 67
Topbar function

handleLogin action, 140–141
login Action, 140
login view, 138, 140

toUpperCase(), 79
Trampoline, 50
TransformerFactory, 68
Try/catch/inally blocks, 40

n U, V
Uniied Modeling Language (UML)

diagram, 96–97
Unixcron facility, 279
use() method, 80
UserController class, 140
userGroovyBean, 81
User interface

action interceptors, 149–151
buddies template, 132–133

Collab-Todo application
CSS Styling, 130–131
footer creation, 126–128
Grails, 133
template, 126
topbar template, 128–129
wireframe components, 126

errors and validation, 143–144
ilters, 151–152
deinition

guard logic, 151
userModiicationFilter, 152

lash scope, 145–147, 149
Logging, 153–154
static resource, 137–138
strings, 141–143
topbar function, 138–141
handleLogin action, 141

login Action, 140
login view, 138–139
userModiicationCheck ilter, 152

User registration
Captcha plugin installation, 195–196
registration page implementation, 196–198
UserController registration action, 199–200

n W
WAR ile, 300
Web 2.0

Ajax in grails
Ajax, deinition, 230
Ajax framework, 231
components, 231
dynamic rendering of data, 234
events handling, 234
lexibility, 231
formRemote, 233
GSP template, 231
javascript, 233
jQuery library, 231
page dynamics, 236
remoteField, 231
remoteFunction tag, 232
remoteLink tag, 233
submitToRemote tag, 233
template creation, 235–236
template rendering, 235

presentation components
e-mail support, 225
ile download, 224
MailSender, 226
mail service, 224
Registration Page, 227
richtext capabilities, 217

Spring security (cont.)

 ■ INDEX

341

search capabilities, 219
tag libraries, 228
three areas, 217
upload ile, 221

RSS feeds
common ields, 239
grails install-plugin, 237
RSSControllerwith, feed method, 238

Safari browser, 239
XML, 237

where query, 184
withFormat method, 248

n X, Y, Z
XmlSlurper, 69

Beginning Groovy,
Grails and Griffon

Vishal Layka
Christopher M. Judd
Joseph Faisal Nusairat
Jim Shingler

Beginning Groovy, Grails and Grifon

Copyright © 2013 by Vishal Layka, Christopher M. Judd, Joseph Faisal Nusairat, Jim Shingler

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4806-4

ISBN-13 (electronic): 978-1-4302-4807-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Richar Carey
Technical Reviewer: Rohan Walia
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan
Copy Editor: Carla Spoon
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Authors ... xv

About the Technical Reviewer .. xvii

Acknowledgments ... xix

Chapter 1: Introduction to Groovy ■ ...1

Installation ...1

Groovy by Example ..2

Converting Java to Groovy ... 3

Converting a JavaBean to a GroovyBean ... 4

Simplifying the Code.. 5

Using Groovy Collection Notation and Closure ... 5

Getting Rid of main() .. 6

Groovy Language Key Features ...7

Assertion .. 7

Annotations for AST Transformation .. 7

Builder ... 8

Closure... 8

GDK .. 8

Metaprogramming ... 8

Native Support for Lists and Maps .. 10

Native Support for Regular Expression .. 10

Object Orientation: Everything is an Object in Groovy ... 10

String interpolation .. 10

Static and Dynamic Typing .. 11

Static Type Checking ... 11

■ CONTENTS

vi

Static Compilation ... 12

Optional Syntax .. 12

Summary ...14

Chapter 2: Groovy Basics ■ ..15

Scripts ...15

Using Script Functions ... 16

Compiling Groovy ... 16

Running Groovy ... 17

Assertions ...21

Power Asserts .. 22

Strings ...22

GStrings ... 23

Single Line Strings... 23

Multiline Strings .. 24

Slashy Strings .. 25

Multiline Slashy Strings ... 25

Dollar Slashy Strings ... 26

Regular Expressions ..28

Groovy Regular Expression Operators ... 30

Common Uses of Regular Expressions .. 32

Collective Datatypes ..33

Arrays .. 33

Lists ... 34

Maps .. 35

Ranges ... 36

Sets.. 37

Control Structure ...38

Groovy Truth ... 38

Logical Branching .. 39

Looping .. 39

Exception Handling .. 40

■ CONTENTS

vii

Methods ..41

Closures ..41

Implicit Variables ... 44

Explicit Declaration of Closure ... 46

Reusing the Method as a Closure .. 46

Closures and Collection ... 47

Closures as Map Keys and Values ... 48

Currying Closure .. 49

Closure Trampoline .. 50

Closure Memoization ... 50

Operators ...51

Operator Overloading ... 51

Specialized Operators .. 52

Summary ...56

Chapter 3: More Advanced Groovy ■ ..57

Object Orientation in Groovy ..57

Classes and Scripts ... 57

Groovy Constructors .. 59

Inheritance ... 61

Polymorphism .. 64

Groovy Unit Testing ..64

Working with XML ...66

Writing XML with Java ... 66

Groovy Builders ... 68

Writing XML with Groovy MarkupBuilder ... 69

Reading XML with XmlSlurper ... 69

Native JSON support ...69

Reading JSON .. 70

JsonBuilder .. 70

Prettyprinting JSON Content .. 70

■ CONTENTS

viii

Generating Text with Templates ..71

Runtime Metaprogramming ..73

Metaobject Protocol ... 73

Metaclass .. 73

Using invokeMethod() and get/setProperty() ... 74

Using methodMissing() .. 75

Expandos ... 76

ExpandoMetaClass .. 76

Categories ... 79

Runtime Mixins .. 80

Compile-time Metaprogramming ..83

AST Transformations .. 83

Built-in AST Transformations ... 83

Domain-Specific Languages ...88

Summary ...88

Chapter 4: Introduction to Grails ■ ...89

What Is Grails? ..89

Grails Features... 90

Integrated Open Source ... 91

Grails Architecture ...93

Installing Grails ..94

Collab-Todo Application ...94

Creating Collab-Todo application ... 97

Running the Application ... 99

Creating the Controller .. 101

Testing the Controller .. 105

Scaffolding ..107

Creating a Domain Class ... 107

Dynamic Scaffolding .. 109

Static Scaffolding .. 113

Creating Domain Relationships ... 116

■ CONTENTS

ix

H2 Console ..119

Grails Plugins ..121

Grails Interactive Mode ...123

Summary ...124

Chapter 5: Building the User Interface ■ ..125

Starting with the End in Mind ..125

Creating the Footer .. 126

Creating the Topbar ... 128

Adding More Look and Feel ... 130

Grails Tags ... 133

Static Resources .. 137

Making the Topbar Functional ...138

The Login View .. 138

The login Action ... 140

Handling the Login and Logout Actions ... 140

Externalizing Strings ...141

Errors and Validation ...143

Flash and Flash Messages ..145

Creating an Audit Log Using Action Interceptors ...149

Using Filters ..151

Summary ...154

Chapter 6: Building Domains and Services ■ ...155

GORM ..155

Collab-Todo’s Domain ..156

Creating Domain Objects ...157

Basic Domain Creation .. 158

Creating Relationships ... 160

■ CONTENTS

x

Overwriting Default Settings ...163

Adjusting the Mappings ... 163

Validation ...170

Constraints .. 171

Calling the Validator ... 174

Validation Messages .. 174

Querying the Database ..175

GORM’s CRUD Support ... 175

Creating Queries .. 176

Services...185

Creating a Service ... 185

Calling the Service ... 185

Injecting into the Service ... 186

Initializing the Service ... 186

Setting a Bean to Be Transactional .. 187

Service Context Available in the Service ... 187

Summary ...188

Chapter 7: Security in Grails ■ ..189

What Is Security? ..189

Authentication ... 190

Access Control ... 191

An Overview of Grails Security Solutions ..193

Custom Security Implementation ..194

Registering a User ...195

Logging In and Out .. 200

Securing the Controllers .. 202

CAS ..204

CAS Installation ... 205

CAS Configuration .. 205

CAS Usage ... 206

■ CONTENTS

xi

Spring Security ..207

Security Domain Classes ... 207

Securing URLs ... 212

SecurityTagLib ... 214

Summary ...215

Chapter 8: Web 2.0—Ajax and Friends ■ ..217

Advanced Presentation Components...217

Adding RichText Capabilities ... 217

Adding Search Capabilities .. 219

Allowing File Uploads .. 221

Tag Libraries ..228

Creating the Tag Library .. 228

Referencing the Tag Library ... 230

Ajax in Grails ...230

Using Ajax Frameworks in Grails ... 231

Dynamic Rendering of Data ... 234

RSS Feeds ...237

Summary ...240

Chapter 9: Web Services ■ ..241

RESTful Web Services ...241

RESTful in Grails ..245

URL Mappings .. 245

Content Negotiation ... 247

RestController .. 249

Summary ...255

Chapter 10: Reporting ■ ...257

The Report ...257

Reporting Tools ..259

Overview .. 259

Installing JasperReports and iReports ... 260

■ CONTENTS

xii

Creating the Todo Report ...261

Defining the Data Source ... 261

Using iReports ... 262

Enhancing the Report .. 265

Compiling the Report ... 266

The Report Tag ..267

Tag Library Overview ... 267

Creating the Tag ... 267

The ReportController and the ReportService ...269

Tying It All Together ...274

Gathering the Report Data ... 274

Adding the Report Tag to the Application... 274

The Report List ..275

An Alternate Approach ...276

Summary ...277

Chapter 11: Batch Processing ■ ...279

Installing the Quartz Plugin ...279

Creating a Job ...280

Building a Batch-Reporting Facility ...282

Creating a Nightly Reporting Job ... 283

Retrieving the User’s Todos ... 285

Invoking the Report Service .. 287

Invoking the E-Mail Service ... 288

Summary ...289

Chapter 12: Deploying and Upgrading Grails Applications ■ ..291

Deploying Grails Applications ..291

Using Environments ... 291

Understanding Grails Configurations ... 293

Packaging the Application for Deployment .. 298

Deploying to an Application Server .. 298

■ CONTENTS

xiii

Upgrading Grails Applications ...301

Configuration Changes .. 302

Command Line Changes .. 302

H2 .. 302

jQuery .. 302

Controller Public Methods ... 303

Unit Test Framework .. 303

Summary ...303

Chapter 13: Introduction to Griffon ■ ..305

Installing Griffon ..305

Creating Your First Application ..306

Directory Structure ..307

Griffon Application Life Cycle ..315

Initialization ... 315

Startup ... 316

Ready ... 316

Shutdown .. 316

Stop ... 316

Views ...317

Builder Overview ... 317

Griffon View ... 319

Special Nodes .. 323

Models and Bindings ...325

Controllers ...328

Injected Properties .. 328

Injected Methods ... 328

Initialization and Destruction Hook .. 330

Actions ... 331

Summary ...331

Index ...333

xv

About the Authors

Vishal Layka has over a decade of experience in Java/JEE. His thesis on building compilers for dynamic languages
propelled his career in dynamic languages. Other than Groovy, his work and research interests involve Clojure, Erlang,
Haskell, and Scala.

Christopher Judd is president and primary consultant for Judd Solutions, LLC. He is an international speaker, open
source evangelist, leader of the Central Ohio Java Users Group, and co-author of Enterprise Java Development on

a Budget (Apress, 2003). He has spent 12 years architecting and developing software for Fortune 500 companies in
various industries, including insurance, retail, government, manufacturing, and transportation. His focus is consulting,
mentoring, and training with Java, Java EE, Java Platform, Micro Edition (Java ME), mobile technologies, and related
technologies.

Joseph Faisal Nusairat, author of Beginning JBoss Seam (Apress, 2007) and
co-author of Beginning Groovy & Grails (Apress, 2008), is a software developer
who has been developing web-based applications in the Columbus and Phoenix
area since 1997, primarily focused on Java/Groovy development. His career has
taken him into a variety of Fortune 500 industries including military applications,
data centers, banking, Internet security, pharmaceuticals, and insurance. Joseph
is a graduate of Ohio University with dual degrees in Computer Science and
Microbiology, with a minor in Chemistry. Currently, Joseph works as the Groovy
Sage at Integrallis Software (www.integrallis.com). In his of-hours he enjoys
watching bodybuilding and Broadway musicals, but not at the same time.

Jim Shingler is VP of Application Development for J.P. Morgan Chase. he focus of his career is on using cutting-edge
technology to develop IT solutions for the banking, insurance, inancial services, and manufacturing industries. He has
16 years of large-scale Java experience and signiicant experience in distributed and relational technologies.

www.integrallis.com

xvii

About the Technical Reviewer

Rohan Walia is a software consultant with extensive experience in client-server,
web-based enterprise application development. He is responsible for designing and
developing end-to-end Java/J2EE applications consisting of various cutting-edge
frameworks and utilities. His areas of expertise are Spring, Hibernate, Groovy, and
ADF. When not working, Rohan loves to play tennis, travel, and study photography.

xix

Acknowledgments

I would like to personally thank my wife Wendy and son Tyler for their support and patience through the writing of
the book and in our journey together through life. I would like to thank the many people that have contributed to
my personal and professional growth: Wendy Shingler, James L. Shingler Sr., Linda Shingler, George Ramsayer, Tom
Posival, Chris Judd, Andres Almiray, Soren Neal Ford, Greg Wilmer, Tim Heller, Dustin Potts, Chris Nicholas, Seth
Flory, Henry Wang, Mukund Chandrasekar, Chris Schmitz, John Keyes, Awnish Bhatt, Frank Neugebauer, Tim Resch,
Kevin Smith, David Duhl, Nate Beyene, Teresa Whitt, Rick Burchield, Gerry Wright, and the many others who have
touched my life.

—James Shingler

	Beginning Groovy, Grails and Griffon
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Adjusting the Mappings
	Table and Column Naming
	Changing the Primary Key
	Disabling Versioning
	Changing Eager Fetching and Locking
	Creating Database Indexes
	Class Inheritance

	Turning on the Cache
	Transient Properties
	GORM Events
	Database Model
	findAllBy
	findAllWhere
	getAll
	List
	listOrderBy
	Installing the Captcha Plugin
	Implementing the Registration Page
	Adding the Registration Action to the Controller
	Logging In and Out

	Securing the Controllers

