
Fernandez
Alber

Shelve in
Applications /General

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning App Development
with Parse and PhoneGap
Beginning App Development with Parse and PhoneGap teaches you how to start
app development with Parse and PhoneGap: free and open source software. Using
the building block languages of the web—HTML, JavaScript, and CSS—you’ll
be on your way to creating a fully working product with minimal effort as fast as
possible. With over 25 years’ of combined experience, the authors make daunting
tasks seem trivial. There is no book on the market that can take you from designer
to developer faster.

Using Facebook’s Parse as backend service, and Adobe’s PhoneGap (or Cordova)
as a mobile development framework, building a highly customizable application
is easier than you can imagine. A basic understanding of HTML, JavaScript, and
CSS is not required, but it will help you pick up concepts faster.

This book is geared toward people who have some digital design or web
development experience and want to explore the world of application development.
We will walk you through step by step on how to build your first native iOS or
Android app in the fastest and easiest way possible. Using free and open source
software, this book will get you up and running quickly and efficiently—start using
Parse and PhoneGap today with this key title.

You learn to:

• Get your environment set up for application development
• Create online data storage using Parse
• Perform the database querying essentials: create, remove, update and

delete data
• Use advanced native phone features like geolocation and camera access
• Organize your code for maximum efficiency

9 781484 202364

54499
ISBN 978-1-4842-0236-4

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors��xix

About the Technical Reviewer���xxi

Acknowledgments���xxiii

Preface���xxv

■■Chapter 1: Introduction�� 1

■■Chapter 2: Beginning PhoneGap��� 15

■■Chapter 3: Beginning Parse�� 35

■■Chapter 4: Tools and Helpers�� 67

■■Chapter 5: Facebook API�� 79

■■Chapter 6: The Messenger Application��� 109

■■Chapter 7: User Registration with Parse�� 121

■■Chapter 8: Messages�� 167

■■Chapter 9: Location Services�� 195

■■Chapter 10: Map Views�� 223

■■Chapter 11: Accessing and Sharing Photos��� 245

■■Chapter 12: Network Connection Status�� 259

Index�� 267

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Introduction

Let’s start with the basics! What is PhoneGap? What is Parse? Even if you already know about PhoneGap or
Parse, you will still find it worthwhile to read this section, as we’ll explain the motivation behind and benefits
of combining the two.

After providing a brief description of PhoneGap and Parse, we will talk about previous knowledge and
requirements, discuss some code standards, and present a general overview of what you will learn about
PhoneGap and Parse.

What Is PhoneGap?
PhoneGap is an open source project used to build mobile applications. It takes your JavaScript, HTML, and
CSS code, and packages them into an executable program that can run an array of mobile devices.

PhoneGap does this by exposing access to a device’s native features such as file and camera access,
using what is known as Foreign Function Interface (FFI). This interface lets you invoke platform specific native
code using JavaScript. This allows background tasks to send data from JavaScript to native code and vice versa.
FFI also allows developers access to native user interface features, such as showing the system’s dialog.

PhoneGap makes writing native applications possible by using a plug-in system. This system permits
developers to add custom features to their applications. Plug-ins are both maintained by the PhoneGap
team and the open source community. We’ll be exploring some of them later in this book.

History
The PhoneGap project history and its naming are somewhat bewildering. The project was born at a
hackathon in 2008 at the iPhoneDevCamp, which was later renamed iOSDevCamp. In the following years, a
company named Nitobi, located in Vancouver, Canada, further developed the software.

In 2011, Nitobi was acquired by Adobe. As a part of the acquisition, the source code of the project was
donated to the Apache Software Foundation (ASF), allowing the core of the PhoneGap project to remain
open sourced. This open source part of the project is named Apache Cordova (see Figure 1-1).

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Introduction

2

This begs the question: What’s the difference between PhoneGap and Cordova? In short, PhoneGap is
Cordova plus Adobe services and extensions that further enhance its capabilities. Cordova can still be used
independently.

How PhoneGap Works
The first task is rather easy to understand by imagining your device’s browser without header and footer
bars, history, bookmarks, windows, and so forth. What’s left is the WebView, your playground that you can
use in full-screen mode to build an application using the web technologies HTML, CSS, and JavaScript.

The second part—exposing the device’s native features—is a more complex subject. Using code samples
is the best way to explain this concept. Before we look at code samples, let’s come back to the original
issue, which is that while we can do many things in JavaScript, there are some things we still cannot do. For
example, let’s say you want to use the Parse iOS Software Development Kit (SDK) in your application. How
can you use this SDK in JavaScript? You can’t. PhoneGap closes this gap, making native device and operating
system capabilities accessible.

Foreign Function Interface
The FFI system enables developers to build a bridge between JavaScript and native code for a very specific
task. Collections of these foreign function calls are commonly bundled in plug-ins, while a wide set of basic
features comes shipped with the Cordova or PhoneGap base package.

PhoneGap offers a broader feature set, which is required to build your mobile application. For example,
in Chapter 2, you will learn about the PhoneGap command line interface (CLI). This tool set allows you to
build and maintain PhoneGap applications by executing terminal commands.

Using the CLI, you’ll be able to package and compile your application files, as well as test your
application using virtual emulators or physical devices. These tools will help you to prepare your application
for distribution on marketplaces such as the Apple Store or Google Play.

Supported Platforms
PhoneGap applications are able to run on many platforms using only one code base. This book focuses on
developing with the most popular platforms—iOS and Android. Although PhoneGap is primarily used for
mobile devices, it is possible to apply the concepts covered here to a desktop platform such as Windows 8.

Figure 1-1.  Apache Cordova homepage: cordova.apache.org

www.allitebooks.com

http://dx.doi.org/10.1007/9781484202364_2
http://www.allitebooks.org

Chapter 1 ■ Introduction

3

As you have already learned, PhoneGap projects can be extended with the use of plug-ins: concise
scripts designed to add extra functionality to an application. As wonderful as they are, plug-ins must be used
responsibly due to the possibility of quirks between devices.

For example, the battery status application programming interface (API) for Windows Phone 7 and 8 does
not yet provide a way to determine the battery level of the device. It does, however, provide a way to tell if
the device is plugged in or not. You may often run into situations such as this one where it will take some
creativity to get the behavior you want.

The examples in this book will demonstrate some of the core plug-ins that come standard with
PhoneGap; these features cover all supported platforms, as shown in Figure 1-2.

Figure 1-2.  Compatible PhoneGap devices starting from the left: Android, iPhone and Apple devices,
Tizen ( formally bada), BlackBerry OS, Firefox OS, ubuntu, webOS, Windows Phone

■■ Note  In 2014, PhoneGap stopped actively supporting webOS, Symbian, BlackBerry, and Windows Phone 7
platforms that use Cordova versions below 3.0 (currently v5.0.0) in favor of supporting current and widely used
platforms. If you want to use PhoneGap to target these platforms, you can install older versions of Cordova to
build your application.

PhoneGap vs. Web Applications
Writing a PhoneGap application isn’t the same as building a web site. PhoneGap believes that writing code
in the languages that make up web pages should also be used to communicate with hardware devices.

When programming with PhoneGap, we intend to interface with a mobile device. A PhoneGap
application shouldn’t just be a packaged static web site that doesn’t take advantage of its API capabilities. In
fact, Apple may refuse your application to the App Store if they feel your application is just a bundled web
site that provides no entertainment value. In light of this, there are many examples of successful PhoneGap
applications available on the market today.

Building and Testing PhoneGap Applications
Mobile devices typically have a web browser out of the box. The basic technology that renders a web page
can also be used to create an installable application with PhoneGap.

The PhoneGap API was designed specifically for interfacing with hardware on mobile devices. This
means that PhoneGap applications will not work on a typical web browser, as you would expect on a
personal computer.

Web browsers use HTML and CSS for styling, positioning, and animating content elements (such as
text, buttons, images, and so forth). JavaScript is used for adding dynamic interactivity, giving the user a
unique experience. In this trio of languages, JavaScript arguably plays the most important role.

There are a variety of ways to build and test PhoneGap applications. The good news is that you only
need one code base to create an installable package for each compatible device. We will be looking at
different ways to test your applications, such as using device emulators and live testing on a compatible
mobile device.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Introduction

4

For example, if you plan on developing an application for an Apple device such as iPhone, you will need
to use a program called Xcode installed on a Mac computer. Using the developer tools that Xcode comes
with, combined with additional CLI tools, developers can test applications using the iOS simulator.

As you may expect, developers face several challenges when writing mobile applications for multiple
device platforms. Programming and testing applications natively typically requires its own development
tools and setup.

Does this mean you need to have a custom set development environment for each platform when
using PhoneGap? Yes. For proper testing of your user interface and application behavior, you need to test
each platform’s version of your application in its proper environment. This applies in particular to plug-ins
accessing native device capabilities.

In any case, developing PhoneGap applications for multiple platforms only requires one code base.
With that in mind, you may find yourself having to make adjustments to your code in order to provide the
best experience for users across operating systems or devices.

Once you are ready to release your application to the world, each marketplace expects you to provide a
package type that is unique to its store. The only way to do so is to have PhoneGap compile your application
in the environment that it is intended for. For example, if you are developing in an iOS environment and
want to release your application to Google Play, you’ll need to build your application using Android-based
IDE tools Android Studio.

The Adobe PhoneGap Build Service (Optional)
Since teaming up with PhoneGap, Adobe now offers a service that enables developers to build their mobile
applications for multiple devices all in one shot. As you know, there are many platforms that PhoneGap can
compile to. There is also a unique development environment for each platform; things can get messy quickly.

There are some potential pitfalls with using this service, which we’ll examine next. First, lets go over
some of the benefits of using Adobe PhoneGap Build.

If you are like most people, you may not have access to the devices and development environments
needed for compiling a PhoneGap application. Because of this, Adobe offers the build process in the cloud,
allowing developers to package mobile applications simultaneously for all available platforms. This ensures
that your application is updated with the latest native SDKs.

With new mobile devices coming out every few months, you can imagine the complexities involved
with developers maintaining and supporting new, current, and legacy operating systems. With PhoneGap
applications, you can maintain your code with confidence, knowing that you’re using open standards that
are supported by major platforms.

PhoneGap Build expands your application’s audience reach by providing multiple packaged platform
builds. This means you no longer need to write software in proprietary vendor code.

Without having to maintain multiple native SDKs, the Adobe PhoneGap build service does it all for you.
This optional service allows you to focus more on writing great software, not worrying about how to get it to
your users.

Adobe offers a three-tiered plan, each tier offering unique options. Figure 1-3 illustrates each plan in
detail, as of this writing. Learn more at build.phonegap.com/plans.

www.allitebooks.com

http://build.phonegap.com/plans
http://www.allitebooks.org

Chapter 1 ■ Introduction

5

When developing a PhoneGap application on your computer, you still need a way to actively test what
you’re building. Chapter 2 focuses on the tools and software you’ll need for the targeted platform.

Caveats
There are some things to consider before using the Adobe PhoneGap Build service. Technically, you don’t
need to install any platform-specific development environment, such as Xcode, to develop PhoneGap
applications. Following this logic, because this service builds your application for you, there is no need to
install software locally. Although this may be true, we recommend, at least if you’re getting started, using the
software that is designed to build your application locally. This can give you a better understanding of the
platform and its capabilities.

The Adobe PhoneGap Build service compiles your HTML, CSS, and JS code into the appropriate
packages for operating systems. It is your responsibility as a developer to submit your compiled application
to its respective app store for distribution.

Figure 1-3.  Adobe PhoneGap Build services

www.allitebooks.com

http://dx.doi.org/10.1007/9781484202364_2
http://www.allitebooks.org

Chapter 1 ■ Introduction

6

■■ Note D eveloping PhoneGap applications for Apple devices requires the use of the proprietary software
Xcode to create certificates for an iOS application. These policies and protocols established by Apple must be
implemented in order to distribute your application.

Why We Don’t Use Adobe PhoneGap Build in This Book
Debugging and testing PhoneGap applications in their native environment is easier using a local
development setup. Having a development environment while you are coding increases your chances of
avoiding potential bugs in your application. Without a testing environment, you run the risk of compiling
and distributing a broken application to your users without knowing it. We feel it is important to use
discretion and program safely. Learn more at http://build.phonegap.com.

Collaboration and Testing Tools
If you would like to collaborate with other people on an application, we recommend using free services such
as Github or Bitbucket for hosting your code.

For distributing test release software, other free solutions are available. For example, with iOS you can
use a service called TestFlight. Once you’re ready to share and test your application, use it to send updates
to beta testers for immediate feedback. Android applications can be distributed using the Google Play
Developer Console.

Using Parse
Parse is the perfect companion for building a highly scalable web or native application. Acting as data
storage, Parse is capable of saving things like photos, geo location, and other basic data types.

By providing features that would typically be handled by a variety of technologies, Parse bundles
together features such as push notifications and scheduled tasks using its intuitive API. Gone are the days
when you need to host your own databases and sync them to your applications. Now that everything can be
handled “in the cloud,” saving and managing data have never been easier.

Parse was created by a group of developers who got together to create a set of back-end tools and
services to help manage all the facets of mobile development. In 2013, Facebook acquired Parse with the
intent of further expanding its already amazing feature set.

Developing Applications with Parse
Parse offers its services for use with many different programming languages. For this book, we’ll be using the
JavaScript SDK, as it’s perfect for using with PhoneGap.

Parse offers different tiers of free and paid services based on your needs. When your application reaches
the point where your users are making more than 30 requests per second, Parse offers to extend the free
service by providing more file storage, as well as a higher data transfer rate.

For our purposes, a free account will suffice. In fact, this would be the case for most new applications.
A free account gives you up to 20 gigs of data and file storage respectively for each Parse application you
create. That’s a lot of data! Not only that, it also offers the ability to run what it calls “background jobs.” These
are programs that you can write to run on the cloud at any given time. This is helpful for things like providing
mass updates to your app or introducing new features to your users in real time.

www.allitebooks.com

http://build.phonegap.com/
http://www.allitebooks.org

Chapter 1 ■ Introduction

7

Features
We’ll be exploring different aspects of Parse throughout this book. To give you an idea of how awesome
Parse is, here are just a few cool things that come with a registered account:

•	 Analytics: Instead of just having to rely on third-party scripts to track your apps
usage, Parse offers an analytics tool without your having to configure anything.

•	 Parse push: Using any of the SDKs, you’ll be able to send up to one million unique
recipients push notifications a month.

•	 User management: In place of creating your own database structure and code for
user accounts, Parse offers this functionality right out of the box. This includes
things like resetting passwords, linking accounts with Facebook, and many other
conveniences.

•	 Data browser: Using the web interface, you can browse all of your application’s data
with just a few clicks. It also allows you to create new data objects that allow you to
save custom data sets, while also providing pre-defined data structures such as the
User or Product classes.

Why Parse and PhoneGap?
Of all the frameworks, in all the languages, why did we choose to go with Parse and PhoneGap? The answer
is easy: To build a successful application, you need a user interface technology—the front end—and a data
infrastructure—the back-end. While PhoneGap is doing a good job on the front end, the project doesn’t
cover back-end needs.

With PhoneGap alone, you are forced to learn another programming language and design your
back-end system on your own. If you want to save data to the back end, you needed to write a front-end
module to prepare the data, connect to a server, and send the data to it. In the back-end tier, the request
needs to be authenticated, processed, and then stored to a database. This is typically done using another
system with its own language, such as MySQL. The same applies to the task of reading data.

With Parse, this approach is a thing of the past. Using PhoneGap together with Parse will enable you to
use only one programming language—JavaScript—to manage all your data needs: reading, saving, deleting,
defining schemas, authentication, querying, and so forth.

To demonstrate how easy it is to save data in Parse, we’ll use a simple code example: In Listing 1-1, we
initialize the Parse JavaScript SDK, which opens a connection to the Parse backend. This back-end service
will store your data securely and efficiently “in the cloud.”

To get an idea of how data is stored using Parse, Listing 1-1 demonstrates creating a class that we save a
new record to. We start by defining a new Parse class named Toy, then create a new instance of the class, set
some sample values, and finally save the object to the database using myToy.save().

Listing 1-1.  Saving a Simple Object to the Parse Cloud in JavaScript

// Initialize Parse JavaScript SDK
Parse.initialize("APPLICATION ID", "JAVASCRIPT KEY");
// Define a new Parse class named "Toy"
var Toy = Parse.Object.extend("Toy");
// Create a new Instance of the Toy Parse Class
var myToy = new Toy();

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Introduction

8

// Set some Example Values
myToy.set("name", "Rocking Horse");
myToy.set("color", "brown");
// Save Object to Parse Cloud Database
myToy.save();

That’s it! Saving data has never been easier. In a production application, we could add more complexity
to these tasks, like success and error callbacks, but in a perfect world this code will actually work as is.
Figure 1-4 shows how the result from Listing 1-1 would look when it is executed and viewed in Parse’s
data browser.

Yet saving data is just one example how Parse and PhoneGap complement each other. We show a wider
span of applications in Table 1-1. These samples will assure you that joining these two forces just seems
natural.

Make Your Application Social
Humans have a need to communicate with each other. Using Parse and PhoneGap together to create an
application allows you to facilitate this need by allowing you to share. This social component can be very
important in the success of your application. After all, it’s Words with Friends, not Words with Myself.
Building static, nonsocial applications is a thing of the past.

Figure 1-4.  The result of Listing 1-1

Table 1-1.  Complementary Functionality between PhoneGap and Parse

PhoneGap Parse

Access camera and audio functionality of the
native operating systems

Has a database field that is specifically used for media
such as images, video, and audio files

Get the geo position of a device, pinpointing a
user’s location anywhere in the world

Has a data field for geo location, allowing you to save
the latitude and longitude and query data by location
and distance

Access the contact list a user has on his or her
phone, providing information that can enhance
your application

Stores media, text, and all basic database field types
in the cloud. Can store user profiles, content, and any
other associated data for your needs

Access the native (push) notification system of
Android and iOS devices via PhoneGap plug-ins

Offers a push notification service for both Android
and iOS devices

Compiles your application code for multiple
platforms

Allows to share data between platforms
(iOS, Android, Web)

Chapter 1 ■ Introduction

9

PhoneGap and Parse together stand by your side when building social applications. As an example,
you can use the Parse Facebook single sign-on login feature to sign up to an application and connect with
friends. You can then use PhoneGap’s technology to capture a picture and use Parse again to store it to the
cloud and share it with your friends.

Adding a social element to your application does more than expose your work to new users. It can also
add a personal touch that can make your application feel special. We’ll show you how to build a full social
application starting in Chapter 6 that will demonstrate how to keep people connected. We’ll be doing all
sorts of cool things like accessing media, location sharing, and providing real-time updates.

Previous Knowledge and Requirements
There are a few core concepts in modern front-end web development that need to be understood before
continuing. These will provide you with a foundation that you can build upon while developing multiple
skills. There are plenty of approaches you can take for creating a PhoneGap application, and you don’t have
to decide on anything before starting a new project. However, knowing the fundamentals will aid you in
taking the best approach for each application.

There are many books that cover the delicate intricacies of HTML, JavaScript, and CSS. Because of this,
we’ll only highlight some of the key concepts that you’ll need to get the most out of this book. We encourage
you to do further research on any topics you find challenging.

Whatever level of programming you are at right now, consider the following section a refresher on some
of the concepts that need to be understood to get the most out of this book.

JavaScript Object Literals
If you’re just getting into programming, the phrase object-oriented programming can sound frightening.
Objects in programming are analogous to real-world tangible objects that have properties and values. If you
were to consider yourself as an object, the value of your firstName property would be your first name.

An object literal can be thought of in the same way, with some rules: the value of a property name must
fall within a predefined type of data. This basically means you need to use valid data. All values in JavaScript
are considered objects, so anything can be stored into an object. An object literal is enclosed in a set of
curly braces, like this { key: value }. An empty set of braces ({}) is considered a valid object; it has zero
properties and values. The following code demonstrates JavaScript’s primitive types of data by assigning
them to an object that is referenced in the variable named obj:

var obj = {
 name: "value",
 array: [4,2,0],
 boolean: true,
 type: "string",
 number: 0,
 emptyObject: {},
 fn: function(){
 var declaredButNoValueAssigned;
 console.log("fn scoped variable: " + declaredButNoValueAssigned);
 var emptyValue = null;
 // This function returns a null value
 return emptyValue;
 }
};
 

http://dx.doi.org/10.1007/9781484202364_6

Chapter 1 ■ Introduction

10

console.log(obj.name); // value
console.log(obj["name"]); // value
console.log(typeof obj.name); // string
console.log(typeof obj.type); // string
console.log(obj.type); // string
console.log(obj.array); // [4,2,0]
console.log(typeof obj.boolean);// boolean
console.log(typeof {}); // object
console.log(obj.fn());
 // fn scoped variable: undefined
 // null

Namespaces with Object Literals
Object literals are a great way to organize related functionality. The way programmers write JavaScript
applications has developed over the years since its creation in 1995. A common and powerful concept that
JavaScript shares with other programming languages is that of namespaces. From server-side scripting
with Node.js, to client-side and installable applications with PhoneGap, namespaces allow developers to
communicate concepts into understandable programmatic interfaces.

All programming languages have unique ways of expressing objects and ideas. Each has its own
syntactical rules that need be followed in order to use it. What all programming languages have in common
is the use of language itself: strict syntax that is used to communicate concepts that a machine can
understand. In JavaScript, object literals help developers encapsulate logic in an expressive and organized
way that can be understood by others. In Chapter 2, you’ll see this put to use in a full example using
PhoneGap. Listing 1-2 demonstrates how a fictional JavaScript program may be written using namespaces.

Listing 1-2.  Creating a Simple JavaScript Using Namespaces

var app = {
 settings: {
 version: "0.0.1"
 }
};
app.user = {};
app.user.register = function(){};

To get an even deeper understanding of namespaces, we recommend reading a great article by engineer
and developer advocate Addy Osmani titled “Essential JavaScript Namespacing Patterns.”1

Organizing Code for Projects in This Book
The code samples and concepts in this book can be combined with many JavaScript projects, libraries,
and frameworks. As a matter of fact, a part of the JavaScript Parse SDK is forked from Backbone.js; existing
developers will find converting existing applications intuitive. Some demonstrations in this book use
third-party libraries such as jQuery. However, we do also use plain ole’ JavaScript as well. With each
chapter, we explore both the PhoneGap and Parse APIs by demonstrating functionality that you could use
in your next application.

1Read the “Essential JavaScript Namespacing Patterns” article at http://addyosmani.com/blog/
essential-js-namespacing/.

http://dx.doi.org/10.1007/9781484202364_2
http://addyosmani.com/blog/essential-js-namespacing/
http://addyosmani.com/blog/essential-js-namespacing/

Chapter 1 ■ Introduction

11

All projects use some form of file structure for organizing different aspects of an application. Chapter 2
explores what a typical PhoneGap application looks like by using the “Hello World” starter application. Parse
also has a starter application that we dig into in Chapter 3.

Aside from the default folder structures found in starter Parse and PhoneGap projects, we’ll be using
intuitive naming conventions in an attempt to keep things simple, clear, and concise. The following snippet
demonstrates a typical folder structure for web-based projects with index.html located at the root of
the folder:

img/
js/
css/
index.html

The example structure above contains three directories and one HTML file, the home page. The folders
are named in an obvious way as to make it clear what it’s responsible for containing. In Chapter 6, you will
start creating a Parse and PhoneGap application that will have a similar structure, while still respecting the
required directory structure needed for compiling PhoneGap applications.

Loading Scripts with LABjs
There are many ways to load scripts in JavaScript. From using classic <script> tags to building complex
modular compiler systems, loading scripts in JavaScript is always an important task. We decided to go with
what we find is one of the most straightforward and simple ways of loading scripts: a library named LABjs.
LABjs is an open source project written by Open Web Evangelist, Kyle Simpson.

Chapter 6 demonstrates the necessity of using a script loader, in which we’ll begin building an entire
application from scratch. There will be lots of scripts in this application, and in order to manage them, we
will use LABjs to do the hard work.

You can see a comparison of traditional loading vs. loading using LABjs in Listings 1-3 and 1-4.

Listing 1-3.  Traditional Script Loading Using the <script> Tag

<script src="framework.js"></script>
<script src="plugin.framework.js"></script>
<script src="myplugin.framework.js"></script>
<script src="init.js"></script>

Listing 1-4.  Script Loading using LABjs

<script>
 $LAB
 .script("framework.js").wait()
 .script("plugin.framework.js")
 .script("myplugin.framework.js").wait()
 .script("init.js").wait();
</script>

Although it may not look like much, using this script loader is an efficient way to load scripts and, more
importantly, manage dependencies using the wait() method. We’ll be going through this in extensive detail
as the application progresses in the chapters following Chapter 6.

http://dx.doi.org/10.1007/9781484202364_2
http://dx.doi.org/10.1007/9781484202364_3
http://dx.doi.org/10.1007/9781484202364_6
http://dx.doi.org/10.1007/9781484202364_6
http://dx.doi.org/10.1007/9781484202364_6

Chapter 1 ■ Introduction

12

Build Process
A build process is a series of automated operations that aids developers in outputting production-ready
applications. We will not be covering this topic in this book, but thought we’d acknowledge its use and
efficiency.

Again, when it concerns JavaScript, everyone has an opinion. What the JavaScript community can agree
on is trying our hardest to deliver the best experience for our users. In doing so, there have been a few popular
tools that aid in this process, including the following:

•	 Grunt.js

•	 Gulp.js

•	 Yeoman.io

•	 Brunch.io

There are numerous plug-ins for each of these tools designed to make your life as a developer run more
smoothly. Processes such as JSHint, SASS/LESS compilation, minification, image compression, and many
more are available with build-processing tools.

Debugging
Software that has yet to be written is the only kind without bugs. This means that every time you write code
is an opportunity for a bug to appear. We will be introducing some basic debugging techniques that are
specific to PhoneGap development. PhoneGap applications aren’t like typical web applications and need
special attention when it comes to debugging issues. We’ll be going through a few ways of testing PhoneGap
applications in Chapter 4. Additionally, we’ll be covering ways of testing database interactions with Parse by
using their Data Browser, among other tools and techniques.

Basic knowledge of web developer tools such as the browser inspector should be understood. It’s OK
if you’re new to it; we’ll be covering what you need to know to make the most out of each application you
build. The most common and basic way to see what’s going on during code execution is to log statements to
the console. This technique is often used for building web sites.

Command-Line Interface Tools
A command-line user interface allows programmers to communicate with a computer by executing
statements using an interactive console. If you’re not familiar with executing code from the command line,
we have got you covered. After installing a few command-line based tools for using Parse and PhoneGap,
you’ll be experienced in no time. All tools will both work in Terminal (Mac) and Command Prompt
(Windows).

After installing packages for Parse and PhoneGap development, we’ll be experimenting with various
aspects of each API, like syncing Parse apps to your local environment for publishing, as well as compiling
and previewing PhoneGap applications using an emulator.

Integrated Development Environment (IDE)
An IDE is where all the magic happens. And by magic, we mean coding. It’s the software you use to write
software. There are a plethora of options to choose from. From command-line interface editors like
vim, to basic text editors like Notepad or textEdit, practically anything can be used to create a web site.

http://dx.doi.org/10.1007/9781484202364_4

Chapter 1 ■ Introduction

13

While some are more powerful and fully featured than others, the IDE you use is up to you. Some of our
recommendations include the following:

•	 Atom.io

•	 Sublime Text 2

•	 NotePad++

Any of these IDEs will get the job done. If you already use an editor you know and love, great! But if you
haven’t found one, here are some things to consider:

•	 Is it free? Is paying for one worth it?

•	 Are there plug-ins that can extend its functionality?

•	 Does it contain any built-in features like code collapsing, autofill, or syntax
highlighting?

What You Will Learn about PhoneGap and Parse
Chapter 2 will provide you with everything you need to begin application development with PhoneGap.
From installing and setting up, to previewing and editing an example application, to implementing
real-world scenarios that demonstrate some of PhoneGap’s core functionality, we’ll attempt to cover as
much of their API as possible.

We’ll also be covering some cool plug-ins that extend the functionality of your applications, as well as
some debugging and development tools that you can start using immediately.

Using Parse as our main data storage, we’ll be covering everything from creating an account to setting
up your first Parse application. As the book progresses, we’ll introduce some core features of Parse. We’ll be
covering the Parse JavaScript SDK, which we’ll tie into PhoneGap applications. This will enable you to do
things like take a picture using the native camera on a mobile device and saving it to a database.

Going Further
The code and concepts used for examples in this book can be applied to any PhoneGap or Parse application
you create. Because we are using the language of the web (HTML, JS, CSS), there is opportunity to build a
variety of different experiences for your users per application. For example:

•	 Storing media with Parse: audio, image, and video storage

•	 Accessing media content with PhoneGap

•	 Creating user accounts with Parse

•	 Sync Facebook accounts with your Parse app

•	 Using PhoneGap plug-ins to extend device features

•	 Structuring your application data using the Parse Data Browser

We are convinced that this book contains enough information to get you building applications that you
have only imagined. Aside from the hands-on projects that we’ll be walking you through, we encourage
you to take everything you learn and apply it to your next project.

http://dx.doi.org/10.1007/9781484202364_2

15

Chapter 2

Beginning PhoneGap

Configuring your Development Environment
In this chapter, you’ll learn the essentials of PhoneGap. First, we will walk you through the installation
process of PhoneGap and its dependencies. Then you’ll be creating, debugging, and testing your first
“Hello World” PhoneGap application.

We get underway with setting up your development environment for the two most popular mobile
platforms, iOS and Android. You’ll install the package manager for Node.js, which will lead to the PhoneGap
installation process.

Platform Setup and Restrictions
While PhoneGap is designed to use one codebase to handle multiple platforms, you still need to prepare
your system for each platform you wish to support. For example, with Android you’ll need to install the
Android SDK, with the Windows Phone you will need to install the Windows Phone SDK, and so forth.

Each platform may have further dependencies or operating system restrictions. For instance, you need
a Windows system to build Windows Phone applications and a Mac OS X system to build iOS applications.
While the Android SDK can run on Windows and Mac, it requires the installation of the Java Development
Kit (JDK). Requirements and installation procedures will be covered in the following sections.

Installing Node.js and Node Package Manager
Before installing PhoneGap and its dependencies, you need to install Node.js. Node.js is a server side
JavaScript programming environment used to build fast, scalable network applications. When Node.js is
installed on your computer, it includes a JavaScript package manager called node package manager (npm),
which we’ll be using to install PhoneGap and other tools.

Even though npm was intended for use with Node.js and JavaScript, it may be used for source files using
other programming languages as well. You can install JavaScript packages, called node modules, by using the
npm install <package-name> terminal command. Download Node.js from http://nodejs.org/download/
and follow the installation instructions.

Node.js is available for both Windows and Mac. To ensure you have installed Node.js properly, in your
terminal, run node -v. This should return the currently installed version of Node.js on your system.

http://nodejs.org/download/

Chapter 2 ■ Beginning PhoneGap

16

iOS Environment Setup
If you want to develop iOS applications, you need a Mac OS X computer. If you are a Windows user, this
doesn’t necessarily mean you need run to the nearest Apple store and buy a Mac. It is possible, but not
recommended, to simulate an installation of Mac OS X on Windows using virtualization software like
VMWare, or the open source alternative VirtualBox.

Once you either have a Mac or virtual machine configured and running, you need to install Apple’s IDE
software called Xcode. With Xcode, you can build applications for OS X and iOS. You’ll only need the iOS
portion for this book.

Figure 2-1 shows the Xcode IDE for Mac. It also shows how the iOS simulator looks when running the
starter project that comes with all PhoneGap applications.

The fastest way to download and install Xcode is by searching for “Xcode” in the App Store desktop
application. After it’s installed, it will either be listed in the Mac’s dock or in the Launcher. You can also find it
using the Spotlight Search.

Alternatively, you may download Xcode (and more) in the Apple Developer Member Center. The
Member Center requires you have an Apple ID and register as an Apple Developer. This can be done for
free at https://developer.apple.com/register/. After you have registered as a developer, visit
https://developer.apple.com/downloads/ to download Xcode.

If you intend on releasing your applications to the Apple App Store, you will need to enroll in the iOS
Developer Program ($99/year). With that said, you won’t need it right now.

Figure 2-1.  Xcode, the IDE for iOS, and the iOS simulator

https://developer.apple.com/register/
https://developer.apple.com/downloads/

Chapter 2 ■ Beginning PhoneGap

17

■■ Note  Setting up things like Certificates, Identifiers, and Provisioning Profiles (things you’ll need to
publish your applications) are outside of the scope of this book. For a complete guide on setting this up,
visit developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/
MaintainingCertificates/MaintainingCertificates.html.

Command Line Tools for Xcode
The Command Line Tools package allows you to do command-line development in OS X. PhoneGap uses
this package to build the iOS version of your application. For OS X 10.9 and greater, Xcode comes bundled
with all command-line tools.

If you’re using an older version of OS X, you can install the Command Line Tools package from the main
menu in Xcode. Select Preferences and then click the Downloads tab. From the Components panel, click
the Install button next to the Command Line Tools listing. If Xcode does not show an option to install the
package or if it’s missing for any other reason, you can download the package from the Apple Developers
downloads page at https://developer.apple.com/downloads. Note that in order to view the downloads
page, you must be logged in with your Apple Developer credentials.

iOS Launcher Packages
To be able to install and run PhoneGap applications using the iOS simulator or an iOS device from the
command line, you need to install two more JavaScript packages using npm. The command ios-deploy
launches iOS apps to a physical iOS device, and ios-sim executes the application using the iOS simulator
provided by Xcode. Install the packages via the following commands, adding the sudo prefix if needed.
The following code lines demonstrate two separate commands for installing the packages used for testing
PhoneGap applications.

npm install -g ios-sim
npm install -g ios-deploy

At this point, you should have everything you need for iOS development with PhoneGap. If you do not
wish to develop for Android, skip the next section and continue to PhoneGap Installation.

■■ Note  You don’t have to use Xcode as your code editor. You also don’t need to use it to build PhoneGap
applications; the latter happens using the command line. However, Xcode is a good tool for testing your
application on different types of iOS devices. You can download more iOS simulators using Xcode via Preferences
from the main menu (in the Downloads tab).

https://developer.apple.com/downloads

Chapter 2 ■ Beginning PhoneGap

18

Android Environment Setup
Setting up your environment for Android development differs greatly from that of iOS. Figure 2-2 illustrates
where it all starts—the Android Developer Portal.

To build applications for the Android platform, you need to install the Android SDK. As previously
mentioned, there are no OS restrictions—you can use either Windows or Mac to build Android applications.
The Android environment setup is slightly more involved than the iOS setup. But fear not, you will be guided
through the setup process step-by-step.

There are theoretically two ways to install the Android SDK: via the Android Studio software or with the
Android standalone SDK. Because Android Studio is not needed to build PhoneGap applications, we don’t
cover it in this book, but stick to the stand-alone SDK.

Java Development Kit (JDK)
Android is closely tied to the Java programming language. It’s no surprise that you’ll need to install the JDK
to be able to use the Android SDK. This applies in particular to Windows systems; you have to install the
JDK prior to running Android installations. For older Mac systems (< 10.7), you may skip this step.

Identify the JDK package fitting your system configuration on the Oracle Java Downloads page:
www.oracle.com/technetwork/java/javase/downloads/.

Figure 2-2.  The Android Developer Portal at http://developer.android.com

www.allitebooks.com

http://www.oracle.com/technetwork/java/javase/downloads/
http://developer.android.com/
http://www.allitebooks.org

Chapter 2 ■ Beginning PhoneGap

19

Android SDK Installation
As previously stated, we will use the Android SDK Tools only to build the Android version of our PhoneGap
applications. You should also be able to navigate to the SDK package download from developer.android.
com/sdk/index.html.

In case something has changed since this writing, head over to the Android Developer site
(http://developer.android.com) and choose Get the SDK link (as shown in Figure 2-2) to navigate to the
latest Android SDK download instructions. Next, choose the Installing the Android SDK link from the main
navigation. This will take you to a new page where you will click the Stand-alone SDK Tools button.

Pick either Windows or Mac and accept the terms and conditions on the following page to initiate the
download. For Windows, we recommend using the executable installer package.

Windows
Double-click the executable (.exe) file to start the installation process. Write down the location where you
saved the SDK on your system—you will need it to refer to the SDK directory later when using the SDK tools
from the command line. Once the installation completes, the installer starts the Android SDK Manager.
Skip the following Mac paragraph and continue at Android SDK Manager.

Mac
Unpack the ZIP file you’ve downloaded. By default, it’s unpacked into a directory named
android-sdk-mac_x86. Move it to an appropriate location on your machine, for example, to the directory
/Users/{YOUR_USERNAME}/Library/Android/sdk/.

Android SDK Manager
As you may know, there are many different versions of Android. The latest version 5.0 is named Lollipop, yet
more common are the older releases KitKat (4.4) and Jelly Bean (4.3, 4.2, 4.1). To install the SDKs for these
different platform versions, use the Android SDK Manager. There are some other tools, like the Android SDK
Build Tools, that you need to install. These will be installed via the Android SDK Manager as well.

To start the SDK Manager on Windows, double-click the SDK Manager.exe file at the root of the Android
SDK directory.

On Mac, open a terminal and navigate to the /tools directory in the Android SDK directory (for example,
/Users/{YOUR_USERNAME}/Library/Android/sdk/tools). Then execute the command android sdk. This
will open a new window, the Android SDK Manager.

Once the Android SDK Manager starts, it will look for packages available for download. This will include
both the latest releases as well as older or common packages. See Figure 2-3 for reference. By checking the
boxes right next to the packages and hitting the Install button, you can download and install the selected
packages.

http://developer.android.com/

Chapter 2 ■ Beginning PhoneGap

20

At minimum, you should download the latest tools and Android platform:

•	 Android SDK Tools

•	 Android SDK Platform-tools

•	 Android SDK Build-tools (highest version)

Next, you need to add each platform version you want to test your application on. We recommend
starting on the most common version (as of this writing), KitKat (4.4), first. You can later verify that your
application is working on other platforms as well.

Figure 2-3.  Android SDK Manager

Chapter 2 ■ Beginning PhoneGap

21

Open the folder Android 4.4.22 (API 19) and select the following:

•	 SDK Platform

•	 A system image for the emulator, such as ARM EABI v7a System Image

Choosing an Android Emulator Image
Emulation on Android is a tricky thing. And by tricky, we mean it’s slow. To speed up your emulator, install
the package, use the android sdk manager, and select “Intel x86 Emulator Accelerator” from the Extras
menu. Also select a corresponding emulator image (for example, Intel x86 Atom System Image).

You can find more information about this topic in the article “Speeding Up the Android* Emulator
on Intel Architecture” at https://software.intel.com/en-us/android/articles/speeding-up-the-
android-emulator-on-intel-architecture.

As an alternative, you can use a physical Android device connected via USB cable as a test system.
Even though it’s an external device, it will speed up the process of installing and testing your application
significantly.

There are also third-party services, such as Genymotion (www.genymotion.com), that can assist you in
testing your Android applications.

Managing Virtual Devices
Once you have downloaded and installed all Android packages, it’s time to add a virtual device. A virtual
device is an emulator configuration defined by hardware and software options. This means you can combine
any emulator image you downloaded in the previous step with a range of devices, operating system versions,
and so forth.

Virtual devices are managed via the Android Virtual Device (AVD) Manager. To start the manager, run
the command android avd in the tools directory. Add a new virtual device via the Create button. You will
need to configure the following:

•	 A hardware profile: The hardware profile defines the hardware features of the virtual
device, including how much memory the device holds, whether it has a camera,
and so on.

•	 A mapping to a system image: In the previous step, you downloaded at least one
image using the Android SDK Manager. Assign one of the images you downloaded.

•	 Other options: You can specify the screen dimensions, appearance, and other options
of the device, including the size of the device’s internal storage in which it saves the
user’s data (installed applications, settings, and so on) as well as a virtual SD card
memory.

Once you have finished your configuration, confirm via the OK button, as shown in Figure 2-4.

https://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
https://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
https://www.genymotion.com/

Chapter 2 ■ Beginning PhoneGap

22

You can test your virtual device by selecting it and clicking the Start... button. It may take some time to
launch the emulator. If you have major speed issues, please refer back to the preceding section, “Choosing
an Android Emulator Image.” Figure 2-5 shows an example of the emulator.

Figure 2-5.  Android emulator

Figure 2-4.  The Android Virtual Device Manager (AVD Manager)

Chapter 2 ■ Beginning PhoneGap

23

Adding Android SDK Paths
To make the Android SDK accessible for PhoneGap, you need to add SDK paths to your system’s settings.
Among other things, adding these paths will allow PhoneGap to compile your application.

On Windows systems, execute the commands shown in Listing 2-1 in the command prompt. On Mac
systems, execute Listing 2-2 in the terminal. Replace the placeholder {INSTALLATION-LOCATION} with the
path you picked at the beginning of the Android SDK installation process.

Listing 2-1.  Adding Android SDK Paths on Windows

set ANDROID_HOME=C:\{INSTALLATION-LOCATION}\android-sdk
set PATH=%PATH%;%ANDROID_HOME%\tools;%ANDROID_HOME%\platform-tools

Listing 2-2.  Adding Android SDK Paths on Mac

export ANDROID_HOME=/{INSTALLATION-LOCATION}/android-sdk-macosx
export PATH=${PATH}:$ANDROID_HOME/tools:$ANDROID_HOME/platform-tools

Installing Apache Ant
On most systems, you need to install Apache Ant (http://ant.apache.org) as a last step. If you own a Mac
and use Homebrew, you can run brew install ant.

■■ Note H omebrew is a package manager for Mac OS X. If you don’t yet use it, you should! You can find
download and install instructions on http://brew.sh/.

You can also pick and download a fitting Ant binary from www.apache.org/dist/ant/binaries/.
As Ant is built with Java, the files for Mac and Windows are the same. Extract the ZIP file (for example,
apache-ant-1.9.4-bin.zip) somewhere on your computer. Add the full path to the contained bin/ folder
to the end of your PATH environment variable as shown in Listings 2-3 and 2-4. You can find more
instructions and help how to install Apache Ant on ant.apache.org/manual/install.html.

Listing 2-3.  Adding the Apache Ant Path on Windows

set PATH=%PATH%;C:\{YOUR-PATH}\apache-ant-1.9.4\bin

Listing 2-4.  Adding the Apache Ant Path on Mac

export PATH=${PATH}:{YOUR-PATH}\apache-ant-1.9.4\bin

Installing PhoneGap
Next, you’ll be installing PhoneGap via the node package manager. The PhoneGap command-line tool will
allow you to install plug-ins, build your application, or install and run your application using a simulator.

http://ant.apache.org/
http://brew.sh/
http://www.apache.org/dist/ant/binaries/
http://ant.apache.org/manual/install.html

Chapter 2 ■ Beginning PhoneGap

24

Windows
To install PhoneGap on Windows, open the command prompt. You can find the command prompt via the
Windows search using “cmd” as your search term or via the Start button in All Programs ➤ Accessories ➤
Command Prompt. Execute npm install -g phonegap. It does not matter in which directory you execute
this command.

Mac
Open the Terminal application. You can find it using Spotlight Search. As on Windows, execute npm install -g
phonegap. If you run into a permission error, you may need to run this as a superuser (sudo), since the
installation requires authorization. In this case, execute sudo npm install -g phonegap instead.

■■ Tip T he -g flag installs npm packages globally, making the command available to run in any directory on
your computer. This is why the location of where you execute this command is irrelevant. Without using -g, the
package will only install in the directory that npm install is executed.

During the installation process, you will see several requests to npm logged in the terminal; this
retrieves all the packages used for PhoneGap. To ensure it’s properly installed, run phonegap -v once. This
will return the version of PhoneGap you have installed.

Updating PhoneGap
When installing PhoneGap the first time, you’ll always have the latest version. You can stay up-to-date with
npm packages by using the update command before the name of the package, for example, npm update -g
phonegap or respectively sudo npm update -g phonegap. Follow the PhoneGap blog to stay up-to-date with
new releases and information at http://phonegap.com/blog/.

Using the PhoneGap CLI Tools
You’ll be using the CLI throughout this book to run an array of commands such as compiling PhoneGap
applications and running your application using emulation software. To get an idea of what is in store when
using phonegap commands, in your terminal execute phonegap help. This will show all the commands
available in the PhoneGap CLI, as shown in Figure 2-6.

http://phonegap.com/blog/

Chapter 2 ■ Beginning PhoneGap

25

For even more information from the command line, run phonegap help <command>. For example,
phonegap help create provides a full description of how to use the create command.

Creating a New PhoneGap Application
It’s time to create your first PhoneGap application. All new PhoneGap projects start by using the create
keyword. Before you get started, select a location on your computer where you intend on saving projects
associated with this book. You can develop from any directory just as long as you keep it consistent and easy
find. For example:

Windows

C:\Users\%USERNAME%\Apress\Chapter-2\

Figure 2-6.  PhoneGap help menu used in the command-line interface

Chapter 2 ■ Beginning PhoneGap

26

Mac

/Users/<username>/Documents/Apress/Chapter-2/

When you have a location that you’re happy with, navigate to that folder in your terminal and execute
phonegap create <project name> to create a new PhoneGap application. You can see an example for
creating an application named HelloWorld in Listing 2-5.

Listing 2-5.  Terminal Command for Creating a New PhoneGap Application Named “HelloWorld”

phonegap create HelloWorld

Executing the code in Listing 2-5 will create a new folder of the same name, for example,
C:\Users\%USERNAME%\Apress\Chapter-2\HelloWorld. The contents inside are files and folders PhoneGap
uses to build and compile the application. You’ll need to navigate into this folder through the terminal to be
able to run phonegap commands. You can do so by executing the change directory command followed by the
folder name: cd HelloWorld (Windows and Mac).

PhoneGap “Hello World” Application
The create command will add a small sample application to your project folder. You can find the
application files in the directory HelloWorld/www. Further details about files and folders inside the “Hello
World” application will be described later. For the moment, the goal is to run this application on an Android
and/or iOS simulator.

After creating a PhoneGap application, it’s time to add a testing platform. To do so, run the command
phonegap platform add <platform>. To add iOS and Android to your project, run the commands shown in
Listing 2-6.

Listing 2-6.  Adding Platforms to Existing PhoneGap Projects (iOS, Android)

phonegap platform add ios
phonegap platform add android

The command will create a directory for each platform in ./HelloWorld/platforms. These directories
will contain platform specific code and libraries as well as your JavaScript application, HTML, CSS, and
image files.

Important rule for the platforms directory in advance: You should never change the contained files, or
bad things may happen.

You can get a list of all installed and available platforms using phonegap platform list. Other
phonegap platform commands include update and remove respectively. For more information, run
phonegap platform help.

Building Applications
As explained in the introductory chapter, PhoneGap will compile your web application into a program that
can run natively on a device. Executing phonegap build <platform> performs this operation. You will need
to use the build command every time you change your web application code or when you add or remove a
PhoneGap plug-in.

Chapter 2 ■ Beginning PhoneGap

27

The first time you add a platform to a PhoneGap project, the application is ready to run. However, for
testing purposes, use the build command for all platforms you added in the previous section, as shown in
Listing 2-7.

Listing 2-7.  Build the Application for the Targeted Operating System

phonegap build ios
phonegap build android

Running Applications
There are generally two different ways to run a PhoneGap application: using a simulator or a physical
device. Because running your application on a device will require some additional work, let’s focus on using
a simulator for now. To install and run your application using a simulator, use the emulate command, as
shown in Listing 2-8.

Listing 2-8.  Start the Emulator from the Command Line Using the Targeted Device Name

phonegap emulate ios
phonegap emulate android

After a few moments, your system will do a few things:

	 1.	 Launch the simulator for the targeted platform

	 2.	 Compile and install the application on the simulator

	 3.	 Start the application

The application will show the PhoneGap icon followed by the message Connecting to Device. Once the
app is fully loaded, the message will switch to Device is Ready. Figure 2-7 shows that the device is ready.

Chapter 2 ■ Beginning PhoneGap

28

Device Selection
If you have multiple virtual device configurations, you can pick one of them by running phonegap emulate
android --target "{virtual-device-name}". Replace {virtual-device-name} with the name you picked
in the AVD Manager.

To see a list of available simulators for iOS, execute ./platforms/ios/cordova/lib/list-emulator-
images in the root of the project’s directory. Common simulators are shown in Listing 2-9. Executing
phonegap emulate android --target "{virtual-device-name}" will select which device simulator to
launch.

Listing 2-9.  Common List of Available Simulators for iOS

iPhone-4s
iPhone-5
iPhone-5s
iPhone-6-Plus
iPhone-6
iPad-2

Figure 2-7.  The PhoneGap “Hello World” application on iPhone (left) and Android (right)

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Beginning PhoneGap

29

iPad-Retina
iPad-Air
Resizable-iPhone
Resizable-iPad

Inside PhoneGap’s “Hello World” Application
All PhoneGap projects created via the phonegap create command provide an introductory Hello World project.

This project contains the files and directory structures that PhoneGap uses to compile web application
to platform specific applications. Each directory—and subdirectory—has its purpose. We’ll explore the more
important aspects of each directory in the following list. For detailed information, please refer to the official
PhoneGap documentation http://docs.phonegap.com/en/edge.

•	 config.xml The config.xml file is used to define general project settings like the
name of you application, the bundle ID for the app store, and author information.
Listing 2-10 shows an example of this file. Check out an interactive guide by
Developer Evangelist Holly Schinsky here: http://devgirl.org/files/config-app.

For even more information, you can always visit the PhoneGap documentation at
http://docs.phonegap.com/en/edge/guide_project-settings_index.md.html.

•	 hooks: The hooks directory is used to execute custom processes that occur before
and after certain PhoneGap commands. As this is an advanced topic, it will not be
covered in this book.

•	 platforms: Once you create a new PhoneGap project, the platforms folder is empty.
Adding a new platform creates a directory of the same name, such as platforms/
android for Android. Each subdirectory contains the code for its respective
platform. Unless you know what you are doing or are instructed to do so, you should
never change anything in the platforms directory.

•	 plugins: The plugins directory is used to add third-party plug-ins into your
application. This can be used for enhancing your application’s appearance
or functionality. Plug-ins are typically platform-specific and should be used
responsibly. It’s always good to read a plug-in’s documentation before introducing it
into your project.

•	 www: The www folder is reserved for the application source code; it’s where you’ll write
custom HTML, CSS, and JS.

Listing 2-10.  An Example of a config.xml for PhoneGap Projects

<?xml version='1.0' encoding='utf-8'?>
<widget id="com.phonegap.helloworld" version="1.0.0" xmlns="http://www.w3.org/ns/widgets"
xmlns:gap="http://phonegap.com/ns/1.0">
 <name>Hello World</name>
 <description>
 Hello World sample application that responds to the deviceready event.
 </description>
 <author email="support@phonegap.com" href="http://phonegap.com">
 PhoneGap Team
 </author>

http://docs.phonegap.com/en/edge
http://devgirl.org/files/config-app/
http://docs.phonegap.com/en/edge/guide_project-settings_index.md.html
http://www.w3.org/ns/widgets
http://phonegap.com/ns/1.0
http://phonegap.com/

Chapter 2 ■ Beginning PhoneGap

30

 <content src="index.html" />
 <preference name="target-device" value="universal" />
 ...
 <access origin="*" />
</widget>

After creating a new PhoneGap project, a predefined set of files and folders are created for you. Figure 2-8
illustrates how a new PhoneGap application is structured.

To understand what is going on in this application, we turn our attention to index.html; this is where
the scripts are used for this PhoneGap application. Just before the closing </body> tag, there are some script
references to JavaScript files, as shown in Listing 2-11. There is also a call to a method named initialize on
the app namespace.

Listing 2-11.  Script Tags Used in the index.html File for the Sample Application Created with New
PhoneGap Applications.

<script type="text/javascript" src="cordova.js"></script>
<script type="text/javascript" src="js/index.js"></script>
<script type="text/javascript">
app.initialize();
</script>

The first script tag reference is to a file named cordova.js. If you take a look at the files in the www folder
(where you’d expect this file to be, given the path relative to index.html), cordova.js is missing. This is
normal and expected.

Figure 2-8.  Directory structure the PhoneGap CLI creates when starting a new PhoneGap application

Chapter 2 ■ Beginning PhoneGap

31

After adding a platform to your application, the file will be located and accessed by PhoneGap inside
one of the folders of the chosen platform, for example, ios/CordovaLib/cordova.js. This is one of the
reasons that PhoneGap applications will not run inside a browser; PhoneGap uses this file internally after
building platform specific files.

The next script tag is a reference to js/index.js that contains application code. Directly after this file
reference is a call to an initialize method on the app namespace. This begins the application.

Main Application Script (index.js)
The index.js file in the “Hello World” application demonstrates the use of PhoneGap’s most basic event
function, deviceready. Listing 2-12 shows the full script (with original comments, beginning with forward
slashes) used for the Hello World app.

Listing 2-12.  The Code for Hello World That PhoneGap Provides When Creating a New Application

var app = {
 // Application Constructor
 initialize: function() {
 this.bindEvents();
 },
 // Bind Event Listeners
 //
 // Bind any events that are required on startup. Common events are:
 // 'load', 'deviceready', 'offline', and 'online'.
 bindEvents: function() {
 document.addEventListener('deviceready', this.onDeviceReady, false);
 },
 // deviceready Event Handler
 //
 // The scope of 'this' is the event. In order to call the 'receivedEvent'
 // function, we must explicitly call 'app.receivedEvent(...);'
 onDeviceReady: function() {
 app.receivedEvent('deviceready');
 },
 // Update DOM on a Received Event
 receivedEvent: function(id) {
 var parentElement = document.getElementById(id);
 var listeningElement = parentElement.querySelector('.listening');
 var receivedElement = parentElement.querySelector('.received');
 
 listeningElement.setAttribute('style', 'display:none;');
 receivedElement.setAttribute('style', 'display:block;');
 
 console.log('Received Event: ' + id);
 }
};

Although this code provides some helpful comments, let’s dig a bit deeper and understand what’s really
going on.

Chapter 2 ■ Beginning PhoneGap

32

To begin, notice that all the application code is contained within a variable of type object named app,
the main namespace of this application. There are four functions that are properties of the app object. The
order of the functions executed, beginning with the app.initialize() call from index.html, goes like this:

	 1.	 app.initialize: calls a function named bindEvents that is located on the app
namespace (reference by this).

	 2.	 The bindEvents function adds an event listener to the document for the
PhoneGap event deviceready.

	 3.	 When this event is triggered, it calls a function named onDeviceReady, located in
the currently scoped object (app).

	 4.	 In onDeviceReady, a function named receiveEvent, which is a property of app, is
executed. It is passed a single argument (of type String) deviceready.

	 5.	 The receivedEvent function then updates the appearance of the user interface
to indicate that the program has loaded.

The visual representation is demonstrated in Figure 2-9.

Figure 2-9.  The before-and-after appearance once the receivedEvent function executes

Chapter 2 ■ Beginning PhoneGap

33

Debugging PhoneGap Applications
An important part of any software development is the ability to debug: a process for finding flaws that affect
a feature of a program. If there is an error, you’ll want to know about it to be able to fix it.

PhoneGap offers a special challenge: debugging in more than one programming environment at
the same time. Even though you’ll be building your application in JavaScript, the use of plug-ins, invalid
parameters, or any other mysterious bug might cause an issue inside your application’s native layer
(respectively Objective C [iOS] or Java [Android] for our purposes). Using tools like the console can provide
you with important information about different areas of your program.

The native portions of PhoneGap applications already come with a built-in debugging system. Let’s do
the same for JavaScript debugging by installing the console plug-in.

Because we are building a PhoneGap application, we won’t have access to the API programmatically as
you normally would a global variable in a classic browser or web application.

While there are other elements we might want to debug, like the user interface, the first step focuses
on the WebView’s console API. After all, PhoneGap does run inside a native WebView. As you may already
know from modern web browsers, the console.log command is available to developers for debugging
JavaScript applications.

As with other PhoneGap plug-ins, you add them by navigating to the root directory of the project and
executing phonegap plugin add <plugin name>.

In your terminal, add the console project to the Hello World application by navigating to the project root
in your terminal and running phonegap plugin add org.apache.cordova.console.

This will download and install the plug-in from the cordova plug-in repository. Once installed, you can
use it to debug your program during development. The following code demonstrates its usage:

var i = 0;
console.log(i); // Logs '0' to the console

You can also log multiple values at a time in one line by separating the values with commas:

var noun = 'world';
console.log('Hello', noun); // Logs 'Hello world' to the console

Using log messages is not a requirement of software development and is intended to aid you, the
author, in debugging during development. Next, you will see the console plug-in in action with the Hello
World app.

■■ Tip E xecute phonegap plugin ls to list all of the plug-ins installed in a PhoneGap project.

For platform quirks and other helpful information about the console plug-in, check out build.
phonegap.com/plugins/1171.

Summary
This chapter focused on getting your development environment set up to program PhoneGap applications.
Developing for iOS or Android applications has their own unique setup. Once everything is up and running,
you’ll be using a single code base to target multiple devices.

When creating a new PhoneGap application, a base project is automatically set up for you. Using the
iOS or Android emulator, you were able to run this demo application.

https://build.phonegap.com/plugins/1171
https://build.phonegap.com/plugins/1171

35

Chapter 3

Beginning Parse

A cloud-based service that provides everything you need
to build an app
With features like data storage, web hosting, push notifications, and SDKs ranging from iOS to Android,
Parse (Figure 3-1) offers a complete infrastructure for developing dynamic applications. Other development
kits include Windows/Windows Phone 8, Unity, and OS X. Using their PHP or JavaScript SDKs as a REST API
can additionally provide an interface for data that can be used for CMS tools, middleware, or any database-
driven application.

Figure 3-1.  The Parse home page

Accessing and using data from a REST API using JavaScript isn’t anything new. Creating API endpoints
for delivering JSON objects is possible in virtually all programming languages. For example, using PHP you
can create an API endpoint, for example, app/users/, that returns queried data as JSON strings, allowing
JavaScript to consume it for a client application.

What makes Parse special is its ability to perform common database processes, like creating users and
querying data, which allows developers to focus on manipulating application data. With all this power on
the back end and an intuitive API, Parse makes a great choice for application development.

Chapter 3 ■ Beginning Parse

36

With the growing popularity of Node.js and npm modules, JavaScript is on its way to being the most
flexible language for building native and web-based applications. You’ll explore Parse’s JavaScript API
to build real-world applications, and you’ll learn some tricks and techniques that you can integrate with
PhoneGap.

Parse Features at a Glance
There are tons of awesome things about Parse that make it a unique platform to use to write applications.
The following list highlights Parse’s main features.

•	 Cloud-based Service: Internet connection required! Everything in Parse happens in
the cloud. Instead of on a personal server, Parse securely stores your data in a high-
performance and scalable manner.

•	 Parse Dashboard: Each Parse application you create has its own dashboard. This
gives you access to things like browsing data and configuring settings (Figure 3-2).
We’ll go into more details later.

Figure 3-2.  The Parse dashboard menu

•	 Easy User Registration: With just a few lines of code, you can quickly add users to
your application. The Parse API comes standard with rich features like registration,
user roles, logging in and out, email verification, a forgot password link, and a host of
security features that can be tailored to your needs.

•	 Cloud Code: Creating recurring or scheduled executable scripts with Parse is a snap.
If you take advantage of this feature, you can run server-side scripts without using
the dashboard. You can send emails, push notifications, and run any server-side
logic all while you’re asleep.

•	 Data Browser (Core): This is where you can create and view all of your application’s
data. You can create custom queries to filter out data as well as configure security
setting for client permissions. The data browser is located in the Core section of the
main menu, as depicted in Figure 3-2.

•	 Hosting: All web-based applications need a place to live. While you’ll be building
native mobile applications, which do not require any hosting space like classic
web sites, Parse optionally provides the ability to host projects created with Parse’s
command-line interface (CLI). Your Parse applications can each have a unique sub-
domain name that you can configure in the app’s settings. Hosting is not required for
using the Parse SDKs.

Parse applications have a base domain name of parseapp.com. So your application’s
domain name would look something like my-parse-app.parseapp.com. Don’t want
users seeing the base domain? You can configure your application to use a custom
domain name in your applications Hosting section.

Chapter 3 ■ Beginning Parse

37

•	 Analytics: Curious about how well your application is doing? Each Parse application
you create has its own analytics suite so you can keep track of what’s going on
(Figure 3-3). In order for an application to be successful, it’s important to understand
how people are using it. Using the Analytics tool, you can keep track of things like
crashes and API requests.

Figure 3-3.  Parse analytics

•	 Push Notifications: Sending information to your users immediately with push
notifications is a great way to directly engage them individually. This can add a new
layer of interactivity to your next application. Parse offers this service through all
their native and client SDKs, as well a REST API and web console interface.

Using the Push Composer, anyone who can send an email can tactically distribute
the message to their users via advanced message filters and scheduling options. You
will also be able to create A/B tests among your users to get the best results for your
applications services.

•	 Background Jobs: Let your application work behind the scenes by executing
predefined functions exactly when you want to. This is useful for adding new
products in batches, altering an existing data-sensitive Parse object, or even sending
push notifications. Background jobs are also useful for data-heavy transactions
associated with third-party resources such as importing external data.

•	 Explorer: Get a detailed, searchable analysis of your applications’ API requests
using the Parse Explorer. This tool allows you to visualize and query up-to-
date API requests that have been made by your application’s users. This level of
understanding can help you improve your application’s performance.

Chapter 3 ■ Beginning Parse

38

Creating and Setting Up a Parse Project
The first thing you need to get started with Parse is perhaps the most obvious: a new Parse account. Head
over to www.parse.com and sign up (Figure 3-4) for your free account to begin. You can create one using your
email address or using one of their single sign-on services, including Facebook, Google Plus, and GitHub.

Figure 3-4.  Parse signup page

After logging in, you will have the option to create a new Parse app. You can also visit parse.com/apps
to create and manage Parse applications. This is where you access each of your application's settings and
details, such as Analytics and Cloud Code.

You will be asked to pick a name for your app. As you’ll soon notice on your journey into programming
(or if you already have programming experience, you already know), naming things can be hard. To help
things move along, name your application “CRUD” because we’ll be using this application to demonstrate
the basics of relational database actions using Parse. There are four major database operations: Create,
Read, Update, Delete (CRUD).

Once you create the app, click its name (Figure 3-5) to view its details. This will take you into a view that
has everything associated with your newly created app. From the main navigation, select the Settings icon, as
previously shown in Figure 3-2, and examine the configuration options.

http://www.parse.com/

Chapter 3 ■ Beginning Parse

39

Web Hosting
There are many important sections in the Settings area of your Parse application. For now, you are interested
in the Hosting (Figure 3-6) section. Although not required for Parse applications, Parse offers the ability to
host your applications for you. This is a great opportunity for you to experiment and publish applications
live to the Web. An advantage to using this feature is if your application is installed on a user’s phone. Once
installed, updates can be made without having to update the application.

Figure 3-5.  A Parse application named CRUD

Figure 3-6.  The Web Hosting section of a Parse app

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Beginning Parse

40

Frictionless updates are done by executing code on the server side through Cloud Code, all while the
application code is running locally on a device. For example, if you are running a private beta release of your
app using a project hosted on Parse, you can inform the app whether the beta phase is public or private by
executing a script from Parse’s Cloud Code.

Each state can trigger a unique user experience you create ahead of time. Every time the app launches,
it can check the beta status via an HTTP request. Once the app is ready to go public, you can execute a script
hosted on Parse that will do the job and make the switch.

Configuring a Parse Application’s Subdomain
Let's first configure your application’s URL in the Web Hosting section of your app’s settings. Once you
publish your code using the Parse command line interface, the ParseApp Name (see Figure 3-6) you
choose will be associated with your Parse application. An example URL would look like this:
your-custom-subdomain.parseapp.com. Pick a name for this application that will be used as a subdomain.

If you visit the domain for your application right now, you will see a blank page. You haven’t published
any code yet! In the next section, you’ll locally set up a new project using the Parse CLI and link it up with
your newly created Parse application. Just as PhoneGap has a starter application, Parse’s CLI allows you
to quickly start a default project using its own base template. It should be noted that Parse and PhoneGap
starter projects and their contents are completely different.

After creating an application at parse.com, you have the option to link its data from a folder on your
computer. When using the Parse CLI to link to an existing Parse application, you can deploy the project right
from the command line.

■■ Note  Linking your project locally using the Parse CLI isn’t required for using the Parse API. However, it
is a great starting point for exploring Parse and some of the cool functions available with the command line
interface.

Installing the Parse CLI for Application Publishing
Next, you install the Parse command-line tools. This will enable you to do things like generate sample
projects and deploy applications.

•	 Max/Linux: Run the following code to install the command line dev tools:

curl -s https://www.parse.com/downloads/cloud_code/installer.sh |
sudo /bin/bash

•	 Windows: Download an executable file that installs the tools for you from
http://parse.com/downloads/windows/console/parse.zip.

Now that you’ve successfully installed the Parse CLI, you’ll create a new project and build on it in
this chapter. To ensure that you have the Parse CLI properly installed, run the following script in the
command line:

parse help

The help command will bring up a list of available commands based on the version of Parse you are
running. If you have previously installed Parse, you can run parse update to get the latest version of the tool.

https://www.parse.com/downloads/cloud_code/installer.sh
http://parse.com/downloads/windows/console/parse.zip

Chapter 3 ■ Beginning Parse

41

Setting Up Folders
The Parse JavaScript library is just like any third-party JS library in that it needs to be referenced in your
HTML page in order to use. However, Parse also offers a command-line tool that has some cool features that
you’ll explore next.

When starting a new web-based project, there are numerous ways to organize the structure of files. As
with the starter PhoneGap application, Parse has a pre-defined folder structure that is created when starting
a new project using the CLI.

Before getting started, select or create a folder on your computer where you’ll keep projects associated
with this book. For example,

•	 Windows: C:\Users\%USERNAME%\Apress\Chapter-3\

•	 Mac: /Users/<username>/Documents/Apress/Chapter-3

Creating a New Project
As you did in Chapter 2, navigate to the path you want to use in your terminal. Now create a new Parse
project in the current directory, using the CRUD application created earlier. Create a new project by
executing the following code:

parse new CRUD

This will create a new folder named CRUD in your current directory. The command prompt will then
ask you to log into Parse using your credentials. You will be presented a list of Parse applications that are
associated with your account (Figure 3-7).

Figure 3-7.  Creating and authenticating a new Parse project using the CLI

You are interested in syncing the CRUD application. Once you have completed this process, navigate
into the new folder through your terminal using the change directory command, followed by the name of the
folder, like so:

cd CRUD

Once inside this folder, list the folders using the terminal and see what just happened. On Windows, the
command is dir. On Mac, it’s ls.

Running the command from inside the newly created Parse project will reveal three directories with
files in them, as shown in Figure 3-8.

http://dx.doi.org/10.1007/9781484202364_2

Chapter 3 ■ Beginning Parse

42

About Parse Project Files and Folders
When creating a new Parse project from the command line, three folders are automatically created for you.
You’ll edit these to create and publish a custom application.

•	 Configuration: The config/global.json (json is pronounced like the first name
“Jason") file (see Figure 3-8) contains automatically populated details about the
current project, like the name and the associated keys. You can also find these values
in your Parse account in the Application Keys section of an application.

•	 Cloud Code: There is a folder called cloud with a sample file in it. The code in this
folder is used for Parse’s Cloud Code. It is exactly what you might expect: code that
runs in the cloud. The word cloud here refers to Parse's servers on the Internet. Parse
handles all of your app’s server-side processes using files in this folder.

•	 Public: The public folder is associated with your application code. The index.html
file is the default page for the current directory. The URL associated with the
current Parse application will redirect to the public directory, making the index file
the home page.

Deploying a Parse Project
Because you choose to use the Parse CLI to create and sync your application, you now have the ability to
publish it to the live URL you configured in the Web Hosting section of the app.

To deploy a Parse project, ensure that you are located at the root (the parent folder named CRUD). In the
command line, execute the following:

parse deploy

This will start an upload sequence that will send your project files to Parse. After it is complete, navigate
to the URL that you created for this application and test it. See Figure 3-9.

Figure 3-8.  The file and directory structure of a starter Parse project

Chapter 3 ■ Beginning Parse

43

For the rest of this chapter, you’ll build an HTML5-based web site that will help illustrate the four core
database operations using Parse.

Building a CRUD Application
The next project you’ll create involves basic data entry and editing of content. You will use the Parse starter
project as a base template. After removing some boilerplate code from index.html, you’ll populate it with
custom elements and styles. The user interface will need to display existing records and also provide the
ability to create new and edit existing database records.

After all HTML objects load, you’ll want to initialize the program and sync the application to Parse.
You then will bind the form elements to functions that will communicate with Parse and update the user
interface with new content.

There are four primary database functions that this application will demonstrate:

•	 Creating: See “Creating a new Record”

•	 Retrieving: See “Retrieving Existing Records”

•	 Updating: See “Updating Records”

•	 Deleting: see “Deleting Records”

Once the form is submitted, the UI will update by adding the form’s value to an unordered list tag ()
as a list item (). At this point, you will then attempt to save the entry to Parse.

Why update the display, and then save to Parse? Because doing so provides a better user experience and
gives the feeling of a quick and snappy application. Whether the data is saved successfully or not, you will
update the list item style with a CSS class that will indicate the status of the record.

You’ll be using the HTML5 contentEditable attribute on the li so that when an item is selected,
it will toggle the main menu to reveal a secondary menu for editing. Figure 3-10 demonstrates the before
and after states.

Figure 3-9.  The home page that comes with Parse projects created using the CLI

Chapter 3 ■ Beginning Parse

44

Updating index.html of the Parse Starter Project
Before getting into the JavaScript, let’s first update the index.html file by adding some custom user interface
elements. This demo project will have minimal style and is designed mobile-first.

You will optimize for mobile devices but won’t affect the display on non-mobile browsers by adding a
custom meta tag to the head of the HTML document. The values you use for the content attribute of the
meta tag scales the width of the screen in CSS pixels to 100%.

Add a meta tag after the <title> tag in the index.html page with the following code:

<meta name="viewport" content="width=device-width, initial-scale=1">

■■ Tip  There are other properties that can be added to control the viewport (see “Creating a New PhoneGap
Application” in Chapter 2 for comparison). For example, you can disable pinching and zooming on a touchscreen
device by adding maximum-scale=1 to the existing width value.

Figure 3-10.  Screens for reading and creating new records (left), and editing view (right) when an item is
selected

http://dx.doi.org/10.1007/9781484202364_2

Chapter 3 ■ Beginning Parse

45

Remove all of the custom styles contained within the <style> tag. You will add minimal custom styles
later. Start from scratch and remove everything inside the body tag.

Adding Custom UI Elements
The HTML5 section and footer tags contain your UI elements. The section contains your list of editable
records, while the footer houses the form and its elements. Replace the contents of the body tag in the
index.html file with the code in Listing 3-1.

Listing 3-1.  The HTML Used for the User Interface

<section>
 <ul class="record-list">
</section>
 
<section class="form-container">
 <form>
 <textarea id="test-input" placeholder="Create a new record!"></textarea>
 <button id="btn-add">Create</button>
 <div id="edit-panel" class="hide">
 <button id="btn-update">Update</button>
 <button id="btn-delete">Delete</button>
 <button id="btn-cancel">Cancel</button>
 </div>
 </form>
</section>

Adding Script References
To use the Parse API, you need to include it in your HTML page as a script source. You also want some
custom JavaScript, so you include a reference to a file that has yet to be created.

Instead of saving the Parse JavaScript library to your project and referencing it locally, you use the Parse
CDN to deliver the script. Add the following snippet just before the body tag:

<script type="text/javascript" src="http://www.parsecdn.com/js/parse-1.4.2.min.js"></script>
<script type="text/javascript" src="js/app.js"></script>

Customizing CSS
Before creating the js/app.js file, let’s get the presentation layer out of the way. After adding the HTML
elements and script references to index.html, preview this page in your web browser. Notice two things:

	 1.	 The page looks boring.

	 2.	 There is a script reference error (js/app.js doesn’t exist yet).

Add the CSS (Listing 3-2) styles for the CRUD application between the head tags of index.html.

http://www.parsecdn.com/js/parse-1.4.2.min.js%22%3E%3C/script

Chapter 3 ■ Beginning Parse

46

Listing 3-2.  CSS Styles for the CRUD Application

<style>
 body {
 font-family: Helvetica, Arial, sans-serif;
 margin: 0;
 }
 ul li:nth-child(2n) {
 background: #f9f9f9;
 }
 ul {
 padding: 0;
 margin: 0;
 }
 li {
 padding: 10px;
 }
 section.form-container {
 position: absolute;
 bottom: 0;
 background-color: #F7F7F7;
 border-top: 1px solid #000;
 width: 100%;
 height: 40%;
 }
 section {
 position: absolute;
 height: 60%;
 overflow: scroll;
 width: 100%;
 }
 form {
 margin: 3%;
 }
 textarea {
 margin-bottom: 2%;
 width: 50%;
 display: block;
 }
 .msg-processing {
 color: #ccc;
 }
 #btn-delete,
 .msg-warn {
 color: red;
 }
 button {
 padding: 2%;
 }
 #btn-update {
 color: green;
 }

Chapter 3 ■ Beginning Parse

47

 .hide {
 display: none;
 }
 .show {
 display: block;
 }
</style>

After saving your styles, refresh this page in your browser to make sure it all looks OK. At this point,
nothing exciting is happening yet. In the next section, you’ll start adding some custom JavaScript and
communicating with Parse.

Creating a JavaScript Application File
You will only use one JavaScript file for this application. Create a new folder inside the public folder named
js with a file called app.js. For example, public/js/app.js.

Start off by creating an initialize function. This function is called when the elements on the
page have loaded. The following code snippet is an empty initialize function gets called when the
DOMContentLoaded event is triggered:

function initialize() {
 // Intentionally empty
}
document.addEventListener('DOMContentLoaded', function (event) {
 initialize();
});

Initializing Parse
The first thing you need to do in any Parse application is initialize it. Use the Parse.initialize function
from the Parse API to sync the code with your application. The Parse.initialize() function takes two
parameters: Application ID and JavaScript Key.

The values used for this function can be found in the Settings ➤ Keys section of your application on
parse.com. Each key is unique per Parse application. Because the initialize function is the first thing that
gets called when the application starts, you want to put your Parse.initialize function call there. The
following code updates the initialize function with a call to the Parse.initialize function:

function initialize() {
 // Initialize Parse application
 Parse.initialize('your-application-id','your-javascript-key');
}

At this point in the application, when the DOMContentLoaded event is triggered, you call the initialize
function that uses the Parse API to connect to your application. Next, you create and save a new record to
Parse, and then preview it using the Data Browser.

Chapter 3 ■ Beginning Parse

48

Extending a Parse.Object
Parse.Object is the essential interface for storing and reading data. It allows you to execute an AJAX request
and other methods to write or read data from the database. A Parse.Object is mostly identical to a classic
database schema that has tables, columns, and rows. However, Parse objects are schemaless, meaning they
have no predefined structure. When you add a property to an instance of a Parse object, it will infer upon the
data and create it for you.

For example, if you only have one field, as you do in this application, and you later want to add a new
field, Parse will automatically add the field to the subclass. Records without the new field will be empty, but
can be populated by updating the record.

Properties of Parse objects are synonymous to field names in a traditional database. Create a new
instance of Parse.Object and name it ParseObject; this can be considered the name of a table:

var TestObject = Parse.Object.extend('ParseObject');

■■ Tip T he TestObject variable should be available to all functions inside the app.js file. To do this, make
sure to declare it outside the scope of any functions, like at the top of the file for example.

Saving to Parse
A newly-created Parse object inherits all abilities of the Parse.Object class, like saving, deleting, fetching,
and updating records. It also simultaneously creates a reference to your ParseObject table.

For this application, you’ll only deal with one subclass in your database. You can create new subclasses
on the fly with Parse by default. This is helpful when users (such as yourself while writing this application)
need to create a new class.

■■ Note  When you’re ready to share your application with the world in a production environment, you may
not want your application to create unauthorized classes because it’s an easy way for malicious code to be
executed and possibly corrupt existing data. To prevent this, update the App Permissions (Figure 3-11) in the
General section of your application’s Settings.

Figure 3-11.  App Permissions

Chapter 3 ■ Beginning Parse

49

After creating a reference to your class, follow up with a new variable reference to the input form field
that will contain the content for each record. The input variable should also be made global and thus
available to other functions in app.js:

var input = document.getElementById('test-input');

CRUD Preparation
As stated, this application will demonstrate the four primary database operations. Let’s create another
variable and assign it four properties to empty functions. You’ll populate this variable as you continue.
Create a new variable below input named crud, a placeholder variable (Listing 3-3) that is an object literal
that will be used for database functions.

Listing 3-3.  An Object with Placeholder Function Names

var crud = {
 create: function () {
 },
 retrieve: function () {
 },
 update: function () {
 },
 delete: function () {
 }
};

Adding Event Listener
To submit the form data to Parse, you need to bind an action to the click event of the form’s add button
(#btn-add). Place all form bindings in your initialize function. The following code is a call to the function
crud.create to btn-add:

document.getElementById('btn-add').addEventListener('click', function(event) {
 event.preventDefault();
 crud.create();
});

The Event [event] interface represents any event of the DOM. It contains common properties and
methods to any event. To prevent the form from submitting and refreshing the page, use the preventDefault
method of the event.

Creating a New Record
There are two main sections to the crud.create function: updating the user interface with the addition of a
list item, and then saving the data to Parse. Before getting to any of that, first make sure it’s worth the effort
by checking to see if there is a value in the form input field.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Beginning Parse

50

Adding Safeguard Before Creating New Record
To ensure that you have something to save to Parse, only execute the create function if there is a value in the
input field. The following code stops the function from continuing if there is no value in the input field:

create: function () {
 if (input.value === '') {
 return;
 }
}

■■ Note T he word “create” is a reserved word for JavaScript objects. In this code, you are overwriting this
method with your own. It normally isn’t good practice to do this in a real-world application because the effects
may be damaging. It’s done here for demonstration purposes only: to emphasize the create functionality of
CRUD commands.

Updating the User Interface
If there is a value in the field, the script will continue on executing anything after the if condition blocks.
Here you instantiate a new Parse object. You then update the ul by adding a child element, an li, with the
contents of the value property on the input element.

Using the CSS classes defined earlier, you also add the msg-processing style to indicate to the user that
the content is waiting to be saved to Parse. Using the HTML5 contentEditable attribute, you use the list
item as an input field for updating and destroying records.

■■ Tip T he contentEditable attribute turns any HTML element into an editable piece of content.

The following snippet creates a new list item with the contents of the form input and appends it to the
list. Update the create function with the following:

var li = document.createElement('li');
li.innerHTML = input.value;
li.className = 'msg-processing';
li.contentEditable = true;
document.querySelector('.record-list').appendChild(li);

Test this out right now and see what happens. When you create a new item, it is added to the list and
styled using a CSS class. The value in the input field is still populated with content. For a better experience,
you want to clear the form after an item is added.

After adding a few items to the list, refreshing the page will reveal that the content you added wasn’t
persistently stored anywhere. Let’s change that next by saving the data to Parse.

Chapter 3 ■ Beginning Parse

51

Instantiating Parse Object
To save the input data to Parse, you instantiate a new TestObject (created earlier), which is associated with
your ParseObject subclass, and assign it to the variable testObject.

Notice the differences in the spelling of the first character of the test object variable(s). Parse
recommends naming references to subclasses beginning with an UpperCase, versus an instantiated
reference (“keys”) to it in lowerCase. The following instantiates TestObject with a variable of the same
name, but starting with a lowercase letter. Declare a new variable testObject (the following snippet) outside
of the create function scope, like so:

var testObject = new TestObject();

Saving to Parse
The variable testObject now has a save method. It takes three parameters, and the last two are always the
same: success and error callback functions. The first parameter depends on how you plan on setting the
values you want to save.

There are a few ways to set a property on a Parse object. The most basic way is by using the inherited set
method with the name of the property and its value as parameters:

testObject.set('foo', input.value);

Setting the data doesn’t mean it is saved to Parse yet. The save method must be called on testObject in
order to actually save the data.

The save method also has way to set and save the property in one function call. In this version, you use
a JavaScript object literal as the first parameter of save that represent the data to be saved. The remaining
two parameters are, as expected, the success and error functions. Use this method to save the form data.

Success and Error Callback Functions
If the object is successfully saved to Parse, you want to clear the class of the list item and add an id attribute
equal to the automatically generated Parse ID. At this point in the program, you want to clear the input field
so that a user can enter a new record.

In an event of an error, you log it to the console and update the list item’s class to indicate there was an
error saving the record. Use the value of the list item (HTML5 editable element) as the value for the property
foo. Edit the create function with code in Listing 3-4.

Listing 3-4.  CSS Styles for the CRUD Application

testObject.save({
 foo: li.innerHTML
}, {
 success: function (object) {
 console.log('success!', object);
 // Reset the ID to the Parse object ID
 li.setAttribute('id', object.id);
 // Reset class, and make editable, and clear form value
 li.className = '';
 li.contentEditable = true;
 input.value = ''; },

Chapter 3 ■ Beginning Parse

52

 error: function (object, error) {
 console.warn('Could not create object.');
 console.warn(object, error);
 li.className = 'msg-warn';
 }

Error Handling
It’s often good to know what the error was so you can properly respond to the user. You can do that by
inspecting the second argument of the error function, error. It has a property named code where you
can compare the error code to predefined Parse Error codes and display a custom message if desired. The
following code can be appended to the error function:

if (error.code === Parse.Error.CONNECTION_FAILED) {
 console.warn('Could not connect to Parse Cloud.');
}

Try refreshing the page. There’s nothing new on the unordered list. However, the console logs reveal
that the data was saved to a Parse object. You need to retrieve the records in order display them to the user.
First, let’s check out the Data Browser and see the test records.

Data Browser
While logged into your Parse account, go to the Core section of the CRUD app. This will open a view of all the
data for the application. See Figure 3-12 as an example.

Figure 3-12.  View of the content for the CRUD application using Parse’s Data Browser

Within this section, you can add, remove, and edit records directly in the browser. This is useful if you
want to structure the data scheme of an application before any coding. You can create new classes, along
with custom fields.

When creating a new record for the first time, Parse adds a set of fields in your database automatically:

•	 objectId: A unique identifier for each saved entry

•	 createdAt: Represents when the record was created

•	 updatedAt: Represents when the record was modified

•	 ACL: Permissions attached to the record. This is used for security purposes.

Having these fields created for you is added by Parse as a convenience. The objectId will ensure that
each record in your class is uniquely identifiable. This can be used for things like displaying data for a single
product of many products that are part of a collection. The createdAt and updatedAt fields can be used for
querying data like sorting by dates, date ranges of records, and much more.

Chapter 3 ■ Beginning Parse

53

■■ Tip  Importing and exporting data into an existing Parse application is simple. You can export your
application’s data from the Export data section in the Settings page of your application on Parse.com. Importing
is done from the Data Browser (see Figure 3-12)

CLASS TYPES

There are five unique types of Parse classes. The ParseObject class created for the CRUD application is
the most complex, as it is a custom class created by you.

The remaining default classes are as follows:

•	 Installation: The Installation class is a special class that stores push notification
subscriptions for each device running your app.

•	 Product: The Product class is a special class that stores your in-app product data.

•	 Role: The Role class is a special class that allows you to specify groups of users with
shared permissions.

•	 User: The User class is a special class that can be authenticated, allowing users of
your app to log in, sign up, and more.

Retrieving Existing Records
Now it’s time to populate the user interface so that when the page loads, the data saved in Parse will be
retrieved. The data browser allowed you to confirm that the form input was saving, so that’s a good. You’ll
use this data to populate the app’s interface next.

It starts by creating a new query for the data. If Parse successfully connects and retrieves the content,
you will update the HTML tag by adding child nodes () with data returned from the query.

The crud.retrieve function will be called when the application loads. It will also serve the purpose of
repopulating the user interface after the user updates a record.

Parse.Query Object
There are several types of queries that you can run against your application data. In order to search for
any data, a Parse object must be instantiated. You created one earlier using Parse.Object.extend() and
referenced it using the variable TestObject.

The Parse.Query function takes one parameter: a Parse object class. Creating a new Parse.Query
object allows you to put conditions on it and retrieve an array of records that match the query.

To create a new query object, declare and assign a new variable named query. You will use it again in
another function call, so it needs to be declared outside of the crud.create function scope.

■■ Tip  Variables that you intend to be available for functions declared inside a parent scope should be
declared at the top of the function.

Chapter 3 ■ Beginning Parse

54

After the declaration and assignment of TestObject, create a new Parse.Query object using
TestObject:

var query = new Parse.Query(TestObject);

Here you use the Parse object TestObject to run query functions on. The variable query now has
methods that enable you to find and filter data on the ParseObject class.

You will use the find method to query records in your database. It will return an object that you will
refer to inside the success function scope as object.

Updating crud.retrieve
Using the find query method, you iterate through the returned object and populate the UI with the records
from the ParseObject class. Listing 3-5 shows the code for crud.retrieve, which adds new list items to the
unordered list based on the query.

Listing 3-5.  Adding New List Items to the Unordered List Based on the Query

query.find({
 success: function (records) {
 var frag = document.createDocumentFragment();
 records.forEach(function (record) {
 var li = document.createElement('li');
 li.innerHTML = record.get('foo');
 li.id = record.id;
 li.contentEditable = true;
 frag.appendChild(li);
 });
 ul.appendChild(frag);
 },
 error: function (object, error) {
 console.warn('Could not retrieve records.', error);
 }
});

First, you create a new document fragment that will contain the data for each record. A document
fragment can be thought of as a branch with leaves that can be appended to a tree. The forEach array
method will iterate through each of the records. You use record as a reference to the current Parse object
inside the loop. Inside the loop, you create a new list element and assign some properties to it.

You use the get method of the returned object to get the value of the 'foo' attribute. This is used to
populate the list item’s content.

Within the forEach loop, you create a new list element and apply add the id attribute equal to the
unique Parse object id (objectId). You will use the object id later to update and delete a record.

Testing Record Retrieval
Now that you have a way to retrieve records from your Parse class, you need to update the initialize
function to call the retrieve function so the UI can populate when the page loads. Add the following
function call inside initialize, after Parse.initialize():

crud.retrieve();

Chapter 3 ■ Beginning Parse

55

Extending Queries
The CRUD application at this point only has a few test records in the ParseObject class. Querying data from
such a small sample is great for demoing and testing code. Let’s explore how to query data on a handful of
objects out of hundreds, thousands, or even millions of records!

Parse’s JavaScript API makes searching for data feel intuitive, using methods that make sense for what
you’re trying to accomplish. You use the query variable, an instance of Parse.Query, to call upon methods
that will help you find data. In crud.retrieve, you use the find method to execute a query.

Query Methods
In Structured Query Language (SQL, pronounced “sequel”), a “where” clause allows you to query for specific
data based on a key and value. For example, if you want to return all records from the Products table where
the price is less than 100, the code looks as follows:

SELECT *
FROM Products
WHERE price < 100;

The previous SQL statement can be written in Parse like this:

var Products = new Parse.Object.extend('Products');
var queryProducts = new Parse.Query(Products);
queryProducts.lessThan('price', 100);

When using an instance of Parse.Query there are tons of methods available that will help you get the
exact data you want. Some other “equal” style Parse.Query methods include

•	 lessThanOrEqualTo

•	 greaterThanOrEqualTo

•	 notEqualTo

The following exercise requires the CRUD application to have more than one test record in the
database. Add some sample content and get ready to query!

Querying for Data
This will demonstrate how to search example data using Parse. Use the value first as the key value to
search in the database.

Add a new test record to the database where 'foo' is set to string value 'first'. In the crud.retrieve
function, update the query by using the contains method. Add this before the call to query.find:

retrieve: function () {
 query.contains('foo', 'first');
 query.find({
 success: function(results){
 // 'results' is an array of Parse.Object
 },

Chapter 3 ■ Beginning Parse

56

 error: function(errorObject, errorMsg){
 // errorObject is an instance of Parse.Error
 }
 });
}

Refresh the page and observe the results. Records that contain the substring 'first' for the key 'foo'
are returned. Add a new record with the string 'first' in it (for example, 'who is first?'), and then
refresh and observe that more than one record contains the substring 'first'.

Comment out the query.contains function call, save, and then refresh. Observe all the records are now
returned.

You used one of the methods available on Parse.Query, contains, to narrow the results of your
dataset. For a complete list of available query methods (over 30!), check out the full documentation at
http://www.parse.com/docs/js/api/symbols/Parse.Query.html.

Sorting Results
There may come a time when you want to sort the returned results from a query. The Parse.Query object
has some convenient methods that do just that.

As you saw with the contains method, query methods are used before the call to find records. Using
the ascending or descending methods on a query, you’re able to return query results in order. For example,
to sort records by the time the record was created, you can use query.ascending('createdAt').

■■ Tip  By default, Parse returns a limit of 100 records. You can increase this limit up to 1,000 by using the
limit method, like so:

query.limit(10);

Updating Records
A record first needs to exist before it can be edited. After adding a few sample objects to the database, it’s
time to update them.

You know that there is an update button (#btn-update) in the HTML form; it’s located inside a hidden
div tag with other edit buttons. Before you add an event handler to it, create a new function to perform a
function on a Parse object. This will allow you to select and update a record from the list.

Create a new function named getParseObject. It will take two arguments: a Parse object ID, and a
callback function that will use the returned Parse object as a parameter. Use the get method of Parse.Query
to select a single record:

function getParseObject(parseObjectId, fn) {
 query.get(parseObjectId, {
 success: function (object) {
 fn(object);
 },
 error: function (data, error) {
 console.warn(data, error);
 }
 });
}

http://www.parse.com/docs/js/api/symbols/Parse.Query.html

Chapter 3 ■ Beginning Parse

57

Use the id that you set in crud.retrieve to pass to getParseObject for record selection. First, you add
an event listener to the update button. When clicked, the current value for the data attribute parseid from
the input is passed to crud.update. It is used to update the currently selected record:

document.getElementById('btn-update').addEventListener('click', function (event) {
 event.preventDefault();
 getParseObject(input.dataset.parseid, crud.update);
});

Reset the Form
Next, create a simple utility function to restore the form back to its original view. Since it will be used a few
times in your application, breaking out the functionality into its own function provides you an easy way to
reset the view.

Create a new function named resetForm, as demonstrated in the following listing. It simply updates the
class names on a few DOM elements, as well as clears the input value and the data attribute that you use to
associate with a selected record:

function resetForm() {
 editPanel.className = 'hide';
 btnAdd.className = 'show';
 input.className = 'show';
 input.dataset.parseid = '';
 input.value = '';
}

Update crud.update
Updating Parse objects couldn’t be simpler. All you need to do is save a Parse object with new properties or
values. Next, update the update method using the code in Listing 3-6.

Listing 3-6.  Updating an Existing Record with the Content From the List Item

update: function (parseObject) {
 var li = document.getElementById(parseObject.id);
 parseObject.save({
 'foo': li.textContent
 }, {
 success: function () {
 removeDOMNode(parseObject.id);
 // Repopulate list items
 crud.retrieve();
 resetForm();
 li.contentEditable = true;
 },
 error: function (data, error) {
 document.getElementById(parseObject.id).className = 'msg-warn';
 console.warn('Could not update.', error);
 }
 });
}

Chapter 3 ■ Beginning Parse

58

Using the save method as you did in crud.create, you do the same, except this time you use the
returned Parse object from the get method used in getParseObject function.

The crud.update function takes one argument: a Parse object. If the update is successful, you
repopulate the list elements by calling crud.retrieve, and then reset the form so the user can start over.

If there is an error when updating the record, the error function will add a class to the DOM node to
indicate to the user that the update has failed.

Editing an Item
In order to properly select an item from the list for editing, you need to add some code to handle it. Create a
new function named editItem and populate it with the following code:

function editItem(event) {
 if (event.target.parentNode.className === 'record-list') {
 input.dataset.parseid = event.target.id;
 btnAdd.className = 'hide';
 input.className = 'hide';
 editPanel.className = 'show';
 }
}

In order to put this function to use, you need to bind it to an event. Adding the following event listener
to the initialize function listens for events on items that get added to the list:

document.querySelector('body').addEventListener('click', function (event) {
 event.preventDefault();
 editItem(event);
});

Before continuing, let’s get an understanding of what the two previous code snippets are actually doing.
In the previous snippet, you add an event to the body tag. Although it may seem odd, it allows you to listen
to all click events that may occur at a later time in the life of the application (versus its state when the page
loads). Inside this function, you call the editItem function and pass the current event as an argument.

Now turn your attention to the editItem function call. Using the passed-in argument event, you
determine what the parent node is by checking if it has a specific class name assigned to it. If the parent node
has a class of record-list, then you continue with the function.

When a user selects a list element, you use the current records ID and store it in a data attribute of the
input. This way, you can keep track of what record the user intends on updating.

Why all the fuss for this particular event? If you were to add an event listener using a CSS selector for
a li element in your list (and not the body tag), it will only bind to what currently exists at the time of the
binding.

Because you are dynamically populating the list, you need a way to bind an event to future li elements.
By listening to the body tag for clicks, and narrowing your scope by checking the parent node, you can bind
your function to current and future elements that have yet to be on the page. Pretty nifty, huh?

Testing the Update Function
Try updating any existing records using your HTML interface. Everything seems to work fine; however, after
successfully updating a record, a duplicate of the updated entry still exists in the DOM. The success function
calls crud.retrieve to get the latest results, but a local copy of the item still exists after the user creates a
new record. So let’s create a small function that will remove an element from the DOM.

Chapter 3 ■ Beginning Parse

59

■■ Note  Repopulating the entire DOM isn’t always the best approach when dealing with updating content.
There are numerous frameworks, libraries, and techniques to go about gracefully updating content in real time.
For instance, frameworks like React JS use what’s known as virtual DOM to quickly compare the updated
DOM versus the one in memory, allowing only the element required to update. This is a huge performance gain
versus repopulating the DOM. If you are curious to learn more, Parse also implements ReactJS seamlessly!
Learn more at https://github.com/ParsePlatform/ParseReact

Removing DOM Node
This function’s only purpose is to delete a DOM node based on its id. It will take only one parameter, the id
of the element to be removed:

function removeDOMNode(id) {
 var node = document.getElementById(id);
 if (node.parentNode) {
 node.parentNode.removeChild(node);
 }
}

Finishing Touches
Now that you have a function that will help clean up the DOM, call it from success function of the save
method in crud.update as follows. The following code adds a call to removeDOMNode and passes the Parse
object id as a parameter:

// ...
success: function (data) {
 removeDOMNode(parseObject.id);
 // Repopulate list items
 crud.retrieve();
 resetForm();
 },
// ...

Deleting Records
All things must come to an end, and to complete the four essential database operations using Parse, you
need the ability to delete records.

Just like crud.update, you need to know which record is being requested for deletion. You will reuse
the getParseObject function again to return the record you want to delete. Because the editItem function
keeps track of which record is selected, you only need to add a few more lines to finish this application.

To begin, add an event listener to the delete button to call your yet-to-be populated crud.delete
function. This will look identical to the one used for updating, except this one calls your delete function.

www.allitebooks.com

https://github.com/ParsePlatform/ParseReact
http://www.allitebooks.org

Chapter 3 ■ Beginning Parse

60

Add an event listener to the delete button in the initialize function, like so:

document.getElementById('btn-delete').addEventListener('click', function (event) {
 event.preventDefault();
 getParseObject(input.dataset.parseid, crud.delete);
});

Using the passed-in argument (Parse object), call upon Parse’s destroy method to remove the record
from the database. Use your utility functions to clean up after the record is successfully deleted. The
following code uses the destroy method on a Parse object to remove it from the database:

delete: function (parseObject) {
 parseObject.destroy({
 success: function (parseObject) {
 console.log(parseObject.id + ' destroyed');
 removeDOMNode(parseObject.id);
 resetForm();
 },
 error: function (parseObject, error) {
 console.info('Error deleting: ', parseObject);
 console.warn(error);
 }
 });
}

Cloud Code
We’d be remiss if we didn’t cover Parse’s Cloud Code. This section briefly covers how Cloud Code works.
As mentioned, Cloud Code is code that runs on Parse’s servers–in the cloud. Cloud Code is just like the
code that runs inside your main application, except that it runs on the Internet. This is great for things like
running code that is process-heavy, or adding new features to your application on the fly.

When creating a Parse application using their CLI, a folder named cloud is automatically created. All
code in this folder is intended to execute over the Internet and is intentionally separated from your main
application code. Cloud Code can be used by all of Parse’s SDK’s and the REST API.

There are two ways to use execute Cloud Code processes:

•	 Cloud Functions: Named functions that you define, which can be called inside your
main application.

•	 Triggers: Code that runs when a particular action is triggered.

Cloud Functions
The following code is the function signature, or general information, on how to structure and create a
custom cloud function:

Parse.Cloud.define('customFn', function (request, response) {
 // ...
});

Chapter 3 ■ Beginning Parse

61

All Cloud Code functions use the Cloud namespace. To define a function, use the define method. The
first parameter is a user-defined name used to call the function. In this case, the function is named customFn.
The second parameter is a function that uses two parameters, request and response. You’ll learn more
about these next.

To call this function inside application code, use the run method as demonstrated in the following code:

Parse.Cloud.run('customFn', {foo: 'test'}, {
 success: function (result) {
 
 },
 error: function (error) {
 
 }
});

The Parse.Cloud.run method takes three parameters:

•	 The name of the function

•	 Parameters to be used for the function

•	 An object that contains a success and error callback function

The second parameter is an important one; it’s what the custom function uses for processing. In the
exercise that follows, you will pass an object with a property of foo equal to the string test. The following
code demonstrates how this is used:

Parse.Cloud.define('customFn', function (request, response) {
 console.log(request.params.foo); // test
});

The response parameter is an object that has two methods: success and error. Whatever is passed into
these functions is what is returned when it is called from your application code.

Trigger Events
Instead of calling custom functions directly, Parse also offers a way to automatically call functions based on
how they’re triggered. There are four events that can be used to trigger functions, all self-explanatory:

•	 beforeSave

•	 afterSave

•	 beforeDelete

•	 afterDelete

The first parameter of each of these functions can either be a Parse class name or a Parse.User object
(more on Parse.User later in the book). The second parameter is a callback function.

The following will demonstrate how the beforeSave works. We’ll use it in the CRUD application to
show you how you could use it in your next application. Although the following won’t be used for any “real”
application, we hope it demonstrates the functionality of how to use Cloud Code to automatically execute
functions based on an event.

This next example uses the beforeSave function to prevent users from creating a new record with the
value of 'test'. It triggers an error, ultimately putting to use the msg-warn CSS style.

Chapter 3 ■ Beginning Parse

62

Open cloud/main.js file, erase the contents, and update the file with the following code:

Parse.Cloud.beforeSave('ParseObject', function (request, response) {
 if (request.object.get('foo') === 'test') {
 response.error('Use another test value.');
 } else {
 response.success();
 }
});

Save the file and deploy your application by running parse deploy in your terminal. Locally, or on your
hosted application, try creating a new record with the value of 'test' (without quotations).

Observe that the record does not save and the CSS class msg-warn is applied to the . This
demonstrates how you could use Parse’s Cloud code to automatically run a function based on a specific
event that is fired throughout the lifecycle of your application.

Complete Code
In the event you got lost along the way, or if you want to see the code in all its glory, the following is the
complete code for this project. As a bonus, this code (Listing 3-7) is wrapped in an immediately invoked
function expression (IIFE) to prevent polluting the global namespace.

Listing 3-7.  The Complete Code for This Application

(function () {
 // User Interface elements
 var input = document.getElementById('test-input');
 var editPanel = document.getElementById('edit-panel');
 var btnAdd = document.getElementById('btn-add');
 var ul = document.querySelector('.record-list');
 
 // Create new Parse Object and instantiate it
 var TestObject = Parse.Object.extend('ParseObject');
 var query = new Parse.Query(TestObject);
 
 // Used when editing a record after the user selects a record from the list
 function editItem(event) {
 if (event.target.parentNode.className === 'record-list') {
 input.dataset.parseid = event.target.id;
 btnAdd.className = 'hide';
 input.className = 'hide';
 editPanel.className = 'show';
 }
 }
 
 // Executes a function on a returned Parse object
 function getParseObject(parseObjectId, fn) {
 query.get(parseObjectId, {
 success: fn,

Chapter 3 ■ Beginning Parse

63

 error: function (data, error) {
 console.warn(data, error);
 }
 });
 }
 
 // Removes an element from the DOM based on id
 function removeDOMNode(id) {
 var node = document.getElementById(id);
 if (node.parentNode) {
 node.parentNode.removeChild(node);
 }
 }
 
 // Resets the interface to it's initial view
 function resetForm() {
 editPanel.className = 'hide';
 btnAdd.className = 'show';
 input.className = 'show';
 input.dataset.parseid = '';
 input.value = '';
 }
 
 // Object containing CRUD methods
 var crud = {
 create: function (id) {
 if (input.value === '') {
 return;
 }
 // Create a new element, set the value, then append it to the list
 var li = document.createElement('li');
 li.innerHTML = input.value;
 li.className = 'msg-processing';
 document.querySelector('.record-list').appendChild(li);
 
 // Create new Parse Object then save
 var testObject = new TestObject();
 testObject.save({
 foo: li.innerHTML
 }, {
 success: function (object) {
 console.log('success!', object);
 // Reset the ID to the Parse object ID
 li.setAttribute('id', object.id);
 // Reset class, and make editable, and clear form value
 li.className = '';
 li.contentEditable = true;
 input.value = '';
 },
 error: function (object, error) {
 console.warn('Could not create object.');
 console.warn(object, error);

Chapter 3 ■ Beginning Parse

64

 if (error.code === Parse.Error.CONNECTION_FAILED) {
 console.warn('Could not connect to Parse Cloud.');
 }
 li.className = 'msg-warn';
 }
 });
 },
 retrieve: function () {
 // query.contains('foo', 'first');
 // query.ascending('createdAt');
 query.find({
 success: function (records) {
 var frag = document.createDocumentFragment();
 records.forEach(function (record) {
 var li = document.createElement('li');
 li.innerHTML = record.get('foo');
 li.id = record.id;
 li.contentEditable = true;
 frag.appendChild(li);
 });
 ul.appendChild(frag);
 },
 error: function (object, error) {
 console.warn('Could not retrieve records.', error);
 }
 });
 },
 update: function (parseObject) {
 var li = document.getElementById(parseObject.id);
 parseObject.save({
 'foo': li.textContent
 }, {
 success: function () {
 removeDOMNode(parseObject.id);
 // Repopulate list items
 crud.retrieve();
 resetForm();
 li.contentEditable = true;
 },
 error: function (data, error) {
 document.getElementById(parseObject.id).className = 'msg-warn';
 console.warn('Could not update.', error);
 }
 });
 },
 delete: function (parseObject) {
 parseObject.destroy({
 success: function (parseObject) {
 console.log(parseObject.id + ' destroyed');
 removeDOMNode(parseObject.id);
 resetForm();
 },

Chapter 3 ■ Beginning Parse

65

 error: function (parseObject, error) {
 console.info('Error deleting: ', parseObject);
 console.warn(error);
 }
 });
 }
 };
 
 function initialize() {
 // Initialize Parse application
 Parse.initialize(' your-application-id ', 'your-javascript-key');
 
 // Populate with existing records
 crud.retrieve();
 
 // Bind UI elements
 
 // Add
 document.getElementById('btn-add').addEventListener('click', function (event) {
 event.preventDefault();
 crud.create();
 });
 
 // Edit
 document.querySelector('body').addEventListener('click', function (event) {
 event.preventDefault();
 editItem(event);
 });
 
 // Update
 document.getElementById('btn-update').addEventListener('click', function (event) {
 event.preventDefault();
 getParseObject(input.dataset.parseid, crud.update);
 });
 
 // Delete
 document.getElementById('btn-delete').addEventListener('click', function (event) {
 event.preventDefault();
 getParseObject(input.dataset.parseid, crud.delete);
 });
 
 // Cancel
 document.getElementById('btn-cancel').addEventListener('click', function (event) {
 event.preventDefault();
 resetForm();
 });
 }
 
 document.addEventListener('DOMContentLoaded', function () {
 initialize();
 });
})();

Chapter 3 ■ Beginning Parse

66

Summary
This chapter acted as an introduction to the world of Parse. After getting an overview of some of the features
Parse offers, you created a new account and configured your first application.

The Parse CLI tools are used to interface with Parse using the command line. With it, you created a new
local project and linked it to an application that was first created using the Parse web site.

You used the Parse base project as a starting point for creating a custom application that demonstrated
the CRUD commands: Create, Read, Update, and Delete. Using the CLI, you deployed code using Parse’s
hosting solutions.

All Parse applications need to be initialized using a unique application ID and JavaScript key. With it,
you connected to your Parse app when it initialized.

Most Parse functions have a success and error callback functions. With them, you were able to execute
specific functions based on the outcome of the request. After creating some test records, you used the data
browser to see the contents of each record.

In your CRUD methods, you were able to query for specific records to edit and update them. There are
over 30 query methods that Parse provides to help find exactly what you need.

With the aid of some helper functions and event listeners, you were able to bind events to user interface
elements.

Using Cloud Code, you were able to run code independently from your main application code. There
are many things you can do with this, and exploration of the API is encouraged.

67

Chapter 4

Tools and Helpers

Picking the right tool for the right job
This chapter discusses some of the tools you’ll be using throughout the rest of this book. Our goal is get you
up to speed with some great resources that will help you build your next application.

jQuery to the Rescue
Perhaps the most important thing to realize about jQuery is that it’s written in JavaScript. Although there is
no special magic behind the most popular JS framework, it is often the go-to choice for developers.

jQuery is a free open source JavaScript library that abstracts complex logic into an expressive and easy
to use API. From DOM manipulations to simple animations, jQuery is packed with lots of convenience
methods you can use for everyday development.

jQuery is the perfect place to start learning JavaScript if you’re just starting out, aside, of course,
from just learning the language on its own. Released in August 2006, jQuery’s approach to JavaScript
programming opened the door to new JS developers from all corners of the world by helping those new
to the language quickly grasp how it works. Whether it’s the simple intuitive syntax, the relentless cross-
browser compatibility, or any of the jQuery Foundation’s other projects such as QUnit or jQueryUI, jQuery is
pretty amazing.

Perhaps some of the true powers of jQuery are its users. There are tons of community-written plug-ins
that offer a variety of functions that extend the use of jQuery. With such a rich ecosystem, jQuery is a great
way to improve and build on your JavaScript skills.

There are two versions of jQuery that you should know about:

•	 v1.x: Good for legacy sites that require support for Internet Explorer versions 6–8

•	 v2.x: Smaller than v1 and does not support IE <= 8

You’ll be using 2.x later in this book because supporting old IE browsers isn’t applicable to PhoneGap
applications (thankfully!).

Use jQuery Responsibly
It’s usually a good idea to start a new project from scratch, adding dependencies only as needed. Using
a library like jQuery isn’t necessary if you only plan to use a few functions from it. Often, there is either a
smaller library that can do what you want, or you can just do it yourself with a few custom lines of JavaScript.
You don’t always need jQuery. Check out youmightnotneedjquery.com for more information.

http://youmightnotneedjquery.com/

Chapter 4 ■ Tools and Helpers

68

Why jQuery Matters for This Book
Beginning in Chapter 6, you’ll be building a Parse and PhoneGap application from scratch. Using jQuery will
allow you to focus on application code, rather than AJAX, DOM manipulation, and other niceties that jQuery
provides.

We wanted this book to get into the hands of as many developers as possible. Because jQuery is such a
popular library, we figured it’d be best to cast a wide net to demonstrate real-world applications powered by
Parse and PhoneGap.

It should be noted that jQuery is not required for using Parse or PhoneGap; they are all independent
entities that are awesome on their own.

If you already know jQuery, then sweet! If not, it’s time to find out what all the fuss is about. You can find
excellent documentation at api.jquery.com as well as a huge online community that can help you with any
issues you run into while using the library.

Twitter Bootstrap
Developing a customized application takes time. For the purpose of rapid prototyping and experimentation,
you’ll be using Twitter Bootstrap (TB).

In 2010, a small team at Twitter created TB. Its purpose was to encourage consistency across internal
web tools. A year later, they open-sourced the project and its popularity quickly rose.

Tools such as TB make putting an idea, layout, and/or application together quickly. TB is a collection of
HTML, JavaScript, and CSS design templates used for creating engaging web sites for all screen sizes. It uses
CSS grids to proportionately size and style web page elements such as buttons and forms.

As of version 3, its mobile-first philosophy promotes responsive design, using discrete interchangeable
modules. TB offers compact components that provide an array of out-of-the-box functionality such as progress
bars and drop-down menus (see Figure 4-1). Using jQuery as a dependency, TB is a great resource for quickly
getting your ideas out of you head and onto the screen. You can also create custom builds, so you can only
include the scripts, styles, and components (such as icons and media) that you need for a given application.

Figure 4-1.  The TB documentation for the drop-down menu component

http://dx.doi.org/10.1007/9781484202364_6

Chapter 4 ■ Tools and Helpers

69

Using their predefined CSS classes and HTML structuring, you can add style and functionality to your
app with little effort. Developers find this very appealing about TB, and it is why you’ll be using it a bit later.

Use Bootstrap Responsibly
Not every application you build will need TB. It is used here as a teaching tool to get you building
applications quickly while not having to deal with the specificity that is typically involved in creating custom
applications.

One important note to realize is that the look and feel of TB is easily recognizable at this point. If
you intend on using it for all your projects, you’ll notice that they’ll all look the same. This will limit your
potential in making something unique for your users.

With enough experience, you can override core styles or functionality, but at a cost. What if you break
something that it depends on? Be wary of introducing any custom functionality into its core. TB is great for
getting your ideas and concepts developed fast. This will help you quickly envision how your application will
look and function without having to roll out custom code.

Why Twitter Bootstrap Matters for This Book
Using TB will allow you to focus on PhoneGap and Parse, instead of customizing styles, widgets, and other
tasks involved with application development.

As with most web tools, there are other projects similar to Bootstrap. Just as jQuery is the most popular
JavaScript library, Twitter Bootstrap is one of the most widely used starter frameworks today. That said,
just because the “cool kids” use it, you don’t have to. It works for the purpose of this book: getting those
beginning web development a head start into programming for the web.

JavaScript Templates with Handlebars.js
Often in an application, you’ll want to render some data based on a variety of different factors. This is where
content templates come into play.

Handlebars.js is a dynamic templating library that helps you construct HTML pages. They are likely
used in a variety of web sites without your even being aware. For example, when you shop online at your
favorite web site, you’ll see that the content is tailored specifically to you. This typically occurs when you are
logged into the site, or if an action you take has an effect on the content being displayed. Dynamic templates
are programmed to populate content on the fly.

Static vs. Dynamic Web Sites
We all visit the same web sites (Amazon, Google, and so forth) and have different experiences based on how
we use them. Unique content is rendered, but behind the scenes, each web site stills uses the same HTML
structure and styles. This is an example of a dynamic web site.

Conversely, static web sites do not change. Examples of content that may not change are things like
links on a footer or content on an About page. It can be argued that such content can be populated from a
database, which is technically dynamic content, but I digress.

Large applications benefit from reusing snippets, as it helps organize code and source files. Later in this
book, we’ll introduce the usage of dynamic templates using Handlebars.js. This will allow users who sign
into your application to have a unique experience based on their interactions. Figure 4-2 shows an example
of how Handlebars.js can be used.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Tools and Helpers

70

When to Use Dynamic Templates
When developing a front-end-only application, it’s helpful to have a way of displaying content dynamically.
Dynamic programming languages such as PHP already use dynamic templates to render unique content
based on data. Handlebars.js provides the same functionality, but it uses JavaScript.

If you find that you’re constantly mixing JavaScript and HTML code together, it’s best to isolate concerns
into their own functionalities. This will help tremendously with keeping code not only organized but, more
importantly, maintainable. Isolating functionality into discreet structures is common in programming. By
organizing your application’s scripts and templates in a modular fashion, you will be able build upon them
and integrate with other features.

There are a few instances when using a templating engine is a good idea:

•	 Large applications: An application with many files and folders can get messy quickly.
Having dynamic template can help organize the chaos. Having reusable snippets
allows you to combine multiple interfaces in many combinations.

•	 Working with a team: When on a project with multiple people, having separation
of concerns is important, as it allows for multiple people to work on the same feature.
It makes for consistent, predictable patterns that everyone can follow.

•	 Lots of dynamic data: If you’re dealing with large amounts of different kinds of data,
dynamic templates are the way to go. User-generated, content-rich web sites such as
Reddit would be an example of template usage. Theming content and page templates
allows for multiple reuse and extensibility.

Figure 4-2.  A handlebarsjs.com example demonstrating the API

Chapter 4 ■ Tools and Helpers

71

Let’s use a search engine’s results page as an example. All the content rendered is based on a search
term or phrase, which in turn can display in a variety of ways. For example, each of the following can be its
own user interface template:

•	 Sponsored links on the header

•	 Sponsored links on the side of the results

•	 A preview of image results

•	 Definitions associated with searched content

•	 Related search terms

•	 Map information (if the search term/phrase is a location)

•	 Pagination on the footer to jump directly to a result page

Why Handlebars.js Matters for This Book
Applications typically have a lot of independent parts that come together to form the entire application.
This is a great way for beginners to understand code organization and the impact it has on the maintainability
of an application. Templates are simple to understand and implement, and yet provide a powerful feature set
that enables you to customize different states in your application.

Loading JavaScript Files
As discussed, the more code you write or add to an application, the bigger your application code is (in file size),
and the more you need to maintain.

Each JavaScript file you add means that users will need to wait that much longer until all the scripts load
before using your web site. Loading scripts for a web site vs. scripts for PhoneGap application is different, as
you’ll see in a moment.

Traditionally on a web page, JavaScript files are loaded in the head tag of an HTML file. Loading multiple
JavaScript files in the head will give the appearance of a slow, sluggish web site to the end user. Because the
scripts are above the content (the body), they need to load first, and then the content is displayed.

After much experimentation, web performance guru Steve Sauders figured out that by loading scripts
before the closing body tag, page speed loading increased dramatically. This isn’t a silver bullet for every
case, as sometimes scripts (such as Modernizr) still need to be loaded in the head.

Script Loading Today
As applications grow, which they always tend to, JavaScript files can become harder to manage. If you have a
static web site with ten pages, you’d have to add a script file reference to every single page. What if you want
to add some new functionality that needs to be on each page? As you can imagine, this isn’t good practice.

There are many ways to improve this process. Here are just a few that you may or may not have already
heard of:

•	 Minifying and combining scripts into a single file

•	 Breaking up your code logically into modules using something such as the following:

•	 Asynchronous Module Definition (AMD)

•	 CommonJS

Chapter 4 ■ Tools and Helpers

72

•	 Using build processes such a gruntjs, gulpjs, brunch.io, and webpack that aid
developers in bundling applications for production

•	 Using a Content Delivery Network (CDN) for serving large files

However you slice it, it’s all JavaScript in the end. Whatever method you choose after this book is up to
you. Just keep in mind that on your end, you want your code maintainable; from the user’s perspective,
the application has to load as fast as possible and perform well.

Script Loading in PhoneGap
Why do we need a script loader if PhoneGap compiles our application anyway? Simply put, code
organization and reusability. The application you’ll build later will be extendable, allowing you to reuse the
code or add to it however you wish. Having scripts in their own discreet files allows you to keep things tidy.

LABjs Script Loader
Because there are so many options for beginners to wrap their head around, we decided to go with the most
straightforward approach and use a script loader called LABjs, an open source project created by Open
Web Evangelist Kyle Simpson.

LABjs uses one file to manage the loading of multiple JavaScript files, making coding complex
applications a breeze. Often when working with multiple scripts, you will have one or more scripts depend
on another. This is very common with large applications. Third-party libraries like RequireJS have looked to
solve this problem using AMD modules. Environments like Node.js use the CommonJS format.

As an example, if script-b depends on script-a in order to work, then script-a needs to completely load
in order for it to be used by script-b.

Later in this book, we’ll be using jQuery as a dependency. Before loading our custom application code,
jQuery needs to load first. LABjs helps us manage this with elegance. Take the following snippet from the
LABjs documentation as an example:

<script>
 $LAB
 .script("framework.js").wait()
 .script("plugin.framework.js")
 .script("myplugin.framework.js").wait()
 .script("init.js").wait();
</script>

LABjs will load your scripts in sequential order and optionally wait until the queued file is loaded
before moving onto the next. We’ll be using a similar approach later when we build an application from
scratch.

PhoneGap Testing Tools
In the early days of PhoneGap, testing applications was possible, but painful. Today, there are many tools
available for testing and debugging your applications. The tools discussed in this section provide some ways
you can test PhoneGap applications.

Chapter 4 ■ Tools and Helpers

73

PhoneGap Developer App
This amazing application offers developers a chance to see changes in real time on a physical device.
It works by running your application on a web server from your computer, and then using a mobile app
to connect to it. No more rebuilding your project to see updates—you can simply save your files and see
updates as they happen. One of the coolest features of this app is that you can see your console statements
in the terminal as they are happening.

Install instructions for the PhoneGap Developer App can be found at app.phonegap.com.

Using the PhoneGap Developer App
You will need the PhoneGap Developer App installed on your mobile device and your computer in order to
continue. Your physical mobile device must be connected to the same network your host computer is on.

You can use the Hello World application from Chapter 2 to test this out. In your terminal, navigate to the
root directory of the project and execute phonegap serve. You should see a similar print out in your terminal
as depicted in Figure 4-3.

Figure 4-3.  The terminal when the PhoneGap Developer App starts. Note that your IP address may be different

Live Testing
Once the server is running on your computer, use the PhoneGap Developer mobile application to
connect to it. Figure 4-4 shows the app’s interface.

http://dx.doi.org/10.1007/9781484202364_2

Chapter 4 ■ Tools and Helpers

74

After inputting the IP address provided by the phonegap serve command (depicted in Figure 4-4) into
the PhoneGap Developer App, you will have the ability to preview code changes live.

PhoneGap’s create command does a lot of work behind the scenes. Most importantly, it creates a folder
named www. The www folder is similar to Parse’s public folder in that it is where you will write your custom
code. For sanity’s sake, update some code to experience the workflow.

	 1.	 Have the PhoneGap Developer App on your mobile device running and synced
with your host PC using the generated IP address.

	 2.	 Open up the index.html file located in the www folder created by PhoneGap.

	 3.	 Update the “PhoneGap” text surrounded by heading (h1) tags to say “Hello
PhoneGap”. The style of the text is controlled via CSS. Save the file and witness
the magic, as shown in Figure 4-5.

Figure 4-4.  The PhoneGap Developer App interface

Chapter 4 ■ Tools and Helpers

75

As you continue to save any file in the www directory, the PhoneGap Developer App will update on your
mobile device automatically.

PhoneGap App Desktop Beta
The PhoneGap App Desktop is an optional companion app that works with the PhoneGap Developer App.
As of version 0.1.2, this application is now easily installable for Windows and Mac and will notify you when
updates are available. Check out https://github.com/phonegap/phonegap-app-desktop/releases for the
most current version and install it on your computer.

Since you’ve already experimented with the Developer App, this should feel familiar. The user interface
is fairly straightforward (Figure 4-6). Once you select which PhoneGap application you want to test, it starts
a server, just like phonegap serve does, allowing you to pair it with your mobile device via the generated IP
address.

Figure 4-5.  The result of the updated index.html file located in the www folder

https://github.com/phonegap/phonegap-app-desktop/releases

Chapter 4 ■ Tools and Helpers

76

Also similar to the PhoneGap Developer App is the log. Using the Server Log tab located on the left-hand
side of the app, you can quickly see what’s going on while your application is running (see Figure 4-7).

Figure 4-6.  PhoneGap App Desktop home screen

Chapter 4 ■ Tools and Helpers

77

Using these two applications are just the thing to get you debugging and testing your next PhoneGap
application.

Summary
This chapter provided a general overview of some of the tools web developers use to build applications.
jQuery is a respected and dependable codebase that covers many cross browser issues that you probably
don’t even know exist. Combined with other tool sets like Twitter Bootstrap, you will be able to quickly
prototype your ideas.

Building a dynamic and extendable user interface is an important element when building an interactive
application. Using Handlebars.js, you will populate templates using dynamic content while separating
concerns logically using clear and maintainable templates.

As scripts pile up, libraries like LABjs help make loading multiple scripts easy. Once your scripts are
in order, using the PhoneGap Developer App and other testing tools will aid you in building an awesome
application.

Figure 4-7.  PhoneGap App Desktop Server Log screen

79

Chapter 5

Facebook API

Getting Social with the Facebook API
Parse provides an easy way to integrate the Facebook authentication system into your Parse user
management. But before getting to this, it’s important to learn about the Facebook Platform itself, as well as
integrating it into a PhoneGap application.

We’ll begin by discussing the features of the Facebook Platform and the benefits of using them. You’ll
then set up a Facebook Developer account and a Facebook application, and you’ll create a simple PhoneGap
application to test the Facebook API.

The Facebook Developer Platform
Besides the intersection points between Facebook and Parse, using the Facebook Platform for a mobile
application is generally a good idea. Using the platform, you’ll be able to build more social and feature-rich
applications. Other developers do this as well.

An average eight of the top-ten-grossing iOS apps and nine of the top-ten-grossing Android
apps are integrated with Facebook.

— Facebook, developers.facebook.com/docs/games/overview

But how does it help you? Depending on your application concept, the implementation of some
features will make sense, while others may be useless. The Facebook Platform offers so many different API
endpoints, plug-ins, and so forth that it’s not easy to summarize all of the features. In short, the following are
the most common use cases for using the Facebook Platform:

•	 Sharing

•	 User management and permissions

•	 Friends

•	 Monetization

•	 Audience network

•	 Insights

https://developers.facebook.com/docs/games/overview

Chapter 5 ■ Facebook API

80

Sharing
The first feature that will help your app audience grow is usually the implementation of sharing your
application or your application’s content. A subset of features for this task includes

•	 Dialogs to share a link or message on a user’s timeline

•	 Sharing using a private message

•	 The infamous Like button

•	 Posting of messages, links, and pictures via the Facebook Graph API

•	 Using custom open graph stories

This chapter will cover some of these features, but for more, please consult the “Sharing” section of the
Facebook Developer documentation at developers.facebook.com/docs/sharing.

User Management and Permissions
Using the Facebook Login system, you can identify users and provide exclusive access to certain elements
of your application. This will also enable you to save settings per user via their account, instead of a device.
This is essential if a single user uses the application across multiple devices.

Friends
Finding friends using the same application and interacting with them is probably the feature that can have
the biggest impact on your product’s design. It makes a huge difference whether your customers are betting
on the next sporting event in a silo or in competition with their friends. The same can apply to running,
shopping, fashion, and many other application concepts.

Among other features, the Facebook Platform offers you opportunities to invite friends and send
requests. You can then use friends’ data to personalize the experience of your application. This could be any
element of your application that is somehow related to a user’s friends. For example, pictures taken by a user
can be shared with friends and or their friends, thus expanding the reach of your application.

Monetization
In the first phase of building your application(s), monetization may play a less important role, but at a
certain point you’ll want to create revenue to finance your project. The Facebook Platform offers two ways to
monetize your apps, by using a payment service and an advertising platform called Audience Network.

Payment Services
Due to legal restrictions, you cannot use Facebook’s payment service in iOS applications, so you should only
consider this option if you are building a web application in parallel with a web portion.

The system can enable you to support over 80 payment methods including Visa, MasterCard, and
PayPal in more than 50 countries. You can use it to sell subscriptions or virtual goods. You can find more
information about the Facebook payment service in the developer documentation at developers.facebook.
com/docs/payments/.

https://developers.facebook.com/docs/sharing

Chapter 5 ■ Facebook API

81

For in-app purchases, you should consider using the Apple Pay service, Google Play’s in-app billing, or
a certified third-party payment service like Stripe (stripe.com/). Of course, there are PhoneGap plug-ins for
all of these services:

•	 Apple Pay plug-in: github.com/jbeuckm/cordova-plugin-applepay

•	 Android in-app billing plug-in: github.com/poiuytrez/AndroidInAppBilling

•	 Stripe plug-in: github.com/Telerik-Verified-Plugins/Stripe

Audience Network
The situation for the Audience Network is luckily a different one; you can use the service both in Android
and iOS applications. The service does three jobs for you:

•	 Offers a way to place ads in your application

•	 Sells and fills these spaces for you

•	 Handles all billing questions and concerns you or your customers have

You just have to add the service and start collecting money. An example ad is pictured in Figure 5-1.

Figure 5-1.  A test ad created by the Facebook Audience Network

https://stripe.com/
https://github.com/jbeuckm/cordova-plugin-applepay
https://github.com/poiuytrez/AndroidInAppBilling
https://github.com/Telerik-Verified-Plugins/Stripe

Chapter 5 ■ Facebook API

82

There is, however, one little barrier: you need to apply to use the service. You can find more information
about the service and apply via the Facebook Developer web site at developers.facebook.com/products/
audience-network.

To implement the service to a PhoneGap application, I recommend using the Cordova Plug-in for
Facebook Audience Network, available at github.com/floatinghotpot/cordova-plugin-facebookads.

Due to its complexity, this book will not cover the implementation of monetization services. The hope is
that after finishing this book, you will be in a very good place to manage this task independently.

Insights
One by-product you’ll gain by using the Facebook Platform is usage and user data. Once the Facebook SDK
is implemented in your application and being used by your users, Facebook will start collecting data about
them. This includes how many users are using your application, where they are from, and other interesting
statistics that you can use to improve your application.

Besides passive tracking, you can use the Insights API to track custom user events. You can learn more
about this at developers.facebook.com/docs/app-events. An example of a custom user action could be
someone adding a picture or joining a group.

Goals and Requirements for This Chapter
As you can imagine, this chapter cannot introduce an entire platform in just a few pages. Instead, it will focus
on the basic setup as well as the most common use cases like logging in users via Facebook. You will need
this knowledge to connect the Facebook Login process with Parse’s user management, which will be covered
a little later.

Next, you’ll learn how to share a link on a user’s timeline, read user data like their email address, and
upload a picture to Facebook.

To create a Facebook-enabled PhoneGap application, you need to complete the following steps.

	 1.	 Create a new PhoneGap application.

	 2.	 Create a Facebook Developer account.

	 3.	 Create a Facebook application instance.

	 4.	 Install the Facebook PhoneGap plug-in.

Creating a New PhoneGap Application
Before starting the Facebook application setup, you should create a new PhoneGap application. The reason
for doing this step first is the need to name bundle identifiers for PhoneGap and Facebook.

Both the name and the bundle identifier of your PhoneGap app are very important for this step. They
need to match the Facebook configuration, which you’ll be concerned with in a moment.

Create a new PhoneGap app and write down the name of your application, as well as the namespace.
An example for an app named MySocialApp and the bundle identifier com.apress.mySocialApp is in

Listing 5-1.

Listing 5-1.  Creating a New PhoneGap Application Named MySocialApp. This Includes Adding a Bundle
Identifier That You’ll Use for Facebook.

phonegap create ./mySocialApp-path/ com.apress.mySocialApp MySocialApp

https://developers.facebook.com/products/audience-network
https://developers.facebook.com/products/audience-network
https://github.com/floatinghotpot/cordova-plugin-facebookads
https://developers.facebook.com/docs/app-events

Chapter 5 ■ Facebook API

83

For existing applications, you can find and adjust the values in the file www/config.xml, as shown in
Listing 5-2.

Listing 5-2.  Updating the Bundle Identifier for an Existing PhoneGap Application Using the config.xml File

<?xml version='1.0' encoding='utf-8'?>
<widget id="com.apress.mySocialApp" version="1.0.0" xmlns="http://www.w3.org/ns/widgets"
xmlns:gap="http://phonegap.com/ns/1.0">
 <name>MySocialApp</name>
 <description>...

Creating a Facebook Developer Account
If you currently do not have a Facebook account, please sign up on Facebook.com before continuing. After
logging into Facebook with your account, visit https://developers.facebook.com/ (Figure 5-2).

Figure 5-2.  The Facebook Developer web site

http://www.w3.org/ns/widgets
http://phonegap.com/ns/1.0
https://developers.facebook.com/

Chapter 5 ■ Facebook API

84

Creating a Facebook Application Instance
After logging into Facebook Developer, you’ll able to create a new application configuration. You can do this
by clicking the My Apps menu item and selecting the Add a New App link. Alternatively, you can create a new
application using the quickstart guide that you can find at https://developers.facebook.com/quickstarts/.

If you are starting out, it’s recommended to use the latter. The first step of the quickstart guide will show
a list of platforms (Figure 5-3). Select either iOS or Android. If you want to develop for both platforms, you
can come back to the same step at a later point or add more platforms in the advanced application settings.

Figure 5-3.  To start, select a platform (iOS or Android)

Figure 5-4.  Name the Facebook application

In the next step, the guide will ask you to pick a name for the application. After selecting one, you will
have the option to create a new Facebook App ID (Figure 5-4). Choose exactly the same name (not bundle
identifier) you picked for your PhoneGap application. In the example earlier, MySocialApp was used. If the
names don’t match exactly, Facebook integration will not work. You can change this value in the advanced
application settings via the field Display Name.

https://developers.facebook.com/quickstarts/

Chapter 5 ■ Facebook API

85

Submitting this form will create a new Facebook application instance. This will be followed by Facebook
asking you to download the iOS or Android Facebook SDK. You can skip this task because you’ll be adding
the SDKs using a PhoneGap plug-in.

iOS: Bundle Identifier
If you’re creating an iOS application, scroll down to the section called Supply us with your Bundle Identifier.
Paste the bundle identifier created earlier, com.apress.mySocialApp (see Figure 5-5).

Figure 5-5.  Supply the bundle identifier of your PhoneGap application

Android: Package Name
For Android setup, scroll down to the section called Tell us about your Android project. As shown in
Figure 5-6, use the bundle identifier as value for the Package Name. Next, you need to provide the Default
Activity Class Name. This value is a concatenation of your bundle identifier and application name.

Chapter 5 ■ Facebook API

86

In this example, using MySocialApp as application name and com.apress.mySocialApp as the bundle
identifier, the value will be com.apress.mySocialApp.MySocialApp.

Android: Development Key Hash
Finishing the Facebook application setup for Android requires an additional task: you need to generate your
development key hash, and optionally the release key hash if your app has already been published. These
keys are needed to ensure the authenticity of the interactions between your app and Facebook.

To generate a development key hash on a Mac, run the command shown in Listing 5-3. On Windows,
run the command shown in Listing 5-4.

Listing 5-3.  Generating a Development Key Hash on a Mac, and Ubuntu

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore | openssl
sha1 -binary | openssl base64

Listing 5-4.  Generating a Development Key Hash on Windows

keytool -exportcert -alias androiddebugkey -keystore %HOMEPATH%\.android\debug.keystore |
openssl sha1 -binary | openssl base64

The keytool and openssl will generate a 28-character key hash unique to your development
environment. If you need a unique development key hash for each Android development environment, copy
and paste it into the field called Development Key Hashes, shown in Figure 5-7. Repeat the step for every
development environment.

Figure 5-6.  Android package name settings

Chapter 5 ■ Facebook API

87

If you’re developing in a team, your teammates need to provide their development hashes or add them
on their own. You grant access to your Facebook application settings to teammates in the section Roles of the
advanced application settings.

Facebook Application ID
Subsequent to finishing the Facebook application setup, head over to the advanced application settings.
You can find a list of your applications by clicking the menu item Apps or by navigating to developers.
facebook.com/apps/.

Verify your settings and save the Facebook application ID. You can find it in the form field App ID
(see Figure 5-8). You’ll need this value to configure the Facebook PhoneGap plug-in.

Figure 5-7.  Add development key hashes

https://developers.facebook.com/apps/
https://developers.facebook.com/apps/

Chapter 5 ■ Facebook API

88

Installing the Facebook PhoneGap Plug-in
In the last step of the requirements, you will install the Facebook PhoneGap plug-in to your application.
Open your terminal and navigate to your PhoneGap application directory.

Prior to installing the plug-in, add the platforms you want to work with (iOS and/or Android). For
example, phonegap build ios.

Next, add the Facebook plug-in. In contrast to other plug-ins, it’s not recommended to add the plug-
in via a web request. Doing this will cause the plug-in installation to fail for iOS projects, as references to
the Facebook SDK files will be broken. Instead, download the plug-in files from github.com/Wizcorp/
phonegap-facebook-plugin or clone them to your local machine using the command shown in Listing 5-5.

Listing 5-5.  Cloning the Facebook Plugin to Your Local Development Environment

git clone https://github.com/Wizcorp/phonegap-facebook-plugin.git

Next, add the plug-in via the command shown in Listing 5-6. Replace the values for {your-facebook-
app-id} and {DisplayName} with your application’s values, also adjust {/path-to-phonegap-facebook-
plugin} to the local path where you saved the plug-in files.

Figure 5-8.  Facebook application settings

https://github.com/Wizcorp/phonegap-facebook-plugin
https://github.com/Wizcorp/phonegap-facebook-plugin
https://github.com/Wizcorp/phonegap-facebook-plugin.git

Chapter 5 ■ Facebook API

89

Listing 5-6.  Adding and Configuring the Facebook Plug-in to Your Project

phonegap plugin add {/path-to-phonegap-facebook-plugin} --variable APP_ID={your-facebook-
app-id} --variable APP_NAME={DisplayName}

■■ Note T he Wizcorp Phonegap Facebook plug-in is currently using an outdated version of the Facebook
SDK for iOS and Android (3.x), but this version is still supported and working. The latest Facebook SDK
version is 4.x. You can check for updates to the plug-in on its github page at https://github.com/Wizcorp/
phonegap-facebook-plugin.

The plug-in installation variables APP_ID and APP_NAME will be added to the global plug-in configuration
file. When you build your Android or iOS application, it will automatically add the needed configuration
values to the Android and iOS application settings.

■■ Tip  If your display name contains spaces, you need to escape the spaces by adding quotes surrounding the
variable and escaping every space character with a backslash (\). For example, if your display name is My App
Name, you need to use the string APP_NAME="{My\ App\ Name}". The following code shows a full example of
the correct syntax:

phonegap plugin add {/path-to-phonegap-facebook-plugin} --variable APP_ID={your-facebook-

app-id} --variable APP_NAME="{My\ App\ Name}"

Run the application on a test device (virtual or physical) to verify your installation. If the debugging tool
doesn’t report any errors, you’re good to go.

Graph API Explorer
You can test the Graph API without your PhoneGap application by using the online tool Graph API Explorer
from developers.facebook.com/tools/explorer/. With this tool you can test every API endpoint as well as
the login or permission dialogs. Switch to your application and use the Get Access Token button to request a
login dialog, as shown in Figure 5-9.

https://github.com/Wizcorp/phonegap-facebook-plugin
https://github.com/Wizcorp/phonegap-facebook-plugin
https://developers.facebook.com/tools/explorer/

Chapter 5 ■ Facebook API

90

Resetting Permissions
You may at one point need to test every login or permission dialog multiple times. To do this, you need to
remove the app or single permissions. You can do this via the app settings page in your Facebook account
settings (www.facebook.com/settings?tab=applications). Once you select an app, click Remove App, as
shown in Figure 5-10 on the very bottom left.

Figure 5-10.  Remove an application via the Facebook account settings (bottom left)

Figure 5-9.  Graph API Explorer

http://www.facebook.com/settings?tab=applications

Chapter 5 ■ Facebook API

91

Usage Examples
Once you finished the general Facebook application and plug-in setup, you can start using the Facebook
Platform. You can use some features like the Facebook Share Dialog without asking the user to log in to
your application. For this example, the user will have to log in using the dialog window. It’s recommend to
add any Facebook functionality after logging in the user. This can allow you to provide useful features or
functionality using the user’s information.

The following examples will cover logging in and out via Facebook, requesting permissions, reading and
posting via the Graph API, and using the Share dialog.

Basic Setup
Use the sample application created by the phonegap create command as a bootstrap for your Facebook
sample application. Clean up the HTML template (www/index.html) and remove all code that doesn’t apply,
like the sample styles and body elements, as shown in Listing 5-7.

First, you need to add your common development tools like jQuery, Twitter Bootstrap, and Handlebars.
js, which can be found on the web sites of their respective projects. Download and reference the libraries in
your project. An example is shown in Listing 5-7.

Create a new JavaScript file called www/js/myFacebookApp.js which will contain all Facebook-related
functionality. Add a script reference to newly created file as well.

Listing 5-7.  The Basic HTML Template (www/index.html)

<!DOCTYPE html>
<html>
 <head>
 <title>My Social App</title>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="msapplication-tap-highlight" content="no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-scale=1,
minimum-scale=1, width=device-width, height=device-height, target-densitydpi=device-dpi" />
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/
bootstrap.min.css">
 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/bootstrap-theme.min.css">
 <style type="text/css">
 body { padding-top: 40px; }
 </style>
 </head>
 <body>
 <div class="container"></div>
 <script type="text/javascript" src="js/jquery-2.1.3.min.js"></script>
 <script type="text/javascript" src="js/handlebars.min.js"></script>
 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script type="text/javascript" src="js/myFacebookApp.js"></script>
 <script type="text/javascript">
 app.initialize();
 </script>
 </body>
</html>

https://maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/bootstrap.min.css
https://maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/bootstrap.min.css
https://maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/bootstrap-theme.min.css

Chapter 5 ■ Facebook API

92

Login with Facebook
The first feature of your test application will be the Facebook Login. For this feature, you want to display a
login button that, once clicked, will show a dialog offering to connect users to the application using their
Facebook account. If users approve this login request, your application will receive a session that is unique
for the user and your application.

Next, the users will authorize the application to access certain personal information. On a basic level
this will be the information contained in their public profile. We’ll come back to the matter of reading
detailed profile information at a later point in time.

Figure 5-11 shows two versions of a login dialog.

Figure 5-11.  Facebook native login (left) vs. web login (right)

As you can see, there is a version using the iOS (or Android) Facebook application to request the user
to log in (left screen) and a web version of the same (right screen). The latter is shown to users who did not
install Facebook for iOS (or Android) on their phones.

As expected, the native version will be a little bit faster and visually more compelling. It may also seem
smoother if the user is already logged into Facebook (if they have the Facebook application installed). In
both instances, the same features will pass back the same data to your application.

Chapter 5 ■ Facebook API

93

Asking for Additional Permissions
When using the Facebook login, your application can optionally ask for additional permissions. Adding
these permissions will allow your application to read a subset of data that person might have added to
Facebook. For example, if you want to access to a person's primary email address, you ask for the permission
email. Or if you want to access to the list of things a person likes, you ask for the permission user_likes.

A list of all permissions as well as additional information on this topic is available in the Facebook
Developer documentation at developers.facebook.com/docs/facebook-login/permissions/.

Getting the User’s Login Status
Next, implement the Facebook login. But before offering a login button, you want to know whether the user
is already logged in or not. Depending on this information, the application should show a login or logout
button. The next listing outlines what you’ll be using to log a user in.

You begin with an object (myFacebookApp) that will contain the entire contents of your application.
At this point, it will only contain some code to get you started (see Listing 5-8).

Listing 5-8.  The JavaScript Skeleton of Your Facebook Test Application (www/js/myFacebookApp.js)

var myFacebookApp = {
 init: function() {
 facebookConnectPlugin.getLoginStatus(
 myFacebookApp.handleLoginResponse,
 myFacebookApp.debugResponse
);
 },
 handleLoginResponse: function(response) {
 console.log('response', response);
 alert("Message: " + JSON.stringify(response));
 },
 debugResponse: function(response) {
 console.log('response', response);
 alert("Message: " + JSON.stringify(response));
 }
};

To get the login status information, use the plug-in function facebookConnectPlugin.getLoginStatus().
The function will read local session data if it’s available, then verify whether the session is still valid. The
response of this task will be passed to the success callback function myFacebookApp.handleLoginResponse,
which is passed as first function argument. Next, you pass an error handler as second function argument,
myFacebookApp.debugResponse. For the moment, the callbacks do not fulfill any tasks. For testing purposes,
you just want to debug the Facebook API responses.

Next, you want to initialize the execution of the Facebook plug-in code. You do this by calling the
myFacebookApp.init() function in the receivedEvent callback of the PhoneGap default application script
in www/js/index.js, as shown in Listing 5-9. You may remove any other code executed in this place.

Listing 5-9.  Initializing This Application When PhoneGap is Ready (www/js/index.js)

receivedEvent: function(id) {
 myFacebookApp.init();
}

https://developers.facebook.com/docs/facebook-login/permissions/

Chapter 5 ■ Facebook API

94

At first, the user’s status will be unknown. Once the user is logged in, you’ll get more detailed session
information, as shown in Figure 5-12.

Figure 5-12.  Facebook login status debugging of a logged-out (left) and logged-in (right) user

Login and Logout Buttons
Next, you add the Facebook login and logout buttons to the HTML template. You start by placing the
Twitter Bootstrap Panel element and the buttons inside the <div class="container"></div> element
(see Listing 5-10).

Each button has a click event, which will either log the user in or out. Furthermore, you wrap the
buttons in containers having the classes loggedout and loggedin so that it’s easily possible to visually switch
between a logged-out and logged-in view.

Each button has an inline onclick event. Assigning events inline with DOM may be considered bad
practice, as assigning them via JavaScript would be more efficient since you can dynamically assign events.
This is done in Listing 5-10 for simplicity and demonstration.

Chapter 5 ■ Facebook API

95

Listing 5-10.  Login and Logout Button Template (www/index.html)

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">My Social App</h3>
 </div>
 <div class="panel-body">
 <div class="loggedout">
 <div class="btn-group-vertical" role="group">
 <button type="button" class="btn btn-primary btn-lg"
onclick="myFacebookApp.login();">
 Login with Facebook
 </button>
 </div>
 </div>
 <div class="loggedin">
 <div class="btn-group-vertical" role="group">
 <button type="button" class="btn btn-primary btn-lg"
onclick="myFacebookApp.logout();">
 Logout
 </button>
 </div>
 </div>
 </div>
</div>

Since you don’t know the user’s login status before calling the getLoginStatus() function, initially
both buttons should be hidden. Let’s add some simple styles to accommodate this instance, as shown in
Listing 5-11.

Listing 5-11.  CSS Styles for Hiding the Login and Logout Button on Page Load

<style type="text/css">
 body { padding-top: 40px; }
 .loggedin, .loggedout { display: none; }
</style>

At this point, you want the handleLoginResponse function to actively react to the Facebook API
response. If the status value indicates that the user is connected, you hide the login button and show the
logout button; if not, do the opposite (see Listing 5-12).

Add a new property to the application named switchToView. It contains two functions for the login and
logout button callbacks. Figure 5-13 shows the buttons in a device UI based on the current session status.

Listing 5-12.  JavaScript Code for Handling the Login Status Response (www/js/myFacebookApp.js)

handleLoginResponse: function(response) {
 if (response.status == 'connected') {
 myFacebookApp.switchToView.loggedin();
 } else {
 myFacebookApp.switchToView.loggedout();
 }
},

Chapter 5 ■ Facebook API

96

switchToView: {
 loggedin: function() {
 $('.loggedin').show();
 $('.loggedout').hide();
 },
 loggedout: function() {
 $('.loggedin').hide();
 $('.loggedout').show();
 }
}

Figure 5-13.  The Facebook test application’s logged-out state (left) vs. logged-in state (right)

Login and Logout Events
To make the test application functional, you still need to add event handlers for the login and logout buttons.
Let’s start with the login button.

To request a login dialog, as described at the beginning of this section and shown in Figure 5-13, call the
function facebookConnectPlugin.login(). The first argument of the function must be an array containing
permission strings. You must request at least one permission to use the API. If you do not have any special
requirements, just ask for the permission public_profile.

Chapter 5 ■ Facebook API

97

The response format of the login() method is identical to the response of the getLoginStatus() call.
Knowing this, you can reuse the handleLoginResponse() method to handle the login response.

For the logout() function, just switch the view to the loggedout state if the logout process was
successful; otherwise, keep the loggedin state, as demonstrated in Listing 5-13. Also, you add two new
properties to the application, login and logout.

Listing 5-13.  Login and Logout via the Facebook PhoneGap Plug-in (www/js/myFacebookApp.js)

login: function() {
 facebookConnectPlugin.login(["public_profile"],
 myFacebookApp.handleLoginResponse,
 myFacebookApp.debugResponse
);
},
logout: function() {
 facebookConnectPlugin.logout(
 myFacebookApp.switchToView.loggedout,
 myFacebookApp.switchToView.loggedin
);
}

■■ Note  Initially the login will be valid for about 60 days. However, if a user comes back to your application
often, the session will never expire. It will be extended once a day when requests to Facebook’s servers are
executed (for example, by calling the getLoginStatus() method). If users do not use the application within
60 days and come back to the application, they need to log in again.

Requesting Permissions on Login
When asking for permissions during the login process, you can ask for multiple permissions at the same
time. However, you can only ask for reading permissions, not for publishing permissions. Listing 5-14
demonstrates an example of retrieving multiple read-only values.

Listing 5-14.  Logging a User In and Requesting More than One Permission

login: function() {
 facebookConnectPlugin.login(
 ["public_profile",
 "email",
 "user_photos",
 "user_tagged_places"],
 myFacebookApp.handleLoginResponse,
 myFacebookApp.debugResponse
);
}

The result for this example request is shown in Figure 5-14. A summary of the requested permission is
shown below the user’s profile picture and application icon. By tapping the link “Edit the info you provide,”
the login dialog will switch to a view that offers users options to deselect permissions if they don’t want to
share the corresponding sections of their profiles.

Chapter 5 ■ Facebook API

98

Requesting Publishing Permissions
After a user logs in, you can ask for publishing permissions. As people are often very sensitive about granting
publish permissions, you should only ask for them if you need them.

To request new permissions, simply call the login function again, this time passing a new permission
array.

Add a new property to the app named getPublishingPermissions and use the publish_actions
permission, as shown in Listing 5-15. Next, add a button to the loggedin section of your HTML template
calling the permission request (Listing 5-16).

Listing 5-15.  Requesting Permissions by Calling the Login Method Again (www/js/myFacebookApp.js)

getPublishingPermissions: function() {
 facebookConnectPlugin.login(["publish_actions"],
 myFacebookApp.handleLoginResponse,
 myFacebookApp.debugResponse
);
}

Figure 5-14.  A Facebook login dialog requesting multiple permissions (left) and a form to reject single
permissions (right)

Chapter 5 ■ Facebook API

99

Listing 5-16.  Action Button for Requesting Publishing Permissions (www/index.html)

<button type="button" class="btn btn-default btn-lg"
 onclick="myFacebookApp.getPublishingPermissions();">
 Get Publishing Permissions
</button>

Hitting the button will show the dialog shown in Figure 5-15. In addition to accepting or rejecting the
requests, users may change the privacy setting regarding the visibility of their potential posts.

Figure 5-15.  A permission request dialog for publishing posts on a user’s timeline

Getting a User’s Email Address
After requesting permission to a user’s profile information, read this data via the Graph API. You can read
about all possible API endpoints in the Graph API reference documents at developers.facebook.com/docs/
graph-api/reference/.

To access an API endpoint, call the function facebookConnectPlugin.api() (after logging in the user).
The first argument is the path of the API endpoint, for example /me, which is a shortcut to the currently
logged in user. You can specify your request by defining fields in the query string (e.g. fields=id,email).

https://developers.facebook.com/docs/graph-api/reference/
https://developers.facebook.com/docs/graph-api/reference/

Chapter 5 ■ Facebook API

100

You may pass a permission configuration array as second argument to ensure your application is in the
possession of the required permissions, which is the email permission in your case.

Add a new property named getEmailAddress, as shown in Listing 5-17. This function gets the user’s
email address using the Graph API.

Listing 5-17.  Getting the User’s Email Address via the api() Method (www/js/myFacebookApp.js)

getEmailAddress: function() {
 facebookConnectPlugin.api("/me?fields=id,email", ["email"],
 // success callback
 myFacebookApp.debugResponse,
 // error callback
 myFacebookApp.debugResponse
);
}

Verifying Permissions
There may be cases when you want to know whether the user granted permissions or not. Depending on the
status, you could, for example, offer a button named “Enable Facebook sharing” or avoid such a button if the
user already granted the publishing permission.

To get a status of all granted permissions, call the API endpoint /me/permissions. You can test the
endpoint using the Graph API Explorer. Listing 5-18 shows an example response.

Listing 5-18.  Response for Requesting a List of Granted Permissions

{
 "data":
 [
 {
 "permission": "public_profile",
 "status": "granted"
 },
 {
 "permission": "manage_pages",
 "status": "granted"
 },
 {
 "permission": "user_photos",
 "status": "granted"
 }
]
}

If you want to know about a specific permission, just add the permission name to the API request path,
such as /me/permissions/email. If the user granted the email permission, the response will look like
Listing 5-19. Otherwise, the response will contain an empty data array.

Chapter 5 ■ Facebook API

101

Listing 5-19.  Response for Verifying a Single Permission

{
 "data": [{
 "permission": "email",
 "status": "granted"
 }]
}

Instead of using the Graph API Explorer, create a new function that will help verify a permission, as
shown in Listing 5-20. In place of the variable scope, use the permission string you want to test, such as email.

Listing 5-20.  Verifying a Single Permissions via the PhoneGap Facebook Plug-in

apiRequest: function(path, scope, callback) {
 facebookConnectPlugin.api("me/permissions/" + scope, null,
 // success callback permissions request
 function(response) {
 �var missing_permissions = response.data.length > 0 && response.data[0].status ==

"granted" ? null : [scope];
 facebookConnectPlugin.api(path, missing_permissions,
 // success callback for api request
 callback,
 // error callback for api request
 myFacebookApp.debugResponse
);
 },
 // error callback for permissions request
 myFacebookApp.debugResponse
);
}

Making API Requests
Let’s build something more useful using a Graph API request. One example could be to get all photos in
which a user is tagged. To do this, call the API endpoint me/photos, documented under “User Photos” at
developers.facebook.com/docs/graph-api/reference/user/photos.

Test the API endpoint using the Graph API Explorer one more time. You will observe that the response
key data contains an array of image objects. Use this to pass the response object to a Handlebars compile()
call, as shown in Listing 5-21.

Listing 5-21.  Getting Photos in Which the Current User Is Tagged (www/js/myFacebookApp.js)

getUserPhotos: function() {
 myFacebookApp.apiRequest("me/photos", "user_photos", function(response) {
 var source = $("#photos-template").html();
 var template = Handlebars.compile(source);
 var html = template({
 photos: response
 });
 $(".panel-body").html(html);
 });
}

https://developers.facebook.com/docs/graph-api/reference/

Chapter 5 ■ Facebook API

102

An example template using Twitter Bootstrap to display a gallery is shown in Listing 5-22. Invoke the
API request using another button in your loggedin state container (see Listing 5-23).

Listing 5-22.  Gallery Template (www/index.html)

<script id="photos-template" type="text/x-handlebars-template">
 <div class="row">
 {{#each photos.data}}
 <div class="col-xs-6 col-md-3">
 <div class="thumbnail">

 </div>
 </div>
 {{/each}}
 </div>
</script>

Listing 5-23.  Action Button to Invoke the Photo Load Request (www/index.html)

<button type="button" class="btn btn-default btn-lg" onclick="myFacebookApp.getUserPhotos();">
 Get User Photos
</button>

The result of the compact script should be a gallery like in Figure 5-16. If you don’t get a result, verify
that your Facebook account actually contains tagged photos.

Chapter 5 ■ Facebook API

103

POST to Facebook via Graph API
There is one little limitation in the current version of the facebookConnectPlugin.api() method: you
cannot execute POST or DELETE requests, which are required to publish a message or delete an element via
the Graph API. However, for your application, you need to send a POST request to publish data on Facebook,
for example to publish a message on a user’s timeline (see developers.facebook.com/docs/graph-api/
reference/user/feed).

Fortunately, the Facebook Graph API can be accessed via any system supporting HTTP requests. Using
jQuery, this can be handled by simply using the $.ajax method to access any API endpoint, for example
https://graph.facebook.com/me/feed, to get a user’s feed. To post to their feed, switch the request type to
POST and define the message and link to share in the key data. Next, use the access_token obtained from
the Facebook login to identify them.

To have something to post, add a button to the HTML template to call a new postToFeed() function
(Listing 5-24) that you add to the application. The UI element that triggers this call is shown in Listing 5-25.
You can see the result of the test in Figure 5-17. You can use the same system to execute any POST or DELETE
request using the Graph API.

Figure 5-16.  Photo gallery based on a Facebook API request

https://developers.facebook.com/docs/graph-api/reference/user/feed
https://developers.facebook.com/docs/graph-api/reference/user/feed
https://graph.facebook.com/me/feed

Chapter 5 ■ Facebook API

104

Listing 5-24.  Posting to the Facebook Graph API Using a jQuery XHTTP Request

postToFeed: function() {
 facebookConnectPlugin.login(["publish_actions"], function(response) {
 if (response.status != "connected") {
 return false;
 }
 $.ajax({
 type: "POST",
 url: "https://graph.facebook.com/me/feed",
 data: {
 access_token: response.authResponse.accessToken,
 message: "Hello World!",
 link: "http://blog.parse.com/"
 },
 success: function(response) {
 console.log(response);
 },
 dataType: "json"
 });
 },
 myFacebookApp.debugResponse
);
}

Listing 5-25.  A Custom “Share on Facebook” Button

<button type="button" class="btn btn-default btn-lg" onclick="myFacebookApp.postToFeed();">
 Share on Facebook (API)
</button>

https://graph.facebook.com/me/feed
http://blog.parse.com/

Chapter 5 ■ Facebook API

105

Uploading a Picture
The same challenge as for posting links and messages via the Facebook PhoneGap plug-in applies to the
matter of uploading photos or videos: the plug-in does not offer this kind of functionality. However, there is
a similar solution for this.

In this case, you can’t use the jQuery xHTTP approach to upload files directly from the PhoneGap
application. Instead, you’ll use the Cordova File Transfer plug-in (github.com/apache/cordova-plugin-
file-transfer).

The File Transfer plug-in provides a way to upload files using an HTTP multi-part POST request.
You can use it for downloading files as well. To install the plug-in, execute the terminal command shown in
Listing 5-26.

Listing 5-26.  Adding the Cordova File Transfer Plug-in to Your Project

phonegap plugin add org.apache.cordova.file-transfer

Next, you need a photo to be uploaded to Facebook. In Chapter 11, you will learn how to access photos
from a device, or take new photos using the device’s camera. To keep things simple, you’ll use a static image
for now.

Place a photo of your choice in /www/img. Next, add a new button to invoke the upload process in the
loggedin section (see Listing 5-27).

Figure 5-17.  The post result of sharing a link via the Facebook Graph API

https://github.com/apache/cordova-plugin-file-transfer
https://github.com/apache/cordova-plugin-file-transfer
http://dx.doi.org/10.1007/9781484202364_11

Chapter 5 ■ Facebook API

106

Listing 5-27.  Upload Button (www/index.html)

<button type="button" class="btn btn-default btn-lg" onclick="myFacebookApp.uploadFile();">
 Upload File
</button>

To publish photos, you can use the endpoint /{user-id}/photos or the shortcut /me/photos. The
image data will be sent encoded as multipart form data using the key source. You can additionally provide a
photo caption via the key message.

You configuring these parameters using the FileUploadOptions object. The property fileKey is set to
source. This defines the name of the form data element. Using the property params, you can define a set of
key/value pairs to pass in the HTTP request. In this place, you pass the photo caption in the key message as
well as an access_token obtained by the login response object.

Let’s add some new properties to the main application object for uploading photos. Add three new
methods for uploading files: the main function, and a success and error method. This is demonstrated in
Listing 5-28.

After successfully posting an image using the upload feature, go on facebook.com and see your work.
Figure 5-18 illustrates a working demo.

Listing 5-28.  Uploading a Static Photo to Facebook

uploadFile: function() {
 facebookConnectPlugin.login(["publish_actions"], function(response) {
 var options = new FileUploadOptions();
 options.fileKey = "source";
 options.chunkedMode = false;
 options.httpMethod = "POST";
  
 var params = {};
 params.access_token = response.authResponse.accessToken;
 params.message = "Hello World!";
  
 options.params = params;
  
 var filePath = cordova.file.applicationDirectory + "/www/img/my_photo.jpg";
 var ft = new FileTransfer();
 �ft.upload(filePath, encodeURI("https://graph.facebook.com/me/photos"),

myFacebookApp.onUploadSuccess, myFacebookApp.onUploadFail, options);
 },
 myFacebookApp.debugResponse
);
},
onUploadSuccess: function(uploadResponse) {
 console.log(uploadResponse);
 var response = JSON.parse(uploadResponse.response);
 console.log(response);
},
onUploadFail: function(response) {
 myFacebookApp.debugResponse(response);
}

https://facebook.com
https://graph.facebook.com/me/photos

Chapter 5 ■ Facebook API

107

■■ Tip R ead about additional parameters in the Facebook Developer documentation at
developers.facebook.com/docs/graph-api/reference/user/photos/.

Share Dialog
You have already seen how to post directly to a person’s feed using the Graph API. Next, you’ll do the same,
except this time using the Share dialog. This method doesn’t require a Facebook login or need any special
permissions. The implementation is a bit more straightforward since you don’t have to deal with making an
XHTTP request.

Start by adding a new button to the view (see Listing 5-29). As this is a test example, you will hard-code
the link you would like to share. In your example, it’s www.parse.com (see Listing 5-30). An example of how
this would look like once the link is posted to your feed is shown in Figure 5-19.

Listing 5-29.  Share Dialog Button

<button type="button" class="btn btn-default btn-lg" onclick="myFacebookApp.showDialog();">
 Share on Facebook (Dialog)
</button>

Listing 5-30.  Functionality for Share Dialog Button

showDialog: function() {
 facebookConnectPlugin.showDialog({
 method: "feed",
 link: "https://www.parse.com/",
 caption: "Add a message ..."
 },

Figure 5-18.  An example of a static image shared using your sample application

https://facebook.com
http://www.parse.com/
https://www.parse.com/

Chapter 5 ■ Facebook API

108

 // success callback
 myFacebookApp.debugResponse,
 // error callback
 myFacebookApp.debugResponse
);
}

Figure 5-19.  An example post using the Share dialog

Summary
This chapter focused on integrating a PhoneGap application with the Facebook API. The Facebook Platform
offers a range of tools and services such as sharing features and monetization opportunities.

Syncing a Facebook-enabled PhoneGap application requires precise naming configuration. When
creating a new PhoneGap application with the CLI, you specified the bundle identifier that will be associated
with a Facebook application.

After logging into Facebook, you were given the opportunity to create a new application and configure it
for an existing PhoneGap application. iOS and Android integration varies.

Using the Facebook Graph Explorer, you were able to request user data to use for your application.
Permissions vary widely and are based on how you want to use a user’s information. Users must accept the
permission(s) you are requesting in order to use your application, so be mindful.

We approached two different ways for users to log into Facebook: native and web. Each usage was
triggered based on many factors, including if the user has the Facebook app installed natively and is logged
in. Using the login and logged out functionality that Facebook provides, you were able to show a unique view
based on the users session state.

The Graph API allowed you to post content on behalf of your users. You created a way to post images
and other media to a user’s feed.

109

Chapter 6

The Messenger Application

Laying the Foundation to Build a Messaging Application
The best way to appreciate the marriage between Parse and PhoneGap is to create an application from
scratch. In this chapter, we will establish the basic coding pattern that will be used as the application grows.

This chapter will lay the foundation for a fully functional real-world application that you will build
over the remaining chapters. Using what you have learned from previous chapters, you will set up this
application’s namespace structure, test the app using an emulator, and add the app’s first feature namespace
for storing the core functionality of the app.

Your goal for the rest of this book is to build a robust app that is purposely designed to demonstrate
some of the capabilities that Parse and PhoneGap together have to offer. You will soon discover that what
you learn from this application can be used to build that other amazing app idea you have in your head.

The Messenger App will have modern features such as social sharing, location detection, and user
management. Some other key features that this application will demonstrate include the following:

•	 Signing up new users

•	 Logging in and session management

•	 Camera access

The Messenger App
This jack-of-all-trades application uses some great extendable features that we encourage you to expand on
to make your own app. Together, we’ll introduce key concepts in both Parse and PhoneGap, step-by-step.

When building an application, it’s always good to know whom you are building it for. If you have
experience using instant messaging, text messaging, online chatting, and sharing content with your social
network, then you are the target audience this application is looking to serve. However, this time instead of
being the app consumer, you will be building it from the ground up.

We drew the inspiration for our Messenger application that you will be building from the Facebook
Messenger app. We felt the Facebook Messenger app has just the right amount of features that you would
find in any modern instant messaging application. Figure 6-1 shows how the application appears on
Google Play.

Chapter 6 ■ The Messenger Application

110

Goals for the Messenger App
Our goal is not to replicate this application. We are taking some of the features and recreating them with
Parse and PhoneGap to illustrate the power that they have when used together.

The application you will begin to build in this chapter will demonstrate some of the most common
features of most instant messaging apps. Once users sign up through the user registration page via e-mail or
Facebook, they will be able to do things such as the following:

•	 Send and receive messages

•	 Attach media and location information with messages

•	 Make content shareable using the Facebook SDK

We will explore core features in Parse and PhoneGap that will give you a grasp on how to add them to
your next application. These skills will assist you in building the foundation for creating advanced database-
driven applications. Using PhoneGap, you will learn to access native mobile features programmatically that
we will use to sync with Parse.

Application Views
You already know that this application will be used to share and send messages between users, but how
exactly will each section of the application work?

When it comes to software development, the term view is used to describe a graphical user interface
(GUI) that is used to interact with a particular section of an application. The most fundamental view of
this application will be the login view. This page will have a form where users can sign into the application
using the credentials they supplied in the registration view. As you progress through the development of this
application, we will introduce different states that the user will experience while using it.

Figure 6-1.  The Facebook Messenger application as it looks on Google play

Chapter 6 ■ The Messenger Application

111

Thinking about the views of an application will help you to mentally reserve logical data that will be
associated with each view. Breaking it up in this manner will help you focus on one section of the application
at a time. There may come a time when two different views of an application require the same functionality.
Because of this, it is imperative to think ahead and plan out how you intend on adding your desired features.

Choosing Third-Party Libraries
There are many ways to build a JavaScript application. Entire frameworks and libraries are dedicated to
providing code structure and reusable patterns to assist you in creating a maintainable application.

Of course, we recommend using a powerful JavaScript framework for building your application. Yet,
in our examples, we passed on using such a framework to avoid strong dependencies. We’ll merely lean on
simple libraries like jQuery, which may easily be replaced by your favorite framework. This way we are able
to focus on demonstrating the concept of combining Parse with PhoneGap and giving you great flexibility to
follow your personal approach to organize your code.

It’s all JavaScript. What this means is that because JavaScript is such an extendable and popular
language, the approaches to developing an application can be virtually endless. Knowing this, we decided to
go without the aid of any fancy third-party scripts and use a simple system that allows for demonstration of
complex ideas in an intuitive way.

Let’s dig into some code and start building this application!

Project Setup
Before jumping directly into your code editor, it is important to plan things out to get an overall perspective
of what you’ll be building. The following exercise will help you customize a default PhoneGap application so
that extending upon it is done in a clear and obvious way.

YOUR PROJECT SETUP

We begin the Messenger App by creating a new PhoneGap application. You’ll add some dependencies
and slightly modify the JavaScript file that PhoneGap produces when creating a new project.

In your terminal, navigate to the location where you intend on saving this project.

1.	 Create a new project by executing. phonegap create TheMessenger. Change the
current directory to the new folder using cd TheMessenger.

2.	 To be able to debug the application, add the console plug-in using the following
terminal command: phonegap plugin add org.apache.cordova.console.

3.	 Open the config.xml, located in the root folder in your editor, and adjust the
widget id for this application. Update the <name> to TheMessenger (case sensitive).
You can optionally edit the <description>.

4.	 In the www/js directory, rename the index.js file to app.js. The purpose of
renaming this file is to aid in organizing our code semantically. The file will be our
starting point of the application; hence, we want its name to represent this task.

Chapter 6 ■ The Messenger Application

112

Next, download vendor libraries used for this project. You will be adding more for later parts of the
application:

1.	 Create a new folder in www/js named vendor. This will be used for third-party
JavaScript files.

2.	 Download Twitter Bootstrap at http://getbootstrap.com/. After unzipping the
files, complete the following steps:

•	 Copy the CSS files bootstrap.min.css and bootstrap-theme.min.css to www/css/.

•	 Copy the fonts directory to the www folder.

•	 Copy js/boostrap.min.js to www/js/vendor/.

3.	 Download the Production (Minified) Parse JavaScript library at https://parse.com/
docs/downloads. Save parse-1.4.2.min.js to www/js/vendor/.

4.	 Download the compressed production of jQuery at http://jquery.com/download/.
(We are using jquery-2.1.4.min.js.) Copy the jQuery library to www/js/vendor/.

5.	 Download Handlebarsjs at http://handlebarsjs.com/ and save it in www/js/vendor.

Figure 6-2 shows our project’s file structure up to this point.

Figure 6-2.  The file structure of the project up to this point

Adding all of our vendor files to our new PhoneGap application allows us to begin adding custom code
that will make use of them.

http://getbootstrap.com/
https://parse.com/docs/downloads
https://parse.com/docs/downloads
http://jquery.com/download/
http://handlebarsjs.com/

Chapter 6 ■ The Messenger Application

113

Application File Setup
Now it’s time to add some custom JavaScript code. This application will have many JavaScript files, so it’s
important to start things off right.

We begin by extending the app namespace that PhoneGap gives us when creating a new application.
This is where we define the main sections of our application, beginning with the definition of the application
itself. You will then alter the app.js file with some test code, as well as create the core file of this application.
Once that’s all set up, you’ll add some sample HTML to the index page and preview the application using an
emulator.

SET UP APPLICATION AND CORE FILES

You will first create the core of the app—a file that stores functionality that will be used throughout
the application. You’ll then edit the default JavaScript file that PhoneGap provides when creating a new
application.

1.	 Create a new file in the www/js directory named core.js.

2.	 Populate it with the following code snippet:

app.core = {
 initialize: function() {
 alert('Initialize application');
 }
};

3.	 Open the app.js file and empty the contents of the receivedEvent function with
exception to console.log(). Then add a call to the initialize function from the
core namespace:

receivedEvent: function(id) {
 console.log('Received Event: ' + id);
 app.core.initialize();
}

This demonstrates how we will be using the object literal pattern for developing our application by
calling the initialize function of core.js from app.js.

Testing Your Application
If you were to run your application right now, it wouldn’t work as you expected. The index.html file is still
referencing the index.js file that you renamed to app.js earlier.

As you learned in Chapter 2, there are a few ways to test a PhoneGap application. After a few more
updates, we will be using the cordova emulator to test out the early stages of this application.

http://dx.doi.org/10.1007/9781484202364_2

Chapter 6 ■ The Messenger Application

114

To get started, open up the index.html file located in the www directory of your project. You will see the
following code right before the closing of the body tag:

<script type="text/javascript" src="js/index.js"></script>
<script type="text/javascript">
 app.initialize();
</script>

First, apply the name change from index.js to app.js in the script reference. Then add a new script
reference to core.js:

<script type="text/javascript" src="js/app.js"></script>
<script type="text/javascript" src="js/core.js"></script>
<script type="text/javascript">
 app.initialize();
</script>

BUILD AND TEST THE APPLICATION

In this exercise, you’ll add a new PhoneGap platform to test out the application.

1.	 Install the platform you intend on testing with. Navigate to the root directory of
your project in your terminal and run phonegap build <platform>. For example,
to install and build the iOS platform, run phonegap build ios. For Android, run
phonegap build android.

2.	 Emulate the current build to test it out. As the phonegap command doesn’t support
calling an emulator, we’ll fall back to the cordova command. Your application
will still work using the cordova instead of the phonegap command. To run the
emulator, execute cordova emulate <platform>, for example, cordova
emulate ios. Running the emulate command will execute a build before launching
the emulator.

This should open the emulator with your custom application code (see Figure 6-3).

Chapter 6 ■ The Messenger Application

115

After building the desired platform and launching the iOS or Android emulator, an alert message lets us
know that our application has loaded successfully.

Loading Application Scripts
Web developers have many tools in our arsenal. As this application grows, you will be adding more and more
JavaScript files. Some will be third-party vendor scripts, while others may be custom code that will be used
for a feature in the app.

There are many ways to deal with adding new scripts to a development workflow. In an effort to keep
things simple and concise, you will be adding a new vendor, LABjs, to help us deal with loading scripts in an
organized way.

We will be storing references to our scripts in a variable called scripts. This object variable will have
properties that we will assign paths to JavaScript files in our application. This will help organize the scripts in
a purposeful way. Later on in the application, you will add other properties to scripts to aid in organization.

Figure 6-3.  A screenshot of the alert message that is executed from the call in the receivedEvent function
defined in www/js/app.js

Chapter 6 ■ The Messenger Application

116

The order in which the script references are defined do matter; the first script defined in the common array
is the first script to load from the collection. The following exercise will put our script loader into action.

ADDING A SCRIPT LOADER AND EXTENDING THE CORE OF
THE APPLICATION

Here you will add LABjs and customize app.core so that we can organize the way to load scripts. You
will be using the technique you learn here throughout the application.

1.	 Download the latest version of LABjs at http://labjs.com/, unpack the ZIP file,
and copy LAB.min.js to the www/js/vendor directory.

2.	 Edit the index.html file by adding the new dependency above the app.js script
reference. The final script references will look as follows:

<script type="text/javascript" src="cordova.js"></script>
<script type="text/javascript" src="js/vendor/LAB.min.js"></script>
<script type="text/javascript" src="js/app.js"></script>
<script type="text/javascript" src="js/core.js"></script>
<script>
 app.initialize();
</script>

3.	 Next, you will add a new variable to the core file for storing references to JavaScript
files. We will use these files in app.core.initialize() to call a new function,
app.core.afterLoad(),once all the of scripts have loaded. Note that the order of
the scripts is important.

4.	 Edit core.js like so:

var scripts = {
 common: [
 // Vendors
 './js/vendor/parse-1.4.2.min.js',
 './js/vendor/jquery-2.1.4.min.js',
 './js/vendor/bootstrap.min.js',
 './js/vendor/handlebars-v3.0.3.js'
]
};
app.core = {
 initialize: function() {
 $LAB.script(scripts.common).wait(app.core.afterLoad);
 },
 afterLoad: function() {
 // Initialize this Parse application
 Parse.initialize('your-app-id', 'your-javascript-key');
 alert('Initialize application');
 }
};

http://labjs.com/

Chapter 6 ■ The Messenger Application

117

5.	 As you did with the previous exercise, test the build out and make sure the script
loader is working correctly. Rebuild the application by running phonegap build
<platform>. To run the emulator, execute cordova emulate <platform>.

In this exercise, you implemented the LABjs JavaScript loader by adding it to the index.html page. You
then extended the app.core namespace by adding a new afterLoad() function that is called after the
scripts load. In order to make sure it all worked correctly, you were asked you to run the emulator again
to ensure the alert message was called properly, thus proving that all of our scripts loaded successfully.

Now that we have a simple script loading process set up, it will be easy to add new features and vendor
files to our application. This is extremely useful when you are knee deep in development and want to add
new features to this application.

Because this application will have multiple views (or HTML pages), each one will require the same CSS
and JavaScript files. We will be using this new index.html page, the application’s home page view, as a base
template for the rest of the views we add. The next section will discuss further preparing our home page to
use as a base for other views.

The Home Page View
The home page, or index page, of any web site is typically the first page that users see when visiting the site—
or in our case, our application. At this point in our application, the home page isn’t that exciting. There is an
alert message that doesn’t provide anything useful for prospective users, and the layout is still the same one
that is generated once a new PhoneGap application is created. Let’s change that.

In an effort to simplify the aesthetics of this application, we choose Twitter Bootstrap to do the heavy
lifting. Of course, you could always customize it when you complete the application, but for simplicity and
rapid prototyping, it is nice to have some out-of-the-box features that we know already work.

In an earlier exercise, you added some dependencies that we are using in the application to make our
development a bit easier. In order to make use of them, we need to reference them in our pages. The next
exercise will do just that for the home page.

SETUP APP AND CORE FILES

Here, you’ll add the references to CSS files that come with Twitter Bootstrap. Using the newly added
styles, you’ll create a basic layout for the home page view.

1.	 Delete the file www/css/index.css and remove the link tag reference from
index.html template to get rid of the style rules provided by the PhoneGap default
application. Add a new file called style.css to collect your custom style rules.

2.	 Open the index.html file in your text editor. Insert the following snippet above the
title tag to reference the style sheet:

<link rel="stylesheet" type="text/css" href="css/bootstrap.min.css">
 
<link rel="stylesheet" type="text/css" href="css/bootstrap-theme.min.css">
 
<link rel="stylesheet" type="text/css" href="css/style.css">

Chapter 6 ■ The Messenger Application

118

3.	 Now that we have access to the styles provided by Bootstrap, populate the <body>
of index.html with the following snippet:

<div class="container">

 <div class="jumbotron">
 <h1>The Messenger</h1>
 <p>
 Welcome to The Messenger! With this app you
 will be able to send messages to your friends.
 Use it as a starting point to create something
 more unique.
 </p>
 <p>

 Login »

 </p>
 <p>

 Registration »

 </p>
 </div>
</div>

4.	 Edit core.js by removing the alert test message we added earlier.

5.	 Preview the app by running cordova emulate <platform>. You should see its
home page as shown in Figure 6-4.

Chapter 6 ■ The Messenger Application

119

Here we added the main CSS files that we’ll be using throughout the app. You created a simple home
page using some of the styles as defined by the Twitter Bootstrap library.

You’ll notice that there are two links that point to pages that don’t yet exist. Clicking these links will
result in an error, which is expected. In the next chapter, you will dig into Parse and learn how to register a
new user.

Figure 6-4.  The home page of our application using the styles from Twitter Bootstrap

Chapter 6 ■ The Messenger Application

120

Summary
This chapter marked the beginning of the Messenger application. After creating a new PhoneGap project, we
downloaded and added references to dependencies that are used by the app.

Because all applications have states, commonly grouped into views, creating the core script is the
first step in this app’s functionality. New PhoneGap applications come with a default view and script. We
extended the app namespace and ran the first emulated test to make sure the app initialized.

As you learned in Chapter 4, script loading can be a challenging task. We used the LABjs library to help
organize the loading of all of our JavaScript files. By loading LABjs first, followed by the app.js and core.js
file, we are able to sequentially load files based on the order that was set in the scripts variable in core.js.
Using a new afterLoad() function on the app.core namespace, we were able to test out the way scripts load
by confirming the call to afterLoad(), which currently alerts the message “Initialize Application”.

Using Twitter Bootstrap we styled the home page view of our application. The two links in the
index.html page point to views that we will create in the next chapters. The first of these two views will be
the registration page.

http://dx.doi.org/10.1007/9781484202364_4

121

Chapter 7

User Registration with Parse

If you Build it, Hopefully they will Come
This chapter focuses on registering a new user with Parse, and having them log in using their credentials.
We’ll also cover related topics like a password reset feature and registration via Facebook.

To unlock all of the awesome features you’ll be building for the Messenger App, a user of this
application first needs to be a registered user. At this point in your digital life, you may already have a few
online accounts that you need to provide some credentials to be able to use. Similarly, the Messenger App
will need to know who is using it.

Like most dynamic web sites and applications that involve user accounts, there is likely some database
table that is responsible for storing a user’s information. There are many other attributes that could be tied to
a user, such as a profile image or birthday–pretty much anything that your application can use to customize
the experience of your application on a personal level.

Parse User Registration
Parse has a special way of handling and creating users. Unlike normal classes that you create manually, you
will be using the Parse.User object, a subclass of Parse.Object, to handle the users of the Messenger App.
Later in this section, you’ll make use of the console plug-in to help you debug. Let’s begin by registering new
users to your growing application.

The Parse.User object has fields and methods that are unique to the User class. There are two fields
that are required when registering a new user. As you may have already imagined, they are the username and
password fields. The class reserves the following user-specific fields:

•	 username

•	 password

•	 authData

•	 emailVerified

•	 email

As with other Parse classes, the following fields also come standard by default:

•	 objectId

•	 createdAt

•	 updatedAt

•	 ACL

Chapter 7 ■ User Registration with Parse

122

You will be using the fields username, password, and email as you progress through the development of
the registration process. You’ll also learn about the authData and emailVerified fields in this chapter.

Preparation: Adding View Initialization
In Chapter 6 you defined the method app.core.afterLoad() in the JavaScript file www/js/core.js. The
method is called when all of the scripts, which you defined in the variable scripts, are loaded. This is the
perfect moment to initialize a view because you know that all of your libraries, like jQuery or Parse, are ready
to be used.

In your case, this view will be the registration view, using the namespace app.registration. If you want
to make your application work for just this view, you would initialize the view using a static call:

app.registration.initialize();

Naturally, this cannot be the goal. Instead, you use a variable named config.view as placeholder for
the view you want to initialize. As shown in Listing 7-1, you’ll define this value for each view in its HTML
template individually.

Listing 7-1.  An Example of How to Configure Views

<script>
 var config = {
 view: 'name-of-view'
 };
 app.initialize();
</script>

To be able to use this system, update the method app.core.afterLoad() to the code of Listing 7-2. You
will verify that the view name actually exists in the namespace app. If that’s the case, you call the initialize
function to execute the view’s specific JavaScript code. Each view script must contain a function named
initialize to be initialized.

Listing 7-2.  Script Loader Configuration (www/js/core.js)

app.core = {
 initialize: function() {
 $LAB.script(scripts.common).wait()
 .script(scripts.models).wait(app.core.afterLoad);
 },
 afterLoad: function() {
 // Initialize this Parse application
 Parse.initialize('your-app-id', 'your-javascript-key');
 // Initialize View
 if (config.view in app) {
 app[config.view].initialize();
 }
 }
};

http://dx.doi.org/10.1007/9781484202364_6

Chapter 7 ■ User Registration with Parse

123

Registration View
Next, you’ll add the registration view for this application. After adding the presentation layer (HTML/CSS),
you will add and reference a new JavaScript file specifically used for this view. You will keep all JavaScript
files in the directory called www/js/views.

Duplicate the index.html file and name the new file registration.html. Remove the content between
the <body> tag as well as the content before the first script tags. Don’t remove the script tag references;
you need them to run the application! Add a registration form containing fields for first name, last name,
email, and password, as shown in Listing 7-3. If you build out your registration form correctly, it will look like
Figure 7-1.

Listing 7-3.  The HTML Code for the Registration View

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">Create Account</h3>
 </div>
 <div class="panel-body">
 <form role="form">
 <div class="form-group">
 <input type="text" name="first_name" class="form-control input-lg"
 placeholder="First Name" required autofocus>
 </div>
 <div class="form-group">
 <input type="text" name="last_name" class="form-control input-lg"
 placeholder="Last Name" required>
 </div>
 <div class="form-group">
 <input type="email" name="email" class="form-control input-lg"
 placeholder="Email Address" required>
 </div>
 <div class="form-group">
 <input type="password" name="password" class="form-control input-lg"
 placeholder="Password" required>
 </div>
 <div class="form-group">
 <button class="btn btn-lg btn-primary btn-block" type="submit"
 id="login-submit">Register</button>
 </div>
 <div class="form-group">
 < back
 </div>
 </form>
 </div>
</div>

Chapter 7 ■ User Registration with Parse

124

Registration Task
Next, you’ll need a script to handle the form and send the registration data to Parse. Add a new file called
registration.js in the folder www/js/views. Add a new property to app named registration. The object
will have two functions, initialize and submit. When the form responds to the submit event, it will make a
call to the submit function on the registration namespace. This behavior is shown in Listing 7-4.

Listing 7-4.  Registration JavaScript Code (www/js/views/registration.js)

app.registration = {
 initialize: function() {
 $('form').on('submit', function(event) {
 event.preventDefault();
 app.registration.submit();
 });
 },
 submit: function() {}
};

Figure 7-1.  The registration view of the Messenger App

Chapter 7 ■ User Registration with Parse

125

You do not want to execute code that belongs to other views in the registration form. For this reason,
you call the script by checking against the variable config.view (Listing 7-5) to execute the appropriate
function.

Listing 7-5.  Registration View Configuration (www/registration.html)

<script>
 var config = {
 view: 'registration'
 };
 app.initialize();
</script>

To make the script accessible for your application, add the new registration.js file to the scripts
object in core.js, as shown in Listing 7-6.

Listing 7-6.  Script Loader Configuration (www/js/core.js)

var scripts = {
 common: [
 // Vendors
 './js/vendor/parse-1.4.2.min.js',
 './js/vendor/jquery-2.1.4.js',
 './js/vendor/bootstrap.min.js',
 
 // Views
 './js/views/registration.js'
]
};

Preparing User Data
You will now write the functionality used to read the data submitted on the registration view. This data will
populate a Parse.User object. Your actions ultimately derive from the Parse.Object. You will use the set()
function to set values to the object, then save them to Parse.

To avoid duplicate submissions while the script is still working, all form buttons and inputs will be
disabled. Add the function body of Listing 7-7 to the submit() function in www/js/views/registration.js
and test the form submission using the console.log() function.

Listing 7-7.  Registration Form Submit (www/js/views/registration.js)

submit: function() {
 
 $('button, input').attr('disabled', 'disabled');
 
 var first_name = $('input[name=first_name]').val();
 var last_name = $('input[name=last_name]').val();
 var email = $('input[name=email]').val();
 var password = $('input[name=password]').val();
 

Chapter 7 ■ User Registration with Parse

126

 var user = new Parse.User();
 user.set("first_name", first_name);
 user.set("last_name", last_name);
 user.set("username", email);
 user.set("email", email);
 user.set("password", password);
 
 // View the details of the user variable a Parse.User object
 console.log(user.attributes);
 
}

Rebuild the application by executing phonegap build <platform>. You can test the form by running
cordova emulate <platform>.

■■ Tip  Debug using the cordova console plug-in! Add some sample data to the form and submit it. After
submitting the form, you might anticipate seeing the contents of user.attributes. The data will not sync to
Parse just yet. Before you get there, explore the console and see what is inside the user object. Testing the
output of variables while you are developing is helpful for debugging and exploring your application.

Sending User Data to Parse
Being the special User class that this is, Parse has some magic behind the signUp method. It not only ensures
that the username and email are unique database entries, it also encrypts the password field to securely
send its value in the cloud.

Technically speaking, the signUp method is an extension of Parse.Object, by way of Parse.User.
You can either provide attributes using the set() function before calling the signUp function as in

user.set("key", value);
user.signUp(null, ...);

or by passing a simple data object as first parameter to the signUp function like

user.signUp({
 key: value
}, ...)

And just as in the Parse.Object.save() function, the second parameter is an object that has success
and error callback methods. These methods can help you react to invalid inputs or take the user to the
next step.

Chapter 7 ■ User Registration with Parse

127

Updating Your Application Code
In www/js/views/registration.js add the snippet of Listing 7-8 to the submit() function. Rebuild your
application and submit the form to Parse using some sample data. Keep the values simple for quick testing.

Listing 7-8.  Parse signUp Function

user.signUp(null, {
 success: function(user) {
 alert("Success!");
 },
 error: function(user, error) {
 alert("Error: " + error.code + " " + error.message);
 $('button, input').attr('disabled', 'disabled');
 }
});

View the test input data submitted to Parse using the Data Browser, as shown in Figure 7-2. Do so by
selecting the current application at https://www.parse.com/apps/, and then click Core. The Data Browser
is the first item to open.

Figure 7-3 shows the Parse.User object in action. Parse will throw an error if a duplicate username is
found. This is the result of the error callback function of the Parse.User.signUp method.

Figure 7-2.  The Parse Data Browser showing submissions of the registration form

https://www.parse.com/apps/

Chapter 7 ■ User Registration with Parse

128

User Registration Recap
What good is an application if there aren’t any users? This section covered using the Parse.User object to
create a new user for your application. The Parse.User class is a special class that encrypts data and lets you
use the signUp method to add new users.

Debugging is part of the computer programming process. You used the PhoneGap console plug-in
to enable you to get insight into the code. First, you created a view for the registration form. This is the
presentation layer where users register. After adding a custom script under the main app namespace, you
used the initialize function of app.registration to bind an event to the submission form.

After experimenting with the console log, you sent the data to Parse for storage. This is available for
viewing in the data browser upon a successful response from Parse during registration.

Login and Logout Using Parse
After registering for the application using Parse.User.signUp(), the user is automatically logged in to
Parse. The session is cached and available until the user logs out. So far, you have not yet detected whether
the user is logged in or out. At this point in your application, users who are logged in are still able to use the

Figure 7-3.  Parse.User error handling

Chapter 7 ■ User Registration with Parse

129

registration form again. Simply restarting the application will show the registration view, even though they
are already logged in.

We will cover the matter of detection and existing session later in this chapter. For now, let’s focus on
building the logout and login views. The latter will provide a simple form with username, which is the user’s
email address in this case, and password. After submitting the form, you will add a JavaScript call that will
communicate with Parse and verify whether the provided user credentials are valid.

Let’s start things off by building the login view. In the second part of the exercise we’ll come back to
logging a user out. Figure 7-4 shows the completed login form.

Login: Setting Up the Template
You start by creating a new HTML page for the login view. Use the index.html page as a starting point. After
customizing the view, you add the code to log in a user.

Duplicate the index.html file and rename it to login.html. Empty out the body content without
removing the script references. Add the HTML code of Listing 7-9 to create the view. In the same file, update
the config.view value to login (Listing 7-10).

Figure 7-4.  The view of the login page

Chapter 7 ■ User Registration with Parse

130

Listing 7-9.  Login Template (www/login.html)

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">Login</h3>
 </div>
 <div class="panel-body">
 <form role="form">
 <p>
 <input type="email" name="email" class="form-control input-lg"
 placeholder="Email Address" autofocus>
 </p>
 <p>
 <input type="password" name="password" class="form-control input-lg"
 placeholder="Password">
 </p>
 <p>
 <button class="btn btn-lg btn-primary btn-block" type="submit"
 id="login-submit">Log in</button>
 </p>
 <p>

 Sign Up

 </p>
 </form>
 </div>
</div>

Listing 7-10.  Login View Configuration (www/login.html)

<script>
 var config = {
 view: 'login'
 };
 app.initialize();
</script>

Add a new JavaScript file to www/js/views/login.js for this view. Attach a submit event handler to the
form (Listing 7-11). The submission of the form will call a submit function, which you’ll populate shortly.
Next, add a script reference to the new file (Listing 7-12).

Listing 7-11.  Login Template (www/js/login.js)

app.login = {
 initialize: function() {
 $('form').on('submit', function(event) {
 event.preventDefault();
 app.login.submit();
 });
 },
 submit: function() {}
};

Chapter 7 ■ User Registration with Parse

131

Listing 7-12.  Updated Script Loader (www/js/core.js)

var scripts = {
 common: [
 // Vendors
 './js/vendor/parse-1.3.0.min.js',
 './js/vendor/jquery-2.1.1.js',
 './js/vendor/bootstrap.min.js',
 
 // Views
 './js/views/registration.js',
 './js/views/login.js'
]
};

Now that the HTML is set up, you can get the inputs from the login form when it is submitted. This view
only gets initialized because of the value in config.view set in login.html.

To log in a user with Parse, you use the logIn method of the Parse.User object. The logIn function
takes three parameters. The first two are the username and password of the user. The last parameter is an
object that has two functions, success and error.

When the login form is submitted, the form input values are sent to Parse for processing. If the login was
successful, Parse creates a user session so the app knows who’s currently using it.

Login: Verifying Credentials
In this section, you will add functionality to the submit function of login.js to send the user data to Parse.
In the submit() function from Listing 7-11, you will next call the Parse.User.logIn() function and provide
an email address and password as function arguments, as shown in Listing 7-13.

Listing 7-13.  Parse Login Handler (www/js/views/login.js)

submit: function() {
 $('button, input').attr('disabled', 'disabled');
 var email = $('input[name=email]').val();
 var password = $('input[name=password]').val();
}

Logging data to the console is always helpful. However, this time instead of calling console.log in the
success function, you redirect the user to a welcome page. Replace the console.log message with a redirect,
as shown in Listing 7-14. Once the user has a successful login, they will be redirected to a new view, the
Welcome page. You will create this page next. If the user login fails, the form inputs will be re-enabled for the
user to try again.

Listing 7-14.  Redirecting the User After a Successful Login

Parse.User.logIn(email, password, {
 success: function(user) {
 window.location.href = 'logout.html';
 },
 // ...
}

Chapter 7 ■ User Registration with Parse

132

Logout: Template and Functionality
Users can now log in to the application. This next view, the welcome page (see Figure 7-6), will show the
user their name and provide a logout button. Duplicate the index.html file and rename it to logout.html.
Without removing the JavaScript references, replace the <body> contents with the snippet of Listing 7-15.
Update the config variable in logout.html to use the logout view (Listing 7-16).

Listing 7-15.  Welcome and Logout Template (www/logout.html)

<div class="container">

 <div class="jumbotron">
 <h1>
 Hello
 </h1>
 <p>
 You are logged in!
 </p>
 <p>
 <a href="#" class="btn btn-primary btn-lg btn-block"
 role="button" id="logout-button">
 <i class="glyphicon glyphicon-log-out pull-right"></i>
 Logout

 </p>
 </div>
</div>

Listing 7-16.  Logout View Configuration (www/logout.html)

<script>
 var config = {
 view: 'logout'
 };
 app.initialize();
</script>

When the user is directed to logout.html, the initialize function of app.logout will be called. Use
the current() method of the Parse.User object and get their first name to display it on the page. The
current method retrieves the currently logged in Parse.User.

Create a new file called www/js/logout.js and populate it with the code of Listing 7-17. The logout.html
view serves as an example of how you can get information from a user who is currently logged into your
application. Using the Parse.User.logOut method lets you end the current user session. You redirect the
user to the home page after logging out.

Chapter 7 ■ User Registration with Parse

133

Listing 7-17.  Logout Code (www/js/views/logout.js)

app.logout = {
 initialize: function() {
 $('#username').text(Parse.User.current().get('first_name'));
 $('#logout-button').on('click', function(event) {
 event.preventDefault();
 Parse.User.logOut();
 window.location.href = 'index.html';
 });
 }
};

■■ Tip T he Parse user session is stored in the local storage of the application. It is valid until the user actively
logs out.

Figure 7-5 shows the welcome page.

Figure 7-5.  An example of the welcome page with a logged-in user named Eva

Chapter 7 ■ User Registration with Parse

134

Protecting Views for Logged-in Users
Now, let’s use what you just learned about logging users in and out. By detecting a user’s session status, you
will be able to direct them in and out of views that you deem public or private.

Besides protecting private data, you can use session data to provide different experiences for users who
are logged in versus out. In your application, if the user session is invalid or expired, you redirect them to the
login view to continue.

Each feature you have created so far requires a new HTML file. You will be adding the main navigation
for users who are logged in. More than one page will require this navigation.

This means that each of your views requires the same HTML snippet for the navigation. If there were
10 views in this application, maintenance would be a pain. Happily, there is a better way.

You will be using templates to populate data dynamically. You learned about the Handlebars library in
Chapter 4. Now it’s time to see it in action.

By adding a new function to the app.core namespace, you will be able to render a template with
dynamic script data. This allows you to create one HTML file that represents the main navigation. The logout
button will fit perfectly in the nav menu. Once the initialize function of the view is called, you will load the
navigation bar template when you call the new render function, which you’ll be writing later.

Figure 7-6 illustrates how your main new main navigation will look when added to the application.
You’ll be leveraging styles and functionality that Twitter Bootstrap provides.

Figure 7-6.  The welcome view with dynamically loaded navigation

http://dx.doi.org/10.1007/9781484202364_4

Chapter 7 ■ User Registration with Parse

135

There are two main states for this application. Each state is represented by the session state of the
current user. Using the config property that is defined in each HTML file, you will add a new property named
public_access, which can only be true or false. If a page is set as private (public_access = false), then
only users who are logged in will be able to see it. To make a views available to everyone (logged in or out), set
public_access = true.

Configuring Access Control
In the following exercise, you will learn how to configure your views to be public or private. You will extend
the app.core namespace with new functions, which will be used to control access to your views.

You want to collect all functions related to the Parse.User object in one class. In this example, you will
name this class MyParseUser. You’ll also add some preliminary steps for controlling the experience for the
user based on their current session status.

Create a new file called MyParseUser.js and place it in the folder www/js/models. You’ll use the file to
extend the Parse.User class, as shown in Listing 7-18. At the beginning of development this file will be more
or less empty. You’ll add functionality over time as you add features to this application.

Also, add the file www/js/models/MyParseUser.js to your JavaScript file loader config in core.js.
The models need to be loaded after the Parse SDK. To ensure this behavior, create a new key named models
in the script configuration object (Listing 7-19).

Adjust the LAB loader script in app.core.initialize() to load all models after the common scripts are
loaded (Listing 7-20).

Listing 7-18.  Custom Extension of the Parse.User Class (www/js/models/MyParseUser.js)

window.MyParseUser = Parse.User.extend({
 // Instance Methods
 }, {
 // Class Methods
});

Listing 7-19.  Adjusted Script Loader for Custom Models

var scripts = {
 common: [],
 models: [
 // models
 './js/models/MyParseUser.js'
],
 web: []
};

Listing 7-20.  Adjusted Script Loader for Custom Models

$LAB.script(scripts.common).wait()
 .script(scripts.models).wait(app.core.afterLoad);

Now you want to define access rules for each view. For each HTML file, add the property public_access
to the config variable. For views that are public, set the value to true. For views requiring a login, set
public_access to false. Your updated configuration object may look like Listing 7-21.

Chapter 7 ■ User Registration with Parse

136

Listing 7-21.  View Configuration Example

var config = {
 view: 'login',
 public_access: true
};

Update the views index.html, registration.html, and login.html to use the value true for
public_access. Use the value false for the view logout.html.

Next, add the business logic to your application to respond to these new properties. As the access
verification needs to be executed every time a user is accessing a view, you’ll add this code part to your
application core in the app.core object.

You will be adding two new functions named accessControl and globalEvents. Use accessControl
to handle the access rules, and globalEvents to collect event handlers for cases like a global logout button.
Add both functions calls in the afterLoad() function, as shown in Listing 7-22.

Listing 7-22.  Updated afterLoad() Function (www/js/core.js)

app.core = {
 initialize: function() {
 // ...
 },
 afterLoad: function() {
 // ...
 // Protect Access
 app.core.accessControl();
 
 // Init Global Events
 app.core.globalEvents();
 
 // Initialize View
 if (config.view in app) {
 app[config.view].initialize();
 }
 },
 accessControl: function() {},
 globalEvents: function() {}
}

Finally, you’ll add some access control rules. If a user is logged in, they will be redirected to the
welcome view for logged-in users. In the current state of your application, logout.html is the welcome view.
At a later state, you’ll replace this view with another, such as a list of conversations.

If a user is logged out and is trying to access a private view, redirect them to the login view. Populate the
accessControl() function with the code of Listing 7-23.

Listing 7-23.  Updated accessControl() Function (www/js/core.js)

accessControl: function(){
 // user is logged in and accessing a public view
 if (MyParseUser.current() && config.public_access) {
 window.location.href = 'logout.html';
 return;
 }
 

Chapter 7 ■ User Registration with Parse

137

 // user is not logged in and trying to access protected view
 if (!MyParseUser.current() && !config.public_access) {
 window.location.href = 'login.html';
 return;
 }
}

In this exercise you prepared a new Parse model that you’ll use later. You extended the app.core
namespace for access control management for forwarding users who aren’t logged in.

There will be some new views coming up that will need to render dynamic content. In order to do this,
you will add a new application script dependency to the scripts variable in core.js for Handlebars. Once
this is set up, you will create a template for the main navigation.

Navigation Bar for Logged-in Users
You will use the Twitter Bootstrap navigation CSS styles. The link examples you’re using are nonfunctional
and are only used to demonstrate the structure. You’ll replace them later with valid links. Furthermore, you’ll
add the variable {{title}}, which will be replaced by the current view’s title.

Create a new file named www/navbar.html and populate it with the snippet shown in Listing 7-24. In
this example, you use a Bootstrap component navbar. You can read more about the navigation bar in the
Bootstrap documentation at http://getbootstrap.com/components/#navbar.

In the following step, extend the accessControl function by adding the navigation template rendering
shown in Listing 7-25. Using jQuery’s ajax method, load the navbar.html file. Adding the option
async: false will make the script load synchronously, which means that the script execution will pause
until the file is loaded. In a web application, you wouldn’t use this approach because that environment
depends on a server providing this file. In PhoneGap, the file is loaded from the application’s local file system.
To guarantee that the file is loaded instantly, use the synchronous load method demonstrated in Listing 7-25.

Once it’s done loading, use Handlebars to compile the template and dynamically prepend its contents
to the body.

Listing 7-24.  Navigation Bar Template (www/navbar.html)

<nav class="navbar navbar-default navbar-fixed-top" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed"
 data-toggle="collapse" data-target="#navigation">

 </button>
 {{title}}
 </div>
 <div class="collapse navbar-collapse" id="navigation">
 <ul class="nav navbar-nav">
 Example 1
 Example 2

http://getbootstrap.com/components/#navbar

Chapter 7 ■ User Registration with Parse

138

 <i class="glyphicon glyphicon-log-out pull-right"></i>
 Logout

 </div>
 </div>
</nav>

Listing 7-25.  Template Loader and Render Methods (www/js/core.js)

accessControl: function() {
 // user is logged in and accessing a public view
 if (MyParseUser.current() && config.public_access) {
 window.location.href = 'logout.html';
 return;
 }
 // user is not logged in and trying to access protected view
 if (!MyParseUser.current() && !config.public_access) {
 window.location.href = 'login.html';
 return;
 }
 // Do not add navbar for logged out users
 if (!MyParseUser.current()) {
 return;
 }
 // Add Navbar
 $.ajax({
 url: "navbar.html",
 async: false
 }).done(function(source) {
 var template = Handlebars.compile(source);
 $('body').prepend(template(config)).addClass('has-navbar');
 });
}

Nothing is perfect. Preview the snippet you just added. You are adding a class to the body named
has-navbar. This is how you can customize the appearance of views that use the navigation template.
By default, the navbar is 50px high. Open the www/css/style.css and add the class body.has-navbar, as
proposed in Listing 7-26.

Listing 7-26.  Navbar CSS Rule (www/css/style.css)

body.has-navbar {
 padding-top: 70px;
}

Chapter 7 ■ User Registration with Parse

139

Navigation Bar Title
Now let’s add a title to the view configuration. In the Handlebars template navbar.html you added the
variable {{title}} as a placeholder for the view title. Each view should have an individual title. For this
purpose, add another property named title to the global config variable. Since there won’t be a navigation
bar for public views, you only need to set a value for all views requiring a login.

As an example, edit your logout view and add the title “Welcome” (see Listing 7-27). In the logout view,
when the navigation bar loads, the {{title}} will be populated using the config.title value.

Listing 7-27.  Navbar CSS Rule (www/logout.html)

var config = {
 view: 'logout',
 public_access: false,
 title: 'Welcome'
};

You created a new HTML file that represents the navigation bar. In the accessControl function, you
added some new code to render the navigation bar if the user was in an active Parse session. After adding
some custom CSS, you populated the {{title}} text using a property from the config variable.

Common Render Method
You used Handlebars to dynamically load the navigation bar. There will be other instances where you need
to load dynamic content. For this reason, you’ll add a new utility method to the core namespace so it can be
used throughout the application. Open core.js and add the method shown in Listing 7-28.

This simple yet powerful extension of the core namespace provides you the ability to render a dynamic
template in one line. See Listing 7-29 for an example of the method.

Listing 7-28.  Handlebars Render Method (www/js/core.js)

//...
},
render: function(target, template_name, data) {
 var source = $("#" + template_name + "-template").html();
 var template = Handlebars.compile(source);
 $(target).html(template(data));
 },
// ...

In this case, you are populating a DOM element with an id of content-container. The name of your
template is “content,” which has a reserved section where the {{body}} is populated by the data object
passed into it. You will use the render method later in this chapter. Listing 7-29 shows how to use the
method.

Listing 7-29.  Render Method Example

app.core.render('#content-container', 'content', {
 body: 'Content loaded by an external template!'
});

Chapter 7 ■ User Registration with Parse

140

Resetting a Password Using Parse
Now that users can register, and log in and out of this application, there is a crucial feature that you need to
add: the ability to reset a user’s password.

We have all been there before. You’re asked to enter your password and your mind goes blank! Where
is the Forgot Password link?! People these days need to store many passwords in their minds, and it’s easy
to forget one or two. For this reason, you will add a feature that allows them to reset their password for this
application.

As with other new features added to this application, you need to add views associated with users
resetting their passwords. The first will be an update to the login page; you’ll add a link that will go to a page
that allows them to reset their password. Next, you’ll add the view that will allow users to do so by entering
the email address associated with their account. Figure 7-7 illustrates these updates.

The Forgot Password Template
Now that you have a few more views for the application, you can populate some links on the login page.
You’ll use the Twitter Bootstrap icons to give the user interface some flare.

Figure 7-7.  The updated version of the login view and the new forgot password view

Chapter 7 ■ User Registration with Parse

141

Update the login view by adding a Forgot Password link to www/login.html (Listing 7-30). Next, create a
new HTML template named www/reset.html. You can duplicate an existing view as a starting point. Without
removing the script tags, populate the <body> tag with a form providing an input field for the user’s email
address and a button to submit the request (Listing 7-31).

Listing 7-30.  Forgot Password Link (www/login.html)

<p>

 <i class="glyphicon glyphicon-question-sign pull-right"></i>
 Forgot Password

</p>

Listing 7-31.  Forgot Password Template (www/reset.html)

<div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">Forgot Password</h3>
 </div>
 <div class="panel-body">
 <form role="form">
 <p>
 <input type="email" name="email" class="form-control input-lg"
 placeholder="Email Address" autofocus>
 </p>
 <p>
 <button class="btn btn-lg btn-primary btn-block" type="submit"
 id="login-submit">
 <i class="glyphicon glyphicon-envelope pull-right"></i>
 Request Password
 </button>
 </p>
 <p>

 <i class="glyphicon glyphicon-chevron-left"></i>
 Back

 </p>
 </form>
 </div>
</div>

As with the rest of your views, you need to configure the config.view property to reset (Listing 7-32).
Now that the view is set up, you want to add a namespace to the app that encapsulates the logic for these
features. Create a new JavaScript file called www/js/views/reset.js and populate it with the code from
Listing 7-33.

After creating and configuring this new view, attach an event handler to the form. When the forgot
password form is submitted, the app.reset.submit function will be called. You will populate this function in
the following section.

Chapter 7 ■ User Registration with Parse

142

Listing 7-32.  Forgot Password View Configuration (www/login.html)

<script>
 var config = {
 view: 'reset',
 public_access: true
 };
 app.initialize();
</script>

Listing 7-33.  Forgot Password Handler (www/js/views/reset.js)

app.reset = {
 initialize: function() {
 $('form').on('submit', function(event) {
 event.preventDefault();
 app.reset.submit();
 });
 },
 submit: function() {}
};

Parse’s Forgot Password Feature
Parse does it again. The Parse.User object has a function called... wait for it... requestPasswordReset()!
It saves you hours of work by supplying a simple way to safely and securely reset a user’s password.

Once the forget password form is submitted, the email address is sent to Parse for processing. If the
address was successfully found, Parse will send an email to that address along with a unique URL that allows
the user to type in a new password. When the user submits their new password, their account is updated!

The requestPasswordReset() function takes two parameters. The first is the email you want to look up,
and the next (like most Parse objects) is an object with a success and error method.

In reset.js, update the submit function with the code of Listing 7-34.

Listing 7-34.  Forgot Password Handler (www/js/views/reset.js)

submit: function() {
 $('button, input').attr('disabled', 'disabled');
 var email = $('input[name=email]').val();
 Parse.User.requestPasswordReset(email, {
 success: function() {
 window.location.href = 'reset-success.html';
 },
 error: function(error) {
 alert("Error: " + error.message);
 $('button, input').removeAttr('disabled');
 }
 });
 }
}

After successfully executing the password reset procedure in the cloud, the callback function should
show a view to inform the user about the next actions they must take. In this example, you are doing this by
redirecting the user to the view reset-success.html.

Chapter 7 ■ User Registration with Parse

143

Since this view doesn’t exist yet, it’s time to create this file. Name the new file reset-success.html and
transfer the basic HTML structure, as you have done in the past, from existing examples. Populate the body
with a success message, as shown in Listing 7-35.

Listing 7-35.  Forgot Password Success Message Template (www/reset-success.html)

<div class="container">

 <div class="jumbotron">
 <h1>Forgot Password</h1>
 <p>
 Check your Emails!
 </p>
 <p>Login >></p>
 </div>
</div>

Figure 7-8 shows the result.

Figure 7-8.  The forgot password view of the application when a user is logged out

Chapter 7 ■ User Registration with Parse

144

Testing the New Feature!
After submitting the Forgot Password form, Parse will validate the request. If the email address doesn’t exist,
the application will present an error message using an alert() message. Otherwise, you will receive an
email from Parse within a few seconds or minutes (times may vary depending on your email provider and if
the Parse server status is operational).

■■ Tip A re your requests to Parse slower than usual? Check the server status at https://status.parse.com/
to see a log of past and possible service interruptions.

The email will contain a message with reset instructions and a custom link, which will lead the user to
a form where they will be able to change their password. The password form is a micro web site hosted by
Parse. There is no need to set up anything and it works right out of the box! Parse offers the opportunity for
developers to customize the reset form, which we will explain later in this chapter.

As mentioned previously, the form will be an external web site, not a view in the application, so it will
be displayed using the default web browser on the user’s device. Having this open in a web browser is a great
thing. Although it is possible to create an in-application password reset view, it would unnecessarily increase
the complexity of the build and decrease the stability of the feature. The user is already in a tough spot, so
why make things more complicated?

After submitting the Forgot Password form, the user can use their new password instantly. If a new
password request is sent before bringing a previous request to an end, the previous request will expire in
favor of the most recent one.

For your application, when a user clicks the reset password link from their email, they will be redirected
to the reset password view that you created in Listing 7-31. Figure 7-9 depicts the process in two steps.

https://status.parse.com/

Chapter 7 ■ User Registration with Parse

145

Registration and Login via Facebook
We covered the Facebook API extensively in Chapter 5. Now we’ll show you how to register a new user to
this application with Parse and Facebook together. Signing up a new user with Facebook is an optional and
powerful feature that you can add to your next app.

Facebook offers developers the ability to extend their applications by using Facebook’s SDK. This is
a great feature since it provides most users who sign up for a new service, like the Messenger App we’re
building, the convenience of creating an account for your application using their existing Facebook
credentials.

The exercises you have completed so far in this chapter have given you what you need in order to
register a new user to the application. Using the username and password a user provided during registration,
you were able to log users in and out of the application while providing minimal security configurations.

This section will focus on the same task, except that this time you’ll be using a user’s Facebook account
to create a new user for the Messenger App.

Figure 7-9.  View of the email that Parse sends to a user who requests a password change. On the right is the
reset password view, provided by Parse

http://dx.doi.org/10.1007/9781484202364_5

Chapter 7 ■ User Registration with Parse

146

How Parse Integrates with Facebook
One of the reasons we choose Parse is because of their incredible API. So far, we’ve been registering users
using the Parse.User object. This also comes with features like password reset and session management.
Parse has another trick up its sleeve, Parse.FacebookUtils.

The goal for this chapter is to not only utilize a user’s Facebook credentials to log in and sign up, but
to use a native Facebook login session to do it. This means that if someone has the Facebook application
installed on their phone (and they’re logged in), they can log in or register an account with the application.

If the user is not using the Facebook app, they can still log in with Facebook using the web view. Either
way, they can still use your application with their Facebook account. Going with the assumption that they do
have it installed, using the native app feels quicker.

How to Log In with Facebook
To log in to Parse via Facebook, use Parse.FacebookUtils.logIn(). This function integrates with the
Facebook JavaScript SDK, calls the FB.login() function, then turns the Facebook session into a Parse session
(and User account if one doesn’t exist!).

You are facing one challenge here: this route is solely based on JavaScript. And since you are not
building a web application, this just doesn’t work. Instead, you will follow a different approach, which will
merge native and JavaScript elements into a seamless user experience.

Usually in a web app you load the Facebook JavaScript SDK and initialize it via Parse.FacebookUtils.init().
This function will initialize the Facebook SDK and connect to the Parse JavaScript SDK. At a later point you
call the logIn() function and pass a Facebook permission string along with some other options, like so:

Parse.FacebookUtils.logIn(permissions, options)

You can and will still use this approach for your application to make it work in a web browser. This way
you’ll be able to test and debug the Parse-Facebook login outside of PhoneGap.

For the native version of your application you’ll do things differently. You’ll use the PhoneGap Facebook
plug-in, which was introduced in Chapter 5, to offer a native login experience to the user. After logging in,
the plug-in will provide a Facebook session object. This session object contains information like an access
token and Facebook user ID.

You will convert this session information into a Parse-compatible format and use it as authentication
data for the Parse.FacebookUtils.logIn() function. We will refer to this Parse-compatible authentication
data as FacebookAuthData.

Long story short: instead of asking for a login using a Facebook permissions string, you will use the
FacebookAuthData object when calling the logIn() function, like so:

Parse.FacebookUtils.logIn(FacebookAuthData, options)

This will log in the user to Parse based on their Facebook session information. This is the same as if
you followed the web approach using the Facebook JavaScript SDK. If you have any troubles related to the
Facebook application and plug-in setup, take a look at Chapter 5, where we explained the Facebook API
ecosystem in detail.

The sample code in this section is written for the Messenger App that you’ve been building. This code
will work in an isolated environment, too. Every application you write that borrows from pre-existing code
will need some tailoring (project structure, custom functionality, etc.).

http://dx.doi.org/10.1007/9781484202364_5
http://dx.doi.org/10.1007/9781484202364_5

Chapter 7 ■ User Registration with Parse

147

CHECKLIST: BEFORE YOU START

The following is a checklist that is required for you to continue the rest of this chapter. After completing
this short list of tasks, you will learn how to connect users to an application with their Facebook account.

1.	 Sign in to Facebook and visit the developer website at
https://developers.facebook.com/apps.

2.	 Create a new Facebook Application and fill out the basic application information.

3.	 Add the platform web for testing your app in the browser. Set the hostname of your
web server (e.g. http://localhost/).

4.	 Add your mobile platform. If you are using Android, provide the Package Name;
for iOS, fill out the Bundle ID. Both values should be identical to your PhoneGap
application ID, which you can set in the file called www/config.xml. In our case,
we used com.fernandezalber.themessenger.

The project configurations you use locally will need to match the values you set in the Facebook
application settings page (Figure 7-10). There are other options in this section that you can explore;
however, all you need at this point are the items listed above.

Figure 7-10.  Facebook Application settings

https://developers.facebook.com/apps

Chapter 7 ■ User Registration with Parse

148

Facebook JavaScript SDK Setup
To be able to test the FB login with a web browser, you need to use the Facebook Web SDK. This SDK should
not be loaded in the native app, so this next configuration entry (Listing 7-36) is just for the web app.

The Parse JavaScript SDK provides an easy way to integrate Facebook with your application. We will use
version 2.3 of the Facebook JavaScript SDK. Download the Facebook JavaScript SDK at the Facebook Quick
Start Guide to get the required JavaScript file (https://developers.facebook.com/docs/javascript/
quickstart/v2.3) or directly download it at http://connect.facebook.net/en_US/all.js.

Your current JavaScript loader defined in core.js has a property named common. This is where you’re
keeping application scripts. Create a new property named web and add the Facebook library, as shown in
Listing 7-36. This section of the scripts configuration object will be used for files that should only be loaded
in the web application for testing, but not in the native version of your application!

Listing 7-36.  Updated Scripts Configuration in www/js/core.js

common: [
 // ...
],
web: [
 './js/vendor/facebook/all.js'
]

■■ Tip  You cannot use the Facebook iOS or Android SDK in your web environment. To still be able to test
and debug the application in the web browser, use the corresponding Web SDKs instead. In this example, you
add the Facebook SDK to the application using your custom script loader. Alternatively, you may load the SDK
directly via HTTP from the original URL using a classic script tag.

Logging In to Parse via Facebook
Deviating from the Facebook standard, you will not use the actual Facebook JavaScript SDK but instead the
Parse SDK to initialize Facebook. The Parse version of this procedure is invoked via Parse.FacebookUtils.
init(). Execute the code in Listing 7-37 right after Parse.initialize() in www/js/core.js.

Listing 7-37.  Initializing the Facebook JavaScript SDK Using Parse

if (!window.cordova) {
 window.fbAsyncInit = function() {
 Parse.FacebookUtils.init({
 appId: '{facebook-app-id}', // Facebook App ID
 cookie: true, // enable cookies to allow Parse to access the session
 version: '1.0'
 });
 };
}

https://developers.facebook.com/docs/javascript/quickstart/v2.3
https://developers.facebook.com/docs/javascript/quickstart/v2.3
http://connect.facebook.net/en_US/all.js

Chapter 7 ■ User Registration with Parse

149

Facebook PhoneGap Plug-in
You’ll be using the Facebook iOS or Android SDK for logging the user in to Facebook. For this purpose, use
the Facebook Connect plug-in created by Wizcorp (https://github.com/Wizcorp/phonegap-facebook-
plugin). Add the plug-in as shown in Listing 7-38.

Listing 7-38.  Facebook PhoneGap Plug-in Installation

phonegap -d plugin add https://github.com/Wizcorp/phonegap-facebook-plugin.git --variable
APP_ID="{facebook-app-id}" --variable APP_NAME="{facebook-display-name}"

Replace {facebook-app-id} with the ID of your Facebook Application, and use the Display Name
of your Facebook Application for {facebook-display-name}. You can find both values in your Facebook
Application settings form (see Figure 7-12). The value for APP_NAME must be the same as your Facebook
Display Name, otherwise the Facebook Login won’t work. Note that the value APP_NAME may be different
from your PhoneGap application name defined in config.xml.

In this case, the Display Name is TheMessenger, hence the value for APP_NAME must be TheMessenger.
After adding the PhoneGap plug-in, you need to rebuild the platform via cordova build ios or cordova
build android.

Your settings page should look similar to Figure 7-11.

Figure 7-11.  The Facebook Application settings with Display Name highlighted

Logging with Facebook View
In the next step, you’ll add a Login with Facebook button to the login view (www/login/html). Before this,
you should apply a minor adjustment to the existing form. Currently there is an autofocus attribute assigned
to the email address input field. Remove this attribute. The reason you do this is because once the page
loads, autofocus will open the users keyboard and hide the Facebook login button.

Add the Login with Facebook button to your login form as shown in Listing 7-39.

Listing 7-39.  The Login with Facebook Button (login.html)

<p>

 <i class="glyphicon glyphicon-new-window pull-right"></i>
 Log in with Facebook
</p>

https://github.com/Wizcorp/phonegap-facebook-plugin
https://github.com/Wizcorp/phonegap-facebook-plugin
https://github.com/Wizcorp/phonegap-facebook-plugin.git

Chapter 7 ■ User Registration with Parse

150

You add the icon glyphicon-new-window to indicate that the Facebook login dialog (Figure 7-12) will be
opened a new window. The dialog will either be provided by the native Facebook Application (if installed) or
as a fallback to the Facebook mobile web site.

Next, you’ll add an event handler to the login button, calling the function app.login.facebookLogin(),
which you will build in the following steps (Listing 7-40).

Listing 7-40.  Login Button Handler (www/js/views/login.js)

$('#facebook-login').on('click', function(event) {
 event.preventDefault();
 app.login.facebookLogin();
});

Figure 7-12.  The updated view of the login page with the added Facebook login button

Chapter 7 ■ User Registration with Parse

151

Logging In to Facebook
Parts of this application can be used without PhoneGap. Here, you’ll add a flag to determine if the user is
using a native or web version. You’ll check if the cordova namespace is on the window object. If it is, that
means it’s a native app.

In the web version, the method FB.login is used. For the native application, you will call the method
facebookConnectPlugin.login(), which will call the corresponding login script in the Facebook iOS or
Android SDK. The first parameter of the facebookConnectPlugin.login method is the variable scope,
which is an array of Facebook permissions. The callback function will be executed after the login request is
either accepted or rejected.

Be careful! The Facebook Connect plug-in uses the arguments in an inversed order (Listing 7-41). Next,
the permissions scope is passed using an array, instead of a comma-separated string as in the Facebook
JavaScript SDK.

Both SDKs, the web and the native (respectively, iOS and Android), provide the same response format.
You will use the same callback function for both login methods. Name this function parseFacebookLogin();
we’ll come back to it in the next section.

Listing 7-41.  Function facebookLogin in www/js/views/login.js

facebookLogin: function() {
 var scope = ['email'];
 if (!window.cordova) {
 return FB.login(app.login.parseFacebookLogin, { scope: scope.join(',') });
 }
 facebookConnectPlugin.login(scope, app.login.parseFacebookLogin);
}

Using Facebook Authentication Data for Login
The method parseFacebookLogin() will receive the FB login response, which may look like Listing 7-42.

Listing 7-42.  Facebook Graph API: Login Response

{
 "authResponse": {
 "accessToken": "{accessToken}",
 "userID": "10152483215327935",
 "expiresIn": 4163,
 "signedRequest": "{signedRequest}"
 },
 "status": "connected"
}

As previously stated, the Facebook JavaScript SDK, iOS, and Android SDK use the same format for the
response. Now you need to transform the response into a new structure. It will contain the Facebook user ID,
access token, and when the token will expire.

Parse expects the expiration date to be provided in the ISO format (ISO 8601 Extended Format),
which can be constructed as YYYY-MM-DDTHH:mm:ss.sssZ. The time zone is always UTC, as denoted by the
suffix “Z”. Listing 7-43 shows an example.

Chapter 7 ■ User Registration with Parse

152

Listing 7-43.  Parse FacebookAuth Data Format

{
 "id": "10152483215327935",
 "access_token": "{access_token}",
 "expiration_date": "2014-09-03T16:59:59.999Z"
}

To create this date, you use the variable expireIn to store the current date and time (which is provided
in seconds) to the current date and create the ISO string using the function toISOString(). You then pass
this newly created authentication data to the Parse.FacebookUtils.logIn() function (see Listing 7-44).

Listing 7-44.  Convert Facebook API Response into Parse-Compatible Format

parseFacebookLogin: function(response) {
 var expiresIn = new Date();
 expiresIn.setSeconds(expiresIn.getSeconds() + response.authResponse.expiresIn);
 var facebookAuthData = {
 "id": response.authResponse.userID,
 "access_token": response.authResponse.accessToken,
 "expiration_date": expiresIn.toISOString()
 };
 Parse.FacebookUtils.logIn(facebookAuthData).then(app.login.updateUserData);
}

As a callback, you execute the function app.login.updateUserData().

■■ Tip T here might be a case in which a user is still logged in to Facebook but not to Parse. You may use the
method facebookConnectPlugin.getLoginStatus() together with Parse.User.current() to identify this
state and offer the user a different Facebook login button (for example, “Welcome Back [username], continue
with Facebook”).

Validation Recommended

In this example, you assume that the user will accept the Facebook login request. This is sufficient enough
for a prototype, but in a real-world case you would verify your assumption. You can do this by checking for
the key authRepsonse in the response object, as shown in Listing 7-45.

Listing 7-45.  Validate Login Response

if (response.authResponse) {
 // Continue script execution
} else {
 alert("User cancelled login or did not fully authorize.");
}

If you don’t get a value for authResponse, the user either canceled the login or did not fully authorize.

Chapter 7 ■ User Registration with Parse

153

Updating User Profile Based on Facebook Graph API Data
In comparison to the registration via email and password, the Facebook version of your registration feature
does not require the user to fill out the form that asks for their first and last name. This is not an issue, but is
certainly very convenient for the user. You will instead get this data via the Facebook Graph API by calling
the API endpoint /me.

“Me” is an alias for the current user’s Facebook user ID. You can adjust the fields that are being queried
using the parameter fields. In your case, you want to know the user’s email address, and both first and
last name. You’ll also grab the user’s profile picture. The full API path is provided in Listing 7-46. An API
response could look like the example in Listing 7-47.

Listing 7-46.  Full Path of the API Endpoint

/me?fields=email,first_name,last_name,picture

Listing 7-47.  API Response Example

{
 "email": "name@domain.com",
 "first_name": "Stephan",
 "last_name": "Alber",
 "picture": {
 "data": {
 "is_silhouette": false,
 "url": "https://fbcdn-profile-a.akamaihd.net/..."
 }
 },
 "id": "123456789"
}

You integrate the user data from Facebook and save it to Parse using a new method named
updateUserData() as part of the app.login object. For PhoneGap requests, the PhoneGap Facebook plug-
in method facebookConnectPlugin.api() is used. For web requests, the application will fall back to the
Facebook JavaScript SDK and call the method FB.api().

As a callback of the API request, you apply the response values to the Parse.User object User. This is
passed over from the Parse.FacebookUtils.logIn() to the updateUserData() function. Afterwards, you
save the obtained information to the Parse database (Listing 7-48).

Listing 7-48.  Updating User Data via Facebook API Data (www/js/views/login.js)

updateUserData: function(User) {
 
 var requestPath = '/me?fields=email,first_name,last_name,picture';
 
 var callback = function(response) {
 User.set('email', response.email);
 User.set('first_name', response.first_name);
 User.set('last_name', response.last_name);
 User.set('picture', response.picture.data.url);
 User.save().then(function() {
 window.location.href = 'logout.html';
 });
 };
 

https://fbcdn-profile-a.akamaihd.net/

Chapter 7 ■ User Registration with Parse

154

 if (!window.cordova) {
 FB.api(requestPath, callback);
 } else {
 facebookConnectPlugin.api(requestPath, null, callback, alert);
 }
 
}

Once that’s done, you redirect the user to the home view of the application. Right now this is the logout
view. At a later time, you may want to change this to the contacts or conversations view, which you’ll build in
the following chapters.

Avoiding Repeated Updates
If you do not want to update user data on every login, but only the very first time, you may use the function
User.existed(). It is used to determine whether to execute this script part or not (Listing 7-49).

Listing 7-49.  Test Whether User Existed Before

updateUserData: function(User) {
 if (User.existed()) {
 window.location.href = 'logout.html';
 return;
 }
}

■■ Tip T o log out a Facebook user, you still use the Parse.User.logOut() method. Do not use the
facebookConnectPlugin.logout(). This might cause the Parse.User and Facebook session to fall out of
synchronization.

You add new methods to the app.login namespace. Listing 7-50 presents the code in full.

Listing 7-50.  Full Code for js/views/login.js

app.login = {
 
 initialize: function() {
 
 $('form').on('submit', function(event) {
 event.preventDefault();
 app.login.submit();
 });
 
 $('#facebook-login').on('click', function(event) {
 event.preventDefault();
 app.login.facebookLogin();
 });
 
 },
 

Chapter 7 ■ User Registration with Parse

155

 submit: function() {
 
 $('button, input').attr('disabled', 'disabled');
 
 var email = $('input[name=email]').val();
 var password = $('input[name=password]').val();
 
 Parse.User.logIn(email, password, {
 success: function(user) {
 window.location.href = 'contacts.html';
 },
 error: function(user, error) {
 app.core.message(error.message);
 $('button, input').removeAttr('disabled');
 }
 });
 
 },
 facebookLogin: function() {
 
 var scope = ['email'];
 
 if (!window.cordova) {
 return FB.login(app.login.parseFacebookLogin, scope.join(','));
 }
 
 console.log(facebookConnectPlugin);
  
 facebookConnectPlugin.login(scope, app.login.parseFacebookLogin);
 
 },
 
 parseFacebookLogin: function(response) {
 
 var expiresIn = new Date();
 expiresIn.setSeconds(expiresIn.getSeconds() + response.authResponse.expiresIn);
 
 var facebookAuthData = {
 "id": response.authResponse.userID,
 "access_token": response.authResponse.accessToken,
 "expiration_date": expiresIn.toISOString()
 };
 
 Parse.FacebookUtils.logIn(facebookAuthData).then(app.login.updateUserData);
 
 },
 

Chapter 7 ■ User Registration with Parse

156

 updateUserData: function() {
 
 var requestPath = '/me?fields=id,email,first_name,last_name,picture';
 
 var callback = function(response) {
 var User = Parse.User.current();
 User.set('email', response.email);
 User.set('first_name', response.first_name);
 User.set('last_name', response.last_name);
 User.set('picture', response.picture.data.url);
 User.save().then(function() {
 window.location.href = 'contacts.html';
 });
 };
 
 if (!window.cordova) {
 FB.api(requestPath, callback);
 } else {
 facebookConnectPlugin.api(requestPath, null, callback, alert);
 }
 
 }
 
};

Logging In with Facebook Screen
After building out this complex and yet very important feature, let’s test it! The PhoneGap plug-in will
use Facebook for iOS or Android application, if installed. Otherwise, it will fall back to the web login view
(Figure 7-13).

Chapter 7 ■ User Registration with Parse

157

Parse + Facebook = Simplicity
This is great, isn’t it?! Using a simple data transform you were able to build a bridge between the native
Facebook SDK and the Parse JavaScript SDK. As Leonardo da Vinci said, “Simplicity is the ultimate
sophistication.” The user will be able to register for your application via two simple taps.

Furthermore, after signing in via Facebook, you are able to use all of Facebook functionality we
described in Chapter 5. In the next section, we will create a list of the user accounts created during these
exercises.

Listing Users
As a preparation for Chapter 8, which covers the topic of messages, let’s build a list of users in your
application. You will use this list to select the user you want to write a message to. In a real-world example,
you would probably start with an empty contacts list and add contacts via a request-accept system. For
learning purposes, you’ll skip this part and just make all the users that sign up for the application your
contacts. However, you could extend this part of the application by adding a feature like adding and
removing contacts. Figure 7-14 illustrates how the contacts list appears in this application.

Figure 7-13.  Log in with Facebook dialog: the native version (left) versus the web view (right)

http://dx.doi.org/10.1007/9781484202364_5
http://dx.doi.org/10.1007/9781484202364_8

Chapter 7 ■ User Registration with Parse

158

Preparation
Before coming to the actual contacts view, you will add a navigation item to link to the contacts view and
create a helper to display a user profile picture.

Contacts Navigation Item
To make the contacts list accessible, you add a corresponding link in the navigation bar. As a little eye-catcher,
you add a user icon to the navigation item. For the navigation bar, replace the existing with the code in
Listing 7-51.

Listing 7-51.  Contacts Link (www/navbar.html)

<ul class="nav navbar-nav">

 <i class="glyphicon glyphicon-user pull-right"></i>
 Contacts

Figure 7-14.  A list of users

Chapter 7 ■ User Registration with Parse

159

 <i class="glyphicon glyphicon-log-out pull-right"></i>
 Logout

Displaying a User Profile Picture
“You eat with your eyes (first)!” While you’re building the next view, we also want to introduce ways to easily
improve the visual appearance of your views. In this example, it would be nice to display a picture right next
to each user, instead of just showing the user’s first and last name.

Actually, you already prepared this feature in the section “Registration and Login via Facebook”. You
added a picture for each account using the Facebook Graph API. Now you will use this value in the contacts
template and show a placeholder image for users who don’t have a picture.

While doing this, you avoid cluttering templates with unattractive if and else constructions. Instead,
you make use of the instance methods system offered by the Parse.Object class. In this case, you will add a
new instance method to the Parse.User class (see Listing 7-52).

To make use of all the small algorithms you’ll be adding to the Parse.User, you previously created the
file MyParseUser.js in www/js/models. In this example, you add the method getPicture to the MyParseUser
class. The method will check the field picture for a value and return a URL to the picture, if there is one. If
not, you return a placeholder picture using the service http://placehold.it/.

Listing 7-52.  Custom Parse.User Class (www/js/models/MyParseUser.js)

window.MyParseUser = Parse.User.extend({
 getPicture: function() {
 return this.get('picture') ?
 this.get('picture') : 'http://placehold.it/50x50';
 }
});

As mentioned before, doing this will improve the structure of your templates on a pivotal level: you
simply need to call the function getPicture() to populate the source value of an image tag. In addition, you
can use this function in other views like the conversations list view. You only have to code this function once
and you can use it in multiple places.

Contacts Template
You now have everything set up for adding the contacts view. Using a templating engine like Handlebarsjs
allows you to render dynamic data coming from an external source, like Parse. The Bootstrap table style lets
you quickly create a placeholder container for your data.

There will likely be more than one user in your application. Because of this, you need to loop through
each of them to show them in the view. You do this by using a #each keyword provided by Handlebarsjs.
#each is one of what Handlebarsjs refers to as block helpers.

Create a new view named contacts.html, based on a previous example. Populate the body with an
empty div container, which you’ll use as placeholder element for the user list, as well as the handlebars
template contacts-template, as shown in Listing 7-53.

http://placehold.it/
http://placehold.it/50x50

Chapter 7 ■ User Registration with Parse

160

Listing 7-53.  Contacts Template (www/contacts.html)

<div class="container"></div>
 
<script id="contacts-template" type="text/x-handlebars-template">
 <table class="table table-striped">
 {{#each users}}
 <tr>
 <td>

 </td>
 <td class="small" style="vertical-align: middle">

 {{attributes.username}}

 </td>
 </tr>
 {{/each}}
 </table>
</script>

■■ Tip H andlebars can call functions or use variables inside templates. In this case, it’s calling the instance
method getPicture() of the MyParseUser class.

You are using the recently created MyParseUser.getPicture() function directly in the template, by solely
using {{ getPicture }}. The magic behind this is that instead of running a query on the Parse.User class,
you’ll use your custom class MyParseUser. Thus all results of the query will possess the getPicture() method.

Also, for each expression, Handlebars can either print a simple string value or the return value of a function.
As there is no simple string key for MyParseUser.getPicture, Handlebars will call the function getPicture().

You may use this same technique to further extend the app. It’s even thinkable to render Handlebars
templates within a Parse.Object instance method. This might be helpful to create little widgets like a
user-connected popover.

View Configuration
Update the view configuration at the bottom of the contacts.html template. You want to keep this view
private. In a real-world example, you would also verify the access for each listed contact (Listing 7-54).

Listing 7-54.  Contacts View Configuration (www/contacts.html)

<script>
 var config = {
 view: "contacts",
 title: "Contacts",
 public_access: false
 };
 app.initialize();
</script>

Chapter 7 ■ User Registration with Parse

161

Query Users
Let’s bring this home and populate the template with users. You will add this functionality in the initialize
function. Execute a query on your custom class MyParseUser. If you base your query on the Parse.User
class, you won’t be able to use the getPicture() instance method in the Handlebars template. To get a
certain set of results, do not apply any filters to the query. If your user base becomes too big, you may want to
limit the amount of search results.

As you are displaying the first and last name in the contacts template, you bring the results in a
corresponding order by using the query.ascending() method. The key to order by may be a string of
comma-separated values, an array of keys, or multiple keys, which you will use in your example.

After the results are loaded, you use the response array as variable for the Handlebars template and
place the compiled results inside the <div> element having the class .container, as shown in Listing 7-55.

Listing 7-55.  Contacts Script (www/js/views/contacts.js)

app.contacts = {
 initialize: function() {
 var query = new Parse.Query(MyParseUser);
 // Sort results in ascending order
 // by first and last name
 query.ascending("first_name", "last_name");
 query.find().then(function(users) {
 app.core.render('.container', 'contacts', {
 users: users
 });
 });
 }
};

E-Mail Verification
During the registration process you collect the user’s email address. However, you don’t know whether
this email address actually exists. To verify a potential user’s email address, you can use a classic account
activation system: after the user signs up, an email is sent to the provided email address so they can verify
it. Within this email is a link containing an activation code (Figure 7-15). The user activates their account by
clicking the link.

Chapter 7 ■ User Registration with Parse

162

The status of each account is tracked in the field emailVerified. After clicking the link, this value will
turn from false to true. Every time a user's email address is modified, emailVerified will be set to false
again. At the same time Parse will send another verification email to the user.

You can enable this feature by simply requesting it in the Parse application settings in the Email section
(Figure 7-16). All prospective registrations will receive an email to verify their email address. Although you
can assume that all Facebook email addresses had been verified before, you can either enable this feature for
all registrations or none of them.

Figure 7-15.  Verification email example

Chapter 7 ■ User Registration with Parse

163

Avoiding Automatic Login
After registering using the Parse.User.signUp() method, the user automatically gets logged in. This
behavior doesn’t change by enabling the email verification feature. If you want to change this behavior, you
need to log out the user instantly after registering for your application.

It seems like a bewildering task to log the user in and then promptly log them out again, yet there is no
other option to create this behavior right now. See Listing 7-56 for an example implementation.

Listing 7-56.  Optionally Disabling Auto-Login After User Registration (www/js/views/registration.js)

user.signUp(null, {
 success: function(user) {
 Parse.User.logOut();
 window.location.href = 'verification_pending.html';
 },
 error: function(user, error) {
 $('button, input').removeAttr('disabled');
 }
});

Next, you need to do a similar adjustment for the Login view. If the user’s email address is not yet
verified, by default a session will still be created. Add a condition to destroy the session using Parse.User.
logOut(): if the value for emailVerified is not true, display an error message with information to the user
about the email verification requirement, as shown in Listing 7-57.

Listing 7-57.  Disabled Login for Non-Verified Users (www/js/views/login.js)

Parse.User.logIn(email, password, {
 success: function(user) {
 if(user.get('emailVerified') == true) {
 window.location.href = 'contacts.html';
 } else {
 Parse.User.logOut();
 $('button, input').removeAttr('disabled');
 alert("Please verify your e-mail address");
 }
 },
 error: function(user, error) {
 $('button, input').removeAttr('disabled');
 }
});

Figure 7-16.  Enabling email verification via Parse application settings

Chapter 7 ■ User Registration with Parse

164

E-Mail and Web Templates
In the sections “E-Mail Verification” and “Reset Password Using Parse” we were using the Parse default
templates, both for the emails sent and for the web pages used for example to show a verification success
message.

It is possible, but not required, to customize these templates. You can customize the following templates
via the application settings:

•	 Email Verification Mail

•	 Password Reset Mail

•	 Choose a new Password Page

•	 Password Changed Page

•	 Email Verified Page

•	 Invalid link Page

Mail Templates
For each mail template, Parse will provide a form to customize the mail text (Figure 7-17). You can use the
variables shown in Table 7-1 within each mail template.

Table 7-1.  E-Mail Template Variables

Variable Name Description

%username% The user’s display name

%email% The user’s email address

%appname% Your application’s display name

%link% The link the user must click to perform the requested action

Figure 7-17.  Parse Mail Templates Form

Chapter 7 ■ User Registration with Parse

165

Page Template
In the Email Settings section Parse offers an example template for each page template. You need to
download this example file and upload it to a publicly accessible web server. After uploading your custom
templates, you need to provide a URL to the template files using the Customize User-Facing Pages form
shown in Figure 7-18.

Figure 7-18.  Custom Page Template Settings

You may use HTML, CSS, and images to change the look and feel. But be careful not to break the
functionality of pages containing a form. An extract of the choose_password.html template is shown in
Listing 7-58. The Parse examples are using JavaScript to read the URL arguments. Those could be username,
request ID, or the application. You could also use a backend language like PHP to read the arguments and
customize the template.

Listing 7-58.  Choosing a New Password Page Template (choose_password.html)

<h1>Reset Your Password</h1>
<noscript>
 We apologize, but resetting your password requires javascript
</noscript>
<div class='error' id='error'></div>
<form id='form' action='#' method='POST'>
 <label>New Password for </label>
 <input name="new_password" type="password"/>
 <input name='utf-8' type='hidden' value='âœ"'/>
 <input name="username" id="username" type="hidden"/>
 <input name="token" id="token" type="hidden"/>
 <button>Change Password</button>
</form>

Chapter 7 ■ User Registration with Parse

166

■■ Tip  You can use the Parse Cloud Hosting service to publish page template files. We explain how to use this
service in the section “Parse Cloud Hosting” in Chapter 3.

Summary
User registration is HUGE. For creating a customized user experience as well as enabling communication
between users, the registration and login views are essential.

In this chapter, you designed additional features like resetting a user’s password or verifying their email
address. One of the most powerful features you added is registration via Facebook. As of the first quarter
of 2015,1 there are more than one billion Facebook users active monthly. Integrating Facebook with your
applications’ registration process will likely increase conversation rates.

In Chapter 8, you will use the user base to use a basic form of communication: sending text messages.
Yet your application doesn’t need to be limited to messages only. Communication could be a friend request,
an invitation to a group, liking content, or writing a comment about it. You’ll learn more about sending data
between registered users next.

1http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/

http://dx.doi.org/10.1007/9781484202364_3
http://dx.doi.org/10.1007/9781484202364_8
http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/

167

Chapter 8

Messages

Did you get my message?
Now that you have a way for users to register with your app, it’s time to give them what they came for: the
ability to send messages!

You will be creating a conversation between two people. Other users won’t be able to see or interact
with another private conversation (group chat, for example). There are several pieces of functionality that
combine to create the definition of a conversation for this application. This chapter describes how each
section will play a role in the bigger picture—a conversation.

Conversation vs. ConversationList
You will be creating two similarly named views. The first is called conversation and it displays a message
input form as well as the messages of a conversation. The second one is called conversationList and it lists
the names of people participating in the conversation. Please be careful not to confuse these terms.

A conversation shows all of the messages sent and received between two people in a conversation.
Beneath this is an input form for composing a message. You will extend this to be able to attach images and
other media to a message.

Parse Classes and Their Roles
In this chapter, you’ll create two new custom Parse classes: Conversation and Message. A conversation is
composed of many messages. Table 8-1 describes how each class is used to create a conversation.

Table 8-1.  Basic Classes: Conversation and Message

Class Occurrence per
Conversation

Description

Conversation 2 Each Conversation has two User objects participating. Both User
objects have their own perspective on the Conversation. Hence,
there are two Conversation objects for each Conversation.

Message 1 - infinite A Conversation can have an infinite amount of Message objects,
but it needs at least one. It also needs one Sender and one
Receiver, as well as the message_body that defines a Message.

Chapter 8 ■ Messages

168

Senders and Receivers
To construct a conversation, we use messages. The user sends a message to another user—the receiver. The
differences between them are described in Table 8-2. You use the Message class to handle messages for both
the sender and receiver of each message.

There are always two sides to every story, right? The same can be applied to saving a conversation with
Parse. You use the Conversation class to manage how each participant sees a conversation: as an owner
(first person perspective) or partner (other party’s perspective).

Table 8-2 describes how to use the Conversation and Message classes to create a conversation.

Writing Messages
Before displaying any messages, you need to create some. You’ll start with the act of writing messages.
Writing a message requires an input textarea and a submit button (see Figure 8-1).

Table 8-2.  Roles: Sender, Receiver, Owner, and Partner

User Roles Related Class Description

Sender Message Each Message has one Sender. The moment you send a
Message, you are always the Sender. Speaking in code,
Parse.User.current() is the Sender.

Receiver Message As well as a Sender, there is a Receiver for each Message.

Owner Conversation If you are talking about the Owner of a Conversation object, you
take a subjective perspective on the Conversation. Personal
information, which the Partner shouldn’t know about, is saved
in this object. This could be a setting to block a Conversation
Partner who shouldn’t have access to or influence on personal
information.

Partner Conversation On the other end of the line is the Conversation Partner. You
need to know who you are talking to, so a reference to the other
Parse.User is part of each Conversation object.

Chapter 8 ■ Messages

169

Creating the Conversation View Template
As with the previous views, you want to use an existing view as a template to quickly implement your new
feature. Create a new HTML file based on an existing view and name the file conversation.html.
Listing 8-1 shows the markup for this template.

Listing 8-1.  The HTML Markup for the Body of the Conversation View (www/conversation.html)

<div class="container">
 <form role="form">
 <div class="form-group">
 <textarea class="form-control" rows="3" placeholder="Your Message"></textarea>
 </div>
 <div class="btn-toolbar" role="toolbar">
 <div class="btn-group">

 <i class="glyphicon glyphicon-send"></i>

Figure 8-1.  The view for writing messages

Chapter 8 ■ Messages

170

 Send Message

 </div>
 </div>
 </form>
</div>

Prepping for a Conversation
Along with the view, create a new JavaScript view file named conversation.js to store the functionality.
As with other scripts, add this new one to your loader in core.js. The basic object structure of the file is
shown in Listing 8-2. For the moment, it will just contain a basic skeleton, which you’ll bring to life in a
subsequent section.

Listing 8-2.  The Skeleton for the Conversation Script (www/js/views/conversation.js)

app.conversation = {
 Receiver: null,
 initialize: function() {},
 getReceiverName : function() {},
 renderMessages: function() {},
 setReceiver: function() {},
 messageHandler: function() {},
 sendMessage: function() {}
};
 

Besides the well-known initialize() function, you add a renderMessages () function that will be
responsible for loading the conversation using the Parse classes described in Table 8-1.

The setReceiver() method determines which person you intend to send a message to, and the
getReceiverName() method loads the Receiver object and sets their name to the header bar. You
use messageHandler() to manage interactions like pressing a Send button. Eventually, the method
sendMessage() will be used to save a message to the Parse database. The key Receiver will be used to store a
Parse.User user instance that represents the person receiving the message.

Reading URL Query Parameters
In Listing 7-53 from Chapter 7, the links had a query string parameter named id added to the URL of the
page, such as conversation.html?id=XYZ123.

Before you can use the variable id, you need a way of reading parameters from the query string. Neither
PhoneGap nor jQuery offer a method for this out of the box, so you need to create a custom function to do this job.

With a typical web site, you can access the current URL using window.location.href. This will return
the full path, including the domain name. A URL path in a PhoneGap application, unless it explicitly has a
full domain name, will request the file relative to the local path.

With this function, you won’t have to worry about parsing the href. You’ll be using a regular expression
to select the query string parameters from a URL. Regular expressions are complex configurations to
examine strings and look for patterns. We won’t explain them here, so just follow the code provided in
Listing 8-3 and you’ll be able to access all query parameters from a URL.

Add the script to the core of your application. Open the file www/js/core.js and add the function
named getParameterByName() as part of the object app.core (Listing 8-3).

http://dx.doi.org/10.1007/9781484202364_7

Chapter 8 ■ Messages

171

When calling the function, you pass the name of the key you are looking for as argument. For example,
the call of getParameterByName('example') will return the string y for the URL page.html?example=y.

Listing 8-3.  Reading Query Parameters (www/js/core.js)

getParameterByName: function(name) {
 var results = new RegExp('[\\?&]' +name+ '=([^&#]*)').exec(window.location.href);
 if (!results) {
 return 0;
 }
 return results[1] || 0;
}

Initializing the View
When the view is rendered in the initialize() method, you want to load the receiver’s information and
assign events to handle the message form submission. You start by adding call references to two placeholder
functions, getReceiver() and messageHandler() (Listing 8-4).

Listing 8-4.  The Outline of the Initialize Method (www/js/views/conversation.js)

initialize: function() {
 app.conversation.setReceiver();
 
 // With whom are we talking?
 app.conversation.getReceiverName();
 
 // Load Messages in parallel
 app.conversation.renderMessages();
 
 // handle media attachements
 app.conversation.messageHandler(); }

Add a file reference for conversation.js to the scripts variable in www/js/core.js (Listing 8-5).

Listing 8-5.  The config Variable Customized for the Conversation View (www/conversation.html)

<script>
 var config = {
 view: "conversation",
 title: "Conversation",
 public_access: false
 };
 app.initialize();
</script>

The Loading Icon
We’ve all mindlessly looked at a loading icon, waiting for our content to appear. Its purpose is to provide the
user feedback as to the status of the content that’s loading. You will be doing the same while users wait for
a response from Parse. Using an animated gif, you start the conversation view with a loading icon. After you
get a response, you remove it and render the content to the view.

Chapter 8 ■ Messages

172

You can find loading icons at a site like http://ajaxload.info. The image should be small in file size.
The purpose here is to create a pleasant experience for the user as they wait for the awesome. After picking
your favorite loader image, save it to the folder www/img. Create a new CSS class for the loading image in
style.css. If there is content in the loading container, hide it by using a star (*) selector and the display:
none rule, as shown in Listing 8-6.

Listing 8-6.  Adding a New Class to style.css for the Loading Image (www/css/style.css)

.loading {
 background:transparent url(../img/ajax-loader.gif) no-repeat center;
 padding:50px;
}
.loading * {
 display:none;
}

In order to use this icon, you add a new <div> tag to your content holding the new class loading.
Additionally, you use the CSS class placeholder. This class does not contain any styles and is used as
a JavaScript element selector only (see Listing 8-7). You will use this snippet later in this chapter and
throughout the application.

Listing 8-7.  An Example of the Loading Placeholder

<div class="placeholder loading"></div>

Conversations will likely have many messages. While these are loading to the view from the initialize
function, add the loading class on a designated placeholder (Listing 8-8).

Listing 8-8.  Adding the Loading Placeholder to the Existing initialize Function
(www/js/views/conversation.js)

initialize: function() {
 
 // Keep existing code
 $(".placeholder").addClass('loading');
}

Creating a Receiver Object
In the very first moments this view loads, you don’t need to possess every piece of information about the
Receiver. Instead, you can just create a local instance of the MyParseUser object and set the object’s id to
the value you are getting via the query string method getParameterByName(), as shown in Listing 8-9.

Listing 8-9.  Creating a Receiver Object (www/js/views/conversation.js)

setReceiver: function() {
 app.conversation.Receiver = new MyParseUser();
 app.conversation.Receiver.id = app.core.getParameterByName('id');
}

http://ajaxload.info/

Chapter 8 ■ Messages

173

Loading the Actual Receiver Object
While the setReceiver method made sure that the view is in possession of a Receiver object, you load the
actual Receiver object from the Parse database in the background. Following this approach will enable you
to have a send message form ready, no matter whether you already loaded the Receiver data or not.

Next, you populate the getReceiverName (Listing 8-10) with a new Parse query that requests a
conversation, and then updates the UI with the user’s first name.

Listing 8-10.  Loading the Actual Receiver Object (www/js/views/conversation.js)

getReceiverName: function() {
 var query = new Parse.Query(MyParseUser);
 return query.get(app.conversation.Receiver.id).then(function(Receiver) {
 app.conversation.Receiver = Receiver;
 $('.navbar-brand').text('Conversation with '
 + Receiver.get('first_name'));
 });
}

Message Form Handler
Next, you add an event handler to the message form. Your main concern is that when a user submits the
form, it should send a message.

To create a better user experience, you want to keep the keyboard open after the user sends a message.
One method can be to instantly focus the textarea immediately after the user hits the submit button. This
will either, depending on the system, keep the keyboard open or reopen it after a few milliseconds. There are
better approaches, yet for the moment this will be sufficient. Add an event handler for the submit button, as
shown in Listing 8-11.

Then you call the sendMessage() function, which handles the details of sending a message and will be
populated at a later point of this chapter.

Listing 8-11.  Loading the Receiver Object (www/js/views/conversation.js)

messageHandler: function() {
 $('#submit').on('tap click', function(e) {
 e.preventDefault();
 $("textarea").focus();
 app.conversation.sendMessage();
 });
}

The Message Class
To save and read messages, you add a new class named Message to the Parse Database. The Message class
has three properties: Sender, Receiver, and message_body. Messages are saved as strings. The Sender and
Receiver objects represent users. Next, you make use of the Parse.Object default property createdAt to
show when a message was sent.

You’ll use the Message object in many different places and situations, and you want to avoid writing
certain behavior again and again, so you will collect all “business logic” related to the Message object in one
class, the MyParseMessage class, and its respective file, MyParseMessage.js. As a reminder, you already know
this model system from the MyParseUser class of Chapter 7.

http://dx.doi.org/10.1007/9781484202364_7

Chapter 8 ■ Messages

174

The first instance method of the new class is a method to save messages to the database, the send()
method. The method does the following:

•	 Sets the Receiver

•	 Sets the Parse.User.current() as Sender

•	 Sets the message_body

•	 Returns a Parse.Promise object, which will pass the saved Message object as an
argument to potentially call then() functions

■■ Tip T here are two ways to define new classes and their structures. The first way is to create them
manually using the Parse data browser, as explained in Chapter 3. The second way is to create and update
class structures on the client side. Once you create a new class or set a new property, the class structure in
the cloud is updated automatically. To enable this feature, check the option “Allow client class creation” in the
General section of the App Permission settings on parse.com. Use this mode in your development phase only.
Disable it once you publish your app.

Furthermore, you add the class method afterSave(), which is called directly after saving the Message.
This function executes tasks like adding a location.

All attributes are passed in the form of an object named options. Each key should correspond
its appropriate value, such as options.Receiver for the Receiver. The full implementation of the
MyParseMessage class is shown in Listing 8-12. Also, don’t forget to add the new file MyParseMessage.js your
JavaScript loader, as shown in Listing 8-13.

Listing 8-12.  The MyParseMessage Class (www/js/models/MyParseMessage.js)

var MyParseMessage = Parse.Object.extend('Message', {
 // Instance Methods
 send: function(options) {
 
 // Set the Receiver
 this.set('Receiver', options.Receiver);
 
 // Set the Sender
 this.set('Sender', MyParseUser.current());
 
 // Set the Message Body
 this.set('message_body', options.message_body);
 
 // Save the Message to Parse
 return this.save().then(MyParseMessage.afterSave);
 }
}, {
 // Class Methods
 afterSave: function(Message) {
 return Message;
 }
});
 

http://dx.doi.org/10.1007/9781484202364_3
https://parse.com

Chapter 8 ■ Messages

175

■■ Tip A ll methods passed to Parse.Object.extend() as a second argument, after providing the
name Message in the first one, are instance methods, and all methods passed in the third argument are
class methods.

Listing 8-13.  Updating the JavaScript Loader Configuration (www/js/core.js)

var scripts = {
 common: [
 // Keep existing configuration
],
 models: [
 // models
 './js/models/MyParseUser.js',
 './js/models/MyParseMessage.js'
],

Sending a Message
After preparing the event and database handling, you need to connect both parts so that the user can
eventually send their message. This happens in the sendMessage method of the app.conversation object.
You added this earlier when you created a placeholder for this method (Listing 8-2).

Next, create a new object named options and set the values for the keys Receiver and message_body,
as they are expected in the send() method of the MyParseMessage class. The options object is passed to the
send() method, as shown in Listing 8-14.

The call Message.send() returns a promise object. The attached then() method is called once the
process of saving the message is completed successfully. In this moment, you want to clear the message
textarea because the user doesn’t want to send the same message twice.

For debugging purposes, you call an alert() method to inform the user that the message was sent. If
the message cannot be sent for any reason, the fail() method will be called.

Listing 8-14.  A Message Is Saved to Parse, and an Alert is Sent (www/js/views/conversation.js)

sendMessage: function() {
 var Message = new MyParseMessage();
 Message.send({
 Receiver: app.conversation.Receiver,
 message_body: $('textarea').val()
 }).then(function(Message) {
 $('textarea').val('');
 console.log(Message);
 alert('Message was sent!');
 }).fail(function(error) {
 console.log(error);
 alert('Message was not sent!');
 });
}

Chapter 8 ■ Messages

176

Sending a Test Message and Review
Send some test messages between the same two users, then head over to the Parse data browser
(https://parse.com/apps/) and review the messages you sent. You can see an example dataset in
Figure 8-2.

■■ Tip  Clicking the User objects in the receiver and sender fields takes you to a detailed view of that user.

Improving Dialog Styles (Optional)
Plug-ins! Cordova has some great core and third-party plug-ins that can be used to add extra functionality to
your application.

Up until this point, you have been using the alert JavaScript function to display messages to the user.
This displays an alert message using the web browser’s native style. If the platform supports it, this plug-in
will use the native device styles and also extend the functionality. The Cordova Dialogs plug-in currently
(version 0.2.10) supports the following platforms:

•	 Amazon Fire OS

•	 Android

•	 BlackBerry 10

•	 Firefox OS

•	 iOS

•	 Tizen

•	 Windows Phone 7 and 8

•	 Windows 8

Figure 8-2.  A view of the data browser with example messages between different users

https://parse.com/apps/

Chapter 8 ■ Messages

177

Plug-ins offer a great way to improve the experience of the application you are building with little effort.
As you have done before, install the plug-in using the command line. Make sure you are in the root of your
project and run

cordova plugin add org.apache.cordova.dialogs

Next, update the usage of the alert functions. Use the function navigator.notification.alert to
invoke the plug-in functionality.

Continue to use the alert() function for non-PhoneGap requests. Otherwise, testing your application in
the browser will fail. To do this, see if cordova is in the window object, as shown in Listing 8-15. You can see
a result of the plug-in in Figure 8-3. Instead of showing an unaesthetic title like conversation.html, you are
using the application name as dialog title.

Listing 8-15.  Choose Either Native or Browser Implementation

if(window.cordova) {
 navigator.notification.alert('Message was sent!', function() {}, 'TheMessenger', 'OK!');
} else {
 alert('Message was sent!');
}

Figure 8-3.  Cordova Dialog plug-in example

Chapter 8 ■ Messages

178

Features Offered by the Dialogs Plug-in
The Dialogs plug-in is capable of doing a lot more than just sending alerts. Other functions include

•	 navigator.notification.confirm

•	 navigator.notification.prompt

•	 navigator.notification.beep

You will use the alert() part of this plug-in these application examples. To get familiar with the other
parts, try it on your own. Be creative and test ways to use this plug-in in your applications.

Reading Messages
Just as it’s crucial that your messages get sent between users, it is equally so that users are able to read them.
This section will populate the conversation history using the messages sent between the authorized users.

Bootstrap provides an excellent set of user interface styles that are a great fit for your conversation view
(see Figure 8-4). After adding the functionality to populate the template you’ll be creating, you’ll provide
some optional user interface optimization tips using a new PhoneGap plug-in.

Figure 8-4.  The layout of the conversation view

Chapter 8 ■ Messages

179

Querying Conversation Messages
The body of a conversation should only include messages by the parties involved. This application is
designed for only one Sender and one Receiver to participate in a conversation. However, you can extend
the app to be able to send messages to multiple users in a group chat where there is one Sender and many
Receivers. Yet be aware, it’s a complex topic!

To populate the conversation view, you need to get all the messages sent from the current user to their
intended Receiver. This is shown in Listing 8-16. And of course you need the messages received by the
current user (Listing 8-17).

Listing 8-16.  Querying for Sent Messages. Notice that the Sender is the Current User

var senderQuery = new Parse.Query(MyParseMessage);
senderQuery.equalTo("Receiver", Receiver);
senderQuery.equalTo("Sender", MyParseUser.current());

Listing 8-17.  Querying for Received Messages. Here, the Receiver Is the Current User

var receiverQuery = new Parse.Query(MyParseMessage);
receiverQuery.equalTo("Receiver", MyParseUser.current());
receiverQuery.equalTo("Sender", Receiver);

Compound Queries
Naturally, you want to merge these two results into one. One approach would be to execute both queries–in
parallel or in series–and merge the results after both are finished. However, this is not a good approach. Can
you imagine why?

Instead, you will compound those queries into one query using the Parse.Query.or() method. This
approach will enable you to keep all messages in order and your code clean and simple.

In Listing 8-18, you can see an example of a compound query combining three different queries. If a
record matches at least one criterion of these three queries, it will be part of the result set.

Listing 8-18.  Abstract Compound Query Example

var query1 = new Parse.Query(MyClass);
query1.equalTo('key', value1);
 
var query2 = new Parse.Query(MyClass);
query2.equalTo('key', value2);
 
var query3 = new Parse.Query(MyClass);
query3.equalTo('key', value3);
 
var compoundQuery = Parse.Query.or(query1, query2, query3);
compoundQuery.find();

For this example, you simply pass the previously created senderQuery and receiverQuery to the
Parse.Query.or() method to get all messages between the two conversation participants (Listing 8-19).

Chapter 8 ■ Messages

180

Listing 8-19.  Compound Query for Sent and Received Messages

var messageQuery = Parse.Query.or(senderQuery, receiverQuery); 

Managing Conversations
To keep all business logic related to conversations in one place, use a custom Parse.Object named
MyParseConversation. Name the corresponding class in the Parse database as Conversation. So far, your
MyParseConversation class will just contain class methods. We’ll come back to the actual object structure
and instance methods at a later point in this chapter.

Create a new file called www/js/models/MyParseConversation.js. Add a method called getMessage to
execute the just-discussed compound query (Listing 8-20).

Listing 8-20.  Compound Query in the Custom Parse.Object MyParseConversation
(www/js/models/MyParseConversation.js)

var MyParseConversation = Parse.Object.extend('Conversation', {
 // Instance Methods (currently empty)
}, {
 getMessages: function(Receiver, limit) {
 
 // Query messages sent by current user
 var senderQuery = new Parse.Query(MyParseMessage);
 senderQuery.equalTo("Receiver", Receiver);
 senderQuery.equalTo("Sender", MyParseUser.current());
 
 // Query messages sent by other user
 var receiverQuery = new Parse.Query(MyParseMessage);
 receiverQuery.equalTo("Receiver", MyParseUser.current());
 receiverQuery.equalTo("Sender", Receiver);
 
 // Combined Query with OR condition
 var messageQuery = Parse.Query.or(senderQuery, receiverQuery);
 
 // Limit the result
 messageQuery.limit(limit);
 
 // Show newer messages first
 messageQuery.descending('createdAt');
 
 // Pass result to render function
 return messageQuery.find();
 
 }
});
 

■■ Tip  Parse.Query.or takes multiple Parse.Query objects as arguments, allowing you to combine more
than two queries at a time.

Chapter 8 ■ Messages

181

Rendering the Conversation View
Rendering the conversation view consists of three tasks: loading the messages, rendering them in a human-
friendly way, and then removing the loading indicator.

To load the messages, use the just-created MyParseConversation.getMessages() method. It returns a
promise object, and once the promise is resolved, it calls the then function, which holds the results of your
compound query as function argument. Name this argument Messages.

However, before rendering the messages, invert their order. The newest messages should be at the
bottom of the view, right next to the input and keyboard area. Older messages are at the top of the view. The
user will be able to reach them by scrolling up. To invert the order of the Messages, simply call the Array
method reverse().

After rendering the view using app.core.render, remove the class loading from the placeholder <div>.
All steps are summarized in Listing 8-21.

Listing 8-21.  The renderMessages Method Renders a List of Messages (www/js/views/conversation.js).

renderMessages: function() {
 var limit = 5;
 MyParseConversation.getMessages(
 app.conversation.Receiver, limit
).then(function(Messages) {
 app.core.render('.placeholder', 'conversation', {
 // Use reverse() to place old messages on the top
 messages: Messages.reverse()
 });
 $('.placeholder').removeClass('loading');
 });
}

■■ Tip  In this example, you see the last five messages. To display older messages, you can skip the first
results by applying the method skip() to the Parse.Query object. For example, use query.skip(10) to skip
the first 10 results.

Preparing Message Data for Rendering
Before working on the actual message template, let’s think about what information you want to display.
Besides the proper message text, you want the time when a message was sent and the identity of the sender
(your conversation partner or you).

Yet you don’t want to do this in the Handlebars template, as you might have expected. By experience,
you know this will lead to messy templates, which are hard to maintain. Instead, you will handle all data
formatting and visualization rules in the MyParseMessage class.

Formatting Dates with Moment.js
The most important part of this exercise is formatting the message time. As you know, all Parse.Object
classes automatically track the information about their creation in the field createdAt. A value of this field
could look like 2014-09-21T23:52:50.310Z, which is not a very user-friendly format.

Chapter 8 ■ Messages

182

To fix this issue, use the library Moment.js. It provides a set of methods to display such complex
timestamps in better formats like September 9th 2014, 11:52:50 pm or 31 minutes ago.

Download the library from http://momentjs.com/. Save the file moment.min.js in the directory
www/js/vendors and add a reference to your JavaScript loader in the scripts variable in core.js:

var scripts = {
 common: [
 './js/vendor/moment.min.js',
 }
};

To format the timestamp of a message directly in the class MyParseMessage, add a new instance
method named getFromNow, as shown in Listing 8-22. Use the moment.js function fromNow() to format the
timestamp. It will return the relative time that has passed since the message was sent (e.g. “4 hours ago”).

As you learned in previous chapters, inside instance methods you can access the current object using
this. For example, a new moment.js object can be created by using moment(this.createdAt). To convert
the field to a relative time, apply the function fromNow() to the moment.js object.

Listing 8-22.  Adding getFromNow to the MyParseMessage Object (www/js/models/MyParseMessage.js).

var MyParseMessage = Parse.Object.extend('Message', {
 getFromNow: function() {
 return moment(this.createdAt).fromNow();
 },
 send: function() {
 // Send Code
 },
 protectMessage: function() {
 // Protect Message Code
 }
});

Alternating Styling for Sent and Received Messages
To differentiate styles between sent and received message, add some Bootstrap magic to each message
based on the user who sent it. First, detect whether the sender ID equals the current user’s ID. Message sent
by the current user are the message owner.

You reflect this inquiry in the function isOwner() in Listing 8-23. Based on the message owner, chose
a different color using the Twitter Bootstrap alert-* classes. Messages sent by the current user are aligned
to the right, which is a common standard when displaying messages in a chat history style. You can get the
corresponding CSS class for each message by calling getCssClass in the template.

Listing 8-23.  Determining Styles in the Parse.Object Message (www/js/models/MyParseMessage.js).

isOwner: function() {
 return this.get('sender').id == MyParseUser.current().id;
},
getCssClass: function() {
 return this.isOwner() ? 'alert-info pull-right' : 'alert-warning';
}

http://momentjs.com/

Chapter 8 ■ Messages

183

Using Instance Methods in Handlebars Templates
From previous tutorials you already know that you can access Parse.Object attributes in Handlebars
templates using the syntax objectname.attributes.key.

Handlebars not only gives you access to object keys; you can also call methods from the object. As long
as the function returns a string, Handlebars will render it to the DOM.

Subsequently, all instance methods you define for your Parse objects are accessible by Handlebars.
For example, to access the function getFromNow() on the first record returned from a collection named
messages, you use the syntax shown in Listing 8-24. When calling the same function in a loop, the syntax in
Listing 8-25 will come into play. As you see, this will keep your templates clean and easy to read. You’ll use
the construction of Listing 8-25 in the conversation template, which you’ll create in the following section.

Listing 8-24.  Calling an Parse.Object Instance Method in Handlebars

{{ messages.0.getFromNow }}

Listing 8-25.  Calling an Instance Method Inside a Loop

{{#each messages}}
 {{ getFromNow }}
{{/each}}

Creating the Conversation Template
After taking all of the preparatory steps, you’ve finally come to the conversation template. As stated earlier,
the goal is to display a conversation that is composed of a single or multiple messages between two users,
also known as monologue and dialog.

Because loading a conversation's data from a remote server usually takes some time, you need a way
for users to know that their content is loading behind the scenes. For this, you’ll use the CSS class loading,
which was created earlier in this chapter. See Listing 8-26 for an example of how to use the class. Once the
messages are loaded and processed, the conversation template of Listing 8-27 will replace this placeholder.

Listing 8-26.  The Addition of a Placeholder div to the Existing Conversation View (conversation.html)

<div class="container">
 <div class="placeholder loading"></div>
 <!-- Existing submit form for new messages -->
</div>

That said, there will be a time when there are no conversations to list. This will happen once a user
starts a new conversation with someone. So inside your Handlebars template you want to display a custom
message if there are no messages to display. If there are, you then loop through all of the records and
populate the conversation view (Listing 8-27).

Chapter 8 ■ Messages

184

Listing 8-27.  The Handlebars Template Used for Displaying Messages of a Conversation
(www/conversation.html)

<script id="conversation-template" type="text/x-handlebars-template">
 <div id="messages">
 {{#if messages}}
 {{#each messages}}
 <div class="clearfix">
 <div style="width: 80%" class="alert well-sm {{ getCssClass }}">
 {{ attributes.message_body }}
 <div class="small">
 {{ getFromNow }}
 </div>
 </div>
 </div>
 {{/each}}
 {{else}}
 <div class="well">Write a message!</div>
 {{/if}}
 </div>
</script>

Besides displaying the message_body, you format each message’s <div> container by an alternating
CSS class attribute, served by the instance method getCssClass(). Next, you use the instance method
getFromNow() to display the time when the message was sent.

■■ Note  The task of managing these HTML elements is managed in the renderMessages() method in
Listing 8-21.

User Interface Optimizations (Optional)
Admittedly, the current implementation works as a proof of concept, but it isn’t perfect. You can keep the
current code samples and move on to the next section, but if you want to polish your application, you can
add the following tweaks.

Removing the Keyboard Toolbar
An easy but big win is to remove the keyboard toolbar via the Ionic Keyboard plug-in. It will increase the
available screen size while the user is typing their message. In your terminal, navigate to the root of the
project and install the plug-in using

cordova plugin add com.ionic.keyboard

To remove the toolbar, call the following method when rendering the view:

cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);

You can see the result of the keyboard removal in Figure 8-5. Even though you win just a few pixels, it
increases the space available for messages by about 20% (depending on the device size).

Chapter 8 ■ Messages

185

Removing the Keyboard When the Body Is Tapped
When the user is interacting with the body, for example by tapping it, you can assume the user doesn’t want
to enter a message. So let’s hide the keyboard when the user is doing this. You combine this task with hiding
the toolbar in the function toggleKeyboardAccessoryBar() in Listing 8-28.

In order to use the tap event, and other cool gestures like swiping, you will need to add an external
library. Download http://quojs.tapquo.com/ and add it to your project. Using $$ denotes the usage of
tapquo (versus jQuery’s single $ symbol).

Listing 8-28.  Removing Keyboard on Tap

toggleKeyboardAccessoryBar: function() {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 $$('body').tap(function(e) {
 if (!$(e.target).is("input,textarea")) {
 cordova.plugins.Keyboard.close();
 }
 });
}

Figure 8-5.  Comparison: Message input with and without keyboard toolbar

http://quojs.tapquo.com/

Chapter 8 ■ Messages

186

Important! You are excluding all events happening within the textarea. Next, depending on your
app design, you may want to apply this function to all your views by adding it to the app.core object and
executing it on every view load.

The plug-in offers other methods, among which is the opportunity to close the keyboard via
cordova.plugins.Keyboard.close() or disable the native scrolling via cordova.plugins.Keyboard.
disableScroll(). Availability may depend on the operating system. You can find more information about
the plug-in at https://github.com/driftyco/ionic-plugins-keyboard.

Hiding the Navigation Bar When Textarea Is Focused
The fixed navigation bar at the top might be in conflict with the textarea. To avoid this issue, hide the bar
when the textarea is focused and bring it back when the focus is lost:

$("textarea").on('blur', function() {
 $('nav').show();
});
 
$("textarea").on('focus', function() {
 $('nav').hide();
});

Scrolling to Textarea and Focusing on Load
If it is a longer conversation and the user still wants to be able to enter a message quickly, you can enable a
scroll to the textarea on page load. Execute the code after loading the message so that the script knows how
far to scroll (Listing 8-29).

Listing 8-29.  Scrolling to the textarea Element When Initializing the View (www/js/views/conversation.js)

window.setTimeout(function() {
 $(window).scrollTop($("textarea").offset().top -
 ($(window).height() - $("textarea").height()));
 window.setTimeout(function() {
 $("textarea").focus();
 }, 300);
}, 150);

Listing Conversations
In the last part of this chapter, you’ll populate a view that lists conversations of the current user. The task
sounds simple. Nevertheless, it is a challenge. Prior to listing conversations, you need to prepare the
conversation data, which will include building a message index.

All intermediate steps will lead to building the conversation list view shown in Figure 8-6. For each
conversation, the view will show the user’s profile picture, name, time when the last message was sent.

https://github.com/driftyco/ionic-plugins-keyboard

Chapter 8 ■ Messages

187

Gathering Metadata for Messages
Before rendering a conversation list, you need to take a moment to think about how to gather this
information. The conversations you want to list are the messages users send to each other.

The ordering of the list items will be determined by the last message of the conversation, no matter
whether it was the current user sending this message or receiving it. In an abstract way, the query should do
something like this: “Select all messages, order them by the sent date, but only return one message per sender-
receiver combination.”

In other systems like SQL, this can be done via the SELECT DISTINCT statement. This statement will
return only distinct (different) values. Parse currently doesn’t offer such a query method, thus we need to
think differently.

Figure 8-6.  This view lists all conversations a user started, with the newest on top

Chapter 8 ■ Messages

188

Creating a Message Index
Instead of running a query on all messages, you will create a structured message index, which will help you
to create a conversation list view. Database indexes are a complex topic, yet we can describe the system in
short as follows:

A database index is a data structure that improves the speed of data retrieval operations
on a database table at the cost of additional writes and storage space to maintain the
index data structure.

—http://en.wikipedia.org/wiki/Database_index

As you can see by the quote, creating database indexes is not a Parse-specific topic. It’s used in other
database systems as well. An example you use every day is Google. It doesn’t search the Web for you in the
moment you search. Its software prepared an index of what you might want to know in advance.

You will do something similar, yet on a way smaller scale. For your messages, each index entry will
contain information about a most recent Message and the two participating users. Yet you will save this
information twice per conversation, one entry for each participant’s perspective. Next, once there is a new
“most recent” Message, you will update the existing index entry to reflect this information.

As you’ll be using this index solely for listing conversations, call this index Conversation.
One last question to be answered before completing the concept: When and where is this index being

created? The solution is pretty simple. You will update the Conversation index each time a Message is sent.
This way the conversation view will always be up to date and you don’t need to “batch index” messages.

Tracking Conversations
Earlier in this chapter, within the section “Managing Conversations,” you created the custom Parse.Object
MyParseConversation. Using some foresight, you named the Parse class Conversation, the name of your
conversation index.

As just discussed, the Conversation object will contain a reference to the most recent Message and the
two participating users. The references to the participating users are static. The most recent Message will be
updated every time a new message is sent.

Add the code for updating the Conversation object as a class method to the MyParseConversation
class. Name this method update and call it after saving a Message using the latter as argument, as shown in
Listing 8-29.

Listing 8-29.  Calling the Conversation Update Method After Saving a Message
(www/js/models/MyParseMessage.js)

afterSave: function(Message) {
 var Receiver = Message.get('Receiver');
 MyParseConversation.update(Message);
 return Message;
}

Setting Up the MyParseConversation Class
It’s time to extend the MyParseConversation class. Add the placeholder methods shown in Listing 8-30 to
the class while keeping the existing instance and class methods. We will discuss both functions, getOrCreate
and update, in this section.

http://en.wikipedia.org/wiki/Database_index

Chapter 8 ■ Messages

189

Listing 8-30.  The Updates for the Conversation Object MyParseConversation

var MyParseConversation = Parse.Object.extend('Conversation', {
 
}, {
 getOrCreate: function() {},
 update: function() {}
});

In the beginning of the “Tracking Conversations” section, you already added the task invoking the
process of updating a conversation, namely using the method MyParseConversation.update(). But
before updating a Conversation object, you need one to work with. This means you either create a new
Conversation object or use an existing one. This requirement leads you to think about the principle of
having a unique entry in your database for a singular object.

For messages, guaranteeing this singularity is simple. You create a new Message, save it to the database,
get a unique ID, then after that you (more or less) don’t touch this message again. You can repeat this
process again and again; your database integrity will be fine.

For the Conversation class, the scenario is somewhat different. There should be only one Conversation
object per conversation perspective. As there are exactly two conversation participants in your application
design, there must be two Conversation objects per conversation.

At the very first time–when the user starts a new conversation–saving those two Conversation objects
is straightforward: create a new instance for each perspective, save it to the database, done. For the second,
and all following situations, it’s more complicated. If you stick to the same pattern of carelessly saving
Conversation objects to the database, you will end up having a large amount of Conversation objects in the
database for a single conversation.

What you must do instead is, if there is a database entry for the corresponding conversation, return the
existing entry; if not, you create a new one. A unique entry is defined by a unique combination of Owner and
Partner of a Conversation object.

■■ Note T he roles of the conversation Owner and Partner were explained in the beginning of this chapter. If
these terms are unclear, please take a look at Table 8-2.

If you translate this process into code, it will look like Listing 8-31. A query searches for a Conversation
object using two user objects, the conversation participants, as filter. If a Conversation object is found, it will
be returned. If not, a new instance will be created, saved to the database, and returned–as a Parse.Promise
object. The fact that the process of creating a new Conversation instance will return a Parse.Promise object
instead of a Conversation object won’t make a difference, as you will treat the whole getOrCreate process as
a promise anyway.

Listing 8-31.  Getting or Creating a New Conversation Object (www/js/models/MyParseConversation.js)

getOrCreate: function(Owner, Partner) {
 var query = new Parse.Query(MyParseConversation);
 query.equalTo('Owner', Owner);
 query.equalTo('Partner', Partner);
 return query.first().then(function(Conversation) {
 if (Conversation) {
 return Conversation;
 }

Chapter 8 ■ Messages

190

 Conversation = new MyParseConversation();
 Conversation.set('Owner', Owner);
 Conversation.set('Partner', Partner);
 return Conversation.save();
 });
}

Updating Conversation Meta Information
After assuring the singularity of each Conversation object, you can eventually add meta information to
it. The only information you’ll add in this example is the most recent Message reference. However, you
may extend the Conversation object to handle more information, such as how many messages were sent,
whether the conversation has unread messages, and so forth.

As previously described, each conversation holds two Conversation objects, so you’ll update both
objects once a new message is sent. As shown in Listing 8-32, the Conversation object for each conversation
participant is requested using the method getOrCreate. Subsequently, the reference to the last Message is
set and saved to the Parse database.

Listing 8-32.  The update Function That Updates Both Perspectives of a Conversation
(www/js/models/MyParseConversation.js)

update: function(Message) {
 var Receiver = Message.get('Receiver');
 // Update the Conversation for the current User
 this.getOrCreate(MyParseUser.current(), Receiver)
 .then(function(Conversation) {
 Conversation.set('last_message', Message);
 Conversation.save();
 });
 // Update the Conversation for the Receiver
 this.getOrCreate(Receiver, MyParseUser.current())
 .then(function(Conversation) {
 Conversation.set('last_message', Message);
 Conversation.save();
 });
}

Querying Latest Conversations
Creating a conversation index was the base functionality you needed for listing a user’s conversations.
Reading this information is straightforward. You just need to query all Conversation objects that are owned
by the current user.

Add a new JavaScript js/views/conversationList.js. As with any new script you add to this project,
add the file references to the scripts.common variable in core.js.

The initialize function executes a simple Parse.Query using MyParseUser.current() as filter for the
Conversation object field Owner. Since you need the Partner and the last_message object in the template
to display the conversation partner’s name and a preview of the text of the last message, you include both
objects using the method Parse.Query.include().

Chapter 8 ■ Messages

191

When the promise of the query is resolved, you pass the result to the Handlebars render.
The Handlebars templates used in this case, conversationList, will be created in the upcoming
“Conversation List Template” section. Listing 8-33 summarizes the process of loading the conversations
and rendering them.

Listing 8-33.  The Conversation List View Script (www/js/views/conversationList.js)

app.conversationList = {
 initialize: function() {
 var query = new Parse.Query(MyParseConversation);
 query.include('last_message');
 query.include('Partner');
 query.equalTo('Owner', MyParseUser.current());
 query.limit(10);
 query.descending('updatedAt');
 return query.find().then(function(Conversations) {
 app.core.render('.placeholder', 'conversationList', {
 conversations: Conversations
 });
 $('.placeholder').removeClass('loading');
 });
 }
};

Preparing Conversation Data for Rendering
Analog to the MyParseMessage class, you will add a few instance methods to the MyParseConversation class
to keep the handlebars templates clean and readable (Listing 8-34).

The first two of these functions are getPartnerId and getPartnerName. They simply expose the ID
and first_name and last_name values of the conversation Partner. Doing the same inside a Handlebars
template is more complex.

The getPicture function serves as an intermediary function calling the MyParseUser.getPicture()
function and returning the user’s picture saved when creating a new account via Facebook. You’ll only
display profile pictures for Facebook users; for other users, you will show a placeholder image. In Chapter 10,
we will add the ability to add a profile image for all accounts.

The getMessagePreview() function serves as an intermediary function as well. It gets the value
for last_message, which is actually a Message object, and applies the function getPreview() of the
MyParseMessage class on it. The function getPreview() is defined in Listing 8-35. It shortens the
message_body if it’s too long.

Next, you reuse the previously created getFromNow() method of the Message object, applied to the
last_message instance as well.

http://dx.doi.org/10.1007/9781484202364_10

Chapter 8 ■ Messages

192

Listing 8-34.  Adding Methods to the Existing MyParseConversation Object

var MyParseConversation = Parse.Object.extend('Conversation', {
 // The user ID of the conversation partner
 getPartnerId: function() {
 return this.get('Partner').id;
 },
 // Name of the conversation partner
 getPartnerName: function() {
 return this.get('Partner').get('first_name') + ' ' +
 this.get('Partner').get('last_name');
 },
 // Profile picture of the conversation partner
 getPicture: function() {
 return this.get('Partner').getPicture();
 },
 // A preview of the last message
 getMessagePreview: function() {
 return this.get('last_message').getPreview();
 },
 // The time elapsed since the last message was sent
 getFromNow: function() {
 return this.get('last_message').getFromNow();
 }
}, {
 // Keep existing code
});

Listing 8-35.  The getPreview Method Returns a Short Preview of the Message Body
(www/js/models/MyParseMessage.js)

var MyParseMessage = Parse.Object.extend('Message', {
 getPreview: function() {
 return this.get('message_body').length > 40 ?
 this.get('message_body').substring(0, 40) + '..' :
 this.get('message_body');
 }
}, {
 // Keep existing code
});

Conversation List Template
Now that there is data to populate the view, you create the Handlbarsjs template that will render a
conversation’s messages. Start by creating a new conversationsList.html file (Listing 8-36). Each row in
the list links to the existing conversation.html view. Apply the method getPartnerId to set the value for id
in the URL parameters.

Chapter 8 ■ Messages

193

Listing 8-36.  The conversationsList.html Template That Lists Separate Conversations Between
Different Individuals

<div class="container">
 <div class="placeholder loading"></div>
</div>
 
<script id="conversationList-template" type="text/x-handlebars-template">
 <table class="table table-striped">
 {{#each conversations}}
 <tr>
 <td>

 </td>
 <td class="small" style="vertical-align: middle">

 {{ getPartnerName }}

 <small>
 {{ getFromNow }}

 {{ getMessagePreview }}
 </small>

 </td>
 </tr>
 {{/each}}
 </table>
</script>

Listing 8-37.  The config Variable Customized for the Conversation List View (www/conversationsList.html)

<script>
 var config = {
 view: "conversationList",
 title: "Conversations",
 public_access: false
 };
 app.initialize();
</script>

■■ Tip  After a user logs in, you currently redirect them to the view contacts.html, so that he can
select another user to send message to. Clicking the contact name takes them to the conversation view,
which you will build in Chapter 9. After building this new view, you should change your default view to be
conversationsList.html. If the user didn’t start any conversations yet, redirect them to the view
contacts.html.

http://dx.doi.org/10.1007/9781484202364_9

Chapter 8 ■ Messages

194

Summary
This chapter covered the heart of your application: sending and receiving messages to display in a
conversation. Using the Parse.User object, you are able to send messages between users. Each Message that
is sent is perceived uniquely based on the person sending or receiving it. You used the names Sender and
Receiver to differentiate which role a user plays in relation to a single Message, while using the same object
type, Parse.User.

Sending messages happens in the conversation view. This is also where you load messages two users
sent to each other in the past. Besides Sender and Receiver, you use the property message_body in your
Message class to save the actual message text. Using the built-in createdAt property allows you to order the
messages by time. Using the Cordova Dialogs plug-in you were able to add native styles for alerts.

Populating a conversation is composed of two separate queries that are combined to make a compound
query. You use the Parse.Query.or method to select all messages sent between two users. The returned
result is displayed in the conversation view. Using moment.js, you are able to format the time each message
was created in a user-friendly way.

You added some optional user interface optimizations with the Ionic Keyboard plug-in. Further, you
improved the user experience by adding scroll, blur, and focus event handlers to the conversation view. We
use the terms Owner and Partner to distinguish the relationship of conversation participants in the new
custom class MyParseConversation. It stores all of the functionality needed to manage a conversation and
its messages. Using instance methods in the MyParseMessage and MyParseConversation classes, you were
able to keep your templates clean and simple.

195

Chapter 9

Location Services

Life isn’t only about where you’re going. It’s also about where
you’re at.
There are three things you need to know about real estate:

	 1.	 Location

	 2.	 Location

	 3.	 Location

For mobile, it’s not all about location, but it sure counts. Terms like SoLoMo (Social-Local-Mobile) have
been formative for the app industry in the last few years. It’s not the Holy Grail, but a part of it. And after
adding the SOcial part into your MObile application, we’ll show how to implement the LOcation part.

The geolocation plug-in is the perfect example for PhoneGap’s goal, or let’s call it “theory;” using or
pioneering open web standards. It follows the Geolocation API Specification, created by the World Wide Web
Consortium (W3C, http://dev.w3.org/geo/api/spec-source.html). If you already know the navigator.
geolocation API, you don’t need to learn anything new. You can use the same methods and data formats
you already know.

A wide range of browsers (http://caniuse.com/#feat=geolocation) supports this specification. The
hope is that other plug-ins find their way into future browser software releases. A potential example for this
is the PhoneGap camera plug-in (navigator.camera), which we’ll cover in Chapter 10. If these kinds of
features become a part of every browser someday, it’ll be possible to create much richer user experiences
without using a hybrid tool like PhoneGap or an actual native application.

Coming back to the PhoneGap GeoLocation plug-in, as mentioned you can use the navigator.
geolocation object. If the browser (or web view) of the appropriate system supports this API, your
application will use it. If not, PhoneGap will fall back to the native implementation and serve the
information back to the application via the Cordova plug-in API.

In doing so, the plug-in will use different sources to detect the device location, including the Global
Positioning System (GPS) and location inferred from network signals such as IP address, RFID, WiFi,
Bluetooth MAC addresses, and GSM/CDMA cell IDs. Yet there is no guarantee that the API will return the
device's actual location. To explain the usage of the geolocation plug-in, we’ll build upon the previous
tutorials of the Messenger application. You’ll be able to execute all code using your own application and data
examples.

For this example, the goal is to add location information to each message, as you know from services
like the Facebook Messenger. In the second step, we’ll show you how to track a user’s location using a
background service. Then you’ll convert location information into a city name. As a triumphant finale, you’ll
show locations on a map inside the application.

http://dev.w3.org/geo/api/spec-source.html
http://caniuse.com/#feat=geolocation
http://dx.doi.org/10.1007/9781484202364_10

Chapter 9 ■ Location Services

196

■■ Tip  Collecting a device’s, or user’s, location is not just a technical feat. Whenever you track a user’s
location you should give them options to control this: tell them how you use the data, how you save it, and
provide an opportunity for them to delete it. Another factor is the precision of the collected data. If you just save
country or region information once, it’s less critical than if you constantly track the exact position of the user
and create a geo-profile.

Geolocation Plug-in
It all starts with installing the geolocation plug-in. Even though the browser’s implementation of the standard
might be good enough for most cases, some features, like watching a user’s location over time and using the
method navigator.geolocation.watchPosition(), will only work as long as the application is active.

Running such a service in the background will require another plug-in. We’ll come back to the
implementation of this feature at a later point in this chapter. To install the plug-in, run the command shown
in Listing 9-1.

Listing 9-1.  Geolocation Plug-in Installation

cordova plugin add org.apache.cordova.geolocation

In the first part, you’ll use the method navigator.geolocation.getCurrentPosition(). This method
has three parameters, geolocationSuccess, geolocationError, and geolocationOptions.

geolocationSuccess
This callback function is called when a user location is being detected. It will pass the current position as
argument to the function. The format of the response will look like Listing 9-2.

Listing 9-2.  Geolocation Response Format

{
 "timestamp": 1234567895231,
 "coords": {
 "speed": null,
 "heading": null,
 "altitudeAccuracy": null,
 "accuracy": 54,
 "altitude": null,
 "longitude": -73.863131,
 "latitude": 41.756271
 }
}

Chapter 9 ■ Location Services

197

geolocationError
An error callback is executed if an error occurs. You do not need to define an error callback. Yet your
application will just not work in some cases without informing the user of this fact. For your case, this
would be acceptable; if you cannot track the location of the user, the message will still be sent. So the
essentials are fulfilled.

The error object contains an error code and message. You explored some debugging techniques in the
“PhoneGap Testing Tools” section from Chapter 4. You may also debug errors as demonstrated in Listing 9-3.
Although using an alert is admittedly not the best debugging technique, it does what it says on the box and
alerts the user of an error.

Listing 9-3.  Geolocation Response Format

function onError(error) {
 alert('code: ' + error.code + '\n' + 'message: ' + error.message + '\n');
}

geolocationOptions
Use the options enableHighAccuracy, timeout, and maximumAge to customize your request (Listing 9-4). If
you set the value enableHighAccuracy to true, the plug-in will request a more accurate position, such as
GPS. Enabling a higher accuracy might cause a bigger delay for the response and more battery consumption.

The option timeout (in milliseconds) will define the maximum time that is allowed to serve a response.
The option maximumAge will define how “old” location information is allowed to be (also in milliseconds).
By using this option in a smart way you’ll get faster response times and save the user’s battery.

Listing 9-4.  Geolocation Options

{
 enableHighAccuracy: true, // enabled
 timeout: 10000, // 10 seconds
 maximumAge: 300000 // 5 minutes
}

Adding Location Information to a Message
Just debugging numbers is no fun. Eventually you want to use and see this service in action. To do this,
take your Messenger application and extend the MyParseMessage class. Add a new class method called
addLocation() to the class, as shown in Listing 9-5. Call the method every time a message has been sent,
which means in the afterSave() method, which you created in Chapter 8.

Within the addLocation() method make use of the previously introduced navigator.geolocation.
getCurrentPosition() method. The first time a user invokes this method, the application will ask the user
to grant access to this information (iOS), as shown in Figure 9-1. Debug the response via the console plug-in.
You can perform the same test using your desktop web browser.

http://dx.doi.org/10.1007/9781484202364_4
http://dx.doi.org/10.1007/9781484202364_8

Chapter 9 ■ Location Services

198

Listing 9-5.  Using the getCurrentPosition() Method (www/js/models/MyParseMessage.js)

afterSave: function(Message) {
 MyParseMessage.addLocation(Message);
 return Message;
},
addLocation: function(Message) {
 navigator.geolocation.getCurrentPosition(function(location) {
 console.log(location);
 }, function(error) {
 alert('ERROR(' + error.code + '): ' + error.message);
 });
}

■■ Tip I f you base your example on the previous tutorial, make sure to remove the alert('Message was
sent!'); call. Calling an alert will interrupt the execution of navigator.geolocation.getCurrentPosition(),
and the location won’t get tracked.

Figure 9-1.  Geolocation permission request on iOS

Chapter 9 ■ Location Services

199

■■ Tip  If you are using the iOS simulator, make sure that you provide a location to the simulator. You can do
this by selecting Debug ➤ Location in the menu bar. Use either a preset or a custom location. The pre-filled
values of the custom location are based on your current location.

Geolocation Permission Settings
If a user declines the first geolocation permission request, the response of this request and everything
following it will fail. You cannot ask for this permission again within the application. If this issue occurs, you
need to inform the user that he manually has to grant this permission in his phone’s privacy settings (iOS).

To make the adjustment, switch to Settings ➤ Privacy ➤ Location and enable the location services, both
for your phone and your application, as shown in Figure 9-2.

Figure 9-2.  Geolocation permission settings on iOS

Chapter 9 ■ Location Services

200

Geolocation in Parse
Of course Parse offers a special data type for the location matter, and of course Parse uses geographic
coordinates to describe a location. Thus, you can seamlessly move the plug-in location data to Parse.
The data type is called Parse.GeoPoint. It is simply defined by a latitude and longitude value.

Besides saving geolocation information, you can use this data type to run queries to find nearby points
via Parse.Query.near() or to calculate the distance to a point via Parse.GeoPoint.milesTo(). We’ll discuss
these methods as well as other location queries later in this chapter.

To create a new Parse.GeoPoint, pass the values latitude and longitude in the form of an object to
the instance call, as shown in Listing 9-6.

Listing 9-6.  Creating a new Parse.GeoPoint Instance

var point = new Parse.GeoPoint({
 latitude: location.coords.latitude,
 longitude: location.coords.longitude
});

The Parse.GeoPoint can be used as a field in Parse.Object. To assign a Parse.GeoPoint value to
a class, you simply use the Parse.Object.set() method. In your example, you set the value of the field
location to the just-created GeoPoint (Listing 9-7). After assigning the value, you save the Message object.
That’s it! Listing 9-8 demonstrates combining the steps of getting and saving the location.

Listing 9-7.  Assigning a GeoPoint to a Parse.Object

Message.set('location', point);
Message.save();

Listing 9-8.  Getting the Device’s Location and Saving It to Parse (www/js/models/MyParseMessage.js)

addLocation: function(Message) {
 navigator.geolocation.getCurrentPosition(function(location) {
 var point = new Parse.GeoPoint({
 latitude: location.coords.latitude,
 longitude: location.coords.longitude
 });
 Message.set('location', point);
 Message.save();
 }, function(error) {
 alert('ERROR(' + error.code + '): ' + error.message);
 });
} 

Location Setting Interface
As previously discussed, location is not just about technology but also about privacy. In your current
implementation, you add the location straight to the message without giving the user the opportunity to
enable or disable the service.

Your goal is to offer a setting per conversation. So add a location service toggle button right next to the
Send Message button, as shown in Figure 9-3.

Chapter 9 ■ Location Services

201

Figure 9-3.  Geolocation permission settings on iOS

LocalStorage for Device-Related Information
Before updating the user interface, you need to think about saving the setting so that the user doesn’t have
to change it again and again. An important criterion is that this setting is a local one. You do not want to
overwrite another device’s settings when using the application on multiple devices. For this purpose, you
will use the LocalStorage API.

The usage of localStorage does not require a plug-in because it is part of all modern browsers
(http://caniuse.com/#search=localstorage). The LocalStorage API works similar to browser cookies, yet
you can save large amounts of data. It is also known as web storage, simple storage, or by its alternate session
storage interface. The API provides synchronous key/value pair storage, which also offers the advantage that
the data is available instantly, without waiting for an answer from Parse.

Call the method’s getItem() to read a value and setItem() to save a value to the local storage of your
phone (Listing 9-9).

http://caniuse.com/#search=localstorage

Chapter 9 ■ Location Services

202

Listing 9-9.  Reading and Saving Values Using the Local Storage

// Get a value
var foo = localStorage.getItem("bar");
// Set a value
localStorage.setItem("bar", foo);

The next requirement is that this property is not essentially view related; it has a global role. Hence
you’ll outsource this code part into a “module.” Create a new directory called modules in www/js to collect
this and other modules. Add the methods isEnabled() and toggle() to the object app.modules.location
(Listing 9-10).

Listing 9-10.  Location Module (www/js/modules/location.js)

app.modules.location = {
 isEnabled: function(receiver_id) {
 var key = 'location_' + receiver_id;
 return localStorage.getItem(key);
 },
 toggle: function(receiver_id) {
 var key = 'location_' + receiver_id;
 localStorage.setItem(key, !localStorage.getItem(key));
 return localStorage.getItem(key);
 }
};

Use isEnabled() to ask whether the location service is enabled and toggle() to invert the current
value. Use the prefix location_ in combination with the receiver_id as identifier. As it’s a local storage and
the user ID of the conversation partner is unique, this formula is adequate. Add the module to the JavaScript
loader, as shown in Listing 9-11.

Listing 9-11.  Script Loader Configuration (www/js/core.js)

var scripts = {
 common: [
 // vendors
 // ...
 
 // modules
 './js/modules/location.js',
 
 // views
 // ...
]
};

Location Setting Button
Let’s get this module working! Add a location toggle button to the conversation view (Listing 9-12). Your
updated message input area should look like Figure 9-3.

Chapter 9 ■ Location Services

203

Listing 9-12.  Enable/Disable Location Button Template (www/conversation.html)

<div class="btn-toolbar" role="toolbar">
 <div class="btn-group">

 <i class="glyphicon glyphicon-map-marker"></i>

 </div>
 <div class="btn-group">

 <i class="glyphicon glyphicon-send"></i> Send Message

 </div>
</div>

Next, extend your conversation view to handle the button. Call the handler in the initialize() method
of the app.conversation object (Listing 9-13). Assign a click event to the button to process the user input.
In the same moment, ask for the current status of the setting and add the class active to the button if the
user enabled the service prior to this.

Listing 9-13.  Location Button Handler (www/js/views/conversation.js)

initialize: function() {
 // handle location button
 app.conversation.locationHandler();
},
locationHandler: function() {
 var receiver_id = app.core.getParameterByName('id');
 $('#location').on('click', function(e) {
 e.preventDefault();
 app.modules.location.toggle(receiver_id);
 $('#location').toggleClass('active');
 });
 if(app.modules.location.isEnabled(receiver_id)) {
 $('#location').addClass('active');
 }
}

Eventually, in the addLocation() method of the MyParseUser class, you prevent the geolocation code
from being executed if the user did not enable the location service (Listing 9-14).

Listing 9-14.  Updated addLocation Method (www/js/models/MyParseMessage.js)

addLocation: function(Message) {
 var receiver_id = Message.get('Receiver').id;
 if(!app.modules.location.isEnabled(receiver_id)) {
 return false;
 }
 navigator.geolocation.getCurrentPosition(function(location) {
 console.log(location);
 });
}

Chapter 9 ■ Location Services

204

Background Service for Location Tracking (iOS)
Another interesting, but challenging, use case is to track the user’s location in the background. There are
many reasons you may want to add a background service to your application, such as if you want to build a
running app like the well-known Nike Running app (Figure 9-4). Applications often need to run concurrently
with other apps. This next section explores how to do so using the background plug-in.

Figure 9-4.  The Nike Running app tracks your geo location using a background task

There is one downside for this section: we cover the iOS part only. For an Android implementation of
the used plug-in, you cannot use the Parse JavaScript SDK but you can build middleware, which would turn
a request defined by the plug-in into Parse data; it’s possible, but it’s beyond the scope of the book. If you
want to build an Android version of this example, please refer to the plug-in documentation.

Chapter 9 ■ Location Services

205

Plug-in Setup
For this tutorial you’ll use the background geolocation plug-in. To install the plug-in, use the plugin add
command in Listing 9-15. Next, enable the location background mode in Xcode. Navigate to Capabilities of
the build target and enable Location updates in the section “Background Modes,” as shown in Figure 9-5.

Figure 9-5.  Enable the background mode called location updates in Xcode

Listing 9-15.  Installing the Plug-in

cordova plugin add https://github.com/christocracy/cordova-plugin-background-geolocation.git
 

Next, add a function to call the tracking code in the core of your app (Listing 9-16), for example after you
run your access control script app.core.accessControl(). Add a new function named track to the module
location (Listing 9-17). For logged-in users, create a reference to the backgroundGeolocation plug-in. If
you do not add user information to the tracking task, you will get a lot of unusable results.

Listing 9-16.  Executing the Tracking Code in Your App Core (www/js/core.js)

app.modules.location.track();

Listing 9-17.  Adding Track Function in the Location Module (www/js/modules/location.js)

track: function() {
 if (!Parse.User.current()) {
 return;
 }
 var bgGeo = window.plugins.backgroundGeoLocation;
}

https://github.com/christocracy/cordova-plugin-background-geolocation.git

Chapter 9 ■ Location Services

206

Device Identification
Another criterion of the tracking script is the ability to allocate a data stream to one device. Each device has
a Universally Unique Identifier (UUID). To get this ID, you need to use another plug-in, the Cordova Device
plug-in.

This plug-in defines a global device object, which describes the device's hardware and software. You
can get a model or product, like iPhone 5.1 or Nexus One, using device.model. The value is set by the
device manufacturer and may be different across versions of the same product. More helpful is probably the
value device.platform, which will tell you the device’s operating system name. You can implement switches
for Android and iOS to adjust your application to the corresponding operating system if needed.

Most important for your goal is the value device.uuid, which will return the UUID. To install the
plug-in, use the command shown in Listing 9-18.

Listing 9-18.  Adding the PhoneGap Device Plug-in

phonegap plugin add org.apache.cordova.device

Save Data to Parse
Continue by adding a new function named onSuccess() to save the location to the Parse database inside
(!) the track function (Listing 9-19). The function will receive a location object containing latitude and
longitude. You’ll create a new Parse.Object named “Tracker,” and assign a Parse.GeoPoint, the current
Parse.User, and the device’s UUID.

After executing the save() method, you execute bgGeo.finish() to tell the system that the background
task is finished, no matter whether the save() action was successful or not. If you don’t do this, you risk
having your application terminated by iOS for spending too much time in the background.

Listing 9-19.  The Success Callback Function Saves Data to Parse

var onSuccess = function(location) {
 var point = new Parse.GeoPoint({
 latitude: location.latitude,
 longitude: location.longitude
 });
 var ParseTracker = Parse.Object.extend("Tracker");
 var Tracker = new ParseTracker();
 Tracker.set("location", point);
 Tracker.set("User", Parse.User.current());
 Tracker.set("uuid ", device.uuid);
 
 Tracker.save().then(function() {
 bgGeo.finish();
 }).fail(function() {
 bgGeo.finish();
 });
};

Furthermore, add an error callback function, which will log the error and report the completion of the
background process, too (Listing 9-20).

Chapter 9 ■ Location Services

207

Listing 9-20.  Error Callback Function

var onError = function(error) {
 console.log('code: ' + error.code + '\n' +
 'message: ' + error.message + '\n');
 bgGeo.finish();
};
 

The plug-in accepts multiple options regarding the accuracy of the requests as well as for debugging
(Listing 9-21). Adjust the options to your needs. For testing purposes, keep the recommended debugging
options. While running in the background, app notifications will tell you about the activity of the background
task, as shown in Figure 9-6. Add the options object to the track() function as well.

Figure 9-6.  Enable the background mode called location updates in Xcode

Chapter 9 ■ Location Services

208

Listing 9-21.  Geotracking Plug-in Options

var options = {
 desiredAccuracy: 10,
 stationaryRadius: 20,
 distanceFilter: 30,
 notificationTitle: 'Background tracking',
 notificationText: 'ENABLED',
 activityType: 'AutomotiveNavigation',
 debug: true,
 stopOnTerminate: false
};

Running Background Task
Before calling the plug-in, make sure that the getCurrentPosition() of the geolocation plug-in is called at
least once. Otherwise, you could run into the issue that the user did not grant the location permissions. If
you are using the iOS simulator, constantly check your location information, which you can change in
Debug ➤ Location. The simulator might reset this information after you build your application.

As a last step (Listing 9-22), configure the plug-in by passing the onSuccess and onError as well as the
options object to the function bgGeo.configure(). Start the background task via bgGeo.start(). You may
end the task using the command bgGeo.stop().

Listing 9-22.  Configuring and Starting the Background Task

window.navigator.geolocation.getCurrentPosition(function(location) {
 bgGeo.configure(onSuccess, onError, options);
 bgGeo.start();
});

Testing Your Results
As in the other tutorials, it’s now time to test the application and review the results in the Parse Data browser
(see Figure 9-7). Beside using the simulator and adding fake locations, deploy the application to your phone
and test it in the real world. Start the app and go running in the park or take a ride on the subway. Seeing real-
world results will help you to adjust your application code to your real needs and motivate you to build more.

Chapter 9 ■ Location Services

209

Furthermore, use tools like Mapbox, Google Maps, Github’s geoJSON mapping, or CartoDB (which we’ll
introduce in the next section) to visualize your tracking results. Later in this chapter we’ll help you display
geolocation data on a map inside your application.

Excursion: CartoDB
A big part of building good apps is testing them. This is especially difficult in the case of geodata. Those
numbers often don’t say a lot to us. Yet there is a tool to help us: CartoDB. CartoDB is a Software as a Service
cloud computing platform that provides mapping tools for the Web. You can sign up for a free account on
www.cartodb.com.

Next, you need to prepare your test data. CartoDB accepts different file formats. You are using the
geoJSON format because you can easily create an export using the Parse JavaScript SDK. Query your results
as shown in Listing 9-23, apply filters if needed, and print the result to your console. Add the script to your
location module and call the function app.modules.location.export() at any place of your application
(after Parse is loaded). Create a new file (named data.geoJSON) based on the structure of Listing 9-24 and,
instead of your example values, use the console output as value for the key coordinates.

Figure 9-7.  Tracking results in the Parse Data browser

http://www.cartodb.com/

Chapter 9 ■ Location Services

210

Listing 9-23.  Exporting Tracked Geopoints (www/js/modules/location.js)

export: function() {
 var ParseTracker = Parse.Object.extend("Tracker");
 var query = new Parse.Query(ParseTracker);
 query.ascending("createdAt");
 query.find().then(function(results) {
 var locations = [];
 $(results).each(function(index, result) {
 var point = result.get('location');
 locations.push([point.longitude, point.latitude]);
 });
 console.log(JSON.stringify(locations));
 });
}

Listing 9-24.  GeoJSON-Formatted Tracking Results

{
 "type": "FeatureCollection",
 "features": [{
 "type": "Feature",
 "geometry": {
 "type": "LineString",
 "coordinates": [
 [-73.972727, 40.765815],
 [-73.972984, 40.768936],
 [-73.970581, 40.771048],
 [-73.968586, 40.772787],
 [-73.969787, 40.773502],
 [-73.972427, 40.773762],
 [-73.975323, 40.774851]
]
 }
 }]
}
 

Create a new table in CartoDB and use the created file as the data source. Your result should look
something like Figure 9-8, showing your own tracking results.

Chapter 9 ■ Location Services

211

■■ Tip  You can export your geolocation data by using the option More ➤ Export Class in the Parse
Data Browser.

Geocoding
In the leading part of this chapter, you captured the user’s location and attached their information to a
message. Before displaying this location using a map, you’ll start with an easier but still very helpful feature:
converting the geographic coordinates into a location name, which could be the name of a city, like
New York City.

Doing this will help you and the user a lot. Displaying and loading a map view is an expensive task.
Using a text value to serve an abstract description of a location will be a sufficient piece of information for a
user to determine whether they want to know more about the actual location. If so, they’ll be able to tap the
location and get a detailed map view, which we’ll explain in Chapter 10.

Furthermore, you’ll have the ability to display multiple locations within one view. You’ll combine the
map information with other elements of your application. In your case, you’ll use the location name as a
label right next to each message.

Mapbox
Both for converting the user’s geolocation into an actual location or city name and displaying maps
inside your application, you’ll use the service Mapbox shown in Figure 9-9 (www.mapbox.com/). For the
development phase or small apps, Mapbox is free to use. For traffic-heavy apps, Mapbox offers paid plans
ranging from $5 to $499 a month.

Figure 9-8.  GeoJSON Import to CartoDB

http://dx.doi.org/10.1007/9781484202364_10
http://www.mapbox.com/

Chapter 9 ■ Location Services

212

One of the big strengths of the Mapbox visualization software is the ability to easily customize the
styling of your map. So instead of having the same style as every other app, you can add a custom
taste to yours.

■■ Note  If you are familiar with the Google Maps SDK, you can use this one instead. The Mapbox JavaScript
SDK structure is similar to Google’s. Transferring between each other is a mostly frictionless process.

The Mapbox Platform
As with Parse, Mapbox requires you to create an account to use their services. Yet there is a structural
difference, which is the distinction between projects and application tokens. A project is the representation
of a map styling configuration; in addition it may contain data like markers or lines. Next, your account will
have one default application instance, which may possess one or several application tokens.

When adding a map to your application, you use a combination of a project ID (we could also say
“map ID”) and an access token to identify your application. To use web services like geocoding, you just
need to identify using an access token.

There are two types of access tokens: public and secret access tokens. Secret tokens are required when
you want to make edits to your map via the Mapbox API. Thus they should be used in environments where
they can be kept secret, such as in a native mobile application. As your feature will only need reading
permissions, you can use either a public or a secret access token.

Figure 9-9.  Mapbox home page

Chapter 9 ■ Location Services

213

Mapbox Account and Project Setup
Head over to www.mapbox.com/ and sign up for a free account. Mapbox will automatically create a new
project named “My First Map.” This map will contain a marker based on your location. Either remove the
marker in the data section of the map settings or create a new map to make sure you start with a fresh and
clean map.

Write down the map ID, which you can find in the project list view or when you access the map styling
view, as shown in Figure 9-10. Next, get your (secret) application access token. You can find it in the section
Account ➤ Apps (www.mapbox.com/account/apps/).

Figure 9-10.  The Mapbox styling view

Geocoding in the Parse Cloud
Mapbox’s geocoding service is a classic web service. This means you will send an HTTP request containing
location information to Mapbox and will get back a response. Since you already saved the geolocation
information to the Parse database, and this request will require additional network resources, you will not
run this process on your client application, but in the Parse Cloud.

■■ Note  Before moving on, you quickly need to set up a Parse cloud code instance in your development
environment. We describe the process of setting up Parse cloud code and deploying code in Chapter 3. In short,
run parse new ProjectName to create a new local Parse cloud code instance. You will find all cloud code files
in the directory ProjectName/cloud/. Run parse deploy in the project directory to deploy code to the Parse
cloud. In your example, you used the project name TheMessengerCloud.

http://www.mapbox.com/
http://www.mapbox.com/account/apps/
http://dx.doi.org/10.1007/9781484202364_3

Chapter 9 ■ Location Services

214

Adding a Location to a Message
You already know the Parse.Cloud.afterSave() method from previous chapters. It will be executed every
time the corresponding object is saved. You could use this method to invoke the geocoding process. After
sending a Message, you add the location information to the Message object, save it, get the location name, and
save the Message object again. At the root level, a cloud function for the Message object looks like Listing 9-25.

Listing 9-25.  Handling Operations After Saving an Object

Parse.Cloud.afterSave("Message", function(request) {
 // Code executed after saving the Message object
});

Using this route, you can already anticipate some trouble: saving the Message object as part of an
afterSave event will end up in an infinite loop if you don’t catch it by some exception rule. Next, if you
update a message, for example as being read, you don’t need to update the location name again and again.

To avoid handling such cases, you define a Parse cloud function which you trigger immediately after
getting the user’s location and adding it to the Message object. This way, the only dependency created is the
necessity of having a network connection, which should be granted as sending messages requires a network
connection as well.

As shown in Listing 9-26, you can define such a cloud function using Parse.Cloud.define
('example_name'). The function will contain the process of adding a location name. To invoke the cloud
function by the client (your application), you simply call Parse.Cloud.run('function_name').

Listing 9-26.  Defining a Cloud Function (TheMessengerCloud/cloud/main.js)

Parse.Cloud.define("MessageAddLocationName", function(request, response) {
 
});

To match your plan, this should happen in the function addLocation() of the MyParseMessage class.
To identify the message to be updated, you pass the Message.id as parameter to the cloud function call
(Listing 9-27).

Listing 9-27.  Text (www/js/models/MyParseMessage.js)

Message.save().then(function() {
 Parse.Cloud.run('MessageAddLocationName', {
 id: Message.id
 });
}); 

Recreating the Message Instance
Once the cloud function MessageAddLocationName is called, you need to recreate the instance of the
corresponding Message object. You run a simple query on the Message table using the ID passed as
parameter. Doing this, you seamlessly check whether the Message actually has a location value attached to
it. If not, there is no need, or possibility, to add a location name. You can see an example implementation of
this process in Listing 9-28.

Chapter 9 ■ Location Services

215

Listing 9-28.  Text cloud/cloud/main.js

var query = new Parse.Query("Message");
query.get(request.params.id, function(Message) {
 var location = Message.get('location');
 if (!location) {
 return response.error("No location provided");
 }
}).fail(function(error) {
 response.error(error);
});

■■ Tip  Debugging code in the Parse cloud is a difficult job. Test the code of your cloud function locally in a web
browser before running it in the cloud.

Converting the Geolocation into a Location Name
Earlier in this chapter, we introduced the Mapbox service, and you created an account as well as a
Mapbox application access token. In this next step, you’ll use their geocoding API to convert the message’s
geolocation into a location name.

The Mapbox geocoding API is a simple HTTP service. This means you can use any technology that
supports the HTTP protocol to use the service. It’s perfect for your case because the Parse cloud includes a
networking module with which you can interface programmatically.

The method therefore is named Parse.Cloud.httpRequest and allows you to send HTTP requests to
any HTTP server. It behaves similar to the jQuery.ajax() method, where you define a URL to be requested,
add arguments, and execute more code once the request is done. All options are passed using an options
object to the method call. There is a limit of executing two HTTP requests at the same time. Any additional
requests will be queued up.

Defining an HTTP GET Request
The most common request you will probably do is am HTTP GET request, such as reading data like a news
feed from a service. You pass a URL to the method using the key url. You can also add query arguments
using the params key. As with other Parse objects, you can define a success and error function to run after
the request has completed. The example provided in Listing 9-29 invokes an HTTP request to the URL
http://www.google.com/search?q=phonegap.

Listing 9-29.  Sending an HTTP Request Using the Parse Networking Module

Parse.Cloud.httpRequest({
 url: 'http://www.google.com/search',
 params: {
 q : 'phonegap'
 },

http://www.google.com/search?q=phonegap
http://www.google.com/search

Chapter 9 ■ Location Services

216

 success: function(httpResponse) {
 console.log(httpResponse.text);
 },
 error: function(httpResponse) {
 console.error('Request failed with response code ' + httpResponse.status);
 }
});

POST Requests and HTTP Headers
You may also use other HTTP request methods like POST or DELETE. If you want to send a POST request to a
server, you have to use the key body to pass data to the target server. In addition, you can use the key headers
to define HTTP headers, as shown in Listing 9-30.

Listing 9-30.  Sending a POST Request

Parse.Cloud.httpRequest({
 method: 'POST',
 headers: {
 'Content-Type': 'application/json;charset=utf-8'
 },
 url: 'http://www.domain.com/path',
 body: {
 key: 'value'
 },
 success: function(httpResponse) {
 console.log(httpResponse.text);
 },
 error: function(httpResponse) {
 console.error('Request failed with response code ' + httpResponse.status);
 }
});

Geocoding Methods
After this short crash course for the Parse Cloud Networking Module, you are ready to access the Mapbox
Geocoding API. The API offers so-called forward and reverse geocoding.

Forward Geocoding
Forward geocoding is the process of translating a location name-based query (e.g. New+York+City) into a
geoposition (which would be [40.78853, -73.946246] for New York City). Besides your query, you need to
define a dataset to run this query against. These datasets are called index. The different indexes are shown
in Table 9-1.

http://www.domain.com/path

Chapter 9 ■ Location Services

217

The format for any request looks like the snippet in Listing 9-31. A “New York City” example is shown in
Listing 9-32. A request response will contain a feature dataset that best matches the input query text. It may
include one or more results ordered by relevance. Listing 9-33 shows a response example.

■■ Note T he order of latitude and longitude is inversed: the first value of the response array -73.946246 is the
longitude, the second value of 40.78853 is the latitude.

Listing 9-31.  Forward Geocoding API URL Structure

http://api.tiles.mapbox.com/v4/geocode/{index}/{query}.json?access_token={access-token}

Listing 9-32.  Forward Geocoding API URL Example Using New York City

http://api.tiles.mapbox.com/v4/geocode/mapbox.places-city-v1/New+York+City.json?access_
token={access-token}

Listing 9-33.  Mapbox API Response Example

{
 type: "FeatureCollection",
 query: ["new", "york", "city"],
 features: [{
 id: "city.10001",
 type: "Feature",
 text: "New York",
 place:name: "New York",
 relevance: 1,
 center: [-73.946246, 40.78853],
 geometry: {
 type: "Point",
 coordinates: [-73.946246, 40.78853]
 },
 bbox: [
-74.0472935031892, 40.68391219248488,
-73.91057831367289, 40.877656790011784
],

Table 9-1.  Mapbox Geocoding Indexes

Index Features

mapbox.places-v1 Full geocoding stack (default)

mapbox.places-country-v1 Countries

mapbox.places-province-v1 Provinces

mapbox.places-postcode-v1 Postal codes

mapbox.places-city-v1 Cities

mapbox.places-addresses-v1 US addresses

http://api.tiles.mapbox.com/v4/geocode/%7Bindex%7D/%7Bquery%7D.json?access_token=%7Baccess-token
http://api.tiles.mapbox.com/v4/geocode/mapbox.places-city-v1/New+York+City.json?access_token=%7Baccess-token
http://api.tiles.mapbox.com/v4/geocode/mapbox.places-city-v1/New+York+City.json?access_token=%7Baccess-token

Chapter 9 ■ Location Services

218

 properties: {
 title: "New York,NY,NYC"
 }
 }],
 attribution: ""
} 

Reverse Geocoding
The second API method, which you’ll actually need for your app’s purposes, is reverse geocoding. In a
reverse geocoding request, you provide latitude and longitude coordinates to obtain a more standardized,
abstract geo object, like a ZIP code, a street address, or a city name.

For these requests, you can use the Mapbox geocoding indexes like mapbox.places-country-v1 as well.
This means you can use a very precise geoposition just to determine whether a user is in one country or
another. The response includes at most one result from each geocoding index.

The format for a reverse geocoding request is shown in Listing 9-34. As with the request, the order for
latitude and longitude is inversed.

Listing 9-34.  Forward Geocoding API URL Structure

http://api.tiles.mapbox.com/v4/geocode/{index}/{longitude},{latitude}.json?access_
token={access-token}

Combining Parse and Mapbox
Now that you understand the Parse Networking Module and the Mapbox Geocoding API, let’s bring these
technologies to life. Head back to the Parse cloud function MessageAddLocationName.

After getting the Message object, send an HTTP request to the Mapbox API, as shown in Listing 9-35. By
choosing the index mapbox.places-city-v1 you make sure that the first and only result is a city name. Use
the access token created in the beginning of this section in params.

Listing 9-35.  Running an HTTP Request to the Mapbox API in the Cloud (TheMessengerCloud/cloud/main.js)

Parse.Cloud.httpRequest({
 url: 'http://api.tiles.mapbox.com/v4/geocode/mapbox.places-city-v1/' +
 location.longitude + ',' + location.latitude + '.json',
 params: {
 'access_token': '{access_token}'
 }
}).then(function(httpResponse) {
 // Note: The API response handling method
 // will be populated later in this chatper
}).then(function() {
 // Send a success response if the location name was added
 response.success("Location name added ");
});

http://api.tiles.mapbox.com/v4/geocode/%7Bindex%7D/%7Blongitude%7D,%7Blatitude%7D.json?access_token=%7Baccess-token
http://api.tiles.mapbox.com/v4/geocode/%7Bindex%7D/%7Blongitude%7D,%7Blatitude%7D.json?access_token=%7Baccess-token
http://api.tiles.mapbox.com/v4/geocode/mapbox.places-city-v1/

Chapter 9 ■ Location Services

219

■■ Tip  Parse.Cloud classes are only accessible in a Parse cloud environment. To test the code used in
combination with these methods locally, you need to simulate their behavior. This sounds more complicated
than it actually is. For example, replace the Parse.Cloud.httpRequest by using a jQuery call (e.g. jQuery.
load()). This way you can test whether you are using the right arguments and debug the API response in your
browser before using Parse’s Cloud code.

Parsing Geodata
The API response httpResponse will look like Listing 9-33, yet it will show a geoposition instead of a string
value for the key query. To convert the response into a JavaScript object, use the method JSON.parse().
The first element of the array features will contain the location name.

Depending on your query type, the values for text and place:name will behave differently. In your
example, they’re the same, yet in general place:name will be a more detailed value like New York, 10029,
New York, United States.

Add the values as they fit your needs best to the Message object and save it, as shown in Listing 9-36.
If no location is found, return an error response using response.error().

Listing 9-36.  Converting the API Response and Saving It to the Message Object (TheMessengerCloud/
cloud/main.js)

var data = JSON.parse(httpResponse.text);
 
if (!data.features || !data.features[0]) {
 return response.error("Could not add location");
}
 
Message.set('location_text', data.features[0].text);
Message.set('location_text_long', data.features[0].place:name);
Message.save();
 
return Message; 

■■ Tip  After updating your code, don’t forget to deploy updates using parse deploy. If you run into any
issues, you can identify errors taking a look at the logs in the Parse application dashboard
(Section: Core ➤ Logs).

Displaying the Location Name
You now want to display the gathered values in the conversation view. You need to assume that some
messages won’t have a location name to display or won’t have location information at all.

Chapter 9 ■ Location Services

220

To handle these cases in a centralized place, add a function named getLocationText() to the
MyParseMessage class (Listing 9-37). If there is a location, add the prefix from... to indicate that the message
was sent from the location provided in location_text. For debugging purposes, you return a rounded
geo-position for messages having a location. And finally, if there is no location information; the function will
return no value.

Add the method to each message block in the conversation template. In preparation for adding a map
view, which you’ll do later in this chapter, wrap the output with a link including the Message.id as data
attribute.

As with any application data, you need a way for the user to be able to view it. Update the conversation
view with the returned value of the getLocationText function (Listing 9-38).

Listing 9-37.  Handling the Different States of the location_text Value in the MyParseMessage Class
(www/js/models/MyParseMessage.js)

getLocationText: function() {
 if(this.get('location_text')) {
 return 'from... ' + this.get('location_text');
 }
 if(this.get('location')) {
 return 'from unknown location (' +
Math.round(this.get('location').latitude*100)/100+',' +
Math.round(this.get('location').longitude*100)/100+')';
 }
 return '';
}

Listing 9-38.  Adding the Location Name Output to the Conversation Template (www/conversation.html)

<div class="small">
 {{ getFromNow }}
 {{#if getLocationText }}

 {{ getLocationText }}

 {{/if}}
</div>

Testing Your Updates
Rebuild your application and run it. Previously sent messages having location information will show the
numeric values. Send some new messages to invoke the location name scripts. Your new messages should
display a location name right next to the time information, as shown in Figure 9-11.

Chapter 9 ■ Location Services

221

Keep in mind that the location information is added after you send each message, and will take a few
milliseconds to populate. If you added a function to either refresh your latest messages or directly add the
new Message to your view, you won’t see the location name immediately. You can improve this behavior by
re-rendering the messages, or the last message, once the cloud function ran successfully. Listing 9-39 shows
an example of such a promise handler.

Listing 9-39.  Updating the Message Display After Getting the Message’s Location Name (www/js/models/
MyParseMessage.js)

Parse.Cloud.run('MessageAddLocationName', {
 id: Message.id
}).then(function() {
 // Refresh Messages
});

Figure 9-11.  The location name is displayed right next to the time information of each message

Chapter 9 ■ Location Services

222

Summary
This chapter explored the navigator.geolocation JavaScript API. With it, you were able to add location-
aware services to your application.

Using the navigator.geolocation.getCurrentPosition() function, you added the option of sending a
message to someone tagged with the location of the sender. In order to access the geoposition from a device,
permission must be granted by a user through the device’s settings.

Parse uses a special type of data for geodata called GeoPoint. This field stores the latitude and
longitude global positions to pinpoint the location of a device. When combined with the navigator’s
getCurrentPosition function, you saved the data necessary to plot a point on a map. After adding location
functionality to your application, you added a user interface element so that users could decide to share
their location when sending a message.

Using HTML5 localStorage, you were able to create a custom module that checked to see if the user
allowed access to their location information. This gives you the ability to toggle usage of geopositioning
without having the user update their device settings.

You used a background process to constantly monitor a user’s position. To use these background
modes, you enabled “Location updates” in the Capabilities section of the application settings in Xcode. An
example use case for this is a running app where plotting a device’s location is used to create a map. Using
Parse, you saved the coordinates of the device’s location at intervals. The stored geodata can be used to
create a track on a map for a visual representation of the device’s path.

There are plenty of map services available to developers for visualizing location information. You used
one of these mapping services, CartoDB, to create a path using several geopoints and plot them on a map.
This could be used to create running, biking, or other forms of tracking applications.

The latitude and longitude values that you collect for each geolocation aren’t very user friendly. Using
the Mapbox service, you added the ability to translate these values into understandable location names, like
New York City instead of 40.71448, -74.00598. With this metadata, you added text to each message sent in
the Messenger application.

223

Chapter 10

Map Views

Adding Map Views in PhoneGap –JavaScript vs. Native Maps
Adding a map to your application in PhoneGap can be a challenging and complicated task that has many
approaches and solutions. In the end, you can break it down to a simple rule: By using JavaScript-based
libraries, you will get the fastest results and feature-rich maps without the hassle of developing a platform
specific implementation.

Using native map SDKs via plug-ins will result in a smooth and fast map experience; however, they have
a lot of limitations. These limitations include the lack of features, the impossibility to use them directly in
your HTML code, and the intense time requirements needed to implement such a solution.

Before jumping into actual code samples, we’ll uncover the strengths and weaknesses of each approach
so that you can make a decision that fits your needs.

Two Approaches to Adding Map Views
There are two general approaches to adding map views: JavaScript libraries and native map SDKs. In this
section, we’ll discuss both approaches and provide a recommendation.

JavaScript Map SDKs
As stated, using JavaScript SDKs is a fast and easy solution. As amazing as it seems, there are two downsides
to this approach: a lack of performance and the inability for stepless zooming.

All current major web-based map services are based on pixel tiles, which is also known as Web Map
Tile Service (WMTS). Each tile is usually a 256x256 pixel-sized, pre-rendered image of a geographic region.
The corresponding JavaScript library will arrange and merge those tiles to one map view, based on the zoom
and position of the view. If you zoom in, tiles with a higher level of detail are loaded and placed on the map
canvas. If you move north, east, south, or west, more tiles are added to either side of the map. Relying on a
web browser to deliver a smooth experience can be unpredictable. Download speeds and device-processing
power vary between all users, so creating a consistent experience is virtually impossible.

As you can imagine, a world map could be built up by billions of tiny tiles. Usually map services offer
about 20 different zoom levels, from 1 (the world view) to 20 (the street view). To truly create a smooth map
experience for the user, an entire map of the content would need to be preloaded so that when the user
interacts with a new area, the map reacts instantly. While lacking a smooth experience, zooming to a content
area in steps, so that loading can occur, is an efficient way to save the user bandwidth.

To create a stepless, smooth experience, you would need an infinite amount of zoom levels, all with
content that will need to be fetched from a server and rendered to the user. Long story short: This technology
is not made for stepless zooming.

Chapter 10 ■ Map Views

224

With that said, there are solutions that have been emerging recently that aim to create a better map
experience for the Web, particular mobile. With JavaScript APIs such as Web Graphics Library (WebGL),
interactive 2D and 3D rendering is possible with a web browser.

One of the companies pioneering this effort is Mapbox, which you’ll learn more about in the next
section. For more information on their WebGL maps, check out mapbox.com/blog/mapbox-gl/.

Native Map SDKs
To create a smooth, stepless zooming experience, a map service needs to be based on vector tiles instead of
pixel tiles. Vector-based tiles are mathematically created and instantly render a location on a map. The Apple
Mapkit or Google Maps iOS SDK is an example of this technology. They both allow users to zoom and rotate
the map without being forced into predefined zoom levels, as would be the case in a WMTS-based map.

Native map applications are composed of proprietary operations that are designed to run quickly and
efficiently, creating a pleasant experience for the user. The rendering of map objects are executed using
multiple processes, or threads, that are independent of each other.

For the application you’re building in this chapter, the user message interface needs to be shown at
all times so that users can still interact with the rest of the application. Integrating a native map into an
HTML-based project may take away from the user experience. It would require platform specific plug-ins,
unnecessary hacking, and a constant struggle with the limitations of this approach.

Recommendation
So what should you do? If you want to create an application that highly depends on a map experience
(take Foursquare, for example), you need to develop this view in its entirety as a native application—or at
least the map sections as a native view.

It’s a complex topic, but, in short, you can “mix” a PhoneGap application with a native application. This
will force you to develop some parts individually for iOS and Android but still give you the opportunity to
save time and resources by sharing simple views.

Using a combined native and web application can be done tastefully without compromising the
integrity of the app. For example, a native app can choose to manage administrative profile settings hosted
on a web site, rather than have a native UI for this. Crafting the right user experience differs from app to app;
use your best judgment on which approach to take based on your application.

Anyway, coming back to the strengths of PhoneGap. You can use JavaScript SDKs you already know
for adding maps to your application. This approach will work the same as if you would develop a web
application. This is perfectly fine as long as you use maps as an addition to your application, and not as a
core feature. Likewise, if you use map views as static elements, there is no need to install a map plug-in.

Adding a JavaScript Map View
Previously, we captured and displayed the user’s location alongside each message. In this next feature
update, we’ll add an element showing this location on a map in the form of a marker. You can see an
example implementation of this feature in Figure 10-1. We won’t display the map for every message when
rendering the view. Instead, we’ll add an event handler to the location name and display the map on click.

https://mapbox.com/blog/mapbox-gl/

Chapter 10 ■ Map Views

225

■■ Note E ven though adding a map will have a big visual impact on our product, the implementation is very
compact and easy. Generally speaking, this is an important aspect for every developer. Complex features—such
as getting a user’s location, saving it to a database, or using geocoding to add a location name—seem so easy,
as their execution is not visual. Yet, as you learned, they require a lot of pieces working together to as expected.

Mapbox JavaScript Library Setup
You can find the latest Mapbox JavaScript and CSS files on the Mapbox developer page: www.mapbox.com/
developers/. Choose the JavaScript library documentation. The Get Started section will tell you the URLs, as
shown in Listing 10-1.

Figure 10-1.  Example visualization of a map view using Mapbox and OpenStreetMap. The marker indicates
the location of the message from where it was sent

http://www.mapbox.com/developers/
http://www.mapbox.com/developers/

Chapter 10 ■ Map Views

226

Download the files, and then add the CSS file to your HTML views in which you want to add a map view.
Do the same for the Mapbox JavaScript file or add it to your JavaScript loader to make the library accessible
globally. At the bare minimum, you should add the files to the conversation view www/conversation.html.
Add a script reference to the page using the following snippet:

<script src='https://api.tiles.mapbox.com/mapbox.js/v2.2.0/mapbox.js'></script>
<link href='https://api.tiles.mapbox.com/mapbox.js/v2.2.0/mapbox.css' rel='stylesheet' />

Adding a Map to a Message
In the previous section, we wrapped the location name in a link tag. First, we’ll use this link to add an
event handler (Listing 10-1). On click, we will create a new map instance. In our example, we add the <div>
container, which will host the map canvas on the fly (the moment the location name is selected). You may
add it to your handlebars template, yet this will cause the effort of targeting, hiding, and showing this
element. It’s simpler to just inject the map when we need it. Next, we’ll add some Twitter Bootstrap styles to
the map container. We store the styles in the variable mapClasses, as we will dynamically remove and add
these classes at a later point.

Listing 10-1.  The Event Handler Calling the addMap Function (www/js/views/conversation.js)

$('a.location-text').on('click', app.conversation.addMap);

Set your Mapbox access token as shown in 10-2 Create a new map instance using L.mapbox.map. We use
the scope variable map to store our map instance. This way, we are able to have multiple map views within
one view without causing naming conflicts. If you want to have a global map instance, write the instance to
the window object using window.map instead.

As our map view is very small, we remove the map controls by setting zoomControl to false. For this
same reason, we disabled map credits by setting the attribute attributionControl to false. Don’t forget
to give map credits in some other way; you must comply with the licensing terms of any map data in your
application.

Listing 10-2.  Adding a Map View to the Message (www/js/views/conversation.js)

addMap: function(event) {
 event.preventDefault();
 // Add Map Element
 var mapClasses = 'alert well-sm alert-info';
 $('<div id="mapbox" class="' + mapClasses + '"></div>').insertBefore(this);
 // Set Mapbox Access Token
 L.mapbox.accessToken = '{your-mapbox-access-token}';
 // Create Mapbox Instance
 var map = L.mapbox.map('mapbox', '{your-mapbox-map-id}', {
 zoomControl: false,
 attributionControl: false
 });
}

Besides creating an instance of a map, we also want to show something on it: the location of the
message from where it was sent. To identify each message in the view, we previously added the Message.id
as a data attribute to the link tag.

https://api.tiles.mapbox.com/mapbox.js/v2.2.0/mapbox.js
https://api.tiles.mapbox.com/mapbox.js/v2.2.0/mapbox.css

Chapter 10 ■ Map Views

227

Instead of loading the corresponding Message object again, we should access the messages data we
queried before. To make this data accessible in an organized way, we cache all messages in a new object
variable named app.conversation.Messages. We populate the variable in the renderMessages function as
shown in Listing 10-3. While doing this, we create a simple message index by using their respective IDs as
object keys.

Listing 10-3.  Update the renderMessages Method (www/js/views/conversation.js)

renderMessages: function() {
 var limit = 5;
 MyParseConversation.getMessages(app.conversation.Receiver,
limit).then(function(Messages) {
// Render Messages ...
 $(Messages).each(function(index, Message) {
 app.conversation.Messages[Message.id] = Message;
 });
 });
}

Now that we are able to access each message’s information via the Message.id, we can set the
map center to the message’s location and chose an appropriate zoom level using the method map.
setView(location, zoom). The marker is being added via the method L.mapbox.featureLayer(options).
addTo(map), as shown in Listing 10-4.

The options object will contain a complex set of variables. The most important value for our purpose
is geometry.coordinates. It contains an array of the user’s locations. Note that the order of latitude
and longitude is inverted in this case. The function map.setView() uses the default notation. Use
properties.title to display the sender name and properties.description to display the message body.

Listing 10-4.  Place a Position on a Map Based on the Selected Parse Message
(www/js/views/conversation.js)

var Message = app.conversation.Messages[$(this).data('id')];
map.setView([Message.get('location').latitude, Message.get('location').longitude], 14);
 
L.mapbox.featureLayer({
 type: 'Feature',
 geometry: {
 type: 'Point',
 coordinates: [
 Message.get('location').longitude,
 Message.get('location').latitude
]
 },
 properties: {
 title: Message.get('sender').get('first_name'),
 description: Message.get('message_body'),
 'marker-size': 'large',
 'marker-color': '#BE9A6B',
 'marker-symbol': 'post'
 }
}).addTo(map);

Chapter 10 ■ Map Views

228

Adding Map Controls
Although the map we currently have would already be good to use, let’s add some extra options and make it
special. We’ll add an event handler to remove the map once it’s tapped. Typically, users might expect a full-
screen view once they tap the map, yet we will handle such a view by adding a corresponding button at a later
point in this chapter. Furthermore, we’ll disable dragging and other touch events as shown in Listing 10-5.

To avoid having multiple maps opened at the same time, we destroy an existing instance by removing
the respective map container before creating a new one (Listing 10-6).

Listing 10-5.  Disable Any Map Interaction (www/js/views/conversation.js)

// Remove Map on Click
map.on('click', function(e) {
 map.remove();
 $('#mapbox').remove();
});
// Disable drag and zoom handlers.
map.dragging.disable();
map.touchZoom.disable();
map.doubleClickZoom.disable();
// Disable tap handler, if present.
if (map.tap) map.tap.disable();

Listing 10-6.  Destroy the Existing Map Container before Creating a New One
(www/js/views/conversation.js)

addMap: function(event) {
 event.preventDefault();
 if ($('#mapbox').length) {
 $('#mapbox').remove();
 }
 // ...

Adding a Full-Screen Mode
When it comes down to it, the map view is just way too small to add any interactions such as panning and
zooming. Instead, we want to reserve all those features for a full-screen view. Luckily, Mapbox—or, more
accurately, the Leaflet library, which is the base for the Mapbox library—offers a plug-in to add this feature.

First, download the plug-in CSS and JavaScript files (Listing 10-7) from Github:
https://github.com/Leaflet/Leaflet.fullscreen. This plug-in will add a full-screen button to your
map via the method L.control.fullscreen().addTo(map) (Listing 10-8). Next, add a handler for the event
fullscreenchange to the map (Listing 10-9). It is being called once the full-screen mode is either opened or
closed. Finally, reset the map position when the view changes and add or remove events as well as styling.

Listing 10-7.  Mapbox / Leaflet Full-Screen Plug-in JavaScript and CSS Files

<script src="https://api.tiles.mapbox.com/mapbox.js/plugins/leaflet-fullscreen/v0.0.3/
Leaflet.fullscreen.min.js"></script>
<link href="https://api.tiles.mapbox.com/mapbox.js/plugins/leaflet-fullscreen/v0.0.3/
leaflet.fullscreen.css" rel="stylesheet" />

https://github.com/Leaflet/Leaflet.fullscreen
https://api.tiles.mapbox.com/mapbox.js/plugins/leaflet-fullscreen/v0.0.3/Leaflet.fullscreen.min.js%22%3E%3C/script
https://api.tiles.mapbox.com/mapbox.js/plugins/leaflet-fullscreen/v0.0.3/Leaflet.fullscreen.min.js%22%3E%3C/script
https://api.tiles.mapbox.com/mapbox.js/plugins/leaflet-fullscreen/v0.0.3/leaflet.fullscreen.css
https://api.tiles.mapbox.com/mapbox.js/plugins/leaflet-fullscreen/v0.0.3/leaflet.fullscreen.css

Chapter 10 ■ Map Views

229

Listing 10-8.  Adding a Full-Screen Button via the Leaflet Full-Screen Plug-in
(www/js/views/conversation.js)

L.control.fullscreen().addTo(map);

Listing 10-9.  Switching between Inline Mode and Full-Screen Mode via the fullscreenchange
event (www/js/views/conversation.js)

map.on('fullscreenchange', function(e) {
 map.setView([Message.get('location').latitude,
Message.get('location').longitude]);
 if (map.isFullscreen()) {
 $('#mapbox').removeClass(mapClasses);
 map.dragging.enable();
 map.touchZoom.enable();
 } else {
 $('#mapbox').addClass(mapClasses);
 map.dragging.disable();
 map.touchZoom.disable();
 }
});

Testing the Map View
Now reap the fruit of your labor: Tapping on the location name should open a map view below your
message, as in the example visualization (Figure 10-2). On the left is a user’s message displayed above the
icon. The right image shows a zoomed-in view. Common map gestures (pinch, zoom, tap, and so on) are
available in this view. The will be displayed in the top left corner of the map. You can see an illustration of
the full-screen mode in Figure 10-2 as well.

Chapter 10 ■ Map Views

230

Adding a Native Map View
Earlier, we mentioned some of the challenges and user flow interruptions when trying to combine a native
map view in a PhoneGap application. Although generally not recommended, we wanted to offer a basic
example so that you are able to devise which approach best fits for your application.

In our example, we’ll be using a plug-in enabling the use of the Google Maps Android SDK v2 and
Google Maps SDK for iOS in JavaScript. You can find more information about this plug-in on Github:
https://github.com/wf9a5m75/phonegap-googlemaps-plugin.

GOOGLE MAPS API KEYS

Before installing the plug-in, you need to create new Google API keys. For either Android or iOS, you
need to follow these initial steps:

1.	 Go to the Google APIs Console (https://code.google.com/apis/console/)

2.	 Register your project

3.	 Turn on Google Maps Android API v2

Figure 10-2.  Example of a Map Full-Screen View (Map Credits: Mapbox / OpenStreetMap)

https://github.com/wf9a5m75/phonegap-googlemaps-plugin
https://code.google.com/apis/console/

Chapter 10 ■ Map Views

231

4.	 Turn on Google Maps SDK for iOS

5.	 Go to your project’s API & auth ➤ Credentials page

If you want to add the plug-in for Android, execute the following steps:

1.	 Get your SHA-1 fingerprint as shown:

Using a Mac:

keytool -list -v -keystore ~/.android/debug.keystore -alias androiddebugkey
-storepass android -keypass android

Using Windows:

C:\{YOUR-APP-PATH}\platforms\android> keytool -list -v -keystore
"%USERPROFILE%\.android\debug.keystore" -alias androiddebugkey -storepass
android -keypass android

2.	 Click Create New Key and choose Android Key

3.	 In the resulting dialog, enter the SHA-1 fingerprint, then a semicolon, and then your
application’s package name

4.	 Write down the API Key

For iOS, execute the following steps:

1.	 Click the Create New Key button and choose iOS Key

2.	 Enter one or more bundle identifiers as listed in your application’s .plist
file (com.fernandezalber.themessenger)

3.	 Write down the API Key

Here, we generated a Google API key that we’ll be using for our application.

Chapter 10 ■ Map Views

232

Google Maps Plug-in Installation
To install the plug-in based on your operating system, run the command in Listing 10-10 in your project
directory. Adjust the placeholder for API_KEY_FOR_ANDROID and API_KEY_FOR_IOS according to the keys
created in the previous exercise.

Listing 10-10.  Install Google Maps Plug-in

cordova plugin add plugin.google.maps --variable API_KEY_FOR_ANDROID="{android-client-
secret}" --variable API_KEY_FOR_IOS="{ios-client-secret}"

Google Maps View
To position your map, you can use HTML elements and CSS. The plug-in will measure the position and size
of your container and place the native map in lieu of your HTML element.

However, there is one important limitation: The native map view will be placed “below” your web view.
The layer arrangement is demonstrated in Figure 10-3.

Figure 10-3.  The native map layer will be positioned behind your web view (for example, the conversation
template). Solid elements will overcast the map

As a result, the area where the map is placed needs to be transparent! Background colors, gradients,
images, or any other CSS properties creating some kind of colored canvas (for example, a colored border)
are not allowed in the same area the map is displayed in. Any non-transparent element will cover the map.
Therefore, if you want to wrap with any visual elements, be very careful.

Chapter 10 ■ Map Views

233

Google Maps Implementation
After installing the plug-in and learning about the technical limitations, we are ready to add a map container
to our application.

In particular, the goal of this section will be to replace the newly created JavaScript-based map view
with a native map view. We will face one issue while doing this: If we place the map in the same place as
the JavaScript map, it won’t be visible as each message container holds a background color, or rather a
background gradient.

If you want to keep the current position, you will need to remove the background colors from your
message boxes. We have decided to follow a different approach. To keep our message styling, we will have
one large map container and remove the conversation view for the moment we show the map.

As a first step, add a map container to the conversation template, as shown in Listing 10-11. Right
below the map, we will show a Close Map button. Use CSS styles to position your map, as demonstrated in
Listing 10-12.

Listing 10-11.  Add Map Container (www/conversation.html)

<div id="myMap"></div>
Close Map

Listing 10-12.  Add Map Container CSS Styles (www/css/styles.css)

#myMap {
 display: none;
 position: fixed;
 background: red;
 top: 60px;
 left: 10px;
 bottom: 55px;
 right: 10px;
}
#closeMyMap {
 display: none;
 position: fixed;
 left: 10px;
 bottom: 10px;
 right: 10px;
}

Google Maps Module
To keep things in order, we create a new JavaScript module named map.js in the directory www/js/modules
and add it to the JavaScript file loader.

In this module, we will use a code organization concept of the same name, the “Module Pattern.” The
Module Pattern overcomes some of the limitations of the object literal (which we used in the previous
chapters) by offering privacy for variables and functions while exposing a public API, if desired. Among
other features, we will also avoid long variable names. You can read more about the pattern in the jQuery
“Code Organization” documentation: http://learn.jquery.com/code-organization/concepts/.

As shown in Listing 10-13, add the starting structure to your module file map.js. We will explain each
function in the following sections.

http://learn.jquery.com/code-organization/concepts/

Chapter 10 ■ Map Views

234

Listing 10-13.  Maps Module (www/js/modules/maps.js)

app.modules.map = (function() {
 
 // Module Variables
 var map, Message;
 
 // Initialize Module
 var _init = function() {};
 
 // Event for "Close Map" Button
 var closeEvent = function() {};
 
 // Convert a Message Location into a Gmaps Location
 var getGLocationFromMessage = function() {};
 
 // Get a new Map Instance
 var getMap = function() {};
 
 // Call when Map is Ready
 var onMapReady = function() {};
 
 // Hide Conversation and Show Map
 var switchView = function() {};
 
 // Make _init() function accessible form outside
 return {
 init: _init
 };
 
})();

Hiding the Conversation View
In the first function switchView(), we hide the conversation view and make the map view and Close Map
button visible (Listing 10-14). We’ll call this function from the initialize function.

Listing 10-14.  Switch from Conversation to Map View

var switchView = function() {
 $('.container').hide();
 $('#myMap, #closeMyMap').css('display', 'block');
};

Google Maps Instance
Next, we create a new map instance. Use the #myMap element as virtual container for the map. We as the
container we chose. Keep in mind that the actual map view is not “inside” this container, but behind it. If you
chose not to use a fixed position for the map container element, the native map view would hold a natural
scroll behavior, which means it would scroll in the same way because it would be an HTML inside your body
(even though it isn’t).

Chapter 10 ■ Map Views

235

You can control map settings by passing an object containing configuration values to the instance
method, as shown in Listing 10-15.

Listing 10-15.  Create New Map Instance

var getMap = function() {
 map = plugin.google.maps.Map.getMap($('#myMap')[0], {
 'controls': {
 'compass': true,
 'myLocationButton': true,
 'zoom': true
 }
 });
};

Google Maps “GeoPoint”
Just like with Parse, there is a GeoPoint object in the Google Maps API. The name for the corresponding
object type is LatLng. Given that all points on the map will be based on the GeoPoint value of the Message
object, we will add a function to create a LatLng object based on a Message object (Listing 10-16).

Listing 10-16.  Create a New Geolocation Object

var getGLocationFromMessage = function(Message) {
 return new plugin.google.maps.LatLng(
 Message.get('location').latitude,
 Message.get('location').longitude);
};

Localizing the Message Location
Our map shouldn’t just show any location—it should show the location of the message from where it was
sent. Once the map view is loaded, it’s time to set the position. We can catch the corresponding event
MAP_READY by adding an event listener to the map object: map.addEventListener(plugin.google.maps.
event.MAP_READY, callback). We will add this call at a later point in the initialize function.

Setting the position of the map (also known as the map’s center point) can be done in different ways, yet
the best way to do it is using a “camera” animation. The correspondent function animateCamera will enable
you to control both the target position—for which we’ll use the getGLocationFromMessage() function—and
how to get there. You can change the animation duration, the camera angle, and so forth. Listing 10-17
provides an example.

Listing 10-17.  Zoom to the Message Location

var onMapReady = function(map) {
 map.animateCamera({
 'target': getGLocationFromMessage(Message),
 'zoom': 15,
 'duration': 3000,
 'tilt': 0,
 'bearing': 0
 });
};

Chapter 10 ■ Map Views

236

Closing the Map View
Second to last, we add an event handler for the Close Map button (Listing 10-18). Aside from destroying the
map instance, we also want to restore the conversation view.

Listing 10-18.  Close the Map on Button Tap

var closeEvent = function() {
 $('#closeMyMap').on('tap click', function() {
 $('.container').show();
 $('#myMap, #closeMyMap').css('display', 'none');
 map.remove();
 });
};

Initializing the Map View
Before making a first test of the map view, we need to populate the _init() function. It will have a Message
object as argument that we save to the local scope. We then switch the view and create a new map instance
while adding the needed event listeners, as demonstrated in Listing 10-19.

In the bottom part of our map module, the _init() function is exposed to the global scope using the
name init. Hence, we can call it using app.modules.map.init(). Update your addMap function to match
Listing 10-20.

You are now ready to test your native map view. You won’t see a marker yet; you will add this in the
following section.

Listing 10-19.  Zoom to the Message Location and Add a Marker

var _init = function(_Message) {
 Message = _Message;
 switchView();
 getMap();
 closeEvent();
 map.addEventListener(plugin.google.maps.event.MAP_READY, onMapReady);
};

Listing 10-20.  Updated addMap Function Calling the Map Module (js/views/conversation.js)

addMap: function(event) {
 event.preventDefault();
 var Message = app.conversation.Messages[$(this).data('id')];
 app.modules.map.init(Message);
}

Handling Layer Conflicts
If you opened the navigation menu while showing the native map view, you probably noticed one issue: The
navigation links aren’t clickable! Instead, all events are passed on to the map.

There are two ways to change this behavior. If elements like buttons, inputs, or links are placed inside
the map container, the elements are placed in front of the map and are delegated to listen to all potential
events as you are used to. We show an example placement of such a button in Figure 10-4.

Chapter 10 ■ Map Views

237

Yet as the navigation menu (right in Figure 10-4) is placed outside of the map view—and we don’t want
to change this—we have to follow the second approach. You can remove the map event watcher by calling
setClickable(false) on the map instance. We will do this once the navigation menu is shown, and undo
this action when it’s hidden again. At this juncture, we also add a backdrop layer to cover the momentary
inactive map elements (Listing 10-21).

Listing 10-21.  Disable the Map Event Handlers When the Navigation Menu Is Shown

$('#navigation').on('hide.bs.collapse', function () {
 map.setClickable(true);
 $('.modal-backdrop').remove();
});
$('#navigation').on('show.bs.collapse', function () {
 map.setClickable(false);
 $('body').append('<div class="modal-backdrop fade in"
style="z-index: 999"></div>');
});
 

Figure 10-4.  A map view possessing a button element living inside the map container (left) and the
navigation menu above the map view (right)

Chapter 10 ■ Map Views

238

Adding a Message Marker
Adding a marker for the Message object is a very simple task. Just use the Message object to create a new
Google Maps LatLng object and use it for the method map.addMarker(), as demonstrated in Listing 10-22. In
the same way as the JavaScript implementation, we use the message sender’s name and the message body
for the information window of the marker.

Listing 10-22.  Add a Marker Showing the Message Sender and Body

var addMessageMarker = function(Message) {
 map.addMarker({
 'position': getGLocationFromMessage(Message),
 'title': Message.get('sender').get('first_name'),
 'snippet': Message.get('message_body')
 });
};

Call the function after the map view is ready (Listing 10-23). You can see an example of the final result in
Figure 10-5.

Listing 10-23.  Add the Marker as Part of the “Map Ready” Event Callback

var onMapReady = function(_map) {
 addMessageMarker(Message);
 // map.animateCamera() ...
});
 

Chapter 10 ■ Map Views

239

Geo Queries
Last but not least is the topic of Parse Geo Queries. Geo Queries are a very helpful tool when building
location services. An example case would be to find nearby pizza delivery services.

Using Parse makes this once challenging task a dead simple one. You don’t need to care about
scalability, indexing, speed, caching, and so forth. Parse will do it for you.

Radial and Box Queries
There are two general approaches to set limits for geo queries: using a radius or a “box.” In other words, you
could either use a circle or a square. Depending on your use-case, either of the two will give you a better
result. You can see an illustration of both approaches in Figure 10-6.

Figure 10-5.  Google Maps view example on iOS

Chapter 10 ■ Map Views

240

Radial queries should be used if the center of a query is the most important element. For example, if you
want to get the nearest subway stations in relation to the user’s current position, a radial query may be more
appropriate. Parse offers different filters for this approach: Parse.Query.withinKilometers() and
Parse.Query.withinMiles(). In addition, you can use the method Parse.Query.near(), which will
essentially do the same, but use an infinite value for the radius and return nearby results first.

Box queries are the best fit if you want a result to match a quadrangular view (for example,
to show all subway stations that fit into your current map view). The method, therefore, is called
Parse.Query.withinGeoBox().

■■ Note  The Geo Queries tutorial is based on the “Google Maps View” tutorial referred to earlier in this
chapter, so make sure it’s completed before starting this lesson.

Getting Nearby Messages
As a half-practical example, we’ll get all messages close to the current map view. For testing purposes, we
will query all messages that exist in the database. In a “real” application, you should only display messages
that belong to the current user. You can set access rules for your messages using Parse.ACL. You can learn
more about securing Parse objects here: https://parse.com/docs/js/guide#security.

Figure 10-6.  A radial geo query (left) in comparison to a box geo query (right)

https://parse.com/docs/js/guide#security

Chapter 10 ■ Map Views

241

We begin by updating the map module variables defined in the head of the module to Listing 10-24.
We’ll need to store some values such as which message markers had been added to the map and whether we
are currently in a process of loading data from Parse.

Listing 10-24.  Add the variables message_ids and loading (www/js/modules/map.js)

var map, Message, message_ids = [], loading = false;

Next, we extend the map-ready event handler, as shown in Listing 10-25. If the map camera changes,
we need to get the map center and subsequently invoke a geo query (Listing 10-26). Once you start a query,
save the status in the variable loading to avoid running multiple queries at the same time. Add the function
getMapCenter and all following functions to the body of your module app.modules.map.

Listing 10-25.  Update the onMapReady Function

var onMapReady = function(_map) {
 // Keep existing code...
 map.animateCamera(options, function() {
 map.on(plugin.google.maps.event.CAMERA_CHANGE, getMapCenter);
 });
});

Listing 10-26.  After Getting the Map Center Run

var getMapCenter = function(position) {
 if (loading) {
 return;
 }
 loading = true;
 getMessagesNearBy(position).then(addMarkersToMap);
};

Once we know the center of the map, we can convert the Google Maps position into a Parse GeoPoint.
Use either the method near(), withinMiles() or withinKilometers() to filter the Message table. We show
the syntax of all methods in Listing 10-27. The callback function addMarkersToMap() for the query promise
had already been defined in Listing 10-27. In this function, cycle through all results and verify that there is no
marker for the corresponding message on the map. If not, add a new marker (Listing 10-28). When you have
finished loading messages and adding markers, reset the loading value to false.

Listing 10-27.  Convert Google Maps Position into Parse GeoPoint and Query Messages near
Current Position

var getMessagesNearBy = function(position) {
 var currentPosition = new Parse.GeoPoint({
 latitude: position.target.lat,
 longitude: position.target.lng
 });
 var query = new Parse.Query(MyParseMessage);
 query.near("location", currentPosition);

Chapter 10 ■ Map Views

242

 // Alternatives:
 // query.withinMiles("location", currentPosition, 3);
 // query.withinKilometers("location", currentPosition, 5);
 query.limit(10);
 return query.find();
};

Listing 10-28.  Add Message Markers to the Map

var addMarkersToMap = function(Messages) {
 $.each(Messages, function(index, Message) {
 if ($.inArray(Message.id, message_ids) > -1) {
 return;
 }
 message_ids.push(Message.id);
 addMessageMarker(Message);
 });
 loading = false;
};

Getting Messages within Map Bounds
Getting messages within the map bounds will follow the same structure as getting nearby messages.
Yet, instead of using the map center as base for our query, we will use the visible map area—the
“map bounds”—for the geo query.

Replace the getMapCenter callback with a new function named getVisibleRegion. The plug-in
function of the same name will return latitude and longitude values for the northeast and southwest corner
points of the map view (Listing 10-29).

Listing 10-29.  Query Messages near Current Position

var onMapReady = function(_map) {
 // Keep existing code...
 // Replace getMapCenter with getVisibleRegion
 map.animateCamera(options, function() {
 map.on(plugin.google.maps.event.CAMERA_CHANGE, getVisibleRegion);
 });
});

In the callback shown in Listing 10-30, we execute the query function getMessagesWithinBounds(). In
our getVisibleRegion function, call the map method getVisibleRegion. The object latLngBounds contains
the methods northeast and southwest, which you will convert into two new Parse.GeoPoint objects. This
will then be used as arguments for the filter query.withinGeoBox() (Listing 10-31).

Chapter 10 ■ Map Views

243

Listing 10-30.  Get the Map Bounds

var getVisibleRegion = function(position) {
 if (loading) {
 return;
 }
 loading = true;
 map.getVisibleRegion(function(latLngBounds) {
 getMessagesWithinBounds(latLngBounds).then(addMarkersToMap);
 });
};

Listing 10-31.  Query Messages within a Given Box

var getMessagesWithinBounds = function(latLngBounds) {
 var southwest = new Parse.GeoPoint(latLngBounds.southwest.lat,
latLngBounds.southwest.lng);
 var northeast = new Parse.GeoPoint(latLngBounds.northeast.lat,
latLngBounds.northeast.lng);
 var query = new Parse.Query(MyParseMessage);
 query.withinGeoBox("location", southwest, northeast);
 query.limit(10);
 return query.find();
}; 

■■ Tip  If you want to calculate the distance between the current position described by GeoPointA and a
marker described by GeoPointB, use the method GeoPointA.milesTo(GeoPointB). To get the distance in
kilometers or radians, use kilometersTo() or radiansTo().

Summary
Going a step further than Chapter 9, this chapter discussed the differences between native and JavaScript
map APIs. Using the native device API for maps provides a smoother experience for the user when compared
to a JavaScript-based map, an important difference that factors into the experience you want for your users.

Each position on a map has metadata associated with it. Using Parse, we investigated different methods
of geo queries and displayed them on a map generated by Google Maps.

We added the option for users to send their current location within a message. By updating our current
user interface with this new map feature, we were able to highlight the geolocation capabilities of the
application. We’re not only saving the position that our users are in, we provide a way for them to view it on a
map inside the interface of the message.

In Chapter 11, we combine the usage of your phone’s media—both using the camera and existing
pictures—with the Parse cloud database.

http://dx.doi.org/10.1007/9781484202364_9
http://dx.doi.org/10.1007/9781484202364_11

245

Chapter 11

Accessing and Sharing Photos

If a tree falls in a forest and no one is around to hear it, does it make a sound?

During the last ten years, the role of the average Internet user has changed dramatically. Today, practically
everyone is a content publisher as well as a consumer. “User Participation” was one of the key phrases of the
Web 2.0 era, and this concept applies today for modern mobile applications.

In most applications, having an identity is a basic feature for user participation. Any form of text
is typically the most common way of sharing information. We covered creating users and sending text
messages in the previous chapters; now let’s ramp it up a level and add photos, sounds, and videos to this
application.

Since photos are the most shared media type, we will focus on them and touch on some methods for
capturing sound and video as well. But why stop there?

Getting back to the forest ... Reality only exists to those who experience it. Digital media allows us to
share moments using video, sound, and images. Parse and PhoneGap can help us create that experience.

Using the class Parse.File, we’ll save photos and other documents to the Parse cloud so users can
share them with each other.

We will use the Messenger application so you can see it in action; however, you can apply the
introduced examples to any other application.

Enabling Camera Access
The first part of this chapter will discuss accessing photos from a device. Later, you will use what you learned
to send the image to another user in the Messenger App. We’ll be using the Cordova camera plug-in.

As with most software you’ll use, make sure you check out the documentation for quirks on the
operating systems you are targeting. You can learn more here: github.com/apache/cordova-plugin-camera.

Using this plug-in, we can take new photos and access existing photos from a device. We’ll start by
installing it using the terminal command shown in Listing 11-1.

Listing 11-1.  Camera Plug-in Installation

cordova plugin add org.apache.cordova.camera

Using the camera plug-in shares the same requirement as accessing a user’s global position in that the
user must accept permissions for your application to access camera features.

https://github.com/apache/cordova-plugin-camera

Chapter 11 ■ Accessing and Sharing Photos

246

User Interface for Photo Sharing
Every supported device platform offering a photo or camera feature will have a user interface to manage it.
If it doesn’t, the plug-in will attempt to do it for you. This gives us a programmatic interface to manage the
camera, which includes enabling or disabling the flash, setting the focus, and taking photos. There will be
another interface to select a photo from one of your albums. An example interface for browsing the albums
and photos on iOS is shown in Figure 11-1.

Figure 11-1.  Browsing the device’s albums and photos

Chapter 11 ■ Accessing and Sharing Photos

247

Photo and Camera Button
The first thing users need to be able to do is attach a photo to a message. The right place to start is the
conversation view, created in Chapter 8. The users could either use their device’s photo library for sharing an
existing photo or the camera for sharing a new photo yet to be taken. Hence, we’ll add one button for each
case to the user interface.

To create compelling buttons quickly and easily, we make use of the Twitter Bootstrap Glyphicon
font. Fitting icons for this case are the classes glyphicon-picture and glyphicon-camera. Update your
conversation view template using the code in Listing 11-2. You can see the result of this update in Figure 11-2.

Listing 11-2.  Add a Picture and Camera Button to Your Conversation View (www/conversation.html)

<div class="btn-toolbar" role="toolbar">
 <div class="btn-group">

 <i class="glyphicon glyphicon-picture"></i>

 <i class="glyphicon glyphicon-camera"></i>

 </div>
 <div class="btn-group">

 <i class="glyphicon glyphicon-map-marker"></i>

 </div>
 <div class="btn-group">

 <i class="glyphicon glyphicon-send"></i>
 Send Message

 </div>
</div>

http://dx.doi.org/10.1007/9781484202364_8

Chapter 11 ■ Accessing and Sharing Photos

248

JavaScript Module for Accessing Photos and Camera
In this section, we’ll add a new module to our application that will handle all photo library and camera
interactions. We’ll use the namespace app.modules.pictures for the module. Just like the location
module from Chapter 9, we’ll use the module pattern. The basic structure of the pictures module is shown
in Listing 11-2.

Create a new module file in www/js/modules/picture.js and add the reference to your JavaScript file
loader.

This module, shown in Listing 11-3, will contain a function to get a photo from the user’s albums—
getPhotoFromAlbums—and one to get a photo from the camera—getPhotoFromCamera. Both functions will
be part of the returned object and thereby accessible globally.

Furthermore, we will have the non-public functions _getPhoto, _save, and _onFail. The _getPhoto
function will capture or get the actual photo, the function _save will save the photo to the Parse database,
and _onFail will handle all error cases. We added an underscore as a prefix to highlight that these functions
will not be accessible from outside and are intended to be private for the current module.

Figure 11-2.  The picture and camera buttons are shown to the left of the existing button set

http://dx.doi.org/10.1007/9781484202364_9

Chapter 11 ■ Accessing and Sharing Photos

249

Listing 11-3.  Initial Setup for the Pictures Module (www/js/modules/picture.js)

app.modules.pictures = (function() {
 // Wrapper function to get a photo from the device's album(s)
 var getPhotoFromAlbums = function() {};
 
 // Wrapper function to get a photo via the device's camera
 var getPhotoFromCamera = function() {};
  
 // Common used function to get a photo from different sources
 var _getPhoto = function() {};
  
 // Save photo to parse
 var _save = function() {};
 
 // If something goes wrong...
 var _onFail = function(message) {
 console.log('Error: ' + message);
 };
  
 // public API
 return {
 getPhotoFromAlbums: getPhotoFromAlbums,
 getPhotoFromCamera: getPhotoFromCamera
 };
})();

PhoneGap Camera Plug-in
To get photos from the device’s library or camera, we’ll be using the plug-in’s function navigator.camera.
getPicture(). This function has three arguments: a success callback, an error callback, and an options
object.

Optional Camera Options
The following descriptions explain the plug-in’s available options:

•	 sourceType: The property sourceType will determine whether to use the camera
(CAMERA), the album browser (PHOTOLIBRARY), or a photo-stream (SAVEDPHOTOALBUM)
of the device. When using these keys, you need to add the prefix namespace
navigator.camera.PictureSourceType.

For example, PHOTOLIBRARY will use navigator.camera.PictureSourceType.
PHOTOLIBRARY. The syntax is demonstrated in Listing 11-4 in the following section,
“Using the Camera Plug-in.”

•	 destinationType: To assign whether the resulting photo should be saved to the
filesystem (FILE_URI), a native URL (NATIVE_URI), or base64-encoded string
(DATA_URL), use the key destinationType and the prefix navigator.camera.
DestinationType.

Chapter 11 ■ Accessing and Sharing Photos

250

•	 cameraDirection: Modern smartphones usually have two cameras, one on the
front and one on the back. Use navigator.camera.Direction.FRONT or navigator.
camera.Direction.BACK to target a specific camera.

•	 encodingType: This value determines whether the captured photo should be
compressed or not. Use navigator.camera.EncodingType.JPEG or navigator.
camera.EncodingType.PNG to handle this setting.

•	 quality: Use a value between 0 and 100 to pick the quality of the photo. A value of
100 is typically the full-resolution photo with no loss from file compression, with 0
being the lowest quality setting.

•	 targetWidth and targetHeight: Use a pixel value for the keys targetWidth and
targetHeight to set a maximum width and height for the captured photo. If the
photo is bigger than the defined sizes, it will be resized to stay within the limits.

■■ Note  It’ is extremely important to set both targetWidth and targetHeight. Setting just one value will
have no impact on the captured picture. You’ll want to choose appropriate values; if you don’t set any limits,
it might take a long time to upload the captured photo. On the other hand, picking small values will obviously
result in low-resolution photos and perhaps a faster experience.

Using the Camera Plug-in
The camera offers some more settings that we’ll delve into next. First, update the functions
getPhotoFromAlbums and getPhotoFromCamera to define the source (either the photo library or the camera),
and then call the _getPhoto function, as shown in Listing 11-4.

Besides the source argument, the _getPhoto function will use a viewCallback variable as second
parameter. We assume that after the process of selecting or capturing a photo, the “caller” (which is the
conversation view) will do something with it. In our case, this will be the act of attaching the photo result to a
message.

Next, and most importantly, the _getPhoto function will capture the actual photo using the function
navigator.camera.getPicture(). At this point, we also want to set the options object for configuring
settings like the destinationType. We’re using DATA_URL, as we don’t want to save the picture on the local
device, but rather directly send it to Parse.

If you still want to keep a copy of the captured picture on the device, enable the option
saveToPhotoAlbum. You can also offer the opportunity to edit the photo before sending by setting the option
allowEdit to true. Feel free to experiment with all the options available to suit your needs.

Listing 11-4.  Populate Methods in the Picture Module for Getting and Setting a Photo from a User’s Camera
or Album (www/js/modules/picture.js)

var getPhotoFromAlbums = function(viewCallback) {
 _getPhoto(navigator.camera.PictureSourceType.PHOTOLIBRARY, viewCallback);
};
var getPhotoFromCamera = function(viewCallback) {
 _getPhoto(navigator.camera.PictureSourceType.CAMERA, viewCallback);
};

Chapter 11 ■ Accessing and Sharing Photos

251

var _getPhoto = function(source, viewCallback) {
 navigator.camera.getPicture(function(photoData) {
 _save(photoData, viewCallback);
 }, _onFail, {
 allowEdit: true,
 destinationType: navigator.camera.DestinationType.DATA_URL,
 encodingType: navigator.camera.EncodingType.JPEG,
 quality: 40,
 saveToPhotoAlbum: true,
 sourceType: source,
 targetWidth: 1024,
 targetHeight: 1024
 });
};

Camera and Photos Permissions
The very first time a source is requested via navigator.camera.getPicture(), the application will ask for
permissions to do so, as in Figure 11-3. Once a user grants permission, the application will never ask for
permissions again (similar to geolocation).

Figure 11-3.  Photos and camera permission requests on iOS

Chapter 11 ■ Accessing and Sharing Photos

252

If a user declines a permission request or disables access via the system’s privacy settings, the camera
will stay black and, instead of their albums, the user will see an error message. In this case, the _onfail()
method will be called. The function argument will contain an error message such as “has no access to
assets.” Inform your users about the issue and ask them to adjust their privacy settings.

Using Parse Files
A typical PhoneGap application will end here, or require you to set up a server for hosting your files and
perhaps use another plug-in to transfer the file to the server. Since we are using Parse, we can skip these
steps!

We’ll help ourselves and use the Parse.File class for saving image file types to Parse. The class allows
us to store data of any file type in the cloud. Aside from photos, we can also use videos, music, or other
supported document formats. The maximum size of a file can be ten megabytes.

Saving a Photo to Parse
Since we’re using PhoneGap, common input sources include the local filesystem, external sources (like the
Facebook API), or the device camera.

Yet you might want to emulate some application behavior in the Web version of your app for testing
purposes. To do this, you can use a classic input file element and the script shown in Listing 11-5.

Listing 11-5.  New Parse.File Instance Created via an Input Element of the Type “file”

<input type="file" id="fileUpload">
Upload
<script>
 function doUpload() {
 var fileUploadControl = $("#fileUpload")[0];
 if (fileUploadControl.files.length > 0) {
 var file = fileUploadControl.files[0];
 var name = "filename.ext";
 var parseFile = new Parse.File(name, file);
 }
 }
</script>

■■ Note  Base64 is a technology to convert binary data into text data. For HTML, this conversation is needed,
as it’s a text-based file format, and mixing of binary data and text data is generally not possible. The result
text will consist of letters, numbers, and the symbols "+", "/", and "=". The downside of this system is the
overhead added by the conversion. Base64 encodes each set of three bytes into four bytes. In addition, the
output is padded to always be a multiple of four. This means that the size of the Base64 representation is about
30% larger than its binary source. Currently, the Parse JavaScript SDK solely accepts file uploads via Base64
or a classic file input element. In the future, it might be possible to send binary data using the JavaScript
FileReader object.

Chapter 11 ■ Accessing and Sharing Photos

253

Since we are in the possession of a base64-encoded string from the captured photo by default, we’ll use
the same format for creating the new Parse.File instance. By executing the save() method on the Parse.
File object, we upload the file to the Parse Cloud.

Once the file has been saved to the cloud, it will obtain a unique URL, which we can retrieve using the
method url() on the Parse.File instance.

Immediately after saving the file, the callback function will be executed while passing the Parse.File
instance to it. (See Listing 11-6.)

Listing 11-6.  Saving an Image to Parse (www/js/modules/picture.js)

var _save = function(photoData, viewCallback) {
 var parsePhoto = new Parse.File("photo.jpg", {
 base64: photoData
 });
 parsePhoto.save().then(function() {
 console.log(parsePhoto.url());
 viewCallback(parsePhoto);
 }, _onFail);
};

Camera and Album Event Handler
After defining the pictures module, it’s time to put it to use in the view. Then we’ll add event handlers to
the conversation view buttons with the element ID selectors #js-event-use-albums and #js-event-use-
camera. Each button should call its corresponding function, as demonstrated in Listing 11-7.

Listing 11-7.  Attach Event Handlers for Getting Images via the User’s Album or Camera
(www/js/views/conversation.js)

$('#js-event-use-albums').on('click', function(e) {
 e.preventDefault();
 $('form').addClass('uploading');
 app.modules.pictures.getPhotoFromAlbums(function(parsePhoto) {
 // callback
 });
});
 
$('#js-event-use-camera').on('click', function(e) {
 e.preventDefault();
 $('form').addClass('uploading');
 app.modules.pictures.getPhotoFromCamera(function(parsePhoto) {
 // callback
 });
});

Next, we’ll add some simple styles (used in Listing 11-8) to let the user know that the file is in the
process of uploading to Parse.

Chapter 11 ■ Accessing and Sharing Photos

254

Listing 11-8.  A New CSS Class for Referencing the Loading Image (www/css/styles.css)

.uploading {
 background:transparent url(../img/ajax-loader.gif) no-repeat center;
}
.uploading * {
 opacity: 0.5;
}

Photo Capture Callback
In Listing 11-7, we added a placeholder for code (// callback) that should be executed after the photo
is captured from the camera or selected from a photo album. In these callbacks you, could either start
sending the message immediately or ask the users whether they want to send this picture. We will use the
notification plug-in to confirm if the users want to use the image.

To use the notification plug-in, verify that you installed the Cordova Dialogs plug-in (org.apache.
cordova.dialogs). An example of this callback function that can be used for the camera functions
(getPhotoFromCamera or getPhotoFromAlbums) is shown in Listing 11-9. Eventually, the callback should
execute the sendMessage function to invoke sending the message.

Listing 11-9.  Asking the User to Confirm the Sending of a Message (www/js/modules/picture.js)

navigator.notification.confirm("Do you want to send this picture?", function() {
 app.conversation.sendMessage(parsePhoto);
 $('form').removeClass('uploading');
}, "Confirmation", ['OK', 'Cancel']);

Attaching a Photo to a Message
There are only a few small steps left to get the message and its photo to the intended user. First, we’ll add a
parsePhoto variable as argument of the sendMessage() function in conversation.js (Listing 11-10).

We’ll then use it in Message.end() as an argument object. Because we decided to either send a text
message or a photo, we only reset the textarea value if there isn’t a photo. In order to actually use the new
photo feature for a message, you need to explicitly add it to the send method of the MyParseMessage class
(See listing 11-11).

Listing 11-10.  Attaching a Photo (www/js/views/conversation.js)

sendMessage: function(parsePhoto) {
 var Message = new MyParseMessage();
 Message.send({
 Receiver: app.conversation.Receiver,
 message_body: !parsePhoto ? $('textarea').val() : null,
 parsePhoto: parsePhoto
 }).then(function() {
 if (!parsePhoto) {
 $('textarea').val('');
 }
 // At this point you should add a script
 // to refresh conversation (messages)
 });
}
 

Chapter 11 ■ Accessing and Sharing Photos

255

Listing 11-11.  Update to send() Method to Save the Photo (www/js/models/MyParseMessage.js)

if (options.parsePhoto) {
 this.set('Photo', options.parsePhoto);
}

Sending an image in its original format may be rather large, especially with the cameras available in
today’s smartphone. Before showing the image in the view, we’ll use Cloud Code to resize the image first.

Image Resizing in the Parse Cloud
Sending and receiving images on a slow connection can be frustrating for users. To create a better
experience, we’ll use Parse’s Cloud Code to resize the image smaller before saving it to the cloud. To do this,
we’ll be using the Parse Image Cloud Module.

Cloud modules are importable pieces of code written in CommonJS that can be used throughout your
application. They are executed on Parse’s servers and can be invoked within your code, or they can be used
as trigger functions for specific events.

You can write your own cloud module, or use one of the readily available modules provided by Parse.
From things such as payment processing using Stripe to text messing using Twilio, cloud modules are
simple, effective ways to get tons of functionality without all the hard work.

First, will add new code that will contain functionality for resizing the image before it’s saved to Parse.
The original image will, however, get saved to Parse. We use the resized image for populating the view only.

Next, we’ll use the Parse Image module to resize the image before it gets saved to the Message object.
Start by editing the main file where we are storing our Cloud Code for Parse (Listing 11-12).

Listing 11-12.  Contains Code That Will Resize the User’s Image before Saving It to the Cloud
(/cloud/cloud/main.js)

var ParseImage = require("parse-image");
Parse.Cloud.beforeSave("Message", function(request, response) {
 var Message = request.object;
});

Here we start by requiring the parse-image module. This allows us to manipulate the image in a
number of ways, including cropping and setting the image format. We reference the module using the
ParseImage variable.

Using the beforeSave Cloud function, we will alter the image before it gets saved to Parse. Inside this
function, we use the request argument to store a reference to the object returned in a variable named
Message. This variable represents a message that is sent to a user.

Validating Data
As they say in programming, garbage in, garbage out. Before we process any data, let’s make sure we know
what we’re working with.

First, we’ll put in some safeguards to only work with valid data (Listing 11-13). This kind of checking
helps us weed out any values that would otherwise introduce a new bug in the code.

Chapter 11 ■ Accessing and Sharing Photos

256

Listing 11-13.  Execute the Function Only If Specific Conditions Are Met

// No image attached to the message object
if (!Message.get("Image")) {
 response.success();
 return;
}
// The photo wasn't modified
if (!Message.dirty("Image")) {
 response.success();
 return;
}

If there is no image attached to Message, execute the success method of the response object. This
essentially does no operation and falls to the return statement, which prevents the function from processing
any further instructions.

Next, we use a function named dirty. This is called on the returned object (Message) from the cloud
module’s response object. The dirty method returns true if the object has been modified since its last save/
refresh.

Parse Cloud HTTP Request
For this cloud code functionality, we will be using the httpRequest method of the Parse.Cloud object.
Before a picture is saved to Parse, we make an HTTP request to Parse (Cloud Code), allowing us to
preprocess the object (Listing 11-14).

Listing 11-14.  Make an HTTP Request to the URL of the Image in the Message

Parse.Cloud.httpRequest({
 url: Message.get("Image").url()
});

The httpRequest method takes an object as an argument. Using the url property, we supply the value
of the image’s URL.

After we call the httpRequest function, we’ll next call a series of promise functions in succession.
Chaining functions together like this is one of the many cool things about the Parse JavaScript API. One after
another, we will call functions at different points in the promise chain. Each function will have its own scope
and context.

With that said, there will be a lot going on from the time that an image is attached to the object to when
it’s resized. Follow along in Listing 11-15 with the code comments.

■■ Note  The Parse.Cloud.httpRequest uses the then method to process functions asynchronously. The
then async method returns a promise that is fulfilled when the callback is complete. In Listing 11-15, when a
then function returns a value, that value can be used inside the next then function in the chain, just as long as
the promise is successful.

Chapter 11 ■ Accessing and Sharing Photos

257

Listing 11-15.  Cloud Code to Resize an Image before Saving to Parse

Parse.Cloud.httpRequest({
 // Get the url value of the 'Image' property on the Message object
 url: Message.get("Image").url()
 }).then(function (response) {
 // Use the parse-image Cloud Module and create a new image
 var image = new Image();
 // Set the data of the image using the response object
 return image.setData(response.buffer);
 }).then(function (image) {
 // The argument 'image' refers to returned object from the previous function
 
 // Select an arbitrary width value
 var width = 400;
 // Calculate our altered image's ratio using actual data from the image
 var ratio = (image.width() / image.height());
 // Based on the ratio, calculate a height
 var height = Math.round(width / ratio);
 
 /* Add a new property (ThumbnailSize) to the Message object containing
 the details of the thumbnail*/
 Message.set("ThumbnailSize", {
 width: width,
 height: height,
 ratio: ratio
 });
 // Resize the image using the parse-image module's 'scale' function
 return image.scale({
 width: width,
 height: height
 });
 }).then(function (image) {
 // 'image' refers to returned object from the previous function (now resized)
 
 // Make sure it's a JPEG to save disk space and bandwidth
 return image.setFormat("JPEG");
 }).then(function (image) {
 // Get the image data in a Buffer
 return image.data();
 }).then(function (buffer) {
 // Save the image into a new file
 var base64 = buffer.toString("base64");
 // Create a new file containing the image data
 var resized = new Parse.File("thumbnail.jpg", {
 base64: base64
 });
 // Return the saved and resized image
 return resized.save();
 

Chapter 11 ■ Accessing and Sharing Photos

258

 }).then(function (resized) {
 // Attach the image file to the original object.
 Message.set("thumbnail", resized);
 }).then(function (result) {
 // That's it, success!
 response.success();
 }, function (error) {
 response.error(error);
 });

Using the Resized Image
Let’s next add a new method to the MyParseMessage object named getThumbnail. This new method will
return the image that is inside the returned object. We are going to use it inside the conversation view for
displaying. Listings 11-16 and 11-17 demonstrate the code for extending MyParseMessage, followed by
updating the view to use our newly created getThumbnail function.

Listing 11-16.  Returns the URL of the Resized Thumbnail Image (www/js/models/MyParseMessage.js)

var MyParseMessage = Parse.Object.extend('Message', {
 //...
 getThumbnail: function() {
 return this.get('thumbnail') ? '<img src="' + this.get('thumbnail').url() + '" alt=""
class="img-thumbnail" />' : '';
 //...
});

Listing 11-17.  Updated Conversation Template to Display a Thumbnail of the Image
(www/conversation.html)

{{ attributes.message_body }}
{{{ getThumbnail }}}

By combining Parse’s file capabilities, along with the PhoneGap camera plug-in, you are able to extend
the application by allowing users to share images. Because Parse is capable of storing many types of media,
you could further extend your application by adding video or sound files using a corresponding PhoneGap
plug-in. You can learn more about all core and third-party libraries here: build.phonegap.com/plugins.

Summary
This chapter introduced incorporating images into the Messenger App. Using the Cordova camera plug-
in, we were able to access images from a device’s library, as well as taking a new image. We created a new
pictures module that contains all code for image-related functions.

Using some of the many options available with the camera plug-in, we were able to determine things
like the source and camera direction.

When the plug-in is instantiated by the users, they’re asked to accept permissions to use their camera’s
functionality.

Using the captured image, we attached it to the Message object and saved it to Parse. Parse is able to
store base64-encoded Strings. We use this after we resize the image using the parse-image cloud module.

https://build.phonegap.com/plugins

259

Chapter 12

Network Connection Status

We are always connected... sometimes.

Wouldn’t it be nice if you were connected to the Internet 24/7? As magical as that experience may be, it can
never fully be achieved. There will come a time in your life when you aren’t connected to the Internet. It’s
like the 80s all over again.

This chapter focuses on the dreadful moment when your user may not have an Internet connection.
What is a person to do, read a book or something?

For the Messenger application, you’ll notify the user that they will not be able to send messages.
Using the Network Information PhoneGap plug-in, you’ll be able to detect if the user has an active Internet
connection and respond accordingly. Before doing that, you first want to be able to update a person’s status
when they log in to indicate that they’re online.

Code Preparation
Start off by setting up your user class with custom instance methods and class properties. Open the
MayParseUser.js file. In it, add some new class properties that will allow you to track their status.

Here’s an overall view of what you’re trying to achieve. The MyParseUser object already has some
instance methods that you’ve used throughout the application. This chapter will use class properties to
further extend your object.

To begin, set up some placeholder properties. Update the object with three new properties, as shown in
Listing 12-1.

Listing 12-1.  Setting Up the MyParseUser Object with Class Properties as Placeholders

window.MyParseUser = Parse.User.extend({
 // Instance Methods ...
}, {
 // Class properties
 trackOnlineStatus: function() {
 },
 setOnline: function() {
 },
 setOffline: function() {
 }
});

Chapter 12 ■ Network Connection Status

260

Class Properties
Using class properties on custom Parse objects allows you to extend the functionality of your object. In this
case, you want to keep track of a user’s status by creating a new object property named online. This is a field
that is set to true or false (Boolean values) based on whether the user is logged in or not.

When a user logs in, you want to set the online value to true. The two functions setOnline and
setOffline toggle this value. The trackOnlineStatus initiates the online status by calling methods from the
object itself. You’ll call this later, when the user logs in. Fill in the placeholder class methods using the code
in Listing 12-2.

Listing 12-2.  Populated Class Properties for Tracking a User’s Online Status
(www/js/models/MyParseUser.js)

window.MyParseUser = Parse.User.extend({
 // Instance Methods ...
}, {
 // Class properties
 trackOnlineStatus: function() {
 MyParseUser.setOnline();
 },
 setOnline: function() {
 var User = MyParseUser.current();
 User.set('online', true);
 User.set('last_seen', new Date());
 User.save();
 },
 setOffline: function() {
 var User = MyParseUser.current();
 User.set('online', false);
 User.set('last_seen', new Date());
 User.save();
 }
});

Now that there is code in place, you put it to use when the user is logged in. Because
your accessControl function gets called on every page, you use it to also call the new
MyParseUser.trackOnlineStatus() method, as demonstrated in Listing 12-3.

Listing 12-3.  Making a Call to Track the Online Status of the Current User (www/js/core.js)

app.core = {
 //...
 accessControl: function() {
 // ...
 // Update User Status
 MyParseUser.trackOnlineStatus();
 }
};

Chapter 12 ■ Network Connection Status

261

Last Seen
Since you now have a way of knowing when a user has last been online, you can use this data to populate the
view, allowing for this information to be visible to other users.

Because this functionality is about the current user, you will further extend the MyParseUser class with
two new instance methods, isOnline and lastSeenText, as shown in Listing 12-4.

As you might expect, the isOnline function is used to determine if a user is online by checking the
user’s last_seen time and comparing it with the current time. The span must fall in between two minutes to
qualify a user being “online.”

Listing 12-4.  Instance Methods Added to the MyParseUser Object for Tracking the Online Status of a User

window.MyParseUser = Parse.User.extend({
 // Instance Methods
 isOnline: function() {
 var timeout = 120 * 1000; // 120 seconds
 var currentDate = new Date();
 ��return this.get('online') && (currentDate.getTime() - this.get('last_seen').getTime() <

timeout);
 },
 lastSeenText: function() {
 var currentDate = new Date();
 return this.get('last_seen') ? moment(this.get('last_seen')).fromNow() : '';
 }
}, {
 // Class properties ...
});

Recall that for MyParseUser, the class method setOnline is called when you want to track the user’s
online status. When a user is logged in, this is the information they see about other users in their contacts
list. The isOnline function returns a Boolean value based on if user is online and has been last seen at least
two minutes ago (timeout). The lastSeenText uses the moment.js library to display the last time the user
was online, if they ever were.

Update the Contacts List View
Next, update the view to reflect the data. Your template currently has two columns. Add a new one and add
some function calls to update the user interface (Listing 12-5).

Update the second column by adding a call to the lastSeenText function. Add a new column to
display an icon that reflects the user’s online status. Figure 12-1 shows an example of the new timestamp
representing the last time they were seen, or if they are currently online.

Listing 12-5.  Update Contacts View, Making Use of the Instance and Class Methods for Tracking a User’s
Status (www/contacts.html)

<td class="small" style="vertical-align: middle">

 {{attributes.first_name}}
 {{attributes.last_name}}

 <div>{{ lastSeenText }}</div>
</td>

Chapter 12 ■ Network Connection Status

262

<td>

 {{#if isOnline }}
 <i class="alert alert-success glyphicon glyphicon-stop"></i>
 {{ else }}
 <i class="alert alert-danger glyphicon glyphicon-stop"></i>
 {{/if}}

</td>

Figure 12-1.  UI update based on user instance data

Chapter 12 ■ Network Connection Status

263

Network Information Plug-in
The previous example showed how to get and set a user’s online status. This is only useful if the user has an
active Internet connection to be able to save this information to Parse. What if they don’t have a connection?

If the user doesn’t have a connection, your application can respond by providing a message. This
can present a better user experience so they don’t go through the frustration of trying to send or receive
messages.

You use the Network Information plug-in to determine if the user has an active cellular or WiFi
connection. Start by adding the plug-in to the project, as shown in Listing 12-6.

Listing 12-6.  Adding the Network Information Plug-in

cordova plugin add org.apache.cordova.network-information

Update the UI
Now that you have the plug-in in place, you can provide a friendly message to the user about their Internet
connection. You’ll use two state messages, for on or off line information (Listing 12-7).

Listing 12-7.  The contacts.html Template Updated with Information About the User’s Connection

<div id="offline-message" class="alert alert-danger" role="alert">
 Offline

 You cannot send messages at the moment.
</div>
<div class="modal-backdrop fade in"></div>
 
<div id="online-message" class="alert alert-success" role="alert">
 Online

 You are back online!
</div>

Listening for Updates
Using the new UI elements, you show the message to the user. The Network Information plug-in works by
providing two states do the document, online or offline. You add an event listener to the document and
respond with the UI accordingly.

You provide the user a message when the application is loaded.

■■ Note I n order to provide accurate information about the network, you need to continually access the
information in intervals. Doing so will not only provide a better experience for the user with respect to providing
their status, it also improves your app’s chance of acceptance in a marketplaces like the Apple Store, which
may choose to reject your application if these considerations aren’t addressed.

You won’t consistently poll to check for an active Internet connection. However, you may want to
consider doing so if your application relies heavily on an Internet connection. Add a new function for each
available network status (Listing 12-8).

Chapter 12 ■ Network Connection Status

264

Listing 12-8.  Snippet to Get the UI to Respond to the Status of the User’s Connection (js/core.js)

// Online
document.addEventListener("online", function() {
 MyParseUser.setOnline();
 $('#offline-message').fadeOut();
 $('#online-message').fadeIn();
 window.setTimeout(function() {
 $('#online-message, .modal-backdrop').fadeOut();
 }, 1000);
}, false);
// Offline
document.addEventListener("offline", function() {
 $('#offline-message, .modal-backdrop').fadeIn();
}, false);

Figure 12-2 shows the two state messages, based on the connection of the device.

Figure 12-2.  The online and offline messages

Chapter 12 ■ Network Connection Status

265

Using the Network Information plug-in, you were able to extend your custom user object to include
some functionality for reporting network status information.

You use instance methods to populate the view in your template. With class properties, you set their
online status to assist in providing unique messaging based on their connection. Providing alternate
experiences for users based on a condition, in your case connectivity, is a good practice and provides a great
user experience.

Summary
This chapter covered how to approach user messaging if there is no network connection available. You
extended the MyParseUser object by adding class methods for tracking the status of a user. Using the
last_seen field, you were able to calculate times to display to the user in a friendly format using moment.js.

As you have experienced, there are many different and unique ways you can integrate PhoneGap plug-
ins with Parse. From saving files to updating a user’s geographical position on a map, creatively combining
different methods can make your applications feature-rich with little effort.

Conclusion
You made it to the end! We hope you ran into bugs, extended the code, and learned something new you can
apply to your next project.

We encourage you to keep up-to-date with Parse (blog.parse.com) and PhoneGap (phonegap.com/blog)
and continuously improve your skills to create unique applications everyone can enjoy.

Happy Programming!

267

�       � A
addLocation() method, 197
alert() method, 175
Android Virtual Device (AVD), 21
Apache Software Foundation (ASF), 1

�       � B
beforeSave Cloud function, 255

�       � C
Command-line tools (CLI), 40
Create, Read, Update, Delete (CRUD)

complete code, 62
crud.create function, 49
crud.retrieve function, 53–54
CSS, 45
database functions, 43
deleting records, 59
extending queries, 55
index.html updation, 44
JavaScript application file, 47
Parse.Query object, 53
query methods, 55
retrieve records, 54
script references, 45
sorting results, 56
UI elements, 45
updating records, 56

�       � D, E
Database functions, 43

�       � F
Facebook API

application ID, 84, 87
bundle identifier, 85

development key hashes, 86
developer platform

audience network, 81
friends, 80
insights, 82
monetization, 80
payment service, 80
sharing, 80
user management and permissions, 80

developer account, 83
Graph API Explorer, 89
HTML template, 91
login process

login and logout buttons, 94
login and logout events, 96
native login vs. web login, 92
publishing permissions, 98
requesting permissions, 97
user’s login status, 93

making API requests, 101
Messenger application, 110
new PhoneGap application, 82
POST/DELETE requests, 103
package name, 85
platform selection, 84
plug-in installation, 88
Remove application, 90
share dialog, 107
uploading picture, 105
user's email address, 99
verifying permissions, 100

fail() method, 175
Foreign Function Interface (FFI), 1–2

�       � G
Geocoding method

forward geocoding, 216
HTTP GET request, 215
location name conversion, 215
Parse and Mapbox, 211, 218

Index

■ index

268

Parse Cloud, 213
POST requests and HTTP headers, 216
reverse geocoding, 218

GeoPointA.milesTo(GeoPointB), 243
getFromNow() method, 191
getMessagePreview() function, 191
getParameterByName() function, 170
_getPhoto function, 250
getPicture function, 191
getPreview() function, 191
getReceiver() function, 171
getReceiverName() method, 170
getThumbnail function, 258
Google maps

closing map view, 236
conversation view, 234
GeoPoint object, 235
implementation, 233
map instance, 234
message location, 235
module, 233

Graph API Explorer, 89
Graphical user interface (GUI), 110

�       � H
Handlebars.js, 69
httpRequest function, 256

�       � I
initialize() method, 170–171
Integrated Development Environment (IDE), 12
Internet connection

code preparation
class properties, 260
contacts list view, 261
isOnline function, 261
lastSeenText, 261

network information plug-in, 263

�       � J, K
Java Development Kit (JDK), 18
JavaScript

build process, 12
handlebars.js, 69
loading scripts, 11
jQuery, 67
library documentation, 225
loading files, 71
map view

full-screen mode, 228, 230
map controls, 228

messages data, 226
OpenStreetMap, 225

namespaces, 10
object literal, 9
organizing code, 10

�       � L
Library documentation, 225
Location services

background service, 204
geocoding

forward geocoding, 216
location name conversion, 215
Parse and Mapbox, 211, 218
Parse Cloud, 213
reverse geocoding, 218

geolocation
HTTP GET request, 215
in Parse, 200
permission settings, 199
plug-in, 196
POST request and HTTP headers, 216

getCurrentPosition() method, 198
location setting button, 202
LocalStorage, 201
testing, 220

�       � M
Map views

geo queries
map bounds, 242
nearby messages, 240
radial and box queries, 239

initialization, 236
JavaScript map SDKs, 223
JavaScript map view

full-screen mode, 228, 230
map controls, 228
messages data, 226
OpenStreetMap, 225

map event handlers, 237
message marker, 238
native map SDKs, 224
native map view, 230
recommendation, 224

messageHandler() function, 171
Messages

actual receiver object, 173
compound query, 179
conversationsList.html template, 193
conversation template, 183
conversation view, 169, 186
conversation vs. conversationList, 167

Geocoding method (cont.)

■ Index

269

database index, 188
event handler, 173
initialize() method, 171
JavaScript loader, 175
loading icon, 172
managing conversations, 180
metadata, 187
MyParseMessage Class, 174
owner, 168
Parse classes and roles, 167
partner, 168
prepping conversation, 170
querying conversation messages, 179
reading query parameters, 170–171
reading messages, 178
receiver object, 168, 172
rendering messages

data collection, 181
formatting dates, 181
instance method, 183
style determination, 182

sender, 168
sendMessage method

dialogs plug-in, 177
dialog styles, 174
options object, 175
style determination, 182
test messages and review, 176

tracking conversations
getPreview method, 192
MyParseConversation, 188
Parse.Query, 190
update function, 190

user interface
hiding navigation bar, 186
removing keyboard, 184
textarea element, 186

writing messages, 169
Messenger application

application views, 110
Cordova camera plug-in, 245
Facebook Messenger app, 109
goals, 110
home page, 117
Parse Cloud class

data validation, 255
getThumbnail function, 258
HTTP Request, 256
image resizing, 255

Parse.File class
CSS class, 254
event handlers, 253
photo attachment, 254
photo capture callback, 254
saving image, 253

PhoneGap camera plug-in
cameraDirection, 250
destinationType, 249
encodingType, 250
_getPhoto function, 250
permission requests, 251
quality, 250
sourceType, 249
targetHeight, 250
targetWidth, 250

photo sharing
JavaScript Module, 248
picture/camera buttons, 248
user interface, 246

project setup
application testing, 113
file setup, 113
file structure, 112
loading scripts, 115
new project creation, 111

third-party libraries, 111
MyParseConversation.getMessages() method, 181
MyParseConversation.update() method, 189
MyParseUser.getPicture() function, 191

�       � N
Navigation bar title, 139
navigator.camera.getPicture() function, 249–250

�       � O
_onfail() method, 252

�       � P, Q
Parse

analytics, 37
applications, 36, 39
background jobs, 37
class types, 53
Cloud-based Service, 36
Cloud Code, 36
command-line tools, 40
CRUD application

complete code, 62
crud.create function, 49
crud.retrieve function, 53–54
CSS, 45
database functions, 43
deleting records, 59
extending queries, 55
index.html updation, 44
JavaScript application file, 47
Parse.Query object, 53

■ index

270

query methods, 55
retrieve records, 54
script references, 45
sorting results, 56
UI elements, 45
updating records, 56

dashboard, 36
data browser (Core), 36
deployment, 42
easy user registration, 36
home page, 35
hosting, 36
project creation, 41
project files and folders, 42
push notifications, 37
setting up folders, 41
signup page, 38
subdomain, 40
web hosting, 39

Parse.Object, 48, 51
Parse.Query.include() method, 190
Parse.Query.or() method, 179
Parse user registration

adding view initialization, 122
data preparation, 125
Facebook

app.login namespace, 154
authentication data, 151
facebookConnectPlugin.login(), 151
JavaScript SDK setup, 148
login button, 149
login view, 156
parse integrates, 146
PhoneGap plug-in, 149
simplicity, 157
updating user data via Facebook

API data, 153
listing users

contacts template, 159
email and web templates, 164
email verification, 161
navigation item, 158
query users, 161
user profile picture, 159

logged-in users protection
access control, 135
dynamically loaded navigation, 134
navigation bar, 137

login view
credentials verification, 131
template setting, 129

logout template and functionality, 132
registration task, 124
registration view, 123

resetting password
forgot password feature, 142
forgot password template, 140
login view, 140
new feature testing, 144
new forgot password view, 140

sending user data, 126
updating application code, 127
username and password fields, 121
user registration recap, 128

PhoneGap application, 223
Android environment setup

adding SDK paths, 23
Apache Ant installation, 23
AVD manager, 21
developer portal, 18
emulator image, 21
JDK, 18
SDK installation, 19
SDK Manager, 19

building and testing applications
Adobe PhoneGap build service, 4
Android-based IDE tools Android Studio, 4
caveats, 5
collaboration and testing tools, 6
debugging and testing, 6
developer tools, 4
iOS simulator, 4

command-line interface, 12, 24
creation

application script, 31
build command, 26
device selection, 28
“Hello World” application, 26, 29
running applications, 27

debugging, 12–13
definition, 1
FFI system, 2
IDE, 12
iOS environment setup

command line tools, 17
download and installation, Xcode, 16
packages installation, 17

JavaScript
build process, 12
loading scripts, 11
Namespaces, 10
object literal, 9
organizing code, 10

Mac installation, 24
Node.js and package manager

installation, 15, 24
Parse

developing applications, 6
features, 7

Parse (cont.)

■ Index

271

platform setup and restrictions, 15
project history, 1
social application, 8
supported platforms, 2
testing tools

PhoneGap App Desktop, 75
PhoneGap Developer App, 73

updation, 24
vs. web applications, 3
Windows installation, 24
working principles, 2

�       � R
render method, 137
RenderMessages method

data collection, 181
formatting dates, 181
instance method, 183
style determination, 182

Reverse geocoding, 218

�       � S
save() method, 253
sendMessage method

dialogs plug-in, 177
dialog styles, 174
options object, 175
style determination, 182
test messages and review, 176

setReceiver() method, 170, 173
success method, 256

�       � T, U, V
toggleKeyboardAccessoryBar() function, 185
Twitter Bootstrap (TB), 68

�       � W, X, Y, Z
Web Graphics Library (WebGL), 224
Web Map Tile Service (WMTS), 223

Beginning App
Development with Parse

and PhoneGap

Wilkins Fernandez

Stephan Alber

Beginning App Development with Parse and Phonegap

Copyright © 2015 by Wilkins Fernandez and Stephan Alber

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0236-4

ISBN-13 (electronic): 978-1-4842-0235-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Developmental Editor: Chris Nelson
Technical Reviewer: Zeeshan Chawdhary
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Rita Fernando
Copy Editor: Ann Dickson, Mary Behr
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This is dedicated to people who want to get their app ideas
out of their heads and into the hands of many.

vii

Contents

About the Authors��xix

About the Technical Reviewer���xxi

Acknowledgments���xxiii

Preface���xxv

■■Chapter 1: Introduction�� 1

What Is PhoneGap?��� 1

History��� 1

How PhoneGap Works��� 2

Foreign Function Interface�� 2

Supported Platforms�� 2

PhoneGap vs. Web Applications��� 3

Building and Testing PhoneGap Applications�� 3

The Adobe PhoneGap Build Service (Optional)�� 4

Caveats�� 5

Why We Don’t Use Adobe PhoneGap Build in This Book�� 6

Collaboration and Testing Tools��� 6

Using Parse��� 6

Developing Applications with Parse�� 6

Features��� 7

Why Parse and PhoneGap?��� 7

Make Your Application Social�� 8

viii

■ Contents

Previous Knowledge and Requirements�� 9

JavaScript Object Literals�� 9

Namespaces with Object Literals�� 10

Organizing Code for Projects in This Book��� 10

Loading Scripts with LABjs�� 11

Build Process��� 12

Debugging��� 12

Command-Line Interface Tools�� 12

Integrated Development Environment (IDE)��� 12

What You Will Learn about PhoneGap and Parse��� 13

Going Further��� 13

■■Chapter 2: Beginning PhoneGap��� 15

Platform Setup and Restrictions �� 15

Installing Node.js and Node Package Manager��� 15

iOS Environment Setup �� 16

Command Line Tools for Xcode��� 17

iOS Launcher Packages��� 17

Android Environment Setup�� 18

Java Development Kit (JDK)�� 18

Android SDK Installation�� 19

Android SDK Manager �� 19

Choosing an Android Emulator Image��� 21

Managing Virtual Devices�� 21

Adding Android SDK Paths��� 23

Installing Apache Ant��� 23

Installing PhoneGap �� 23

Updating PhoneGap��� 24

Using the PhoneGap CLI Tools��� 24

ix

■ Contents

Creating a New PhoneGap Application�� 25

PhoneGap “Hello World” Application��� 26

Building Applications��� 26

Running Applications��� 27

Device Selection�� 28

Inside PhoneGap’s “Hello World” Application�� 29

Main Application Script (index.js)�� 31

Debugging PhoneGap Applications��� 33

Summary��� 33

■■Chapter 3: Beginning Parse�� 35

Parse Features at a Glance��� 36

Creating and Setting Up a Parse Project��� 38

Web Hosting�� 39

Configuring a Parse Application’s Subdomain��� 40

Installing the Parse CLI for Application Publishing ��� 40

Setting Up Folders��� 41

Creating a New Project�� 41

About Parse Project Files and Folders��� 42

Deploying a Parse Project�� 42

Building a CRUD Application�� 43

Updating index.html of the Parse Starter Project�� 44

Adding Custom UI Elements�� 45

Adding Script References�� 45

Customizing CSS��� 45

Creating a JavaScript Application File��� 47

Creating a New Record�� 49

Retrieving Existing Records��� 53

Parse.Query Object�� 53

Updating crud.retrieve��� 54

Testing Record Retrieval�� 54

x

■ Contents

Extending Queries��� 55

Query Methods�� 55

Sorting Results�� 56

Updating Records�� 56

Deleting Records��� 59

Cloud Code�� 60

Complete Code�� 62

Summary��� 66

■■Chapter 4: Tools and Helpers�� 67

jQuery to the Rescue��� 67

Use jQuery Responsibly��� 67

Why jQuery Matters for This Book��� 68

Twitter Bootstrap��� 68

Use Bootstrap Responsibly�� 69

Why Twitter Bootstrap Matters for This Book�� 69

JavaScript Templates with Handlebars.js��� 69

Static vs. Dynamic Web Sites�� 69

When to Use Dynamic Templates�� 70

Why Handlebars.js Matters for This Book�� 71

Loading JavaScript Files��� 71

Script Loading Today��� 71

Script Loading in PhoneGap�� 72

LABjs Script Loader��� 72

PhoneGap Testing Tools��� 72

PhoneGap Developer App�� 73

PhoneGap App Desktop Beta��� 75

Summary��� 77

xi

■ Contents

■■Chapter 5: Facebook API�� 79

The Facebook Developer Platform�� 79

Sharing�� 80

User Management and Permissions�� 80

Friends��� 80

Monetization�� 80

Insights�� 82

Goals and Requirements for This Chapter��� 82

Creating a New PhoneGap Application�� 82

Creating a Facebook Developer Account��� 83

Creating a Facebook Application Instance��� 84

Installing the Facebook PhoneGap Plug-in�� 88

Graph API Explorer��� 89

Resetting Permissions��� 90

Usage Examples�� 91

Basic Setup�� 91

Login with Facebook��� 92

Requesting Publishing Permissions�� 98

Getting a User’s Email Address�� 99

Verifying Permissions�� 100

Making API Requests��� 101

POST to Facebook via Graph API��� 103

Uploading a Picture��� 105

Share Dialog�� 107

Summary��� 108

xii

■ Contents

■■Chapter 6: The Messenger Application��� 109

The Messenger App��� 109

Goals for the Messenger App��� 110

Application Views�� 110

Choosing Third-Party Libraries�� 111

Project Setup��� 111

Application File Setup�� 113

Testing Your Application��� 113

Loading Application Scripts��� 115

The Home Page View��� 117

Summary��� 120

■■Chapter 7: User Registration with Parse�� 121

Parse User Registration��� 121

Preparation: Adding View Initialization�� 122

Registration View��� 123

Registration Task��� 124

Preparing User Data�� 125

Sending User Data to Parse��� 126

Updating Your Application Code��� 127

User Registration Recap�� 128

Login and Logout Using Parse��� 128

Login: Setting Up the Template�� 129

Login: Verifying Credentials��� 131

Logout: Template and Functionality��� 132

Protecting Views for Logged-in Users��� 134

Configuring Access Control��� 135

Navigation Bar for Logged-in Users��� 137

xiii

■ Contents

Resetting a Password Using Parse�� 140

The Forgot Password Template��� 140

Parse’s Forgot Password Feature�� 142

Testing the New Feature! ��� 144

Registration and Login via Facebook�� 145

How Parse Integrates with Facebook�� 146

Facebook JavaScript SDK Setup��� 148

Facebook PhoneGap Plug-in�� 149

Logging with Facebook View��� 149

Listing Users�� 157

Preparation�� 158

Contacts Template��� 159

Query Users �� 161

E-Mail Verification��� 161

E-Mail and Web Templates�� 164

Summary��� 166

■■Chapter 8: Messages�� 167

Conversation vs. ConversationList�� 167

Parse Classes and Their Roles�� 167

Senders and Receivers��� 168

Writing Messages�� 168

Creating the Conversation View Template��� 169

Prepping for a Conversation�� 170

Reading URL Query Parameters�� 170

Initializing the View�� 171

The Loading Icon��� 171

Creating a Receiver Object�� 172

Loading the Actual Receiver Object��� 173

Message Form Handler��� 173

The Message Class�� 173

xiv

■ Contents

Sending a Message��� 175

Sending a Test Message and Review�� 176

Improving Dialog Styles (Optional)�� 176

Features Offered by the Dialogs Plug-in�� 178

Reading Messages�� 178

Querying Conversation Messages��� 179

Compound Queries�� 179

Managing Conversations��� 180

Rendering the Conversation View�� 181

Creating the Conversation Template�� 183

User Interface Optimizations (Optional)��� 184

Listing Conversations�� 186

Gathering Metadata for Messages�� 187

Tracking Conversations��� 188

Setting Up the MyParseConversation Class��� 188

Updating Conversation Meta Information�� 190

Querying Latest Conversations�� 190

Preparing Conversation Data for Rendering�� 191

Conversation List Template��� 192

Summary��� 194

■■Chapter 9: Location Services�� 195

Geolocation Plug-in��� 196

geolocationSuccess��� 196

geolocationError�� 197

geolocationOptions�� 197

Adding Location Information to a Message��� 197

Geolocation Permission Settings��� 199

Geolocation in Parse�� 200

xv

■ Contents

Location Setting Interface��� 200

LocalStorage for Device-Related Information�� 201

Location Setting Button��� 202

Background Service for Location Tracking (iOS)��� 204

Plug-in Setup��� 205

Device Identification�� 206

Save Data to Parse�� 206

Running Background Task��� 208

Testing Your Results�� 208

Excursion: CartoDB�� 209

Geocoding��� 211

Mapbox�� 211

Geocoding in the Parse Cloud�� 213

Converting the Geolocation into a Location Name��� 215

Geocoding Methods��� 216

Combining Parse and Mapbox��� 218

Summary��� 222

■■Chapter 10: Map Views�� 223

Two Approaches to Adding Map Views�� 223

JavaScript Map SDKs�� 223

Native Map SDKs �� 224

Recommendation��� 224

Adding a JavaScript Map View�� 224

Mapbox JavaScript Library Setup�� 225

Adding a Map to a Message�� 226

Adding Map Controls��� 228

Adding a Full-Screen Mode��� 228

Testing the Map View�� 229

xvi

■ Contents

Adding a Native Map View��� 230

Google Maps Plug-in Installation��� 232

Google Maps View��� 232

Google Maps Implementation�� 233

Google Maps Module��� 233

Hiding the Conversation View�� 234

Google Maps Instance��� 234

Google Maps “GeoPoint”��� 235

Localizing the Message Location�� 235

Closing the Map View�� 236

Initializing the Map View�� 236

Handling Layer Conflicts�� 236

Adding a Message Marker��� 238

Geo Queries��� 239

Radial and Box Queries �� 239

Getting Nearby Messages�� 240

Getting Messages within Map Bounds�� 242

Summary��� 243

■■Chapter 11: Accessing and Sharing Photos��� 245

Enabling Camera Access��� 245

User Interface for Photo Sharing��� 246

Photo and Camera Button�� 247

JavaScript Module for Accessing Photos and Camera�� 248

PhoneGap Camera Plug-in�� 249

Optional Camera Options��� 249

Using the Camera Plug-in�� 250

Camera and Photos Permissions��� 251

xvii

■ Contents

Using Parse Files��� 252

Saving a Photo to Parse��� 252

Camera and Album Event Handler��� 253

Photo Capture Callback��� 254

Attaching a Photo to a Message�� 254

Image Resizing in the Parse Cloud�� 255

Validating Data�� 255

Parse Cloud HTTP Request�� 256

Using the Resized Image��� 258

Summary��� 258

■■Chapter 12: Network Connection Status�� 259

Code Preparation��� 259

Class Properties��� 260

Last Seen��� 261

Update the Contacts List View��� 261

Network Information Plug-in��� 263

Update the UI��� 263

Listening for Updates�� 263

Summary��� 265

Conclusion��� 265

Index�� 267

xix

About the Authors

Wilkins Fernandez is a software and hardware engineer with a passion
to create. Software development started as a personal hobby in 2002, but
soon turned into a career for Wilkins. He now works for major companies
and media agencies across NYC. When he’s not soldering or coding, he
enjoys writing in third person.

Stephan Alber is an engineer and product manager for digital content
and apps, counting over 15 years of relevant industry experience. After
completing his work on this publication, Stephan joined Facebook to
manage their developer documentation. In the past, he was active as a
blogger, book author, panelist (TV), and conference speaker covering
Parse and Facebook technology. He also worked for digital agencies in
New York City and Germany and founded a couple of small start-ups.
(Disclaimer: This book is not endorsed by Facebook. Inc.)

xxi

About the Technical Reviewer

Zeeshan Chawdhary is an avid techie with interests in everything related to
technology. He started coding in the days of BASIC and has been hooked ever since.
Professionally, with over ten years of experience, he has worked in the gaming,
education, travel, automotive, and eCommerce spaces. He enjoys working with
start-ups that challenge the conventional ways of business.

Zeeshan enjoys reading, writing, and reviewing technology books. Currently, he
is working as the chief technology officer for a self-drive car rental start-up in India.
He can be reached on Google at imzeeshanc@gmail.com.

http://imzeeshanc@gmail.com

xxiii

Acknowledgments

Throughout the process of writing this book, many friends have taken time to help us out. We’d like to give a
special thanks to Inge Terwindt and Nick Smolney, who were reviewing our content early on and providing
invaluable feedback. Thanks to Stephanie Carino for getting this book started. We’d like to thank Andrew
Suzuka, Ricky Bacon, and Greg Ratner for enabling us to execute this project.

Stephan would like to thank his mom for creating him.
Wilkins would like to thank his wife, Cristina, and his dog, Ada—both whose support made this possible.
We would also like to thank the PhoneGap community and the Parse team for building such amazing

products, enabling people to prototype and execute their ideas.
And finally, we thank you!

xxv

Preface

Hello, World! Welcome to Beginning App Development with Parse and PhoneGap. We wrote this book to
help anyone who wants to build native mobile applications, but may be missing knowledge about advanced
programming languages and techniques that are required to do so.

Traditionally, building a native mobile application involved learning multiple programming languages:
Objective C (iOS) or Java (Android) for building your program logic and a server language such as PHP or
.NET to build your application server. You also needed to learn a database language like MySQL. With Parse
and PhoneGap, you use a single language to conquer all aspects: JavaScript.

Similar rules apply to the user interface. Instead of learning a new UI editor or language, you can use the
well-known web technologies CSS and HTML to design your user interface.

With Parse and PhoneGap combined, you’ll be able to build a robust application in a fraction of the
time it would take you to do it in the traditional way. In the pages that follow, you’ll be using Parse to manage
programming logic, user administration, database creation and analysis, and other great out-of-the-box
features. With PhoneGap, you will learn how to access a device’s native features such as camera access,
geolocation, UI customizations, and much more using powerful plug-ins that can greatly enhance your
applications’ user experience.

The code in this book can be reused for projects outside of this book. We encourage you to extend the
code, debug errors, and—simply put—build something awesome.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	 What Is PhoneGap?
	 History
	 How PhoneGap Works
	 Foreign Function Interface
	 Supported Pla tforms
	 PhoneGap vs. Web Applications

	 Building and Testing PhoneGap Applications
	 T he Adobe PhoneGap Build Service (Optional)
	 Caveats
	 Why We Don’t Use Adobe PhoneGap Build in This Book
	 Collaboration and Testing Tools

	 Using Parse
	 Developing Applications with Parse
	 Features

	 Why Parse and PhoneGap?
	 Make Your Application Social

	 Previous Knowledge and Requirements
	 JavaScript Object Literals
	 Namespaces with Object Literals
	 Organizing Code for Projects in This Book
	 Loading Scripts with LABjs
	 Build Process
	 Debugging
	 Command-Line Interface Tools
	 Integrated Development Environment (IDE)
	 What You Will Learn about PhoneGap and Parse
	 Going Further

	Chapter 2: Beginning PhoneGap
	 Platform Setup and Restrictions
	 Installing Node.js and Node Package Manager
	 iOS Environment Setup
	 Command Line Tools for Xcode
	 iOS Launcher Packages

	 Android Environment Setup
	 Java Development Kit (JDK)
	 Android SDK Installation
	Windows
	Mac

	 Android SDK Manager
	 Choosing an Android Emulator Image
	 Managing Virtual Devices
	 Adding Android SDK Paths
	 Installing Apache Ant
	 Installing PhoneGap
	Windows
	 Mac

	 Updating PhoneGap
	 Using the PhoneGap CLI Tools

	 Creating a New PhoneGap Application
	 PhoneGap “Hello World” Application
	 Building Applications
	 Running Applications
	 Device Selection
	 Inside PhoneGap’s “Hello World” Application
	 Main Application Script (index.js)

	 Debugging PhoneGap Applications
	 Summary

	Chapter 3: Beginning Parse
	 Parse Features at a Glance
	 Creating and Setting Up a Parse Project
	 Web Hosting
	 Configuring a Parse Application’s Subdomain
	 Installing the Parse CLI for Application Publishing
	 Setting Up Folders
	 Creating a New Project
	 About Parse Project Files and Folders
	 Deploying a Parse Project

	 Building a CRUD Application
	 Updating index.html of the Parse Starter Project
	 Adding Custom UI Elements
	 Adding Script References
	 Customizing CSS
	 Creating a JavaScript Application File
	Initializing Parse
	Extending a Parse.Object
	Saving to Parse
	CRUD Preparation
	Adding Event Listener

	 Creating a New Record
	Adding Safeguard Before Creating New Record
	Updating the User Interface
	Instantiating Parse Object
	Saving to Parse
	Success and Error Callback Functions
	Error Handling
	Data Browser

	 Retrieving Existing Records
	 Parse.Query Object
	 Updating crud.retrieve
	 Testing Record Retrieval
	 Extending Queries
	 Query Methods
	Querying for Data

	 Sorting Results
	 Updating Records
	Reset the Form
	Update crud.update
	Editing an Item
	Testing the Update Function
	Removing DOM Node
	Finishing Touches

	 Deleting Records
	 Cloud Code
	Cloud Functions
	Trigger Events

	 Complete Code

	 Summary

	Chapter 4: Tools and Helpers
	 jQuery to the Rescue
	 Use jQuery Responsibly
	 Why jQuery Matters for This Book

	 Twitter Bootstrap
	 Use Bootstrap Responsibly
	 Why Twitter Bootstrap Matters for This Book

	 JavaScript Templates with Handlebars.js
	 Static vs. Dynamic Web Sites
	 When to Use Dynamic Templates
	 Why Handlebars.js Matters for This Book

	 Loading JavaScript Files
	 Script Loading Today
	 Script Loading in PhoneGap
	 LABjs Script Loader

	 PhoneGap Testing Tools
	 PhoneGap Developer App
	Using the PhoneGap Developer App
	Live Testing

	 PhoneGap App Desktop Beta

	 S ummary

	Chapter 5: Facebook API
	 The Facebook Developer Platform
	 Sharing
	 User Management and Permissions
	 Friends
	 Monetization
	Payment Services
	 Audience Network

	 Insights

	 Goals and Requirements for This Chapter
	 Creating a New PhoneGap Application
	 Creating a F acebook Developer Account
	 Creating a Facebook Application Instance
	iOS: Bundle Identifier
	 Android: Package Name
	 Android: Development Key Hash
	Facebook Application ID

	 Installing the Facebook PhoneGap Plu g- in

	 Graph API Explorer
	 Resetting Permissions
	 Usage Examples
	 Basic Setup
	 Login with Facebook
	Asking for Additional Permissions
	Getting the User’s Login Status
	 Login and Logout Buttons
	 Login and Logout Events
	 Requesting Permissions on Login

	 Requesting Publishing Permissions
	 Getting a User’s Email Address
	 Verifying Permissions
	 Making API Requests
	 POST to Facebook via Graph API
	 Uploading a Picture
	 Share Dialog

	 Summary

	Chapter 6: The Messenger Application
	 The Messenger App
	 Goals for the Messenger App
	 Application Views

	 Choosing Third-Party Libraries
	 Project Setup
	 Application File Setup
	 Testing Your Application
	 Loading Application Scripts

	 The Home Page View
	 Summary

	Chapter 7: User Registration with Parse
	 Parse User Registration
	 Preparation: Adding View Initialization
	 Registration View
	 Registration Task
	 Preparing User Data
	 Sending User Data to Parse
	 Updating Your Application Code
	 User Registration Recap

	 Login and Logout Using Parse
	 Login: Setting Up the Template
	 Login: Verifying Credentials
	 Logout: Template and Functionality

	 Protecting Views for Logged-in Users
	 Configuring Access Control
	 Na vigation Bar for Logged-in Users
	 Navigation Bar Title
	 Common Render Method

	 Resetting a Password Using Parse
	 The Forgot Password Template
	 Parse’s Forgot Password Feature
	 Testing the New Feature!

	 Registration and Login via Facebook
	 How Parse Integrates with Facebook
	How to Log In with Facebook

	 Facebook JavaScript SDK Setup
	Logging In to Parse via Facebook

	 Facebook PhoneGap Plug-in
	 Logging with Facebook View
	Logging In to Facebook
	 Using Facebook Authentication Data for Login
	Validation Recommended

	 Updating User Profile Based on Facebook Graph API Data
	 Avoiding Repeated Updates
	Logging In with Facebook Screen
	Parse + Facebook = Simplicity

	 Listing Users
	 Preparation
	Contacts Navigation Item
	Displaying a User Profile Picture

	 Contacts Template
	View Configuration

	 Query Users
	 E-Mail Verification
	Avoiding Automatic Login

	 E-Mail and Web Templates
	Mail Templates
	Page Template

	 Summary

	Chapter 8: Messages
	 Conversation vs. ConversationList
	 Parse Classes and Their Roles
	 Senders and Receivers
	 Writing Messages
	 Creating the Conversation View Template
	 Prepping for a Conversation
	 Reading URL Query Parameters
	 Initializing the View
	 The Loading Icon
	 Creating a Receiver Object
	 Loading the Actual Receiver Object
	 Message Form Handler
	 The Message Class

	 Sending a Message
	 Sending a Test Message and Review
	 Improving Dialog Styles (Optional)
	 Features Offered by the Dialogs Plug-in

	 Reading Messages
	 Querying Conversation Messages
	 Compound Queries
	 Managing Conversations
	 Rendering the Conversation View
	Preparing Message Data for Rendering
	Formatting Dates with Moment.js
	Alternating Styling for Sent and Received Messages
	Using Instance Methods in Handlebars Templates

	 Creating the Conversation Template
	 User Interface Optimizations (Optional)
	Removing the Keyboard Toolbar
	Removing the Keyboard When the Body Is Tapped
	Hiding the Navigation Bar When Textarea Is Focused
	Scrolling to Textarea and Focusing on Load

	 Listing Conversations
	 Gathering Metadata for Messages
	Creating a Message Index

	 Tracking Conversations
	 Setting Up the MyParseConversation Class
	 Updating Conversation Meta Information
	 Querying Latest Conversations
	 Preparing Conversation Data for Rendering

	 Conversation List Template
	 Summary

	Chapter 9: Location Services
	 Geolocation Plug- in
	 geolocationSuccess
	 geolocationError
	 geolocationOptions

	 Adding Location Information to a Message
	 Geolocation Permission Settings
	 Geolocation in Parse

	 Location Setting Interface
	 LocalStorage for Device-Related Information
	 Location Setting Button

	 Background Service for Location Tracking (iOS)
	 Plug-in Setup
	 Device Identification
	 Save Data to Parse
	 Running Background Task
	 Testing Your Results
	 Excursion: CartoDB

	 Geocoding
	 Mapbox
	The Mapbox Platform
	Mapbox Account and Project Setup

	 Geocoding in the Parse Cloud
	Adding a Location to a Message
	Recreating the Message Instance

	 Converting the Geolocation into a Location Name
	Defining an HTTP GET Request
	POST Requests and HTTP Headers

	 Geocoding Methods
	Forward Geocoding
	Reverse Geocoding

	 Combining Parse and Mapbox
	Parsing Geodata
	Displaying the Location Name
	Testing Your Updates

	 Summary

	Chapter 10: Map Views
	 Two Approaches to Adding Map Views
	 JavaScript Map SDKs
	 Native Map SDKs
	 Recommendation

	 Adding a JavaScript Map View
	 Mapbox JavaScript Library Setup
	 Adding a Map to a Message
	 Adding Map Controls
	 Adding a Full-Screen Mode
	 Testing the Map View

	 Adding a Native Map View
	 Google Maps Plug-in Installation
	 Google Maps View
	 Google Maps Implementation
	 Google Maps Module
	 Hiding the Conversation View
	 Google Maps Instance
	 Google Maps “GeoPoint”
	 Localizing the Message Location
	 Closing the Map View
	 Initializing the Map View
	 Handling Layer Conflicts
	 Adding a Message Marker

	 Geo Queries
	 Radial and Box Queries
	 Getting Nearby Messages
	 Getting Messages within Map Bounds

	 Summary

	Chapter 11: Accessing and Sharing Photos
	 Enabling Camera Access
	 User Interface for Photo Sharing
	 Photo and Camera Button

	 JavaScript Module for Accessing Photos and Camera
	 PhoneGap Camera Plug-in
	 Optional Camera Options
	 Using the Camera Plug-in
	 Camera and Photos Permissions

	 Using Parse Files
	 Saving a Photo to Parse
	 Camera and Album Event Handler
	 Photo Capture Callback
	 Attaching a Photo to a Message

	 Image Resizing in the Parse Cloud
	 Validating Data
	 Parse Cloud HTTP Request
	 Using the Resized Image

	 Summary

	Chapter 12: Network Connection Status
	 Code Preparation
	 Class Properties
	 Last Seen
	 Update the Contacts List View

	 Network Information Plug-in
	 Update the UI
	 Listening for Updates

	 Summary
	 Conclusion

	Index

