
Language, Cognition, and Mind

Bayesian Natural 
Language 
Semantics and 
Pragmatics

Henk Zeevat
Hans-Christian Schmitz 
Editors

www.allitebooks.com

http://www.allitebooks.org


Language, Cognition, and Mind

Volume 2

Series editor

Chungmin Lee, Seoul National University, Seoul, South Korea

Editorial board members

Tecumseh Fitch, University of Vienna, Vienna, Austria
Peter Gaerdenfors, Lund University, Lund, Sweden
Bart Geurts, Radboud University, Nijmegen, The Netherlands
Noah D. Goodman, Stanford University, Stanford, USA
Robert Ladd, University of Edinburgh, Edinburgh, UK
Dan Lassiter, Stanford University, Stanford, USA
Edouard Machery, Pittsburgh University, Pittsburgh, USA

www.allitebooks.com

http://www.allitebooks.org


This series takes the current thinking on topics in linguistics from the theoretical
level to validation through empirical and experimental research. The volumes
published offer insights on research that combines linguistic perspectives from
recently emerging experimental semantics and pragmatics as well as experimental
syntax, phonology, and cross-linguistic psycholinguistics with cognitive science
perspectives on linguistics, psychology, philosophy, artificial intelligence and
neuroscience, and research into the mind, using all the various technical and critical
methods available. The series also publishes cross-linguistic, cross-cultural studies
that focus on finding variations and universals with cognitive validity. The peer
reviewed edited volumes and monographs in this series inform the reader of the
advances made through empirical and experimental research in the language-
related cognitive science disciplines.

More information about this series at http://www.springer.com/series/13376

www.allitebooks.com

http://www.springer.com/series/13376
http://www.allitebooks.org


Henk Zeevat • Hans-Christian Schmitz
Editors

Bayesian Natural Language
Semantics and Pragmatics

123

www.allitebooks.com

http://www.allitebooks.org


Editors
Henk Zeevat
ILLC
University of Amsterdam
Amsterdam
The Netherlands

Hans-Christian Schmitz
Fraunhofer Institute for Communication
Information Processing and Ergonomics
FKIE

Wachtberg
Germany

ISSN 2364-4109 ISSN 2364-4117 (electronic)
Language, Cognition, and Mind
ISBN 978-3-319-17063-3 ISBN 978-3-319-17064-0 (eBook)
DOI 10.1007/978-3-319-17064-0

Library of Congress Control Number: 2015939421

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.allitebooks.com

http://www.allitebooks.org


Preface

Natural language interpretation (NLI) can be modelled analogously to Bayesian
signal processing: the most probable message M (corresponding to the speaker’s
intention) conveyed by a signal S (a word, a sentence, turn or text) is found by two
models, namely the prior probability of the message and the production probability
of the signal. From these models and Bayes’ theorem, the most probable message
given the signal can be derived. Although the general capacity of Bayesian models
has been proven in disciplines like artificial intelligence, cognitive science, com-
putational linguistics and signal processing, they are not yet common in NLI.

Bayesian NLI gives three departures from standard assumptions. First, it can be
seen as a defence of linguistic semantics as a production system that maps meanings
into forms as was assumed in generative semantics, but also in systemic grammar,
functional grammar and optimality theoretic syntax. This brings with it a more
relaxed view of the relation between syntactic and semantic structures; the mapping
from meanings to forms should be efficient (linear) and the prior strong enough to
find the inversion from the cues in the utterance.

The second departure is that the prior is also the source for what is not said in the
utterance but part of the pragmatic enrichment of the utterance: what is part of the
speaker intention but not of the literal meaning. There is no principled difference
between inferring in perception that the man who is running in the direction of the
bus stop as the bus is approaching is trying to catch the bus and inferring in
conversation that the man who states that he is out of petrol is asking for help with
his problem.

The third departure is thus that interpretation is viewed as a stochastic and
holistic process leading from stochastic data to a symbolic representation or a
probability distribution over such representations that can be equated with the
conversational contribution of the utterance.

Models relevant to the prior (the probability of the message M) include Bayesian
networks for causality, association between concepts and (common ground)
expectations. It is tempting to see a division in logic: classical logic for expressing
the message, the logic of uncertainty for finding out what those messages are.
Radical Bayesian interpretation can be described as the view that not just the
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identification of the message requires Bayesian methods, but also the message itself
and the contextual update have to be interpreted with reference to Bayesian belief
revision, Bayesian networks or conceptual association.

The papers in this volume, which is one of the first on Bayesian NLI, approach
the topic from diverse angles. The following gives some minimal guidance with
respect to the content of the papers.

• Henk Zeevat: “Perspectives on Bayesian Natural Language Semantics and
Pragmatics” Zeevat gives an overview of the different concepts of Bayesian
interpretation and some possible applications and open issues. This paper can be
read as an introduction to Bayesian NL Interpretation.

• Anton Benz: “Causal Bayesian Networks, Signalling Games and Implicature of
‘More Than n’”. Benz applies Causal Bayesian Nets and signalling games to
explain the empirical data on implicatures arising from ‘more than n’ by
modelling the speaker with these nets.

• Satoru Suzuki: “Measurement-Theoretic Foundations of Logic for Better
Questions and Answers” The paper is concerned with finding a qualitative
model of reasoning about optimal questions and makes a promising proposal. It
is part of a wider programme to find qualitative models of other reasoning tasks
that are normally approached by numerical equations like the stochastic
reasoning in Bayesian interpretation.

• Stefan Kaufmann: “Conditionals, Conditional Probabilities, and
Conditionalization” Kaufman gives a logical analysis of the relation between
the probability of a conditional and the corresponding conditional probability,
proposing Bayes’ theorem as the link.

• Christian Wurm: “On the Probabilistic Notion of Causality: Models and
Metalanguages” Wurm addresses the well-known problem of the reversibility of
Bayesian nets. Nets can be turned into equally other nets by reversing all the
arrows.

• Mathias Winther Madsen: “Shannon Versus Chomsky: Brain Potentials and the
Syntax-Semantics Distinction” Based on a large number of existing experi-
mental results, Madsen argues for a simple information theoretic hypothesis
about the correlates of N400 and P600 effects in which an N400 is the sign of a
temporary loss of hypotheses and a P600 the sign of too many hypotheses. This
information theoretic approach has a strong relation with incremental Bayesian
interpretation.

• Jacques Jayez: “Orthogonality and Presuppositions: A Bayesian Perspective”
Jayez gives a direct application of Bayesian interpretation to the differential
behaviour of various presupposition triggers in allowing presupposition
suspension.

• Grégoire Winterstein: “Layered Meanings and Bayesian Argumentation: The
Case of Exclusives” Winterstein applies a Bayesian theory of argumentation to
the analysis of exclusive particles like “only”.

• Ciyang Qing and Michael Franke: “Variations on a Bayesian Theme: Comparing
Bayesian Models of Referential Reasoning” Inspired by game-theoretical
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pragmatics, Qing and Franke propose a series of improvements to the RSAmodel
of Goodman and Frank with the aim of improving its predictive power.

• Peter R. Sutton: “Towards a Probabilistic Semantics for Vague Adjectives”
Sutton formalises and defends a nominalist approach to vague predicates
in situation theory in which Bayesian learning is directly responsible for
learning the use and interpretation of such predicates without an intervening
logical representation.

The volume grew out of a workshop on Bayesian Natural Language Semantics
and Pragmatics, held at the European Summer School of Logic, Language and
Information (ESSLLI) 2013 in Düsseldorf. We would like to thank all the workshop
participants for their contributions to the success of the workshop and the quality
of the papers in this volume. Furthermore, we thank the members of the programme
committee, Anton Benz, Graeme Forbes, Fritz Hamm, Jerry Hobbs, Noah
Goodman, Gerhard Jäger, Jacques Jayez, Stefan Kaufmann, Uwe Kirschenmann,
Ewan Klein, Daniel Lassiter, Jacob Rosenthal, Remko Scha, David Schlangen,
Markus Schrenk, Bernhard Schröder, Robert van Rooij, Grégoire Winterstein and
Thomas Ede Zimmermann, for their help in selecting suitable contributions. We
also owe thanks to the series editor Chungmin Lee, to Helen van der Stelt of
Springer and to the anonymous reviewers who helped out in the reviewing and
selection process. Last but not least, we thank the German Society for
Computational Linguistics & Language Technology (GSCL) for its financial sup-
port of the workshop.

Henk Zeevat
Hans-Christian Schmitz
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Perspectives on Bayesian Natural Language
Semantics and Pragmatics

Henk Zeevat

Abstract Bayesian interpretation is a technique in signal processing and its
application to natural language semantics and pragmatics (BNLSP from here on
and BNLI if there is no particular emphasis on semantics and pragmatics) is basi-
cally an engineering decision. It is a cognitive science hypothesis that humans emu-
late BNLSP. That hypothesis offers a new perspective on the logic of interpretation
and the recognition of other people’s intentions in inter-human communication. The
hypothesis also has the potential of changing linguistic theory, because the mapping
from meaning to form becomes the central one to capture in accounts of phonology,
morphology and syntax. Semantics is essentially read off from this mapping and
pragmatics is essentially reduced to probability maximation within Grice’s intention
recognition. Finally, the stochastic models used can be causal, thus incorporating
new ideas on the analysis of causality using Bayesian nets. The paper explores and
connects these different ways of being committed to BNLSP.

Keywords Bayesian interpretation · Semantics · Pragmatics · Stochastic natural
language interpretation · Presupposition · Implicature

Overview

This paper explains six ways in which one can understand the notion of Bayesian
Natural Language Semantics and Pragmatics and argues for each of them that they
merit consideration since they seem to allow progress in understanding human lan-
guage interpretation and with respect to problems in the area of NL semantics and
pragmatics. The six ways can be listed as in (1).

H. Zeevat (B)
ILLC, University of Amsterdam, Amsterdam, The Netherlands
e-mail: henk.zeevat@uva.nl

© Springer International Publishing Switzerland 2015
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2 H. Zeevat

(1) a. the proposal to compute the most probable NL interpretations by taking
the product of prior and likelihood
b. the hypothesis that the human brain has implemented the proposal in a.
c. the Bayesian logic of interpretation: analysing rational interpretation
as finding the maximum product of prior and likelihood
d. coordination on meaning using Bayesian interpretation
e. analysing intention recognition by Bayesian interpretation
f. switching to causal models for determining prior and likelihood.

The paper follows (1) trying in each case to explain the concept and its merits,
before embarking on some controversial consequences and some urgent issues.What
is the best way to implement NL interpretation is the best way to implement NL
interpretation and the brain is also what it is. Therefore (a) and (b) will have to be
settled by future research. (c) and (d) however can be seen as a thesis about the
nature of NL interpretation. (c) and (d) commit one to a Bayesian analysis of Grice’s
views on meaning and the repercussions of those analysis for the notion of rational
NL interpretation. (a) and (b), and especially the characterisation they give of the
problem of NL interpretation as finding one’s way through massive ambiguity would
give important support to this thesis. The more speculative (e) and (f) deal with a
counterargument to the thesis, i.e. the argument that it cannot deal with the causal
component of the thesis.

1 Computational BNLSP

Bayesian Interpretation is an important technique in the AI discipline of signal
processing, especially in speech recognition and computer vision. Its basis is Bayes’
theorem, stated in (2). The theorem analyses the posterior probability of hypothesis
H given a signal S, p(H |S) as the product of the prior probability of the hypothesis
p(H) and the likelihood p((S|H) divided by the probability of the signal p(S). It
essentially gives an alternative way to find p(H |S) if p(H |S) cannot be reliably
measured in a direct way.

(2) p(H |S) = p(H)p(S|H)
p(S)

.

This is simply derived as follows:
p(S&H) = p(H&S) = p(H)p(S|H) = p(S)p(H |S)

Therefore p(H)p(S|H) = p(S)p(H |S)

and p(H |S) = p(H)p(S|H)
p(S)

If S is given, the most probable H for a given S written argmaxH p(H |S)

can be computed in a different way given Bayes’ theorem. argmaxH p(H |S) =
argmaxH (p(H)p(S|H)), since p(S) = 1 if S is given. If one is searching for the
most probable interpretation H of a signal S, it will therefore suffice to have a good
estimation of the probability of H (called the prior, the probability assigned to H
before the signal occurred) and of the probability p(S|H) (the likelihood of the
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signal given the interpretation). This way of finding the most probable H is useful
and often unavoidable, since it can be difficult or even impossible to directly estimate
p(H |S) (the posterior probability of the interpretation H , after the occurrence of the
signal S).

The difficulty for direct estimation is especially clear when the set of signals is
infinite or continuous, as in speech perception or in vision. For example, in speech
perception, onemeasures the distance between the perceived signal and the predicted
signal to estimate likelihood and uses the prediction for the next phoneme from the
preceding phoneme sequence obtained from a large body of written text to estimate
the prior.

The definition just givenmakesBNLI a specialway of obtaining themost probable
interpretation of an utterance and BNLI is thereby a branch of stochastic signal
interpretation.

One needs a good argument for usingBayesian interpretation rather than the direct
method of estimating the posterior. And one needs to accept that natural language is
ambiguous to go stochastic in the first place.

The method by itself does not entail that both likelihood and prior need to be
estimated stochastically. The prior can be partly computed by symbolic techniques,
e.g. by a theorem prover showing that the prior is not 0 by showing the consistency
of the interpretation with the context. Similarly, one can use symbolic techniques
(e.g. a text generator in NLI—these are standardly symbolic) to estimate likelihood.

Doing NLI or NLSP with this technique makes BNLSP a branch of stochastic
NLSP. Stochastic NLSP obviously helps in obtaining good results in interpretation,
since NL utterances severely underdetermine their interpretations in context and
other techniques for disambiguation are limited in scope. It is also easy to see that
very often disambiguation cannot be explained by an appeal to hard facts and logic,
but needs to appeal to what is probable in the world. For example, if I tell you that I
took the bus, you will understand me as having used the public transport system and
not as having lifted an autobus with my crane. Another basic example is (3).

(3) Tweety flies.

If you are like me, Tweety is the bird from AI discussions about default reasoning
and “flies” means “can fly using his wings”. There must be many other Tweeties
however and there is no logical reason why the verbal form could not mean “uses
aeroplanes” or “can pilot aeroplanes”.

The underdetermination of meaning by form can be argued by looking at any
branch of linguistic description. The most obvious and most traditional place is the
lexicon. Non-ambiguous words are rare to non-existent. Chomsky’s proposals for
syntax brought syntactic ambiguity to the centre of attention. Formal treatments
of phonology and morphology have also led to phonological and morphological
ambiguity, while the semantics of morphemes makes them much more ambiguous
than proper lexical items. Montague grammar initially concentrated on quantifier
scope ambiguities. But this is just another instance of semantic relations that remain
unmarked in syntax. Famous examples in English are noun-noun combinations and
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the semantic relation to the main clause as marked by a participial construction.
Areas of pragmatics that can be described as “ambiguous” are pronoun resolution,
the recognition of rhetorical relations, temporal reference resolution, exhaustivity
and stereotypicality effects and the treatment of presuppositions.

It follows that success in NLSP can only be expected by viable approaches to
selection of interpretations, an aspect of the form-meaning relation which is still
neglected with respect to the composition of meaning within semantics and prag-
matics.

Ambiguity adds up to an argument for stochastic NLI. But not necessarily to an
argument for Bayesian NLI. Within the confines of stochastic NLI there is another
hypothesis possible, the direct method in which a system of hierarchically organised
cues directly leads to the most probable meaning. It is not directly obvious that this
cannot work for NLI. In stochastic parsing for example there have been successful
models based on direct estimation.

We will look at some evidence about human NLI and will argue that human BNLI
is the most plausible hypothesis explaining that evidence. From that hypothesis, an
argument can be constructed against the direct method in computational NLI.

2 Human BNLSP

In cognitive science, BNLSP can be seen as the claim that humans emulate BNLSP
when they are interpreting language utterances.

There are general grounds for believing that this is the case. Some (Oaksford and
Chater 2007; the contributions in Doya et al. 2007; Kilner et al. 2007) speak of an
emerging consensus that Bayesian reasoning is the logic of the brain—even though
there is also considerable opposition to this view (e.g. Bowers and Davis 2012). Such
an emerging consensus builds on successes of Bayesian analyses in major areas of
cognitive science such as inference, vision and learning. It would follow from the
importance of Bayesian reasoning in the brain that it is unlikely that human NLI
would employ a different logic.

The same point can also be made by developing the analogy between vision and
NLI. Visual cues are highly ambiguous and the standard procedure in automatic
vision is based on the availability of a powerful model of likelihood: the translation
of the hypothesis into properties of the signal by means of the “mental camera”.
Together with powerful priors about what can be perceived this gives a way to find
the most probable hypotheses among the ones that are made available by cueing.

Human language interpreters have a device much like the mental camera in their
ability to translate communicative intentions into natural language utterances. In
addition, most of the priors for vision are directly usable in NLI. It follows that they
can find the most probable interpretation for an NL utterance as reliably as they
can find the most probably perceived scene for a visual signal. In sum, there is no
obstacle for assuming that human NLI has the same architecture as human vision and
a strong evolutionary argument for assuming that the architecture of human vision
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and the priors involved were exapted for the emerging human NLI.1 This would be
the simplest way in which the problem of NLI could be solved by the brain. Given the
short time frame in which NL and NLI emerged, a completely different architecture
like symbolic parsing would be difficult to achieve in evolution.

If we accept the conclusion, there is an aspect of interpretation that is not predicted
by the direct cueingmodel: the role of the priors. The priors shared with vision would
be generalisations aboutwhat is going on in theworld to the degree that it is accessible
to normal perception. Such priors can be seen as causal prediction, topographical
information and conceptual knowledge. Thereby they concern primarily the highest
levels of linguistic analysis: semantics and pragmatics.

For a pure hierarchical cueing model, the direct way of estimating the posterior,
having the best priors on the highest level is a problem. Those priors can only help
selection at the final levels of analysis and would be relatively unimportant at the
lower levels, leading to a large number of possibilities that need to be checked before
the final level. In a Bayesian model, the high-level priors can directly predict down to
the lowest level. Themost likely prior hypothesis that is cued by the input can be used
for simulated production that can be checked against initial segments of the input.

It would appear therefore that a causal model of production combined with priors
as for vision is the better architecture for early selection between interpretational
possibilities.

There is also a body of empirical evidence that makes sense under a Bayesian
architecture for natural language interpretation. Pickering andGarrod (2007) gives an
overview of evidence for the simulated production in interpretation that is predicted
by Bayesian interpretation. Clark (1996) discusses conversational moves that end
with the hearer co-producing the final segment of the utterance, something that is
hard to understand without assuming simulated production. As noted by Kilner et al.
(2007), the activation of mirror neurons in perception of the behaviour of others
makes good Bayesian sense: connecting to one’s own way of carrying out the same
behaviour will give access to more fine-grained prediction from the hypothesis that
can be matched against the visual signal.

So there is a lot of evidence in favour of aBayesian architecture of human language
interpretation. Human BNLI also supports the idea that efforts should be made to
achieve computational BNLI. If one seems to understand how humans solve a prob-
lem, that gives a strategy for solving the same problem on a computer. There may
certainly be good computational reasons to depart from the human solution. But in
the face of the serious imperfections of current NLI and the absence of sufficient
investment in BNLSP, a computational case against BNLSP is just not available at
this moment.

Computational NLSP using the direct method seems to be forced into the pipeline
model, due to the different data-sets needed for the different kinds of processing. A
pipeline model using the corpus-based methods of current stochastic parsing would

1Symbolic parsing with visual grammars becomes intractable as soon as the grammar becomes
interesting (Marriott and Meyer 1997). It follows that visual recognition must be stochastic. To
profit fully from the mental camera, it must also be Bayesian.
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be an alternative model for human NLI. It would involve finding the most probable
syntactic tree, followed by finding the most probable interpretation of the words in
that tree, followed by the best proto-logical form, followed by the best fully resolved
logical form and its most probable integration in the context. The problem is simply
that a 0.8 success score on each of the levels (roughly the result for accuracy in
stochastic parsing) translates into a 0.85 = 0.328 score for the full pipeline, very
much below human performance.

Bayesian models escape from this problem by assuming a causal model of utter-
ance production that works in conjunction with a heuristic cueing system. If the
high-level priors are strong enough and the causal model is accurate and sufficiently
deterministic, the combination has a much higher chance of reaching the most proba-
ble interpretation. The direct method is not eliminated in this set-up since it is needed
for defining the cueing system and also because it could count as a baseline, that is
improved by the causal model. The causal model of production seemsmore adequate
however for evaluating linguistic knowledge in the process.

3 BNLSP as the Logic of Interpretation

The logic of interpretation in Montague grammar is just classical logic augmented
by a theory of abstraction and function application. It does not deal with uncertainty.
Boole developed his Boolean logic from the broader perspective of a logic that
combines classical reasoning with reasoning about probabilities. In making BNLSP
the logic of interpretation, one restores the Boolean view of logic to deal with the
uncertainty about what a particular word or phrase means on a particular occasion.

If one takes the selection problem seriously and accepts the rationality of trying
to solve it by probability maximation, BNLSP offers a promising starting point
for the analysis of semantics and pragmatics. There is little choice about taking
the selection problem seriously. As noted above, modern linguistics can be read
as an overwhelming case for the underdetermination of meaning by form and a
good deal of the evidence comes precisely from the philosophical exploration of
presupposition, thematic roles, implicature and discourse relations. To doubt the
rationality of probabilistic disambiguation is a way of doubting rationality as such,
given that stochastically based disambiguation is needed for the interpretation of
nearly any utterance.

BNLSP motivates some simple principles. For a good interpretation, prior prob-
ability must be properly higher than zero and likelihood must be properly higher
than zero. If another interpretation has the same likelihood, it must have a lower
prior. If another interpretation has the same prior, it must have a lower likelihood.
These are powerful principles that can explain important aspects of interpretation.
The following are some examples of their application.
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Gricean Maxims

The simple BNLSP principles have a different status from Gricean pragmatics, since
they are merely consequences of stochastic disambiguation. A reduction of Gricean
pragmatics to these principles is thereby a step forward since it eliminates the nor-
mative account of production that is the cooperativity principle. The reduction is
however a question of reducing the Gricean implicatures to the principles, not a
reduction of the Gricean maxims to these principles.

The principles cannot motivate the Gricean maxims or the cooperativity prin-
ciple on which they are based, though there are important relations. For example,
anything that increases the relevance of the utterance interpretation is automatically
something that increases the likelihood of the interpretation. If manner is defined as
choosing themost probable way of expressingwhatever the speaker wants to express,
it is also directly related to likelihood: the speaker then boosts the likelihood of the
interpretation. Transgressions of manner reduce likelihood and may be the trigger
of additional inferences to bring it up again. Quality is related to prior maximation:
overt falsehoods do not qualify for literal interpretation. Underinformative contribu-
tions are misleading since they will lead—by the increase in likelihood due to extra
relevance—to unwarranted exhaustivity effects. Overinformative contributions will
merely force accommodation of extra issues and are not harmful.

The lack of direct fit is due to the interpretational perspective of Bayesian prag-
matics, while Grice gives a production perspective in the form of norms the speaker
is expected to follow. The interpretational perspective merely searches for the most
probable explanation of the speaker’s utterances.

Given its simplicity and its pure rationality, it is surprising that pragmatics can
be reduced to Bayesian pragmatics. The following runs through some effects of the
Griceanmaxims. The explanations are not new or surprising. It is surprising however
that so few assumptions are needed once one operates under Bayesian interpretation.

(4) (Quality) The cat is on the mat but I don’t believe it.

The assumption that comes with assertions that the speaker believes the content
leads to contradiction and thereby to a zero prior. A norm that speakers must speak
the truth is not necessary.

(5) (Manner)Mrs. T. produced a series of sounds closely resembling the score
of “Home Sweet Home”.

The likelihood of the speaker reporting that Mrs. T. sang “Home Sweet Home”
in this particular way is very low, since the verb “sing” would be the most probable
choice for expressing the report.A lack of appreciation for the singing and the strategy
of innuendobyprolix expression are the assumptions underwhich likelihood is driven
up by adding the speaker’s lack of appreciation for the singing to the interpretation.
The innuendo-by-prolix-expression strategy is an extra assumption, but one that like
the strategy of irony is needed in a description of speaker culture in standard English.
It is not to be expected that these strategies are universally available.
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Grice illustrates the flouting of the relevance maxim by (6), in the context of a
direct question asking for the academic qualities of the person in question.

(6) (Relevance) He has a beautiful handwriting.

As an answer to the direct question the purported answer has a likelihood of zero:
it just does not answer the question. The implicature that the person is not very good
arises from an explanation of why the speaker does not answer the question. The
speaker has nothing positive to say, but feels he cannot say that directly.

These explanations do not appeal to the maxims and just use likelihood and some
facts about the example, e.g. that having a beautiful handwriting is not an academic
quality or that one cannot use oneself as an authority knowing that the cat is on the
mat if one is known not to believe that.

Parsing, Consistency and Informativity

Bos (2003) implemented a combination of parsing and theorem proving designed to
capture the account of Van der Sandt (1992) of presuppositions. The system parses
English sentences, resolves pronouns and resolves or accommodates the presuppo-
sitions induced by presupposition triggers in the sentence and proves consistency
with the context and informativity in the context of the interpretation. The effect is
contextual incrementation with consistent and informative interpretations obtained
from linguistic input.

The system can be motivated fully from BNLSP. To show that the sentence parses
with a compositional interpretation that can be resolved and enriched by accommo-
dation to a contextual increment shows that it has a non-zero likelihood: the sentence
can be produced for the interpretation and the anaphora and presupposition triggers
are licensed with respect to the context. To show that the interpretation is consistent
with the context, shows that the increment has a non-zero prior. Informativity finally
shows that the likelihood is non-zero for another reason, by showing that the sen-
tence makes sense as an attempt to give the hearer new information. An assertion
that would not give new information is not rational and as such has zero likelihood.

The extra premises needed are grammar, licensing conditions for presuppositions
and anaphora and the assumption that asserting is trying to make the hearer believe
something. The system also captures part of disambiguation as a side effect of con-
sistency and informativity checking.

The system can be described as assigning a uniform distribution of prior proba-
bility over interpretations consistent with the context and a uniform distribution of
likelihood over interpretations of an utterance U that follow DRS-induction and are
informative. The system can be made more sophisticated by refining these priors and
likelihoods. The first could be used to decide between the two readings of “Mann
beisst Hund” (ambiguous in German between “man bites dog” and “dog bites man”)
in favour of the dog as the biter, the second would prefer the more frequent SVO
order for the interpretation and seems to be the clear winner in this particular case.

The point is that informativity and consistencywould follow fromBNLSPwithout
needing a basis in the analysis of assertion of Stalnaker (1979), the starting point
of Van der Sandt (1992).
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Lexical Interpretation

Hogeweg (2009) formulates a simple theory of lexical interpretation based on
Smolensky (1991). In Smolensky’s account experience of the use of lexical items
associates lexical items with a number of binary semantic micro-features that are
observable in the utterance situation and connected with the use of the word. New
uses of the word activate all those micro-features and in this way may overspecify
the lexical meaning: there may be more features than can consistently be assumed
to hold in any context.

An example is the particle “already” that expresses both “perfectivity” and “sur-
prise”. (7) expresses both that Bill has gone (perfectivity) and that this was earlier
than expected (surprise).

(7) Bill already went home.

But in the usewith an infinitive (Singapore English and colloquial British English)
as in (8), surprise has been removed.

(8) You eat already?

Hogeweg turns lexical interpretation into an optimality-theoretic constraint sys-
tem: fit>maxwhere fit keeps the local reading consistent andmax tries to incorpo-
rate as many semantic features as possible. The theory has been successfully applied
to particles and prepositions and is promising for other categories of meanings. E.g.
it captures the observations of Dalrymple et al. (1998) about each other as in (9).2

(9) a. The lines cross each other. (∀x, y ∈ L cross(x, y))
b. The chairs are on top of each other. (∀x ∈ C ∃y ∈ C (on(x, y) ∨
on(y, x))).

The point is however that fit is nothing more than the demand to have a non-zero
prior for the interpretation and that any feature projected bymaxwill be an additional
possible explanation for the use of the lexical item, thereby making it more likely.
The OT constraints and their ordering are merely a restatement of BNLSP in one
particular setting.

The Cumulative Hypothesis

The cumulative hypothesis in presupposition projection (Langendoen and Savin
1971; Gazdar 1979) is the idea that presuppositions triggered in a context project
by default.

The hypothesis finds a lot of empirical confirmation: the best empirical results
are obtained by Gazdar (1979), Van der Sandt (1992), Heim (1983) that incorporate
aspects of the cumulative hypothesis. Rejection of the hypothesis leads to the gen-
eralised proviso problem in which cumulative effects need to be explained by other
means.

2The choice of the right features is not a trivial matter.
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In Bayesian interpretation the cumulative hypothesis seems an automatic
consequence.

The basic assumption in any account of presupposition triggers must be that these
devices need their presupposition in order to do their semantic work of referring
(e.g. definite description) or predicating (lexical presuppositions) or their pragmatic
work of relating the host utterance to the context (particles). It follows that when
the context does not already make the presupposition available, a bridging inference
explaining the use of the trigger is needed to make it available.

The possibilities for these bridging inferences are given by the operators under
which the trigger appears and by contextual knowledge. Operators like λqp → q
or quantifiers Q(P, R) allow explanations of the trigger use in which the common
ground extended by p orPa (for an arbitrary a) provides the presupposition, if trigger
T of presupposition p occurs in the scope of the operator. Likewise, an attitude verb
V allows the beliefs of the subject of V together with parts of the common ground
that are consistent with these beliefs to provide the presupposition, if T occurs in the
complement of V . A possibility operator introducing a possibility P finally allows
consistent extensions of the possibility with parts of the common ground to provide
the presupposition, if the trigger is part of an addition to the same possibility P (as in:
Awolf might come in. It would eat you first.). The simplest explanation of the trigger
is however always the assumption that the speaker believes the presupposition.

All of these possible bridging inferences will be inhibited by evidence against
them: this brings down the prior of the interpretation. Each bridging inference will
however contribute to the overall likelihood of the trigger.

The different explanations are not independent. Assuming that the speaker
believes the presupposition puts it into the common ground and extensions thereof
and makes it more probable that the subject of an attitude also believes the pre-
supposition. The gain in likelihood due to the subordinate inferences is therefore
already—completely or partly—realised by assuming that the speaker believes the
presupposition. It also makes sense to assume that the priors of the different expla-
nations are completely or partly dependent on each other, with the priors of the
presupposition in more subordinate contexts going up if the presupposition is part
of a higher context.

What these considerations taken together make plausible is the principle (10).
Each extra context with the presupposition increases the likelihood of the trigger.
With each addition, the cost in terms of decreasing priors becomes smaller.

(10)

the probability of the interpretation increases
ceteris paribus if the interpretation I of S contains
the presupposition of a trigger T in S in a context
c of T.

The ceteris paribus is essential. If there is evidence against the presupposition
being in a context, that suffices for blocking the inference unless the evidence is
inconclusive and there is no other way to give the trigger a non-zero likelihood.
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The principle motivates a preference for the assumption of the speaker belief in
the presupposition. That preference can be undone if the prior for that explanation is
lower than the prior for the alternative explanations.

That preference is the cumulative hypothesis. The principle is slightly stronger3

which seemed a preference for assuming all the explanations of the trigger. This
seems to be the intuition in a sentence like (11), uttered in a context in which it has
not been established that John has a niece or that he believes he has a niece.

(11) John believes that his niece will visit him next week.

The example allows readings where John believes that some woman who is not
his niece but whom John thinks is his niece to visit him and readings where John
believes that a woman—who unbeknownst to John is in fact his niece—will visit
him, but these require special priors. The default reading is that John believes he will
be visited by a person who he believes to be his niece and who is in fact his niece.

Satisfaction

But it would be wrong to assume that the logic of interpretation is purely an imple-
mentation of the cumulative hypothesis like Gazdar (1979) since it also predicts the
satisfaction theory as in (12).

(12)

if the interpretation does not make the presuppo-
sition available to the trigger, the trigger cannot
do its semantic or pragmatic job and the sentence
containing the trigger has likelihood 0.

It is precisely the interaction between the cumulative hypothesis and the satis-
faction theory that explains presupposition projection. This is a restatement of the
conclusion of Soames (1982) and explains why Soames and both Heim (1983) and
Van der Sandt (1992) have such good empirical results. The Bayesian underpinning
for both the cumulative hypothesis and the satisfaction theory is however new to the
current paper. And it is different, because projection is not a side effect of (12), but
a question of bridging inferences that increase the likelihood of the trigger.

The ancient counterexample (13) to a satisfaction-theoretic account of projection
(having grandchildren entails having children, so it should not project that John has
children) should be a case where the gain in likelihood outranks the loss in prior due
to the assumption that John has children.

(13) If John has grandchildren, his children will be happy.

The cumulative hypothesismakes the use of a presupposition trigger aweak signal
that the speaker believes in the presupposition. It is a weak signal, because it can be
easily overridden, but it does not stop being a weak signal if the presupposition is

3The principle gives the preference for global accommodation in terms of Heim (1983) and Van der
Sandt (1992) in terms of BNLSP: nothing else would do. It gives however what I defend in Zeevat
(1992), a preference for multiple accommodation, something which does not make sense on the
versions of the satisfaction theory in these two references.
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locally entailed. This is in some sense unfortunate, since inmany cases the satisfaction
theory correctly predicts non-projection, and Gazdar’s explanation of non-projection
in terms of clausal implicatures is problematic.4 These matters will be taken up
in more detail in Zeevat (2014a) that gives a more complete Bayesian account of
presupposition. In that paper non-projection is explained by a Bayesian account of
causal inference between a given but non-entailed cause and the presupposition.
Projection of the presupposition would then force the projection of the non-entailed
cause as well. Examples of the phenomenon are in (14).

(14) a. If John is a diver, he will bring his wetsuit to the party.
b. If John is a diver and wants to impress his girlfriend, he will bring his
wetsuit to the party.
c. If John wants to impress his girlfriend, he will bring his wetsuit to the
party.
d. John dreamt that he was a baker and that everybody knew he had been
in jail.
e. John dreamt that he was a baker and that everybody knew his bagels
were the best in town.

In (a) and (b), the causal inference: John’s being a diver causes his having awetsuit
prevents projection, as in (c). In (e), it is inferred that John being a baker is the cause
of his bagels being as good as they are in his dream and prevents the projection of
the complement of knew as in (d).

The exception (15) is explained by the fact that the two possible causal inferences
(Mary has to leave the States because she has no green card, Mary has to leave the
States because she has committed a crime) block each other: neither explanation will
beat the probability of all other possible explanations taken together.

(15) If Mary has no green card, she will be sorry to leave the States, but if she
has committed a crime, she will not be sorry to leave.

The Hermeneutic Circle

This is the idea in philology, history, philosophy and literary criticism that there is a
never-ending improvement of understanding by a process of rereading and reinter-
pretation.

In a Bayesian view, every increase in understanding will lead to better priors. The
increased understanding can be understood as a better approximation to the world of
the text as given by the text. This would translate into a better prediction from the pre-
context to any point in the text either by eliminating uncertainty or by becoming closer

4Garcia Odon (2012) is an admirable discussion of the empirical facts around projection in Kart-
tunian filters. Her analysis however rests on conditional perfection. Causal inferences seem a much
better way of deriving the crucial pattern: p → q, where p is the presupposition and q the non-
entailed cause of p. If it is given that p and that q is the cause of p then q must be the case as well.
The non-projection in (15d) also shows that the causal explanation also works outside Karttunian
filters.
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to the prediction available in the context of writing. For especially older texts, the
improvement in the prior also leads to a better base for understanding the likelihood,
that interpreters typically know less well than contemporary language use.

Can the prior become stable? There is no Bayesian reason why it could not even-
tually stabilise. The problem for many of the enterprises in which the hermeneutic
circle plays a role is that there is insufficient evidence available to eliminate the
uncertainty in the prior to such an extent that the text loses its poly-interpretability.
Convergence to a final interpretation is then unlikely.

4 BNLSP and Coordination

Alvin Liberman’s Motor Theory of Speech Perception states that speech perception
is the distal perception of the motor gestures of the speaker’s articulatory system
(Liberman et al. 1967).

Distal perception is the perception of events that are not purely perceptual. For
example, one sees that John is taking the elevator by seeing that John is pushing a
button and one sees the latter by seeing John’s finger touch the button. The intention
of pushing the button and the further intention of using the elevator are the aspects that
cannot be directly seen. The motor gestures of the various movements of the tongue,
the vocal chords, the lips, the lungs and the mouth that make up vocalisation can not
be directly perceived in the same way, but in perceiving that someone said the word
“computer” one would be committed to perceiving the articulatory gestures making
up the pronunciation of that word. Liberman formulated the theory in response to the
discovery of coarticulation that makes it hard to see the acoustic signal as a series of
discrete sound events.

As a psychological hypothesis the theory did not do well until the discovery of
mirror neurons and was criticised repeatedly because its predictions did not find con-
firmation. Liberman retreated to a perhaps more interesting thesis, stating that the
motor theory is one of a range of hypotheses that would answer the parity problem.
Speaking and hearing are very different processes and there must be a level of repre-
sentation at which the analysis of a speech signal and the corresponding articulation
process receive an identical representation. It is precisely here that mirror neurons
are interesting. Under the hypothesis that these code motor intentions (Brozzo 2013;
Rizzolatti and Craighero 2004), the observation that they fire both in production and
perceptionmakes this a suitable candidate for a level of representation at which parity
is reached.

The effect on the hearer can be seen as a simulation of the speaker in carrying out
the vocalisation.

From the perspective of Bayesian interpretation, the intention to articulate some
utterance adds something to the quality of speech perception. It makes it possible to
use the prediction about what one’s own articulation would sound like as a check on
the correctness of the hypothesis. The connection with the production is thereby a
way to improve the quality of the perception and contributes directly to the probability



14 H. Zeevat

that there will be identity between the intended vocalisation and the perceived one,
i.e. to the probability of coordination.

Grice’s account of non-natural meaning is closely related. According to Grice, the
non-natural meaning of a signal is the intention to reach some effect on the hearer
by means of the signal through the hearer’s recognition of that intention.

From the hearer perspective, understanding an utterance is therefore recognising
the intention of the speaker in producing the utterance. Again, this is a case of distal
perception in which one arrives at a simulation of the speaker’s plan in producing
the utterance.

Again, the simulation allows a better prediction about the utterance that can be
checked with respect to the perceived utterance, thereby enhancing the quality of the
interpretation.

The situation is much like the standard example in the mirror neuron literature,
that of grasping a glass of water by an experimenter. If the neuron fires in perception,
the subject simulates the motor intention of the experimenter in its pre-motor cortex.

On the basis of this evidence, it would seem that the brain has exapted parts of
its motor skills in making sense of the behaviour of similar organisms in order to
enhance its prediction of their behaviour. One recognises the behaviour as possible
behaviour of one’s own, in recognising a particular vocalisation, in recognising the
speaker intention of some utterance or in recognising the grasping of a glass in the
behaviour of a similar organism.

5 Recognition and BNLSP

The examples above depend essentially on recognition. Recognition however is not
the same as disambiguation by means of probability maximation. It is not enough
that the interpretation is a probabilistic maximum among the different possible inter-
pretations of the utterance, but it should also come with the certainty that it is the
right interpretation. There should not be two rational probability distributions P and
P ′ such that P(x) < P ′(y), even if x is the winner in any P and P ′.5

5There are other ways of formulating the inequality, e.g. in all rational P P(x) < P(y). Rational
probability assignments can be formalised straightforwardly on n-bounded models (“worlds”) for
a finite first order language L . An n-bounded model has a domain with cardinality smaller than n.
An n-bounded model can be seen—under isomorphism—as a row in a truth-table for propositional
logic and can interpret a given set of connections by probabilities given directly by the frequencies
for the connection in the model. This will assign a probability pw(e) to an event e, deriving from
the presence of other events in w and connections of them to e. Assume a probability distribution
P over W , the set of worlds. P can be updated by bayesian update on the basis of observations e
and the distributions pw over events. The probability of a formula of L can now be equated with
the sum of the probabilities of the worlds on which it is true. A rational probability assignment is
an assignment P over W which respects the beliefs of the subject (the beliefs receive probability
1) and the experience of the subject, in the double sense that the experiences themselves are treated
as beliefs and receive probability 1 and that the probability assignments to the worlds are updated
by Bayes’ rule on the basis of those experiences. In this way, a world acquires more probability
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This would make “to recognise x” be the conjunction of (16.1) and (16.2). In
(16.1) and (16.2) ϕ >> ψ stands for the property that for all rational probability
assignments P and P ′ P(ϕ) > P ′(ψ). (16) then defines recognition.

(16) 1. x causes a signal s which evokes x in turn
2. cause(x, s) >> cause(y, s) for all other y evoked by s.

Recognition must be distinguished from the non-factive “seem to recognise x”
that can be defined as in (17).

(17) 1. s evokes x
2. cause(x, s) >> cause(y, s) for all other y evoked by s.

Assuming (16) understanding an utterance u is to recognise the intention leading
to u and the process of reaching understanding the construction of an intention that
could cause the utterance and meets the probabilistic criterion for recognition.

An analysis of recognition that does not deal with the problem of certainty has to
face the problem that there is no rational basis for settling for the particular recognised
object and ruling out its competitors.

A visual example. Suppose I see the bus ride on the other side of the street. Of
course I know that some movie people could very well be manipulating a cardboard
copy of the bus at the right spot, but since there are no cameras, movie plans that I am
aware of, good movie plans involving cardboard bus models being carried around,
the cardboard bus has a very low prior probability compared with the every-day and
every-fifteen-minutes event of the bus coming by.

A linguistic example. An utterance of the word “bun” can on a particular occasion
sound more like “bunk”. Nothing goes wrong if the priors cooperate and to make
an occurrence of “bunk” highly unlikely. But without the priors intervening “bunk”
would have a slight advantage on “bun”, in every probability assignment. This should
be an undecided instead of a win for “bunk”, and there is no recognition of the word
bunk.

A pragmatic example is the example (18) from the presupposition literature.

(18) If Mary does not have a Green card, she will be sorry that she has to leave
the States, but if she has committed a crime, she will be happy that she
has to leave.

Two different causes for Mary having to leave the States are both presented as
possible, making it impossible that either of them wins for all rational probability
assignments as the cause of her leaving the States: they can both be the cause and
have probability 1. This predicts the projection of the fact that she has to leave the
States, the intuitively correct prediction. If either cause were recognised as such and

(Footnote 5 continued)
to the degree that its own frequencies predict the frequencies in the experience. The information
state of the subject can be defined as the combination of the set of worlds it allows and the rational
probability assignments over those worlds. Updates eliminate worlds and reassign probability by
experience. It is possible to remove the restriction to n-bounded worlds, by using probability density
functions and Bayesian updates over those, but that is not as straightforward.
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be only possible, the effect would also be only possible, preventing projection. In the
absence of a recognised cause that is only possible, the presupposition will project,
in line with the cumulative hypothesis.

Some other consequences of BNLSP are the following. First, it would follow that
the speaker has to design her utterance so that intention recognition is possible. It
should also hold that the utterance must in its context naturally associate with the
intended interpretation.

Second, uncertainty elimination—it is not given that it is always successful—may
be directly connected to the enhancement of perception by simulation. Accurately
predicting the behaviour of conspecifics is vital and faulty prediction dangerous. The
simulation enhancement would be necessary to be able to reach recognition.

6 Causality

In a loose sense, the use of Bayesian nets in NL semantics and pragmatics as a use
of Bayesian methods in NL semantics and pragmatics also belongs to BNLSP. In
the stricter sense used in this chapter this is not so: BNLSP proper is doing semantic
and pragmatic interpretation by finding the maxima for the product of likelihood
and prior.

This section explores the stronger view that Bayesian nets are crucially involved
in explaining likelihood and prior, by postulating an intrinsic connection between
probability and causality. This seemsunavoidable for stochasticmodels of likelihood:
the process from the interpretation to the form is clearly a causal process involving
the “laws” of language production under which the speaker tries to achieve an effect
on his audience by appropriate planning. If likelihood is given by a stochastic model
and not by e.g. an algorithm, it still needs to learn the causal connections between
the variables that are involved in the production process.

The role of causality is not as clear for the prior. In principle, one could have the
view that while recognising the potential of Bayesian nets for capturing causality and
helping with the causal aspects of NL semantics, the rest of BNLSP should be carried
out without a commitment to this further restriction on probability distributions.

It seems however uncontroversial to equate the probability that p—even if it is
subjective probability—with the sum of the products of the distinct possible causes
of p and their prior probability. The model of the prior can then be a set of causal
dependencies between stochastic variables with an estimation of the strength of these
dependencies. This becomes a dynamic model if one adds a mechanism that takes in
facts by putting the probability of the variables representing them at 1 and a second
mechanism that adapts the strength of the dependencies on the basis of learning
data for the dependencies. Further mechanisms could be added for updating the
dependency structure itself. On the level of a dynamic model of the prior, there is
no need to enforce conditions that make the system computational. One can have



Perspectives on Bayesian Natural Language Semantics and Pragmatics 17

loops and uncertainty about the dependencies. This just means that having proper
predictions is not always guaranteed, but that seems a realistic feature.Computation is
not possible in certain cases and sometimes several possibilities need to be computed
for prediction.

A dynamic causal model of the prior is however bound to contain submodels that
are proper structural causal models in the sense of Pearl (2009). These are standardly
used for explaining and modeling causality and the stochastic version is equivalent
with proper Bayesian nets. Proper structural causal structures are computable and
their dependency relation is free from loops and finite.6

A structural causal model is a triple < U, V, F > where U and V are two sets of
stochastic variables, the exogeneous variablesU and the endogeneous variables V . F
is a function that extends a valuation u for U to the whole net by specifying for each
endogeneous variable Vi a function fi : Ui × P Ai → range(Vi ) where Ui ⊆ U ,
P Ai ⊆ V and range(Vi ) the possible values of V . Dependencies (“arrows”) can be
read off from P Ai ∪ Ui : if W ∈ P Ai ∪ Ui , Vi depends on W , i.e. there is an arrow
from W to Vi . The resulting graph is acyclic and directed if F is indeed a function
that extends a valuation to U to U ∪ V .

The exogeneous variables capture the state of the world, the endogeneous ones
receive their values from each other and from the exogeneous variables, by means
of functions fi for each endogenous variable Vi .

LetY (u) be the subfunction of F that assigns values y toY ⊆ V for values u forU .
The interesting property of structural causal models is that they allow the com-

putation of the effect of setting some endogeneous variables X to values x , thus
recomputing the values of the variables Y dependent on X , called the intervention
do(X) = x .

This gives a submodel Mx of M where Xx = x and for other endogeneous
variables Vi (Vi ) is computed by the original fi , possibly using the new values for x
for X .

This gives an intuitive approximation of counterfactuals. If X were x , then Y
would be y, that makes sense only if Y depends on X . Other uses are the definitions
in (19) taken from Pearl (2009).

6Bayesian nets are popular technology and introductions to Bayesian nets, their theory and their
applications abound, as well as software environments for defining these nets and computing with
them. Any attempt to give an example in these pages could not compete with what the reader can
find immediately on the net. It is however unclear to the author how important Bayesian nets are
for modeling the dynamic causal dependencies that are needed for BNLSP, though they definitely
are an important source of inspiration.
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(19) X is a cause of Y if there exist two values x and x ′ of X and a value of u
such that Yx (u) 
= Y ′

x (u)

X is a cause of Y in context Z = z if there exist two values x and
x ′ of X and a value of u such that Yxz(u) 
= Yx ′z(u)

X is a direct cause of Y if there exist two values x and x ′ of X
and a value u of U such that Yxr (u) 
= Yx ′r (u) for some realization r of
V \(X ∪ Y )

X = x always causes Y = y if Yx (u) = y for all u, and there are
realizations u′ of U and x ′ of X such that Yx ′(u′) 
= y
(pp. 222–223)

X = x is an actual cause of Y = y in a world U = u if:
(i) X (u) = x and Y (u) = y (i.e. both events are realized)
(ii) There is a partition of V in Z and W , with X ⊆ Z , and there are
values x ′ of X and w of W such that if Z(u) = z, then Yx ′w 
= y and
Yxw′z′ = y for all w′ realizations of W ′ ⊆ W and z′ of Z ′ ⊆ Z that
correspond to w in z in overlapping variables
(iii) X is the smallest set of variables satisfying these two conditions.
(p. 330).

Structural causal models can be made probabilistic by assuming a probability
distribution over U giving the probability p(u) for possible values of U . In that case,
the probability that Y = y can be stated as (20).

(20) p(Y = y) = �u:Yu=y p(u).

This causal probabilistic perspective on reality is inclusive. It provides us with
the necessary probabilities for carrying out all of the other degrees of commitment
to BNLSP, but adds to that a semantic view on causality, counterfactuals and condi-
tionals. Of special interest are the applications in pragmatics. E.g. the inference that
Bill fell because John pushed him, for (21) can be formalised using the treatment of
causality introduced in this section.7

(21) Bill fell. John pushed him.

Section3 and Zeevat (2014a) also make the case that it is causal inferences of this
kind and not entailment of the presupposition by the antecedent that is responsible
for non-projection in the examples that led Karttunen to the satisfaction theory of
presupposition.

7The probability of the effect given the possible cause should outweigh its probability if the possible
cause did not obtain.
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7 Controversial Consequences of BNLSP in Linguistics

BNLSP is anything but neutral on quite a number of issues. With respect to many
people’s prejudices, it is properly contentious.

Syntax

The received view about the role of grammar in interpretation is the view from
symbolic parsing. The first step in interpretation is to obtain an analysis tree from
the input by a parsing algorithm that uses the grammar.

In a Bayesian architecture this is not necessary and not even a good idea. If one
has a way to obtain probable hypotheses about what the input means the grammar
can be used to check if these hypotheses explain the input. While it is possible to
use symbolic parsing to get such hypotheses, the prediction from the context and the
cues provided by the words seem the better and more road to such hypotheses.

The grammar formalisms that aremost suitable for checkingwhether a hypothesis
leads to the signal are formalisms that produce surface forms from semantic input by
nearly deterministic methods. Such formalisms are quite common in the linguistic
tradition. The oldest one is Panini’s grammar for Sanskrit, early generative grammar
(Chomsky 1957), generative semantics and systemic grammar (Mellish 1988) are
good examples. A recent version is optimality theoretic production syntax that has
the additional advantage of working on semantic fragments (Zeevat 2014b).

Such grammars are traditional in the sense that they answer the question of how
to speak—given that one knows what one wants to say. They are also precursors
of BNLSP in that they can be seen as adequate treatments of interpretation under
the assumption that the selection problem is not important, an assumption that made
sense until the current consensus about the ambiguity problem that emerged in the
1990s. Production-oriented syntax is also supported by an important linguistic argu-
ment: blocking by the elsewhere principle. This principle that goes back to Panini
(Kiparsky 1973) states that a general rule of production can have exceptions due to
a more specific rule. Examples include those in (22). The principle does not work
unless one accepts the reality of production rules. While blocking effects have been
found in interpretation, it does not seem possible to attribute them to a similar com-
petition between interpretation rules.

(22) gooses cannot mean geese (it has no meaning)
How late is it? cannot mean What time is it? as its Dutch or German
counterparts would.

The grammar needs to be supplemented with a theory that predicts what people
want to say in a given context. This aspect has been studied to some extent in natural
language generation under the heading of text planning (Reiter and Dale 2000).
Typically hearers do not have all the information that speakers have available. But
what they may know still follows the priors about what may be the case. These priors
together with text planning and grammar add up to a probability distribution over
what the speaker will say, a probability distribution that will quickly adapt to the
incoming cues.

www.allitebooks.com
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Inverse Semantics

Semantic structure is standardly read off from syntactic structure, mostly by a version
of the rule by rule hypothesis according to which a syntactic structure f (x, y)means
f ′(x ′, y′) where f ′ is a semantic function interpreting f and x ′ and y′ are the
meanings of x and y respectively.

That there is something wrong with this picture can be seen from blocking as
discussed just now. English is sufficiently like Dutch and German in syntax and
lexical structure that the compositional mechanism that assigns the question “what
time is it?” to the Dutch and German versions will also assign the same semantics to
the English structure “How late is it?” But that is a wrong prediction. The English
structure is clearly well-formed andmeaningful (One can ask for the amount of delay
of the bus with it for example) but it cannot be used for asking what time it is.

If production syntax is the right way to go for describing particular languages,
it would also be the right way for deciding what meanings a syntactic structure can
have by consulting the inverse F−1 of the function (or nearly functional relation) F
that maps intentions in a context to their surface forms. Blocking can be part of the
definition of that function F .

Inverse semantics is specifying semantics by specifying what surface form to use
for a given semantic input. Blocking is also a good argument for inverse semantics.

The speaker is well-advised not to express the input by any utterance that is
grammatical for it, since the input may not be the most probable interpretation of
that utterance in the context in which case the hearer will get it wrong. Natural
languages abound in optional markers that can save the day. These are particles,
optional morphology, variation in lexical choice and word order variation. For a
full discussion of these cases of self-monitoring, see Zeevat (2014b). It follows that
grammar will be wrong in predicting an interpretation unless it is also the most
probable interpretation.

This leads to the methodological principle (23) that can be called Jacobson’s
principle.

No marked formal feature of the form can remain
uninterpreted.

The principle does not follow from compositionality which allows any feature
to have a trivial semantics and has difficulties with double expressions of the same
semantic feature. It can however play a similar role in enforcing good practice in
linguistic semantics: proper attention to all formal features of the linguistic structure
in interpretation.

Pragmatics as Probability Maximation

The third area of linguistics in which Bayesian interpretation seems to point in a
direction that is far removed from many accepted views is in pragmatics. This is
often seen as an inference process that starts from the semantic interpretation and
the context to give an enriched representation.
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The simplest BNLSP view is that pragmatics is exhausted by probability
maximation. This is not a new view. Jerry Hobbs has for many years now been
defending “Interpretation by Abduction”. In this view an utterance is a fact to be
explained and explanations are provided by a database ofweighted abduction axioms.
The best explanation is the proof of the utterance with the lowest weight. Weights
should be inversely related to the probability of the axiom and Bayesian statistics
is used to compute these weights from experience (Hobbs et al. 1990). That means
that the abductive systems deals with pragmatics in the course of finding the most
probable explanation of the utterance. Hobbs is able to reduce an impressive number
of pragmatic phenomena to this mechanism and would be committed to the claim
that the whole of pragmatics can be treated in this way.

BNLSP already makes probability maximation be the central concern of interpre-
tation because it focuses on the selection task (integration or composition is needed
to get likelihood maximation going). That means that many pragmatic effects are
integrated under only minimal assumptions.

Some such assumptions are listed in (23).

(23) a. pronouns refer to an object (likelihood will check agreement and pro-
noun class)
b. presupposition triggers need their presupposition in order to do their
semantic or pragmatic job
c. a cardinal or a cardinality adjective answer a how-many question
d. parameters such as topic, time and place are subject to self-monitoring.

(23a) forces the reconstruction of the speaker intention to contain a referent for
the pronoun. If there is a choice, it should be the one that is the most probable.8 (23b)
brings as discussed above both the satisfaction theory and the cumulative hypothesis.
(23c) forces the construction of a how-many question and the assumption that its
answer is as indicated. (23d) on topic forces conservativity in rhetorical relations,
since resetting the parameter must be marked in the utterance under self-monitoring.
This makes restatements and elaborations the unmarked rhetorical relations (the
pivot topic is maintained) followed by lists (the local topic changes) and finally by
contrastive pairs (the topic is reset). On time and place, it also gives rise to the typical
changes of reference time and reference place in narrations.

BNLSPmaximises probability and assumptions about the preconditions of lexical
items and constructions and about the features for self-monitoring should do the rest.

8 Two Issues for BNLSP

It is correct to refer to vision for the priors that are needed, but that does not lead
to a usable model of these priors. It is more likely that NLI will come up with such
priors than that computer vision will come up with them. There are quite a number

8Zeevat (2010) gives a more detailed discussion.
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of computational linguistic techniques that clearly contribute to the determination of
the priors, as listed in (24).

(24) probabilistic selection restrictions
prediction of speech act/discourse relation
prediction of intention
world knowledge
contextual knowledge
conceptual knowledge
causal modelling
theorem proving
simulation techniques (coherent visual scene, coherent plan).

The first three of these can be learnt from corpora and emerging automatic inter-
preters can be used to determine contextual knowledge. Theorem provers can be
employed for borderline cases like the elimination of inconsistent interpretations
(the prior is zero) or uninformative interpretations (the likelihood is very low).World
knowledge can presumably be dealtwith using techniques from information retrieval.
That leaves one with the two most psychological aspects: simulation and conceptual
knowledge. Benotti and Blackburn (2011) is a solid first step for the simulation of
coherent plans and there are techniques from computer vision that can be exapted
to visual scene coherence. Conceptual knowledge has to wait until more and better
decompositional techniques are available in lexical semantics. Causal knowledge
can in principle be learnt.

A major issue is that these different resources would have to work together for
good results and that it is far from clear how to let the combination result in a single
number for prior probability.

Another issue for working automatic BNLSP are emerging regularities. It happens
to be the case—and not just by accident—that the objects that fill the agent thematic
role in clauses are mostly animate. That means that a weak inference from being
animate to being the subject of the clause is possible. This inference is an explanation
for marking strategies that prevent the inference, e.g. passivising the sentence so that
the inanimate subject is nowmarked as oblique. The empirical effects of the inference
shows that animacy is in fact a cue for being the subject of the sentence.

It does not follow however that any stochastic regularity is a cue or that the
inference as formulated above is the correct one. Should it not be merely con-
cluded from animacy that the referent is relatively agentive in terms of Dowty (1990)
proto-agent properties?

It is basically unclear in terms of which properties the brain does its grammar and
learns the cues that it uses. Grammatical, lexical and typological generalisations are
only imperfect windows on these matters, but they seem to be the only windows that
there are.

As this paper hopes to have shown, there are many reasons to think that notwith-
standing the existence of quite a number of well-entrenched views that need to be
overcome before it will be the consensus view, BNLSP is highly promising for the
study of language.
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Liberman or Grice made the connection with production and simulation without
realising that the selection problem is central for natural communication and and
without realising that it would be nearly intractable without simulated production.
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Causal Bayesian Networks, Signalling
Games and Implicature of ‘More Than n’

Anton Benz

Abstract We use causal Bayesian networks for modelling experimental data on
scalar implicatures of numerals modified by the comparative quantifier ‘more than’.
The data are taken from the study of Cummins et al. (2012). They showed that
subjects infer upper bounds for the true number n when ‘more than n’ has been used.
They also showed that the difference between upper and lower bounds differs with
the roundness of n. We show how the data can be explained by a production model
of the speaker. We are interested in the architecture of such a model, and argue that
causal Bayesian networks provide a natural and promising approach.

Keywords Quantity implicature ·Roundness ·Modified numerals ·Sequence rule ·
Game theoretic pragmatics · Bayesian production model

1 Introduction

Causal Bayesian networks (Pearl 2000) provide a natural framework for high–level
descriptions of the interaction of different (cognitive) modules involved in communi-
cation. In the simplest case, a Bayesian network is a sequence of random variables in
which the value of each variable conditionally depends on the value of the preceding
variable. For example, the speaker’s intended meaning depends on his world knowl-
edge, the signal which he produces depends on the intended meaning, the hearer’s
interpretation depends on the signal she receives, and subsequent actions she chooses
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may depend on the information gained from the signal. The state of the world, the
intended message, the signal, its interpretation, and the subsequent action can all be
seen as values of random variables which are causally dependent on each other in
a linear order. The Bayesian representation of the communication process can be
turned into a game by assuming that the random variables are independent players
which have to solve the coordination problem of successful communication. Games
of this type have been introduced under the name of error models in Benz (2012).
This model provides the background for the causal models which will be applied to
experimental data on the comparative quantifier ‘more than n’ (Cummins et al. 2012).

A key prerequisite for drawing the quantity implicature from ‘three’ to ‘not more
than three’ in e.g. ‘Nigel has three children’ is the assumption that the speaker
knows the exact number of Nigel’s children. This led to the assumption that ‘more
than n’ constructions generate no implicatures as the comparative quantifier ‘more
than’ signals that the speaker lacks sufficient knowledge for making a more precise
statement (Krifka 1999). However, experimental results from Cummins et al. (2012)
show that scalar implicatures are available from these constructions. For example, the
size of the interval defined by the estimated lower and upper bounds for the number
of people getting married is much higher in (1b) than in (1a):

(1) (a) More than 90 people got married today.
(b) More than 100 people got married today.

Cummins (2013) proposes an optimality theoretic model of the experimental find-
ings. It is a one–sided production model with free constraint ranking. The input–
output pairs are the speaker’s intended meaning and its linguistic realisation. Impli-
catures are calculated by inferring the speaker’s meaning from output. The model
has no theory of information states. We show that this, together with the ‘the winner
takes it all’ rule of optimality theory, means that it cannot fully account for ‘more
than’ implicatures with round numerals.

As did Cummins, we derive implicatures from a production model. However,
we represent it in the form of a causal Bayesian network: The first random vari-
able represents the state of the world, in example (1) the true number of people
getting married, the second variable represents the speaker’s information state, in
our example an interval in which the speaker expects the true number to lie, then
the third variable describes the possible linguistic output, and the fourth variable the
hearer’s interpretation of the output. The key step is the definition of the possible
speaker information states. We apply here the unmodified sequence rule of Jansen
and Pollmann (2001) such that an open interval (n, m) is a possible information state
if m immediately follows n in a sequence of natural numbers defined by Jansen and
Pollmann’s rule.1 Although this use of the sequence rule is not unproblematic from
a cognitive perspective, we show that the model predicts the experimental results of
Cummins et al. (2012) about implicatures from ‘more than n’ with round n.

1It defines sequences of round numbers in different scales, e.g. ‘5, 10, 15, . . . ,’ ‘10, 20, 30, . . .’ or
‘50, 100, 150, . . .’ The rule says that numbers appearing in approximation contexts like ‘between n
or m’ are always adjacent elements of such sequences, e.g. (20, 30), (50, 100), or (100, 150). See
the definition in (10) and examples in (11).
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In the experiments of Cummins, Sauerland and Solt, subjects were asked to
estimate the lower and upper bounds of the interval in which the true number of
people has to lie. As the use of a modified numeral ‘more than n’ does not allow
for an unambiguous reconstruction of the upper bound of the speaker’s information
state, the game theoreticmodel proposed in (Benz 2012) implies that the upper bound
cannot be part of the intended speaker meaning. This raises the question, how these
implicatures about upper bounds are related to scalar implicature. Based on our pro-
duction model, we argue that inferences about upper bounds are not communicated
non–natural information in the sense of Grice (1989, Chap. 14).

2 Scalar Implicature

Normally, an utterance of (2) will communicate that some but not all of the students
failed:

(2) Some of the students failed

Grice (1989, Chap. 2) distinguished between what is said (some, possibly all), i.e.
the semantic meaning of the utterance, and what is implicated (not all). Both aspects
are part of the intended speaker meaning. The implicated meaning is inferred from
the assumption that the speaker adheres to the so–called cooperative principle, and
a number of maxims. In short, they ask the speaker to be cooperative, and to say as
much (Quantity) as he knows (Quality) as long as it is relevant (Relation). In addition,
his presentation should be short, orderly, perspicuous, etc. (Manner). For Grice, an
implicature is a proposition which one can infer the speaker to believe in order to
maintain the assumption of cooperativity and adherence to the maxims. Implicatures
are, therefore, inferred after semantic meaning, hence pragmatic reasoning follows
semantic reasoning, except in cases of disambiguation and saturation of anaphors
and indexicals, which may involve pragmatic reasoning and precede semantic inter-
pretation. That implicatures are not part of semantic meaning can be seen from their
cancellability, i.e. they can be explicitly negated by the speaker as in ‘Some, in fact,
all of the students failed’.

The implicature from ‘some’ to ‘not all’ is explained by adherence to the maxim
of quantity: if the speaker had known that all failed, he would have said so (Quantity).
So, he cannot know that all failed. If it is assumed that he knows whether all failed
(Expert), then the implicature that not all failed follows.

This reasoning has been systematised by so–called neo–Griceans.2 In the previous
example, we find a scale 〈all, some〉 and a sentence frame A(x) ≡ ‘x of the students
failed’ such that A(all) semantically implies A(some) but not the other way round.
As we have seen, an utterance of the weaker A(some) implicates that ¬A(all).
This generalises as follows: given a scale 〈e1, . . . , en〉 of expressions of similar
complexity which can be filled into a sentence frame A(.) such that for i < j

2See Levinson (1983, Chap. 3) for a summary.
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A(ei ) → A(e j ) and A(e j ) �→ A(ei ), then an utterance of a weak alternative A(e j )

implicates that all stronger alternatives A(ei ), i < j , are false. In the following, we
write A(e j ) +> ¬A(ei ) if A(e j ) implicates ¬A(ei ).

According to the standard theory, numerals also define a scale 〈…, five, four, three,
two, one〉. This predicts that a use of ‘three’ will normally implicate that the same
sentence with ‘three’ replaced by ‘four’ is false:

(3) A: How many children does John have?
B: John has three children.
+> John does not have four children.

This assumes that a numeral as e.g. ‘three’ is semantically equivalent to ‘three or
more’. Hence, the sentence ‘John has three children’ is true semantically even if
John has four, five or more children. This assumption is supported by examples as
the following:

(4) (a) A: Does John have three children?
B: Yes, he has even four!

(b) All of the students solved three problems, some even five or six.

If ‘three’ would mean ‘exatly three’, then B could not answer with ‘yes’ in (4a), and
(4b) would be a contradiction.

One of the major issues of the standard theory is the question: what exactly
constitutes a scale?Not just any set of phrases 〈e1, . . . , en〉 ordered by logical strength
can form a valid scale. It is often assumed that the ei s have to be of equal complexity.
But even this condition is no guarantee for the ei s forming a scale.Modified numerals
are a case in point:

(5) (a) John has more than two children.
(b) John has more than three children.
(c) John has more than four children.

As ‘more than n+1’ implies ‘more than n’, then, assuming that 〈more than four,
more than three, more than two〉 forms a scale, an utterance of (5b) would implicate
that John does not have more than four children, and, hence, that he has exactly
four. Intuitively, the use of the modifier ‘more than’ indicates that the speaker does
not know the exact number. This was taken as evidence that comparatively modified
numerals do not form scales and, hence, do not give rise to implicatures (Krifka
1999; Fox and Hackl 2006).

3 Inferences from Comparatively Modified Numerals

Although comparativelymodified numerals do not give rise to the neo–Gricean scalar
implicature, they allow for some conversational inferences. The following examples
are taken from either Cummins (2011), Cummins et al. (2012), or Cummins (2013).
Consider:
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(6) London has more than 1000 inhabitants.

As an answer to the question ‘How many inhabitants has London?’, (6) is obviously
underinformative. It conveys the impression that London is a small city, and a naïve
addressee would clearly exclude the possibility that London has a million, let alone
10 million inhabitants. A similar effect is observable in the following example:

(7) (a) More than 80 people got married today.
(b) More than 90 people got married today.
(c) More than 100 people got married today.

The sentences give rise to different expectations about the size of the interval that
must contain the true number of people married that day. It should be larger for (7c)
than for (7b). Whereas (7c) seems to be compatible with the real number being 120,
(7b) suggests that less than 100 got married. Also (7a) seems to suggest a smaller
interval than (7c). In (8), the expected interval becomes even smaller. One would
expect that the true number is either 97, 98, or 99.

(8) More than 96 people got married today.

In addition to the inferences about the interval that must contain the true value,
comparatively modified numerals also give rise to certain ignorance implicatures.
For example, (8) conveys that the speaker does not knowwhethermore than 97 people
gotmarried that day. It has been claimed that, in general, ‘more than n’ gives rise to the
clausal implicatures ‘possibly n+1’ and ‘possibly more than n+1’ (Cummins 2013).

Central for the following discussion are the experiments by Cummins, Sauerland
and Solt (2012), who provide support for the claim that the use of ‘more than n’
invites additional inferences about the possible range of values. In their experiments,
test subjects had to answer a questionnaire on theAmazonMechanical Turk platform.
The items consisted of a short statement containing a modified numeral followed by
a question which asked subjects to estimate the true number. An example is shown
in Fig. 1.

Information A newspaper reported the following.

“[Numerical expression] people attended the public meeting about the
new highway construction project.”

Question Based on reading this, how many people do you think at-
tended the meeting?

Between and people attended [range condition]
people attended [single number condition]

Fig. 1 Example item from Cummins et al. (2012, p. 146)
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Low High
n = 100 100 (40) 150 (24)

101 (28) 125 (12)
120 (8)
200 (7)
1000 (5)

n = 110 110 (46) 120 (28)
111 (31) 150 (24)
100 (9) 200 (7)

119 (6)
130 (5)
115 (5)

Low High
n = 93 93 (32) 100 (34)

94 (29) 95 (14)
90 (14) 99 (7)

150 (6)
125 (5)

Fig. 2 Experimental results from Cummins et al. (2012)

Cummins et al. considered the modifiers ‘more than’ and ‘at least’. We are only
concerned with the cases in which the numerical expression of the test item was
‘more than n’. Cummins et al. further distinguished two types of estimates: in the
single number condition, subjects were required to provide a natural number; in the
range condition, they had to provide a lower and an upper bound (between m and
n) for the true number. In the following, we only consider the results for the range
condition, which are shown in Fig. 2.

The ‘Low’ column shows the different lower bounds for ‘more than n’, followed
in brackets by the number of subjects providing the lower bound. For example, 40
subjects gave a lower bound of 100 for the ‘more than 100’ condition, and 28 subjects
the lower bound 101. The ‘High’ column shows the different upper bounds.3 The
experimental data overall support the introspective data described before. However,
they also show that lower and upper bounds tend to be round numbers. They are
always round if n is round. Even for n = 93, which is not round, the bounds are
round numbers, or clearly chosen due to their proximity to a round number (99); the
only exceptions are 93 and 94.

To sum up, there is evidence that comparatively modified numerals invite infer-
enceswhichbear some similarity to standard scalar implicature. In particular, subjects
feel entitled to make guesses about the intervals which contain the true values.

4 An Optimality Theoretic Model

In (Cummins et al. 2012), the implicature from modified numerals were explained
as a kind of weaker implicature without being too explicit about the exact status
of these weaker implicature. In a theoretical article, Chris Cummins’s proposed an
optimality theoretic model of the experimental results (Cummins 2013).

3The table provides no indication of how lower and upper bounds were paired. So, the estimated
intervals cannot be reconstructed.
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Optimality Theory (OT) was introduced to phonology in the early 1990s (Prince
and Smolensky 1993). It describes grammar as a symbolic system in which sur-
face forms are considered solutions to a constraint optimisation problem. The con-
straints are violable and hierarchically ranked according to their strength such that
the stronger constraints strictly dominate the weaker constraints. In a production
model, the linguistic surface forms are the optimal output forms for an underly-
ing input form. Cummins (2013) proposes an OT production model in which the
constraints are special instances of Gricean maxims. The output forms are the
modified numerals ‘more than n’, for example, ‘more than 50’, ‘more than 60’,
‘more than 70’, etc. The input from which these surface forms are generated are the
speaker’s information states.

In the experiments of (Cummins et al. 2012), subjects first read a text containing
themodified numeral ‘more than n’, and had then to estimate lower and upper bounds
for the true number. For the experimental item shown in Fig. 1, the text may have
said, for example, that ‘More than 100 people attended the public meeting about the
new highway construction project.’ Cummins’s OT model is a model of the author
producing the text. It tells us for which speaker information states the text is an
optimal output. The assumption is that, as the OT model is common knowledge, the
subjects can use this knowledge for inferring the underlying information state, and
thereby for inferring the lower and upper bounds.

The optimal output for an information state is calculated with the help of a tableau
as that shown in (9). The left upper corner of (9) shows the information state of
knowing that between 101 and 109 people came to the meeting. In the column under
the information state all possible outputs are listed. Cummins assumes that only
modified numerals enter the competition. The constraints are listed in the top row.4

First, there is the Quality constraint, which asks the speaker to say only what he
believes to be true. This constraint is assumed never to be violated. It is therefore
always to be ranked highest. Next come the Quantity constraint, which asks the
speaker to choose the most informative output, and the Salience constraint, which
asks the speaker to choose round numbers. It is assumed that different speakers can
come with different rankings of Quantity and Salience. Hence, from the hearer
perspective, these constraints can be arbitrarily ordered. In (9), this is indicated by
the dashed vertical line between the last two columns.

(9)

101–109 Quality Quantity Salience

more than 110 ∗! ∗∗
☞ more than 100

more than 90 ∗! ∗∗
more than 80 ∗!∗ ∗

4The full model also contains a constraint preferring the re-use of previously mentioned (primed)
numerals. For the special problem of implicatures from ‘more than n’ for round numerals n, this
constraint can be left out of consideration. It becomes relevant for non–round numerals, as in ‘more
than 93’. We also changed constraint naming: Cummins’s tableaux do not include (Quality), and we
call the quantity maxim by its conventional name of Quantity instead of Informativity, which
Cummins chose.
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As the speaker believes that the true number of people coming to the meeting does
not exceed 109, it would violate the Quality constraint to say that ‘More than 110
came’. This is indicated by the ∗ in the column below Quality. All other numerals
satisfy the constraint. The numerals 90 and 80 are less informative than 100. This
is indicated by the ∗ in the column below Quantity. The violation is stronger for
80 than for 90, hence, 80 receives two stars and 90 only one star. The Salience
constraint measures the roundness of the chosen numeral. In the given example, 100
is rounder than 80, and 80 is rounder than 90 and 110. The violation of Salience,
shown in the last column, grows stronger with decreasing roundness.

An output F wins over another output G, if the first constraint for which they
differ is violated more strongly by G than by F . ‘More than 100’ is the only output
which satisfies all constraints. It therefore wins the competition. The ‘!’ in other rows
marks the first violationwhichmakes the corresponding output loose the competition
with the winning form.

Cummins’s measure of roundedness is based on the corpus studies of Jansen and
Pollmann (2001). As an indicator of the degree of roundness Jansen and Pollmann
considered the frequencies of numerals in approximation contexts created by, for
example, Dutch ‘ongeveer’, German ‘etwa’, French ‘environ’, and English ‘about’.
The more frequent a numeral is in such contexts, the rounder it is assumed to be.

Cummins’s OT model makes predictions about which numerals n are optimal in
‘more than n’ contexts. He provides an explanation for why round numerals allow for
a larger range of upper bounds. He also claims that his model explains the ignorance
implicature from ‘more than n’ to the speaker believes it possible that n+1 (♦n+1).

Thewider range of upper bounds for round numerals is explained as a consequence
of the free ranking of the Quantity and Salience constraints. For example, if the
speaker knows that the true number of people attending some event lies in the open
interval (150, 200), then, assuming that 100 is rounder than 150, it follows that a
speaker ranking Salience over Quantity will prefer the less precise ‘more than
100’ over ‘more than 150’. If, in contrast, the speaker knows that the true number
lies in some interval above 100, for example in the interval (110, 120), then there is
no constraint ranking which could make the choice of ‘more than 90’ optimal. This
restricts the allowed range for the true number to (90, 100) for ‘more than 90’, and
allows a wide range for ‘more than 100’. However, if the belief interval is (150, 200)
and Salience is ranked higher than Quantity, then the model not only predicts
that ‘more than 100’ wins over ‘more than 150’, but also that ‘more than 10’ wins
over ‘more than 100’, as 10 is rounder than 100.5 Hence, the speaker should choose
‘more than 10’. The model also predicts, as there is no higher number rounder than
100, that ‘more than 100’ wins over all alternatives ‘more than n’ for numbers n
greater than 100. This is a consequence of the ‘the winner takes it all’ property of
OT models. It entails that the most salient number N , whichever it is, has no upper
bound, and all other numbers greater than N can only be used ifQuantity is ranked

5In fact, this depends on which number is considered to be roundest. For example, the frequency
graph in (Jansen and Pollmann 2001, p. 193) shows an even higher peak for 20 than for 10. However,
pure frequencies may not be the best criteria of roundness.
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over Salience. The model entails, therefore, that the ignorance implicature only
exist for numbers which are preceded by a more salient number. For the maximally
salient numbers, the implicature from ‘more than N’ to ♦N + 1 does not hold true.
If someone who believes the true number to lie in (150, 200) can utter ‘more than
100’, then the addressee cannot infer from this utterance that the speaker believes
101 to be possible.6

As themodel imposes no restrictions on the possible speaker information states, no
inferences about upper bounds can be drawn if Quantity is ranked over Salience.
For example, if all intervals (110, Lu) are admissible information states of the
speaker, then from an utterance of ‘more than 110’ no restriction on the upper limit
Lu can be inferred. It could be arbitrarily large. Cummins obviously assumes some
restrictions on possible information states, but they are not made explicit in his
model.7

We sympathisewith Cummins’s approach of explaining the observed implicatures
from a production model. However, the model has shortcomings which warrant con-
sidering alternatives. In particular, it seems necessary to have a model that explicitly
describes the set of admissible information states. Without it no inferences can be
made about upper bounds.We alsowill drop the optimality theoretic framework.8 We
prefer a representation which describes the communication process and the experi-
mental situationmore directly. Aswe aremainly interested in the general architecture
of such a representation,we consider only a limited subset of the experimental results.
For example, we leave out of consideration non–round numerals, as, for example,
93.9 The main question in the next section is how to account for the influence of
roundedness on the estimated difference between lower and upper bounds even if it
is assumed that the speaker tries to be as informative as possible, i.e. even if, in OT
terms, the speaker ranks Quantity over Salience.

5 A Causal Bayesian Network Model

Our aim is to explain the experimental data shown in Fig. 2 on ‘more than 100’. The
main effort will be to set up a model of the author producing the text appearing in the
questionnaire shown in Fig. 1, for example, the text ‘More than 100 people attended
the public meeting about the new highway construction project.’

In Fig. 3, a model of the experimental situation which starts with a reported (imag-
inary) event and concludes with the test subject’s answer is shown. Each node in this

6This reveals a (minor) inconsistency in Cummins’s argumentation (2013), as he claims that the
ignorance implicature always holds true.
7Excluding examples with anaphoric uses, Cummins always considers information states (n, m) for
which n and m are adjacent round numbers. Making this aspect explicit would presumably reveal
the same application of Jansen and Pollmann’s sequence rule as in our own model.
8Itmay also be debated that anOTmodelwith free constraint ranking is still in the spirit of optimality
theory.
9For these numerals, Cummins has also to apply a different model with an additional constraint.
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N (n, m) ‘more than n’ 〈lb, ub〉
World Knowledge Utterance Estimate

forced estimate in experiment

Fig. 3 A model of the Cummins, Sauerland, and Solt experiment (2012)

sequence corresponds to a random variable in a causal Bayesian network. The val-
ues of the first variable named World are natural numbers N , those of the third
variable named Utterance are sentences containing ‘more than n’ for some natural
number n, and the values of the last variable named Estimate are pairs 〈lb, ub〉 of
lower and upper bounds for the true number N . In order to complete this model, it
has to be known which values the variable named Knowledge can take, and it has
to be known what the conditional probabilities of the various values are.

We will identify the knowledge states with open intervals (n, m) using Jansen and
Pollmann’s unmodified sequence rule (Jansen andPollmann2001). It is obviously not
possible to determine the conditional probabilities. Fortunately, this is not necessary
as we will see once we know how to define implicature. We address this issue next.

5.1 Implicature in Bayesian Networks

In a Bayesian network, the different random variables carry information about each
other. For our purposes, we can assume that communication is describable by a linear
sequence of random variables (Xi , Pi )

n
i=1 with conditional probabilities Pi (xi |xi−1)

defined for xi ∈ Xi and xi−1 ∈ Xi−1.With the product probability P(x1, . . . , xn) =
P1(x1) × · · · × Pn(xn|xn−1), we can define the probability that the i th variable has
a value in some set X given that the j th variable has a value in Y as follows10:

Pi | j (X |Y ) := P(π−1
i (X) ∩ π−1

j (Y ))

P(π−1
j (Y ))

with πk(x1, . . . , xn) = xk . (1)

In a linear Bayesian network describing communication, one variable will describe
the utterances the speaker produces. Let us assume it is the j th variable, and that the
utterance is F . Then we can say that the utterance of F implicates that some other
variable Xi has a value in X iff Pi | j (X |F) = 1.

It follows that, in order to determine implicature, it is only necessary to know
which values xi of a variable Xi are consistent with an utterance of F . Hence, it
suffices to know for which xi Pi | j (xi |F) > 0.

10Whenever a probability appears in the denominator, we implicitly assume that it is greater than
zero. If X or Y is a singleton set, for example Y = {y}, the brackets around y are omitted in argument
positions of probability distributions.
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This definition is justified by Grice’s contention (1989, p. 86) that ‘what is im-
plicated is what it [sic!] is required that one assume a speaker to think in order to
preserve the assumption that he is observing the Cooperative Principle (and per-
haps some conversational maxims as well), …’ The most obvious interpretation is
that what is implicated by an utterance of F is the information that is carried by F
about values of variables representing the speaker’s beliefs.11

5.2 Knowledge States and the Sequence Rule

All estimated lower and upper bounds shown in Fig. 2 are round numbers, or differ
only by a value of one froma roundnumber.Aswehave seen, the speaker’s preference
for round numbers is also a key element of Cummins’s OT model. In the Bayesian
network in Fig. 3, the (imaginary) speaker’s first task is to estimate the true number
of people taking part in some event. We assume with Cummins’s that this estimate
is some interval. More specifically, we assume that it is an open interval (n, m) with
at least two elements defined by two round numbers n and m. To further restrict
the admissible pairs of numbers n, m, we make use of the corpus study by Jansen
and Pollmann (2001) who found that pairs of numbers n, m in the approximative
construction ‘about n or m’ follow the following rule:

(10) Sequence rule:12 For context ‘about n or m’, the numbers n, m follow each
other directly in a sequence:

Lk,l = {i (k × 10l) ∈ N | i ∈ N} with k = 1, 2, 1/2, 1/4, and l ≥ 0. (2)

The following list in (11) shows all sequences which are relevant to us.

(11)

L1,0 = 1, 2, 3, 4, 5, . . .
L2,0 = 2, 4, 6, 8, 10, . . .
L1/2,1 = 5, 10, 15, 20, . . .
L1,1 = 10, 20, 30, 40, 50,
. . .

L2,1 = 20, 40, 60, 80, . . .
L1/4,2 = 25, 50, 75, . . .
L1/2,2 = 50, 100, 150, 200, . . .
L1,2 = 100, 200, 300, 400, 500,
. . .

11This definition deviates from common usage in so far as it includes literal meaning in implicated
meaning, whereas what is implicated is generally understood to be the meaning that is commu-
nicated but not literally expressed. For simplicity, we use this inclusive definition, which can be
easily modified to bring it more in line with common usage. We may mention that Grice’s original
characterisation of conversational implicatures also does not exclude literal meaning (Grice 1989,
p. 30f).
12This is the unmodified sequence rule. Jannsen and Pollmann (2001) see no justification for the
inclusion of k = 1/4. However, we can ignore this modification for our purposes. For k = 1/4,
l must be greater than 1 to make sure that all elements of L1/4,l are natural.
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Let us write (n, m) � Lk,l if n and m are consecutive numbers in sequence Lk,l . We
assume that (n, m) is a possible information state if n andm are consecutive numbers
in some sequence Lk,l . In addition, we assume that the speaker’s estimate is correct,
i.e. that the true number N is an element of (n, m). Translated into conditional
probabilities P((n, m)|N ), this means:

P((n, m)|N ) > 0 iff ∃k∃l > 0 : (n, m) � Lk,l ∧ N ∈ (n, m). (3)

As mentioned before, it suffices for implicature calculation to know when
probabilities are greater zero. In order to rule out intervals with one or zero ele-
ments, we assume that l > 0.

5.3 Speaker’s Strategy and Experimental Data

The last parameter to be fixed for the model in Fig. 3 is the probability with which
the speaker chooses ‘more than n’ given that his knowledge state is (n′, m′). In
game theoretic terminology, this conditional probability can be called the speaker’s
strategy. We make the assumption that the speaker can only produce Fn = ‘more
than n’ if n′ = n:

S(Fn|(n′, m′)) > 0 iff n = n′. (4)

The situations represented by condition (4) correspond to those situations in which
Quantity is ranked higher than Salience in Cummins’s optimality theoreticmodel.
As we have seen, for these cases, the optimality theoretic model cannot make pre-
dictions about upper bounds. In Sect. 5.4, we will shortly discuss cases in which the
speaker could have beenmore informative; for example, cases inwhich he could have
been more informative because he knew that exactly 93 people came to an event, but
nevertheless chose the less informative lower bound ‘more than 90’.

This completes the set-up of our model. The probabilities with which the test
subjects choose their estimates and the nature of the estimates are provided by the
experimental data.

The table in (12) lists the belief intervals which have probability greater zero given
that the speaker uttered Fn for the numbers n = 80, 90, 100. To each interval, the
sequence to which the interval belongs is added. More precisely, if F is the name
of the random variable representing utterances, and Θ the random variable for the
speaker’s belief, then the intervals (n, m) listed in table (12) are those for which
PΘ|F ((n′, m′)|Fn) > 0.
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(12) Fn belief intervals

‘more than 80’ L1/2,1 (80, 85) L1,1 (80, 90)
L2,1 (80, 100)

‘more than 90’ L1/2,1 (90, 95) L1,1 (90, 100)

‘more than 100’ L1/2,1 (100, 105) L1,1 (100, 110)
L2,1 (100, 120) L1/4,2 (100, 125)
L1/2,2 (100, 150) L1,2 (100, 200)

Given our definition of implicature, this table says that an utterance of ‘more than
80’ implicates that the speaker believes that the true number is an element of (80, 85),
(80, 90), or (80, 100). Likewise, an utterance of ‘more than 100’ implicates that the
speaker estimates the true number to lie in one of the intervals with lower bound
100 and upper bounds 105, 110, 120, 125, 150, and 200. Accordingly, following
from the assumption that the speaker’s beliefs are true, an utterance of ‘more than
100’ implicates that the true number lies in the interval (100, 200), and an utterance
of ‘more than 80’ that it lies in the interval (80, 100). The model accounts for the
different ranges of estimated intervalswithout having to rank the preference for round
numbers over the preference for information. Equation (4) entails that the speaker
chooses the most informative version of ‘more than n’. The model also accounts for
the ignorance implicature ‘more than n’ implicating possibly n + 1.

It is difficult to say how test subjects construed the task in the questionnaire. They
were not explicitly asked for implicatures, only for estimated lower and upper limits
of the true number N . It is plausible to assume that they provided probable and safe
limits within which the speaker’s belief intervals lie. The experimental results for
‘more than 100’ are repeated in (13). We find a good match between the predicted
set of possible upper bounds and elicited upper bounds. The only predicted upper
bounds which cannot be found in the experimental data are 105 and 110, and the
only upper bound not predicted is 1000.

(13) Low High
n = 100 100 (40) 150 (24)

101 (28) 125 (12)
120 (8)
200 (7)
1000 (5)

A plausible reason for the missing 105 and 110 is that the resulting intervals would
be too small. As test subjects had no information about speakers, the belief intervals
(100, 105) and (100, 110)would have been too unlikely to be the only speaker types.
On the other side, the estimated upper bound of 1000 may be the result of a special
safety strategy of test subjects.13

13In the cognitive literature it is also argued that the distances on themental number line are rescaled
according to some logarithmic rule (Dehaene 2011). This may have an effect on choosing upper
bounds which is not accounted for in our model but may explain why some people estimate the true
number to lie between ‘100 and 1000.’



38 A. Benz

5.4 Extensions of the Basic Model

In the basic model we only considered the case in which the assumed speaker of the
test sentence believes that the true number N can lie anywhere in an open interval
(n, m). When he produces an utterance with ‘more than’, then he always chooses n
as the lower bound. This was encoded in Eq. (4). In this section, we consider other
strategies which may lead to utterances containing ‘more than n’. The reasoning is
admittedly even more speculative than in the previous sections. The aim is to show
that the constraints over possible estimates for the interval containing the true number
N that may be produced by the test subjects remain valid also when considering other
speaker strategies which might have produced the test sentences. A second aim is
to show how the sequence rule might be used to capture a variety of other reasons
leading to utterances with numerals modified by ‘more than’.

We first consider the following possibility: If the speaker says that ‘More than 90
people attended the public meeting about the new highway construction project’, it is
conceivable that he knows that exactly 93 people attended but chose the round number
90 as lower bound for ‘more than n’. In Cummins’smodel one has to assume here that
Salience outranksQuantity. If the speaker knows that exactly N people attended,
the dominance of Salience overQuantitymeans that the speaker must choose the
roundest number n smaller or equal to N . However, as we have seen, the restriction
to the roundest number smaller than N seems to be too strong a requirement. We
will now show how a prediction about possible lower bounds n can be derived from
the sequence rule. It can be assumed that the different sequences Lk,l resulting from
different choices of numbers k = 1, 2, 1/2, 1/4 and l ∈ N represent different levels of
precision with which the speaker wants to describe the true situation. In the following
model, it is assumed that the speaker, who knows that exactly N people attended,
first chooses a level of precision Lk,l with which he wants to describe the situation,
and then the largest number n in Lk,l which is smaller than N as a lower bound
for ‘more than n’. The following constraint, which modifies the conditions stated
in Eqs. (3) and (4), captures this idea. It says that Fn = ‘more than n’ is a possible
utterance if there is an interval (n, m) of adjacent numbers in some sequence Lkl

which contains N :

S(Fn|N ) > 0 iff ∃k∃l > 0 ∃m > n : (n, m) � Lk,l ∧ N ∈ (n, m). (5)

For N = 93, this rule predicts that the speaker can produce the following sentences:

(14) (a) More than 90 people attended. ((n, m) = (90, 95), (90, 100))
(b) More than 80 people attended. ((n, m) = (80, 100))
(c) More than 75 people attended. ((n, m) = (75, 100))
(d) More than 50 people attended. ((n, m) = (50, 100))

These are all possibilities. Numbers like n = 20 or n = 10 are ruled out because
there is no sequence Lk,l for which there exist intervals (20, m) or (10, m) that would
contain 93 as an element. What is important with respect to the experimental data of
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Cummins et al. (2012) is that the strategy defined in (5) does not introduce expected
intervals (n, m) different from the intervals introduced by the basic rule in (4): If the
addressee hears that e.g. ‘more than 80 people attended’, then she can infer that the
true number is an element of (80, 100). So, even when the addressee does not know
whether the speaker’s information state is an interval or an exact number, she should
arrive at the same estimates.

Let us consider one further scenario. It is conceivable that the speaker counted
the people attending the meeting and stopped counting at, say, 91. He may be certain
that at least twomore attended, and, maybe, up to a hundred. When asked, howmany
were there, he may well answer ‘more than 90’. Also for such a scenario we can
derive a plausible model from Jansen and Pollmann’s sequence rule. In our example,
the speaker knows that at least 93 attended. So let N be any number, not necessarily
round, for which the speaker verified by counting that at least N attended. Then
the following strategy produces plausible ‘more than n’ utterances with round lower
bounds n:

S(Fn|(N , m)) > 0 iff ∃k∃l > 0 : (n, m) � Lk,l ∧ N ∈ (n, m). (6)

The predicted intervals for N = 93 are the same as in (14). This also means that the
hearer, when confronted with a ‘more than n’ message, has no reason to change her
estimates for the interval containing the true number.

As mentioned before, the modifications presented in this section are increas-
ingly speculative. However, they demonstrate how the model can be extended to
cover more scenarios in which the speaker can produce a comparatively modified
numeral. In terms of linguistic depth, the achievements may seem modest. Even
with the extensions presented, the model does not account for vague interpreta-
tions of unmodified numerals, as, for example, in ‘A hundred people came to the
talk’, which can mean that about 100 people came. It also does not account for an
utterance of ‘more than 93’. For these examples, the model has to take into account
additional parameters, e.g. previouslymentionednumerals, and contextually required
precision. This leads to nontrivial extensions, which we leave to future research.

Before we end this section, we provide an overview of how roundness can influ-
ence the experimental results in the setting of Cummins et al. (2012). In our basic
model, roundness entered the definition of conditional probabilities of belief inter-
vals. However, roundness can also influence the choice of utterances and the interval
estimation by the test subject. These possibilities are shown in Fig. 4.

N (n, m) F (lb, ub)
World Knowledge Utterance Estimate

R

Fig. 4 Influence of roundness R on probabilities
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If roundness determines the formation of belief intervals, then the (imaginary)
speaker of the ‘more than n’ sentence is restricted to belief states (n, m) with round
neighbours in a Jansen and Pollmann sequence, as assumed in our basic model. If
roundness enters the choice of utterance, then the speaker may produce ‘more than
100’ although he knows that there are more than 110. This is the case we have
considered in this section. There is also the possibility that roundness enters the
choice of the test subject’s estimate of the interval containing the true number. This
case we have not considered so far. For example, the test subject may estimate that
the true number is between 103 and 150, but when asked for lower and upper bounds,
she may respond between 100 and 150, simply because (100, 150) is a particularly
salient interval. However, to disentangle how roundness exactly influences which
module in Fig. 4 needs further experimental investigations.

6 Implicature in Which Sense?

In this section we consider the question what type of implicature are inferences from
‘more than n’ to upper bounds for the true n. Krifka (1999) maintained that ‘more
than n’ does not generate implicatures. Cummins et al. (2012) considered ‘more than
n’ implicature to be weak implicatures compared to standard scalar implicatures.
Cummins (2013) explained them as inferences about the speaker’s beliefs which are
inferred from an optimality theoretic production model. In this model, there seems
to be no principled difference between implicature from ‘more than n’ and those
from unmodified numerals, for example, from ‘John has three children’ to John has
exactly three children.

We quoted before a passage from Grice which says that an implicature is what
is required that one assume a speaker to think in order to preserve the assumption
that he is following the conversational maxims. This suggests that an implicature is
an inference about some belief of the speaker. However, in (Grice 1989, Chap. 14),
Grice defined communicated meaning as meaning that the speaker intended to com-
municate. Thismakes an implicature an inference about intentions, and not just about
some belief he happens to entertain. Accordingly, we can distinguish between two
types of implicature:

(15) (a) (Grice–B): A belief of the speaker. (Logic of Conversation, Grice 1989,
Chap. 2)

(b) (Grice–I): The part of the intendedmeaningwhich is not literally expressed.
(Meaning, Grice 1989, Chap. 14)

These implicature can be distinguished in a causal model if distinct nodes for beliefs
and intentions are introduced, as shown in Fig. 5.

The standard examples of scalar implicature in (16) are clearly part of what has
been communicated. Hence, they constitute Grice–I implicature.
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Fig. 5 Grice–B and Grice–I
implicature W Θ L F

World Knowledge Message Utterance

Grice–I

Grice–B

(16) (a) Some of the students failed the exam. +> not all failed.
(b) John has three children. +> He has not more than three.

However, the implicatures about upper bounds in (7), repeated here as (17), are
normally not part of what the speaker intended to communicate. In this sense they
are weaker implicature as Cummins et al. (2012) maintained.

(17) (a) More than 80 people got married today. +> between 80 and 100
(b) More than 90 people got married today. +> between 90 and 100
(c) More than 100 people got married today. +> between 100 and 200

This becomes also apparent from the causal model we considered in the previous
section. Implicature from ‘more than n’ were there considered inferences about the
speaker’s knowledge.

This also reconciles Krifka’s (1999) view that ‘more than n’ does not generate
implicature with the experimental results of (Cummins et al. 2012), if one assumes
that Krifka’s claim relates to Grice–I implicature, and not to Grice–B implicature.

7 Conclusion

The main aim of this paper was to show the usefulness of causal networks for
analysing the experimental setting in experiments of the type performed byCummins
et al. (2012). Causal networks provide a high level description of communication by
showing the causal dependencies between different modules in language production
and interpretation. They are a very natural framework to use. We have seen how to
explicate the notion of implicature in these networks as inferences from one special
variable representing utterances to properties of other variables. This provided us
with a general definition, and we could show that, in spite of its abstractness, it helps
to make fine distinctions within the group of quantity implicature.

We have seen that the model provides a good match for upper bounds of ‘more
than 100’. It explains why differences between lower and upper bounds are larger
for round numbers. It also shows that this pattern is consistent with the assumption
that the speaker tries to be as informative as possible. Hence, the data are consistent
with the ignorance implicature from ‘more than n’ to ‘it is possible that n+1’. The
model also predicts that ‘more than n’ can only be used with round numbers.
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We have argued that pragmatic inferences from, for example, ‘more than 100’
to ‘less than 200’ are not Grice-I implicatures, hence, that they are not part of the
speaker’s intended message. This makes them different from implicatures triggered
by unmodified numerals, as, for example, by ‘John has three children’ implicating
that ‘John has exactly three children’. In this sense, we agree with (Krifka 1999; Fox
and Hackl 2006) that comparatively modified numerals do not give rise to standard
scalar implicatures. The experimental results of (Cummins et al. 2012) seem to be
the consequence of general inferences about the speaker’s probable knowledge state.
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Measurement-Theoretic Foundations
of Logic for Better Questions
and Answers

Satoru Suzuki

Abstract Groenendijk and Stokhof (Varieties of formal semantics, 143–170, 1984)
propose a version of partition-based semantics to analyse questions and answers. In
order to compare the goodness of answers, they use qualitative orderings among
answers. Groenendijk and Stokhof’s qualitative method is too coarse-grained to
achieve the goal. In order to overcome the limitations, van Rooij (Formal theories
of information: from Shannon to semantic information theory and general concepts
of information, LNCS, 161–192, 2009) proposes an information-theoretic approach
based on conditional entropy. The aims of this paper are to construct a qualitative
approach that is as fine-grained as the information-theoretic one, in terms ofmeasure-
ment theory on the basis of Domotor (Information and inference, 148–194, 1970),
and to propose a new version of complete logic for better questions and answers—
Better-Question-and-Answer Logic (BQAL)—the model of the language of which
is based on the qualitative and measurement-theoretic approach.

Keywords (Conditional) entropy · Information theory · Logic for better questions
and answers · Measurement theory · Qualitative conditional entropy relation ·
Representation theorem

1 Introduction

Groenendijk and Stokhof (1984) consider the goodness of an answer in terms of the
partition induced by the question.1 AQ is defined as the set of all cells of the partition
Q that are compatible with an answer A:

AQ := {q ∈ Q : q ∩ A �= ∅}.

1 We owe this section to van Rooij (2009).
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In order to compare the goodness of answers, they use a qualitative ordering >Q

among answers with relative to Q. Groenendijk and Stokhof propose that when an
answer A is incompatible with more cells of Q than an answer A′, that is, AQ � A′

Q ,
A should be counted as a better answer to the question than A′. Van Rooij (2009)
gives the following example:

Example 1 The answer A:

(At least) John is sick.

to the question Q:

Who of John and Mary are sick?

is incompatible with 2 of the 4 cells of the partition. The answer A′:
If Mary is not sick, then neither is John is.

is incompatible with 1 cell of the partition. According to Groenendijk and Stokhof,
A should be a better answer to the question than A′.

What if AQ = A′
Q? If A does not give extra irrelevant information, that is, A′ � A, A

is considered to be a better answer than A′. Combining both constraints, Groenendijk
and Stokhof define A’s being a better answer to a question Q than A′, in symbols,
A >Q A′ as follows:

A >Q A′ iff (i)AQ � A′
Q, or

(ii)AQ = A′
Q and A′ � A.

Van Rooij gives the following example that Groenendijk and Stokhof’s qualitative
method cannot deal with, for neither AQ � A′

Q , A′
Q � AQ , nor AQ = A′

Q holds:

Example 2 The answer A:

(At least) John and Mary are sick.

to the question Q:

Who of John, Mary and Sue are sick?

is felt to be better than the answer A′:
(At least) Sue is sick.2

Groenendijk and Stokhof’s qualitative method is too coarse-grained to deal with this
example. In order to overcome the limitations, van Rooij proposes an information-
theoretic approach based on conditional entropy. He proposes that an answer A is
better than an answer A′ to a question Q iff the information value IVQ(A) of A with
respect to Q is higher than that of A′, or in case both of them are the same, the

2In Sect. 7, we apply Better-Question-and-Answer Logic (BQAL) to Example2.
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informativity I (A) of A should be less than that of A′, intuitively speaking, A should
be less surprising than A′:

(1) A >Q A′ iff (i) IVQ(A) > IVQ(A′), or
(ii) IVQ(A) = IVQ(A′) and I (A) < I (A′).

Then van Rooij provides the following example of a better question:

Example 3 If I want to find out who of John, Mary and Sue are sick, the question:

Who of John and Mary are sick?

is felt to be better than the question:

Is Sue sick?3

Generalising the idea, he proposes that a question Q is better than a question Q′ with
respect to a mutually exclusive and exhaustive set T of hypotheses iff the expected
information value of Q is higher than that of Q′, or if both of them are the same, a
partition (question) Q′ is more fine-grained than (⊂∗) a partition (question) Q′:

(2) Q >T Q′ iff (i)EIVT (Q) > EIVT (Q′), or
(ii)EIVT (Q) = EIVT (Q′) and Q′ ⊂∗ Q.

Both IVQ and EIVH are defined in terms of conditional entropy. IVQ(A) is defined
as the reduction of entropy of Q when A is learnt:

IVQ(A) := H(Q) − HA(Q),

where H(Q) is the entropy of Q, and HA(Q) is the entropy of Q conditional on an
answer A. So we can rewrite (1) as follows:

(3) A >Q A′ iff (i) HA(Q) < HA′(Q), or
(ii) HA(Q) = HA′(Q) and I (A) < I (A′).

EIVT (Q) is defined as the average reduction of entropy of T when an answer to Q
is learnt:

EIVT (Q) :=
∑

C∈Q

P(C) · IVT (C) =
∑

C∈Q

P(C) · (H(T ) − HC (Q))

= H(T ) −
⎛

⎝
∑

C∈Q

P(C) · HC (T )

⎞

⎠ = H(T ) − HQ(T ),

3In Sect. 7, we apply BQAL to Example3.
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where HQ(T ) is the entropy of T conditional on a question Q. So we can rewrite (2)
as follows:

(4) Q >T Q′ iff (i)HQ(T ) < HQ′(T ), or
(ii)HQ(T ) = HQ′(T ) and Q′ ⊂∗ Q.

The aims of this paper are

1. to construct a qualitative approach that is as fine-grained as the information-
theoretic one, in terms of measurement theory on the basis of Domotor (1970),
and

2. to propose a new version of complete logic for better questions and answers—
Better-Question-and-Answer Logic (BQAL)—the model of the language of
which is based on the qualitative and measurement-theoretic approach.

As a result, the qualitative and measurement-theoretic approach enables us to give an
answer to the question how fine-grainedly we can express the betterness of answers
to a question and the betterness of questions with respect to a mutually exclusive and
exhaustive set of hypotheses in such a weak language as the language of sentential
logic enriched with sentential operators. Of course, we can construct a logic for
better questions and answers by introducing probability function symbols directly
into its language. But the former logic is more interesting than the latter logic in the
sense of the expressibility with limited resources.

The structure of this paper is as follows. In Sect. 2, we give descriptions of
measurement-theoretic settings, define a qualitative information structure, formu-
late the representation theorem for a qualitative information relation, define a finite
qualitative entropy difference structure, formulate the representation theorem for a
qualitative entropy difference relation, and define a qualitative conditional entropy
relation. In Sect. 3, on the basis of the measurement-theoretic settings, we define the
languageLBQAL of BQAL. In Sect. 4, we define a modelM ofLBQAL, and provide
BQAL with a truth definition and a validity definition. In Sect. 5, we provide BQAL
with its proof system, and give some theorems of BQAL. In Sect. 6, we touch upon
the soundness theorem of BQAL, and outline the proof of the completeness theorem
of BQAL. In Sect. 7, we apply BQAL to two examples.

2 Measurement-Theoretic Settings

2.1 Representation Theorem and Uniqueness Theorem

There are two main problems with measurement theory4:

4Roberts (1979) gives a comprehensive survey of measurement theory. The mathematical founda-
tion ofmeasurement had not been studied before Hölder (1901) developed his axiomatisation for the
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1. the representation problem—justifying the assignment of numbers to objects,
and

2. the uniqueness problem—specifying the transformation up to which this assign-
ment is unique.

A solution to the former can be furnished by a representation theorem, which estab-
lishes that the specified conditions on a qualitative relational system are (necessary
and) sufficient for the assignment of numbers to objects that represents (preserves) all
the relations in the system. A solution to the latter can be furnished by a uniqueness
theorem, which specifies the transformation up to which this assignment is unique.
To construct a model of the language of BQAL, we use two sorts of qualitative
orderings:

1. orderings of information,
2. orderings of (conditional) entropy.

2.2 Qualitative Information Structure

Wedefine a qualitative information structure for orderings of information as follows5:

Definition 1 (Qualitative Information Structure) LetW be a non-empty set of pos-
sible worlds,F a Boolean algebra of subsets ofW , ⊥⊥ a probabilistic independence
relation on F , and � a relation on F . Then (W ,F ,�,⊥⊥) is said to be a qualita-
tive information structure iff the following conditions are satisfied for all variables
running over F .

(I1) ∅ ⊥⊥ A,

(I2) If A ⊥⊥ B, then B ⊥⊥ A,

(I3) If A ⊥⊥ B, then BC ⊥⊥ A,

(I4) When B ∩ C = ∅, if A ⊥⊥ B and A ⊥⊥ C, then A ⊥⊥ B ∪ C,

(I5) W ≺ ∅, where A ≺ B := B �� A,

(I6) A � ∅,

(I7) A � B or B � A,

(I8) If A � B and B � C, then A � C,

(I9) If A ⊥⊥ B and A ∩ B = ∅, then A ∼ ∅ or B ∼ ∅,

where A ∼ B := A � B and B � A,

(I10) WhenC ∩ A = ∅ andC ∩ B = ∅, A � B iff A ∪ C � B ∪ C,

(Footnote 4 continued)
measurement of mass. Krantz et al. (1971), Suppes et al. (1989) and Luce et al. (1990) are seen as
milestones in the history of measurement theory.
5We owe this subsection to Domotor (1970).
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(I11) WhenC ⊥⊥ A, B andC ≺ ∅, A � B iff A ∩ C � B ∩ C,

(I12) When B ∩ D = ∅, if A � B andC � D, then A ∪ C � B ∪ D,

(I13) When A ⊥⊥ C and B ⊥⊥ D, if A � B andC � D, then A ∩ C � B ∩ D,

(I14) If Ai ⊥⊥ A j for any i, j (i �= j and i, j ≤ n),

then for any B, there is An+1 such that for any i (i ≤ n), Ai ⊥⊥ An+1 and B ∼ An+1.

Remark 1 (Classification) The above conditions can be classified into three groups:

1. The conditions (I1)–(I4) concern the properties of ⊥⊥.
2. The conditions (I5)–(I8) concern the properties of �.
3. The conditions (I9)–(I14) concern the properties of the interaction between ⊥⊥

and �.

Remark 2 (Archimedeanity) (I14) states Archimedeanity.

Domotor proves the representation theorem for �.

Theorem 1 (Representation Theorem for �, Theorem4 of Domotor (1970)) Let
(W ,F ,�,⊥⊥) be a qualitative information structure. Then there exists a finitely
additive probability measure P on F such that (W ,F , P) is a probability space,
and

(i) I (A) = −log2P(A),

(ii) A � B iff I (A) ≤ I (B),

(iii) A ⊥⊥ B iff I (A ∩ B) = I (A) + I (B).

Remark 3 (Additivity) The condition (ii) states the additivity of amount of informa-
tion.

2.3 Finite Qualitative Entropy Difference Structure

We define some notions about partitions as follows6:

Definition 2 (⊂∗, ·, +∗, ⊥⊥∗,B, E , ≡∗, O , A ,PC , and P̂)

• Let P denote the set of all partitions over W .
• The fine-grained-than relation (⊂∗) between P1 ∈ P and P2 ∈ P is defined as
follows:

P1 ⊂∗ P2 iff for any A ∈ P1, there is B ∈ P2 such that A ⊂ B.

• The product of partitions is defined as follows:

P1 · P2 := {A ∩ B : A ∈ P1 and B ∈ P2}.

6We owe this subsection to Domotor (1970).
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• The sum of partitions is defined as follows:

P1 +∗ P2 :=
∏

P1⊂∗P,P2⊂∗P
{P},

where
∏

denotes the generalisation of the operation.
• P1 ⊥⊥∗P2 iff, for any A, B ∈ F , if A ∈ P1 and B ∈ P2, then A ⊥⊥ B.
• If A ∈ F , the partition {A, AC } is called a Bernoulli partition. The variables
B,B1,B2, . . . will run over Bernoulli partitions.

• A partition P is called equiprobable iff, for any A, B ∈ F , if A, B ∈ P , then
A ∼ B. The variable for equiprobable partitions will be E ,E1,E2, . . ..

• We call two partitions equivalent modulo ∼, in symbol,

P1 ≡∗ P2, iffP2 = [B1|A1]([B2|A2](. . . ([Bn|An]P1) . . .)),

where [Bi |Ai ]P is the partition that is the result of replacing Bi inP by Ai , and,
for any i ≤ n, (Ai ∼ Bi and Bi ∈ P1).

• O := {∅,W }.
• A := {{w} : w ∈ W }.
• PC :=

∏

P ·Q=A,P⊥⊥∗Q
{Q}.

• Let (P = P1 � P2) := (P = P1 · P2 and P1 ⊥⊥∗P2 and P1,P2 �≡∗ O).
Let B := {P ∈ P : ¬∃P1,P2(P = P1 � P2)}. Moreover, let D enumerate
B, so that B = {Di }i≤k . Then we define

P̂ := (d1, d2, . . . , dk),

where, ifP = Di (1 ≤ i ≤ k), then di = 1, and, for any j ( j �= i and 1 ≤ j ≤ k),
d j = 0; otherwise P̂ = Q̂1 + Q̂2 for some Q1,Q2 ∈ P. Ô := (0, 0, . . . , 0).

Remark 4 (Vector Space) P̂ ∈ V (B), where B is the basis of the k dimensional
vector space V (B).

By means of Definition2, we define a finite qualitative entropy difference structure
for ordering of conditional entropy as follows:

Definition 3 (Finite Qualitative Entropy Difference Structure) Let W be a non-
empty finite set of possible worlds, P an algebra of finite partitions over W , ⊥⊥ ∗
a probabilistic independence relation on P, and �∗ a relation on P × P. Then the
quadruple (W , P,�∗,⊥⊥∗) is said to be a finite qualitative entropy difference struc-
ture iff the following conditions are satisfied for all variables running over P:

www.allitebooks.com
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(D1) IfP1 ⊂∗ P2, then (P2,P) �∗ (P1,P),

(D2) If (B,O) ∼∗ (E ,O), then (O,P) ≺∗ (B,P),

whereP1 ∼∗ P2 := (P1 �∗ P2 andP2 �∗ P1), andP1 ≺∗ P2 := P2 ��∗
P2,

(D3) (P1,P2) �∗ (Q1,Q2) or (Q1,Q2) �∗ (P1,P2),

(D4) If (P1,P2) �∗ (Q1,Q2), then (Q2,Q1) �∗ (P2,P1),

(D5) If, for i (i < n), (Pi ,Qi ) �∗ (Ri ,Ti ), then (Rn,Tn) �∗ (Pn,Qn),

when
∑

i≤n

P̂i =
∑

i≤n

R̂i and
∑

i≤n

Q̂i =
∑

i≤n

T̂i ,

(D6) If |P| = |E |, then (P,O) �∗ (E ,O),where | | denotes the cardinality
of a partition,
(D7) (P ∪ {∅},O) ≺∗ (P,O).

Remark 5 (Dependence) The qualitative entropy difference relation �∗ depends on
two factors: the underlying algebra of partitionsP and the probabilistic independence
relation ⊥⊥∗ defined on this algebra. ⊥⊥∗ is used in the definition of P̂i in (D5).

Domotor proves the representation theorem for �∗.

Theorem 2 (Representation Theorem for �∗, Theorem8 of Domotor (1970))
(W , P,�∗,⊥⊥∗) is a finite qualitative entropy difference structure iff there exists
a function H : P → IR satisfying the following conditions for all variables running
over P:

(i) H(P) = −
∑

A∈P
P(A) · log2 P(A),

(ii) H(P1|P2) = −
∑

A∈P1

∑

B∈P2

P(A ∩ B) · log2 P(A|B),

(iii) (P1,P2) �∗ (Q1,Q2) iff H(P1) − H(P2) ≤ H(Q1) − H(Q2),

(iv) IfP1 ⊥⊥∗P2, then H(P1 · P2) = H(P1) + H(P2),

(v) IfP1 ⊂∗ P2, then H(P2) ≤ H(P1),

(vi) H(O) = 0,
(vii) If (B,O) ∼∗ (E ,O), then H(B) = 1,
(viii) H(P1|P2) = H(P1 · P2) − H(P2).

We define a qualitative conditional entropy relation P1|P2 �∗ Q1|Q2 by a quali-
tative entropy difference relation as follows:

Definition 4 (Qualitative Conditional Entropy Relation)

P1|P2 �∗ Q1|Q2 := (P1 · P2,P2) �∗ (Q1 · Q2,Q2).
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3 Language of BQAL

On the basis of the measurement-theoretic settings of Sect. 2, we can provide Better-
Question-and-Answer Logic (BQAL) with its language. We define the betterness
of answers to a question and the betterness of questions with respect to a mutually
exclusive and exhaustive set of hypotheses in terms of qualitative information and
qualitative entropy difference. Moreover, the language ofBQAL includes a necessity
operator �. The aim of introducing � is as follows. Let W be a non-empty set of
possible worlds. Then, in each w ∈ W , there may be different universes,Ww, relative
to w. For not every w ∈ W might be able to be taken into consideration. To make this
point explicit, we introduce an accessibility relation R onW . By means of R, we can
defineWw as {w′ ∈ W : R(w, w′)}. R(w, w′) is interpreted tomean that, inw,w′ ∈ W
can be imagined as an alternative to w. We need � to verbalise the behaviour of R
in BQAL. So we define the language LBQAL of better-question-and-answer logic
BQAL as follows:

Definition 5 (Language) LetS denote a set of sentential variables, � and � unary
sentential operators, � and ⇓ binary sentential operators, and �∗ a quaternary sen-
tential operator. The language LBQAL of BQAL is given by the following BNF
grammar:

ϕ ::= s | � | ¬ϕ | ϕ ∧ ϕ

α ::= ϕ | ϕ ⇓ ϕ |ϕ � ϕ | ¬α | α ∧ α | �α

Φ ::= ¬
((

¬
n∧

i=1

(¬ϕi )

)
∧ ¬�

)
∧ ¬

(
� ∧

n∧
i=1

(¬ϕi )

)

∧ ∧
1≤i �= j≤n

(¬((ϕi ∧ ϕ j ) ∧ �) ∧ ¬(¬� ∧ ¬(ϕi ∧ ϕ j )))

A ::= ϕ | α | (Φ,Φ) �∗ (Φ,Φ) | �1≤i≤n Φi | ¬A | A ∧ A

such that s ∈ S .

• ⊥,∨,→,↔, and ♦ are introduced by the standard definitions.
• ϕ ⇓ ψ is interpreted to mean that ϕ is probabilistically independent from ψ .
• �α is interpreted to mean that necessarily α.
• ϕ � ψ is intuitively interpreted to mean that the answer that ϕ is less surprising
than or as surprising as the answer that ψ .

• (Φ,Ψ ) �∗ (X, T ) is intuitively interpreted to mean that the difference in uncer-
tainty between the question as to whether Φ and the question as to whether Ψ

is felt to be less than or as little as the difference in uncertainty between the
question as to whether X and the question as to whether T.

• �1≤i≤nΦi denotes the symmetric difference of Φ1, . . . , Φn .
• �,≈, �∗ and ≈∗ are defined as follows:

– ϕ � ψ := ¬(ψ � ϕ).
– ϕ ≈ ψ := (ϕ � ψ) ∧ (ψ � ϕ).
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– (Φ,Ψ ) �∗ (X, T ) := ¬((X, T ) �∗ (Φ,Ψ )).
– (Φ,Ψ ) ≈∗ (X, T ) := ((Φ,Ψ ) �∗ (X, T )) ∧ ((X, T ) �∗ (Φ,Ψ )).

• �X and �∗
X are defined as follows:

−ϕ �X ψ :=
((Φ ∧ X, T ) �∗ (Ψ ∧ X, T ))

∨(((Φ ∧ X, T ) ≈∗ (Ψ ∧ X, T )) ∧ (ϕ � ψ)),where

⎧
⎪⎨

⎪⎩
X :=

( m∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤m

((χi ∧ χ j ) ↔ ⊥),

T := ((τ1 ↔ ⊥) ∧ (τ2 ↔ �)) ∨ ((τ1 ↔ �) ∧ (τ2 ↔ ⊥)).

−Φ �∗
X Ψ :=

((X ∧ Φ,Φ) �∗ (X ∧ Ψ,Ψ ))

∨
⎛

⎝((X ∧ Φ,Φ) ≈∗ (X ∧ Ψ,Ψ )) ∧
m∧

i=1

l∨

j=1

(ψi → ϕ j )

⎞

⎠ ,where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( l∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤l

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( m∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤m

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( n∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤n

((χi ∧ χ j ) ↔ ⊥).

• ϕ �X ψ is intuitively interpreted to mean that the answer that ϕ is better than the
answer that ψ to the question as to whether/which/who · · · X .

• Φ �∗
X Ψ is intuitively interpreted to mean that the question as to whether/which/

who · · · Φ isbetter than thequestion as towhether/which/who · · · Ψ on amutually
exclusive and exhaustive set of hypotheses as to whether/which · · · X .

The set of all well-formed formulae of LBQAL will be denoted by ΦLBQAL.

4 Semantics of BQAL

4.1 Model of LBQAL

We define a structured model M of LBQAL as follows:
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Definition 6 (Model) M is a quintuple (W , R, V, ρ, ρ∗) in which

• W is a non-empty (not necessarily finite) set of possible worlds,
• R is a binary accessibility relation on W ,
• V is a truth assignment to each s ∈ S for each w ∈ W , and
• ρ is a qualitative information structure assignment that assigns to each w ∈ W
a qualitative information structure (Ww,Fw,�w,⊥⊥ w) in which

– Ww := {w′ ∈ W : R(w, w′)} that is not necessarily finite,
– Fw is a Boolean algebra of subsets of Ww with ∅ as zero element and Ww as
unit element, and

– �w is a relation on Fw that satisfies all of the conditions (I1)–(I14) of Defini-
tion1.

– ⊥⊥ w is probabilistic independence relation onFw.

• ρ∗ is a qualitative entropy difference structure assignment that assigns to each
w ∈ W a qualitative entropy difference structure (Ww, Pw,�∗,⊥⊥∗) in which

– P an algebra of partitions over Ww, and
– �∗

w is a relation on Pw × Pw that satisfies all of the conditions (D1)–(D7) of
Definition 3.

– ⊥⊥ ∗
w is probabilistic independence relation on Pw.

4.2 Truth and Validity

We provide BQAL with the following truth definition relative to M and then define
validity as follows:

Definition 7 (Truth and Validity) The notion of ϕ ∈ ΦLBQAL being true at w ∈ W
inM, in symbols (M, w) |=LBQAL ϕ is inductively defined as follows:

• (M, w) |=LBQAL s iff V (w)(s) = true,
• (M, w) |=LBQAL �,
• (M, w) |=LBQAL ϕ ∧ ψ iff (M, w) |=LBQAL ϕ and (M, w) |=LBQAL ψ ,
• (M, w) |=LBQAL ¬ϕ iff (M, w) �|=LBQAL ϕ,
• (M, w) |=LBQAL ϕ ⇓ ψ iff [[ϕ]]Mw ⊥⊥ w[[ψ]]Mw ,

• (M, w) |=LBQAL ϕ � ψ iff [[ϕ]]Mw �w [[ψ]]Mw , in which [[ϕ]]Mw := {w′ ∈ W :
R(w, w′) and (M, w) |=LBQAL ϕ},

• (M, w) |=BQAL �α iff, for any w′ such that R(w, w′), (M, w′) |=BQAL α.
• (M, w) |=LBQAL (Φ,Ψ ) �∗ (X, T ) iff ({[[ϕi ]]Mw }1≤i≤k, {[[ψi ]]Mw }1≤i≤l) �∗

w

({[[χi ]]Mw }1≤i≤m, {[[τi ]]Mw }1≤i≤n), where
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( k∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤k

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( l∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤l

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( m∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤m

((χi ∧ χ j ) ↔ ⊥),

T :=
( n∨

i=1

τi ↔ �
)

∧
∧

1≤i �= j≤n

((τi ∧ τ j ) ↔ ⊥).

• (M, w) |=BQAL �1≤i≤nΦi iff �1≤i≤n{[[ϕ j
i ]]Mw }1≤ j≤m , where

Φi :=
( m∨

j=1

ϕ
j
i ↔ �

)
∧

∧

1≤ j �=k≤m

((ϕ
j
i ∧ ϕk

i ) ↔ ⊥),

and, � is the symmetric difference of partitions (forP,Q ∈ Pw, �(P,Q) =
(P · QC ) +∗ (PC · Q)).

If (M, w) |=LBQAL ϕ for all w ∈ W , we write M |=LBQAL ϕ and say that ϕ is valid
in M. If ϕ is valid in all models for LBQAL, we write |=LBQAL ϕ and say that ϕ is
valid.

Remark 6 The truth clauses of (Φ,Ψ ) �∗ (X, T ) and �1≤i≤nΦi reflect the idea of
contextual definitionwhich provide an analysis of each sentencewhereΦ,Ψ, X, T or
Φi occurs without giving a explicit definition or giving necessary and sufficient con-
ditions for the application of Φ,Ψ, X, T or Φi in isolation. Both (Φ,Ψ ) �∗ (X, T )

and �1≤i≤nΦi are minimal contexts in which Φ,Ψ, X, T or Φi can occur. These
minimal contexts can be embedded into some larger contexts in a fully composi-
tional way. So the truth clauses of (Φ,Ψ ) �∗ (X, T ) and �1≤i≤nΦi can satisfy the
principle of compositionality.

By means of Definition7, we can provide ϕ �X ψ and Φ �∗
X Ψ with their truth

conditions:

Proposition 1 (Truth Conditions of ϕ �X ψ and Φ �∗
X Ψ )

• (5) (M, w) |=LBQAL ϕ �X ψ , where

X := ((χ1 ↔ ⊥) ∧ (χ2 ↔ �)) ∨ ((χ1 ↔ �) ∧ (χ2 ↔ ⊥)).

iff

(i) ({[[ϕ ∧ χi ]]Mw }1≤i≤n,O) ≺∗
w ({[[ψ ∧ χi ]]Mw }1≤i≤n,O), or

(ii) ({[[ϕ ∧ χi ]]Mw }1≤i≤n,O) ∼∗
w ({[[ψ ∧ χi ]]Mw }1≤i≤n,O) and [[ϕ]]Mw ≺w [[ψ]]Mw ,
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• (6) (M, w) |=LBQAL Φ �∗
X Ψ , where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( l∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤l

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( m∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤m

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( n∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤n

((χi ∧ χ j ) ↔ ⊥).

iff

(i) {[[χi ]]Mw }1≤i≤n | {[[ϕi ]]Mw }1≤i≤l ≺∗
w {[[χi ]]Mw }1≤i≤n | {[[ψi ]]Mw }1≤i≤m, or

(ii) {[[χi ]]Mw }1≤i≤n | {[[ϕi ]]Mw }1≤i≤l ∼∗
w {[[χi ]]Mw }1≤i≤n | {[[ψi ]]Mw }1≤i≤m and

{[[ψi ]]Mw }1≤i≤m ⊂∗ {[[ϕi ]]Mw }1≤i≤l .

Remark 7 (Semantic Expressibility in BQAL)

• (3) in Introduction is expressed semantically by (5) in BQAL.
• (4) in Introduction is expressed semantically by (6) in BQAL.

5 Syntax (Axiomatisation) of BQAL

5.1 Proof System of BQAL

On the basis of Domotor (1969), we can translate the part of
∑

1≤i≤n

P̂i =
∑

1≤i≤n

R̂i

and
∑

1≤i≤n

Q̂i =
∑

1≤i≤n

T̂i of (D5) of Definition3 into a system of identities among

partitions by means of the following proposition:

Proposition 2 (Symmetric Difference of Partitions)

∑

1≤i≤n

P̂i =
∑

1≤i≤n

R̂i iff
�1≤i≤nPi = �1≤i≤nRi

and �1≤i< j≤n (Pi · Pi ) = �1≤i< j≤n(Ri · Ri )

and · · · and �1≤i1<···<in≤n (Pi1 · · ·Pin ) = �1≤i1<···<in≤n(Ri1 · · ·Rin )

By using a syntactic counterpart � of � in Proposition2, we provide BQAL with
the following proof system.

Definition 8 (Proof System of BQAL)

1. all tautologies of sentential logic,
2. ((ϕ1 ↔ ϕ2) ∧ (ψ1 ↔ ψ2)) → ((ϕ1 ⇓ ψ1) ↔ (ϕ2 ⇓ ψ2))

(Replacement of Equivalents on ⇓),
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3. ⊥ ⇓ ϕ

(Syntactic Counterpart of (I1)),
4. (ϕ ⇓ ψ) → (ψ ⇓ ϕ)

(Syntactic Counterpart of (I2)),
5. (ϕ ⇓ ψ) → (¬ψ ⇓ ϕ)

(Syntactic Counterpart of (I3)),
6. ((ϕ ∧ χ) ↔ ⊥) → (((ϕ ⇓ ψ) ∧ (ϕ ⇓ χ)) → (ϕ ⇓ (ψ ∨ χ)))

(Syntactic Counterpart of (I4)),
7. ((ϕ1 ↔ ϕ2) ∧ (ψ1 ↔ ψ2)) → ((ϕ1 � ψ1) ↔ (ϕ2 � ψ2))

(Replacement of Equivalents on �),
8. � � ⊥

(Syntactic Counterpart of (I5)),
9. ϕ � ⊥

(Syntactic Counterpart of (I6)),
10. (ϕ � ψ) ∨ (ψ � ϕ)

(Syntactic Counterpart of (I7)),
11. ((ϕ � ψ) ∧ (ψ � χ)) → (ϕ � χ)

(Syntactic Counterpart of (I8)),
12. ((ϕ ⇓ ψ) ∧ ((ϕ ∧ ψ) ↔ ⊥)) → ((ϕ ↔ ⊥) ∨ (ψ ↔ ⊥))

(Syntactic Counterpart of (I9)),
13. (((χ ∧ ϕ) ↔ ⊥) ∧ ((χ ∧ ψ) ↔ ⊥)) → ((ϕ � ψ) ↔ ((ϕ ∨ χ) � (ψ ∨ χ)))

(Syntactic Counterpart of (I10)),
14. ((χ ⇓ ϕ) ∧ (χ ⇓ ψ) ∧ (χ � ⊥)) → ((ϕ � ψ) ↔ ((ϕ ∧ χ) � (ψ ∧ χ)))

(Syntactic Counterpart of (I11)),
15. ((ψ ∧ τ) ↔ ⊥) → (((ϕ � ψ) ∧ (χ � τ)) → ((ϕ ∨ χ) � (ψ ∨ τ)))

(Syntactic Counterpart of (I12)),
16. ((ϕ ⇓ χ) ∧ (ψ ⇓ τ)) → (((ϕ ∧ χ) � (ψ ∧ τ)))

(Syntactic Counterpart of (I13)),
17. �(α → β) → (�α → �β) (K ),

18.
l∧

i=1

m∨

j=1

(ϕi → ψ j ) → ((Ψ, X) �∗ (Φ, X)), where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( l∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤l

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( m∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤m

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( n∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤n

((χi ∧ χ j ) ↔ ⊥)

(Syntactic Counterpart of (D1)),



Measurement-Theoretic Foundations of Logic … 57

19. ((Φ,Ψ ) ≈∗ (X, Ψ )) → ((Ψ, T ) �∗ (Φ, T )), where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ := ((ϕ1 ∨ ϕ2) ↔ �) ∧ (ϕ1 ∧ ϕ2) ↔ ⊥),

Ψ := ((ψ1 ↔ ⊥) ∧ (ψ2 ↔ �)) ∨ ((ψ1 ↔ �) ∧ (ψ2 ↔ ⊥)),

X :=
( m∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤l

((ϕi ∧ ϕ j ) ↔ ⊥) ∧
∧

1≤i �= j≤m

(χi ≈ χ j ),

T :=
( n∨

i=1

τi ↔ �
)

∧
∧

1≤i �= j≤n

((τi ∧ τ j ) ↔ ⊥)

(Syntactic Counterpart of (D2)),
20. ((Φ,Ψ ) �∗ (X, T )) ∨ ((X, T ) �∗ (Φ,Ψ )), where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( k∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤k

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( l∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤l

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( m∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤m

((χi ∧ χ j ) ↔ ⊥),

T :=
( n∨

i=1

τi ↔ �
)

∧
∧

1≤i �= j≤n

((τi ∧ τ j ) ↔ ⊥)

(Syntactic Counterpart of (D3)),
21. ((Φ,Ψ ) �∗ (X, T )) → ((T, X) �∗ (Ψ,Φ)), where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( k∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤k

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( l∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤l

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( m∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤m

((χi ∧ χ j ) ↔ ⊥),

T :=
( n∨

i=1

τi ↔ �
)

∧
∧

1≤i �= j≤n

((τi ∧ τ j ) ↔ ⊥)

(Syntactic Counterpart of (D4)),
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22.

(
(�1≤i≤nΦi ↔ �1≤i≤nΨi ) ∧ (�1≤i< j≤n(Φi ∧ Φ j ) ↔ �1≤i< j≤n(Ψi ∧ Ψ j )) ∧ · · · ∧

(�1≤i1<···<in≤n(Φi1 ∧ · · · ∧ Φin ) ↔ �1≤i1<···<in≤n(Ψi1 ∧ · · · ∧ Ψin ))∧
(�1≤i≤n Xi ↔ �1≤i≤n Ti ) ∧ (�1≤i< j≤n(Xi ∧ X j ) ↔ �1≤i< j≤n(Ti ∧ Tj )) ∧ · · · ∧
(�1≤i1<···<in≤n(Xi1 ∧ · · · ∧ Xin ) ↔ �1≤i1<···<in≤n(Ti1 ∧ · · · ∧ Tin ))

)

→
(n−1∧

i=1

((Φi , Ψi ) �∗ (Xi , Ti )) → ((Xn, Tn) �∗ (Φn, Ψn))

)
,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φi :=
( m1∨

j=1

ϕ
j
i ↔ �

)
∧

∧

1≤ j �=k≤m1

((ϕ
j
i ∧ ϕk

i ) ↔ ⊥),

Ψi :=
( m2∨

j=1

ψ
j

i ↔ �
)

∧
∧

1≤ j �=k≤m2

((ψ
j

i ∧ ψk
i ) ↔ ⊥),

Xi :=
( m3∨

j=1

χ
j

i ↔ �
)

∧
∧

1≤ j �=k≤m3

((χ
j

i ∧ χk
i ) ↔ ⊥),

Ti :=
( m4∨

j=1

τ
j

i ↔ �
)

∧
∧

1≤ j �=k≤m4

((τ
j

i ∧ τ k
i ) ↔ ⊥)

(Syntactic Counterpart of (D5)),
23. (Φ,Ψ ) �∗ (X, Ψ ), where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ :=
( n∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤n

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ := ((ψ1 ↔ ⊥) ∧ (ψ2 ↔ �)) ∨ ((ψ1 ↔ �) ∧ (ψ2 ↔ ⊥)),

X :=
( n∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤n

((χi ∧ χ j ) ↔ ⊥) ∧
∧

1≤i �= j≤n

(χi ≈ χ j )

(Syntactic Counterpart of (D6)),
24. (Φ ∨ ⊥, Ψ ) �∗ (Φ,Ψ ), where

⎧
⎪⎨

⎪⎩
Φ :=

( n∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤n

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ := ((ψ1 ↔ ⊥) ∧ (ψ2 ↔ �)) ∨ ((ψ1 ↔ �) ∧ (ψ2 ↔ ⊥))

(Syntactic Counterpart of (D7)),
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25. modus ponens.

A proof of ϕ ∈ ΦLBQAL is a finite sequence ofLBQAL-formulae having ϕ as the last
formula such that either each formula is an instance of an axiom or it can be obtained
from formulae that appear earlier in the sequence by applying a modus ponens. If
there is a proof of ϕ, we write �BQAL ϕ.

Remark 8 (Behaviour and Structure) The proof system of BQAL has no syntactic
counterpart of (I14) that is satisfied in M of LBQAL of Definition6. For LBQAL
is not so fine-grained as to express it. However, it is not a defect of BQAL. For
BQAL is designed to capture behaviour about � and �∗, whereas (I14) states the
Archimedeanity that is a mere structural property required for the existence of a
finitely additive probability measure.

5.2 Theorems and Their Interpretations

BQAL has nontrivial and good properties. Among them, first we show the following
basic facts:

Proposition 3 (Strict Weak Order (�T )) Suppose that

T :=
( n∨

i=1

τi ↔ �
)

∧
∧

1≤i �= j≤n

((τi ∧ τ j ) ↔ ⊥).

The following then hold:

(7) �BQAL (ϕ �T ψ) → ¬(ψ �T ϕ),

(8) �BQAL (¬(ϕ �T ψ) ∧ ¬(ψ �T χ)) → ¬(ϕ �T χ).

Remark 9 (Asymmetricity, Negative Transitivity and Strict Weak Order)

• (7) states that a being-a-better-answer-than relation satisfies asymmetricity.
• (8) states that a being-a-better-answer-than relation satisfies negative transitivity.
• (7) and (8) imply that a being-a-better-answer-than relation is a strict weak order.

Proposition 4 (Strict Weak Order (�∗
T )) Suppose that

www.allitebooks.com
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( k∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤k

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( l∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤l

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( m∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤m

((χi ∧ χ j ) ↔ ⊥),

T :=
( n∨

i=1

τi ↔ �
)

∧
∧

1≤i �= j≤n

((τi ∧ τ j ) ↔ ⊥)

The following then hold:

(9) �BQAL (Φ �∗
T Ψ ) → ¬(Ψ �∗

T Φ),

(10) �BQAL (¬(Φ �∗
T Ψ ) ∧ ¬(Ψ �∗

T X)) → ¬(Φ �∗
T X).

Remark 10 (Strict Weak Order) (9) and (10) imply that a being-a-better-question-
than relation is also a strict weak order.

Now we show one of essential facts in comparing answers to a given question:

Proposition 5 (Incompatible Cells and Betterness of Answers) Suppose that

X :=
( n∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤n

((χi ∧ χ j ) ↔ ⊥),

and that, for any p, q (0 ≤ q < p ≤ n), DC(p,q)(ϕ, ψ, X) is defined as the
disjunction of all conjunctions:

n∧

i=1

(δi ((ϕ ∧ χi ) ↔ ⊥) ∧ εi ((ψ ∧ χi ) ↔ ⊥)))

such that exactly p of the δi’s and q of εi’s, are the empty symbol strings, the rest of
them being ¬’s, and that

DDC(ϕ, ψ, X) := DC(1,0)(ϕ, ψ, X) ∨ DC(2,0)(ϕ, ψ, X) ∨ · · ·
∨DC(n,n−2)(ϕ, ψ, X) ∨ DC(n,n−1)(ϕ, ψ, X).

The following then holds:

(11) �BQAL

⎛

⎝DDC(ϕ, ψ, X) ∧
∧

1≤i �= j≤n

(χi ≈ χ j )

⎞

⎠ → (ϕ �X ψ).
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Remark 11 (11) implies that a question that can be incompatible with more cells of
a given question is a better answer to it if all cells of it are equiprobable.

Next we show one of essential facts in comparing questions on a mutually exclusive
and exhaustive set of hypotheses:

Proposition 6 (Fine-Grainedness and Betterness of Questions) Suppose that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( l∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤l

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( m∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤m

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( n∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤n

((χi ∧ χ j ) ↔ ⊥), where m < l < n.

The following then holds:

(12) �BQAL

( ∧

1≤i �= j≤l

(ϕi ≈ ϕ j ) ∧
∧

1≤i �= j≤m

(ψi ≈ ψ j ) ∧
∧

1≤i �= j≤n

(χi ≈ χ j )

)
→ (Φ �∗

X Ψ ).

Remark 12 (12) implies that a more fine-grained question is a better question on a
mutually exclusive and exhaustive set of hypotheses if the questions and the hypoth-
esis set each have their equiprobable cells.

6 Metalogic of BQAL

It is a routine to prove the soundness of BQAL.

Theorem 3 (Soundness) For any ϕ ∈ ΦLBQAL , if �BQAL ϕ, then |=BQAL ϕ.

We now turn to the task of proving the completeness of BQAL. We prove it by
using the ideas of Segerberg (1971) and modifying filtration in such a way that
completeness can be established by Theorem1 (Representation Theorem for �) and
Theorem2 (Representation Theorem for �∗). We cannot go into detail because of
limited space, but the outline of the proof is as follows: We begin by defining some
new concepts.

Definition 9 (Stuffedness and Value Formula) Suppose that Θ is a set of formulae
such that Θ is closed under subformulae. Let

Δ := {ϕ : for someψ, ϕ � ψ ∈ Θ orψ � ϕ) ∈ Θ}, and
Δ∗

1 × Δ∗
2 := {(Φ,Ψ ) : for some (X, T ), (Φ,Ψ ) �∗ (X, T ) ∈ Θ or (X, T ) �∗ (Φ,Ψ ) ∈ Θ},
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and let Δ′ (Δ∗′
1 and Δ∗′

2 respectively) be the closure of Δ (Δ∗
1 and Δ∗

2 respectively)
under Boolean compounds. If Θ also satisfies the condition that ϕ � ψ ∈ Θ , for
any ϕ,ψ ∈ Δ′ and that (Φ,Ψ ) �∗ (X, T ), for any (Φ,Ψ ), (X, Y ) ∈ Δ∗

1 × Δ∗
2, we

say that Θ is stuffed. The formulae in Δ′,Δ∗′
1 or Δ∗′

2 are called the value formulae
of Θ .

Remark 13 There is no occurrence of � and �∗ in value formulae.

Definition 10 (Base and Logical Finiteness) We say that Λ0 ⊂ ΦLBQAL is a base
(with respect to BQAL) for Λ ⊂ ΦLBQAL if for any ϕ ∈ Λ there is some ϕ0 ∈ Λ0
such that �BQAL ϕ ↔ ϕ0. We say that Λ is logically finite (with respect to BQAL)
if there is a finite base for Λ.

Then we can prove the next lemma:

Lemma 1 (Logical Finiteness) If Λ ⊂ ΦLBQAL is a finite set closed under subfor-
mulae, and if Θ is the smallest stuffed superset of Λ, then Θ is logically finite.

We define BQAL-maximal consistency as follows:

Definition 11 (BQAL-Maximal Consistent Set) A finite set {ϕ1, . . . , ϕn} ⊂ ΦLBQAL
isBQAL-consistent iff�BQAL ¬(ϕ1∧. . .∧ϕn). An infinite set of formulae isBQAL-
consistent iff all of its finite subsets are BQAL-consistent. Γ ⊂ ΦLBQAL is a BQAL-
maximal consistent set iff it is BQAL-consistent and for any ϕ /∈ Γ , Γ ∪ {ϕ} is
BQAL-inconsistent.

A canonical model for the modal part of BQAL is defined as follows:

Definition 12 (Canonical Model for Modal Part) We define UC := (X C , RC , V C )

as a canonical model for the modal part of BQAL in which

• X C := {Γ ⊂ ΦLBQAL : Γ is BQAL-maximal consistent},
• for any Γ,Δ ∈ X C , R(Γ,Δ) iff for any α ∈ ΦLBQAL , if �α ∈ Γ , then α ∈ Δ,
and

• for any Γ ∈ X C ,

V C (Γ )(s) :=
{

true if s ∈ Γ,

false otherwise.

We define an equivalence relation modulo Θ on X C as follows:

Definition 13 (Equivalence Relation) Let Θ be a stuffed set of formulae that are
logically finite with respect to BQAL. We define, for Γ,Δ ∈ X C ,

Γ ≡Θ Δ iff Γ ∩ Θ = Δ ∩ Θ.

Then, ≡Θ is an equivalence relation modulo Θ on X C . We write [Γ ]Θ for the
equivalence class of Γ under ≡Θ .

A filtration of UC through Θ is defined as follows:
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Definition 14 (Filtration) We define UΘ := (X Θ, RΘ, V Θ) as a filtration of UC

through Θ in which

• X Θ := {[Γ ]Θ : Γ ∈ X C },
• RΘ is a relation onX Θ such that

1. if RC (Γ,Δ), then RΘ([Γ ]Θ, [Δ]Θ),
2. if RΘ([Γ ]Θ, [Δ]Θ) and �α ∈ Γ , then α ∈ Δ, and

• V Θ is a function such that for any s ∈ Θ ,

V Θ([Γ ]Θ)(s) = V C (Γ )(s).

Thus, for any ξ ∈ X Θ ,

[[ϕ]]UΘ

ξ := {η : RΘ(ξ, η) and (UΘ, η) |=BQAL ϕ}

is well-defined for any ϕ that contains neither � nor �∗. We can prove the Linden-
baum lemma:

Lemma 2 (Lindenbaum) Every BQAL-consistent set of formulae is a subset of a
BQAL-maximal consistent set of formulae.

We can prove the partial truth lemma:

Lemma 3 (Partial Truth) If ϕ ∈ Θ and ϕ contains neither � nor �∗, then for any
Γ ∈ X C ,

(UΘ, [Γ ]Θ) |=BQAL ϕ iff ϕ ∈ Γ.

We wish to supplement UΘ with a qualitative information structure assignment ρΘ

and a qualitative entropy difference structure assignment ρ∗Θ so as to obtain a struc-
tured model UΘ

� of LBQAL for which the truth lemma holds for all formulae in Θ .

Doing this contributes to solving the completeness problem ofBQAL.FΘ
ξ is defined

as follows:

Definition 15 (FΘ
ξ ) For any ξ ∈ X Θ , we defineFΘ

ξ as the set of all A ⊂ X Θ
ξ :=

{η : RΘ(ξ, η)} such that for some value formula ϕ ∈ Θ , A = [[ϕ]]UΘ

ξ .

We can prove the next lemma:

Lemma 4 (Boolean Algebra) For any ξ ∈ X Θ , FΘ
ξ is a Boolean algebra with ∅

as zero element and XΘ
ξ = {η : RΘ(ξ, η)} as unit element.

�ξ is defined as follows:

Definition 16 (�ξ ) For any ξ ∈ X Θ , we define A �ξ B to hold between elements

A, B ∈ FΘ
ξ iff there are value formulae ϕ,ψ ∈ Θ such that A = [[ϕ]]UΘ

ξ , B =
[[ψ]]UΘ

ξ and ϕ � ψ ∈ Γ for any Γ ∈ ξ .
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We can prove the next lemma:

Lemma 5 (�ξ and �) For any value formula ϕ,ψ ∈ Θ and any ξ ∈ X Θ ,

[[ϕ]]UΘ

ξ �ξ [[ψ]]UΘ

ξ iff, for any Γ ∈ ξ , ϕ � ψ ∈ Γ .

Since we assumed that Θ is logically finite, X Θ is finite. Hence for any ξ ∈ X Θ ,
FΘ

ξ is finite. So the next lemma follows from Lemma5.

Lemma 6 (Satisfaction of (I1)–(I14)) For any ξ ∈ X Θ , �ξ on FΘ
ξ satisfies (I1)–

(I14).

Remark 14 Since FΘ
ξ is finite, (I14) is automatically satisfied.

The next corollary follows from Theorem1 (Representation Theorem for �), Lem-
mas4 and 6.

Corollary 1 (Representation on FΘ
ξ ) For any ξ ∈ X Θ , (X Θ

ξ ,FΘ
ξ ,�ξ ,⊥⊥ ξ ) is

a qualitative information structure, and there exists a finitely additive probability
measure Pξ : FΘ

ξ → IR such that (X Θ
ξ ,FΘ

ξ , Pξ ) is a finitely additive probability

space, and for any A, B ∈ FΘ
ξ the conditions (i)–(iii) of Theorem1 hold.

We continue the proof about �∗ as well as �.

Definition 17 (PΘ
ξ ) For any ξ ∈ X Θ , we define PΘ

ξ as the set of all partitions P

over X Θ
ξ := {η : RΘ(ξ, η)} such that for some value formulae ϕ1, . . . , ϕn ∈ Θ ,

P := {[[ϕi ]]UΘ

ξ }1≤i≤n , where

n⋃

i=1

[[ϕi ]]UΘ

ξ = X Θ
ξ and

⋂

1≤i �= j≤n

(([[ϕi ]]UΘ

ξ ∩ [[ϕ j ]]UΘ

ξ ) = ∅).

�ξ is defined as follows:

Definition 18 (�∗
ξ ) For any ξ ∈ X Θ , we define (P,Q) �∗

ξ (R,T ) to hold

between elements P,Q,R,T ∈ PΘ
ξ iff there are value formulae ϕ1, . . . , ϕk, ψ1,

. . . , ψl , χ1 . . . , χm, τ1, . . . , τn ∈ Θ such that P = {[[ϕi ]]UΘ

ξ }1≤i≤k ,Q =
{[[ψi ]]UΘ

ξ }1≤i≤l , R = {[[χi ]]UΘ

ξ }1≤i≤m , T = {[[τi ]]UΘ

ξ }1≤i≤n and (Φ,Ψ ) �∗
(X, T ) ∈ Γ for any Γ ∈ ξ , where
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ :=
( k∨

i=1

ϕi ↔ �
)

∧
∧

1≤i �= j≤k

((ϕi ∧ ϕ j ) ↔ ⊥),

Ψ :=
( l∨

i=1

ψi ↔ �
)

∧
∧

1≤i �= j≤l

((ψi ∧ ψ j ) ↔ ⊥),

X :=
( m∨

i=1

χi ↔ �
)

∧
∧

1≤i �= j≤m

((χi ∧ χ j ) ↔ ⊥),

T :=
( n∨

i=1

τi ↔ �
)

∧
∧

1≤i �= j≤n

((τi ∧ τ j ) ↔ ⊥).

We can prove the next lemma:

Lemma 7 (�ξ and �) For any value formula ϕ1, . . . , ϕk, ψ1, . . . , ψl , χ1 . . . , χm,

τ1, . . . , τn ∈ Θ and any ξ ∈ X Θ , ({[[ϕi ]]UΘ

ξ }1≤i≤k, {[[ψi ]]UΘ

ξ }1≤i≤l) �ξ

({[[χi ]]UΘ

ξ }1≤i≤m, {[[τi ]]UΘ

ξ }1≤i≤n) iff, for any Γ ∈ ξ , (Φ,Ψ ) �∗ (X, T ) ∈ Γ .

The next lemma follows from Lemma7.

Lemma 8 (Satisfaction of (D1)–(D7))For any ξ ∈ X Θ , �∗
ξ on ∈ PΘ

ξ ×PΘ
ξ satisfies

(D1)–(D7).

The next corollary follows from Theorem2 (Representation Theorem for �∗) and
Lemma8.

Corollary 2 (Representation on PΘ
ξ ) For any ξ ∈ X Θ , (X Θ, PΘ

ξ ,�∗
ξ ,⊥⊥ ∗

ξ ) is a

finite qualitative entropy difference structure and there exists a function H : PΘ
ξ →

IR satisfying the conditions (D1) − (D7) of Theorem2.

UΘ
� is defined as follows:

Definition 19 (UΘ
� )WedefineUΘ

� as (X Θ, RΘ, V Θ, ρΘ, ρ∗Θ),whereρΘ is a qual-

itative information structure assignment that assigns to each ξ ∈ X Θ a qualitative
information structure (X Θ

ξ ,FΘ
ξ ,�ξ ,⊥⊥ ξ ) in which

• X Θ
ξ := {ξ ′ : RΘ(ξ, ξ ′)},

• FΘ
ξ is a Boolean algebra of subsets of X Θ

ξ with ∅ as zero element and X Θ
ξ as

unit element,
• �ξ is a relation onFΘ

ξ that satisfies all of the conditions (I1)–(I14) of Definition1,

• ⊥⊥ ξ is probabilistic independence relation onFΘ
ξ ,

and where ρ∗Θ is a qualitative entropy difference structure assignment that assigns
to each ξ ∈ X Θ a qualitative entropy difference structure (X Θ

ξ , PΘ
ξ ,�∗

ξ ,⊥⊥ ∗
ξ ) in

which

• PΘ
ξ is an algebra of partitions over X Θ

ξ ,
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• �∗
ξ is a relation on PΘ

ξ × PΘ
ξ that satisfies all of the conditions (D1)–(D7) of

Definition3, and
• ⊥⊥ ∗

ξ is probabilistic independence relation on PΘ
ξ .

We can prove the full truth lemma:

Lemma 9 (Full Truth) For any ϕ ∈ Θ and any Γ ∈ X C ,

(UΘ
� , [Γ ]Θ) |=BQAL ϕ iff ϕ ∈ Γ.

Remark 15 This lemma is the announced improvement of Lemma3.

We can prove the completeness of BQAL as follows:

Theorem 4 (Completeness) For any ϕ ∈ ΦLBQAL , if |=BQAL ϕ, then �BQAL ϕ.

Proof Suppose that �BQAL ϕ0. Then {¬ϕ0} is a BQAL-consistent set. By Lemma2,
{¬ϕ0} is a subset of a BQAL-maximal consistent set Γ . Evidently, ϕ0 /∈ Γ . Let
Ψ be the set of subformulae of BQAL which is finite and let Θ be the smallest
stuffed extension of Ψ . By Lemma1, Θ is logically finite with respect to BQAL. If
UΘ

� is constructed as above, it follows from Lemma9 that (UΘ
� , [Γ ]Θ) �|=BQAL ϕ0.

Therefore, �|=BQAL ϕ0.

7 Application of BQAL to Examples 2 and 3

7.1 Example 2 Reconsidered

Suppose that ⎧
⎨

⎩

J := John is sick.
M := Mary is sick.
S := Sue is sick.,

and that

X := (((J ∧ M ∧ S) ∨ · · · ∨ (¬J ∧ ¬M¬S)) ↔ �)

∧(((J ∧ M ∧ S) ∧ (J ∧ M ∧ ¬S)) ↔ ⊥) ∧ · · · ∧ (((¬J ∧ M ∧ ¬S) ∧ (¬J ∧ ¬M ∧ ¬S)) ↔ ⊥).

The next then follows from Proposition5:

�BQAL (¬(((J ∧ M ∧ S) ∧ (J ∧ M)) ↔ ⊥) ∧ ¬(((J ∧ M ∧ S) ∧ S) ↔ ⊥)

∨ · · · ∨ (((¬J ∧ ¬M¬S) ∧ (J ∧ M)) ↔ ⊥) ∧ (((¬J ∧ ¬M ∧ ¬S) ∧ S) ↔ ⊥)

∧((J ∧ M ∧ S) ≈ (J ∧ M ∧ ¬S)) ∧ · · · ∧ ((¬J ∧ ¬M ∧ S) ≈ (¬J ∧ ¬M ∧ ¬S)))

→ ((J ∧ M) �X S).
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7.2 Example 3 Reconsidered

Suppose that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ := (((J ∧ M) ∨ · · · ∨ (¬J ∧ ¬M)) ↔ �) ∧ (((J ∧ M) ∧ (J ∧ ¬M)) ↔ ⊥)

∧ · · · ∧ (((¬J ∧ M) ∧ (¬J ∧ ¬M)) ↔ ⊥),

Ψ := ((S ∨ ¬S) ↔ �) ∧ ((S ∧ ¬S) ↔ ⊥),

X :=
(((J ∧ M ∧ S) ∨ · · · ∨ (¬J ∧ ¬M ∧ ¬S)) ↔ �)

∧(((J ∧ M ∧ S) ∧ (J ∧ M ∧ ¬S))⊥)

∧ · · · ∧ (((¬J ∧ ¬M ∧ S) ∧ (¬J ∧ ¬M ∧ ¬S)) ↔ ⊥).

The next then follows from Proposition6:

�BQAL (((J ∧ M) ≈ (J ∧ ¬M)) ∧ · · · ∧ ((¬J ∧ M) ≈ (¬J ∧ ¬M))

∧((J ∧ M ∧ S) ≈ (J ∧ M ∧ ¬S)) ∧ · · · ∧ ((¬J ∧ ¬M ∧ S) ≈ (¬J ∧ ¬M ∧ ¬S)))

→ (Φ �∗
X Ψ ).

8 Concluding Remarks

In this paper, we have constructed a qualitative approach that is as fine-grained as the
information-theoretic one, in terms of measurement theory on the basis of Domotor
(1970), and have proposed a new version of complete logic for better questions and
answers—BQAL—the model of the language of which is based on the qualitative
and measurement-theoretic approach.

This paper is only a part of a larger measurement-theoretic study. By means of
measurement theory, we constructed or are trying to construct such logics as

1. (dynamic epistemic) preference logic (Suzuki 2008, 2009b, 2014),
2. dyadic deontic logic (Suzuki 2009a),
3. vague predicate logic (Suzuki 2011b, c)
4. threshold-utility-maximiser’s preference logic (Suzuki 2010, 2011a),
5. interadjective-comparison logic (Suzuki 2012b),
6. gradable-predicate logic (Suzuki 2012a),
7. doxastic and epistemic logic (Suzuki 2013e),
8. multidimensional-predicate-comparison logic (Suzuki 2013b),
9. logic for preference aggregation represented by a Nash collective utility function

(Suzuki 2013c),
10. preference aggregation logic for weighted utilitarianism (Suzuki 2013d), and
11. modal-qualitative-probability logic (Suzuki 2013a)

Acknowledgments The author would like to thank two anonymous reviewers of BNLSP 13 for
their helpful comments.
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Conditionals, Conditional Probabilities,
and Conditionalization

Stefan Kaufmann

Abstract Philosophers investigating the interpretation and use of conditional sen-
tences have long been intrigued by the intuitive correspondence between the proba-
bility of a conditional ‘if A, then C’ and the conditional probability of C , given A.
Attempts to account for this intuition within a general probabilistic theory of belief,
meaning and use have been plagued by a danger of trivialization, which has proven
to be remarkably recalcitrant and absorbed much of the creative effort in the area.
But there is a strategy for avoiding triviality that has been known for almost as long
as the triviality results themselves. What is lacking is a straightforward integration
of this approach in a larger framework of belief representation and dynamics. This
paper discusses some of the issues involved and proposes an account of belief update
by conditionalization.

Keywords Conditionals · Probability · Conditional probability · Stalnaker
Bernoulli Models

1 Introduction

Most contemporary theories of the interpretation of conditionals are inspired by
Ramsey’s (1929) paraphrase of the mental process involved in their interpretation,
known as the Ramsey Test (RT):
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(RT) If two people are arguing ‘If A will C?’ and are both in doubt as to A, they are
adding A hypothetically to their stock of knowledge and arguing on that basis
about C…We can say they are fixing their degrees of belief in C given A.

For all its intuitive appeal, (RT) is too general andunderspecified to be operationalized
in a concrete theoretical approach. To turn it into a definition, one has to flesh out
several abstract ideas it mentions. Most crucially, this concerns the notions of stock
of knowledge, adding A temporarily, and degrees of belief .

In this paper I explore oneparticularway to read (RT), viz. a versionof probabilistic
semantics inspired byRamsey and developed by Jeffrey (1964), Adams (1965, 1975),
and many subsequent authors. The basic ingredients are familiar from propositional
logic. Sentences denote propositions, modeled as sets of possible worlds. Epistemic
states (Ramsey’s “stocks of knowledge”) are represented in terms of (subjective)
probabilities. The addition of the antecedent proceeds by conditionalization.

Regarding the latter point, another question that needs to be addressed is whether
one and the same update operation is appropriate for all conditionals. Conditional-
ization on a proposition is typically interpreted as modeling the process of learning
(hence coming to believe) that the proposition is true. However, there are well-
known examples of conditionals in which the relevant supposition is intuitively that
the antecedent is true without its truth being known to the speaker. This can be
illustrated with examples whose antecedents or consequents explicitly deny the rel-
evant belief, such as ‘if it’s raining and I don’t know it. . .’. Examples of this kind
are generally problematic for theories—whether probabilistic or not—which rely on
a single operation to represent the hypothetical reasoning involved. I return to this
issue towards the end of the paper, having introduced a formal framework in which
the relevant distinction can be accounted for.

2 Probability Models

To get things started, I begin with a fairly simple model-theoretic interpretation. For
now the goal is to stay close to the standard possible-worlds apparatus of propositional
logic, adding only the structure required to model probability judgments. The setup
I introduce in this subsection will ultimately not work, as we will see below. But it
is a good place to start.

I assume that sentences of English are mapped to expressions of the standard
language of propositional logic, and spell out the formal details in terms of the latter.
Let A be a set of atomic propositional letters, and L0

A be the smallest set containing
A and closed under negation and conjunction. I write ‘ϕ’ and ‘ϕψ’ for the negation
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of ϕ and the conjunction of ϕ and ψ, respectively. A probability model is a standard
possible-worlds model for L0

A, augmented with a probability measure.

Definition 1 (Probability model) A probability model for language L0
A is a tuple

〈Ω,F ,Pr, V 〉, where1:
• Ω is a non-empty set (of possible worlds);
• F is a σ-algebra on Ω;
• Pr is a probability measure on F ;
• V is a function mapping sentences to characteristic functions of elements of F ,
subject to the following conditions, for all ϕ,ψ ∈ L0

A and ω ∈ Ω:

V (ϕ)(ω) = 1 − V (ϕ)(ω)

V (ϕψ)(ω) = V (ϕ)(ω) × V (ψ)(ω)

To relate the terminology familiar from possible-worlds semantics to the statistical
jargon of probability theory, we can equate possible worlds with outcomes and sets
of possible worlds (i.e., propositions) with events. Definition1 follows the prac-
tice, common in probability theory, of separating the representations of the space of
outcomes and the algebra on which the measure is defined (here Ω and F , respec-
tively). There are good philosophical reasons for doing this, but for the purposes of
this paper, no harm is done by assuming for simplicity that F is the powerset of Ω .
It then follows without further stipulation that all propositions denoted by sentences
are in the domain of the probability function.

Note that V maps sentences not to sets of worlds, but to their characteristic func-
tions. Statistically speaking, those sentence denotations are indicator variables—a
special kind of random variables whose range is restricted to the set {0, 1} . In
the present context this perspective was first proposed by Jeffrey (1991) and fur-
ther developed by Stalnaker and Jeffrey (1994). The motivation for modeling the
denotations of sentences in this way will become clear below. It is important in the
formal setup, but I will occasionally collapse talk of sets of worlds and talk of their
characteristic functions where concepts rather than implementation are at stake.

The function Pr assigns probabilities to propositions, not sentences, but based
on it we can assign probabilities to sentences indirectly as the expectations of their
values. Generally speaking (and not just in the case of variables with range {0, 1}),
the expectation of a random variable is the weighted sum of its values, where the
weights are the probabilities that it takes those values.

1A σ-algebra on Ω is a non-empty set of subsets of Ω that is closed under complements and
countable unions. A probability measure on F is a countably additive function from F to the real
interval [0, 1] such that Pr(Ω) = 1.
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Definition 2 (Expectation) Let θ : Ω �→ R be a random variable. The expectation
of θ relative to a probability function Pr is defined as follows2:

E[θ] =
∑

x∈range(θ)

x × Pr(θ = x).

For the purposes of interpreting the language L0
A, the relevant variable for a given

sentence ϕ is its interpretation V (ϕ).

Definition 3 (Probabilities of sentences) Given a probability model for L0
A (see

Definition1), a function P maps sentences to real numbers as follows:

P(ϕ) = E[V (ϕ)]

Since V (ϕ) is an indicator variable for all ϕ in L0
A, the expectation of V (ϕ) is just

the probability that ϕ is true:

(2) P(ϕ) = 0 × Pr(V (ϕ) = 0) + 1 × Pr(V (ϕ) = 1)
= Pr(V (ϕ) = 1)

Thus in this framework we can state the connection between the probabilities of
sentences on the one hand and the probabilities of propositions on the other, in the
disquotational slogan in (3), the probabilistic analog of the famous Tarskian truth
definition.

(3) P(“snow is white”) = Pr(snow is white)

Despite the equality, however, it is important to keep in mind the formal distinction
between Pr, a probability measure on an algebra of propositions, and P, an assign-
ment of probabilities to sentences. Only the former is technically a measure on its
domain, whereas the latter maps sentences to probabilities only indirectly. We will
see below that this separation of a sentence’s denotation from its probability is useful
in extending the interpretation to conditionals.

3 Conditionals and Conditional Probability

WhileRamsey’s formulation in (RT) is open to a variety of interpretations, the reading
that is at issue here—onewhichmany philosophers have found eminently plausible—
is that the “degree of C given A” that speakers report and aim to adjust when using
indicative conditionals, is just the conditional probability of C given A. This idea

2I write ‘Pr(θ = x)’ to refer to the probability of the event that θ has value x . This is an abbreviation
of the more cumbersome ‘Pr({ω ∈ Ω|θ(ω) = x}).’ I also assume, here and throughout this paper,
that the range of the random variable is finite. This is guaranteed for L0

A under V in Definition2,
but becomes a non-trivial restriction in general. Nothing hinges on it, however: Giving it up would
would merely require that the summations in the definitions be replaced with integrals.
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has wide appeal among philosophers, going back to Jeffrey (1964), Adams (1965,
1975), and Stalnaker (1970), among others.

3.1 Conditional Expectation

In the present framework, where the probabilities of sentences are defined as the
expectations of their truth values, the corresponding idea is that the probabilities
of conditionals are the conditional expectations of their consequents, given that
their antecedents are true. The conditional expectation of a random variable is its
expectation relative to the conditionalized probability distribution:

Definition 4 (Conditional expectation) Let θ, ξ be random variables and y ∈
range(ξ). The conditional expectation of θ, given ξ = y, is defined as

E[θ|ξ = y] =
∑

x∈range(θ)

x × Pr(θ = x |ξ = y)

This suggests that we could supplement the function P, which maps sentences in L0
A

to expectations, with a two-place functionmapping pairs of sentences to conditional
expectations:

Definition 5 (Conditional probabilities of sentences) Given a model for L0
A (see

Definition1), a two-place function P(·|·) maps pairs of sentences to conditional
expectations:

P(ϕ|ψ) = E[V (ϕ)|V (ψ) = 1]

It is then easy to show, along the lines of (2) above, that P(ϕ|ψ) is defined just in case
the conditional probability Pr(V (ϕ) = 1|V (ψ) = 1) is, and that, where defined, the
two coincide. In this sense, we could say that P(·|·) satisfies the probabilistic reading
of (RT).

It is also quite clear, however, that this approach falls far short of giving us what
wewant. For what we ultimately want is an assignment of probabilities to conditional
sentences, rather than the pairs of sentences that constitute them. I take it to be self-
evident that we should favor an approach which treats conditionals on a par with
the atomic sentences and Boolean compounds that make up the rest of the language.
But if there is any need for a further argument for this claim, suffice it to point out
that conditionals can be embedded and compounded with each other and with other
sentences. The following are all well-formed and interpretable sentences of ordinary
English:

(4) a. If this match is wet, it won’t light if you strike it.
b. If this switch will fail if it is submerged in water, it will be discarded.
c. If this vase will crack if it is dropped on wood, it will shatter if it is dropped
on marble.
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Compounds like those in (4) have sometimes been claimed to bear only a super-
ficial resemblance to compounded conditionals. Semantically, the story goes, their
constituents are subjected to some kind of re-interpretation as sentences in L0

A, so
that what looks like complex conditionals in are in fact simple ones (Adams 1975;
Gibbard 1981, among others). But we should be wary of this kind of story, which
opens up a suspiciously handy escape hatch in the face of technical problems posed
by these sentences for one’s favorite theory. There certainly is no linguistic evidence
that they are anything other then compound conditionals. A theory which assigns
probabilities to them in a systematic fashion may still be found wanting on empirical
grounds; but at least it would lend itself to empirical verification in the first place.

What, then, would it take to extend P to conditionals? So far they are not even
represented in the language. L0

A, being closed under the usual Boolean operations
only, comes with the means to express the material conditional (definable as ψϕ);
but this is not the intended interpretation of the natural-language conditional ‘if ψ
then ϕ’, nor is its probability equivalent to the conditional probability of ϕ given ψ.3

So let us first augment the language with a two-place propositional connective
‘→’ as a stand-in for the English ‘if-then’ construction. Let LA be the smallest
set containing L0

A and closed under →. We can now state precisely what (RT) and
Definition5 imply in this framework: The probability assigned to ψ → φ should be
equal to the conditional probability assigned to its constituents, as shown in (5a). By
the definition of P, this means that the unconditional expectation of the conditional
should equal the conditional expectation of the consequent, given that antecedent is
true (5b):

(5) a. P(ψ → ϕ) = P(ϕ|ψ)

b. E[V (ψ → ϕ)] = E[V (ϕ)|V (ψ) = 1]
To be quite clear, (5) is not a definition. Rather, it states a desideratum that one would
like to achieve when extending the domain of V and P from L0

A to LA. Interestingly,
this extension is not at all straightforward. I turn to this issue next.

3.2 Triviality

The unification of (RT) on its probabilistic reading and a truth-conditional interpreta-
tion of conditionals has been a challenge ever since Lewis (1976) presented the first
of his famous triviality results, which have since been deepened and extended in a

3This is not the place to rehearse the arguments for and against thematerial conditional as an adequate
rendering of our intuitions about the meaning of the ‘if-then’ construction. The material analysis
has its adherents in philosophy (Jackson 1979; Lewis 1986, among many others) and linguistics
(see Abbott 2004, for recent arguments); but it is fair to say that, especially in the philosophical
tradition, such proposals tend to be driven by frustration with technical obstacles (more on this in the
next subsection), rather than pre-theoretical judgments. Empirically, the probabilistic interpretation
of (RT) has strong and growing support (Evans and Over 2004; Oaksford and Chater 1994, 2003,
2007).
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steady stream of subsequent work. Here I only summarize the first and simplest of the
results. It should be kept in mind, however, that many attempts to circumvent them
within the general truth-conditional framework have been tried and shown to fail.

Suppose, then, that the probabilistic (RT) holds and conditionals denote proposi-
tions in the usual sense—i.e., sets of worlds, or in the present framework, character-
istic functions thereof. Then, since the denotations of conditionals are propositions,
one can ask how their probabilities should be affected by conditionalization on other
propositions: Technically, since V (ψ → ϕ) denotes a random variable, we should be
able to derive its conditional expectation given that some arbitrary sentence is true.

Lewis (1976) was interested in the case that the conditioning sentence is ϕ, the
consequent of the conditional, or its negation. For those cases, Lewis made a pair
of assumptions which seem rather plausible: First, given ϕ, the probability of the
conditional ψ → ϕ should be 1; and second, given ϕ, it should be 0. Thus the
equalities in (6) should hold.4

(6) a. P(ψ → ϕ|ϕ) = 1
b. P(ψ → ϕ|ϕ) = 0

In the present framework, this amounts to the equalities in (7).

(7) a. E[V (ψ → ϕ)|V (ϕ) = 1] = 1
b. E[V (ψ → ϕ)|V (ϕ) = 0] = 0

Now, since we are assuming that all sentences denote variables with range {0, 1} ,

this should hold for conditionals as well. But then (7) implies that with probability 1,
the conditional is equivalent to its consequent! This consequence is grossly coun-
terintuitive. As Lewis already pointed out, it implies that conditional consequents
are probabilistically independent of their antecedents, when in fact conditionals are
typically used to convey that they are not.

The literature on triviality that ensued after the publication of Lewis’s seminal
argument is vast and varied, and this is not the place to do justice to its depth and
breadth. See Hájek and Hall (1994), Hájek (1994, 2012), Edgington (1995), Bennett
(2003) and references therein for overviews, and Kaufmann (2005) for more discus-
sion in the present framework. In the next section, I turn away from this literature of
mostly negative results to an approach which evades triviality.

4 Stalnaker Bernoulli Models

The challenge posed by the triviality results has proven to be formidable; but it is so
only under certain assumptionswhichLewis andmany subsequent authors either took
for granted or found too valuable to give up. Specifically, the assumptions are that
(i) the denotations of conditionals are propositions in the usual sense—here, sets of

4Lewis argued for the plausibility of (6) by invoking the Import-Export Principle, which in its
probabilistic version requires that P(ψ → ϕ|χ) be equivalent to P(ϕ|ψχ). I avoid this move here
because this principle is not universally accepted (see, for instance,Adams 1975; Kaufmann 2009).
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possible worlds (or their characteristic functions); and (ii) the values of conditionals
at individual worlds are fixed and do not depend on the probability distribution.
Giving up these assumptions opens up an elegant way around the triviality results.
This was first pointed out by van Fraassen (1976). Jeffrey (1991) arrived at a similar
approach (in spirit, if not in detail) from a different angle. The connection was made
explicit by Stalnaker and Jeffrey (1994), which in turn inspired subsequent work
including Kaufmann (2005, 2009).

4.1 Basic Idea

Themain innovation is a move from possible worlds to sequences of possible worlds
as the entities at which sentences receive their truth values and which constitute the
points in the probabilistic sample space. The idea was given a compelling intuitive
motivation by Stalnaker and Jeffrey (1994), with reference to Stalnaker’s (1968)
similarity-based interpretation of conditionals.

Stalnaker’s proposal was that the truth value of ‘if A, then C’ at a possible
world w is the truth value of its consequent C at a world “at which A is true and
which otherwise differs minimally from the actual world.” What exactly such a
theory predicts then depends on the notion of minimal difference. For instance, Stal-
naker maintained that each world is maximally similar to itself; thus if A is true
at w, then no alternative world enters the evaluation because w is the most similar
A-world to itself. Another assumption favored by Stalnaker was that for any world
w and proposition X (including the contradiction), there is a unique X -world that is
most similar to w. This assumption allowed Stalnaker to ensure that the conditional
had certain logical properties which he considered desirable, especially Conditional
Excluded Middle, i.e., that for any pair A, C and world w, one of ‘if A, then C’ and
‘if A, then not-C’ is true at w.

Now, the assumption that there is a uniquemost similar world for each proposition
has always been controversial.5 If we give it up, allowing formultiplemaximally sim-
ilar worlds, but still insist on evaluating the conditional consequent relative to a single
antecedent-world, then the choice of world becomes essentially non-deterministic.
Van Fraassen (1976) proposed a simple formal model of such a process: If we are
at an antecedent-world, we are done choosing and evaluate the conditional by eval-
uating its consequent. Otherwise, we continue to choose worlds in a sequence of
random trials (with replacement), where at each trial the probabilities that particular
worlds will be chosen are determined by the original probability distribution. Thus
the probabilities at each trial are independent and identically distributed. Hence van
Fraassen’s term “Stalnaker Bernoulli model,” suggestive of the special utility of this
kind of model in linking the intuitions behind Stalnaker’s possible-worlds semantics
for conditionals to a standard probability-theoretic framework.

5See Lewis (1973), Stalnaker (1981) for some relevant arguments.



Conditionals, Conditional Probabilities, and Conditionalization 79

4.2 Implementation

Following van Fraassen (1976) I start with a probability model and define a product
space consisting of sets of denumerable sequences of possible worlds, along with a
probability measure that is derived from the original one. As before, sentences of the
language are mapped to (characteristic functions of) sets in the probability space;
now these are sets of world sequences, rather than sets of worlds. The interpretation
function is derived in the following way: Sentences in L0

A are evaluated at world
sequences in terms of the first world. Conditionalsψ → ϕ are evaluated at a sequence
by eliminating the (possibly empty) initial sub-sequence of worlds at which the
antecedent is false, then evaluating the consequent at the remaining “tail” of the
sequence. At sequences at which the antecedent is false throughout, the value is
undefined. The details are given in the following definition.6

Definition 6 (Stalnaker Bernoulli model for LA) Let 〈Ω,F ,Pr, V 〉 be a probability
model for L0

A. The corresponding Stalnaker Bernoulli model for LA is the tuple
〈Ω∗,F∗,Pr∗, V ∗〉 such that:

• Ω∗ is the set of denumerable sequences of worlds in Ω .
For ω∗ in Ω∗, I use the following notation:

– ω∗[n] is the nth world in ω∗ (thus ω∗[n] ∈ Ω)
– ωn∗ is the tail of ω∗ starting at ω∗[n] (thus ωn∗ ∈ Ω∗)

• F∗ is the set of all products X1 × · · · × Xn × Ω∗, for n ≥ 1 and Xi ∈ F .
• Pr∗ (·) is a probability measure on F∗ defined as follows, for Xi ∈ F :

Pr∗
(
X1 × · · · × Xn × Ω∗) = Pr(X1) × · · · × Pr(Xn)

• V ∗ maps pairs of sentences in LA and sequences in Ω∗ to values in {0, 1} as
follows, for ϕ,ψ ∈ LA:

if ϕ ∈ L0
A, then V ∗(ϕ)(ω∗) = V (ϕ)(ω∗[1])

V ∗(ϕ)(ω∗) = 1 − V ∗(ϕ)(ω∗)
V ∗(ϕψ)(ω∗) = V ∗(ϕ)(ω∗) × V ∗(ψ)(ω∗)

V ∗(ϕ → ψ)(ω∗) = V ∗(ψ)(ωn∗)
for the least n s.t. V ∗(ϕ)(ωn∗) = 1

6In van Fraassen’s original version, a conditional is true, rather than undefined, at a sequence not
containing any tails at which the antecedent is true. The difference is of no consequence for the
cases I discuss here. In general, I find the undefinedness of the conditional probability in such
cases intuitively plausible and preferable, as it squares well with widely shared intuition (in the
linguistic literature, at least) that indicative conditionals with impossible antecedents give rise to
presupposition failure. Moreover, it follows from the results below that the (un)definedness is fairly
well-behaved, in the sense that the value of the conditional is defined with probability zero or one,
according as the probability of the antecedent is zero or non-zero.
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I use boldfaced letters like ‘X, Y’ to refer to elements in F∗. Notice that even if
F is the powerset of Ω , F∗ is a not the powerset of Ω∗, but a proper subset of the
latter. For instance, consider two arbitrary worlds ω1,ω2 and two arbitrary sequences
ω∗

a = 〈ω1,ω2, . . .〉 and ω∗
b = 〈ω2,ω1, . . .〉. The set

{
ω∗

a ,ω∗
b

}
is in the powerset of

Ω∗ but not in F∗, although it is a subset of sets in F∗. This is not a deficiency for
the purposes that I am putting this model to, since the truth conditions do not allow
for the case that, say, a sentence is true at all and only the sequences in {ω∗

a ,ω∗
b}.

As before, the probabilities assigned to sentences are the expectations of their
truth values. Recall that sentences containing conditionals differ from sentences in
L0

A in that their values are not guaranteed to be defined: If a given sequence does not
contain any A-worlds, then the value of any conditional with antecedent A at that
sequence is undefined, and so is the value of compounds containing the conditional
in question. The assignment of probabilities to sentences therefore comes with a
qualification:

Definition 7 (Probabilities of sentences) Given a Stalnaker Bernoulli model for LA
(see Definition6), a function P∗ maps sentences to real numbers as follows:

P∗(ϕ) = E∗[V ∗(ϕ)|V ∗(ϕ) ∈ {0, 1}]

The conditioning event on the right-hand side in this definition is that the value of
the sentence in question is defined. It turns out that this is not a very constraining
condition, as the following outline of an argument shows (see also van Fraassen
1976; Kaufmann 2009).

First, from the definition of V ∗ it follows immediately that the values of sen-
tences in L0

A—i.e., sentences not containing any occurrences of the conditional
connective—are defined at all sequences. Consider next a “first-order” conditional—
that is, a sentence of the form ϕ → ψ, where both ϕ and ψ are in L0

A. There is only
one reason why the value of this sentence at a sequence ω∗ could be undefined,
namely that its antecedent ϕ is false throughout ω∗ (i.e., at ω∗[n] for all n). Propo-
sition1 establishes that whenever the antecedent has positive probability, the set of
sequences with this property has probability 0. (Proofs of this and all subsequent
results are given in the Appendix.)

Proposition 1 (van Fraassen 1976) For X ∈ F , if Pr(X) > 0, then Pr∗
(⋃

n∈N(
X

n × X × Ω∗
))

= 1.

As an immediate consequence, the value of the conditional is almost surely defined
when its antecedent has positive probability. By similar reasoning, the value of the
conditional is almost surely undefined if the antecedent has zero probability.7

As it stands, Proposition1 only applies to elements of F , i.e., denotations of
sentences in L0

A. It can be generalized to other sets, in particular the denotations of

7In probability theory, an event happens “almost surely” if its probability is 1. This notion should
not be confused with logical necessity.
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conditionals, but I will not pursue this argument here because the points I aim to
make in this paper can be made with reference to simple sentences.

Henceforth, to forestall any complexities of exposition arising from the possibil-
ity of undefinedness, I will implicitly limit the discussion to sentences, all of whose
constituents have positive probability. With this assumption, their values are guaran-
teed to be defined almost surely, thus the conditioning event on the right-hand side
of the equation in Definition7 can be ignored.

Van Fraassen (1976) proved the following “Fraction Lemma” (credited to Ian
Hacking), which turns out to be useful in calculating the probabilities of both simple
and compounded conditionals.

Lemma 1 (van Fraassen 1976) If Pr(X) > 0, then
∑

n∈N Pr
(
X

)n = 1/Pr(X).

As a straightforward consequence of the foregoing results, it is easy to ascertain
that the probabilities of first-order conditionals are the corresponding conditional
probabilities.

Theorem 1 (van Fraassen 1976) For A, C ∈ L0
A, if P(A) > 0, then P∗ (A → C) =

P(C |A).

In addition, it is easy to see that for all ϕ ∈ L0
A, P

∗(ϕ) = P(ϕ). Specifically, this is
true for AC and A. Thus as an immediate corollary of Theorem1, we have that

(8) P∗(A → C) = P∗(C |A)

This is why the interpretation in a Stalnaker Bernoulli model is not subject to the
Lewis-style triviality results: The denotation of the conditional is both a proposition
(specifically, the characteristic function of a set of sequences) and the corresponding
conditional expectation.

Theorem1 illustrates the simplest case of a correspondence between the prob-
abilities assigned to conditional sentences in a Stalnaker Bernoulli model and the
probabilities that their L0

A-constituents receive in the original probability model.
Similar calculations, albeit of increasing complexity, can be carried out for sen-
tences of arbitrary complexity. This was hinted at by Stalnaker and Jeffrey (1994)
and worked out for cases of conditional antecedents and consequents by Kaufmann
(2009). The formulas in (9a) through (9d) serve as illustration; for more details and
proofs, the reader is invited to consult Kaufmann (2009).

(9) For all A, B, C, D in L0
A:

a. If P(A) > 0 and P(C) > 0, then
P∗((A → B) ∧ (C → D))

= P(ABC D) + P(D|C) + P(ABC) + P(B|A)P(C D A)

P(A ∨ C)
b. If P(A) > 0,P(C) > 0, and P(B|A) > 0, then

P∗((A → B) → (C → D))

= P(ABC D) + P(D|C)P(ABC) + P(B|A)P(AC D)

P(A ∨ C)P(B|A)
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c. If P(B) > 0 and P(C) > 0, then
P∗(B → (C → D)) = P(C D|B) + P(D|C)P(C |B)

d. If P(A) > 0 and P(B|A) > 0, then
P∗((A → B) → D) = P(D|AB)P(A) + P(D A)

More complex compounds also receive probabilities under this approach, but they
are beyond the scope of this paper because it is not clear what the empirical situation
is in those cases.

4.3 Back to Probability Models

The preceding subsection showed how to start from an ordinary probability model
and obtain values and probabilities for sentences in the derived Stalnaker Bernoulli
model, defined by V ∗ and Pr∗. Now Stalnaker and Jeffrey (1994) (and, following
them, Kaufmann 2009) did not stop there, for their ultimate goal was to interpret sen-
tences inLA in the original probability model—i.e., to extend the value assignment
function V from L0

A to LA.
Intuitively, the idea is to let V (ϕ)(ω) be the conditional expectation of V ∗(ϕ),

given the set of sequences in Ω∗ whose first world is ω∗ –that is, the set
{ω∗ ∈ Ω∗|ω∗[1] = ω} . But this set may well have zero probability, since its prob-
ability is defined as Pr({ω}). Stalnaker and Jeffrey’s workaround is to define the
expectation relative to the ω∗-subspace of Ω∗, obtained by effectively “ignoring”
the first position of the sequences.

Definition 8 Given a probability model M = 〈Ω,F ,Pr, V 〉 for L0
A, the interpre-

tation function is extended to LA as follows: For all ϕ ∈ LA and ω ∈ Ω ,

V (ϕ)(ω) = Pr∗
({

ω2∗
∣∣∣ω∗[1] = ω and V ∗(ϕ)(ω∗) = 1

})

where E∗,V ∗ are defined relative to the Stalnaker Bernoulli model based on M.

It is then possible to calculate, for sentences in LA, the values they receive under V .
The simple case of first-order conditionals is given in (10).

(10) V (A → C)(ω) =

⎧
⎪⎨

⎪⎩

1 if V (A)(ω) = V (C)(ω) = 1

0 if V (A)(ω) = 1, V (C)(ω) = 0

P(C |A) if V (A) = 0

The first two cases on the right-hand-side of (10) are straightforward: The value of
V ∗(A → C) is true at either all or none of the sequences starting with an A-world,
depending on the value ofC at the first world. The third case is obtained by observing
that the set of sequences starting with a A-world at which the conditional is true is the
union of all sets of sequences consisting of n A-worlds followed by an AC-world, for
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n ∈ N. By an argument along the same lines as the proof of Lemma1, the measure
of this set under Pr∗ is just the conditional probability of C , given A:

(11)
∑

n∈N
(
P(A)n × P(AC)

) = P(AC)/P(A) by Lemma1

Finally, we can show that the expectation of the values in (10) is the conditional
probability of the consequent, given the antecedent, as desired:

(12) P(A → C) = E[V (A → C)]
= 1 × P(AC) + 0 × Pr(AC) + P(C |A) × Pr(A)

= P(C |A)[P(A) + P(A)] = P(C |A)

More complex compounds involving conditionals havemore complicated definitions
of their value assignment. Kaufmann (2009) gives the details for the cases discussed
in (9a) through (9d) above. The reader is referred to the paper for details.

4.4 Interim Summary

The foregoing outlines a strategy for calculating values and probabilities for sen-
tences in LA relative to a probability model M, pictured schematically in Fig. 1.
The extension from L0

A to LA crucially requires the construction of the Stalnaker
Bernoulli modelM∗, which is then used in the interpretation of sentences involving
conditionals.

Now, it is clear that this clever strategy is also somewhat roundabout. All sentences
receive values and probabilities in both models; moreover, due to the way one is
defined in terms of the other, the probabilities actually coincide: P(ϕ) ≡ P∗(ϕ) for
all ϕ. This naturally raises the question why both models are required.

Little reflection is needed to see that once we raise this issue, it comes down to the
question whether we still need the simpler probability model. For it is clear that the
Stalnaker Bernoulli model is indispensable: It is crucially involved in the derivation
of values and probabilities for conditionals and more complex sentences containing

Fig. 1 Value assignment for
conditionals via the derived
SB model

Probability model 〈Ω, F ,Pr, V 〉
V (A)(ω) ∈ {0, 1}

V (A → C)(ω) ∈ [0, 1]

E∗[V ∗(A → C)|{ω2∗|ω∗[1] = ω}]

V ∗(A → C)(ω∗) ∈ {0, 1}
SB model 〈Ω∗, F∗,Pr∗, V ∗〉
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conditional constituents.8 But then,what is the utility of having the traditional, world-
based model?

I will not venture to offer a conclusive answer to this question at this point;
surely one factor in favor of the conventional possible-worlds model is its familiarity
and relatively straightforward and well-understood interface with general topics in
epistemology and metaphysics. So the question is to what extent these connections
could be recreated in a framework thatwas primarily based on the Stalnaker Bernoulli
approach.

Aside from such big-picture considerations, it isworth stressing that a general shift
to the Stalnaker Bernoulli framework would bring additional functionality beyond
the extension of the interpretation to LA. To wit, adopting the approach of assigning
intermediate values to conditionals at worlds at which their antecedents are false,
we face the problem that it there is no general rule of conditionalization involving
conditionals—either for conditioning their denotations on other events, or for condi-
tioning other events on them. This problem does not arise in the Stalnaker Bernoulli
approach, where the probability of a conditional is the probability of a proposition
(in addition to being a conditional probability).

To get such a project off the ground, however, much work has to be done. For
one thing, the Stalnaker Bernoulli model would need some intuitive interpretation.
Moreover, we would need plausible representations of such elementary notions as
belief change by conditionalization.

Regarding the first of these desiderata—an intuitive interpretation of Stalnaker
Bernoulli models—we can derive some inspiration from the suggestions of Stal-
naker and Jeffrey, cited above. A set X of world sequences represents two kinds of
information: “factual” beliefs are encoded in the set of “firstworlds” {ω∗[1]|ω∗ ∈ X},
which is where all sentences inL0

A receive their truth values. The other kind of infor-
mation consists in “conditional” beliefs, encoded in the sequences

{
ω2∗∣∣ω∗ ∈ X

}
.

Each sequence represents a possible outcome of a countable sequence of random
choices of a world (with replacement), modeling a non-deterministic variant of the
interpretation of conditionals in terms of a Stalnaker selection function.9

With this in mind, I will set the first issue aside and spend the rest of this paper
focusing on the second issue, the definition of belief update by conditionalization in
a Stalnaker Bernoulli model.

8As a historical side note, it is worth pointing out that some of the functionality delivered here
by the Stalnaker Bernoulli model can also be achieved in a simpler model. This was shown by
Jeffrey (1991), who developed the random-variable approach with intermediate truth values without
relying on van Fraassen’s construction. But that approach has its limits, for instancewhen it comes to
conditionals with conditional antecedents, and can be seen as superseded by the Stalnaker Bernoulli
approach.
9In a related sense, onemay also think of a given set of sequences as representing all paths following
an introspective (i.e., transitive and euclidean) doxastic accessibility relation. I leave the further
exploration of this connection for future work.
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M1 = 〈Ω, F ,Pr1, V1〉
V1(ϕ)(ω) ∈ {0, 1}, ϕ ∈ L0

A

V1(ϕ)(ω) ∈ [0, 1] in general

M2 = 〈Ω, F ,Pr2, V2〉
V2(ϕ) ≡ V1(ϕ), ϕ ∈ L0

A

V2(ϕ) �≡ V1(ϕ) in general

M∗
1 = 〈Ω∗, F∗,Pr∗1, V ∗〉

V ∗(ϕ)(ω∗) ∈ {0, 1}
M∗

2 = 〈Ω∗, F∗,Pr∗2, V ∗〉
V ∗(ϕ)(ω∗) ∈ {0, 1}

conditioning on ϕ ∈ L0
A

conditioning in general:
not defined

???

Fig. 2 Belief update in probability models with SB interpretations for conditionals

5 Conditionalization

What is the problem with conditionalization in Stalnaker Bernoulli models? Figure2
gives a general overview. Suppose we start out, as we did in this paper, with M1,
a conventional probabilistic possible-worlds model. In it, the non-conditional sen-
tences inL0

A receive truth values atworlds, but in order to extend the value assignment
to conditionals in accordance with the probabilistic interpretation of (RT), we take
a detour via the derived Stalnaker Bernoulli model M∗

1 (as shown in Fig. 1). This
allows us to extend V1 to conditionals.

Now, suppose we want to update the belief model by conditioning on a new piece
of information, say, that some sentence ϕ is true. If ϕ ∈ L0

A, this is not a problem:
As usual in Bayesian update, we conditionalize by shifting the probability mass to
the set of worlds at which ϕ is true, then renormalize the measure so as to ensure
that we have once again a probability distribution, thus obtaining Pr2.

Now, a number of things are noteworthy about this update operation. First, along
with the shift from Pr1 to Pr2, the value assignment for conditionals must also change
in order to ensure that the expectation of the new measure is the conditional proba-
bility. Thus we obtain a valuation function V2 which agrees with V1 on all sentences
inL0

A, but may differ in the values it assigns to conditionals and sentences containing
them. The second noteworthy point about the update is that we have no systematic
way of deriving this new assignment function V2 from V1. After the update, the new
values for conditionals have to be filled in by once again taking the detour via the
derived Stalnaker Bernoulli model, now M∗

2. Thirdly, while the update with a sen-
tence in L0

A just discussed merely presents a minor inconvenience (in calling for a
recalculation of the values of sentences not inL0

A via the derived Stalnaker Bernoulli
model), matters are worse if the incoming information is conditional, i.e., the infor-
mation that some sentence not in L0

A is true. Whenever such a sentence takes values
strictly less than 1, we do not have a way to conditionalize on it.

Notice, though, that these problems would not arise if we were using Stalnaker
Bernoulli models throughout. InM∗

1 andM∗
2, all sentences receive values in {0, 1}

almost surely (with the above caveats about the possibility of undefinedness and
its intuitive justification). Moreover, notice that the two Stalnaker Bernoulli models
share the same valuation function. For recall that V ∗(ϕ)(ω∗) only depends on the
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structure of ω∗, not on the probability distribution. And since conditionals denote
propositions in these models (i.e., elements of F∗), conditionalization involving
those denotations can proceed in the familiar fashion. I take all of these facts to be
compelling arguments in favor of the exclusive use of Stalnaker Bernoulli models.

5.1 Shallow Conditioning

How exactly should belief update be carried out in Stalnaker Bernoulli models? To
see why this is an issue, consider what would seem to be the most straightforward
way to define conditionalization on a sentenceϕ inM∗

1. Presumably, similarly to the
analogous procedure on M1, this would involve shifting the probability mass onto
sequences at which V ∗(ϕ) evaluates to 1, then renormalizing the measure to ensure
that the result is again a probability distribution.10

Now, the problem with this approach is that the resulting probability distribution
is not Pr∗2, hence the resulting model is notM∗

2. It is easy to see why this is the case.
For concreteness, let us assume that the new information is that some sentence A
in L0

A is true. By the definition of the Stalnaker Bernoulli model, V ∗(A)(ω∗) = 1
whenever V (A)(ω∗[1]) = 1—in words, if the first world in ω∗ is an A-world. This
includes all sequences which begin with an A-world, regardless of what happens
later on in them.

But this is not the set of sequences over which the probability is distributed
in M∗

2. For recall that M∗
2 was obtained from M1 by conditionalization on the

information that A is true. As a result of this operation, inM2 the entire probability
mass is assigned to worlds at which A is true. Hence, in M∗

2, the probability mass
is concentrated on sequences which consist entirely of A-worlds (i.e., sequences ω∗
such that V ∗(A)(ωn∗) = 1 for all n).

Thus in order to fill in the missing step fromM∗
1 toM∗

2 in Fig. 2, we would have
to conditionalize on the set of sequences in (13b), rather than (13a).

(13) a. {ω∗ ∈ Ω∗|V ∗(ϕ)(ω∗) = 1}
b. {ω∗ ∈ Ω∗|V ∗(ϕ)(ωn∗) = 1 for all n ≥ 1}

However, the set in (13b) has zero probability whenever the probability of ϕ is
less than 1. Indeed, for any X ∈ F , the set X∗ of sequences consisting entirely of
X -worlds has probability 1 or 0, according as the probability of X is 1 or less than 1:

(14) Pr∗(X∗) = limn→∞ Pr(X)n =
{
1 if Pr(X) = 1

0 otherwise

Clearly a different definition is needed to work around this problem.

10An alternative way of achieving the same result would be to model belief update in terms of
“truncation” of world sequences along the lines of the interpretation of conditionals, chopping off
initial sub-sequences until the remaining tail verifiesϕ. I will not go into the details of this operation
here; it corresponds to the operation of shallow conditioning discussed in this subsection, for the
same reason that the probabilities of conditionals equal the corresponding conditional probabilities.
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5.2 Deep Conditioning

It is not uncommon in discussions of probability to see “Bayes’s Rule” as a definition
of conditional probability:

(BR) Pr(X |Y ) = Pr(X ∩ Y )

Pr(Y )
when Pr(Y ) > 0

Taken as a definition, this suggests that the conditional probability is generally unde-
fined when the probability of the conditioning event is 0. But this view has many
problematic consequences, not the least of them being that it predicts that the condi-
tional probability is undefined in cases in which we in fact have clear intuitions that
it exists and what it should be.11 This point has been discussed in the philosophical
literature (see for instance Stalnaker and Jeffrey 1994; Jeffrey 2004; Hájek 2003,
2011, and references therein), but the misconception that (BR) is the definition of
conditional probability is apparently hard to root out.12

My own take on conditional probability follows the lead of Stalnaker and Jeffrey
(1994) and Jeffrey (2004): (BR) is not a definition, but a restatement of the “Product
Rule” (PR):

(PR) Pr(X |Y ) × Pr(Y ) = P(X ∩ Y )

Most crucially, (PR) should not be mistaken for a definition either, but as an axiom
regulating the relationship between unconditional and conditional probabilitieswhen
both are defined.

Following this general strategy, in Definition9 I give one definition of a two-place
function Pr∗ (·|·) , then I proceed to show that it is in fact properly called a conditional
probability.

Definition 9 (Stalnaker Bernoulli model with conditional probability)
An Stalnaker Bernoulli model with conditional probability is a tuple
〈Ω∗,F∗,Pr∗ (·) ,Pr∗ (·|·) , V ∗〉, where 〈Ω∗,F∗,Pr∗ (·) , V ∗〉 is a Stalnaker
Bernoulli model (see Definition6) and Pr∗ (·|·) is a partial function mapping pairs
of propositions in F∗ to real numbers as follows, for all X, Y in F∗:

Pr∗ (X|Y) = lim
n→∞

Pr∗ (X1 ∩ Y1 × · · · × Xn ∩ Yn × Ω∗)
Pr∗ (Y1 × · · · × Yn × Ω∗)

11As a simple example, consider the task of choosing a point (x, y) at random from a plane. Fix
some point (x∗, y∗) and consider the conditional probability that y > y∗, given x = x∗ (intuitively,
the conditional probability that the randomly chosen point will lie above (x∗, y∗), given that it lies
on the vertical line through (x∗, y∗)).We have clear intuitions as to what this conditional probability
is and how it depends on the location of the cutoff point x∗; but the probability that the randomly
chosen point lies on the line is 0.
12Notice, incidentally, that the view on conditional probability just endorsed is not at odds with the
remarks on the undefinedness of the values of conditionals at world sequences throughout which
the antecedent is false (see footnote 6). For one thing, technically the undefinedness discussed
there does not enter the picture because some conditional probability is undefined. But that aside,
I emphasize that I do not mean to claim that conditional probabilities given zero-probability events
are always defined, only that they can be.
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This definition opens up the possibility that Pr∗ (X|Y) is defined while the ratio
Pr∗ (X ∩ Y) /Pr∗ (Y) is not. For example, let X = Y = Z∗ for some Z ∈ F with
0 < Pr(Z) < 1, and note that in this case Pr∗ (Z∗) = limn→∞ Pr(Z)n = 0. Thus for
instance, the quotient Pr∗(Z∗)/Pr∗(Z∗) is undefined, hence Bayes’s Rule is silent on
the conditional probability of Z∗ given Z∗. However, under Definition9 the value of
Pr∗ (Z∗|Z∗) is defined (proofs are given in the appendix):

Proposition 2 If Pr(Z) > 0, then Pr∗ (Z∗|Z∗) = 1.

Now, while Pr∗ (·|·) may be defined when the quotient in (BR) is not, the next two
results show that it is “well-behaved” with respect to the Product rule (PR).

Proposition 3 If Pr∗ (X|Y) is defined, then Pr∗ (X|Y) × Pr∗ (Y) = Pr∗ (X ∩ Y) .

As mentioned above, Stalnaker and Jeffrey (1994) likewise prefer to impose the
product rule as an axiom, rather than using it as a definition. They also impose an
additional condition which in the present framework falls out from the definition of
conditional probability whenever it is defined:

Proposition 4 If Pr∗ (X|Y) is defined and Y ⊆ X, then Pr∗ (X|Y) = 1.

I conclude that Pr∗ (·|·) can properly be called a “conditional probability.”13 At the
same time, there are cases in which (BR) cannot be applied, yet Pr∗ (·|·) is defined.
This possibility is important inmodeling belief update in Stalnaker Bernoulli models.

The remaining results in this section show that conditionalization according to
Definition9 iswell-behaved. Thefirst generalizes Proposition1 above to probabilities
conditionalized on a sequence Z∗.

Proposition 5 If Pr(X ∩ Z) > 0, then Pr∗
(⋃

n∈N
(

X
n × X × Ω∗

)∣∣∣Z∗
)

= 1.

Notice that Proposition1 is a corollary of Proposition5, substituting Ω for Z .
Lemma1 (van Fraassen’s “Fraction Lemma”) can likewise be generalized to condi-
tional probabilities.

Lemma 2 (Conditional Fraction Lemma) If Pr(X ∩ Z) > 0, then
∑

n∈N
Pr

(
X |Z)n = 1/Pr(X |Z).

Lemma2allowsus to determine the conditional probability assigned to the denotation
of a conditional given a sequence Z∗.

13However, Pr∗ (X|Y) is itself not always defined: It is undefined if either Pr(Yi ) = 0 for any i , or
if the function does not not converge as n approaches infinity.
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6 Some Consequences for Conditionals

To sum up the preceding subsections, the Stalnaker Bernoulli framework offers two
natural ways to interpret conditionals: by the rule in Definition6, and by deep condi-
tioning. The two are distinguished by the characterization of the conditioning event,
i.e., the way in which the incoming information is used in singling out the set of
sequences on which to concentrate the probability mass. For a given sentence ϕ, the
two options are repeated in (17). I argued above that deep conditioning is what is
required to model belief update by conditionalization.

(17) a. {ω∗ ∈ Ω∗|V ∗(ϕ)(ω∗) = 1} [shallow]
b. {ω∗ ∈ Ω∗|V ∗(ϕ)(ωn∗) = 1 for all n} [deep]

In addition, I believe it is likely that both update operations are required to model the
interpretation of conditionals. To see this, consider first what the difference comes
down to in terms of the intuitive interpretation of the two versions of update.

Recall first the intuitive interpretation of a Stalnaker Bernoulli model as a repre-
sentation of epistemic states. The idea was that a world sequence represents factual
information in the first world, and conditional information in the tail following the
first world. As already mentioned in footnote 9, from the modal-logic perspective
on the representation of knowledge and belief, one can alternatively think of the
sequences as representing all possible paths along an introspective doxastic accessi-
bility relation. This intuitive interpretation of world sequences corresponds well with
the proposal to model belief update by conditionalization on the set of sequences
throughout which the incoming sentence is true (as opposed to the set of sequences
at which the sentence evaluates to 1).

With all this in mind, I believe that we can discern in the distinction between shal-
low and deep conditioning an intuitively real difference in ways to “hypothetically
add,” in Ramsey’s words, a sentence ϕ to one’s probabilistic “stock of knowledge”:
Shallow update consists in assuming that ϕ is true, whereas deep udpate consists in
assuming that ϕ is learned.

The distinction between these two modes of update underlies certain problematic
examples which have been discussed widely in the literature on conditionals. Among
them are simple conditionals like (18a), attributed to Richmond Thomason by van
Fraassen (1980), and (18b) from Lewis (1986).

(18) a. If my wife deceives me, I won’t believe it.
b. If Reagan works for the KGB, I’ll never believe it.

In both cases, the conditional antecedent is intuitively not correctly paraphrased by
any variant of the locution ‘If I know/learn that’ . . ., for otherwise it would not make
sense togetherwith the consequent. Yet these examples are perfectlywell-formed and
interpretable. What the examples show is that it is possible for speakers to suppose
that something is the case unbeknownst to them. The present framework opens up a
way to model the difference in a probabilistic setting.
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Another difference between the two modes of update concerns the interpretation
of right-nested conditionals, i.e., sentences of the form B → (C → D). Here we see
a tangible consequence of the fact that the update with the antecedent B determines
the context for the interpretation of the consequent C → D. Theorem2 states the
general result for deep conditioning with sentences of this form.

Theorem 2 If P (BC) > 0, then P∗ (C → D|B∗) = P (D|BC).

Theorem1 is a special case of Theorem2, again obtained by substituting the tautology
for B.

What is notable about this result is that it resembles the Conditional Import-
Export Principle, i.e., the rule that the conditional probability of ϕ → ψ given χ
should equal the conditional probability of ψ given ϕχ. Theorem2 shows that the
Import-Export Principle holds for right-nested conditionals under deep conditioning
on the antecedent. On the other hand, it does not hold under the standard Stalnaker
Bernoulli interpretation. Recall from (9c) above that the expectation of the values
assigned to such right-nested conditionals is quite different:

(9c) If P(B) > 0 and P(C) > 0, then
P∗(B → (C → D)) = P(C D|B) + P(D|C)P(C |B)

There is much room for further explorations into the ramifications of this distinction,
for right-nested conditionals as well as for the others listed in (9b) and (9d) above.
These investigations are left to future work.

7 Conclusions

I have argued that it makes good sense to investigate the utility of Stalnaker Bernoulli
models as a formal tool for the representation and analysis of belief states and their
dynamics. The main arguments in favor of such a move draw on the viability of
an account long these lines that is immune to Lewisian triviality results. But I also
showed that once we start to investigate the matter seriously, a number of additional
subtleties and advantages come into view which merit further study. The difference
between shallowanddeep conditioning and its potential applications in the analysis of
counterexamples to the Import-Export Principlewas one such example. Additionally,
the framework promises to offer a straightforward account of belief updates involving
conditionals, whose theoretical implementation and empirical verification remain to
be carried out. And all of this, in a sense, leads up to the big question: whether it
is time to do away with the time-honored but simplistic possible-worlds models, if
only to get the probabilities of conditionals right.
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Appendix: Proofs

Proposition 1 For X ∈ F , if Pr(X) > 0, then Pr∗
(⋃

n∈N
(

X
n × X × Ω∗

))
= 1.

Proof Notice that
⋃

n∈N
(

X
n × X × Ω∗

)
is the set of all sequences containing at

least one X -world, thus its complement is X
∗
. Now

Pr∗
(⋃

n∈N
(

X
n × X × Ω∗

))
= 1 − Pr∗

(
X

∗)

= 1 − limn→∞ Pr∗
(

X
n × Ω∗

)
= 1 − limn→∞ Pr

(
X

)n = 1 since Pr(X) < 1. �

Lemma 1 If Pr(X) > 0, then
∑

n∈N Pr
(
X

)n = 1/Pr(X).

Proof
∑

n∈N Pr
(
X

)n × Pr (X) = ∑
n∈N

(
Pr

(
X

)n × Pr (X)
)

= ∑
n∈N Pr∗

(
X

n × X × Ω∗
)

= Pr∗
(⋃

n∈N
(

X
n × X × Ω∗

))
= 1 by Proposi-

tion1. �

Theorem 1 For A, C ∈ L0
A, if P(A) > 0, then P∗ (A → C) = P(C |A).

Proof By Definition6, the set of sequences ω∗ such that V ∗(A → C)(ω∗) =
1 is the union

⋃
n∈N

({ω ∈ Ω|V (A)(ω) = 0}n × {ω ∈ Ω|V (AC)(ω) = 1} × Ω∗).
Since the sets for different values of n are mutually disjoint, the probability of the
union is the sum of the probabilities for all n. Now, for all X, Y ∈ F ,

Pr∗
(⋃

n∈N
(

Y
n × (X ∩ Y ) × Ω∗

))
= ∑

n∈N Pr∗
(

Y
n × (X ∩ Y ) × Ω∗

)

= ∑
n∈N

(
Pr

(
Y

)n × Pr(X ∩ Y )
)

= ∑
n∈N Pr

(
Y

)n × Pr(X ∩ Y )

= Pr(X ∩ Y )/Pr(Y ) by Lemma1.
In particular, let X, Y be the set of worlds in Ω at which V (C) and V (A) are true,
respectively. �

Proposition 2 If Pr(Z) > 0, then Pr∗ (Z∗|Z∗) = 1.

Proof Pr∗ (Z∗|Z∗) = limn→∞ Pr∗ (Zn × Ω∗|Zn × Ω∗) = 1. �

Proposition 3 If Pr∗ (X|Y) is defined, then Pr∗ (X|Y) × Pr∗ (Y) = Pr∗ (X ∩ Y) .

Proof Since Pr∗ (X|Y) is defined, Pr(Yn) > 0 for all n. Thus Pr∗ (X|Y) × Pr∗ (Y)

= limn→∞
Pr∗

(
X1 ∩ Y1 × · · · × Xn ∩ Yn × Ω∗)

Pr∗ (Y1 × · · · × Yn × Ω∗)
× limn→∞ Pr∗

(
Y1 × · · · × Yn × Ω∗)

= limn→∞
(
Pr∗ (X1 ∩ Y1 × · · · × Xn ∩ Yn × Ω∗)

Pr∗ (Y1 × · · · × Yn × Ω∗)
× Pr∗ (Y1 × · · · × Yn × Ω∗)

)

= limn→∞ Pr∗ (X1 ∩ Y1 × · · · × Xn ∩ Yn × Ω∗) = Pr∗ (X ∩ Y) �

Proposition 4 If Pr∗ (X|Y) is defined and Y ⊆ X, then Pr∗ (X|Y) = 1.
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Proof For all i ≥ 1, Xi ∩ Yi = Yi since Y ⊆ X, and Pr(Yi ) > 0 since Pr∗ (X|Y) is

defined. Thus Pr∗ (X|Y) = limn→∞
Pr∗ (Y1 × · · · × Yn × Ω∗)
Pr∗ (Y1 × · · · × Yn × Ω∗)

= 1. �

The following auxiliary result will be useful in the subsequent proofs.

Proposition 9 If Pr(Z) > 0, then for Xi ∈ F and n ∈ N,

Pr∗
(
X1 × · · · × Xn × Ω∗∣∣Z∗) = Pr∗

(
X1 × · · · × Xn × Ω∗∣∣Zn × Ω∗)

Proof Immediate because Z ⊆ Ω . �

The significance of Proposition 9 derives from the fact that the sets of sequences at
which a given sentence in LA is true can be constructed (using set operations under
which F∗ is closed) out of sequence sets ending in Ω∗. This is obvious for the non-
conditional sentences in L0

A. For conditionals ϕ → ψ the relevant set is the union of
sets of sequences consisting of n ϕ-worlds followed by a ϕψ-world. For each n, the
corresponding set ends in Ω∗ and therefore can be conditioned upon Z∗ as shown
in Proposition 9. Since these sets for different numbers n are mutually disjoint, the
probability of their union is just the sum of their individual probabilities.

Proposition 5 If Pr(X ∩ Z) > 0, then Pr∗
(⋃

n∈N
(

X
n × X × Ω∗

)∣∣∣Z∗
)

= 1.

Proof Since Pr(X ∩ Z) > 0, Pr(X ∩ Z) < Pr(Z). Thus

Pr∗
(⋃

n∈N
(

X
n × X × Ω∗

)∣∣∣Z∗
)

= 1 − Pr∗
(

X
∗∣∣∣Z∗

)

= 1 − limn→∞
Pr∗

(
(X ∩ Z)n × Ω∗)

Pr∗ (Zn × Ω∗)
= 1 − limn→∞

Pr
(
X ∩ Z

)n

Pr (Z)n

= 1 − limn→∞

(
Pr

(
X ∩ Z

)

Pr (Z)

)n

= 1 since Pr∗(X ∩ Z) < Pr∗(Z) �

Lemma 2 If Pr(X ∩ Z) > 0, then
∑

n∈N Pr
(
X |Z)n = 1/Pr(X |Z).

Proof Since Pr(X ∩ Z) = Pr(Z) × Pr(X |Z), both Pr(Z) > 0 and Pr(X |Z) > 0.
∑

n∈N Pr
(
X |Z)n × Pr (X |Z) = ∑

n∈N
(
Pr

(
X |Z)n × Pr (X |Z)

)

= ∑
n∈N

Pr
(
X ∩ Z

)n × Pr (X ∩ Z)

Pr (Z)n+1 = ∑
n∈N

Pr∗
(
(X ∩ Z)n × (X ∩ Z) × Ω∗)

Pr∗
(
Zn+1 × Ω∗)

= ∑
n∈N Pr∗

(
X

n × X × Ω∗
∣∣∣Zn+1 × Ω∗

)

= ∑
n∈N Pr∗

(
X

n × X × Ω∗
∣∣∣Z∗

)
by Proposition9

= Pr∗
(⋃

n∈N
(

X
n × X × Ω∗

)∣∣∣Z∗
)

= 1 by Proposition5. �

Theorem 2 If P (BC) > 0, then P∗ (C → D|B∗) = P (D|BC).
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Proof P∗ (C → D|B∗) = limn→∞
P∗(((C → D) ∧ B)n × Ω∗)

P∗ (Bn × Ω∗)

= limn→∞
∑n−1

i=0 P(C B)i × P(C DB)

P(B)n

= limn→∞
∑n−1

i=0 P(C |B)i × P(C D|B)

= P(C D|B)/P(C |B) by Lemma2
= P(D|BC) �
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On the Probabilistic Notion of Causality:
Models and Metalanguages

Christian Wurm

Abstract We present some formal, interpreted languages, which are based on
propositional logic, but have each a new connective with a semantics based on (con-
ditional) probabilities, which is related to the notion of causality. The first one is
well-known as meta-language of Bayesian networks; the other two are new and
seem to match better our intuition of a causal connective. We provide definitions of
truth and validity, as well as some elementary model theory, in particular focussing
on the questions: which properties of probability spaces can be axiomatized by for-
mulas of the new languages, and which not? In particular, we can show that desirable
properties of expressive power come at the cost of counterintuitive features.

Keywords Causality · Probabilistic model theory · Bayesianism · Logic ·
Probability spaces · Conditional independence

1 Introduction

This is a study in the probabilistic approach to the notion of causality by means of
probabilistic models and logical metalanguages. The philosophical motivation is the
following: in the probabilistic study of causality by means of graphs (see the next
section), though we have good results, there are some things unsatisfying: we often
want to speak about causal dependencies in a probability space directly in a logical
language without a detour over graphs or multivariate functions.We therefore look at
the (well-known)meta-languageBLwith a direct interpretation in probability spaces.
The spaces we consider are defined over possible worlds for classical propositional
logic, and allow to define the relations of satisfaction and validity.

Still, BL is rather alien to our intuitive way to talk about causality; we therefore
introduce two new languages L,L′ which are closer to our intuitions, having just a
binary predicate for a causal relation. Next, we investigate the expressive power of
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our languages in terms of axiomatizing probability spaces, showing that at least L′
is sufficiently expressive to encode the probabilistic notions of causality, but that this
expressive power comes with several drawbacks. This is a philosophically significant
result, which might give new inspirations to Bayesian approaches to causality. But
also the techniques applied are quite new: though there is a long common history
of probability, logic and model theory (just by way of example, see Wachter et al.
2007; Schurz and Leitgeb 2008; Ebbinghaus and Flum 1995, Chap.3), questions of
axiomatization of probability spaces by logics enriched with probabilistic connec-
tives have not been addressed yet to our knowledge. So beyond its philosophical
relevance, this work can be seen as establishing new ties between logic and proba-
bility theory beyond the already existing ones; in particular, the axiomatic approach
to probability spaces.

2 Background, Goals and Challenges

2.1 The Probabilistic Notion of Causality

As there has been considerable work on the probabilistic notion of causality, we will
not question or justify this approach, but rather take it as a given frame. The central
issue within the probabilistic study of causality is the question whether the infor-
mation given by probabilistic interactions (in terms of conditional probabilities and
independence of events) is sufficient to establish the directionality of causal influ-
ence. This is because we intuitively conceive of causality as an asymmetric relation,
whereas in a probabilistic setting, the interaction between two random variables (or
events) in terms of conditional probabilities is always symmetric. In order to be able
in principle to establish an asymmetric connection, we need at least a third variable,
which interacts in a certain way, which is called intervention. We will not give a gen-
eral introduction to this kind of interaction, and refer to the literature (Pearl 2009;
Koller and Friedman 2009; Woodward 2003 for general reference, Dehgani et al.
2012 for recent work and overview).

The usual approach in this line of research consists in Bayesian networks (BN).
But these are in a sense too specific to give a good notion of causality as we intuitively
conceive of it: apart from the fact that BN specify precise numeric values, which are
of no particular interest to a study of causality, they can be arbitrarily redundant,
so we always need the additional premise that they be minimal. What therefore is
more useful is a metalanguage, as it has been scrutinized in Geiger and Pearl (1990),
the basic statements of which have the form X1‖X2|X3, which means, for random
variables (or alternatively, events) X1, X2, X3: the distribution of X1 is independent
of the one of X2, if the value of X3 is known. If we allow the Xi to be arbitrary finite
sets of variables (conjunctions of events), this one ternary connective is fully sufficient
to express the dependence and independence relations of Bayesian networks, if we
grant us in addition the usual Boolean negation, thereby getting X1 ∦ X2|X3 as

http://dx.doi.org/10.1007/978-3-319-17064-0_3
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¬(X1‖X2|X3). This metalanguage of Bayesian networks allows us to encode the
(conditional) dependence and independence of variables, as it can be encoded in
any (minimal) finite BN, and therefore is sufficiently expressive to let us infer the
directionality of causation, even though there is no predicate for directed causation
(the predicate of conditional dependence and independence is obviously symmetric
in its first two arguments). Consequently, this is a sufficiently rich logical language
for the probabilistic notion of causality, which consists of propositional variables,
Boolean connectives, and a single ternary connective as above. Henceforth, we will
use the term “sufficiently expressive” in exactly this sense.

2.2 Goals and Challenges of This Paper

There is a problem though with the metalanguage of Bayesian networks: we intu-
itively think of causation as a binary relation, not a ternary one. The main research
question for us here is the following: can we enrich a classical logical language
with a binary connective C , which is interpreted as causal dependence, such that the
resulting language is sufficiently expressive? This is the main research question for
this paper. A number of questions follow up immediately:

1. In whichway are we to interpret statements of our language in probability spaces?
2. What is the interpretation of C?
3. How is causality related to truth: does C(φ1,φ2) entail the truth of φ1,φ2?
4. Given that the interpretation of C will involve conditional probabilities, how

should we interpret embedded statements?

As for questions 1 and 2: we use probability spaces over possible worlds, where
we interpret logical statements in the usual way, and probabilities over defin-
able sets of worlds (i.e. propositions). C(φ1,φ2) for us intuitively means that
P(σ(φ2)) < P(σ(φ2)|σ(φ1)) (by σ(−) we mean the denotation of a formula). This
basic semantics leaves however several options regarding the definition of satisfac-
tion; we will investigate two possibilities for two languages L,L′, where L′ yields
a sufficiently expressive language, L does not. So there is a positive answer to our
main research question.

Question 3 has a philosophical aspect: one might sustain causality only relates
instances of events, if we think of it as an intrinsic, physical property; in this sense,
causality presupposes truth. On the other hand, one might also sustain that causality
only relates types of events in terms of expected co-occurrence frequency (conditional
probability); but as soon as two events really occur, it does not make sense to speak of
causality relating the occurrences. Our two languagesL,L′ reflect these two options:
inL,C(φ,χ) impliesφ,χ,whereas inL′, ifφ,χhold, thenC ′(φ,χ)becomes trivially
false. The interesting thing is that this is less a philosophical choice then a technical
necessity, stemming from choices we have to make to ensure that L′ is sufficiently
expressive. So question 3 has a technical answer, if we want to stick with our goal
of being sufficiently expressive, which in turn has philosophical implications.
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Question 4 is turns out to be related:L allows for meaningful embedding of causal
statements; L′ does not. Again, the latter is not a matter of philosophical choice, but
rather of technical necessity, if we want to make L′ sufficiently expressive. So here
again technical problems relate to philosophical questions (in a rather negative way).

To sum up our main results: we can enrich a simple propositional logical language
with a binary connective to yield a sufficiently expressive language for probabilistic
causality, but then we have to interpret causality as being disconnected from truth,
and we cannot assign a non-trivial meaning to embedded causal statements. We
have to emphasize, though, that our results are not definitive in that they exclude the
possibility of different solutions to the same problems: the main guideline for our
treatmentwas that for ourmeta-languages, syntax, semantics and the relation between
the two should be as simple and natural as possible. Maybe a more complicated
ontology might yield different results.

2.3 Some Remarks on Truth and Probability

To justify our notion of probabilisticmodels,wemake some remarks on the relation of
truth and probability, in particular in how far they can be independent. If we consider
probabilities in a context where also truth and falsity play a role, we often tend to
equate truth with a probability of 1, and falsity with probability 0; propositions of
whichwedonot knowwhether they are true or not get assigned something in between,
so that probabilities result to be some sort of truth degrees. This is however not the
Bayesian approach to probability: if we consider probabilities as being epistemic in
nature, then probabilities come to affirm not truth degrees, but rather degrees of belief
of truth. So truth and probability come apart and can be neatly separated: there are
many things being true of which we do not belief they are true; and we do believe
of many things that they are true which are not true. From this point of view, it is
natural to consider the truth of a proposition independently from its probability.

For us, the main reason to treat probability and truth independently is the follow-
ing: a certain proposition is something which is mostly only true and wrt. to a state of
affairs, not in general (distinguishing “contingent propositions” from mathematical
truths, to which, in fact, it makes little sense to assign probabilities). If truth is situ-
ated, that is, made only wrt. a certain state which can easily change, this means that
the situated truth is independent (at least in one direction) from the general truth of
a proposition. Same holds for probabilities: we can talk about the probability as the
belief that something is the case wrt. a certain state of affairs (for example the cur-
rent), and its probability in general. It is not the case that a speaker can make claims
on the truth and the probability of a proposition p independently. But if he sustains
its situated truth, he does not sustain its general truth, and nothing follows for the
general belief that p might be the case. That in turn means: a speaker sustaining p
can nonetheless assign a quite low general probability to it. This is mirrored by the
fact that we all think that unprobable things can happen—if a certain fact holds, it
is not automatically assigned probability 1, because in a sense, the probability is for
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the general case, the truth for the particular one, depending on assignments etc. We
think that whereas truth by default is situated, probability by default is generic; and
this is the way in which we will (on an intuitive level) treat the two.

It is a valid remark that generic and situated propositions might be different kinds
of entities which should be separated by our ontology. While this might be feasible
with a richer ontology and intensional language, we only work with the language of
propositional classical logic. This does not allow any distinction between intensional
and extensional propositions, and there can be no doubt that we want to be able
to assign both truth values and probabilities to the same propositions. Still, the
difference is reflected in L by the fact that truth depends on the “actual world” (as
opposed to validity), whereas probabilities are independent from actuality; for L′,
things are more complicated.

If we assign truth values and probabilities to propositions independently, we can
separate the logical and the probabilistic meaning of connectives quite neatly, which
is very useful. What is particularly interesting is that probabilities can be related
to truth values in quite different ways, and for L,L′, there are different underlying
philosophical conceptions, as we will see. Our general road is the following: we
want propositions to be either true or false (depending on the model); but truth might
depend on probabilities in a way that satisfaction has to be defined both wrt. an
“actual world” and a probability distribution. This separates our approach from the
one taken for example in Kaufmann (2009), where some propositions (conditionals)
actually “denote” a probability rather than a truth value.

2.4 Intuitions on the Causal Connective

As we said, we intend to enrich the language of propositional logic with a single
binary connective C (or C ′, respectively) for the causal relation. If we say that
this maps our intuition for the relation of causality, this is obviously because we
think of it as analogous to the English (or whatever language we prefer) connective
because. However, we should make the following clear from the outset: though
C is intended to be a “causal” connective, that is, one corresponding to our usage of
because, we have no intention to therebymodel or cover every usage of because
in natural language, but only some rather canonical and idealized portion of it. To
justify this procedure, just note that the same holds for the logical constants: the
classical ∧,¬ can claim to exactly match the English “and”, “not” at most for the
domain of mathematics, and hardly beyond. There is no bad thing in modelling just
some idealized, canonical usage; but the question we have to ask is then: in what
consists this canonical usage? This question seems hard to answer, but there are
some things we can definitely exclude. For example, we should model because as
a relation between states of affairs; and not as a relation involving states of mind of
persons, or as giving a motivation for some action of some person. So 1. should be
out, 2. should be in;



100 C. Wurm

(1) a. Sheila was right, because she thought that from the beginning.
b. Mary left because she was disappointed.

(2) a. There is smoke because there is a fire.
b. Because he paid little attention to traffic, he had that accident.

We believe there are deep underlying reasons for the fact that we are unable
to capture usages as (1) in terms of probabilities: humans generally believe that
things behave according to certain rules, and thus we have the correspondence
frequency≈probability≈causality; but whenever we think that actions are performed
by agents having possible choices, this breaks down: we can virtually do for anything
for any reason, and so the general case does not (fully) determine the particular one.
We cannot dwell on this topic, so we just point to Woodward (2006), who treats a
strongly related issue, and having said this as a broad guideline, we have to comment
on some other properties of because.

What is the truth-functional meaning of because? One line of reasoning goes
as follows: (i) the “truth-functional portion of the meaning of because seems to
be equal to the meaning of and, put differently: because presupposes the truth of
its argument clauses, “because A, B” cannot be true without A, B being true. But
one might also argue: (ii) given the considerations of the last section, we can sustain
that “because A, B” contains two separate assertion: 1. in general, A being true
causes B being true, and 2. in this particular situation, both A and B are true. Given
this, the second assertion is uninteresting for our purposes, and we can say that a
formal model of because only should model the first part of its meaning. In the
language L, we follow the reasoning (i), in L′, we follow the reasoning (ii), and only
the latter yields a sufficiently expressive language.

Regarding the probabilistic meaning of a formal counterpart of because, there
are surely many things one can say; however, we will choose the most blunt and
simple semantics we can think of, both in L and L′: we take “because A, B” to
have the probabilistic meaning: the probability of B is (strictly) smaller than the
probability of B given A. It seems easy to find examples in natural language where
this semantics does not work (even with “canonical” because); yet, it seems hard
to find a formal alternative which works better. Having said this, it seems clear we
model because in its epistemic sense, that is, the sentences in (2) and the following
are equivalent from a probabilistic point of view (because of Bayes theorem):

(3) a. There is a fire, because there is smoke.
b. He paid little attention to traffic, because he had that accident.

That is of course problematic, as in the sentences (2) and (3), we intuitively use
because in a different sense: where in the former, we read because as giving a
proper reason in a physical sense, in the latter it is only epistemic. But as we said,
in itself the symmetry of the probabilistic semantics of because is unproblematic,
as long as we are able to axiomatize in our languages L,L′ probability distributions
which are rich enough to allow to infer the direction of causality.
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3 Probabilistic Models

Having laid out the philosophical justification for our approach, we postpone further
difficulties and introduce the formalism.We directly start with the language of propo-
sitional logic PL, defined as follows: for var a countable set of variables (which we
assume to be fixed for all that is to follow), we have

1. p ∈ PL, if p ∈ var ;
2. if φ,ψ ∈ PL, then φ ∧ ψ ∈ PL;
3. if φ ∈ PL, then ¬φ ∈ PL;
4. nothing else is in PL.

This is the language PL; it is well-known how to define ∨,→ in terms of ∧,¬,
and so we will make use of them, too. A possible world over PL is a set m ⊆ PL,
which is maximally consistent, that is, it is consistent and any proper superset of it
is inconsistent.1 Let M be the set of possible worlds over PL. We have the usual
satisfaction relation |=, where for m ∈ M , φ ∈ PL, we write m |= φ iff φ is true in
m according to our interpretation of PL, that means in our case: m |= φ iff φ ∈ m.
In the sequel, we will enlarge and modify the language PL, but possible worlds will
always be defined wrt. this language.

We can now define probabilistic models in a straightforward fashion.2 Assume
PL, M as given, and assume σ : PL → ℘(M) to be the interpretation function for
PL in M , where m ∈ σ(φ) iff m |= φ (iff φ ∈ m). We follow common usage by
calling a set of the form σ(φ) a proposition (wrt. PL, M). A probabilistic model of
PL, M is a probability space (M, P, M), where the usual probability axioms hold,
that is:

1. M ⊆ ℘(M) is a Boolean algebra, P : M → [0, 1],
2. P(M) = 1,
3. P(∅) = 0, and
4. if M1, . . . , Mn are pairwise disjoint, then P(

⋃n
i=1 Mi ) = ∑n

i=1 P(Mi ).

In addition, M ⊆ ℘(M) is such that for all φ ∈ PL, P(σ(φ)) is defined. Thus
a probabilistic model must assign a probability to any (classical) proposition. In
general, we call any O ⊆ M an event, usually written E . Note that if PL is classical
logic over a countable set of variables, the set M of possible worlds is uncountable
(that can be shown by a standard argument over the satisfaction of subsets of var ), so
(M, P, M) will either not be a discrete space, or most worlds will have probability
0. The same holds, by the way, a fortiori for any language with more connectives or
less theorems. This already reflects our philosophical considerations: whereas truth
of a proposition is defined wrt. to single world, our probability function does usually
not even assign (non-zero) probabilities to single worlds, at least in almost all cases.

1We do not define these notions here, and refer the reader to any logic textbook.
2These definitions roughly coincide with the canonical ones in Kaufmann (2009), though there are
some minor differences.
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4 Networks and Metalanguages

4.1 Bayesian Networks

A multivariate function is a function in many variables. A discrete probability
distribution is a function f : M → [0, 1] such that

∑
m∈M f (m) = 1; this crite-

rion is called consistency. In what follows, we will just write distribution, and we
will always mean discrete probability distribution. A conditional (discrete proba-
bility) distribution is a function f : M × N → [0, 1] such that for all n ∈ N ,∑

m∈M f (m, n) = 1. A directed acyclic graph (DAG) is a graph without cycles.
Given a DAG (V, E), v ∈ V , we define ↓v := {v′ : (v′, v) ∈ E}. Most readers will
be familiar with this concept. DAGs are the graph structures which underlie Bayesian
networks.

Definition 1 A Bayesian network BN is a structure (D, V, E), such that (V, E) is
a finite DAG, and D is a function from V to a set Dv : v ∈ V , where each Dv is a
consistent, discrete (conditional) probability distribution Dv = D(Xv|{Xv′ : v′ ∈↓
v}). We assume that for any BN (D, V, E), V ⊂ N is an initial interval of N.

We assume that the nodes form an initial interval ofN, becausewewant to identify
the number of a node with the position of an argument variable of a multivariate
function. This gives us a uniqueness which otherwisewould be obtained onlymodulo
re-ordering of the argument variables and domains. Moreover, we can now associate
every argument and domain with a number, and for notational convenience dismiss
with the order of variables all together. Bayesian networks themselves do not tell us
much for themselves on probability distributions, we first need to interpret them.

Definition 2 We say a multivariate distribution MD over domains and variables
xv : v ∈ V is a model of (D, V, E), if

MD(x1, . . . , x|V |) =
D(X1 = x1|{Xi = xi : i ∈↓1}) · .... · D(X |V | = x|V ||{Xi = xi : i ∈↓|V |})

As positions are identified by graph nodes (uniqueness of variable order), we can
easily obtain the following lemma:

Lemma 3 Given a Bayesian network B N, there is exactly one MD which is a model
of B N.

We therefore denote the unique model of B N by ‖B N‖MD. A thing to keep in
mind is: There are many B N , B N ′ such that ‖B N‖MD = ‖B N ′‖MD. That is the
most important reason why we have to distinguish between syntax and semantics of
Bayesian networks: BNs contain a lot of information, which are irrelevant to their
“meaning”, which is the probability distribution they induce. For example, we can
model any relation alsowith a larger network: assume (V, E), (V, E ′) are twographs,
where E ⊆ E ′. Then any distribution which can be modelled by a BN over (V, E)
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can be modelled with a BN over (V, E ′). So what we are in particular interested in
are minimal Bayesian network for a given distribution. This minimality requirement
is usually only formulated with respect to the underlying graph, where it can bemade
precise through the subset relation on edges.

4.2 Independence and Subdistributions

Assume we have a MD : A1 × · · · × Ai → [0, 1]. Assume {α,β} is a partition of
{1, . . . , i}. By Aα we denote the Cartesian product of all A j : j ∈ α; by aα we
denote its members. We say that the variables Aα and Aβ are independent, if there
exist consistent distributions MD′ : Aα → [0, 1], MD′′ : Aβ → [0, 1], such that for
all aα ∈ Aα, aβ ∈ Aβ ,

MD(aα, aβ) = MD′(aα) · MD′′(aβ) (1)

That means, we can decompose the function into two independent functions by
means of multiplication. That however only works for partitions of the entire set of
variables. For a more general definition, we need the notion of a subdistribution. A
MD defines a set D, which is a set of functions, its subdistributions. We obtain the
subdistributions by firstly marginalizing, and secondly by division.

Firstly, we consider unconditional subdistributions. These are defined as follows.
Given MD : A1 × · · · × Ai → [0, 1], α ⊆ {1, . . . , i}, β = {1, . . . , i} − α, we define
Dα

MD by

Dα
MD(aα) =

∑

aβ∈Aβ

MD(aα, aβ) (2)

This is commonly called marginalization and one of the most well-known tech-
niques in probability theory; therefore, we do not comment on it. We also get a set
of conditional distributions, which are defined as follows: for β ⊆ α ⊆ {1, .., i}, we
define

D
α|β
MD(aα) = D

α∪β
MD (aα∪β)

D
β
MD(aβ)

(3)

In the sequel, we will stick to standard notations and write MD(xl1 , . . . , xli ) for
any subdistribution in variables l1, . . . , li ; and write MD(xl1 , . . . , xli |xk1 , . . . , xk j )

for conditional distributions. Obviously, there is a close connection between these
(conditional) subdistributions and the distributions specified by our BN; as a matter
of fact, we can uniquely reconstruct the distributions of a BN given its model MD
as conditional subdistributions. A proof of this fact is somewhat involved, but needs
nothing but standard arithmetic. Though it might seem obvious, this actually shows
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an important result: the semantics we have given is quite strong, in the sense that for
a given graph, and a model, the distributions are completely determined:

Lemma 4 For any multivariate distribution MD, directed acyclic graph G, there
exists at most one B N over G of which MD is a model.

4.3 Speaking About Networks and Distributions—The
Metalanguage and Its Models

In this paper, we are at no point interested in precise numerical values, and we think
this can be generally said for any work on the notion of causation. Both a BN and
an MD come with these values. We rather want to specify probability spaces in
terms of (conditional) dependence and independence of events, without any numeric
values. We therefore recur on the well-known meta-language of Bayesian networks,
and show how it can be directly interpreted in a probability space and probabilistic
model. We denote the resulting relation of satisfaction by �. For introduction of
the metalanguage B, its meaning and motivation, consider Pearl (2009), Geiger and
Pearl (1990). Let (E, V, D) be a BN. The following notions refer to its underlying
graph (E, V ), which we assume to be directed and acyclic. Forming the reflexive
and transitive closure of E , we get a partial order which we denote ≤E ; notions like
ancestor and descendant refer to ≤E . We say a set P(v,w) ⊆ V is a path in (E, V )

from v to w, if P(v,w) := {v,w, u1, . . . , ui }, and (v, u1), (u1, u2), . . . , (ui , w) ∈
E ∪ E−1.3 We say u is a collider in P(v,w), if for x, u, y ∈ P(v,w), x �= y, we
have (x, u), (y, u) ∈ E ; u is a passerby, if w �= u �= v and u is not a collider. We
write

v‖w|U (wrt. a DAG (E, V )),

where v,w ∈ V, U ⊆ V , v �= w, and v,w /∈ U , if and only if every path P(v,w)

in (E, V ) contains either a collider z /∈ U , or a passerby z ∈ U .
That means for the particular case where U = ∅, that v‖w iff v,w are incompa-

rable according to ≤E and have no common ancestor. Moreover, we write v ∦ w|U ,
where v �= w, and v,w /∈ U , if we do not have v‖w|U . Call the language consisting
of these statements B. For every finite DAG G = (E, V ), there is a finite set of
clauses which hold in G; we call this the Bayesian theory of G, written Th(G).

Our language of graphs, though it might seem, is not symmetric in the sense
that it is not equally valid of a graph and its dual.4 It is symmetric in the first two
arguments, but not in the third, and this is what makes the difference. The classical
example is a graph ({1, 2, 3}, {(1, 2), (1, 3)}). Here we have 2‖3|1. If we take its

3Be aware that we allow both arcs and duals; moreover, by acyclicity, at most one of (x, y) and
(y, x) is in E ; this makes the following statements unique.
4By the dual of a DAG (E, V ) we denote the graph (E−1, V ), where (v, v′) ∈ E−1 iff (v′, v) ∈ E .
So the dual is the order-theoretic inverse.
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dual ({1, 2, 3}, {(2, 1), (3, 1)}), we rather have 2‖3 and 2 ∦ 3|1. This is the simplest
example for a so-called V-structures, and it is by these structures and so-called inter-
ventions that we can infer the direction of causality. In the presence of V-structure,
the direction of edges can be reconstructed, and this is exactly where the probabilistic
conception of causality becomes asymmetric. If we have (x‖y|z1, . . . , zi ), but we
have (x ∦ y|z1, . . . , zi , u) for some u, then from this we can infer that x ≤E u,
y ≤E u. This is straightforward from the definition. The interesting thing is that this
notion transfers this to dependence and independence in the model of a Bayesian
network with the underlying graph, provided it is minimal.

We take the usual correspondence, by indices, between BN and multivariate dis-
tributions; also, we define the subdistributions in the usual fashion. Now let φ be
a B-formula. For a given multivariate distribution MD, we write MD � φ, if the
following hold:

1. M � xi‖x j |{xl1 , .., xlk },
if MD(xi , x j |xl1, . . . , xlk ) = M(xi |xl1, . . . , xlk )M(x j |xl1 , . . . , xlk ).

2. M � xi ∦ x j |{xl1, . . . , xlk }, if M �|= xi‖x j |{xl1, . . . , xlk }.
Finally, we say that M � Th(G), if for all φ ∈ Th(G), M � φ; so we interpret the

set on the right hand side as conjunction. One main result on Bayesian causality is
the following (actually, we do not know where this is already stated in this form, but
it can be easily put together from results in Pearl 2009, pp. 16–19, and Geiger and
Pearl 1990):

Theorem 5 Assume (D, E, V ) is minimal, and MD = ‖(D, E, V )‖MD. Then we
have φ ∈ Th(E, V ), if and only if MD � φ.

This establishes the correspondence between edges in a graph and conditional
(in)dependence, and allows to infer the latter from simple graph-theoretic proper-
ties. But note that if we define the set of distributions which satisfy a given set of
clauses, say Th(E, V ), contrary to ‖BN‖MD, we do not exclude any larger mod-
els/distributions having additional variables, so we do not have uniqueness. This is
firstly because � disregards any kind of numerical values of networks, and secondly
because it does not say anything about unknown variables.

4.4 BN and Probabilistic Models

Wenowhave tomake clear howwe put these tools to use for probabilisticmodels.We
could go the full way over Bayesian networks, making the distribution we associate
with each vertex of the underlying graph a random variable mapping a proposition
(=set of possible worlds) to {0, 1}, such that each vertex determines whether a propo-
sition holds. Because most interesting results on the connection of B and Bayesian
networks are well-established, we rather make a shortcut and directly depart from
the language B. This allows us to use all advantages we mentioned above, whereas
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Theorem 5 ensures we remain able to reconstruct the notions in terms of Bayesian
networks. We now slightly modify the language B, and form the language BL as
follows: we take PL for granted, and the countable set of propositional variables var
as fixed. The formation rules for BL are simple:

1. If φ1,φ2,φ3 ∈ PL, then (φ1‖φ2|φ3) ∈ BL;
2. if φ1,φ2 ∈ PL, then (φ1‖φ2) ∈ BL;
3. if φ1,φ2,φ3 ∈ PL, then (φ1 ∦ φ2|φ3) ∈ BL;
4. if φ1,φ2 ∈ PL, then (φ1 ∦ φ2) ∈ BL;
5. nothing else is in BL.
So all statements of BL have a quite similar form. Let (M, P, M) be a probabilistic
model; we define the satisfaction � as follows:

1. (M, P, M) � (φ1‖φ2|φ3), iff P(σ(φ1) ∩ σ(φ2)|σ(φ3))

= P(σ(φ1)|σ(φ3))P(σ(φ2)|σ(φ3));
2. (M, P, M) � (φ1‖φ2), iff P(σ(φ1) ∩ σ(φ2)) = P(σ(φ1))P(σ(φ2));
3. (M, P, M) � φ1 ∦ φ2|φ3, iff P(σ(φ1) ∩ σ(φ2)|σ(φ3))

�= P(σ(φ1)|σ(φ3))P(σ(φ2)|σ(φ3));
4. (M, P, M) � (φ1 ∦ φ2), iff P(σ(φ1) ∩ σ(φ2)) �= P(σ(φ1))P(σ(φ2)).

Given a finite collection B of BL-clauses, we say that (M, P, M) � B, if
(M, P, M) � φ for all φ ∈ B.

It is not hard to see that we can also specify a BN, and get from this BN to both its
(graph-)theory and a corresponding probability space. Taking this way, the central
result would be: we have (M, P, M) � B, if and only if there is a minimal Bayesian
network (D, E, V ), such that firstly B = Th(E, V ), and secondly, (M, P, M) is a
model of (D, E, V ). However, it is the latter relation of a probability space being a
model of a BN which is quite tedious to spell out, and the construction would only
reproduce well-known results; so we omit this construction and go directly from BL
to probability spaces.

Aswe have said, the language of Bayesian networks is powerful enough to express
that probabilistic causality is directional, even though there is no way to state this
explicitly in BL. This is for us a kind of touch-stone: we will devise two languages,
which come closer to our intuition about causation being a binary predicate, and
which subsume the language PL. Actually, the two languages L,L′ are syntactically
isomorphic, but they differ considerably in their semantics: whereas in the first, L,
we will interpret causality as factual, entailing the truth of its arguments, in the latter,
we will interpret it “intensionally”,5 as being disconnected from truth. As we will
see, the factual interpretation is not expressive enough to encode knowledge about
directionality, whereas the “intensional” interpretation is.

5We write this quotation mark as it does not really reflect the standard meaning of intension.
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5 The Language L and Its Semantics

Wenow introduce the languageL. It is an extension of propositional logic. Therefore,
we start from the usual countable set of propositional variables var ; we assume two
connectives, ∧,¬, and in addition C , which is binary. L is now defined as follows:

1. If p ∈ var , then p ∈ L;
2. if φ,χ ∈ L, then φ ∧ χ,¬φ, C(φ,χ) ∈ L;
3. nothing else is in L.
We assume the usual possible world semantics, and construct a probabilistic model
over the set of possible worlds. We first construct the classical logical satisfaction
|=l , defined as follows:

1. (M, P, M, m) |=l p, where p ∈ var , iff p ∈ m.
2. (M, P, M, m) |=l φ ∧ χ, iff (M, P, M, m) |=l φ and (M, P, M, m) |=l χ.
3. (M, P, M, m) |=l ¬φ, iff (M, P, M, m) �|=l φ.
4. (M, P, M, m) |=l C(φ,χ), iff (M, P, M, m) |=l φ and (M, P, M, m) |=l χ.

It is clear that all other classical connectives can be defined in terms of ∧,¬, so we
use them freely. Note that C is logically interpreted in the same way as ∧, and in
this sense it is factual: C(φ,χ) entails φ and χ. We define σ : L → ℘(M) over the
logical satisfaction, that is, σ(φ) := {m : (M, P, M, m) |=l φ. Keep in mind that
here and in what is to follow, σ refers to |=l ! We now define a partly probabilistic
satisfaction |= forL. Assumeφ ∈ L.We define (M, P, M, m) |= φ by the following
clauses:

1. (M, P, M, m) |= p, iff p ∈ m;
2. (M, P, M, m) |= φ ∧ χ, iff (M, P, M, m) |= φ and (M, P, M, m) |= χ;
3. (M, P, M, m) |= ¬φ, iff (M, P, M, m) �|= φ;
4. (M, P, M, m) |= C(φ,χ), iff (M, P, M, m) |= φ, (M, P, M, m) |= χ and

P(σ(χ)|σ(φ)) > P(σ(χ)).

To denote validity, we write (M, P, M) |= φ, if for all m ∈ M , (M, P, M, m) |= φ.
The only difference of |=l and |= is the probabilistic semantics of the connective

C . Note that while this is extremely simplistic, it incorporates a number of surpris-
ing features: the probabilistic interpretation of C makes reference to a conditional
probability, which we defined in the standard fashion. As in |=l , also |= provides
an entailment relation from C(φ,χ) to φ ∧ χ, that is, causation entails truth. From
the empirical point of view (departing from the intuitive meaning of because),
this is fully justified. But it is exactly this choice that comes with considerable for-
mal restrictions and commitments, which ultimately lead to the failure of L to be
sufficiently expressive.

There is usually a problem with using conditional probabilities in an inductive
definition: we cannot “nest” conditional probabilities; as a matter of fact, this was
one of the major obstacles to the interpretation of conditionals in terms of condi-
tional probabilities, see Kaufmann (2009). For us, the problem does not arise at all:
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for C(φ,χ) only the logical properties of φ,χ matter, nothing else; so conditional
probabilities do not embed. For the (probabilistic) truth of a C-clause, an embedded
C clause just translates as logical conjunction; but for itself, the latter still has to
be satisfied probabilistically. Note however that this simple solution is possible only
due to our separation of logical and probabilistic satisfaction, and σ being based on
the logical satisfaction! We now make this more precise: by φ[χ] we mean that χ
occurs as a subformula in φ, where the notion of subformula is defined as follows:

Definition 6 φ is a subformula of ψ, only if it can be derived according to the
following rules:

1. For all φ ∈ L, φ is a subformula of φ;
2. if φ is a subformula of χ, ψ ∈ L, then φ is a subformula of ¬χ, χ ∧ ψ, ψ ∧ χ,

C(χ,ψ), C(ψ,χ).

Lemma 7 Let φ[C(ψ,χ)] be a formula, where C(ψ,χ) does not occur within
the scope of the connector ¬. Then (M, P, M, m) |= φ[C(ψ,χ)] if and only if
(M, P, M, m) |= φ[ψ ∧ χ] ∧ C(ψ,χ).

Here by φ[ψ∧χ]we denote the formula resulting from φ[C(ψ,χ)] and replacing
the subformula as indicated. Note that we define ∨,→ in terms of ∧,¬, so they are
not covered by this lemma!

Proof By induction on the formula:
Base case: assume φ[C(ψ,χ)] = C(ψ,χ); then the claim is obvious.
Induction hypothesis:Assume (M, P, M, m) |= φ[C(ψ,χ)] iff (M, P, M, m) |=

φ[ψ ∧ χ] ∧ C(ψ,χ). Then we also have

1. (M, P, M, m) |= φ[C(ψ,χ)]∧θ iff (M, P, M, m) |= (φ[ψ∧χ]∧θ)∧C(ψ,χ)

(associativity and commutativity of ∧),
2. (M, P, M, m) |= θ ∧ (φ[C(ψ,χ)]) iff (M, P, M, m) |= (θ ∧ (φ[ψ ∧ χ]) ∧

C(ψ,χ) (associativity of ∧);
3. (M, P, M, m) |= C(φ[C(ψ,χ)]), θ) iff (M, P, M, m) |= C(φ[ψ ∧ χ], θ) ∧

C(ψ,χ), because we have (M, P, M, m) |= C(φ[C(ψ,χ)]), θ)
iff (M, P, M, m) |= φ[C(ψ,χ)]) ∧ θ and P(σ(χ)) < P(σ(χ)|σ(φ[C(ψ,χ)]))
iff (M, P, M, m) |= (φ[ψ ∧ χ]) ∧ θ) ∧ C(ψ,χ)

and P(σ(χ)) < P(σ(χ)|σ(φ[ψ ∧ χ)])) (cf. 1 and definition of σ)
iff (M, P, M, m) |= C(φ[ψ ∧ χ], θ) ∧ C(ψ,χ),

4. (M, P, M, m) |= C(θ,φ[C(ψ,χ)])) iff (M, P, M, m) |= C(θ,φ[ψ ∧ χ] ∧
C(ψ,χ)) by the same argument.

In the proof of 3. we have left implicit the transition from∧ to the metalogical “and”,
but the proof should be clear nonetheless. �

We can call this strong property causal modularity: as long as no negation is
involved, causal meaning can be neatly separated from logical meaning. Note that
a negation changes things dramatically: ¬C(φ,χ) can be true in (M, P, M, m)
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both for logical reasons, φ or χ being false at m, or for probabilistic reasons, P not
satisfying the desired inequation. Does the property of causal modularity have an
analog in natural language? By way of example, consider the following:

(4) a. Because Susan did not get the job because she is a woman, she went to court.
b. People do not get a job because they are women, and because Susan is a
woman and did not get the job, she went to court.

We can interpret a. as meaning exactly b., and our interpretation of causality would
be exactly this one. But obviously, there are also readings in which a. is true, b. is
false: there is a reading (i) where the probability of not getting a job for woman is not
higher at all, and it was just the particular interviewer (on that particular morning etc.)
having a particular favor for employing men. In that case, b. would be wrong, a. true.
But note that the reading (i) is exactly the one which causes problems for our treat-
ment even in a non-embedded way: whenever our causality comes from particular
attitudes rather than general correlations, the probabilistic notion of causality fails.
So the problem of reading (i) really points to a general problem of the probabilis-
tic interpretation of causality, rather than to our our treatment of embedding causal
statements: probabilistic notions necessarily address some general case rather than
some particular instance. So to sum up, we find the properties of C so far appealing
from a formal point of view and acceptable from an empirical point of view.

6 Expressive Power of L

Now we come to the crucial question regarding L, namely its expressive power. By
the expressive power of an interpreted language we refer to its capacity to axiomatize
certain classes of models. Let φ be an L-formula. We say φ axiomatizes a class C of
probabilistic models, if C := {(M, P, M) : (M, P, M) |= φ}. In particular, we are
interested in whether we can express the notions of conditional (in)dependence as
they can be expressed in BL, which turn out crucial for inferring the directionality
of causation from the model.

As we said above, in our most simple reading, the connective C is symmetric
(commutative), that is, (M, P, M, m) |= C(φ,χ) if and only if (M, P, M, m) |=
C(χ,φ). Their logical equivalence is obvious (C is logically equivalent to ∧);
what might need a short word of explanation is their probabilistic equivalence. If

P(σ(χ)|σ(χ)) > P(σ(χ)), then P(σ(χ)∩σ(φ))
P(σ(χ)

> P(σ(φ)) iff P(σ(χ)∩σ(φ))
P(σ(φ)

P(σ(φ))
P(σ(χ))

>

P(σ(φ)) iff P(σ(χ)∩σ(φ))
P(σ(φ)P(σ(χ))

> 1 iff P(σ(χ)∩σ(φ))
P(σ(φ)

> P(σ(χ)).

This equivalencemight at first soundproblematic, but in itself it is not: not knowing
anything else, we do not know whether a causal statement is epistemic or physical;
it is the more complex interaction of several variables/events which allows us to
infer the direction of “proper causality”. So the question is: is the language L under
the given semantics actually rich enough to encode information about conditional
dependence and independence?
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The answer is: only partially. We are able to express unconditional dependence
and independence of events, but not the conditional counterparts. The underlying
reason for the latter is that L does not even allow us to define or speak of conditional
probabilities. First, we show the positive result. We say two formulas φ,χ ∈ PL
are logically independent, if none of φ → χ,χ → φ,φ → ¬χ,¬χ → φ is a
(classical) tautology. Note that this implies that φ,χ cannot be (classical) tautologies
themselves; moreover, φ,χ are logically independent, if and only if for any subset
of {φ,χ}, there is a possible world containing exactly this subset of {φ,χ}.
Lemma 8 Assume φ,χ ∈ PL are independent. Then for the propositions σ(φ),

σ(χ), there are formulas ψ,ψ′ such that

(M, P, M) |= ψ iff and only if P(σ(φ ∧ χ)) = P(σ(φ))P(σ(χ)); and
(M, P, M) |= ψ′ iff and only if P(σ(φ ∧ χ)) �= P(σ(φ))P(σ(χ)).

Proof We only construct ψ; ψ′ is then obtained as ¬ψ. Note that we must take care
that ψ is logical tautology; the “purely probabilistic meaning” of ψ is quite easy to
express. We put

ψ := ¬(C(φ,χ)) ∧ ¬(C(φ,¬χ))

To see why this formula works, assume (M, P, M) |= ψ, which means that
for all m ∈ M, (M, P, M, m) |= ψ. Now take a model (M, P, M), and assume
P(σ(φ ∧ χ)) �= P(σ(φ))P(σ(χ)); then either P(σ(φ ∧ χ)) > P(σ(φ))P(σ(χ))

or P(σ(φ ∧ χ)) < P(σ(φ))P(σ(χ)). Assume the former. As φ,χ are logically
independent, there is m ∈ M such that φ ∈ m,χ /∈ m. But then (M, P, M, m) |=
C(φ,χ), and so there is an m such that (M, P, M, m) �|= ψ, and thus (M, P, M) �|=
ψ. The same holds for the other case and the second conjunct.

Conversely, assume P(σ(φ ∧ χ)) = P(σ(φ))P(σ(χ)). Then obviously, for any
m ∈ M , (M, P, M, m) �|= (C(φ,χ)) and (M, P, M, m) �|= (C(φ,¬χ)), and thus
(M, P, M, m) |= ¬(C(φ,χ)) ∧ ¬(C(φ,¬χ)). �

Reading the proof carefully, one discovers some subtleties of our definition of |=;
it is exactly the behavior of C under negation which departs from our expectations
of classical logic. Note that the premise of φ,χ being independent was necessary to
make the question meaningful. If φ → χ is a tautology (or any of the other), then
P(χ|φ) = 1, and all questions boil down to logical ones.

So we have seen that L can express the notion of dependence and independence
of events. We now show that it cannot express the notions of conditional dependence
or independence, because we cannot even express the concept of a conditional prob-
ability. By this result, we are also unable to express the concepts which are necessary
in order to infer the directionality of (probabilistic) causation, as these make crucial
reference to conditional probabilities.

Lemma 9 Let (M, P, M) be a probabilistic model. There is no general way, given
two propositions σ(φ),σ(χ), to construct an L-formula ψ, such that P(σ(ψ)) =
P(σ(φ)|σ(χ)).
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Proof We show this by counterexample, inspired by the fair dye. Put m1 ⊇
{p1,¬p2, . . . ,¬p6},…, m6 ⊇ {¬p1, . . . ,¬p5, p6}, with P({m1}) = · · · =
P({m6}) = 1

6 , and for all O ⊆ M , P(O) = ∑
1≤i≤6,mi ∈O P({mi }). Now, the

probability of the event σ(p1) given the event
⋃5

i=1 σ(pi ), both definable by L-
formulas p1 and ¬(¬(p1) ∧ · · · ∧ ¬(p5)), is obviously 1

5 . But now it is easy to
show that there is no L formula ψ, such that P(σ(ψ)) = 1

5 : every probability of an
L-formula in this space has the form n

6 , where 0 ≤ n ≤ 6, as its probability only
depends on whether it is true in m1, . . . , m6. �

Given this result, one might ask the question: given that we can define the con-
nective→ in our language, what is P(σ(p → q))? That is not very intuitive in terms
of probability. By definition, we get P(σ(¬p ∨ q)), and in the above example, with
q := p1, p := ¬(¬(p1) ∧ · · · ∧ ¬(p5)), σ(¬p ∨ q) = σ(p6) ∪ σ(p2), and so we
get P(p → q) = 1

3 in this space. So whereas ∧,∨,¬ behave as generally expected
in probability theory, the → does not.

This is the first flaw of L; there is yet another. Assume we want to express a
conditional (in)dependence. There does not seem to be an alternative to the scheme:
C(φ1∧φ3,φ2∧φ3), where someφ3 figures on both sides—otherwise, the dependence
is unconditional. But that does bring us any closer to the desired result, because it
claims that P(σ(φ2 ∧ φ3)) < P(σ(φ2 ∧ φ3)|σ(φ1 ∧ φ3)). But this is way to weak
a requirement, because on the left side of the inequation, the φ3 is unconditional,
and we have to “pay” for it in terms of probability; whereas on the right hand side,
it is also among the given information, for which reason we can just take it out:
P(σ(φ2 ∧ φ3)|σ(φ1 ∧ φ3)) = P(σ(φ2)|σ(φ1 ∧ φ3)). So the difference is not only
that φ1 is given, but also φ3. Again, there does not seem to be a way to get around
this.

Now of course, if we make the connective C ternary, then this can be solved
easily; we can also solve both problems by introducing a new binary predicate, and
even by giving C two different meanings depending on its context. But these are
things we are reluctant to do: intuitively, the relation of causality is binary and has
a single meaning. We try to solve the problem thus by giving another semantics to
an isomorphic language. As we will see shortly, this is possible, but it comes with
rather deep changes in the interpretation of the logical connectives.

7 The Language L′ and Its Semantics

L′ is syntactically isomorphic toL; we leave logical connectives unchanged, but skip
C and write C ′ in its stead; nothing else changes. So the crucial change concerns the
semantics of L′. C had the logical meaning of ∧, and in this sense it was “factual”.
This will change for C ′ in L′. However, as concerns the probabilistic meaning of C ′,
we want to stick to C , as this was our most simplistic intuition about probabilistic
causality. What we rather do is the following: we change the logical interpretation of
propositions and connectives in a waywhich allows us to conditionalize probabilities
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wrt. to arbitrary definable subspaces. This way, we conditionalize the probability of
a proposition wrt. the assignments which make the proposition true. This requires
us to make a deep change: we do not consider truth at single worlds, but at sets of
worlds. Therefore we have to lift everything to the powerset. Let τ be defined as
follows:

1. τ (p) = {m : p ∈ m} for p atomic;
2. τ (φ ∧ χ) = τ (φ) ∩ τ (χ);
3. τ (¬φ) = M − τ (φ);
4. τ (C ′(φ,χ)) = M .

We then define prop by prop := {O : O = τ (φ) for some φ ∈ L′}. We now lift
this to the powerset:

1. τ (p) = {τ (p)} for p atomic;
2. τ (φ ∧ χ) = {O ∩ O ′ : O ∈ τ (φ), O ′ ∈ τ (χ)};
3. τ (¬φ) = {M − O : O ∈ τ (φ)};
4. τ (C ′(φ,χ)) = {O ∈ prop : P(τ (χ)|O) < P(τ (χ)|τ (φ), O)}.
It is easy to see (by induction) that for φ ∈ PL, τ (φ) = {τ (φ)}. Now we can define
truth of a formula in a model in a very simple fashion.

(M, P, M, O)|� φ, iff O ∈ τ (φ).

There are plenty of things to note:

1. Satisfaction is defined with respect to a set of worlds. This is needed to make
definitions involving conditional probability meaningful (otherwise, we get a
bunch of non-sense probabilities, as worlds are not even propositions).

2. C ′ does not make any factual presupposition. This is not a matter of choice, but
rather becomes untenable: we cannot conditionalize on the events the conditional
probability of which we want to define!

3. A note on the embedding of C ′ in other connectives. C ′ “downgrades” τ to τ in
its inductive definition; this is a technical necessity, but entails that “embedded”
C ′-clauses are practically meaningless. We might in principle be able to remedy
this situation, but that would make definitions much more involved, so for now,
we leave it like this.

The crucial advantage we draw from these definitions is the following: for any
definable O ⊆ M , we can conditionalize probabilities on O . We now give the
definition of validity: (M, P, M)|� φ iff (M, P, M, M)|� φ. It is easy to check this
preserves validity of the classical tautologies; moreover, we have (M, P, M)|� φ∧χ
iff (M, P, M)|� φ and (M, P, M)|� χ. From this we can also easily derive why C ′
cannot make a truth presupposition: assume φ,χ ∈ PL. Then it is impossible to
affirm both the truth of φ,χ and C ′(φ,χ):

(M, P, M, O)|� φ ∧ χ ∧ C ′(φ,χ)
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can never be true. This is because then we have O ∈ τ (φ ∧ χ), and we require that
P(τ (χ)|O) < P(τ (χ)|τ (φ), O). However, O ⊆ τ (φ), therefore O ∩ τ (φ) = O ,
so P(τ (χ)|O) = P(τ (χ)|τ (φ), O)—contradiction. This reflects the intuition (see
Sect. 1.4) that probability and thus causality really affect different objects (“generic
propositions”) than truth (“situated propositions”)—only that our ontology does not
allow to make this distinction!6 So C ′ only covers the portion of because which
we have called “intensional”.

8 Expressive Power of L′

Having said this, we can now have a look at the expressive power of L′ in terms
of probabilistic models which can be axiomatized. Obviously, we can do what was
impossible with L, namely: we can talk about conditional probabilities. How can we
put this to use? For example, consider the following clause:

p1 → C ′(p2, p3) (4)

Howdoes amodel look likewhich satisfies this clause?Assume (M, P, M)|� p1 →
C ′(p2, p3). By convention, we have

(M, P, M)|� p1 → C ′(p2, p3) iff
(M, P, M)|� ¬p1 ∨ C ′(p2, p3) iff
(M, P, M)|� ¬(p1 ∧ ¬C ′(p2, p3)).

Now we can disentangle truth-conditions:

(M, P, M)|� ¬(p1 ∧ ¬C ′(p2, p3)) iff
M ∈ τ (¬(p1 ∧ ¬C ′(p2, p3))) iff

∅ ∈ τ (p1 ∧ ¬C ′(p2, p3)) iff
τ (p1) /∈ τ (¬C ′(p2, p3)) iff
τ (p1) ∈ τ (C ′(p2, p3)) iff

P(τ (p3)|τ (p1)) < P(τ (p3)|τ (p2), τ (p1)).

We have taken some shortcuts, but all bi-implications can be easily verified. Con-
sequently, (M, P, M)|� p1 → C ′(p2, p3) if and only if P(τ (p3)|τ (p2)) <

P(τ (p3)|τ (p2), τ (p1)). We thus have defined conditional dependence of variables.
This is exactly what was not possible in L, and what we need in order to express
the conditional (in)dependencies we were able to express in the language of BL,
and which allowed us to infer the direction of causation. The reader should keep this
argument in mind, as we will not repeat it in the proof of the next theorem.

6Recall that in this reading, “because A, B” has to be analyzed as: in general, A increases
probability of B, and we have the fact (A at a certain time, place etc.) and (B at a certain time, place
etc.). Our interpretation of C ′ only covers the former portion, not the latter.

http://dx.doi.org/10.1007/978-3-319-17064-0_1
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Our main theorem will now be the following: for any finite collection of BL-
formulas, there is an L′ formula φ, such that for any probabilistic model, it is a
model of the one if and only if it is a model of the other.

Theorem 10 For each finite B ⊆ BL, there is a φ ∈ L′, such that for every proba-
bilistic model (M, P, M), (M, P, M)|� φ if and only if (M, P, M) � B.

Proof LetB be a finite collection ofBL-clauses. There are two types of these clauses,
the ones constructed from ‖ and those with ∦. As in L′, we have negation, there is
no problem in getting from one to the other; and as we have conjunction, there is
no problem in getting from single clauses to finite collections. So the problem boils
down to only two kinds of BL-clauses we have to show we can translate into L′:
firstly for statements of the type:

(φi ∦ φ j |φl).

By definition of BL, we know that φi ,φ j ,φl ∈ PL, and thus in L′. We can quite
easily translate this into an L′-formula as follows:

(φi ∦ φ j |φl)
+ := (φl) → (C ′(φi ,φ j ) ∨ C ′(φi ,¬φ j ))

We can verify that this has the desired meaning; we shorten the proof because we
already showed large part of it by the above considerations. Note however that it is
crucial thatφi ,φ j ,φl ∈ PL, such that we have τ (φi ) = {τ (φi )} etc. Now assume that
(M, P, M, O)|� φl . Then we must have either P(τ (φ j )|O) < P(τ (φ j )|τ (φi ), O)

or P(τ (¬φ j )|O) < P(τ (¬φ j )|τ (φi , O). Now, by definition of ¬ and probability
axioms, it is clear that if P(τ (φ j )|O) = P(τ (φ j )|τ (φi ), O), then both are false,
so the translation works as required. As negation in L′ is fully classical, this is also
sufficient for (φi‖φ j |φl), which is equivalent to ¬(φi ∦ φ j |φl).

Regarding BL-formulas of the form (φi‖φ j ), we simply translate them by

(φi‖φ j )
+ := C ′(φi ,φ j ) ∨ C ′(φi ,¬φ j )

Finally, to finish the proof, we simply observe that B is a finite set of clauses,
and (M, P, M) � B if (M, P, M) � φ for all φ ∈ B. Let [−]+ be the trans-
lation from BL to L′. Then, by definition of ∧, (M, P, M) � B if and only if
(M, P, M)|� ∧

φ∈B φ+, which is a finite conjunction and therefore an L′-sentence.
�

Note that the inverse of Theorem 10 is obviously false:L′ ismuchmore expressive
thanBL for several reasons: we cannot specify a setB ⊆ BL such that (M, P, M) �
B if andonly if P(Ei |E j )> P(Ei );we canonly talk about independence.Theorem10
is extremely important for the following reason: in the same fashion as BL gives
us proper information about the directionality of causation—under suitable side
assumptions—, the same holds for L′: given a sufficiently rich source of L′ clauses,
we can infer in which direction causality goes.

Note however that the question of inferences is a topic of its own right, and can
be conceived of in several fashions: in the first conception, we just have an L′-clause
φ; it might be that φ, as some knowledge on the world, encodes the directionality of
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causation of two events E1, E2. That does of course not mean that we can imme-
diately see or verify this: to “decode” directionality of causation from φ might be
a difficult problem, on which we have said nothing so far, and we think this will
require an investigation on its own. The more obvious conception is the following:
assumewe have a givenmodel (M, P, M), where P can be effectively computed (or
approximated). As we have seen above, given two events E1, E1 ⊆ M , there are two
BL-clauses φ,ψ, such that if (M, P, M) � {φ,ψ}, then there is a directional causal
link from E1 to E2. By Theorem 10, this means: we can also just check whether
(M, P, M)|� φ+ ∧ ψ+, and thereby establish a causal link. The |� relation, as long
as P is computable, can easily be shown to be decidable.

So for L′ as for all our languages we have to keep in mind: when we say some
formula (or set of formulas) encodes the directionality of causation, we mean: we
can infer this information from the formula, but it cannot be expressed in the lan-
guage itself (not even in the broadest sense, because this would require some sort of
quantification over propositions)! This situation does not seem undesirable, when we
compare to the situation to natural language: there is no syntactic difference between
proper and epistemic usage of because (at least not across the board, though there
are preferences in certain constellations). Nonetheless, “semantically”, we have clear
intuitions about the two.

9 Conclusion

We have presented several “languages of causality”, namely BL, L and L′. State-
ments in BL can be read as denoting the (un)conditional (in)dependence of events;
this language is well-known as a meta-language for Bayesian networks, and can be
used to uniquely encode the directionality of a link in a minimal Bayesian network
modelling the distribution under discussion. We have introduced and investigated
the languages L,L′ and their semantics, because they are closer to our intuition
about causation being a binary relation, which can in turn be embedded arbitrarily
in other connectives. The main question was: how expressive in terms of axiom-
atization of probability spaces are these logical languages? BL served for us as a
touch-stone: if any of the languages L,L′ can encode BL-statements, it can encode
the directionality of causation. We have shown that L is not sufficiently expressive,
in particular, it cannot even express the notion of a conditional probability. On the
other hand,L′ turns out to be powerful enough to encode arbitrary (finite sets of) BL
statements.

Thoughwehave settled these questions, there aremanyquestions left open, among
which most prominently: given L,L′ and their semantics, is there a purely syntactic,
proof-theoretic way to determine consequence and validity? And in particular, a way
to determinewhether a given set of formulas encodes a particular kindof dependency?
That seems an interesting, difficult problem. The next question is: let |=, |� denote
consequence relations between (sets of) formulas in the usual fashion, that is:Γ |= φ
if for all γ ∈ Γ , (M, P, M) |= γ, then (M, P, M) |= φ. What properties do



116 C. Wurm

these relation have? Do they behave like normal, logical consequence relations,
being monotonous, finitary, closed under substitution etc.? This also seems far from
obvious. These seem to us the most natural questions to address next.

References

Dehgani, M., Iliev, R., & Kaufmann, S. (2012). Causal explanation and fact mutability in counter-
factual reasoning. Mind & Language, 27(1), 55–85.

Ebbinghaus, H.-D., & Flum, J. (1995). Finite Model Theory. Perspectives in Mathematical Logic.
Springer.

Geiger, D., & Pearl, J. (1990). Logical and algorithmic properties of independence and their appli-
cation to Bayesian networks. Annals of Mathematics and Artificial Intelligence, 2, 165–178.

Kaufmann, S. (2009). Conditionals right and left: Probabilities for the whole family. Journal of
Philosophical Logic. 38(1), 1–53.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques.
Adaptive computation and machine learning. MIT Press, Cambridge.

Pearl, J., (2009). Causality. Models, Reasoning, and Inference. Cambridge University Press,
Cambridge.

Schurz, G., & Leitgeb, H. (2008). Finitistic and frequentistic approximation of probability measures
with or without σ-additivity. Studia Logica, 89(2), 257–283.

Verma, T., & Pearl, J. (1990). Equivalence and synthesis of causal models. In P. P. Bonissone, M.
Henrion, L. N. Kanal, & J. F. Lemmer, (Eds.), UAI, (pp. 255–270). Elsevier.

Wachter, B., Zhang, L., & Hermanns, H. (2007). Probabilistic model checking modulo theories. In
QEST, (pp. 129–140). IEEE Computer Society.

Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford
University Press.

Woodward, J. (2006). Sensitive and insensitive causation. The Philosophical Review, 115, 1–50.



Shannon Versus Chomsky: Brain Potentials
and the Syntax-Semantics Distinction

Mathias Winther Madsen

Abstract The N400 and the P600 are two patterns of electrical brain potentials
which can sometimes be found when people read or hear unexpected words. They
have been widely claimed to be the neurological correlates of semantic and syntac-
tic anomalies, respectively, but evidence accumulated over the last decade has raised
some serious doubts about that interpretation. In this paper, I first review some of this
evidence and then present an alternative way to think about the issue. My suggestion
is built on Shannon’s concept of noisy-channel decoding by tables of typical sets, and
it is thus fundamentally statistical in nature. I show that a proper application of Shan-
non’s concepts to the reading process provides an interesting reinterpretation of our
notion of “syntax,” thus questioning some fundamental assumptions of linguistics.

Keywords N400 · P600 · Electroencephalography · Psycholinguistics · Informa-
tion theory · Probabilistic inference · Noisy-channel models · Syntax-semantics
interface · Autonomy of syntax

One of the key ideas that helped establish linguistics as a respectable science in the
1950s was the idea that the processing of syntax is carried out by an autonomous men-
tal module that works independently of the processing of meaning. Noam Chomsky
famously pushed this point by presenting sentence pairs that seemed to dissociate vio-
lations of syntactic expectations from violations of semantic expectations (Chomsky
1957, pp. 15–16):

• The child seems sleeping (syntactic anomaly)
• Today I saw a fragile whale (semantic anomaly)
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Based on such examples, he concluded that violations of syntactic rules had nothing
to do with the meaning of the words in the sentence, and thus

… we are forced to conclude that grammar is autonomous and and independent of meaning,
and that probabilistic models give no particular insight into some of the basic problems of
syntactic structure (Chomsky 1957, p. 17).

While the introspective case from example sentences was Chomsky’s strongest argu-
ment at the time, he did imagine hypothetical psychological experiments that could
be used to corroborate his claim, such as memory or reading tests that could perhaps
distinguish “ungrammatical” sentences from mere nonsense (Chomsky 1957, p. 16).

This paper is about one attempt to realize such a research program. As I shall
explain shortly, the brain sciences found some new results in the 1990s which seemed
to finally put Chomsky’s claims on a solid scientific basis. For a period of about ten
years, the consensus was accordingly that the anatomical and psychological reality
of Chomsky’s little syntactic engine was a scientific fact. Syntax had acquired the
authority of being “brain stuff.”

In one sense, this paper is an elaborate criticism of this idea. I will review a wealth
of empirical evidence from the last decade which seriously complicates the picture
of the brain phenomena that were originally used to vindicate the Chomskyan view
of language. Even a casual look at this literature exposes an abundance of unruly
little details that fit very badly into the old pigeonholes.

But this is also a constructive paper: I propose a precise computational model that
may explain much of the psychological evidence. This model is based on a seemingly
insignificant idea about statistical error used by Claude Shannon in the 1948 paper
which founded the field of information theory (Shannon 1948).

This idea has some deep connections to the foundations of statistical inference and
thus to the notion of rational decision-making in the most general sense. Presenting
my model will thus require a detour around some basic concepts from information
theory and statistics. Once I have introduced those concepts, I will focus on a more
specific example of a decoding problem similar to the experimental situations used
in the psychological literature. I will then discuss how that toy problem might be
scaled up to give accurate, quantitative predictions.

1 The N400 and the P600

In this section, I will introduce the brain phenomena that are pivot of the entire paper.
These phenomena are a couple of distinctive changes in the electrical brain potential
that can be measured off the scalp of a person’s head during reading, listening, or
other activities. Only in the next section will I discuss in more detail how we should
interpret these modulations of the brain potential.
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1.1 The N400

Suppose I present you with a sentence by flashing each word on a computer screen
at regular intervals:

• I … spread … the … warm … toast … with …

While you are reading the sentence, I am recording the electrical activity at different
places on the top of your head. Since all nerves in your body change the electrical
field around them when they are excited, this recording provides an estimate of how
active the nerves inside your head are. By using the electrical activity in the head as
a measure of cognitive effort, this experimental paradigm can thus reveal whether
a sentence requires more effort than usual to read, and where in the sentence the
problems begin.

This means that rather specific differences between sentences can be compared. I
could, for instance, change a single word in a sentence and then compare the pattern
of electrical activity that arises when you read the original sentence with the pattern
associated with the manipulated one:

• I spread the warm toast with butter (original)
• I spread the warm toast with socks (manipulation)

This manipulation was the idea behind an experiment which was first carried out
by Martha Kutas and Steven A. Hillyard in 1980, and which has since then been
replicated many times. Their experiment involved a set of sentence pairs like the ones
above: One completely unproblematic sentence and one that ended in a “semantically
inappropriate (but syntactically correct)” word (Kutas and Hillyard 1980, p. 203).

By averaging over several subjects’ responses to the two versions of the sentences,
Kutas and Hillyard found that the oddness of the manipulated sentences tended to
evoke a characteristic electrical response characterized by an excess of negative
electrical potential relative to the control condition (Fig. 1).

Fig. 1 A graph from Kutas and Hillyard (1980, p. 204) showing the averaged response to the
inappropriate word (e.g., socks) minus the averaged response to the appropriate (e.g., butter). Both
waveforms were recorded by an electrode at the back of the head (the medial parietal position). As
is conventional in electrical engineering, negative charge is plotted as up
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Because this bump on the waveform showed up around 400 ms after the unexpected
word was presented, they called the effect the “N400.” They suggested that it might
reflect a kind of “second look,” like a cognitive equivalent of rubbing your eyes
in disbelief.

1.2 The P600

Kutas and Hillyard’s experiment was explicitly designed to manipulate “semantic
congruity” while keeping syntactic factors constant. This naturally led to the question
of whether syntactic manipulations would lead to different results than semantic
manipulations.

This question was answered in 1992 by Lee Osterhout and Phillip J. Holcomb,
who compared a different kind of sentence pairs in an otherwise virtually identical
experimental paradigm:

• The swimmer decided to lose weight (control)
• The swimmer urged to lose weight (manipulation)

Although the difference in wording between these two sentences lies in the verb
(decided versus urged), the difference in how odd they are appears only later: The
sentence fragment The swimmer urged … can be completed in many perfectly fine
ways, but the extension The swimmer urged to … cannot. It is thus only when the word
to is presented that it gets difficult to come up with a plausible structural interpretation
of the sentence.

Consistent with this reasoning, Osterhout and Holcomb found a marked difference
between the reaction to the word to in the two conditions, with the manipulated sen-
tence provoking an increased positive potential. They found that this positive effect
peaked at about 600 ms after the onset of the word and logically named it “P600.”

Having thus apparently found a neurological correlate of the mismatch between
verb type and complement type, Osterhout and Holcomb speculated that “the P600
and N400 effects are elicited as a function of anomaly type (syntactic and semantic,
respectively),” and that “the P600 co-occurs with syntactic anomaly” (Osterhout and
Holcomb 1993, pp. 785 and 798).

Their results thus seemed to support the idea that syntax and semantics are distinct
features of language—not only in the mind of the linguist, but also in the brain of
the language user.

2 The Frayed Ends of Syntax

With the discovery of the P600, the brain sciences produced a strong neurologi-
cal argument in favor of the Chomskyan view of language. Linguists could now
with confidence postulate the “autonomy of syntax” and cite the authority of brain
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science as support (see e.g. Fernández and Cairns 2010, Chap. 3). The issues raised by
Chomsky from a purely introspective perspective finally seemed to be settled by
empirical investigations.

The issue is, however, not quite as simple as this. Within the last decade, a number
of experiments have documented P600 responses to sentences that are not syntacti-
cally anomalous in any usual sense of the word “syntax.” I will spend the remainder of
this section illustrating these complications in some detail, drawing quite heavily on
an excellent review paper by Gina Kuperberg (2007). For a more exhaustive review
of the wide variety of contexts in which the N400 is found, including non-linguistic
contexts, see Kutas and Federmeier (2011).

2.1 Word Shuffling and P600 Effects

One of the first indications that the P600 could not unproblematically be equated
with broken syntax came from a Dutch study which manipulated the test sentences
by changing a passive construction into an active, causing the logical subject and the
logical object swap roles (Hoeks et al. 2004).

In Dutch, the main content verb is often placed at the very end of the sentence,
as in The boy has the ball kicked. If you read such a verb-final sentence in a word-
for-word presentation, a whole string of nouns and auxiliary verbs can thus be pre-
sented to you before you finally reach the main content verb (here kicked). This
means that one can construct a Dutch sentence such that it creates a very strong
expectation as to what the final verb will be, and those expectations can then be
violated or respected.

This grammatical fact was exploited in the materials used by Hoeks et al. They
constructed three different manipulated sentences from a control by substituting
either the main content verb, an auxiliary verb, or both:

• De eed werd door de jonge artsen afgelegd.
(“The oath was taken by the young doctors.”)

• De eed werd door de jonge artsen behouden.
(“The oath was kept/retained by the young doctors.”)

• De eed heeft de jonge artsen afgelegd.
(“The oath has taken the young doctors.”)

• De eed heeft de jonge artsen behouden.
(“The oath has kept/retained the young doctors.”)

The manipulations of the main verb (e.g., substituting retain an oath for take an oath)
tended to produce mere nonsense, and as expected, this manipulation produced an
N400 effect. However, the manipulation of the auxiliary verb—which caused the
subject and object to change roles—unexpectedly triggered an excess of late positive
potential beginning around 600 ms after the final verb (cf. Fig. 2).

Although both of these manipulations resulted in a grammatical sentence, only
one of them would produce an N400, and the other would instead produce a very
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“The deck of cards has shuffled the gamblers.”

“The deck of cards has hit the gamblers.”

“The deck of cards was hit by the gamblers.”

Fig. 2 Averaged single-electrode recordings from Hoeks et al. (2004, p. 68), with positive charge
plotted as up. The three waves show the differences in voltage between the three manipulated
conditions and the control condition (“The deck of cards was shuffled by the gamblers”). All three
waveforms exhibited a significant P600 effect at this electrode

pronounced P600. This ran directly counter to the notion that the P600 exclusively
tracks syntactic problems.

Similar effects were reported for English. In one 2003 experiment, Kuperberg
et al. compared two different kinds of unexpected verbs and again found that only
some of them provoked an N400 response:

• For breakfast, the boys would only eat … (control)
• For breakfast, the boys would only bury … (N400)
• For breakfast, the eggs would only eat … (P600)

Kuperberg et al. suggested that this difference might be explained in terms of the
thematic roles prescribed by a verb like eat, assuming that “the P600 is sensitive to
violations in this thematic structure” (Kuperberg et al. 2003, p. 127).

This line of thought was also supported by another study which compared mere
nonsense to bizarre subject-verb combinations (Kim and Osterhout 2005). This study,
too, found marked differences in the kinds of response elicited by the two manipu-
lations relative to a control condition of ordinary English:

• The library books had been borrowed by the graduate student. (control)
• The tragic mistake was borrowing in a hurry. (N400)
• The library books had been borrowing the graduate student. (P600)

Like Kuperberg et al., Kim and Osterhout suspected that the difference between the
two target sentences had something to do with how nouns plug into verbs. They
formulated this intuition in terms of a “semantic attraction to particular predicate–
argument combinations” (Kim and Osterhout 2005, p. 215).

2.2 Animacy and Related Criteria

Looking at these examples, one might come to expect that the crucial issue here
had something to do with animacy: boys are animate and therefore appropriate sub-
jects for the verb eat, but eggs are not. However, as several authors have argued,
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this distinction does not quite capture the differences in the empirical material
(Kuperberg et al. 2003; Kuperberg 2007).

For instance, library books and tragic mistakes are both inanimate noun phrases,
and both are inappropriate as subjects for the verb borrow. Still, the construction the
library books borrowed elicits a P600, while the tragic mistakes borrowed elicits an
N400, as mentioned above. Since these constructions are equivalent in terms of ani-
macy violations, this dimension alone is thus an unreliable predictor of P600 effects.

It should also be kept in mind that many earlier experiments had used subject-verb
combinations that were clearly illegitimate in terms of animacy and other selection
criteria, but still produced N400 effects instead of P600 effects. One German study,
for instance, used the following target sentences:

• Der Honig wurde ermordet.
(“The honey was murdered.”)

• Der Ball hat geträumt.
(“The ball has dreamt.”)

Both of these sentence types provoked a marked N400 response, but no P600
(Rösler et al. 1993). It would thus appear that inanimate objects can be used with
verbs that require animate subjects without provoking a P600 (although this will
probably produce an N400).

As for the opposite implication—P600 effects predicting animacy violations—
other research groups have also documented P600 responses to sentences in which
animate subjects do clearly animate things. One study by Kolk et al. (2003), for
instance, found this in Dutch sentences like

• De vos die op de stropers joeg …
(“The fox that was hunting the poachers …”)

• De kat die voor de muizen vluchtte …
(“The cat that was fleeing the mice …”)

Of course, the roles are in some sense swapped in this sentence—but since both foxes
and poachers are animate, the strangeness of these sentences cannot be described in
terms of animacy alone.

In another experiment applying essentially the same materials, van Herten et al.
(2005, p. 249) to their own surprise, also found P600 effects for sentences such as

• De bomen die in het park speelden …
(“The trees that played in the park …”)

In a later paper, they hypothesized that this P600 effect was caused by the strong
semantic relation between the words (one can play in a park full of trees) in
combination with the oddness of the sentence as a whole (the trees played). One
way of describing this pattern could be that it involves nouns and verbs that
tend to occur in the same contexts, but rarely in subject-predicate combinations
(van Herten et al. 2006).
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This theory would explain differences such as the following:

• Jan zag dat de olifanten de bomen snoeiden en …
(“John saw that the elephants pruned the trees and …”—P600)

• Jan zag dat de olifanten de bomen verwenden en …
(“John saw that the elephants spoiled the trees and …”—N400)

Trees, elephants, and pruning can easily occur in the same text or even the same
sentence, but it is rarely the elephants that are doing the pruning. On the other hand,
spoiling (as in spoiling a child) is semantically unrelated to elephants and trees, and
the word tends to occur in very different contexts.

Whether this exact formulation of the theory is correct or not, there are thus quite
strong reasons to doubt that the conditions producing the P600 is a matter of plugging
an inanimate noun into a verb frame that requires an animate argument, or vice versa.
A wide variety of word relationships seem to be responsible for turning “semantic”
anomalies into potentially “syntactic” ones.

2.3 Grammatically Ungrammatical

Given all of this data, it seems that there is no clear and straightforward relationship
between the P600 and the arguments that can be plugged into a verb. The issue does
not seem to be syntactic well-formedness, nor does it seem to be about animacy or
thematic structure. It might still be the case, however, that some other grammatical
parameter—say, aspect, mood, gender, number—is the key. But even this vague
suggestion has some empirical evidence against it.

One such piece of evidence comes from a study that recycled some sentences
which had already previously been shown to produce strong and reliable N400 effects.
In this experiment, an elaborate context was prepended to the test sentences, and
the brain potentials were recorded in the same manner as in the previous study
(Nieuwland and Van Berkum 2005).

One of stories used in this experiment read as follows, in translation from the
original Dutch:

• A tourist wanted to bring his huge suitcase onto the airplane. However, because the
suitcase was so heavy, the woman behind the check-in counter decided to charge
the tourist extra. In response, the tourist opened his suitcase and threw some stuff
out. So now, the suitcase of the resourceful tourist weighed less than the maximum
twenty kilos. Next, the women told the suitcase that she thought he looked really
trendy. …

Surprisingly, this long build-up to the crucial unexpected word completely canceled
the N400 effect found in the original study and instead produced a strong P600 effect.
Thus, the manipulation of the context which turned the suitcase into a prop in the
narrative dramatically changed the way the subjects read the nonsense sentence the
woman told the suitcase.
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But perhaps the deepest problem with the idea that the P600 can be described
in grammatical terms is that it can be provoked by sentences without any syntactic
anomalies at all. This was already shown in a study from 1999 (Weckerly and Kutas
1999) which compared sentences of the following form:

• The novelist that the movie inspired praised the director for …
• The editor that the poetry depressed recognized the publisher of the …

Strictly speaking, there is nothing semantically or syntactically anomalous about
movies that inspire novelists, or about poetry that depresses editors. Still, these con-
structions tended to produce a P600 response.

Weckerly and Kutas used these findings in order to make a point about “the
use of animacy information in the processing of a very difficult syntactic structure”
(Weckerly and Kutas 1999, p. 569). Their findings may also have more specific
causes, though, such as the strong, conventional expectations carried by word clusters
like novelist, movie, and inspire. However, since their experimental materials were not
reprinted in the paper, it is hard to assess how strong the case for such an explanation
might be.

However, regardless of these points of interpretation, it seems clear that there are
some serious problems with seeing the P600 as the exhaust pipe of a syntactical
processor in the brain: There are several kinds of semantic oddness that are quite
strongly related to the P600; it can be quite heavily modulated by discursive context;
and it can even be elicited by grammatical sentences. The standard tools from the
toolbox of theoretical linguistics thus seem to have some problems getting to grips
with this phenomenon.

I take this as a sign that we need to back up a bit and take a fresh look at our
assumptions. In the next section, I will consequently suggest that in order to under-
stand the brain processes behind the N400 and the P600, we need to go all the way
back to Chomsky, and then go a little further back.

3 The Statistics of Decoding: Errors of Type I and II

In the preceding section, I have presented a number of empirical phenomena that
seriously challenges the traditional identification of the N400 and the P600 with
semantic and syntactic anomaly, respectively. As the examples have shown, the P600
in particular crops up in a number of different circumstances that cannot be equated
with broken syntax without bending our notion of syntax completely out of shape.
This raises two questions.

1. We might wonder whether there is any system at all to where the P600 is present.
Indeed, after looking at the wide variety of examples in the previous section, one
might get the impression that brain potentials just aren’t the kind of phenomena
that can be adequately predicted. It is an open question whether we can even
describe the phenomenon in intuitive terms, and whether we can look at a sentence
and guess what kind of brain response it will evoke.
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2. Assuming that there is some kind of system, the question is what formalism
would be most suited to articulate it. It is tempting to pull down the grammatical
vocabulary from the shelf, since we are after all talking about language; but it is
not a given that a theory of the N400 and the P600 should come in such a form,
or that it should involve any concepts from Chomskyan linguistics.

In this section, I will suggest that there is indeed a way of understanding the two
brain components of the reading-related brain potentials, but that they have little to
do with language as such. Instead, I will draw on some classical statistical insights
from information theory (Shannon 1948) and approach the activity of reading as a
kind of decoding problem. The two brain responses will then show up as correlates
of two particular kinds of decoding error.

This suggestion is consistent with an intuition shared by many researchers in the
field, namely, that the P600 is some kind of “error-correction signal” (Gibson et al.
2013, p. 8055) or the electrical counterpart of a “monitoring process triggered by a
conflict between two or more incompatible representations” (van Herten et al. 2006,
p. 1195; see also Frenzel et al. 2011).

Similarly, Kolk et al. (2003) note that both the N400 and the P600 are triggered
by unexpected events, and they add:

The problem with such events is that they can have two sources. They can be real, in the
sense that an unexpected event has indeed occurred. On the other hand, they can also stem
from a processing error (Kolk et al. 2003, p. 31).

To paraphrase this in information-theoretic terms, strange things can either happen
in the source or in the channel. I agree completely with this intuition, and the purpose
of this section is to spell it out in some more mathematical detail. The model that
I will present is very similar to the one discussed by Gibson et al. (2013, p. 8055),
both in its general philosophy and in the mathematical detail. I will, however, be a bit
more explicit in my claims about the N400 and the P600 (which they only mention in
passing), in particular when it comes to identifying their exact computational-level
counterparts.

I will claim that the two electrical responses correspond to two different kinds
of decoding error: The P600 is present when there are too many candidate causes
that match an observed effect, and the N400 is present when there are none. This
hypothesis draws on an idea that Shannon used in the proof of his discrete channel
coding theorem (Shannon 1948, Theorem 11) and which was later made more explicit
by others (Cover 1975; Cover and Thomas 1991, Chap. 7.7). Shannon operationalized
the notion of a “match” between a cause and an effect in terms of a concept called the
“typical set.” This set contains, as I shall explain in more detail below, the events that
are about as probable as one would expect an event to be (Shannon 1948, Theorem 3).

Before I can formulate my hypothesis about the difference between the N400 and
the P600, I will first have to discuss this concept and a few other basic notions from
information theory. I will then illustrate the idea behind my theory by showing how
it works in a computationally simple case, and then hint at what it would look like
in a more realistic model.
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3.1 Typical Sets and Most Probable Sets

One of building blocks of information theory is the concept of a “typical set”
(Shannon 1948, Theorem 3). The typical set associated with an experiment is the
set of outcomes whose logarithmic probabilities are close to the expected logarith-
mic probability.

To put this differently, suppose we identify the experiment in question with a
random variable X and that we let p(x) be the probability of the event X = x .
As suggested by Samson (1951), we can then think of the number − log p(x) as
a quantification of how “surprising” the observation X = x is. This “surprisal” is
a number between 0 and ∞, with less probable events having a higher surprisal
values (cf. Fig. 3).

A random variable X which can take different values with different probabilities
thus always corresponds implicitly to a “surprisal” variable − log p(X) which ranges
over the set of surprisal values. The expected value of this surprisal variable is
H = H(X), the entropy of X .

Using these concepts, we can then reformulate the definition of the typical set: It
is the set of events X = x whose surprisal value is close to the average surprisal. For
a fixed ε > 0, the ε-typical set of a random variable X thus contains the x for which

∣∣∣∣ log
1

p(x)
− H

∣∣∣∣ ≤ ε.

The ε-typical set associated with an experiment does not necessarily include the
most probable outcome of the experiment. However, as mentioned by Shannon (1948,
Theorem 3) and explained in more detail by Cover and Thomas (1991, Chap. 3.3),
the set of outcomes that are less surprising than H usually differs very little from the
typical set, since any two high-probability sets must have a high-probability overlap.
Specifically, if the values of the random variable X are long sequences from an

Fig. 3 Left The probability of getting a sum of Σ = 5, 6, 7, . . . , 30 in 5 dice throws, with the typical
probability 2−H shown as a dotted line. Right The same, plotted on an inverse logarithmic scale
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Fig. 4 Sequences of length N = 25 from an ergodic source. The entropy rate of the source is
H = 0.80 bits per symbol

ergodic random process (such as strings of letters or words; cf. Fig. 4), then including
the most probable outcomes will only change the size and total probability of the
set slightly. In many important respects, it thus makes little difference whether we
define the typical set by the bound − log p(x) ≤ H + ε or the symmetric condition
H − ε ≤ − log p(x) ≤ H + ε.

3.2 Decoding by Jointly Typical Sets

The conditions discussed above define the typical set for a single random variable. In
the context of information transmission, however, we are rarely interested in a single,
isolated variable, but much more often in the relationship between two variables X
and Y that model a cause and an effect, or a transmitted message and a received
signal.

In order to study such relationships, it is useful to consider the typical sets asso-
ciated with the joint stochastic variable X × Y . This set consists of pairs (x, y) that
are typical with respect to the joint probability distribution on X × Y , and it is called
the jointly typical set.

In an information transmission context, a jointly typical pair (x, y) consists of
a high-probability message x and a noisy signal y which has a high probability
given the message. The set of all such pairs collectively describe the properties of the
communication channel modeled by X ×Y . A model of written English, for instance,
might include (forty, fourty) as a typical pair, since forty is a common word, and fourty
a common misspelling of it. Other channels will have other characteristic types of
confusability (cf. Fig. 5).

This way of looking at the issue suggests that a table of the typical pairs could be
used for decoding: When you receive a message y, you just skim through the table,
find a pair of the form (x, y), and then return x as your decoded message. Although
this hypothetical algorithm is usually not feasible in its naive form, it captures many
of the conceptual ideas about channel coding, and its complexity problems are largely
irrelevant to the point I want to make here.
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Fig. 5 One possible structure of a jointly typical set for increasing tolerance thresholds and thus
decreasing lower bounds on the joint probability p(x, y)

3.3 Two Types of Decoding Error

As is apparent from the description of the hypothetical brute-force algorithm for
decoding by jointly typical sets, two distinct problems can arise for a decoder:

1. There is no x for which (x, y) is typical
2. There is more than one x for which (x, y) is typical

As an illustration of these two types of error, suppose that the message is one of two
points in the plane, A or B, and that the received signal is equal to the message plus
some Gaussian noise (cf. Fig. 6). The ε-typical set for this communication channel
will then contain the input-output pair (A, C) for every C on a disc centered on A,
and the pair (B, C) for every C on a disc centered on B. The sizes of the discs are
determined by ε, the variance of the noise, and the prior probabilities of A and B.

In a situation like this, the two types of error correspond to different regions of the
plane: Errors of the first type correspond to everything outside the two discs; errors
of the second type correspond to their overlapping parts. Outside the discs, both of
the events X = A and X = B have extremely low posterior probability, even if one
of them is more probable than the other. In the overlap between the two discs, on the
other hand, the two explanations have roughly equal posterior probability.

Fig. 6 A inference situation
with two possible causes
(A and B), a type I error (C),
and a type II error (D)
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We could reduce the risk of an error of the first kind by choosing a bigger ε (i.e.,
making the discs larger), but this would also expand the overlap between the discs,
and that would in turn increase the probability of the other kind of error. There is
thus a trade-off between accuracy and coverage.

While it is important to notice the similarities between this picture and the fre-
quentist notion of type I and type II errors (Neyman and Pearson 1928), there are
also a couple of differences that are worth keeping in mind. Shannon’s analysis
recommends that we accept a cause x as an explanation for the observed effect y
when

p(x | y) p(x) ≥ 2−H(X×Y )−ε.

On this analysis, the region of acceptance depends both on the prior probabilities
of the inputs, p(x), and the noisiness of the channel, H(X × Y ). The Neyman-
Pearson analysis, by contrast, disregards both of these statistics. Instead, it uses a
fixed significance level α and accepts x as an explanation of y when

p(y | x) ≥ 1 − α.

The difference between these two decision rules reflects a difference in philosophy.
The purpose of Shannon’s analysis is ultimately to assign one cause to each effect;
the purpose of the Neyman-Pearson analysis is to delineate the set of causes that
can, in isolation, safely be regarded as implausible explanations of the data. The two
methods thus answer different questions.

4 An Application to Locally Noisy Strings

While the previous section considered some rather abstract statistical concepts, I
would now like to turn to a more concrete example which is highly relevant to
the general topic of this paper. Nominally, the example is a statistical model of
misspellings, but it applies to any kind of communication channel that can distort a
sequence through local changes, such as reversing the order of two adjacent symbols.

Such models have been studied extensively in computer science (Levenshtein
1966; Damerau 1964), and many textbooks contain discussions of related ideas. The
theory that underlies such models has roots in classical ideas from computer science,
most notably, dynamic programming (Bellman 1952; Viterbi 1967).

4.1 A Generative Story for Misspellings

There are many complicated reasons why people misspell words, but in order to get
a better mathematical grip on the situation, I will present a very schematic model of
the process here. The model takes the form of a cartoonish generative story which
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depicts people as a certain kind of machines that experience random glitches during
the writing process. These glitches cause them to incorrectly externalize the contents
of their internal memory, and someone reading their output thus needs to reconstruct
their original intentions based on the corrupted output signal.

More specifically, let us assume that a writer chooses a word x with a probability
close to the frequency of the word in written English. Next, the writer consumes
the word, letter for letter, in a left-to-right manner (cf. Fig. 7). While traversing the
input string in this way, the writer also writes an output string y which more or less
faithfully reflects the input. How exactly the writer traverses the word x and how
he or she chooses which letters to write is decided stochastically as summarized in
Table 1. Note that this channel model explicitly includes local permutations such as
percieve instead of perceive (here modeled as an operation called “Reverse”).

As the table shows, the model contains several hyperparameters that be can set
to arbitrary values, depending on what we think best reflects actual behavior. In the
examples discussed below, I have used the values α = 0.96 and β = γ = δ = η =
0.01, meaning that an average of 24 out of 25 letters are expected to be faithfully
reproduced.

Thanks to classic computer science trick, the transmission likelihoods p(y | x)

for this channel can be computed quite easily. The way a writer consumes a string x
and outputs a string y can be identified with a path through a matrix. Each step of the

Fig. 7 Consuming the word
stirs by walking through
positions 0, 1, 2, 4, 4, and 5

Table 1 Generative model for a spelling channel

State Action Probability Output Next state

Start Choose x Pr(x) – 0

i < |x | Echo α xi i + 1

i < |x | Change β/25 c �= xi i + 1

i < |x | Insert γ/26 c i

i < |x | Delete δ – i + 1

i < |x | Reverse η xi+1xi i + 2

i = |x | Echo α ai i + 1

i = |x | Change β/25Z c �= xi i + 1

i = |x | Insert γ/26Z c i

i = |x | Delete δ – i + 1

i = |x | + 1 Insert γ/26 c i

i = |x | + 1 Halt 1 − γ – –

The rows labeled “Change” and “Insert” should be read as abbreviated forms of several distinct
entries, one per possible output letter. Z is the normalizing constant (β + γ)/(β + γ + η)
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Fig. 8 A path through
(stirs, tries) containing a
deletion, an echo, a reversal,
a spurious insertion, and
another echo

path corresponds to a particular editing operation like deletion or reversal (cf. Fig. 8).
The problem of finding the likelihood p(y | x) is thus equivalent to the problem of
summing up the probabilities of all paths through this matrix. The probability of any
specific path can be found by multiplying the probability of the individual editing
operations, since the operations are independent.

The crucial fact that allows us to sum up the probability of these paths is that the
transmission errors only have local effects. This means that the only matrices for
which we need to count all the possible paths are the ones of size 2×2. For all larger
sizes (e.g., 3 × 4), we can ease the computation by using the partial results we have
already computed (e.g., the sums for the matrices of size 3 × 3). Thus, by working
upwards from size 2 × 2 and keeping careful score of our partial results, we can add
up the probability of every path through the matrix without actually looking at each
one individually.

This style of a bottom-up recursion is known as dynamic programming (Bellman
1952). I will tacitly use it in all the examples discussed below.

4.2 Estimating Joint Surprisal Values

Analyzing the joint entropy of the channel X × Y is not completely trivial for the
model used here, and the details are not terribly important for my present purposes.
It will, however, be very illustrative to see a few representative examples, so I will
now provide a rough back-of-the-envelope calculation of some descriptive statistics
associated with the spelling channel.

Let us first assume that an input word x is given and then have a look at what our
uncertainty about the output string y is. We can think roughly of the consumption of
a single input letter as a process requiring two choices to be made: Deciding whether
to make a mistake, and if so, deciding which mistake to make (Fig. 9). The first choice
involves two options with probabilities 0.96 and 0.04, respectively, so it contains
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Fig. 9 The simplified
channel model

0.96 log
1

0.96
+ 0.04 log

1

0.04
= 0.17 bits of uncertainty.

The second choice is a random selection from a set of 25 letters, so it amounts to
log2 25 = 4.64 bits of uncertainty. However, since this choice only comes up in the
four percent of the cases, the grand total is

H(Y |X) = 0.17 + 0.04 · 4.64 = 0.36 bits of uncertainty per letter.

An input word with N letters is thus associated with about 20.36N typical output
strings, according to this simplified calculation. This accounts for the channel entropy
H(Y | X). The source entropy H(X), on the other hand, only involves choosing a
word from the dictionary. Using the frequencies in the Brown corpus (Francis and
Kucera 1967) as estimates of the word probabilities, we arrive at an entropy of about
H(X) = 10.54 bits. Words like know, while, last, us, might, great, and old have
surprisal values close to this average. The most frequent word, the, has a surprisal
value of 3.84.

To show more concretely what these numbers mean, consider the word great.
This word consists of five letters, and as we have seen, each letter contributes about
0.36 bits of surprisal. We can thus expect an average conditional surprisal about the
output, H(Y | X = great), in the ballpark of

5 · 0.36 = 1.80 bits.

In order to find the prior surprisal associated with the input, we can look up the
probability of the word great. This turns out to be about 6.6 · 10−4, corresponding to
a surprisal value of 10.56 bits. Adding this prior surprisal to the average conditional
surprisal, we find an average joint surprisal for pairs of the form (great, y). On
average, this should be about

10.56 + 1.80 = 12.36 bits.

In fact, we can pick apart this average even further: Suppose for instance that
the transmission does not introduce any errors, so that the input-output pair is
(x, y) = (great, great). Then the joint surprisal is
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Table 2 Examples of joint
surprisals

x y − log p(x, y)

great great 10.84

great graet 17.32

great grate 24.00

great grxqz 30.42

10.56 − log 0.965 = 10.85 bits,

or in fact slightly less, since the output great can either be produced by a faithful
reproduction of x (with probability 0.965), or an unlikely combination of errors that
cancel each other out. If a single error is introduced, on the other hand, the joint
surprisal for the pair (x, y) will be about

10.56 − log 0.964 − log 0.01 = 17.44 bits,

depending a bit on what the error is. Table 2 gives some direct computations that
corroborate these estimates.

4.3 Letter-for-Letter Surprisal Values for Competing
Hypotheses

All of the preceding discussion assume that we selected an entire word from our
dictionary and then transmitted it through the spelling channel in a single transmis-
sion. How does the situation change if we suppose that the letters of the word are
transmitted one by one, and that the receiver is allowed to iteratively revise his or
her predictions in the light of the incoming data?

The probability of observing two events, p(x1, x2), is the same as the probability
of observing the first event and then the second, p(x1) p(x2 | x1). Since the logarithm
turns products into sums, this means that if you observe a string of events, the sum
of your individual surprisals equals the bulk surprisal you would experience from
observing the whole sequence at once. For instance,

log
1

p(x1, x2, x3)
= log

1

p(x3 | x1, x2)
+ log

1

p(x2 | x1)
+ log

1

p(x1)
.

As an illustration of what this means in the context of the spelling channel, suppose
that you have forecasted, rather arbitrarily, that you are about to receive the message
x = fall. In fact, however, the actual output that you will see is y = flat, so at some
point along the way, your expectations will be violated. As you add up the surprisal
values associated with each individual letter, you will gradually accumulate a total
of 25.05 bits, the surprisal of the pair (fall, flat).
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Table 3 Cumulative letter-for-letter surprisals at the string flat from the perspective of various
hypotheses

x – f fl fla flat

for 6.73 6.77 13.38 19.03 25.05

large 11.44 18.04 18.11 18.17 24.78

fall 12.73 12.77 19.39 19.39 25.05

flat 13.85 13.89 13.95 14.01 14.07

The surprisal need not be evenly distributed, though. When you have only seen
the letter f, for instance, the hypothesis x = fall is still perfectly consistent with the
data, and your surprisal is moderate. It is only when the next letter turns out to be an
l that your surprisal jumps upwards. More examples are given Table 3.

As can be seen from the last row of the table, the hypothesis flat terminates at a
moderate 14.07 bits, which is not too far from the roughly 12 bits that would expected
for a word of this length. For an ε between roughly 2 and 10, this hypothesis would
thus be accepted, and the others rejected.

Notice also that the table contains occasional cases of reanalysis. In particular,
when the a in flat is revealed, the hypothesis x = fall hardly changes surprisal
level. This is because the segment fla is consistent with a reversal hypothesis under
which the l and the a were written in the reverse order. Observing the a thus in a
sense explains away the unexpected l that would otherwise have to be explained as
a spurious insertion.

4.4 Decoding Error in the Spelling Channel

These observations bring me back to the main topic of this section, the two types of
decoding error in a noisy channel. As explained in Sect. 3.3, decoding by typical sets
can either break when you have too many or too few candidates that can explain a
received signal.

In the context of the spelling channel, an error of type I behaves largely as we
would expect it to: Unrepairable nonsense words like srxzk do not look like any
known words, and any hypothesis about the underlying message will thus keep
accumulating surprisal as more letters are revealed (cf. Fig. 10). The most probable
hypothesis for the string srxzk, the word size, eventually accumulates 31.78 bits of
surprisal, well above the level expected for a word of this length. The string srxzk
could thus lead to a decoding error of type I, since a decoder might simply give up
trying to reconstruct the original word given this unexpectedly high surprisal score.

This situation should be compared to that of the non-word flide (cf. Fig. 11). As
can be seen from the graph, there is a whole clutter of hypotheses which are roughly
equally far away from this word. The hypothesis slide is the best candidate, but the
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s r x z k

10

20

30

seek
spoke
size
she
six

Fig. 10 Letter-for-letter surprisal values for various decodings of the string srxzk

f l i d e

15

20

25

slide
friday
flies
fled

flight

Fig. 11 Letter-for-letter surprisal values for various decodings of the string flide

difference up to the second best, flies, is only 0.70 bits. For many choices of ε, the two
hypotheses slide and flies would thus be simultaneously rejected or simultaneously
accepted. Both of those decisions would result in a decoding error.

From the present perspective, it is also interesting that the graph for the various
hypotheses cross each other so frequently: After the fragment fli is presented, the
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two hypotheses slide and fled are practically equiprobable. After the fragment flid is
presented, the hypothesis flies is temporarily more probable than the eventual winner,
slide. Again, this flip-flopping between roughly equiprobable hypotheses means that
a decoder with a not too cautious choice of ε would be in a high danger of committing
an error of type II.

This oscillation between competing hypotheses also means that the online decod-
ing comes with its own “garden path” phenomenon: Hypotheses with high prior
probability attract early attention which may in retrospect turn out to be unwar-
ranted. This is, of course, particularly true if the output word contains errors or is
otherwise abnormal so that ordinary expectations do not apply. Regardless of the
cause, however, it should be emphasized that this phenomenon occurs here in a sit-
uation that does not involve any kind of “syntax” except the possibility of swapping
two neighboring letters.

We have thus seen two kinds of statistical error related to two kinds of manipulated
strings. Figuratively speaking, one abruptly pushes the receiver away, while the other
keeps pushing the receiver back and forth between a portfolio of hypotheses that all
seem to fit somewhat, but not quite. The first is associated with errors of type I, and
the other with errors of type II.

5 Discussion

In the previous section, I gave a detailed description of a particular channel model
and the decoding errors that were characteristic of it. This channel took English
words as inputs and returned possibly misspelled versions of those strings as outputs.
In this section, I will discuss the possibility of designing a similar model that can
handle sentence-level decoding. My conclusion from this discussion is that it involves
additional hard problems, but that it need not be impossible.

5.1 Two Challenges

I chose to illustrate my hypothesis about the N400 and the P600 by means of the
quite simplistic spelling channel because I wanted to sidestep some technical com-
plications that were irrelevant to my conceptual point. The word decoding problem
is considerably easier than the sentence decoding problem that I really want to study.
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Two facts in particular make words more manageable than sentences:

1. For most practical purposes, the vocabulary of English can be considered as a
finite set, and this means that decoding can be done through exhaustive search.
This property sets it apart from many other naturally occurring inference tasks
which have NP-complete decoding problems, such as the most common versions
of statistical machine translation (Knight 1999). Thus, a more realistic model
of the English language would probably require a commitment to a specific
search heuristic.

2. In spite of half a century of development, we still do not have a good compu-
tational theory of English. There is no shortage of formalisms and theories, but
anybody who has done any serious attempt to apply these theories beyond a few
toy sentences will know that we are nowhere near human-level predictive accu-
racy. Our language models will thus continue to be a bottleneck in the prediction
of psycholinguistic phenomena, since we have no reliable and fully automatic
way of computing the conditional probability of a sentence continuation given its
context (let alone making categorical decisions about “grammaticality”).

Accurate predictions of the occurrence of N400 and P600 effects thus hinge on
unsolved and perhaps even unsolvable problems, so perfect prediction is probably
out of the question. However, there is a difference between bad and worse, and
good approximations to English might still capture much of the statistical structure
relevant to the prediction of these phenomena. In the next two subsections, I will
give an example of one possibility for how we can approach the issue.

5.2 A Swap Model and a Trigram Model

Many of the linguistic phenomena associated with the P600 have to do with order
effects, and it would thus be useful to have a descriptive statistic which measured
to what extent a given English sentence respects the conventional order of words
in the language. The crudest possible way of quantifying this level of convention-
ality is to produce a list of all the word pairs in the sentence, ignoring intervening
words, and then check how frequently those word pairs occur in the same order in a
reference corpus.

For instance, the sentence There is still time is associated with the pairs

(There, is), (There, still), (There, time), (is, still), (is, time), (still, time).

Using the Brown corpus as a reference, we find that these word pairs occur with
the frequencies

1.1 · 10−5, 5.3 · 10−7, 6.8 · 10−6, 2.9 · 10−6, 7.9 · 10−6, 1.3 · 10−6.
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Their corresponding surprisal values are consequently

16.47, 20.86, 17.16, 18.4, 16.95, 19.54.

On average, the surprisal for this string is thus 18.22 bits per word pair, correspond-
ing to an “average probability” of 2−18.22 = 3.2 · 10−6 (where the “average” is a
geometric average).

This order model captures some long-distance relationships between words, and it
can detect certain fishy-looking word orders. However, it contains no concept of long
and short distances, only of “before” and “after.” It consequently has poor grasp of
the strong, short-distance relations between neighboring words (e.g., the extremely
low probability of the phrase the of ).

These constraints are captured better by a Markov chain model (i.e., a table of
conditional probabilities). Such a model can assign probabilities to the next word
in a sentence given the immediate context, e.g., p(still | There is). Again using the
Brown corpus, and assuming a context width of two words, such a model assigns an
average surprisal of 18.72 bits to the string There is still time. This corresponds to a
“average probability” of 2.3 · 10−6.

In this case, the two models thus agree very much in their assessment of the input
string, but this need not always be the case. In general, it can be advisable to use
a mixture of several two complementary models in order to iron out some of the
idiosyncrasies that each model has on its own. In the following, I have thus used an
equal mixture of the order model and the trigram model, that is, a model of the form
p(x) = 0.5 p1(x) + 0.5 p2(x).

5.3 Neighborhood Decoding

An imperfect but very simple decoding method for channels like the spelling channel
is to construct the set of source strings that are less than one editing operation away
from the observed output, and then find the best candidate in that smaller set.

For instance, for if the output of a spelling channel was y = tup, then the set of
neighboring strings includes

• tip, top, tap, tp, up, tups, tpu, upt, …

and many others. We can then decode y = tup by selecting the x on this list for
which the joint probability p(x, y) is the highest, hoping that the true solution was
not more than one operation away. Implementing this decoding algorithm on the
sentence level, using no other editing operations than swapping two words, we obtain
decoding candidates such as those shown in Table 4.

As the table shows, even this simple statistical model, which has no concept
of hierarchical structure or syntax, can discover and correct seemingly “high-level”
errors. For instance, the decoder correctly pinpoints the words police and prisoner as a
potential problem in the first example even though there is no semantic representation
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Table 4 Potential decodings of an output string

Sentence (y) − 1
N log p(y)

The police was trying to escape the prisoner 19.00

The prisoner was trying to escape the police 18.44

I’m afraid so 19.71

I’m so afraid 19.71

The patient looked at his doctor 18.84

The doctor looked at his patient 18.68

The doctor looked at his patient 18.68

The at looked doctor his patient 17.90

The house was parked in front of the car 10.84

The car was parked in front of the house 10.73

The water went straight through the boat 18.14

The boat went straight through the water 17.87

He walked straight to the room of the middle 11.09

He walked straight to the middle of the room 10.45

I heard a flash and saw thunder 19.17

I saw a flash and heard thunder 18.97

The hat put on his man 18.15

The man put on his hat 11.38

The mouse was chasing the cat 20.36

The the was chasing mouse cat 19.20

In each double row, the first sentence is the output string, and the second row is the a posteriori
most probable input sentence that can be obtained by swapping two words. The surprisal values are
only based on the source probabilities, since there is no explicit channel model

whatsoever in the model. In this and several other examples, corrections that seem
to require sophisticated knowledge of syntax or semantics are thus achieved on the
basis of nothing but raw word order.

Not all examples are equally convincing, though. The sentence The mouse was
chasing the cat is, despite its simplicity, not decoded correctly. A more careful
analysis of the corpus might reveal why this is the case, but at the time of this
writing, I have no good explanations.

I should emphasize again here that the decoded sentence in each pair is the single
most probable sentence in the neighborhood of the output string. The second sentence
in each row was identified and selected automatically, based on the probabilities
assigned by the mixture model. The table should thus not be read as a comparison
between two hand-selected sentences.

Notice also that the channel probabilities—that is, the probability of the various
distortions of a sentence—are not taken into account here; this will make a difference
if these probabilities are very low. The string I’m afraid so will for instance not be
corrected to I’m so afraid unless the cost of swapping two neighboring words (in
terms of surprisal) is practically nil.
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5.4 Scaling Up?

The toy model that I have proposed in this subsection is not a perfect model of English,
and it could be improved in many ways. I have included it here to indicate that the
principles discussed in the previous section pertain to any kind of noisy-channel
model and not just the spelling channel.

Even this very simplistic model, however, was able to detect a number of different
distortions of a sentence. Many of these distortions and their corresponding correc-
tions superficially appeared language-specific or even syntax-specific in nature, but
in fact, they were detected and corrected based only on very weak and general
assumptions about the order of tokens in a sequence.

So while the neighborhood decoder for this channel model is quite crude and
brittle, it does demonstrate that there is nothing inherently unrealistic about extending
the basic statistical idea of this paper to more realistic channel models. Each such
model comes with its own version of the two concepts of statistical error, and my
claims about the N400 and the P600 will provide quantitative predictions in each
such case—from sentence to sentence, and from word to word. The more difficult
part of the future work thus consists in deciding what kind of channel speech and
writing really is.

6 Conclusion

With the discovery of the P600, it seemed for a while as if the brain sciences had
found a physiological counterpart of the distinction between semantics and syntax.
Over the course of the last decade, this interpretation of the early results has been
considerably complicated by further experiments which have produced P600 effects
in a large variety of conditions, many of which are very difficult to explain in terms
of syntax as such.

These discoveries have led a number of researchers to stipulate “parallel stream”
explanations of the data: For instance, Bornkessel-Schlesewsky and Schlesewsky
(2008, p. 67) propose that the P600 occurs when cues from “animacy, voice and other
language-specific information types” clash with the “plausibility” of the assignment
of logical roles that these cues suggest. Kuperberg (2007, p. 44) argues that it is due to
conflicts between “a semantic memory-based analysis and possibly a semantically-
driven combinatorial thematic analysis.” Kolk et al. (2003, pp. 29–32) suggest that
the cause is a conflict between an interpretation supported by a “conceptual bias”
and another one supported by a “syntactic bias”.

These hypotheses are all very interesting and have a lot of empirical merit. How-
ever, I think they are formulated in too linguistic terms and on a too algorithmic level,
and hence that they miss the larger conceptual picture. The working philosophy I
have been applying in this paper is that we should take a principled perspective on
the inference task our subjects are tyring to solve (Anderson 1991). Instead of imme-
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diately committing to a decoding algorithm in all its gory detail, we should choose
a model of the communication situation and analyze its statistical properties before
we postulate any specific heuristics or neurological implementations. This way, we
can let machinery of statistics decide what counts as a “cue,” a “surprise,” or a “con-
flict” instead of inventing a new version of those concepts for every new experiment.
This approach will promote models that are more modular, more transparent in their
assumptions, and easier to simulate on individual words or sentences.

To illustrate what this approach entails, this paper has presented a very conven-
tional noisy-channel model of spelling mistakes and looked at some of its properties.
The decoding problem for this channel was simple enough to be solved by exhaustive
enumeration, and this liberated me to focus on the statistical aspects of the situations.
As the example showed, the exhaustive-search decoder for this simple model could
run into two distinct kinds of statistical error: Words like srxkz produced an excess
of surprisal and had no plausible reconstructions, while words like flide had several
competing reconstructions, all of which had a surprisal level within the expected
range. The decoding process could thus derail either because there were too few
plausible decoding hypotheses, or because there were too many.

My claim in this paper is that these two kinds of decoding error—too few and too
many plausible decodings—map onto the N400 and P600, respectively. The P600
is thus not produced by a conflict between two “streams” that handle specific types
of information (such as animacy versus word order). Rather, it is caused by more
general issues that arise whenever we try to make sense of ambiguous stimuli in
an uncertain world. And while it is tempting to describe these issues in a highly
task-specific vocabulary, I would argue that the process of decoding noisy signals
provides a fruitful framework for understanding N400 and P600 effects.

More broadly, this statistical perspective on reading and listening could have some
rather profound consequences for linguistic theory. One of the foundational assump-
tions of the Chomskyan program for linguistics is that sentences can be “ungrammat-
ical,” a property that can allegedly be separated cleanly from the property of being
nonsensical. From the statistical perspective, by contrast, the notion of “making
sense” would not be assigned to a dark corner, but rather be the centerpiece of the
whole theory. Noisy-channel coding is, at its core, a formalization of the process of
guesswork and sense-making.

These speculations are, however, part of a larger discussion about the foundations
of linguistics that cannot be settled by anything in this paper. I have proposed a specific
explanation of the N400 and P600 effects which made no reference to grammatical
and language-specific concepts, but instead explained these phenomena in statistical
terms. This defuses one of the arguments in favor of linguistic nativism and related
philosophical ideas, but it is still an open question how far the style of analysis can
be pushed.
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Orthogonality and Presuppositions:
A Bayesian Perspective

Jacques Jayez

Abstract This work focuses on the reasons why the projection properties of
presuppositional elements are not uniform. Presupposition projection designates the
fact that operators that suspend the truth of a proposition have no effect on the pre-
supposition it is associated with. For instance, with Paul did not stop smoking, the
main content (that Paul does not smoke) is canceled by the negation whereas the pre-
supposition that Paul has been smoking is left untouched. It has been observed that
projection is not uniform across the different expressions that convey a presupposi-
tion (its triggers), and a distinction between weak and strong triggers has emerged. It
seems that this distinction correlates with an intuition of (non-)orthogonality, that is,
of (non-)independence between the main content and the presupposition. I argue that
this intuition is correct to some extent but has to be clarified. To this aim, I propose
a Bayesian approach, which provides a more precise rendering of orthogonality.

Keywords Presupposition projection · Strong triggers · Bayesian approach ·
Bayesian relevance · Layered meaning

1 Introduction

A significant part of the large literature on presuppositions (PP) has been concerned
with the phenomenon of projection. Projection denotes the fact that operators like
negation, interrogation or if, which normally cancel or suspend the truth of a propo-
sition, have no effect on the PP associated with the proposition. For instance, in
Did Paul stop smoking?, the truth of the proposition that Paul smokes is suspended,
whereas the PP that Paul has been smoking remains active. The most natural reading
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of the question is ‘Given that Paul has been smoking, is it true or false that he does not
smoke now?’. However, in some cases, the PP itself can be suspended and it seems
that the possibility of suspending the PP varies with the different expressions that
convey it (its triggers). Recently, this has led to a distinction between weak triggers
(or soft triggers), those that allow for suspending the PP, and strong triggers (or hard
triggers), which do not. Although this distinction has some empirical support, it is
far from transparent. Why should some triggers be ‘stronger’ than others? It seems
that the difference depends on the (degree of) orthogonality of the PP and the main
content (MC). For instance, in Paul stopped smoking, the MC (Paul does not smoke)
and the PP (he has been smoking) seem to be somehow ‘entangled’, whereas with
Paul hit the target too, the MC (Paul hit the target) and the PP (someone else did)
seem to be independent (‘orthogonal’). In this paper, I show that orthogonality is not
exactly what we need and that the difference between weak and strong triggers is
amenable to a general principle regulating discourse attachment in a Bayesian frame-
work. In Sect. 2, I recall the main notions and observations that are at the origin of the
projection problem. In Sect. 3, I present introspective (Sect. 3.2) and experimental
(Sect. 3.3) data that seem to support the distinction betweenweak and strong triggers.
I discuss the interpretation of the experimental data in Sect. 3.4, arguing that they are
actually based on a metalinguistic interpretation. I turn to orthogonality in Sect. 4.
In Sect. 4.1, I present Abbott’s take on the weak/strong distinction and argues that
her analysis in terms of detachability is misleading. However, I defend her intuition
in Sect. 4.2 and show how it can be expressed in a Bayesian framework. Finally, in
Sect. 5, I address two remaining problems. Admittedly, the empirical scope of this
paper is limited because I do not study the full range of triggers (see Sect. 3.1 for a
discussion of this problem). However, one has to start somewhere and I think that is
not inconsequential to show that the distinction between weak and strong triggers,
which has gained great currency in semantics, has to be reanalyzed.

2 Presuppositions and Projection

2.1 Basic Notions

Natural languages offer to speakers the opportunity to convey different types of
information in a single utterance. The MC concerns the most basic truth-conditional
contribution of the utterance, whereas the non-MCconcerns, for instance, intellectual
or emotional attitudes of the speaker, or what she presupposes to be true. So, (1a)
informs the hearer that some friend of the speaker found a solution (MC), but also
that this fact was unexpected (intellectual attitude) and that the speaker does not hold
the mentioned friend in high regard (emotional attitude). (1b) asserts that Charles
has talked to someone (MC) and presupposes that it is his sister.

(1) a. Unexpectedly, my stupid friend found the solution.
b. Charles has talked to his sister.
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A quick test to separate MC and non-MC is to consider what the natural target of
a direct refutation is. In most cases, people interpret the target as being the MC, see
(2) and (3).

(2) A—Unexpectedly, my stupid friend found the solution.
B—It’s false/You’re wrong/You’re mistaken.

� Your friend did not find the solution
�� It’s not unexpected or/and your friend is not stupid

(3) A—Charles has talked to his sister.
B—It’s false/You’re wrong/You’re mistaken.

� Charles did not talk to his sister
�� Charles has no sister

Among the expressions conveying a non-MC, presuppositions (PP) have been
the subject of intensive research. Intuitively, a PP is a piece of information which
is taken for granted or presented as such (Stalnaker 1974) or must be true in every
contextwhere the sentence conveying it canbe assertedwithout contradiction (Beaver
2001; Heim 1983). A hallmark of the non-MC is its tendency to project, that is, to
remain unaffected by operators that negate or suspend the MC, such as negation,
interrogation or if. For instance, whereas the proposition that my friend found the
solution does not receive a definite truth-value in (4), the non-MC (my friend is
stupid) is endorsed by the speaker exactly as in (1a). A similar difference holds for
negation and conditional.

(4) Did my stupid friend find the solution?
�� My friend found the solution
� My friend is stupid

2.2 Ideal and Actual Projection

In an ideally simple world, projection would be uniform across all types of triggers.
What is the situation in the real world? Non-MC tends to project rather neatly for
conventional implicatures (Potts 2005) such as evaluative adverbs (unexpectedly) or
expressives (Determiner + stupid + N, interjections, etc.). What happens for PP?
There is clearly a tendency to project, see Chierchia and McConnell-Ginet (1990),
Geurts (1999), Beaver and Geurts (2013) for different surveys. For instance, there is
a strong intuition that all the forms in (5) presuppose that Paul has been smoking.

(5) a. Paul stopped smoking.
b. Paul didn’t stop smoking.
c. Did Paul stop smoking?
d. It is possible that Paul stopped smoking.
e. If Paul stopped smoking, he must feel better.
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Concerning the difference with conventional implicatures, conditional structures
that suspend a PP seem to have no effect on implicatures, as suggested by the differ-
ence between (6a) and (6b), which sounds odd or heavily metalinguistic.

(6) a. If Paul has been smoking, he has stopped.
�� Paul has been smoking

b. ? If my friend is stupid, then my stupid friend found the solution.

However, this is not true for every type of conventional implicature, in particular
for appositive relatives, see (7). In a context where Paul is John’s friend, the speaker
does not necessarily endorse the view that Paul is stupid.

(7) If Paul is stupid, John can expect that his friend, who is not very clever,
won’t find the solution.

If projection for PP was uniform, the difference between conventional implica-
tures and PP would be essentially a matter of domain. For instance, conventional
implicatures could perhaps be conceived as concerning all the domains where evalu-
ation, whether emotional or intellectual, plays a central role. However, it seems that,
whereas implicatures project in a systematicway, it is not the case for PP. For instance,
Karttunen (1971) introduced a difference between full factives like regret, whose PP
always project, and semi-factives like discover, whose PP may be suspended, as in
(8). See Beaver (2004) for a thorough discussion.

(8) a. If I discover that I was mistaken, I will admit publicly I was wrong.
�� I was mistaken

b. If I regret that I was mistaken, I will admit publicly I was wrong.
� I was mistaken

Other ways to suspend the PP include the following ones.

1. Ignorance about the PP (Geurts 1995), as in (9).
2. Negation of the PP in answers (Cummins et al. 2013), as in (10), where the A1-B1

exchange is judged by speakers to be better than the A2-B2 exchange.
3. Abusch (2002, 2010) suspension test, as in (11)

(9) [Context: Paul has never seen or heard about Mary smoking, but she seems very
nervous and restless. He wonders whether Mary has been smoking and is trying
to stop.]
Is Mary quitting smoking?
�� Mary has been smoking

(10) A1—Has John stopped smoking?
B1—No, because he never smoked before.
A2—Has John smoked again?
B2—No, because he never smoked before.
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(11) a. I have no idea whether Paul participated in the Road Race yesterday.
But if he won it, then he has more victories than anyone else in history.
(=Abusch’s 2010 example 3d)

b. ?? I don’t know if Paul participated in the race, but if Mary participated
too, they probably ran together.

These and similar examples suggest that (i) PP projection has a certain degree of
variability and (ii) that it is probably not just a matter of context or pragmatic consid-
erations. Stalnaker (1974) defended the idea that projection is a default or preferred
behavior, which can be more or less plausible in different contexts. For instance, he
explained the non-projection in (8a) by noting that, if the speaker of (8a) presupposes
that she has missed the point, she necessarily realizes that she did so. So, by contra-
position, if she does not realizes she has missed the point, she cannot presuppose that
she did, hence the lack of commitment to the PP (absence of projection). So, a simple
reasoning about the plausibility of the PP leads to abandoning it. Unfortunately, it
is difficult to understand along the same lines the difference between too or again,
which are robustly projective, and stop or win, for which the PP can be suspended
more easily.

3 Weak and Strong Triggers

Examples (10) and (11) suggest that there at least two classes of triggers. Strong trig-
gers (ST) always give rise to projection whereas weak triggers don’t. This distinction
is supported both by introspective and experimental data. Before presenting these
data, however, I need to clarify what the ambition and limits of trigger taxonomies
can be. This is done in the next section.

3.1 A Disclaimer in Form of Clarification

In the previous section I have mentioned some well-known cases. A reviewer com-
plains that I have confined my attention in this paper to “a rather limited number
of presupposition triggers”. This is quite true but can hardly be avoided. First, as
evidenced by the (partial) list in Beaver and Geurts (2013), there is a huge set of
presumed PP triggers. The goal of the present paper is not to study the variability
of triggers per se but only with respect to projection. There are a lot of important or
minute differences that are not captured by a distinction in terms of projection and I
did not intend to address them for a simple reason: I am unable to offer a ‘complete’
theory of PP triggers, meaning a theory in which each trigger would be described
completely and correctly. I suspect that such a theory would require a detailed lex-
ical analysis of each trigger. I am not aware of the existence of such a theory in the
literature and I do not feel committed to proposing one.
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Second, it is almost impossible to have clear-cut introspective intuitions on a very
wide range of PP triggers, and it might be impossible to have clear intuitions on some
triggers except in well-known (and generally trivial) cases. The strategy of the paper
is, accordingly, to focus on a number of items that are considered as representative
of some major categories: aspectual verbs like begin, emotive factives like regret,
clefts, ‘strong’ adverbial triggers like too. Although their number is indeed limited,
they span a not insignificant number of categories of PP triggers. I assume that the
categories addressed in the paper are sufficiently interesting to be worth studying
(I might be wrong).

My proposal is based to a large extent on experimental observations. The interest
of an experimental approach is twofold. First, by going beyond the intuitions of
isolated speakers, there is more chance to detect general tendencies, if any, and to
compensate for the variability of introspective judgments. Second, an experimental
perspective forces one to remain aware of the limits of large scale comparisons.
Measuring the ‘projectability’ of triggers with comparison tests raises the question
of the interpretation context. When we are given sentences in isolation or with a
very limited or very specific context, we are not necessarily able to quickly scan
a sufficiently large set of contexts in order to find a ‘good’ one, that is, a context
that makes the sentence natural. So, a naturalness signal1 can reflect the degree
of context accessibility/construction. To use a generic term, I will call the task of
inferring a context that makes a linguistic stimulus plausible context abduction. To
my best knowledge, there is at the moment no established technique for measuring
context abduction.However,when a context can be providedwhichmakes a linguistic
stimulus natural, whereas the same stimulus is massively perceived as not natural
in isolation, one can reasonably suppose that the licensing context cannot be easily
abduced. This is the main idea behind the experiment reported in Sect. 5.2. There,
two triggers considered as strong are considered, regret and clefts. It is shown that, in
suitable contexts, the PPof these triggers can be explicitly suspendedwithout creating
an impression of contradiction (it does not project). However, the contexts that make
non-projection possible are not the same for the two triggers. Therefore, comparing
the two triggers would be more risky because it would amount to comparing the
behavior of two items in different contexts.Clearly, this is a general problem.SincePP
triggers are very different, it is difficult and perhaps impossible to show in a rigorous
way how exactly they compare to each other in terms of degree of projection. It is
for instance possible that triggers that allow non-projection and are thereby similar
differ nonetheless in terms of degree of projection strength but that the difference
is impossible to evaluate. Once the context is given, this possible difference might
disappear. When isolated sentences are considered, observed differences might be
attributed to context abduction rather that resistance to projection. If the samecontexts
could be used, we would of course be in a better position to adopt a truly comparative
perspective.

1Whether this signal is an explicit judgment or a different manifestation such as a reading time,
fixation or ERP measure does not change the basic problem.
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The upshot of these remarks is that, whereas it would be extremely interesting to
compare triggers pairwise, it is also a difficult task, which seems to be beyond our
reach for the time being.

3.2 Introspective Data

The idea that PP triggers differ in their projection behavior is mentioned in several
places in the linguistic and philosophical literature on PP. However, there is in general
no systematic attempt to lay the foundations of a classification. Three notable excep-
tions are Abbott (2006), Abusch (2002, 2010) and Zeevat (1992). Zeevat’s proposal
is discussed in Sect. 3.3. Its relation to the WT/ST distinction is less clear than in the
works of Abbott and Abusch, which also offer the advantage of capitalizing on more
recent contributions. In this section, I adopt Abbott’s and Abusch’s point of view and
focus on the three main points that are to be found in their papers.

First, Horn (1972) identified a possibility of suspending a PP bymeans of a special
if -clause or a may not construction (12a). According to him, the first sentence must
be negative (12b)

(12) a. John does not realize that Sue loves him, if indeed she does.
b. # If John realizes that Sue loves him (and in fact she may not), then
he’ll tell us.

One can observe that regret or again, for instance, are less felicitous in environ-
ments comparable to (12a).

(13) a. ? John does not regret that Sue loves him, if indeed she does.
b. ? John has not studied the problem again, if indeed he has studied it before.

Second, there is the discover/regret contrast mentioned by Karttunen, whose
examples can be adapted to avoid the first-person effect mentioned by Stalnaker (see
Beaver (2004)). Various similar observations suggest that epistemic factives like dis-
cover or know are WT, whereas emotive factives like regret or be glad/sad/happy/
surprised are ST.

(14) a. If someone discovers that I was mistaken, I will admit publicly I was wrong.
�� the speaker was mistaken

b. If someone regrets that I was mistaken, I will admit publicly I was wrong.
� the speaker was mistaken

Finally, there is Abusch’s test, used in (11). The structure of the test sentences
is: ?p′, but if p, q, where p presupposes p′. What is tested is the possibility of
accommodating the missing PP (whose truth has been suspended by a preliminary
ignorance statement) in the local context corresponding to the antecedent of the if
p, q conditional.
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Table 1 Weak and strong triggers

Category Items Horn Abusch

Temporal markers after, since Weak (?) Weak (?)

Epistemic factive
verbs

discover Weak Weak

Emotive factive verbs regret, be surprised Strong Strong

Aspectual verbs begin, stop Weak Weak

Exclusives only Weak Weak

Scalar additives even Strong Strong

Discourse markers too, again Strong Strong

Sortal restrictors bachelor (?) (?)

Clefts It’s …who Weak Weak

Quantifiers each, every Weak Weak (?)

Definite descriptions the, her Weak Weak

Names … Weak Weak

A sample of items

Summarizing, there are reasons for distinguishing betweenWTandSTon a purely
observational basis. However, the various observations that have been proposed give
only a patchy picture of the weak/strong contrast. Table1 gathers a number of intro-
spective guesses about the category of different triggers and I provide illustrative
examples in Table2.2 The inventory of triggers follows Beaver and Geurts (2013)
with one exception. I did not consider manner adverbs such as quickly or clumsily,
because they are part of the MC in most cases. In fact, if we were to accept that
manner adverbs are PP triggers because they presuppose some event, I don’t see
why we should not include adjectives and other modifiers, on the account that they
presuppose the existence of the entity to which they apply.

The pseudo-Karttunen andHorn tests use negation and if as suspension operators.
Horn’s test is easier to use because it does not appeal to a conditional structure and
I have focused on it for the two tables. I did not include examples for epistemic
and emotive factives because they are discussed in the paper. For focus particles, I
limited myself to mentioning exclusives. The presuppositional status of other focus
particles has to be established. For instance, as explained in (Beaver and Clark 2008,
pp. 70–72), scalar additives have a very different semantics than exclusives. In some
cases, I realized that I had very shaky intuitions and added a “(?)” in Table1. I didn’t
use diacritics (?, #, *) in Table2, in order to let the reader develop her own intuition.

2I can’t but repeat my cautionary statement of Sect. 3.1: introspection can be misleading, especially,
as here, when comparing very different items.
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Table 2 Weak and strong triggers. Examples of use

Category Test type Example

Temporal
markers

Horn Paul didn’t change his mind since he read the review, if indeed
he read it

Abusch I don’t know whether Paul read the review, but, if he changed
his mind since, the final version of the paper is going to be
pretty different

Aspectual verbs Horn Paul has not stopped smoking, if indeed he has been smoking

Abusch I don’t know whether the victim has been smoking before, but, if
he has stopped smoking, we should find traces of tobacco tar in
his lungs

Exclusives Horn I doubt that only Paul came, if indeed he came

Abusch I don’t know whether Paul came, but, if only him came, it must
have been disappointing

Scalar additives Horn I doubt that even Paul missed the target, if indeed it would be
THAT surprising

Abusch I don’t know whether Paul missing the target would be very
surprising, but, if even him missed the target, we’ll see what the
others will do

Discourse
markers

Horn I doubt that Paul missed the target again, if indeed he missed it
before

Abusch I don’t know whether Paul missed the target before, but, if he
missed it again, really, it’s a pity

Sortal restrictors Horn This Jordan is not a bachelor, it seems, if indeed Jordan is a
male

Abusch I don’t know whether this super rich Jordan is a male, but if he
is a bachelor, he certainly has a lot of women chasing after him

Clefts Horn It’s not Paul who solved the problem, if indeed someone solved
it

Abusch I don’t know whether someone solved the problem, but, if it’s
Paul, he must be very proud

Quantifiers Horn Since he settled only very recently, I doubt that every
professional nurse in the town met the new doctor, if indeed
there are professional nurses in such a little town

Abusch I don’t know if any student cheated, but, if every student who
cheated has been expelled, we’ll see if some students are
missing at the beginning of the next term

Definite
descriptions

Horn Paul didn’t find the key, if indeed there is a key for this door

Abusch I don’t know if there is a key for this door, but, if Paul found the
key, we are lost

Names Horn I never met this Mr Slush, if indeed there is someone with this
name

Abusch I don’t know whether there is a Mr Slush, but, if Dora met him
she is in trouble
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3.3 Experimental Data

Certain–but not all–introspective observations are confirmed by the experiment
reported in (Cummins et al. 2013). Cummins et al. draw their initial motivation from
Zeevat’s (1992) distinction between three different types of triggers, a distinction
which I summarize in the next paragraph.

Resolution triggers form the first category. They are strongly anaphoric, that is,
they demand that the entities they refer to be present in the environment (discourse or
situation) at themoment the PP trigger is used. Zeevat mentions definite descriptions,
when- and after-clauses, as well as–tentatively–clefts. Lexical triggers correspond to
“concepts with the applicability conditions”, which means that certain conditions–
corresponding to the PP–must be met for the concept to be applicable. An example
provided by Zeevat is regret. At this stage, there is a significant complication. Zeevat
assumes that a trigger can trigger several PP. For lexical triggers like verbs and nouns,
the sortal information–whether we refer to an event or to an individual–is lexical in
nature, whereas the descriptive information–what is predicated of the event or the
individual-can be resolutive. For instance, Zeevat analyses an example like John
believes that the king is bald as divided into a lexical presupposition, a resolution
presupposition and a content (the MC of the present paper), see (15).

(15) John believes that the king is bald.
Lexical PP : x (x has the type of individuals)
Resolution PP: x ∧ king(x)

Content : B j bald(x)

Zeevat also considers triggers like again, also, another and too. They are charac-
terized by their ability to involve parts of the context that are not normally accessible,
as illustrated by (16).

(16) John believes that Mary was in Egypt. Sue was there too

Cummins et al. intend to compare the experimental correlates of lexical and res-
olution triggers. In fact, the set of triggers they choose contains (i) lexical triggers
(regret, continue, stop), only, and comparatives, (ii) two triggers of the third type
(again and too) and (iii) still. This is a little confusing but I assume that their goal
is essentially to compare triggers which look for an antecedent (again, too and still)
and triggers which express their PP directly in their lexical content. I will call the
former anaphoric and the latter lexical. Concerning comparatives, I am skeptical as
to their presuppositional status, since the alleged PP is not robust in a plain assertion:
Mary is more clever than Paul, who is really rather stupid.

In their main experiment, Cummins et al. use an evaluation task where subjects
have to rate some dialogs on a 5-point scale. The distribution of possibilities is as
follows, for the trigger again.3

3As noted by a reviewer, the bottom right case is not very clear. The answer No, because he didn’t
lose his wallet before could be interpreted as Endorsing MC + Refuting PP. I won’t try to take this
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Fig. 1 Results of the second Cummins et al. experiment

The initial expectations of the authors are that the combination of endorsing the
MC and refuting the PP are better for anaphoric triggers than for lexical triggers
and that the combination of refuting the MC and the PP is better for lexical triggers
than for anaphoric triggers. The results are summarized in Fig. 1. The stars indicate
significance in the difference between the scores for the No, because … (left bar) and
Yes, although … (right bar) answers.

Based on the introspective data of the previous section, one would expect that
regret, continue, stop and only are WT, whereas still,4 again and too are ST. As
indicated, I leave aside the case of comparatives. There is no significant difference
for again and too, but they don’t pattern alike. Still does not align with too and
again, although it is considered to be a ST. Similarly, there is a difference for the
(presumably) ST regret. So, the results delivered by the experiment do not coincide
with introspection and call for an analysis of the task itself.

The main question that experiments of this type raise is to determine how the
subjects interpret the dialogs they have to evaluate. Consider a set of pairs like those
in Table3. When a subject sees the answer Yes, although he didn’t lose his wallet
before, what does she understand? It seems pretty obvious that the answerer means
that she considers the proposition that Brian lost his wallet as true. But what is the
meaning of although? It is unlikely that although signals an incompatibility between
the fact of losing one’s wallet and the proposition that one has not lost one’s wallet
before, because such a connection would be very obscure. It is likely, in contrast,

(Footnote 3 continued)
interpretation into account, but its existence is an additional symptomof the difficulty of determining
what the target of Yes/No and although/because is exactly in this type of experiment.
4In my intuition, still does not behave differently from too or again with respect to the Horn and
Abusch tests.
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Table 3 The four possibilities in Cummins et al. design

that although is ‘metalinguistic’, that is, it indicates that the answerer has not used
an appropriate expression. Is it also the case with because in other examples? What
are the most reasonable predictions one can make, given the interpretations assigned
to the different micro-dialogs presented in the experiment? Do these predictions
correspond to what is observed by the authors? In the next section, I try to clarify the
import of Cummins et al. experiment, before reconsidering the WT/ST distinction
in the light of introspective and experimental observations in Sects. 4 and 5.

3.4 Discussion of the Experiment

Let us suppose that the yes and no particles in the various answers are free to tar-
get the MC alone, the PP alone or the MC+PP combination. I will call this set of
configurations the free attachment scenario. Under this scenario, there is no a priori
plausibility in favor of one specific attachment, in comparison to the others. Clearly,
this scenario is only a theoretical and rather implausible possibility. Nevertheless, it
is useful to enumerate all the possibilities and sort out those that stand a chance.

Figure2 shows the different possibilities of the free attachment scenario. Table4
compares what is predicted under the free attachment scenario to what is observed
by Cummins et al.

Let us first describe the predictions of Table4. With Yes-1, that is, when Yes
targets the MC alone, we predict that the perceived quality of the Yes, although …
answer should depend on the interpretation of the although discourse marker. If

Fig. 2 The a priori
possibilities for attachment

MC PP

Yes

MC PP

1 2

3

MC PP

No

MC PP

1 2

3
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Table 4 Predictions and observations

Category Diagnostic Prediction for ST and
WT

Observed

Yes-1 Depends on although WT = ST WT �= ST

Yes-2 Contradictory (PP and
not PP)

WT = ST WT �= ST

Yes-3 Contradictory (PP and
not PP)

WT = ST WT �= ST

No-1 Explanation relation
obscure

WT = ST WT �= ST

No-2 Redundant
explanation (X
because X)

WT = ST WT �= ST

No-3 ?OK WT = ST WT �= ST

it is interpreted as introducing only a correction, the answer should be judged as
correct because its meaning can be paraphrased by “what you sayMC is true, but your
question presupposes something which is false”. Although might also be interpreted
as introducing an opposition. In that case, a form ‘A although B’ would mean ‘A is
true but B, others things being equal, makes the probability of A decrease’. Under
the opposition interpretation, the negation of the PP would be seen as making the
probability of the MC decrease. It is not clear that this interpretation corresponds
to our intuition in the general case. However, we might imagine contexts in which
this dependency holds. For example, sailing across the Atlantic (as a pilot) probably
demands some experience. So, one might think that, if you never crossed the Atlantic
before and if you are not an experienced sailor, it is rather unlikely that you can
succeed. If Paul is an unexperienced sailor, one might imagine a dialog like (17).
In the case of (17), B’s answer should sound natural, since it means something like
“Yes, he has crossed the Atlantic, although it was his first experience”.

(17) A—Has Paul crossed the Atlantic again?
B—Yes, although he never crossed it before.

Whatever the interpretation for although is, the prediction for an exclusive MC
attachment is that ST and WT should not be different. Let us review more briefly the
other attachment configurations. For Yes-2, the target of the answer is the PP, which
makes the answer self-defeating, since the PP is endorsed and rejected at the same
time. A similar diagnosis has to be made for Yes-3, where the MC and the PP are the
targets. In the latter two cases, no difference between ST and WT is predicted. All
in all, for Yes, the free attachment scenario does not predict any difference between
WT and ST.

With No-1, the answer presents the negation of the PP as a reason to believe that
the MC is false. The causal relation behind this reasoning is rather obscure in the
general case. It might perhaps be clearer in particular contexts, like with although in
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the case of Yes-1. With No-2 (the PP is the target), because introduces a redundant
explanation (¬p because ¬p). The last case might be more felicitous. No targets the
MC and the PP and the answer might be interpreted as ‘it is not true that AMC and
BPP because it is not true that BPP’. Under the three No versions, like in the case
of Yes, the free attachment scenario does not predict any difference between WT
and ST.

What are the observations? Generally speaking, the predictions of the abstract
theory (free attachment) are not borne out. There are differences between triggers.
How can we make sense of what Cummins et al. observe? The authors report two
different findings. First the Yes, although … answer is judged to be globally worse
than the No, because … one. This can be explained straightforwardly if we assume
that the answers target the conjunction of the MC and the PP. In that case, Yes,
although … is predicted to be anomalous for reasons we just saw with the comment
of Yes-3 in Table4. The speaker endorses A and B and rejects B immediately after,
which is a plain contradiction.

The second finding is the difference between WT and ST–or, more precisely,
between certain items classified as ST and certain items classified as ST. Unfortu-
nately, it turns out that the results of the experiment are difficult to interpret, given
that there is a potential confound created by because. Under a descriptive (causal
or logical) interpretation, ‘A because B’ presents B as a cause of or a reason for A.
Under a metalinguistic interpretation, ‘A because B’, where A has a negative form
¬C , presents B as a reason for not using the form of words associated with C.

Horn (2001, Chap.6) exposes all the intricacies of metalinguistic negation. The
type ofmetalinguistic interpretation that is relevant in the context of the present paper
can be described as in (18).

(18) A metalinguistic interpretation consists in assuming the existence of an even-
tuality while denying that it can be described correctly by a certain form of
words.

To illustrate, consider (19). B1’s answer is a plain negative answer. There was no
event of Paul tidying up his room. This answer does not commit B1 to something
happening at all. For all we know, Paul might have stayed quietly in his armchair.
B2’s answer, where the first syllable of tidy up is stressed, conveys the idea that
something happened which cannot be properly called tidying up. It is well-known
that marking focus with a stress, as here, is conducive to a contrast interpretation,
in which several alternatives are competing (Beaver and Clark 2008; Erteschik-Shir
2007; Rooth 1992).

(19) A—Did Paul tidy up his room?
B1—He didn’t.
B2—He didn’t TIdy up his room.

In our case, the relation between the metalinguistic interpretation and the PP is
relatively clear: the failure of the PP makes its trigger linguistically inappropriate.
Note, however, that a metalinguistic interpretation can make use of the MC. For
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instance, in (20), B underlines the fact that the MC (Paul does not smoke) is not an
exact description of the actual situation, although it bears some resemblance to it.

(20) A—Paul stop smoking?
B—He didn’t STOP, but he is smoking less and less.

In order to interpret some of the results of the Cummins et al. experiment, one
has to determine, as far as possible, whether the subjects see certain dialogs with a
No, because … answer as metalinguistic or descriptive. I won’t consider the MC-
addressing metalinguistic interpretations in discussing Cummins et al. experiment,
because it is clear that the MC is not directly rejected in the No, because … answers.
Consider dialog (21). A MC-addressing metalinguistic interpretation would amount
to paraphrasing B’s answer by ‘It is not appropriate to say that Brian lost his wallet
because he did not lose it before’, which hardly makes sense.

(21) A—Did Brian lose his wallet again?
B—No, because he did not lose his wallet before.

However, the MC might be indirectly affected by the rejection of the PP, and I
will have to take this possibility into account. It corresponds to what I have called
the descriptive interpretation, in which negating the PP of the question (‘Brian did
not lose his wallet before’) could make the probability of the negation of the MC
(‘Brian did not lose his wallet’) increase.

How could we discriminate between the descriptive and the (PP-addressing) met-
alinguistic interpretation in our case? If the interpretation is descriptive, we have two
possibilities. (i) The negation of the MC is caused or justified by the PP. This is very
implausible in the general case. For instance, the No, because … answer to a test
sentence like Did Ben regret arguing with his boss? would be interpreted as “Ben
has no negative feeling about arguing with his boss because he didn’t argue with
his boss”. If this paraphrase means that Ben does not regret having argued with his
boss because he didn’t argue, what is explained or justified is not, in fact, the MC
alone but the MC+PP compound. If the paraphrase means that Ben has no negative
feelings with the very idea of arguing with his boss because that did not happen, the
meaning is at best unclear since the descriptive (causal/logical) link is not particu-
larly obvious. More importantly, interpreting the No, because … answer as a ‘¬MC
because ¬PP’ pattern, is counterintuitive. If it was a natural answer, the following
dialog should sound felicitous, which is not the case.

(22) A—Did Ben regret arguing with his boss?
B—Ben has no problem with the idea because he didn’t argue with his boss.

(ii) The second possibility for the descriptive interpretation is that theNo, because
… answer rejects a logical and-conjunction because one of its terms is false. For
instance, the following dialog (23) would receive the interpretation in (24). Similarly,
the answer on the MC would correspond to (25).

(23) A—Does Toby continue to watch films?
B—No, because he didn’t watch films before.
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(24) A—Does Toby watch films and did he watch films before?
B—No, because he didn’t watch films before.

(25) A—Does Toby watch films and did he watch films before?
B—No, because he does not watch films.

Given (24) and (25), onewould not expectmuch difference between aNo, because
answer refuting the PP (24) and a No, because … answer refuting theMC (25). This
is precisely what we don’t observe. In a first experiment, Cummins et al. (2013) show
very clearly that speakers prefer an attachment to the MC, which echoes previous
similar experimental findings in (Jayez 2010).

Summarizing, the most plausible candidate for the No, because … answer is the
PP-addressing metalinguistic interpretation, where a speaker underlines the inappro-
priateness of a linguistic form by denying the PP it triggers. Moreover, this interpre-
tation is expected to remain rather marginal, because it creates a garden-path effect.
The No, because part triggers an expectation that the answerer addresses the MC
(descriptive interpretation) whereas the rest of the sequence only makes sense under
a metalinguistic interpretation. Given that both Yes, although … and No, because
… answers are most naturally interpreted as metalinguistic, we can account for the
observed difference between the scores for the Yes, although … and the No, because
… answers. Moreover, we expect that, when the PP is difficult to suspend (ST),
even the Yes, although … answer will not be perceived as natural, so the difference
between the Yes, although … and the No, because … will be smaller than when the
PP is easier to suspend (WT).

We can conclude that Cummins et al. experiment confirms that there exists a
difference in the robustness of the PP, in agreement with the general feeling that
some triggers (the ST) are more robust than others (the WT). However, the results
leave us with two questions.

(1) The correspondence with the introspective data is imperfect. First, still and regret
seem to be ST, whereas the experiment classifies them as WT. Second, the reason
why again and too have inverse profiles is unclear, even if the difference between
the scores for the two answer types is not significant. Third, how is it that too has
a markedly better score for the Yes, although … answer than regret, only, continue
or stop?
(2) The nature of the distinction between WT and ST remains a bit mysterious.
Clearly, not all triggers behave the same. Is this sufficient to conclude that they fall
into ‘natural’ classes, e.g. anaphoric versus lexical or strong versus weak? Should
the difference be conceived instead on an item-per-item basis, or should we consider
an intermediate taxonomy, with several small classes, possibly originating from a set
of parameters?



Orthogonality and Presuppositions: A Bayesian Perspective 161

4 Separation and M-Relevance

4.1 Abbott on Detachability

Abbott (2006) offers a precious cue. She notes an apparent correlation between
the status of triggers and the relation between MC and PP. The PP of ST corre-
spond to pieces of information which are orthogonal to the MC, as evidenced by
the nondetachability criterion, in the sense of (Grice 1989, Chaps. 1–2). Grice dis-
cusses nondetachability in the context of conversational implicatures. A conversa-
tional implicature is non detachable whenever it is not possible to ‘say’ the same
thing, that is, to convey the same MC, without triggering the same conversational
implicature, unless some feature of the alternative expression is relevant to the deter-
mination of the original implicature. Conversational implicatures are in general (but
not always) nondetachable, whereas conventional implicatures are in general detach-
able. Interestingly, (Grice 1989, p. 43) mentions the implicatures of PP triggers as
nondetachable. In Paul stopped smoking, the proposition that Paul has been smoking
will survive any attempt to reformulate ‘what is said’ in Grice’s sense.

Let us assume for the moment that Grice is right. Clearly, with ST, it is possible to
‘say’ the same thingwithout the PP. So STwould be analogous to conventional impli-
catures, which, moreover, are reputedly hard to suspend (Potts 2005), like ST. Abbott
explains the common resistance of ST and conventional implicatures to suspension
by resorting to a mechanism of intention attribution. A speaker has a choice between
communicating the PP of a ST or not. Since the PP and the MC are informationally
independent, and the speaker chose to communicate the PP, the latter must be part of
her communicative intention. For instance, in using Mary hit the target again instead
of Mary hit the target, a speaker lets us think that drawing our attention to the PP is
an essential part of her message, hence the incompatibility with suspension, which
would result into an incoherent conversational plan.

It seems that Abbott’s account suffers from the same problem as Grice’s. It is
just technically incorrect to claim that PP of verbs like stop, or of WT in general,
are nondetachable. There are perfectly good ways to ‘say’ the same thing without
conveying the same PP. First, there is the possibility of asserting the MC alone, like
Paul does not smoke with respect to Paul stopped smoking. One might object that,
when using Paul does not smoke, we do not convey the same content because the
transition from an activity of smoking to its negation gets lost. At the root of this
objection, there is a frequent cognitive illusion about the MC. A plausible logical
formula corresponding to Paul stopped smoking is shown in (26.2). t is a time point
(or a small incompressible time interval), I1 and I2 are time intervals, � (�) are the
relations of right- (left)-abutting. t � I iff t (or its smallest upper bound, if t is an
interval) is the greatest lower bound of I . I � t is defined symmetrically. (26.2) says
that there is a past time t such that Paul has been smoking just before t and didn’t
smoke for some time just after t . The MC is shown in (26.3). It says that John didn’t
smoke for some time, just after some time t . We might express the MC simply by
saying Paul didn’t smoke or Paul has not been smoking, or, if we are sure that Paul
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didn’t start smoking again, by Paul does not smoke. Admittedly, we do not thereby
convey the same information as with Paul stopped smoking, but the information we
lose depends on the PP, not on the MC. We are just asserting that there is some past
time point after which Paul didn’t smoke, during some time interval which extends
or not to the present, and this is indeed the ‘substance’ of the MC.

(26) 1. Paul stopped smoking
2. ∃t, I1, I2(past(t)& I1 � t & smoke(Paul, I1)& t � I2 &¬smoke(Paul, I2))

3. ∃t, I2(past(t)& t � I2 &¬smoke(Paul, I2))

Interestingly, what I presented as a cognitive illusion is also to be found in theories
of conventional implicatures. Potts (2005) sees implicatures as orthogonal to the rest
of the sentence, in the sense that their truth of falsity does not affect the truth or
falsity of the rest of the sentence. For example, in (1a), whether my friend finding the
solution is unexpected or not or whether he is stupid or not does not affect the truth
or falsity of my friend finding the solution. In contrast, with a sentence like Charles
has talked to his sister, a PP failure–assume that Charles has in fact no sister–makes
the whole event of speaking to Charles’s sister impossible. In the present approach,
the point is that the fact that Charles has no sister does not affect the main content
that Charles has talked to someone, who happens, by virtue of the PP, to be his sister.
The difference between a conventional implicature trigger and a PP weak trigger is
that the MC and the implicature are clearly separated.

One might object that, in (26), the MC and the PP share the temporal variable t .
If we assign different attitudes to presupposing and asserting, we can reformu-
late (26.2) as ∃t (the speaker presupposes φ(t)& the speaker asserts ψ(t)). A similar
remark applies to factives, where the speaker presupposes a proposition and asserts
that some agent entertains a certain attitude (knowing, discovering, regretting, etc.)
with respect to the same proposition. The presence of a shared variable might appear
to be the core of non-detachability. Unfortunately, a ST like again exhibits the same
property. In saying Mary hit the target again, a speaker asserts that Mary hit the
target at some time t in the past and presupposes that Mary had hit the target at some
point t ′ before t . So, the t variable is shared. More generally, sharing a temporal
variable is unavoidable in every situation where two events are declared and located
with respect to each other.

Moreover, there is another formulation that does not convey the PP, the ‘flat’ one,
in which the MC and the PP are juxtaposed within a conjunction, for instance, Paul
has been smoking until Monday and didn’t smoke (for some time) after Monday,
instead of Paul stopped smoking on Monday. So, I don’t see how to reconcile the
MC versus PP distinction with the idea that the PP is a nondetachable element. Of
course, one could choose to reject the distinction and see WT as holistic bundles,
but, under this view, it seems that nothing is left of the initial problem addressed by
Abbott. If WT are not ‘triggers’, but rather co-entail the MC and the PP, what is the
whole discussion concerning the WT/ST difference about?
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A reviewer mentions the characterization of soft triggers (=WT) proposed by
Abrusán (2011) and wonders what relation it might have to Abbott’s idea.5 Abrusán
considers only verbal WT and offers a predictive theory. Given a verbal WT, she
proposes criteria to determine what the PP is. According to her definition 32 (p. 509),
a PP is an entailment that obeys one of the two following conditions.

1. The entailment can be expressed by a sentence that is not necessarily about the
event time of the matrix predicate, or,
2. the entailment can be expressed by a sentence that is not necessarily about the
event time of the sentence that expresses the most direct answer to the background
question determined by grammatical marking. (1)

Condition 1 can be illustrated by Paul knows that Mary solved the problem.
Clearly, the event of Mary solving the problem can span a different time interval
than the interval corresponding to Paul’s epistemic state. Condition 2 takes care of
focus problems. For instance if the complement clause of a factive like discover
is in focus, it is grammatically marked as answering a background question. The
complement clause is then interpreted as expressing a secondary main point (in
addition to the primary main point expressed by the matrix verb). Since a PP has
to be temporally independent of the time span of every main point in the sentence,
this predicts that, in some cases there is no room left for a PP. In example (27),
where the embedded clause is in focus, there is no mention of an event that would
be temporally disconnected from either the event expressed by the main verb or
the event described by the embedded clause. So, nothing is presupposed, or, in the
traditional terminology, the PP that Paul lied to the committee is suspended.

(27) If someone discovers that [Paul lied to the committee]F it will be a scandal

Two remarks are in order. First, Abrusán’s approach predicts that the PP of
discover-like verbs cannot be suspended unless the embedded clause is in focus.
I wonder whether this is not too strong. Imagine the following dialog (28), in a
context where Paul, an assistant of the President, has just testified before an offi-
cial committee in a bribe case. The final conditional sentence does not commit the
speaker to the belief that Paul lied. Must this sentence be in focus? It is not necessary
that there be an intonational focus. One might argue that the clause is ‘indirectly’
in focus because it is an answer to a question that is relevant to the main question
about Paul’s situation. This certainly makes sense but could be taken to be just the
joint effect of two aspects: (i) the context does not establish that Paul lied (otherwise,
suspension would be impossible) and (ii), in general, answers to questions must not
mention irrelevant information. If we apply Abrusán’s analysis, S’ = he has lied to
the committee is not in focus, since there is not grammatical marking, and we get
the following configuration: (i) there is a sentence S (someone discovers that S’)
with an entailment S’, (ii) S’ is not necessarily about the event time of the main verb

5For time reasons, I was not able to properly analyze recent work by Romoli, which seems relevant
to the issue addressed in this paper.
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(discover), (iii) there is no background question determined by grammatical mark-
ing with respect to which S’ could constitute an answer. So the PP projects, contrary
to intuition in certain cases. We might drop the grammatical marking requirement
but, in that case, we would have to say that every piece of information that might
contribute to answer the main question will be ‘in focus’, or rather, in the terms of
Simons et al. (2011), at-issue. According to Simons et al. (2011), only those elements
of interpretation that are not at-issue can project, or, equivalently, at-issue elements
cannot project. Their proposal would account for non-projection in (28), at least if
one considers that the embedded clause he has lied to the committee is at-issue (=is
relevant to a question under discussion). Another–conservative–option is to consider
that the context makes one of the suspension/non-suspension interpretations more
plausible than the other.

(28) A—What is exactly the situation of Paul?
B—I don’t know for sure. At the moment, he seems to have the favors

of the President, but, if someone discovers that he has lied to the
committee, he is going to run into trouble.

The second remark to be made on Abrusán’s approach is that, although she occa-
sionally touches on the issue of ST, the goal of her paper is not to propose a theory
of the distinction between WT and ST. This makes it hard to compare to Abbott’s
perspective and creates a more serious problem. She considers WT to be verbal,
probably because she needs an event structure. It’s not necessarily true (see Tables1
and 2) and makes it difficult to extract from her analysis of WT elements that could
be directly recycled to address the WT/ST distinction.

4.2 The Separation Intuition

In spite of the nondetachability problem, there is an extremely useful insight in
Abbott’s approach, namely the idea that conventional implicatures and ST are some-
how akin. Their relationship can be expressed very simply: for conventional impli-
catures as well as ST, the two components of the content, that is the non-MC and the
MC, are separated in the message. The part of the message that conveys theMC does
not convey the non-MC and reciprocally. As a result, with a ST, the PP-addressing
metalinguistic interpretation, which depends on the rejection of the PP, cannot con-
cern the part of the message that conveys the MC since this part is appropriate. So, it
must concern the trigger only. If one assumes with, among others, Partee (1991), that
PP are unfocused by default–they normally constitute or contribute to the topic–they
alone cannot be the target of a refutation unless some additional cue is provided, like
a special stress, as in (29).

(29) Paul didn’t hit the target aGAIN, since he missed it at his first try.
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It follows from the separation property that ST are expected to be very poor targets
under a PP-addressing metalinguistic interpretation, which is compatible with some
of Cummins et al. observations.

However, some other observations seem difficult to reconcile with the separation
property. Although still, again and too would be classified as ST according to
Abusch’s suspension test (see example 31), they don’t behave similarly according
to the Cummins et al. test. In fact, a closer look reveals that too is the only item for
which the Yes, although … answer gets a better score than the No, because … one. I
conjecture that the main reason is that, in the setting of the experiment, the PP of too
remains vague. The four stimuli used by Cummins et al. are of the type Did Ian win
a prize too?, which would ideally require that we know who won a prize, apart from
Ian. Although the standard theory has it that the PP would be someone else won a
prize, it has been repeatedly noted that this PP is in most cases trivially satisfied and
that the standard usage is that the actual PP involves a particular individual, different
from Ian, winning a prize (see Kripke 2009). I won’t be concerned here with the
exact presuppositional structure of too, which is the matter of some debate, but it is
clear that a dialog like (30) is extremely difficult to interpret. In addition to the fact
that the general preference for addressing the MC is defeated, a specific PP, of the
form x won a prize cannot be construed from the first sentence and the rejected PP
in the No, because … answer is a consequence of an (absent) specific PP and not
a genuine PP. The configuration is not logically impossible, but requires probably
some extra processing, which results in a stronger impression of incoherence, when
compared to triggers like again or still.

(30) A—Did Ian win a prize too?
B—No, because no one else won a prize.

Summarizing, the separation property provides a convenient explanation for the
metalinguistic interpretations and, since I have argued that the most plausible inter-
pretation ismetalinguistic in the case of the Cummins et al. experiment., this property
is a good candidate for explaining their observations.

However, I have not discussed Abusch’s suspension test, exemplified in Table2
and in (31) below. Abusch’s idea is that ST do not permit PP (local) accommodation,
in particular in the antecedent of a conditional, as in (31). One can observe that, more
generally, ST like still, again or too cannot be easily suspended. In contrast to (9),
repeated below, (32) and (33) are infelicitous.

(31) a. ?? I don’t know if Paul participated in the race, but if Mary participated
too, they probably ran together.

b. ?? I don’t know if Paul participated in the race before, but if he
participated again, he must be very proud.

c. ?? I don’t know if Paul was in the garden, but if he is still there, ask
him to bring back the spade.

(9) [Context: Paul has never seen Mary smoking, but she seems very nervous and
restless.]



166 J. Jayez

Is Mary quitting smoking?
�� Mary has been smoking

(32) [Context: Paul has never seen or heard about Mary smoking, but she seems
very nervous and restless.]
a. Is Mary still smoking?
b. Is Mary smoking again?

(33) [Context: Paul has no evidence that Mary has a particular problem, for instance
personal difficulties.]
Does Mary have professional problems too?

Examples of this kind do not seem to have much to do with a metalinguistic
interpretation. They are not isolated cases. Consider sentences of the type illustrated
in (34). Although (34a) and (34b) refer to the same set of situations, the latter is less
natural.

(34) a. I saw that Paul smokes, but I don’t know whether he is starting or
just continuing.

b. ? I saw that Paul smokes, but I don’t know whether he is starting or
still smoking.

The contrast between prefixes and adverbs expressing repetition provides similar
observations. In many Romance languages the re– prefix is used to express repetition
(Sletsjøe 1979). For example, in French, there are two alternative forms for expressing
repetition. One can use a ST like encore, à/de nouveau (again), une fois de plus (once
more), or, in some cases, prefix a verb with the iterative marker re-. Imagine that Paul
climbed the Matterhorn (Cervin in French) twice. One can express the repetition as
in (35d) or (35e), where the repetition prefix is underlined.

(35) a. Paul climbed the Matterhorn
b. Paul a fait le Cervin
c. Paul climbed the Matterhorn again
d. Paul a encore fait le Cervin
e. Paul a refait le Cervin

Now, suppose that Paul is climbing the Matterhorn with Mary and that she is
impressed by the easiness with which he orients himself, finding his way through
the different possible paths and avoiding dangerous areas. She tells herself (36). The
intended interpretation is thatMary suspects that Paul climbed theMatterhorn before
and that he didn’t let her know, maybe for showing off. Under this interpretation,
(36b) is not felicitous, like its English counterpart (36c). In contrast, (36a) is much
better.

(36) a. C’est étonnant! Peut-être qu’il le refait et qu’il n’a pas voulu me le dire.
b. ?? C’est étonnant! Peut-être qu’il le fait encore et qu’il n’a pas voulu

le dire.
c. ?? Amazing! Maybe he climbs it again and he didn’t wish to tell me.
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Table 5 MC/PP Integration

Type of trigger Mode of integration

Temporal markers PP = complement

Factives PP = complement

Aspectual verbs PP conveyed by complement

Exclusives Convey a part of the MC

Sortal restrictors PP conveyed by a complement of the MC verb

Clefts PP expressed by the complement

Quantifiers PP expressed by an argument of the main verb

Determiners PP expressed by an argument of the main verb

Proper nouns PP expressed by an argument of the main verb

Mary observes the efficiency of Paul (the ‘data’) and she makes an hypothesis
in order to explain it. In other terms, she selects a dependency corresponding to an
acceptable likelihood. In Bayesian terms, the appropriate expression is a conditional
probability, the probability of observing the (efficient) behavior of Paul assuming
both the MC (he is climbing the Matterhorn) and the PP (he has done that before),
in symbols (Pr(efficiency|MC&PP)). Note that the MC is involved and cannot be
taken out of the probabilistic dependency. Suppose that we are in a context where
Paul is not climbing the Matterhorn, Mary could not observe that he is particularly
efficient. The difference between (36a) and (36b) is due to the lexical packaging of
an information piece which is otherwise perfectly identical in the two cases.

Examples (32), (33), (34), (35) and (36) suggest that a PP associated with a ST
cannot be in focus. The infelicitous questions or suppositions in the various examples
try to address the PP of triggers like again or still, that is, triggers that express the
PP separately from the MC. With other triggers, the MC and the PP are integrated.
The PP is related to an argument of the MC verb. A notable exception is only, which
conveys a part of theMC as well as a part of the PP. For instance, as a an NP-modifier,
only acts on a NP and a VP, assembling the content of both to produce the PP and
the MC. So, there is no separation between the two parts of the content, but, rather,
an entanglement determined by only (Table5).6

The resistance of ST to focusing does not explain Abusch’s observations. In (11b),
repeated below, the PP triggered by too is not in focus alone, unlike in the previous
examples. However, there is a common feature between the two cases, the fact that
an operator (question, if ) cannot access a part of the message that is not involved
in the expression of the MC. E.g., in (34a), (36b,c) and (11b), the operators have

6When it modifies a subject NP, only can be described categorially as in (a), where s, s′ and s′′
are string variables, a form s : x, y denotes the fact that string s has the semantic type x and the
syntactic type y, u is the semantic type of individuals, P the semantic type of properties and t the
semantic type of truth-values.

(a) 1. syntax: (s′′:t ,S/s′:P ,VP)/s:u,NP
2. PP = P(u), MC = ∀x((x �= u) ⇒ ¬P(x)).
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to access the ST trigger, to apply a focus or conditional operator. With (11b), the
desired interpretation is ‘If Paul participated (PP) and if Mary participated too’,
that is, a local accommodation configuration in which the PP is in the scope of the
conditional operator. As noted by Abusch, such a configuration is problematic. It
seems, in fact, that the operator can’t but ignore the PP triggered by a ST, exactly
like the focus operator has to ignore the PP of ST. In the next section, I try to account
for this particular behavior of operators with ST.

(11) a. I have no idea whether Paul participated in the Road Race yesterday.
But if he won it, then he has more victories than anyone else in history.
(=Abusch’s 2010, example 3d)

b. ?? I don’t know if Paul participated in the race, but if Mary
participated too, they probably ran together.

4.3 Integrating M-Relevance

In this section, I show that, in order to exploit the separation property, we need
another ingredient (called M-relevance, for monologal relevance) which allows us
to understand why separation has the effect it has. Unless otherwise indicated, I
consider only non-metalinguistic interpretations.
Introducing M-Relevance Jayez (2010), elaborating on an earlier proposal by
Ducrot (1972) shows experimentally that it is practically impossible to construct
a discourse attachment to the non-MC exclusively, at least for a subset of discourse
relations that involve Bayesian relevance, à la Merin (1999, 2003), see definition
(37).7 In this paper, relevance is restricted to monologues, and I will use the label
M-relevance to make this restriction more apparent.

(37) A proposition p is positively (negatively) relevant to another proposition q in
a belief state B =df log[PrB(p|q)/PrB(p|¬q)] is > 0 (< 0). So, relevance
is just the difference between the log-likelihoods. Intuitively, p is positively
(negatively) relevant to q iff updating the current context (belief state) B with
q makes the probability of p increase (decrease).

Causal relations are a case in point. With ‘A because B’ patterns, A is presented
as having positive M-relevance to B or, equivalently, B is presented as making the
probability of A increase. (38.a) exemplifies an attachment to the MC: it is because
smoking is unhealthy that Paul does not smoke. Whatever (38.b) means, it cannot

7I followMerin and the standard practice of using log of quotients instead of quotients. This ensures
that relevance is null whenever Pr(p|q) = Pr(p|¬q). I am not convinced that the present notion of
relevance is necessarily the best but I don’t know of any proposal about how to compare different
notions.
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Table 6 M-Relevance relations

Paul stopped smoking because it’s unhealthy

log[Pr(bad-for-health|¬smoke)/Pr(bad-for-health|smoke)]
Mary might be quitting smoking because she is nervous

log[Pr(nervous|quit-smoking)/Pr(nervous|¬quit-smoking)]

mean that Paul smoked because he liked that,8 that is, any attachment to the PP
alone is precluded. Jayez (2010) shows that this restriction holds for conventional
implicatures as well. With abductive relations, where the speaker deduces possible
causes from observations, the MC can correspond to the hypothetical cause. For
(38a) and (9), we have the M-relevance relations in Table6.

(38) a. Paul stopped smoking because it’s unhealthy.
b. Paul stopped smoking because he liked it.

(9) [Context: Paul has never seen or heard about Mary smoking, but she seems very
nervous and restless. He wonders whether Mary has been smoking and is trying
to stop]
Is Mary quitting smoking?
�� Mary has been smoking

The obligatory character of an attachment to theMC forM-relevant constituents is
expressed in (39). The interaction between M-relevance and attachment corresponds
to the following intuition. When a speaker makes it manifest that she introduces
in the discourse some information that potentially makes the probability of a cer-
tain proposition increase or decrease, this information must concern the part of the
message that conveys the MC, although, as we will see below, it can also concern
other parts. It is not surprising that the MC should be involved, given that the MC
corresponds to the foregrounded information in linguistic communication.9 It would
be much more surprising that a speaker bothers to mark a certain content as fore-
grounded (the MC) and forgets it altogether in the rest of the discourse (see Jayez
(2014) for a detailed discussion). This makes sense for monologues. For dialogs the
situation is more complex, because an addressee can reject implicitly or explicitly
the foreground/background divide of the speaker. I won’t discuss the case of dialogs
in this paper and will focus only on M-relevance.

The notion of M-relevance extends to suspension operators (negation, interroga-
tion, if ). When a speaker applies such an operator to a proposition, the MC must
be involved for the same reason as with M-relevance attachments: why would the
speaker foreground some information if it was to be ignored?10

8A reviewer notes that (38.b) might mean that the reason for Paul stopping smoking is that he liked
smoking. This is true, but, in that case, the attachment is to the MC and the plausible interpretations
are hard to get (maybe Paul is wary of addiction?).
9This is a widely shared intuition, see for instance Grice 1989, pp. 121–122 and Abrusán 2011.
10A reminder: I am not talking about the metalinguistic interpretation in the present section.
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(39) M-relevance and MC
A M-relevance-based attachment must exploit the MC.

(39) leaves open the possibility that the MC acts as a cause or a consequence,
in patterns of the form MC

cause−−−→ X , X
cause−−−→ MC, or MC

cause−−−→ ¬X and
X

cause−−−→ ¬MC in the case of opposition relations. Importantly, (39) must not be
interpreted as implying that the probability of the MC is modified. For instance,
in a sentence like Paul lost the race although he had a hard training period, the
probability of Paul losing the race is maximal for the speaker. Relevance concerns
potential probability modifications. p is potentially relevant to q in B if, in any
context (belief state) B′ minimally different from B and such that B′ does not satisfy
p and does not satisfy q, updating B′ with q makes the probability of p increase or
decrease. Constructing a proper definition of ‘minimally different from’ is a complex
problem and I assume that most definitions proposed in the literature are compatible
with the definition of potential relevance (see van Benthem et al. (2009) for a recent
discussion of the problem from the point of view of modal logic).

Attachments to both the MC and the non-MC are not disallowed by M-relevance.
For instance, in Paul has a strong will since he stopped smoking, attributing a strong
will to Paul ismotivated by the conjunction of the fact that hewas a smoker up to some
point in the past and that he has not been smoking after that point.11 This is exactly the
type of attachment we have in (9). The possibility that Mary has been smoking and
is no longer smoking is motivated by the observation that she is somewhat agitated.
There are similar observations for ST, e.g. Paul has hit the target. If he hits it again,
it will be a real feat. If the PP of a ST can be taken into account in an attachment,
what does the distinction between WT and ST consist of exactly?
Connecting M-Relevance and Separation In Sect. 4.2, we have seen that focus-
and if -operators cannot access the PP unless it is conveyed by a part of the lin-
guistic message that also conveys elements of the MC. M-relevance demands that a
relevance-based discourse relation in a monologue make use of the MC. Is there a
relation between the two constraints?

An operator must apply to (access) a part of the linguistic message. This part is not
necessarily the whole sequence of words on the right of the operator, as evidenced
by focus-, question- and if -operators, which shunt ST triggers. A discourse relation
is much more ‘abstract’ or ‘non-local’. It can exploit the propositional information
in general, no matter what its linguistic realization or its degree of implicitness are.
Thus, it is not surprising that discourse relations can access the PP of ST, since
they are part of the general discourse information. This difference granted, the MC
is an obligatory ingredient for operators and discourse relations and this common
constraint interactswith the nature of operators anddiscourse relations to produce two
different but related effects.With relevance discourse relations, theMC is necessarily
used, but other pieces of information, including the PP can contribute to support the
relation.With operators, again, theMC is a necessary ingredient, but, in contrast with

11A reviewer proposes Paul has a strong will since he isn’t smoking as an example where only the
MC is present.



Orthogonality and Presuppositions: A Bayesian Perspective 171

discourse relations, the operator cannot exploit several additional sources, because
it cannot abandon its argument to jump to another part of the sentence, which entails
that it can apply only to a PP if this PP is conveyed by the same part as the MC.

I register the constraint of obligatory attachment to a MC-part in (38).

(40) M-relevance and separation
A (non-metalinguistic) M-relevance-based discourse attachment in a mono-
logue cannot target a part of the message that does not convey elements of
the MC.

A consequence of (40) is that, for ST, the PP will tend to be ignored, except under
the metalinguistic interpretation with a special focus marking on the PP, typically,
some focal stress as in (29). This accounts for the observation that, in general, the PP
of ST cannot be suspended. However, one may wonder what happens if the context
somehow makes the PP salient. In Sect. 5.1, I report experimental findings which
show that suspending the PP of too (a ST) is possible when the process of local
accommodation is ‘boosted’ by the interpretation process. ForWT, (40) predicts that
a relevance-based attachment will use the MC and can also use the PP if we have a
form of words that assembles the PP of a STwith itsMC, instead of putting them into
two different slots of the message. However, emotive factives are classified as ST,
which does not square well with my analysis. In Sect. 5.2, I show that the apparent
counterexample of factives can be dealt with in terms of context abduction and is
not, in fact, an exception to constraint (40).

5 Loose Ends

5.1 Accommodation

If we think of the way in which we learn to use presuppositional terms, it is highly
likely that in most contexts, the PP is satisfied. For instance, it is repeatedly noted
in the literature on first language acquisition that again or more are part of the
young (≤2 years) child lexicon, see Kauschke and Hofmeister (2002) for wieder
(again). For English, the consultation of http://childfreq.sumsar.net/ suggests that
more and again are more frequent than stop and start.12 This does not necessarily
indicate that ST are learned before WT because they are strong. They could simply
correspond to situations that a young child is likely to encounter and/or to categorize.
It is nonetheless interesting that all those triggers are learned at a very early stage
in language development, since they involve very robust PP, or in a more linguistic
terminology, quasi-automatic projection. This is in agreement with our intuition
that PP triggers would lose any presuppositional character if they were learned in

12Interestingly, as observed by a reviewer, one might argue that stop is more similar to more and
again than start.

http://childfreq.sumsar.net/
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just random contexts, including those in which the PP is not satisfied.13 The fact
that presuppositional terms are learned preferably or exclusively in contexts where
there is no PP failure lends support to Lassiter’s analysis in terms of a probability
threshold (Lassiter 2012). According to Lassiter, whenever p is an atomic sentence
which carries the semantic PP p, “a speaker should not utter p unless Pr(p)meets or
exceeds a high threshold θ according to her epistemic state, and she believes that her
audience also assigns p at least probability θ .” (Lassiter 2012, Definition 9). This
constraintmight be too strong and reproduce, in a probabilistic setting, the difficulties
which affect the notion of common ground. Accordingly, I will use only the first part
of the constraint, that is, I will assume that a speaker communicates that the PP is
highly probable in her own epistemic state.

When a PP has not been explicitly endorsed by the speaker or is not easily recov-
erable from the context, there is always the possibility of accommodating the PP, that
is, of assuming, at least provisionally, that it is true. The notion of accommodation
has a long history within the research field of PP and I won’t try to comment on the
different approaches. Suffice it to say that it is to be expected that ST are resistant to
accommodation, as noted by Abusch (2002, 2010). Accommodation is used when
the PP is associated with the MC, since the entry point of a relevance-based interpre-
tation is the MC carrier. With ST, the interpretation does not take the PP into account
(it does not have to). As a result, if the PP does not have a strong probability at start,
it will not be accommodated, which may result in a conflict. Let S be a sentence
containing a trigger T and C a context for this sentence. The appropriateness14 of
a WT in the sentence, given the context, is jointly controlled by the MC of the sen-
tence in the context and the PP of the trigger in the contextualized sentence. This is
very easy to formulate in Bayesian terms, by means of the conditional probability
that the appropriateness of the trigger reaches a certain value, say x , given that the
probabilities for the MC and the PP reach certain values, say y and z.15

(41) Pr(appropriate(T, S, C) = x |Pr(MC(S, C)) = y &Pr(PP(T, S, C) = z))

Equivalently, in a traditional causal network representation Pearl (2009), the
appropriateness of a WT is represented as a collider assembling the MC and the PP,
whereas a ST is appropriate only in virtue of the PP it expresses (Fig. 3). Colliders are
graphs where a dependent variable is influenced by several factors simultaneously,
which amounts to having a terminal node (the dependent variable) connected to the
various factors by a bunch of edges.

13As noted by a reviewer, it is possible–and probable in fact–that children do not master the whole
spectrum of usages of a given trigger. However, it is difficult to imagine that they would use
presuppositional terms like again or more with a PP failure.
14The notion of appropriateness is to be kept distinct from that of truth. Obviously, a trigger can
be used felicitously with respect to the belief state of the speaker and be inadequate with respect to
the actual state of affairs.
15In contrast to what is usually done in Bayesian networks, the factors that influence the dependent
variable (the appropriateness) are not sets of values of a random variable, but sets of values of a
probability.
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Fig. 3 Influence for a WT and a ST

By backward reasoning, when the appropriateness and the MC probability of a
WT are determined, the probability of the PP can be adjusted, and possibly raised to a
sufficient level if it is not determined (accommodation). Nothing similar can happen
for ST since the probability adjustments are relativized to those parts of the network
that contain PP nodes. However, it is possible that independent material makes the PP
of a ST highly probable. In that case, ST are rescued. For instance Jayez andMongelli
(2013) and Jayez et al. (2013) show that the French counterparts of stimuli similar
to (42) are positively evaluated. More interestingly, there is no significant difference
between (42a) and (42b) patterns, which suggests that the hypothetical missing PP
(Paul goes to the party) is accommodated independently of the presence of too. This
is most probably due the discourse structure, which favors a sort of counterfactual
reasoning attributed to Paul. When but is substituted for because, the subjects rate
the resulting sentences as very poor. The contrast but/because is illustrated in Fig. 4.
So, the missing PP is not really ‘accommodated’, in the sense of activated to satisfy

Fig. 4 Accommodation-like effect with because and but
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the requirements of a trigger, but rather independently activated and retrieved by the
trigger.

(42) Context: Paul has been invited to a party. He is on very bad terms with Mary
and they would prefer not to come across each other. Paul thinks that Mary
might have been invited as well.
a. I don’t know whether Paul will go to the party because/??but, if Mary
goes, it will be embarrassing.

b. I don’t know whether Paul will go to the party because/??but, if Mary
goes too, it will be embarrassing.

5.2 Are Factives a Problem?

Abbott (2006) notes that the existence of verbs like regret is a problem for her idea that
the difference between WT and ST stems from nondetachability. Regret is classified
as a ST by Abusch, whom Abbott follows, but is nonetheless detachable. I won’t try
to assess the nondetachability of regret since the concept is slippery. Rather, I turn to
recent experimental results in Jayez et al. (2013), which suggest that regret is not a
ST, even when one sticks to the framework of Abusch. Jayez et al. use French stimuli
on the model of (43), which is the English translation of one of the control-target
pairs. In the control condition, the speaker considers the PP as probable whereas she
is agnostic about it in the target condition. Subjects must rate the sentences on a 7
point scale (1 = extremely obscure, 7 = totally natural). The goal of the experiment
is to detect a significant different between the control and the target conditions. If
regret is a ST, one expects the scores for the target condition to be significantly worse
than those for the control condition. A similar experiment was designed for clefts on
the model of (44).

(43) Context: Véronique is wondering whether she will change her current car for
a bigger one.

a. I think that Véronique bought a bigger model. If she regrets it later,
it will be difficult to change again. [control]

b. I wonder whether Véronique bought a bigger model, but, if she regrets
it later, it will be difficult to change again. [target]

(44) Context: An employee cannot log in on his computer.

a. I think that someone changed the password. If it was my colleague, I
just have to wait to ask him. [control]

b. I don’t know whether someone changed the password but, if it was
my colleague, I just have to wait to ask him. [target]

Figure5 shows the (smoothed) density plots of the scores in the control and target
conditions for regret and clefts. The curves for the two conditions are extremely
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Fig. 5 Density plot by trigger under control and target conditions

similar. The statistical analysis reported in (Jayez et al. 2013, Sect. 1.3.2) failed to
detect any difference between the two conditions for regret and for clefts. Note that
clefts are considered by Abusch to be ST. Therefore, the observations are doubly
problematic.

These results suggest that regret is not intrinsically a ST. Rather, the information
it conveys makes it relatively difficult to find a context in which the PP it triggers is
suspended. But that does not mean that it is impossible. In other words, with regret
and other similar triggers, the problem is that of context abduction, the possibility of
constructing contexts inwhich an expression is felicitous. Context abduction depends
on the lexical content of the expression and probably the existence of alternatives, as
suggested by Abbott. Abbott considers that regret and similar emotive factives are
nondetachable. Yet, like in the case of stop, there are relatively natural paraphrases
of the attitude expressed by regret that lack factivity. To regret that p is to prefer a
counterfactual situation in which p did not take place. To prefer a situation in which
p is false, irrespective of the truth-conditional status of p, amounts to entertaining
the same attitude as that expressed by regret, minus the factivity. (45b) does not
commit the speaker to a belief that Paul got a Porsche. It is indeed difficult to build
very quickly a context in which one would use (45a) instead of (45b) without having
the intention to communicate that the PP is true.

(45) a. Paul regrets to have bought a Porsche
b. Paul does not like the idea of having a Porsche

Concerning semi-factives like discover, Simons (2007) argues that verbs like
discover or realize imply accessing some evidence that the PP is true. It follows that
semi-factives are similar to examples like (46). In such cases, we observe exactly the
same behavior as with discover and its mates, namely: (i) in positive assertions (46a),
the conveyed information entails that Paul missed the point and it is not possible
to cancel the latter proposition (46b), and (ii), in suspension environments, there
is no longer an entailment (46c). With a negation, we have a choice between two
interpretations: either we deny the existence of a proof, which amounts to suspending
the PP in the case of discover, or we deny that Paul is aware of the truth, which
amounts to preserving the PP.
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(46) a. Paul has a proof/conclusive evidence that he missed the point.
b. Paul has a proof/conclusive evidence that he missed the point but
?? he didn’t miss it.

c. If Paul has a proof/conclusive evidence that he missed the point, …

Generalizing, when the MC entails the PP or makes it highly probable, the very
mention of the trigger is sufficient to activate the PP. This accounts for the win versus
too contrast re-illustrated in (47). Winning implies normally participating, so the
PP is a consequence of the MC. This also accounts for the case of clefts. A cleft
like It’s Paul who solved the problem entails that Paul solved the problem (MC) and
presupposes that someone did. The PP is thus entailed by the MC. In sum, semi-
factives, win and clefts exhibit plain non-orthogonality and do not call for a special
theory of ST or WT.

(47) a. I don’t know if Paul participated in the race, but, if he won, he must
be very proud.

b. ?? I don’t know if Paul participated in the race, but if Mary
participated too, they probably ran together.

6 Conclusion

In this paper I have used introspective and experimental observations to show that
the distinction between strong and weak triggers can be based on the interaction
between the lexicon (the separation property, inspired by Abbott) and discourse
planning (M-relevance). This interaction can be expressed in a straightforward way
in an elementary Bayesian framework. The (rather metaphorical) notion of (non-)
orthogonality is replaced by a basic dependency network, which is more in line
with a number of observations. Further experimental work, of a different nature,
is needed to construct a theory of the time course and the different scenarios of
activation/accommodation, in particular in the case of strong triggers.
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This also serves as a way to establish what the best paraphrase of only is, at least in
argumentative terms.

I begin by presenting the framework of argumentation, focusing on its Bayesian
interpretation (Sect. 1). In Sect. 2 the case of exclusives is presented. I introduce their
semantics, and show that Bayesian approaches to reasoning make predictions that
conflict with intuition. I test those predictions in Sect. 3 and discuss the results and
potential implications in Sect. 3.3.

1 Argumentation

Argumentation has been defined in various ways according to the discipline in which
it has been studied, be it in philosophy, beginning with the works of Aristotle, in
computer science and artificial intelligence (Besnard and Hunter 2008), in cognitive
science (Hahn and Oaksford 2006; Zenker 2013) or in linguistics (Anscombre and
Ducrot 1983). Nevertheless, all these accounts attribute some common core proper-
ties to argumentation:

• Argumentation is an activity aimed at persuasion.
• Argumentation starts with a set of premises and uses somemechanism (e.g. deduc-
tion) to arrive at a conclusion (sometimes called goal).

• Argumentation is defeasible: an argument can be undercut, superseded, rebutted
etc. by another, more persuasive argument.

One point of dissension for the various takes on argumentation is the question
of what should be considered as a good argumentation. Some accounts focus on
defining validity criteria, following the trend fostered by Aristotle. Others consider
that an argument is good as soon as it yields some persuasive power, even if it is
logically invalid. This approach is especially adopted in the cognitive studies of
argumentation.

In this work, I will mainly consider argumentation from the cognitive point of
view, more specifically adopting the Bayesian view on argumentation as proposed
byOaksford andHahn (2004); Hahn andOaksford (2006, 2007). I will also relate this
perspective on argumentation to the linguistic perspective fostered byAnscombre and
Ducrot (1983) and later developed in Bayesian terms by Merin (1999). Section1.1
gives an introduction to the view of argumentation in the Bayesian reasoning per-
spective, and Sect. 1.2 presents the argumentative approach in linguistics.

1.1 Bayesian Reasoning and Argumentation

Bayesian models of reasoning have been successful for some time in the domain of
the psychology of reasoning (Oaksford and Chater 2007). This framework can be
rather straightforwardly applied to the case of argumentation. This has notoriously
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been done by Hahn and Oaksford (2006, 2007) (henceforth H&O, for a review of
recent works in that perspective, see also Zenker 2013).

The basic tenet of this approach is to consider that argumentation is linked to
degrees of belief. A good argument is one that increases the degree of belief in the
targeted conclusion, while a counter argument is one that decreases this belief. Thus,
the strength of an argument is measured by its ability to affect a degree of belief.
In the traditional Bayesian fashion, degrees of belief are equated with probabilities,
and the effect of an argument is measured by looking at the conditional update of
the probability function based on the contents of the argument.

For example, in (1), the targeted conclusion is T = Ted is a priest and the argument
is C = he wears a cassock.

(1) I think Ted is a priest because he wears a cassock.

Supposing that the addressee had no prior conception on Ted being a priest,
then his degree of belief in T is rather low because priests are not very numerous
(e.g.Wikipedia mentions that there were 20,277 priests in France in 2007, for a total
population of about 64million people). In other terms, we have P(T ) � 1: the belief
of the addressee in T is very far from certainty.

To measure the effect of the argument C on the belief of T, i.e. to compare P(T )

to P(T |C), we use Bayes’ rule and get:

(2) P(T |C) = P(C|T ).P(T )
P(C)

To compare P(T |C) to P(T ), we can substract them and we get:

(3) P(T |C) − P(T ) = P(T )(
P(C|T )

P(C)
− 1)

This means that P(T |C) is higher than P(T ) iff P(C|T )
P(C)

is higher than 1. This is
actually expected since world-knowledge tells us that P(C |T ) is rather high, i.e. the
chances of Ted wearing a cassock when we know he is a priest are quite high, and
certainly higher than the chances of Tedwearing a cassockwithout knowing anything
else about him. So the argument C is helping to conclude T because the knowledge
of C increases the belief in T.

This approach has successfully been used by H&O to show how so-called cases
of fallacies can be persuasive, even though they should be considered to be logically
invalid. InSect. 2.2 I develop their account of the case of the argument from ignorance,
but their framework has also been successfully applied to other cases of fallacies
(e.g. the circular argument and the slippery slope argument) and also covers effects
that can be attributed to the source of the argument rather than its form or content.

1.2 Argumentation in Linguistics

Initially, the argumentative perspective on discourse semantics was proposed and
developed by Ducrot and Anscombre (see e.g.Anscombre and Ducrot 1983 for an
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introduction). The main intuition behind this approach is that natural language inter-
pretation is not reducible to matters of truth conditions, but should also include an
argumentative component. A basic observation is the contrast in (4).

(4) a. John should be reprimanded: he was barely on time for an important meeting.
b. # John shouldbe reprimanded: hewasalmoston time for an importantmeeting.

From a truth conditional point of view, John was on time for the meeting in
(4-a) while he was not in (4-b). Nevertheless, (4-a) can be used as an argument
for reprimanding John but (4-b) cannot. Anscombre and Ducrot postulate that this
contrast is due to the respective argumentative effects of barely and almost which
are independent of their truth conditional meaning postulates.

Recent work in that domain took a slightly different perspective by assuming
that the argumentative effect of an item can be derived from its truth conditional
component and the way it conveys information (Jayez and Tovena 2008; Merin
1999). These works use a Bayesian approach similar in spirit to the one used for
Bayesian reasoning and explicitly relate the strength of an argument to its effect on
the degree of belief in the conclusion after a conditional update.

Among the operators affecting the argumentative properties, one can define the
class of invertors: these are the elements that switch the argumentative orientation
of their host sentence. In other terms if p is used to argue for C and if Op is such
an operator, then Op(p) is an argument for the opposite conclusion, i.e. for ¬C . The
most obvious element of this class is negation, as can be seen in the contrast in (5).

(5) a. This ring is nice. �
arg

Buy the ring.

b. This ring is not nice. �
arg

Do not buy the ring.

Other elements include adverbs like barely, hardly and only (Ducrot 1973). In this
work, I will focus on the adverb only. The main feature that interests us is that, unlike
negation, only apparently acts as an invertor while conveying the same informational
content as its prejacent (i.e. its host). Combined with the approach of argumentation
based on Bayesian reasoning, this leads to some conflicting predictions between the
linguistic description of only and the predictions of the Bayesian reasoning approach.

In the next section, I explore these issues in more detail by showing how they are
exemplified in the case of the argument from ignorance.

2 Exclusives and the Case of the Argument from Ignorance

2.1 The Semantics of only

2.1.1 The Basic Meaning of only

The adverb only has been the subject of numerous studies. Coppock and Beaver
(2013) claim that one can number at least 27 distinct lexical entries attributed to this
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element. It is beyond the scope of this article to do justice to every analysis proposed
of only. I will thus begin by presenting rather non-controversial facts about only and
then present a sample of the formal proposals proposed to capture these facts before
proceeding to present the argumentative properties of only.

The central observation about a sentence using only is that it conveys two com-
ponents: a positive one and a negative one. This is illustrated by the means of (6).

(6) Robert only plays the bass.
a. � Robert plays the bass.
b. � Robert plays no other instrument than the bass.

The positive component of (6) is (6-a) and its contents seem to match the contents
of the host sentence of only (also called prejacent). The negative component of (6) is
(6-b) and it is this component that seem to convey the exclusive meaning giving
its name to the class to which only belongs. To properly determine the contents of
the main content it is necessary to identify the associate of only, i.e. the constituent
which determines the set of alternative elements thatwill be excluded by the assertion.
Information structure is usually assumed to play a key role in the identification of
the associate (Krifka 1999; Rooth 1992).

The positive and negative components do not have the same assertoric status, and
this has been the subject of many publications about only. The central observation is
that negation does not affect these components in the same way: (7).

(7) Robert does not only play the bass.
a. � Robert plays the bass.
b. �� Robert plays no other instrument than the bass.

While the positive component is still conveyed after embedding the sentence under
a negation, this is not true for the negative one. This has been taken to indicate that
the prejacent is presupposed by only, although this has been the matter of dispute
(cf. below). The main point here is that, irrespective of their exact nature, the positive
and negative components do not behave in the same way under negation, which is
taken as an indication that they do not have the same informational status.

2.1.2 Formal Analyses of only

Accounts of the semantics of only vary on several points. The three main ones are
the following:

• The informational status attributed to the positive and negative components.
• The scalar nature of only’s associate.
• The actual form of the positive and negative components.

I will have little to say on the debate about the informational status of the com-
ponents. All analyses agree on the fact that the negative component corresponds to
the asserted part of the utterance. This is sometimes referred as the main content
or the at-issue content (see e.g.Simons et al. 2010; Jayez 2010 for considerations
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on the notion of being at-issue). In this paper these terms have to be understood
as being mostly equivalent although the terms main content will be preferred as a
noncommittal one alongside with at-issue.

The status of the positive component however divides the community. It has
been variously considered as a presupposition of various sorts (Rooth 1992; Krifka
1999; Geurts and van der Sandt 2004), a conversational implicature (van Rooij and
Schulz 2004), a complex meaning arising from the interplay of a presupposition
and a conversational implicature (Ippolito 2008) or a presupposition with a double
weak/strong status (Zeevat 2009). Atlas (1993) and Horn (2002) are exceptions in
considering that it can be a standard entailment of the utterance. For my purpose, I
will assume that the prejacent is not a main content. This will be sufficient to test
the hypothesis that nothing besides the main content of only is considered in the
evaluation of an argument.

The question of the scalarity of only’s associate is related to a two-sided hypoth-
esis. Firstly, some analyses assume that the associate of only belongs to a scale,
i.e. an ordered set of alternatives. Secondly, the associate is supposed to be low on
this scale, or at the very least not to occupy the top of the scale (Beyssade 2010;
Coppock and Beaver 2013). This hypothesis helps to explain why sentences such as
(8) appear degraded because even though only’s associate does belong to a scale, it
is the top element of that scale (assuming that one knows that a royal flush is the
highest possible hand in poker).

(8) # I only have a royal flush.

However, in cases such as (6), the scalar nature of the associate is less evident. One
can of course assume that the alternatives to playing the bass are ordered, but it is not
necessary to postulate the scalar nature of the associate to interpret the sentence. It is
enough to state that all possible alternatives are false. Furthermore, one can also find
examples where the associate of only occupies the top of a scale (Winterstein 2012).
Nevertheless, it is not the point of the paper to discuss the scalarity hypothesis and
I will eschew the question by only considering sentences that involve quantities and
are therefore obviously scalar. This entails that the experimental results presented
in Sect. 3 are only valid for the scalarity case. The extension to non-scalar cases is
briefly addressed in Sect. 3.3, but a thorough generalization would require further
work and experiments. Nevertheless, it should be noted that the cases that involve a
non-controversially scalar associate of only are numerous enough to justify focusing
on those in this paper.

The last point of contention is the exact form of the positive and negative compo-
nent. The paraphrases given in (6) roughly correspond towhat has first been proposed
by Horn (1969) and adopted by many after him. Zeevat (2009)’s proposal is similar
in spirit and postulates that the exclusive component conveys that there must exist an
element alternative to the associate that could be subject to the same predication but
is not. Coppock and Beaver (2013) follow Beaver and Clark (2008)’s proposal by
assuming that only is scalar and that it makes an at-issue contribution that indicates
that the prejacent is the strongest answer to the current question under discussion
(CQ). Inversely, only presupposes that the prejacent is the weakest answer to the CQ.
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As already said, I do not want to take an explicit stance on the question of the
scalarity of only. However, since all the examples that I will use involve obviously
scalar items (for reasons explained below), I will assume that in the cases at hand,
the descriptions given by Coppock and Beaver are mostly correct and that at most or
no more than are likely candidates to paraphrase the asserted content conveyed by
only. A sufficient reason for this choice is that both appear natural when the associate
of only is scalar, as in (9-a) and (9-b).1

(9) Lemmy drank only half the beer in the fridge.
a. Lemmy drank at most half the beer in the fridge.
b. Lemmy did not drink more than half the beer in the fridge.

The question of whether at most or not more than is the most adequate will be
addressed in Sect. 3.

2.1.3 The Argumentative Effect of only

The use of only in a sentence has argumentative effects. For example even though
having a master’s degree can be used as an argument for being competent (10-a),
modifying this information with only yields a counter argument (10-b).

(10) a. Ritchie is quite competent, he has a master’s degree.
b. # Ritchie is quite competent, he only has a master’s degree.

Based on the observation of examples like (10) (actually using French seulement
which I assume to be roughly equivalent to only) Ducrot (1973) describes the adverb
as having an argument reversal effect. If p, the prejacent of only argues in favor of
H then “only p” will argue in favor ¬H . This places only in the class of invertors
mentioned previously.

Unlike negation, this behavior of only is unexpected under the Bayesian per-
spective of argumentation detailed in Sect. 1.1. This is because when using only the
meaning of the prejacent is still conveyed by the argument. It is even possible to con-
struct utterances that do not differ in terms of informational content. For example,
let’s take the case of (11).

(11) a. Half the studies showed that drug X has undesirable side-effects.
b. Only half the studies showed that drug X has undesirable side-effects.

Intuitively, (11-a) should be heeded as a strong warning against using drug X,
i.e. it argues against using drug X. The question is whether this is still true of (11-b).
Ducrot’s linguistic take on argumentation predicts that (11-b) should argue in the
opposite direction of (11-a), meaning that it should be an argument in favor of using
drug X.

1This contrasts with situations where a scalar paraphrase might appear disputable, e.g. as in (21-a)
below. In such cases the question of the scalarity of only becomes relevant, cf. (Winterstein 2012).
As already stated we leave those cases outside the scope of this study.
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On the other hand, the Bayesian reasoning approach defended by Hahn and
Oaksford (2006, 2007) makes the opposite prediction. This is because both versions
of (11) convey the same informational content, namely that half the studies showed
undesirable side-effects and thus the other half showed no such effects.2 Therefore
the assertion of both versions of (11) should have the same effects since they will
lead to the same conditional update of the probability function. This however seems
to go against intuition. One way to reconcile the predictions of Ducrot’s theory with
the Bayesian account is to consider that when evaluating an argument like (11-b) not
all the material conveyed by the speaker is taken into account. More precisely, the
hypothesis is that only the at-issue content is considered. In the case of (11-b), this
at-issue content is limited to the negative component conveyed by only and this can
explain the different argumentative profiles. This hypothesis is experimentally tested
in Sect. 3. However before moving on to the results of these experiments, I show that
the Bayesian reasoning approach makes a further prediction on the orientation of
both versions of (11).

2.2 The Argument from Ignorance

Besides predicting that both versions of (11) have similar effects, the Bayesian rea-
soning approach also predicts that the positive argument should win against the
negative one. This entails that both versions of (11) should argue against using the
drug X. This can be explained by observing that the arguments in (11) involve a form
of argumentation known as the argument of ignorance which I introduce here.

Assuming the description of only that I adopted in Sect. 2.1, a sentence like (11-b)
conveys two components, given in (12).

(12) a. Half the studies showed that drug X has undesirable side-effects.
b. Half the studies showed no undesirable side-effects associated with drug X.

In the argumentation tradition (12-b) is called an argument from ignorance. The
argumentum ad ignorantiam, or argument from ignorance, is considered to be a

2Of course, it can be argued that this falls out only by adopting a strong reading of (11-a), i.e. one
where half is interpreted in an exact manner. Some accounts claim that this is the result of a quantity
implicature, which is notably defeasible and should not be integrated in the informational content
of an utterance. However, the case of numerals and quantities like half is known to be peculiar in
this regard. Typically, (i) could denote both a situation where the tank is more than half empty or
less than half empty, meaning that half easily keeps its exact reading under negation, something
which is harder for elements like some. I will therefore assume that the argument in (11-a) is done
with an exact reading of half.

(i) The tank is not half empty.

It should however be noted that ultimately I argue for the fact that an argument is evaluated only in
the light of its asserted content (see Sect. 3.3). Therefore, in the case of (11-a) the relevant reading
for evaluating the argument will indeed be a lower-bounded one. Nevertheless, the utterance can
still be considered as conveying an overall exact reading.
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classical fallacy (Hamblin 1970). One of the common paraphrase of this argument
is that “absence of evidence means evidence of absence”. More precisely, Walton
(1996) gives the following characterization of this type of argument:

(13) a. If Awere true (false), it would be known (proved, presumed) to be true (false).
b. A is not known (proved, presumed) to be true (false).
c. Therefore, A is (presumably) false (true).

Arguments from ignorance are usually treated as fallacies because the inference
to the falsity of A is logically valid only under the condition that the first premise
(13-a) is true. This is often far from true as most tests used to demonstrate the truth of
a conclusion are not perfect. However these arguments are routinely used in certain
cases, most of all in law. As an example, French law will find a party guilty of
damaging a plaintiff if and only if three elements can be established: the prejudice,
the party’s responsibility and the causal link between the party’s behavior and the
prejudice. Among the three, the causal link is usually the hardest to prove because it
is difficult to prove that the prejudice would not have occurred had the accused party
behaved differently (Pearl 2009). As an illustration, media covered several cases of
people becoming sick after taking a faulty drug but getting no compensation because
the link between the faulty drug and their illness could not be properly established.
The defense argument was that there was noway to prove the patients would not have
gotten sick anyway. Therefore, because of an absence of evidence for the causal link,
the court ruled as if there were none and did not convict the drug company. This is a
proper form of argument from ignorance since the absence of proof was considered
as proof of absence.

In their work, Hahn and Oaksford (2006, 2007) propose an explanation for the
fact that so-called fallacies sometimes appear unconvincing, while sometimes they
appear sound enough to form the basis of legal argumentation. Their proposal is
that the form of an argument itself is not indicative of its ability to convince, but
that its content is what matters. They propose a Bayesian analysis of argumentation
that captures this. Their account follows the three-fold classification of arguments
from ignorance proposed by Walton (1996): negative evidence, epistemic closure
and shifting the burden of proof. I will focus here on the case of negative evidence,
illustrated in (14).

(14) a. If drug A were toxic, it would produce toxic effects in legitimate tests.
b. Drug A has not produced toxic effects in such tests.
c. Therefore, A is not toxic.

The negative evidence refers to the absence of a test that proved toxic effects asso-
ciated with drug A. Positive evidence would refer to the opposite situation, i.e. one
where a positive test would be used as an argument for the toxicity of A. Recall that
the fallacious character of the argument lies in the premise (14-a); this is because tests
(even clinical ones) are not foolproof. H&O are interested in producing a model that
embodies this characteristic as well as the following properties of negative evidence,
which have all been experimentally tested and validated:
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1. Negative arguments can be convincing in the right context: (15) sounds like a
convincing argument.

(15) Drug A is not toxic: a recent study showed no undesirable side-effects asso-
ciated with it.

2. Generally, negative arguments are less convincing than their positive counterparts:
(16) is better than (15) (for the opposite conclusion).

(16) Drug A is toxic: a recent study showed undesirable side-effects.

The last property has an important consequence for the case of (11). It entails
that positive evidence should prevail over negative evidence, and therefore that both
(11-a) and (11-b) should argue in favor of the toxicity of drug X. The key point
to arrive at this result is to assume that in both versions of (11) the total sum of
the meanings conveyed is taken into account. If this is not the case, the two are no
longer predicted to be equivalent. This point will be at the center of the experiments
described in Sect. 3.

2.3 The Bayesian Treatment of the Argument from Ignorance

To show how a Bayesian model captures the last two facts, H&O model the force
of positive and negative evidence in the following manner. First, let’s define the
following notation for the case of (15)–(16):

• e: observation of a toxic effect
• ¬e: no observation of a toxic effect
• T : Drug A is toxic
• ¬T : Drug X is not toxic

The effects of positive evidence and negative evidence are then respectively mea-
sured by observing P(T |e) and P(¬T |¬e), i.e. the probabilities that the drug is toxic
(non toxic) knowing that there was (was not) an observation of a toxic effect in a
legitimate test.

To access these two quantities, one can use Bayes’s theorem and two quantities
that routinely define clinical tests: sensitivity and selectivity (also called specificity
by some):

Sensitivity (n) corresponds to the probability of observing a toxic effect knowing
that the drug is toxic, i.e.n = P(e|T ). A low sensitivity increases the
chances of having false negatives, i.e. negative tests in the presence
of a toxic drug.

Selectivity (l) is the probability of observing a negative test when the drug is not
toxic, i.e. l = P(¬e|¬T ). It captures the rate of false positives.

Although these quantities are usually defined in the context of clinical tests, they
apply to any type of situation where an observation is used to infer some property.
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Fig. 1 Difference between
positive and negative
evidence versus prior and
sensitivity in the highly
selective case
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For example, owning a hammer is a clue for being a carpenter. It is highly selective:
if one does not own a hammer, then the chances that he is a carpenter are very
low. However it has a rather low sensitivity: many people besides carpenters own a
hammer. Clinical tests are usually optimized in terms of sensitivity and selectivity in
order to minimize the rates of false positives and false negatives (whilst keeping in
mind that, usually, acting on one influences the other, e.g. lowering the false positives
is likely to raise the false negatives).

Next, to access the quantities P(T |e) and P(¬T |¬e)we rely onBayes’s theorem3:

(17) a. P(T |e) = n.P(T )
n.P(T )+(1−l).P(¬T )

b. P(¬T |¬e) = l.P(¬T )
l.P(¬T )+(1−n).P(T )

H&O consider that positive arguments are better than negative ones iff P(T |e) >

P(¬T |¬e), i.e. if the probability of toxicity given a positive observation is higher
than the probability of non-toxicity given a negative observation. Given (17), this
inequality translates to P(T )2(n − n2) > P(¬T )2(l − l2). In the case agents are
neutral regarding T , i.e.when P(T ) = P(¬T ), then the condition reduces to l > n,
i.e. to selectivity being higher than sensitivity.

More generally, H&O claim that

. . . as long as [selectivity] is sufficiently high, P(T |e) is greater than P(¬T |¬e) over a large
range of values of [sensitivity] even when [the prior] is low.

Figure1 shows the difference between P(T |e) and P(¬T |¬e) in function of
sensitivity and the prior h with a high fixed value of selectivity. As can be seen, most
of the regions on the graph correspond to a positive difference between P(T |e) and
P(¬T |¬e).

3Here recall that n = P(e|T ) and l = P(¬e|¬T ). In (17-a), the denominator P(e) is expressed as
the sum P(e|¬T )P(¬T )+ P(e|T ).P(T ) via the product rule. The same operation gives P(¬e) in
(17-b).
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H&O claim that having a very high selectivity is often met in practice (Oaksford
and Hahn 2004), which then ensures that positive evidence prevails over negative
evidence as desired.

2.4 Taking Stock

Throughout this section I presented various observations and hypotheses about the
interpretation of only that are potentially contradictory:

• In sentences like (11), the use of only does not affect the truth-conditional content
conveyed by the speaker: he conveys an equal amount of positive and negative
evidence.

• Under a standard Bayesian reasoning approach, two arguments that share their
truth-conditional content do not have different argumentative profiles.

• In the case at hand, the Bayesian reasoning makes the prediction that positive
evidence prevails over negative evidence.

• The Bayesian reasoning approach makes predictions that are potentially in line
with Ducrot’s approach (i.e. by predicting that only is an invertor) if we assume
that among the material conveyed by an utterance, only a subset of the content is
factored in when evaluating an argument.

I put these observations in perspective with the main hypothesis we would like
to defend, i.e. that an argument is evaluated by only considering the main content it
conveys. The next section addresses those issues by presenting the results of several
experiments.

3 Experiments

Two hypotheses come out of the discussion in the previous section. First, one wants
to test the prediction of Ducrot regarding the invertor status of only. While intuitive
enough, this hypothesis deserves testing. Second, assuming that only is an invertor, it
is necessary to test whether its argumentative profile is indeed equivalent to its main
or at-issue content alone (an hypothesis in line with previous assumptions (Jayez and
Tovena 2008) and one that has been suggested in early works on argumentation but
never properly investigated). Experiments were therefore run in order to test these
two complementary hypotheses, summarized as follows:

Inversion Hypothesis : addingonly to an argument inverts its argumentative prop-
erties, even when the content conveyed by the argument appears unchanged by the
addition of only, andwhenBayesian reasoning predicts one specific argumentative
profile.
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Main Content Hypothesis : the main content, or at-issue content, of an argument
is what determines its argumentative profile.

The inversion hypothesis is related to the behaviour of only, the main content one
is explanatory and is intended as a way to explain the inversion hypothesis should the
experimental results confirm it. The details of the experimental protocol are presented
in Sect. 3.1, results are given in Sect. 3.2 and discussed in Sect. 3.3.

3.1 Experimental Settings

3.1.1 Experimental Factors

The two hypotheses under scrutiny were tested by running four distinct experiments.
In order to test the inversion hypothesis, I compared arguments involving only to

the same argumentswithout only. For testing themain content hypothesis, I compared
argumentswith onlywith arguments solely expressing themain content of only. Since
multiple ways to quote the main content of only have been proposed I tested three
possible paraphrases for it: less than, at most and no more than. The last two are
notably used by Coppock and Beaver (2013), who mention on several occasions that
at most is probably the most appropriate. The first one was deemed to be a suitable
candidate as well for its proximity to the others in semantic terms and was also
involved in the experiments. Each of these three options led to a different experiment.

Each experiment used one independent factor, called Modification which
represents the way the argument is modified. Modification had three levels in
each experiment. Each experiments involved the following two levels:

• Bare: no modification of the argument.
• Only: modification of the argument by adding only.

The third level of Modification differentiates the first three experiments. The
values were respectively Less than, At most and No more than depending
on the paraphrase of the main content of only that was tested. For each experiment
I then compared:

• The responses for the Only and Bare levels to test the inversion hypothesis. If
they are significantly different, it will support the hypothesis.

• The responses for the Only and Less than/At most/No more than to
test the main content hypothesis and find the most appropriate paraphrase. A
paraphrase will be judged appropriate if the way the argument is evaluated is not
significantly different than the version with only.

Based on the outcome of the first three experiments, a fourth experiment was
planned in order to strengthen the observations concerning the inversion hypothesis.
It only used the No more than level for Modification and differed in the
materials presented to the subjects (cf. below).
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3.1.2 Experimental Protocol

All the experiments followed the same format, inspired by the one used by H&O in
their own experiments.

Subjects had to answer an online questionnaire presenting paragraphs of texts
followed by a question asking the subjects to rate at which degree one of the character
presented in the paragraphwas convinced by the argument presented in the paragraph.
(18) is an example of one of the items used in one of the experiments.

(18) a. Barbara is wondering whether she should take digesterol for her stomach
troubles. Her friend Sophia tells her that half of the existing medical studies
have found that digesterol has undesirable side effects.
b. How strongly convinced do you think Barbara is that digesterol is dangerous
given what Sophia tells her?

The answer to the question was given on a Likert scale (1=Not convinced at all,
10=Entirely convinced) and was the measured dependent factor in each experiment
(called Persuasiveness).

For the first three experiments, the argumentative goal p that subjects had to
evaluate was such that the Bare version was an argument for p and such that Only
and No more than (and its alternatives) were arguments for ¬p. In the fourth
experiment, this was inverted: the goal that was to be evaluated was supported by
Only whereas Bare would argue against it. For example in the case of (18), the
question was changed to (19).

(19) How strongly convinced do you think Barbara is that digesterol is not dangerous
given what Sophia tells her?

In total, each experiment presented 15 experimental items to the subjects along
with 30 filler items not involving the tested factors. Target items all included a
sentence of the form half of the X (did) Y … where X did Y is taken to be a positive
argument for the proposition used in the question (except in experiment 4), and
taken to have the intuitively desired properties of sensitivity and selectivity (e.g. they
referred to some scientific study). The only quantity used in the experiment was half
so as to ensure there would be an equal amount of positive and negative evidence
presented to the subjects (and thus ensure the predictions of the Bayesian reasoning
approach).

The items were presented in pseudo-random order and using a latin square design
to ensure a proper distribution of the target items and fillers. This means that each
subject saw five instances of each level of Modification and that no single
subject saw two versions of the same sentence instantiated with different levels of
Modification. The latin square design ensured that all versions of each sentence
were tested so that the scores associated with each level of the Modification
variable represent an average of the scores for the 15 target sentences. The target
sentences were identical in all three experiments except for the value instantiated by
the third value of the Modification variable and the formulation of the question
in the fourth experiment.
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The final questionnaire was created using the Ibex tool and hosted on the Ibex
Farm platform. Each questionnaire was answered by 33 participants recruited on
the crowdsourcing Crowdflower platform and who were paid 0.60$ for their
participation. All the participants were (self-declared) native speakers of English
and were distinct (no participant answered more than one of the surveys).

3.2 Results

The figures in Fig. 2 summarize the results of the experiments. Each figure shows
the results of one experiment by comparing the values of the dependent factor
Persuasiveness (translated on a scale between 1 and 100) for each of the levels
of the Modification factor.

Bare Only Less than

Exp. 1: Less than

20
40
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80

Bare Only At most

Exp. 2: At most
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80

Bare Only No more than

Exp. 3: No more than
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Bare Only No more than

Exp. 4: Inverted goal

20
40
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Fig. 2 Persuasiveness versus Modification, four experiments
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3.2.1 Inversion Hypothesis

Each figure in Fig. 2 shows a difference between the Bare case on one hand
and the Only case on the other hand. In the first three experiments the differ-
ence is very clear whereas it seems a bit attenuated in the fourth one. The sig-
nificance of the differences have been tested by using paired Wilcoxon tests and
all are highly significant, including the fourth experiment (Less than experiment:
V = 509, p = 4.751e − 06; At most experiment: V = 431, p = 4.062e − 06; No
more than experiment: V = 408.5, p = 3.713e − 05: Inverted goal experiment:
V = 125.5, p = 0.001126).

The influence of the experiment was assessed using model reduction and like-
lihood ratio test in order to find whether the judgments for the Only and Bare
cases were affected by the nature of the third level in the first three experi-
ments. No effect of the experiment on the values of Only and Bare was found
(χ2 = 1.3282, p = 0.5147), confirming the stability of the judgments over the
experiments and further reinforcing the conclusion that the difference between the
Only and Bare cases is significant.

Furthermore, ifwe add the scores ofBare andOnly over all experiments (includ-
ing the fourth one), the totals come close to 100, meaning that the values are com-
plementary. The inversion hypothesis therefore appears confirmed: whenever only
is present it affects the way the argument is evaluated and produces an argument
whose strength depends on that of the bare version (cf. experiment 3 versus 4). This
is discussed in the relevant section below.

3.2.2 Main Content Hypothesis

Table1 summarizes the differences (and their significance) between the Only case
and each of the three different alternatives proposed to approximate its main content.

As can be seen, the three proposed alternatives for only behave differently:

• Less than elicits judgments that are significantly lower than the ones obtained by
using only.

• At most produces arguments that are significantly more persuasive than using only
(but still not as persuasive as the Bare versions: the difference, although small,
is still significant).

Table 1 Significance of the difference between Only and its proposed alternatives (paired
Wilcoxon tests)

Alternative Diff. w. Only V p

Less than 6.79 107 0.00336

At most −14.2 425.5 7.435e-05

No more than (Exp. 3) 0.6 185 0.488

No more than (Exp. 4) −0.71 317 0.5193
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• No more than is not significantly different from only in experiment 3. This is
what prompted the choice of this version for experiment 4 where no significant
difference arises either. This supports the idea that No more than is an appropriate
way to paraphrase the argumentative component of only.

Therefore, from the argumentative point of view and in the cases at hand, the best
paraphrase for only is given by using the expression no more than.

3.3 Discussion

3.3.1 Inversion Hypothesis

The results of the experiments confirm the inversion hypothesis: the use of only
drastically affects the argumentative orientation of its host argument in the cases at
hand. I showed it to be true in the specific case where the quantity of positive and
negative evidence that should be understood by the subjects is equivalent. Therefore
the prediction that I attributed to the Bayesian reasoning approach on the grounds of
its treatment of the argument of ignorance is falsified.

It is important to note here that the inversion hypothesis does not necessarily pre-
dict that the results of experiment 4 should mirror those of the first three experiments
for the levels Bare and Only. The hypothesis merely predicts that the use of only
should affect the evaluation of the argument in a direction that is opposite to the one
defended by the Bare version. It does not however entail anything on the strength
of the produced argument. In other words, the fact that the gap between these two
levels is less important in experiment 4 than in the others does not argue against the
inversion hypothesis.

A related issue is that if we compare the values for Only between the exper-
iments 3 and 4, the difference is not significant (Wilcoxon non-paired test, W =
15758.5, p = 0.6817). Furthermore, both scores lie around the middle of the possi-
ble range of values (48.2 for the first experiment, 46.7 for the inverted experiment).

Seeing that the value for only does not seem affected by the shift in argumentative
target and that the scores for the Only sentences lie around the middle of the range
of possible values, one could hypothesize that subjects have a hard time interpreting
examples involving Only and that instead of properly evaluating the arguments
they always choose a middle range value as a kind of default. The choice for this
default could be motivated on the grounds that the sentences involving only are more
complex to treat and thus that subjects who are unsure might resort to a kind of
non-committal “safe haven”.

I have no decisive argument to turn down this interpretation but I believe it is
not right on track. My intuition is based on the fact that in the inverted goal experi-
ment, evaluating the Only case should be more easy than evaluating the Bare case
since the conclusion that is explicitly given is supported by Only while Bare goes
against it. So even though the sentence is more complex, its argumentative evaluation
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should be facilitated. This could also be a way to explain how the strength of the
argument is affected when using a reversal operator like only, which could be a way
to account for the fact that the gap in experiment 4 is less important that in the other
three. More work should however be done on the cost of processing an utterance
against an explicit conclusion for this last argument to be valid.

3.3.2 Main Content Hypothesis

Regarding the main content hypothesis, we saw that no more than is the formulation
that matches the argumentative behavior of only. Therefore we can accept the main
content hypothesis if we assume that no more than aptly represents the main content
conveyed by only. Since this has been assumed before and appears relevant for the
studied examples, the conclusion seems reasonable enough. However it should be
kept in mind that this paraphrase is not always appropriate. First of all, it essentially
applies when the associate of only is scalar. In a non-scalar case like (20) replacing
only by no more than does not appear very natural, at least not as an answer to “Who
came to the party?”

(20) a. Only Lemmy came to the party.
b. ? No more than Lemmy came to the party.

Furthermore, as pointed out in (Winterstein 2012), in some cases only does not
yield an inversion effect but rather appears to strengthen an argument. This is intu-
itively the case in (21-a) which argues for (21-b) both with and without only. It is
argued that this happens when the associate of only occupies the top of a scale.

(21) a. Lemmy only drinks single malt scotch.
b. �

arg
Lemmy is a connoisseur of whisky.

In those cases replacing only by no more than would probably not be a good
argumentative paraphrase. The same could also be said for at most which is also
purported to be a good approximation of the main content of only.

Such a case is interesting for the main content hypothesis. For (21-a), one could
paraphrase the main content as in (22).

(22) Lemmy does not drink low and middle range whiskies.

Intuitively, (22) argues in favor of (21-b), so the main content hypothesis can be
maintained even in the case of (21-a).As claimed in (Winterstein 2012), the advantage
of this position is that this entails that the argumentative profile of only can be derived
from its semantics without having to postulate it as a primitive meaning (which is
the traditional way of treating argumentation in the linguistic perspective).
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3.3.3 Bayesian Reasoning

Assuming that the previous hypotheses are correct, we can draw a refined account
of the way the Bayesian interpretation of natural language takes place. Essentially,
I make more precise the nature of the content that is used for the conditional update
of the speaker’s beliefs by stating that only the at-issue content is used.

Assuming, with Zeevat (2013, 2014), that looking for the interpretation I of an
utteranceU means finding I such that argmaxI p(I )p(U |I ), then this last hypothesis
reduces to say that in this process, U is restricted to its at-issue content in this
operation.

The exact extension of the notion of interpretation is beyond the scope of the
paper. However, one can assume that the speaker’s goal, i.e. the proposition he or
she wishes to support by making his assertion, does belong to I . Therefore, the
process of abduction of the argumentative goal is also constrained by themain content
hypothesis: when figuring out the potential goals the speaker might be defending,
the reasoning is only done by considering the at-issue part of the argument.

We apply this hypothesis to the case of (11) (repeated here).

(11) a. Half the studies showed that drug X has undesirable side-effects.
b. Only half the studies showed that drug X has undesirable side-effects.

According to the main content hypothesis, the contents considered in the update
are:

(11-a) : Half the study showed that drug X has undesirable side-effects.= E
(11-b) :No more than half the study showed that drug X has undesirable side-effects.

≡ Half the study did not show that drug X has undesirable side-effects.= ¬E

Let’s define GE = {p|P(p|E) > P(p)}, i.e. the set of goals for which E is
an argument and G¬E = {p|P(p|¬E) > P(p)} the corresponding set for ¬E . As
shown above, we have T ∈ GE and¬T ∈ G¬E . In the case of (11-a), determining the
interpretation of the utterance entails determining a subset of GE that will correspond
to the goals attributed to the speaker. In the case at hand we can consider that the
discourse situation induces a simple bipartition, i.e.: GE ⊂ {T,¬T }, the speaker
argues either in favor or against the toxicity. Since ¬T is not in GE , we then attribute
T as being the goal targeted by (11-a). The same reasoning applies for (11-b).

A more complex situation would not have involved a simple bipartition. In that
case, determining the speaker’s goalwould have impliedfinding out the element H ′ of
GE that satisfies somecriterion.Aplausible onewould be that H ′ had to be the one that
maximally affects the probability of asserting E , i.e. H ′ = argmaxH p(H)p(H |E),
which follows the intuition mentioned above regarding I.

On a final note, we can also wonder how to integrate the contribution of presuppo-
sitions in the argumentative reasoning. As suggested by a reviewer, presuppositions
could be treated as constraints on the prior probability. In (11-b), this wouldmean that
the prior P(T ) should be affected by the knowledge of E , i.e. set to P(T ′) = P(T |E),
before being updated to P(T ′|¬E). The problem with this hypothesis is that it con-
tradicts the main content hypothesis and predicts that both versions of (11) should
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argue in the same way (cf. the discussion on the argument of ignorance in Sect. 2.2
where I show that positive arguments “win” over negative ones).

Therefore, if presuppositions enter the picture of argumentation reasoning, they
have to be treated in a different manner. It is rather plausible that they might affect
prior probabilities in a way. The protocols presented here cannot however shed light
on the matter and I have to leave this to future work.

4 Conclusion

Using the specific case of the semantics of only I tried to bridge the gap between
Bayesian theories of reasoning and theories that deal with the interpretation of natural
language items. I focused on the specific case of the argumentative interpretation
of natural language utterances and defended the hypothesis that natural language
arguments are evaluated on the sole basis of their at-issue content. This was backed
up by various experiments.

Notably, we have seen that applying this hypothesis to the case of only makes the
right predictions. An immediate consequence is that it is not necessary to postulate
a specific argumentative component inherent in only. Nor did I need using any con-
straint that stipulates that only’s associate has to be situated “low” on a scale. The
only requirement we needed from only is that its main content excludes alternatives.
In the case at hand the associate of only is scalar in nature which means that the
only possible alternatives must be higher on the scale than the associate itself: lower
values do not count as viable alternatives since they are entailed by the associate. In
my account this is not due to only but a consequence of the nature of the associate
and is thus compatible with all the accounts that have such a description of the main
content of only.

An alternative view on the facts presented in this work is to consider the way
an addressee would reason when faced with a sentence like (11-b). Since the infor-
mational content is the same as (11-a) and since the speaker chose to utter a more
complex version involving only, the addressee is entitled to infer that the speaker has
a non-standard attitude towards the contents he or she expresses and that this attitude
is expressed via only. At this point we can either assume that the meaning postulate
behind only encodes the necessary “negative” component, or we can assume that the
addressee evaluates the speaker’s specific attitude by focusing on the at-issue content
of the utterance. This corresponds to the main content hypothesis I have defended
so far, but puts it in a dialogical perspective where instead of mechanically updating
the belief function of the agents, the process takes into account the agents attitudes
towards the contents they express. Developing this account for only is left for future
work. My main point here was to underline the specific profile of only and the fact
that it could be derived by focusing on its at-issue content.A more general program
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for research would be to evaluate in which measure one can further motivate various
layers of meaning (presupposition, implicature etc.) as means of conveying informa-
tion while keeping it hidden from some parts of the process of interpretation such as
argumentation. This is left for future research.

References

Anscombre, J. C., & Ducrot, O. (1983). L’argumentation dans la langue. Liège, Bruxelles: Pierre
Mardaga.

Atlas, J. D. (1993). The importance of being only. Journal of Semantics, 10, 301–318.
Beaver, D. I., & Clark, B. Z. (2008). Sense and sensitivity: How focus determines meaning. Oxford:
Wiley-Blackwell.

Besnard, P., & Hunter, A. (2008). Elements of argumentation. Cambridge: MIT Press.
Beyssade, C. (2010). Seulement et ses usages scalaires. Langue Française, 165(1), 103–124.
Coppock, E., & Beaver, D. (2013). Principles of the exclusive muddle. Journal of Semantics. doi:
10.1093/jos/fft007.

Ducrot, O. (1973). La preuve et le dire. Paris: Mame.
Geurts, B., & van der Sandt, R. (2004). Interpreting focus. Theoretical Linguistics, 30, 1–44.
Hahn, U., & Oaksford, M. (2006). A Bayesian approach to informal argument fallacies. Synthese,

152, 207–236.
Hahn, U., & Oaksford, M. (2007). The rationality of informal argumentation: a Bayesian approach
to reasoning fallacies. Psychological Review, 114(3), 704–732.

Hamblin, C. L. (1970). Fallacies. London: Methuen.
Horn, L. (1969). A presuppositional analysis of only and even. In: R.I. Binnick et al., (Eds.) Papers

from the Fifth Regional Meeting (pp. 318–327). Chicago Linguistic Society.
Horn, L. (2002). Assertoric Inertia and NPI Licensing. In The Panels, CLS (Vol. 38, pp. 55–82).
Chicago Linguistics Society.

Ippolito, M. (2008). On the meaning of only. Journal of Semantics, 25(1), 45–91.
Jayez, J. (2010). Projective meaning and attachment. In M. Aloni, H. Bastiaanse, T. de Jager, &
K. Schulz (Eds.), Logic, language and meaning (pp. 325–334). Berlin: Springer.

Jayez, J., & Tovena, L. (2008) Presque and almost: How argumentation derives from comparative
meaning. In O. Bonami, P. C. Hofherr (Eds.) Empirical issues in syntax and semantics, (Vol. 7,
pp. 1–23). CNRS.

Krifka, M.: Additive particles under stress, In Proceedings of SALT 8 (pp. 111–128). CLC Publi-
cations, Cornell (1999).

Merin, A. (1999). Information, relevance and social decision-making. In L. Moss, J. Ginzburg, &
M. de Rijke (Eds.), Logic, language, and computation (Vol. 2, pp. 179–221). Stanford: CSLI
Publications.

Oaksford, M., & Chater, N. (2007). Bayesian rationality—the probabilistic approach to human
reasoning. Oxford: Oxford University Press.

Oaksford, M., & Hahn, U. (2004). A Bayesian approach to the argument from ignorance. Canadian
Journal of Experimental Psychology, 58, 75–85.

Pearl, J. (2009). Causality: Models reasoning and inference (2nd ed.). New York: Cambridge
University Press.

van Rooij, R., & Schulz, K. (2004). Exhaustive interpretation of complex sentences. Journal of
Logic, Language and Information, 13, 491–519.

Rooth, M. (1992). A theory of focus interpretation. Natural Language Semantics, 1, 75–116.
Simons,M., Tonhauser, J., Beaver, D., &Roberts, C. (2010).What projects andwhy. InProceedings

of Semantics and Linguistic Theory (SALT) 20 (pp. 309–327). CLC Publications.
Walton,D.N. (1996).Arguments from ignorance. Philadelphia: Pennsylvania StateUniversity Press.

http://dx.doi.org/10.1093/jos/fft007


200 G. Winterstein

Winterstein, G. (2012). ‘Only’ without its scales. Sprache und Datenverarbeitung, 35–36, 29–47.
Zeevat, H. (2009). Only as a mirative particle. Sprache und Datenverarbeitung, 33, 179–196.
Zeevat, H. (2013). Accommodation in communication. Manuscript. ILLC: University of
Amsterdam.

Zeevat, H. (2014). Language production and interpretation: Linguistics meets cognition. Leiden:
Brill.

Zenker, F. (Ed.). (2013). Bayesian argumentation: The practical side of probability. Dordrecht:
Springer.



Variations on a Bayesian Theme: Comparing
Bayesian Models of Referential Reasoning

Ciyang Qing and Michael Franke

Abstract Recent developments in Bayesian experimental pragmatics have received
much attention. The Rational Speech Act (RSA) model formalizes core concepts of
traditional pragmatic theories quantitatively and makes predictions that fit empirical
data nicely. In this paper, we analyze the RSAmodel and its relation to closely related
game theoretic approaches, by spelling out its belief, goal and action components.
We introduce some alternatives motivated from the game theoretic tradition and
compare models incorporating these alternatives systematically to the original RSA
model, using Bayesian model comparison, in terms of their ability to predict relevant
empirical data. The result suggests that theRSAmodel could be adapted and extended
to improve its predictive power, in particular by taking speaker preferences into
account.

Keywords Referential expressions · Scalar implicature · Pragmatic reasoning ·
Referential game · Bayesian pragmatics · Rational speech-act theory · Game-
theoretic pragmatics · Experimental pragmatics · Bayesian analysis · Model com-
parison

1 Introduction

Human language communication is efficient, in that people need not always say
every detail in order to be understood. Rather, speakers often only say what is most
relevant, and listeners can often seemingly effortlessly grasp the intended meaning
beyond what is literally said. This ability to do pragmatic inference has been long
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studied and the conversational implicature theory by Grice (1975) is one of the most
prominent theories in the field. However, since it is hard to formalize theCooperative
Principle and the Conversational Maxims, Grice’s theory is not precise enough to
give empirically testable predictions, especially quantitative predictions.

The Bayesian Rational Speech Act (RSA) model attempts to address this issue by
using information-theoretic notions together with the Bayesian inference framework
(Frank et al. 2009; Frank and Goodman 2012; Bergen et al. 2012; Goodman and
Stuhlmüller 2013). It has been shown that the model could yield quantitative pre-
dictions that are highly correlated to actual human judgments (Frank and Goodman
2012; Goodman and Stuhlmüller 2013).

Despite the RSA model’s theoretical promise and empirical success, if we ana-
lyze the design of the model, we will find several choices that are not prima facie
obvious and might thus need further consideration and justification. These choices
have their alternatives in closely related game-theoretic approaches to pragmatics
(Rabin 1990; Stalnaker 2005; Benz and van Rooij 2007; Franke 2011; Jäger 2013),
which have similar but slightly different conceptual motivations. Hence it is impor-
tant to systematically compare the original RSAmodel with all these alternatives and
test their predictions on empirical data, so as to gain a better understanding of the
relation between these models. Doing so will help illuminate the theoretical com-
mitments and empirical implications of each design choice, which will enhance our
understanding of the nature of human pragmatic inference.

The outline of the paper is as follows. Section2 introduce the referential communi-
cation games investigated by Frank andGoodman (2012) and the original RSAmodel
proposed there. Section3 analyzes a few design choices in this model and introduces
their alternatives in game theoretic pragmatics, emphasizing the distinction between
belief, goal and action and unifying various models as different interpretations of
these three components. Section4 reports on the results of an experiment similar to
Frank and Goodman (2012). In Sect. 5, we compare the predictions of different mod-
els of our new data. Finally, we discuss the implications of the results of the model
comparison in Sect. 6, concluding that the original RSA model can be improved
on, in particular by taking speaker preferences into account, but we also point out
that a more complex picture of probabilistic pragmatic reasoning about referential
expressions awaits further exploration.

2 Referential Games and the RSA Model

Referential games are confined interactive reasoning tasks used to study pragmatic
inference in a controlled environment (Stiller et al. 2011; Frank and Goodman 2012;
Degen and Franke 2012). A referential game consists of a set of objects called a
context. For example, a context might contain different shapes of different colors in
various arrangements, such as shown in Fig. 1a. The speaker in the game is asked to
refer to one of the objects (the target) by uttering an expression (typically a single
word denoting a feature, i.e., color or shape, of the target) to the listener. The listener,
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t1 t2 t3

t1 t2 t3
“Green”: m1 1 1 0
“Circle”: m2 0 1 1
“Square”: m3 1 0 0

“Blue”: m4 0 0 1

(a) (b)

Fig. 1 A simple referential game, as used in Frank and Goodman (2012). a Example content: green
square and circle, and blue circle. b Vocabulary and truth table

who does not know which object is the target, needs to recover the target based on
the speaker’s choice of expression.

Let us first try to play this game ourselves, to get a better sense of what it is
about and why it is relevant to human pragmatic reasoning. For simplicity let us
assume that the utterances that the speaker is allowed to use are from a vocabulary
which is commonly known between the speaker and the listener. The content of the
vocabulary and the (truth-conditional/literal) meaning of each word are shown in
Fig. 1b. Suppose we play as the speaker and the target is t1, the green square. We can
either use “Square” or “Green” to truthfully refer to it, but it seems more prudent to
use “Square”, as there is only one square in the context and thus the listener can easily
identify it, whereas there are two green objects, which makes “Green” ambiguous.
In terms of the Gricean Maxim of Quantity, we should use “Square” because it
is more informative than “Green” in the given context; the surplus informativity
moreover seems relevant. Similarly, we should use “Blue” to refer to t3, the blue
circle. However, using “Blue” to refer to the blue circle might intuitively sound a
little unnatural, as color terms are usually used as adjectives,1 while we usually
use nouns to refer to concrete objects. This inclination becomes more evident when
we want to refer to t2, the green circle. While “Green” and “Circle” are equally
ambiguous in this case, we might nevertheless prefer the latter.

Now let us turn to play as the listener. If we hear “Square” or “Blue”, we easily
know the intended referent as there is no ambiguity, but what if we hear “Circle”
(or “Green”)? There are two circles in the context that we need to choose from.
On the one hand, the blue circle, having the unique color in the context, seems to be
perceptually dominant and thus easily captures our attention. On the other hand, from
the previous analysis we know that if the blue circle were the intended referent, the
speaker could have chosen “Blue”which is not ambiguous and thusmore informative.
Hence the listener needs to balance two sources of information, i.e., the (presumably
subconscious) perceptual salience of different objects and the rational expectation
of the likelihood of the speaker making the utterance for each object.

To test these intuitions, Frank and Goodman (2012) recruited 745 US participants
via Amazon’s Mechanical Turk to take part in a one-shot referential game, either
as the speaker or the listener. The context of the game always consisted of three
objects (e.g., Fig. 1a). Each object had three features: color (red, blue, or green),

1They are used as nouns mostly to refer to the colors themselves.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 2 Sample contexts for the 7 conditions used in Frank and Goodman (2012). The targets are
indicated by dotted lines. Condition n/m means that the target has one feature shared by n objects
and another feature shared by m objects in the context (including the target itself). For 2/2, either
there is an object identical to the target, or the features are shared by different objects. a 1/1. b 1/2.
c 1/3. d 2/2: identical (two striped squares and one dotted circle). e 2/2: different. f 2/3. g 3/3

shape (circle, square, or cloud), and texture (solid, or polka-dot, or striped). Every
context had one feature fixed for all objects and the other two features systematically
varied. The objects were randomly permuted and the target object was randomly
assigned. Depending on how many objects shared the same value of a feature with
the target, contexts were classified into 7 categories (see Fig. 2): 1/1, 1/2 (the target’s
first feature is unique, and there is another object sharing the same value of the second
feature with the target), 1/3, 2/2 with the same object sharing both features with the
target (which means there is another object identical to the target), 2/2 with different
objects sharing the features, 2/3 and 3/3. The speakers were asked to choose a feature
to refer to the target object.2 In order to measure the perceptual salience, some of the
listeners were told that the speaker was using a language that they did not understand
and then they were asked to guess the intended referent. Other listeners were told
a feature of the target and asked to choose the intended referent. Note that listeners
were presented with pictures without dotted lines surrounding the target so they did
not know the target. For each category in each of the speaker, salience and listener
conditions, there were roughly 50 responses.3

The result of the experiment showed that speakers generally followed Grice’s
Maxim of Quantity, i.e., they tried to be informative by choosing themost unique fea-
ture of the target,4 and that listeners were influenced by both the perceptual salience

2More accurately, participants were ask to bet on features and referents. We will discuss this design
choice when contrasting it with our replication in Sect. 4.
3As we can see, despite the fairly large number of participants recruited, the data in each condition
are not that many. Also there might be a concern that some conditions might look less interesting
than others. Again we will discuss these issues when we introduce our own replication in Sect. 4.
Here we note that variety is important in order to test the general validity of a pragmatic theory.
Thus the design used in Frank and Goodman (2012) served its purposes well, but may be adapted
when the goal is different.
4Speakers’ preference was not taken into account in Frank and Goodman (2012), so all features
were randomly assigned and later lumped together in the analysis.
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and the informativeness of the utterance that the speaker produced. However, the
data, being quantitative in nature, cannot be fully explained by a classical qualitative
Gricean account of scalar implicatures, so that a major challenge in terms of formal
modeling becomes how to quantify notions such as informativeness and perceptual
salience, and how these should be integrated to yield qualitative predictions.

The rational speech-act model (RSA) model addresses these issues by using
information-theoretic concepts to measure informativeness and Bayesian inference
to integrate different sources of information (Frank et al. 2009; Frank and Goodman
2012; Bergen et al. 2012; Goodman and Stuhlmüller 2013). In order to measure the
informativeness of an utterance, the RSA model starts with the literal listener who
upon receiving an utterance m does a conditioning on its literal meaning:

ρ0(t | m) = U(t | �m�), (1)

where U is a uniform distribution over all the possible referents. The informativeness
of utterance m for the intended referent t can be measured as the negative Kullback-
Leibler divergence of the induced literal listener’s belief ρ0 from the speaker’s own
belief δt :

Info(m, t) = −KL(δt‖ρ0) = −
∑

t ′
δt (t

′) log
(

δt (t ′)
ρ0(t ′)

)
, (2)

where δt is a delta distribution with all probability mass on target object t , as the
speaker knows her intended referent:

δt (t
′) =

{
1 if t ′ = t
0 otherwise

. (3)

The speaker acts sub-optimally by choosing the utterance that soft-maximizes her
expected utility, which is defined as the informativeness of the utterance subtracted
by its cost:

σ(m | t) ∝ exp(λS · U(m, t)) = exp(λS · (Info(m, t) − Cost(m))), (4)

where λS is a parameter measuring the speaker’s degree of rationality, i.e., to what
extent the speaker sticks to the strict optimum.5 The cost term is used to encode
preference in different utterances, be it about the utterances’ lengths or syntactic
categories.

5Mathematically, it can be shown that when λS = 0, σ(m | t) is uniformly distributed over all
messages,meaning that the speaker just randomly selects one of themessageswithout any optimality
consideration. On the other hand, when λS → ∞, σ(m | t) is non-zero only when m yields the
maximal utility, meaning that the speaker only selects the strictly optimal option(s). This rule is
widely used in the AI literature (e.g., Sutton and Barto 1998) and is also known as exponential
choice rule.
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From (1)–(4) we obtain the speaker’s production rule6:

σ(m | t) ∝ exp(λS · (logU(t | �m�) − Cost(m))) . (5)

The pragmatic listener in the RSA model, upon receiving the utterance m, per-
forms a Bayesian update on his prior belief S(t) by using an estimate of the speaker’s
behavior in (5):

ρ(t | m) ∝ S(t) · σ(m | t) . (6)

Bayes’ rule naturally integrates the perceptual salience of eachobject,which is treated
as the prior S(t) and can be empirically measured, with listener’s expectation of the
speaker being informative, which is incorporated as the likelihood, thus addressing
the previously mentioned challenge of balancing different sources of information.
Setting λ = 1 and Cost(m) = 0 for all m, Frank and Goodman (2012) obtained a
highly significant correlation between themodel prediction and their experiment data
on actual speaker and listener behavior gathered from referential games of varying
complexity.

3 Alternatives in Design Choices

The RSA model has a theoretical advantage over traditional formal pragmatic theo-
ries in that it provides quantitative predictions, and it has been shown to fit relevant
empirical data well. However, if we want to learn more about pragmatic reason-
ing about referential expressions, it will be worthwhile to examine RSA carefully
to pin down its major components, to spell out its main design choices and their
underlying assumptions, and to test their contribution to the predictive power of the
model through statistical comparison with natural alternatives. In this section, we
will therefore compare the RSAmodel to closely related game theoretic approaches,
that likewise assume that speakers and listeners form cascading beliefs about mutual
behavior and seek to optimize their behavior based on these beliefs (Rabin 1990;
Stalnaker 2005; Benz and van Rooij 2007; Franke 2011; Jäger 2013).7 We will
describe a class of potential alternatives to RSA and then compare the predictive
power of these alternatives on relevant empirical data in later sections.

6Note that we can further simplify (5) as follows: exp(λS · (logU(t | �m�) − Cost(m))) =
exp(λS logU(t | �m�) · exp(−λS · Cost(m)) = (U(t | �m�))λS · exp(−λS · Cost(m)). Incidentally,
if we do not take costs into account, i.e., let Cost(m) = 0, then (5) reduces to σ(m | t) ∝ (U(t |
�m�))λS , which is effectively a power rule that soft-maximizes U(t | �m�). In this respect (5) can
be seen as an action-oriented speaker model (the exact definition of which will be given in the
next section) equipped with a different kind of soft-max rule. However, we note that this is a mere
technical coincidence, and as a first step, throughout this paper we only consider the exponential
rule as the soft-max rule. Worthy et al. (2008) provide a detailed discussion and empirical analyses
on the differences between the exponential and power rules.
7See Franke and Jäger (2014) for overview and comparison of game theoretic and Bayesian models.
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There are three closely related notions, i.e., belief, goal and action, that play a
crucial role in RSA as well as game theoretic models. The relation and distinction
between them can be best illustrated by looking at (5), repeated here:

σ(m | t) ∝ exp(λS · (logU(t | �m�) − Cost(m))) .

The term U(t | �m�) is the speaker’s belief about the listener’s interpretation of the
utterance. The expected utility U(m, t) = logU(t | �m�) − Cost(m) describes the
speaker’s goal of communication, i.e., inducing a belief that is as close as possible
to her own with minimal effort. The production rule σ(m | t) on the left-hand side
specifies the speaker’s action, as it defines the probability with which, according to
RSA, speakers would choose a particular expression. The soft-max rule connects
these notions, as a (sub-)rational agent’s action depends on his belief and goal.
While the RSA and game theoretic models all share this general architecture in
their designs, they vary in the specific interpretations of the three ingredients, which
reflect different views and emphasis on language and communication and give rise to
a series of interesting and important empirical questions. Again, let us continue with
the speaker model (5) to illustrate some points of divergence and formally define the
corresponding alternatives.

First of all, although it is prima facie reasonable to hypothesize, as Frank and
Goodman (2012) do, that the empirically measured perceptual salience S(·) is com-
mon knowledge between speaker and listener, it does not actually affect RSA’s pro-
duction rule (5) at all. This makes it unclear in what sense the speaker can be said to
know the listener’s perceptual salience, since neither his beliefs nor actions depend
on it. A natural variant, which is used in some game theoretic models, would be to
replace the literal listener’s uniform distribution U(t) in (1) with the salience prior
S(t). This leads to the alternative production rule:

σS(m | t) ∝ exp(λS · (logS(t | �m�) − Cost(m))) . (7)

Secondly, RSAmeasures the informativeness of an utterancem, which is a crucial
part of the communicative goal, in terms of how close the induced belief of the
literal listener is from the speaker’s own belief. This means that the RSA model
sees the goal of communication as conveying belief. While it is normally true that
language does convey the belief of the speaker, it is questionable at least in this
referential scenario whether letting the listener form a proper belief is the ultimate
goal of the communication. After all, if the speaker wants to refer to something,
it seems that in the end what matters is whether the listener actually picks out the
intended referent successfully (e.g., when the speaker wants the listener to pass
something). This view is inherent in game theoretic approaches where agents’ beliefs
are backed up by explicit formulations of their utilities. Wemight call this latter view
action-oriented, in contrast to the belief-oriented view of communication which
the RSA model adopts, as it interprets the goal of communication as invoking the
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intended action rather than forming an accurate belief.8 Thus, according to this
view, the informativeness of a message would be measured as the probability of
the listener choosing the intended referent. Formally speaking, we have the action-
oriented speaker model9:

σa(m | t) ∝ exp(λS · (ρ0(t | m) − Cost(m))) . (8)

Hence we have four types of speaker models that differ in either the speaker’s
belief about the literal listener, or the speaker’s goal of communication. We now
introduce a uniform notation σxy, x ∈ {a, b}, y ∈ {U ,S} for them:

σay(m | t) ∝ exp(λS · (y(t | m) − Cost(m))), (9)

σby(m | t) ∝ exp(λS · (log y(t | m) − Cost(m))), (10)

where U is the uniform prior and S is the salience prior. For example, in the original
RSA model, the speaker does not take listener’s salience prior into account and he
has a belief-oriented goal of communication. Thus it will be denoted as σbU .

Finally, the original RSA speaker model (Frank and Goodman 2012) has
Cost(m) = 0 for allm, which means that the potential speaker preference in different
utterances is not taken into account (but not so in, e.g., Bergen et al. (2012)). As we
previously pointed out, our intuition seems to suggest a preference for nouns over
adjectives as referential expressions.10 Since it is an empirical question whether, to
what direction or to what extent such a preference exists, we leave open all the pos-
sibilities. Technically speaking, since only the difference in costs matters, we define
the cost function using a constant c ∈ R

Cost(m) = c if m is an adjective and 0 otherwise . (11)

8Note that the two views are clearly intimately related, despite our emphasis on their differences
here. An accurate belief is usually helpful for choosing a desired action. In fact, forming a belief can
itself be seen as an action that the listener performs, which might well be all that the speaker cares
about in many everyday situations, e.g., casual talks or responses to inquiries of information. Also,
the relevant actions might vary greatly across situations which makes belief formation a practical
alternative to serve as the goal. Nevertheless, they are still essentially different views in spite of the
fact that they often coincide in practice. The referential communication scenario we investigate in
this paper reflects the distinction.
9Theremight be concern aboutwhether there should be another soft-max step for the literal listener’s
choice probability ρ0(t | m) in order for it to be action-oriented. This depends on the precise
conceptual status of the literal listener in the model and to our knowledge there is no consensus
yet. We tend to think of a literal listener as an automatic subconscious process that involves no
optimality reasoning or decision-making. Thus we consider it appropriate to use ρ0(t | m) as the
action of the literal listener. However, we do agree that in principle there can be a model whose
literal listener does a soft-max over the salience prior, and such a model can be similarly included
in the model comparison.
10The rich tradition on referential expression generation (Kramer and van Deemter 2012) has also
identified the need to take speaker preferences into account, and Gatt et al. (2013) criticize RSA on
these grounds as well.
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If c > 0 it means there is a preference for nouns and if c < 0 then the preference is
for adjectives. No preference exists if c = 0.

Now we turn to the listener model (6), where the boundary between belief, goal
and action becomes less clear:

ρ(t | m) ∝ S(t) · σ(m | t) .

Let us start from the relatively clear part. As pointed out previously, the likelihood
term σ(m | t) is the listener’s belief about how the speaker behaves. One natural
question is to what extent the listener’s belief correlates with the actual production.
We thus treat the speaker’s production term σ(m | t) in the listener’s model as
a parameter, making the association with a belief about production of the listener
model explicit:

ρ(σxy)(t | m) ∝ S(t) · σxy(m | t) . (12)

Note that the speaker’s production rule has two parameters λS, c which are also
included in the above specification of the listener model.

Next, even thoughour intuition suggests different objects have different perceptual
salience and thus might affect our judgment, it is after all an empirical question
whether it is relevant in the interpretation of referential expressions. It is in principle
possible that the listener does not take into account the perceptual salience in his
reasoning, which means he has a uniform prior over the referents:

ρU (σxy)(t | m) ∝ U(t) · σxy(m | t) . (13)

Finally, since the RSA model adopts a belief-oriented view on the goal of com-
munication, its listener model only consists of the belief about the intended referent
after hearing the utterance, obtained by a Bayes update. However, according to the
action-oriented view, this is not quite the end of the story. The listener often needs
to decide the exact referent of a referential expression. (Again, consider the case in
which the listener is asked to pass something.) Hence in such cases the listener will
choose an object by, essentially, (soft-)maximizing over his beliefs. Formally, the
action-oriented listener model becomes:

ρav(σxy)(t | m) ∝ exp(λL · ρbv(σxy)(t | m)), (14)

where v ∈ {U ,S}, λL is the parameter measuring the listener’s degree of rationality,
and ρbv is the belief-oriented model that does the Bayesian update:

ρbv(σxy)(t | m) ∝ v(t) · σxy(m | t) . (15)

For instance, the original RSA listener model is a belief-oriented one with the per-
ceptual salience as prior, whose belief about the speaker is σbU , hence it is denoted
as ρbS(σbU ).
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Fig. 3 A sample context

4 The Experiment

In the previous section we analyzed the design of the original RSA model, spelled
out the relation and distinction between belief, goal and action, and proposed a
family of alternative models based on different interpretation of these notions. This
gives rise to a series of interesting empirical questions regarding the underlying
assumptions of themodels. In order to gain insight into these questions by comparing
the predictive power of different models, we conducted the following experiment to
collect empirical data, which we will use to test the predictions of different models
in the next section.

Participants

We recruited 1032 US participants via Amazon’s Mechanical Turk. Each participant
played a one-shot referential game either as a speaker or as a listener and received
a payment of 5 cents. If a participant contributed multiple trials, only the first was
included. All participants passed the attention check described below.

Materials and Procedure

Each participant saw a context consisting of three objects (Fig. 3 as an example) and
reported on the number of objects in the context as an attention check. Participants in
the listener conditions were told to imagine someone was talking to them who used
some utterance (depending on the specific condition tested) to refer to exactly one
of the objects in the context. Then they were asked to choose what they thought to
be the intended referent. Participants in the speaker conditions were told to imagine
they were talking to someone and they wanted to refer to one of the objects (indicated
by a small red arrow11). Then they were asked to choose between two words to refer
to it.

Each context had a square and a circle sharing the same color, and another circle
having a different color. Hence each object had two features: shape (square/circle)
and color (green/blue) and each context had two ambiguous (shared by two objects)
features. In the listener salience condition, participants were told that the person
talking to them was using a foreign language they could not understand, and in the
other two listener conditions, the utterances used were the ambiguous feature of
shape and color, respectively. In the speaker conditions, the target could be any of
the three objects: the one with the unique color, the one with the unique shape and the
one with both features shared. The two words for the participants to choose between
were the features of color and shape of the target object.

11Participants were told that the arrowwas only for illustration and thus the person they were talking
to could not see it.
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In order to minimize the effect of the confounding factors, we counterbalanced
the positions and colors of the objects, as well as the orders of the candidate words
in the speaker conditions. Thus the unique color in a context could be either blue (as
in Fig. 3) or green and the order of the objects could be any of the permutations.12

Design

There are four major design choices in our own experiment that differ from the orig-
inal experiment in Frank and Goodman (2012). First of all, the original experiment
used a betting paradigm, i.e., participants were asked to bet over a range of options
and they were instructed that the amount of money that is bet on an option should
reflect their confidence that the option is correct. Even though the betting paradigm
has the merit of providing us with graded reponses from each individual participant,
the caveat is that it is unclear whether it measures beliefs or actions. This can lead
to confusion when we are to fit the model predictions to the empirical data without
knowing whether they are directly comparable. In addition, since the betting para-
digm is more or less introspective in nature, it tends to be not very accurate. Thus
we used a forced choice design instead, which clearly measures the action, does
not rely on introspection and, technically speaking, provides for a straightforward
likelihood function to be used in subsequent statistical model comparison. Secondly,
since we decided to investigate the influence of the speaker’s preference as well as
the listener’s perceptual salience, we focused on contexts equivalent to Fig. 1a, which
require reasoning that is highly reminiscent of Gricean accounts of scalar implicature
calculation, and examined different features separately. Thirdly, we only included
the features of color and shape, with binary values (green/blue and square/circle) for
two reasons. On the one hand, we wanted to ensure the vocabulary to be common
knowledge, so we excluded the feature of texture. On the other hand, we excluded
feature values red and cloud as they are significantly more salient than the others,
which might override the pragmatic effect. Finally, we did not use dotted lines sur-
rounding an object as the way to indicate the target to the speaker, as Frank and
Goodman (2012) did, because that might unduly emphasize the feature of shape and
thus be a confound in the experiment. Instead we used a small arrow pointing to the
target.

Despite these differences, the remaining aspects in our experiment were almost
identical to those of the original one, e.g., the phrasing of the instructions.

The results of the speaker and listener conditions of our experiment are shown as
follows.

4.1 Speaker Conditions

There were 432 participants in the speaker conditions, 144 in each condition. The
numbers of participants choosing each word in each condition are shown in Table1.

12Due to the scale of our preliminary experiment we did not counterbalance the shape of the objects,
i.e., a context always had one square and two circles.
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Table 1 Speaker conditions

Target “Green” “Square” “Blue” “Circle” Total

9 135 – – 144

– – 119 25 144

63 – – 81 144

Note that when the target was the object with the unique shape (as in the first row of
the table), the feature of shape (“Square”) should be the optimal utterance because
the listener could uniquely identify it. Similarly when the target was the object with
the unique color (the second row), the optimal utterance would be the feature of color
(“Blue” in this case). When the target was the object with both features shared, both
features should be equally ambiguous because of the context’s symmetric nature.

From the data in Table1, we can see that the speakers tend to choose the opti-
mal feature more often when the target has the unique shape than when it has the
unique color (χ2 = 8.5, p < 0.01). Even though they seem to prefer the feature of
shape when both of the target’s features are shared, the difference is not statistically
significant from uniform random choice (χ2 = 2.25, p = 0.13).

4.2 Listener Conditions

There were 600 participants in the listener conditions, 240 in the salience condi-
tion and 180 in each of the remaining two conditions. The numbers of participants
choosing each object in each condition are shown in Table2.

The result of the salience condition will be used as the empirical estimation of
contextual salience. For the other two conditions, the object with both features shared
(the green circle in the above table, but note that we counterbalanced colors) is
what the Gricean pragmatic account predicts to be the target. The result in Table2
shows that when the message is “Green”, listeners prefer the green circle which is
predicted by the Gricean pragmatics, while they tend to stick to the blue circle which
is more perceptually salient when the message is “Circle”. The behavioral patterns
in both conditions are significantly different from uniform random choice, and they

Table 2 Listener conditions

Total

Salience 71 30 139 240

“Green” 65 115 0 180

“Circle” 1 62 117 180
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significantly differ from each other in whether they conform to the predictions by
Gricean pragmatic theory.

5 Model Comparison

We use a Bayesian approach to model comparison (Jeffreys 1961; Kass and Raftery
1995; Jaynes 2003; Vandekerckhove et al. in press) to find out which alternative
best explains the observed data. The models under investigation have unspecified
parameters: the speaker’s degree of rationality λS, the cost of adjectives c, and, for
those listener models that have an action-oriented communication goal, the listener’s
degree of rationality λL. Since there is no principled theory to determine the value of
the parameters, we will rely mostly on relatively uninformed hyperpriors (so-called
to distinguish them from the salience priors). Based on a specification of hyperpriors,
we calculate the models’ evidences and compare them by their Bayes factors. The
evidence of a model M is the weighted average of the likelihood of observing the
data under all parameter values:

Ev(M) =
∫

Pr(θ) · Pr(D | M, θ) dθ, (16)

where Pr(θ) is the hyperprior over parameter(-tuple) θ associated with model M and
Pr(D | M, θ) is the likelihood of the observed data D given M and each concrete
instantiation of the parameter(-tuple) θ. The Bayes factor K M1

M2
is a comparative

measure for the plausibility of model M1 over M2, given their respective hyperpriors
and the data in question:

K M1
M2

= Ev(M1)

Ev(M2)
. (17)

Model M1 makes the data more likely whenever K M1
M2

> 1, but normally only a

Bayes factor K M1
M2

> 3 (or sometimes K M1
M2

> 5) is considered substantial. Values

K M1
M2

> 10 are considered strong evidence.
In a sense, comparison by Bayes factors is comparing models in a wider sense

of the term: we actually compare pairs consisting of a model and its associated
hyperprior. For clarity, we refer henceforth to a model-hyperprior pair as a Model.

Speaker data. First we look at the speaker models σxy, x ∈ {a, b}, y ∈ {U ,S}. Each
model has two parameters λS and c. We assume that they are independent of each
other:

Pr(λS, c) = Pr(λS) · Pr(c) . (18)
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Table 3 Log-evidences of speaker models

Support ofP (c) σbU σaU σbS σaS

[0, 0] 67.48- - - --67.81 -104.14
(−0.4, 0.4) -32.92 -33.15 1-81.44 -139.27- - - -

-157.75

We are uncertain about the rationality of the speaker:

Pr(λS) = U(0,11)(λS), (19)

which is a uniform distribution over (0, 11). Excluding λ-values ≥ 11 serves prac-
tical purposes only, but is innocuous since the regions of non-negligible posterior
likelihood of λ lie safely in the chosen interval for all models. Next, to allow for
the possibility of speaker preferences (nouns over adjectives or vice versa), we con-
sider two types of hyperpriors for costs c. The first hyperprior has Pr(c) = δ(c), the
Dirac delta distribution, that assigns all probability mass to c = 0. This captures the
assumption that there is no speaker preference. The second hyperprior is U(−0.4,0.4),
which captures the notion that a preference exists, without commitment to either
direction. We restrict our attention to the interval (−0.4, 0.4), because we consider
higher levels of cost implausible, given that utilities for successful communication
live in [0, 1] and that we believe that strive for communicative success should outrank
preference satisfaction in a rational model of communication. Taken together, there
are four speaker models, two hyperpriors for each, so that we compare eight Models
with respect to their evidences.

Evidences of speaker Models were calculated by grid approximation. The results
are shownas log-evidences inTable3. (Notice that theBayes factor betweenmodels is
easily comparedby taking the differences between log-evidences.)Wecan see that the
data very strongly supports speaker models that do not take the listener’s perceptual
salience into account. Also, it seems that action-oriented models are slightly better
than their belief-oriented counterparts, even though the relevant Bayes factors are
not substantial by common standards. Finally, our data makes each speaker Model
that does allow for a speaker preference strongly more plausible than its counterpart
that does not. A look at the posterior likelihood of c for each speaker model informs
us that our data supports the belief in a speaker preference for nouns, see Fig. 4.13

In sum, our data supports the view that the speaker does not take into account the
perceptual salience of the listener, while having her own preference for shape terms
over color terms.

13A technical aside: formally, action-based speaker models, as formulated in Sect. 3, assign a non-
zero probability to the event that a speaker chooses a descriptionwhich is not true of the target object
(unlike belief-based models). But since subjects in our experiments could only select between true
alternatives, the predictions of action-based speaker models were restricted to truthful choices in
the reported model comparison.
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Fig. 4 Posterior
distributions over costs given
the data for each speaker
model
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Listener data. Each listener model has a speaker model nested inside as a belief of
the listener about the speaker’s behavior. Section3 introduced a total of 16 poten-
tially relevant listener models, but we will focus on a selection only. For one, we
restrict our attention to those listener models that are either entirely belief-based or
entirely action-based. In other words, we exclude as notionally inconsistent models
like ρa·(σb·) where the receiver part assumes an action-based goal structure and the
speaker part a belief-based goal structure. For another, we assume that the listener’s
model of the speaker is a reasonable one and therefore put to the side listener models
that embed speaker models that are highly implausible, given the speaker data as dis-
cussed above. Effectively, this discards listener models that include speaker models
that take the listener’s salience prior into account. These two principled restrictions
leave us with four listener models to compare.14

Further variation comes from different relevant hyperpriors. Belief-based models
of the listener have the same parameters as speaker models: the speaker’s rationality
λS and the speaker’s preference costs c. Importantly though, hyperpriors over λS
and c, although formally parallel to those for speaker models, have a different inter-
pretation in listener models where they capture our prior beliefs about the listeners’
beliefs about the speakers’ likely rationality and preferences. This is true as well for
action-based models, which also have an additional parameter λL. Hyperpriors for
the latter encode our prior beliefs about the listener’s actual rationality.

We consider a variety of hyperpriors that differ in whether they take the speaker’s
costs into account, whether the listener’s beliefs about the speaker’s rationality
and preferences are uninformed (i.e., flat) or informed (i.e., given by the poste-
rior likelihood of parameters given the actual speaker data) and, in action-based
models, whether the listener’s level of rationality corresponds to his “informed”
beliefs. The latter option effectively implements the assumption that there is a tight

14Similar to the remarks about speaker models in Footnote 13, we need to be mindful about the fact
that action-based listener models assign non-zero probability to the choice of referents of which
the given description is not true. Here, despite the fact that subjects in our experiments could in
principle choose referents of which the given description is not true (this indeed happened once),
we restricted the predictions of these models to only semantically compatible referent choices. We
then discarded the one data point in which a subject choose a semantically non-compatible referent.
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correlation between the speaker’s actual rationality, the listener’s actual rationality
and the listener’s beliefs about the speaker’s rationality.

Concretely, we consider the following “flat” hyperpriors:

Pr(λS, c) = U(0,11)(λS) · Pr(c)
Pr(λS, c,λL) = U(0,11)(λS) · Pr(c) · U(0,11)(λL),

for belief-based and action-based models respectively, where Pr(c) is the hyperprior
for the speaker’s preference parameter c. When Pr(c) = δ(c) we have a hyperprior
that does not take costs into account; otherwise we assume Pr(c) = U(−0.4,0.4)(c),
as before.

Hyperpriors that capture the idea that the listener’s beliefs are good guesses of
speaker behavior are modeled as if informed by the data from the speaker experi-
ments:

Pr(λS, c) = Pr(λS, c | DS, MS)

Pr(λS, c,λL) = Pr(λS, c | DS, MS) · U(0,11)(λL) .

Here, DS is the data from the speaker experiments, and MS the relevant speaker
model. For a given listener model, we consider only the embedded speaker model as
relevant. We call hyperpriors of the above form “informed” or, in the case of action-
based models, “informed uncorrelated”. We distinguish the latter from “informed
correlated” hyperpriors of the form:

Pr(λS, c,λL) = Pr(λS, c | DS, MS) · Pr(λL | DS, MS),

where the listener’s rationality parameter is distributed according to the relevant
posterior. All of the three types of informed hyperpriors were tested in two varieties:
whether the listener takes the sender’s preferences into account or not. If he does not,
the posterior Pr(λS, c | DS, MS) is derived from a speaker-hyperprior Pr(c) = δ(c);
otherwise from Pr(c) = U(−0.4,0.4)(c).

Taken together, we consider two belief-based models, paired with four hyperpri-
ors, and two action-based models, paired with six hyperpriors (see Table4). Com-
paring these ten Models is meant to address the following general questions:

1. Is the goal structure assumed by participants in our task belief-based or action-
based?

2. Does the listener take the estimated salience prior into account or not?
3. Is the listener’s belief about the speaker’s level of rationality “correct”, i.e., in

line with the observed speaker data?
4. Is the listener’s level of rationality related to the speaker’s actual level of ratio-

nality?

Answers to these questions can be found by comparing the evidences of the
Models listed in Table4.
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Table 4 Log-evidences for listener models

prior type CostsρbU (σbU ) ρbS(σbU ) ρaU (σaU ) ρaS(σaU )

Flat No -24.83 -11.66 -24.06 -10.62
Flat Yes -24.80 -9.84 -23.84 -10.81

Informed No -59.87 -10.44 -25.42 -8.48
Informed Yes -68.43 -13.35 -24.21 -11.85

Informed-correlated No NA NA -64.70 -6.80
Informed-correlated Yes NA NA -82.36 -29.01

- - - -
-

-
-

-
-

-

-
-

-
-

-

-
-

-

-
-

The most striking contrast is that Models that do not take the salience prior into
account fare much worse than those that do. The data makes a total rejection of
Models that rely on uninformative salience priors strongly plausible.

Another eye-catching feature is that there is a clear winner in the list. The single
best Model, which is substantially better than all the others, is action-oriented and
takes perceptual salience into account. It has an informed-correlated hyperprior and
assumes that the listener does not take the speaker’s preferences into account. This
result is highly thought-provoking, but should be takenwith a grain of salt. It might be
that wemerely got lucky by restricting the range of λS and λL just to a small region of
reasonably high posterior likelihood for these parameters. Further experimentation
should tell uswhether informed-correlated hyperpriors are goodpredictors in general.

Most generally reliable are the results fromflat hyperpriors.Here it is interesting to
note that all of the models that take salience priors into account, with the exception of
ρbU (σbS) are equally plausible, by common standards of Bayes factor comparisons.
This is despite the fact that action-based models have an additional parameter.

Action-based models are also better at accommodating the idea that the listener’s
estimate of the speaker behavior is roughly correct. The belief-based models are
substantially or strongly less plausible in this case. In other words, action-based
models, possibly due to the added flexibility of another parameter, are better at
explaining production and comprehension data in unison.

This latter point is of interest with respect to the findings of Frank and Goodman
(2012) that a single parameter choice λ = 1 provided a good fit for both production
and comprehension data. The RSA model ρbU (σbS) with fixed parameter λ = 1 is
a very poor predictor of our data. (We focus here on comprehension, but the same
applies to production data.) Assuming λ = 1 as the null hypothesis of a nested-
model comparison, we can use the Savage-Dickey method to compute a Bayes factor
(Dickey and Lientz 1970; Wagenmakers et al. 2010). Let M be the parameterized
Model with model ρbU (σbS) and a flat hyperprior, not taking costs into account.
Given our data we should adjust our beliefs in parameter value λ = 1 by the Bayes
factor (computed approximately via MCMC sampling):
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K = P(λ = 1 | DL, M)

P(λ = 1 | M)
≈ 1.25e−9

8.18e−2
= 1.52e−8

where DL is the listener data. That means that our data provides very strong evidence
that the null hypothesis λ = 1 is incorrect.

6 Conclusion

Our experiment and model comparison suggest the following. (1) On the conceptual
level, it is helpful to clarify the distinction between belief, goal and action, and the
Bayesian framework provides us with a natural way to structure these components
into a formal model. By examining each component systematically, we can explicitly
spell out the underlying assumptions and formulate alternative hypotheses to be
tested. (2) On the empirical level, we tested the RSA model with a family of variants
motivated from a game theoretic perspective on communication, and in particular, we
investigated the speaker’s preference as well as the listener’s perceptual salience. Our
data showed amore intricate picture of the roles that various factors play in pragmatic
reasoning about referential expressions.We found evidence for a correlation between
the speaker’s and the listener’s rationality. Either side appears to have his own biases,
but appears to be negligent of the other’s. Also, an action-based view might better
reflect the goal of communication, at least in the forced-choice experimental setting
that we used. Understanding the relation between the forced-choice and the betting
paradigms would be an important next step to gain more insight into the differences
between action- and belief-based goal structures.

The set ofmodels wewere able to compare explicitly here does clearly not exhaust
the space of plausible candidates. For example, we excluded listener models in which
the literal listener takes the salience prior into account. As an anonymous reviewer
points out, this may seem paradoxical because the best listener models of our com-
parison do assume that the actual pragmatic listener takes salience into account, but
does not believe that the speaker believes that he does. But actually, there is no fric-
tion here at all, because the listener model that is embedded in a speaker model is a
different one from the full pragmatic listener model. If we think of the pragmatic lis-
tener as simulating his own hypothetical speaker behavior, there is nothing puzzling
about factoring in salience only at a higher level of pragmatic inference.

A similar issue arises with respect to the rationality parameters in action-based
listener models. We assumed that there are two rationality parameters, one for the
listener’s actual rationality and one for the listener’s beliefs about the speaker’s
rationality. But we also saw that a model that correlates the set of joint values of these
parameter pairs gave the best predictions of our data. This raises many interesting
issues for further research, most of which we cannot answer here. The most obvious
idea is, of course, to equate the speaker’s and the listener’s lambda and so that the
listener would believe that the speaker is exactly as rational as the listener himself.
Surprisingly, this model achieves a very poor fit on our data, despite its parsimony.
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More research into correlations in perspective-taking and beliefs in rationality will
hopefully shed more light on this fascinating issue.

In summary, our work shows that careful conceptual analysis of the design choices
for quantitative models can lead to a better understanding of the phenomenon and
further improvement in the formalmodel’s predictive power. Of course, our restricted
empirical data can only serve as a start and more data is needed to fuel further
model comparison towards a more robust pragmatic theory of people’s probabilistic
reasoning about referential expressions.
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Towards a Probabilistic Semantics
for Vague Adjectives

Peter R. Sutton

Abstract A way of modelling the meanings of vague terms directly in terms of the
uncertainties they give rise to is explored. These uncertainties are modelled with a
probabilistic, Bayesian version of situation semantics on which meaning is captured
as the correlations between uses of words and the types of situations those words
are used to refer to. It is argued that doing so provides a framework from which
vagueness arises naturally. It is also claimed that such a framework is in a position
to better capture the boundarylessness of vague concepts.

Keywords Vagueness · Uncertainty · Probabilistic semantics · Adjectives ·
Bayesian · Probability · Situations · Situation theory

1 Introduction

A seemingly characteristic feature of vague terms is their boundarylessness
(Sainsbury 1991). However, a challenge for truth-conditional accounts of the seman-
tics for vague terms is that truth-conditions create sharp boundaries. One way to try
to assuage this tension is to introduce uncertainty into semantics. For example, one
could maintain a threshold for truth, but model vagueness as uncertainty about where
the threshold, in some context, lies (Lassiter 2011; Frazee and Beaver 2010). How-
ever, arguably, uncertainty over thresholds nonetheless carves boundaries. In this
paper, I will avoid thresholds and develop a way of introducing uncertainty directly
into semantic representations. On this approach, sentences are taken to encode
uncertainty over types of situations. This can been seen from two perspectives. Either
as uncertainty about how the world is, given the way words are used, or as uncer-
tainty about how to use words when faced with a type of situation to describe. The
information that words convey is understood as a reflection of the correlations there
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are between features or properties in the world, and our uses of words to describe or
refer to objects with those properties. By adopting this view, I will suggest that we
can better capture the boundarylessness of terms, and that borderline cases, another
characteristic feature of vagueness, emerge directly from the semantics.

In Sects. 2–3 the uncertainty associated with vague terms will be described. In
Sects. 4–5, these informal ideas will be modelled using a probabilistic version of
situation semantics. In Sect. 6, the approach will be linked to vagueness. In Sect. 7,
the proposal will be compared with two related proposals in the recent literature.

2 Uncertainty

There are two ways that uses of a vague term can give rise to uncertainty. The first
concerns the world and the second concerns the word. Say that we are told that John
is tall, or that Mary’s car is green. Given that we are competent in English, and,
given that we have no reason to expect what we have been told to be incorrect, what
we have been told makes it reasonable to believe certain things about the world. In
the vagueness literature, when the semantics of vague terms are analysed, some less
vague properties, concepts, or features are often cited in the analysis. For example,
with respect to ‘green’, our judgements vary over the shades that things are; for ‘tall’,
over the heights that things are; for ‘bald’, over how much (head) hair individuals
have. On being told that John is tall, or that Mary’s car is green, we are uncertain
about what feature or property John has with respect to height, or that Mary’s car
has with respect to shade.

This uncertainty could be thought of as a series of graded beliefs. In the following,
I will represent the content of these beliefs with reference to measures that may not
have any psychological reality. For example, I will talk about someone’s beliefs about
heights measured in centimetres. However, it need not be assumed that our doxastic
representations of heights refer to centimetres. If I talk ofMary’s beliefs about John’s
height as distributing over heights in centimetres, this ismerely a convenient notation.
It does not require that Mary can say, in centimetres, how tall John is (or might be).

It is, however, possible that using such precise values introduces an artificial level
of precision. It could be that the waywe cognitively represent the world is also vague,
in which case, there should be a mapping from vague words to a mapping from a
vague representational level to properties in the world (such as being some height
in centimetres or being some particular shade). However, by describing mappings
between vague words and less or non-vague properties in the world directly, I am,
at worst, oversimplifying the matter by skipping over a mental/cognitive level of
representation. For at least some cases we ought to be able to describe how the
information conveyed by words relates to the (more or less) precise properties to be
found in situations in the world.

It would be unreasonable to believe that John is a specific height just on the basis
of being told that he is tall, and it would be unreasonable to believe Mary’s car to be
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a specific shade just on the basis of being told it is green. Herein lies the first kind of
uncertainty:

(U1) Descriptions using vague expressions leave us uncertain about specific fea-
tures/properties that objects in the world have.

U1 uncertainty is often, to some extent, eliminable in practice. We can, for exam-
ple, go and look at John (maybe even measure him), or we can go and have a look
at Mary’s car. And yet, even if we are in command of these facts, uncertainty about
how to use our language can still remain. If John is 180cm tall, or if Mary’s car is
an odd sort of turquoise shade, we might feel thoroughly uncertain whether or not
‘tall’ would be an effective word to use to describe John or ‘green’ an effective word
to use to describe Mary’s car.

By using the term ‘effective’, I mean to appeal to a notion of success. What is
effective (for some purpose) is what succeeds in doing something/bringing about
the desired result. What is effective for describing John, or Mary’s car is going to
be an interest relative matter, since what is effective for doing something in one
situation may not be effective in another. A lot of the vagueness literature, insofar as
it predominantly concerns solutions to the sorites paradox, takes the only important
criterion for what is effective to be what description would be true. However, truth is
not always what we need to establish, or are interested in. For example, if our aim is
to communicate which individual John is in a crowd, irrespective of whatever story
about the truth-conditions for ‘tall’ are, one might be able to use ‘tall’ to identify
John because he is significantly taller than those around him. Here, what makes a
description count as true will not be addressed in detail. Instead, I will continue to use
the broader notion of effective descriptions which can be used to describe a second
kind of uncertainty:

(U2) Specific features/properties that objects in theworld have can leaveus uncertain
about how to effectively describe them.

Relations hold between U1 and U2:

1. Were we equally certain of applying ‘tall’ to 185cm John as to 190cm Bill, then,
all else being equal, we should be equally certain that John (Bill) is 185cm in
height when described as tall as 190cm, and vice versa

2. Given 1, where U1 similarities give rise to U2 similarities and vice versa, we
should expect U1 differences to give rise to U2 differences and vice versa.

3. Variations in U1 uncertainty can give rise to U2 uncertainty. Being told that John
is tall may leave us uncertain about his height. We might be fairly certain that he
is not around 170cm, comparatively certain that he is around 190cm, but highly
uncertain aboutwhether he is around 180cm.Given 1 and 2, this createsU2 uncer-
tainty in the use of ‘tall’. If we are fairly certain that ‘tall’ effectively describes
someone who is around 190cm in height, but fairly certain that ‘tall’ wouldn’t
effectively describe someone around 170cm in height, then we should uncertain
that ‘tall’ would effectively describe someone around 180cm. Furthermore, we
should also expect a range of U2 judgements to give rise to U1 uncertainty.
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As emphasised by an anonymous reviewer, the presence of U1 uncertainty is not
sufficient for vagueness, and the presence of U2 uncertainty is not necessary for
vagueness. The relationship between vagueness and different kinds of uncertainty
will be made clear in Sect. 6. In brief, however, there will be times when, given the
way the uses of words correlate with types of situations, nothing in the meanings
of the words themselves, or any outside information, will be able to resolve our
uncertainty. For example, for some heights of people, we may have irresolvable
uncertainty about whether to call them tall. This can arise because when someone is
described as tall, we may be no more certain that they are that height than we would
be were they to be described as not tall.

Two challenges arise for communicating with vague expressions. As a hearer,
we must face uncertainty over what objects in the world are like, given the way
they have been described. As speakers, we may, from time to time, face uncertainty
over how to effectively describe things as being. However, arguably this uncertainty
stems directly from the uses of such terms, and from how such uses correlate with
the properties of situations those words describe or refer to. In the following, I will
treat the strengths of these correlations as the information that those terms carry.1

This information will be modelled using Bayesian conditional probabilities. It is in
this sense that Bayesian notions will be at the heart of the semantics for vague terms.

3 Constituents

A semantics based on uncertainty will have to be able to attribute, to types of expres-
sions, a role in the larger constructions inwhich they occur. Take our above examples:
‘John is tall’ and ‘Mary’s car is green’. Giving a semantics for the modifiers ‘tall’
and ‘green’ can then be taken to be a matter of accounting for what information they
carry about some object. For example, ‘x is green’ might be modelled as making it
reasonable to believe that x is one of some rough range of shades.

However, here a disparity between ‘tall’ and ‘green’ arises. The x in ‘x is tall’ is
vital for getting any idea about what it is reasonable to believe. If we are only told
that something, anything, is tall, be it a mountain, a molehill, a mouse, or a millipede,
there is no height it would be more reasonable to believe this thing is than others.2

This changes as soon as ‘tall’ is predicated of an NP or is applied to a CN in an NP:
The ‘tall’ in ‘x is a tall man’ seems to make it more reasonable to believe that x is
some heights rather than others. But this suggests that part of the information which
contributes to our expectations of heights is coming from the CN/predicate ‘man’.
This can be seen by substitution of CNs/predicates.3 Compare how expectations of

1This notion of semantic information is more rigorously developed in Sutton (2013).
2This may be to strong. There could be some priors we have, or reasoning we could engage in,
that would make some heights more reasonable than others. My thanks go to Noah Goodman for
helpful discussion.
3I do not mean to take, as assumed, a clear, semantically important division between CNs and
adjectives. Below, I will treat words like ‘tall’ and ‘green’ as predicate modifiers and words like
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heights differ for ‘x is a tall man’, ‘x is a tall molehill’ and ‘x is a tall mountain’.
The situation for green seems to be similar. CNs make a difference to expectations.4

However, ‘x is green’ does seem to carry some expectations of its own: that x is
roughly within some range of shades.

I take this to be a reason to see some differences in the semantics of various vague
adjectives/modifiers. The modifier ‘green’, which seems to carry information on its
own, will have a slightly different semantic shape to those modifiers (such as ‘tall’)
that only seem to modify expectations based on information carried by nominal
predicates. The details of this difference will be elaborated in Sect. 5.

What we have here is an argument for treating some modifiers as, in some sense,
not really carrying information per se. Instead we can see them as encoding a modifi-
cation on the information carried by a nominal predicate. Someone’s being described
as a woman gives us a rough expectation as to her height. This may be a very broad
range, but we have some expectations nonetheless. Something’s being described as
a skyscraper gives us very different expectations as to its height.

One might worry that this puts a lot of weight on information carried by nominal
predicates and/or background information and beliefs. However, all that is being
assumed is that learning to categorise and classify objects with such predicates, in
part, amounts to developing expectations as to basic visual cues such as size, shape
and shade. An anonymous reviewer rightly points out that this approach begins to
blur the boundaries between what counts as meaning and what counts as general
knowledge about the world. A firmer distinction can be established again without
overly affecting the account, however. Rather that seeing the meaning of, say, ‘man’
as being all the information one has learnt about men, we can view meanings as pro-
cedures (see Gargett et al. 2009) for accessing such knowledge and for determining
the ways such knowledge should be combined.

The common modifiers ‘old’, ‘big’ and ‘long’, just like ‘tall’, only seem to give
us reasonable expectations when applied to a nominal predicate (or when themselves
predicated of an NP in cases such as ‘John is tall’). In turn, however, that suggests
that nominal predicates such as ‘man’ carry information about what features men can
reasonably be expected to have. Some tests (albeit ones based on linguistic intuitions)
can be applied to get a grasp on what information this is. For example, at least for
non-metaphorical uses, ‘x is a long man’ does not seem to make much sense/provide
us with reasonable expectations about x’s length.5 This suggests that ‘man’ does
not carry information pertaining to length. This is not to say that modifiers such as

(Footnote 3 continued)
‘car’ and ‘man’ as predicates. In many cases, the traditional classifications of words as CNs and
adjectives will overlap with these semantic divisions. Nothing I say rests on whether they all do.
4This point is related to the commonly held idea that vague adjectives are context-sensitive or
interpretable only relative to a comparison class (Cresswell 1974).
5In English at least, length is not simply a euphemism for height. Trains, passageways, halls, to
name a few, can have a great length without having a great height.
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‘green’ are not restricted either. For example, synaesthesia aside, ‘x has green ideas’
is hard to understand if ‘green’ relates to shade.6

Nominal predicates will be treated as encoding information based on correlations
between things that those common nouns are used to classify and the features that
the things they are used to classify have. For example, it is because there is a stronger
correlation between men and some heights than there is with others, that ‘man’
carries information about heights. Adjectives will be modelled as modulating some
specific aspect of the information that nominal predicates carry. For example, ‘tall’
will modify information relating to height carried by predicates like ‘man’.

A possible worry can be flagged here.7 In the literature on adjectives, it is com-
mon to appeal to a comparison class to capture their semantics (Cresswell 1974;
Kamp 1975; Kennedy 1997; Graff Fara 2000). However, it has been pointed out that
common nouns do not always determine comparison classes (Kennedy 2007). For
example, BMWs are not the comparison class below, despite featuring as part of a
modified NP:

1. Kyle’s car is an expensive BMW, though it’s not expensive for a BMW. In fact
it’s the least expensive model they make. (Kennedy 2007)

The worry concerns whether the above analysis conflates modified nouns with com-
parison classes. The analysis can, however be modified slightly. Rather than demand
of some adjectives that they simply modify a nominal predicate, we can instead
require that there is some class of things to which it is being applied in any context
(information about which can be modified by the adjective). This still leaves a differ-
ence with terms like ‘red’ which seem to carry some information (about, say, shades)
independently of a lexically provided nominal predicate or a comparison class.8

4 Semantics: Preliminaries

4.1 Correlations and Situations

In the following, I will suggest one way to formalise U1 uncertainty (uncertainty
over how the world is, given a description of it). I will borrow heavily from
situation semantics (Barwise and Perry 1983; Cooper 1996; Devlin 2006), but will
incorporate a probabilistic element into the standard categorical theory.

6An interesting possibility is that the application of domain specific modifiers to NPs that do not
carry information about that domain will generate metaphorical interpretations. Metaphor, humour
and other such subjects are outside of the scope of this paper. There may also be an interesting link
to be explored between the ideas put forward here and work done on scalar adjectives in de Marnee
et al. (2010).
7This was pointed out by an anonymous reviewer for the BNLSP 2013 Workshop.
8That is not to say that ‘red’ cannot relate to non-stereotypical shades (such as in ‘red onion’).
Elsewhere (Sutton 2013), I suggest a way for this account to model the information carried by ‘pet
fish’ where goldfish are not the most stereotypical fish, nor the most stereotypical pets.
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In situation theory, meaning is captured via the notion of constraints. Constraints
represent information channels, for example, types of situations in which there is rain
in the city are informationally connected to types of situation in which the pavements
are wet. The (context independent) linguistic meaning of an expression is held to be
just a special case of a normal information channel: types of situation in which some
expression is uttered are informationally related to types of situations in which some
conditions obtain. For example, types of situations in which someone utters ‘It’s
raining in London’ are informationally connected to types of situations in which
there is rain in (at least part of) London (at some time).

It is via this type-type link or relation that agents are able to extract token-token
information. For the case in hand, if one is in a token discourse situation of the type
‘It’s raining in London’ is uttered, one will be led to expect a token situation of the
type raining in London. In standard situation semantics, ignoring a lot of details, the
truth of what is said turns onwhether the token described situation is of the right type.

The basic idea to be presented in this paper is that meaning can be treated as
correlational. Instead of constraints holding between one utterance situation type and
one described situation type, probability theory will be employed to capture different
strengths of connections between an utterance situation type, and many described
situation types. The meanings of expressions are therefore held to be correlations
between discourse situations of a certain type, and described situations of a certain
type. For example, the type of situation in which ‘John is tall’ is uttered will be
correlated, to different extents, with types of situation in which John is one of many
possible heights.

In Situation Theory, situations support infons. Infons are traditionally conceived
as what contribute to forming informational items (Devlin 2006), or as types of
situations (Cooper 1996).9 Another way to view them is as properties of situations
(as opposed to properties of individuals). For example, (ignoring times) one property
that a situation might have is where it’s raining somewhere10:

〈〈rain, l̇, yes〉〉

The l̇ is a location parameter. Parameters can be seen as akin to variables. They
can be bound via type abstraction (see below), or free. Ignoring quantifiers, free
parameters are those not bound by abstraction in situation theoretic propositions. If
a situation, s has some property (some infon), σ, then it is said that the situation

9This way of viewing infons (as types) propagates through into situation theoretic approaches with
richer type systems. See, for example Cooper (2012).
10This notation for infons is essentially Devlin’s. However, for polarities, I adopt Barwise and
Perry’s ‘yes’ and ‘no’ instead of Devlin’s ‘1’, ‘0’. This is to avoid potential confusion with the limit
cases of probability values [0, 1].
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supports the infon. That a situation supports an infon, in notation, is a situation
theoretic proposition:

s � σ

For the above infon, this would give:

s � 〈〈rain, l̇, yes〉〉

Which says that in situation s, it is raining at some location. Situations are meant to
be ways to classify objects and events in the world. They are not possible worlds.
If a situation, in fact, has the property σ (is, in fact, of type σ/supports σ), then the
proposition is true.However,wewill not be seeking to associate linguistic expressions
with propositions, nor will we be directly interested in particular situations and
whether they support some infon. This is because constraints are defined between
situation types.

Importantly, abstraction in situation theory allows one to talk about types.
Abstracting over objects (understood loosely as individuals, locations, and times),
creates object types. Taking our rain example, and abstracting over l̇, this gives:

λ[l̇](s � 〈〈rain, l̇, yes〉〉)

Which is the type of locations inwhich it rains in situations.Whenbound, parameters
can be replaced with constants as with standard β-reduction. For example:

λ[l̇](s � 〈〈rain, l̇, yes〉〉) . [London]
⇒ s � 〈〈rain,London, yes〉〉

Situations can be abstracted over to give situation types11 via situation type
abstraction. Notation varies, I will adopt the following12:

λ[ṡ](ṡ � σ)

This means the type of situation in which σ obtains. The ṡ is a parameter, as l̇ above,
but ṡ is a parameter for situations. In this case, ṡ is bound. For example:

λ[ṡ](ṡ � 〈〈rain,London, yes〉〉)

Which is the type of situation in which it rains in London. Correlations (information
channels) hold between types. For example the above type might correlate with the

11More recent situation theoretic approaches take types to be objects. An example of this rich
type-theoretic approach is Type Theory with Records (TTR) (Cooper 2012).
12This is close to Devlin’s notation, but with Cooper’s use of ‘λ’ for abstractions instead of Devlin’s
(ṡ|ṡ � σ). This variation is to avoid possible confusion resulting from the use of ‘|’ in probability
theory.
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type of situation in which the streets of London are wet. In the probabilistic version of
Situation Theory to be developed, these correlations will be modelled as conditional
probabilities (the probability of one type, given another). It is this that will ensure
that if some concrete situation of a type arises, there will be a probability that some
situation of another type will arise (or, arose, or will have arisen etc.).

The proposal to bemade here is then thatU1 uncertainty (where descriptions using
vague expressions leave us uncertain about specific features/properties that objects
in the world have), can be modelled as conditional probabilities between types of
situation. I will say more on U2 probability in Sect. 7.

We will have situations of two kinds:

(i) Discourse situations, d, are situations in which some specific discourse takes
place. For example, we might have the discourse situation in which ‘red’ is
used to classify some object, or, in which ‘tall’ is used to describe some person.
Discourse situations will model the situations in which certain words are used
(certain things are said).

(ii) Described situations, s, are situations in which the world is some way. For
example, we might have the described situation in which an object is some
shade of colour, or, in which a person is 180cm in height. Described situations
will model the kinds of ways the world can be.

Types can be formed by abstracting over discourse and described situations. For
example:

λ[ḋ](ḋ � 〈〈utters, ȧ,TALL,j, yes〉〉)

Is the type of situation in which someone describes John as ‘tall’. Given such a
type, there will be a probability of some described situation being of some type. For
example, the type of described situation in which John is 180cm in height:

λ[ṡ](ṡ � 〈〈height=180cm,j, yes〉〉)

Varying probabilities will result from different height values. These probabilities will
form a distribution.Abstracting away from the contributionmade by the name ‘John’,
this distribution will reflect the extent to which uses of the modifier ‘tall’ to describe,
say, a human male, correlates with human males being certain heights. The heights
that an agent will entertain will be restricted by her/his learning process (namely, an
approximation over the kinds of humans, males etc. that they have experienced). It
will be supposed that a rational agent can only have distributions that sum to 1.

The information carried by sentences will be captured as the conditional proba-
bility of there being a described situation of some type, given a discourse situation
of some type. For example, the probability of there being a situation type in which
John is 5 ft, given a situation type in which John is described as tall, will be (compar-
atively) very low.13 Other conditional probabilities will be greater for greater height

13This can be so even given the assumption that speakers are not being deliberately deceptive. What
is being tracked here is the extent to which, in general, properties such as heights of individuals
correlate with types of utterances, such as describing them as tall.
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properties John might have. A range of such probabilities (each with a different
height property/one-place relation assigned to John in the described situation) will
form a distribution (must sum to one).

Conditional probability values will represent something like credence. However,
rather than just a degree of belief, we will be concerned with the degree to which it
is reasonable to believe that some state of affairs obtains. This distinction is between
what, given some actual description, a hearer believes (credence), and what, in virtue
of the information carried by the utterance of the words, one is entitled to believe.
Conditional probability values reflect correlations between uses of words and states
of affairs. This incorporates all uses, both representations and misrepresentations
of the world. The degree to which it is reasonable that some state of affairs obtains
reflects this. Howmuch reason or entitlement one has to believe the world to be some
way will be a direct reflection of how words are used (how uses of words correlate
with types of situations).

So, if being told that John is tall makes it reasonable to believe to a degree of n
that he is 180cm in height, this will be represented as assigning a probability value
of n to the conditional probability of there being a situation of the type in which John
is 180cm in height, given a situation of the type in which he is described as tall. The
value for n, against another larger number, represents a lower reasonable credence
in a state of affairs than the higher number. Conditional probability distributions will
be formed over a range of heights.

Types and Situation Types A more recent approach to situation theoretic seman-
tics is systematically laid out in Cooper (2012) which adopts a rich proof theoretic
type theory. Rather than treating types as sets of objects in a domain, this approach
treats types as objects (in a domain of types). Situations/events then act as proofs of
propositions. In what is to follow, I will adopt a fairly simple type theory with an,
essentially, model theoretic semantics.14 This simplification will make it easier to
focus on the probabilistic element in my account. A proof theoretic approach with
a richer type theory could, in principle, adopt the core ideas in the proposal that I
will make. Indeed, a probabilistic approach comparable to my own has just been
proposed in Cooper et al. (2014).15

Properties It is important to note that it is not assumed that there is anything like the
property green or the property tall that individuals have or lack. We will be assuming
that individuals can have the property of being some height (this will just be the
height that they are). We will also be assuming that certain objects have some hue or
shade.16 These heights and shade properties will be mentioned in the formalism as
properties of objects in infons.

14Thehedginghere is includedbecause, although I assumeadomainof situations (as a set), situations
are best not viewed as a set.
15A difference between this, my own, and similar proposals will be explained in Sect. 7.
16I assume for simplicity that these properties are not vague. Nothing turns on this however. Even if
properties were vague in the sense that someone may genuinely be of indeterminate (exact) height,
one would still need to explain how words like ‘tall’ admit of wide ranges of those properties in a
graded way.
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4.2 Definitions

Types The type system that will be used will have three basic types.17 Type e will be
the standard type for individuals (entities). Type s will be the type for situation. Rather
than the traditional type t (for truth value), we will have type p (for probability).
Basic types can be used to form functional types in the way normal to model theory.

Definition 1 Types

Basic types: {e, p, s}
Functional types: If a, b are types, then 〈a, b〉 is a type

Expressions This formalism brings together notions from both probability theory
and situation theory. As such, we will need to define how various parts of them
interact. The vocabulary of the formalism is in Definition 2. Where necessary, types
of expressions will be given as subscripts. For example, a variable, S, of type 〈e, p〉
will be written S〈e,p〉. The marking of numerical variables as type p in Definition 2
is an oversimplification. These will be interpreted as numerical normalising values.
These values can have a value outside of [0, 1], but are derivable from sums of values
of interpretations of other type p expressions.

Definition 2 Vocabulary

Parameters (PAR): Infinite set of parameters for all types ṡ1, . . . , ḋ1, . . . , ẋ, . . .

Constants (CON): A possibly empty set of constants for every type
Supports: �
Conditional on: |
Infons: σ, τ , 〈〈height=h,j, yes〉〉, 〈〈utters,a,TALL,j, no〉〉
Connectives: ∧,¬,∨
Lambda abstraction operator: λ
Mathematical operators: ×,+,−
Numerical variables: C, C′ of type 〈p〉
Brackets: ( , ), [ , ]

A further few remarks on infons are needed at this juncture. Infons contain rela-
tions between objects and the polarities in infons ‘yes’ and ‘no’ indicate whether
the relation holds between the objects. I assume a basic ontology of relations (such
as being some height or being some shade). Propositions state that situations sup-
port infons. Positive polarities on infons indicate that any situation that supports the

17I will from now on suppress all reference to locations and times, which are also types in situation
theory.
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infon is of that type. A negative polarity would indicate that the situation is of the
negative type. Infons can thus be understood as types of situations (Cooper 1996), or
perhaps as properties of situations. The class of infons will be formed of all possible
combinations of relations and objects in our ontology (plus a polarity).

The well-formed expressions of the language are defined in Definition 3 (where
WEa denotes well formed expressions of type a). Clauses (i), (ii), (iv) and (v) are
standard. Clause (v) introduces the syntax for situation types. Clause (vi) gives what
will eventually be interpreted as a conditional probability of one situation type given
another. The connectives in clause (vii) will be discussed in greater detail below.
Clause (viii) allows for expressions of type p to be linked by mathematical connec-
tives.

Definition 3 Well-Formed Expressions:

(i) If α ∈ PARa, then α ∈ WEa,
(ii) If α ∈ CONa, then α ∈ WEa,
(iii) If α ∈ WE〈a,b〉 and β ∈ WEa, then α(β) ∈ WEb,
(iv) If α ∈ WEb, and β ∈ WEa, then λ[β](α) ∈ WE〈a,b〉,
(v) If α ∈ WEs, and if σ is an infon, then λ[α](α � σ) ∈ WEp,
(vi) If φ,ψ ∈ WEp, then φ | ψ ∈ WEp,
(vii) If φ,ψ ∈ WEp, then:

(a) ¬φ ∈ WEp,
(b) φ ∧ ψ ∈ WEp,
(c) φ ∨ ψ ∈ WEp,

(viii) If φ,ψ ∈ W E p, then

(a) φ × ψ ∈ WEp,
(b) φ + ψ ∈ WEp,
(c) φ − ψ ∈ WEp,

As mentioned briefly earlier, there are two kinds of situation parameters that
we will use: described situations (ṡ) and discourse situations (ḋ). For descriptive
situation types, we will be interested in how the world is with respect to things like
the shades things are (for colour terms), and the heights things are (for terms like
‘tall’). In discourse situation types, what will be described is the production of some
utterance type.

The infonswewill be concernedwith are likewise of two kinds. Infons for descrip-
tive situations will describe/be about, say, what height someone is. Immediately
below I specify the infon, and below that, I give a described situation type including
that infon:

〈〈height=180cm,j, yes〉〉

λ[ṡ](ṡ � 〈〈height=180cm,j, yes〉〉)

The latter is the type of situation in which the individual denoted by j (say, John)
is 180cm in height. Infons for descriptive situation types will typically relate to
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what has been said. For example, below, I specify a discourse infon, followed by a
discourse situation type including that infon:

〈〈utters, ȧ,TALL,j, yes〉〉

λ[ḋ](ḋ � 〈〈utters, ȧ,TALL,j, yes〉〉)

The latter is the type of situation in which the individual denoted by j (say, John) has
been described as tall. This is a simplification, however. In actual fact, there ought
to be unbound parameters for locations and times etc. which are being suppressed
for simplicity.

For either of these situation types (descriptive and discourse), many actual situa-
tions could be of those types (types where John is 180cm in height, or where he is
described using ‘tall’).

Interpretations and Domains The interpretation function we shall use will be
marked as: p(·). Hence, an expression φ of type p, will be interpreted as p(φ),
or the probability of φ. Like interpretation functions in model theory, the interpreta-
tions of type p expressions will be built up of the interpretations of other expressions.
I assume a domain for each basic type. If a is a basic type:

p(α〈a〉) ∈ Dom〈a〉

Functionally typed expressions will be interpreted as functions from basic domains:

p(α〈a,b〉) ∈ Dom
Dom〈a〉
〈b〉

The type e domain will be a set of individuals. The domain of type p will be
the range [0, 1]. Situations are being taken as primitive. We can, for the sake of the
formalism, assume a domain of situations. However, in the spirit of situation theory,
situations should be taken to be our ways of conceptualising and carving up the world
into parts. As well as the interpretation function, we will have a parameter anchoring
function g, which assigns appropriate members of the domain to parameters. In
situation theory, parameter anchoring functions have restrictions on their domains, I
will pass over those details here.

The first four clauses of Definition 4 are fairly standard. Clause (v) simply states
that maths operators in the object language are treated as standard when the interpre-
tations of their operands are in the range [0, 1]. Clause (vi) simply states the standard
definitions of probabilistic connectives (Kolmogorov 1950).

Spaces and Priors In order for these axioms and the probability function to be
well defined, we must define a probability space. Probabilities will distribute over
situation types. The probability value will be in the range [0, 1] where this value
indicates the probability of some situation being of the type specified by the infon.
Conditional probabilities will be the probability of a situation being of some type,
given that some situation is of another type. For simplicity, for all non-conditional
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values, I assume that probabilities distribute evenly.18 For example, in the case where
we have n discrete ranges of heights over which a distribution will be formed, the
values for each unconditional situation type will be:

p(λ[ṡ](ṡ � 〈〈height=h, ẋ, yes〉〉)g = 1

n

Definition 4 Denotations

(i) p(ẋ)g = g(x) if ẋ ∈ PAR,
(ii) p(c)g = p(c) if c ∈ CON ,
(iii) p(α(β))g = p(α)g(p(β)g),
(iv) p(λ[ẋ](α))g = f such that if ẋ ∈ PARa , and c ∈ Doma , f (c) = p(α)g[ẋ :=c],
(v) Maths Operators:

(a) p(φ × ψ)g = p(φ)g × p(ψ)g ,
(b) p(φ + ψ)g = p(φ)g + p(ψ)g ,
(c) p(φ − ψ)g = p(φ)g − p(ψ)g ,

(vi) Probabilistic Connectives:

(a) p(¬φ)g = 1 − p(φ)g ,
(b) p(φ ∧ ψ)g = p(φ)g × p(ψ | φ)g ,
(c) p(φ ∨ ψ)g = p(φ)g + p(ψ)g − p(φ ∧ ψ)g .

In practice, the rangeof situations and infonswill be highly constrained. For described
situations, constraints will come out of the semantic learning process, as well as
the goals and purposes of the speakers. For example, certain ranges of shade/hue
properties will constrain the range of described situations for colour terms in general,
but further constraints may come from what objects are salient to speaker and hearer
in the situation of utterance.

For discourse situations, I assume a space of two infons, formed of the same
relation and object but with opposing polarities.

p(λ[ḋ](ḋ � 〈〈R,a1, . . .an, yes〉〉))g = 0.5 = p(λ[ḋ](ḋ � 〈〈R,a1, . . .an, no〉〉))g

However, when multiple terms are used, the space of possibilities may be bigger and
so values may be lower.

Representationalism The formal semantics and linguistics debate over represen-
tationalism got going with the publication of work on Discourse Representation
Theory (DRT) (for an overview, see Kamp and Reyle 1993). DRT questioned Mon-
tague’s claim that the representational language of a formalism is dispensable. In
DRT, it was claimed that to account for the treatment of some expressions (such as
discourse anaphora), the representational (interpretational) level is not dispensable.

18In amore sophisticatedmodel, one would wish the values of priors to be set in accordance with the
learning experiences of agents. One way this has been implemented will be discussed in Sect. 7.2.
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Non-representational, dynamic accounts were developed in response. The debate
was never entirely settled, but I do not need to take up a position.

Linguistic Meaning In standard situation semantics, linguistic meaning is captured
by way of constraints. For example, the linguistic meaning of ‘Mary is tall’ will
be a link between an utterance situation type in which an utterance of ‘Mary is
tall’ is made, and a described situation type in which Mary is tall. The introduction
of probabilities into the situation theoretic framework, can be understood as the
loosening of the strength of this link. Rather than taking an utterance of ‘Mary is
tall’ to convey information in such a way as to give us the expectation that in some
described situationMary is tall, probabilistic constraints will hold between utterance
situation types and a number of described situation types. In each of the described
situation types, Mary will be some particular height, however, the strength with
which we should expect Mary to be that height, given that she has been described as
tall will vary. This uncertainty will be captured formally as a conditional probability
distribution. For the example in hand this will be the following:

p(λ[ṡ](ṡ � 〈〈height=h,m, yes〉〉) | λ[ḋ](ḋ � 〈〈Utters, ȧ,TALL,m, yes〉〉))g

The above formula will return probability values for different values of heights h.
Put simply, given a type of situation in which Mary is described as tall, one should
assign a greater probability to the described situation being one in which Mary is
some heights rather than others. However, these values will be determined by more
general correlations in which, say, people are described as tall and where people are
some height or other (the details of this will emerge in the compositional semantics).
The standard way we will represent and interpret declarative sentences will therefore
be as a conditional probability formed with a described situation type and a discourse

Table 1 Interpretation of ‘Mary is tall’

h (cm) p(λ[ṡ](ṡ � 〈〈height=h,m, yes〉〉) |
λ[ḋ](ḋ � 〈〈Utters, ȧ,TALL,m, yes〉〉))

h < 150 0.01

150 ≤ h < 155 0.01

155 ≤ h < 160 0.01

160 ≤ h < 165 0.01

165 ≤ h < 170 0.01

170 ≤ h < 175 0.02

175 ≤ h < 180 0.06

180 ≤ h < 185 0.11

185 ≤ h < 190 0.22

190 ≤ h < 195 0.32

h > 195 0.22
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situation type where the resultant probability distribution describes the constraints
that the words used in the utterance situation place on the described situation:

p(λ[ṡ](ṡ � τ ) | λ[ḋ](ḋ � σ))g

For different infons substituted for τ , values will be in the range [0, 1]. These values
will form a distribution. Returning to our example of ‘Mary is tall’, using some
made-up values, the sentence could be interpreted as in Table1. In Sect. 5, I will
describe how such a sentence can be composed.

5 Semantics: Terms

5.1 Predicates

Since nominal predicates were argued to be important for the semantics of vague
adjectives/modifiers (as the things bearing the information that they modify), we
will now turn to them. As suggested in Sect. 3, nominal predicates may carry a
lot of different information. Our basic semantic representation for such predicates
will incorporate an argument the domain of which will be a selection of a type of
information (such as a range of heights). This information type will be supplied
either by context, or by a modifier, such as an adjective. In a departure from a simple
view of predicates (that take just an object as an argument), nominal predicates will
be modelled as a function from properties to a function from an individual to a
probability, which is to say that they will be a function from properties to properties
(〈e, p〉, 〈e, p〉). The logical structure of nominal expressions will be such that two
entities in the abovewill be the same. Put anotherway, singular nominal predicates are
assumed to require updating in context with respect to the aspect of the information
they carry (via an argument of type 〈e, p〉). Then, when provided with an individual
(a type e argument), yield a value for the probability of that individual having that
property, given the informationprovided.The schema for ‘man’ (andwith appropriate
substitution, other predicates) is:

Man : λ[Ṡ](λ[ẋ](Ṡ . [ẋ] | λ[ḋ](ḋ � 〈〈Utters, ȧ,MAN, ẋ, yes〉〉)))〈e,p〉,〈e,p〉

ẋ, ẏ := Parameters for individuals (〈e〉)
Ṡ, Ṙ := Parameters of functional type 〈e, p〉

e.g. λ[ẏ](λ[ṡ](ṡ � 〈〈height=180cm, ẏ, yes〉〉))

To get the information carried by ‘is a man’ with respect to the having of some
property, we need to provide a property a man might have. Such a property (or range
of properties) may be provided by the context. Below, however, we will see how
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part of the semantic contribution of predicate modifiers is to provide such a property
(such a range of properties).

Because nominal predicates are functions from properties of described situation
types to a function from individuals to a probability, a worry over tractability and
learnability arises. If an agent needs to learn all distributions that arise from interpret-
ing ‘x is a man’ constructions, this would not be a tractable learning task. However,
probabilistic learning affords a solution. We can assume that agents begin classifier
learning tasks with flat prior distributions for all collections of properties. On being
exposed to uses of a classifier, distributions will be adjusted for just those properties
the objects are perceived to have. In this sense, if one has no reasonable expectations
regarding some range of situations, given what has been said, simply because no one
situation type is more plausible than another, then it is possible that the classifier
used does not carry information about (the properties in) those situations.19

One property a manmight have is of being a certain height. For example, he might
be 180cm in height:

λ[ẏ](λ[ṡ](ṡ � 〈〈height=180cm, ẏ, yes〉〉))

This kind of property can be applied to our representation of the predicate ‘man’:

λ[Ṡ](λ[ẋ](Ṡ . [ẋ] | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉) .

[λ[ẏ](λ[ṡ](ṡ � 〈〈height=180cm, ẏ, yes〉〉)]
⇒λ[ẋ](λ[ẏ](λ[ṡ](ṡ � 〈〈height=180cm, ẏ, yes〉〉) . [ẋ] |

λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉)))
⇒λ[ẋ](λ[ṡ](ṡ � 〈〈height=180cm, ẋ, yes〉〉 | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉)

This is now in the right shape to take an individual as an argument which will
be described as a man in ḋ and assigned the height property in ṡ. Assuming (as a
simplification) that names refer and carry no other information, this means that ‘John
is a man’ can be represented, with respect to being 180cm in height, as follows20:

λ[ṡ](ṡ � 〈〈height=180cm,j, yes〉〉) | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN,j, yes〉〉)

The interpretation of this will be a probability value that reflects, with respect to
John having some height, the probability of John having that height, given that he
has been described as a man.

19Of course, given particularly skewed learning data, anomalies in individuals semantic repre-
sentations may occur. There will, nonetheless, be general patterns of use across whole language
communities. What learners are assumed to be implicitly doing is approximating to the patterns of
use in their learning communities as a whole.
20I ignore the contribution of the indefinite article and treat this as a simple predication. I leave the
modelling of quantification in this system for future research.
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Of course, ‘John is a man’ will carry more information than this about John, but
let us focus on information carried about his height. We can consider the range of
heights John might be (given that he has been described as a man). There will be a
rationality constraint on the values ‘John is a man’ receives with respect to John’s
height. The values, must sum to 1. As a simplification, we may think in discrete
values, although a more accurate representation would be a continuous function.

Put anotherway, providingdifferent arguments of height properties for the formula
abovewill generate a probability distribution. Table2 shows one possible distribution
for the height information carried by ‘John is aman’ simplified over ranges of heights.

Describing John as a man, in part, conveys information about his height: that it is
fairly probable that he is around average height and highly probable that he is neither
far below nor far above average height. This relates to the assumption that learning
the classifier ‘man’, in part, involves learning, approximately, the ranges of heights
men tend to come in. This needn’t be in centimetres. It need only be internalised
in such a way as to aid, to some extent, the ability to identify and classify whether
objects in one’s environment are men.

TallAs a predicatemodifier, ‘tall’, when applied to a nominal predicate, increases our
(reasonable) expectations of the entity (that predicate is applied to) having a greater
height. ‘Tall’ will therefore be modelled as having two jobs to do when applied to
a common noun like ‘man’: (i) it will pick out the information carried by ‘man’
with respect to height. (ii) it will be a function on the probability distribution that
‘man’ generates with respect to heights (it will make taller heights more probable
and shorter heights less probable). In terms of a distribution curve, for a graph with
probabilities on its y-axis and heights on its x-axis, it would shift the whole curve
along the x-axis in the direction of greater heights. The representation of ‘tall’ is
given below, along with a derivation for ‘tall man’.

Table 2 Interpretation of ‘John is a man’ with respect to height

h (cm) p(λ[ṡ](ṡ � 〈〈height=h,j, yes〉〉) |
λ[ḋ](ḋ � 〈〈utters, ȧ,MAN,j, yes〉〉))

h < 150 0.01

150 ≤ h < 155 0.04

155 ≤ h < 160 0.08

160 ≤ h < 165 0.12

165 ≤ h < 170 0.15

170 ≤ h < 175 0.20

175 ≤ h < 180 0.15

180 ≤ h < 185 0.12

185 ≤ h < 190 0.08

190 ≤ h < 195 0.04

h > 195 0.01
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tall : λ[Ṗ](λ[ẏ](C × ftall((P . [ẏ]) . [(λ[ż](ṡ � 〈〈height=h, ż, yes〉〉)]))))
man : λ[Ṡ](λ[ẋ]((Ṡ . [ẋ] | ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉)))
tall man : λ[Ṗ](λ[ẏ](C × ftall((Ṗ . [ẏ])) . [(λ[ż]ṡ � 〈〈height=h, ż, yes〉〉)])))) .

[λ[Ṡ]λ[ẋ] (Ṡ . [ẋ] | ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉)]
⇒ λ[ẏ](C × ftall( λ[ṡ](ṡ � 〈〈height=h, ẏ, yes〉〉) |

λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, ẏ, yes〉〉)))

Ṗ := Parameter of type 〈〈e, p〉, 〈e, p〉〉 (functional type from situation properties to a function
from individuals to [0, 1])

C := Normalising value
ftall := Expression of type 〈p, p〉

The interpretation of which is a function from individuals to a probability distri-
bution for heights of that individual, given the individual’s description as a tall man.
Whatever function on distributions ftall is, C will be interpreted as the value that
normalises the distribution.21 One possible interpretation for f tall could be that it has
the effect of shifting the distribution for ‘man’ up by 20cm or so (and stretching it
vertically).22 In Table3, from the above toy distribution for ‘John is a man’, we can
get a toy distribution for ‘John is a tall man’.23

Simply translated, being told that John is a manmay carry all sorts of information.
Some of this is that he is more likely than not to be within some margin of average

Table 3 Interpretation of ‘man’, and ‘tall man’ (unnormalised and normalised) with respect to
height

h (cm) p(Φ) p( ftall(Φ)) p(C × ftall(Φ))

h < 150 0.01 0.01 0.01

150 ≤ h < 155 0.04 0.01 0.01

155 ≤ h < 160 0.08 0.01 0.01

160 ≤ h < 165 0.12 0.01 0.01

165 ≤ h < 170 0.15 0.01 0.01

170 ≤ h < 175 0.20 0.02 0.02

175 ≤ h < 180 0.15 0.06 0.06

180 ≤ h < 185 0.12 0.10 0.11

185 ≤ h < 190 0.08 0.20 0.22

190 ≤ h < 195 0.04 0.30 0.32

h > 195 0.01 0.20 0.22

21Which will be 1 over the sum of the modified distribution.
22This could also be described by adjusting values of parameters on a Gaussian function.
23I assume that 0.01 is the arbitrarily small value. Φ is an abbreviation for λ[ṡ](ṡ �
〈〈height=h,j, yes〉〉 | ḋ � 〈〈utters, ȧ,MAN,j, yes〉〉).
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height. Being told that he is tall carries the information that it is highly probable that
John is over average height. ‘tall’ selects a particular kind of information carried by
its common noun (namely information about height), and it amplifies expectations
for the upper bounds.

Importantly, after normalisation, we are simply left with a probability distribution
(in the final column). Any of those values will be able to enter into formulas for
further manipulation if need be. It will be convenient to mark, in the syntax of the
formalism, that normalised distributions are mere distributions. This can amount to
a dropping of the f and C, but keeping a record of what the normalised distribution
is over. Hence, the interpretation of formulas like:

C × ftall( λ[ṡ](ṡ � 〈〈height=h,j, yes〉〉) | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN,j, yes〉〉))

will, interpreted, be a probability distribution over heights, which can be rewritten
with an updated discourse situation:

λ[ṡ](ṡ � 〈〈height=h,j, yes〉〉) | λ[ḋ](ḋ � 〈〈utters, ȧ,TALL MAN,j, yes〉〉)

However, in doing so we must be aware that we have increased the probability space
of discourse situations. Now there are four possible discourse situation types since
John might or might not be described as a man and might or might not be described
as tall.

Green As noted in Sect. 3, modifiers like ‘green’ differ from ‘tall’: simply knowing
that something (anything) is green will give reasonable expectations about what it is
like. Theway thiswill bemodelled is that ‘green’will also be a function onprobability
distributions, but whereas ‘tall’ was informally characterised as taking a distribution
over heights and shifting it up (so that greater heights receive higher values and lower
heights, lower values), ‘green’will contribute somethingmore stable to a distribution.
It will select shades or hues as properties to distribute over, but it will have the effect
of always weighting the distribution towards certain shades. For each shade that an
object might be, ‘green’ provides a weighting over our expectations for what is being
referred to as being one of those shades.

Formally, ‘green’ will look the same as ‘tall’ and the only difference will be in
the functions ftall and fgreen. Immediately below is the derivation for ‘green car’.
For some shade c, the interpretation of the above is a function from individuals to a
probability value. For different values of c, this will form a distribution.

Unlike ‘tall’, which pulls height distributions up by some factor, ‘green’ will
have a more constant character. Both functions will be of type 〈p, p〉, but whereas
ftall will has the effect of moving a distribution over heights upwards (increasing
expectation of heights), fgreen will always have the effect of flattening a distribution
over shades where those shades are not usually described as green, and of elevating
the distribution over shades that are usually described as green. The function for
‘green’ will pull any predicate distribution it is applied to towards the same points,
namely, some range of shades. This will represent why it is more reasonable to expect
something described as ‘green’ to be some shades. This also accounts for why ‘green’
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seems to convey information on its own (about shades) in a way that ‘tall’ does not
(about heights).

green: λ[Ṗ](λ[ẏ](C × fgreen((Ṗ . [y]) . [λ[ż](λ[ṡ](ṡ � 〈〈shade=c, ż, yes〉〉)]))))
car: λ[Ṡ](λ[ẋ](Ṡ . [ẋ] | λ[ḋ](ḋ � 〈〈utters, ȧ,CAR, ẋ, yes〉〉)))
green car: λy.C × fgreen(λ[ṡ](ṡ � 〈〈shade=c, ẏ, yes〉〉) |

λ[ḋ](ḋ � 〈〈utters, ȧ,CAR, ẏ, yes〉〉))

5.2 Connectives

For the interpretations of two declarative statements:

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � τ ))

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � ρ))

The interpretation of their conjunction and disjunction will be:

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � τ ) ∧ λ[ḋ](ḋ � ρ))

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � τ ) ∨ λ[ḋ](ḋ � ρ))

Values for which can be obtained using Bayes’ Rule.24 For example, in the con-
junction case, this would yield:

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � τ ) ∧ λ[ḋ](ḋ � ρ)) =
p(λ[ṡ](ṡ � σ)) ∧ p(λ[ḋ](ḋ � τ ) ∧ λ[ḋ](ḋ � ρ))

p(λ[ḋ](ḋ � τ ) ∧ λ[ḋ](ḋ � ρ))

6 Vagueness

On the semantics being developed, a phenomena (one that might well be called
‘vagueness’), emerges naturally frommeaning representations. If terms leave us with
U2uncertainty, then sometimes therewill be a clash betweenour intuitions ofwhether
to apply a particular term in a particular case. U2 uncertainty (uncertainty over how to
apply terms) is related toU1 uncertainty (uncertainty overwhat theworld is like given
a description). If U1 uncertainty is graded, then there will undoubtedly arise cases
where U2 uncertainties clash: cases where we are no more certain about applying

24Bayes’ Rule, stated in regular notation is: P(C |A) = P(C ∧ A)

P(A)
.
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a term than we are about applying its negation. Furthermore, some cases of clashes
will be immune to further information. One could be in a position of full knowledge
such that one knew exactly how words were used, all of the relevant properties of the
objects being described, and all of the relevant contextual information. Nonetheless,
clashes of equal uncertainty may remain unresolved. Such situations, I contend, are
plausible explanations of so-called borderline cases.

For example, if the value for ‘John is tall’ with respect to height h is the same
as the value for ‘John is not tall’ with respect to height h, then the meaning of ‘tall’
will provide us with no more reason to judge John to be tall than to judge him to be
not tall. There is no more to know about the meaning of ‘tall’ which will resolve this
uncertainty, and there may be no more to know about John or the context of utterance
to do so either. If so, John would be a borderline case.

Probability values in the formalism can be seen to reflect reasons for making
judgements. In viewing matters this way, we can begin to get a handle on bound-
arylessness. Even if our reasons for making a ‘tall’ judgement slightly outweigh our
reasons for making a ‘not tall’ judgement, we might still not have sufficient reason to
form a categorical judgement. The extent to which the values must differ for one or
the other judgement to be true will not be a matter decided by the semantics for ‘tall’.
In this sense, nothing in the meaning representation itself will determine a cut-off
point for ‘tall’. It is due to this feature of the model provided that we can approximate
boundarylessness for vague concepts.

7 Comparison with the Literature

7.1 Lassiter’s, and Frazee and Beaver’s Epistemic Models

Although Lassiter (2011) and Frazee and Beaver (2010) describe their positions from
different perspectives, they amount to similar approaches. Lassiter’s article, though
marginally later was developed independently and is fuller in detail. I will focus on
it.

Similarly to my approach, Lassiter is interested in uncertainty in communication
and worried about sharp boundaries. Rather than implementing probabilities directly
into the meaning representations of words, Lassiter incorporates metalinguistic
uncertainty over what is being expressed (in terms of a sharp proposition). He also
includes uncertainty about the world, but we’ll focus on the former case.

Lassiter inherits, from other work in the scalar adjectives literature, the idea that
their semantics should incorporate thresholds. In simple terms, hemodels uncertainty
about where the threshold is when a term like ‘tall’ is used. We can, relative to a
context, be pretty certain that thresholds are not too high or too low. Lassiter models
this as a distribution over precise model theoretic objects which have sharp cut-offs.
The effect is that if we learn someone’s height, we can get a value that reflects the
probability that individual is tall.
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However, Lassiter’s emphasis is not on the sharp boundaries that such a posi-
tion implies. For him (and for Frazee and Beaver), communication using ‘tall’ is
about approximating, roughly, the standard in play for what would count as tall. It is
these standards that we are uncertain about when someone uses the expression ‘tall’.
However, this general picture has the effect of implying that there is, nonetheless, a
standard for ‘tall’ in every context. I have suggested that the approximation of stan-
dards is not what is encoded by our words. This amounts to the claim that uncertainty
should enter at the level of describing the model theoretic object, not at the level of
evaluating which classical model theoretic object is in play.

Lassiter’s account is a big improvement on standard non-probabilistic approaches.
However, the fact remains that themotivation for appealing to precise languagesmust
still be given. If it turns out that we rarely, if ever, coordinate sufficiently to settle
on exactly where a threshold for ‘tall’ should be, then why have such thresholds
written so centrally into the semantics of such terms? We can drop precise lan-
guages and have a far more direct connection to what our terms mean by adopting
the picture proposed.

7.2 Cooper et al.’s Probabilistic Type-Theoretic Approach

Semantic learning is at the forefront of Cooper et al. (2014), which is also the closest
position to my own. I strongly suspect that the core of the two positions will be pretty
inter-definable, although there are differences of emphasis.

U1 uncertainty is uncertainty about the world, given a description of it. U1 uncer-
tainty is, effectively, what my account describes. Arguably, Cooper et al. focus on
U2 uncertainty. U2 uncertainty is uncertainty about how to use words, given some
known or perceived way the world is. I will say more about Cooper et al. formal-
ism in a moment, but it is first worth remarking that, if modelled as I have pre-
sented, U1 and U2 uncertainty are inter-definable. The main weight of the mean-
ings of utterances in my account rests on conditional probabilities of the form
p(λ[ṡ](ṡ � σ)|λ[ḋ](ḋ � τ )). In other words, the probability of the world being
some way, given a description of it. If, indeed, Cooper et al.’s account describes U2
uncertainty, then it is possible that their results could be simulated via the use of the
alternate conditional probability: p(λ[ḋ](ḋ � τ )|λ[ṡ](ṡ � σ)) (or the probability that
some description will be used, given that the world is some way). Importantly, given
the priors p(λ[ṡ](ṡ � σ)) and p(λ[ḋ](ḋ � τ )), these two conditional probabilities
are simply ratios of each other.

Cooper et al.’s semantics uses a rich theory of types. The simple type theory I
have used provided domains for basic types. Complex types were then constructed
as functions of basic types. In rich type theories, types should not be thought of
in these extensional terms, but instead as something like useful ways of classifying
things (Cooper 2012, p. 275). However, propositions are also types. For example,
the proposition David runs can be seen as a situation type (one in which David runs),
and is true iff there is a situation in the world in which David runs. In Cooper et al.
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(2014) agents are modelled asmaking probabilistic judgements about classifications.
Propositions are still types, but judgements reflect the probabilities that there is a
situation of the right type.

Of particular interest is how these type judgements are grounded. Central to
Cooper et al.’s account is semantic learning, a wider discussion of which features
in Cooper et al. (2013). On their learning model, a learner is exposed to multiple
situations. In each one they make a judgement about whether the object they are
shown is an apple or not an apple. After each judgement, the oracle that models
the adult speaker gives a judgement. Initially, the learner cannot make a judgement,
but after a few exposures to adult judgements, has enough data to begin to make
judgements herself. In Cooper et al.’s model, ‘apple’ judgements are based on four
properties (two colours and two shapes). Simplifying a little, when faced with a new
object to classify, the value of the judgement is calculated as the conditional proba-
bility p(apple|observed properties).25 To calculate that conditional probability, the
learner uses priors and conditional probabilities such as p(property|apple), both of
which are estimated directly from the adult judgements she have witnessed.

Translating more into my own vernacular, one could see probabilities of ‘apple’
judgements as approximating probabilities of discourse situations, and we could see
probabilities of properties as approximating probabilities of described situations. The
two stages of Cooper et al. learning account can then be described with the following
procedure:

(i) By directly witnessing adult speakers’ linguistic behaviour, estimate probabili-
ties of the form:
p(λ[ṡ](ṡ � 〈〈colourc, ẋ, yes〉〉)), p(λ[ṡ](ṡ � 〈〈shapes, ẋ, yes〉〉)),
p(λ[ḋ](ḋ � 〈〈utters, ȧ,APPLE, ẋ, yes〉〉)),
p(λ[ṡ](ṡ � 〈〈colourc, ẋ, yes〉〉)|λ[ḋ](ḋ � 〈〈utters, ȧ,APPLE, ẋ, yes〉〉)), and
p(λ[ṡ](ṡ � 〈〈shapes, ẋ, yes〉〉)|λ[ḋ](ḋ � 〈〈utters, ȧ,APPLE, ẋ, yes〉〉)).

(ii) Use those values to calculate, of a novel object/context, the probability:
p[λ[ḋ](ḋ � 〈〈utters, ȧ,APPLE, ẋ, yes〉〉))|
λ[ṡ]ṡ � 〈〈colourc, ẋ, yes〉〉 ∧ λ[ṡ]ṡ � 〈〈shapes, ẋ, yes〉〉).

The process in (i) describes learning the kinds of meaning representations I have
proposed. Cooper et al. show how the kind of information that can be learnt from
adult speakers’ linguistic behaviour can be turned into a classifier judgement. These
judgements will not always be probability 1. The uncertainty that <1 judgements
reflect, is, Iwould argue, justwhat I described asU2uncertainty.Acloser examination
of the two accounts could be fruitful. It would certainly be useful if I were simply
able to adopt Cooper et al. learning model.

25Where the output judgement is decided bywhether an ‘apple’ or an ‘not-apple’ judgement receives
a higher value.
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One distinct contribution the account in this paper makes is in the treatment of
adjectives. Cooper et al.’s learning account shows howanominal like ‘apple’ could be
learnt from basic colour and shape observations. I have argued that vague modifiers
should be viewed as functions on distributions given by nominal classifiers.

8 Conclusions

Situation theory captures sentence meaning as a link between discourse situation
types and described situation types. Although the way that this idea has been devel-
oped here differs from the situation theoretic account in many ways, the basic spirit
of the account remains. On the standard view, informational links hold between sit-
uation types. Individuals build connections with the world via learning (learning to
decode the information carried by terms) and via communication. The reproduction
of expressions for similar purposes entrenches these relations.

On the account presented here, the meanings of expressions are correlational
informational links between discourse situation types and described situation types
that arise from patterns in language use. People connect to these correlations via
semantic learning, and they entrench correlations via reproduction of language to
refer to similar situations.

Vagueness naturally arises from modelling such relations probabilistically. This
can be viewed either as the boundarylessness of vague predicates achieved by sep-
arating, or at least distancing, truth conditions from semantic representations, or as
borderline cases, where the meaning of a term such as ‘tall’ can provide competing
reasons to make ‘tall’ and ‘not tall’ judgements.

However, the suggestions put forward here are rather programmatic and many
issues have remained entirely unaddressed. Nonetheless, at least for vague terms,
structured, probabilistic representations of meaning provide at least one viable route
for attempting to capture the boundarylessness that seems characteristic of vagueness.
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