
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Automating ActionScript Projects
with Eclipse and Ant

Sidney de Koning

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Automating ActionScript Projects with Eclipse and Ant
by Sidney de Koning

Copyright © 2012 Sidney de Koning. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Teresa Elsey
Copyeditor: Rachel Monaghan
Technical Editor: Patrick Rushton

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2011-10-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449307738 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Automating ActionScript Projects with Eclipse and Ant, the image of an agile ante-
chinus, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30773-8

[LSI]

1318001026

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449307738
http://www.allitebooks.org

Adobe Developer Library, a copublishing partnership between O’Reilly Media Inc.,
and Adobe Systems, Inc., is the authoritative resource for developers using Adobe
technologies. These comprehensive resources offer learning solutions to help devel-
opers create cutting-edge interactive web applications that can reach virtually any-
one on any platform.

With top-quality books and innovative online resources covering the latest tools for
rich-Internet application development, the Adobe Developer Library delivers expert
training straight from the source. Topics include ActionScript, Adobe Flex®, Adobe
Flash®, and Adobe Acrobat®.

Get the latest news about books, online resources, and more at http://adobedeveloper
library.com.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface . vii

1. Tools . 1
Eclipse 1

Workspaces and Perspectives 2
Preferences 3
Increase Eclipse’s Available Memory 4
Shortcut Keys 4

FDT 6
Downloading the Android SDK 7

Installing the ADT Plug-in for Eclipse 7
Installing Android SDK Platform Tools 8

Mylyn 9
Installing Connectors 10
Adding a Repository to Mylyn 12

2. Source Code Management . 15
SVN and Git 16
SVN in Eclipse 17
Git in Eclipse 20

3. Automation . 23
Ant 23
The Basics 25
Setup 26
Our First “Real” Ant Script 27

Projects 27
Functions 28
Variables 29

Directly Calling the Compiler 33
Downloading the Flex SDK 33

v

www.allitebooks.com

http://www.allitebooks.org

Using FDT’s Ant Tasks 41
Compiling (with FDT Ant Tasks) 42
Debugging (with FDT Ant Tasks) 43

Deploying Your SWF Files to a Different Source 44
Setting Up Web Deployment 46

Adding Information to a SWF 46
Setting Up the HTML File 51
Deploying to a Network Share 57
Creating a Zip File 57
Making a Backup of the Complete Project 58
Emailing the Client/Support Desk 59
Adobe AIR and Mobile Compiling 64

Compiling and Packaging to AIR 65
Creating a Self-Signed Certificate 67
Compiling and Packaging to an Android APK 71
Compiling to Android APK 72
Compiling for iOS 75
Certificates for iOS 77
Other Cool Stuff to Do with Ant 79

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Introduction
Let me start by saying I’m a lazy developer by design. I’d rather spend a day to code
something once than code the same task over and over again. The same goes for pro-
cesses: why do repetitive tasks if you can automate them? Imagine all the time you’ll
save. We live in a world where time is scarce and where project managers are breathing
down our necks to get that specific feature, that deployment, or that project done now.

Just think of all the stress it will save you when you return to that project you did a year
ago and you can just build with the push of a button. Less stress, and more control over
your workflow.

And besides that, computers were designed to do only one task for you: compute (and,
if programmed correctly, help you solve problems).

That is what this book is about: giving you the tools and knowledge to set up your own
“ultimate development machine” to help you code, compile, debug, and deploy
faster—i.e., to automate the whole process that takes place beyond the initial
programming.

Build Systems
Before I started this book, I did a survey to see if people were using build systems as
part of their daily workflow. Almost 50 people participated—not many, but it gave me
a fairly accurate picture. My results showed that 95 percent of the people who filled in
the survey were aware that they could automate their workflows for ActionScript de-
velopment. But only 66 percent use build systems in their daily workflow.

The most common reasons people gave for not using build systems were: “Too diffi-
cult,” “Our projects are not large enough,” “Perfectly happy doing it my way,” and “It
takes more time, but I’m fine with that.”

vii

www.allitebooks.com

http://www.allitebooks.org

Well, I’m here to prove otherwise. I’ll show you that it is not hard to make a consistent
workflow for multiple machines, even complete departments. I’ll show you that with
minimum effort, you can have Ant do all the hard work for you.

It doesn’t matter if you are doing a big or small project; all projects benefit from auto-
mation. They all need to be done under a high-pressure deadline, and Ant can help you
with that. The only thing you need is a little time.

Most of the people who participated in my survey (but also in the Flash community at
large) use either FlashBuilder or FDT, and since both are based on Eclipse, this book
focuses on this IDE.

What do I hope to accomplish with this book? A small revolution, where every Flash
developer knows what build systems are and can use them to his advantage—and on
a daily basis. Because build systems are sexy! And they make your life so much easier!
So you can spend time on the stuff that matters most, creating the stuff you love.

Audience
This book is mainly written for:

• Flash developers who want to step up their workflow

• The junior Flash developer who wants to take his game to a new level and work
smarter, not faster

• The senior who has been doing the same trick for many years

• People who want to spend their time more effectively, so they don’t have to work
late and can have time left for thinking about the stuff that’s important to them
and building things they love, like their own framework, libraries, or tools

• And, of course, every developer in between

Contents of This Book
This book is divided into three chapters.

In Chapter 1, Tools, I’ll guide you through the installation and setup of your workspace
and discuss the Eclipse plug-in FDT, issue- and bug-tracking integration in Eclipse with
Mylyn, the Android SDK, and everything else you need to get started.

Chapter 2, Source Code Management, defines source code management, including a
discussion of SVN and Git and their basic commands, and describes how you can use
it for your benefit.

In Chapter 3, Automation, I’ll talk about what Apache Ant is and why it is so powerful,
how you can integrate it with FDT, and how Ant can take away a lot of manual work.
I’ll also give you loads of code examples to help you build, compile, deploy, and oth-
erwise manage your projects.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

You can find all the source code for this book at http://book.funky-monkey.nl/.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Automating ActionScript Projects with
Eclipse and Ant by Sidney de Koning (O’Reilly). Copyright 2012 Sidney de Koning,
978-1-449-30773-8.”

Preface | ix

http://book.funky-monkey.nl/

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920020950.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

x | Preface

mailto:permissions@oreilly.com
http://shop.oreilly.com/product/0636920020950.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://my.safaribooksonline.com

Acknowledgments
I’d like to acknowledge the following people, each of whom had something to do with
the creation of this book.

Thank you to my girlfriend, Jess, for everything she had to endure these last months
and for giving me the motivation when I needed it. And, yes, we will plan that vacation
now! Thanks to all my mentors throughout my career, especially Donovan, who taught
me how to focus on one thing only—those lessons paid off in the form of this book.
Thank you to my mom, Tries, and her hubby, Sietso, for giving me the tools to ac-
complish anything. And to the rest: Robert de Koning, Patrick Rushton, and Alex
Collins—you all rock!

And, of course, to the Flash community: this is me giving back for everything I’ve
learned over the years. Hope you put it to good use and create amazing things with it.

Preface | xi

CHAPTER 1

Tools

In every construction project, the foundation is the most important part; without it,
the whole building comes tumbling down. So, before we can do anything, we need to
have the right tools to lay our foundation.

Although all the tools we will use are available on most platforms, I use Mac OS X
throughout this book. For Windows users, the process is almost the same, although
UI buttons and menus might be located elsewhere. I’m not biased in any way; an OS
is a tool in your toolbox, and it should be treated as such.

If you already have Eclipse, FDT, and the Android SDK installed, you
can skip to Chapter 2. However, even if you already know this material
or have these tools installed, you’ll likely find some valuable tips and
lessons in this chapter. I highly recommend that you at least browse
through it.

Eclipse
Since the examples in this book revolve around the Eclipse IDE, we will start by down-
loading it from the following location: http://www.eclipse.org/downloads/.

The current version of Eclipse at the time of this writing is Indigo.

You are presented with a number of choices; pick “Eclipse IDE for Java Developers.”
It is one of the smallest options in file size, and it already includes a CVS client, an XML
editor, and the Mylyn plug-in. We will talk more about plug-ins later; for now, just
unpack the downloaded package to run the Eclipse application.

1

http://www.eclipse.org/downloads/

Workspaces and Perspectives
When you open Eclipse after the splash screen, you are presented with a dialog window
asking you to specify a location for your workspace. Normally, you would choose your
user directory and then a folder called workspace (it defaults to the Documents directory
within the user’s home folder), but you can choose any location.

What are workspaces?

Workspaces are what make Eclipse so powerful. A workspace is a folder on your hard
drive that holds all your settings, color themes, code formatting, and other preferences.
It also keeps your projects organized. There are different ways you can organize; for
example, a workspace can hold all your projects for a specific client but also for a
specific language. As we noticed when downloading Eclipse, you could download dif-
ferent versions for specific languages (Java, C++, PHP, JavaScript, etc.). And since every
development plug-in has a different perspective, we could easily edit XML in the XML
perspective and then switch to the FDT perspective to edit our ActionScript class files—
all in one workspace. (See Figure 1-1.)

Figure 1-1. Opening different perspectives

Just think of perspectives as different glasses you use to see everything around you. One
allows you to see everything XML-related; another, everything JavaScript-related. But
you can take this concept one level further by leveraging the power of workspaces.

My workspaces are set up in such a way that I have one for normal ActionScript projects,
one for “AIR for Android” development, one for AIR development, and so on.

You can also set up workspaces in such a way that you have one workspace for your
work projects, one for your personal pet projects, and one for creating POC (proof of
concepts) or prototypes. Or you might even have one workspace per client. It all depends
on what you like and how organized you are.

2 | Chapter 1: Tools

Another good reason to set up multiple workspaces is if you use different languages;
you can set up one language per space, and it will be used on all your projects in that
workspace. This is a one-time process, and you can edit the preferences after you have
created a new workspace.

Once you have chosen where to put the workspace, there are a couple of settings we
want to change globally in Eclipse—just some little things that’ll make your life easier.

Preferences
Open up the Preference panel by going to Eclipse→Preferences→General. Now check
the “Show heap status” option (Figure 1-2). This displays an icon at the bottom right
of the main Eclipse window indicating the amount of memory used by every operation
that Eclipse performs. The bin icon next to it enables you to purge or kick-start the
garbage collection to free memory.

Figure 1-2. Show heap status

Eclipse | 3

Increase Eclipse’s Available Memory
The next thing we need to do to make Eclipse a lean and mean machine is to set the
available memory higher. These memory settings are in a file called eclipse.ini. On
Windows, just search for that file in the install directory where Eclipse resides. On a
Mac, it works a little differently. Right-click the Eclipse.app file and select Show Package
Contents. Now browse to the Contents/MacOS folder. Open up Eclipse.ini in your fa-
vorite text editor and look for the values -Xms and -Xmx.

The default values for Eclipse are -Xms40m and -Xmx384m. I’ve found they work best if
you set -Xms to 512m and -Xmx to 1024m. This should give you enough available memory
to work with. Just make sure when editing this file to keep each argument on a single
line; if you put more on one line, the JVM (Java Virtual Machine) will ignore them:

-vmargs
-Dosgi.requiredJavaVersion=1.5
-XstartOnFirstThread
-Dorg.eclipse.swt.internal.carbon.smallFonts
-XX:MaxPermSize=256m
-Xms512m
-Xmx1024m
-Xdock:icon=../Resources/Eclipse.icns
-XstartOnFirstThread

Shortcut Keys
Most people are used to working with the Flash IDE, so it makes sense to set the shortcut
key for compiling to Command-Enter (Ctrl-Enter on Windows). Open up the Eclipse
preference pane and in the search box, type key. This brings up a selection of possible
items you are searching for.

The option we are looking for is under General→Keys; here, you’ll find the key bindings
(Figure 1-3). Now search for Run Last Launched, and change the binding to Command-
Enter (Ctrl-Enter on Windows). You do this by simply pressing those keys in the bind-
ing field. And since we want this to always happen when we’re compiling/debugging,
we also need to set another option.

Go back to the main search field in the Eclipse preferences and type config. This should
bring up the Run/Debug→Launching options. At the bottom, you will find the “Always
launch the previously launched application” option that you need to select (Fig-
ure 1-4). Click Apply and OK to confirm, and we are all set (for now).

4 | Chapter 1: Tools

Figure 1-4. Always launch the previously launched application

Figure 1-3. Setting the key bindings

Eclipse | 5

FDT
Next, we want to be able to actually edit and compile AS class files. We do this with a
plug-in for Eclipse called FDT. Personally, I think this is the best editor for doing
ActionScript work, but as I said, this is personal. There are tons of editors out there,
but for this book we will be using FDT.

One of the cool things about FDT is that if you create open source projects, you can
apply for a free FDT Max license.

For more information on the features that FDT offers, go to http://www
.fdt.powerflasher.com/developer-tools/fdt/features/.

For more information about FDT’s open source initiative and free FDT
Max license, go to http://www.fdt.powerflasher.com/developer-tools/fdt/
community/.

Installing updates and plug-ins in Eclipse is a little different from all the other software
downloads you are familiar with. Eclipse works with so-called update sites, which are
basically file repositories with an XML file defining the latest builds.

So, instead of going to a download site and downloading a package, we open the Help
panel and select the Install New Software option. (See Figure 1-5.)

Enter the URL to the update site from FDT: http://fdt.powerflasher.com/update.

After you click Add, you are presented with a couple of choices; at the time of this
writing, they are FDT 3.5 and FDT 4.4. Select the latest version and click Next to install
it into Eclipse. After Eclipse calculates which elements to download and install, you
will see the screen shown in Figure 1-6.

In the screens that follow, click Next, accept the EULA, and click Finish. Now it’s time
to get something to drink and stretch your legs a bit, because this part can take a while,
depending on your connection speed.

During the install procedure, you might get a dialog box saying, “You are installing
software that contains unsigned content.” This basically means that there are plug-ins
being installed that have not been signed with a certificate. In some cases, this could
be malicious software. However, since FDT tests its software before putting it on the
market, you can press the OK button.

After everything is installed, you are prompted to restart; you’ll need to do so to com-
plete the install process.

Congratulations! We have installed Eclipse and FDT. Now go the FDT website to get
your trial license and get started: http://www.fdt.powerflasher.com/getlicense.

Thankfully, Ant is also installed with Eclipse, so we don’t have to do anything addi-
tional for it. The Ant version at the time of this writing is 1.8.2.

6 | Chapter 1: Tools

www.allitebooks.com

http://www.fdt.powerflasher.com/developer-tools/fdt/features/
http://www.fdt.powerflasher.com/developer-tools/fdt/features/
http://www.fdt.powerflasher.com/developer-tools/fdt/community/
http://www.fdt.powerflasher.com/developer-tools/fdt/community/
http://fdt.powerflasher.com/update
http://www.fdt.powerflasher.com/getlicense
http://www.allitebooks.org

Downloading the Android SDK
Go to http://developer.android.com/sdk/index.html and download the latest version. At
the time of this writing, the latest version is R12, or release 12. Installing an SDK is
easy: just download and extract the files. I place mine in the root of my hard drive in a
folder called SDK and differentiate the files by version number. When you extract the
Android SDK it should give you a folder with a name similar to SDK/android-sdk-r12-
mac_x86.

Installing the ADT Plug-in for Eclipse
For Eclipse to work with Android, we have to install a new plug-in. Go to Help→Install
New Software, and then click the big Add button on the right side of this screen. Here,
you need to type in the URL of the ADT install site as follows: https://dl-ssl.google.com/
android/eclipse/. For the name, you can enter ADT Android and click OK. This will
search for the install site; when it is found, select all the options under Developer Tools,
click Next, and then click Next again on the review screen. Accept the terms and click
Finish. This should install everything you need. You might see a pop up saying you are

Figure 1-5. Updating software in Eclipse

Downloading the Android SDK | 7

http://developer.android.com/sdk/index.html
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/

about to install unsigned content; this is the same pop up I mentioned during the FDT
installation. You can click OK here. If everything is installed successfully, you will be
presented with one final dialog. Just click the Restart Now button.

The last step of the Android ADT installation is to point to the Android SDK we down-
loaded earlier. Open up Eclipse’s preferences and click the Android section. Here, you
can fill in the path to your copy of the Android SDK.

Installing Android SDK Platform Tools
To use the Emulator, we need to first install the SDK platform tools. To do this, go to
Window→“Android SDK and AVD Manager” (Figure 1-7).

When you select the “Available packages” option on the left, you can open the Android
Repository and select everything from API level 8 through API level 13. You only have
to do this for the SDKs. Since we are not doing any actual Android development and
just need certain assets from this installation, we can leave the installation of these
examples for now (of course, this is entirely up to you). In the following dialog, select
Accept All to begin the installation.

Installing all these items will take a long time, so make yourself a cup of tea or coffee.

Figure 1-6. Review the FDT plug-in before it is installed

8 | Chapter 1: Tools

After the installation has finished, you can close the screen and go back to “Installed
packages” on the left. If everything went according to plan, you should see a bunch of
installed items here.

If you go back to “Virtual devices,” you should now see a premade 2.2 Emulator ready
to use.

You can also create your own emulator that targets a different version.
AIR 2.7 supports the 2.2, 2.3, and 3.0 versions of the Android SDK.

Next, we’ll configure Mylyn.

Mylyn
Mylyn is a plug-in for Eclipse that manages your bugs, issues, and tasks, but it can also
be used for online project management. How does this work? Mylyn connects to your
favorite bug- or issue-tracking system and reads all these issues per project, specified
with queries (which we’ll cover in more detail in “Adding a Repository to My-
lyn” on page 12). It then generates a list for you to work on. You can even track your
time working on that specific issue or bug.

Figure 1-7. The Android Virtual Device Manager

Mylyn | 9

A bug- or issue-tracking system allows you to keep track of all of the
faults, issues, missing content, or misbehavior in a piece of software,
without having to write them down. With an issue or bug tracker, you
have one centralized place where you can manage, prioritize, or assign
bugs and issues to different people so they can work on resolving them.

The big benefit of using Mylyn is that it enables you to do all of the above directly from
within Eclipse.

By default, Mylyn has connectors for Bugzilla, JIRA, Mantis, Foglyn, and Trac, so if
you are using one of those systems, you are in luck. (If not, you can look through the
Eclipse Marketplace to see if there is a connector for your favorite bug tracker.)

A good option, especially if you are writing software for the community,
is Mantis. It’s free and open source, and you can run it on your own
server. It only requires PHP and MySQL to be installed. For installation
and more information, see http://www.mantisbt.org/.

Another option is Bugzilla, which is also free and open source and can
be run on your own server. Unlike Mantis, however, Bugzilla requires
you to run Perl on your server. Both Mozilla and Eclipse use Bugzilla to
track their issues and bugs. More information is available at http://www
.bugzilla.org.

Installing Connectors
To enable Mylyn to communicate with Google Code or GitHub, we need to install the
appropriate plug-ins. (The process for the aforementioned connectors is practically the
same, or even simpler.)

Google Code connector

We want to be able to view, edit, and resolve issues and tasks directly from Google
Code in Eclipse so we can add comments, track our time spent on an issue, and change
the status.

The first plug-in we will download is for Google Code. Remember, to install plug-ins
or other packages in Eclipse, we go to Help→“Install new software.” This presents us
with a dialog box where we can input the download URL to the plug-in.

For more information on the Google Code Mylyn plug-in, see http://
code.google.com/p/googlecode-mylyn-connector/.

At the time of this writing, this project is still actively being developed.

The install site for this plug-in is http://knittig.de/googlecode-mylyn-connector/update/.

10 | Chapter 1: Tools

http://www.mantisbt.org/
http://www.bugzilla.org
http://www.bugzilla.org
http://code.google.com/p/googlecode-mylyn-connector/
http://code.google.com/p/googlecode-mylyn-connector/
http://knittig.de/googlecode-mylyn-connector/update/

Sometimes it is not possible to use the copy-and-paste keyboard short-
cuts for URLs, passwords, or email addresses to Eclipse when you’re
working with the updater. The workaround is to use the right-click
menu in the field you want to copy to and select Paste.

Select Nightly Builds and then the most current version. Then, simply go through all
the install steps for this plug-in, accept the license agreement, and restart Eclipse.

Once you have restarted Eclipse, open a new perspective under Window→Open Per-
spective→Other. Now select Team Synchronizing. This opens the Task views as well.
If you don’t see them, you can open them by opening a view under Window→Show
View→Task Lists or Task Repositories. For now, we are interested in the latter.

GitHub connector

If you would prefer to use GitHub instead of Google Code to host your open source
projects, we need to integrate Git with Eclipse. We want to create our repository but
also manage our open tasks.

If you are unfamiliar with Git and GitHub, don’t worry—I will talk
about them in more depth in Chapter 2. For now, we will just install the
necessary plug-ins. If you want to jump ahead, you can learn about Git
and GitHub in this introduction and video: http://learn.github.com/p/
intro.html.

For now, we only want the EGit plug-in to be able to talk with our GitHub repository
and get our tasks. (We will discuss the actual management of our repository in the
following chapter.)

Installing this plug-in is a little different from contacting an install site, because we will
make use of the Eclipse Marketplace. You can find this option under the Help menu.

Once we access the Marketplace, we can search for EGit. The installation process is
relatively painless—just a matter of clicking Next and accepting the license agreement.
Be sure to restart Eclipse if it asks you to do so.

If it doesn’t work out for you with the Marketplace, you can try the update site by
pasting this URL in the “Install new software” dialog box: http://download.eclipse.org/
releases/indigo/.

In the Filter field, search for EGit. This should give you two options: Eclipse EGit and
EGit Mylyn. Install both. I will save the explanation and actual use of EGit for
Chapter 2.

Mylyn | 11

http://learn.github.com/p/intro.html
http://learn.github.com/p/intro.html
http://download.eclipse.org/releases/indigo/
http://download.eclipse.org/releases/indigo/

Adding a Repository to Mylyn
Now that we have our favorite connector installed, we need to set up Mylyn. For Mylyn
to work for us, we need to add a repository so we can get our tasks. If you don’t have
it open already, open the Tasks View by going to Window→Show View→Other→Mylyn.
In the search box, type mylyn. You are now presented with only the Mylyn options.

Next, select the Add Task Repository icon in the Task Repository View. If everything
went according to plan, you are now presented with a window that looks like Figure 1-8.

Figure 1-8. Adding a Mylyn repository

Here, we select the Google Code option and click Next, assuming you have an actual
open source project hosted on Google Code. If you don’t, you can create one; or, if you
already know this process, you can skip ahead to the next chapter.

Google Code offers free hosting for open source projects and comes with
SVN, Git, or Mercurial access to your project. For more information
about Google Code, go to http://code.google.com/p/support/wiki/FAQ
and http://code.google.com/hosting/createProject.

Now you need to fill in the name of where the project is located—typically, that is
something along the lines of http://code.google.com/p/your_project_name/—and your

12 | Chapter 1: Tools

http://code.google.com/p/support/wiki/FAQ
http://code.google.com/hosting/createProject
http://code.google.com/p/your_project_name/

user credentials. (Make sure these are your Google Account credentials, not your Goo-
gle Code password!)

The label field is just your own label to distinguish this task repository from the rest—
something like My Project or Some AS3 API. When you click Finish, the task repository
is created and you are asked if you would like to create a new query.

This step is basically a way for the connector to retrieve all the issues from Google Code.
You can choose from predefined queries or create your own. For now, we will choose
from the predefined; select Open Issues. After the synchronization process is done, you
can double-click an issue in the Task List View and start working on it. You can always
create more queries by right-clicking your repository and selecting New Query.

To get the hang of this task system, try creating an issue, editing its properties, and
syncing it back to the repository.

The Task List should look something like Figure 1-9.

Figure 1-9. The Mylyn Task List

When you double-click an item in this list, Eclipse opens it in a special view. You can
edit the issue, add comments about it, and change its priority. After you are done,
submit it to make the changes permanent.

The process is pretty similar for other repositories. Try adding an issue with a different
connector and see if you can add tasks and sync them back to the repository.

Mylyn | 13

CHAPTER 2

Source Code Management

Consider the following scenario. You have spent the past two days crafting the most
perfect piece of code for your own library or framework. You ask your team member
to create a practical example to test if it all works as you intended. You copy your source,
and your teammate compiles it and finds a bug. Since he is a good team member, he
wants to dive right into your code, fix it, and give you back the corrected code.

But after he fixes it, there are now two versions that need to be merged into one working
piece of software. This can be a very error-prone and intimidating process: you have to
identify what has changed and adjust it so it is correct in both versions.

Or what about this scenario? You are part of a team and need to work on the application
for that Really Big Client. Since you work on location with the client and your colleague
works back at your office, you can’t work at the same time on the same code; you can
only take turns with it. And since there is no centralized place to put the code, you have
to copy over the source from your teammate before you can work on the project. Not
very efficient!

This is where source code management (SCM) comes into play. SCM, or version control,
is the practice of managing the revisions of your code with comments so the code can
be easily retrieved, even if it was written a long time ago.

The best way to visualize a versioning system is to think of it as a tree. As a tree grows,
layers develop, known as annual rings. With these rings, you can determine the tree’s
age. If you viewed a cross-section of the tree’s trunk, you would see all the rings or
yearly revisions. By examining the rings, you can see what the tree has gone through:
rain or drought, good or bad nutrition, climate changes, amount of sun, and more.
(This process is called dendrochronology, in case you are wondering.)

As with a tree, a versioning system also has a trunk and a branch or branches (and also
something called a tag, but we’ll get to that later). You can see what happened to your
code in the past by looking at a specific revision. And the cool thing about a versioning
system is that you can also go back in time and start from that point. You can’t do that
with a tree!

15

Another feature of a versioning system is the ability to merge code. Think of our pre-
vious scenarios. With a versioning system, you can work simultaneously with team-
mates now, and later in the project you can merge the code together and very easily
resolve code conflicts.

Another good reason to have a centralized versioning system is what is called the “truck
factor.” What happens to your code if that one member of your team—the one who
knows everything—is run over by a truck, with laptop and all? Can the team still work
on the code, or is it all stored in the head and hard drive of that employee who’s now
lying in the hospital? Though that sounds very dramatic, all too often people forget to
upload the assets (code, images, etc.) on which they’re currently working to a server.
When you’re using a version control system, it can be as easy as pressing a single button.

There are a few features that a good versioning system must offer. For example, it must
enable you to:

• Add, remove, rename, and delete files.

• See which files have been changed by which user and when.

• Keep track of different versions of the complete product (tags) and store them while
working on the new version.

• Go back and forth between versions.

• Merge code (merging).

• Go back in time/undo (reverting).

Of course, as you can imagine, different versioning needs require different versioning
tools. The two most commonly used tools at the moment are Subversion (SVN) and
Git. There are other tools that provide almost or exactly the same functionality—e.g.,
Perforce, Mercurial, Bitkeeper, and CVS—but for now we will talk only about these
two, because if you grasp the concepts behind them, the rest will be a breeze. Our
discussion will also give you an overview of the tools’ benefits and shortcomings. They
all work a bit differently and were each created to target a specific problem.

SVN and Git
Let’s start with SVN. Short for Subversion, SVN allows you to work with multiple
people on a project. You create a new SVN project on a server, do a checkout (SVN’s
term for making a local copy) of files from the server, and commit (SVN’s term for
adding) the files to the server. During this process, SVN completely copies all the files
to your local drive, and for every operation you will need a connection to the server.

Git works a bit differently. Unlike SVN, it doesn’t copy the repository; rather, it clones
it. This means that you have the complete repository running locally, and you can use
it even without a connection to the Internet. So you can still perform actions like
branching and merging (or any other action, for that matter) while working in a plane,

16 | Chapter 2: Source Code Management

www.allitebooks.com

http://www.allitebooks.org

bathroom, or any other WiFi-free zone. This is one of the strong advantages Git has
over SVN.

In British slang, a git is a person who is stupid or silly. The word is mostly
used as an insult. Git got its name from its creator, Linus Torvalds, who
explained, “I’m an egotistical bastard, and I name all my projects after
myself. First Linux, now Git.”

Some of the biggest differences between SVN and Git are:

• Git is distributed. This means no more sending email with software patches; just
do a pull request.

• Git stores metadata instead of the actual files with every commit.

• Git can work without an active Internet connection; every operation you perform
is local.

• SVN is based on WebDAV and stores complete files during commits.

Of course, there are many more differences, but they are beyond the scope of this book.
For now, these are the most important to remember.

Now that we’ve covered what SVN and Git are, we need to talk about how you can use
them to help you work faster and not stress over your code. Next, we will install SVN
and Git clients for Eclipse and cover the basic steps for working with them.

SVN in Eclipse
Subversion in Eclipse can be handled via a plug-in called Subclipse. Just like when we
installed FDT, we need to install Subclipse through an update site. Go to Help→Install
Software and enter this address: http://subclipse.tigris.org/update_1.6.x/.

This will give you a bunch of options; check all of them and then click Next. You will
probably be presented with a dialog box about unsigned software, but you can ignore
this warning and proceed. After everything is installed, you’ll be prompted to restart
Eclipse.

If Eclipse is fully up and running, let’s add a repository to our workspace. This assumes
you are using a repository. If you’re not, no problem; there are dozens of sites online
that offer cheap or free SVN access where you can store your files. Open source devel-
opers can use Google Code or GitHub. However, most shops have their own SVN
servers, either internally or externally hosted. If you don’t, you should probably have
a chat with someone at your shop about getting one. It is a crucial element for working
with teams.

But for demonstration purposes, let’s assume you have a server and we are going to
connect to it. As an example, let’s take an open source project: AS3 PLS Reader, a tool

SVN in Eclipse | 17

http://subclipse.tigris.org/update_1.6.x/

I created to read playlist files from streaming radio servers and play them in Flash. The
project URL is http://code.google.com/p/as3plsreader/, and the SVN checkout URL is
http://as3plsreader.googlecode.com/svn/. You don’t have write access to this project, but
the operations we’ll go over will give you a feel for how SVN works.

Open up Window→Views→Other. This will bring up a dialog with an SVN Repository
Exploring option. Select it and click OK. This will open the SVN View. Since we want
to add a repository, click the plus sign (+) in the top-right corner of this view (or right-
click anywhere in this view and select New→“Repository location”). This brings up a
dialog, shown in Figure 2-1, where you’ll paste the URL of the repository in the URL
field.

Figure 2-1. Adding an SVN repository

If you get the error “Failed to load JavaHL,” it means your operating
system does not have the correct SVN libraries installed. Just go to this
URL and install the package suitable for your OS: http://www.open.col
lab.net/downloads/community/.

When you click Finish, the repository is added to the view and you will be able to make
a checkout. If you open the newly created bookmark, you’ll see the folders we already
talked about: trunk, branches, and tags (and wiki, but that is specific to Google Code).
Open up trunk, and you should see a bunch of files and folders. When you right-click
on trunk, you can select “checkout.” This brings up the screen shown in Figure 2-2.

We want to check out this project to our default Eclipse workspace, and we want it to
be fully recursive—i.e., we want all the files, not just a subset. When you click Finish

18 | Chapter 2: Source Code Management

http://code.google.com/p/as3plsreader/
http://as3plsreader.googlecode.com/svn/
http://www.open.collab.net/downloads/community/
http://www.open.collab.net/downloads/community/

and go back to your FDT view, you’ll see that SVN has created a project for us that is
under version control.

If you look closely, you’ll see icons and numbers next to the folders (Figure 2-3).

Figure 2-3. A checked-out project from SVN in your workspace

The numbers indicate the revision. Remember how we talked about the rings of a tree?
This is the SVN equivalent.

Figure 2-2. Doing a checkout from SVN

SVN in Eclipse | 19

For this project to become a Flash project that we can compile, we need to adjust the
project’s settings and add a Flash nature to it. Right-click on the folder labeled
[trunk] and select Flash Project→Add Flash Nature; this lets us select the SDK we want
to use for this project. Anything from Flex SDK 3.5 with AIR support will do.

Now, if we were to open a file and make changes to it, we would also want to save it
back to SVN, right? So let’s do that. Open up any file and add a comment somewhere.
When you save it, you will see the icon indicating that the file has changed—a black
box with a white star in it.

Next, we need to commit the changes back to SVN. (Although this step won’t work
for this sample project because you don’t have write access, on your own SVN, you
would have that permission and could commit your changes as follows.) Right-click
on the file and select Team→Commit. This prompts us to provide a message for the
commit, which will make it easier to track what exactly was done to the files and when.
These can be messages like “fixed bug x” or “added some text.” This is also known as
the “blame log,” because it allows you to see who broke or fixed the software. There
is some debate about this, but my opinion is that you should only commit files that are
not broken. Don’t commit halfway through a bug fix, because if your colleague updates
his SVN, his build will break because of you. So, only commit fully functional source.

When you click OK, the file or files are committed, and you have just performed your
first SVN command!

If somebody else on your team has committed files and you want to work on the project,
you’ll need to replace your copy with the current one from SVN—i.e., you need to
perform an update. This is essentially the same process as committing. Right-click on
the project and select Team→“Update to HEAD.” The HEAD is always the latest up-
date, or latest revision.

Under the Team option, you will find all of the SVN commands you need. Just play
around here and see what each does. Please note that it is better to experiment with
the SVN command on your own project than in a production environment, because
you can potentially break stuff—so, be careful.

Git in Eclipse
Git in Eclipse works a little differently from, but is also similar to, SVN. We already
installed the EGit plug-in, so we don’t need to worry about that anymore.

The basic principles are the same as with SVN: you have a view specifically for Git and
you can commit, update, and merge files from the team menu. Let’s see how that works.

Open up the Git Repositories view. You will see a bunch of icons (Figure 2-4).

Next we’ll go over how to make a local repository to which you can commit and update
in order to illustrate that Git does not need an Internet connection to work. This is one
of the powers of Git, and it makes it incredibly fast.

20 | Chapter 2: Source Code Management

Hover over the third icon, the one with the yellow plus sign (+); you should see the
message “Create a new Git repository and add it to this view.” Click the icon, give the
repository a location and a name, and click Finish, and we are done (see Figure 2-5).

Figure 2-5. Creating a Git repository in your workspace

Now we can start adding files to our repository. For demonstration purposes, I copied
over the src folder from our sample project. Once you have added source files, refresh
the Git view to show them. Switch over to the FDT view and right-click anywhere in
the Flash Explorer window or go to File→Import. From here, select Git→“Projects from
Git.” This should show us myCoolProject. Select it and click Next. Select “Import as
General Project” and click Next again. Review the final step and click Finish.

Now we have a Git repository as a new project in Eclipse, but we still need to make it
a Flash project, just like we did with SVN. So, right-click on the project to add the Flash
nature, select the SDK and project type, and again add the src folder to the classpath.
Ta-da! A fully functional Flash project under Git versioning!

Go ahead and open up the Main.as file and add a comment. As you can see, Git has a
different way of showing you that there is a change to the file. Instead of icons, it displays
a greater-than sign (>) before the filename.

Figure 2-4. The Git Repositories view icon bar

Git in Eclipse | 21

Select the src folder, right-click it, and select Team. You’ll see you have different options
because we are now targeting Git. Select the commit option, and you should get the
dialog shown in Figure 2-6.

Figure 2-6. Committing file changes to a Git repository

Type in your commit message and click Commit.

If you go back to the Git Repository view, right-click the src folder, and select “Show
in history,” you will see a log of all the commits made and all the files that were affected.

Congratulations! You’ve successfully set up SVN and Git repositories, handled basic
versioning commands like committing and updating files, and learned the inner work-
ings of a version control system.

22 | Chapter 2: Source Code Management

CHAPTER 3

Automation

Ant
Now let’s dive into Ant, which stands for Another Neat Tool. Ant was actually created
as a build scripting language for Java development, but because it can be easily extended,
it can also be used for other languages. Ant can help you automate your daily devel-
opment tasks, including but not limited to compiling, testing, packaging, deploying,
and documenting. Everything you can do with the command line—and more—you
can do with Ant! You can also run Ant directly from the command line, but for the
exercises in this book we will be running Ant only from within Eclipse.

Ant is a task-oriented build system, which means it allows you to create tasks and run
them in a linear way—i.e., one after another. But, of course, tasks—or targets, as Ant
calls them—can have dependencies on other tasks.

Before we can start playing around with Ant, we need to make sure we have all the JAR
files in place and set up.

JAR files are Java ARchives, a way to distribute source code or libraries.
These files hold different files, ranging from source code to images and
text files.

I have prepared a zip file with all the JAR files you’ll need for this book. You can find
it at http://book.funky-monkey.nl/. Just unpack this zip somewhere on your hard drive
where you see fit.

Now open up Eclipse’s preferences and click on the Ant options on the left side. Select
the checkbox for “Always run new Ant config...” (Figure 3-1). Checking this option
ensures that we don’t have to select the Java runtime every time we create or use a new
Ant build file. It also minimizes errors we get when compiling the Ant build file (one
of the most common sources of errors).

Now select Runtime. Choose Global Entries and click Add External JARs (Figure 3-2).

23

http://book.funky-monkey.nl/

Figure 3-2. Adding JAR files to Ant’s global classpath

Figure 3-1. Common problems: running in a different JRE

24 | Chapter 3: Automation

Now point the file browser to the directory where you extracted all those JAR files. You
can select multiple files at once; you don’t have to do them one by one. Once you have
added them, you should see something like the screen shown in Figure 3-3.

Figure 3-3. External JAR files added to the Ant global classpath

Click OK. Congratulations! We are all set. Now it’s time to dive into the actual Ant
scripts.

The Basics
Ant uses an XML syntax for its build files. A typical Ant file looks like this:

<project name="MyProject" default="compile" basedir=".">
 <target name="init">
 <tstamp/>
 <mkdir dir="build"/>
 </target>
 <target name="compile" depends="init" description="compile the source" >
 <javac srcdir="src" destdir="build"/>
 </target>
</project>

The Basics | 25

Even if you have no prior experience with Ant, it is very easy to read and understand.

A build file is an XML file, usually called build.xml, with a collection of
functions and variables (or targets and properties, as Ant calls them).

If we go through the preceding example, we see one project definition. (An Ant file can
contain only one.) Its default is set to “compile,” meaning that when you run this file,
the first function or target that runs is the compile target. The name of a target can be
anything, as long as it is a string of text and numbers. So using “1 - My very cool
function” is perfectly legal. (I prefer a long, descriptive target name, because it makes
it easier to read in Eclipse’s Ant panel. But, if you prefer, you can also add a description
property in the target to describe what that target does. The downside here is that when
you let that target depend on another target, you have to type out its full name. But I’ll
cover this topic more later.) The compile target has a depends property, which is set to
“init.” This, in turn, runs the init target before it runs the compile target. It also creates
a timestamp and a directory with the name build.

When the init target finishes executing, it moves back to the compile target. This then
uses the newly created directory to compile a Java project using javac (the command-
line Java compiler) with all the files located in the source directory (called src) and
places the result of the compilation in the build directory. Easy peasy lemon squeezy!

Setup
I’m a visual thinker, so things always become clearer to me when I draw out the elements
I want to create or code. I prefer to have a system give me visual feedback, which is why
I always start my Ant files with a better method to trace out the information for
debugging.

My basic setup includes a way to trace my message to Growl. Growl is a notification
system that other programs can hook into and make use of. It offers both Mac and
Windows versions. Growl can “listen” for incoming connections, and that is exactly
what we would like it to do here. Open up Growl’s preferences, click on the Network
tab, and check the “Listen for incoming notifications” option (Figure 3-4).

Figure 3-4. Allowing Growl to listen to incoming connections

26 | Chapter 3: Automation

www.allitebooks.com

http://www.allitebooks.org

Since we added the binaryblizzard.jar and growllistener-0.4.jar files to Ant’s classpath,
we can now make use of them by calling the taskdef in the Ant file. Taskdef is basically
an import statement that you can call with a function name and a reference to a
class name. The following line makes the task growl available for Ant to use by imple-
menting it from the net.slimeslurp.growl.GrowlEcho class:

<taskdef name="growl" classname="net.slimeslurp.growl.GrowlEcho" />

Now open the OS X Terminal utility and type:

set ANT_ARGS=-listener net.slimeslurp.growl.GrowlListener

This ensures that Growl can listen to notifications coming from Ant. It is always a good
idea to restart your system after doing this.

Now for the code: I start with this template for almost every Ant project, depending on
what I’m building. Different projects require different methods of tracing:

<?xml version="1.0" encoding="UTF-8"?>
 <project name="Default Project" basedir=".">
 <taskdef name="growl" classname="net.slimeslurp.growl.GrowlEcho" />
 <!-- Create timestamp for filename. Format like so: 09/24/2009 05:33:22 PM -->
<target name="Creates a Timestamp">
 <tstamp>
 <format property="current.date.time" pattern="dd_MM_yyyy_HH_mm" />
 </tstamp>
 <growl message="Custom Time format time stamp: ${current.date.time}" />
 </target>
</project>

This creates a timestamp and traces out its value using Growl. Pretty neat, eh? Now we
can use this template for every Ant build we create.

Now that we have the basics down, let’s move on to something more useful.

Our First “Real” Ant Script
Next, we will use our new template to create our first real Ant script.

To get you started, I will explain some of the fundamentals of the Ant language. These
are the basic functions you need to learn for now; along the way, we will explore more,
so don’t worry when we don’t cover them all at once.

Projects
Every Ant XML file starts off with an XML declaration (for good practice) and a project
begin node and end node. The project node is kind of like a target, except that there
can be only one. For it to function properly, it needs to have a name property. The
basedir property defines the directory Ant should start from—for example, when it
needs to traverse directories. The following is an example of a project node:

Our First “Real” Ant Script | 27

<?xml version="1.0" encoding="UTF-8"?>
 <project name="Default Project" basedir=".">
 ...
 </project>

If you need to go one directory level higher, you can use either ../../
or .; just make sure you also place your Ant build file in the root of your
Eclipse project.

Functions
As mentioned previously, Ant calls functions targets. A target consists of a target node
with a name element. This element is mandatory, meaning it must always be in a target.
The name element is basically the name of your target, and it enables you to call that
target via the command line from a build file. You can also add a description property
to describe what the target does, as shown here:

 <target name="create-timestamp" description="Creates a Timestamp">
 ...
 </target>

Running an Ant script in Eclipse is easy. Just open the Ant View (Window→Show
View→Ant), drag your Ant file in there, and double-click the main file. That way, it
runs the default target defined in the default property in the project node. If you unfold
the XML, you can see all your targets and run them separately. It should look something
like Figure 3-5. Select one and double-click it.

Figure 3-5. Ant target in an Eclipse view

When you run this Ant script by double-clicking it, its output looks something like
Figure 3-6.

Figure 3-6. Ant build successful

28 | Chapter 3: Automation

Variables
Ant can also store variables or read out properties. As with every scripting or program-
ming language, it’s bad practice to hardcode values in Ant.

How does Ant handle variables? First, Ant has a bunch of built-in properties that can
come in handy when you’re creating build scripts. We already saw one, basedir, but
there are more. Here is a (partial) list:

ant.file

The absolute path of the build file

ant.project.name

The name of the project as set in the project node

ant.home

The root directory of Ant

ant.version

The version of this Ant installation

ant.java.version

The version of Java that Ant uses

basedir

The absolute path of the project

os.name

Operating system name

os.arch

Operating system architecture

os.version

Operating system version

file.separator

File separator (/ on *nix and \ on Windows)

path.separator

Path separator (: on *nix)

line.separator

Line separator (\n on *nix)

java.home

Java home directory name

user.home

User directory name

user.name

Username as set by login name on OS

user.dir

User’s current working directory

Our First “Real” Ant Script | 29

You can call these within your build file by using ${os.version}; Ant uses the ${} syntax
to read properties. Just remember that a variable or property exists only during the
complete build cycle. So once the build is completed, that variable does not exist
anymore.

You can find more of these built-in properties on Ant’s documentation
site:http://ant.apache.org/manual/index.html.

So now you know how to get properties, but how do you set them? You can set them
during runtime or by using a property file. (It is common practice with Ant to give your
variables or properties a name containing dots.) In the following example, we set them
at runtime:

<property name="my.first.property" value="yay" />
<property name="my.second.property" value="1.1" />

Or like so (I used this example before):

<format property="current.date.time" pattern="dd_MM_yyyy_HH_mm" />

What we’ve done is assign the variable name (or set the property) current.date.time
to hold the value of the timestamp, formatted in a specific way.

The second option for setting properties is by using a property file—just a plain-text
file containing values. The benefit of using this method is that your code does not hold
hardcoded references to paths or any other specific information. Property files almost
always end with .properties—for example, deploy.properties, ftp.properties, com-
pile.properties, sdk.properties, local.properties, etc. You can have as many as you want
or place all the information in one build.properties file; it’s up to you.

Here is an example of a build.properties file:

Deploy directories
project.dir.build=build
project.dir.lib=lib
project.dir.src=src
project.dir.docs=docs
project.dir.tests=tests
project.dir.deploy=deploy
project.dir.zip=zip

Flash output
project.dir.swc=swc

Flash output
project.user=${user.name}

30 | Chapter 3: Automation

http://ant.apache.org/manual/index.html

As you can see, you can insert comments using the pound sign (#).

Using # to indicate comments can be done only in property files, not in
build files. In build files, you use normal JavaScript-/XML-style
comments, like so: <!-- Sample Comment -->.

So, again, if you want to use project.dir.swc, you would use ${project.dir.swc} in your
build XML file, or use built-in or custom-created properties directly in your property
file itself.

To make use of a property file within your build file, you have to include it, or make a
reference to it. You can do so like this:

<project>
 <property file="build.properties" />
 ...

Here, build.properties is just a text file (with .properties as its extension) with the prop-
erties in it, as described previously.

So, if we were to put this into practice, the code would be something like the following.
We create two files: build.properties and build.xml. After you are done, compile the
script. Here are the contents of the build.properties file:

Project Properties
project.name=My_Project

And here are the contents of build.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project name="Create Timestamp for filename" basedir=".">

 <taskdef name="growl" classname="net.slimeslurp.growl.GrowlEcho"/>

 <!-- Load project.properties file -->
 <property file="build.properties" />

 <!-- Create timestamp for filename. Format like so: 09/24/2009 05:33:22 PM -->
 <target name="create-timestamp" description="Create a timestamp">
 <tstamp>
 <format property="current.date.time" pattern="dd_MM_yyyy_HH_mm" />
 </tstamp>
 <growl message="Current date / time ${current.date.time}" />
 </target>
</project>

Our First “Real” Ant Script | 31

You should see the output shown in Figure 3-7 from the Eclipse console. If you see this,
you know everything went according to plan.

Figure 3-7. Ant has been built without problems

At the same time, you should see a notification from Growl (Figure 3-8).

Figure 3-8. Growl notification from Ant

The most common error you can encounter is that the Ant Java runtime runs in a
different JRE than Eclipse. You can set the JRE globally in Eclipse’s Ant preferences,
as we did in the beginning of this chapter, or you can set it per build file.

The error message reads “BUILD FAILED: Could not create task or type.” You can
solve this by right-clicking the actual build.xml file and selecting Run As→“External
Tools configuration.” Go to the JRE tab and select “Run in the same JRE as the work-
space” (Figure 3-9).

Ant’s documentation includes an FAQ section that also discusses Ant’s
most common errors. You can find it online at http://ant.apache.org/faq
.html.

Congratulations—you just created your first useful Ant build script! Now let’s delve
into hooking up Ant with FDT.

32 | Chapter 3: Automation

http://ant.apache.org/faq.html
http://ant.apache.org/faq.html

Figure 3-9. Always run in the same JRE

Directly Calling the Compiler
When you’re developing in FDT, there are a few ways to compile your ActionScript
projects: calling the compiler directly from the Flex SDK, compiling directly from FDT,
or combining both approaches.

You are free to use the method you prefer—whichever gives you more freedom to do
what you want. I will go through each of them.

You can directly call the compiler or make use of FDT’s internal Ant tasks (more on
the latter option in “Using FDT’s Ant Tasks” on page 41).

When you want to call the compiler directly, you need to have a copy
of the Flex SDK, which can be found at Adobe’s open source site: http:
//opensource.adobe.com/wiki/display/flexsdk/Downloads.

Downloading the Flex SDK
Installing an SDK is easy: just download and extract the files. I place mine in the root
of my hard drive in a folder called SDK and differentiate them by version number, as
shown in Figure 3-10.

Directly Calling the Compiler | 33

http://opensource.adobe.com/wiki/display/flexsdk/Downloads
http://opensource.adobe.com/wiki/display/flexsdk/Downloads

This way, I have all the SDKs I need, neatly organized in one folder (also a time-saver!).
Once you have extracted the SDK, you need to go over to FDT and add the new SDK.

If you haven’t done so already, create a new AS3 project in FDT by going to
File→New→New Flash Project, and give it a name you prefer. You can change the SDK
used by right-clicking on the newly created project (the blue folder with the big F in it)
and selecting Flash Project→Change SDK. You are now presented with a dialog box.
Press Configure on the right.

You can add your own SDK by clicking Add (Figure 3-11). Now search for the extracted
SDK on your hard drive. FDT will automatically look for all the SWCs related to this
SDK and set up everything you need (Figure 3-12).

Click OK and go back to your project. Again, right-click and select Flash Project→Select
Project Type. Here, choose AS3 4.5 from the drop-down list and then select the SDK
you just added (Figure 3-13).

You are now ready to start using your newly added SDK with your project.

Compiling

Now we want an Ant build to directly call the compiler, so we create a new XML file
by pressing Command-N and typing xml. Select XML, give it a name, and click Finish.
To keep things organized, place the file in the root folder of your project or in a folder
called ant. After you’ve done this, open the file and start with the contents of the tem-
plate we created earlier.

Figure 3-10. Organized folder structure with all SDKs

34 | Chapter 3: Automation

First things first: we create a new property file called sdk.properties and also place it in
the ant directory. This file will include the path of the SDK and the path to the actual
compiler. The reason we create a separate file for this is that the location of the SDK is
machine-specific.

Creating our own standard ensures that we can always look in one place rather than
go to line number x in one file somewhere in that directory. “Short and clear,” as my
mentor used to say. It is also easier to extend if, for example, we want to compile to
AIR, Android, or iPhone with different SDKs to use in one project. Now there is one
centralized place to make modifications. We will use this standard throughout the rest
of these exercises.

Figure 3-11. Selecting the correct SDK

Directly Calling the Compiler | 35

Figure 3-12. The Flex SDK content

36 | Chapter 3: Automation

www.allitebooks.com

http://www.allitebooks.org

Here are the contents of this file (notice the use of the ${file.separator}; this is
operating system–specific):

SDK Properties
sdk.location=${file.separator}SDK${file.separator}flex_sdk_4.5.0.18623
sdk.libs.framework=${sdk.location}${file.separator}frameworks
sdk.libs.location=${sdk.libs.framework}${file.separator}libs
sdk.mxmlc.compiler=${sdk.location}${file.separator}lib${file.separator}mxmlc.jar

The next file you will create in the ant directory is called build.properties, and it holds
information about the actual project we are compiling:

Project Properties
project.name=My_Project
project.document.class=Main.as
project.src.path=${basedir}${file.separator}src
project.bin.path=${basedir}${file.separator}bin
project.debug.path==${basedir}${file.separator}debug project.deploy.path=${basedir}
${file.separator}deploy
project.assets.path=${basedir}${file.separator}assets
project.classpath=${project.src.path}${file.separator}com${file.separator}sample
${file.separator}

To test whether we got the right paths, we create a small target to trace out these values.
Since we are on a Mac, the file (or path) separator will be replaced with the appropriate
slash (as we saw earlier in the chapter, in the list of commonly used default properties).

As you can see from the preceding example, we also created the folder structure shown
in Figure 3-14.

Figure 3-13. Selecting the correct project type

Directly Calling the Compiler | 37

Figure 3-14. Sample project directory and file structure

For all intents and purposes, we trace with a normal echo, but you can use Growl if you
wish:

<target name="trace" description="Trace out path properties">
 <echo message="SDK Location : ${sdk.location}" />
 <echo message="SDK Libs Compiler : ${sdk.mxmlc.compiler}" />
 <echo message="SDK Libs Loc : ${sdk.libs.location}" />
 <echo message="Classpath : ${project.classpath}" />
 <echo message="BaseDir : ${basedir}" />
</target>

The resulting echo looks something like the following:

[echo] SDK Location : /SDK/flex_sdk_4.5.0.18623
[echo] SDK Libs Compiler :/SDK/flex_sdk_4.5.0.18623/lib/mxmlc.jar
[echo] SDK Libs Loc : /SDK/flex_sdk_4.5.0.18623/frameworks/libs
[echo] Classpath : /Personal/O'Reilly/Tools/workspace/sample/src/com/sample/
[echo] BaseDir : /Personal/O'Reilly/Tools/workspace/sample
BUILD SUCCESSFUL
Total time: 234 milliseconds

You can see how incredibly fast it is to compile with Ant.

Let’s go inside the Main.as file before we start the actual compiling. Main.as is a very
simple ActionScript file that creates a square on a black background. We set the back-
ground color, frame rate, width, and height of the outputted SWF with the supplied
meta injection code within the brackets:

package com.sample {
 import flash.display.Sprite;

 [SWF(backgroundColor="#000000", frameRate="31", width="200", height="200")]

 public class Main extends Sprite {

 public function Main() {
 var s:Sprite = new Sprite();
 s.graphics.beginFill(0xff00aa, 1);
 s.graphics.drawRect(50, 50, 100, 100);
 s.graphics.endFill();
 addChild(s);

38 | Chapter 3: Automation

 }
 }
}

We start off with the project template we already used, and add some extra code to
compile the SWF:

<target name="compile" description="Compile a SWF with MXMLC Compiler" depends="create-
timestamp">
 <java jar="${sdk.mxmlc.compiler}" fork="true" failonerror="true">
 <arg value="-debug=false" />
 <arg value="-optimize=true" />
 <arg value="-verbose-stacktraces=true" />
 <arg value="+flexlib=${sdk.libs.framework}" />
 <arg value="-source-path=${project.src.path}" />
 <arg value="-library-path=${sdk.libs.location}" />
 <arg value="-file-specs=${project.classpath}${project.document.class}
${project.file.extension}" />
 <arg value="-output=${project.bin.path}${file.separator}
${project.document.class}_${current.date.time}.swf" />
 </java>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

Here, you see we introduce a new target called java. With this target, we can execute
the code inside a JAR file—and that is exactly what we want to do.

We can also add a couple of extra parameters. We only use the parameters jar,
failonerror, and fork. failonerror will stop the build process if there is an error, and
must be used in conjunction with fork to allow execution of other classes in a forked
VM (virtual machine). With the jar parameter, we can pass the JAR file location for
the actual compiling to SWF.

For a full list of passable parameters, see http://ant.apache.org/manual/
Tasks/java.html.

The nested arg property allows us to pass extra arguments to the JAR file’s execution.

A little explanation on the arguments passed: -debug makes sure we are not using the
debugger, -optimize compresses the outputted SWF, and -verbose-stacktraces gives
us more detailed information if something breaks while we’re running the SWF (i.e.,
runtime errors).

Some loggers, like Trazzle (http://www.nesium.com/products/trazzle),
actually need you to set the -verbose-stacktraces=true compiler argu-
ment so you can log to them.

Directly Calling the Compiler | 39

http://ant.apache.org/manual/Tasks/java.html
http://ant.apache.org/manual/Tasks/java.html
http://www.nesium.com/products/trazzle

We now have our sdk.properties, build.properties, compile.xml, and Main.as written. If
we run the compile target, everything should go as planned and create the actual SWF
file in the bin directory. The eclipse.refreshLocal target makes sure the directory in
our workspace is refreshed after it’s been compiled. This is an Ant task that is bundled
with Eclipse.

If, for some reason, you have an error in your AS file, the mxmlc compiler will catch it
and give you a descriptive error message. If we, for instance, look at the line where we
add the sprite to the stage, rename s to a, and compile again, we will get the following
error message:

compile:
[java] /src/com/sample/Main.as(15): col: 13 Error: Access of undefined property a.
[java] addChild(a);
[java] ^

You will see the filename of the class with the compiler error, the line number, and the
actual position with a description. Now go back to fix it, and compile again.

Adding external SWC libraries

If you make use of external libraries in an SWC format, you would include them with
an extra argument, just above the closing of the final Java tag:

<arg value="-l+=${project.libs.path}" />

And you would also add the following in the build.properties file:

project.libs.path=${basedir}${file.separator}libs

Cleaning

The last thing we are going to add to our compile.xml file is a clean target. It is very
good practice to clean up after yourself. Every build file should include a clean target
to remove all the generated directories and files, thereby bringing it back to its original
state. We also include a call to the eclipse.refreshLocal target to see the changes in
our workspace once the target has executed:

<target name="clean" description="Purge the contents of the bin dir">
 <delete dir="${project.bin.path}"/>
 <delete dir="${project.debug.path}"/>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

Eric M. Burke wrote a really good article, “Top 15 Ant Best Practices,”
for O’Reilly in 2003. Providing a clean target is #5 on that list. I strongly
encourage you to read it: http://tim.oreilly.com/pub/a/onjava/2003/12/
17/ant_bestpractices.html.

40 | Chapter 3: Automation

http://tim.oreilly.com/pub/a/onjava/2003/12/17/ant_bestpractices.html
http://tim.oreilly.com/pub/a/onjava/2003/12/17/ant_bestpractices.html

Debugging

Debugging is as simple as changing -debug=false to -debug=true, and the path of the
directory to the debug path set in build.properties. So, the code then becomes:

<target name="debug" description="Debug a SWF with MXMLC Compiler" depends="create-
timestamp">
 <java jar="${sdk.mxmlc.compiler}" fork="true" failonerror="true">
 <arg value="-debug=true" />
 <arg value="-optimize=true" />
 <arg value="-verbose-stacktraces=true" />
 <arg value="+flexlib=${sdk.libs.framework}" />
 <arg value="-source-path=${project.src.path}" />
 <arg value="-library-path=${sdk.libs.location}" />
 <arg value="-file-specs=${project.classpath}${project.document.class}
${project.file.extension}" />
 <arg value="-output=${project.debug.path}${file.separator}
${project.document.class}_DEBUG_${current.date.time}.swf" />
 </java>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

Using FDT’s Ant Tasks
When you’re using FDT, there are a lot of specific Ant tasks you can hook into or use
to make compiling and debugging even simpler.

At the time of this writing, here is the complete list of Ant tasks for FDT (there will
probably be more implemented in the future, as FDT is being developed really quickly):

• fdt.loadProjectProperties (only from FDT 4.1 and up)

• fdt.browse

• fdt.extSWFViewer.focusWindow

• fdt.extSWFViewer.startSWF

• fdt.flashCompile

• fdt.launch.application

• fdt.launch.library

• fdt.launch.resetFlexCompiler

• fdt.startDebugger

• fdt.startProfiler

FDT works with launchers, which are basically shortcuts for viewing your project in a
specific version of the Flash Player. You can use them when calling the swflauncher
argument with your Ant targets. Here is the list of launchers you can use with FDT:

• External SWF Viewer

• Adobe Flash Player

Using FDT’s Ant Tasks | 41

• Browser

• Internal SWF Viewer

• AIR Debug Launcher

The first built-in FDT Ant task we’ll look at is fdt.launch.application. With this task,
you can compile, debug, and profile your application. Let’s take a look first at
compiling.

Compiling (with FDT Ant Tasks)
Compiling with FDT Ant tasks is a bit simpler than directly calling the compiler:

<target name="compile-fdt" description="Compile a SWF with FDT Ant Tasks"
depends="create-timestamp">
 <fdt.launch.application
 debug="false"
 projectname="${FDTProject}"
 mainclass="${project.classpath}${project.document.class}${project.file.extension}"
 target="${project.bin.path}${file.separator}${project.document.class}_$
{current.date.time}.swf"
 compilerarguments="-verbose-stacktraces=true"
 startswf="true"
 swflauncher="External SWF Viewer"/>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

(The downside of using this method is that if you want to distribute your build.xml file,
everyone has to have FDT installed. When directly calling the compiler, you don’t run
into this problem.)

Looking at this code, you see it does exactly the same thing as calling the compiler
directly—it’s only written differently. If you look more closely, you’ll see that we
brought in a new property: FDTProject. By default, FDT has a set of built-in properties
that we can use; here is the complete list:

${FDTProject}

Returns the name of the project

${FDTProjectPath}

Returns the path of the project

${FDTProjectSdkPath}

Returns the path of the current SDK

${FDTProjectSdkName}

Returns the name of the current SDK

${FDTProjectSdkVersion}

Returns the version of the SDK, written in full

${FDTProjectPlayerVersion}

Returns the Flash Player version used in the project

42 | Chapter 3: Automation

${FDTProjectKind}

Returns the type of project (e.g., Flash Player, AIR)

${FDTHostIP}

Returns the host IP for the debugger to connect to

Before we can use these properties in our project, we must make a call at the top of our
build file (we do this at the top because our build file is read from top to bottom):

<!-- Load project.properties file -->
<property file="ant${file.separator}build.properties" />
<property file="ant${file.separator}sdk.properties" />
<fdt.loadProjectProperties/>

Then we do a quick echo of all these properties, so you can see that they return the
correct values. This should give you something similar to the following list:

 [echo] sample
 [echo] /Personal/O'Reilly/Tools/workspace/sample
 [echo] /SDK/flex_sdk_4.5.1.21328
 [echo] Flex 4.5.1
 [echo] 4.5.1.21328
 [echo] 10.2
 [echo] Flash_Player
 [echo] 192.168.0.194

Debugging (with FDT Ant Tasks)
Debugging is a bit different than normal compiling, and it is not included with every
version of FDT. You can debug only if you have the Max version.

For more information on the different versions of FDT, see http://www
.fdt.powerflasher.com/developer-tools/fdt/features/.

If you have the Max version, proceed as follows. First, we need to call the debugger
with fdt.startDebugger with the correct project name. We do this just as we did with
the compiling—with ${FDTProject}. Then, we set switchperspectiveonbreakpoint to
true. Now, when we set a breakpoint in our code (by double-clicking on the line gutter
at that specific point), FDT actually switches to the Debugger View and introspects the
code on that breakpoint.

The default for this option is true, so you only have to set it explicitly if you don’t want
to use it:

<target name="debug-fdt" description="Debug a SWF with FDT Ant Tasks" depends="create-
timestamp">
 <fdt.startDebugger
 projectname="${FDTProject}"
 switchperspectiveonbreakpoint="true"

Using FDT’s Ant Tasks | 43

http://www.fdt.powerflasher.com/developer-tools/fdt/features/
http://www.fdt.powerflasher.com/developer-tools/fdt/features/

 />
 <fdt.launch.application
 debug="true"
 projectname="${FDTProject}"
 mainclass="${project.classpath}${project.document.class}$
{project.file.extension}"
 target="${project.debug.path}${file.separator}${project.document.class}_DEBUG_
${current.date.time}.swf"
 compilerarguments="-verbose-stacktraces=true"
 startswf="true"
 swflauncher="External SWF Viewer"
 />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

After calling fdt.startDebugger, we call fdt.launch.application like we did when we
were compiling, only now we set the debug flag to true, change the target directory to
output in our debug folder, and add _DEBUG_ to the filename of the outputted SWF
file to differentiate between a debugged SWF and a nondebugged SWF (just like we
did when we called the compiler directly).

Deploying Your SWF Files to a Different Source
One of the cool features of Ant is that you are not bound to only doing local develop-
ment. You can also deploy and/or copy your files to a web server, FTP server, or a
network share.

Let’s start with an inventory of what we need when we want to test on a web server:

• An HTML file that embeds our SWF file

• The JavaScript embed method via SWFObject (http://code.google.com/p/swfob
ject/)

• A specific folder structure so that everything is neatly organized

That’s it! So what are we actually going to do? We have all the needed project properties
defined in our property file. With those, we can build a directory structure and generate
our actual HTML file. We do this with Ant so we don’t have to do it by hand for every
project we do. This is a huge time-saver!

We are actually going to change our build files a little bit. Because deploying is a dif-
ferent process than compiling and debugging, I prefer to work in a different file called
deploy.xml.

The benefit of using separate files is that the functionality defined in the filename is
neatly encapsulated in one file—there’s no searching required, since the name says it
all. Each file can be easily distributed to freelancers or colleagues who are setting up
the builds on their machines.

44 | Chapter 3: Automation

http://code.google.com/p/swfobject/
http://code.google.com/p/swfobject/

Let’s start editing our build.xml file, and strip out everything except loading Growl,
loading our properties, and creating the timestamp target:

<?xml version="1.0" encoding="UTF-8"?>
<project name="Main Build file" basedir=".">
 <!-- Import Growl Classes so we can send notifications via Growl -->
 <taskdef name="growl" classname="net.slimeslurp.growl.GrowlEcho" />

 <!-- Load project.properties file -->
 <buildnumber file="ant/${project.name}.number"/>
 <property file="ant/build.properties" />
 <property file="ant/sdk.properties" />
 <fdt.loadProjectProperties/>

 <!-- Create timestamp for filename. Format like so: 09/24/2009 05:33:22
 PM -->
 <target name="create-timestamp" description="Create a timestamp">
 <tstamp>
 <format property="current.date.time" pattern="dd_MM_yyyy_HH_mm" />
 </tstamp>
 <growl message="Current date / time ${current.date.time}" />
 </target>
</project>

In the compile_fdt.xml we created earlier, we strip out only the timestamp target and
replace that with the import to our build.xml. So the top of the file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<project name="Compiling Flash Project with FDT Tasks" basedir=".">

 <!-- Import all properties etc. -->
 <import file="build.xml" as="build"/>

We do the same thing for compile.xml.

In compile_fdt.xml and compile.xml, we can now call the timestamp target, but we need
to call it from our imported build.xml. The import task has an as property for exactly
that reason—to call a function/target from another file. We create an alias so we don’t
have to call build.xml every time.

So, if we call build.create-timestamp from within this file, we are calling the
build.xml file’s create-timestamp target.

Last, in both files (compile.xml and compile_fdt.xml), we change the lines:

<target name="compile-fdt" ... depends="create-timestamp">

and:

<target name="debug-fdt" ... depends="create-timestamp">

to:

<target name="compile-fdt" ... depends="build.create-timestamp">

and:

Deploying Your SWF Files to a Different Source | 45

<target name="debug-fdt" ... depends="build.create-timestamp">

Now we are done with the hard part! You’ve also learned two valuable practices: im-
porting other build files and calling targets from them.

Setting Up Web Deployment

Adding Information to a SWF
Whether you’re debugging or just compiling, it is always good practice to have some
sort of info panel in your SWF. What do I mean by info panel? This can be an actual
overlay or context menu with profiling information, memory usage, build/compile
version, the user who compiled that version, and more.

One of the easiest ways to implement an info panel in AS3 is by using the context menu
or right-click menu.

If you need a good, basic visual profiler, I highly recommend Shane
McCartney’s SWF Profiler Class. It shows your SWF’s memory usage
and frames per second in a very visual manner. For more information,
see http://lostinactionscript.com/2008/10/06/as3-swf-profiler/.

Since this class is open source, it can also be a good base on which to
write your own extension.

Why do we want to add an info panel? Consider the following case: you’re testing a
project you’ve been working on with a team, a client, or maybe open source collabo-
rators. But what version was deployed online yesterday? And who uploaded it? And at
what time was it created?

An info panel saves you time and energy by enabling you to just right-click on the SWF
in that web page—no more opening an FTP connection to find out what time the file
was uploaded and other relevant information.

What do we want to accomplish? We want a context menu that shows us information
about a file’s date, operating version, and build number; which user compiled it; and
a line indicating your company name with a link to your site.

What we need is a generated Version.as file, an ApplicationsUtils.as file, and adjust-
ments to our Main.as document class.

Let’s start with the Ant target to generate the Version.as file in the correct location. As
you can see, we can use the echo task not only to trace out information about our build
process, but also to write Ant text or information to a file. We will discuss this a little
bit more in the next example for generating the HTML file.

For the echo file output to work, we use the format file="location of file to be":

46 | Chapter 3: Automation

www.allitebooks.com

http://lostinactionscript.com/2008/10/06/as3-swf-profiler/
http://www.allitebooks.org

<target name="0.generate-info-class" description="Create an info class that show
information when right clikced in the SWF" depends="build.create-timestamp">
 <echo file="${project.classpath}Version${project.file.extension}">
 package ${project.classpath.clean} {
 import flash.display.Sprite;
 import flash.events.ContextMenuEvent;
 import flash.ui.ContextMenu;
 import flash.ui.ContextMenuItem;
 import flash.net.URLRequest;
 import flash.net.navigateToURL;
 import ${project.classpath.clean}.utils.ApplicationUtils;

 /**
 * @author ${user.name}
 */
 public class Version
 {
 public static var DATE:String = "${current.date.time.readable}";
 public static var PROJECT_NAME:String = "${project.name}";
 public static var BUILT_ON:String = "${os.name} ${os.version}";
 public static var BUILD_NUMBER:String = "${build.number}";
 public static var USER_NAME:String = "${user.name}";

 public function Version(menuSprite : Sprite) {
 var cm : ContextMenu = new ContextMenu();
 cm.hideBuiltInItems();

 switch(ApplicationUtils.getDevelopmentMode()) {

 case ApplicationUtils.DEVELOPMENT:
 // Do specific deveopment stuff here
 cm.customItems.push(new ContextMenuItem("Project : " + Version.PROJECT_NAME));
 cm.customItems.push(new ContextMenuItem("Date : " + Version.DATE));
 cm.customItems.push(new ContextMenuItem("Built on : " + Version.BUILT_ON));
 cm.customItems.push(new ContextMenuItem("Built by : " + Version.USER_NAME));
 cm.customItems.push(new ContextMenuItem("Built # : " + Version.BUILD_NUMBER));

 break;
 case ApplicationUtils.PRODUCTION:
 // Do specific production stuff here
 cm.customItems.push(new ContextMenuItem("Project : " + Version.PROJECT_NAME));
 cm.customItems.push(new ContextMenuItem("Date : " + Version.DATE));
 cm.customItems.push(new ContextMenuItem("Built on : " + Version.BUILT_ON));
 cm.customItems.push(new ContextMenuItem("Built # : " + Version.BUILD_NUMBER));
 break;
 }

 var notice : ContextMenuItem = new ContextMenuItem("My Company Name, Year");
 notice.enabled = true;
 notice.separatorBefore = true;
 notice.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, menuItemSelect);

 cm.customItems.push(notice);

 menuSprite.contextMenu = cm;

Setting Up Web Deployment | 47

 }

 private function menuItemSelect(evt : ContextMenuEvent) : void {
 navigateToURL(new URLRequest("${remote.http.server}"));
 }
 }
 }
 </echo>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

For this example to work, we also need to add some properties to the usual place:

project.classpath.clean=com.sample

And since we implemented the build.number task, we can use ${build.number} every-
where in our build file. Every time the build file is run, this value gets incremented by
one.

In our build.xml file, we need to adjust the timestamp function with a new property to
output a new formatted timestamp, something that is human-readable. So, between
the tstamp brackets, add the code shown in bold:

<tstamp>
 <format property ="current.date.time" pattern="dd_MM_yyyy_HH_mm" />
 <format property="current.date.time.readable" pattern="dd-MM-yyyy HH:mm" />
</tstamp>

Don’t run this Ant target just yet. We need to add some more files to make this work
properly. Next is our ApplicationUtils class.

If you are not in the FDT perspective anymore because you were editing XML files,
switch back to it. Then, in FDT, create a new class in a new package called utils in the
source folder. The classpath of this file becomes com.sample.utils.

This class will help you see if you are testing on a server or directly opening the SWF
from FDT:

package com.sample.utils {
 import flash.display.DisplayObject;
 import flash.display.LoaderInfo;
 import flash.display.Sprite;

 /**
 * Example:
 * If you are testing your SWF file, you can find out if you are testing
 * online or locally and behave accordingly.
 *
 * The following example will set an XML file location by either getting
 * the FlashVar or manually load the XML file.
 * var xmlURL:String = (ApplicationUtils.getDevelopmentMode() ==
ApplicationUtils.PRODUCTION) ? ApplicationUtils.getFlashVars().xml : "./xml/
data.xml";
 *
 *

48 | Chapter 3: Automation

 */
public class ApplicationUtils extends Sprite {

 public static const DEVELOPMENT : String = "Development";
 public static const PRODUCTION : String = "Production";
 //
 private static var _docRoot : DisplayObject;
 private static var _topParent : DisplayObject;

 public static function init(docRoot : DisplayObject) : void {

 _docRoot = docRoot;
 }
 public static function getFlashVars() : Object {
 return Object(getLoaderInfo(_docRoot).parameters);
 }

 public static function getDevelopmentMode() : String {
var dev : Boolean = new RegExp("file://").test(_docRoot.loaderInfo.loaderURL);

 if(dev) {
 return ApplicationUtils.DEVELOPMENT;
 } else {
 return ApplicationUtils.PRODUCTION;
 }
 }

 public static function getContextPath() : String {
 var uri : String = getLoaderURL();
 return uri.substring(0, uri.lastIndexOf("/")) + "/";
 }

 public static function getLoaderURL() : String {
 return _docRoot.loaderInfo.loaderURL;
 }

 public static function getLoaderInfo(dispObj : DisplayObject) : LoaderInfo {
 var root : DisplayObject = getRootDisplayObject(dispObj);
 if (root != null) {
 return root.loaderInfo;
 }
 return null;
 }

 public static function getRootDisplayObject(dispObj : DisplayObject) :
DisplayObject {
 if (_topParent == null) {
 if (dispObj.parent != null) {
 return getRootDisplayObject(dispObj.parent);
 } else {
 _topParent = dispObj;
 return _topParent;
 }
 } else {
 return _topParent;

Setting Up Web Deployment | 49

 }
 }
 }
}

The last thing is to adjust the Main class:

package com.sample {
 import com.sample.utils.ApplicationUtils;

 import com.sample.Version;

 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageQuality;
 import flash.display.StageScaleMode;
 import flash.events.Event;

 [SWF(backgroundColor="#000000", frameRate="31", width="200", height="200")]

 public class Main extends Sprite {
 public function Main() {
 addEventListener(Event.ADDED_TO_STAGE, handleAddedToStage);
 }

 private function start() : void {

 var s : Sprite = new Sprite();
 s.graphics.beginFill(0xff00aa, 1);
 s.graphics.drawRect(50, 50, 100, 100);
 s.graphics.endFill();
 addChild(s);
 }

 private function handleAddedToStage(event : Event) : void {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;
 stage.quality = StageQuality.BEST;
 stage.stageFocusRect = false;

 init();
 start();
 }

 private function init() : void {
 // Init App utils for loader objects and flashvars
 ApplicationUtils.init(stage);

 // Add contextMenu with information
 var versionInfo : Version = new Version(this);
 }
 }
}

50 | Chapter 3: Automation

Now we are done; give yourself a well-deserved pat on the back! When you run the
Ant target 0.generate-info-class, the Version.as class should be generated in the cor-
rect location.

The next time you compile to SWF, these newly created classes get compiled along
with the existing ones because we placed them in the classpath. Also, remember to
make sure this target gets called during each compile. You can do this by either creating
a proxy target (a separate target that calls all the targets needed for compilation), or in
the compile/debug target, calling this function using the depends parameter.

The implementation of all your hard work looks like Figure 3-15.

Figure 3-15. The custom right-click menu in the Flash Player

Setting Up the HTML File
The standard practice is to test a Flash project or SWF within an HTML file. The big
plus with this approach is that if we need to test using FlashVars, we can do so with
relative ease from within the HTML. So next we will create an HTML file from scratch.
We’ll do this via the echo task in Ant, because it allows us to easily write to a file. But
how do we automatically get the project properties in our HTML? Well, we are going
to do something new here: work with tokens, and replace them with real values.

The advantage with token replacement is that we can work with template files—
whether they are physically on the filesystem, or saved in properties/strings and gen-
erated with code. For now, we are choosing the latter.

The HTML we are creating has the following tokens:

• @html.title@

• @html.bgcolor@

• @html.width@

• @html.height@

Setting Up the HTML File | 51

These are placeholders for the code to be, which is the value we will replace using Ant
so this can become a working HTML file. Of course, you can replace anything you want.

So, first, we need to create a target that will write the HTML. And since we want to
distribute only the build files and property files, we want to try to generate as much as
possible with Ant.

The way of embedding the SWF file in the HTML normally requires a JavaScript file
called SWFObject. As of version 2, you can include this file straight from its repository,
which means no more distributing extra unnecessary files. Just make a call to http://
ajax.googleapis.com/ajax/libs/swfobject/2.2/swfobject.js, and you can use it like you
normally would.

You can find more information about this method of embedding SWF
files at http://code.google.com/p/swfobject/wiki/hosted_library.

<target name="1.generate-html-template">
 <echo output="${project.template.path}${file.separator}index.html" append="false">
 <![CDATA[<html>
 <head>
 <title>@html.title@</title>

 <style type="text/css" media="screen">
 body {
 margin:0; padding:0;
 text-align:center;
 background-color: #@html.bgcolor@;
 font-family:Verdana, Arial, sans-serif;
 }
 #container {
 margin:0px auto;
 width:@html.width@px;
 text-align:left;
 }
 </style>
 <script
 type="text/javascript"
 language="javaScript"
 src="http://ajax.googleapis.com/ajax/libs/swfobject/2.2/
swfobject.js"></script>
 <script type="text/javascript">
 var flashvars = {};

 var params = {};
 params.base = "static/swf";
 params.allowScriptAccess = "always";

 var attributes = {};
 attributes.id = "application";

52 | Chapter 3: Automation

http://ajax.googleapis.com/ajax/libs/swfobject/2.2/swfobject.js
http://ajax.googleapis.com/ajax/libs/swfobject/2.2/swfobject.js
http://code.google.com/p/swfobject/wiki/hosted_library

 swfobject.embedSWF("static/swf/@html.swf.location@", "content",
"@html.width@", "@html.height@", "10.0.0");

 </script>
 </head>
 <body>
 <div id="container">
 <div id="content">
 <h1>Alternative content</h1>
 <p>
 <img src="http://www.adobe.com/images/shared/download_buttons/
get_flash_player.gif" alt="Get Adobe Flash player" /></p>
 </div>
 </div>
 </body>
 </html>]]>
 </echo>
 <antcall target="2.replace-token" />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

As you can see, after the running of that target, we run another target to do the actual
token replacement:

<target name="2.replace-token" description="Do the actual replacing of tokens in
generated html file">
 <replace file="${project.template.path}${file.separator}index.html"
 propertyFile="ant${file.separator}build.properties">
 <replacefilter token="@html.title@" property="project.name"/>
 <replacefilter token="@html.bgcolor@" property="html.bgcolor"/>
 <replacefilter token="@html.width@" property="html.width"/>
 <replacefilter token="@html.height@" property="html.height"/>
 </replace>
 <!-- Since @html.swf.location@ is not defined in the property file, we need another
replace task -->
 <replace file="${project.template.path}${file.separator}index.html">
 <replacefilter token="@html.swf.location@" value="${project.output.swf}"/>
 </replace>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

Again, we need to refresh the workspace so we can see the changes made to folders and
files.

Now we have the compiled SWF with a timestamp, and our generated HTML with an
included JavaScript file from an online repository. The last thing we need to do is copy
it to our web server.

Next, we’ll make minor adjustments to our build.properties file to store all the direc-
tories, our web server paths, and our username (but not our password). For this step,
we’ll introduce a new type of Ant task: input. This allows us to gain input from the end
user, store it in a property, and use it later in the process (this property is stored only
during the build process):

project.web.path=${basedir}${file.separator}web

Setting Up the HTML File | 53

Now, we create a new property file called remote.properties and place within it the
following:

#FTP Properties
remote.http.server=http://www.my-web-server.com/
remote.ftp.server=ftp.my-web-server.com
remote.ftp.port=21
remote.ftp.dir=/var/www/html/
remote.ftp.username=user@my-web-server.com
#passive selects passive-mode ("yes") transfers, for better through-firewall
connectivity, at the price of performance. Defaults to "no"
remote.ftp.passivemode=yes
#verbose displays information on each file transferred if set to "yes". Defaults
to "no".
remote.ftp.verbose=yes
#depends transfers only new or changed files if set to "yes". Defaults to "no".
remote.ftp.depends=no
#binary selects binary-mode("yes") or text-mode ("no") transfers. Defaults to "yes"
remote.ftp.binary=yes

Don’t forget to include this file at the top of the deploy.xml file, with:

<property file="ant${file.separator}remote.properties" />

Place this beneath the line for the import of compile.xml.

Now that this is set up, we need a target that can prepare all the directories and copy
the files to the right location, so we can later copy this whole bunch to our FTP server:

<target name="3.prepare-deployment" description="Prepare all directories and copy file
to a web folder that later can be uploaded" depends="5.clean">
 <mkdir dir="${project.web.path}${file.separator}static${file.separator}"/>
 <mkdir dir="${project.web.path}${file.separator}static${file.separator}swf" />
 <copy todir="${project.web.path}${file.separator}static${file.separator}swf"
flatten="true">
 <resources>
 <file file="${project.bin.path}${file.separator}${project.output.swf}"/>
 </resources>
 </copy>
 <copy todir="${project.web.path}" flatten="true">
 <fileset dir="${project.template.path}"/>
 </copy>
 <delete dir="${project.template.path}"/>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

Here, we make use of Ant tasks we have not yet talked about: mkdir and copy. mkdir is
the equivalent of the command mkdir, which you use from the command line to create
empty directories. The only parameter it needs is dir, so we can specify the location of
the directory to be created.

The other task is copy, which copies a file, or a collection of files, to a folder or directory.
It does so by specifying a todir parameter to set the destination. (By default, files are
copied only if the source file is newer than the destination file, or when the destination

54 | Chapter 3: Automation

file does not exist. However, you can explicitly overwrite files with the overwrite
attribute.)

In this example, we use both a resource (a collection of files) and a file set to specify a
file or multiple files. The flatten parameter ignores the directory structure of the source
and just copies the files over.

Let’s make contact with the actual FTP server:

<target name="4.upload-to-webserver">
 <input message="Please enter your FTP password:" addproperty="remote.ftp.password"
defaultvalue="password" />
 <!-- upload the files to the new directory -->
 <ftp server="${remote.ftp.server}"
 port="${remote.ftp.port}"
 remotedir="${remote.ftp.dir}${file.separator}clients${file.separator}$
{project.name}"
 userid="${remote.ftp.username}"
 password="${remote.ftp.password}"
 verbose="${remote.ftp.verbose}"
 depends="${remote.ftp.depends}"
 binary="${remote.ftp.binary}"
 passive="${remote.ftp.passivemode}">
 <fileset dir="${project.web.path}" />
 </ftp>
 <growl message="Directory ${project.web.path} copied to FTP server
${remote.ftp.server}" />
 <growl message="FTP Transfer Complete." />
</target>

We will not yet run this, but when we do, you will notice that Ant provides us with a
dialog box where we can input our password. The big plus here is that when we dis-
tribute our build files to another team member or share them online, we are not giving
away our password. If you don’t care about this, you can adjust the property file so the
password value is hardcoded.

The final target we will create binds everything together. The problem we have now is
that we are calling a target located in a different build file. Step 1 of solving this problem
was including the build file in our depoy.xml and setting the as parameter to a name
that suits us. Step 2 of the solution is creating the actual target that calls these imported
targets, in the format as_name_defined_in_import.targetname.

That target looks like this:

<target name="6.test-in-browser" depends="compile.compile, 1.generate-html-template,
3.prepare-deployment, 4.upload-to-webserver">
 <fdt.viewDocument location="${remote.http.server}clients${file.separator}$
{project.name}${file.separator}index.html"/>
</target>

This target uses the depends parameter to call targets. These need to be completed before
Ant can move on. Then it opens a browser with the generated HTML file with the
correct SWF file.

Setting Up the HTML File | 55

By default, this FDT Ant task echoes the location of the URL to open, which will be
something like http://www.my-web-server.com/clients/sample/index.html.

Here is the complete output of running this target (I’m showing you this so you can
see, among other things, what it looks like to load targets from different files):

Buildfile: /Personal/O'Reilly/Tools/workspace/sample/deploy.xml

build.create-timestamp:

compile.compile:
 [java] Loading configuration file /SDK/flex_sdk_4.5.0.18623/frameworks/flex-
config.xml
 [java] /Personal/O'Reilly/Tools/workspace/sample/bin/Main_14_08_2011_19_13.swf
(744 bytes)

generate-html-template:

replace-token:

clean:
 [delete] Deleting directory /Personal/O'Reilly/Tools/workspace/sample/web

prepare-deployment:
 [mkdir] Created dir: /Personal/O'Reilly/Tools/workspace/sample/web/static
 [mkdir] Created dir: /Personal/O'Reilly/Tools/workspace/sample/web/static/swf
 [copy] Copying 1 file to /Personal/O'Reilly/Tools/workspace/sample/web/static/
swf
 [copy] Copying 1 file to /Personal/O'Reilly/Tools/workspace/sample/web
 [delete] Deleting directory /Personal/O'Reilly/Tools/workspace/sample/template

upload-to-webserver:
 [ftp] sending files
 [ftp] transferring /Personal/O'Reilly/Tools/workspace/sample/web/index.html
 [ftp] transferring /Personal/O'Reilly/Tools/workspace/sample/web/static/swf/
Main_14_08_2011_19_13.swf
 [ftp] 2 files sent

test-in-browser:
[fdt.viewDocument] open document http://www.myserver.com/clients/sample/index.html
BUILD SUCCESSFUL
Total time: 6 seconds

Now that you have all of this finished, you should be proud of yourself! We have learned
so much—all about new tasks (mkdir, copy, delete, input), token replacement, writing
to files, and importing different build files.

Take some time to make yourself a nice cup of coffee or tea and walk around a bit.
When you get back, we will continue with deploying to a network share and backing
up and zipping the complete project.

56 | Chapter 3: Automation

www.allitebooks.com

http://www.my-web-server.com/clients/sample/index.html
http://www.allitebooks.org

Deploying to a Network Share
I’ve worked at loads of companies where the services department/desk handles your
deployments to development or production servers.

The process works like this: you zip your deployment materials, including all your
assets (SWF, XML, etc.), copy the zip file over to a network share, and send an email
to one of the system or network administrators, who then receives the email in a tick-
eting system and handles the deployment. So many tedious steps for something that
should be so simple. Sound familiar?

With Ant, you can automate even this process.

Let’s start with copying everything we want to a directory and cleaning out all the files
we don’t want. We already used the copy and mkdir tasks, but the fileset and
exclude tasks are new ones.

fileset creates a set from any given directory; and with include or exclude, you can
choose the files you want to select or not select. For example:

<target name="7.cleanup-and-export" depends="6.test-in-browser">
 <mkdir dir="${project.deploy.path}" />
 <mkdir dir="${project.zip.path}" />
 <copy overwrite="true" todir="${project.zip.path}">
 <fileset dir="${project.web.path}/">
 <exclude name="**/.settings/**" />
 <exclude name="**/*.as3_classpath" />
 <exclude name="**/*.project" />
 <exclude name="**/.svn/**" />
 </fileset>
 </copy>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

To summarize, we create directories if we don’t have them yet, select files we want from
a different directory, and filter out the files we don’t want to use, so we have only the
files we want to include in our zip.

Creating a Zip File
Now that we have all the files we want copied over in a directory, we want to zip the
contents of that folder. I prefer zip over different compression file formats, mainly
because it does not matter if you are on a Windows, Mac, or *Nix machine. Users in
production environments, as well as home users that you need to send zip files to, can
uncompress them.

As you can see, a lot of Ant tasks use the same nested elements, like fileset. If you
wanted to merge multiple zip files in one archive, you would have to use
zipgroupfileset.

Creating a Zip File | 57

Finally, we clean up the temp folders by using the delete task, and then refresh the
workspace to see the changes:

<target name="8.create-deployment-zip" description="Create a zip file"
depends="7.cleanup-and-export">
 <zip file="${project.deploy.path}${file.separator}${project.name}_$
{current.date.time}.zip">
 <fileset dir="${project.zip.path}/">
 <include name="**/*" />
 </fileset>
 </zip>
 <!-- create a property to store zip file name in -->
 <property
 name="deployment.zip.file"
 value="${project.deploy.path}${file.separator}${project.name}_
${current.date.time}.zip"/>
 <!-- delete the deploy files from the file system -->
 <delete dir="${project.zip.path}/" />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

As you might have noticed, we also create a property for the name of our zip file, so we
can use it later in the chained-up process by calling ${deployment.zip.file}.

We have now gone through all the steps for creating a deployment, zipping it up, and
generating files. Next, we need to copy the files to a network share.

Let’s add some properties to the remote.properties file:

Local network share properties
share.project=/Volumes/Deployments/
share.project.dir=${project.name}/

As for the actual target, you can see it is no different from doing a normal file copy,
since we have the network drive mounted to our system and defined the path in the
remote.properties file:

<target name="9.copy-to-networkshare" depends="8.create-deployment-zip">
 <growl message="Copying file with name: ${deployment.zip.file}"/>
 <growl message="To the this location: ${share.project}${share.project.dir}"/>
 <copy
 todir="${share.project}${share.project.dir}"
 file="${deployment.zip.file}" />
</target>

Making a Backup of the Complete Project
Instead of making a zip file from only one directory, we create a backup of the complete
project. So, besides using SVN and not losing your code, we create a failsafe and back
up all our files (this zip file can later be committed to SVN, too, of course):

<target name="10.create-backup-zip" description="Create a zip file that holds all the
project files" depends="build.create-timestamp">
 <zip file="${project.backup.path}${file.separator}backup_${project.name}_$

58 | Chapter 3: Automation

{current.date.time}.zip">
 <fileset dir="${basedir}/">
 <include name="**/*" />
 <exclude name="**/.settings/**" />
 <exclude name="**/*.as3_classpath" />
 <exclude name="**/*.project" />
 <exclude name="**/.svn/**" />
 </fileset>
 </zip>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

We exclude a lot of hidden files (settings and other miscellaneous files—stuff we can
do without); we only want a backup of the complete project.

The build.properties file also needs to be adjusted slightly. The following is only the
project properties defined; the rest, we can leave alone:

Project Properties
project.name=sample
project.document.class=Main
project.file.extension=.as
project.src.path=${basedir}${file.separator}src
project.bin.path=${basedir}${file.separator}bin
project.template.path=${basedir}${file.separator}template
project.debug.path=${basedir}${file.separator}debug
project.deploy.path=${basedir}${file.separator}deploy
project.assets.path=${basedir}${file.separator}assets
project.web.path=${basedir}${file.separator}web
project.zip.path=${basedir}${file.separator}zip
project.backup.path=${basedir}${file.separator}backup
project.classpath=${project.src.path}${file.separator}com${file.separator}sample$
{file.separator}

We saved the best for last. Now it’s time to send that email (the one that goes to the
support desk and one to yourself).

Emailing the Client/Support Desk
Why is emailing useful? We already discussed this a little bit at the beginning of this
chapter. Let’s say you have three responsibilities: deploying via the service desk, up-
dating your project manager about what is left to do, and keeping your team informed
about the project’s status.

You have several different options available when you send an email: plain text, dif-
ferent encodings, with or without attachments, and more. Ant can handle all of the
above, and we will go through each of your aforementioned responsibilities to show
you how.

We can, of course, send an email to three people every time we do a deployment. But
what if you deploy every hour, or even every half hour? Doing this task by hand—over
and over again—is tedious, to say the least!

Emailing the Client/Support Desk | 59

So we won’t. Let’s hand over this task to Ant and let it deal with it. Much easier, right?

What do we need?

• One email with the deployment assets to the service desk

• One email to the project manager

• One email to your team

Let’s take a step back. Normally when you write code, you place your //TODO
and //FIXME notes all over the place, mostly for your own reference and so your team
knows what is happening and what still needs to be fixed.

Now wouldn’t it be nice if we could have an Ant task to read through all our class files,
get our //TODOs, place them in a file, and mail them to you, or to someone else so that
person could see what was left to do?

Luckily for us, a developer, Alex Collins from England, has already created such a
project: Ant TODO. Alex and I have been in contact to make these tasks even more
useful. He has also implemented some new features, like saving the output to a property
so you can reuse it in different targets, and outputting and supporting both TODO and
FIXME.

You can find out more about Alex Collins—enterprise Java developer
by day; Linux, Android, and Python open source hacker by night—on
his website, http://alexcollins.org/, and at http://madalex.net/.

For more information about the Ant TODO project, downloads, and
source files, go to http://code.google.com/p/ant-todo/.

So let’s begin with installing Ant TODO and then we’ll set up the actual emailing.

If you download the ant-todo*.jar from Google Code, you have the latest version. I have
also included this JAR file in the zip file, so it should already be in your classpath. If it
is not, open up Eclipse’s preferences and go to the Ant section. Then select Runtime.
Here, you have to add an external JAR file to the Global Entries section. Don’t forget
to click Apply to set the changes. Sometimes it is better to restart Eclipse for the changes
to take effect.

Open up Eclipse and open the build.xml file. We need to make sure the classes at the
top of this file are imported so we can use them throughout the project:

<!-- Import Growl Classes so we can send notifications via Growl -->
<taskdef name="growl" classname="net.slimeslurp.growl.GrowlEcho" />

<!-- Import TODOTask so we can get out all //TODO: //FIXME: from src folder. -->
<taskdef name="todo" classname="org.atc.tools.ant.TODOTask" />

Then go to deploy.xml and create a new target called make-todo-list.

60 | Chapter 3: Automation

http://alexcollins.org/
http://madalex.net/
http://code.google.com/p/ant-todo/

There are a couple of options available when you’re using this library. You can write
output to a file using CVS, XML, or plain-text format by setting the format= parameter
to cvs, xml, or default, respectively. If you omit this parameter, it defaults to plain text.

For now, we want to write to a file in plain text:

<target name="make-todo-list">
 <todo dir="src" format="default" outFile="todo-list.txt" verbose="true" />
</target>

The verbose parameter gives you additional information while parsing all your files.

When we open the file, we see output similar to this:

Main.as[linenumber]: Init App utils for loader objects and flashvars
Main.as[linenumber]: Add contextMenu with information
Version.as[linenumber]: Do specific development stuff here
Version.as[linenumber]: Do specific production stuff here
ApplicationUtils.as[linenumber]: Is regex good here?
ApplicationUtils.as[linenumber]: just testing my todo items

As you can see, it shows you the class name, line number, and the comment after
the //TODO:, and every item is on a new line.

We can also output to a property so we can reuse it in different targets:

<target name="make-todo-list">
 <todo dir="src" property="todo.list" verbose="true" />
</target>

Or do both (write to file and use as a property):

<target name="make-todo-list">
 <todo dir="src" property="todo.list"
 format="default" outFile="todo-list.txt" verbose="true" />
</target>

We can also set different file filters. In the preceding examples, we included all files,
regardless of their file extension. But we could also set these only to .as class files,
like so:

<target name="make-todo-list">
 <todo dir="src" property="todo.list" verbose="true" />
 <include name="**/*.as" />
 </todo>
</target>

You can even set the pattern= and replace= properties to replace pieces of the output
string:

<target name="make-todo-list">
 <todo dir="src" property="todo.list"
 pattern="[A-Za-z]" replace="*"/>
 <include name="**/*.as" />
 </todo>
</target>

Emailing the Client/Support Desk | 61

This replaces all the uppercase and lowercase characters with a star—not very useful,
but you can adjust the regular expression value with anything you want.

And then, later on, we can call the newly created ${todo.list} property to output this
complete list. In the sample project, I have also placed some Java files so you can see
the difference in the file filters.

The complete sample project for this book, with all the code and every
example, can be found at http://book.funky-monkey.nl/.

We have our to-do list sorted, so let’s move on to emailing and the different options.

Before we can start to send email to people, we need to have some ex-
ternal libraries; the ability to send email is not built into Ant by default.

I have provided those libs in the book’s zip files, which you can down-
load from http://book.funky-monkey.nl/ in the ready_to_import folder.

Sun also provides the necessary downloads—the JavaMail API and the
JavaBeans Activation Framework—on its website at the following
locations: http://www.oracle.com/technetwork/java/index-138643.html
and http://www.oracle.com/technetwork/java/javase/downloads/index
-135046.html.

Just unpack them, put them in the location where the rest of the Ant
JAR files for this book’s exercises live, and add them to the Eclipse Ant
classpath.

Sending email in its most basic form is very easy: call the mail task and provide a “to”
address, a “from” address, and a subject:

<mail from="me" tolist="you" subject="A mail from Ant" />

It would be nice if we could add an extra piece of information regarding the email sent,
so we need some user input. We have done this before, remember? We need an input
task. We’ll start by taking the user’s additional message and save it to a property:

<target name="11.email-with-attachment-and-todo" depends="make-todo-list, 8.create-
deployment-zip">
 <input message="Add an additional message to the deployment or service desk."
addproperty="email.deployment.service.message" />

This target depends on the creation of a new compilation, an upload to your FTP server,
and eventually the creation of a zip file. This zip file is then placed in the deploy directory
and attached to our email to the service desk:

<mail mailhost="smtp.euronet.nl" mailport="25" subject="Deployment">
 <from address="me_email@euronet.nl"/>
 <replyto address="me_email@euronet.nl"/>

62 | Chapter 3: Automation

http://book.funky-monkey.nl/
http://book.funky-monkey.nl/
http://www.oracle.com/technetwork/java/index-138643.html
http://www.oracle.com/technetwork/java/javase/downloads/index-135046.html
http://www.oracle.com/technetwork/java/javase/downloads/index-135046.html

 <to address="my_emailadres@my-server.com"/>
 <message>Hello,
Can you deploy this file to the staging server on:
${remote.http.server}

Please note the following:

${email.deployment.service.message}

Kind regards,
${user.name}</message>
 <attachments>
 <fileset dir="${project.deploy.path}">
 <include name="**/*.zip"/>
 </fileset>
 </attachments>
 </mail>

Note that I deliberately formatted the message between the <message> tags in this way
because this is also the format in which the mail will be received.

But we’re not quite there yet. We still need to send a mail to our project manager and
to our team.

Again, we want an extra message to be sent alongside the email to our project manager.
So, again, we need to store the additional message in a property when the user has given
us input:

<input message="Add an additional message to project mananger"
addproperty="email.pm.message" />
 <mail mailhost="smtp.euronet.nl" mailport="25" subject="Open TODO items">
 <from address="me_email@euronet.nl"/>
 <replyto address="me_email@euronet.nl"/>
 <to address="my_emailaddress@my-server.com"/>
 <message>Hello Mr. Project Mananger,
This is my open TODO list for today:

${todo.list}

Please note the following:

${email.pm.message}

Kind regards,
${user.name}</message>
 </mail>

The last email goes to our team. The tolist parameter takes a comma-separated list of
email addresses, so we can specify more than one team member:

<mail mailhost="smtp.euronet.nl" mailport="25" subject="Dont forget!" tolist="
you@email.com, you@email.com">
 <from address="me_email@euronet.nl"/>
 <replyto address="me_email@euronet.nl"/>
 <message>Hi team,
Don't forget, this list is still open todo:

Emailing the Client/Support Desk | 63

${todo.list}

Kind regards,
${user.name}</message>
</mail>

If you use your own mail server, you can also provide the SMTP host with a username
and password. So, there you have it: three different options for sending mail with Ant
(Figure 3-16).

Of course, you can save this recipients list in a property. As an independent exercise,
add a new file called email.properties, list a bunch of email addresses there, and include
that in your newly created target. After doing this, you can take out the input field.

Figure 3-16. Sending multiple emails with Ant

Adobe AIR and Mobile Compiling
Aside from normal compiling, we can also compile to AIR (Adobe Integrated Runtime)
and to mobile platforms like Android and iOS.

Let’s start off with compiling for AIR. AIR gives you the ability to create “Flash outside
of the browser” applications or desktop applications. The cool thing about AIR is that
if you create your application once, with AS3, you can use the same codebase to export
to SWF, the desktop, Android, and iOS, with only some minor adjustments to the
application descriptor file.

If you want to start developing with AIR, you need the AIR SDK. The
latest public release at the time of this writing is the AIR 2.7 SDK, which
can be found at http://www.adobe.com/products/air/sdk/.

This SDK also includes the ADL (AIR Debug Launcher) and ADT (AIR
Developer Tool) command-line tools. We will be using this SDK in our
examples.

After you have downloaded the AIR SDK, it is time to overlay it with the Flex SDK we
downloaded earlier. This is a relatively painless process if you know what to do. Be sure
to make a backup of your Flex SDK folder before starting. Better safe than sorry!

Copy the downloaded SDK file to the location where you extracted the Flex SDK. I
have a folder on the root of my machine called SDK where I place all my SDKs.

64 | Chapter 3: Automation

http://www.adobe.com/products/air/sdk/

On Windows, just right-click the zip file (the AIR SDK) in the Flex SDK folder and
select Extract All or use any decompression tool of your choice.

Mac OS X is a bit different. When you extract the SDK here, it’s possible that it won’t
copy the correct file permissions, so you are stuck with something that does not work.

To make it work, we open up Terminal and go to the directory of the Flex SDK. Type
cd followed by a space. Now you can drag the path of the Flex SDK from the Finder to
your Terminal app to copy the path. (Depending on where your SDK folder lives, I’ve
found this method to be faster than cd’ing to that directory.)

Then, type the following command in Terminal:

tar jxvf AdobeAIRSDK.tbz2

If you have permission problems or ADL returns a message saying “error=13, Permis-
sion denied” when compiling, then try:

sudo tar jxvf AdobeAIRSDK.tbz2

This makes sure that all the file permissions are correct and we don’t have any problems.
If you still have the problems, try overlaying the AIR SDK again.

If you see filenames and filepaths flying past on your screen, don’t worry; this is the
extraction process. After this operation, the Flex SDK will be merged with the AIR SDK.

Compiling and Packaging to AIR
AIR works a little differently than a normal AS3 project. It works with XML application
descriptor files that hold specific information about the application. These files have a
naming convention of NameOfProject-app.xml.

A sample descriptor file looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/2.7">
 <id>com.sample.Main</id>
 <name>My Funky App</name>
 <filename>MyFunkyApp</filename>
 <versionNumber>1.0.0</versionNumber>
 <copyright>Copyright (c) 2011 Sidney de Koning</copyright>
 <installFolder>Adobe Air/MyFunkyApp</installFolder>
 <programMenuFolder></programMenuFolder>

 <description>
 <text xml:lang="en">Here comes my install description</text>
 </description>

 <supportedProfiles>desktop</supportedProfiles>

 <initialWindow>
 <title>MyFunkyApp</title>
 <content>Main.swf</content>
 <transparent>false</transparent>

Adobe AIR and Mobile Compiling | 65

 <visible>true</visible>
 <minimizable>true</minimizable>
 <maximizable>false</maximizable>
 <resizable>true</resizable>
 <renderMode>auto</renderMode>
 <width>480</width>
 <height>800</height>
 <minSize>480 800</minSize>
 <maxSize>1280 960</maxSize>
 </initialWindow>

 <icon>
 <image16x16>assets/icons/AIRApp_16.png</image16x16>
 <image32x32>assets/icons/AIRApp_32.png</image32x32>
 <image48x48>assets/icons/AIRApp_48.png</image48x48>
 <image128x128>assets/icons/AIRApp_128.png</image128x128>
 </icon>

 <customUpdateUI>false</customUpdateUI>
 <allowBrowserInvocation>false</allowBrowserInvocation>
 <fileTypes>
 <fileType>
 <name>adobe.VideoFile</name>
 <extension>avf</extension>
 <description>Adobe Video File</description>
 <contentType>application/vnd.adobe.video-file</contentType>

 <icon>
 <image16x16>icons/AIRApp_16.png</image16x16>
 <image32x32>icons/AIRApp_32.png</image32x32>
 <image48x48>icons/AIRApp_48.png</image48x48>
 <image128x128>icons/AIRApp_128.png</image128x128>
 </icon>
 </fileType>
 </fileTypes>
</application>

AIR needs this information to package to an actual .air file, which is basically a zip file
with no compression that holds all your packaged assets, XML files, and the compiled
SWF (kind of like the JAR file we’ve already talked about).

Please note that the format of this descriptor file tends to change a lot;
it’s not set in stone. Be sure to look for changes when a new version of
the AIR SDK comes out.

To compile to AIR, you compile like you normally would, only you add one parameter
to the compilation, configname=air, and you set the SWF version with swf-

version=12. This forces the compiler to spit out the correct SWF version. We’ll come
back to this later.

66 | Chapter 3: Automation

We will write three targets: one to create a certificate, one to compile, and one to
package. Let’s see if you can create the debugging target yourself.

First, open up the sdk.properties file and add the following line. This will allow us to
call the ADT and pass a parameter to it:

sdk.adt.compiler=${sdk.location}${file.separator}lib${file.separator}adt.jar

We also need a reference to ADL. Note that unlike all the other files Adobe provides
in JAR format, ADL is platform-dependent, which is a shame because now not every-
thing is cross-platform. You can, of course, solve this with Ant’s env property and
choose either adl or adl.exe, depending on which OS you are on.

For now, we will keep it in one property. Feel free to make this truly cross-platform,
however:

This is the only platform-specific file. For Window this needs to be adl.exe
sdk.adl.compiler=${sdk.location}${file.separator}bin${file.separator}adl

The certificate we will create will be self-signed, which means that there is no certificate
authority behind it. The difference between this and a purchased certificate is that when
you publish to AIR on the desktop, you will see a “publisher could not be verified”
dialog.

Having a certificate from an authority does not matter for your app’s inner workings,
but it could help you when you want to distribute your AIR apps. Alarm bells will start
ringing when your user sees software from an unknown source and a message display-
ing a big red cross. Besides, it looks nicer to have your own certificate (Figure 3-17).

Figure 3-17. Using your signed certificate from a certificate authority

Creating a Self-Signed Certificate
Now that we have all the properties set, we can start with the target creation. But how
do we know what to create or call the ADL?

Adobe AIR and Mobile Compiling | 67

Adobe has very good documentation online. If you search the Live Docs for “Creating
a self-signed certificate with ADT,” you will find that the command to feed ADT directly
is as follows:

adt -certificate -cn name -ou org-unit -o org-name -c country -validityPeriod years
(key_type 1024-RSA | 2048-RSA) pfx-file password

The Live Docs URL for command-line tools is http://livedocs.adobe.com/
flex/3/html/help.html?content=CommandLineTools_6.html.

This command looks pretty straightforward, and it translates directly to our properties.

Create a new property file called cert.properties in the ant folder. This is where we’ll
store all the properties needed for our certificate:

Certificate Properties used for AIR and Android
certificate.name=myTestCert
certificate.password=myPass1234;
certificate.extension=pfx
certificate.validity.years=30
certificate.organization.name=My Fake Organization
certificate.organization.unit=Mobile Dev
certificate.organization.country=NL
certificate.organization.keystrength=2048-RSA
certificate.location.path=${basedir}${file.separator}certificate

If we look at the ADT command, we can very easily create a target from that
information:

<target name="air-create-new-certificate">
 <mkdir dir="${certificate.location.path}" />
 <java jar="${sdk.adt.compiler}" fork="true"
 failonerror="true" logError="true">
 <arg value="-certificate" />
 <arg value="-cn" />
 <arg value="${certificate.name}" />
 <arg value="-ou" />
 <arg value="${certificate.organization.unit}" />
 <arg value="-o" />
 <arg value="${certificate.organization.name}" />
 <arg value="-c" />
 <arg value="${certificate.organization.country}" />
 <arg value="${certificate.organization.keystrength}" />
 <arg value="${certificate.location.path}${file.separator}${certificate.name}.
${certificate.extension}" />
 <arg value="${certificate.password}" />
 </java>
 <growl message="Created self signed certificate" />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

68 | Chapter 3: Automation

http://livedocs.adobe.com/flex/3/html/help.html?content=CommandLineTools_6.html
http://livedocs.adobe.com/flex/3/html/help.html?content=CommandLineTools_6.html

This creates a new certificate called myTestCert.pfx in the certificate directory. That
was easy, right? Let’s move on to something a little harder: compiling to AIR.

Remember the compile target from the mxmlc compiling? Let’s refresh a bit. It looked
like this:

<target name="compile" description="Compile a SWF with MXMLC Compiler"
depends="build.create-timestamp">
 <java jar="${sdk.mxmlc.compiler}" fork="true" failonerror="true">
 <arg value="-debug=false" />
 <arg value="-optimize=true" />
 <arg value="-verbose-stacktraces=true" />
 <arg value="+flexlib=${sdk.libs.framework}" />
 <arg value="-source-path=${project.src.path}" />
 <arg value="-library-path=${sdk.libs.location}" />
 <arg value="-file-specs=${project.classpath}${project.document.class}
${project.file.extension}" />
 <arg value="-output=${project.bin.path}${file.separator}
${project.document.class}_${current.date.time}.swf" />
 </java>
 <property name="project.output.swf"
value="${project.document.class}_${current.date.time}.swf"/>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

As I said earlier, we only need to add the configname=air and the swf-version=12 to the
compilation parameter. Let’s create a target for specific AIR compiling. What we’re
actually doing is creating a SWF that is suitable and prepared for AIR packaging.

So we will take the old code and adjust it to:

<target name="compile-to-air" description="Compile a SWF for AIR use"
depends="build.create-timestamp, make-dirs">
 <java jar="${sdk.mxmlc.compiler}" fork="true" failonerror="true">
 <arg value="-debug=false" />
 <arg value="-optimize=true" />
 <arg value="+configname=air" />
 <arg value="-swf-version=12" />
 <arg value="-verbose-stacktraces=true" />
 <arg value="+flexlib=${sdk.libs.framework}" />
 <arg value="-source-path=${project.src.path}" />
 <arg value="-library-path=${sdk.libs.location}" />
 <arg value="-file-specs=${project.classpath}
${project.document.class}${project.file.extension}" />
 <arg value="-output=${project.build.path}${file.separator}
${project.document.class}.swf" />
 </java>
 <property name="project.output.swf" value="${project.document.class}.swf"/>
 <growl message="Compiling SWF for AIR completed." />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

As you can see, we removed the date in the filename because we don’t need it for now.
Since we remove the directories we build to, everything is cleaned up so we have a new

Adobe AIR and Mobile Compiling | 69

SWF every time. For this compilation process, we need two more targets and some new
properties.

Create a new file called air.properties and add this:

AIR and AIR for Android Properties
air.app.name=MyFunkyApp
air.app.descriptor.path=${basedir}${file.separator}descriptor
air.app.descriptor=${air.app.descriptor.path}${file.separator}${air.app.name}-app.xml
air.app.file=${air.app.name}.air

And to the build.properties, add:

project.build.path=${basedir}${file.separator}build
project.publish.path=${basedir}${file.separator}publish

This target depends on a make-dirs, which in turn depends on a clean, just like before.
Here’s the target for cleaning:

<target name="clean">
 <delete dir="${project.build.path}" />
 <delete dir="${project.publish.path}" />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

and here’s the target for making directories:

<target name="make-dirs" depends="clean">
 <mkdir dir="${project.build.path}" />
 <mkdir dir="${project.publish.path}" />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

What we end up with is a SWF file that is ready to be packaged into an .air file. First,
we want to test whether everything went OK with the compilation; we’ll do so by calling
the ADL to test our file.

The command in ADL is as follows:

adl [-runtime runtime-directory] [-pubid publisher-id] [-nodebug] application.xml
[root-directory] [-- arguments]

The only thing we need to provide is the application descriptor XML and the build path
to find the SWF:

<target name="air-test-app" depends="compile-to-air">
 <exec executable="${sdk.adl.compiler}">
 <arg value="${air.app.descriptor}" />
 <arg value="${project.build.path}" />
 </exec>
 <growl message="Testing Application in AIR (Desktop)." />
</target>

This opens ADL and shows us our SWF wrapped in AIR. Congrats! But we are not
quite there yet.

70 | Chapter 3: Automation

Now we need to package the application and sign it with our self-signed certificate.
Again, we look up the command for ADT:

adt -package -storetype type -keystore store -storepass pass -target air output-
package app-descriptor -C dir fileOrDir input-package

And again we can easily translate this to an Ant target:

<target name="pakage-to-air" depends="compile-to-air">
 <java jar="${sdk.adt.compiler}" fork="true" failonerror="true">
 <arg value="-package" />
 <arg value="-storetype" />
 <arg value="pkcs12" />
 <arg value="-keystore" />
 <arg value="${certificate.location.path}${file.separator}${certificate.name}.
${certificate.extension}" />
 <arg value="-storepass" />
 <arg value="${certificate.password}" />
 <arg value="${project.publish.path}/${air.app.file}" />
 <arg value="${air.app.descriptor}" />
 <arg value="-C" />
 <arg value="${project.build.path}" />
 <arg value="${project.output.swf}" />
 <arg value="-C" />
 <arg value="${project.assets.path}" />
 <arg value="icons" />
 </java>
 <growl message="Packaging AIR Application completed." />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

Now give yourself a well-deserved pat on the back. You have just created, compiled,
packaged, and signed your first AIR application for the desktop with Ant. You can be
very proud of yourself!

Compiling and Packaging to an Android APK
As of version 2.7 of the AIR SDK, there is no need to download the Android SDK if you
want to compile to an Android APK file. Everything you need is packaged in the AIR
SDK itself, even the device and emulator runtime APK files.

That is good news and means we can use ADT for the compilation. We just need to
find out the commands to do so.

The only reason we need the Android SDK is for logging to LogCat, the integrated
Android logger for Eclipse, or if we don’t have an actual device to debug in the emulator.

Adobe AIR and Mobile Compiling | 71

Compiling to Android APK
To create the AIR package for Android that outputs an APK file, use the following
command:

adt -package -target (apk | apk-debug | apk-emulator | apk-profile) -storetype pkcs12
-keystore sampleCert.p12 MyApp.apk MyApp-app.xml MyApp.swf icons/128x128Icon.png
icons/48x48icon.png icons/32x32icon.png icons/16x16icon.png

As you can see, we have different package options. For now, we only want to use the
apk option in our Ant target. If you want to debug, you can use apk-debug, but you will
also need a SWF that is compiled with the debug=true flag.

Here are the Android package targets, according to the Adobe.com Live Docs:

apk

An Android package. A package produced with this target can only be installed on
an Android device, not an emulator.

apk-debug

An Android package with extra debugging information. (The SWF files in the ap-
plication must also be compiled with debugging support.)

apk-emulator

An Android package for use on an emulator without debugging support. (Use the
apk-debug target to permit debugging on both emulators and devices.)

So, again, we can easily create an Ant target with this. We have the groundwork done,
so let’s begin by adding the properties.

Open up certificate.properties and add the extension for a specific Android certificate.
This is a different format (p12):

certificate.android.extension=p12

Then we need to add some properties to android.properties. So let’s create that and
place it in the ant folder:

AIR for Android Properties
android.file.extension=apk
android.app.file=${air.app.name}.${android.file.extension}
android.app.descriptor=${air.app.descriptor.path}${file.separator}${air.app.name}-
Android-app.xml
android.app.icon.path=${project.assets.path}${file.separator}icons${file.separator}

As you can see from the preceding code, we have to make a slightly different Android
descriptor file. The difference lies in the supportedProfiles node and the Android node.
Its filename is based on the name ${air.app.name} property and eventually becomes
MyFunkyApp-Android-app.xml. The contents of this complete file are displayed below.

The manifest addition needs certain permissions to work; on the Android system, the
app itself needs to get permission from the system to use certain resources. You can
find the complete list of permissions that AIR can use on Adobe’s Live Docs site:

72 | Chapter 3: Automation

<?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/2.7">
 <id>com.sample.Main</id>
 <name>My Funky App</name>
 <filename>MyFunkyApp</filename>
 <versionNumber>1.0.0</versionNumber>
 <copyright>Copyright (c) 2011 Sidney de Koning</copyright>
 <installFolder>Adobe Air/MyFunkyApp</installFolder>
 <programMenuFolder>MyFunkyApp</programMenuFolder>

 <description>
 <text xml:lang="en">Here comes my install description</text>
 </description>

 <supportedProfiles>mobileDevice</supportedProfiles>

 <initialWindow>
 <title>MyFunkyApp</title>
 <content>build/Main.swf</content>
 <transparent>false</transparent>
 <visible>true</visible>
 <minimizable>true</minimizable>
 <maximizable>false</maximizable>
 <resizable>true</resizable>
 <renderMode>auto</renderMode>
 <width>480</width>
 <height>800</height>
 <minSize>480 800</minSize>
 <maxSize>1280 960</maxSize>
 <!-- <width>640</width> <height>480</height> <minSize>320 240</minSize>
 <maxSize>1280 960</maxSize> -->
 </initialWindow>
 <icon>
 <image16x16>assets/icons/AIRApp_16.png</image16x16>
 <image32x32>assets/icons/AIRApp_32.png</image32x32>
 <image48x48>assets/icons/AIRApp_48.png</image48x48>
 <image128x128>assets/icons/AIRApp_128.png</image128x128>
 </icon>
 <customUpdateUI>true</customUpdateUI>
 <allowBrowserInvocation>false</allowBrowserInvocation>
 <android>
 <manifestAdditions>
 <![CDATA[
 <manifest android:installLocation="preferExternal">
 <uses-permission android:name="android.permission.INTERNET" />
 </manifest>
]]>
 </manifestAdditions>
 </android>
 <fileTypes>
 <fileType>
 <name>adobe.VideoFile</name>
 <extension>avf</extension>
 <description>Adobe Video File</description>
 <contentType>application/vnd.adobe.video-file</contentType>

Adobe AIR and Mobile Compiling | 73

 <icon>
 <image16x16>assets/icons/AIRApp_16.png</image16x16>
 <image32x32>assets/icons/AIRApp_32.png</image32x32>
 <image48x48>assets/icons/AIRApp_48.png</image48x48>
 <image128x128>assets/icons/AIRApp_128.png</image128x128>
 </icon>
 </fileType>
 </fileTypes>
</application>

Now we need to create the air.xml build file. We are going to need some properties and
some targets. First, we need to include those properties so we can use them:

<!-- Import all properties etc. -->
<import file="build.xml" as="build" />
<import file="air.xml" as="air" />
<property file="ant/air.properties" />
<property file="ant/android.properties" />
<property file="ant/certificate.properties" />

Then we can move on to the actual targets. Since Android needs a certificate with a
different functionality and thus a different extension—the p12 we talked about
earlier—we need to create a new target for it to work:

<target name="android-create-new-certificate">
 <mkdir dir="${certificate.location.path}" />
 <java jar="${sdk.adt.compiler}" fork="true" failonerror="true" logError="true">
 <arg value="-certificate" />
 <arg value="-cn" />
 <arg value="${certificate.name}" />
 <arg value="-ou" />
 <arg value="${certificate.organization.unit}" />
 <arg value="-o" />
 <arg value="${certificate.organization.name}" />
 <arg value="-c" />
 <arg value="${certificate.organization.country}" />
 <arg value="-validityPeriod" />
 <arg value="${certificate.validity.years}" />
 <arg value="${certificate.organization.keystrength}" />
 <arg value="${project.build.path}${file.separator}${certificate.name}.
${certificate.android.extension}" />
 <arg value="${certificate.password}" />
 </java>
 <growl message="Created a new Self Signed Certificate for Android" />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

If we want to actually compile to a native Android APK file, let’s look up the command
for it and create it:

<target name="pakage-to-apk" depends="air.compile-to-air">
 <java jar="${sdk.adt.compiler}" fork="true" failonerror="true">
 <arg value="-package" />
 <arg value="-target" />
 <arg value="${android.file.extension}" />

74 | Chapter 3: Automation

 <arg value="-storetype" />
 <arg value="pkcs12" />
 <arg value="-keystore" />
 <arg value="${certificate.location.path}${file.separator}${certificate.name}.
${certificate.android.extension}" />
 <arg value="-storepass" />
 <arg value="${certificate.password}" />
 <arg value="${project.publish.path}${file.separator}${air.app.name}.
${android.file.extension}" />
 <arg value="${android.app.descriptor}" />
 <arg value="${project.build.path}${file.separator}${project.output.swf}" />
 <arg value="${android.app.icon.path}AIRApp_128.png" />
 <arg value="${android.app.icon.path}AIRApp_48.png" />
 <arg value="${android.app.icon.path}AIRApp_32.png" />
 <arg value="${android.app.icon.path}AIRApp_16.png" />
 </java>
 <growl message="Packaging APK Application completed." />
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

This is nothing we haven’t done before. You have to make sure to enter the commands
in the right order; otherwise, you will get errors. Some common problems that can
occur are that the location of the SWF in the descriptor file is incorrect or the icons are
not packaged along with the APK.

That is all there is to compiling and packaging for Android. Let’s see if you can create
your own targets for debugging and installing the APK file on your phone or to the
emulator based on the command in the beginning of this chapter.

If you want to test your own apps on your Android phone, you have to make sure you
can install apps from sources other than the Android Market. How? It’s easy: click the
menu button on your home screen and then choose Settings→Applications→Unknown
sources.

Compiling for iOS
Wouldn’t it be great if we could target iOS as well? (That means iPhone/iPod and iPad.)

Let’s create an ios.properties file in the ant folder and add the following:

iOS Properties
ios.file.extension=ipa
ios.app.file=${air.app.name}.${ios.file.extension}
ios.app.descriptor=${air.app.descriptor.path}${file.separator}${air.app.name}-iOS-
app.xml

Personally, I have found it more convenient to work with separate descriptor files. The
iOS version of our descriptor also needs slightly different information and has different
icon sizes.

You can make the distinction to develop only for iPad or only for iPhone/iPod by
changing the UIDeviceFamily string to either 1 or 2. You can use both nodes to target

Adobe AIR and Mobile Compiling | 75

both. A value of 1 means iPhone/iPod; 2 means only iPad. In the following example,
right now we are targeting both iPad and iPhone/iPod:

<key>UIDeviceFamily</key>
 <array>
 <string>1</string>
 <string>2</string>
 </array>

The descriptor file has some minor adjustments from the previous descriptor files we
talked about—mostly the icons and the iPhone tag inside the XML:

<?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/2.7">
 <id>com.sample.Main</id>
 <name>My Funky App</name>
 <filename>MyFunkyApp</filename>
 <versionNumber>1.0.0</versionNumber>
 <copyright>Copyright (c) 2011 Sidney de Koning</copyright>
 <installFolder>Adobe Air/MyFunkyApp</installFolder>

 <description>
 <text xml:lang="en">Here comes my install description</text>
 </description>

 <supportedProfiles>mobileDevice</supportedProfiles>

 <initialWindow>
 <title>MyFunkyApp</title>
 <content>build/Main.swf</content>
 <transparent>false</transparent>
 <visible>true</visible>
 <minimizable>true</minimizable>
 <maximizable>false</maximizable>
 <resizable>true</resizable>
 <renderMode>auto</renderMode>
 <width>480</width>
 <height>800</height>
 <minSize>480 800</minSize>
 <maxSize>1280 960</maxSize>
 <!-- <width>640</width> <height>480</height> <minSize>320 240</minSize>
 <maxSize>1280 960</maxSize> -->
 </initialWindow>
 <icon>
 <image29x29>assets/icons/iOSicon-29.png</image29x29>
 <image57x57>assets/icons/iOSicon-57.png</image57x57>
 <image512x512>assets/icons/iOSicon-512.png</image512x512>
 </icon>

 <iPhone>
 <InfoAdditions>
 <![CDATA[
 <key>UIDeviceFamily</key>
 <array>
 <string>1</string>
 </array>

76 | Chapter 3: Automation

 <key>UIRequiresPersistentWiFi</key>
 <string>NO</string>
 <key>UIApplicationExitsOnSuspend</key>
 <string>YES</string>
]]>
 </InfoAdditions>
 </iPhone>
 <customUpdateUI>true</customUpdateUI>
 <allowBrowserInvocation>false</allowBrowserInvocation>
</application>

Certificates for iOS
Certificates on iOS work a little differently from those we are accustomed to for AIR
and Android. Developing for iOS requires you to buy certificates from Apple. At the
time of this writing, the price of a certificate is $99. The creation of this certificate and
provisioning file is beyond the scope of this book, but there are loads of resources online
that can help you with this. We are sticking to only the topic of compiling to an iOS
native format.

For more information on certificates and how to create them, go to http:
//developer.apple.com/devcenter/ios/index.action.

For demonstration purposes, let’s assume you already have a certificate. Next, we add
the location and password to our certificate.properties file:

iOS Certificate locations
certificate.ios.provisioning.file.path=/Certificaten/development/
myProvisioning.mobileprovision
certificate.ios.cert.file.path=/Certificaten/development/development_flash_iphone.p12
certificate.ios.password=myPassword
ios.app.icon.path=${project.assets.path}${file.separator}icons${file.separator}

The following is the command for compiling to iOS (it does not differ much from how
we called ADT before when packaging to APK):

adt -package -target (ipa-test | ipa-debug | ipa-app-store | ipa-ad-hoc | ipa-test-
interpreter | ipa-debug-interpreter) CONNECT_OPTIONS? SIGNING_OPTIONS <output-
package> (FILE_OPTIONS | <input-package>)

As you can see, you have a lot of options: ipa-test, ipa-debug, ipa-app-store, ipa-ad-
hoc, ipa-test-interpreter, and ipa-debug-interpreter. The following is a list of all the
package targets you have for iOS, according to Adobe’s Live Docs:

ipa-ad-hoc

An iOS package for ad hoc distribution.

ipa-app-store

An iOS package for Apple App Store distribution.

Adobe AIR and Mobile Compiling | 77

http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/devcenter/ios/index.action

ipa-debug

An iOS package with extra debugging information. (The SWF files in the applica-
tion must also be compiled with debugging support.)

ipa-test

An iOS package compiled without optimization or debugging information.

ipa-debug-interpreter

Functionally equivalent to a debug package, but compiles more quickly. However,
the ActionScript bytecode is interpreted and not translated to machine code. As a
result, code execution is slower in an interpreter package.

ipa-test-interpreter

Functionally equivalent to a test package, but compiles more quickly. However,
the ActionScript bytecode is interpreted and not translated to machine code. As a
result, code execution is slower in an interpreter package.

For now, the only ones we need are ipa-debug and, if you want to distribute to the App
Store, ipa-app-store. The target will be:

<target name="package-to-ios" depends="air.compile-to-air">
 <java jar="${sdk.adt.compiler}" fork="true" failonerror="true">
 <arg line="-package" />
 <arg line="-target" />
 <arg line="ipa-debug" />
 <arg line="-storetype" />
 <arg line="pkcs12" />
 <arg line="-keystore" />
 <arg line="${certificate.ios.cert.file.path}" />
 <arg line="-storepass" />
 <arg line="${certificate.ios.password}" />
 <arg line="-provisioning-profile" />
 <arg line="${certificate.ios.provisioning.file.path}" />
 <arg line="${project.publish.path}${file.separator}${ios.app.file}" />
 <arg line="${ios.app.descriptor}" />
 <arg line="${project.build.path}${file.separator}${project.output.swf}" />
 <arg line="${ios.app.icon.path}iOSicon-29.png" />
 <arg line="${ios.app.icon.path}iOSicon-57.png" />
 <arg line="${ios.app.icon.path}iOSicon-512.png" />
 <arg line="${ios.app.icon.path}Default.png" />
 </java>
 <eclipse.refreshLocal resource="${project.name}" depth="infinite" />
</target>

And since this target depends on the air.compile-to-air, a SWF file will be made first.
That SWF will be cross-compiled to a native iOS .ipa file with ADT. With this (and the
help of ADT), you can create an iOS app on all operating systems that Ant runs on!
Very cool, right?

Let’s see if you can create your own targets to make your app ready for the App Store.

You can, of course, extend these build files with targets that create the device-specific
app.xml for you, so you don't have to create them manually. Create once; save time later.

78 | Chapter 3: Automation

If you want to test your iOS app, you can just drag the .ipa file to iTunes and sync it to
your phone. Voilà! You have just created your first iOS app with Ant! Congratulations.

Other Cool Stuff to Do with Ant
There are tons of other cool things you can do with Ant! You are only limited by your
imagination. Have a look though the Ant manual and see whether there are other tasks
that you could use in your daily workflow, because not all the examples provided in
this book might be the right fit for you.

If you want to notify yourself of a completed build while away from your desk, for
example, you can use Ant’s Get task to hook into a script that sends you an SMS
message. (Yes, I do. And I use Twillo, an SMS provider, for it. It has a really good and
simple API for this.)

You could also tweet your build result with Ant’s Get task. Or post to a website, or
maybe even your company’s intranet. For this, you would again use the Get task. (The
Get task also supports authentication!)

Or you could combine all the knowledge you’ve gained from this book and build a
project creator that takes user input and writes a complete project—even the property
and build files, filled in with the correct properties—based on template files. The pos-
sibilities are endless!

It doesn’t matter what you think of; the most important thing is that you make it work
for you. If you know Java, you can also extend Ant with your own tasks. The online
Ant manual provides you with good documentation to get you started.

Happy coding!

Adobe AIR and Mobile Compiling | 79

About the Author
Sidney de Koning is a full time geek. When he was 8, he got hooked on BASIC on his
grandfather’s Amiga 500. Now he still gets excited developing mobile applications and
websites. His passion is to play with technologies like Adobe’s AIR and the Android
platform, and he loves to translate complex abstract ideas into concrete usable
applications.

He started programming in Turbo Pascal and Delphi, and tried PHP, but later found
his true love—Flash. Now Sidney is a Flash Platform developer with more than 10 years
of experience in ActionScript (1, 2, and 3), AIR, and lately also Android. And a little iOS.

After setting up the online department at the Dutch MTV in 2005, he freelanced and
worked for smaller companies until 2009. He has worked for and with a multitude of
companies including MTV, TMF, Nickelodeon, Media Catalyst, and Code d’Azur. His
current employment is at LBi Lost Boys in Amsterdam, where he develops in AS3, solves
technical problems, and acts as technical lead. His specialties are streamlining devel-
opment processes, AIR, and AIR for Android. In his spare time, he has written content
for the Dutch Adobe User Group and taught programming classes at the international
SAE College.

From writing articles on blogs to writing magazines and a book, and from teaching
students programming to coding and talking about code, it all has to do with transfer-
ring knowledge and inspiring people who share the same passion: creation.

He likes to keep sane by meditating, reading, writing, and running. He also maintains
a weblog about AIR, mobile, and Flash development at http://www.funky-monkey.nl.

http://www.funky-monkey.nl

	Table of Contents
	Preface
	Introduction
	Build Systems
	Audience
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments

	Chapter 1. Tools
	Eclipse
	Workspaces and Perspectives
	Preferences
	Increase Eclipse’s Available Memory
	Shortcut Keys

	FDT
	Downloading the Android SDK
	Installing the ADT Plug-in for Eclipse
	Installing Android SDK Platform Tools

	Mylyn
	Installing Connectors
	Google Code connector
	GitHub connector

	Adding a Repository to Mylyn

	Chapter 2. Source Code Management
	SVN and Git
	SVN in Eclipse
	Git in Eclipse

	Chapter 3. Automation
	Ant
	The Basics
	Setup
	Our First “Real” Ant Script
	Projects
	Functions
	Variables

	Directly Calling the Compiler
	Downloading the Flex SDK
	Compiling
	Adding external SWC libraries
	Cleaning
	Debugging

	Using FDT’s Ant Tasks
	Compiling (with FDT Ant Tasks)
	Debugging (with FDT Ant Tasks)

	Deploying Your SWF Files to a Different Source
	Setting Up Web Deployment
	Adding Information to a SWF

	Setting Up the HTML File
	Deploying to a Network Share
	Creating a Zip File
	Making a Backup of the Complete Project
	Emailing the Client/Support Desk
	Adobe AIR and Mobile Compiling
	Compiling and Packaging to AIR
	Creating a Self-Signed Certificate
	Compiling and Packaging to an Android APK
	Compiling to Android APK
	Compiling for iOS
	Certificates for iOS
	Other Cool Stuff to Do with Ant

