
Advanced Numerical Simulation Methods

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Advanced Numerical
Simulation Methods

From CAD Data Directly to Simulation Results

Gernot Beer
Institute for Structural Analysis, Graz University of Technology,
Graz, Austria

www.allitebooks.com

http://www.allitebooks.org

The cover is a display of the CAD model and the simulation results (displacement contours)
for two tunnels with a cross passage (copyright G. Beer).
Cover design by Gisela Beer, BSc (hons) in visual communication (Monash University).

CRC Press/Balkema is an imprint of theTaylor & Francis Group, an informa business

© 2015 Taylor & Francis Group, London, UK

Typeset by MPS Limited, Chennai, India
Printed and Bound by CPI Group (UK) Ltd, Croydon, CR0 4YY

All rights reserved. No part of this publication or the information contained
herein may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, by photocopying, recording or
otherwise, without written prior permission from the publisher.

Although all care is taken to ensure integrity and the quality of this publication
and the information herein, no responsibility is assumed by the publishers nor
the author for any damage to the property or persons as a result of operation
or use of this publication and/or the information contained herein.

Library of Congress Cataloging-in-Publication Data

Beer, G. (Gernot)
Advanced numerical simulation methods : from CAD data directly to

simulation results / Gernot Beer.
pages cm

Includes bibliographical references and index.
ISBN 978-1-138-02634-6 (hardcover : alk. paper) – ISBN 978-1-315-76631-7

(ebook : alk. paper) 1. Computer simulation. I. Title.

QA76.9.C65B44 2015
003′.3–dc23

2015023012

Published by: CRC Press/Balkema
P.O. Box 11320, 2301 EH Leiden,The Netherlands
e-mail: Pub.NL@taylorandfrancis.com
www.crcpress.com – www.taylorandfrancis.com

ISBN: 978-1-138-02634-6 (Hbk)
ISBN: 978-1-315-76631-7 (eBook PDF)

www.allitebooks.com

http://www.allitebooks.org

Table of contents

Preface xi
About the author xv

1 Introduction 1
1 A brief history of simulation 1

1.1 The world’s first simulation 1
1.2 Emergence of mathematics and mechanics 3
1.3 Computer age 4

2 Basic steps in simulation 9
2.1 Geometry description 9
2.2 Approximation of the unknown 11
2.3 Solution 12
2.4 Recovery of the results 12

3 A change of paradigm: towards a more efficient and
accurate simulation 12

4 Organization of the text 13

2 Stage 1: Basis functions 17
1 One-dimensional basis functions 17

1.1 Lagrange and Serendipity functions 17
1.2 From B-splines to NURBS 22

2 Two-dimensional basis functions 33
2.1 Lagrange and Serendipity functions 33
2.2 B-splines 38
2.3 NURBS 38
2.4 T-splines 40

3 Programming 44
4 The NURBS toolkit 45
5 Summary and conclusions 51

3 Stage 2: Geometry 55
1 Coordinate systems 55

1.1 Coordinate transformation 55
2 Curves 56

2.1 Mapping with Serendipity/Lagrange basis functions 56
2.2 Mapping with NURBS 57

www.allitebooks.com

http://www.allitebooks.org

vi Table of contents

3 Programming 58
3.1 NURBS toolkit 58
3.2 Geometry functions 59
3.3 Examples 63
3.4 Example 1: Circular arc 63
3.5 Example 2: Horseshoe tunnel 65
3.6 Example 3: Plate with hole 67

4 Surfaces 68
4.1 Mapping with Serendipity/Lagrange basis functions 69
4.2 Mapping with NURBS basis functions 70
4.3 Programming 71

5 Surface of revolution 73
5.1 Example 1: Cylindrical surface 74
5.2 Example 2: Spherical surface 75
5.3 Example 3: Bell shaped surface 77

6 Lofted surfaces 79
7 NURBS surfaces with cutouts 81

7.1 Analysis suitable trimmed NURBS surfaces 82
8 Infinite NURBS patch 87

8.1 Example 92
9 Summary and conclusions 93

4 Stage 3: Computer Aided Design 95
1 Introduction 95
2 IGES data structure 98
3 How CAD programs describe geometry – entity types 100

3.1 Line entity (110) 100
3.2 Surface of revolution entity (120) 100
3.3 Rational B-spline entity (126) 101
3.4 Rational B-spline surface entity (128) 101
3.5 Boundary entity (141) 101

4 NURBS surfaces 102
5 Trimmed NURBS surfaces 104
6 Summary and conclusions 113

5 Stage 4: Introduction to numerical simulation 117
1 One-dimensional simulation 117

1.1 Ritz method 119
1.2 Approximation 121

2 Steps in the simulation 126
2.1 Description of the geometry 126
2.2 Description of known values 126
2.3 Convergence tests 127
2.4 Approximation of unknown 128
2.5 P-refinement or order elevation 128
2.6 H-refinement, the Finite Element Method 128
2.7 Knot insertion, isogeometric method 132

www.allitebooks.com

http://www.allitebooks.org

Table of contents vii

2.8 K-refinement 132
2.9 Summary and conclusions 133

3 2-D simulation, plane stress and plane strain 135
3.1 Boundary Conditions (BC) 138
3.2 Using one NURBS patch 140
3.3 Comparison with classical FEM 141
3.4 Example 142
3.5 Multiple NURBS patches 143
3.6 Bezièr elements 147
3.7 Trimmed NURBS patches 148
3.8 Convergence test 150

4 Summary and conclusions 150

6 Stage 5: Plates and shells 153
1 Kirchhoff plate 153

1.1 Plates 154
1.2 Examples 158

2 Kirchhoff shells 161
2.1 Example 1: Scordelis roof 162
2.2 Example 2: Trimmed Scordelis roof 164
2.3 Example 3: Arched Scordelis roof 166

3 Multiple patches 168
3.1 Assembly 168
3.2 Example 169

4 Summary and conclusions 172

7 Stage 6: Integral equations 175
1 Introduction 175
2 Trefftz method 176

2.1 Example 180
2.2 Conclusions 183

3 Integral equations 183
3.1 Theorem of Betti 187
3.2 Rigid body trick 191
3.3 Conclusions 193

4 Numerical solution of integral equations 193
4.1 Nyström method 193
4.2 Galerkin method 196
4.3 Collocation 196
4.4 Discretisation 197

5 Summary and conclusions 199

8 Stage 7: The boundary element method for plane problems 201
1 Introduction 201
2 Classical isoparametric approach 201

2.1 Numerical evaluation of integrals 203

www.allitebooks.com

http://www.allitebooks.org

viii Table of contents

3 NURBS based approach 206
3.1 Boundary conditions 210

4 Assembly of multiple patches 211
4.1 Pure Neumann problem 211
4.2 Mixed Neumann/Dirichlet problem 211
4.3 Symmetry 212

5 Postprocessing 213
5.1 Results on the boundary 213
5.2 Results inside the domain 214

6 Programming 216
7 Examples 227

7.1 Potential problem: Flow past isolator 227
7.2 Elasticity problem: Circular excavation in infinite domain 229
7.3 Practical example: Horseshoe tunnel 231

8 Conclusions 233

9 Stage 8: The boundary element method
for three-dimensional problems 235
1 Introduction 235
2 Numerical integration 236

2.1 Regular integration 236
2.2 Determination of the optimal number of Gauss points 237
2.3 Regular integration 238
2.4 Nearly singular integration 239
2.5 Weakly singular integration 243
2.6 Infinite patches 246

3 Symmetry 247
4 Multiple patches 249
5 Postprocessing 249

5.1 Stress recovery 249
5.2 Internal stress computation 251

6 Test examples 252
6.1 Infinite tunnel 252
6.2 Loading on infinite half-space 253

7 Examples 253
7.1 Infinite tunnel in infinite domain near tunnel face 253
7.2 Finite tunnel in a semi-infinite domain 254
7.3 Branched tunnel 255

8 Conclusions 260

10 Stage 9: The boundary element method with volume effects 263
1 Introduction 263
2 Effect of body forces and initial strain 263

2.1 Body forces 264
2.2 Effect of initial strain 265
2.3 Solution 266

www.allitebooks.com

http://www.allitebooks.org

Table of contents ix

3 Implementation for plane problems 266
3.1 Geometry definition 266
3.2 Computation of the volume integral 268

4 Implementation for 3-D problems 268
4.1 Geometry definition 269
4.2 Computation of the volume integral 270

5 Iterative solution algorithm 270
6 Inclusions 271

6.1 Computation of body force 273
6.2 Steps in the analysis 275

7 Inelastic behavior 276
7.1 Yield conditions 277
7.2 Determination of plastic strain increment 278

8 Implementation of plasticity for plane problems 280
8.1 Determination of plastic zone 280
8.2 Computation of the volume term 284
8.3 Numerical integration 286
8.4 Internal stress computation 287
8.5 Extension of plastic zone during iteration 287

9 Implementation for 3-D problems 288
9.1 Determination of the plastic zone 288
9.2 Computation of the volume term 289
9.3 Numerical integration 289

10 Programming 289
11 Example 293
12 Summary and conclusions 295

11 Stage 10: The time domain 297
1 Introduction 297

1.1 Bernoulli beam with mass 297
2 Solutions in the frequency domain 298

2.1 Numerical solution 299
3 Solutions in the time domain 301

3.1 Finite difference method 301
3.2 Newmark method 302

4 Programming 306
5 Summary and conclusions 309

Appendix: Fundamental solutions 311
1 Stress solution �(x,y) 312
2 Derived solution for displacement S(x,y) 313
3 Derived solution for traction R(x,y) 314
4 Derived solution for displacement S(x,y) 316
5 Derived solution for traction R(x,y) 317
6 Derivatives of kernel S(x,y) 319
7 Derivatives of kernel R(x,y) 320

Subject index 325

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

The real voyage of discovery consists not in seeking new landscapes,
but in having new eyes.

M. Proust

In today’s age one cannot imagine a world without numerical simulation. It plays an
important role in engineering design, weather forecasting and many other aspects of
our life. The design of a new type of aircraft such as the A380 for example would
not have been possible without it. Simulation methods have become extremely sophis-
ticated and we can now solve large fluid structure interaction problems involving
millions or even billions of unknowns. This has been made possible by the tremendous
increase in computing power, unthinkable a decade ago and the development of very
sophisticated mesh generation programs.

However, as anyone that has been involved in serious simulation can attest, one of
the main bottlenecks is still the need to generate a mesh for the analysis. Engineers use
Computer Aided Design (CAD) software for the design, be it a new type of aircraft
or underground works to create a digital representation of the geometry. The mesh
generation process not only repeats this work, but also introduces an unnecessary
approximation of the CAD representation. This is a far from ideal situation and came
about because CAD and simulation software developed completely independently. The
main aim of CAD software is a visual representation of the prototype whereas the aim
of the simulation software is the prediction of its behavior, two completely different
objectives. Therefore, the digital representation produced by the CAD programs is not
analysis suitable and hence the need for mesh generation.

How I became interested in isogeometric analysis

I first became aware of the efforts by Tom Hughes and his group to address this
problem, fairly late in 2011, after listening to a keynote lecture in the wonderful
Greek island of Kos. I subsequently read the fine and very readable book “Isogeometric
Analysis’’.

I soon became very excited about this development, as in my view it offered a real
breakthrough in technology similar to the emergence of the Finite Element Method
(FEM) or Boundary Element Method (BEM). A seamless integration of CAD and
simulation has the potential of changing the industry.

xii Preface

After becoming emeritus professor and having enough time on my hands, I became
fascinated by Non-Uniform Rational B-Splines (NURBS) and the possibilities they
offered. I found that the MATLAB programming language (or its freeware counterpart
OCTAVE) offered a quick and easy way to try out different things, the main advantage
being the ease of generating graphical output.

As most engineers, I rely on a graphical representation to help me understand the-
oretical concepts. After understanding NURBS and their power, I became convinced
that a seamless integration of CAD and simulation was a possibility.

The first task was to study the IGES standard for CAD data exchange, a 650 page
document. I then developed a parser that could read and interpret the data from the
ASCII file created by CAD programs. It turned out that CAD programs use trimming of
NURBS surfaces, so there was the task of converting surface and trimming information
into an analysis suitable form. This lead to the development of a simple algorithm
which was published in the journal Computer Methods in Applied Mechanics and
Engineering in 2015.

Next, I began to develop Finite Element software to understand the subtle differ-
ences in the implementation and the advantages that NURBS offered. It became soon
clear that the NURBS functions were superior to Serendipity and Lagrange functions
currently in use. I also realized that the isoparametric concept (using the same functions
for the description of the geometry as for the approximation of the unknown) was not
a very efficient way to proceed. Since the geometrical description is taken directly from
the CAD program there is no need to refine it, but in most cases there would be a need
to refine the approximation. Therefore, the isoparametric concept was abandoned.

Turning to 3-D solid analysis, it soon became obvious that mesh generation could
only be avoided if the Boundary Element Method (BEM) was used since this method
only involves a definition of bounding surfaces, the same as for CAD. Therefore, the
emphasis in the further development was in the BEM.

In May 2013 Stephane Bordas and I organized a course on “Isogeometric methods
for numerical simulation’’ at the International Center for Mechanical Sciences (CISM)
in Udine, which was well attended. A research project funded by the Austrian Sci-
ence Fund (FWF) enabled a small but very active group to be established at the Graz
University of Technology, that made some significant progress especially in the field of
the isogeometric BEM. Some of this work is included in this book, but at the time of
publication a PhD thesis on “Seamless integration of CAD and simulation’’ is still in
preparation.

Why this book was written

The idea of writing this book came from the desire to make a contribution towards the
goal of achieving a seamless integration of CAD and simulation without mesh genera-
tion. This includes developing a toolkit that can be used by researchers as a basis from
which to start new developments. The main emphasis of the book is on implementa-
tion and for each stage programs have been developed so readers can try out and get
a feel for the new developments. The main aim is to introduce readers to the novel
aspects offered by isogeometric modeling. It is not intended as a comprehensive treatise
on simulation, so many advanced topics, such as geometrically nonlinear analysis and
fluid structure interaction are left out.

Preface xiii

This book is written by an engineer for engineers. It is hoped that mathematicians
will excuse my sometimes liberal approach to mathematical theory and that the book
will provide an impetus for the development of next generation simulation software
that integrates seamlessly with CAD.

For whom this book was written

The book was written for users of simulation software, so they can understand the
benefits of this new technology and demand progress from a somewhat conservative
industry. It is written for software developers, so they can see that this is a technology
with a big future. Finally, it is written for researchers with the hope that it will attract
more people to work in this exciting new field.

How to read this book

The book is written like a road book, leading the reader on a journey towards under-
standing isogeometric analysis and the state of development. I have divided the book
into stages and after each stage the reader will have gained knowledge that is required
for the next stage. A road map is shown in the Introduction.

Programs available

OCTAVE functions, that have been used in this book, are available for readers.
They should run with no or minor modifications in MATLAB. Send an e-mail to
gernot.beer@tugraz.at with the subject Book programs and stating your name and
affiliation to request access to a dropbox account that contains the sources. The
NURBS toolbox, used by the software, can be downloaded free of charge from
http://octave.sourceforge.net/nurbs/index.html.

Acknowledgements

I would like to acknowledge various people that have helped in the development of
this book. Firstly, Thomas J.R. Hughes, who started this exciting new development
of isogeometric analysis. Thanks are due also to my co-wokers Jürgen Zechner and
Benjamin Marussig for their outstanding research work in the project “Fast isogeo-
metric BEM’’ and to the Austrian Science Fund (FWF) for funding the research.

I would like to thank my colleagues Thomas-Peter Fries, Luiz Wrobel, Adrian
Cisilino, Andre Pereira and Christian Duenser for reviewing some chapters and making
suggestions for improvements. Thanks to Stephane Bordas, who was the co-organizer
of the course “Isogeometric methods for numerical simulation’’ presented at the Inter-
national Center for Mechanical Sciences (CISM), which gave some impetus to write
this book. A special thank you to the developers of the NURBS toolkit and especially
Rafael Vazquez for his support.

To my daughter Gisela, for designing the cover and the road map and to my wife
Sylvia for carefully proofreading the manuscript. Last but not least thanks to the people
at CRC Press for their support and excellent work in publishing.

Gernot Beer
Nelson Bay, Australia 2015

About the author

The author started numerical simulation as part of his PhD work in 1973 where he
developed a simulation method for arc welding of steel plates. Since that time he
has been active in modelling, mainly in the area of underground works (mining and
tunnelling) and developed a commercial computer package (BEFE) that combines two
methods of analysis. He has been involved as a consultant in many interesting projects
around the world such as the design of caverns for the Hadron collider at CERN and
an underground power station in Iran.

He has written 3 textbooks on the subject, the first one being about 2 methods
(Finite Element and Boundary Element Method) and has coordinated many research
projects, including the world’s largest project on underground construction (EC project
TUNCONSTRUCT).

Currently he is emeritus professor of Graz University of Technology, Austria and
conjoint professor of the University of Newcastle, Australia.

Chapter 1

Introduction

I am a little world made cunningly of elements
Donne

For nearly all physical processes in nature a differential equation can be set up, using
the fundamental laws of physics such as equilibrium, the preservation of energy and
others. This, combined with laws describing the material behavior, allows setting up
equations that can be solved analytically for a very limited class of problems.

Numerical simulation evolved from the need to solve real life problems, where
exact solutions are not possible. Such solutions were required, for example, for the safe
design or for prediction of behavior. Without numerical simulation we would be unable
to design tall buildings or the next generation of aircraft. Numerical simulation always
involves an approximation of the real world since most problems are too complex to
be analyzed and need to be abstracted. For example, the A380 aircraft has millions of
parts and it would be impossible to model it in all detail. Abstraction or simplification
of the problem is one of the challenges of numerical simulation, that can not be taken
over by a computer, at least in the forseeable future. However, as we will see next
many serious mistakes can be made here. Even if the abstraction is handled correctly,
there is still another aspect where errors can be made, namely in the approximation
of the geometry and the known and unknown values. We will discuss the emergence
of numerical simulation and the milestones associated with it next, before introducing
the contents of the book.

1 A BRIEF HISTORY OF SIMULATION

1.1 The world’s first simulation

Numerical simulation actually started quite early and was driven by the need to under-
stand and predict behavior. An early example of simulation dates back to 1745 (see
[4]) when Pope Benedict XVII was worried about the stability of the cupola of the
St. Peter’s dome since it was observed that it had developed cracks. The cupola had
circumferential iron rings installed to ensure stability, but it was questioned if these
rings were adequate. The dome was built by artists with knowledge handed down by
generations, but no design in the modern sense was done.

2 Advanced numerical simulation methods

FIG.XXII.

d n

m

N

H
i h

fF

d c
D C A

I

M

x
n

r
g

R

K

r

AD
C B

E
F

G

HI

bbbb

h h
q

g
v n

L

K
L

T

SS

ddd

n

m

PM
O
N

QRR

m

GGG

FFF

A A A

Z Z

rr

a

XX

q

y N

X

h

H

I

Q

P

O

Figure 1 Cupola of St. Peter’s dome and model abstractions.

The pope employed 3 mathematicians to solve the problem. The first task for them
was to simplify the problem. This involved the following steps:

• Understand the basic mechanics of the problem
• Based on this understanding, identify the important mechanisms
• Develop a mechanical model

The mathematicians realized, that the main driving force for the development of
the cracks was the horizontal trust generated by the weight of the cupola. If they could
determine the horizontal thrust, then they could also determine the circumferential
force and find out if the iron rings were adequate. However, the mathematical tools
available at the time were very limited. For example, they could not deal yet with
deformable bodies of arbitrary shape and therefore the mechanical model they devised,
involved rigid bodies. To be able to compute the horizontal thrust, hinges had to be
assumed as shown in Figure 1. As simulating a 3-D problem was also beyond their
capabilities, they simplified it to a plane problem as shown on the right of Figure 1.

However, there was at this stage a good understanding of equilibrium and methods
for determining it, published by Johann Bernoulli 27 years earlier: The principle of
virtual work or, in particular, the principle of virtual displacements, which states that
for a system in equilibrium the work done by the forces times virtual displacements
should be zero. It is interesting that this principle is the one used in modern numerical
methods, as will be demonstrated later.

The idea of the mathematicians was to apply a virtual displacement to the hinged
structure so the horizontal thrust does virtual work. The other virtual work done is
due to the derived displacements of parts of the structure times the gravitational force
due to self weight. The equation for the equilibrium was quite simple:

H · δu +
∑

δW = 0 (1)

Introduction 3

Figure 2 The Pope and two of the mathematicians employed by him.

where H is the horizontal thrust, δu is the virtual displacement and
∑

δW is the
sum of virtual work done by the gravitational forces. The document produced by
the mathematicians was quite voluminous and the main part dealt with the detailed
examination of the cracks and the determination of gravitational forces.

The conclusion of the document, however, was quite wrong. The horizontal thrust
computed was so large that the dome would have collapsed. The reason for this was the
abstraction, which was too extreme and did not capture the mechanics of the problem,
in particular the 3-D effects. This is an extreme example where the abstraction caused
the results of the simulation to be meaningless. There are quite a few examples of
wrong results being obtained even in modern numerical modeling, one of which will
be shown later.

Figure 3 shows a re-analysis of the dome with the Finite Element Method. Because
of cyclic symmetry only 1/8 of the dome needed to be analyzed (for the case of gravity
loading) with the appropriate boundary conditions, without any effect on the results.
Such clever model reduction should always be applied as it can save a lot of modeling
effort and simplify the analysis.

The crack patterns predicted by the model matched the observed ones well and
the horizontal thrust and the circumferential force computed was of a magnitude that
could be carried by the iron rings. Therefore, the conclusion of this analysis was that
the dome was stable and as can be observed by any visitor to Rome, the St. Peters
cathedral still stands and is likely to do so for many centuries.

1.2 Emergence of mathematics and mechanics

Although the first attempt at numerical modeling was not successful, it was an impor-
tant milestone in the recognition of the importance of mathematics and mechanics.
Various numerical methods evolved in the early 1900s to solve differential equations.
Notably the methods by Ritz published in 1909, Trefftz in 1927 and the emergence of
the finite difference method in 1930. The original idea of Ritz was to approximate the

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-001.jpg&w=240&h=146

4 Advanced numerical simulation methods

Figure 3 Finite Element analysis of St. Peter’s dome and resulting crack patterns.

Figure 4 O. C. Zienkiewicz.

solution by functions multiplied with unknown parameters, the magnitude of which
can be determined by the virtual work principle that had been used by the mathe-
maticians in the first simulation. The idea by Trefftz was to use fundamental solutions
of the differential equations and approximate the boundary values only. Finally the
idea of the finite difference method is to numerically approximate the differentiation.
All of the methods lead to simultaneous equations, the solution of which was too
cumbersome or impossible without a digital computer.

1.3 Computer age

Only when the first computers became available around 1960 did these methods take
off. First the finite difference method and then, based on the ideas of Ritz, the Finite
Element method.

Based on the idea of Trefftz Boundary Element methods were developed at about
the same time.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-002.jpg&w=299&h=163
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-003.jpg&w=99&h=107

Introduction 5

The Finite Element Method (FEM) This method is based on an original idea by Ritz,
who proposed that the variation of the unknown is approximated by functions that
are continuous in the domain. First applications of the method were restricted to cases
where such continuous functions could be found, for example for circular plates. It
soon became obvious that this restriction had to be lifted for the method to be useful in
practice. In the early 1960s, when the first digital computers became available, the idea
was proposed to subdivide the domain and to use functions which were continuous
over the subdomain only. The idea of the Finite Element method was born. Due to the
initiative of O. Zienkiewicz the method has really taken off. Soon very powerful pro-
grams were developed first by NASA (NASTRAN) and then by others. As computers
became more and more powerful the capabilities of the programs increased and soon
the degree of abstraction of the problem could be reduced considerable.

A good example, that abstraction is still important and if not done right can lead
to wrong results is the collapse of the Sleipner oil platform (see [3]). A catastrophic
failure of the platform occurred in 1991 and was later attributed to a faulty design
based on results of a numerical simulation, which underestimated the stress by 45%.
A sketch of the platform is shown in Figure 5. Basically the platform is constructed
floating, with the caissons providing buoyancy.

After the construction some air is removed from the caissons, so that the platform
slowly descends to the sea floor. During this process the failure occurred because the
design of the reinforcement was based on results of the numerical simulation which
were in error. The 3D mesh used for the analysis is shown in Figure 5 (top right).
This mesh simulates the whole caisson structure and the only abstraction made was
to assume two planes of symmetry. In contrast to the world’s first simulation the
abstraction appears to be much less and gives the impression that the total structure
has been modeled accurately.

While this is true, another error associated with the approximation of the unknown
has occurred. To limit the size of the system of equations to be solved, solid Finite
Elements with a linear approximation of the displacements were used with only one
element across the thickness. Since in the FEM the strains and subsequently the stresses
are computed by taking a derivative of functions approximating the displacements, the
prediction of stress was not very accurate.

To check the results, a detailed plane analysis was done after the event of a critical
horizontal section through the cells, a detail of which is shown in Figure 5 (bottom).
The failure occurred in a part of a cell that was above the internal water level and
it is attributed to the external water pressure inside the triangular section where 3
caissons meet (referred as tri-cell). Figure 6 shows the distribution of the maximum
(tensile) principal stress for the original and a refined mesh. It can be seen that the
stress prediction of the original mesh is very poor. Especially in the area where the
failure occurred the finer mesh predicts much higher tensile stress than the original
coarse mesh.

This is a good counter-example of the previous example, where the degree of
abstraction was too extreme. Here the degree of abstraction was actually quite low. It is
a good example, however, of another aspect that needs to be considered in numerical
simulation, namely how good the approximation of the unknown is. At the time of the
analysis there was an euphoria and the belief that numerical methods were so powerful
that very little abstraction was necessary. As the case shows, this is a fallacy. Even

www.allitebooks.com

http://www.allitebooks.org

6 Advanced numerical simulation methods

Figure 5 The Sleipner oil platform: Schematic, mesh used for analysis and detail of horizontal section
through cells with applied loading on the tri-cell.

with the powerful programs available today, an intelligent abstraction is necessary.
In particular, results of numerical simulation should always be treated with suspicion.
Simple, “back of the envelope’’ type of calculations should always be made. This means
that abstraction is still a very important aspect of simulation.

The Boundary Element Method (BEM) The original idea of Trefftz to use funda-
mental solutions of the governing differential equations led to the development first
of the Boundary Integral Equation method and then of the Boundary Element method.
The development of the method was quite different from its “big sister’’ the FEM. The
reason for this is that there was much higher demand on mathematical skills (especially
when dealing with singular integrals) and in the early days the method was restricted

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-004.jpg&w=299&h=336

Introduction 7

Figure 6 Results (contours of maximum principal stress) of a detailed plane analysis of the part of the
cross-section where the cells meet (tri-cell). Left: original mesh; Right: refined mesh; Below:
Sketch of the failure.

to homogeneous domains with linear (elastic) material behavior. Also, early books on
the method were not so easy to understand for engineers.

The main attraction of the method is that only boundaries of the problem need
to be defined. It is therefore an ideal companion to CAD and the only method where
it is possible to avoid mesh generation. The approximation of the unknown occurs
only on the boundary and inside the domain functions are used that satisfy the govern-
ing differential equation exactly. This means that in elasticity the solutions inside the
domain satisfy equilibrium and compatibility exactly. Primary results are obtained on
the boundary and interior results are computed by post-processing as will be explained
in detail later. The method is therefore ideal for predicting stress concentrations on the
boundary. As an example we show a reanalysis of the Sleipner tri-cell in Figure 7 where
contours of stress are plotted on a user defined result plane. Another beneficial aspect
of the method is that the user determines where the results should be shown (in contrast
to the FEM where results are computed everywhere).

The main attraction of the method, however is, that it can deal with infinite
domains without the need for truncation. The early applications of the method

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-005.jpg&w=359&h=286

8 Advanced numerical simulation methods

Figure 7 Boundary Element analysis of Sleipner tri-cell with contours of maximum principal stress
plotted on a result plane.

Y
Z

SCALE: SCALE:6.767 6.804

X

Y

Z
X

Figure 8 Boundary Element mesh of CERN caverns and minimum (compressive) principal stress
plotted on a result plane.

were therefore in geomechanics in particular mining and in underground excavations
(see for example [2]). Figure 8 shows an application of the BEM in geomechan-
ics, namely the analysis of the upgrade of caverns at the Large Hadron Collider of
CERN (see [1]).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-006.jpg&w=239&h=207

Introduction 9

Coupled method To overcome the fact that the BEM could not deal with hetero-
geneous domains and non-linear material behavior, a coupling with the FEM was
suggested. In his famous paper [5] Ziekiewicz proposed a marriage of convenience
between the two methods, where the FEM was used in areas where material non-
linear behavior was expected to occur. The coupled method has not really taken off,
mainly because of the complexity in the mesh generation.

2 BASIC STEPS IN SIMULATION

The basic steps in simulation are:

• Approximation of the geometry of the problem
• Approximation of the field variables
• Solution
• Recovery of results

2.1 Geometry description

The first task is to approximate the geometry of the problem to be analyzed. For 3-D
solids this is done by describing its bounding surfaces. For an approximation of the
real world by a plane analysis the object is described by bounding lines. In some cases
the domain to be analyzed is much larger than the area of interest is truncated for
the simulation at a distance, chosen in such a way that its influence is negligible. An
extreme case is found in the simulation of geotechnical problems where the domain
(the earth’s crust) can be assumed to be of infinite extent.

In the FEM the usual way to describe the geometry of the problem is by approxima-
tion with Finite Elements. Finite Elements are simple building blocks that are connected
together to model complicated geometrical shapes. In 3-D these are solid elements of
prismatic or tetrahedral shape, whose shape is determined by interpolation between
fixed points (nodal points). Interpolation functions used by most commercial computer
programs are Seredipity functions or Lagrange polynomials of order 1 or 2 (linear or
quadratic).

This process, where the geometry is described by discrete points and interpolation
functions is known as discretization. The assembly of finite building blocks is called
a mesh and the approximation of the real geometry is achieved by mesh generation.
In the BEM mesh generation is made much easier because only the bounding surfaces
need to be discretized into Boundary Elements.

Mesh generation usually starts by defining the boundary of the domain to be ana-
lyzed. This can be achieved via one of the many available mesh generation programs.
Boundaries can be defined by using direct interactive input with a graphics toolkit
consisting of lines, arcs, splines etc. Alternatively, many mesh generation programs
offer the possibility of reading a file output from a Computer Aided Design (CAD)
program.

Since CAD is nearly always used for the design, this is an obvious approach. Most
CAD programs are able to generate text files in a standard format that can be read

10 Advanced numerical simulation methods

Figure 9 CAD model of cross passage between tunnels and generated BEM mesh, showing detail and
an element with bad aspect ratio.

by mesh generators. The impression may be gained that this process is completely
automatic, but this is not the case.

As an example we show the generation of a BEM mesh using output from a
CAD program. Figure 9 shows the CAD model of tunnels at different levels and a
cross passage between them1. A BEM mesh was generated using the freeware program
CUBIT with linear quadrilateral elements.

1This is based on an actual project that unfortunately was not realized because of budget cuts.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-008.jpg&w=294&h=394

Introduction 11

Figure 10 Finite Element Mesh of tunnel problem (only some surfaces of elements are plotted).

It can be seen that even with a fair number of elements, the geometry is not
approximated very well. In addition, elements are generated with a bad aspect ratio,
i.e. where the angle between vertices is greater than 180◦ or less than 0◦. In this case,
a non-unique mapping occurs, resulting in a zero or negative Jacobian. Such elements
can seriously compromise the quality of results and need to be repaired before an
analysis.

Things become even more complicated if the FEM is used for the analysis, as solid
elements have to be generated and the mesh has to be truncated at a safe distance. The
generation of the mesh is considerably more involved and most mesh generators have
to revert to tetrahedral elements. The mesh in Figure 10 would need significant more
work to guarantee good quality of the results.

It can be seen that the generation of a mesh, even if the geometry is taken from a
CAD program, is a very time consuming part of a simulation and if not done properly
will affect the quality of the results.

2.2 Approximation of the unknown

As we have seen in the previous example, the assumption of the approximation of
the unknown will also have a considerable influence on the quality of results. In the
isoparametric approach the description of the geometry and the approximation of
the unknown are directly linked, i.e. the same interpolation functions are used for the
geometry and the approximation of the unknown. This is not really efficient as in most
cases they are not directly linked. For example the geometry of mining excavations is
very simple and can be described with few elements but this discretization would not
suitable for the approximation of the unknown.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-009.jpg&w=287&h=178

12 Advanced numerical simulation methods

2.3 Solution

The system of equations is usually solved exactly2 by Gauss elimination (or its variants).
For very large systems of equations this is very expensive in terms of computer resources
(storage and time) and not really necessary since approximations have occurred in
the definition of the geometry and the unknown. Therefore approximate solution
techniques have emerged which solve the equations with some error, whose magni-
tude is in the same order as the errors made in approximating the geometry and the
variation of the unknown. These range from iterative methods to H-Matrices, the
latter giving not only a considerable reduction in numerical effort but also in storage
requirement.

2.4 Recovery of the results

The primary results obtained for solid mechanics problems are displacements at nodal
points. The displaced shape can then be obtained by using the approximation functions.
In the FEM, stresses are computed from strains that are calculated by taking the deriva-
tive of the displacements. Therefore their quality is expected to be less (indeed between
elements the satisfaction of equilibrium is no longer guaranteed). Clever schemes were
devised in order to get the best possible results by specifying optimal recovery points
in a element or other means, generally referred to as super-convergent stress recovery.
However, there is no hiding the fact that the derived results can only be as good as the
approximation used for the primary results (i.e. the displacements).

In the BEM stresses are computed using derived fundamental solutions, which
satisfy the conditions of equilibrium and compatibility so the quality of the results is
expected to be better, a fact that we will exploit later.

3 A CHANGE OF PARADIGM: TOWARDS A MORE EFFICIENT
AND ACCURATE SIMULATION

It is clear from the preceding that currently simulation is far from efficient and safe.
The first inefficiency stems from the fact that even if a CAD model is available, the
geometry has to be approximated again by a mesh. If an accurate digital model of the
geometry is available, why is there a need to approximate it with a mesh?

In a process called rapid prototyping, for example, many design modifications
need to be made until the optimal design is achieved requiring repeated updates of the
mesh. Why do we need to generate a new mesh each time a small design change is
made? Would it not be nice if there was a seamless connection with the CAD model
and the simulation results could be obtained directly without mesh generation?

The second inefficiency stems from the fact that in the isoparametric approach,
the same functions are used to describe the geometry and the approximation of the
unknown. This is inefficient, since in many cases there is no direct connection between
the two. Consider a problem of very simple shape, which can be described by very few

2The term is used loosely here and not really correct since round-off errors occur depending on
the precision of the storage of numbers in the computer.

Introduction 13

elements and linear functions. In most cases this would not be sufficient for describ-
ing the variation of the displacements, which subsequently need to be refined, but
there is no need to connect this with the definition of the geometry. Furthermore, if
higher quality basis functions (such as NURBS introduced later) are used for describ-
ing the geometry with very few parameters its description is exact or very accurate,
so there is no need to refine the geometry any further but there is a need to refine the
approximation of the unknown.

In our journey towards a more efficient simulation we propose a change of
paradigm: The geometry description is taken directly from the CAD data and the
isoparametric concept is abandoned, i.e. different functions are used for the descrip-
tion of the unknown. To explain how this can be achieved is the main aim of this
book.

The CAD community, mainly because they concentrated on geometry, has devel-
oped very sophisticated tools for generating a digital representation of it. Whereas
the FEM community has been stuck for decades with very simple functions such a
Serendipity, Lagrange and in some cases Hermite functions, the CAD community has
used for a long time advanced functions such as B-splines and NURBS. The advantage
of these functions is that they can describe complex shapes accurately with very few
parameters. For example NURBS can describe the geometry of conical surfaces such
as cylinders, exactly.

The first task in this book is therefore to make readers familiar with the functions
that CAD programs use and how surfaces are described. The second one is to explain
the exchange format used to transfer data. Fortunately, a standard has been developed
and published at a fairly early stage and most CAD programs adhere to this standard,
more or less. As it turns out there is a big advantage of using B-splines or NURBS for
the approximation of the unknown too. This is because they exhibit very desirable
properties such as good control of continuity and good refinement properties.

4 ORGANIZATION OF THE TEXT

As explained in the preface the book is organized like a road book. The road to
knowledge is divided into stages with milestones reached after each stage. Figure 11
shows the roadmap. After the final stage readers should have obtained knowledge of
NURBS, how CAD programs use them to define geometry, how an analysis suitable
description can be obtained and finally see the enormous benefits that can be gained
from this technology.

The book is method agnostic, i.e. both FEM and BEM are considered, but the
method that is most suitable for the implementation of a seamless integration with
CAD will be given preference. Therefore one of the aims is to show the beauty of
the Cinderella of numerical methods (the BEM) over its dominant sister the FEM.
We start with stage 1 introducing basis functions, i.e. the functions that will be used
for describing the geometry and for approximating the unknown. In order to show
the subtle differences to currently used functions we start with them and progress to
B-splines, NURBS and T-splines. At the end of this stage readers should have a thorough
knowledge of NURBS and an idea what T-splines are.

14 Advanced numerical simulation methods

Figure 11 The roadmap to advanced simulation methods.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-2&iName=master.img-010.jpg&w=359&h=484

Introduction 15

Stage 2 introduces concepts for defining geometry. Starting with commonly used
methods (involving a mesh) readers learn to appreciate the power of NURBS to describe
surfaces exactly with very few parameters. Here the concept of trimmed surfaces and
their conversion to analysis suitable form is introduced. Infinite surfaces, that are
useful for modeling long tunnels and the earth’s surface are also introduced here. At
the end of this stage readers have the background to understand how geometry can be
described with the methods used by CAD programs.

In stage 3 readers become familiar with the concepts of CAD. In particular we
look at how such programs describe geometry, at the structure of the data produced
by CAD programs and at ways we can extract analysis suitable information. After this
stage knowledge of the basic building blocks of simulation should have been obtained.

In stage 4 the concepts of numerical simulation are introduced, starting with a sim-
ple one-dimensional analysis, the Bernoulli beam and proceeding to plates with inplane
loading. After this stage the underlying principles of simulation and the advantage of
using NURBS or B-splines for the approximation of the displacements should be clear.

Stage 5 is a diversion for those readers that are interested in the analysis of
Kirchhoff plates and shells. After stage 4 it should be clear that if we proceed to
3-D, a simulation without mesh generation would be only possible if a method is used
that relies on a description of surfaces only. Therefore Boundary Integral Equations
are introduced in stage 6. These are the predecessors of the BEM and serve well to
explain the basic principles. Here we also introduce some novel concepts on how to
solve them numerically, such as the Nyström method.

In stage 7 we discuss the implementation of the NURBS based BEM for plane
problems and provide test examples in steady state flow and elasticity that clearly
show the advantage over domain methods. The 3-D implementation of the BEM is
discussed in stage 8, where it is also shown how a simulation can proceed without
mesh generation.

If the BEM is only capable of analyzing homogeneous domains with linear material
behavior it will have limited application in practice. This topic has unfortunately been
neglected for too long by the scientific community. In stage 9 readers will learn how
such volume effects can be introduced in the BEM. Some novel and until now untried
approaches will be presented. This stage is meant to provide impetus for much needed
research on this topic. Finally stage 10 introduces time effects.

Throughout this book mesh generation is not used in the simulation and geometry
is either specified by the user or taken directly from CAD data. However, this does not
mean that the dream of a seamless integration of CAD and simulation is realized. Far
from it, there is still a lot of work to be done. The aim of this book is to encourage
more researchers to work in this exciting new area.

BIBLIOGRAPHY

[1] G. Beer, O. Sigl, and J. Brandl. Recent developments and application of the boundary
element method. In Petruzczak and Pande, editors, Numerical models in geomechanics,
pages 461–467. Balkema, 1997.

[2] F.H. Deist, M.D.G. Salamon, and E. Georgiadis. A new digital method for three-
dimensional stress analysis in elastic media. Rock Mechanics, 5(189–202), 1973.

www.allitebooks.com

http://www.allitebooks.org

16 Advanced numerical simulation methods

[3] R.G. Selby, F.J. Vecchio, and M.P. Collins. The failure of an offshore platform. Concrete
International, 19(8):28–35, 1997.

[4] W. Wappenhaus and J. Richter. Die erste Statik der Welt. Bautechnik, 8, 2002.
[5] O.C. Zienkiewicz, D.W. Kelly, and P. Bettess. Marriage a la mode – the best of both

worlds (finite elements and boundary integrals). In R. Glowinski, E.Y. Rodin, and
O.C. Zienkiewicz, editors, Energy methods in finite element analysis, chapter 5, pages
82–107. Wiley, 1979.

Chapter 2

Stage 1: Basis functions

A journey of a thousand miles starts with a single step
Lao-tzu, Chinese philosopher

We start our journey with one of the most important building blocks of numerical
simulation, namely functions that can be used to approximate the actual geometry
and variation of the unknowns. It can be assumed that every continuous function can
be represented as a linear combination of basis functions. An introduction to basis
functions is presented here. Starting with the first ones, used in the Finite Element
method we proceed to the most advanced ones, that we will use later in this book.

1 ONE-DIMENSIONAL BASIS FUNCTIONS

Here we deal with functions that exist in one-dimensional space, either as a function
of the coordinate ξ in the case of Lagrange functions or coordinate u in the case
of B-splines. The reason for the different naming of the coordinate is to distinguish
the different ranges (−1 to 1 and 0 to 1) and to comply as much as possible with
published work.

1.1 Lagrange and Serendipity functions

Lagrange and Serendipity functions have been first proposed by Ergatoudis [2] for the
FEM and by Lachat [4] for Boundary Element Method. They have been in use since
the emergence of numerical modeling software and are still being used today.

Given values of f (f1 to fI) at a discrete number of points ξ1 to ξI, we can compute
the values of f at any point ξ as

f (ξ) =
I∑

i=1

Ni(ξ)fi (1)

where I is the number of points and the basis functions Ni(ξ) obey the following
conditions:

Ni(ξi) = 1
(2)

Ni(ξj) = 0 for i �= j

18 Advanced numerical simulation methods

Figure 1 Lagrange functions of order 1 to 4.

is known as the Kroneker Delta property and

I∑
i=1

Ni(ξ) = 1 (3)

which is referred to as partition of unity.
These conditions are obeyed for example by Lagrange polynomials that are

defined as:

Ni(ξ) =
1<m�I∏

m�=i

ξ − ξm

ξi − ξm
(4)

We introduce the polynomial order of the function as p = I − 11.
For a linear interpolation we have p = 1, I = 2 and

N1(ξ) = ξ − ξ2

ξ1 − ξ2 (5)
N2(ξ) = ξ − ξ1

ξ2 − ξ1

1The order of a polynomial is the highest exponent of its terms. In some publications this is also
referred to as the degree of a polynomial. We keep here to the definition in the book Isogeometric
Analysis.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-000.jpg&w=359&h=195

Stage 1: Basis functions 19

Figure 2 Lagrange function derivatives for orders 2 to 4.

Substitution of the ξ1 = −1 and ξ2 = 1 into equation 5 gives

N1(ξ) = 1
2

(1 − ξ)
(6)

N2(ξ) = 1
2

(1 + ξ)

For a quadratic interpolation we have p = 2 and I = 3:

N1(ξ) = ξ − ξ1

ξ2 − ξ1
· ξ − ξ3

ξ1 − ξ3
; N2(ξ) = ξ − ξ2

ξ1 − ξ2
· ξ − ξ3

ξ2 − ξ3
; N3(ξ) = ξ − ξ1

ξ3 − ξ1
· ξ − ξ2

ξ3 − ξ1
(7)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-001.jpg&w=338&h=358

20 Advanced numerical simulation methods

Figure 3 Example of interpolation between 4 points with Lagrange polynomials of order 3.

Substitution of ξ1 = −1, ξ2 = 1 and ξ3 = 0 gives

N1(ξ) = ξ − 1
2

· ξ; N2(ξ) = ξ + 1
2

· ξ; N3(ξ) = (ξ + 1) · (ξ − 1) (8)

The first derivative to ξ is given by:

∂Ni(ξ)
∂ξ

=
j �=i∑

j=1:I

⎛
⎝ 1

ξi − ξj

m�=j,m�=i∏
m=1:I

ξ − ξm

ξi − ξm

⎞
⎠ (9)

At the time of the emergence of the FEM it was proposed, that functions which
obey conditions (2) and (3) can be found in a non-mathematical way, i.e. without using
the product formula (4).

The functions were subsequently called Serendipity functions2. For one-
dimensional basis functions there is no difference between Serendipity and Lagrange
functions, except for the way they are determined and how the nodes are numbered
(i.e. for Serendipity functions the edge nodes are numbered first, for reasons to be
revealed later). For linear Serendipity functions the derivatives are given by:

∂N1(ξ)
∂ξ

= −0.5;
∂N2(ξ)

∂ξ
= 0.5 (10)

and for quadratic functions:

∂N1(ξ)
∂ξ

= ξ − 0.5;
∂N2(ξ)

∂ξ
= ξ + 0.5;

∂N3(ξ)
∂ξ

= −2 · ξ (11)

2Serendipity means a “pleasant surprise’’. It was first coined by Horace Walpole in 1754. In a
letter he wrote to a friend Walpole explained an unexpected discovery he had made by reference
to a Persian fairy tale, The Three Princes of Serendip. The princes, he told his correspondent,
were always making discoveries, by accidents and sagacity, of things which they were not in
quest of.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-002.jpg&w=188&h=135

Stage 1: Basis functions 21

Figure 4 Hermite polynomials and their derivatives.

The second derivative is given by

∂2Ni(ξ)
∂ξ2

=
j �=i∑

j=1:I

1
ξi − ξj

·
⎛
⎝n �=j,n �=i∑

n=1:I

⎛
⎝ 1

ξi − ξn
·

m�=j,m�=i,m�=n∏
m=1:I

ξ − ξm

ξi − ξm

⎞
⎠
⎞
⎠ (12)

For a quadratic Serendipity function we have

∂2N1

∂ξ2
= 1;

∂2N2

∂ξ2
= 1;

∂2N3

∂ξ2
= −2 (13)

Figure 1 shows Lagrange functions of order 1 to 4. It can be observed that the
higher order functions have significant negative values and exhibit oscillatory behavior.
Figure 2 shows the derivatives for functions of order 2 and 3.

Figure 3 shows the interpolation between given values of function f =
(0, 0.2, 1.0, 0.6) at points ξ = (−1, −0.3, 0.3, 1) with Lagrange polynomials of order
p = 4.

Two things can be observed:

• The curve goes through the given values of the function (nodal points).
• There is little control on what the curve does between the nodal points.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-003.jpg&w=358&h=250

22 Advanced numerical simulation methods

It turns out that these functions are not very well suited for numerical simulation.
The main problem is that one has little control of what happens between the nodal
points. In fact the oscillatory tendency of higher order functions has been found to
be a problem in simulation, especially when the function to be approximated varies
rapidly. One step towards achieving more control over the shape is Hermitian cubic
polynomials.

Hermite polynomials The functions are defined in a local coordinate u that goes from
0 to 1 by:

H1(u) = 2u3 − 3u2 + 1; H2(u) = L · (u3 − 2u2 + u)
(14)

H3(u) = −2u3 + 3u2; H4(u) = L · (u3 − u2)

where L is the length of the interpolation region.
The first derivative is

dH1(u)
du

= 6u2 − 6u;
dH2(u)

du
= L · (3u2 − 4u + 1)

(15)
dH3(u)

du
= −6u2 + 6u;

dH4(u)
du

= L · (3u2 − 2u)

The second derivative is

d2H1(u)
du2

= 12u − 6;
d2H2(u)

du2
= L · (6u − 4)

(16)
d2H3(u)

du2
= −12u + 6;

d2H4(u)
du2

= L · (6u − 2)

The functions and derivatives are plotted in Figure 4.
A function may now be approximated by

f (u) = H1(u) · f1 + H1(u) · f ′
1 + H3(u) · f2 + H1(u) · f ′

2 (17)

where f1, f ′
1 and f2, f ′

2 are function values and derivatives at points 1 and point 2.

1.2 From B-splines to NURBS

Bernstein polynomials The predecessors of B-splines are Bernstein3 polynomials (see
[1] and [6]) which are defined by

Bi,p = ci,p · ui · (1 − u)p−i−1 (18)

where u is the local coordinate, ci,p is a binomial coefficient and p is the order of the
function.

3Sergei Natanovich Bernstein (1880 to 1968) was a Russian mathematician known for con-
tributions to partial differential equations, differential geometry, probability theory, and
approximation theory.

Stage 1: Basis functions 23

Figure 5 Sergei Natanovich Bernstein.

Figure 6 Bernstein polynomials of order 2 and 3.

The Bernstein polynomials for orders p = 1 to p = 3 are

B0,1 = (1 − u), B1,1 = u (19)

B0,2 = (1 − u)2, B1,2 = 2u(1 − u), B2,2 = u2 (20)

B0,3 = (1 − u)3, B1,3 = 2u(1 − u)2, B2,3 = 3u2(1 − u), B3,3 = 3u3 (21)

The function values can be approximated by4

f (u) =
I∑

i=0

Bi,p(u) · Pi (22)

where Pi are parameter values at control points. This is major difference to the func-
tions presented previously. It means that we define the shape of the curve without
interpolating between points. This also means that these points may no longer be on
the curve and therefore are not interpolatory.

4To comply with published work we sum from zero to I = p + 1 but this will be changed later
for programming purposes, since a zero index is not allowed in Octave/MATLAB.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-004.jpg&w=96&h=128
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-005.jpg&w=332&h=114

24 Advanced numerical simulation methods

Figure 7 Example of approximation of curve with 4 control points and with Bernstein polynomials of
order 3.

The Bernstein polynomials of order 1 are identical to the Lagrange functions.
Figure 6 shows the Bernstein polynomials of order 2 and 3. It can be noted that the
polynomials no longer have the Kroneker-Delta property, i.e. the functions do not in
general have unit and zero values at points. We also note that the functions only have
positive values and this prevents any oscillatory behavior, experienced previously.

We show the approximation of a curve using the same points as in Figure 3 but
this time we treat the points where the function value is specified as control points. We
see that there is quite a difference. The curve only goes through the specified points at
the beginning and the end.

The polygon connecting the control points is also called a control polygon.
Although this gives better control over the shape of the curve, it would be also
desirable to be able to control the continuity of the basis functions. This can be achieved
by B-splines.

B-splines The further development of Bernstein polynomials can be attributed to
Bezier5 and de Boor. To define B-splines we start with a knot vector. This is a vector
containing a series of non-decreasing values of the local coordinate:

� = (u0 u1 · · · uN) (23)

We define the entries in the vector as knots and the interval between knots as the
knot span. With these entries in the knot vector a recursive formula is applied for
computing the functions.

We explain the generation of B-splines in Figure 9 for a knot vector

� = (u0 = 1, u1 = 2, u3 = 3, . . .).

5Pierre Étienne Bézier (1910 to 1999) was a French engineer and one of the founders of the fields
of solid, geometric and physical modeling as well as in the field of representing curves, especially
in CAD/CAM systems. As an engineer at Renault, he became a leader in the transformation of
design and manufacturing, through mathematics and computing tools, into computer-aided
design and three-dimensional modeling.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-006.jpg&w=167&h=118

Stage 1: Basis functions 25

Figure 8 Pierre Étienne Bézier.

Figure 9 B-spline functions of order 0, 1 and 2.

www.allitebooks.com

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-007.jpg&w=112&h=91
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-008.jpg&w=359&h=348
http://www.allitebooks.org

26 Advanced numerical simulation methods

First we compute the functions for order p = 0 (constant) and for i = 0, . . . , N.

Ni,0(u) =
{

1 if ui � u < ui+1

0 otherwise
(24)

Higher order basis functions are defined by referencing lower order functions:

Ni,p(u) = u − ui

ui+p − ui
Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (25)

It can be seen that the higher order functions are a linear combination of the lower
order functions. Note that some functions are zero along some portions of the local
coordinate space, i.e. have limited span.

The coordinates in the knot vector may be non-uniformly spaced and we refer to
the corresponding functions as non-uniform B-splines.

The first derivatives are computed by

N′
i,p(u) = d

du
Ni,p(u) = p

ui+p − ui
Ni,p−1(u) − p

ui+p+1 − ui+1
Ni+1,p−1(u) (26)

The second derivatives are computed by:

d2

du2
Ni,p(u) = p

ui+p − u
· d

du
Ni,p−1(u) − p

ui+p+1 − ui+1
· d

du
Ni+1,p−1(u) (27)

The knot vector can also be used to control the continuity of the functions.
Function continuity can be controlled by a repetition of values in the knot vector.
A repetition of the values p + 1 times means C−1 continuity (i.e. dis-continuity) and
a repetition p times means C0 continuity (i.e. continuity of function values only, not
tangents).

In the following we will consider only open knot vectors where the values are
repeated p + 1 times at the beginning and the end6. Furthermore, to simplify maters
we will work with a parameter space that spans from 0 to 1, so that the entries in the
knot vector ui will be �0 and �1. Indeed the functions of the NURBS toolkit only
work with this range and knot vectors provided as input, that not comply to this will
be normalised.

Let us construct the functions for the knot vector � = (u0 = 0, u1 = 0, u2 = 0,
u3 = 1, u4 = 1, u5 = 1). In Figure 10 we show the construction of the basis functions of
order 0 and 1 in the index space, i.e. the numbers along the axis denote the indexes of
the entries in the knot vector, and not the local coordinate (u) as was the case in the
previous example, where both were the same. The parameter space is a subspace of
the index space that ranges from u2 = 0 to u3 = 1.

First we compute the functions for p = 0. We can easily see from Equation (24)
that only the function N2,0 = 1 exists in the parameter space.

6The NURBS toolkit, which we will use in this book, only works with open knot vectors.
However as we will see later this is not a restriction.

Stage 1: Basis functions 27

Figure 10 Construction of B-spline functions of orders 0 and 1 in the index space for knot vector
� = (0, 0, 0, 1, 1, 1).

Figure 11 Resulting B-spline functions (knots are depicted by squares and anchors by filled circles).

The following non-zero basis functions for p = 1 can be computed using
Equation (25)

N1,1 = (1 − u) · N2,0; N2,1 = u · N2,0 (28)

Finally the basis functions for p = 2 can be obtained

N0,2 = (1 − u) · N1,1; N1,2 = u · N1,1 + (1 − u) · N2,1;
(29)

N2,2 = u · N2,1

The computed functions are continuous between u = 0 and u = 1 (see Figure 11).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-009.jpg&w=192&h=183
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-010.jpg&w=182&h=127

28 Advanced numerical simulation methods

Figure 12 B-spline functions and derivatives for p = 2.

Figure 13 B-spline functions and derivatives of order 3 for knot vector � = (0, 0, 0, 0, 1, 1, 1, 1) (knots
are depicted by squares and anchors by filled circles).

We note that for the case of Lagrange polynomials each basis function was directly
associated with a nodal point, due to its Kronecker delta property. Since B-splines do
not have this property anchors are introduced that connect each basis function to a
position in the parameter space.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-011.jpg&w=360&h=126
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-012.jpg&w=360&h=252

Stage 1: Basis functions 29

Figure 14 Construction of B-spline functions of orders 0 and 1 in the index space for knot vector
� = (0, 0, 0, 0.5, 1, 1, 1). Resulting basis function and derivatives (knots are depicted by
squares and anchors are depicted by filled circles).

The location of the i-th anchor (ai) in parameter space can be computed using a
formula by Greville [3]:

u(ai) = ui+1 + ui+2 + · · · + ui+p

p
i = 0, 1, . . . , I (30)

The locations of the anchors are shown as color coded filled circles, together with
the basis functions. The derivatives of the functions are shown in Figure 12. B-splines
and derivatives for order 3 are shown in Figure 13.

We can then make the following modifications:

1 Insertion of one knot at u = 0.5: We can easily see from Equation (24) that
only functions N2,0 = 1 and N3,0 = 1 exist in the parameter space. The following

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-013.jpg&w=359&h=320

30 Advanced numerical simulation methods

Figure 15 B-spline functions and derivatives for Knot vector � = (0, 0, 0, 0.5, 0.5, 1, 1, 1) (knots are
depicted by squares and anchors are depicted by filled circles).

non-zero basis functions for p = 1 can be computed using Equation (25)

N1,1 = (1 − u) · N2,0 (31)

N2,1 = u · N2,0 + 2 · (1 − u) · N3,0

N3,1 = (2u − 1) · N3,0

These intermediate constructions and the final result are shown in Figure 14. We
can see that functions N0,1 and N4,1 only span half of the parameter space.

2 Insertion of two knots at u = 0.5: This means that the blue basis function has only
C0 continuity (see Figure 15) and all other basis functions only span half of the
parameter space. For this case, two knots are located at the same location. It is
noted that the same result can be achieved if the parameter space is split into two
and Bernstein polynomials are used for each subspace.

We re-plot the function in Figure 7 with the modified knot vectors in Figures 16
and 17. It can be seen that the shape of the curve has been altered when compared
to Bernstein polynomials. In the second case the curve has only a C0 continuity at
u = 0.5.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-014.jpg&w=359&h=250

Stage 1: Basis functions 31

Figure 16 Plot with the same control points as in Figure 7 but with knot vector � = (0, 0, 0, 0.5, 1,
1, 1).

Figure 17 Plot with the same control points as in Figure 7 plus an additional one and with knot vector
� = (0, 0, 0, 0.5, 0.5, 1, 1, 1).

NURBS The fact that we can control continuity and span of the functions makes them
very powerful. However, further improvements are possible. The shape of the curve
can be further controlled by using weights.

The basis function becomes:

Ri,p(u) = Ni,p(u)wi∑I
j=0 Nj,p(u)wj

(32)

where Ni,p(u) are the B-splines defined previously and wi are weights.
To retain the partition of unity condition a division by the sum of the B-splines

times the weights is required.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-015.jpg&w=202&h=144
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-016.jpg&w=202&h=143

32 Advanced numerical simulation methods

Figure 18 A function approximated with NURBS basis functions and different values of weight for third
control point.

Function Ri,p(u) is no longer a polynomial, but a rational function. Therefore the
function just defined is also called non-uniform rational B-spline or NURBS.

The first derivative of the NURBS functions are given by:

d
du

Ri,p(u) = wi

W(u)N′
i,p(u) − W ′(u)Ni,p(u)

W2(u)
(33)

with

W(u) =
I∑

j=0

Nj,p(u)wj (34)

W ′(u) =
I∑

j=1

N′
j,p(u)wj (35)

A function can now be approximated by

f (u) =
I∑

i=0

Ri,p(u) · Pi (36)

To see the effect of the weights, we plot a curve with different values of w associated
with the third control point in Figure 18. It can be seen that a higher value of weight
draws the curve towards the control point. It is this additional flexibility that makes
the NURBS so attractive for the description of the geometry, as will be seen later.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-017.jpg&w=222&h=161

Stage 1: Basis functions 33

2 TWO-DIMENSIONAL BASIS FUNCTIONS

Here we discuss basis functions that exist in two-dimensional space. To comply with
published work, we choose the coordinates ξ, η for the Lagrange polynomials and u, v
for NURBS.

2.1 Lagrange and Serendipity functions

Lagrange polynomials For the Lagrange functions a tensor product of functions in ξ

and η directions is used:

Nij(ξ, η) = Ni(ξ) · Nj(η) (37)

where Ni(ξ) has been defined previously and

Nj(η) =
1<m�J∏

m�=j

η − ηm

ηj − ηm
(38)

The derivatives are

∂Nij(ξ, η)
∂ξ

= ∂Ni(ξ)
∂ξ

· Nj(η) (39)

∂Nij(ξ, η)
∂η

= Ni(ξ) · ∂Nj(η)
∂η

(40)

The Lagrange shape functions are depicted in Figures 19 and 20.

Serendipity functions For one-dimensional basis functions there was no difference to
Lagrange functions. However, this is not the case for the two-dimensional case.

Serendipty functions for p = 2, are not derived using a tensor product, only have
8 values (function N2,2, the bubble function is missing) and are given by:

N5 = 1
2

(1 − ξ2)(1 − η) (41)

N6 = 1
2

(1 − η2)(1 − ξ) (42)

N7 = 1
2

(1 − ξ2)(1 + η) (43)

N8 = 1
2

(1 − η2)(1 + ξ) (44)

N1 = 1
4

(1 − ξ)(1 − η) − 1
2

N5 − 1
2

N8 (45)

N2 = 1
4

(1 + ξ)(1 − η) − 1
2

N5 − 1
2

N6 (46)

34 Advanced numerical simulation methods

Figure 19 Lagrange shape functions.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-018.jpg&w=240&h=499

Stage 1: Basis functions 35

Figure 20 Figure 19 continued.

N3 = 1
4

(1 + ξ)(1 + η) − 1
2

N6 − 1
2

N7 (47)

N4 = 1
4

(1 − ξ)(1 + η) − 1
2

N7 − 1
2

N8 (48)

One advantage of Serendipity functions is that each one of the midside node func-
tions (5 to 8) can be set to zero, resulting in a mixed linear-parabolic interpolation.
It can be seen in Figure 21 that the functions do not have zero values at ξ = 0, η = 0
as the Lagrange functions do.

www.allitebooks.com

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-019.jpg&w=239&h=392
http://www.allitebooks.org

36 Advanced numerical simulation methods

Figure 21 Serendipity shape functions.

The derivatives of the Serendipity functions to ξ are given by

∂N5

∂ξ
= ξ · (1 − η) (49)

∂N6

∂ξ
= 1

2
· ξ · (1 − η2) (50)

∂N7

∂ξ
= −ξ · (1 + η) (51)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-020.jpg&w=240&h=396

Stage 1: Basis functions 37

Figure 22 Figure 21 continued.

∂N8

∂ξ
= 1

2
· ξ · (1 − η2) (52)

∂N1

∂ξ
= −1

4
· (1 − η) − 1

2
∂N5

∂ξ
− 1

2
∂N8

∂ξ
(53)

∂N2

∂ξ
= 1

4
· (1 − η) − 1

2
∂N5

∂ξ
− 1

2
∂N6

∂ξ
(54)

∂N3

∂ξ
= −1

4
· (1 + η) − 1

2
∂N6

∂ξ
− 1

2
∂N7

∂ξ
(55)

∂N4

∂ξ
= −1

4
· (1 + η) − 1

2
∂N7

∂ξ
− 1

2
∂N8

∂ξ
(56)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-021.jpg&w=226&h=371

38 Advanced numerical simulation methods

2.2 B-splines

Two-dimensional B-splines are also computed using a tensor product:

Np,q
i,j = Ni,p(u) · Nj,q(v) (57)

where Ni,p(u) has been introduced previously and Nj,q(v) is a B-spline of order q in the
v direction. We now have 2 knot vectors: one in u- and the other in v-direction.

Consider B-splines of order p = q = 2 and the Open Knot vectors:

�u = (0, 0, 0, 1, 1, 1) (58)

�v = (0, 0, 0, 1, 1, 1) (59)

There are 9 B-spline functions which are plotted in Figures 23 and 24. The
main difference to the Lagrange functions is that all values are positive. As with
the one-dimensional functions we can increase the order of the basis function. Fig-
ure 25 shows some basis functions for the case where the order in u-direction (p) is
increased to 3.

We can also perform knot insertion. Figure 26 shows the basis functions for
p = q = 1 and a knot inserted at (u = 0.5, v = 0.5). We see that some functions have a
local support, i.e. are nonzero only over a portion of the parameter space.

2.3 NURBS

NURBS functions are generated by multiplying the B-splines with weights and ensuring
the partition of unity condition:

Rp,q
i,j = Ni,p(u) · Nj,q(v) · wi,j

W
(60)

with

W =
J∑

j=0

I∑
i=0

Ni,p(u) · Nj,q(v) · wi,j (61)

Ni,p(u) and Nj,q(v) are B-spline functions of local coordinates u or v of order p or
q and wi,j are weights. The only difference to B-splines is that the amplitude of the
basis functions is determined by the weights. The derivative to u for example is
given by:

d
du

Rp,q
i,j (u, v) = N′wi,j − W ′(u) · Rp,q

i,j (u, v)

W2(u)
(62)

Stage 1: Basis functions 39

Figure 23 B-spline functions of order p = q = 2 and with Knot vectors �u = (0, 0, 0, 1, 1, 1) and �v = (0,
0, 0, 1, 1, 1) with associated anchor locations in the u, v coordinate system (some anchors
are hidden from view).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-022.jpg&w=239&h=529

40 Advanced numerical simulation methods

Figure 24 Figure 23 continued.

with

W(u) =
I∑

î=0

J∑
ĵ=0

Nî,p(u) · Nĵ,q(v)wî,ĵ (63)

W ′(u) =
I∑

î=0

J∑
ĵ=0

N′
î,p

(u) · Nĵ,q(v)wî,ĵ (64)

and

N′ = d
du

(Ni,p(u, v)) · Nj,q(u, v) (65)

2.4 T-splines

One problem with tensor product of NURBS is that the number of control points has
to be equal at opposing sides. In some cases it would be convenient to have different

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-023.jpg&w=240&h=288

Stage 1: Basis functions 41

Figure 25 Some B-spline functions of order p = 3, q = 1 and with knot vectors �u = (0, 0, 0, 0, 1, 1, 1,
1) and �v = (0, 0, 1, 1) with associated anchor locations in the u, v coordinate system.

number of control points on opposing sides, for example if a local refinement of
the geometry description is necessary. The solution to this problem is T-splines (see
[8] and [7]). Only a simple explanation of T-splines is given here. Interested readers
are referred to the quoted literature. To simply explain T-splines consider the basis
functions in Figure 26. They have 3 control points on each side. Let us assume that
we want to reduce the number of control points on the side u = 0 to two as shown in
Figure 27. For the border u = 0 we have a changed knot vector (�v = (0, 0, 1, 1)).

To get away from the restrictions of the tensor product we introduce the concept
of local anchors. Local anchors are locations in the parametric space associated with
individual basis functions of a T-spline. If the order of the function is odd the location
of the anchors are at the knots. For an even order the locations are at the center of
knot spans. In the example presented here the order is odd, the location of the anchors
is at the knots and is shown in Figure 27.

For each anchor point we extract local knot vectors in the u and v direction (in
Figure 27 these are the values surrounded by a red rectangle) and compute local shape
functions Nu

i (u) and Nv
i (v) that are now based on the extracted local knot vectors.

As an example we show in Figure 28 the numbering of anchors and the local basis
functions Nu

2(u) and Nv
2(v).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-024.jpg&w=235&h=262

42 Advanced numerical simulation methods

Figure 26 Some B-spline functions of order p = 1, q = 1 and with knot vectors �u = (0, 0, 0.5, 1, 1) and
�v = (0, 0, 0.5, 1, 1) with associated anchor locations in the u, v coordinate system.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-025.jpg&w=239&h=483

Stage 1: Basis functions 43

Figure 27 Location of anchor points with extracted local knot vectors.

Figure 28 Numbering of anchors and local basis functions for anchor 2.

The basis functions are then given by

Ri(u,v) = Nuv
i (u,v) · wi∑m

j=1 Nuv
j (u,v) · wj

(66)

with Nuv
i (u,v) = Nu

i (u) · Nv
i (v).

Some of the resulting T-spline basis functions are shown in Figure 29. It can be
seen that the basis functions associated with anchors on u = 0 now span from v = 0 to
1 instead of from 0 to 0.5 as was the case when using a tensor product.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-026.jpg&w=239&h=202
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-027.jpg&w=190&h=87

44 Advanced numerical simulation methods

Figure 29 Some T-spline basis functions.

3 PROGRAMMING

Since the emphasis of the book is on understanding concepts and implementation a few
words about programming are in order. MATLAB or its freeware alternative OCTAVE
is a higher level programming language that is ideally suited for quick implementation

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-028.jpg&w=203&h=438

Stage 1: Basis functions 45

and trying out of concepts. Indeed, the author believes that a better understanding
of concepts can be gained by a graphic representation as most engineers understand
mathematical concepts better using computer graphics. Higher level programming
languages are ideally suited for this task as they allow quick and uncomplicated pro-
gramming as well as the creation of graphical output. Throughout the book software
has been developed that allows a better understanding of the concepts, the degree of
accuracy that can be obtained and the convergence characteristics of the methods.
OCTAVE was mainly chosen because it is available free of charge and because the
NURBS toolkit was available in this language shortening the time and effort. For the
purposes of this book the more sophisticated aspects of MATLAB were not required.
However, all programs developed should run in MATLAB with no or only minor
modifications.

In the following we first introduce the NURBS toolkit. Since the documentation
is rather sparse, a whole section is devoted to the explanation of the input and output.
Although, one has to get used to some aspects of the toolkit, it is efficiently programmed
and bug free. As a reminder, we mention that the convention is that the first subscript
in an array denotes row number and the second column number.

4 THE NURBS TOOLKIT

The toolkit [9] can be downloaded free. Here we only introduce the OCTAVE func-
tions for determining the values of NURBS at parametric points. Other functions
will be introduced in the next chapters as required. A few remarks on the software
are appropriate here. The functions take homogeneous coordinates/parameters at the
control points as input. This means that they have to be multiplied by the weights
before being supplied to the function. The functions assume that the entries in knot
vector range from 0 to 1. Knot vectors can be supplied with different range of entries
but are changed internally.

The first function introduced is nrbmak, which makes a scalar structure containing
all the information required to define a NURBS: The knot vector and the control point
coordinates/parameters and weights for a NURBS curve or surface. The number of
control points and the order of the basis functions is deduced from the size of the
array supplied in the input. Care has to be taken when these arrays are reused with
different sizes (in this case a clear command must be used). The toolkit always demands
3 coordinates. For plane curves the z-coordinate is set to zero. As will be pointed out
in the detailed description of the toolkit, there are a number of inconsistencies. For
example different definitions of order or degree of the basis functions are used. Also
the numbering of the basis functions starts from zero in one place and from one in
others.

function nrbmak(coefs, knots)
%--
% Makes a structure of the information required to define a NURBS.
% Input:
% coefs ... weighted control point coordinates and weights
% For NURBS curves:
% Array of dimension (4, I), weighted coordinates, weights of control points
% coefs(1:4, i)= xi*wi, yi*wi, zi*wi, wi

www.allitebooks.com

http://www.allitebooks.org

46 Advanced numerical simulation methods

% For NURBS surfaces:
% Array of dimension (4, I, J)
% coefs(1:4, i, j)= xij*wij, yij,*wij, zij*wij, wij
%
% knots ... knot vector(s)
% For NURBS curves:
% knotu ... knot vector in u-direction
% For NURBS surfaces:
% {knotu, knotv} ... knot vectors in u,v direction
%
% Output:
% nurbs ... NURBS structure
% nurbs.number ... Number of control points
% nurbs.coefs ... Coefficients
% nurbs.order [u-order, v-order] ... orders of NURBS in u and v directions +1
% nurbs.knots {knotu, knotv} ... knot vectors in u and v directions
%--

Example NURBS curve:

nurbs= nrbmak([0 0.707 0;0 0.707 1;0 0 0; 1 0.707 1],[0 0 0 1 1 1])

nurbs = scalar structure containing the fields:

form = B-NURBS

dim = 4

number = 3

coefs =

0.00000 0.70700 0.00000

0.00000 0.70700 1.00000

0.00000 0.00000 0.00000

1.00000 0.70700 1.00000

order = 3

knots =

0 0 0 1 1 1

Example NURBS surface:

coefs(:,:,1)= [0 0;1 0;0 0;1 1]

coefs(:,:,2)= [0 1;1 1;0 0;1 1]

nurbs=nrbmak(coefs,{[0 0 1 1],[0 0 1 1]})

nurbs =

scalar structure containing the fields:

form = B-NURBS

dim = 4

number =

2 2

coefs =

ans(:,:,1) =

Stage 1: Basis functions 47

0 0

1 0

0 0

1 1

ans(:,:,2) =

0 1

1 1

0 0

1 1

knots =

{

[1,1] =

0 0 1 1

[1,2] =

0 0 1 1

}

order =

2 2

Notes: For the coefficients always 4 values must be specified. The first 3 are the coor-
dinates or parameters of the control point multiplied by the weight and the last is the
weight. Control point parameters must be always supplied, even if only the value of
the basis function is required. In this case a zero value for all parameters may be given,
with the weights specified. For some reason two definitions are used in the toolkit for
the order of the basis function. In function nrbmak the meaning of order is actually
one higher than defined in this chapter. In function findspan the meaning of degree is
identical to the meaning of order defined in this book.

The following function determines the span of a basis function. This will be
required later for determining which basis functions have a non-zero value at a
parametric point.

function s = findspan(n,p,u,knot)

%--

% Find the span of a B-Spline at a parametric point

%

% Input:

% n - number of control points - 1

% p - spline degree = order

% u - parametric point

% knot - knot vector

%

% Output:

% s - knot span index

%--

48 Advanced numerical simulation methods

Example:

s= findspan(2,2,0.5,[0 0 0 1 1 1])

s = 2

The following function determines the numbers of the basis functions that are not
zero at a parametric point. The basis functions are numbered beginning with zero here.

function idx = numbasisfun (s, u, p, knot)
%---
% List numbers of non-zero basis functions in a given knot-span
%
% Input:
% s - knot span (from findspan)
% u - parametric point
% p - spline degree
% knot - knot vector
%
% Output:
% idx ... index to non-zero basis functions
% ---

Example

idx= numbasisfun(s,0.5,2,[0 0 0 1 1 1])

idx = 0 1 2

The following function will compute the basis function value at parametric points
(u, v). the values of the points can be supplied as individual points or as points on
a grid. In the latter case a grid of points is automatically generated from the infor-
mation supplied (i.e. points in u-direction and points in v-direction). Note that here
the functions are numbered beginning from 1 and the numbering of the basis func-
tions is consecutive, meaning that for the two-dimensional case the basis functions are
numbered continuously, first in the u and then in the v direction.

function [Ri,idx] = nrbbasisfun(points, nurbs)

% ---

% Evaluate non-zero NURBS functions at parametric points.

%

% Input:

% points ... parametric points

% For individual points:

% NURBS curves:

% Array of size (number of points= npoints)

% t (n)=u

Stage 1: Basis functions 49

% NURBS surfaces: Array of size (2, npoints)

% t (1, n)= u, t (2, n)= v

% Points on a grid nu*nv

% 2 arrays of size (number of points in u/v directions)

% {u(n), v(n)}

% nurbs ... NURBS structure

%

% Output:

% Ri(1:npoints,1:nbf) ... value of basis functions

% where nbf is the number of non-zero basis functions

% idx(1:npnts,1:nbf) ... indexes of non-zero basis functions

%--

Example: NURBS curve

Ri=nrbbasisfun([0 0.5 1],nurbs)

Ri =1.00000 0.00000 0.00000

0.29291 0.41418 0.29291

0.00000 0.00000 1.00000

Example: NURBS surface

[Ri,idx]= nrbbasisfun([0 0.5 1; 0 0.5 1],nurbs)

Ri =

1.00000 0.00000 0.00000 0.00000

0.25000 0.25000 0.25000 0.25000

0.00000 0.00000 0.00000 1.00000

idx =

1 2 3 4

1 2 3 4

1 2 3 4

Notes: The program only computes the shape functions that are not zero for a para-
metric point. The indexes of the non-zero basis functions are supplied in the array idx.

The next function computes first derivatives of basis functions.

function [Ru,Rv,idx] = nrbbasisfunder(points, nurbs)
% ---
% Evaluate non-zero NURBS function derivatives at parametric points.
%
% Input:
% points ... parametric points
% For individual points:
% NURBS curves:
% Array of size (number of points= npoints)
% t (n)=u

50 Advanced numerical simulation methods

% NURBS surfaces: Array of size (2, npoints)
% t (1, n)= u, t (2, n)= v
% Points on a grid nu*nv
% 2 arrays of size (number of points in u/v directions)
% {u(n), v(n)}
% nurbs ... NURBS structure
%
% Output:
% Ru(1:npoints,1:nbf) ... first derivative to u of basis functions
% NURBS surfaces only:
% Rv(1:points,1:nbf) ... first derivative to v of basis functions
% idx(1:npnts,1:nbf) ... indexes of non-zero basis functions
%--

Example, NURBS curve:

Ru= nrbbasisfunder([0 0.5 1],nurbs)

Ru =

-1.41400 1.41400 0.00000

-1.17165 0.00000 1.17165

0.00000 -1.41400 1.41400

Example, NURBS surface:

[Ru,Rv] = nrbbasisfunder([0 0.5 1;0 0.5 1], nurbs)

Ru =

-1.00000 1.00000 0.00000 0.00000

-0.50000 0.50000 -0.50000 0.50000

0.00000 0.00000 -1.00000 1.00000

Rv =

-1.00000 0.00000 1.00000 0.00000

-0.50000 -0.50000 0.50000 0.50000

0.00000 -1.00000 0.00000 1.00000

A function for computing the first and second derivatives is supplied only for
B-splines. This function requires a call to findspan.

function dR = basisfunder(s,p,t,knots,nders)
% ---
% Evaluate non-zero B-spline functions and derivatives at parametric points.
%
% Input:
% s ... knot span (from findspan)
% p ... order
% t(1:npoints) ... parametric points
% knots ... knot vector
% nders ... Number of derivatives +1
%

Stage 1: Basis functions 51

% Output:
% dR(1:nbf,1,:) ... B-spline
% dR(1:nbf,2,:) ... first derivative
% dR(1:nbf,3,:) ... second derivative
%--

Example:

s= findspan(2,2,0.5,[0 0 0 1 1 1])

dR = basisfunder(s,2,0.5,[0 0 0 1 1 1],2)

dR =

ans(:,:,1) =

0.25000 -1.00000 2.00000

ans(:,:,2) =

0.50000 0.00000 -4.00000

ans(:,:,3) =

0.25000 1.00000 2.00000

Further functions will be explained as required in the later chapters.

5 SUMMARY AND CONCLUSIONS

In this chapter we have introduced the most important aspect of numerical simu-
lation: The basis functions that will be used to describe the problem geometry and
to approximate the variation of the unknowns. For the computational efficiency of
the simulation it is important to be aware of the computational effort involved in
the evaluation of the basis functions and their derivatives, since this has to be done
very frequently. The operation count for NURBS functions is explained in detail in

Figure 30 Number of floating point operations (FLOPS) for evaluating two-dimensional basis functions
of various orders p. Results for Serendipity functions are only shown for up to order 2.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-029.jpg&w=240&h=169

52 Advanced numerical simulation methods

Figure 31 Number of floating point operations (FLOPS) for evaluating the first derivative of various
orders p. Results for Serendipity functions are only shown for up to order 2.

Table 1 Summary of properties of basis functions.

Basis Function: Lagrange Serendipity NURBS

+ easy to implement, good control of shape,
fast computation control of continuity,

good refinement strategies
order elevation via knot vector

− not very good control of shape, slightly more difficult to implement,
can exhibit oscillatory behavior, slower computation
no control over continuity

[5]. Figure 30 shows the number of floating point operations for the evaluation of a
basis function and Figure 31 for its first derivative. NURBS function evaluations are
comparable to evaluations of Serendipity functions but the computational effort for
evaluating derivatives is larger that for the other basis functions.

In Table 1 we summarize the positive and negative properties of the basis functions
introduced here. It obvious that NURBS are superior for describing geometry and for
approximating the unknown. The use of the basis functions to describe geometry will
be explained next, where the superiority of NURBS will be shown.

BIBLIOGRAPHY

[1] Carl de Boor. A practical guide to splines. Springer, New York, NY, 2001.
[2] I. Ergatoudis, B.M. Irons, and O.C. Zienkiewicz. Curved isoparametric quadrilateral

elements for finite element analysis. International Journal for Numerical Methods in
Engineering, 4:31–42, 1968.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-3&iName=master.img-030.jpg&w=239&h=170

Stage 1: Basis functions 53

[3] T. Greville. Numerical procedures for interpolation by spline functions. J. Soc. Ind. Appl.
Math. Ser. B. Numer. Anal., 1964.

[4] J.C. Lachat and J.O. Watson. Effective numerical treatment of boundary integral
equations: A formulation for three-dimensional elastostatics. International Journal for
Numerical Methods in Engineering, 10(5):991–1005, 1976.

[5] Benjamin Marussig, Jürgen Zechner, Gernot Beer, and Thomas-Peter Fries. Fast isogeo-
metric boundary element method based on independent field approximation. Computer
Methods in Applied Mechanics and Engineering, 284(0):458–488, 2015. Isogeometric
Analysis Special Issue.

[6] Les Piegl and Wayne Tiller. The NURBS book (2nd ed.). Springer-Verlag, New York, Inc.,
New York, NY, USA, 1997.

[7] Daniel Rypl and Borek Patzak. Object oriented implementation of the T-spline based
isogeometric analysis. Advances in Engineering Software, 50:137–149, 2012.

[8] Thomas W. Sederberg, David L. Cardon, G. Thomas Finnigan, Nicholas S. North, Jianmin
Zheng, and Tom Lyche. T-spline simplification and local refinement. ACM Trans. Graph.,
23(3):276–283, August 2004.

[9] M. Spink, D. Claxton, C. de Falco, and R. Vázquez. The NURBS toolbox.
http://octave.sourceforge.net/nurbs/index.html.

http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnme.1620100503
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1015706.1015715
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnme.1620100503
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2014.09.035
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2014.09.035
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-59223-2
http://www.crcnetbase.com/action/showLinks?crossref=10.1137%2F0701005
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.advengsoft.2012.02.004
http://www.crcnetbase.com/action/showLinks?crossref=10.1137%2F0701005

Chapter 3

Stage 2: Geometry

Let no man ignorant of geometry enter here
Inscription at the door of Plato’s Academy in Athens

One of the applications of basis functions is the approximation of geometrical shapes.
This is an essential part of simulation. Therefore, stage 2 of our journey is concerned
with the basic concepts of geometrical modeling.

1 COORDINATE SYSTEMS

In geometry, we use a Cartesian orthogonal (right hand) coordinate system. The
location of a point in space is given by a position vector x

x =
⎛
⎝x

y
z

⎞
⎠ (1)

The other possibilities would be to use cylindrical or polar coordinates. For
plane geometry, the z-coordinate is either omitted or set to zero. In keeping with
the convention of the NURBS toolkit, we always specify three coordinates, with the
z-coordinate set to zero for plane geometry.

1.1 Coordinate transformation

It is sometimes required to transform coordinates from one system to another. Consider
a system defined by origin x0 and orthogonal vectors v1, v2 and v3 as shown in Figure 1.

The transformed original coordinates x, x̄ are given by

x̄ = x0 + TTx (2)

where the transformation matrix is given by

T = (v1 v2 v3) (3)

In the following we define geometrical shapes by mapping from a local coordinate
system to the global Cartesian system.

56 Advanced numerical simulation methods

Figure 1 Transformation between 2 Cartesian systems.

2 CURVES

First we deal with curves that have only one parameter direction (ξ or u).

2.1 Mapping with Serendipity/Lagrange basis functions

The mapping from the local parameter space ξ to the global space x with Serendipity
basis functions is given by:

x =
I∑

i=1

Ni(ξ)xi (4)

where I is the number of nodes, Ni(ξ) are basis functions introduced earlier and xi are
the coordinates of node i. The global space can be two- or three-dimensional, i.e. x
can have x, y or x, y, z components.

For Lagrange polynomials we have:

x =
I∑

i=1

Li(ξ)xi (5)

where Li(ξ) are the Lagrange polynomials introduced earlier. For curves, the
Serendipity and Lagrange basis functions are identical, except for the numbering (in
the Lagrange functions the nodes are numbered consecutively in the local coordinate
direction, whereas in the Serendipity functions the corner nodes are numbered first).

For planar curves the vector tangential to the curve in the direction of the local
coordinate ξ can be computed by

V1 = ∂x
∂ξ

=
I∑

i=1

∂Ni(ξ)
∂ξ

xi or
I∑

i=1

∂Li(ξ)
∂ξ

xi (6)

www.allitebooks.com

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-000.jpg&w=120&h=100
http://www.allitebooks.org

Stage 2: Geometry 57

The vector normal to the curve can be computed by the vector x-product with a
unit vector in the z-direction, vz:

N = V1 × vz =

⎛
⎜⎜⎜⎜⎜⎝

∂y
∂ξ

−∂x
∂ξ

0

⎞
⎟⎟⎟⎟⎟⎠ (7)

A unit vector in direction normal to the curve is then given by:

n = N
J

(8)

where J =
√

N2
x + N2

y is also known as the Jacobian of the mapping.

2.2 Mapping with NURBS

Similarly, the mapping from local parameter space u to x with NURBS functions is
given by:

x =
I∑

i=0

Ri,p(u)xi (9)

where I + 1 is the number of control points, Ri,p(u) are basis functions introduced
earlier and xi are coordinates of control point i.

Since Octave does not accept an index 0 we change Equation (9) so that the count
starts with 1 and drop the subscript p:

x =
N∑

n=1

Rn(u)xn (10)

where N is the number of control points.
For planar curves the vector tangential to the curve in the direction of the local

coordinate can be computed by

V1 = ∂x
∂u

=
I∑

i=1

∂Rn(u)
∂u

xi (11)

The vector normal to the curve is given by:

N = V1 × vz =

⎛
⎜⎜⎜⎜⎝

∂y
∂u

−∂x
∂u
0

⎞
⎟⎟⎟⎟⎠ (12)

58 Advanced numerical simulation methods

3 PROGRAMMING

Here we show some additional OCTAVE functions for NURBS curves. We start with
explaining the input and output of the functions of the NURBS toolkit, that we
will use.

3.1 NURBS toolkit

The first function is to compute the global coordinates at parametric points (u) using
Equation (10).

function xy = nrbeval(nurbs, tt)

%--

% NURBS toolkit:

% Evaluate NURBS curve at parametric points

%

% Input:

% nurbs ... NURBS structure

% tt (n)... parametric points

%

% Output:

% xy (1:3,n)... global coordinates at parametric points (z=0)

%--

The next functions sets up a structure that is required to compute derivatives.

function dnurbs = nrbderiv(nurbs)

%--

% NURBS toolkit:

% Sets up the structure for computing the derivatives

%

% Input:

% nurbs ... NURBS structure

%

% Output:

% dnurbs ... NURBS structure for derivatives

%--

Function nrbdeval has the same purpose as nrbeval but also computes the first
and second derivatives.

function [xy,Jac,Hess] = nrbdeval(nurbs,dnurbs, tt)}

%--

% NURBS toolkit:

% Evaluate NURBS curve at parametric points

Stage 2: Geometry 59

% including the first and second derivatives

%

% Input:

% nurbs ... NURBS structure

% dnurbs ... NURBS structure for derivatives

% tt (n)... parametric points

%

% Output:

% xy (1:3,n)... global coordinates at parametric points

% Jac(1:3,n) ... first derivatives at parametric points

% Hess(1:3,n) ... second derivatives at parametric points

%---

3.2 Geometry functions

Here we develop some functions for graphical output, which will be useful later in
this book.

Plotting curves

Function PlotCurv produces data that allows the plotting of curves.

function PlotCurve(coefs,knot)

%--------------------------------------

% Creates data for plotting a planar curve,

% control points and variation of the Jacobian

% Input:

% coefs ... weighted control point coords and weights

% knot ... knot vector

%

% Output to files;

% "Geometry" ... contains geometry data

% "Control" ... contains control point data

% "Jacobian" ... contains Jacobian data

%-------------------------------------

fid= fopen("Geometry","w"); fid1= fopen("Control","w");

fid2= fopen("Jacobian","w");

% Control point coordinates

for n=1:columns(coefs)

w= coefs(4,n);

fprintf(fid1,"%8.5f %8.5f \n", coefs(1,n)/w, coefs(2,n)/w);

end

nurbs= nrbmak(coefs,knotu); dnurbs= nrbderiv(nurbs);

% plot curve and Jacobian

ut= linspace(0,1,40);

60 Advanced numerical simulation methods

[xyg,vu]= nrbdeval(nurbs,dnurbs,ut);

for nu=1:length(ut)

Jac= (vu(1,nu)ˆ2+vu(2,nu)ˆ2)ˆ0.5;

fprintf(fid2,"%8.5f %8.5f \n", ut(nu),Jac);

fprintf(fid,"%8.5f %8.5f \n", xyg(1:2,nu),);

end

fclose(fid);fclose(fid1);fclose(fid2);

endfunction;

Calculation of control point locations and weights for circular arc

NURBS basis functions of order p = 2 are able to exactly represent a circular arc. Here
we show how to compute the control point coordinates and weights for a circular
arc of radius R and start angle αs and end angle αe. If the sustained angle (αe − αs) is
smaller than π

2 then we substitute α1 = αs and α2 = αe and compute 3 control points.
The coordinates and weights of the control points are computed by (see Figure 2):

x1 = x0 + R · cos α1

y1 = y0 + R · sin α1 (13)

w1 = 1

x2 = x1 − R · tan α · sin α1

y2 = y1 + R · tan α · cos α1 (14)

w2 = cos α

where α = (α2 − α1)/2.

x3 = x0 + R · cos α2

y3 = y0 + R · sin α2 (15)

w3 = 1.0

Figure 2 Computation of control point locations and weights for a circular arc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-001.jpg&w=178&h=161

Stage 2: Geometry 61

The knot vector is given by:

� = (0 0 0 1 1 1
)

(16)

If the sustained angle (αe − αs) is larger than π
2 but smaller than π we set α1 = αs,

α2 = π
2 and compute 3 control points using Equations (13) to (15). We then set α1 = π

2 ,
α2 = αe and compute two additional control points using Equations (14) and (15).
The knot vector is given by

� = (0 0 0 0.5 0.5 1 1 1
)

(17)

Note: Although the repetition of knots means that the continuity is reduced to C0, the
curve is actually C1 continuous, due to the location of the control points.

If the sustained angle (αe − αs) is larger than π but smaller than 3π
2 we set α1 = αs,

α2 = π
2 and compute three control points using Equations (13) to (15). We then set

α1 = π
2 , α2 = π and compute two additional control points using Equations (14) and

(15). We then set α1 = π, α2 = αe and compute two additional control points using
Equations (14) and (15). The knot vector is given by

� = (0 0 0 0.3 0.3 0.6 0.6 0 0 0
)

(18)

If the sustained angle (αe − αs) is larger than 3π
2 we set α1 = αs, α2 = π

2 and com-
pute 3 control points using Equations (13) to (15). We then set α1 = π

2 , α2 = π and
compute two additional control points using Equations (14) and (15). We then set
α1 = π, α2 = 3π

2 and compute two additional control points using Equations (14) and
(15). Finally we assign α1 = 3π

2 , α2 = αe and compute two additional control points
using Equations (14) and (15). The knot vector is given by

� = (0 0 0 0.25 0.25 0.5 0.5 0.75 0.75 0 0 0
)

(19)

This is converted into two OCTAVE functions as follows: The first function computes
the control point coordinates and weights for an arc segment with a sustained angle of
<π

2 . The second function uses the first for the computation of control point coordinates,
weights and knot vector for an arc with any value of sustained angle.

function coefs=Arcseg(x0,R,alfa1,alfa2)

%--

% determines control point coords for arc

% with a sustained angle of less than or equal to 1.5707 rad

%

% Input:

% x0 ... origin of arc

% R ... radius

% alfa1 ... start angle (radians)

% alfa2 ... end angle (radians)

%

62 Advanced numerical simulation methods

% Output:

% coefs ... weighted control point coords and weights

%--

alfa= (alfa2 - alfa1)/2; n=1;

x1= x0(1) + R*cos(alfa1); coefs(1,n)= x1;

x2= x0(2) + R*sin(alfa1); coefs(2,n)= x2;

coefs(3,n)= 0.; coefs(4,n)= 1.0;

n=2; w=cos(alfa);

coefs(1,n)= (x1 - R*tan(alfa)*sin(alfa1))*w;

coefs(2,n)= (x2 + R*tan(alfa)*cos(alfa1))*w;

coefs(3,n)= 0.; coefs(4,n)= w;

n=3; coefs(1,n)= x0(1) + R*cos(alfa2);

coefs(2,n)= x0(2) + R*sin(alfa2);

coefs(3,n)= 0.; coefs(4,n)= 1.0;

endfunction;

function [coefs,knot]=Arc(x0,R,alfas,alfae)

%--

% determines parameters and knot vector for a circular arc

%

% Input:

% x0 ... origin of arc

% R ... radius

% alfas ... start angle (radians)

% alfae ... end angle (radians)

%

% Output:

% coefs ... weighted control point coords and weights

% knot ... knot vector

%--

sangle= alfae-alfas; n=0;

if(sangle <= pi/2)

knot=[0 0 0 0 1 1 1]; [coefs]= Arcseg(x0,R,alfas,alfae,0);

elseif(sangle > pi/2 && sangle <= pi)

knot=[0 0 0 0 0.5 0.5 1 1 1];

coefs=Arcseg(x0,R,alfas,pi/2);coefss=Arcseg(x0,R,pi/2,alfae);

i=3; for n=2:3; i=i+1; coefs(1:4,i)=coefss(1:4,n); end

elseif(sangle > pi && sangle <= 3*pi/2)

knot=[0 0 0 0 0.3 0.3 0.6 0.6 1 1 1];

coefs= Arcseg(x0,R,alfas,pi/2); coefss=Arcseg(x0,R,pi/2,pi);

i=3; for n=2:3; i=i+1; coefs(1:4,i)=coefss(1:4,n); end

coefss= Arcseg(x0,R,pi,alfae);

i=5; for n=2:3; i=i+1; coefs(1:4,i)=coefss(1:4,n); end

elseif(sangle > 3*pi/2)

knot=[0 0 0 0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1];

Stage 2: Geometry 63

coefs= Arcseg(x0,R,alfas,pi/2); coefss=Arcseg(x0,R,pi/2,pi);

i=3; for n=2:3; i=i+1; coefs(1:4,i)=coefss(1:4,n); end

coefss= Arcseg(x0,R,pi,3*pi/2);

i=5; for n=2:3; i=i+1; coefs(1:4,i)=coefss(1:4,n); end

coefss= Arcseg(x0,R,3*pi/2,alfae);

i=7; for n=2:3; i=i+1; coefs(1:4,i)=coefss(1:4,n);end

endif

endfunction;

3.3 Examples

To better understand the nature of the mapping with different basis functions, we
show 3 examples. The first one is a circular arc and serves as a comparison of the
approximations by Lagrange polynomials and NURBS. The second example is a prac-
tical example of a tunnel section and is meant to demonstrate the flexibility of NURBS
to model real shapes. It is also used to examine the effect of the local coordinates of
knots on the distribution of the Jacobian. The third example finally demonstrates how
NURBS can model discontinuous curves.

3.4 Example 1: Circular arc

This example was chosen to compare the accuracy that can be achieved by an
approximation by Lagrange polynomials and NURBS. For the approximation of
a circular arc Figure in 3 with Lagrange functions we define the nodal point
coordinates as

xi =

⎛
⎜⎜⎜⎝

1 0√
2

2

√
2

2
0 1

⎞
⎟⎟⎟⎠ (20)

For the approximation by NURBS, the following values for the parameters for
nrbmak are obtained from function Arc:

[coefs,knot]=Arc([0,0],1,0,pi/2)

coefs =

1.00000 0.70711 0.00000

0.00000 0.70711 1.00000

0.00000 0.00000 0.00000

1.00000 0.70711 1.00000

knot = 0 0 0 0 1 1 1

Figure 3 shows the two different approximations of the arc.

64 Advanced numerical simulation methods

Figure 3 Geometrical description of arc: Comparison of approximation by Lagrange and NURBS basis
functions.

To investigate the accuracy of the approximations with the different basis functions
we introduce the geometrical error norm as

‖εg‖ =
∫

s

|xap − xex|
|xex| · ds (21)

where xap and xex are the approximate and exact coordinates on the curve respectively
and the integration is along the curve s.

The error in approximating the Length is

‖εL‖ = Lap

Lex
(22)

where Lap and Lex are the approximate and exact values of length respectively.
A mapping with NURBS exactly represents the arc, i.e. the geometrical error

and the error in computing the length is zero. In Figure 4 we plot the error in the
approximation of the geometry and the length as a function of the number of nodal
points (using order elevation) for the approximation with Lagrange functions.

In Figure 5, we investigate the variation of the Jacobian for the approximation with
Lagrange polynomials. We see that the order of the function influences the variation
of the Jacobian. For the higher order functions the Jacobian tends towards a constant
value. The variation of the Jacobian for the NURBS representation is shown on the
right in Figure 5. It can be seen that the Jacobian is not constant, which is somewhat
surprising, since the arc is exactly represented. However, as will be shown later the
variation of the Jacobian is closely related to the knot vector.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-002.jpg&w=207&h=203

Stage 2: Geometry 65

Figure 4 Diagram of errors in approximation of the geometry of the arc and its length by Lagrange
functions with different number of nodes.

Figure 5 Left:Variation of Jacobian for the approximation with Lagrange function of different orders
and right: Variation of Jacobian for approximation by NURBS.

3.5 Example 2: Horseshoe tunnel

A practical application is the representation of the geometry of a horseshoe tunnel1.
The cross-section of the tunnel is usually specified by engineers using arcs as shown in
Figure 6. The information provided includes centers and radii of the arcs. Arc centers
and start/end angles are chosen in such a way so that there is a smooth transition from
one arc to the other. For tunnels it is important to have such smooth cross-sections,
as otherwise we would have stress concentrations. Indeed, the shape of the tunnel is
chosen to minimize the magnitude of stresses in the lining. This represents an ideal

1This is a typical cross-section for a tunnel using the New Austrian Tunneling Method or NATM.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-003.jpg&w=207&h=149
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-004.jpg&w=356&h=126

66 Advanced numerical simulation methods

Figure 6 Definition of the geometry of a tunnel.

application of NURBS basis functions, since the design geometry can be represented
exactly.

Using the Arcseg function introduced previously we determine the parameters and
the knot vector with the function NATM.

function [coefs,knot]=NATM

%--

% determines parameters and knot vector

% for an NATM tunnel

%

% Output:

% coefs ... weighted control point coords and weights

% knot ... knot vector

%--

knot=[0 0 0 0.5 0.5 0.8 0.8 1 1 1];

coefss= Arcseg([0,1.11],4.55,0,pi/2);

coefs(1:4,3)=coefss(1:4,1); coefs(1:4,2)=coefss(1:4,2);

coefs(1:4,1)=coefss(1:4,3);

coefss= Arcseg([1.6,1.1],2.95,4.939,2*pi);

coefs(1:4,4)=coefss(1:4,2); coefs(1:4,5)=coefss(1:4,1);

coefss= Arcseg([0,7.4],9.45,3*pi/2,4.939);

coefs(1:4,6)=coefss(1:4,2); coefs(1:4,7)=coefss(1:4,1);

endfunction;

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-005.jpg&w=249&h=162

Stage 2: Geometry 67

Figure 7 Mapping of shape of tunnel from the local u coordinate system (right) to global x,y coordinates
(left). Knots are depicted by red diamonds.

The result is:

coefs =
0.00000 3.21734 4.55000 3.56047 2.26280 1.06845 -0.00000
5.66000 4.00222 1.11000 -0.97597 -1.77458 -2.03685 -2.05000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.00000 0.70711 1.00000 0.78252 1.00000 0.99359 1.00000

knots = 0 0 0 0.5 0.5 0.8 0.8 1 1 1

The mapping of the shape of the tunnel is shown in Figure 7. Because of repetition
of knots in the knot vector there is only a C0 continuity guaranteed at this location, but
actually the control polygon indicates a C1 continuity. This is because the locations
of the arcs have been chosen such that there is a unique tangent where arcs meet.
However, as can be seen in Figure 9 the Jacobian is discontinuous at the knots.

Next we investigate the effect of the location of the knots by shifting the loca-
tion of one from 0.5 to 0.4 in the knot vector, i.e. the knot vector is changed to
� = (

0 0 0 0.4 0.4 0.8 0.8 1 1 1
)
.

It can be seen in Figure 8 that this has no effect on the shape. The effect is only on
the distribution of the parametric points, which are wider spaced out in the top part
now. However, this also affects the distribution of the Jacobian (see Figure 9).

3.6 Example 3: Plate with hole

The third example was chosen to show how easy it is to control the continuity with
NURBS. Figure 10 shows an example of a quarter of a plate with a circular hole. We
choose the order of the basis functions to be p = 2. For this case we need to have
double entries in the Knot vector at each corner so that we have a C0 continuity there.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-006.jpg&w=299&h=161

68 Advanced numerical simulation methods

Figure 8 Mapping of shape of tunnel from the local u coordinate system (right) to global x, y coordinates
(left) with changed knot value.

Figure 9 Variation of Jacobian for tunnel with (left) original and (right) changed knot value.

The quarter plate with a hole is exactly represented with this NURBS definition. The
input data for function Plotcurve are:

coefs=

0.5 0.353 1.0 1.0 1.0 0.5 0.0 0.0 0.0 0.25 0.5

0.0 0.353 0.5 0.75 1.0 1.0 1.0 0.5 0.0 0.0 0.0

0 0 0 0 0 0 0 0 0 0 0

1 0.707 1 1 1 1 1 1 1 1 1

knot= 0 0 0 1 1 2 2 3 3 4 4 5 5 5

4 SURFACES

Here we deal with surfaces with two coordinates in parameter space (ξ, η or u, v).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-007.jpg&w=299&h=159
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-008.jpg&w=359&h=124

Stage 2: Geometry 69

Figure 10 Definition of a quarter plate with a circular hole showing control points.

4.1 Mapping with Serendipity/Lagrange basis functions

The coordinates x at location ξ, η are computed, using Serendipity functions:

x =
I∑

i=1

Ni(ξ, η)xi (23)

and by Lagrange polynomials

x =
I∑

i=1

J∑
j=1

Lij(ξ, η)xij (24)

where x is a space vector (i.e. has 3 components). Note that for Serendipity functions
the nodes are numbered consecutively, whereas Lagrange polynomials have two indices
for the nodes.

We can compute two vectors tangential to the surface (one in the ξ the other in
the η direction as

V1 = ∂x
∂ξ

=
I∑

i=1

∂Ni(ξ, η)
∂ξ

· xi or V1 =
I∑

i=1

J∑
j=1

∂Lij(ξ, η)
∂ξ

xij (25)

V2 = ∂x
∂η

=
I∑

i=1

∂Ni(ξ, η)
∂η

· xi or V2 =
I∑

i=1

J∑
j=1

∂Lij(ξ, η)
∂η

xij (26)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-009.jpg&w=172&h=164

70 Advanced numerical simulation methods

The derivatives of the Lagrange polynomials are given by:

∂Lij(ξ, η)
∂ξ

= ∂Li(ξ)
∂ξ

· Lj(η) (27)

∂Lij(ξ, η)
∂η

= Li(ξ) · ∂Lj(η)
∂η

(28)

A vector normal to the surface may be computed by

N = V1 × V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂y
∂ξ

· ∂z
∂η

− ∂y
∂η

· ∂z
∂ξ

∂z
∂ξ

· ∂x
∂η

− ∂z
∂η

· ∂x
∂ξ

∂x
∂ξ

· ∂y
∂η

− ∂x
∂η

· ∂y
∂ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(29)

A unit normal to the surface is given by:

n = N
J

(30)

where J =
√

N2
x + N2

y + N2
z is the Jacobian of the mapping.

4.2 Mapping with NURBS basis functions

The coordinates x at location u, v on the NURBS surface are computed by:

x =
I∑

i=0

J∑
j=0

Rp,q
i,j (u, v)xij (31)

where Rp,q
i,j (u, v) are the NURBS basis functions introduced earlier and xij are the

coordinates of control points.
For the implementation it is convenient to continuously number the control points.

Furthermore, since OCTAVE does not accept a zero index, we change the notation so
the sum starts from 1 instead of zero.

We re-define the NURBS functions as

Rn = Rp,q
i(n),j(n) (32)

and the control points as

xn = xi(n),j(n) (33)

where i(n) and j(n) are the indices associated with the n-th control point.

Stage 2: Geometry 71

With this new notation Equation 31 can be rewritten as

x =
N∑

n=1

Rn(u, v)xn (34)

with N = (I + 1) · (J + 1)
The vectors tangential to the surface are given by

V1 = ∂x
∂u

=
N∑

n=1

∂Rn(u, v)
∂u

· xi

(35)

V2 = ∂x
∂v

=
N∑

n=1

∂Rn(u, v)
∂v

· xi

4.3 Programming

Here we first introduce the functions in the NURBS toolkit that computes the global
coordinates and the derivatives at a point with the local coordinates u, v. This function
is the same as introduced for curves previously but with a different parameter list.

function [x,Jac,Hess] = nrbdeval(nurbs,dnurbs,tt)

%--

% Computes global coordinates and derivatives at parametric

% points tt

%

% Input:

% nurbs ... NURBS structure

% dnurbs ... NURBS structure for derivatives

% tt ... parametric points:

% For np individual points:

% Array of size (2,np)

% tt (1, n)= u, tt (2, n)= v

% For points on a grid nu*nv

% 2 arrays of size (nu/nv)

% u(n),v(n)

%

% Output:

% x ... global coordinates at parametric points

% For individual points:

% Array of size (3,np)

% x= x(1,n), y= x(2,n), z= x(3,n)

% For points on a grid nu*nv:

% Array of size (3, nu,nv)

% x= x(1,i,j), y= x(2,i,j), z= x(3,i,j)

%

72 Advanced numerical simulation methods

% Jac{1}, Jac{2} ... first derivatives of x

% For individual points:

% 2 arrays of size (3,n)

% Jac{1}(1,n)=dx/du(n), Jac{1}(2,n)=dy/du(n),

% Jac{1}(3,n)=dz/du(n)

% Jac{2}(1,n)=dx/dv(n), Jac{2}(2,n)=dy/dv(n),

% Jac{2}(3,n)=dz/dv(n)

% For points on a grid nu*nv

% 2 arrays of size (3,nu,nv)

% Jac{1}(1,i,j)=dx/du(i,j), Jac{1}(2,i,j)=dy/du(i,j),

% Jac{1}(3,i,j)=dz/du(i,j)

% Jac{2}(1,i,j)=dx/dv(i,j), Jac{2}(2,i,j)=dy/dv(i,j),

% Jac{2}(3,i,j)=dz/dv(i,j)

%

% Hess{1}, Hess{2} ... second derivatives of x

% Same as for Jac

%--

A function for plotting surfaces, control points and the variation of the Jacobian
is shown next.

function PlotSurface(coefs,knotu,knotv)
%--------------------------------------
% Creates data for plotting a surface
% Input:
% coefs ... homogenized coordinates and weights
% knotu ... knot vector in u-direction
% knotv ... knot vector in v-direction
%
% Output to file
% "Geometry" ... contains geometry data
% "Control" ... contains control points data
% "Jacobian" ... contains Jacobian data
%-------------------------------------
nurbs= nrbmak(coefs,{knotu,knotv}); ncu= nurbs.number(1);
ncv= nurbs.number(2);
% plot control points
nctrl=0;
for icv=1:ncv
for icu= 1:ncu
w= coefs(4,icu,icv); nctrl= nctrl+1;
fprintf(fid1,"%8.5f %8.5f %8.5f %d \n", coefs(1:3,icu,icv)/w,nctrl);
end
end
ut= linspace(0,1,20); vt= linspace(0,1,20);
% plot surface and Jacobian
dnurbs= nrbderiv(nurbs);
[xyg,vuv]= nrbdeval(nurbs,dnurbs,{ut,vt});
for nv=1:length(vt)

Stage 2: Geometry 73

for nu=1:length(ut)
fprintf(fid,"%8.5f %8.5f %8.5f \n", xyg(1:3,nu,nv));
norm= vexp(vuv{1}(:,nu,nv),vuv{2}(:,nu,nv));
Jac= (norm(1)ˆ2+norm(2)ˆ2+norm(3)ˆ2)ˆ0.5;
fprintf(fid2,"%8.5f %8.5f %8.5f \n",ut(nu),vt(nv),Jac);

end
fprintf(fid,"\n"); fprintf(fid2,"\n")
end
fprintf(fid,"\n"); fprintf(fid,"\n");
fclose(fid);fclose(fid1);fclose(fid2);
endfunction;

5 SURFACE OF REVOLUTION

Surfaces may be created by revolving a curve (Generatrix) around an axis of revolution
(see Figure 11).

To compute the control point coordinates of a surface of revolution, the following
procedure is used:

• Establish a local coordinate system by taking the vector x-product between the
vector defining the axis of revolution and a vector normal to it pointing to the
base of the generatrix (see Figure 11, right).

• In this local system compute the coordinates of the control points corresponding
to the start and end angle by rotating the control points of the generatrix around
the axis of revolution using the previously introduced function Arc.

• Transform the coordinates back to the global system.

Figure 11 Definition of a surface of revolution and local coordinate system.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-010.jpg&w=341&h=179

74 Advanced numerical simulation methods

The function Surfrev below creates the data for plotting a surface of revolution.

function [coefs,knotu,knotv]= Surfrev(axis,gtrix,alfas,alfae)
%--------------------------------------
% Creates data for surface of revolution
% Input:
% axis ... vector defining axis of revolution
% gtrix ... NURBS structure of generatrix curve
% alfas ... start angle
% alfae ... end angle
%
% Output:
% coefs ... control point coords and weights
% knotu,knotv ... knot vectors in u- and v-direction
%-------------------------------------
coefs= gtrix.coefs; ncu= gtrix.number; knotv= gtrix.knots;
% control point locations on generatrix
for n=1:ncu
w= coefs(4,1); xy(1:3,n)= coefs(1:3,n)/w;
end
% local axes and transformation matrix
v1(1:3)= xy(1:3,1); v3= axis; v2= vexp(v3,v1);
for j=1:3
T0(j,1)= v1(j); T0(j,2)= v2(j); T0(j,3)= v3(j);
end
x0(1:2)=0.;
for n=1:ncu
x(1:3,1)= xy(1:3,n); xt= T0*x; R= sqrt(xt(1)ˆ2+xt(2)ˆ2);
[coefss,knot]=Arc(x0,R,alfas,alfae);
for i=1:columns(coefss)
win= coefss(4,i); xt(1:2,1)= coefss(1:2,i)/win; xt(3,1)= xt(3);
x= transpose(T0)*xt; coefs(1:3,i,n)= x(1:3)*win; coefs(4,i,n)= win;
end
end
knotu=knot;
endfunction;

As with curves we present several examples in order to better understand how
NURBS can be effectively used to model surfaces. We start with two surfaces of
revolution that can be exactly represented by NURBS.

5.1 Example 1: Cylindrical surface

The function Cylinder will take a straight line as the generatrix and rotate this around
the axis of revolution for a sustained angle of 2π.

function Cylinder

%--------------------------------

% Plots a cylindrical surface

Stage 2: Geometry 75

%--------------------------------

coefs= [1 1;0 0;0 3;1 1]; knots= [0 0 1 1];

gtrix= nrbmak(coefs,knots);

axis= [0,0,1]; alfas=0; alfae=2*pi;

[coefs,knotu,knotv]= Surfrev(axis,gtrix,alfas,alfae);

PlotSurface(coefs,knotu,knotv)

endfunction;

The plot in Figure 12 is obtained.

5.2 Example 2: Spherical surface

This example is used to show the differences of defining surfaces with Serendipity/
Lagrange functions and NURBS and the errors introduced by the former. As mentioned
before NURBS are able to exactly represent the geometry. The geometry definitions
with the first two functions are shown in Figure 13. To model a quarter of a sphere it
is necessary to place 3 nodal points at the same location. The difference between the
discretizations is that Lagrange polynomials have an additional nodal point controlling
the geometry. Therefore a better approximation of the geometry is expected.

Next we introduce the geometrical error norm as

‖εg‖ =
∫

S

|xap − xex|
|xex| · dS (36)

Figure 12 Definition of cylinder with NURBS.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-011.jpg&w=146&h=216

76 Advanced numerical simulation methods

Figure 13 Mapping of spherical surface with (left) Serendipity functions and (right) with Lagrange
polynomials.

Figure 14 Norm of the error in approximating the geometry for mapping with Lagrange polynomials
and Serendipity basis functions.

where xap and xex are the approximate and exact coordinates on the curve respectively
and the integration is along the surface S.

The error in approximating the surface area is

‖εA‖ = Aap

Aex
(37)

where Aap is the approximate area and Aex is the exact area.
For the refinement with Lagrange polynomials order elevation is used. The error

in the approximation depending on the number of nodal points is shown in Figure 14.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-012.jpg&w=323&h=182
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-013.jpg&w=216&h=154

Stage 2: Geometry 77

Figure 15 Variation of the Jacobian for approximation with top Lagrange functions and order 2 (black)
and 3 (red) and bottom Serendipity functions.

For the approximation with Serendipity functions only the results for 8 nodes (i.e.
order 2) are shown.

It can be seen that with a low number of nodal points the errors are significant.
The variation of the Jacobian is shown in Figure 15. It can be seen that the Jacobian
tends to zero at the point where three nodes have been placed at the same location. It
will be shown later that such degenerate surfaces can be used in numerical simulation
without detriment. A similar effect as for the 2D case can be observed, i.e. that the
variation of the Jacobian becomes more constant as the order of the Lagrange functions
is increased.

Next we use NURBS to define the geometry. The resulting mapping is shown in
Figure 16. Similar to the previous case the last 3 control points have been placed at
identical locations. The variation of the Jacobian is plotted in Figure 17.

It can be seen that the Jacobian tends to zero as v = 1 (top of sphere) is approached.
The error in the approximation of the geometry and area is zero, i.e. the surface is
exactly represented.

5.3 Example 3: Bell shaped surface

The final example is designed to demonstrate the ease in which surfaces can be changed
by changing just one parameter. It is a Bell shaped surface of revolution, using a
generatrix of order 3 (Figure 18). A function that plots this surface is introduced next.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-014.jpg&w=239&h=230

78 Advanced numerical simulation methods

Figure 16 Mapping of spherical surface with NURBS from local u, v to global x, y, z coordinate system.

Figure 17 Variation of the Jacobian for spherical surface.

Figure 18 Generatrix of a bell shaped surface.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-015.jpg&w=319&h=153
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-016.jpg&w=239&h=111
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-017.jpg&w=120&h=150

Stage 2: Geometry 79

Figure 19 The beauty of NURBS: Generated surface and modified surface changing only the value of
the weight at one control point of the generatrix.

function Bell

%--------------------------------

% Creates a bell shaped surface of revolution

%--------------------------------

weigth=1.0; % changed to 0.707

cntrl= [0.75 0 0 1; 0.5 0 0.25 1; 0.75 0 0.75 weight; 0.25 0 1 1];

knots= [0 0 0 0 1 1 1 1];

for n=1:rows(cntrl)

w= cntrl(n,4); coefs(1:3,n)= cntrl(n,1:3)*w; coefs(4,n)= w;

end

gtrix= nrbmak(coefs,knots);

axis= [0,0,1]; alfas=0; alfae=2*pi;

[coefs,knotu,knotv]= Surfrev(axis,gtrix,alfas,alfae);

PlotSurface(coefs,knotu,knotv)

endfunction;

The generated surface is shown in Figure 19, where it is also shown how easily the
shape of the surface can be modified by changing only the weight of the penultimate
control point of the generatrix from 1.0 to 0.707.

6 LOFTED SURFACES

Lofted surfaces are also generated using an generatrix curve but instead of rotating it
is translated along a line. The line indicates the direction and the distance of lofting.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-018.jpg&w=359&h=184

80 Advanced numerical simulation methods

The lofting procedure is as follows:

• Define the generatrix in a local x-y coordinate system
• Define the lofting direction and length
• Compute the distance d of the lofting in a direction normal to the local x-y plane
• Compute the locations of the second set of control points z = d in the local

coordinate system
• Transform back to the global system

A function for determining the control points and knot vectors of a lofted surface
is shown next.

function [coefs,knotu,knotv]= Surftrans(axis,gtrix)

%--------------------------------------

% Creates data for surface with lofting

% Input:

% axis ... vector defining lofting direction and extent

% gtrix ... NURBS structure of generatrix curve

%

% Output:

% coefs ... control point coords and weights

% knotu,knotv ... knot vectors in u- and v-direction

%-------------------------------------

[v3,loft] = normalize(axis)

v1= [1 0 0]; v2= vexp(v1,v3);

for j=1:3

T(j,1)= v1(j);T(j,2)= v2(j);T(j,3)= v3(j);

end

coefsg= gtrix.coefs; ncu= gtrix.number; knot= gtrix.knots;

% unlofted control points

n=1;

for i=1:ncu

w= coefsg(4,i); x(1:2,1)= coefsg(1:2,i)/w;

x(3,1)= 0; xt= T*x;

coefs(1:3,i,n)= xt(1:3)*w; coefs(4,i,n)= w;

end

% lofted control points

n=2;

for i=1:ncu

w= coefsg(4,i); x(1:2,1)= coefsg(1:2,i)/w;

x(3,1)= loft; xt= T*x;

coefs(1:3,i,n)= xt(1:3)*w; coefs(4,i,n)= w;

end

knotu=knot;knotv= [0 0 1 1]

endfunction;

Stage 2: Geometry 81

Figure 20 Half of NATM tunnel created by lofting.

We apply the procedure to create half a NATM tunnel surface by lofting the
generatrix defining the tunnel along the line (0 25 0) and produce data for
plotting.

function Tunnel

%--

% gerates data for plotting a lofted NATM tunnel

%--

axis=[0 25 0];

[coefs,knot]=NATM;

gtrix= nrbmak(coefs,knot)

[coefs,knotu,knotv]= Surftrans(axis,gtrix)

PlotSurface(coefs,knotu,knotv)

endfunction;

The resulting plot is shown in Figure 20.

7 NURBS SURFACES WITH CUTOUTS

In Figure 21 a cylindrical surface with a cutout is shown. Although it is possible
to describe this geometry with the NURBS technology already presented, it becomes
rather cumbersome to determine the control point locations especially if the shape of
the cutout becomes more complex.

There are two alternative possibilities for the geometrical description (see
Figure 22). The first one involves the deletion of the area cutoff by a trimming curve,
the second involves generating a T-spline mesh. The first approach is used by CAD
programs for the display of the geometry, but is not analysis suitable. The second

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-019.jpg&w=154&h=169

82 Advanced numerical simulation methods

Figure 21 Cylindrical surface with cutout.

Figure 22 Two methods for describing a NURBS surface with a cut-out. Image taken from Tsplines 3
Manual ([6]).

approach leads to an analysis suitable geometry description. In the following, ways
are shown to make the geometry description by the first approach analysis suitable.

7.1 Analysis suitable trimmed NURBS surfaces

We are aware of only three papers that have addressed the problem of using trimmed
CAD data for analysis. The first two papers ([3] and [4]) propose to generate a regular
grid of elements, that are defined by knot spans. A searching algorithm is employed,
that allows to determine how the elements are transected by trimming curves. The
method is very general and can deal with extreme trimming cases, such as multiple
holes and cases where trimming curves are very close to each other. However, the
implementation of the method is not trivial. The third paper [5] deals with the appli-
cation of trimming to shell surfaces and with the specification of local loading. The
method uses a reconstruction of knot spans and control points and is also generally

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-020.jpg&w=156&h=137
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-021.jpg&w=359&h=156

Stage 2: Geometry 83

Figure 23 Explanation of mapping trimming curves from u, v to s, t coordinate system. The trimming
curves are color coded so their mapping to the s, t coordinate system can be seen.

applicable but not so easy to implement. Here we propose a simple alternative that
was published recently in [2].

We start with the definition of the boundary of the cut out in the local parameter
space of the quarter cylinder of Figure 21. The trimming curves are shown with their
control points in Figure 23. Next we divide the surface in two parts, each delimited
by a top and bottom trimming curve and then map each onto a unit square parameter
space s, t.

The trimming curves map as straight lines in the s, t coordinate space as shown in
Figure 23. For the nc-th trimming curve the mapping from the s, t to the u, v parameter
space is:

unc(s) =
Nnc∑
n=1

Rn,nc(s) · un,nc; vn(s) =
Nnc∑
n=1

Ri,nc(s) · vn,nc (38)

where Rn,nc(s) are the NURBS basis functions, Nnc is its number of control points and
un,nc, vn,nc are the u, v coordinates of control points for curve nc.

Next we introduce linear interpolation functions between the curves as

N1(t) = 1 − t
(39)

N2(t) = t

The mapping of points on the trimmed surface from the s, t to the u, v coordinate
system is then given by:

u = N1(t) · ub(s) + N2(t) · ut(s)
(40)

v = N1(t) · vb(s) + N2(t) · vt(s)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-022.jpg&w=239&h=161

84 Advanced numerical simulation methods

where the subscripts b and t have been substituted for nc indicating the bottom and
top trimming curves respectively.

The Jacobi matrix for the mapping from s, t to u, v coordinates is given by:

Juv =

⎛
⎜⎜⎝

∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

⎞
⎟⎟⎠ (41)

The derivatives are given by:

∂u
∂s

= N1(t) · ∂ub(s)
∂s

+ N2(t) · ∂ut(s)
∂s

∂v
∂s

= N1(t) · ∂vb(s)
∂s

+ N2(t) · ∂vt(s)
∂s

(42)
∂u
∂t

= −1 · ub(s) + 1 · ut(s)

∂v
∂t

= −1 · vb(s) + 1 · vt(s)

where

∂unc(s)
∂s

=
Nnc∑
n=1

∂Rn,nc(s)
∂s

un,nc (43)

∂vnc(s)
∂s

=
Nnc∑
n=1

∂Rn,nc(s)
∂s

vn,nc (44)

The Jacobian is given by

Juv = |Juv| (45)

The second mapping is from the u, v to the x, y, z coordinate system using Equa-
tion (34). The final Jacobian is J = Juv · Jxyz where Jxyz is the Jacobian of the mapping
from u, v to x, y, z coordinates. As can be seen the method, although very easy to
implement, is only applicable to cases where the trimmed surface can be defined by
opposing trimming curves.

A function that maps points from the s, t to the u, v coordinate system is shown
below.

function [uv,Jac,i,nc]= Map(Knotg,Coefs,ss,tt,i,nc)
%--------------------------------------
% Maps points on trimmed surface from s,t to u,v
% coordinate system
% Input:

Stage 2: Geometry 85

% Knotg ... array containing knot vectors of trimming curves
% Coefs ... array containing control points of trimming curves
% ss ... vector with s-coordinates
% tt ... vector with t-coordinates
% i ... counter for knot values
% nc ... counter for Coefs
% Output:
% uv ... u,v coordinates of points
% Jac ... Jacobian
% i ... updated counter for knot values
% nc ... updated counter for Coefs
%-------------------------------------
for ncrv=1:2
clear knotu; clear coefs;
% read knots and coefs
[knotu,coefs,i,nc]= Get_infoc(Knotg,Coefs,i,nc);
% mapping of trimming curves from s,t coordinates
nurbs= nrbmak(coefs,knotu); dnurbs= nrbderiv(nurbs);
[uv,vuv]= nrbdeval(nurbs,dnurbs,ss);
uvn(:,:,ncrv)= uv(:,:); vuvn(:,:,ncrv)=vuv(:,:);
end
% mapping of points on trimmed surface from s,t to u,v
np=0;
for nt=1:length(tt)
for ns=1:length(ss)
N1=1-tt(nt); N2=tt(nt);

% compute u,v values
np= np + 1; uv(1,np)= N1*uvn(1,ns,1) + N2*uvn(1,ns,2);
uv(2,np)= N1*uvn(2,ns,1) + N2*uvn(2,ns,2);

% compute Jacobian
v1(1)= N1*vuvn(1,ns,1) + N2*vuvn(1,ns,2);
v1(2)= N1*vuvn(2,ns,1) + N2*vuvn(2,ns,2); v1(3)= 0;
v2(1)= uvn(1,ns,2) - uvn(1,ns,1);
v2(2)= uvn(2,ns,2) - uvn(2,ns,1); v2(3)= 0;
norm= vexp(v1,v2); Jac(np)= norm(3);
end
end
endfunction;

The function uses Get_infoc that extracts information about trimming curves.

function [knotu,coefs,i,nc]= Get_infoc(Knotg,Coefs,i,nc)

%--------------------------------------

% Extracts knot vector and parameters for curve

% Input:

% Knotg ... array containint knot vectors

% Coefs ... array containing parameters

% i ... counter for knot vector

86 Advanced numerical simulation methods

% nc ... counter for parameters

% Output:

% knotu ... extracted knot vector

% coefs ... extarcted parameters

% i ... updated counter for knot vector

% nc ... updated counter for parameters

%-------------------------------------

i=i+1; ncu= Knotg(i); i=i+1; pu=Knotg(i);

for n=1:ncu+pu+1

i=i+1; knotu(n)= Knotg(i);

end

for nu=1:ncu

nc=nc+1;

w= Coefs(4,nc); coefs(1:3,nu)= Coefs(1:3,nc)*w; coefs(4,nu)= w;

end

endfunction;

Finally function PlotTrimSurface is presented that can be used to plot a trimmed
surface.

function PlotTrimSurface(coefs,knotu,knotv,Knotr,Coefstr,ntrims)
%--------------------------------------
% Creates data for plotting a trimmed surface
% Input:
% coefs ... parameters for surface
% knotu,knotv ... knot vectors of surface
% Knotr ... array containing knot vectors of triming curves
% Coefstr ... array containing paramters of trimming curves
% ntrims ... number of trimmed surfaces
% Output to file
% "Geometry" ... contains geoemetry data in x,y,z coords
% "Jacobian" ... contains Jacobian data
%-------------------------------------
nss=15; ntt=15; ss= linspace(0,1,ntt); tt= linspace(0,1,nss);
fid= fopen("Geometry","w");fid2= fopen("Jacobian","w"); i=1; nc=0;
for nsurf=1:ntrims
% 1. map from s,t coordinates
[uv,Jacuv,i,nc]= Map(Knotg,Coefs,ss,tt,i,nc);
% 2. map from u,v to x,y,z coordinates
nurbs= nrbmak(coefs,{knotu,knotv}); dnurbs= nrbderiv(nurbs);
[xyg,vuv]= nrbdeval(nurbs,dnurbs,uv);
% plot surface and variation of Jacobian for surface 1
np=0;
for nt=1:ntt
for ns=1:nss
np=np+1; fprintf(fid,"%8.5f %8.5f %8.5f \n", xyg(1:3,np));

Stage 2: Geometry 87

if(nsurf == 1)
norm= vexp(vuv{1}(:,np),vuv{2}(:,np));
Jac= (norm(1)ˆ2+norm(2)ˆ2+norm(3)ˆ2)ˆ0.5*Jacuv(np);
fprintf(fid2,"%8.5f %8.5f %8.5f \n",ss(ns),tt(nt),Jac);
endif

end
fprintf(fid,"\n");fprintf(fid2,"\n")
end
fprintf(fid,"\n"); fprintf(fid,"\n");
end
fclose(fid);fclose(fid2);
endfunction;

The function is applied to the display of the trimmed cylinder shown in Figure 21.
The mapping method is shown graphically in Figure 24. The Jacobian is plotted in
Figure 25. It can be seen that the Jacobian tends to zero as the sharp corner of surface
1 is reached. A zero Jacobian can be avoided by shifting the control point of the top
curves (see Figure 26).

8 INFINITE NURBS PATCH

In some cases it may be necessary to describe a surface which extends to infinity.
Applications are the simulation of a very long tunnel or of the earth surface, which for
all practical purposes can be considered of infinite extent.

To model an infinite surface the following geometry description is proposed
(see [1]):

x =
2∑

j=1

I∑
i=1

R∞,q
i,j (u, v) · xi,j (46)

where

R∞,q
i,j (u, v) = Rq

i (u) · M∞
j (v) (47)

where Rq
i (u) are the one-dimensional NURBS introduced earlier and M∞

j are special
shape functions that tend to infinity as v approaches 1:

M∞
1 (v) = 1 − 2v

1 − v
(48)

M∞
2 (v) = v

1 − v
(49)

The functions are plotted in Figure 27.

88 Advanced numerical simulation methods

Figure 24 Explanation of the double mapping procedure.

A vector in the tangential direction along u can be computed as

V1 = ∂

∂u
x =

2∑
j=1

I∑
i=1

∂

∂u
R∞,q

i,j (u, v) · xi,j (50)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-023.jpg&w=338&h=440

Stage 2: Geometry 89

Figure 25 Variation of the Jacobian for trimmed surface 1.

Figure 26 Changed trimming curves, resulting global map and variation of the Jacobian.

and the tangential vector in v-direction

V2 = ∂

∂v
x =

2∑
j=1

I∑
i=1

∂

∂v
R∞,q

i,j (u, v) · xi,j (51)

From this the Jacobian can be computed using Equations (29) and (30).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-024.jpg&w=239&h=114
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-025.jpg&w=360&h=249

90 Advanced numerical simulation methods

Figure 27 Infinite shape functions.

The derivatives of the functions are given by

∂

∂u
R∞,q

i,j (u, v) = ∂Rq
i (u)
∂u

M∞
j (v) (52)

∂

∂v
R∞,q

i,j (u, v) = ∂M∞
j (v)

∂v
Rq

i (u) (53)

where

∂M∞
1

∂v
= −1

(1 − v)2
(54)

∂M∞
2

∂v
= 1

(1 − v)2
(55)

It can be seen that the Jacobian approaches infinity as v approaches 1. A function
similar to the NURBS toolkit function nrbdeval for performing the infinite mapping
is shown below.

function [xyz,Jac] = nrbdevalInf(nurbs,Coords,tt)
%--
% Mapping from u,v to x,y,z coordinates
% for infinite NURBS patches
%
% Input:
% nurbs ... structure of NURBS curve on finite edge
% Coords(1:4,n) ... Coordinates of control points
% tt ... parametric points

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-026.jpg&w=216&h=158

Stage 2: Geometry 91

%
% Output:
% xyz ... x,y,z -coordinates of param.point
% Jac ... derivatives
%---
ut= tt(1,:);vt= tt(2,:);
ncu= nurbs.number; knotu= nurbs.knots; pu= nurbs.order -1;
%--------------------------
% Finite functions and derivatives
%--------------------------
B= nrbbasisfun(ut,nurbs);
s = findspan (ncu-1,pu,ut,knotu);
nofun= numbasisfun (s, ut, pu, knotu) + 1 ;
nbfun= columns(nofun);
dB= nrbbasisfunder(ut,nurbs);
% Note: only non-zero functions are computed
for i=1:length(ut)
for ncp=1:ncu*2
Rinf(i,ncp)= 0.; dRinfdu(i,ncp)= 0; dRinfdv(i,ncp)= 0;

end
end
% Infinte functions
for i=1:length(vt)
denom= 1-vt(i); denom2= denomˆ2;
M(1)= (1-2*vt(i))/denom; M(2)= vt(i)/denom;
dM(1)= -1/denom2; dM(2)= 1/denom2;
% Combined functions
ncp=0;
for nv=1:2
for nu=1:ncu
no= 0;
for n= 1:nbfun;
if(nofun(i,n) == nu);no=n ; endif;
end
ncp=ncp+1;
if (no > 0)
Rinf(i,ncp)= M(nv)*B(i,no);
dRinfdu(i,ncp)= dM(nv)*B(i,no); dRinfdv(i,ncp)= M(nv)*dB(i,no);
endif
end
end
end
% Compute coordinates and derivative at parametric point
for i=1:length(ut)
x(1:3)= 0; dxdu(1:3)= 0; dxdv(1:3)= 0; ncp=0;
for nv=1:2
for nu=1:ncu
ncp= ncp+1;
for nd=1:3
x(nd)= x(nd) + Rinf(i,ncp)*Coords(nd,ncp);
dxdu(nd)= dxdu(nd) + dRinfdu(i,ncp)*Coords(nd,ncp);

92 Advanced numerical simulation methods

dxdv(nd)= dxdv(nd) + dRinfdv(i,ncp)*Coords(nd,ncp);
end
end
end
xyz(:,i)= x; v1(:,i)= dxdu; v2(:,i)= dxdv;

end
Jac{1}= v1; Jac{2}= v2;
endfunction

8.1 Example

As an example a quarter cylinder of infinite extent is presented. The input data for
nrbdevalInf are:

nurbs= structure for quarter circle with radius 1

Coords:

0 0 0 1 1 1

1 1 0 1 1 0

0 1 1 0 1 1

Figure 28 Mapping of infinite NURBS patch from u, v to x, y, z coordinates and variation of the Jacobian.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-4&iName=master.img-027.jpg&w=359&h=257

Stage 2: Geometry 93

Figure 28 shows the mapping of a quarter cylinder with infinite extension in the
x-coordinate direction and the variation of the Jacobian. It can be seen that it rises
sharply in the infinite (v) direction.

9 SUMMARY AND CONCLUSIONS

In this chapter we have discussed one of the most important aspects of numerical
simulation, namely the description of the geometry. By several examples we have
demonstrated that the definition of geometry with NURBS basis functions is far supe-
rior to its approximation with Lagrange or Srendipity functions, which are currently
used in software. An important milestone has been reached, namely the efficient and
accurate definition of geometry with few parameters. The next stage is concerned with
understanding how CAD programs operate and the type of output we can expect from
them.

BIBLIOGRAPHY

[1] G. Beer. Mapped infinite patches for the NURBS based boundary element analysis in
geomechanics. Computers and Geotechnics, 66:66–74, 2015.

[2] G. Beer, B. Marussig, and J. Zechner. A simple approach to the numerical simulation
with trimmed CAD surfaces. Computer Methods in Applied Mechanics and Engineering,
285:776–790, 2015.

[3] H.-J. Kim, Y.-D. Seo, and S.-K. Youn. Isogeometric analysis for trimmed CAD surfaces.
Computer Methods in Applied Mechanics and Engineering, 198(37–40):2982–2995,
2009.

[4] Hyun-Jung Kim, Yu-Deok Seo, and Sung-Kie Youn. Isogeometric analysis with trimming
technique for problems of arbitrary complex topology. Computer Methods in Applied
Mechanics and Engineering, 199(45–48):2796–2812, 2010.

[5] R. Schmidt, R. Wuechner, and K. Bletzinger. Isogeometric analysis of trimmed NURBS
geometries. Computer Methods in Applied Mechanics and Engineering, 241–244:93–111,
2012.

[6] Matt Sederberg. T-splines3 users manual. T-splines inc., 34 E 1700 S Suite A143 Provo,
UT 84606, www.tsplines.com edition, 2011.

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2010.04.015
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2010.04.015
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.compgeo.2015.01.012
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2012.05.021
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2014.12.010
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2009.05.004

Chapter 4

Stage 3: Computer Aided Design

Imagination is more important than knowledge
A. Einstein

The aim of this book is to facilitate the development of software that uses geometrical
data directly from CAD programs, without the need to generate a mesh. Since the
main aim of CAD programs is to display geometry, the data produced by them are not
immediately suitable for numerical simulation. In the next part of our journey we look
inside CAD programs and investigate ways of using the data for simulation.

1 INTRODUCTION

The beginning of CAD can be traced to the year 1957, when Dr. Patrick
J. Hanratty developed PRONTO, the first commercial numerical-control programming
system. In 1960 Ivan Sutherland at MIT’s Lincoln Laboratory created SKETCH-
PAD, which demonstrated the basic principles and feasibility of computer technical
drawing.

The first CAD systems served as mere replacements of drawing boards. The design
engineer still worked in 2D to create technical drawing consisting of 2D wireframe
primitives (line, arc, B spline . . .). 3D wireframe features were developed in the begin-
ning of the sixties, and in 1969 the first commercially available solid modeler program
was released, further enhancing the 3D capabilities of CAD systems. Mathematical
representation of freeform surfaces with NURBS, appeared in 1989 when CADs based
on parametric engines were introduced, i.e. a model is defined by parameters. This
means that a change of dimension values in one place also changes other dimensions
preserving relation of all elements in the design.

CAD applications now offer advanced rendering and animation capabilities, so
engineers can better visualize their product designs. 3D immersive technology allows
clients to view a building or car before it is made. 4D BIM is a type of virtual
construction engineering simulation incorporating time or schedule related informa-
tion for project management. CAD has become an especially important technology
within the scope of computer-aided technologies, with benefits such as lower product

96 Advanced numerical simulation methods

Figure 1 Example of computer aided design.

development costs and a greatly shortened design cycle [2]. Figure 1 shows an example
of a car designed with program Rhino1.

The main purpose of CAD programs is therefore the manipulation and display of
geometry and it is not concerned with numerical simulation. However, in most cases
numerical simulation is an important aspect of design in order for example to test the
strength and stability of a structure or to test the aerodynamics of a plane.

In the last decade powerful mesh generators were developed that read geometry
data from CAD programs and generate meshes, that approximate this geometry with
various degrees of accuracy. It is obvious, that this is not an efficient process. If an
accurate geometrical description is available, why does one need to approximate it? As
has been demonstrated in the introduction, the process of generating a mesh involves
additional work and is also a major source of errors. It is estimated that more than
half of the total analysis time may be spent on mesh generation.

The main reason for this state of affairs is that CAD and simulation has developed
completely independently and there was no dialogue between the two communities.
Because of the initiative of T. Hughes this changed in 2005 with the publication of
a paper that for the first time explored how the methods used by the CAD commu-
nity could also be used for simulation [1]. It was soon discovered that the functions
used by the CAD community (NURBS) were not only much better suited than the
Lagrange polynomials to describe the geometry of a problem but were also better for
the approximation of the unknown.

Since the aim of this book is to use CAD data directly for simulation without
the intermediate step of mesh generation, it is important to understand the way CAD
programs work and what kind of data are produced. CAD programs communicate
with the outside world with various formats, some of them binary and some in
text (ASCII) form. Here we focus on a standardized text format, namely the Initial
Graphics Exchange Specification (IGES). IGES was an initiative of the United States
Air Force (USAF) Integrated Computer Aided Manufacturing (ICAM) project (1976–
1984). ICAM sought to develop procedures, processes and software (CAD/CAM) that
would integrate all operations in aerospace manufacturing and thus greatly reduce
costs. The last document on the IGES standard, produced in 2006 [3], has more than
600 pages.

1Program Rhinoceros NURBS modeling for Windows, by Robert McNeal and associates.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-5&iName=master.img-000.jpg&w=239&h=67

Stage 3: Computer Aided Design 97

Figure 2 Simple example for explaining the IGES file format, perspective view display of program Rhino
with control points and control polygon as well as the IGES file generated.

It should be noted here that the conversion of CAD data into analysis suitable
form is a complex task. Here we make an attempt to convert some relatively simple
geometries into analysis suitable form, but a lot of work still has to be done in order to
allow a seamless integration of CAD and simulation. To the authors’s best knowledge
so far the main efforts in integrating the two systems has been from the simulation
community. In order to achieve a seamless integration avoiding the need of mesh
generation perhaps an effort by the CAD community is also required.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-5&iName=master.img-001.jpg&w=359&h=409

98 Advanced numerical simulation methods

2 IGES DATA STRUCTURE

To explain the way CAD programs generate geometry data, let us start with a simple
example. A cylindrical surface can be quickly generated using the arc and lofting
options of program Rhino and is internally described by one NURBS surface. Figure 2
shows the surface generated in perspective view and the data file generated in IGES
format. The data are in ASCII format with a fixed column width of 80 columns with
the following features:

• The first part of the file contains general information, which is of no interest
to simulation, such as the program that generated the data, the units and the
tolerances used etc.

• The second part (starting with 128 in the example) contains data of interest to
simulation.

For the second part the following information is supplied in 80 character lines:
Information about the object is contained in columns 1 to 64. The first number in the
first line relating to an object refers to the key2 and is followed by data describing the
object (details will follow). Data are separated by a comma and a semicolon signifies
the end of the data. Columns 66 to 73 are reserved for a pointer that points to the
object. This pointer is repeated until the end of data for the object has been reached.
Columns 74 to 80 are reserved for a line number.

Our first task is to develop an Octave function that allows us to parse an IGES file
looking for certain objects defined by either keys or pointers. Depending on the input,
the function Parse has the following functions:

• If a key is specified it finds the pointers to this key item and outputs the pointer
numbers

• If a pointer is specified it outputs all information relating to it

The information is stored in an array “Info’’. The indicator “found’’ specifies
if information has been found for a specified pointer and “Pntrs’’ provides pointer
numbers to all occurrences of a key item. Function Parseskip is provided that advances
to the first useful line in the IGES file.

function Data=Parseskip(fid)
%------------------
% skips IGES file to first line with relevant data
%-----------------
for n=1:10000
Data= fgetl(fid); if(Data(1) == " ") continue endif
String= sscanf(Data(1:4),"%s");
if(String == "110,") return endif; if(String == "120,") return endif
if(String == "126,") return endif; if(String == "128,") return endif

2A key refers to an entity type as described later.

Stage 3: Computer Aided Design 99

if(String == "141,") return endif
printf("%s \n","No useful data found")

end
endfunction

function [Info,found,Pntrs]= Parse(fid,key,Pointer)
%------------------
% parses IGES file
% Input: fid ... ID of IGES file
% key ... IGES key (if zero, items for Pointer are read)
% Pointer ... Pointer to key item (if zero, all key items are read)
% Output: Info ... Data
% found ... indicator =1 if specified pointer found
% Pntrs ... pointers to found items for specified key
%-----------------
i=0; np=0;found = 0; Info(1)=0. ; Pntrs(1)=0 ;
% skip to first line with relevant Data
Line=Parseskip(fid);
% look for specified key, reading each line in 3 parts
for n=1:10000
if(n > 1)
[Data,nv]= fscanf(fid,"%s",1); if(nv == 0) return endif
Ptr= fscanf(fid,"%s",1); Lnr= fscanf(fid,"%s",1);
else
Data= Line(1:64); Ptr= Line(66:73); Lnr= Line(74:80);
endif
[str]=strtok(Data,","); Key= sscanf(str,"%f"); % extract first number in line
if(key > 0 && Key != key) continue endif
if(length(Ptr) != 8) return endif % last line
[str]=strtok(Ptr,"P"); % Pointer string
Pntr=sscanf(str,"%f"); % extract pointer number
np=np+1; Pntrs(np)= Pntr;
if(Pntr != Pointer) continue endif
found= 1 ; break % data for Pointer found

end
if(found == 0) return endif
% Extract NURBS information
for n=1:10000
Rem= sscanf(Data,"%s");
nch= length(Data);
for j=1:nch

[str,Rem]=strtok(Rem,",;");i=i+1;indx= strfind(str,"D");
if(indx == [])
Info(i)= sscanf(str,"%f");
else % read double precision number
[number,exp]= strtok(str,"D");nch= length(exp);
ex= sscanf(exp(2:nch),"%f"); Info(i)= sscanf(number,"%f");
if(ex != 0) Info(i)= Info(i)ˆex; endif
endif
if(Rem == ";") return endif % end of data
if(Rem == ",") break endif % next line

end
Data= fscanf(fid,"%s",1); Ptr= fscanf(fid,"%s",1); Lnr= fscanf(fid,"%s",1);
end
endfunction

100 Advanced numerical simulation methods

3 HOW CAD PROGRAMS DESCRIBE GEOMETRY – ENTITY TYPES

CAD programs describe curves and surfaces in a number of ways. Solids are described
by their bounding surfaces. For the description of surfaces Entity types are used and
these were referred to as key items previously. There are 147 entity types listed in
the IGES manual. Only few of them actually deal with the description of curves and
surfaces by NURBS. Here we describe some entities that will be used later in the book.
Info relates to the array returned by function Parse.

Entity types

• Type 110: Line entity
• Type 120: Surface of revolution entity
• Type 126: Rational B-spline entity
• Type 128: Rational B-spline surface entity
• Type 141: Boundary entity

3.1 Line entity (110)

The line entity relates to the definition of a line by specifying the start and end point
coordinates. This will be used later to define the axis of revolution for surfaces of
revolution.

Six parameters are provided:

• Info:

Info(1): key = 110
Info(2): x-coordinate of start of line
Info(3): y-coordinate of start of line
Info(4): z-coordinate of start of line
Info(5): x-coordinate of end of line
Info(6): y-coordinate of end of line
Info(7): z-coordinate of end of line

3.2 Surface of revolution entity (120)

This entity defines a surface of revolution as explained in the previous stage. The
definitions of the start and end angle are the same as explained there.

Four parameters are provided:

• Info:

Info(1) = key = 120
Info(2) = Pointer to the line entity specifying the axis of revolution
Info(3) = Pointer to the generatrix entity
Info(4) = Start angle in radians (αs)
Info(5) = End angle in radians (αe)

Stage 3: Computer Aided Design 101

3.3 Rational B-spline entity (126)

This provides information about a NURBS curve.

• Info:
Info(1): key = 126,
Info(2): I (ncu = I + 1: Number of control points in u-direction)
Info(3): pu, order in u-direction
Info(4:7): Properties of curve
Info(. . .): knotu, Knot vector in u-direction
Info(. . .): Weights (w(0) w(I))
Info(. . .): Coordinates: (x(0), y(0), z(0), . . ., x(I), y(I), z(I))

Notes: Properties of curve have no immediate relevance here. Note that control points
are numbered starting from zero.

3.4 Rational B-spline surface entity (128)

This provides information about a NURBS surface.

• Info:
Info(1): Key = 128,
Info(2): I (ncu= I + 1: Number of control points in u-direction)
Info(3): J (ncv = J + 1: Number of control points in v-direction)
Info(4): pu, order in u-direction
Info(5): pv, order in v-direction
Info(6:10): Properties of surface
Info(. . .): knotu, Knot vector in u-direction
Info(. . .): knotv, Knot vector in v-direction
Info(. . .): Weights (w(0,0),w(1,0) w(I,J))
Info(. . .): Coordinates: (x(0,0), y(0,0), z(0,0), . . ., x(I,J), y(I,J), z(I,J))
Info(. . .): ustart, uend, vstart, vend

Notes: Properties of surface have no immediate relevance here. ustart, uend and vstart,
vend refer to the first and last parameter values in the knotu, knotv vectors. CAD
programs are quite liberal with the entries in the knot vectors. Sometimes they start
with negative numbers and entries do not range from 0 to 1. This information provides
the values of u, v at the start and end of the parameter space and is required for trimmed
surfaces.

3.5 Boundary entity (141)

This provides information for trimmed NURBS surfaces. The information given con-
sists of pointers to the (trimming) curves defining the trimmed surface. They are
provided in the global (x, y, z) space (specified as model space in the CAD community)
and the local parameter space of the NURBS surface to be trimmed. For the trimming
we use the method explained in the last stage and we only need the information in

102 Advanced numerical simulation methods

parameter space (therefore only the information for the parameter space is shown).
The number of trimming curves and the sequence in which curves are specified in the
IGES file is quite arbitrary and this makes the extraction of information required for
the trimming process more involved. More about this later.

• Info

Info(1): Key = 141
Info(2): Type of representation provided (model/parameter or both)
Info(3): Preferred representation (not sure what this for)
Info(4): Pointer to surface to be trimmed
Info(5): ncurvs = Number of trimming curves
i = 9; skip information provided for global coordinate space
for n = 1:ncurvs

i = i + 4
Info(i) = crv(n) . . . Pointers to trimming curves in parameter space

end

4 NURBS SURFACES

Here we show how data can be read from the IGES file and converted into a form usable
for our purposes. We start with a simple NURBS surface and introduce a function
Get_infos that reads information of a surface whose location is specified in the IGES
file by Pointer.

function [knotu,knotv,coefs,ncu,ncv,limit,found] = Get_infos(file,Pointer)

%--------------------------------------

% Extracts data for NURBS surface

%

% Input:

% file ... name of IGES file

% Pointer .. pointer to surface

%

% Output:

% knotu,knotv ... knot vectors

% coefs ... coefficients (control point coords and weights)

% ncu,ncv ... number of control points

% limit ... limits of parameter space

% found ... indicator if found

%-------------------------------------

fid=fopen(file,"r");

[Info,found] = Parse(fid,0,Pointer); fclose(fid);

if(found == 0) printf("%s %d","no info for pointer", Pointer), return; endif

Type= Info(1); if(Type != 128) printf("%d %s", Pointer," not a surface");

found= 0; return; endif

i=2; ncu= Info(i)+1;i=i+1; ncv= Info(i)+1;

i=i+1; pu= Info(i); i=i+1; pv= Info(i); i= 10;

Stage 3: Computer Aided Design 103

for n=1:ncu+pu+1; i=i+1; knotu(n)= Info(i); end

for n=1:ncv+pv+1; i=i+1; knotv(n)= Info(i); end

% extract weigths

for nv=1:ncv

for nu=1:ncu

i=i+1; coefs(4,nu,nv)= Info(i);

end

end

% extract coefficients

for nv=1:ncv

for nu=1:ncu

w=coefs(4,nu,nv);

i=i+1; coefs(1,nu,nv)= Info(i)*w ;

i=i+1; coefs(2,nu,nv)= Info(i)*w; i=i+1; coefs(3,nu,nv)= Info(i)*w;

end

end

% read paramter limits (for trimming)

i=i+1; limit(1)= Info(i); i=i+1; limit(2)= Info(i);

i=i+1; limit(3)= Info(i); i=i+1; limit(4)= Info(i);

endfunction;

Figure 3 A NURBS surface. Perspective view of Rhino and plot with extracted information using
function PlotNURBSurf.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-5&iName=master.img-002.jpg&w=251&h=261

104 Advanced numerical simulation methods

Next we show function PlotNURBSurf that can be used to plot a surface specified
by Pointer.

function PlotNURBSurf(file,Pointer)

%--------------------------------------

% Creates data for plotting a NURBS surface

% with information read from IGES file

% Input:

% file ... IGES file name

% Pointer ... pointer to surface to be plotted

%-------------------------------------

[knotu,knotv,coefs,ncu,ncv,limit,found] = Get_infos(file,Pointer);

if (found == 0)

printf("%s %d","Item not found for Pointer",Pointer)

return

endif

PlotSurface(coefs,knotu,knotv)

Figure 3 shows a screenshot of the perspective view in Rhino of the surface and
a re-plot using the function PlotNURBSurf showing control point location and their
numbering.

5 TRIMMED NURBS SURFACES

The conversion of information about simple geometries that can be described by
NURBS surfaces, to analysis suitable form is fairly straight forward. However, more
complex geometries often involve a union of 2 surfaces. Examples of a union between
two cylindrical surfaces can be seen in Figure 4.

There are two options that can be used in Rhino:

• Sharp corners exist at the junction
• There is a smooth transition (fillet) between the surfaces

Rhino generates the graphical display by trimming surfaces that are connected.
Therefore, the information provided in the IGES file consists of NURBS data for
untrimmed surfaces and for trimming curves. In the first option there are 2 trimmed
NURBS surfaces, in the second option there are 2 trimmed and 1 untrimmed (fillet)
surface.

The data for the trimming curves are stored under the key item 141. Next we
develop functions that read the IGES data and provide the information in the format
required by the trimming functions introduced previously. The function Get_Trim is
provided to get information about the trimming curves for the surface to be trimmed
(defined by Pointer). “Cpointer’’ contains pointers to trimming curves and “ncurvs’’ is
the number of trimming curves provided.

Stage 3: Computer Aided Design 105

Figure 4 Example of a union between two surfaces with and without fillet.

function [Cpointer,ncurvs]=Get_Trim(file,Pointer)

%--------------------------------------

% Gets trimming information for a NURBS surface

%

% Input:

% file ... IGES file name

% Pointer ... Pointer to NURBS surface

%

% Output:

% Cpointer ... pointers to trimming curves

% ncurvs ... number of trimming curves

%-------------------------------------

fid=fopen(file,"r");[Info,found,Pntrs]=Parse(fid,141,0);fclose(fid);

nptr= length(Pntrs); ncurvs= 0; nkt=0; nct=0;

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-5&iName=master.img-003.jpg&w=239&h=310

106 Advanced numerical simulation methods

Cpointer(1)=0;

for npt=1:nptr

Pntr= Pntrs(npt);

fid=fopen(file,"r");[Info,found]= Parse(fid,0,Pntr);fclose(fid);

surface= Info(4); if(surface != Pointer) continue endif

ncurvs= Info(5);

i=9;

for n=1:ncurvs

Cpointer(n)= Info(i);i=i+4;

end

break

end

endfunction;

The function Read_trim reads the data for a trimming curve (control points,
weights3 and knot vector) and adjusts the control point coordinates so they fit within
the parameter space of the surface to be trimmed. Pointer points to the trimming curve
to be read and limit is an array that contains the limits of the parameter space of the
trimmed NURBS surface.

function [knotu,coefs,ncu]=Read_trim(file,Pointer,limit)

%--------------------------------------

% Reads trimming curve data and adjust them

% to fit the parameter space of the trimmed surface

%

% Input:

% file ... name of IGES file

% Pointer ... pointer to trimming curve

% limit ... limits of surface parameter space

%

%

% Output:

% knotu ... knot vector

% coefs ... coefficients

% ncu ... number of control points

%-------------------------------------

spanu= limit(2) - limit(1); spanv= limit(4) - limit(3);

fid=fopen(file,"r"); [Info,found] = Parse(fid,0,Pointer);fclose(fid);

i=2; ncu= Info(i)+1; i=i+1; pu= Info(i); i= 7;

for n=1:ncu+pu+1; i=i+1; knotu(n)= Info(i);end

% read weigths

3Rhino and most CAD programs use B-splines for the trimming curves so the weights are
always 1.

Stage 3: Computer Aided Design 107

for nu=1:ncu; i=i+1; coefs(4,nu)= Info(i); end

% read coefficients

for nu=1:ncu

i=i+1; coefs(1,nu)= Info(i);

i=i+1; coefs(2,nu)= Info(i); i=i+1; coefs(3,nu)= Info(i);

end

% adjust coefficients to fit in trimmed surface parameter space

for nu=1:ncu

if(spanu != 0 && spanv != 0)

coefs(1,nu)= (coefs(1,nu) - limit(1))/spanu;

coefs(2,nu)= (coefs(2,nu) - limit(3))/spanv;

endif

end

endfunction;

Using the function PlotSurface introduced in the last stage, we can plot the
untrimmed surfaces in Figure 5, for the case with the fillet. One has to be careful,
because the number of control points for the trimming curves can be unreasonably
high. For example without changing the default accuracy the number of control points
for trimming curve 1 would have been 90 (!!). In program Rhino the tolerance can be
reduced in preferences under units. With this reduced tolerance a reasonable number
of control points can be achieved.

Next we introduce a function Plot_trcurves that plots the trimming curves for a
surface. The function takes nsurf as input and this relates to the sequence in which
the surfaces have been found in the IGES file. It generates 4 files for plotting: One
describing the shape of the curves, one the location of control points, one specifying
the tangent to the curve and the last one the sequence number of the curve. The last
two items are needed so that the trimming information can be supplied in suitable
form to the trimming functions developed in the last stage.

Figure 5 Display of untrimmed surfaces for the case with a fillet.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-5&iName=master.img-004.jpg&w=321&h=123

108 Advanced numerical simulation methods

function Plot_trcurves(file,nsurf)
%--------------------------------------
% Creates data for plotting trimming curves
% for surface nsurf
%
% Input:
% file ... name of IGES file
% nsurf ... sequence of surface found
%
% Output to files:
% "Geometry" ... contains geometry data
% "Control" ... contains control point data
% "Tangent" ... direction of tangent vector
% "Number" ... info for curve number
% If surface is not trimmed files are empty
%-------------------------------------
lut=20; lum= 10; ut= linspace(0,1,lut);
fid=fopen(file,"r"); [Info,found,Pntrs]= Parse(fid,128,0);fclose(fid);
Pointer= Pntrs(nsurf)
[knotu,knotv,coefs,ncu,ncv,limit,found] = Get_infos(file,Pointer);
[Cpointer,ncurvs]=Get_Trim(file,Pointer);
if(ncurvs == 0)
printf("%s \n","Surface not trimmed")
return
endif
fid=fopen("Geometry","w");fid1=fopen("Control","w");
fid2=fopen("Tangent","w");fid3=fopen("Number","w");
nct= 0;
for ncrv=1:ncurvs
clear knotu; clear coefs;
[knotu,coefs,ncu]=Read_trim(file,Cpointer(ncrv),limit);
for nc=1:ncu
nct= nct+1;
fprintf(fid1,"%8.5f %8.5f %d \n", coefs(1:2,nc),nct);

end
nurbs= nrbmak(coefs,knotu);
xyg= nrbeval(nurbs,ut);
for nu=1:lut
fprintf(fid,"%8.5f %8.5f %d \n", xyg(1:2,nu),ncrv);

end
fprintf(fid,"\n"); fprintf(fid,"\n");
dnurbs= nrbderiv(nurbs);
[xym,vuv]= nrbdeval(nurbs,dnurbs,ut(lum));
tan(1)= vuv(1,1)*0.25; tan(2)= vuv(2,1)*0.25;
fprintf(fid2,"%8.5f %8.5f %8.5f %8.5f \n", xym(1:2,1),tan(1:2));
fprintf(fid3,"%8.5f %8.5f %d \n", xym(1:2,1),ncrv);

end
printf("%s %d %s \n","Info generated for",ncurvs," trimming curves")
fclose(fid);fclose(fid1);fclose(fid2);fclose(fid3);
endfunction;

Stage 3: Computer Aided Design 109

Figure 6 Trimming curves for the cylindrical surfaces with control points and tangent vectors. Numbers
indicate sequence in which the curves are output.

The trimming curves associated with the two cylindrical surfaces are plotted using
this function in Figure 6. As can be seen, the way we receive trimming information is
not immediately suitable for the trimming functions developed in stage 2. Firstly the
control points are numbered in anti-clockwise sense and therefore the directions of the
tangent vectors are not always in the direction of the local coordinates.The sequence in
which the curves are received is anti-clockwise, but as we can see in Figure 6 the starting
point is quite arbitrary. This is a quite challenging aspect to solve, if we want a seamless
integration of CAD and simulation. Here we attempt an automatic conversion of the
data to a suitable form for the trimming software developed previously. The first task
is to select the appropriate curves that are opposite to each other and to determine the
direction of the linear interpolation.

The strategy is as follows:

• First we read the trimming curve information. It is important to check if the control
point sequence is in the direction of u or v coordinates. If it is not the order has to
be reversed (see function Reverse later on).

• Next we select two opposing curves for the interpolation. The criterion we use is
that two linear curves that are parallel in either u or v directions are eliminated
and the remaining curves are selected.

• Next we have to determine the direction of the linear interpolation. For example,
if the selected curves span across the u-direction, then the interpolation direction
is in the v-direction.

• Finally we have to determine which of the curves is on top and which one at the
bottom.

For the case that more than two trimming curves are selected, the region has to
be sub-divided into sub-regions as explained in stage 2. The number of subregions is
specified by the input variable ntrims.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-5&iName=master.img-005.jpg&w=359&h=170

110 Advanced numerical simulation methods

function [Ncurv,loc]= Trimcurvs(file,ncurves,Cpointer,limit,ntrims)
%--------------------------------------
% Selects the trimming curves used for the mapping
% Splits trimming curves if there is more than 1 subregion
%
% Input:
% file ... IGES file name
% ncurves ... Number of trimming curves
% Cpointer ... array of pointers to trimming curves
% limit ... starting and ending value of parameter space
% trims ... number of subregions
%
% Output:
% Ncurv ... Array with pointers to selected curves
% loc ... direction of interpolation
%-------------------------------------
for ncurv=1:ncurves
Pointer= Cpointer(ncurv);
[knotu,coefs,ncu]=Read_trim(file,Pointer,limit);
[knotu,coefs,si]=Reverse(knotu,coefs,ncu); % reverse sense if necessary
%--------------------------------
% find curves along u,v=0,1,
% code=-1 along v=0, code=+1 along v=1
% code=-2 along u=0, code=+1 along u=1
%--------------------------------
r= Dist2(coefs(:,1),coefs(:,2));
loco(ncurv)= 0; rev(ncurv)=si;
if(ncu == 2 && r == 1) % only consider lines that span 1
if(coefs(1,1) == 0 && coefs(1,2) == 0) loco(ncurv)=-1; endif
if(coefs(1,1) == 1 && coefs(1,2) == 1) loco(ncurv)=1; endif
if(coefs(2,1) == 0 && coefs(2,2) == 0) loco(ncurv)=-2; endif
if(coefs(2,1) == 1 && coefs(2,2) == 1) loco(ncurv)=2; endif
endif
end
% how many parallel curves in u,v direction ?
ncrvu=0;ncrvv=0;
for ncurv=1:ncurves
if(abs(loco(ncurv)) == 1) ncrvv=ncrvv+1; endif
if(abs(loco(ncurv)) == 2) ncrvu=ncrvu+1; endif
end
% if there is only single occurrance > select as one of the curves
for ncurv=1:ncurves
if(ncrvv == 1 && abs(loco(ncurv)) == 1) ncurve1=ncurv; loc=1; endif
if(ncrvu == 1 && abs(loco(ncurv)) == 2) ncurve1=ncurv; loc=2; endif
end
% loc=1: interpolation in u-direction; loc=2: in v-direction
ncurve2= ncurve1+2; % second curve
if(ncurve2 > ncurves) ncurve2= ncurve2 - ncurves; endif
% 1. and 2. curves
if(loco(ncurv) < 0) nl=2; nr=1; else nl=1; nr=2;endif
if(ntrims == 1)
%-------------
% 1 subregion
%------------

Ncurv(nl,1)= Cpointer(ncurve1); Ncurv(nr,1)= Cpointer(ncurve2);

Stage 3: Computer Aided Design 111

else
%-------------
% 3 subregions
%------------
for nsu=1:ntrims

Ncurv(nr,nsu)= Cpointer(ncurve1); Ncurv(nl,nsu)= Cpointer(ncurve2);
if(nsu == ntrims) break endif
ncurve2= ncurve2+1;if(ncurve2 > ncurves) ncurve2= ncurve2 - ncurves; endif

end
if(rev(ncurve2) == 1)
% reverse order of curves

temp= Ncurv(nl,1); Ncurv(nl,1)=Ncurv(nl,3); Ncurv(nl,3)=temp;
endif

endif
endfunction;

The function Reverse listed below checks if the sequence of the control points is
in the direction of the local axes and reverses it if it is not.

The criterion introduced here, assumes that the sequence of the control points can
be deduced from the tangent to the curve. This should work for most cases but is by
no means foolproof.

function [knotur,coefsr,si]=Reverse(knotu,coefs,ncu)

%--------------------------------------

% Reverses curve info if necessary

%

% Input:

% knotu ... kot vector

% coefs ... coefficient

% ncu ... number of control points

%

% Output:

% knotur ... updated knot vector

% coefsr ... updated coefficients

% si ... (0= unchanged; 1= reversed

%-------------------------------------

si=0;nurbs= nrbmak(coefs,knotu); dnurbs= nrbderiv(nurbs);

[xym,vuv]= nrbdeval(nurbs,dnurbs,0.5);

tan(1)= vuv(1,1); tan(2)= vuv(2,1);

rev=0;

if(abs(tan(1)) > abs(tan(2)))

if(tan(1) < 0) rev=1; endif

else

if(tan(2) < 0) rev=1; endif

endif

if(rev == 0) knotur=knotu;coefsr=coefs; return; endif

si=1;

nu=length(knotu)+1;

112 Advanced numerical simulation methods

for n=1:length(knotu)

nu= nu-1;

knotur(n)= knotu(nu);

end

nu= ncu+1;

for n=1:ncu

nu=nu-1;

coefsr(1:4,n)=coefs(1:4,nu);

end

endfunction;

We can now develop a function Plot_surfacetrim that creates files containing
information for plotting trimmed and untrimmed surfaces.

function Plot_surfacetrim(file,notrim,nsurfp)
%--------------------------------------
% Creates data for plotting trimmed surfaces
% Input:
% file ... name of IGES file
% notrim= 1 ... plot untrimmed
% nsurfp= ... surface to be plotted (if 0 plot all surfaces)
%
% Output to file
% "Geometry" ... contains geoemtry data in x,y,z coords
% "Control" ... contains control points data
% "Outline" ... contains Jacobian data
%-------------------------------------
nst=20; st= linspace(0,1,nst);
% u,v for untrimmed surface
np=0;
for nv=1:nst
for nu=1:nst
np=np+1; uv(1,np)= st(nu); uv(2,np)= st(nv);
end
end
% read surface information
fid=fopen(file,"r"); [Info,found,Pntrs]= Parse(fid,128,0);fclose(fid);
nsurfaces= length(Pntrs);
% open plotting files
fid= fopen("Geometry","w");fid1= fopen("Control","w");
fid2= fopen("Outline","w");
nct= 0; surf=0;
for nsurf=1:nsurfaces
if(nsurfp > 0 && nsurf != nsurfp) continue endif
Pointer= Pntrs(nsurf);
clear knotu; clear knotv; clear coefs;
[knotu,knotv,coefs,ncu,ncv,limit,found] = Get_infos(file,Pointer);
% output control points of surfaces
for nv=1:ncv
for nu=1:ncu
w=coefs(4,ncu,ncv); nct=nct+1;
fprintf(fid1,"%8.5f %8.5f %8.5f %d \n", coefs(1:3,nu,nv)/w,nct);
end

Stage 3: Computer Aided Design 113

end
ntrims=1;
if(notrim == 1)
trim= 0;
else
% get pointers to trimming cuves

[Cpointer,ncurvs]=Get_Trim(file,Pointer);
if(ncurvs == 0) trim=0; else trim=1; endif
endif
if(trim == 1)
if(ncurvs > 4) ntrims=3; endif

% select trimming curves for interpolation
[Ncurv,loc]= Trimcurvs(file,ncurvs,Cpointer,limit,ntrims);
endif
for nsub=1:ntrims
if(trim == 1)
[knotu1,coefs1,knotu2,coefs2]= Getcurves(file,ntrims,nsub,Ncurv,limit,loc);

% 1. map from s,t coordinates
[uv,Jacuv]= Map(knotu1,coefs1,knotu2,coefs2,st,loc);
endif

% 2. map from u,v to x,y,z coordinates
nurbs= nrbmak(coefs,{knotu,knotv}); dnurbs= nrbderiv(nurbs);
[xyg,vuv]= nrbdeval(nurbs,dnurbs,uv);
np=0;

%---------------------------
% create plot files
%----------------------------

for nt=1:nst
for ns=1:nst
np=np+1;
fprintf(fid,"%8.5f %8.5f %8.5f \n", xyg(1:3,np));
end
fprintf(fid,"\n");
end
fprintf(fid,"\n"); fprintf(fid,"\n");
Plot_outlinexyz(st,st,xyg,fid2);
end
fprintf(fid,"\n"); fprintf(fid2,"\n");
surf=surf+1;
end
printf("%s %d %s \n","Info generated for",surf," surfaces")
fclose(fid); fclose(fid1); fclose(fid2);
endfunction;

Figure 7 shows the mapping of surface number 1, that was divided into 3
subregions. Figure 8 shows a plot of the trimmed surfaces.

6 SUMMARY AND CONCLUSIONS

In this stage we had a close look at how CAD programs work and especially the
format of the IGES file, that allows an interchange of information with the simulation
program. While treating NURBS surfaces is very simple we discovered that reading
and understanding the information for trimmed surfaces is quite challenging.

114 Advanced numerical simulation methods

Figure 7 Mapping from local s, t to local u, v and to global x, y, z coordinates for the surface with 3
subregions.

A few words on the modeling of connected surfaces using trimmed NURBS are in
order here. Since trimming information is supplied separately for each of the surfaces
using their parameter space, there is no guarantee that the surfaces match exactly at
the interface. The term used in the community is that the connection is not watertight,
meaning that there exist small gaps (where presumably water can penetrate). While

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-5&iName=master.img-006.jpg&w=359&h=433

Stage 3: Computer Aided Design 115

Figure 8 View of geometry with trimmed surfaces.

theoretically this is the case, for practical purposes this is not really relevant. The gaps
are so small so that even when zooming in they can not be detected. For the simulation,
where much bigger errors are introduced by other aspects such as the approximation
of the unknown and the numerical integration this is of no concern.

However, another much more important aspect is that, in some cases, the param-
eter spaces of the trimming curves may not match at the interface. This will become
important when applying this geometry to simulation, as the basis functions at the
interface have to match for continuity to be preserved. As we have seen on the exam-
ple of the NATM tunnel the parameter space is influenced by the knot vector, so so
sometimes the problem can be fixed by adjusting the knot values. However, for a
seamless integration of CAD and simulation a better solution would have to be found.

We are still far away to find the “holy grail’’ of a seamless integration of CAD and
simulation we hope to have shown a possible path towards attaining this dream.

BIBLIOGRAPHY

[1] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics
and Engineering, 194(39–41):4135–4195, October 2005.

[2] K. Lalit Narayan. Computer Aided Design and Manufacturing. New Delhi: Prentice Hall
of India., 2008.

[3] www.uspro.org/documents/IGES5-3_forDownload.pdf. Iges 5.3, 2006.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-5&iName=master.img-007.jpg&w=299&h=107
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2004.10.008
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2004.10.008

Chapter 5

Stage 4: Introduction to numerical
simulation

Nature is indifferent towards the difficulties it causes to mathematicians
Fourier

Here we give an introduction to techniques of numerical simulation. The main aim is to
become familiar with approximation methods and refinement strategies. We compare
Lagrange functions with B-splines and readers should realize at the end of this chapter
the advantages of using the latter.

1 ONE-DIMENSIONAL SIMULATION

The Bernoulli beam theory is one of the oldest theories in structural mechanics and it
is due to Jacob Bernoulli1. It allows the simplification of a plane problem to a one-
dimensional one. Since things are much easier to explain if there is only one degree
of freedom, this is the main reason this problem was chosen to explain the numerical
simulation process.

The theory stipulates that when a beam bends, plane sections perpendicular to the
beam’s axis remain plane and perpendicular to the deformed axis. Consider a beam in
plane bending as shown in Figure 1. One can see that when the beam bends upwards
fibers below the axis are stretched and above are compressed.

From Figure 1 we compute the change in length, du, of a fiber of length dx at
distance z from the axis as

du = w′z − (w′ − w′′dx)z = −w′′ · z · dx (1)

where w is the deflection and w′ = dw
dx , w′′ = d2w

dx2 .
The strain in the fiber can be computed by:

ε = du
dx

= −w′′ · z (2)

1Jacob Bernoulli was born in Basel, Switzerland in 1655. He was appointed professor of
mathematics at the University of Basel in 1687, remaining in that position for the rest of his life.

118 Advanced numerical simulation methods

Figure 1 Beam bending according to Bernoulli.

The resulting stress is:

σ = E · ε = −E · w′′ · z (3)

where E is the Modulus of Elasticity.
The internal bending moment can be computed as

M =
∫

A
(σ · z)dA = −E · w′′

∫
A

z2 · dA = −E · w′′ · I (4)

where A is the area and the moment of inertia I of the cross-section has been introduced.
As the simulation example we choose a beam on elastic foundation shown in Figure 2.

Considering the equilibrium between internal and external forces we obtain the
following differential equation (D.E.)2:

d2M
dx2

= q(x) − w · kw (5)

2For a derivation see for example [5].

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-000.jpg&w=263&h=249

Stage 4: Introduction to numerical simulation 119

Figure 2 Beam on elastic foundations.

Figure 3 Walter Ritz.

where q(x) is the distributed load and kw is the stiffness of the elastic foundation.
Substitution of Equation 4 gives:

d2

dx2
(EIw′′) + w · kw = q(x) (6)

which is a D.E. with respect to x only, i.e. we have reduced the problem dimension
by one.

1.1 Ritz method

The D.E. can be solved exactly. However, here we will use this problem to show the
process of approximate solution. Therefore, we introduce the concept of a weak form
solution, where we solve the problem using an approximation for w, w̃ and minimize
the error of the solution. This method was first proposed by W. Ritz3 in 1909 [3].
He proposed to solve the D.E. by assuming an approximation of the solution, using
trigonometric functions.

3Walther Ritz (1878 to 1909) was a Swiss theoretical physicist.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-001.jpg&w=285&h=97
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-002.jpg&w=110&h=148

120 Advanced numerical simulation methods

We rewrite Equation (6) as

d2

dx2
(EIw̃′′) + w̃ · kw − q(x) = R (7)

where R is the residual error in satisfying the D.E.
One way of minimizing the error is to multiply the D.E. with a test function δw

and to set the integral of the product over the length of the beam L to zero:

∫ L

x=0

(
d2

dx2
(EIw̃′′) + w̃ · kw − q(x)

)
· δw · dx = 0 (8)

This method is also known as residual method. Practical applications of the resid-
ual method, applicable to structural mechanics, are the method of virtual work and
the minimum potential energy. The first theorem states that for a force system in equi-
librium, the work done by real forces and virtual displacements should be zero. The
second theorem states that the potential energy of a deformed system in equilibrium
should be a minimum. Actually, the second criterion is derived from the first and since
the first one is used predominantly in the literature today, this is the one which we will
subsequently use.

The beam is subjected to a virtual displacement δw. If the beam is in equilibrium
the theorem states that the external and internal work has to sum to zero:

δWe + δWi = 0 (9)

The work done by a distributed vertical force q(x) is

δWq
e =

∫ L

x=0
q(x) · δw · dx (10)

And the work done by the activated spring forces is

δWk
e = −

∫ L

x=0
w̃ · kw · δw · dx (11)

The internal virtual work (strain energy) is

δWi = −
∫ L

x=0

∫
A

σ · δε · dA · dx (12)

and after substitution of Eq. 2 and 3 we obtain:

δWi = −
∫ L

x=0
E · I · w̃′′ · δw′′ · dx (13)

Stage 4: Introduction to numerical simulation 121

1.2 Approximation

For the approximation it is convenient to use a local coordinate system. We introduce
an approximation of w using Lagrange or Serendipity functions as a function of local
coordinate ξ:

w =
I∑

i=1

Ni(ξ) · wi (14)

where we drop the ∼ and refer to w as being the approximate solution. Ni are
basis functions and wi are nodal values of w. The sum is over the number of nodes I.
This process is also known as discretization. In the case of B-splines4 the approximation
is given as a function of local coordinate u:

w =
I∑

i=1

Ni(u) · wi (15)

where wi are parameter values and the sum is over the number of control points I.
The mapping of the geometry from the local to the global system is given by:

x =
Ig∑

i=1

Ng
i (ξ) · xi (16)

where xi are the coordinates of the nodes and the superscript g indicates that the
basis functions will be independent from the ones used for the approximation of the
unknown. This will be referred to as a geometry independent approximation.

The Jacobian of this transformation for our one-dimensional beam example is
J = dx

dξ
. The geometry is exactly defined by linear basis functions.

To proceed, we need the second derivative of w towards x. For Lagrange basis
functions this is given by:

w′′ =
I∑

i=1

∂2Ni(ξ)
∂x2

· wi (17)

Applying the chain rule of differentiation we get:

∂2Ni(ξ)
∂x2

= ∂2Ni(ξ)
∂ξ2

·
(

∂ξ

∂x

)2

+ ∂Ni(ξ)
∂ξ

· ∂2ξ

∂x2
(18)

with ∂ξ

∂x = J−1 .

4Note that there is no sense in using NURBS in this case as the weights would represent additional
unknown values.

122 Advanced numerical simulation methods

The second derivative with B-splines is given by:

w′′ =
I∑

i=1

∂2Ni,p(u)
∂x2

· wi (19)

where

∂2Ni,p(u)
∂x2

= ∂2Ni,p(u)
∂u2

·
(

∂u
∂x

)2

+ ∂Ni,p(u)
∂u

· ∂2u
∂x2

(20)

with ∂u
∂x = J−1

u where Ju = dx
du is the Jacobian of the mapping from u to x coordinates.

Note that ∂2ξ

∂x2 and ∂2u
∂x2 are zero for a linear mapping of the geometry used for this

example.
We explain the method for Lagrange/Serendipity functions first. We subject the

beam to a virtual displacement δwj at node point j (all other values being zero). Sub-
stitution of Equation (14) into (10) we get for the virtual work done by the distributed
force:

δWq
e =

∫ L

x=0
q(x)(Nj(ξ) · δwj) · dx =

(∫ L

x=0
q(x)Nj(ξ) · dx

)
· δwj (21)

Similarly for the activated spring forces

δWk
e = −

∫ L

x=0

(
kw

I∑
i=1

Ni(ξ) · wi

)
· Nj(ξ) · δwj · dx

= −kw ·
I∑

i=1

∫ L

x=0

[
Ni(ξ) · Nj(ξ) · dx

] · wi · δwj (22)

For the strain energy we get

δWi = −
∫ L

x=0
E · I ·

(
I∑

i=1

∂2Ni(ξ)
∂x2

· wi

)
· ∂2Nj(ξ)

∂x2
· δwj · dx (23)

or

δWi = −E · I ·
I∑

i=1

[(∫ L

x=0

∂2Ni(ξ)
∂x2

· ∂2Nj(ξ)
∂x2

· dx
)

· wi

]
· δwj (24)

Adding the internal and external virtual work done by virtual displacements δwj

at all nodes I, yields the following system of equations:

⎛
⎝ I∑

j=1

Kij · wj − Fi

⎞
⎠ · δwi = 0 for i = 1, . . . , I (25)

Stage 4: Introduction to numerical simulation 123

with the stiffness coefficients Kij and the nodal point forces Fi defined by

Kij =
∫ L

x=0

[
E · I · ∂2Ni(ξ)

∂x2
· ∂2Nj(ξ)

∂x2
+ kw · Ni(ξ) · Nj(ξ)

]
· dx (26)

Fi =
∫ L

x=0
qNj(ξ)dx

Since the virtual displacements δwi are not zero, the value inside the parentheses
of Equation (25) has to be zero for the Equation to be satisfied and therefore

I∑
i=1

Kij · wj − Fi = 0 (27)

In matrix notation we obtain:

K · w = F (28)

where K is the stiffness matrix and F is the force vector, the coefficients of which have
been defined in Equation (26) and w contains nodal displacements. The derivation for
B-splines is very similar, except that the values of w represent parameter values rather
than nodal values.

For the evaluation of the integrals we use Gauss numerical integration which states
that the integral of a polynomial function can be replaced by a sum of function values
at M Gauss points, f (ξm), times weights, Wm:

∫ 1

ξ=−1
f (ξ) · dξ =

M∑
m=1

f (ξm) · Wm (29)

A function Gauss that computes the Gauss points and weights for up to 8 points
is shown.

function [Cor,Wi]= Gauss(ng)

%---

% Computes Gauss point coords and weights

%

% Input:

% ng ... Number of Gauss points

%

% Output:

% Cor ... Gauss point coordinates

% Wi ... Weights

%--

if(ng == 1);

Cor(1)= 0.; Wi(1) = 2.0;

124 Advanced numerical simulation methods

elseif (ng == 2);

Cor(1)= .577350269; Cor(2)= -Cor(1); Wi(1) = 1.0; Wi(2) = Wi(1);

elseif(ng == 3);

Cor(1)= .774596669; Cor(2)= 0.0; Cor(3)= -Cor(1);

Wi(1) = .555555555; Wi(2) = .888888888; Wi(3) = Wi(1);

elseif(ng == 4);

Cor(1)= .861136311; Cor(2)= .339981043; Cor(3)= -Cor(2);

Cor(4)= -Cor(1);

Wi(1) = .347854845; Wi(2) = .652145154; Wi(3) = Wi(2); Wi(4) = Wi(1);

elseif(ng == 5);

Cor(1)= .9061798459; Cor(2)= .5384693101; Cor(3)= .0;

Cor(4)= -Cor(2); Cor(5)= -Cor(1);

Wi(1) = .236926885; Wi(2) = .478628670; Wi(3) = .568888888;

Wi(4) = Wi(2); Wi(5) = Wi(1);

elseif(ng == 6);

Cor(1)= .932469514; Cor(2)= .661209386; Cor(3)= .238619186;

Cor(4)= -Cor(3); Cor(5)= -Cor(2); Cor(6)= -Cor(1);

Wi(1) = .171324492; Wi(2) = .360761573; Wi(3) = .467913934;

Wi(4) = Wi(3); Wi(5) = Wi(2); Wi(6) = Wi(1);

elseif(ng == 7);

Cor(1)= .949107912; Cor(2)= .741531185; Cor(3)= .405845151;

Cor(4)= 0.; Cor(5)= -Cor(3); Cor(6)= -Cor(2); Cor(7)= -Cor(1);

Wi(1) = .129484966; Wi(2) = .279705391; Wi(3) = .381830050;

Wi(4) = .417959183; Wi(5) = Wi(3); Wi(6) = Wi(2); Wi(7) = Wi(1);

elseif(ng == 8);

Cor(1)= .960289856; Cor(2)= .796666477; Cor(3)= .525532409;

Cor(4)= .183434642; Cor(5)= -Cor(4); Cor(6)= -Cor(3);

Cor(7)= -Cor(2); Cor(8)= -Cor(1);

Wi(1) = .101228536; Wi(2) = .222381034; Wi(3) = .313706645;

Wi(4) = .362683783; Wi(5) = Wi(4); Wi(6) = Wi(3);

Wi(7) = Wi(2); Wi(8) = Wi(1);

endif;

endfunction

The prerequisite of using Gauss integration is that the function is defined within
the limits −1 to +1. If B-splines are used for the description of w, then an additional
mapping is required since u spans from 0 to 1:

u(ξ) = 1
2

(ξ + 1) (30)

The Jacobian of this transformation is du
dξ

= 1/2. The number of Gauss points that
has to be used depends on the order of the function. For example a Gauss order of 3
can evaluate a polynomial of order 5 exactly and 4 Gauss points are sufficient for a
polynomial of order 7.

Stage 4: Introduction to numerical simulation 125

It should be noted here that the integrand involves the Jacobian times second
derivatives of the basis function and will in general not be a polynomial. Therefore the
Gauss integration will be an approximation, which depends on the number of Gauss
points. The integrals, expressed in local coordinate ξ are:

Kij =
∫ 1

ξ=−1

[
E · I · ∂2Ni(ξ)

∂x2
· ∂2Nj(ξ)

∂x2
+ kw · Ni(ξ) · Nj(ξ)

]
· J · dξ (31)

Fj =
∫ 1

ξ=−1
q(ξ) · Nj(ξ) · J · dξ

Using B-splines for the description of w we have

Kij =
∫ 1

ξ=−1

[
E · I · ∂2Ni(u)

∂x2
· ∂2Nj(u)

∂x2
+ kw · Ni(u) · Nj(u)

]
· Ju · du

dξ
· dξ (32)

Fj =
∫ 1

ξ=−1
q(u) · Nj(u) · Ju · du

dξ
· dξ

Applying Gauss integration we obtain:

Kij =
M∑

m=1

kij(ξm) · Wm (33)

Fi =
M∑

m=1

fi(ξm) · Wm (34)

with

kij(ξ) =
[
E · I · ∂2Ni(ξ)

∂x2
· ∂2Nj(ξ)

∂x2
+ kw · Ni(ξ) · Nj(ξ)

]
· J (35)

fi(ξ) = q(ξ) · Nj(ξ) · J (36)

for Lagrange/Serendipity basis functions and

kij(ξ) =
[
E · I · ∂2Ni(u(ξ))

∂x2
· ∂2Nj(u)

∂x2
+ kw · Ni(u) · Nj(u)

]
· Ju · du

dξ
(37)

fi(ξ) = q(u) · Nj(ξ) · Ju · du
dξ

(38)

for description by B-splines.

126 Advanced numerical simulation methods

2 STEPS IN THE SIMULATION

Having established the theoretical background we discuss the solution process in more
detail. Numerical simulation involves the following steps:

1 Description of the geometry
2 Description of the known values
3 Approximation of the unknown
4 Refinement of the approximation
5 Checking accuracy of the results
6 Display of the results

Steps 4 and 5 should be repeated until the results are of an acceptable accuracy. For
demonstrating the simulation process we use the Bernoulli beam example with simple
parameters (L = 1, EI = 1/100) and set the stiffness of the elastic foundation to zero.

2.1 Description of the geometry

For the description of the geometry we can apply a linear basis function and with
x1 = 0 and x2 = L:

x(ξ) = Ng
1(ξ) · x1 + Ng

2(ξ) · x2 (39)

The Jacobian is computed by

J = dx
dξ

= dNg
1(ξ)

dξ
· x1 + dNg

2(ξ)
dξ

· x2 = −0.5 · 0 + 0.5 · L = L/2 (40)

We can also use a linear B-spline:

x(u) = Ng
1,1 · x1 + Ng

2,1 · x2 (41)

The Jacobian is given by:

Ju = dx
du

= dNg
1,1(u)

du
· x1 + dNg

2,1(u)

du
· x2 = −1 · 0 + 1 · L = L (42)

2.2 Description of known values

For checking the convergence we assume a quadratic variation of the loading q(ξ):

q(ξ) =
3∑

i=1

Ni(ξ) · qi (43)

where Ni(ξ) are quadratic Serendipity functions and

q1 = 1; q2 = 0; q3 = 1 (44)

For this loading the exact solution of w is of order 6.

Stage 4: Introduction to numerical simulation 127

Figure 4 Deflected shapes and bending moment diagrams for the different refinements with increasing
order of basis functions (Ref = 1 is order 2 and Ref = 4 is order 5).

2.3 Convergence tests

For checking the accuracy of the solution we define the following error norms:
Error in the deflection w as

‖εw‖ =
∫ L

x=0 |w − wex|dx∫ L
x=0 |wex|dx

(45)

where wex is the exact solution.
Error in the bending moment M as

‖εM‖ =
∫ L

x=0 |M − Mex|dx∫ L
x=0 |Mex|dx

(46)

where Mex is the exact solution.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-003.jpg&w=275&h=287

128 Advanced numerical simulation methods

Figure 5 Plot of Error norms versus basis function order.

2.4 Approximation of unknown

We start the simulation with a basis function with the lowest order that would give non-
zero results (p = 2), considering that the second derivative is involved in the solution.
The errors in the solution for the approximation of w by Lagrange polynomials and
B-splines are exactly the same:

‖εw‖ = 0.143; ‖εM‖ = 1.139 (47)

As expected, since the basis functions of order 2 can only approximate a constant
variation of w′′ and therefore of the moment M we get quite a large error. One way of
improving the solution is to increase the order of the basis functions.

2.5 P-refinement or order elevation

If we use Lagrange/Serendipity functions, the term used in the literature for increasing
the function order is p-refinement and if we use B-splines it is order elevation. In this
case both approximations yield the same result.

For the assumed quadratic variation of the loading q, the exact solution (wex) can
be obtained with basis functions of order 6. We start with order 2 and elevate until
the exact solution is obtained. Figure 4 shows the deflected shape and the bending
moment diagrams for the different refinement stages.

The error norms as a function of order are plotted in Figure 5. It can be seen that
there is no change in error from order 2 to 3. The reason for this can be seen in the
bending moment diagram, which is approximated by a constant and linear variation.

2.6 H-refinement, the Finite Element Method

Another way of refining the solution when using Lagrange/Serendipity basis functions
is h-refinement. In this method the beam is subdivided into finite elements as shown
in Figure 6.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-004.jpg&w=149&h=145

Stage 4: Introduction to numerical simulation 129

Figure 6 Discretization of beam into elements.

For each finite element the deflection is described with a local basis function.
Compatibility and equilibrium conditions are enforced where elements join.

If we apply Lagrange polynomials then h-refinement will not work because the
functions will only have a C0 continuity where elements join but the solution requires
at least a C1 continuity along the whole length of the beam. The only way around
this is the introduction of a rotational degree of freedom (= the first derivative of w)
and the introduction of basis functions that include this as parameter. The Hermite
polynomials, introduced earlier, fulfill this requirement.

The approximation of the deflection w inside an element is now expressed in terms
of local coordinate u as

w(u) = H1(u) · w1 + H2(u) · w′
1 + H3(u) · w2 + H4(u) · w′

2 (48)

We denote the deflection and the rotation at node i as wi and w′
i.

Rewriting Equation (48) in matrix notation we have

w(u) = H · we (49)

where

H = (H1(u), H2(u), H3(u), H4(u)
)

(50)

and

we =

⎛
⎜⎜⎝

w1

w′
1

w2

w′
2

⎞
⎟⎟⎠ (51)

The second derivative of w is given by

w′′(u) = d2H1(u)
dx2

· w1 + d2H2(u)
dx2

· w′
1 + d2H3(u)

dx2
· w2 + d2H4(u)

dx2
· w′

2 (52)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-005.jpg&w=202&h=116

130 Advanced numerical simulation methods

and considering that d2u
dx2 = 0:

d2Hi(u)
dx2

= d2Hi(u)
du2

·
(

du
dx

)2

(53)

where

du
dx

= 1
Le

(54)

Le is the length of the element.
In matrix notation we can write:

w′′(u) = H′′ · we (55)

where

H′′ =
(

d2H1(u)
dx2

,
d2H2(u)

dx2
,

d2H3(u)
dx2

,
d2H4(u)

dx2

)
(56)

Computation of stiffness matrix and force vector Using the principle of virtual work
we apply virtual displacements δw as well as virtual rotations δw′.

Applying a virtual displacement δw1 for example, the virtual work done by the
distributed force q is:

δWq
e =

∫ L

x=0
q(H1(u) · δw1) · dx =

(∫ L

x=0
qH1(u) · dx

)
· δw1 (57)

For the strain energy we get

δWi = −
∫ L

x=0
E · I · (H′′ · we) · ∂2H1(u)

∂x2
· δw1 · dx (58)

After substitutions and integrations (which we can perform analytically) we obtain
the stiffness matrix of the beam element as

ke = EI ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12
L3

e

6
L2

e
−12

L3
e

6
L2

e

6
L2

e

4
Le

− 6
L2

e

2
Le

−12
L3

e
− 6

L2
e

12
L3

e
− 6

L2
e

6
L2

e

2
Le

− 6
L2

e

4
Le

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(59)

Stage 4: Introduction to numerical simulation 131

an the force vector as

fe =

⎛
⎜⎜⎝

q1

m1

q2

m2

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ Le
x=0 q · H1(u)dx

∫ Le
x=0 q · H2(u)dx

∫ Le
x=0 q · H3(u)dx

∫ Le
x=0 q · H4(u)dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(60)

Figure 7 Plot of basis functions for the approximation of the unknown with Hermite polynomials and
their first derivatives for subdivision into 3 Elements. Deflected shape and bending moment
diagram for 3 refinement stages compared with the exact solution.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-006.jpg&w=359&h=407

132 Advanced numerical simulation methods

Assembly After obtaining the stiffness matrices of all beam elements we assemble
them. For this we use the equations of compatibility and equilibrium. Connecting end
2 of element 1 to end 1 of element 2 we have:

w2,1 = w1,2; w′
2,1 = w′

1,2
(61)

q2,1 + q1,2 = Q; m2,1 + m1,2 = M

where the first subscript denotes the node number and the second one the element
number. The Equations (61) mean that the relevant stiffness coefficients and load of
connected elements are added. We now investigate the convergence as a function of
the number of elements.

In Figure 7 we show the unrefined results (with one element) and the results of the
first two stages of refinement. Also shown are the basis functions for the discretization
into 3 elements. We can see that the unrefined results are very inaccurate but that after
the second stage of refinement (3 Elements) the deflected shapes are indistinguishable
from the exact solution. It is quite a different picture for the bending moments. Without
refinement the bending moment is actually zero. Although the moment is predicted
exactly at the element nodes for the refined solutions, the variation within the element
is in considerable error since the element is only able to represent a linear variation of
moment.

2.7 Knot insertion, isogeometric method

Knot insertion is similar to the h-refinement just discussed. However, there is a subtle
difference: No subdivision into elements is required. Since the basis functions retain a
C1 continuity (see Figure 8) there is no need to introduce rotational degrees of free-
dom. Unlike the previous case, we can even start with a function of order 2. The
refinement is performed by repeatedly inserting equally spaced knots, i.e. the knot
vector for the first refinement is � = (0 0 0 0.5 1 1 1

)
and the second refinement

� = (0 0 0 0.33 0.66 1 1 1
)

and so on. As can be seen in Figure 8 the beam deflec-
tion is not as well approximated as with the cubic Hermite functions. This is not
surprising as the second derivative of the functions is constant and therefore only a
constant value of M can be achieved between knots. Better results can be achieved by
increasing the order before inserting knots. This will be discussed next.

2.8 K-refinement

This type of refinement is unique to B-splines. It involves the elevation of the order
before inserting the knots. This means that the knot vector for the first refinement is � =(
0 0 0 0 0.5 1 1 1 1

)
and for the second refinement � = (0 0 0 0 0.33 0.66 1 1 1 1

)
and so on. Figure 9 shows the deflected shapes and the bending moment diagrams for
k-refinement (order elevated to p = 3 and then knots inserted).

The convergence of the displacements is also shown in Figure 10. It can be seen
that k-refinement produces the best results.

Stage 4: Introduction to numerical simulation 133

Figure 8 Basis functions of order p = 2 and their first derivatives after insertion of 2 knots, show-
ing knots as squares and anchors as colored filled circles. Deflection and bending moment
diagrams for 4 refinement stages (Knot insertions).

2.9 Summary and conclusions

The main aim of this section was to introduce readers to the process of simulation but in
particular the objective was to show the difference between simulation with Lagrange
functions and B-splines. This was made easier by using a simple one dimensional
example. The superior properties of B-splines with respect to control of continuity
and refinement strategies should have become clear. The use of B-splines allowed a

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-007.jpg&w=323&h=377

134 Advanced numerical simulation methods

Figure 9 Plot of basis functions for refinement stage 2 (order elevation to p = 3 and 2 knot insertions).
Beam deflection and bending moment diagrams for 4 k-refinement stages.

simulation of the beam without discretization into elements and especially without the
introduction of rotational degrees of freedom.

Notation Before proceeding to more realistic problems a remark on the notation used
is appropriate: To comply with published literature we use u, v for the local coordinates
for B-splines/NURBS. This should not be confused with u (bold) for the vector of
displacements with the components ux, uy, uz.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-008.jpg&w=323&h=390

Stage 4: Introduction to numerical simulation 135

Figure 10 Convergence of displacements for the case of knot insertion and k-refinement.

3 2-D SIMULATION, PLANE STRESS AND PLANE STRAIN

We now extend the simulation to two dimensions. Examples are the analysis of thin
plates with in plane loading assuming plane stress conditions or underground excava-
tions under plane strain conditions. In the first case it is assumed that the stress in the
direction perpendicular to the plane is zero in the second that the strain perpendicular
to the plane is zero. The geometry of the problem can be described by NURBS:

x =
Ig∑

i=1

Ng
i (u, v) · xi (62)

where xi are the coordinates of control points and the superscript g denotes that the
basis functions may be different from those describing the displacements.

The strain tensor is of dimension 2 × 2. For convenience we put the strain
components into a pseudo-vector using the Voight notation5.

ε =
⎛
⎝ εx

εy

τxy

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ux

∂x
∂uy

∂y
∂ux

∂y
+ ∂uy

∂x

⎞
⎟⎟⎟⎟⎟⎟⎠

(63)

The displacement vector u has 2 components and is approximated by B-splines
Ni(u, v) as:

u =
I∑

i=1

Ni(u, v) · ui (64)

5Voigt notation is a way to represent a symmetric tensor by a one column matrix (pseudo vector).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-009.jpg&w=196&h=143

136 Advanced numerical simulation methods

The derivatives of the displacement vector are given by

∂u
∂x

=
I∑

i=1

∂Ni(u, v)
∂x

· ui;
∂u
∂y

=
I∑

i=1

∂Ni(u, v)
∂y

· ui (65)

The global derivatives of the shape functions can be obtained via the chain rule of
differentiation:

∂Ni(u, v)
∂u

= ∂Ni

∂x
· ∂x
∂u

+ ∂Ni

∂y
· ∂y
∂u

(66)

∂Ni(u, v)
∂v

= ∂Ni

∂x
· ∂x
∂v

+ ∂Ni

∂y
· ∂y
∂v

(67)

or in matrix form

N,u = J · N,x (68)

where

N,u =

⎛
⎜⎜⎜⎝

∂Ni

∂u

∂Ni

∂v

⎞
⎟⎟⎟⎠ ; N,x =

⎛
⎜⎜⎜⎝

∂Ni

∂x

∂Ni

∂y

⎞
⎟⎟⎟⎠ (69)

and the Jacobi matrix is given by

J =

⎛
⎜⎜⎜⎝

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

⎞
⎟⎟⎟⎠ (70)

with

∂x
∂u

=
Ig∑

i=1

∂Ng
i (u, v)
∂u

· xi;
∂x
∂v

=
Ig∑

i=1

∂Ng
i (u, v)
∂v

· xi (71)

The determinate of the Jacobi matrix (J = |J|) is the Jacobian introduced earlier.
The global derivatives of the basis functions are obtained by using the inverse

of J:

N,x = J−1 · N,u (72)

The stresses are related to strains via the elasticity matrix

σ = C · ε (73)

Stage 4: Introduction to numerical simulation 137

where for plane stress:

C = E
1 − ν2

⎛
⎝1 ν 0

ν 1 0
0 0 1 − ν

⎞
⎠ (74)

and for plane strain:

C = E
(1 + ν)(1 − ν)

⎛
⎝1 − ν ν 0

ν 1 − ν 0
0 0 1 − 2ν

⎞
⎠ (75)

E is the modulus of elasticity and ν is the Poisson’s ratio.
After substitution of (65) into (63) we obtain a relationship between strains and

displacements:

ε =
I∑

i=1

Bi · ui (76)

where

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂Ni

∂x
0

0
∂Ni

∂y
∂Ni

∂y
∂Ni

∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(77)

Using the principle of virtual work, as explained previously, we apply virtual
displacements δuj and compute the internal virtual work

δWint = −
∫

V
σTδε · dV (78)

After substitution of (76) and (73) we obtain

δWint = −
∫

V

[
C

I∑
i=1

Bi · ui

]T

Bj · δuj · dV (79)

For a distributed body force b (force per unit volume) the external virtual work is

δWext =
∫

V
b · δuj · dV (80)

138 Advanced numerical simulation methods

For the numerical integration we need to map the u, v coordinates to ξ, η

coordinates that range for −1 to 1:

u = 0.5(ξ + 1); v = 0.5(η + 1) (81)

The Jacobian of this transformation is Ju = 0.5 × 0.5 = 0.25. The submatrices of the
element stiffness matrix are given by:

ke
ij = d ·

∫ 1

−1

∫ 1

−1
BT

i · C · Bj · J · Ju · dξ · dη (82)

and the sub-vectors of the force vector are:

fe
i = d ·

∫ 1

−1

∫ 1

−1
b · Ni(u, v) · J · Ju · dξ · dη (83)

where d is the thickness of the plate.
For the evaluation of the integrals we use an M × N Gauss Quadrature rule for

the computation of the stiffness:

ke
ij = d ·

M∑
m=1

N∑
n=1

Bi
T (ξn, ηm) · C · Bj(ξn, ηm) · J · Ju · Wn · Wm (84)

and for the forces:

fe
i = d ·

M∑
m=1

N∑
n=1

b · Ni(ξn, ηm) · J · Ju · Wn · Wm (85)

The number of Gauss points required depends on the order of the functions used.
Traditionally, implementations of the FEM have used linear or quadratic basis func-
tions, so the number of Gauss points can be limited to 3. Indeed, it has been found
that an under-integration may be beneficial as meshes with a coarse discretization
always tend to be too stiff. For the implementation with NURBS the order of the basis
functions can be quite high and therefore care has to be taken that the number of inte-
gration points is sufficient for an accurate integration. One indication that the number
is insufficient, is that the stiffness matrix becomes singular or nearly singular.

3.1 Boundary Conditions (BC)

There are three types of boundary conditions:

• Displacements are known
• Forces or tractions are known
• Forces or tractions can be computed using geometrical information

Stage 4: Introduction to numerical simulation 139

Dirichlet BC The first type is also known as Dirichlet boundary condition6.
There are two ways in which this BC can be implemented:

• Strong form: If the displacement component is specified it means that its value
is known and need not be computed. If the component is zero, we simply delete
the row and column associated with it in the stiffness matrix. If the specified
displacement is not zero then we move the associated stiffness coefficients to the
right hand side and multiply them with the known displacement (see [1] for details
of implementation).

• Weak form: A zero value of the boundary condition can be implemented by adding
a large value to the stiffness coefficient associated with the displacement. This is
the same as connecting a spring with a large stiffness and will result in the value of
the displacement to be nearly zero (depending on the value of the stiffness added).

Neuman BC The second type is also known as Neuman boundary condition7.
They are implemented in the same way as shown for the body force except that the

integral is taken along the boundary and not the volume. For example for a distributed
loading q along the boundary v = vq we have:

fq
i = d ·

∫ 1

−1
q · Ni(u, vq) · J̄ · 0.5 · dξ (86)

where

J̄ =
√

∂x
∂u

2

+ ∂y
∂u

2

(87)

Robin BC The third type is known as Robin boundary condition8.
Applied to heat flow, the component of the flow q normal to the boundary (t) is

computed as:

t = n · q (88)

where n is a unit vector normal to the boundary.

6The Dirichlet (or first-type) boundary condition is a type of boundary condition, named after
Peter Gustav Lejeune Dirichlet (1805 to 1859). When imposed on an ordinary or a partial
differential equation, it specifies the values that a solution needs to take on along the boundary
of the domain.
7The Neumann (or second-type) boundary condition is a type of boundary condition, named
after Carl Neumann. When imposed on an ordinary or a partial differential equation, it specifies
the values that the derivative of a solution is to take on the boundary of the domain.
8This is a type of boundary condition, named after Victor Gustave Robin (1855 to 1897) even
though his original contribution is disputed by some. When imposed on an ordinary or a partial
differential equation, it is a specification of a linear combination of the values of a function and
the values of its derivative on the boundary of the domain.

140 Advanced numerical simulation methods

Applied to an excavation problem where the excavation traction vector (t) is
computed by

t = n · σ0 (89)

where σ0 is a pseudo vector of virgin stress.

3.2 Using one NURBS patch

In contrast to the classical FEM our aim is to get away from the need to generate a
mesh. This is possible because, as we have seen in the previous stages, NURBS can
describe complex geometries with one patch and few parameters.

If the geometry can be described by one NURBS patch then the implementation
is straight forward. The only consideration when evaluating the integrals (84) and
(85) is with respect to the number of Gauss points required depending on the order
of the B-splines. If the basis functions span only part of the parameter space, then the
integration region has to be subdivided into subregions. The subregions are defined by
the knot spans.

For example for the Knot vector � = (0, 0, 0, 0.3, 0.6, 1, 1, 1) the subdivision lines
are placed at 0.3 and 0.6. For subregion k the relationship between u, v and ξ, η

coordinates is given by:

u = sk
u

2
(ξ + 1) + uk

s (90)

v = sk
v

2
(η + 1) + vk

s

where sk
u, sk

v specify the extent of the subregion and uk
s , vk

s are its starting coordinates.
The Jacobian of this transformation is Ju = 0.5 · sk

u · 0.5 · sk
v .

The numerical integration for the stiffness and force terms is given by:

kij = d ·
K∑

k=1

M∑
m=1

N∑
n=1

Bi
T (un, vm) · C · Bj(un, vm) · J · Ju · Wn · Wm (91)

and

fi = d ·
K∑

k=1

M∑
m=1

N∑
n=1

b · Ni(un, vm) · J · Ju · Wn · Wm (92)

where M and N are the number of Gauss points and K is the number of subregions.
For the implementation of Dirichlet BC’s we have to consider that nodal points

do not exist and therefore a different approach than with the isoparametric FEM has
to be taken. We recall that the displacements are defined by parameter values and this
means that they are associated with anchors rather than nodal points. Therefore the
entries in the stiffness matrix refer to values of the parameters at the anchors. To define
a zero value of the displacement we adopt the weak form as explained above and add a
large value to the diagonal coefficient of the stiffness matrix associated with the degree

Stage 4: Introduction to numerical simulation 141

of freedom. Depending on the value inserted in the stiffness matrix, the resulting value
of displacement will not be exactly zero but a very small number.

3.3 Comparison with classical FEM

In the classical FEM (for details see [4]) we subdivide the domain into finite elements
and using either Lagrange polynomials or Serendipity functions. For each element
we have

xe =
I∑

i=1

Ni(ξ, η) · xe
i (93)

where xe
i are nodal point coordinates and

ue =
I∑

i=1

Ni(ξ, η) · ue
i (94)

where ue
i are nodal point displacements.

The superscript e indicates that the approximation is only valid within element
e. Usually the same functions are used for the description of the geometry of an
element and the variation of the unknown, so we have dropped the superscript g.
These elements are also known as isoparametric elements.

After computing the stiffness matrices and force vectors for all elements we assem-
ble them into the global system using compatibility and equilibrium conditions between
the elements. C0 compatibility between element e1 and e2 is ensured if the displace-
ments of the nodes where the elements connect and the basis functions used for their
approximations are the same.

Compatibility between node i of element e1 and node j of element e2 is ensured by

ue1
i = ue2

j = uinci(i)e1 (95)

Equilibrium is assured by the condition

fe1
i + fe2

j = Finci(i)e1 (96)

where Finci(i) is a nodal point force vector and inci(i)e1 (=inci(j)e2) is the global number
of the local node i of element e1 also referred to as incidence. Equations (95) and (96)
mean that corresponding stiffness coefficients are assembled as follows:

Kinic(i)e,inci(j)e = Kinic(i)e,inci(j)e + ke
i,j (97)

For the computation of the stiffness matrix, equations (84) and (85) are used
directly and no transformation from u, v coordinates is necessary and Ju = 1. For the
imposition of Dirichlet boundary conditions we use the strong form, i.e. we specify
displacement values at the nodal points.

142 Advanced numerical simulation methods

Figure 11 Geometry of the problem and description of the geometry with one NURBS patch.

3.4 Example

First we present a simple example in order to explain the differences between the
classical FEM and NURBS based analysis. It is a plate supported at two edges and
subjected to gravity loading.

The input data are:

• Length = 1 m, height = 0.3 m, thickness = 1 m
• E = 100, Poissons ratio = 0
• Specific weight = 1

For the analysis with NURBS we first define the geometry using linear basis
functions and Knot vectors �

g
u = �

g
v = (0, 0, 1, 1).

The coordinates and weights of the control points are given by:

0 0 0 1

1 0 0 1

0 0.3 0 1

1 0.3 0 1

Figure 11 shows the geometry of the problem and the discretization with one
NURBS patch.

The first choice of basis functions for the approximation of the unknown must
include anchors at the location where the Dirichlet BC have to be enforced. This
means that we need to introduce basis functions that have anchors at the location of
the supports before refinement. The functions can be defined by the following knot
vectors: �u = (0, 0, 0.1, 0.9, 1, 1); �v = (0, 0, 1, 1). Figure 12 shows the basis functions
and the associated anchors before refinement and after the first stage of order elevation
from p = 1 to p = 2 prior to a k-refinement (i.e. prior to inserting knots).

The anchors where the restraint condition was enforced are depicted. Figure 13
shows the displaced shape and the anchors for the first stage of k-refinement (one knot
inserted in each direction). Also shown is the subdivision of the integration region
into subregions, to take into account the limited span of the basis functions after knot
insertion. As a comparison we show the displaced finite element mesh in Figure 13.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-010.jpg&w=359&h=83

Stage 4: Introduction to numerical simulation 143

Figure 12 Plot showing the basis functions and the location of Anchors along the bottom of the plate
for the case with no refinement and for the first stage of k-refinement (order elevation to
p = 2 and one Knot insertion). Anchors, where boundary conditions have been enforced
are shown as triangles.

To test the convergence of the methods we study the change in displacement as
we implement the different refinement strategies. For the FEM we used h-refinement,
i.e. we have increased the number of elements and this is compared with k-refinement.
We plot the convergence of the maximum displacement in Figure 13. It can be seen
that convergence is much faster for the NURBS based simulation than for the Finite
Element Method.

3.5 Multiple NURBS patches

In some cases it is convenient to use more than one NURBS patch to describe the
geometry. Since there are no nodal points, compatibility conditions have to be defined
in a different way. C0 compatibility between patches is ensured if the location of the
anchors match along the line where patches connect. These conditions can be enforced
in the same way as for the conventional FEM, i.e. by using incidences for the assembly
of coefficients, except that indices refer now to anchors instead of nodal points.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-011.jpg&w=299&h=294

144 Advanced numerical simulation methods

Figure 13 Plot showing deformed shape and location of Anchors for first stage of k-refinement (order
elevation to p = 2 and one Knot insertion). Also shown is the subdivision into integration
regions. Displaced FEM mesh and convergence of maximum displacement.

To explain this consider the plate with a hole in Figure 14 subjected to a tensile
stress T, where we analyze one quarter with symmetry boundary conditions. The
following input data was used:

• Length = 5, height = 5, thickness = 1
• E = 105, Poissons ratio = 0.3
• Tensile Stress = 1
• R = 1

This problem has been popular for convergence studies (see [2]) since there is an
exact solution for a hole in an infinite domain. To be able to use the exact solution
for the infinite space with a finite space problem, we have to ensure that the boundary
conditions for both problems are the same. Therefore, the traction computed from the

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-012.jpg&w=275&h=306

Stage 4: Introduction to numerical simulation 145

Figure 14 Plate with a hole: problem definition.

Figure 15 Geometry definition with two NURBS patches.

exact solution are applied at the boundaries. The exact solution for the radial stress
(σrr), tangential stress (σθθ) and the associated shear stress (σrθ) is given by:

σrr(r, θ) = T
2

·
{

1 − R2

r2
+
(

1 − 4
R2

r2
− 3

R4

r4

)
cos 2θ

}

σθθ(r, θ) = T
2

·
{

1 + R2

r2
−
(

1 + 3
R4

r4

)
cos 2θ

}
(98)

σrθ(r, θ) = −T
2

·
(

1 + 2
R2

r2
− 3

R4

r4

)
sin 2θ

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-013.jpg&w=154&h=144
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-014.jpg&w=155&h=158

146 Advanced numerical simulation methods

Figure 16 Approximation of displacements, showing location of anchors. Red arrows show restrained
anchors.

We start with the description of the geometry with 2 NURBS patches as shown in
Figure 15. The knot vectors are given by:

0 0 0 1 1 1

0 0 1 1

0 0 0 1 1 1

0 0 1 1

and the coordinates/weights of control points are:

0 1 0 1

0.4142 1 0 0.9238

0.707 0.707 0 1

0 5 0 1

2.5 5 0 1

5 5 0 1

0.707 0.707 0 1

1 0.4142 0 0.9238

1 0 0 1

5 5 0 1

5 2.5 0 1

5 0 0 1

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-015.jpg&w=161&h=168

Stage 4: Introduction to numerical simulation 147

We refine the approximation of the unknown by order elevation and knot insertion.
Figure 16 shows the anchors of the basis functions for order elevating in the v direction
from p = 1 to p = 2. We number the anchors sequentially making sure to assign a
unique number to the anchors on the interface between the patches. Anchors that are
restrained to simulate symmetry conditions are specified. For the assembly process we
need to define the connectivity between the patches via an incidence vector.

The incidence vectors for patches 1 and 2 are:

inci(j)1 = (
1 2 3 4 5 6 7 8 9

)
inci(j)2 = (

3 10 11 6 12 13 9 14 15
)

The analysis proceeds as before with the computation of the stiffness matrix and
the load vector of the patch using Equations (91) and (92) and the assembly of the
stiffness matrices using (97). To refine the solution we can use the three refinement
strategies available.

3.6 Bezièr elements

Although the aim throughout this book is to avoid mesh generation we present here
for completeness a method known as Bezièr elements. In this method we mimic the
classical Finite Element method. First we insert as many knots as necessary to make
the basis functions only C0 continuous between knot spans.

For example if we insert two knots in u and v directions we change the knot
vectors to

0 0 0 0.5 0.5 1 1 1

0 0 0 0.5 0.5 1 1 1

0 0 0 0.5 0.5 1 1 1

0 0 0 0.5 0.5 1 1 1

In Figure 17 we show the traces of the basis functions along u = 0 and v = 1. It can be
seen that since the basis functions have a C0 continuity at the borders of the subregions
of integration, these can be considered separately just like finite elements.

Instead of a global knot vector we use a local knot vector for each element, i.e.

0 0 0 1 1 1

0 0 0 1 1 1

Figure 17 bottom shows meshes generated. All edge nodes are interpolatory
and therefore the assembly process follows the standard FEM procedures. The main
difference to classical FEM is that the basis functions differ form the Serendipity func-
tions and that the geometrical values such as location of Gauss points and Jacobi
matrix are computed using NURBS technology. Therefore the main advantages of the
isogeometric method can be retained.

148 Advanced numerical simulation methods

Figure 17 Top:Traces of basis functions prior to Bezièr extraction and extracted Bezièr element. Below:
Meshes of Bezièr elements.

3.7 Trimmed NURBS patches

Another possibility to analyze this problem is to use trimmed patches. To describe the
problem geometry with a trimmed NURBS patch we start with a simple square patch
and two trimming curves as shown in Figure 18 top. Because one of the trimming curves
has only a C0 continuity, care has to be taken when choosing the basis functions for the
description of the unknown before refinement and the regions used for the integration.
In Figure 18 bottom we show that in this case the integration region is split into two
and the continuity of the basis functions is changed to match the one of the mapping
function.

In this Figure we also show the trace of the basis functions for the approximation
of the unknown along t = 1 in the local s, t coordinate system and in the global x, y
coordinate system. The knot vectors of the trimming curves are given by:

0 0 0 1 1 1

0 0 0.5 1 1

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-016.jpg&w=359&h=251

Stage 4: Introduction to numerical simulation 149

Figure 18 Geometry definition of plate with a hole:Top left: untrimmed NURBS surface in global x, y
system and Top right: trimming curves in local u, v system. Bottom: trace of basis functions
along t = 1 in the local s, t and in the global x, y coordinate system.

The coordinates of the control points and weights of the trimming curves are:

0 0.2 0 1

0.2 0.2 0 0.707

0.2 0 0 1

0 1 0 1

1 1 0 1

1 0 0 1

The implementation is the same as for the single patch, but as explained in Stage
3, we now have to include an additional mapping step from s, t to the u, v map before
mapping to the Cartesian x, y, z system.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-017.jpg&w=359&h=271

150 Advanced numerical simulation methods

Figure 19 Convergence for plate with hole.

3.8 Convergence test

For convergence tests it is common to use the L2 error in the strain energy norm,
defined as:

L2 =
√∫

�
(εe − ε)T · (σe − σ)Td�∫

�
εT

e σe d�
(99)

where εe and σe are the exact values of strain and stress.
We show the convergence of the L2 Norm for a k-refinement with order 2 in

Figure 19. All approaches discussed here give the same result.

4 SUMMARY AND CONCLUSIONS

In this stage we have introduced the steps in numerical simulation. The main aim was
to show the subtle differences between the conventional FEM approach and the one
using NURBS. We started with a simple one-dimensional example, which served well to
demonstrate the additional flexibility gained by using B-splines for the approximation
of the unknown. Proceeding to two dimensions, it was shown that mesh generation
can be avoided if the geometry of the problem is described by NURBS patches. On
practical examples it was shown that using B-splines for the approximation of the
unknown results in better convergence rates, i.e. results can be obtained with fewer
degrees of freedom.

In the next stage we venture into three dimensional space but restrict ourselves to
surfaces, thus still taking advantage of the CAD philosophy.

BIBLIOGRAPHY

[1] B.M. Irons and S. Ahmad. Techniques of Finite Elements. Halstead Press, 1980.
[2] J. Austin Cottrell, Thomas J.R. Hughes and Yuri Bazilevs. Isogeometric Analysis: Toward

Integration of CAD and FEA. John Wiley & Sons, Chichester, England, 2009.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-6&iName=master.img-018.jpg&w=169&h=132

Stage 4: Introduction to numerical simulation 151

[3] W. Ritz. Über eine neue Methode zur Lösung gewisser Variations probleme der math-
ematischen Physik. Journal für die Reine und Angewandte Mathematik, 135:1 to 61,
1909.

[4] I.M. Smith, D.V. Griffiths and L. Margetts. Programming the Finite Element Method.
Wiley, 2013.

[5] S.P. Timoshenko and J.N. Goodier. Theory of Elasticity. McGraw-Hill, New York, NY,
USA, 1970.

Chapter 6

Stage 5: Plates and shells

There is nothing more practical than a good theory
I. Kant

where we venture into three-dimensional space but stay in two local dimensions.

1 KIRCHHOFF PLATE

The Kirchhoff1–Love2 theory is an extension of the Bernoulli beam theory to thin plates
and shells. The theory was developed in 1888 by Love using assumptions proposed
by Kirchhoff. It is assumed that the mid-surface can be used to represent the three-

Figure 1 Gustav Robert Kirchhoff.

1Gustav Robert Kirchhoff (1824 to 1887) was a German physicist who contributed to the
fundamental understanding of electrical circuits, spectroscopy, and the emission of black-body
radiation by heated objects.
2Augustus Edward Hough Love (1863 to 1940), often known as A. E. H. Love, was a
mathematician famous for his work on the mathematical theory of elasticity.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-000.jpg&w=96&h=136

154 Advanced numerical simulation methods

Figure 2 Geometry definition of Kirchhoff plate.

dimensional plate or shell. The following kinematic assumptions are made in this
theory [5]:

• straight lines normal to the mid-surface remain straight and normal to the mid-
surface after deformation

• the thickness of the plate does not change during a deformation.

This means that thin plates and shells can be represented by surfaces with two
local coordinates.

1.1 Plates

We explain this theory first on a planar NURBS surface with loading perpendicular to
the plane (plate) and extend it later to a curved NURBS surface (shell). As shown in
Figure 2, the plate of thickness d is represented by a planar NURBS patch with local
coordinates u and v at mid thickness. The geometry is defined by:

x =
N∑

n=1

Rn(u, v)xn (1)

First we establish a local coordinate system u, v in the directions of vectors v1, v2.
The vectors are given by

v1 =
⎛
⎝ v1x

v1y

v1z

⎞
⎠= ∂x

∂u
; v2 =

⎛
⎝ v2x

v2y

v2z

⎞
⎠= ∂x

∂v
(2)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-001.jpg&w=263&h=183

Stage 5: Plates and shells 155

We construct a vector normal to these two by taking the x-product

N = v1 × v2 (3)

and normalize it

n =
⎛
⎝nx

ny

nz

⎞
⎠= N

J
(4)

where J =
√

n2
x + n2

y + n2
z is the Jacobian.

Assuming the plate is defined in the xy plane, the normal vector is n = (0 0 1) but
we will generalize this for shells later. There are now 3 strain components (normal
strains in u and v directions and a shear strain).

Following the derivation of the Bernoulli beam the strains are in Voigt notation:

⎛
⎝ εu

εv

γuv

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κu · ζ · d
2

κv · ζ · d
2

κuv · ζ · d
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

where ζ is a local coordinate perpendicular to the plate that ranges from −1 to 1.
The local curvatures are given by:

κu = ∂2w
∂u2

; κv = ∂2w
∂v2

; κuv = ∂2w
∂u∂v

+ ∂2w
∂v∂u

= 2 · ∂2w
∂v∂u

(6)

We approximate the deflection w with NURBS:

w =
Nd∑
n=1

Rd
n(u, v)wn (7)

where wn are parameter values and the superscript d indicates that different functions
to the ones for the description of the geometry will be used. The local curvatures are
then computed by

κu =
Nd∑
n=1

∂2Rd
n(u, v)
∂u2

wn

κv =
Nd∑
n=1

∂2Rd
n(u, v)
∂v2

wn (8)

κuv = 2 ·
Nd∑
n=1

∂2Rd
n(u, v)

∂u∂v
wn

156 Advanced numerical simulation methods

Care has to be taken to account for the fact that the coordinate system u and v
is not a Cartesian system and in general will not be orthogonal (i.e. the plate may
be skew). Therefore the local derivatives can not be directly used for computing the
internal work. The conversion of local curvatures to global ones for the general case
where the local axes are not orthogonal and aligned to the global axes can be performed
using tensor analysis. The derivation presented here follows closely the one presented
in [3], [2] and [1].

We introduce a metric tensor3:

A =
(

A11 A12

A21 A22

)
(9)

with Aij = vi · vj.
The inverse metric tensor is:

a = A−1 (10)

For example, the metric tensor for the Bernoulli beam, discussed earlier, can be
obtained by setting v1 = (∂x

∂u 0 0) and v2 = (0 0 0). In this case the tensor reverts to
a scalar and we have:

A =
(

dx
du

)2

; a =
(

du
dx

)2

(11)

which results in the multiplier for the local curvatures, that we obtained from applying
the chain rule, considering that the curvature of the geometry was zero.

The stiffness matrix of the plate can be obtained using the principle of virtual work
as explained for the beam. The coefficients of the stiffness matrix are given by:

kij = d3

12

∫ 1

ξ=−1

∫ 1

η=−1
BT

i · C · Bj · J · 0.25 · dξ dη (12)

where

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Rd
i

∂u2

∂2Rd
i

∂v2

2 · ∂2Rd
i

∂u∂v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

3In the mathematical field of differential geometry, a metric tensor is a function defined on a
surface which takes as input a pair of tangent vectors v1 and v2 and produces g(v1, v2) in a way
that generalizes many of the familiar properties of the dot product of vectors in Euclidean space.

Stage 5: Plates and shells 157

All transformations between the local and global coordinate systems are incorpo-
rated in the material matrix, which is given by:

C = E
1 − ν2

⎛
⎜⎜⎜⎜⎜⎜⎝

a2
11 νa11a22 + (1 − ν)a2

12 a11a12

νa11a12 + (1 − ν)a2
12 a2

22 a12a22

a11a12 a12a22
1
2 [(1 − ν)a11a22

+(1 + ν)a2
12]

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

For the special case of a plate, where the local axes u and v are parallel to the
global axes x, y we have:

A =

⎛
⎜⎜⎝
(

∂x
∂u

)2

0

0
(

∂y
∂v

)2

⎞
⎟⎟⎠ (15)

and

a =

⎛
⎜⎜⎝
(

∂x
∂u

)−2

0

0
(

∂y
∂v

)−2

⎞
⎟⎟⎠ (16)

and the material tensor is:

C = E
1 − ν2

⎛
⎜⎜⎜⎜⎝

a2
11 νa11a22 0

νa11a12 a2
22 0

0 0 1
2 [(1 − ν)a11a22]

⎞
⎟⎟⎟⎟⎠ (17)

The global curvatures for this plate are then given by:

κx = ∂2w
∂u2

· a11; κy = ∂2w
∂v2

· a22; κxy = 2 · ∂2w
∂v∂u

· √
a11a22 (18)

and the bending moments are:

mx = D(κx + ν · κy) (19)

my = D(κy + ν · κx) (20)

mxy = D(1 − ν)κxy (21)

where D = d3E
12(1−ν2) is the plate stiffness.

The components of the force vector due to a distributed load q(x, y), normal to
the plate mid surface are given by:

fi =
∫ 1

ξ=−1

∫ 1

η=−1
q(x, y) · Rd

i (u, v) · J · du dv (22)

158 Advanced numerical simulation methods

Figure 3 Geometry of plate and (right) representation with one NURBS patch (pu = pv = 1,
�u = �v = (0, 0, 1, 1) showing control points.

Dirichlet boundary conditions can be applied as explained previously by setting
the parameters associated with the anchors located on the side to be restrained to zero
(strong form) or adding a large number to the appropriate stiffness coefficients (weak
form).

1.2 Examples

Rectangular plate The first example is a rectangular plate with the following
properties:

• E = 2.1 · 108, ν = 0
• d = 0.1, l = 20 , b = 10

The plate is simply supported on all sides and loaded by a vertical load of

q = q0 sin
(πx

l

)
sin
(πy

b

)
(23)

For this case we know the exact solution for the deflection:

wex = q0

π4D

(
1
l2

+ 1
b2

)−2

sin
(πx

l

)
sin
(πy

b

)
(24)

This geometry can be defined with a NURBS surface of order 1 in both u and v
direction. Figure 3 shows the geometry and the representation with one NURBS patch.
The simply supported boundary conditions are implemented by the strong form of the
Dirichlet BC.

Order elevation Here we start with order elevating the NURBS describing the geo-
metry, while leaving the geometry description untouched. Figure 4 shows the anchors
for the various order elevations highlighting those where the parameters have been
set to zero.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-002.jpg&w=359&h=112

Stage 5: Plates and shells 159

Figure 4 Location of anchors for various basis function orders (pd
u = pd

v = 2 to 5). Hollow squares
depict anchors where the parameters have been set to zero to reflect zero Dirichlet boundary
conditions.

Figure 5 Subdivision of integration region for 4 knot insertions in each direction.

Knot insertion This refinement strategy involves the repeated insertion of Knots after
elevation to the minimum order of 2. Because of the limited span of the basis functions
the plate has to be subdivided into integration regions as shown in Figure 5.

K-refinement Here we elevate the order to p = 3 before inserting knots.
To test the convergence we plot the error norm of the deflection defined as

‖εw‖ =
∫

S |w − wex|dS∫
S |wex| (25)

where S is the surface of the plate, as a function of the degrees of freedom.
In Figure 6 we show the convergence of the various refinement strategies. It is clear

that the best refinement strategy for this type of problem is order elevation.

Skew plate The plate is similar to the one presented previously except that it is no
longer rectangular. We can obtain the new geometry by simply moving the lower
right and left control point. However, to introduce the use of trimming used later for
shells, we define the geometry with a trimmed NURBS patch. Figure 7 (left) shows the
trimming curves and (right) the trimmed NURBS patch.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-003.jpg&w=287&h=150
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-004.jpg&w=131&h=66

160 Advanced numerical simulation methods

Figure 6 Plot of error versus degrees of freedom for various refinement strategies.

Figure 7 Trimming curves (left) and original and trimmed NURBS patch (right) for the skew plate.

In addition to the transformation between the u, v and s, t coordinate system
already discussed in the section dealing with the description of the geometry, we also
need to express the vectors v1 and v2 in the local s, t system. This means that we need
the derivatives of x with respect to s, t.

These can be obtained applying the chain rule of differentiation:

v1 = ∂x
∂t

= ∂x
∂u

· ∂u
∂t

+ ∂x
∂v

· ∂v
∂t

(26)

v2 = ∂x
∂s

= ∂x
∂u

· ∂u
∂s

+ ∂x
∂v

· ∂v
∂s

For this problem no exact solution is available and therefore we plot the convergence
of the maximum deflection in Figure 8. The results are compared to an untrimmed
NURBS where the control points have been moved. We can see that the results are
identical, thus verifying the trimming method. We apply the same refinement strategies
as before and see that again order elevation gives the best results.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-005.jpg&w=204&h=144
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-006.jpg&w=359&h=144

Stage 5: Plates and shells 161

Figure 8 Convergence of maximum displacement for the different refinement strategies. Squares
indicate the results for an untrimmed NURBS patch.

2 KIRCHHOFF SHELLS

For shells we have to include membrane effects, generalize the geometry to include cur-
vature and introduce 3 components for the unknown u (ux, uy, uz). The displacement
field is now approximated by:

u =
Nd∑
n=1

Rd
n(u, v)un (27)

The membrane strains are defined as

εu =
Nd∑
n=1

∂Rd
i

∂u
· v1 · un

εv =
Nd∑
n=1

∂Rd
i

∂v
· v2 · un (28)

γuv =
Nd∑
n=1

1
2

(
∂Rd

i

∂u
· v2 + ∂Rd

i

∂v
· v1

)
· un

We now separate the membrane and the bending terms and compute two B
matrices, Bm for the membrane terms and Bκ for the bending terms.

The matrix associated with the membrane strains is given by:

Bm
i =

⎛
⎝ mi

1 · v1x mi
1 · v1y mi

1 · v1z

mi
2 · v2x mi

2 · v2y mi
2 · v2z

0.5(mi
1 · v2x + mi

2 · v1x) 0.5(mi
1 · v2y + mi

2 · v1y) 0.5(mi
1 · v2z + mi

2 · v1z)

⎞
⎠

(29)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-007.jpg&w=190&h=141

162 Advanced numerical simulation methods

where

mi
1 = ∂Rd

i

∂u
; mi

2 = ∂Rd
i

∂v
(30)

The matrix for the bending terms is given by:

Bκ
i =

⎛
⎜⎜⎝

bi
11 · nx bi

11 · ny bi
11 · nz

bi
22 · nx bi

22 · ny bi
22 · nz

bi
12 · nx bi

12 · ny bi
12 · nz

⎞
⎟⎟⎠ (31)

where

bi
11 = ∂2Rd

i

∂u2
− E1

11 · ∂Rd
i

∂u
− E2

11 · ∂Rd
i

∂v

bi
22 = ∂2Rd

i

∂v2
− E1

22 · ∂Rd
i

∂u
− E2

22 · ∂Rd
i

∂v
(32)

bi
12 = 2 ·

(
∂2Rd

i

∂u∂v
− E1

12 · ∂Rd
i

∂u
− E2

12 · ∂Rd
i

∂v

)

and

E1
11 = 1

J

[
(v2 × N) · ∂2x

∂u2

]
; E2

11 = 1
J

[
(N × v1) · ∂2x

∂u2

]

E1
22 = 1

J

[
(v2 × N) · ∂2x

∂v2

]
; E2

22 = 1
J

[
(N × v1) · ∂2x

∂v2

]
(33)

E2
12 = 1

J

[
(v2 × N) · ∂2x

∂u∂v

]
; E2

12 = 1
J

[
(N × v1) · ∂2x

∂u∂v

]

The stiffness submatrix is now given by

kij =
∫ 1

ξ=−1

∫ 1

η=−1

[
d · (Bm

i)T · C · Bm
j + d3

12
(Bκ

i)T · C · Bκ
j

]
· J · 0.25 · dξ dη (34)

2.1 Example 1: Scordelis roof

As the first example we choose one that has been used as a test case for shell analysis
in many publications. It is known as the Scordelis-Lo4 roof. The dimensions of the
roof are shown in Figure 9.

The properties are:

• E = 4.32 · 108 kN/m2, ν = 0
• d = 0.25, q = 90 kN/m2

4Alexander Scordelis (1923–2007) was a structural engineer and a professor at the University of
California, Berkeley. He made significant contributions to the analysis and design of long-span
shell roofs, reinforced and prestressed concrete structures, and all types of bridges.

Stage 5: Plates and shells 163

Figure 9 Geometry of shell and representation with one NURBS patch.

We describe the geometry with one NURBS patch. The input data for describing
the geometry are:

Knot vectors:

2 1 0 0 1 1

3 2 0 0 0 1 1 1

Coefficients:

16.07 0 0 1

16.07 50 0 1

0 0 13.48 0.7661566

0 50 13.48 0.7661566

-16.07 0 0 1

-16.07 50 0 1

The geometry is shown in Figure 9. The roof is supported on each side as indicated.
To avoid a rigid body movement one point was restrained in the y-direction. A reference
solution is given in [4]. We obtain the solution in two ways:

• By order elevating the NURBS used for the description of the geometry
• Using B-splines with increasing orders

Figure 10 shows the convergence of the maximum displacement. We can see that
order elevating the NURBS gives the best result. Using B-splines of different orders
results in a slightly slower convergence.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-008.jpg&w=215&h=212

164 Advanced numerical simulation methods

Figure 10 Convergence of solution for approximation with NURBS and B-splines.

Figure 11 Alexander Scordelis.

2.2 Example 2:Trimmed Scordelis roof

To apply the trimming method, used for the plate, to the shell we also need the second
derivatives of x in terms of s, t. Using the chain rule of differentiation we obtain:

∂2x
∂s2

=
(

∂2x
∂u2

· ∂u
∂s

+ ∂2x
∂u∂v

· ∂v
∂s

)
· ∂u

∂s
+ ∂x

∂u
· ∂2u

∂s2

+
(

∂2x
∂u∂v

· ∂u
∂s

+ ∂2x
∂v2

· ∂v
∂s

)
· ∂v

∂s
+ ∂x

∂v
· ∂2v

∂s2

∂2x
∂t2

=
(

∂2x
∂u2

· ∂u
∂t

+ ∂2x
∂u∂v

· ∂v
∂t

)
· ∂u

∂t
+ ∂x

∂u
· ∂2u

∂t2

(35)

+
(

∂2x
∂u∂v

· ∂u
∂t

+ ∂2x
∂v2

· ∂v
∂t

)
· ∂v

∂t
+ ∂x

∂v
· ∂2v

∂t2

∂2x
∂t∂s

=
(

∂2x
∂u2

· ∂u
∂s

+ ∂2x
∂u∂v

· ∂v
∂s

)
· ∂u

∂t
+ ∂x

∂u
· ∂2u
∂t∂s

+
(

∂2x
∂u2

· ∂u
∂s

+ ∂2x
∂v∂u

· ∂v
∂s

)
· ∂v

∂t
+ ∂x

∂v
· ∂2v
∂t∂s

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-009.jpg&w=171&h=126
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-010.jpg&w=72&h=115

Stage 5: Plates and shells 165

Figure 12 Trimming curves (left) and trimmed NURBS patch (right) for the skew Scordelis roof.
Below: untrimmed NURBS patch with control points and convergence of maximum
displacement.

With reference to Stage 2 the second derivatives of u, v are computed by:

∂2u
∂s2

= N1(t) · ∂2ub(s)
∂s2

+ N2(t) · ∂2ut(s)
∂s2

(36)

∂2v
∂s2

= N1(t) · ∂2vb(s)
∂s2

+ N2(t) · ∂2vt(s)
∂s2

(37)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-011.jpg&w=299&h=396

166 Advanced numerical simulation methods

Figure 13 Arched Scordelis roof: Top: Trimming curves and bottom: trimmed surfaces. From left to
right geometry 1 to 3.

∂2u
∂t2

= 0;
∂2v
∂t2

= 0 (38)

∂2u
∂s∂t

= −1 · ∂ub

∂s
+ 1 · ∂ut

∂s
(39)

∂2v
∂s∂t

= −1 · ∂vb

∂s
+ 1 · ∂vt

∂s
(40)

For the first test we introduce skewness in the geometry by 2 linear trimming
curves. Figure 12, shows the curves and geometry of the trimmed roof overlaid
onto the original geometry. The same geometry can be defined without trimming by
re-calculating the control point locations. The convergence of the maximum displace-
ment, shown in Figure 12. It can be seen that the results for the trimmed and untrimmed
shell are very close.

2.3 Example 3: Arched Scordelis roof

As a third example we introduce arching in the geometry, using trimming. The trim-
ming curves and the trimmed surfaces are shown in Figure 13. The convergence
of the maximum displacement using order elevation is shown in Figure 14. There
is a decrease in maximum displacement for the first two geometries and then an
increase. The reason for this is a change in the displacement pattern as can be seen
in Figure 15.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-012.jpg&w=359&h=175

Stage 5: Plates and shells 167

Figure 14 Arched Scordelis roof: Convergence of the maximum displacement.

Figure 15 Contours of vertical displacement for geometries 2 and 3.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-013.jpg&w=190&h=134
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-014.jpg&w=240&h=331

168 Advanced numerical simulation methods

3 MULTIPLE PATCHES

To analyze a problem with multiple patches some changes have to be made to the
program. Firstly, we must introduce a capability for handling more than one NURBS
patch. Secondly, we have to ensure compatibility conditions are satisfied where the
patches meet, i.e. we must enforce

uI
i = uII

i (41)

where the subscript indicates the location on the interface and the superscript indicates
the patch number. Note that unless we use special techniques such as proposed in [3] we
are only able to enforce C0 compatibility, i.e. the rotations will not match. It is no longer
possible to use the order elevation of the NURBS describing the geometry. Therefore
we will use B-splines and this means that we approximate the displacements by:

u =
Nd∑
n=1

Nd
n (u, v)un (42)

where Nd
n are B-spline functions. Our proposed approach, that the approximation of

the geometry is completely separate from the one of the unknown, is now crucial for
the implementation.

To ensure C0 compatibility at interfaces between patches the following conditions
have to be satisfied:

• The same basis functions are used for the description of the unknown in the
connecting patches at the interface.

• The location of anchors computed separately for each patch must match at the
interface.

3.1 Assembly

The implementation of a simulation involving more than one NURBS patch starts
with the determination of a connectivity array for each NURBS patch as introduced
earlier. The connectivity array is created as follows:

• The locations of anchors are computed for each patch in the s, t coordinate system
using the Greville formula and then mapped to the x, y, z coordinate system.

• It is checked whether any anchor locations coincide with ones computed for a
previous patch.

If this is the case, the anchor is given the number of
the previously computed anchor.
If not, the anchor is given a new number.

• Each NURBS patch is assigned a connectivity array that contains its anchor
numbers.

Stage 5: Plates and shells 169

The Dirichlet boundary conditions are implemented by producing a fixity array.
This array is of size (3, na) where na is the number of anchors and contains a 0 for
each degree of freedom that is restrained and a 1 otherwise.

For the assembly, the connectivity vector is consolidated into a destination vector
ldest of size (3 ∗ na). The entries in the destination vector specify the destination of
each coefficient of the stiffness matrix of the patch in the global stiffness matrix. A zero
entry specifies that the coefficient is not assembled because the associated parameter
is known to be zero (due to an imposed zero boundary condition).

Part of the code to assemble the stiffness matrix is shown here:

for i=1:nas*3

ii= ldest(i);

if(ii == 0) continue endif

F(ii,1)=F(ii,1) + f(i,1);

for j=1:nas*3

jj= ldest(j);

if(jj == 0) continue endif

K(ii,jj)=K(ii,jj) + k(i,j);

end

end

end

In the above nas is the number of anchors, F and K are the global force vector
and stiffness matrix respectively. f and k is the force vector and stiffness matrix of the
patch.

3.2 Example

We analyze a branched shell with two NURBS patches. Figure 16 shows the NURBS
patches together with trimming curves and Figure 17 the trimmed geometry. The
following properties are assumed

• E = 107

• ν = 0
• d = 0.2

The shell is fixed as shown in Figure 18 and loaded by a vertical distributed load
of 90 in the vertical direction. If we assume an order of p = 2 for the approximation
in both directions and for both patches the connectivity arrays are given by:

Patch 1: 1 2 3 4 5 6 7 8 9

Patch 2: 7 10 11 8 12 13 9 14 15

170 Advanced numerical simulation methods

Figure 16 Two NURBS patches with trimming curves.

Figure 17 Branched shell with 2 trimmed NURBS patches.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-015.jpg&w=311&h=333
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-016.jpg&w=190&h=165

Stage 5: Plates and shells 171

Figure 18 Location of anchors with global numbering for the approximation with B-splines of orders
pu = 2, pv = 2 for both NURBS patches. Imposed boundary conditions are shown.

Figure 18 shows the location of the anchors and their numbering. It can be seen
that the compatibility at the interface is ensured since the anchor locations match at
the interface. For this example the fixity arrays are given by:

Patch 1:

0 0 1 0 0 1 0 0 1

1 0 1 1 0 1 1 0 1

0 0 1 0 0 1 0 0 1

Patch 2:

0 0 1 0 0 1 0 0 1

1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

With this information the following destination vectors are obtained:

Patch 1:

1 0 2 3 4 5 0 0 0 6 0 7 8 9 10 0 0

0 11 0 12 13 14 15 0 0 0 47 48 49 50 51 52 0 53

54 0 0 0 55 56 57 58 59 60 0 61 62

Patch 2:

11 0 12 16 0 17 0 18 19 13 14 15 20 21 22 0 23 24

0 0 0 25 26 27 0 28 29 47 48 49 50 51 52 0 53

54 0 0 0 55 56 57 58 59 60 0 61 62

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-017.jpg&w=215&h=196

172 Advanced numerical simulation methods

Figure 19 Results of the analysis: Displaced shape.

Figure 19 shows one result of the analysis namely the displaced shape.

4 SUMMARY AND CONCLUSIONS

In this stage we have ventured into three-dimensional space, but the geometry descrip-
tion only involved NURBS surfaces. This is because for some problems, such as thin
plates and shells, simplified assumptions can be made that reduce the dimension of the
problem by one, without affecting the quality of the results.

It should have become clear to the reader by this stage, that introducing NURBS
technology has considerably improved the simulation of shells. Using conventional
FEM the approximation of the unknown requires the consideration of rotational
degrees of freedom and the generation of a mesh. Using NURBS surfaces for the descrip-
tion of the geometry and NURBS or B-splines for the approximation of the unknown
the introduction of rotational degrees of freedom is not only avoided but also no mesh
generation is required. NURBS and trimmed NURBS surfaces can describe complex
geometries accurately, and therefore the first examples involved only one patch. How-
ever, it was shown how this can be extended to multiple patches for example in the
case of intersecting shells.

Since the main theme of the book is to avoid mesh generation we have to look for
alternatives to the formulations discussed so far, that are based on the Ritz method
if we move to real 3-D problems. Fortunately such an alternative was proposed by
Trefftz and this leads us to the integral equations discussed next.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-7&iName=master.img-018.jpg&w=239&h=206

Stage 5: Plates and shells 173

BIBLIOGRAPHY

[1] Reinhard Fleissner. Isogeometrische Finite Elemente Methode für die lineare Kirchhoff-
Love-Schale. Master’s thesis, Technische Universitaet Graz, 2013.

[2] J. Kiendl, K.U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with
Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering,
198(49):3902–3914, 2009.

[3] Josef M. Kiendl. Isogeometric Analysis and Shape Optimal Design of Shell Structures.
PhD thesis, Technische Universitaet Muenchen, 2010.

[4] R. H. Macneal and R. L. Harder. A proposed standard set of problems to test finite element
accuracy. Finite Elements in Analysis and Design, 1(1):3–20, 1985.

[5] J. N. Reddy. Theory and analysis of elastic plates and shells. CRC Press, Taylor and
Francis, 2007.

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2F0168-874X%2885%2990003-4
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2009.08.013

Chapter 7

Stage 6: Integral equations

Sometimes one pays for the things one gets for nothing
A. Einstein

where we see the benefits of using integral equations.

1 INTRODUCTION

So far we have followed the classical approach in modeling, i.e. we have approximated
the unknown, using basis functions. We have seen that by using B-splines or NURBS
we get an increase in accuracy with fewer parameters as compared with Lagrange
polynomials. This is because these functions have properties that make them more
suitable for approximation. Let us now look at an alternative to this approach. In
choosing the functions for the approximation of the unknown we go one step further:
We choose functions that exactly satisfy the differential equations. In elasticity this
means that compatibility and equilibrium conditions are exactly satisfied, surely a big
improvement. Therefore, we change the paradigm: We use functions that satisfy the
DE exactly and approximate only the boundary conditions.

Functions that exactly satisfy the DE can be obtained as their solutions in an
infinite domain. For potential problems this is a solution for a source concentrated at
a point and in solid mechanics problems for point forces in an infinite domain. These
solutions are also referred to as fundamental solutions or Kernels. The first idea of the
method is due to Trefftz1 ([10]) and was proposed as an alternative to the Ritz method
introduced earlier.

Remark on notation Here we use a mixture of indicial and matrix notation. In previous
books on the BEM it was attempted to use only matrix notation but this was not
successful and resulted in lengthy formulae. Unfortunately this means that two different
notations are used for the coordinates i.e. x, y, z and x1, x2, x3 or y1, y2, y3. For the
displacement components ui are sometimes used instead of u. Note that u (italic) is
used for the potential/temperature here, not to be confused with local coordinate u.

1German mathematician Erich Trefftz (1888 to 1937).

176 Advanced numerical simulation methods

Figure 1 Erich Trefftz.

2 TREFFTZ METHOD

In the original version the method was applied to potential problems with the governing
differential equation:

∂qi

∂xi
− b = 0 for i = 1, 2, (3) (1)

where xi are Cartesian coordinates, qi are components of flow and b is flow per unit
volume. This differential equation governs steady state flow of temperature, water and
electricity.

For an isotropic material the relationship between potential or temperature u and
flow is given by the Fourier Law:

qi = −k · ∂u
∂xi

(2)

where k is the permeability or conductivity. Substitution of (2) into (1) gives the Laplace
equation

k · ∂2u

∂x2
i

− b = 0 (3)

A fundamental solution can be obtained for a source concentrated at a point in an
unbounded (infinite) domain. For this we introduce the Dirac Delta function with the
following properties:

δ(y, x) = 0 for y �= x
(4)∫

�

δ(y, x)d� = 1

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-000.jpg&w=97&h=141

Stage 6: Integral equations 177

where y (components y1, y2, y3) denotes the location of the source (source point) and
x (components x1, x2, x3) any location (field point). The integral is over the infinite
volume �.

A solution of the differential equation

k · ∂2U

∂x2
i

− δ(y, x) = 0 (5)

is, for a 3-D problem:

U(y, x) = 1
4πk

1
r

(6)

and for a 2-D problem:

U(y, x) = 1
2πk

ln
1
r

(7)

where capital U has been substituted for u to indicate that this is a fundamental solution
and r is the distance between x and y.

The flow vector at any point x can be obtained by substitution into Equation (2):

qi(x, y) = −k
∂U(y, x)

∂xi
(8)

The flow T in a direction defined by vector n can then be computed by

T(x, y) = −k · ∂U
∂n

= −k ·
(

nx
∂U
∂x1

+ ny
∂U
∂x2

+ nz
∂U
∂x3

)
(9)

For a 2-D problem we have

T(x, y) = 1
r

cos θ

2π
(10)

and for a 3-D problem

T(x, y) = 1
r2

cos θ

4π
(11)

where

cos θ = nxrx + nyry + nzrz (12)

178 Advanced numerical simulation methods

is the angle between the normalized position vector r and the vector n and

rx = 1
r

(x1 − y1)

ry = 1
r

(x2 − y2) (13)

rz = 1
r

(x3 − y3)

It can be seen that both solutions are singular at x = y, i.e. tend to infinity as r goes to
zero. The first one has a singularity of O(ln 1

r) or O(1
r) and is therefore weakly singular,

the second has a singularity of O(1
r) or O(1

r2) and is therefore strongly singular. This
fact will pose some challenges in the implementation.

Functions for the fundamental solutions are shown below

function U= LapU((r,k,dim)

%-------------------------------

% Fundamental solution for Laplace

% for Potential

% Input:

% r ... Distance between source and field point

% k ... Conductivity

% dim ... Cartesian dimension (2-D,3-D)

% Output:

% U ... Potential

%-------------------------------

if(dim == 2)

U= 1.0/(2.0*pi*k)*log(1/r);

else

U= 1.0/(4.0*pi*r*k);

endif

endfunction;

function T= LapT(r,dxr,Vnorm,dim)

%-------------------------------

% Fundamental solution for Laplace

% Normal gradient

% Input:

% r ... Distance between source and field point

% dxr(:) ... rx , ry , rz

% Vnorm(:) Normal vector

% dim ... Cartesian dimension

% Output:

% T ... flow in direction Vnorm

%-------------------------------

Stage 6: Integral equations 179

if(dim == 2)

T= vecdotp(Vnorm,dxr)/(2.0*pi*r);

else

T= vecdotp(Vnorm,dxr)/(4.0*pi*r*r);

endif

endfunction;

The basic idea of the Trefftz method is to construct different fundamental solutions
for a number of locations of fictitious source points with different source intensities.
For a source intensity F1 at location y1 the resulting flow is for example T(y1, x) · F1.
Assume that we have a boundary value problem, where the flow t(x) in a direction
normal to the boundary (defined by n) is given and the solution for the potential u
is required. We can satisfy the boundary conditions point wise (i.e. at x1, x2, . . .) by
assuming they are composed of fundamental solutions times unknown source densities
at a number of source points N.

For example for the boundary condition at x1 we have

t(x1) =
N∑

n=1

T(yn, x1) · Fn (14)

We can now satisfy the boundary conditions at N points and get a square system
of equations

t = T · F (15)

where

T =
⎛
⎝T(y1, x1) T(y2, x1) · · ·

T(y1, x2) T(y2, x2) · · ·
· · · · · · · · ·

⎞
⎠ (16)

and

t =
⎛
⎜⎝

t(x1)
t(x2)

...

⎞
⎟⎠, F =

⎛
⎜⎝

F1

F2
...

⎞
⎟⎠ (17)

which can be solved for the fictitious source intensities. We use the term fictitious to
indicate that the sources are not really there, are only used to obtain a solution of the
problem and must always be placed outside the solution domain.

After obtaining the solution for F the results for u at any point x inside the solution
domain can be computed by

u(x) =
N∑

n=1

U(yn, x) · Fn (18)

180 Advanced numerical simulation methods

Figure 2 Example for the Trefftz method.

Similarly the flow vector can be obtained as

qi(x) = −k ·
N∑

n=1

∂U(yn, x)
∂xi

· Fn (19)

2.1 Example

As an example we show the plane flow past a circular insulator. Consider the problem
where there is a constant flow q0 in the y-direction. We analyze the change in flow as
we place an insulator with radius R into the flow, which means that no flow can occur
perpendicular to the boundary of the insulator. The problem can be split into two (see
Figure 2):

• Problem a: flow without insulator
• Problem b: change in flow due to insulator

Problem (a) has an exact solution:

ua(x) = −q0

k
· y (20)

To obtain the boundary conditions for problem (b) we compute the flow normal to
the boundary of the insulator:

ta = ny · q0 = −q0 · sin φ (21)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-001.jpg&w=244&h=189

Stage 6: Integral equations 181

Figure 3 Figure showing the location of field and source points as well as the source intensities F.

Table 1 Coefficients of T.

i T(yi , x1) T(yi , x2) multiplied with

1 0.53052 0.16073 F1
2 0.16073 0.53052 F2
4 0.09594 0.10681 −F2
5 0.09362 0.09594 −F1
6 0.09594 0.09362 −F2
8 0.16073 0.10681 F2

Since the final flow has to be zero, the boundary condition for problem b is tb = −ta.
We now solve the problem (b) with the Trefftz method. For this we specify a number
of points xj where the boundary condition will be satisfied exactly. This is matched by
source points yi which are placed outside the solution space, i.e. inside the insulator
along a circle with the radius cR where 0 < c < 1 must be chosen so that a singularity
is avoided and the points are not too close to each other.

The most optimal value of c was found to be 0.7. We apply Equation (15) for the
solution and exploit the symmetries of the problem. As shown in Figure 3 only two
unknown fictitious sources (F1 and F2) remain. Therefore we need only two equations,
i.e. we need to satisfy the boundary conditions only at points x1 and x2. Because of the
symmetry conditions the other boundary conditions are also satisfied. Table 1 shows
the coefficients of the matrix T and the source intensities they are multiplied with.

We end up with a reduced matrix T:

T =
(

0.43690 0.12958
0.06479 0.43690

)
(22)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-002.jpg&w=172&h=175

182 Advanced numerical simulation methods

Figure 4 Convergence of maximum potential.

Figure 5 Results of Trefftz method: flow vectors.

and a reduced right hand side:

F =
(

1.0
0.7071

)
(23)

which can be solved for the fictitious sources F1 and F2. We use Equations (18) for
computing the potential and (19) for the flow vectors.

The exact solution for this problem is known. The accuracy of the solution depends
of the number of points x but convergence for this simple problem is quite fast.
Figure 4 shows the convergence of the maximum potential as a plot of error ver-
sus the total number of boundary points (not considering symmetry). The resulting
flow vectors are plotted in Figure 5. More details can be found in [2] and [3].

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-003.jpg&w=143&h=137
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-004.jpg&w=176&h=152

Stage 6: Integral equations 183

2.2 Conclusions

The Trefftz method is very simple but is not applicable to practical problems for the
following reasons:

• It is not very user friendly to have to choose the locations of the fictitious sources
and for practical problems this is not easy to do.

• The location where fictitious sources are placed can not be chosen freely: They
must lie outside the computational domain, they must not be too close together
and not too near to the boundary.

• There is no control of what happens in between the points where the boundary
conditions are enforced, leaving the possibility of oscillatory behavior.

Obviously the solution is to reduce the error in satisfying the boundary condition
over the whole boundary, rather than pointwise. This leads us to integral equations.

3 INTEGRAL EQUATIONS

We explain how to obtain an integral statement on a problem in elasticity first, since
the derivation uses well known engineering principles. The governing differential
equation is

∂σjk

∂xk
+ bj = 0 i = 1, 2, (3), j = 1, 2, (3) (24)

where σjk is the stress tensor and bj is the body force vector.
Introducing the constitutive law

σij = λδijεkk + 2µεij
(25)

= λδijuk,k + µ(ui,j + uj,i)

where the Lame constants are given by:

λ = Eν

(1 + ν)(1 − 2ν)
, µ = E

2(1 + ν)
(26)

E is the Modulus of Elasticity and ν is the Poisson’s ratio. In the above εij is the
strain tensor, ui is the displacement vector and ui,j means the first derivative to j. After
substitution we obtain the differential equation in terms of displacements ui

λuk,ki + µ(ui,jj + uj,ij) + bi = 0 (27)

where uk,ki means the second derivative to k, i.
A fundamental solution of this DE for a plane problem can be found by introduc-

ing the Dirac Delta function for the body force bi i.e. we obtain 2 solutions for the
displacement vector at x: for forces b1 = δ(y, x), b2 = 0 and b1 = 0, b2 = δ(y, x).

184 Advanced numerical simulation methods

Changing to matrix notation, the fundamental solutions for the displacement is
given by

U(y, x) =
(

Uxx Uxy

Uyx Uyy

)
= C ln

(
1
r

)
(C1I + R) (28)

where the first subscript in U defines the direction of the point force and the second the
direction of the displacement. For plane strain, the constants are given by C = 1

8πµ(1−ν)
and C1 = 3 − 4ν. I is the unit matrix and

R =
(

r2
x rxry

ryrx r2
y

)
(29)

As expected U is symmetric.
From this, a fundamental solution for the stresses can be derived. The stresses

acting on a plane perpendicular to a vector n, which will be called tractions from now
on, are obtained by

T(y, x) = C2
1
r

((C3I + 2 R) cos θ + C3R1) (30)

where for plane strain C2 = 1
4π (1−ν) , C3 = 1 − 2ν and

R1 =
(

0 nxry − nyrx

nyrx − nxry 0

)
(31)

It can be seen that T consists of a symmetric part multiplied by cos θ and an anti-
symmetric part represented by R1. Listings of functions to compute the fundamental
solutions are shown below:

function UK = UKernel(xP,xQ,E,ny)

% --

% Computes U(y,x) for plane strain

% INPUT:

% xP ... Coordinates of source point

% xQ ... Coordinates of field point

% E ... modulus of elasticity

% ny ... Poissons ratio

%

% OUTPUT:

% UK ... Displacement Kernel

%---

r= ((xQ(1)-xP(1))ˆ2+(xQ(2)-xP(2))ˆ2)ˆ0.5;

dxr(1)= (xQ(1)-xP(1))/r; dxr(2)= (xQ(2)-xP(2))/r;

G= E/(2.0*(1+ny)); c1= 3.0 - 4.0*ny; c= 1.0/(8.0*pi*G*(1.0 - ny));

clog= -c1*log(r);

UK(1,1)= c*(clog + dxr(1)*dxr(1)); UK(1,2)= c*dxr(1)*dxr(2);

UK(2,2)= c*(clog + dxr(2)*dxr(2)); UK(2,1)= UK(1,2);

endfunction

Stage 6: Integral equations 185

function TK = TKernel(xP,xQ,Vnor,ny)

%--

% TKernel: Computes T(y,x) for plane strain

%

% INPUT:

% xP ... Coordinates of source point

% xQ ... Coordinates of field point

% Vnor ... vector normal to boundary

% ny ... Poissons ratio

%

% OUTPUT:

% TK ... Traction Kernel

%---

r= ((xQ(1)-xP(1))ˆ2+(xQ(2)-xP(2))ˆ2)ˆ0.5;

dxr(1)= (xQ(1)-xP(1))/r; dxr(2)= (xQ(2)-xP(2))/r;

c3= 1.0 - 2.0*ny; Costh= vecdot(Vnor,dxr);

c2= 1.0/(4.0*pi*(1.0 - ny)); Conr= c2/r;

TK(1,1)=-(Conr*(c3 + 2.0*dxr(1)*dxr(1))*Costh);

TK(1,2)=-(Conr*(2.0*dxr(1)*dxr(2)*Costh+c3*(Vnor(1)*dxr(2)-Vnor(2)*dxr(1))));

TK(2,2)=-(Conr*(c3 + 2.0*dxr(2)*dxr(2))*Costh);

TK(2,1)=-(Conr*(2.0*dxr(1)*dxr(2)*Costh+c3*(Vnor(2)*dxr(1)-Vnor(1)*dxr(2))));

endfunction

For 3-D problems the fundamental solutions are

U(y, x) = C
1
r

(C1I + R) (32)

where C = 1
16πµ(1−ν) and C1 = 3 − 4ν, r is the distance between point y and x and

R =
⎛
⎝ r2

x rxry rxrz

ryrx r2
y ryrz

rzrx rzry r2
z

⎞
⎠ (33)

Below we show the listing of the function to compute the U-Kernel

function UK = UKernel(r,dxr,E,ny)

%--------------------------------

% Computes U(y,x) for 3-D

%

% INPUT:

% r ... distance field point source point

% dxr ... rx,ry,rz

% E ... modulus of elasticity

186 Advanced numerical simulation methods

% ny ... Poissons ratio

%

% OUTPUT:

% UK ... Displacement Kernel

%-------------------------------

G= E/(2.0*(1+ny)); c1= 3.0 - 4.0*ny;

c= 1.0/(16.0*pi*G*(1.0 - ny));conr=c/r;

UK(1,1)= conr*(c1 + dxr(1)*dxr(1));

UK(1,2)= conr*dxr(1)*dxr(2); UK(1,3)= conr*dxr(1)*dxr(3);

UK(2,1)= UK(1,2); UK(2,2)= conr*(c1 + dxr(2)*dxr(2));

UK(2,3)= conr*dxr(2)*dxr(3); UK(3,1)= UK(1,3);UK(3,2)= UK(2,3);

UK(3,3)= conr*(c1 + dxr(3)*dxr(3));

endfunction;

The fundamental solution for the tractions is given by

T(P, Q) = C2
1
r2

((C3I + 3 R) ∗ cos θ + C3R1) (34)

where C2 = 1
8π (1−ν) , C3 = 1 − 2ν and

R1 =
⎛
⎝ 0 nxry − nyrx nxrz − nzrx

nyrx − nxry 0 nyrz − nzry

nzrx − nxrz nzry − nyrz 0

⎞
⎠ (35)

T can be split into a symmetric and antisymmetric part.

T = 1
r2

(Ts + Ta) (36)

Figure 6 Enrico Betti.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-005.jpg&w=134&h=165

Stage 6: Integral equations 187

where

Ts = C2(C3I + 3R) · cos θ
(37)

Ta = C3R1

function TK = TKernel(r,dxr,Vnor,ny)

%---

% TKernel: Computes T(P,Q) for 3-D

%

% INPUT:

% r ... distance source point field point

% dxr ... rx,ry,rz

% Vnor ... vector normal to boundary

% ny ... Poissons ratio

%

% OUTPUT:

% TK ... Traction Kernel

%---

c3= 1.0 - 2.0*ny; Costh= vecdotp(Vnor,dxr);

c2= 1.0/(8.0*pi*(1.0 - ny)); Conr= c2/rˆ2;

TK(1,1)= -Conr*(c3 + 3.0*dxr(1)*dxr(1))*Costh;

TK(1,2)= -Conr*(3.0*dxr(1)*dxr(2)*Costh-c3*(Vnor(2)*dxr(1)-Vnor(1)*dxr(2)));

TK(1,3)= -Conr*(3.0*dxr(1)*dxr(3)*Costh-c3*(Vnor(3)*dxr(1)-Vnor(1)*dxr(3)));

TK(2,1)= -Conr*(3.0*dxr(1)*dxr(2)*Costh-c3*(Vnor(1)*dxr(2)-Vnor(2)*dxr(1)));

TK(2,2)= -Conr*(c3 + 3.0*dxr(2)*dxr(2))*Costh;

TK(2,3)= -Conr*(3.0*dxr(2)*dxr(3)*Costh-c3*(Vnor(3)*dxr(2)-Vnor(2)*dxr(3)));

TK(3,1)= -Conr*(3.0*dxr(1)*dxr(3)*Costh-c3*(Vnor(1)*dxr(3)-Vnor(3)*dxr(1)));

TK(3,2)= -Conr*(3.0*dxr(2)*dxr(3)*Costh-c3*(Vnor(2)*dxr(3)-Vnor(3)*dxr(2)));

TK(3,3)= -Conr*(c3 + 3.0*dxr(3)*dxr(3))*Costh;

endfunction;

3.1 Theorem of Betti

To obtain an integral statement we apply the well known theorem of Betti2. We specify
the first load case to be the one with a fictitious source (unit point loads in x and y
directions) placed at y (displacements U(y, x), tractions T(y, x)) and the second load
case to be the real load case that we want to solve (displacements u(x), tractions t(x)).
We assume for the moment that no body forces (other than the Dirac Delta forces for
the first load case) are present in the domain. These will be introduced later.

2Betti’s theorem, also known as Maxwell-Betti reciprocal work theorem, discovered by Enrico
Betti in 1872, states that for a linear elastic structure subject to two sets of forces Pi i = 1, . . . , m
and Qj, j = 1, 2, . . . , n, the work done by the set P through the displacements produced by the
set Q is equal to the work done by the set Q through the displacements produced by the set P.

188 Advanced numerical simulation methods

Figure 7 Explanation of the application of Betti’s theorem.

We consider the work done by the tractions times the displacements along a con-
tour S and the work done by the Dirac Delta forces times the displacements (see
Figure 7).

The work done by the displacements of load case 1 times the tractions of load
case 2 on a small portion of S, dS is:

dW12 = U(y, x) · t(x) · dS (38)

The work done by the tractions of load case 1 times the displacements of load
case 2 is:

dW21 = T(y, x) · dS · u(x) (39)

The work done by displacements of load case 1 times the loads of load case 2 at
point y is:

W12(y) = 0 (40)

since no body forces are present.
The work done by displacements of load case 2 times the loads of load case 1 is:

W21(y) = I · u(y) (41)

Integrating over S and setting the W12 = W21 we obtain

I · u(y) =
∫

S
U(y, x)t(x)dS −

∫
S

T(y, x)u(x)dS (42)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-006.jpg&w=216&h=153

Stage 6: Integral equations 189

Figure 8 Carlo Somigliana.

This integral equation is also known as the Somigliana identity3. The Somigliana
integral equation for elasticity is the equivalent of Green’s formula for potential theory.

For potential problems we apply the Green’s formula (for a derivation see [3]) and
obtain

u(y) =
∫

S
U(y, x)t(x)dS −

∫
S

T(y, x)u(x)dS (43)

It is inconvenient to have points y inside the domain and points x on the boundary.
Ideally we would like to have all the points on the boundary. Moving points y to the
boundary involves a limiting process of the integral as y approaches x.

Consider the 2-D case in Figure 9 where we provide a circular region of exclusion
around the point y, Sε .

We can rewrite the integrals as

∫
S

U(y, x)t(x)dS =
∫

Sε

U(y, x)t(x)dS +
∫

S−Sε

U(y, x)t(x)dS

(44)∫
S

T(y, x)t(x)dS =
∫

Sε

T(y, x)t(x)dS +
∫

S−Sε

T(y, x)t(x)dS

3Carlo Somigliana (1860 to 1955) was an Italian mathematician and a classical mathemati-
cal physicist faithful to the school of Enrico Betti and Eugenio Beltrami. He made important
contributions in elasticity.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-007.jpg&w=118&h=169

190 Advanced numerical simulation methods

Figure 9 Figure explaining limiting process.

We examine the value of the integral over Sε as the radius of the arc ε tends to
zero, t(x) tends to t(y) and becomes independent of the integral. Applying cylindrical
coordinates we have:

lim
ε→0

∫
Sε

U(y, x)t(x)dS = t(y)
∫ π

0
U · ε · dφ = 0 (45)

For the symmetric part of the Kernel T we have:

lim
ε→0

∫
Sε

Ts(y, x)u(x)dS = u(y)
∫ π

0

C · cos θ

ε
· ε · dφ (46)

and with cos θ = −1

u(y)
∫ π

0

−1
2π

· dφ = −1
2

· u(y) (47)

The result for the antisymmetric part of the Kernel is:

lim
ε→0

∫
Sε

Ta(y, x)u(x)dS = 0 (48)

The integral equation can now be written as:

c · u(y) = lim
ε→0

[∫
S−Sε

U(y, x) · t(x)dS −
∫

S−Sε

T(y, x) · u(x)dS
]

(49)

Where for smooth boundaries the free term is given by

c = 1
2

I (50)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-008.jpg&w=252&h=105

Stage 6: Integral equations 191

Similarly the integral equation for potential problems is obtained as

c · u(y) = lim
ε→0

[∫
S−Sε

U(y, x) · t(x)dS −
∫

S−Sε

T(y, x) · u(x)dS
]

(51)

where c = 1
2 . For boundaries that are not smooth the value of c differs.

However, as we will see in a moment this term is never explicitly computed. Because
of the singularity of the Kernels the integrands approach infinity as x approaches y and
care has to be taken in evaluating the integrals. Indeed, the second integral only exists
as a Cauchy principal value4. It should be noted that the integral equations are equally
valid for a finite domain (where the domain lies inside the boundary contour) and an
infinite domain (where the domain lies outside). Indeed the definition of the problem
would be incomplete, if only the boundary is specified. In addition a specification (via
the outward normal) of the direction away from the material is required.

3.2 Rigid body trick

A clever way of avoiding the computation of the free term and the Cauchy principal
value is to apply a rigid body movement of a finite domain (i.e. we set the displacement
values at all points on the boundary equal). In this case the boundary tractions must
be zero. Assuming a constant displacement vector ur at all locations on the boundary
(x and y) and setting all tractions on the boundary, t(x), to zero we obtain the following
integral equations:

c · ur = −
∫

S
T(y, x)dS · ur (52)

or

c = −
∫

S
T(y, x)dS (53)

Substitution of this result into (49) yields

−
∫

S
T(y, x)dS · u(y) =

∫
S

U(y, x) · t(x)dS −
∫

S
T(y, x) · u(x)dS (54)

or ∫
S

U(y, x) · t(x)dS =
∫

S
T(y, x) · (u(x) − u(y))dS (55)

We have not only succeeded in getting rid of the free term but also in removing
the need to compute a Cauchy principal value for the second integral because when x
approaches y the Kernel is multiplied by a term approaching zero.

4The Cauchy principal value, named after Augustin Louis Cauchy, is a method for assigning
values to certain improper integrals which would otherwise be undefined.

192 Advanced numerical simulation methods

With modification, the trick can also be applied to problems involving an infinite
domain, where constant displacement values along the boundary would not result
in zero tractions. In this case we make the domain finite by introducing an artificial
circular or spherical boundary with radius R and letting R go to infinity. This means
that when we apply the rigid body motion we have to include the integral over the
artificial boundary Sp (also known as the azimuthal integral).

c = −
(∫

S
T(y, x)dS +

∫
Sp

T(y, x)dSp

)
(56)

The azimuthal integral can be evaluated analytically using polar coordinates:

A =
∫

Sp

T(y, x)dSp =
∫ 2π

0

1
R

(Ts + Ta)R dφ = −I (57)

Since R cancels out there is no need to take the limit R → ∞ and this result is also
valid for an infinite domain. For a semi-infinite domain the limits of the integral are
from 0 to π and the result is A = 1

2 I.
The resulting integral equations for an infinite domain are

∫
S

U(y, x) · t(x)dS =
∫

S
T(y, x) · (u(x) − u(y))dS − A (58)

A similar trick can be applied to potential problems: For a uniform temperature
the flow must be zero, resulting in:

∫
S

U(y, x) · t(x)dS =
∫

S
T(y, x) · (u(x) − u(y))dS (59)

for finite problems and

∫
S

U(y, x) · t(x)dS =
∫

S
T(y, x) · (u(x) − u(y))dS − A (60)

for infinite problems.

Exterior and interior domains The unique feature of the boundary integral represen-
tation is that one needs to specify the side of the boundary where the material is and if
it is a finite domain (interior) or an infinite or semi-infinite (exterior) domain. The first
definition is via a vector normal to the boundary that points away from the material
(outward normal) and the second one is by adding or not the azimuthal integral.

Stage 6: Integral equations 193

3.3 Conclusions

We have now succeeded to replace the differential equation with a boundary integral
equation. Historically this was a remarkable achievement. In 1860 Du Bois-Reymond5

wrote (translation from German):

“Since 1852 I have come across integral equations in the theory of partial differen-
tial equations so often that I am convinced that advances in this theory are linked
to the treatment of integral equations, about which virtually nothing is known.’’

In 1930 E.J. Nyström [6] wrote (translated from German):

“Indeed the later development in science has not only verified his statement, but
integral equations and their applications have developed into a powerful tool that
may be even more general and more useful than that of differential equations. For
example recently an integral equation was developed for which there is no known
differential equation’’

This statement comes about 25 years before the advent of the digital computer.
Since then integral equations have been largely hidden away and have been dominated
by differential equations and the “big sister’’ FEM. It is an appropriate time to bring
them out in the open.

4 NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

The main task is now of course the solution of the integral equations. For practical
problems only a numerical solution is possible. In a well posed boundary value problem
either u is known (Dirchlet BC) or t is known (Neumann BC) on parts of the boundary
and a solution is sought for the unknown.

In the following we discuss various methods for the solution of integral equations
in a historical way starting with a method proposed by E.J. Nyström [6] in 1930.

4.1 Nyström method

The basic idea of the method is quite simple: We evaluate the integrals using Gauss
Quadrature. This is explained on a flow example and a Neumann problem with known
values of t = t0 and the integral equation can be written as:

∫
S

T(y, x) · (u(x) − u(y))dS + 1 =
∫

S
U(y, x) · t0(x)dS (61)

5Bemerkungen ueber
z = ∂2z
∂x2 + ∂2z

∂y2 = 0, Journal fuer reine und angewandte Mathematik,
Bd. 103.

194 Advanced numerical simulation methods

To apply the integration rule we have to first introduce a local coordinate ξ that
ranges from −1 to 1. For the integral on the left we have:

∫
S

T(y, x) · (u(x) − u(y))dS =
∫ 1

−1
T(y, x) · (u(x) − u(y)) · J · dξ (62)

where J is the Jacobian of the transformation from x to ξ . Next we replace the integrals
by a sum:

∫ 1

−1
T(y, x) · (u(x) − u(y)) · J · dξ =

G∑
g=1

T(y, xg) · (u(xg) − u(y)) · Jg · Wg (63)

where G is the number of Gauss points and Wg are weights. To determine the unknowns
u(xg) we need G equations. We now proceed in a similar way to the Trefftz method,
i.e. we consider G different locations of the sources.

However instead of the sources being in different locations we assume that they
are placed at the same points as the locations of the unknowns, i.e. the Gauss points.
We obtain the following system of equations

T · u = F (64)

where

T =
⎛
⎝ 1 − a1 T(y1, x2) · J2 · W2 · · ·

T(y2, x1) · J2 · W2 1 − a2 · · ·
· · · · · · · · ·

⎞
⎠ (65)

and

u =
⎛
⎜⎝

u(x1)
u(x2)

...

⎞
⎟⎠ , F =

⎛
⎜⎝

F1

F2
...

⎞
⎟⎠ (66)

with

an =
G∑

g=1

T(yn, xg) · Jg · Wg|g �=n (67)

and

Fn =
∫

S
U(yn, x)t0(x)dS (68)

This integral can not be evaluated directly because of the singularity of the Kernel
U. One way of evaluating the integral is to use a local correction or regularization.

Stage 6: Integral equations 195

Figure 10 Example of the application of the Nyström method to the simulation of a spanner. Top:
CAD model showing patches, Middle: Boundary conditions and subdivision into integration
regions. Bottom: Displaced shape.

We replace the Kernel U by a locally corrected Kernel U∗ that is defined by

U∗(yn, x) = L(yn, x) if x ∈ �y (69)

U∗(yn, x) = U(yn, x) otherwise (70)

where �y is a small region of exclusion around point yn. L can be computed by solving
the following linear system of equations

N∑
n=1

Nn(yn)L(yn, x) =
∫

�y

U(yn, x)Nn(yn)d� (71)

where Nn(yn) are suitable test functions (polynomials).
A detailed explanation of the method is beyond the scope of this book but inter-

ested readers may consult an upcoming publication on this subject ([11]) where NURBS
technology is applied for the first time. An example of application, namely the simu-
lation of a spanner, is shown in Figure 10. Using NURBS patches for the description
of the surface of the problem provides an added value because of the better control of
continuity, an important aspect of this method.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-009.jpg&w=287&h=212

196 Advanced numerical simulation methods

Figure 11 Boris Galerkin.

4.2 Galerkin method

The Galerkin6 method is actually an application of the residual method introduced
earlier for the solution of differential equations. The aim is to minimize the error in
the satisfaction of the integral equation over S.

We assume to have an approximation of u ≈ ũ and t ≈ t̃ and want to obtain a
solution that has the minimum error. We introduce test functions fn into (55) and
obtain N integral equations of the type:∫

S
fn(y)

∫
S

U(y, x) · t̃(x)dS =
∫

S
fn(y)

∫
S

T(y, x) · (ũ(x) − ũ(y))dS (72)

n = 1, 2, . . . , N

which can be solved for the unknowns. Test functions are usually chosen to be the
basis functions for the approximation of the unknown. The method adds complexity
to the implementation and requires additional numerical work, since a double (or
triple) integral has to be solved numerically. It is popular with mathematicians since it
lends itself easily to theoretical error analysis.

4.3 Collocation

In this method we ensure that the integral equation is only satisfied at a discrete number
of points yn:∫

S
U(yn, x) · t̃(x)dS =

∫
S

T(yn, x) · (ũ(x) − ũ(yn))dS n = 1, 2, . . . , N (73)

6Boris Grigoryevich Galerkin (1871 to 1945), born in Polotsk, Russian Empire, was a
mathematician and an engineer.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-010.jpg&w=123&h=147

Stage 6: Integral equations 197

This method avoids the additional integration, is easier to implement and requires
less numerical work. On first glance it appears to be much less accurate, but experience
showed that the loss in accuracy is small and easily compensated by the decrease in
complexity of implementation and run times.

4.4 Discretisation

Whether we use Galerkin or Collocation we need to discretize the integral equations in
order to solve them. As with the FEM it is convenient to divide the integration region
into subregions and to assume a piecewise approximation of u and t over it. For the
collocation method the integral equation can be re-written as

E∑
e=1

∫
S

U(yn, x) · t̃(x)dSe =
E∑

e=1

∫
S

T(yn, x) · (ũ(x) − ũ(yn))dSe (74)

n = 1, 2, . . . , N

where E is the number of subregions (elements). One of the early implementation of
discretisation appeared in [7].

In the simplest approach we assume that the values of t̃ and ũ are constant within
an element e which means that they can be taken outside the integral. We assume that
the source points yn are located at the centers of the elements. The discretized integral
equations can now be written as:

E∑
e=1

t̃e ·
∫

S
U(yn, x)dSe =

E∑
e=1

(ũe − ũn)
∫

S
T(yn, x)dSe n = 1, 2, . . . , N (75)

where t̃e and ũe are the approximate values of t and u inside element e.
Let us demonstrate the method on the example of the circular insulator, solved

with the Trefftz method. Figure 12 shows a possible discretization of the insulator into
constant elements.

The discretized integral equation for this problem is

E∑
e=1

Ue
n · te =

E∑
e=1

Te
n(ue − un) (76)

where

Ue
n =

∫
Se

U(yn, x)dSe;
Te
n =

∫
Se

T(yn, x)dSe (77)

198 Advanced numerical simulation methods

Figure 12 Flow past insulator: Discretisation into constant elements.

Figure 13 Flow past insulator: Convergence of maximum potential.

Because the integration regions are straight lines the integrals can be evaluated
analytically (for details see [2]). Equation (76) can be written as a system of equations

Tu = Ut0 (78)

and with the values of t0 known, can be solved for the unknown potentials u.
Figure 13 shows the convergence of the solution. It can be seen that the conver-

gence is much slower than for the Trefftz method. This is hardly surprising since

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-011.jpg&w=204&h=189
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-8&iName=master.img-012.jpg&w=154&h=146

Stage 6: Integral equations 199

the approximation of the geometry and the known and unknown values is quite
crude.

5 SUMMARY AND CONCLUSIONS

We have introduced the concept of using fundamental solutions of the differential
equation. The benefits are immediately apparent: Since the solution inside the domain
now satisfies the differential equation exactly, no approximation occurs there and the
only approximation is in the satisfaction of the boundary conditions.

Historically, the first attempt at a solution with this idea was performed by Trefftz,
who proposed it as an alternative to the Ritz method, introduced earlier. Unfortunately
this method is not usable for practical applications, mainly due to the fact that source
points need to be specified.

As an alternative we introduced integral equations. Using well known engineering
principles, such Betti’s theorem, we derived the Somigliana identity in a much easier and
understandable way than proposed by mathematicians (see for example the Appendix
in [3] where the derivation is made by applying Green’s theorem). Using a limiting
procedure we managed to move the source points to the boundary thereby making
the method usable. The result is an integral equation linking the known and unknown
value on the boundary.

The integral equations can be solved by discretization, i.e. by dividing the bound-
ary into smaller elements and assuming an approximation over each element much
in the same way as is done in the finite element method. Two possibilities have been
proposed for the solution: One involving a minimization of the error in satisfying the
integral equation at all points on the boundary (Galerkin method), the other involving
a satisfaction only at discrete points (Collocation method). Mathematicians favor the
former since error estimates can be derived. However, engineers have found that the
additional effort in implementation and in the solution does not lead to a significant
increase in accuracy. Therefore Collocation has been the favorite by engineers for prac-
tical implementation. Indeed, the first papers on the implementation of isogeometric
BEM technology ([8], [9], [5] and [1]) use Collocation. We will follow this trend here.

The first benefit of boundary integral approach becomes apparent immediately:
The dimension of the problem has been reduced. This means that we only have to
deal with values at the boundary of the domain, with the values inside the domain
computed using functions that satisfy the differential equation exactly.

In elasticity this means for example that equilibrium and compatibility are satisfied
exactly inside the domain. This results in a second benefit, namely that we expect
more accurate results inside the domain, than with domain methods such as the Finite
Element Method.

Finally, this method is ideally suited to the isogeometric concept and means that
data from CAD programs, that describe surfaces, can be used directly for the simula-
tion. This comes at a price, however. Solving the integral equations is not an easy task,
considering that the fundamental solutions are singular. This will be a major challenge
in the implementation, discussed next. Furthermore, all methods lead to fully popu-
lated system matrices, another difference to the FEM. For the method to be competitive
therefore the number of unknowns has to be significantly smaller.

200 Advanced numerical simulation methods

Comparison of the number of unknowns with domain methods depends on the
ratio of boundary surface to volume. For problems such as tunnels and underground
caverns, the volume is much greater than the boundary surface (i.e. surface of the
excavation) and for practical purposes the volume of the ground can be assumed to be
infinite. Therefore, for these types of problems, the method will always be superior to
domain methods. This is why the first practical uses of the method occurred in mining
([4]). For other problems, involving low volume to surface ratios, the method will
only be competitive if the quality of the results is better. The last example showed that
using a constant approximation over linear segments provides poor quality results. So
obviously the aim has to use higher order approximations. Indeed, the use of NURBS
is ideal for this purpose.

Therefore we introduce the Boundary Element Method next.

BIBLIOGRAPHY

[1] G. Beer. Mapped infinite patches for the NURBS based boundary element analysis in
geomechanics. Computers and Geotechnics, 66:66–74, 2015.

[2] G. Beer, I. Smith and C. Duenser. The Boundary Element Method with Programming.
Springer-Verlag, Wien, 2008.

[3] G. Beer and J.O. Watson. Introduction to Finite and Boundary Element Methods for
Engineers. Wiley, 1992.

[4] F.H. Deist, M.D.G. Salamon and E. Georgiadis. A new digital method for three-
dimensional stress analysis in elastic media. Rock Mechanics, 5(189–202), 1973.

[5] Benjamin Marussig, Jürgen Zechner, Gernot Beer and Thomas-Peter Fries. Fast isogeo-
metric boundary element method based on independent field approximation. Computer
Methods in Applied Mechanics and Engineering, 284(0):458–488, 2015. Isogeometric
Analysis Special Issue.

[6] E.J. Nyström. Über die praktische Auflösung von Integral-gleichungen mit Anwendungen
auf Randwertaufgaben. Acta Math., 54:185–204, 1930.

[7] F.J. Rizzo. An integral equation approach to boundary value problems in classical
elastostatics. Q. Appl. Math., 25:83–95, 1967.

[8] M.A. Scott, R.N. Simpson, J.A. Evans, S. Lipton, S.P.A. Bordas, T.J.R. Hughes and
T.W. Sederberg. Isogeometric boundary element analysis using unstructured T-splines.
Computer Methods in Applied Mechanics and Engineering, 254(0):197–221, 2013.

[9] R.N. Simpson, S.P.A. Bordas, J. Trevelyan and T. Rabczuk. A two-dimensional isogeo-
metric boundary element method for elastostatic analysis. Computer Methods in Applied
Mechanics and Engineering, 209–212(0):87–100, February 2012.

[10] Erich Trefftz. Ein Gegenstück zum Ritzschen Verfahren. In Proc. 2. Int. Congress in
Applied Mechanics, 1926.

[11] J. Zechner, B. Marussig, G. Beer and T.P. Fries. The Isogeometric Nyström Method.
Computer Methods in Applied Mechanics and Engineering, submitted 2015.

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2012.11.001
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.compgeo.2015.01.012
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2014.09.035
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2011.08.008
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2014.09.035
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2011.08.008
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF02547521

Chapter 8

Stage 7:The boundary element method
for plane problems

There is nothing more powerful than an idea whose time has come
V. Hugo

where we unveil the beauty of Cinderella, so that it can be seen.

1 INTRODUCTION

In the previous stage we discovered that using integral equations brings us closer to
CAD, because the problem is defined by boundary curves or surfaces. We learned that
the integral equations can be solved by an approximation of the boundary values, but
that assuming constant variation does not yield good results. Lagrange/Serendipity
functions, as are being used in the FEM seem an obvious choice for approximating the
boundary values. This was first suggested by Lachat and Watson [2] for the description
of the geometry as well as the approximation of the boundary values. In the explanation
of the boundary element method (BEM) we start with plane problems and the classical
isoparametric approach, using Serendipity functions. We then introduce NURBS and
highlight the salient differences. Three-dimensional problems are discussed next. We
will see that the most challenging part of the implementation is the evaluation of the
integrals due to the singular nature of the Kernels.

Notation A few more words are appropriate here on the notation used. We define by
u or u the potential or displacement vector and by t or t the flow or traction vector.
Note the difference to the local coordinates u and t (not italic). The parameters are
defined locally for NURBS patch e by ue

i or ue
i or te

i or te
i . The global parameters are

specified as ui or ui or ti or ti. In the following we use the notation for vectors, that
would revert to scalars for potential problems. We refer to the NURBS curves, that
describe geometry, as patches.

2 CLASSICAL ISOPARAMETRIC APPROACH

For each boundary element e the geometry and boundary values are approximated by:

xe(ξ) =
I∑

i=1

Ni(ξ) · xe
i (1)

202 Advanced numerical simulation methods

ue(ξ) =
I∑

i=1

Ni(ξ) · ue
i (2)

te(ξ) =
I∑

i=1

Ni(ξ) · te
i (3)

where Ni are suitable basis functions of the local coordinate ξ, xe
i specify the location

of the nodal points, ue
i , te

i are nodal values of u, t and I is the number of element
nodes. The term isoparametric means that the same functions are used for all
descriptions.

The collocation points yn are conveniently taken to be the nodal points of elements.
The discretized integral equation can be written as:

E∑
e=1

∫
Se

U(yn, x) · t(x)dSe =
E∑

e=1

[∫
Se

T(yn, x) · u(x)dSe − u(yn)
∫

Se

T(yn, x)dSe

]

n = 1, 2, . . . , N (4)

Note that because u(yn) is constant, it can be taken outside the integral.
Substitution of the approximations and changing the integration limits to −1, +1

we obtain:

E∑
e=1

∫ 1

−1
U(yn, xe(ξ))

[
I∑

i=1

Ni(ξ) te
i

]
J dξ

=
E∑

e=1

∫ 1

−1
T(yn, xe(ξ))

[
I∑

i=1

Ni(ξ)ue
i

]
J dξ −

[
I∑

i=1

Ni(ξn)ue
i

]
E∑

e=1

∫ 1

−1
T(yn, xe(ξ))J dξ

n = 1, . . . , N (5)

where N is the total number of collocation points (= nodal points) and ξn is the local
coordinate of collocation point n.

The nodal values can be taken outside the integrals resulting in:

E∑
e=1

I∑
i=1

[∫ 1

−1
U(yn, xe(ξ))Ni(ξ)J dξ

]
te
i =

E∑
e=1

I∑
i=1

[∫ 1

−1
T(yn, xe(ξ)) · [Ni(ξ)] J dξ

]
ue

i

−
[

I∑
i=1

Ni(ξn)uen
i

]
E∑

e=1

∫ 1

−1
T(yn, xe(ξ))J dξ

(6)

where en indicates an element that contains the collocation point n.

Stage 7: The boundary element method for plane problems 203

Changing left and right hand side, a set of equations for N nodal points can be
obtained:

E∑
e=1

I∑
i=1

Te
niu

e
i −

[
I∑

i=1

Ni(ξn)uen
i

]
Tn =

E∑
e=1

I∑
i=1

Ue
nit

e
i for n = 1, 2, 3, . . . , N (7)

with

Ue
ni =

∫ 1

−1
U
(
yn, xe(ξ)

)
Ni(ξ)J dξ (8)

Te
ni =

∫ 1

−1
T
(
yn, xe(ξ)

) · Ni(ξ)J dξ (9)

Tn =
E∑

e=1

∫ 1

−1
T
(
yn, xe(ξ)

)
J dξ (10)

Equation (7) can be assembled into a system of equations

[T] {u} = [U] {t} (11)

where {u} and {t} contain the values of u and t at all nodes. Matrices are assembled in
a loop over all elements and nodes

Tn,inci(i) = Tn,inci(i) +
Te
ni (12)

Un,inci(i) = Un,inci(i) +
Ue
ni

where inci(i) is the global node number of the local node i (see Figure 1). The Kroneker
Delta property of the basis function means that diagonal sub-matrices need not be
computed. Instead they are determined by taking the negative sum of the off-diagonal
sub-matrices. In the case of an infinite or semi-infinite domain problem the value of
the azimuthal integral has to be added as explained previously.

2.1 Numerical evaluation of integrals

Here we discuss the numerical evaluation of the integrals. We divide the integrals into
the following cases:

• Regular integrals: This is the case when the collocation point is not inside element
e or – in the case it is – the integrand involves the Kernel U and the shape func-
tion tends to zero as collocation point is approached, therefore canceling out the
singularity.

• Nearly singular integrals: This is the same as for regular integrals, except that the
collocation point is near the element being integrated.

• Weakly singular integrals: This is the case where the collocation point is inside the
element, the shape function does not tend to zero as the point is approached and
the integrand involves the Kernel U.

204 Advanced numerical simulation methods

Figure 1 A plane problem showing collocation points and discretization with quadratic Serendipity
boundary elements. One boundary element is highlighted together with its nodal points,
local coordinate and local numbering (inci in this case is (2, 4, 3)). Collocation points marked
in red indicate singular integration, in blue nearly singular integration and in green regular
iteration.

• Strongly singular integrals: This is the case where the collocation point is inside the
element and the integrand involves the Kernel T. This integral only exists as Cauchy
principal value. However, by introducing the rigid body trick and considering the
Kroneker Delta property of the basis function, this integral need not be computed.

Regular and nearly singular integration For this case we can employ Gauss Quadra-
ture. The regular integrals are given by

Ue
ni =

M∑
m=1

U
(
yn, xe(ξm)

)
Ni(ξm)J(ξm) · Wm

Te
ni =

M∑
m=1

T
(
yn, xe(ξm)

)
Ni(ξm)J(ξm) · Wm (13)

Tn =
E∑

e=1

M∑
m=1

T
(
yn, xe(ξm)

)
J(ξm) · Wm

In the above M is the number of Gauss points (chosen depending on the proximity
of the collocation point to the element), ξm are coordinates of Gauss points, J is the

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-000.jpg&w=203&h=218

Stage 7: The boundary element method for plane problems 205

Table 1 Required number of Gauss points.

R/L ≮1.4025 ≮0.6736

M 3 4

Jacobian of the transformation between the local and the global coordinate system
and Wm are weights. For nearly singular integrals the collocation point is near the
element and the Kernel function rises sharply. If the number of integration points is
not increased considerably the results will be in error.

Early work of adapting the Gauss Quadrature method to the isoparametric BEM
was carried out by Watson [6]. By only considering the singular part of the Kernel he
managed to develop approximate formulae for the integration error, based on error
estimates by Stroud and Secrest [5]. For example, integrating the function 1

r in the
local coordinate ξ space, ranging from −1 to 1, the approximate integration error as
a function of the number of Gauss points M can be written as:

ε =
∣∣∣∣∣
∫ 1

−1

1
r(ξ)

dξ −
M∑

m=1

Wm
1

r(ξm)

∣∣∣∣∣� L
4

2M 4
R2M+1

(14)

where L is the length of the integration region and R is the shortest distance of the
collocation point to the integration region. This error indicator can be used to deter-
mine the number of integration points depending on L and R (see [1]). Regarding the
maximum number of Gauss points that should be used, it has been found that it is
more efficient to use few points and to subdivide the integration region.

Table 1 shows the number of Gauss points required for the integration involving
a Kernel of o(1

r) depending on the value of R/L not being smaller than a certain value.
We can use this criterion also for the Kernel with o(ln1

r) and be on the safe side. For
values of R

L < 0.6736 the integration region has to be subdivided.

Weakly singular integrals The kernel U has a singularity of o(ln(1
r)). The product UNi

tends to infinity for cases where Ni does not tend to zero at the singularity point.
For this we can use a coordinate transformation between the coordinate ξ and a

coordinate γ as originally proposed by Telles [3] resulting in a zero Jacobian at the
collocation point, thereby canceling the singularity. This means that the Integration in
the γ coordinate space can be carried out using normal Gauss integration.

For example, if the collocation point is at γ = −1, the transformation is given by:

ξ(γ) = 1
2

(γ2 − 1) + γ + 1 (15)

The Jacobian of this transformation is J(γ) = 1 + γ and approaches 0 for γ = −1.

206 Advanced numerical simulation methods

The Integration can now be carried out using standard Gauss Quadrature

Ue
ni =

∫ 1

−1
U
(
yn, xe(ξ(γ))

)
Ni(ξ(γ)) · J · J(γ) · dγ (16)

=
M∑

m=1

U
(
yn, xe(ξ(γm)

)
Ni(ξ(γm)) · J · J(γm) · Wm

3 NURBS BASED APPROACH

If we use a NURBS based approach subtle changes have to be made in the implemen-
tation. The first action will be to depart from the isoparametric concept by allowing
different approximations for the geometry and the variation of the boundary values:

xe =
I∑

i=1

Ni(u) · xe
i (17)

ue =
Id∑

i=1

Nd
i (u) · ue

i (18)

te =
It∑

i=1

Nt
i (u) · te

i (19)

where Ni(u) are the basis functions for approximating the geometry and xe
i are the coor-

dinates of the control points. Nd
i (u) are the basis functions for describing the variation

of u and ue
i are the corresponding parameter values. Finally Nt

i (u) are the basis func-
tions for describing the variation of t and te

i are the corresponding parameter values.
Recall that u and t are either two-dimensional vectors in the case of elasticity or scalars
in the case of potential problems.

The next thing that is different to the previous approach is that we no longer have
nodal points that can be used as collocation points. Therefore the location of these
points has to be explicitly computed. Since we need as many collocation points as
unknown parameters it is logical to put these points where the anchors of the basis
functions are. To compute the location of collocation points we determine their location
first in local u coordinates using the Greville formula introduced earlier and then in the
global x, y coordinates. This is explained in Figure 2 showing a possible discretization
of a circular boundary. Two NURBS patches are shown with control points and the
outward normal. This geometry is defined with the basis functions Ni(u) shown under
b). The variation of u is defined by the basis functions Nd

i (u) shown after refinement
under c) together with the anchors. These anchors are used to compute the collocation
points. The local coordinates of the anchors are:

ui(n) = ui+1 + ui+2 + . . . + ui+p

p
i = 0, 1, . . . , I (20)

Stage 7: The boundary element method for plane problems 207

Figure 2 A circular boundary with a) 2 NURBS patches with outward normal, control points (squares)
and collocation points (circles) showing local and global numbering of parameters for potential
and elasticity problems (in parentheses) b) basis functions used for the description of the
geometry c) basis functions for the description of the unknown u (the anchors shown by
filled circles are used to compute the location of collocation points).

where i(n) is the local number of the collocation point n and ui+1 . . . are the entries in
the Knot vector.

The global coordinates are computed by:

yn =
I∑

i=1

Ni(ui(n)) · xe
i (21)

The discretized BEM equations are now:

E∑
e=1

I∑
i=1

Te
niu

e
i −

[
I∑

i=1

Ni(un)uen
i

]
Tn =

E∑
e=1

I∑
i=1

Ue
nit

e
i for n = 1, 2, 3, . . ., N (22)

An important point is that the basis functions are not necessarily zero at the collo-
cation points, as has been the case for the isoprametric BEM. This can be seen for the
middle collocation points in Figure 2c, where all shape functions have nonzero values.
Therefore the application of the rigid body trick is more complicated.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-001.jpg&w=359&h=251

208 Advanced numerical simulation methods

Figure 3 Plot along the NURBS patch of Figure 2 in the u coordinate system with basis functions for
the description of the unknown showing the subdivision of the integration region.

Regular integration We recall that in the case where the basis functions for the descrip-
tion of u or t have multiple Knot entries the NURBS patch has to be subdivided into
integration regions because some functions have limited span.

In addition, to apply Gauss Quadrature we have to change from the NURBS
coordinate u to coordinate ξ, ranging from −1 to +1. The mapping between the ξ and
u coordinates for subregion s is given by:

u = ss

2
(ξ + 1) + us (23)

where ss is the size of the subregion and us is the local coordinate of the start of the
subregion (see Figure 3).

The Jacobian of this transformation is

du
dξ

= ss

2
(24)

The regular integrals are given by

Ue
ni =

S∑
s=1

M∑
m=1

U
(
yn, xe(um)

)
Nt

i (um)J(um)
∂u
∂ξ

· Wm (25)

Te
ni =

S∑
s=1

M∑
m=1

T
(
yn, xe(um)

)
Nd

i (um)J(um)
∂u
∂ξ

· Wm

Te
n =

E∑
e=1

M∑
m=1

T
(
yn, xe(um)

) 1
2

· Wm

where S is the number of subregions. Note that the last integral does not require a
subdivision, since no basis function is involved.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-002.jpg&w=205&h=148

Stage 7: The boundary element method for plane problems 209

Figure 4 Explanation of the coordinate transformation between γ and u, left for an arbitrary position
of the collocation point, right where the collocation point is at an edge.

Weakly singular integrals As before we use a coordinate transformation between the
NURBS coordinate u and a coordinate γ with the limits −1 and +1 resulting in a zero
Jacobian at the collocation point, thereby canceling the singularity.

If the collocation point is at an arbitrary position ui inside the integration region,
it has to be subdivided into 2 sub-regions as shown in Figure 4. The transformation
for sub-region 1 is given by

u(γ) = ui − u1

2

(
1
2

(1 − γ2) + γ + 1
)

+ u1 (26)

The Jacobian of this transformation is J(γ) = (ui − u1)/2 · (1 − γ) and tends to zero
for γ = 1. For subregion 2 the transformation is

u = u2 − ui

2

(
1
2

(γ2 − 1) + γ + 1
)

+ ui (27)

The Jacobain of this transformation is J(γ) = (u2 − ui)/2 · (1 + γ) and tends to zero
for γ = −1.

For the case where the collocation points are on the edges of the element the
coordinate transformation is given by for the collocation point at γ = −1

u(γ) = su

2

(
1
2

(γ2 − 1) + γ + 1
)

+ u1 (28)

The Jacobian of this transformation is J(γ) = su/2 · (1 + γ) and approaches 0 for γ =
−1. For the collocation point at γ = 1 we have

u(γ) = su

2

(
1
2

(1 − γ2) + γ + 1
)

+ u1 (29)

The Jacobian of this transformation is J(γ) = su/2 · (1 − γ) and approaches 0 for γ = 1.
The Integration can now be carried out using standard Gauss Quadrature

Ue
n,i =

S∑
sr=1

∫ 1

−1
U(yn, x(u(γ)))Ni(u(γ)) J(u)J(γ)dγ (30)

=
S∑

sr=1

M∑
g=1

U(yn, x(u(γm)))Nt
i (u(γm)) J(u(γm))J(γm)Wm (31)

where S is the number of subregions and M is the number of Gauss points.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-003.jpg&w=265&h=55

210 Advanced numerical simulation methods

3.1 Boundary conditions

Since the primary unknowns are not nodal point values but parameters, which have
no physical meaning, the imposition of Boundary conditions needs some consideration
and this will be discussed here.

Dirichlet BC The value of u at a particular location ud in a NURBS patch is given by

u(ud) =
Id∑

i=1

Nd
i (ud) · ui (32)

If u(ud) is specified as zero then all parameters ui for basis functions that are
not zero at ud must be set to zero. For a non zero value the parameters have to be
determined. For example for a specified value ud that is constant along the patch we
assign this value to all anchors and have:

u(u) = ud

Id∑
i=1

Nd
i (u) (33)

and with the partition of unity condition
∑Id

i=1 Nd
i (u) = 1 the computed parameter

value is ud along the patch.

Neumann BC If the boundary condition is a distributed load q, it contributes to the
right hand side of the equations as:

Fn =
S∑

s=1

M∑
m=1

U(yn, xe(um))q(um)J(um)
∂u
∂ξ

· Wm (34)

Robin BC In the case of the problem of the flow past an isolator, discussed previously,
the Neumann Boundary value depends on the outward normal n. For this problem the
right hand side contribution is computed by:

Fn =
S∑

s=1

M∑
m=1

U(yn, xe(um))q0 · n(um)J(um)
∂u
∂ξ

· Wm (35)

where q0 = is the specified flow vector.
For the problem of an excavation in elasticity, the value depends on the outward

normal and the virgin stress:

Fn =
S∑

s=1

M∑
m=1

U(yn, xe(um))t0 · J(um)
∂u
∂ξ

· Wm (36)

where

t0 =
(

σx0 · nx + τxy0 · ny

σy0 · ny + τxy0 · nx

)
(37)

and σx0, σy0, τxy0 are virgin stress components.

Stage 7: The boundary element method for plane problems 211

4 ASSEMBLY OF MULTIPLE PATCHES

So far the discussion was restricted to problems that can be described by one NURBS
patch. Here we extend the discussion to problems involving multiple patches. At the
location where the patches connect we usually expect a continuity of u (displacement
or potential).

With regard to the continuity of t (traction or flow) this would depend on the
problem. If it is a pure Neumann problem i.e. all values of t are known and there is
no requirement for continuity.

4.1 Pure Neumann problem

A pure Neumann problem is for example an excavation in an infinite domain where t
can be computed from the virgin stress field. The system of equations can be written as:

E∑
e=1

I∑
i=1

Te
niu

e
i −

[
I∑

i=1

Nd
i (un)uen

i

]
Tn =

E∑
e=1

Fe
n n = 1, 2, . . . , N (38)

which we have to assemble into a system of equations

[T] {u} = {F} (39)

Regarding the subtraction of the second term in the left hand side we note that
for collocation point 1 only Nd

1 (u1) is non-zero, whereas for collocation point 2 only
Nd

1 (u2), Nd
2 (u2) and Nd

3 (u2) are non-zero. The assembly of the left hand side can be
sketched as follows:

[T] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 . . .

1
T1
11
T1

12
T1
13
T1

14 +
T2
11 . . .

−Nd
1 (u1) · T1

2
T1
21
T1

22
T1
23
T1

24 +
T2
21 . . .

−Nd
1 (u2) · T2 −Nd

2 (u2) · T2 −Nd
3 (u2) · T2

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(40)

4.2 Mixed Neumann/Dirichlet problem

In some cases we have a mixture of boundary conditions. Consider the cantilever beam
in Figure 5 which has a mixture of Dirichlet and Neumann BCs.

In this case the system of equations can be written as

[A] {d} = {F} (41)

where {d} contains a mixture of u and t terms.

212 Advanced numerical simulation methods

Figure 5 Left: Cantilever beam with Dirichlet BC along red boundary and Neumann BC along blue
boundary. Right: Discretisation into 4 linear NURBS patches (numbers in boxes) with collo-
cation points, global (black numbers) and local numbering of anchors (blue italic numbers).

For the cantilever beam in Figure 5 the assembly of matrix A results in:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4

−
U4
12
T1

12 +
T2
12
T2

11 +
T3
11 −
U4

12

−
U4
22
T1

22 +
T2
22
T2

21 +
T3
21 −
U4

22
−Nd

2 (u2) · T2
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(42)

The vector F is given by

F =

⎛
⎜⎜⎜⎜⎝

(
U2
11 +
U2

12)t0

(
U2
21 +
U2

22)t0

...

⎞
⎟⎟⎟⎟⎠ (43)

where

t0 =
(

0
−1

)
(44)

4.3 Symmetry

In contrast to the imposition of symmetry in the FEM, symmetry conditions cannot
be imposed by boundary conditions. However, we can take advantage of symmetry
by only inputing the symmetric part of the boundary discretization, by constructing
the whole boundary discretization internally in the program and using the fact that if
unknowns are known on one side of the symmetry plane they are also known on the
other side.

Consider the problem in Figure 2 but now with the y-axis and x-axis being axes
of symmetry. We define the problem with only one patch (numbered 1) and mirror it
three times across the symmetry planes (1’,1’’,1’’’).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-004.jpg&w=359&h=84

Stage 7: The boundary element method for plane problems 213

Figure 6 Example of how symmetry conditions are implemented: Original NURBS patch and mirrored
patches, showing coordinates and changes in sign for elasticity problems.

We show in Figure 6 that the coordinates of the collocation points and the values
of the unknown on mirrored patches can be deduced from patch 1 and therefore
the number of unknowns can be reduced and only 3 collocation points need to be
considered for the solution.

For this case the implementation of a symmetry capability proceeds as follows:

• The geometrical definition of the mirrored NURBS patche(s) is inherited from the
specified NURBS patche(s), except that some coordinates change sign as shown in
Figure 6.

• Mirrored patches inherit the incidence and destination vector of the NURBS patch.
• During assembly of the mirrored patches, we have to consider that certain com-

ponents of u have a sign change. This means that some coefficients have to be
multiplied by −1 before assembly. For elasticity problems the sign change is shown
in Figure 6. For potential problems there is no sign change.

• The outward normal vector for some mirrored patches (in the example they are
1’ and 1’’’) need to be reversed

5 POSTPROCESSING

5.1 Results on the boundary

After the solution we first compute the values of the unknown on the boundary, keeping
in mind that the primary results we obtained are parameters not physical values.

We compute u(u) at a point with the local coordinate u inside a NURBS patch by

u(u) =
I∑

i=1

Nd
i (u)ue

i (45)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-005.jpg&w=205&h=182

214 Advanced numerical simulation methods

The local parameters are extracted from the global parameters by:

ue
i = uinci(e,i) (46)

where inci(e, i) is the global number of the i-th parameter of patch e.

Stress recovery Although we can use derivatives of the fundamental solutions for
computing the flow vector and the stress tensor as we will see later, this can not be
used directly at the boundary because of the high singularity of the Kernel. Here we
propose a simpler, approximate method which is similar to the stress recovery method
in the FEM [4].

The flow vector in the direction tangential to the boundary (x̄) can be computed by:

qx̄ = −k
∂u
∂x̄

= −k
I∑

i=1

∂Ni

∂u
· ∂u
∂x̄

· ue
i (47)

where ∂u
∂x̄ = J−1.

For elasticity problems we first work out the strain along a boundary element by

εx̄ = ∂ux̄

∂x̄
= ∂(u · v1)

∂x̄
= ∂(u · v1)

∂u
∂u
∂x̄

= ∂(u · v1)
∂u

J−1 (48)

where v1 is the normalized tangential vector V1 and

∂(u · v1)
∂u

= ∂u
∂u

· v1 + u · ∂v1

∂u
(49)

If the Jacobian J is nearly constant along a patch we can use the following
approximation:

∂v1

∂u
= ∂2x

∂u2
J−1 (50)

As this involves a second derivative this term can sometimes be neglected for
moderately curved boundary elements.

The stress in tangential direction can then be computed using Hooke’s law by

σx̄ = E εx̄ + ν tȳ + σx̄0 (51)

where tȳ is the traction normal to the boundary and σx̄0 is the tangential component
of the initial stress.

5.2 Results inside the domain

Potential/Displacements We can compute the values of u at any point y by using the
discretized form of the Somigliana identity:

u(y) =
E∑

e=1

Ute −
E∑

e=1

Tue (52)

Stage 7: The boundary element method for plane problems 215

where

Ue =
∫ 1

0
U
(
y, xe(u)

) · t(u)J du

(53)

Te =
∫ 1

0
T
(
y, xe(u)

) · u(u)J du

and for other than Robin boundary condition:

ue(u) =
I∑

i=1

Ni(u) · ue
i (54)

te(u) =
I∑

i=1

Ni(u) · te
i (55)

In the case of a Robin BC te(u) is computed using Equation (37).

Flow/Stress For potential problems the flow vector is computed by

q(y) = −k ·
(

E∑
e=1

U′e −
E∑

e=1

T′e
)

(56)

where

U′e =
∫ 1

0

⎛
⎜⎜⎝

∂U
∂x

∂U
∂y

⎞
⎟⎟⎠ t(u)J du

(57)

T′e =
∫ 1

0

⎛
⎜⎜⎝

∂T
∂x

∂T
∂y

⎞
⎟⎟⎠ u(u)J du

For elasticity problems the stresses are collected in a pseudo-vector using the Voight
notation and are given by:

σ(y) =
E∑

e=1

Se −
E∑

e=1

Re (58)

where

Se =
∫ 1

0
S · t(u)J du

(59)

Re =
∫ 1

0
R · u(u)J du

216 Advanced numerical simulation methods

Table 2 Required number of Gauss points for internal point computation.

R/L ≮2.3187 ≮0.9709

M 3 4

The matrices of fundamental solutions S and R are presented in the Appendix.
Since the Kernels are now highly singular i.e. O(1

r2) we use a different criterion for
determining the number of Gauss points (see table 2).

6 PROGRAMMING

Here we discuss the implementation of the theory. The function BEM2D shown here
is capable of analyzing plane potential and elasticity problems. Indeed, this is one of
the nice features of the BEM in that both can be considered in one program with a
small amount of additional code.

The input data is split into 5 different files:

• General data, such as analysis type, properties, number of patches, domain type
and symmetry code

• Knot vectors describing the geometry of patches
• Control point coordinates and weights describing the geometry of patches
• Boundary conditions
• Refinement data

The last item is necessary to implement the geometry independent approximation
approach. It is also convenient for convergence studies. Here it will be assumed that
refinement starts from the basis functions used for the geometry definition. This is
implemented for convenience, since it saves additional input data, describing the basis
functions for the approximation, but can be easily changed to make the program more
general.

Input data

The format of the input data is free format and as follows:

File Input (general data):

Analysis type (1= Potential, 2= Elasticity)

Youngs modulus or conductivity

Poissons ratio (=0 for potential problems)

Number of patches

Domain type (0= finite; 1= infinite)

Symmetry code (1= no symmetry; 2= y-axis symmetry,4= x,y symmetry)

Stage 7: The boundary element method for plane problems 217

File Knot (Knot vectors):

Number of control points patch 1

Order of patch 1

knot vector of patch 1

Number of control points patch 2

Order of patch 2

knot vector of patch 2

....

File Cntrl (Control point coordinates and weights):

x y z w % coordinates and weight of control point 1 of patch 1

x y z w % coordinates and weight of control point 2 of patch 1

....

x y z w % coordinates and weight of control point 1 of patch 2

x y z w % coordinates and weight of control point 2 of patch 2

....

File BC (Boundary conditions):

BC (1= Dirichlet, 2= Neumann,3=Robin), values patch no 1

... % for all patches

File Ref (Refinement data):

Number of order elevations, Number of knot insertions, knot values

patch no 1

.... % for all patches

Notes:

• When inputting control point coordinates and weights these are defined for each
patch separately, so duplicate entries may occur.

• The current implementation is restricted to one BC per patch.
• A z = 0 value has to be input.

Description of program BEM2D

In order to keep parameter lists short some global variables are declared at the begin-
ning. These relate to the number of parameters (npa), number of basis functions

218 Advanced numerical simulation methods

(nca), region type (rtype), symmetry number (nsy) and number of mirrored patches
(nsym).

The program starts with a call to Readinfo that reads the input files and makes
available the following information to the program: Number of patches (nbs), Knot
vectors (Knotg), Coefficients (Coefs), boundary conditions (BC) and Refinement Data
(Ref). This information is copied onto the file “Output’’ that will contain the results.
The azimuthal integral is assigned next, which is set to zero for a finite region.

With this information the collocation point coordinates can be computed using
function Colloc. The function provides the following information: Incidences (inci),
local coordinates of collocation points (loco), global coordinates of collocation points
(xyp), number of collocation points (nce), indicator if integration is singular (Ising)
and information required for the rigid body trick (NBF, RIP, INCIP). Next, function
Destination computes information required for the assembly. It produces 2 arrays:
Ndest and Ldest which specify the row and column number of the global array into
which the coefficients are to be assembled.

It also determines an Array Ncode that contains global BCs1. The arrays LHS
and RHS that will contain the left hand side and the right hand side of the system of
equations are set to zero. Array Tn, that will contain the sum of the integrals of T,
required for the rigid body trick is set to zero. Pointers to information about patches
and refinement are also set to zero. In order to check the integration procedure is
working correctly we compute the total length and store it in variable Length.

In a loop over all NURBS patches the boundary conditions are assigned via GetBC,
the geometry information is retrieved via Get_infoc and the information about refine-
ment via Refine. With this information the structure for describing the geometry (nurbs)
and for the approximation of the unknown (nurbsr) is defined. The number of basis
functions for the description of the unknown is nca. In a further loop over the symme-
try planes nsym, mirrored geometry definitions and multiplication factors for assembly
(mult) are defined for nsy > 1.

In a loop over all collocation points nptnts the following is done: Intscheme deter-
mines if the integration is singular (ising = 1), the number of Gauss points (ngp), their
local and global coordinates (Ug, xg), the Jacobian times the weights (JW) and the
outward normals (Norm). For the singular integration we have put the number of
Gauss points at 4, based on experience.

IntegrateKF preforms the integration and provides arrays dUn, dTn that contain
the patch coefficients related to collocation point n. Arrays dRn, dTn contain the value
of the basis function and the integral of T at collocation point n, required for the rigid
body trick. Store stores the coefficients in a form suitable for assembly. Finally Assemb
assembles the coefficient matrices. The coefficients are stored according to the BC and
multiplied with a factor before assembly, in the case of symmetry.

Function Rigidbody applies the rigid body trick i.e. performs the operation inside
the square parentheses in Equation (22). Plotbv computes the values at the boundary
and returns the values and locations of the maximum and minimum values.

1In the case of the cantilever for example the Dirichlet BC is valid for the point although it is
specified locally for the patches connecting to the point.

Stage 7: The boundary element method for plane problems 219

Program listing

function BEM2D
%--
% plane Boundary Element program with NURBS
% Programmed by G. Beer 2014
%--
global npa; global nca; global rtype; global nsy; global nsym
% Read input data
[nbs,Knotg,Coefs,BC,Ref]= Readinfo;
fout= fopen("Output","w"); Printinfo(fout,nbs,Knotg,Coefs,BC,Ref)
mult(1:npa)=1; % multiplication factor for symmetry
if(rtype == 1) azi=eye(npa,npa); else azi=zeros(npa,npa); endif
% Compute collocation point coordinates, incidences and destination vectors
[inci,loco,xyp,npnts,nce,Ising,NBF,RIP,INCIP]= Colloc(nbs,Knotg,Coefs,Ref);
[Ndest,Ldest,Ncode,ndofs]= Destination(npnts,xyp,nbs,nce,inci,BC);
% Compute and assemble coefficient matrices
LHS= zeros(ndofs,ndofs); RHS= zeros(ndofs,1); Tn= zeros(npa,npa,npnts);
i=0; nc=0;nbc=0;Length=0;nr=0;
for nb=1:nbs % loop over patches
[bc,values,nbc]= GetBC(nbc,BC);
[knotu,coefs,i,nc]= Get_infoc(Knotg,Coefs,i,nc);
nurbs= nrbmak(coefs,knotu); % definition of geometry
[nurbsr,nr]= Refine(Ref,nr,nurbs); % approximation of unknown
knotur= nurbsr.knots; nca= nurbsr.number; % refined knot vector
for nsy=1:nsym % Symmetry loop
if(nsy > 1)
[coefss,mult]=Symm(coefs);
nurbs= nrbmak(coefss,knotu); % geometry of mirrored patches
endif
for npnt=1:npnts % Loop over collocation points
xcol(1:2)= xyp(1:2,npnt);
[ising,ngp,Ug,xg,JW,Norm]= Intscheme(nb,npnt,nurbs,xcol,inci,loco,
knotur,Ising);
[dUn,dTn,dRn,Tn,Len]= IntegrateKf(npnt,xcol,ngp,xg,JW,Norm,Ug,nurbsr,Tn,
bc,values);
[dU,dT,dR]= Store(Ndest,npnt,dRn,dUn,dTn) % store patch integrals
end
[LHS,RHS]= Assembly(LHS,RHS,nb,bc,dU,dT,dR,values,mult,Ldest,Ncode);
end
end
for npnt=1:npnts
Tn(:,:,npnt)= Tn(:,:,npnt) - azi; % Substract azimuthal integral
end
% Rigid body motion trick
[LHS,RHS]= Rigidbody(npnts,Tn,NBF,RIP,INCIP,LHS,RHS,Ncode);
u= LHS\RHS % solve
% Get boundary values
nsy=1;
[umax,umin,locmax,locmin,qmax,qmin,locmaxs,locmins]=Plotbv(nbs,u,inci,
Ref,BC,Knotg,Coefs);
endfunction

220 Advanced numerical simulation methods

function [inci,loco,xyp,npnts,nce,Ising,NBF,RIP,INCIP]= Colloc(nbs,

Knotg,Coefs,Ref)

%---

% Computes collocation point coordinates and required information.

%

% Input:

% nbs ... number of NURBS

% Knotg ... array with knot vectors

% Coefs ... array with control point coords and weights

% Ref ... refinement information

%

% Output:

% inci ... incidences

% loco ... local coordinates of colloc. points

% xyp ... global coords of colloc. points

% npts ... number of collocation points

% nce ... number of parameters for patch

% Ising ... indicator for singular integration

% NBF ... number of non-zero basis functions at colloc. points

% RIP ... basis function values at colloc. points

% INCIP ... global numbers of basis functions

%--

global nsym

npnts= 0;i=0; nc=0;nr=0;

for nb=1:nbs

%----------------

% Definition of geometry

%----------------

[knotu,coefs,i,nc]= Get_infoc(Knotg,Coefs,i,nc);

nurbs= nrbmak(coefs,knotu);

%--------------------

% Approximation of the unknown

%-------------------

nurbsr= Refine(Ref,nr,nurbs); ncr= nurbsr.number;

pr= nurbsr.order-1; nce(nb)=ncr; knotr= nurbsr.knots;

%---------------------------

% Collocation point coordinates

%--------------------------

ut= Greville(ncr,pr,knotr); xy = nrbeval(nurbs,ut);

clear nofun; [Rip, nofun] = Nurbbasisfun (ut, nurbsr);

nfunc= columns(nofun); npta=npnts;

for ncu=1:ncr

xyc(1:2)= xy(1:2,ncu);

% check if first appearance of point

if(npnts > 0) [nfirst,npnt]= Check(xyc,xyp,npnts); else nfirst=1; endif

if(nfirst == 1)

npnts= npnts+1; xyp(:,npnts)= xyc(:);

npnt= npnts;

endif

inci(nb,ncu)= npnt; loco(nb,npnt)= ut(ncu);

end

Stage 7: The boundary element method for plane problems 221

% information for rigid body mode

for ncu=1:ncr

npnt= inci(nb,ncu); NBF(npnt)= nfunc;

for nfu=1:nfunc

nc= nofun(ncu,nfu); INCIP(nfu,npnt)= inci(nb,nc);

RIP(nfu,npnt)= Rip(ncu,nfu);

end

end

end

%----------------------

% coll. point indicator, 1= inside patch, 0= otherwise

%---------------------

Ising= zeros(nbs,npnts,nsym);

for nb=1:nbs

ncr=nce(nb);

for ncu=1:ncr

npnt= inci(nb,ncu); Ising(nb,npnt,1)= 1;

if(nsym == 2)

if(xyp(1,npnt) == 0) Ising(nb,npnt,2)=1; endif

else

if(xyp(2,npnt) == 0) Ising(nb,npnt,2)=1; endif

if(xyp(1,npnt) == 0) Ising(nb,npnt,4)=1; endif

endif

end

end

endfunction

function [Ndest,Ldest,Ncode,ndofs]= Destination(npnts,xyp,nbs,nce,

inci,BC)

%-----------------------------

% Determines destination vectors

% Input:

% npnts ... no. of coll. points

% xyp ... coords. of coll. points

% nbs ... number of patches

% nce ... no. of patch anchors

% inci ... incidences

% BC ... boundary conditions

%

% Output:

% Ndest ... row destinations

% Ldest ... column destinations

% Ncode ... global BC

% ndofs ... number of degrees of freedom

%-----------------------------

global npa; global nsym

%-------------------------------

% assign degree of freedom numbers

222 Advanced numerical simulation methods

%-----------------------------

k=0;

for npnt=1:npnts

for n=1:npa

k=k+1; Ndest(npnt,n)=k;

end

end

ndofs=k;

for nb=1:nbs

for nc=1:nce(nb)

na= (nc-1)*npa +1 ; ne= nc*npa;

Ldest(nb,na:ne)= Ndest(inci(nb,nc),1:npa);

end

end

%------------------

% Global BCs

%------------------

nbc=0; Ncode=zeros(npnts*npa);

for nb=1:nbs

[bc,values,nbc]= GetBC(nbc,BC);

for nc=1:nce(nb)

if(bc == 1)

npnt=inci(nb,nc);

for n=1;npa

ld= Ndest(npnt,n); if(ld > 0) Ncode(ld)=1; endif

end

endif

end

end

endfunction

function [ising,ngp,Ug,xg,JW,Norm]=
Intscheme(nb,npnt,nurb,xcol,inci,loco,knotur,Ising)

%---------------------------------
% Determines Gauss point locations, Jacobian and outward normal
% for integration for collocation point npnt
%
% Input:
% nb ... number of patch
% npnt ... collocation point
% nurb ... NURB structure for geometry
% xcol ... Collocation point coordinates
% inci ... incidences
% loco ... local coordinate of collocation point
% knotur ... knot vector for approximation
% Ising ... indicator if collocation point is in patch

Stage 7: The boundary element method for plane problems 223

%
% Output:
% ising ... singularity indicator
% ngp ... Total number of Gauss points
% Ug ... Local coordinates of Gauss points
% xg ... Global coordinates of Gauss points
% JW ... Jacobian at Gauss points * weights
% Norm ... outward normal at Gauss points
%---------------------------------
global nca; global nsy; global nsym
nsing= Ising(nb,npnt,nsy); ucol= loco(nb,npnt);
[subs,stas] = Subdiv(knotur); % Determine number of subregions
ngp=0;
for sub=1:subs; % Loop over subregions
us(1)= stas(sub); us(2)= stas(sub+1); ising=0;
if (nsing == 1)
if(ucol >= us(1) && ucol <= us(2)) ising=1; endif
endif
su= us(2)-us(1);
if(ising == 1)

%---------------------
% singular integration
%---------------------

ngaus= 4; [Cor,Wi]= Gauss(ngaus);
[nsub,ncase]= Case(ucol,us);
for ns=1:nsub
for ng=1:ngaus
[uga,Jacga]= Transform(ns,nsub,ncase,su,Cor(ng),us);
ug(ng)=uga; Jacg(ng)=Jacga;
end
[xy,jac,norm]=Diffgeom(nurb,ug);
for ng=1:ngaus
ngp=ngp+1; xg(:,ngp)= xy(:,ng);
JW(ngp)= jac(ng)*Jacg(ng)*Wi(ng);
Norm(:,ngp)= norm(:,ng); Ug(ngp)= ug(ng);
end
end
else

%---------------------
% regular integration
%--------------------

[Rmin,L]= Mindist(nurb,xcol,us,su);
[ngaus,ndivs]= Gausspoints(Rmin,L,1);
[Cor,Wi]= Gauss(ngaus); xsi1=-1; divs=single(ndivs);
xdelt= 2/divs;
for ndiv=1:ndivs
xsi2=xsi1 + xdelt;
for ng=1:ngaus
if(ndivs > 1)
xsi= 0.5*(xsi1 + xsi2) + Cor(ng)/divs; Jacx= 1/divs;
else

224 Advanced numerical simulation methods

xsi= Cor(ng); Jacx=1;
endif
ug(ng)= su/2*(1+xsi)+us(1);
end
Jacu= su/2*Jacx; [xy,jac,norm]=Diffgeom(nurb,ug);
for ng=1:ngaus
ngp=ngp+1; xg(:,ngp)= xy(:,ng);
JW(ngp)= jac(ng)*Jacu*Wi(ng);
Norm(:,ngp)= norm(:,ng); Ug(ngp)= ug(ng);
end
xsi1= xsi2;
end
endif

end
endfunction

function [dUn,dTn,dRn,Tn,Len]=
IntegrateKf(npnt,xp,ngp,xg,JW,Norm,Ug,nurbsr,Tn,bc,values)

%---------------------------------
% Integrates Kernel-function products
%
% Input:
% npnt ... collocation point number
% xp ... collocation point coords
% ngp ... total number of Gauss points
% xg ... Gauss point coordinates
% JW ... Jacobian at Gauss points*weights
% Norm ... outward normal
% Ug ... local Gauss coords
% nurbsr ... structure for refinement
% Tn ... value of Tn for summation
% bc ... boundary code
% values ... boundary values
%
% Output:
% dU, dTn ... Delta Un or Delta Tn
% dR ... Delta Rn
% dTn ... Delta Tn
% Len ... contribution to length
%---------------------------------
global npa; global nca
dUn=zeros(npa,npa,nca); dTn=zeros(npa,npa,nca);
dRn= zeros(npa,1); dTsum= zeros(npa,npa); Len=0;
clear nofun; [Ri, nofun] = Nurbbasisfun (Ug, nurbsr);
for ng=1:ngp % loop over Gauss points
JWng=JW(ng); Len= Len + JWng;
norm(1:2)= Norm(1:2,ng); xgaus(1:2)=xg(1:2,ng); r= Dist(xp,xgaus);
dxr= (xgaus-xp)/r; UK= UKernel(r,dxr); TK= TKernel(r,dxr,norm);
dTsum= dTsum + TK*JWng;

Stage 7: The boundary element method for plane problems 225

if(bc > 1)
if(bc == 3) t0= Robin(norm,values); else t0=values; endif
dRn(:,1)= dRn(:,1) + UK*t0*JWng;
endif
for j=1:columns(nofun) % loop over pointers to basis functions
nf= nofun(ng,j); dUn(:,:,nf)= dUn(:,:,nf) + UK*Ri(ng,j)*JWng;
dTn(:,:,nf)= dTn(:,:,nf) + TK*Ri(ng,j)*JWng;
end
end
Tn(:,:,npnt)= Tn(:,:,npnt) + dTsum(:,:);
endfunction

function [dU,dT,dR]= Store(Ndest,npnt,dRn,dUn,dTn)

%-----------------------------

% store patch integrals

%

% Input:

% Ndest ... row destination

% npnt ... collocation point

% dRn,dUn,dTn ... Integrals for point nc

%

% Output:

% dU,dT,dR ... integrals for patch

%----------------

global npa; global nca

for i=1:npa

nrow= Ndest(npnt,i); if(nrow == 0) continue endif

dR(nrow,1)= dRn(i,1);

for nc=1:nca

ncol= (nc-1)*npa;

for j=1:npa

ncol= ncol+1; dU(nrow,ncol)= dUn(i,j,nc);

dT(nrow,ncol) = dTn(i,j,nc);

end

end

end

endfunction

function [LHS,RHS]= Assembly(LHS,RHS,nb,bc,dU,dT,dR,values,

Mult,Ldest,Ncode)

%---

% Assembly

%---------------------------------

global npa; global nca; global Bcode; global Values

226 Advanced numerical simulation methods

i=0;

if(bc > 1) % Robin or Neumann BC

RHS(:,1)= RHS(:,1) + dR(:,1);

endif

for nc=1:nca

for n=1:npa

i=i+1;mult= Mult(n);

ncol= Ldest(nb,i);

if(ncol == 0) continue endif

if(bc > 1) % Neumann or Robin BC

LHS(:,ncol)= LHS(:,ncol) + dT(:,i)*mult;

else % Dirichlet BC

LHS(:,ncol)= LHS(:,ncol) - dU(:,i)*mult;

RHS(:,1)= RHS(:,1) - dt(:,i)*values*mult;

endif

end

end

endfunction

function [LHS,RHS]= Rigidbody(npnts,Tn,NBF,RIP,INCIP,LHS,RHS,Ncode)

%---

% Apply rigid body motion

%

% Input:

% npnts ... number of coll. points

% Tn ... sum of T-terms

% NBF ... number of non-zero basis functions

% RIP ... basis function values

% INCIP ... global numbers of basis functions

% LHS,RHS ... left and right hand side

% Ncode ... global BC

%

% Output:

% LHS,RHS ... updated left and right hand side

%---------------------------------

global npa; global Values

for npt=1:npnts

if(Ncode(npt) == 1) continue endif % Dirichlet BC

nf=NBF(npt);

for nfu=1:nf

RI=RIP(nfu,npt);

if(RI > 0)

IP= INCIP(nfu,npt); nr= (npt-1)*2;

for i=1:2

nr=nr+1; nc=(IP-1)*2;

Stage 7: The boundary element method for plane problems 227

for j=1:2

nc= nc+1; LHS(nr,nc)= LHS(nr,nc) - Tn(i,j,npt)*RI;

end

end

endif

end

end

endfunction

7 EXAMPLES

7.1 Potential problem: Flow past isolator

We revisit the problem of the flow past an isolator that we introduced previously. We
solve two problems: One without the hole and the flow applied and one where the
negative flow normal to the boundary is applied. The second is a Robin BC problem
with the BC computed by:

t0 = q0 · n (60)

Here we assume q0 =
(

0
1

)
, symmetry and only discretize half of the problem with

one NURBS patch.

Figure 7 Discretization of half the boundary with one NURBS patch, showing control points (squares)
and collocation points (circles).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-006.jpg&w=203&h=211

228 Advanced numerical simulation methods

The input data for this problem are:

File Input:

1

1.0

0

1

1

2

File Knot:

5

2

0 0 0 0.5 0.5 1 1 1

File Cntrl:

0 1 0 1

1 1 0 0.707

1 0 0 1

1 -1 0 0.707

0 -1 0 1

File BC:

3 0 -1

File Ref:

0 0

The maximum Temperature obtained from the program is 2.0004 as compared
with an exact value of 2.0. In this case the geometry, the distribution of the known
boundary values and the variation of the solution are all exactly represented. Therefore,
no refinement of the solution is necessary. The small error is only due to the precision of
the numerical integration and the indication is that the integration criterion proposed
earlier is adequate.

Stage 7: The boundary element method for plane problems 229

Figure 8 Discretisation of circular excavation with 1 patch and 2 axes of symmetry. Control points
depicted by squares and collocation points by circles.

This is a good example of the power of the NURBS based simulation: an exact def-
inition of the geometry, the known boundary values and in this case even the variation
of the unknown.

7.2 Elasticity problem: Circular excavation in infinite domain

This is similar problem to the one discussed in stage 4 (infinite plate with a hole)
except that the extent of the domain is really infinite. Since there is no finite boundary
on which to apply the Neuman BC’s the problem is solved in a similar way to the
previous one.

We solve two problems: One without the hole and the virgin stress σ0x and σ0y

applied and one where the excavation tractions are applied. The second is a Robin BC
problem with the tractions computed by:

t0 =
(

nxσ0x

nyσ0y

)
(61)

We assume a virgin stress field of (σx0 = 1, σy0 = −0), two planes of symmetry and
a discretization with one NURBS patch as shown in Figure 8.

The input data for this problem are:

File Input:

1 1.0 0 1 1 2

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-007.jpg&w=179&h=183

230 Advanced numerical simulation methods

Figure 9 Displaced shape of 1/4 circle, distribution stress in direction tangential to the boundary and
principal stress vectors.

File Knot:

3 2

0 0 0 1 1 1

File Cntrl:

0 1 0 1

1 1 0 0.707

1 0 0 1

File BC:

3 1 0

File Ref:

0 0

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-008.jpg&w=227&h=223

Stage 7: The boundary element method for plane problems 231

The maximum x-displacement computed is 2.005 compared with the theoretical
value of 2.0. The maximum tangential stress, computed by stress recovery is 3.002 as
compared with the exact value of 3.0.

As in this case the geometry, the variation of the known values and the variation of
the unknown is exactly represented, the error is only due to the integration error. The
computed displaced shape, the variation of the tangential stress along the boundary
and principal stress vectors are shown in Figure 9.

7.3 Practical example: Horseshoe tunnel

The geometry description of this practical application was already presented previously
and is an exact representation of the design geometry. Here we simulate the excavation
of the tunnel in a domain subjected to a virgin stress field of (σx0 = 0, σy0 = −1).

The input data are:

File Input:

2 1.0 0.0 1 1 2

File Knot:

7 2

0 0 0 0.5 0.5 0.8 0.8 1 1 1

File Cntrl:

0.0 5.65 0 1.0

4.55 5.65 0 0.707

4.55 1.1 0 1.0

4.55 -0.97 0 0.82

2.61 -1.67 0 1.0

1.33 -2.04 0 0.99

0.0 -2.04 0 1.0

File BC:

3 0 -1

File Ref pior to refinement:

0 0

Two refinement strategies were applied. One was to insert knots into the knot
vectors describing the geometry and the oder was a k-refinement, i.e. the order of the
basis functions was increased before knot insertion. As a measure of convergence we

232 Advanced numerical simulation methods

Figure 10 Definition of the geometry of a horseshoe tunnel showing control points.

Figure 11 Convergence of the solution for the isoparametric and NURBS based BEM.

use the L2 norm that was introduced in stage 4. A comparison with the conventional
BEM is also included. A plot of the L2 norm versus the degrees of freedom (dof)
(Figure 11) shows that the NURBS based BEM requires fewer degrees of freedom and
converges faster than the isoparametric BEM. The converged results of the simulation
are shown in Figure 12.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-009.jpg&w=275&h=180
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-010.jpg&w=287&h=178

Stage 7: The boundary element method for plane problems 233

Figure 12 Displaced shape of half the tunnel, distribution stress in direction tangential to the boundary
and principal stress vectors.

8 CONCLUSIONS

Here we have introduced the BEM, which has been far less popular than its big sister
the FEM. The main reason for its introduction here was that it is an ideal companion
of CAD, since both rely on a boundary definition. We argue that the goal of a seamless
integration of CAD and simulation would only be possible via the BEM.

It is hoped that readers could appreciate the beauty of the method: The problem
definition has been reduced by one order (surface instead of volume definition) and the
solutions actually satisfy the governing differential equations and are therefore more
accurate than with the FEM.

On the examples of the circular isolator and excavation it was shown that the
exact solution can be obtained with a very coarse mesh, because the geometry and the
unknown can be defined exactly by a NURBS of order 2.

It is acknowledged that due to the need of dealing with singular integrals, the
implementation is more involved than with the FEM, but this is a small price to pay
considering the quality of the results, the user friendliness of the method and the
potential it has for combining it with CAD. At the next stage, the implementation of
the NURBS based BEM in 3-D is discussed.

BIBLIOGRAPHY

[1] U. Eberwien, C. Duenser, and W. Moser. Efficient calculation of internal results in 2D
elasticity BEM. Engineering Analysis with Boundary Elements, 29(5):447–453, 2005.

[2] J.C. Lachat and J.O. Watson. Effective numerical treatment of boundary integral
equations: A formulation for three-dimensional elastostatics. International Journal for
Numerical Methods in Engineering, 10(5):991–1005, 1976.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-9&iName=master.img-011.jpg&w=323&h=172
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.enganabound.2005.01.008
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnme.1620100503
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnme.1620100503

234 Advanced numerical simulation methods

[3] Peter R. Johnston and David Elliott. A generalisation of Telles’ method for evaluat-
ing weakly singular boundary element integrals. Journal of Computational and Applied
Mathematics, 131(1–2):223–241, June 2001.

[4] I. M. Smith, D. V. Griffiths, and L. Margetts. Programming the Finite Element Method.
Wiley, 2013.

[5] A.H. Stroud and D. Secrest. Gaussian Quadrature Formulas. Prentice Hall, Englewood
Cliffs, New Jersey, 1966.

[6] J.O. Watson. Developments in Boundary Element Methods – 1, volume 1, chapter
Advanced implementation of the boundary element method for two- and threedimensional
elastostatics. Applied Science, 1979.

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0377-0427%2800%2900273-9
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0377-0427%2800%2900273-9

Chapter 9

Stage 8:The boundary element method
for three-dimensional problems

Don’t worry about your difficulties in mathematics
I can assure you mine are still greater

A. Einstein

where we expand into 3-D space.

1 INTRODUCTION

The extension of the method into 3-D space follows a similar approach as for the
plane case. Here we start immediately with the NURBS based approach, without
going through the classical approach first.

Discretization We start with the definition of the geometry and the approximation of
boundary values:

xe =
K∑

k=1

Rk(u, v) · xe
k (1)

ue =
Kd∑

k=1

Rd
k(u, v) · ue

k (2)

te =
Kt∑

k=1

Rt
k(u, v) · te

k (3)

where Rk, Rd
k, Rt

k are suitable basis functions of the local coordinate u, v for describing
the geometry, displacements and tractions, xe

k specify the location of control points,
ue

k, te
k are parameter values of u, t and K, Kd, Kt are the total number of parameters.

Collocation points The first task is to compute the location of the collocation points. As
explained previously the location of the points is equal to the anchors of basis functions
used to approximate the solution. The local coordinates of the nth collocation point
are given by:

ui(n) = ui+1 + ui+2 + · · · + ui+pu

pu
i = 0, 1, . . . , I

(4)

vj(n) = vj+1 + vj+2 + · · · + vj+pv

pv
j = 0, 1, . . . , J

236 Advanced numerical simulation methods

where i(n) and j(n) specify local numbering of collocation point n in u and v directions,
pu, pv are the orders and I and J specifies the number of control points in u and v
directions.

2 NUMERICAL INTEGRATION

Expanding the discretized integral equation to 3D:

E∑
e=1

Kd∑
k=1

Te
niu

e
i −

⎡
⎣ Kd∑

k=1

Rd
k(un, vn)uen

k

⎤
⎦ E∑

e=1

Te
n =

E∑
e=1

Kt∑
k=1

Ue
nit

e
k (5)

where
Te
ni and
Ue

ni are integrals of Kernel basis function products and Te
n is an

integral of the T Kernel only. As for the plane case we distinguish between regular and
weakly singular integrals.

2.1 Regular integration

We recall that the region of integration may have to be subdivided into sub-regions in
the cases where some basis functions have limited span. To use Gauss Quadrature the
sub-region must be mapped into a coordinate system ξ, η that ranges from −1 to 1 by

u = su

2
(ξ + 1) + us (6)

v = sv

2
(η + 1) + vs

where us, vs denotes the local coordinates of the start and su and sv denote the size of
the subregion. The Jacobian of this transformation is

Js = du
dξ

· dv
dη

= su

2
· sv

2
(7)

The regular integrals are given by

Ue
n,k =

S∑
s=1

∫ +1

−1

∫ +1

−1
U(yn, x)Rt

kJJs dξ dη

=
S∑

s=1

M∑
m=1

L∑
l=1

U(yn, x(um, vl))Rt
k(um, vl)JJs WmWl

Te
n,k =

S∑
s=1

∫ +1

−1

∫ +1

−1
T(yn, x)Rd

kJJs dξ dη (8)

=
S∑

s=1

M∑
m=1

L∑
l=1

T(yn, x(um, vl))Rd
k(um, vl)JJs WmWl

Te
n =

S∑
s=1

∫ +1

−1

∫ +1

−1
T(yn, x)JJsdξ dη =

S∑
s=1

M∑
m=1

L∑
l=1

T(yn, x(um, vl))JJs WmWl

Stage 8: The boundary element method for three-dimensional problems 237

In the above M, L are the number of Gauss points in ξ, η direction (chosen
depending on the proximity of the collocation point to the element), um(ξ), vl(η) are
coordinates of Gauss points and Wm, Wl are weights. The sum is over the number of
sub-regions S.

The choice of the right number of Gauss points, depending on the proximity of
the collocation point is now crucial because the number of operations per Gauss point
is larger than for the plane problem and the number of Gauss points increases with the
square. The formula to determine the required number of Gauss points, which was
derived for the plane case, only based on the order of the Kernel, will no longer suffice.

2.2 Determination of the optimal number of
Gauss points

The number of numerical operations to be carried out at each Gauss point is quite
high. For the determination of the outward normal and the Jacobian, derivatives of the
basis functions and several multiplications are required. The evaluation of the Kernel
adds further floating point operations. In order to minimize the computing cost it is
desirable to arrive at a minimum number of integration points over a NURBS patch
to achieve a given accuracy. For the case where the collocation points are far away
from the NURBS patch (far field) the integration rule can be bundled for groups of
collocation points so that evaluations at Gauss points are reduced. There is a tradeoff
between integration over the whole NURBS patch without subdivision and subdividing
the patch into smaller integration elements.

In our endeavor to obtain an optimal number of Gauss points for the case where
no subdivision is necessary – due to the limited span of the basis functions – for the
approximation of the unknown, we adopt the following philosophy:

• Try to integrate over the whole NURBS patch with one integration region only
• Limit the number of Gauss points to 8
• Subdivide if, according to the rules developed later, this number of Gauss points

is not sufficient

The method we propose for obtaining the optimal number of Gauss points is
empirical. Experience shows that it is convenient to have only one integration scheme
for both the U and the T Kernels. Since the T Kernel has the higher singularity we
concentrate on the integration involving this Kernel. We investigate the number of
Gauss points required for a given accuracy, depending on the ratio of minimum distance
to the collocation point (R) to the length of the integration region (L), R

L , for a number
of possible locations of the collocation point.

First we consider an integrand without the Kernel. This would correspond to the
case where the collocation point is far away from the integration region (in the far field)
so that the variation of the Kernel is nearly constant. We investigate the integration of:

Int = Rd
i (u, v) · J · Js (9)

and how many Gauss points are required for a given accuracy.

238 Advanced numerical simulation methods

We define the integration error as:

|ε(M)| = |Int(M) − Intexact|
|Intexact| (10)

where Intexact is a value of the integral obtained with a large number of Gauss points
(4 × 4 subdivision of the patch with 8 × 8 Gauss points each = 1024 Gauss points).

Next we consider the whole integrand including the Kernel:

Int = T
(
yn, x

) · Rd
k(u, v) · J · Js (11)

Since Int is a matrix we define a norm of the difference in the computed value and an
exact value (that has been computed as explained before) as:

‖ε(M)‖ = ‖�Int‖
‖Int‖ (12)

where

‖�Int‖ =
√∑

i

∑
j

(IntM
ij − Intexact

ij)2 (13)

‖Int‖ =
√∑

i

∑
j

(Intexact
ij)2 (14)

IntM
ij is the coefficient i, j of Int computed with M integration points and Intexact

ij is the
exact value. We investigate the influence of the proximity of the collocation point and
refer to this as near field integration.

2.3 Regular integration

Here we investigate the integration error for the case where the collocation point is far
away so that the variation of the Kernel is nearly constant over the NURBS patch.

We consider the integrand without the Kernel and first a fairly regular NURBS
patch describing a 1/4 cylinder shown in Figure 1. We quite arbitrarily select the
basis function to be the second one (similar results were obtained for the other basis
functions) and plot the error as a function of order. First we start with quadratic basis
functions (meaning that pu = pv = 2) followed by elevation of the order 1, 2, 3 times
in both directions. The result of this investigation is shown in Figure 3 and shows that
unless the order elevation is extreme there is a small influence on the error. Figure 3
can be used for determining the number of Gauss points in each direction for far field
integration of fairly regular patches depending on the required maximum error. Next
we consider irregular NURBS patches. To test the robustness of the integration we
investigate its application to trimmed NURBS.

Two cases are considered: one where the trimming curve is of order 2 and the
trimming is moderate and one where the trimming curve is of order 3 and the trimming
is severe. The first case is depicted in Figure 4. The results for the far field integration
are depicted in Figure 5. It can be seen that for moderate trimming the plot of the

Stage 8: The boundary element method for three-dimensional problems 239

Figure 1 NURBS patch considered for determining the number of Gauss points. Dotted line shows
path of collocation point for near field integration.

Figure 2 Plot of second basis function for different degrees of order elevation.

number of Gauss points versus error is similar to the plots for the untrimmed surface.
For test 2 we apply a trimming curve of order 3 (Figure 6). The results for the far
field integration are shown in Figure 7. It shows oscillatory behavior, meaning that
this patch can not be integrated without subdivision.

2.4 Nearly singular integration

Next we investigate the near field integration by considering the whole integrand
including the Kernel and by placing the collocation point in a vertical line nearer
and nearer to the NURBS patch as shown in Figure 1.

In Figure 8 we show the results for the second basis function of order pu = pv = 2.
The graph can be used for the integration strategies discussed next. For an integration
error of 10−3 for example we find that we need 4 Gauss points in the direction where
the length L has been computed, if R/L is greater than 1.0, 5 Gauss points if R/L is

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-000.jpg&w=202&h=192
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-001.jpg&w=359&h=72

240 Advanced numerical simulation methods

Figure 3 Far field integration: Plot of Number of Gauss points vs. integration error for different order
elevations (0 means pu = pv = 2).

Figure 4 Test 1 of trimmed NURBS: left trimming curves in u, v coordinate system, right trimmed
surface.

less than 1.0 and greater than 0.6 and 6 Gauss points if R/L is less than 0.6 and greater
than 0.4. For R/L less than 0.4 a subdivision is needed. Table 1 shows the number of
Gauss points, M, required depending on the value of R/L not being less than a certain
value. A subdivision is required for values smaller than 0.2 for and an error of 10−2

and smaller than 0.4 for errors of 10−3 and 10−4.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-002.jpg&w=228&h=164
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-003.jpg&w=359&h=188

Stage 8: The boundary element method for three-dimensional problems 241

Figure 5 Far field integration of trimmed surface: Plot of number of Gauss points versus order for
test 1.

Figure 6 Test 2 of trimmed NURBS: left trimming curves in u, v coordinate system, right trimmed
surface.

Subdivision strategies As has become apparent, there will be a need for subdividing
the NURBS patch into integration elements. There are basically two strategies for this:

1 Subdivide the patch into as many equal integration regions as required so that each
subdivision satisfies that R/L < Rlim where Rlim is a user defined limiting value.
We refer to this as the regular subdivision method.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-004.jpg&w=227&h=164
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-005.jpg&w=359&h=203

242 Advanced numerical simulation methods

Figure 7 Far field integration of trimmed surface: Plot of number of Gauss points vs order for test 2.

Figure 8 Plot of error versus number of Gauss points for different values R/L. Also shown is how the
number of Gauss points can be determined for errors of 10−2, 10−3 and 10−4.

Table 1 Required number of Gauss points depending on the maximum error and value of R/L not
being less than a certain value.

Error M = 3 4 5 6 7 8

10−2 R/L ≮ 0.8 0.6 0.4 0.2
10−3 R/L ≮ 1.5 1.0 0.6 0.4
10−4 R/L ≮ 2 1.5 1.0 0.8 0.6 0.4

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-006.jpg&w=239&h=173
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-007.jpg&w=228&h=164

Stage 8: The boundary element method for three-dimensional problems 243

Figure 9 The different strategies for subdivision into integration regions: a) equal subdivision,
b) Quadtree subdividision.

2 Subdivide the patch in 4 equal subelements if R/L > Rlim. If the criterion
R/L < Rlim is violated for any integration region subdivide this region further
until the requirement is satisfied. We refer to this as the Quadtree method.

To test the two strategies we place the collocation point very near the integration
region in this case R/L = 0.15. For this case a subdivision into integration regions is
needed. We first follow strategy 1, i.e. we subdivide equally in all directions (to satisfy
the integration criterion for an error of 10−3 we need 3 subdivisions in each direction).
For each sub region we use the criterion to determine the number of Gauss points
depending on the R/L value computed for the subregion (see Figure 9a). This strategy
results in a total number of Gauss points of 206.

Next we apply strategy 2 and this means that we halve the dimensions of the sub-
regions until the criterion for the minimum value of R/L is satisfied. This is shown in
Figure 9b. This strategy results in a reduction of the total number of Gauss points to
139, i.e. a 33% reduction. The accuracy of the integration for both schemes is roughly
the same but the error has actually decreased to 10−4, although the integration criterion
for 10−3 was applied.

2.5 Weakly singular integration

The kernel U has a singularity of O(1
r). The product URk tends to infinity if Rk does

not tend to zero at the singularity point. For this case we use a method that has been
found to work well for the iso-parametric BEM, i.e. we perform the integration in a
local coordinate system, where the Jacobian tends to zero as the singularity point is
approached. For this we divide the integration region into two, three or four triangular
sub-regions depending if the collocation point is at a corner, edge or inside as shown
in Figure 10.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-008.jpg&w=299&h=169

244 Advanced numerical simulation methods

Figure 10 Coordinate transformation between ū, v̄, s, t and ξ, η systems for the case where the collo-
cation point is inside the domain and for the highlighted triangle. Control points are depicted
by rectangles and numbered in the ū, v̄ and s, t coordinate system.

For the transformation between the coordinate systems we can use the mapping
introduced earlier for trimmed surfaces. For this we define a NURBS patch of order 1
in an s, t coordinate system with the knot vectors �s = �t = 0, 0, 1, 1. We denote with
ū, v̄ the coordinate system of the subregion of integration and the transformation to
NURBS coordinates u,v is given by:

u = su · ū + us (15)

v = sv · v̄ + vs

where su, sv specify the size of the subregion and us, vs the starting coordinates in u and
v directions. The Jacobian of this transformation is

Js = su · sv (16)

The transformation between ū, v̄ and s, t systems is given by

ū =
4∑

i=1

R̄i(s, t)ūn(i)

(17)

v̄ =
4∑

i=1

R̄i(s, t)v̄n(i)

where R̄i(s, t) are the NURBS basis functions of s,t, ūn(i), v̄n(i) are control point coor-
dinates and n(i) denotes the numbering of the point i in the ū, v̄ coordinate system.
For the highlighted triangle in Figure 10 we have:

n(i) = (3 3 1 2) (18)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-009.jpg&w=299&h=132

Stage 8: The boundary element method for three-dimensional problems 245

Figure 11 Plot of integration error versus number of Gauss points for weakly singular integration
applied to regular and trimmed patches.

The Jacobian of this transformation is Jtr and tends to zero as the collocation point
is approached. Finally the transformation between the s, t and ξ, η is given by

s = 1
2

(ξ + 1) (19)

t = 1
2

(η + 1) (20)

where the Jacobian is 0.25.
Applying Gauss quadrature we obtain

Ue
n,i =

S∑
s=1

ntr∑
nt=1

∫ +1

−1

∫ +1

−1
U(Pn, Q)Rk(u, v) · J · Js · Jtr · 0.25 · dξ dη (21)

=
S∑

s=1

ntr∑
nt=1

M∑
m=1

L∑
l=1

U(Pn, Q)Rk(u(ξm), v(ηl)) · J · Js · Jtr · 0.25 · WmWl (22)

where S is the number of subregions and ntr is the number of triangles.
We test the integration accuracy for the 3 cases introduced above, i.e. for a regular

patch and for 2 trimmed patches. We assume that the collocation point is a corner node.
The result is shown in Figure 11. It can be seen that for weakly singular integration
fewer Gauss points are needed as compared with the regular integration. However, this
changes when patches are trimmed and more Gauss points are required for trimmed
surfaces in this case.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-010.jpg&w=226&h=164

246 Advanced numerical simulation methods

2.6 Infinite patches

The geometry of mapped infinite patches have been discussed previously. Two
assumptions of the variation of u may be considered.

• Plane Strain: Displacements are constant to infinity1.

u(u, v) = u(u, v = 0) =
Kd∑

k=1

Rf
k(u)ue

k (23)

• Decay: Displacements decay to zero as infinity is approached2.

u(u, v) = (1 − v)u(u, v = 0) = (1 − v)
Kd∑

k=1

Rf
k(u)ue

k (24)

In the above Kd is the number of parameters and ue
k are parameter values at the

control points at the finite edge of the NURBS patch. Rf
k(u) are basis functions of

u describing the variation of u on the finite edge. It can be shown (see [6]) that the
second assumption translates in a decay of O(1

r), which is the appropriate decay for
displacements in 3-D elasticity.

The integrals to be evaluated are for a plane strain element

∫
Se

U(Pn, Q)t dS =
∫ +1

−1

∫ +1

−1
U(Pn, Q)t J 0.25 dξ dη

∫
Se

T(Pn, Q)Rf
k dS =

∫ +1

−1

∫ +1

−1
T(Pn, Q)Rf

k J 0.25 dξ dη (25)

and for a decay element3.

∫
Se

T(yn, x)(1 − v)Rf
k dS =

∫ +1

−1

∫ +1

−1
T
(
yn, x

)
(1 − v)Rf

k J 0.25 dξ dη (26)

For a plane strain infinite patch, the integral involving the Kernel U varies as O(1
r)

and because the sides to infinity of the patch must be parallel the Jacobian will vary
with O(r2). Therefore the integral does not have a finite value. It can be shown (see
[7]), however, that the integral over a closed contour4 has a finite value.

1For example a very long tunnel, where plane strain conditions are attained away from the
tunnel face.
2For example a surface that extends to infinity.
3Here we assume that the tractions are zero over an infinite patch, so the integral with Kernel
U does not need to be evaluated.
4Note that all applications of the plane strain patch must involve a closed contour.

Stage 8: The boundary element method for three-dimensional problems 247

Figure 12 Explanation of the computation of x′.

The integral can be changed to

∫ +1

−1

∫ +1

−1
U(yn, x)t 0.25 dξ dη =

∫ +1

−1

∫ +1

−1
(U(yn, x) − U(yn, x′))t J 0.25 dξ dη (27)

where x′ is obtained by projecting x to a plane strain axis, which is defined by its origin
(xps) and its direction (vps). This integral now has a finite value and since the integral
of the second term in parentheses is zero for a closed contour, there is no change to
the original integral.

The coordinates of x′ are computed by (see Figure 12):

x′ = xps + [
(x − xps) · vps

]
vps (28)

3 SYMMETRY

The implementation of symmetry follows the one introduced earlier for the 2D case.
Depending on the number of specified symmetry planes there are one, three or seven
mirrored patches (see Figure 13). The multiplication factors for the coordinates,
tractions and displacements can be computed by:

xn = Tnx

tn = Tnt (29)

un = Tnu

where Tn are transformation matrices. For n = 1 we have for example

T1 =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ (30)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-011.jpg&w=226&h=122

248 Advanced numerical simulation methods

Figure 13 Explanation of symmetry.

As explained previously mirrored patches inherit the incidences of the original
patches. For mirrored patches 1, 3, 4, and 6 the outward normal has to be reversed.
A listing of function Symm, that determines the factors is shown5:

function [fac,rev]=Symm(nsym)
%---
% generates information for symmetry
%
% Input:
% nsym ... symmetry counter
%
% Output:
% fac ... multiplication factors for displacements and coordinates
% rev ... indicator for the reversal of the outward normal (0=no,1=yes)
%--
rev=0;
if(nsym == 1) fac= [1,1,1];
elseif(nsym == 2) fac= [-1,1,1]; rev=1;
elseif(nsym == 3) fac= [-1,-1,1];
elseif(nsym == 4) fac= [1,-1,1]; rev=1;
elseif(nsym == 5) fac= [1,1,-1]; rev=1;
elseif(nsym == 6) fac= [-1,1,-1];
elseif(nsym == 7) fac= [1,-1,-1]; rev=1;
elseif(nsym == 8) fac= [-1,-1,-1]; endif
endfunction;

5For efficiency only the diagonals of the transformation matrix are stored.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-012.jpg&w=182&h=189

Stage 8: The boundary element method for three-dimensional problems 249

Figure 14 Determination of local axes for stress recovery.

4 MULTIPLE PATCHES

For multiple patches we usually expect that displacements are continuous where
patches connect, whereas tractions can be discontinuous. We recall that the anchor
points associated with the unknown parameters, computed using Greville abscisae,
are also the collocation points. To ensure compatibility and a unique location of the
collocation points we must ensure that the anchors are at the same location, when
computed locally for each connecting NURBS patch, and have a unique number.
The implementation follows the one for the 2D case, i.e. appropriate coefficients are
added.

However, whereas in the FEM compatibility of displacements is essential for con-
vergence this is not the case with the BEM. This means that we can place the collocation
points (and the places where the unknowns are computed) slightly inside the NURBS
patch. In this case the location of collocation points does not need to match, giv-
ing greater freedom in the simulation especially when dealing with trimmed surfaces.
The method known as discontinuous collocation results in small discontinuities at the
interface but convergence is not affected. More details can be found in [4].

5 POSTPROCESSING

As with plane problems we have two types of post processing. One for the results on
the boundary, using stress recovery, and one for internal results.

5.1 Stress recovery

To obtain the stresses tangential and normal to the boundary we must establish an
orthogonal local coordinate system.

First vectors tangential to the boundary as shown in Figure 14 are computed.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-013.jpg&w=239&h=146

250 Advanced numerical simulation methods

Figure 15 Relationship between x̄, ȳ and u, v coordinates.

The vectors are given by

vu = ∂x
∂u

· 1
Ju

(31)

vv = ∂x
∂v

· 1
Jv

where Ju, Jv are the stretch factors given by

Ju =
√(

∂x
∂u

)2

+
(

∂y
∂u

)2

+
(

∂z
∂u

)2

(32)

Jv =
√(

∂x
∂v

)2

+
(

∂y
∂v

)2

+
(

∂z
∂v

)2

Since vectors vu and vv are not orthogonal vectors, we establish an orthogonal
system v1 and v2 where v1 = vu and v2 is computed by a vector x-product.

Referring to Figure 15 the relationship between the orthogonal coordinates x̄, ȳ
and local coordinates u, v is given by

x̄ = Ju · u + Jv · v · cos θ (33)

ȳ = Jv · v · sin θ

where

cos θ = vu · vv, sin θ = vv · v2 (34)

The inverse relationship between x̄, ȳ and local coordinates u,v is given by

u = 1
Ju

(x̄ − cot θ · ȳ), v = 1
Jv sin θ

ȳ (35)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-014.jpg&w=166&h=147

Stage 8: The boundary element method for three-dimensional problems 251

and the derivatives are

∂u
∂x̄

= 1
Ju

,
∂u
∂ȳ

= 1
Ju

· cot θ,
∂v
∂ȳ

= 1
Jv sin θ

(36)

The strains in the x̄, ȳ coordinate system are given by

εx̄ = ∂ux̄

∂x̄
=
(

∂u
∂u

· v1

)
∂u
∂x̄

εȳ = ∂uȳ

∂ȳ
=
(

∂u
∂u

· v2

)
∂u
∂ȳ

+
(

∂u
∂v

· v2

)
∂v
∂ȳ

(37)

γȳ = ∂ux̄

∂ȳ
+ ∂uȳ

∂x̄
=
(

∂u
∂u

· v1

)
∂u
∂ȳ

+
(

∂u
∂v

· v1

)
∂v
∂ȳ

+
(

∂u
∂u

· v2

)
∂u
∂x̄

Finally applying Hooke’s law we have:

σx̄ = C1(εx̄ + νεȳ) + C2tz̄, σȳ = C1(εȳ + νεx̄) + C2tz̄

σz̄ = tz̄, τx̄ȳ = Gγx̄ȳ (38)

τx̄z̄ = tx̄, τȳz̄ = tȳ

where G is the shear modulus and tx̄, tȳ and tz̄ are the components of traction in the
x̄, ȳ and z̄ (normal to the surface) directions and

C1 = E
1 − ν2

, C1 = ν

1 − ν
(39)

5.2 Internal stress computation

For elasticity problems the stresses are collected in a pseudo-vector using the Voight
notation and are given by:

σ(y) =
E∑

e=1

Se −
E∑

e=1

Re (40)

where E is the number of patches and

Se =
∫ 1

0

∫ 1

0
S · t J du dv (41)

Re =
∫ 1

0

∫ 1

0
R · u J du dv (42)

The fundamental solutions S and R are given in the Appendix.

252 Advanced numerical simulation methods

Figure 16 Discretization of an infinite tunnel into one finite patch and two infinite patches showing
control points (red) and collocation points (blue).

6 TEST EXAMPLES

6.1 Infinite tunnel

The first example is to test the infinite plane strain elements. Figure 16 shows a dis-
cretization which exactly describes a quarter of the geometry of a circular tunnel with
one finite patch and two infinite plane strain patches. Two symmetry planes have been
assumed for the simulation. The tunnel is excavated in an infinite prestressed domain
(virgin stress σ0 in vertical direction 1, all other components zero). This is a pure Robin
problem and the tractions are given as:

t = n · σ0 (43)

where n is the outward normal.
For the purpose of the test Young’s modulus was assumed to be 1 and

Poisson’s ratio 0. Also shown in the Figure are the collocation points for an iso-
geometric analysis (i.e. the same basis functions are used for the description of the
geometry and the unknown). Since the unknown displacements are constant in the
infinite direction a linear variation in this direction is sufficient. In the circumferential
direction a NURBS of order 2 happens to be able to exactly describe the variation of
displacements.

The maximum z-displacement computed is 2.005 compared with the theoretical
value of 2.0. The maximum tangential stress, computed by stress recovery is 3.002
as compared with the exact value of 3.0. As in this case the geometry, the variation
of the known values and the variation of the unknown is exactly represented, the
error is only due to the integration error (the integration precision in this case was
set to 10−3).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-015.jpg&w=263&h=157

Stage 8: The boundary element method for three-dimensional problems 253

Figure 17 Discretization of half-space into three finite and 2 infinite (decay) patches showing control
points (red) and collocation points (blue).

6.2 Loading on infinite half-space

The second example is designed to test the decay infinite NURBS.
The discretization is shown in Figure 17 and consists of 3 finite NURBS patches

with p = 1, q = 1 for the geometry description and pd = 2, qd = 2 for the descrip-
tion of the displacements and 2 infinite decay NURBS patches with q = 1 and qd = 2.
Symmetry conditions are applied as before so only 1/4 of the problem is discretized.
The problem has 57 degrees of freedom.

The NURBS patch at the center is loaded with a vertical distributed load of
100 kPa. The material properties are E = 10 000 kPa and ν = 0. The same problem
was solved with the isoparametric BEM in [6]. The theoretical maximum displace-
ment (see [5]) is 22.444 mm. The result of the isogeometric analysis is 22.56 and the
one reported in reference [6] with a similar isoparametric mesh is 22.526.

7 EXAMPLES

7.1 Infinite tunnel in infinite domain near tunnel face

The first example relates to the simulation of a tunnel excavated in an infinite elastic
domain. It is the same as in the previous section except that the tunnel only extends
to infinity in one direction and is truncated by a tunnel face. The discretization into
4 finite (2 of them degenerate) and 2 infinite NURBS patches is shown in Figure 18.
Only one plane of symmetry has been specified.

6As pointed out in the quoted reference the result is slightly dependent on the location of the
nodes on the edge of the infinite patches pointing to infinity.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-016.jpg&w=154&h=162

254 Advanced numerical simulation methods

Figure 18 Discretization of tunnel into 4 finite and 2 infinite NURBS patches and displaced shape.
Control points (red) and collocation points (blue) are shown for the first stage of refinement.

Figure 19 Definition of the tunnel in a semi-infinite domain. Collocation points (in blue) are shown
for the first refinement.

A refinement of the geometry description (originally of order 1) to order 2 was
made in the direction along the tunnel. Figure 18 shows the displaced shape of the
tunnel. It can be seen that plane strain conditions are encountered about 1.5 diameters
away from the tunnel face.

The maximum vertical displacement is 1.96, which is close to the theoretical value
for the infinite tunnel. Further refinements did not change the result.

7.2 Finite tunnel in a semi-infinite domain

Next we analyze a tunnel of finite length in a semi-infinite domain described by decay
infinite NURBS patches. The discretization into 7 finite NURBS patches and 3 infinite
(decay) patches is shown in Figure 19.

One plane of symmetry was considered and the properties and the virgin stress
field are the same as for the previous example. Figure 20 shows the displaced shape
after the first refinement.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-017.jpg&w=359&h=125
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-018.jpg&w=335&h=123

Stage 8: The boundary element method for three-dimensional problems 255

Figure 20 Displaced shape after the first refinement.

Figure 21 CAD model of tunnel branch and extracted NURBS surface and trimming information.

7.3 Branched tunnel

This example shows how geometrical data can be used directly from the CAD program
without the need for mesh generation. Figure 21 shows the CAD model of a tunnel
intersection and the geometrical information extracted from a file generated by the
program Rhino. This information is used directly for the simulation as follows: The
trimmed surfaces are used to model 1/4 of the problem as shown in Figure 22.

Two planes of symmetry (about the x-y and x-z planes) are assumed and infi-
nite plane strain patches are used to simulate infinitely long tunnels. The tunnels are
assumed to be excavated in an elastic pre-stressed ground (for more details see [3], [2]
and [1]).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-019.jpg&w=335&h=113
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-020.jpg&w=359&h=215

256 Advanced numerical simulation methods

Figure 22 Discretisation of tunnel intersection problem into 5 finite and 2 infinite plane strain NURBS
patches showing control points.

We analyze the tunnel intersection with the following properties.

• Elastic domain with E = 1000 MPa, v = 0
• Virgin stress: σz = 1 MPa compression, all other components zero
• Symmetry about x-z and x-y planes
• Single stage excavation

The locations of collocation points are computed in the local patch coordinate
system using the Greville formula and then mapped into the global system.

It should be noted here that collocation points will only be in the same position if
the basis functions and the parameters spaces of the trimming curves match along the
intersection between two patches. Unfortunately, one can not rely on the fact that the
trimming information supplied by the CAD program is such that parameter spaces of
the curves match at the intersection.

We have learned earlier that parameter spaces are influenced by the entries in the
Knot vector, so some manipulation of these may result in matching parameter spaces.
If the parameter spaces can not be made to match within a certain tolerance then the
remedy would be either to recalculate the parameters of the trimming curves (using
points computed on the curves) or to use discontinuous collocation as mentioned.
Fortunately in this case the location of the collocation points matched and continuous
collocation could be used.

Another issue that needs to be addressed is the integration. Since NURBS patches
are much bigger than Finite Elements a subdivision is required.

In the program, subdivision lines are generated automatically through collocation
points. This is required for the weakly singular integration to work. To account for
basis functions, which are not continuous over the patch subregions are also introduced

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-021.jpg&w=335&h=195

Stage 8: The boundary element method for three-dimensional problems 257

Figure 23 Basis functions before refinement in s,t and global coordinate system.

Figure 24 Location of collocation points and subdivision into integration regions for second refinement
stage.

at knots. Further subdivisions are automatically made by the program for the case
where the source point is close to the integration region, using the Quadtree method.

We follow the method of geometry independent approximation, i.e. we keep the
geometry description unchanged and only change the approximation of the unknown.
Figure 23 shows traces the basis functions defined in the s, t coordinate system and in
the x, y, z coordinate system before refinement for one of the trimmed surfaces.

For the analysis the order of the basis functions was elevated until convergence was
achieved. Figure 24 shows the location of the collocation points for orders p = q = 4

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-022.jpg&w=335&h=196
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-023.jpg&w=299&h=156

258 Advanced numerical simulation methods

Figure 25 Deformed shape.

Figure 26 Mesh used for the conventional BEM analysis with isoparametric elements.

(291 degrees of freedom) and Figure 25 one result of the analysis namely the deformed
shape.

To check the accuracy, the results are compared with a conventional BEM anal-
ysis using Serendipity functions for describing the geometry and the variation of the
unknowns. Figure 26 shows the mesh used for the analysis with the simulation pro-
gram BEFE. Two analyses were performed, one with linear and one with quadratic
shape functions. The latter had 2895 unknowns.

The z-displacement along the trimming curve is shown in Figure 27 for the
conventional BEM and the new approach.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-024.jpg&w=324&h=167
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-025.jpg&w=190&h=159

Stage 8: The boundary element method for three-dimensional problems 259

Figure 27 Variation of the vertical displacement along the trimming line, comparison of new method
with isoparametric BEM.

Figure 28 Comparison of the basis functions along the intersection of the two surfaces.Top: for NURBS
based BEM, bottom: conventional BEM.

It can be seen that the conventional BEM results converge towards the results for
the NURBS based BEM. The conventional BEM analysis used about 10 times more
unknowns to achieve the same quality of results. The reason for this is that many
boundary elements are required just to approximate the geometry.

If we compare the variation of the basis functions along the intersection line in
Figure 28 then we can see that the NURBS basis functions are continuous whereas the
Serendipity functions are only piecewise continuous.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-026.jpg&w=252&h=173
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-10&iName=master.img-027.jpg&w=275&h=185

260 Advanced numerical simulation methods

8 CONCLUSIONS

Here the implementation of the 3-D NURBS based BEM was discussed. The main issue
was the treatment of nearly singular and singular integrands. Care had to be taken to
ensure the accuracy of integration, which is much more important than for the FEM,
where a reduced integration can be even beneficial. In the BEM consequences can be
quite severe if the quality of the integration is not maintained. The Gauss Quadrature
applied is an old and trusted method, initially conceived for integrating polynomial
functions and it has worked well for the FEM. However, since the integrands that we
are dealing with are not polynomials and contain some nasty singular properties it
is worth considering if there are better alternatives. Although some ideas have been
published, they are not sufficiently convincing to abandon Gauss. The most compute
intensive part of the BEM program is the numerical integration and since the evaluation
of the NURBS basis functions and derivatives uses up more floating point operations
as compared with Serendipity functions this is an important aspect to be considered
for efficiency.

Although, as we have seen, it is much more complicated to program the BEM,
there are considerable benefits to be gained for the user: Simpler definition of the
geometry and much more accurate results with fewer degrees of freedom. As has been
shown in the examples, using NURBS for the description of the geometry and for the
approximation of the unknown result in a significant increase in accuracy and fewer
unknowns. As pointed out, BEM is the only method that can lead to an achievement
of a seamless integration of CAD and simulation.

So far we have only dealt with homogeneous and elastic domains and this would
severely limit the application, especially in geomechanics. The reason for this restric-
tion is that we have not considered body forces in the formulation. Body forces are
introduced in the next stage. It will be seen that this results in some volume integrals
and on first glance the advantage of the BEM, namely surface only discretization, seems
to be lost. However, there is no reason to despair. The volume integrals are restricted
to zones where nonlinear behavior occurs or where there are inclusions, there is no
increase in the number of unknowns and as will be shown there is no need to provide
a volume mesh. Thus the suitability of the BEM as a ideal companion to CAD is not
affected.

BIBLIOGRAPHY

[1] G. Beer. Mapped infinite patches for the NURBS based boundary element analysis in
geomechanics. Computers and Geotechnics, 66:66–74, 2015.

[2] G. Beer, B. Marussig, and J. Zechner. A simple approach to the numerical simulation
with trimmed CAD surfaces. Computer Methods in Applied Mechanics and Engineering,
285:776–790, 2015.

[3] Gernot Beer, Benjamin Marussig, Juergen Zechner, Christian Duenser, and Thomas-Peter
Fries. Boundary Element Analysis with trimmed NURBS and a generalized IGA approach.
In E. Oñate, J. Oliver, and A. Huerta, editors, 11th World Congress on Computational
Mechanics (WCCM XI), 2014.

[4] Benjamin Marussig, Jürgen Zechner, Gernot Beer, and Thomas-Peter Fries. Fast isogeo-
metric boundary element method based on independent field approximation. Computer

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2014.09.035
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.compgeo.2015.01.012
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2014.12.010

Stage 8: The boundary element method for three-dimensional problems 261

Methods in Applied Mechanics and Engineering, 284(0):458–488, 2015. Isogeometric
Analysis Special Issue.

[5] S.P. Timoshenko and J.N. Goodier. Theory of Elasticity. McGraw-Hill, New York, NY,
USA, 1970.

[6] Ch. Duenser W. Moser and G. Beer. Mapped infinite elements for three-dimensional
multi-region boundary element analysis. International Journal for Numerical Methods
in Engineering, 61:317–328, 2004.

[7] J.O. Watson. Developments in Boundary Element Methods – 1, volume 1, chapter
Advanced implementation of the boundary element method for two- and threedimensional
elastostatics. Applied Science, 1979.

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cma.2014.09.035
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnme.1073
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnme.1073

Chapter 10

Stage 9:The boundary element method
with volume effects

Gravitation is not responsible for people falling in love
J. Keppler

where we extend the capabilities of the BEM to simulate heterogeneous and non-linear
problems.

1 INTRODUCTION

So far we we have assumed that loading only occurs on the boundary, i.e. we have
neglected the influence of effects inside the domain. In addition, we have assumed
in the computation of the fundamental solutions, that there is a linear relationship
between stress and strain or flow and potential and that the domain is homogeneous,
i.e. has the same properties everywhere.

This severely restricts the applicability of the method to practical problems. In
applications in geomechanics for example the rock/soil mass will exhibit non-linear
behavior during loading. In addition, the ground will not be homogeneous and may
have inclusions with different material properties. Finally there may be some effects
inside the domain, which need to be considered, for example volume change due to
swelling.

As will be shown, the first two problems can be considered in an iterative way.
Readers may be familiar with the initial stress method used in the FEM which involves
a number of linear solutions with a residual right hand side, which tends to zero as the
iteration converges. In plasticity for example the computation of the right hand side
involves forces inside the domain which relate to the stresses being redistributed.

To extend the capabilities of the method we re-introduce volume effects that have
been neglected so far. Following a standard that seems to have developed in the litera-
ture, we use an overdot to indicate an increment. This is convenient as it avoids the use
of � but must not be confused with the use of an overdot for the first time derivative.

2 EFFECT OF BODY FORCES AND INITIAL STRAIN

Here we discuss two types of volume effects: Forces that occur inside the domain and
initial strains. The first occur when dealing with inelastic behavior and heterogeneous

264 Advanced numerical simulation methods

Figure 1 Explanation of the application of Betti’s theorem with body forces.

domains, the latter when parts of the domain are subjected to a known volume increase
(for example swelling).

2.1 Body forces

Here we investigate the effect of incremental body forces ḃ0, that occur inside a sub-
domain V0 as shown in Figure 1. The origin of the body forces may be due to in-elastic
behavior or due to inclusions, as will be elaborated later.

Applying Betti’s theorem, as explained in stage 6 we have to consider the additional
work done by the displacements of load case 1 and the body forces of load case 2 on
a small volume dV of the subdomain:

dW0
12 = U(y, x̄) · ḃ0(x̄) · dV0 (1)

If the body forces are related to initial stresses then we also have to consider the
work done by the following tractions at the boundary of V0:

t0 = n · σ0 (2)

where n is the outward normal to S0 and σ0 is the initial stress.
The additional work done is:

dW0t
12 = U(y, x̄) · ṫ0(x̄) · dS0 (3)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-000.jpg&w=240&h=170

Stage 9: The boundary element method with volume effects 265

The boundary integral equation with body forces can now be written as:

c · u(y) =
∫

S
U(y, x)t(x)dS +

∫
S0

U(y, x̄)ṫ0(x̄)dS0 (4)

−
∫

S
T(y, x)u(x)dS +

∫
V0

U(y, x̄)ḃ0(x̄)dV0

We can see that an additional integral over volume V0 occurs. For potential
problems we have for a internal flow/volume ḃ0:

c · u(y) =
∫

S
U(y, x)t(x)dS −

∫
S

T(y, x) u(x)dS +
∫

V0

U(y, x̄)ḃ0(x̄)dV (5)

The implementation of volume effects was first suggested by Telles [11] for the
treatment of inelastic material behavior. He suggested to discretize the volume using
cells, that are identical to finite elements. This means that the distribution of body
forces inside the cell is approximated using basis functions. This results in an additional
discretization effort but does not increase the number of degrees of freedom. Details
of the implementation of a cell based inelastic solution can be found in [2]. A further
development reported in [8] discusses the automatic generation of cells. The method
was extended to the treatment of inclusions in [9].

The disadvantage of the cell method is that the approximation of the body force
inside cells introduces errors into the solution, especially when the cell is transected by
the elasto-plastic boundary.

Here we propose a different, more accurate way. Instead of using cells for dis-
cretizing the volume, we use a geometrical definition by NURBS and mapping. This
means that no approximation of the body forces inside the plastic domain is required
and most importantly, that the integration is carried out only in the domain. It will
also be shown how the extent of the plastic domain can be automatically detected, so
no additional work would be required by the user.

The ideas presented here are quite novel and some have not been verified. This is
with the spirit of this book, that is meant as an impetus for readers to work in this
exciting new area.

2.2 Effect of initial strain

Here we assume that known strains ε0 are generated inside the domain. This would
allow us to consider effects such as swelling.

The additional work done on a small volume dV is by the loads of load case 1
times the displacements of load case 2 is

dW0
21 = �(y, x̄) · ε0(x̄) · dV (6)

where �(y, x̄) is a matrix of fundamental solutions for stress, listed in the Appendix.
The integral equation is

c · u(y) =
∫

S
U(y, x)t(x)dS −

∫
S

T(y, x)u(x)dS +
∫

V0

�(y, x̄)ε0(x̄)dV (7)

266 Advanced numerical simulation methods

2.3 Solution

The solution with volume effect involves an additional right hand side. The system of
Equations to be solved is1.

[T]{u} = {F} + {F0} (8)

where the subvectors of {F0} due to initial strain are given by

F0
n =

∫
V0

�(yn, x̄)ε0(x̄)dV (9)

For the inelastic solutions and for the consideration of inclusions the solution has
to proceed iteratively with the first solution being:

[T]{u} = {F} (10)

For subsequent solution we compute incremental displacements {u̇} from incre-
mental body forces by

[T]{u̇} = {Ḟ0} (11)

where

Ḟ0
n =

∫
V0

U(yn, x̄)ḃ0(x̄)dV(x̄) (12)

3 IMPLEMENTATION FOR PLANE PROBLEMS

Here we discuss the practical implementation of volume effects for plane problems.
We start with the definition of the subdomain V0 and then proceed to the numerical
evaluation of the volume integral.

3.1 Geometry definition

The first task is the description of the geometry of the subdomain V0. There are various
ways in which this can be done. One way would be to discretize the volume into cells.
Here we propose a simpler, way, which is consistent with the isogeometric philosophy,
i.e. that complex geometries can be defined with few parameters.

We propose to use the mapping method introduced earlier for trimmed sur-
faces. This means that the subdomain is defined by two NURBS curves and a linear
interpolation between them.

We establish a local coordinate system s,t as shown in Figure 2 and perform all
computations such as integration in this system and then map it to the global x, y
system. Note that the local coordinate s ranging from 0 to 1 is the same as the local

1For simplicity we will restrict further discussions on pure Neumann or Robin BC. The extension
to Dirichlet or mixed problems is straight forward.

Stage 9: The boundary element method with volume effects 267

Figure 2 Definition of subdomain with 2 NURBS curves in left global and right local coordinate space.

coordinate u of the NURBS curve defining the boundary. The global coordinates of a
point, x, with the local coordinates s, t is given by:

x(s, t) = (1 − t) · xI(s) + t · xII(s) (13)

where

xI(s) =
NI∑

n=1

RI
n(s) · xI

n; xII(s) =
NII∑
n=1

RII
n (s) · xII

n (14)

The superscript I relates to the bottom (red) curve and II to the top (green) curve
and xI

n, xII
n are control point coordinates. NI and NII is the number of control points

and RI
n(s), RII

n (s) are NURBS basis functions.
The derivatives are given by:

∂x(s, t)
∂s

= (1 − t) · ∂xI(s)
∂s

+ t · ∂xII(s)
∂s

(15)
∂x(s, t)

∂t
= −xI(s) + ·xII(s)

where

∂xI(s)
∂s

=
N∑

n=1

∂RI
n(s)
∂s

· xI
n

(16)
∂xII(s)

∂s
=

N∑
n=1

∂RII
n (s)
∂s

· xII
n

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-001.jpg&w=323&h=148

268 Advanced numerical simulation methods

The Jacobi matrix of this mapping is:

J =

⎛
⎜⎜⎝

∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

⎞
⎟⎟⎠ (17)

and the Jacobian is J = |J|

3.2 Computation of the volume integral

We use Gauss Quadrature to compute the volume integral. For this we introduce local
coordinates ξ, η with the limits −1 to 1. The transformation of s, t to ξ, η coordinates
is given by:

s = 0.5(ξ + 1); t = 0.5(η + 1) (18)

The Jacobian of this transformation is Js = 0.25.
The integral for the body force can now be written as2:

F0
n =

∫ 1

−1

∫ 1

−1
U(yn, x̄(ξ, η))ḃ0(x̄(ξ, η)) J · Js · dξ dη (19)

Applying Gauss integration we have:

F0
n =

M∑
m=1

N∑
n=1

U(yn, x̄(ξm, ηn))ḃ0(x̄(ξm, ηn))J · Js · Wm · Wn (20)

where M, N are the number of integration points in ξ and η directions. To determine
the number of Gauss points necessary for an accurate integration we consider that
whereas there is usually a moderate variation of body force, the Kernel U is O(ln r) so
the number of integration points has to be increased if V0 is close to the boundary.

In the case of initial strains we have

F0
n =

M∑
m=1

N∑
n=1

�(yn, x̄(ξm, ηn))ε̇0(x̄(ξm, ηn)) J · Js · Wm · Wn (21)

Since the Kernel � is O(1
r) more Gauss points will be required when the subdomain

is near the boundary.

4 IMPLEMENTATION FOR 3-D PROBLEMS

Here we extend the implementation to 3-D.

2It is assumed here that the dimension of the problem in the direction out of the plane is 1. For
a plane stress problem the expression has to be multiplied with the thickness.

Stage 9: The boundary element method with volume effects 269

Figure 3 Definition of subdomain with 2 NURBS surfaces in left global and right local coordinate space.

4.1 Geometry definition

The volume is defined by 2 NURBS surfaces and a linear interpolation between them.
We establish a local coordinate system ū, v̄, t as shown in Figure 3 and perform

all computations such as integration in this system and then map it to the global
x, y, z system. The global coordinates of a point, x, with the local coordinates ū, v̄, t is
given by:

x(ū, v̄, t) = (1 − t) · xI(ū, v̄) + t · xII(ū, v̄) (22)

where the coordinates on the bounding surfaces are given by:

xI(ū, v̄) =
NI∑

n=1

RI
n(ū, v̄) · xI

n; xII(ū, v̄) =
NII∑
n=1

RII
n (ū, v̄) · xII

n (23)

The superscript I relates to the bottom and II to the top surface and xI
n, xII

n are
control point coordinates. NI and NII is the number of control points and Rn(ū, v̄)
are tensor products of NURBS basis functions. The surfaces may be trimmed and in
this case a mapping from u, v to ū, v̄ system is required. For untrimmed surfaces u = ū
and v = v̄.

The derivatives are:

∂x(ū, v̄, t)
∂ū

= (1 − t) · ∂xI(ū, v̄)
∂ū

+ t · ∂xII(ū, v̄)
∂ū

∂x(ū, v̄, t)
∂v̄

= (1 − t) · ∂xI(ū, v̄)
∂v̄

+ t · ∂xII(ū, v̄)
∂v̄

(24)

∂x(ū, v̄, t)
∂t

= −xI(ū, v̄) + xII(ū, v̄)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-002.jpg&w=335&h=145

270 Advanced numerical simulation methods

The Jacobi matrix of this mapping is :

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂x
∂ū

∂y
∂ū

∂z
∂ū

∂x
∂v̄

∂y
∂v̄

∂z
∂v̄

∂x
∂t

∂y
∂t

∂z
∂t

⎞
⎟⎟⎟⎟⎟⎟⎠

(25)

and the Jacobian is J = |J|.

4.2 Computation of the volume integral

We use Gauss Quadrature to compute the volume integral. For this we introduce
local coordinates ξ, η, ζ with the limits −1 to 1. The transformation of u, v, t to
ξ, η, ζ coordinates is given by:

u = 0.5(ξ + 1); v = 0.5(η + 1); t = 0.5(ζ + 1) (26)

The Jacobian of this transformation is Js = 0.125. The integral for the body force
can now be written as:

F0
n =

∫ 1

−1

∫ 1

−1

∫ 1

−1
U(yn, x̄(ξ, η, ζ))ḃ0 (x̄(ξ, η, ζ)) J · Js · dξdηdζ (27)

Applying Gauss integration we have:

F0
n =

M∑
m=1

N∑
n=1

L∑
l=1

U(yn, x̄(ξm, ηn, ζl))ḃ0 (x̄(ξm, ηn, ζl)) J · Js · Wm · Wn · Wl (28)

where M, N and L are the number of integration points in ξ, η and ζ directions. To
determine the number of Gauss points necessary for an accurate integration we consider
that whereas there usually is a moderate variation of body force, the Kernel U is O(1

r)
so the number of integration points has to be increased if V0 is close to the boundary.

For the initial strains we have

F0
n =

M∑
m=1

N∑
n=1

L∑
l=1

�(yn, x̄(ξm, ηn, ζl))ε̇0 (x̄(ξm, ηn, ζl)) J · Js · Wm · Wn · Wl (29)

Since the Kernel � is O(1
r2) more Gauss points will be required when the subdomain

is near the boundary.

5 ITERATIVE SOLUTION ALGORITHM

The iterative solution starts with a first solution {u}0, that neglects volume effects:

[T]{u}0 = {F} (30)

Stage 9: The boundary element method with volume effects 271

Next we compute a new right hand side with the body forces ḃ0 generated inside
subdomain V0. The sub-vector for the collocation point n and iteration i can be
computed using Equation (20) and then assembled into the global vector {F0}i.

With this new right hand side a correction to {u} is computed by

[T]{u̇}i = {F0}i (31)

The iteration continues until the norm of the residual is smaller than a given
tolerance. The final solution is composed of the initial solution and the sum of all
corrections:

{u} = {u}0 + {u̇}1 + {u̇}2 + · · · (32)

We apply this algorithm to two problems: One where the domain is not homo-
geneous and one where there is not a linear relationship between stress and strain
(inelastic behavior). In other words, we attempt to modify the results for an elastic,
homogeneous domain, which were the assumptions for the fundamental solutions.

6 INCLUSIONS

Here we propose an iterative method to deal with inhomogeneous domains. However,
we will restrict ourselves to the piecewise homogeneous case. This means that we
assume that the inhomogeneities can be considered as inclusions, which have different
elastic properties to the ones assumed for the fundamental solutions. Consider the
example of a tunnel with a zone that has different material properties (E2, ν2) to the
ones assumed for the fundamental solution (E1, ν1) (see Figure 2).

The proposed method proceeds as follows:
Obtain first a solution without the inclusion, i.e. assuming a Neumann problem

solve:

[T]{u}0 = {F} (33)

After the solution compute the strain at a point y inside the inclusion by:

ε(y) =
E∑

e=1

S̄e −
E∑

e=1

R̄e (34)

where E is the number of NURBS patches describing the boundary and for example
for plane problems

S̄e =
M∑

m=1

S̄(y, x(ξm(u))t(um) · J · Wm (35)

272 Advanced numerical simulation methods

and

R̄e =
M∑

m=1

R̄(y, x(ξm(u))u(um) · J · Wm (36)

where M is the number of Gauss points and J is the Jacobian of the mapping from
local ξ coordinates to global coordinate. The derived fundamental solutions R̄ and S̄
are presented in the Appendix.

The stresses in the domain are:

σ = C1 · ε (37)

where C1 is the elasticity matrix with the properties, that were used to compute the
fundamental solution (E1, ν1). However, this is incorrect for the inclusion, where the
stresses should have been computed using

σ = C2 · ε (38)

where C2 is the elasticity matrix computed with the material properties of the inclusion
(E2, ν2). A correction to the solution has now to be made. We compute a residual stress
increment inside the inclusion:

σ̇0 = (C1 − C2) · ε (39)

The stress has to be converted to a body force acting inside V0 and a traction acting
on its boundary S0.

To compute the body force we recall the equilibrium equation:

bj = −∂σjk

∂xk
(40)

Changing to vector notation the residual body force vector, ḃ0, is computed by:

ḃ0 = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂σ̇0
x

∂x
+ ∂τ̇0

xy

∂y
+ ∂τ̇0

xz

∂z

∂τ̇0
xy

∂x
+ ∂σ̇0

y

∂y
+ ∂τ̇0

yz

∂z

∂τ̇0
xz

∂x
+ ∂τ̇0

yz

∂y
+ ∂σ̇0

z

∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(41)

The traction on the boundary S0 is:

t0 = n · σ̇0 (42)

The following equation is solved for an increment in displacement:

[T]{u̇}1 = {F0}1 + {Ft0}1 (43)

Stage 9: The boundary element method with volume effects 273

where {F0}1 is computed using Equation (20) or (28) and {Ft0}1 is computed by apply-
ing Gauss integration over the NURBS curves/surfaces defining the inclusion and the
connecting lines/surfaces.

Using Equation (34), considering that the increment in tractions ṫ is zero and that
the increment in body force ḃ0 is not zero we compute the strain increment:

ε̇1(y) = −
E∑

e=1

R̄e + S̄0 (44)

where for plane problems S̄0 is computed by

S̄0 =
M∑

m=1

L∑
l=1

S̄(y, x̄(ξm, ηl))ḃ0(x̄(ξm, ηl))J · Js · Wm · Wl (45)

With the computed strain increment we determine a new residual stress increment
and body force. The iteration continues until the residual becomes smaller than a
specified tolerance.

6.1 Computation of body force

For the computation of the body force the derivatives of the residual stresses are
required. These are first computed in the local coordinate system and then expressed
in the global coordinate system using the inverse of the Jacobi matrix as explained in
stage 4.

For example, for plane problems the global derivatives of stress σx can be
computed by:

σx,x = J−1 · σx,s (46)

where

σx,x =

⎛
⎜⎜⎝

∂σx

∂x
∂σx

∂y

⎞
⎟⎟⎠ ; σx,s =

⎛
⎜⎝

∂σx

∂s
∂σx

∂t

⎞
⎟⎠ (47)

The local derivatives are computed using finite differences. There are basically 2
ways to approach this: Creating a finite difference template for each Gauss point with a
constant spacing or to use the Gauss points as finite difference points with non-uniform
spacing. The former is obviously more expensive as for plane problems 4 and for 3-D
problems 8 evaluations of stress are required for each Gauss point. The disadvantage
of the second option is that Gauss points may be widely spaced, which could affect
the accuracy.

Central finite difference template For this we establish a finite difference template
with spacing h as shown in Figure 4 for point i, j in the local coordinate space (s, t).

274 Advanced numerical simulation methods

Figure 4 Central difference template for computing the derivatives.

We define 4 additional points, whose coordinates are:

si+1,j = si,j + h; ti+1,j = ti,j

si−1,j = si,j − h; ti−1,j = ti,j

si,j+1 = si,j; ti,j+1 = ti,j + h
si,j−1 = si,j; ti,j−1 = ti,j − h

(48)

where h is a small distance, chosen by experience. Care has to be taken that h is not
chosen is such a way that the point falls outside the region of integration.

The derivatives of the stress Pseudo-vector at i, j are then given by:

∂σ0

∂s
= σ0

i+1,j − σ0
i−1,j

2h
(49)

∂σ0

∂t
= σ0

i,j+1 − σ0
i,j−1

2h

where for example σ0
i+1,j etc. are the stresses computed at the locations with the local

coordinates si+1,j, ti+1,j. The global coordinates coordinates of the points are obtained
by mapping.

The method can be easily extended to 3-D problems. The central difference
template has 8 additional points in this case.

Using finite differences with Gauss points Gauss points are spaced unequally so the
finite difference formulae have to be modified. In addition we can no longer use a
central finite difference for Gauss points that do not have other Gauss points on the side
or above/below. For these points we must use a mix of central, forward or backward
finite differences.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-003.jpg&w=178&h=165

Stage 9: The boundary element method with volume effects 275

Figure 5 Computing the derivatives of σ0 at a Gauss point.

As an example we show the evaluation of the derivatives for Gauss point (m, n)
near the left boundary (see Figure 5):

∂σ0

∂s
= σ0

m,n+1 − σ0
m,n

ds
(50)

∂σ0

∂t
= σ0

m+1,n − σ0
m−1,n

dt

where ds is the distance between two Gauss points in s direction and dt is the dis-
tance between the two adjacent Gauss points in t direction. The method can be easily
extended to 3-D.

6.2 Steps in the analysis

The analysis considering inclusions proceeds with the following steps:

1 Solve the linear problem
2 Specify the geometry of the inclusion
3 Determine the number of Gauss points for the volume integration
4 For each Gauss point do

Calculate the strain and the residual stress using (39)
Calculate the local derivatives of the stress components using (49) or (50)
Calculate the global derivatives with (46)
Calculate the body force with (41)

5 Determine the new right hand side
6 Solve for increments in displacements
7 If the norm of the increments is below a specified tolerance finish otherwise repeat

steps 4–6

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-004.jpg&w=179&h=164

276 Advanced numerical simulation methods

7 INELASTIC BEHAVIOR

Inelastic behavior occurs, when the stresses reach the elastic limit, determined by a
yield condition F(σ). Inelastic behavior is often referred to as elasto-plastic behavior
or plasticity stemming from its origin in the simulation of the behavior of metals. The
term does not describe well the inelastic behavior of soils and rocks but is often used
there. For simplicity we will refer to inelastic behavior as plasticity from now on.

We develop the integral equations for plasticity next but to keep the equations
short we revert to tensor notation. We recall the relationship between stresses and
strains:

σ̇jk = Cjklmε̇e
lm (51)

where ε̇e
lm is the elastic strain increment and Cjklm is the elasticity tensor.

If the elastic limit has been reached (i.e. when F(σ) = 0), the total strain increment
consists the sum of an elastic and a plastic part:

ε̇lm = 1
2

(
∂u̇l

∂xm
+ ∂u̇m

∂xl

)
= ėε

lm + ε̇
p
lm (52)

where ε̇
p
lm is the plastic strain increment and u̇l denotes displacement increments.

Substitution into Equation (51) gives:

σ̇jk = Cjklm(ε̇lm − ε̇
p
lm) (53)

or

σ̇jk = σ̇e
jk − σ̇

p
jk (54)

where

σ̇e
jk = Cjklmε̇lm (55)

and

σ̇
p
jk = Cjklmε̇

p
lm (56)

Recall the differential equation of elasticity:

∂σ̇jk

∂xk
+ bj = 0 (57)

Substitution of Equation (54) gives

∂σ̇e
jk

∂xk
− ∂σ̇

p
jk

∂xk
+ bj = 0 (58)

Stage 9: The boundary element method with volume effects 277

or

∂σ̇e
jk

∂xk
+ ḃp

j + bj = 0 (59)

where the plastic body force ḃp
j = − ∂σ̇

p
jk

∂xk
has been introduced.

If the plastic zone V0 extends to the boundary, then additional tractions have to
be considered. The stresses on the boundary are related to the tractions by:

nkσ̇jk = ṫj (60)

or

nk(σ̇e
jk − σ̇

p
jk) = ṫj (61)

In terms of σ̇e
jk we have

nkσ̇
e
jk = ṫj + ṫp

j (62)

where

ṫp
j = nkσ̇

p
jk (63)

The integral equation can now be written in matrix notation as:

c(y)u̇(y) +
∫

S
T(y, x)u̇(x)dS(x) =

∫
S

U(y, x)(ṫ(x) + ṫp(x))dS(x) (64)

+
∫

V
U(y, x̄)ḃp(x̄)dV(x̄)

where changing to vector notation we have:

ṫp = n · σ̇p (65)

7.1 Yield conditions

The yield condition or yield function determines the limit of elastic straining. It is a
function of stress and material constants and is also referred to as yield surface, since
it can be visualized as a surface in principal stress space. The elastic limit is reached
when F(σ) = 0. For F(σ) < 0 the state is elastic. A stress state that obeys F(σ) = 0 is
sometimes referred to as being on the yield surface.

A great number of yield conditions have been proposed for different materials (see
for example [3] and [7]). Here we only discuss two of them: von Mises criterion for

278 Advanced numerical simulation methods

metals and the Mohr-Coulomb condition for soils. In addition we will restrict ourselves
here to perfect plasticity3.

The von Mises criterion is given by

F(σ) = σeq − σY (66)

where in terms of the principal stresses σ1, σ2, σ3:

σeq =
√

0.5
[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3σ1)2

]
(67)

and σY is the yield stress.
The Mohr-Coulomb yield condition is given by

F(σ) = σ1 + σ3

2
sin φ − σ1 − σ3

2
− c · cos φ (68)

where c is the cohesion and φ is the angle of friction.

7.2 Determination of plastic strain increment

The next step is to compute the plastic strain increment. For this we introduce a plastic
potential Q(σ) that is used to determine the direction of plastic straining (flow law).
The plastic potential is similar to the yield condition. If Q(σ) ≡ F(σ) then this is known
as an associative flow law4.

There are two approaches for determining the plastic strain increment. Elasto-
plasticity and viscoplasticity. In the first the stresses are not allowed to violate the
Yield function, i.e. F(σ) � 0 and this implies that stresses may need to be corrected to
lie on the yield surface after an increment. In visco-plasticity we assume that plastic
straining is a time dependent problem, i.e. F(σ) > 0 is allowed but it is assumed that
the stresses will obey F(σ) = 0 after time has passed.

Visco-plasticity In visco-plasticity we specify a visco-plastic strain rate as

∂εvp

∂t
= 1

η
�(F)

∂Q
∂σ

(69)

where η is a viscosity parameter and

�(F) = 0 for F < 0 (70)

�(F) = F for F > 0 (71)

3This means that the material parameters are constant, i.e. hardening and softening is not
considered.
4In soil mechanics the flow law can be visualized as controlling the dilatancy, i.e. the volume
increase during plastic straining.

Stage 9: The boundary element method with volume effects 279

The visco-plastic strain increment during a time increment
t can be computed
by an explicit scheme:

ε̇
vp = ∂εvp

∂t
·
t (72)

t can not be chosen freely and if chosen too large, oscillatory behavior will occur
in the solution. Suitable time step values can be found in [1]. The visco-plastic stress
increment is given by:

σ̇
vp = C · ε̇

vp (73)

Elasto-plasticity The increment in stress σ̇, obtained after an iteration step can be
written as:

σ̇ = C · ε̇
e = C · (ε̇ − ε̇

p) (74)

where ε̇ is the total strain increment. The plastic strain increment ε̇
p is defined by:

ε̇
p = λ

∂Q
∂σ

(75)

and after substitution of (75) into (74):

σ̇ = C · (ε̇ − λ
∂Q
∂σ

) (76)

The plastic multiplier λ is computed from the condition that F(σ) � 0 always. If
F = 0 at the start of the increment then we have to ensure that F � 0 and this means
that any positive change in F during loading has to be zero:

dF = ∂F
∂σ

· σ̇ = 0 (77)

Substituting (76) into (77) and solving for λ we obtain:

λ = 1
β

∂F
∂σ

C · ε̇ (78)

where

β =
(

∂F
∂σ

)T

C · ∂Q
∂σ

(79)

In a numerical solution of equation (77) we assume a constant value of ∂F
∂σ

for
the increment and this means that the value of λ computed by (78) will be only an
approximation. Therefore the computed stress state may not be on the yield surface
and a correction has to be made. The discussion of such return algorithms is beyond

280 Advanced numerical simulation methods

Figure 6 Explanation on how to determine the extent of the plastic zone on the boundary: NURBS
patch with plastic zone marked in red (left in global coordinate space and right in local
coordinate space). Also indicated in pink is the method used to detect the start of the plastic
zone.

the scope of the book and the interested reader is referred to [5] and [10]. The plastic
stress increment is given by:

σ̇
p = C · ε̇

p (80)

8 IMPLEMENTATION OF PLASTICITY FOR PLANE PROBLEMS

Here we discuss the implementation of inelastic material response which involves the
following steps:

1 Elastic solution
2 Determination of the plastic zone
3 Mapping of the zone to a local s, t coordinate system
4 Determination of the integration scheme depending on the location of collocation

point
5 Computation of the volume integral and new right hand side
6 Incremental solution with new right hand side
7 Add increments
8 Check for convergence

If convergence achieved exit
If not goto 2

8.1 Determination of plastic zone

Extent of zone on boundary The explanation of how to determine the extent of the
plastic zone is made for a single patch but can be extended to multiple patches. First

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-005.jpg&w=311&h=140

Stage 9: The boundary element method with volume effects 281

we determine the extent of the plastic zone along the boundary using the following
procedure:

• Subdivide the patch
• Starting with u = 0 and increasing u, determine for each subdivision point the state

of stress5

• If for two subsequent points it has been found that one is elastic the other plas-
tic then the onset of the plastic region is determined by interval halving (see
Figure 6)

• The same is done for the case where the first point is plastic and the second elastic
for determining the end of the plastic zone

The outcome is the local coordinate of the start of the plastic zone, us and its end,
ue, or in other words a truncated NURBS curve.

Extent of zone inside domain – predictor/corrector method Next we determine the
extent of the zone inside the domain using a predictor/corrector method which is
based on work first published in [4]. The aim is to determine a contour F(σ) = 0. We
can determine vectors tangential (tc) and normal (nc) to this contour:

tc =

⎛
⎜⎜⎝

∂F
∂x
∂F
∂y

⎞
⎟⎟⎠ ; nc =

⎛
⎜⎜⎝

∂F
∂y

−∂F
∂x

⎞
⎟⎟⎠ (81)

where

∂F(σ)
∂x

= ∂F
∂σ

∂σ

∂x
;

∂F(σ)
∂y

= ∂F
∂σ

∂σ

∂y
(82)

The derivatives of the stresses can be obtained by taking the derivatives of the
equations for the internal stress computation introduced in stage 7:

∂σ

∂x
=

E∑
e=1

(

∂S
∂x

)e

−
E∑

e=1

(

∂R
∂x

)e

(83)

∂σ

∂y
=

E∑
e=1

(

∂S
∂y

)e

−
E∑

e=1

(

∂R
∂y

)e

where E is the number of patches and the derivatives of the derived fundamental
solutions R and S are given in the Appendix.

To start the iterative process we compute the inward normal to the boundary
curve, n, at the point where the plastic zone starts at the boundary. Next we make a
prediction by moving along n with a distance h and compute the value of F(σ) and

5Note that this calculation can be done in the local NURBS coordinate system using the stress
recovery procedure presented previously.

282 Advanced numerical simulation methods

Figure 7 Explanation on how to determine the extent of the plastic zone inside the domain using the
predictor/corrector method.

the vector nc at this point. If, as expected F(σ) �= 0 then we make a correction in the
direction nc. The new location of the point, xnew, on the contour is computed by:

xnew = xold + nc · F(σ) (84)

where xold is the point with F(σ) �= 0. This is shown for the case F < 0 in Figure 7.
Since F is a nonlinear function, the location of the point computed by the simplified
Equation (84) may not lie on the contour and has to be corrected. One way is to divide
F into increments and update nc at each increment (for more details see [4]). After
the first point on the contour has been found the location of a subsequent point is
predicted by moving a distance h along the tangent (tc) to F(σ) = 0. This is followed
by another correction.

The process continues until the end of the contour has been reached. The end of the
contour can be detected, when the smallest distance of the computed point to the curve,
defining the boundary of the problem, is very small. Indeed, to avoid highly singular
integration it is recommended to stop at a small distance away from the boundary
curve.

The method is obviously sensitive to the distance h chosen for the prediction and
a compromise between computational effort and accuracy has to be reached. After all
points on the contour have been determined, a NURBS curve can be constructed using
an algorithm published in [6] or a polygon can be defined by connecting the points.

If the plastic domain covers the entire NURBS curve, then the process has to be
modified. In this case a search is made along the inward normal at the start and the

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-006.jpg&w=190&h=215

Stage 9: The boundary element method with volume effects 283

Figure 8 Explanation on how to determine the extent of the plastic zone inside the domain with the
simple method. The interval halving method is indicated for the first inward normal.

end of the NURBS curve describing the boundary of the problem until the point F = 0
is found. The predictor/corrector method is then applied starting from the first point
found and ending at the last point.

Extent of zone inside domain – simple method A simpler alternative is presented
here. For this we divide the truncated NURBS curve into suitable subdivisions. For
each subdivision point we use the method of interval halving as follows:

• Compute the inward normal with a user defined length.
• Compute the yield function at the end of the line.
• If the yield function > 0 then extend the length of the line.
• If the yield function < 0 then subdivide the line and determine the yield function

at the subdivision point.
• If the point is still elastic subdivide towards the boundary, if it is plastic subdivide

away from the boundary.
• Do this until the elasto-plastic boundary point has been determined with sufficient

accuracy.

The procedure is explained in Figure 8. We end up either with a NURBS curve
or with a polygon, as shown in the Figure, that describes the elasto-plastic boundary.
The accuracy of the boundary will depend on the number of subdivisions chosen on
the boundary and the cut off criterion for interval halving algorithm.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-007.jpg&w=190&h=178

284 Advanced numerical simulation methods

Figure 9 Explanation of the mapping of the plastic zone from the global x, y to the local s, t coordinate
system. Shown are the control points of the truncated NURBS patch (red curve) and of the
elasto-plastic interface approximated by a NURBS curve or order 1(green curve).

Figure 10 Mapped plastic domain in global and local coordinate system for a NURBS curve of order
1. Collocation points are shown in purple.

8.2 Computation of the volume term

The computation of the volume term, as explained in section 3.2 has to be modified
slightly as one of the NURBS curves is truncated and u �= s. We therefore establish a
relationship between local coordinate of the NURBS curve describing the boundary,
u, and the coordinate s as

u(s) = s(ue − us) + us (85)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-008.jpg&w=299&h=147
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-009.jpg&w=311&h=156

Stage 9: The boundary element method with volume effects 285

Figure 11 Mapped plastic domain in the global and the local coordinate system using a NURBS curve
of higher order.

The Jacobian of this transformation is ∂u
∂s = ue − us. The global coordinates of this

curve are then given by

xI(u(s)) =
N∑

n=1

RI
n(u(s)) · xI

n (86)

where RI
n and xI

n are the basis functions and control point coordinates for the NURBS
curve describing the boundary.

For the second curve we set u = s and describe it with NURBS. The simplest way
is to use a polygon i.e. a curve of order 1. If we only consider 3 points of the green
curve in Figure 9 the knot vector is � = 0, 0, 0.5, 1, 1. The global coordinates of this
curve is then given by

xII(s) =
N∑

n=1

RII
n (s) · xII

n (87)

where RII
n and xII

n are the basis functions and the coordinates of the control points of
the NURBS curve describing the interface.

We proceed with the mapping as explained in section 3.1. In Figure 10 we show the
resulting maps in local and global coordinate space together with the collocation points,
assuming the same basis functions are used for the approximation of the unknown.
Figure 11 shows the mapping using a higher order NURBS curve for the description
of the elasto-plastic interface.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-010.jpg&w=312&h=164

286 Advanced numerical simulation methods

Figure 12 Subdomains for singular integration (middle collocation point) in (right) global and (left)
local coordinate system.

Figure 13 Subdivision of integration zone for internal stress computation.

8.3 Numerical integration

For the numerical integration we have to consider that V0 extends to the boundary.
The integrand consists of the Kernel U times the body force ḃ0 times the Jacobian.
The U-Kernel is singular and approaches infinity with O(ln 1

r) as x̄ approaches the
collocation point y. When the collocation point is not part of the integration region then
we can use regular integration, i.e. use Equation (20), with the number of Gauss points
determined by the proximity of the collocation point. If the collocation point is part of
the integration region we have to invoke singular integration as explained in stage 7,
i.e. we subdivide the integration region into triangular subregions (see Figure 12).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-011.jpg&w=311&h=157
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-012.jpg&w=154&h=153

Stage 9: The boundary element method with volume effects 287

Figure 14 Extension of plastic zone.

This means that for the integration of the volume term we will at least need several
sets of Gauss points for the singular integration and for the far field integration.

8.4 Internal stress computation

To check the yield condition and to determine the residual stress and the body force
term we need to compute the stresses at the Gauss points yg. We can use Equation (44)
to compute the strain and use

σ = C · ε (88)

to compute the stress. For the last (volume) integration in (44) it has to be considered
that the Kernel S tends to infinity as O(1

r) as x̄ approaches yg. The integral can be
regularized by a triangular subdivision as shown in Figure 13.

8.5 Extension of plastic zone during iteration

We have to consider that the plastic zone will extend during the iteration, i.e. the
contour F = 0 will change. The simplest way would be to remap the plastic zone with
a new contour.

However, this would mean that the locations of the Gauss points would change.
Since we have to keep track of the stress history of points, this is not a viable option. An
alternative is to add a subregion that is bounded by the previous and the new boundary.
The method for the determination of the new elasto-plastic interface is similar to the
one outlined for determining its initial position. A possible extension of the plastic
zone is shown in Figure 14. There is the possibility that the extension of the zone is
very thin, leading to problems with the numerical evaluation of the derivatives and
the integral. In this case the integration can be carried out inside the original zone and
an extended volume only considered if the extension is sufficiently large. Obviously a
small error will be introduced here, but if an extension is skipped for a few iterations
the process may be self-correcting.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-013.jpg&w=131&h=109

288 Advanced numerical simulation methods

Figure 15 Determination of the trace of the plastic zone on the boundary in (left) local and (right)
global coordinate space.

9 IMPLEMENTATION FOR 3-D PROBLEMS

9.1 Determination of the plastic zone

The determination of the plastic zone follows similar steps as for the plane problems.
The first task is to determine the extension on the boundary.

Extent of zone on boundary The extent of the plastic zone on the boundary involves
the following steps:

• Subdivide the local coordinate space in either u or v direction.
• Scan along the lines u or v = constant6 and find the region where F > 0 using the

interval halving algorithm as explained for the plane case.
• Map the found points onto the global coordinate space.
• Determine 2 trimming curves that go through the points and can be used to trim

the NURBS surface.

This process is demonstrated on a simple example in Figure 15 depicting the found
trimming curves in green and red.

Extent of zone inside the domain – predictor/corrector method The predictor/corrector
method introduced earlier can be applied. The suggestion is to determine the inward
normal, n, at the start of the plastic zone at a line v = const. and compute F(σ) at a

6The decision to choose either u or v would depend on the extent of the NURBS surface, i.e.
the direction in the larger dimension should be used. Scanning lines should be close enough to
ensure that points are not missed. Another possibility would be to combine u and v scanning.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-014.jpg&w=311&h=166

Stage 9: The boundary element method with volume effects 289

distance h along n and then correct it as done for the plane case. This proceeds until
the end of the contour is found.

After this is done for all lines v = const. a point cloud is obtained through which
a NURBS surface can be constructed.

Extent of zone inside the domain – simple method To determine the extent of the
plastic zone we

• Subdivide the lines u (or v) = constant into subsections and determine the inward
normal at these points.

• Scan along the inward normals to determine the extent of the zone using the
algorithm outlined for plane problems.

• The resulting point cloud can be used to define the surface II of the plastic zone.

We have now defined the two surfaces that bound the plastic zone. One is the
trimmed NURBS surface describing the boundary of the problem, the other a surface
defined by the point cloud.

9.2 Computation of the volume term

For the evaluation of the volume integral we proceed as outlined in section 4 but we
have to consider that one of the surfaces describing the plastic zone is trimmed. We
therefore need to map from the u, v coordinate system of the trimmed surface to the
ū, v̄ system as defined in section 4.1.

9.3 Numerical integration

For the volume term the integrand consists of the Kernel U times the body force bp

times the Jacobian. The U-Kernel is singular and approaches infinity with O(1
r) as x̄

approaches the collocation point y. If the collocation point is part of the integration
region we have to invoke singular integration i.e. we subdivide the integration region
into tetrahedal subregions in a similar way as shown for plane problems.

To check the yield condition and to determine the residual stress and the body force
term we need to compute the stresses at the Gauss points y using Equations (44) and
(88). For the last (volume) integration it has to be considered that the Kernel S tends
to infinity as O(1

r2) as y approaches x̄ and therefore singular integration procedures
have to be used.

10 PROGRAMMING

Here we will only discuss the implementation of one aspect to volume effects, namely
the effect of swelling and only for the plane strain case. The implementation of the other
volume effects, such as inclusions and plasticity using NURBS technology, is subject to
research at the time of writing the book, with publications expected to appear soon.

The first task is to read the geometrical information about the volume. The infor-
mation is supplied in files KnotI, that contains knot information and CntrlI that

290 Advanced numerical simulation methods

contains the associated control point coordinates and weights of the curves defining
the boundaries of the volume. As many volumes as required may be defined.

File KnotI (Knot vectors for the curves defining the volume):

Number of control points curve 1

Order

knot vector

Number of control points curve 2

Order

knot vector

....

File CntrlI (Control point coordinates and weights):

x y z w % coordinates and weight of control point 1 of curve 1

x y z w % coordinates and weight of control point 2

....

x y z w % coordinates and weight of control point 1 of curve 2

x y z w % coordinates and weight of control point 2

....

With this information the body force RHS is computed and added to the right
hand side. Function Bodyforce computes the body force as follows: A call to function
Gausscor determines the global coordinates of the Gauss points (xyg) and the Jacobian
times the weight (JW).

The number of Gauss points is determined by the ratio R/L where R is the min-
imum distance of a collocation point to the integration region and L is the length of
the region. Since Kernel S has the same order of singularity as Kernel T we use the cri-
terion introduced earlier for selecting the number of Gauss points and the subdivision
required, if the maximum number is exceeded. In reality the required number of Gauss
points depends on the proximity of the collocation point and would be different for
each point. Here only one criterion has been used in order to minimize the effort in
computing the Jacobian at Gauss points.

function RHS= Bodyforce(eps0,xyp,npnts)

%-------------------

% Computes the right hand side due to initial strains

%-------------------

global E; global ny

% Determine number of Gauss locations,weights and Jacobian

[xyg,JW]= Gausscor(xyp,npnts);

RHS= zeros(npnts*2,1);

Stage 9: The boundary element method with volume effects 291

for ngp=1:columns(xyg)

xgaus(1:2)= xyg(1:2,ngp);

jw= JW(ngp);

ndof=0;

for npnt=1:npnts

xp(1:2)= xyp(1:2,npnt);

r= Dist(xp,xgaus);

dxr= (xgaus-xp)/r;

SK= SigKernel(r,dxr,E,ny,1)*jw;

F= SK*eps0;

ndof=ndof+1; RHS(ndof)= RHS(ndof) + F(1);

ndof=ndof+1; RHS(ndof)= RHS(ndof) + F(2);

end

end

endfunction

function [xyg,JW]= Gausscor(xyp,npnts)
%-------------------
% Determines coordinates of Gauss points
% Input:
% xyp ... coordinates of collocation points
% npnts ... number of collocation points
%
% Output:
% xyg ... Gauss point coordinates
% JW ... Jacobian times weight
%-------------------
fid= fopen("KnotI","r");[KnotI,nk] = fscanf(fid,"%f");fclose(fid);
fid= fopen("CntrlI","r"); CoefsI = fscanf(fid,"%f",[4,Inf]);fclose(fid);
[ngausu,ngausv,nsubu,nsubv]= GpointsI(KnotI,CoefsI,xyp,npnts);
[su,us]= SubdivI(nsubu); [sv,vs]= SubdivI(nsubv);
[Coru,Wiu]= Gauss(ngausu); [Corv,Wiv]= Gauss(ngausv);
%--------------------------------
% Gauss integration of volume term
%-------------------------------
Jacuv= su*sv;
ngp=0;
for ndv=1:nsubv
for ndu=1:nsubu
for ngv=1:ngausv
for ngu=1:ngausu
s(ngu)= su/2*(Coru(ngu)+1)+us(ndu);
t(ngu)= sv/2*(Corv(ngv)+1)+vs(ndv);
end
end
[xy,J]= Map(KnotI,CoefsI,s,t);

292 Advanced numerical simulation methods

for ngv=1:ngausv
for ngu=1:ngausu
ngp=ngp+1;
xyg(:,ngp)= xy(:,ngu,ngv);
JW(ngp)= Wiu(ngu)*Wiv(ngv)*J(ngu,ngv)*Jacuv;
end
end
end
end
endfunction

function [ngausu,ngausv,nsubu,nsubv]= GpointsI(KnotI,CoefsI,xyp,npnts)
%-------------------
% Determines number of Gauss points for volume integration
% Input:
% KnotI ... knot vectors of bounding curves
% CoefsI ... Control point coords and weights
% xyp ... collocation point coords.
% npnts ... numer of colloctaion points
%
% Output:
% ngausu,ngausv ... Number of Gauss points in s,t directions
% nsubu,nsubv ... Number of subdivisions in s,t directions
%-------------------
ndiv=5; s= linspace(0,1,ndiv); t=linspace(0,1,2); Rmin=1000;
xy= Map(KnotI,CoefsI,s,t);
for n=1:length(s)
xyn(1:2)= xy(:,n,1);
for np=1:npnts
r= Dist(xyn,xyp(:,np));
if(r < Rmin) Rmin=r; endif
end
end
Lx= Dist(xy(:,1,1),xy(:,ndiv,1)); Ly= Dist(xy(:,1,1),xy(:,1,2));
[ngausu,nsubu]= Gausspoints(Rmin,Lx,1);
[ngausv,nsubv]= Gausspoints(Rmin,Ly,1);
endfunction

function SK = SigKernel(r,dxr,E,ny,nstress)

% --------------------------

% Computes Stress Kernel for plane strain

%

% INPUT:

% r ... distance betewen source and field point

% dxr ... derivatives of r

Stage 9: The boundary element method with volume effects 293

% E ... modulus of elasticity

% ny ... Poissons ratio

% nstress ... stress state indicator

% (1= plane strain, 2= plane stress)

%

% OUTPUT:

% SK ... Stress Kernel

%------------------------

if(nstress == 1)

c2= 1.0/(4.0*pi*(1.0-ny));c3= 1.0-2.0*ny; c4= 2.0; c5=1;

else

c2= (1.0-ny)/4.0*pi; c3= (1.0-ny)/(1+ny); c4= 2.0; c5=(1-ny)/(1+ny);

endif

SK(1,1)= c3*2*dxr(1) - c5*dxr(1) + c4*dxr(1)**3;

SK(2,2)= c3*2*dxr(2) - c5*dxr(2) + c4*dxr(2)**3;

SK(1,2)= -c5*dxr(1) + c4*dxr(1)*dxr(2)*dxr(2);

SK(2,1)= -c5*dxr(1) + c4*dxr(2)*dxr(1)*dxr(1);

SK(1,3)= c3*dxr(2) + c4*dxr(1)*dxr(1)*dxr(2);

SK(2,3)= c3*dxr(1) + c4*dxr(2)*dxr(1)*dxr(2);

SK= -SK*c2/r;

endfunction;

11 EXAMPLE

As an example we show a circular hole in an infinite domain subjected to a volume
increase in an area above it. The same assumptions and material properties as for
the example of stage 7 are used. The volume change is simulated by applying an
initial strain in vertical direction of 10% above the hole. The additional input data
required are:

KnotI:

2

1

0 0 1 1

2

1

0 0 1 1

CntrlI:

-1.5 1.5 0 1

1.5 1.5 0 1

-1.5 2 0 1

1.5 2 0 1

294 Advanced numerical simulation methods

Figure 16 Circular hole subject to swelling: Geometry definition with top and bottom curves defining
the zone of swelling marked in red and green. Control points for the definition of the circle
are marked by hollow squares. Red squares indicate collocation points before refinement.

Figure 17 Circular hole subject to swelling: Displaced shape.

Figure 16 shows the geometry definition as well as the collocation points before
refinement. The result of the simulation, namely the deflected shape of the hole is
shown in Figure 17.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-015.jpg&w=190&h=194
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-11&iName=master.img-016.jpg&w=203&h=205

Stage 9: The boundary element method with volume effects 295

12 SUMMARY AND CONCLUSIONS

We have introduced volume effects into our BEM formulation. This allows the treat-
ment of heterogeneous domains and inelastic material behavior, an important aspect
for the method to be applicable to practical problems. This is an area of research that
in the opinion of the author has been neglected. Published work on volume effects date
a few years back and are not user friendly. A method still prevalent is the use of cells for
the volume integration. This not only means an additional discretization effort but also
a loss of accuracy because continuous basis functions are used for the approximation
of body forces inside cells. Considering that the elasto-plastic boundary will transect
some cells this is an unacceptable source of error.

The reader may observe a paucity of examples, that demonstrate that the theory
is working. This is because some of the ideas proposed here of applying NURBS tech-
nology are quite novel and subject to research. Indeed the aim of the chapter is to
present these new ideas, so that a larger number of researchers is encouraged to work
in this area. The approaches presented here have the advantage that no discretiza-
tion is required, that the plastic zone is determined automatically and that integration
is carried out inside the plastic zone. Note that this approach is more accurate than
some implementations used in the FEM with continuous basis functions, where finite
elements may be partially elastic and partially plastic.

It was shown that NURBS technology has simplified the definition of the geometry
of inclusions, the determination of the plastic zone and the volume integration.

BIBLIOGRAPHY

[1] I.C. Cormeau. Numerical stability in quasi-static elasto-viscoplasticity. International
Journal for Numerical Methods in Engineering, 9(1), 1975.

[2] X.-W. Gao and T. G. Davies. Boundary Element Programming in Mechanics. Cambridge
University Press, Cambridge, 2002.

[3] R. Hill. The mathematical theory of plasticity. Oxford University press, 1950.
[4] M. Noronha, A.S. Müller, and A. M. B. Pereira. A novel pure-BEM approach for post-

processing and non-linear analysis. In Proceedings of MacMat2005, Louisiana, USA,
2005.

[5] G. Pande, G. Beer, and J. Williams. Numerical methods for rock mechanics. J. Wiley,
1990.

[6] Les Piegl and Wayne Tiller. The NURBS book (2nd ed.). Springer-Verlag New York, Inc.,
New York, NY, USA, 1997.

[7] W. Prager and P.G. Hodge. Theory of perfectly plastic solids. J. Wiley, 1951.
[8] T. Ribeiro, G. Beer, and C. Duenser. Efficient elastoplastic analysis with the boundary

element method. Computational Mechanics, 41:715–732, 2008.
[9] K. Riederer, C. Duenser, and G. Beer. Simulation of linear inclusions with the BEM.

Engineering Analysis with Boundary Elements, 33(7):959–965, 2009.
[10] I. M. Smith, D. V. Griffiths, and L. Margetts. Programming the Finite Element Method.

Wiley, 2013.
[11] J.C.F. Telles. The boundary element method applied to inelastic problems. Springer, 1983.

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs00466-007-0227-1
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnme.1620090110
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnme.1620090110
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.enganabound.2009.01.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-45562-9
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-59223-2

Chapter 11

Stage 10:The time domain

Time is an illusion
A. Einstein

where we consider a 4th dimension (time).

1 INTRODUCTION

In all our deliberations so far we have neglected the dimension time, i.e. we have
assumed that the domain does not have any mass or that the loading and response to
the loading is instantaneous, so time does not play any role. Here we introduce time
and – more importantly – mass effects. The following is only a short introduction.
More details can be found, for example, in [1].

1.1 Bernoulli beam with mass

Consider the simply supported beam in Figure 1, which now is assumed to have mass.
If this is the case, then additional forces occur, the main one being the resistance of the
mass to acceleration (inertia effects). There are two inertia effects: one is the resistance
against translation, the other against rotation.

According to Newton’s law the translational inertia force is given by:

Fm(x) = m · dx · ẅ(x) (1)

Figure 1 Simply supported beam with mass.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-12&iName=master.img-000.jpg&w=299&h=85

298 Advanced numerical simulation methods

Figure 2 Deflected shape of the beam at different times.

where F is the inertia force (kN), m is the mass per unit length (kg/m) and ẅ(x) is the
downward acceleration (m/sec2) at point x. The distributed inertia force is f = F

dx .
For the beam the effect of rotational inertia is small, so it will be neglected here.

An additional force occurs due to damping. This force depends on the velocity of the
deflection (ẇ(x)):

Fd(x) = c · dx · ẇ(x) (2)

where c is a damping coefficient.
Substitution of this into the differential equation for beam bending derived earlier

gives

d2

dx2
(EIw′′) + q − m · ẅ − c · ẇ = 0 (3)

2 SOLUTIONS IN THE FREQUENCY DOMAIN

We can set the loading q to zero and obtain a solution with the inertia loading only.
This is equivalent to applying a deformation to the beam and letting it vibrate freely
(similar to plucking the string of a guitar). In this case the vibration will be harmonic,
i.e. the deflection is given by

w(x, t) = w(x, 0) · sin(ωt) (4)

where w(x,0) is the displacement amplitude at location x, ω is the angular frequency
and t is the time. Figure 2 shows the deflected shape of the beam at 4 different times.

The second derivative of w is given by

ẅ(x, t) = ω2 · w(x, 0) · sin(ωt) (5)

There are (for this case) an infinite number of frequencies that the beam can vibrate
and these are called Eigen frequencies or natural frequencies. The relationship between
angular frequency and frequency, measured in cycles per second (Hertz) is

f = ω

2π
(6)

We further define as period T, the time it takes to complete a cycle:

T = 1
f

(7)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-12&iName=master.img-001.jpg&w=275&h=51

Stage 10: The time domain 299

Figure 3 First 3 Eigenmodes.

For each frequency there is an Eigen-mode, i.e. the form in which the beam vibrates.
Figure 3 shows the first 3 Eigen-modes.

Setting q = 0 and neglecting (for the moment) the damping force we substitute the
expression 4 and 5 into Equation 17 and obtain

d2

dx2
(EIw′′) · sin(ωt) − m · ω2 · w · sin(ωt) = 0 (8)

or after multiplying the equation with 1
sin(ωt)

d2

dx2
(EIw′′) − m · ω2 · w = 0 (9)

2.1 Numerical solution

For the numerical solution we use the principle of virtual work as explained previously.
The external virtual work done by the inertia force is

δWd
e =

∫ L

x=0
ω2 · m · w̃ · δw · dx (10)

After discretization we obtain for the virtual work (assuming m is constant):

δWd
e =

∫ 1

−1
ω2 · m ·

(
I∑

i=1

Ni(ξ) · wi

)
· Nj(ξ) · δwj · J · dξ

= ω2 · m ·
[

I∑
i=1

(∫ 1

−1
Ni(ξ) · Nj(ξ) · J · dξ

)
· wi

]
· δwj (11)

Following the procedures in Stage 5, we obtain the following equation for the
coefficients of the stiffness matrix:

Kd
ij =

∫ 1

−1

[
E · I · ∂2Ni(ξ)

∂x2
· ∂2Nj(ξ)

∂x2
− ω2 · m · Ni(ξ) · Nj(ξ)

]
· J · dξ (12)

This is also known as the dynamic stiffness matrix, which can be split into the
static stiffness matrix and mass matrix. The system of equations can be written in
matrix form as(

K − ω2
nM

)
w = 0 (13)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-12&iName=master.img-002.jpg&w=275&h=51

300 Advanced numerical simulation methods

where we have introduced the subscript n for the n-th Eigenfrequency. K is the static
stiffness matrix derived earlier and M is the mass matrix, whose coefficients are
defined as

Mij = m ·
∫ 1

−1
Ni(ξ) · Nj(ξ) · J · dξ (14)

The number of Eigenfrequencies that can be obtained depends on the number of
degrees of freedom, i.e. the size of K.

Lumped mass matrix The mass matrix just derived is also known as a consistent mass
matrix. Another simpler alternative is often used where the mass is assumed to be
concentrated at various points along the beam and is also known as Lumped mass
matrix. It is a diagonal matrix, where the coefficients are defined by:

Mjj = m ·
∫ 1

−1
Nj(ξ) · J · dξ (15)

Eigensolution Since the right hand side is zero, equation (13) can not be solved for
the unknown displacements w. For the non-trivial case where the displacements w are
not zero, the determinant of the expression in parentheses must be zero, i.e.:

|K − ω2
nM| = 0 (16)

which allows us to determine the Eigenfrequencies ωn, that coincide with locations
where the determinant becomes zero. After determining an Eigenfrequency we may
compute the Eigenforms or Eigenvectors by setting one coefficient of vector w to one.
If this is done the column of Kd, associated with the known value can be transferred
to the right hand side and the system can be solved for the remaining coefficients of w.
The Eigenvector therefore constitutes the displacements relative to the defined value,
i.e. the shape.

Programming The changes to the program introduced in Stage 5 are relatively minor.
We compute a consistent mass matrix which readers may recognize as being similar to
the matrix for the elastic foundation with −ω2

n replacing the spring stiffness kw or a
lumped mass matrix, which is similar to determining the nodal point forces with −m
instead of q.

The Eigenvectors and frequencies can be computed using an octave intrinsic
function:

[Eigenvect,omega]= eig(K,M)

Stage 10: The time domain 301

3 SOLUTIONS IN THE TIME DOMAIN

Here we discuss solutions where the loading is a function of time. We start with the
differential equation of a system with one degree of freedom (mass suspended on a
spring):

m · ẅ + c · ẇ + k · w = q(t) (17)

where q(t) is function of time, k is the spring stiffness and m and c are mass and
damping coefficient.

For a general variation of q with time the differential equation can only be solved
numerically. There are two approaches for the solution, the finite difference and the
Newmark method. Both methods rely on a discretization of the time domain, i.e. we
divide the time into equal time steps
t.

3.1 Finite difference method

Here we approximate the time derivatives with a central difference. The first derivative
of w is given by (see Figure 4):

ẇi = wi+1 − wi−1

t
(18)

The second derivative is:

ẅi =
wi+1−wi

t − wi−wi−1

t

t
= wi+1 − 2wi + wi+1

t2
(19)

Figure 4 Explanation of the finite difference method. The approximation of the velocity is depicted in
green, the one for the acceleration in blue.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-12&iName=master.img-003.jpg&w=329&h=146

302 Advanced numerical simulation methods

The equilibrium equation (17) can now be written for time ti as:

m · ẅi + c · ẇi + k · wi = qi (20)

Substitution of the finite difference expressions results in:

m
[

wi+1 − 2wi + wi−1

t2

]
+ c

[
wi+1 − wi−1

t

]
+ kwi = qi (21)

or putting the unknown value on the left hand side[
m

t2
+ c

2
t

]
wi+1 = qi −

[
m

t2
+ c

2
t

]
wi−1 −

[
k − 2m

t

]
wi (22)

For the solution we need two initial values of displacements: wi, wi−1, at the start
of time (0), namely w0, w−1. w−1 can be obtained by defining initial values for ẇ0 and
ẅ0. The finite difference expression:

ẇ0 = w1 − w−1

2
t
; ẅ0 = w1 − 2w0 + w−1

2
t2
(23)

can be solved for w−1:

w−1 = w0 −
t · ẇ0 +
t2

2
ẅ0 (24)

The method only gives a stable solution for

t
Tn

<
1
π

(25)

where Tn is the first Eigenperiod of the system.

3.2 Newmark method

There is some scope for improvement. Newmark1 had the idea that if ẅ is approx-
imated instead of w, then there would be a considerable improvement of the
approximation of w, since it is obtained by a double integration in time of the accel-
eration. Figure 6 shows an example of a possible variation of w, ẇ and ẅ with time.
The basic idea of Newmark is to assume a variation of ẅ inside the time step
t.

If this is done we can express the variation of the velocity and deformation by
a repeated integration of the acceleration. We may assume, for example, that the
acceleration remains constant during the time step, which gives the following result

1Nathan Mortimore Newmark (September 22, 1910 to January 25, 1981) was an American
structural engineer and academic, who is widely considered as one of the founding fathers of
Earthquake Engineering.

Stage 10: The time domain 303

Figure 5 Nathan Newmark.

for the time ti + τ, where τ is measured from ti:

ẅ(ti + τ) = ẅi + δ(ẅi + ẅi+1) (26)

or

ẅ(ti + τ) = (1 − δ)ẅi + δẅi+1

where 0 � δ � 1 is a constant that will be specified later. Using this assumption the
velocity can be computed by:

ẇ(ti + τ) = ẇi +
∫ τ

0
ẅ(τ)dτ = ẇi + [(1 − δ)ẅi + δẅi+1)] τ (27)

The deformation w can be obtained by a further integration:

w(ti + τ) = wi +
∫ τ

0
ẇ(τ)dτ = wi + τ · ẇi + τ2

2
[(1 − δ)ẅi + δẅi+1)] (28)

The Newmark formula can be obtained by setting β = δ
2 :

w(t) = wi + ẇi · τ +
[(

1
2

− β

)
ẅi + β · ẅi+1

]
τ2 (29)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-12&iName=master.img-004.jpg&w=154&h=207

304 Advanced numerical simulation methods

Figure 6 Variation of displacement, velocity and acceleration with time, showing possible approximation
of acceleration.

where the total time t = ti + τ has been introduced. For an average acceleration we set
δ = 1

2 (β = 1
4) and obtain

w(t) = wi + ẇi · τ + [ẅi + ẅi+1]
τ2

4
(30)

At time ti +
t the displacement wi+1 can be computed by:

wi+1 = wi + ẇi ·
t + [ẅi + ẅi+1]

t2

4
(31)

The acceleration is:

ẅi+1 = 4

t2

[
wi+1 − wi − ẇi
t − ẅi

t2

4

]
(32)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-12&iName=master.img-005.jpg&w=285&h=353

Stage 10: The time domain 305

The velocity at time ti+1 is given by:

ẇi+1 = ẇi + 1
2

(ẅi + ẅi+1)
t (33)

and after substitution of (32) we get:

ẇi+1 = −ẇi + 2

t

(wi+1 − wi) (34)

The equations of equilibrium can be written for time ti+1 as:

mẅi+1 + cẇi+1 + kwi+1 = qi+1 (35)

or after the substitution of the Newmark formula and rearranging terms:[
4m

t2

+ 2c

t

+k
]

wi+1 = qi+1+ m

t2

[
4wi + 4ẇ
t + ẅi
t2]+ c

t
[2wi + wi
t] (36)

where the dynamic stiffness matrix is given by:

kd = k + 2

t

· c + 4

t2

· m (37)

The right hand side for time step i + 1 is defined by:

Pi+1 = qi+1 + m

t2

[
4wi + 4ẇ
t + ẅi
t2]+ c

t
[2wi + wi
t] (38)

For constant acceleration the method is stable for any value of
t. The Newmark
method allows assumptions other than average acceleration. By putting β = 1

6 for
example, a linear variation is assumed within the time step. Note that for the assump-
tion of a constant acceleration (order 0), the approximation for the velocity and the
displacement is of order 1 and 2 respectively. The assumption for the load q is how-
ever, that it is constant within the time step. For a system with more than one degree
of freedom we have:

Kdui+1 = Pi+1 (39)

with

Kd = K + b3 · C + b1 · M (40)

where K, C and M is the static stiffness, damping and mass matrix respectively and

Pi+1 = Fi+1 + M
[
b1ui + b2u̇ + üi

]+ C
[
b3ui + ui

]
(41)

where Fi+1 is the load vector at time i + 1 and

b1 = 4

t2

; b2 = 4

t

; b3 = 2

t

(42)

306 Advanced numerical simulation methods

4 PROGRAMMING

We implement dynamic capabilities into the beam program. A program flow chart is
given below:

• INITIAL CALCULATIONS
Form K, M and C
Specify time step
t and compute constants b1 to b3

Calculate Kd using (40)
Specify initial conditions w1, ẇ1, ẅ1

• FOR i = 1 to number of time steps
Calculate Pi+1 using (41)
Solve for displacements wi+1 = (Kd

)−1
Pi+1

Calculate ẇi+1 using (33)
and ẅi+1 using (32)

• END DO

The method is implemented for the Bernoulli beam of stage 4. The function
BernoulliNewmark considers a simply supported beam with mass and the following
properties

• EI = 1/100 Nm2, ν = 0
• m = 1 kg/m, c = 0 (no damping)
• q = 1 N/m applied at time 0 and removed at time Timp
• L = 1 m

function BernoulliNewmark
%-------------------------------------
% simply supported beam, Newmark method
% impact load q, no damping
%------------------------------------
global I; global p; global EI; global Jac; global mult; global smass
fid= fopen("Thist","w");
% Input data:
EI=1/100; L=1; smass= 1; q=1;
Deltat=0.1; Jac= L; mult=(1/Jac)ˆ2;
Timp=6.4; % time when load is removed
% constants:
b1= 4/(Deltatˆ2); b2= 4/Deltat; b3=2/Deltat;
b4= Deltatˆ2/4;
p=4; ki=0;
% compute dynamic stiffness matrix and mass matrix
[K,M,F]= BernoulliKM(p,ki,b1,q);
[ncu,knot]= Knotok(p,ki);
% initial conditions:
for n=1:ncu-2
w(n,1)= 0; v(n,1)= 0; a(n,1)= 0;
end
wi=w; vi=v; ai=a;
Ntimes= 200; Time=0.0;

Stage 10: The time domain 307

fprintf(fid,"%f %f \n", 0, 0)
for nt=1:Ntimes
Time= Time + Deltat;
if(nt == 1)
P= F;
elseif(Time <= Timp)
P= F + M*(b1*w + b2*v + a);
else
P= M*(b1*w + b2*v + a);
endif
w= K\P; v= -vi + b3*(w - wi);
a= b1*(w - wi -vi*Deltat - ai*b4);
wi=w; vi=v; ai=a;
ut=0.5
disp=Getval(ncu,knot,w,ut);
fprintf(fid,"%f %f \n", Time, disp(1))

end
fclose(fid);
endfunction;

function [K,Mass,F]= BernoulliKM(p,ki,b1,q)

%-------------------------------------

% Computes the dynamic stiffness matrix

% mass matrix and force vector

% for Bernoulli beam with Newmark

% Input:

% p,ki ... order of basis functions and number of inserted knots

% b1 ... multiplier for Mass matrix

% q ... distributed load

%

% Output:

% K ... dynamic stiffness matrix

% Mass ... mass matrix

% F ... force vector

%------------------------------------

global EI; global Jac; global smass

[I,knot,nsub,us]= Knotok(p,ki);

M=8; [xsig,W]= Gauss(M);

[ug,Jacu,Mg,Wg]= Getu(M,xsig,W,nsub,us);

[N,d2N]=Getfun(knot,ug,I,p);

% compute dynamic stiffness matrix and mass matrix

for i=1:I

for j=1:I

kij= 0; mij= 0;

for m=1:Mg

kij= kij + EI*d2N(i,m)*d2N(j,m)*Jac*Jacu(m)*Wg(m);

mij= mij + smass*N(i,m)*N(j,m)*Jac*Jacu(m)*Wg(m);

end

k(i,j)= kij + b1*mij;

308 Advanced numerical simulation methods

mm(i,j)=mij;

end

end

for i=1:I

f(i)= 0;

for m=1:Mg

f(i)= f(i) + q*N(i,m)*Jac*Jacu(m)*Wg(m);

end

end

% assign boundary conditions (delete rows, columns)

ii=0;

for i=2:I-1

ii=ii+1; F(ii,1)= f(i);

jj=0;

for j=2:I-1

jj=jj+1;

K(ii,jj)= k(i,j);

Mass(ii,jj)= mm(i,j);

end

end

endfunction;

Figure 7 Beam subjected to sudden load: Variation of displacement with time. Duration of loading
indicated in red. Top:Timp = 8 sec. Bottom:Timp = 6.4 sec.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18725-12&iName=master.img-006.jpg&w=182&h=259

Stage 10: The time domain 309

A good approximate solution for the beam can be obtained with a B-spline of
order p = 4 and no knot insertions. The first Eigenperiod of the beam Tn is 6.366 sec.
The response of the beam depends on the time Timp when the load is removed and is
related to the Eigenperiod. In Figure 7 the variation of the displacement is shown with
time for the case Timp = 6.4 sec and Timp = 8 sec. They compare well with dynamic
responses published in [1].

5 SUMMARY AND CONCLUSIONS

For this stage the time dimension was introduced in the analysis, i.e. we have considered
mass and damping effects. For the simulation in the time domain, we introduced two
numerical methods: The Finite Difference and the Newmark method. The latter is the
preferred solution method and as has been shown in the example of the beam, results
in an accurate simulation of the dynamic response.

BIBLIOGRAPHY

[1] A. K. Chopra. Dynamics of structures. Prentice Hall, 2011.

Appendix: Fundamental solutions

Here functions are presented for some of the fundamental solutions used in the book
based on solutions published in [1], which also contains a complete set. The derivatives
of S and R have been published in [2]. The non-singular part of the stress and strain
solutions is first determined in tensor notation and then converted to Voight notation.
The functions use the distance between field point and source point, r and its first and
second derivatives, which are computed using function Rderivs.

function [r,dxr,dxr2]= Rderivs(x,y)
% --------------------------
% Computes r and first and second derivatives
% Input:
% x ... coordinates of field point
% y ... coordinates of source point
% Output:
% r ... distance between x and y
% dxr ... first derivatives
% dxr2 ... second derivatives
%------------------------
dx2=0; ndim=length(x);
for i=1:ndim
dx(i)= x(i) - y(i);
dx2= dx2 + dx(i)ˆ2;

end
r= sqrt(dx2);
if(nargout == 1) return endif
for i=1:ndim

dxr(i)= dx(i)/r;
end
if(nargout == 2) return endif
for i=1:ndim
for j=1:ndim

if(i == j)
dxr2(i,j)= 1/r - (x(i) - y(i))ˆ2/rˆ3;

else
dxr2(i,j)= - (x(i) - y(i))*(x(j) - y(j))/rˆ3;

endif

312 Advanced numerical simulation methods

end
end
endfunction;

1 STRESS SOLUTION �(x,y)

function S= Sijk(i,j,k,c3,c4,dxr)
% --------------------------
% Computes nonsingular part of derived Kernel
% for internal stress solution (to be multiplied with t)
%
% INPUT:
% i,j,k ... indices
% c3,c4 ... constants
% dxr ... r,i
%
% OUTPUT:
% S ... derived Kernel
%------------------------
S=0;
if(i == k) S=S+c3*dxr(j); endif
if(j == k) S=S+c3*dxr(i); endif
if(i == j) S=S-c3*dxr(k); endif
S=S+c4*dxr(i)*dxr(j)*dxr(k);
endfunction;

function SK = SKernel(r,dxr,ny,nstress)
% --------------------------
% Computes derived Kernel
% for internal stress solution (to be multiplied with t)
%
% INPUT:
% r ... distance between source and field point
% dxr ... first derivates of r
% ny ... Poissons ratio
% nstress ... stress state indicator
% (1= plane strain, 2= plane stress, 3= 3D)
%
% OUTPUT:
% SK ... derived Kernel
%------------------------
ndim=2; nstr=3;
if(nstress == 1)
c= 1.0/(4.0*pi*(1.0-ny)*r);c3= 1.0-2.0*ny; c4= 2;

elseif(nstress == 2)
c= (1.0+ny)/(4.0*pi*r); c3= (1.0-ny)/(1+ny); c4= 2;

Appendix: Fundamental solutions 313

elseif(nstress == 3)
c= 1.0/(8.0*pi*(1.0-ny)*rˆ2); c3= 1.0-2*ny; c4= 3;
ndim= 3; nstr=6;

endif
% Voight notation
if(nstress < 3)
I(1:3)= [1 2 1];
J(1:3)= [1 2 2];

else
I(1:6)= [1 2 3 1 2 1];
J(1:6)= [1 2 3 2 3 3];
endif
for k=1:ndim
for ns=1:nstr
i=I(ns); j=J(ns);
SK(ns,k)= Sijk(i,j,k,c3,c4,dxr);

end
end
SK= SK*c
endfunction;

2 DERIVED SOLUTION FOR DISPLACEMENT S(x,y)

function S= Sbarijk(i,j,k,c3,c4,dxr)
% --------------------------
% Computes nonsingular part of derived Kernel
% for internal strain solution (to be multiplied with t)
%
% INPUT:
% i,j,k ... indices
% c3,c4 ... constants
% dxr ... first derivatives of r
%
% OUTPUT:
% S ... derived Kernel
%------------------------
S=0;
if(i == k) S=S+c3*dxr(j); endif
if(j == k) S=S+c3*dxr(i); endif
if(i == j) S=S-c3*dxr(k); endif
S=S+c4*dxr(i)*dxr(j)*dxr(k);
endfunction;

function SKbar = SbarKernel(r,dxr,E,ny,nstress)
% --------------------------

314 Advanced numerical simulation methods

% Computes derived Kernel
% for internal strain solution (to be multiplied with t)
%
% INPUT:
% r ... distance between source and field point
% dxr ... first derivatives of r
% E ... modulus of elasticity
% ny ... Poissons ratio
% nstress ... stress state indicator
% (1= plane strain, 2= plane stress, 3= 3D)
%
% OUTPUT:
% SK ... derived Kernel
%------------------------
ndim=2; nstr=3; G= E/(2*(1+ny));
if(nstress == 1)
c3= 1.0-2.0*ny; c4= 2; c=1/(8*pi*G*(1-ny)*r);

elseif(nstress == 2)
c3= (1.0-ny)/(1+ny); c4= 2; c=(1+ny)/(8*pi*G*r);

elseif(nstress == 3)
c3=1.0-2*ny; c4=3; c=1/(16*pi*G*(1-ny)*rˆ2); ndim=3; nstr=6;

endif
% Voight notation
if(nstress < 3)
I(1:3)= [1 2 1];
J(1:3)= [1 2 2];

else
I(1:6)= [1 2 3 1 2 1];
J(1:6)= [1 2 3 2 3 3];
endif
for k=1:ndim
for ns=1:nstr
i=I(ns); j=J(ns);
SKbar(ns,k)= Sbarijk(i,j,k,c3,c4,dxr);

end
end
SKbar= SKbar*c
endfunction;

3 DERIVED SOLUTION FOR TRACTION R(x,y)

function R= Rbarijk(i,j,k,c3,c4,c6,ny,dxr,vnor)
% --------------------------
% Computes nonsingular part of derived Kernel
% for internal strain solution (to be multiplied with u)

Appendix: Fundamental solutions 315

%
% INPUT:
% i,j,k ... indices
% c3,c4,c6,c7,ny ... constants
% dxr ... first derivatives of r
% vnor ... outward normal
%
% OUTPUT:
% R ... derived Kernel
%------------------------
cost= vecdotp(vnor,dxr); mult= c4*cost;
R=0;
if(i == k) R= R + ny*dxr(j); endif
if(j == k) R= R + ny*dxr(i); endif
if(i == j) R= R * dxr(k); endif
R= R - c6*dxr(i)*dxr(j)*dxr(k);
R= mult*R;
if(i == k) R= R + c3*vnor(j); endif
if(i == j) R= R - c3*vnor(k); endif
if(j == k) R= R + c3*vnor(i); endif
R= R + c3*c4*dxr(i)*dxr(j)*vnor(k);
R=R + c4*ny*(vnor(j)*dxr(i)*dxr(k) + vnor(i)*dxr(j)*dxr(k));
endfunction;

function RKbar = RbarKernel(r,dxr,vnor,E,ny,nstress)
% --------------------------
% Computes derived Kernel
% for internal strain solution (to be multiplied with u)
%
% INPUT:
% r ... distance between source and field point
% dxr ... first derivatives of r
% vnor ... outward normal
% E ... modulus of elasticity
% ny ... Poissons ratio
% nstress ... stress state indicator
% (1= plane strain, 2= plane stress, 3= 3D)
%
% OUTPUT:
% RK ... derived Kernel
%------------------------
G= E/(2.0*(1+ny));
ndim=2; nstr=3;
if(nstress == 1)
c3= 1.0-2.0*ny; c4= 2; c6=4;c=1/(4*pi*(1-ny)*rˆ2);

elseif(nstress == 2)
c3= (1.0-ny)/(1+ny); c4= 2; c6=4; c=(1+ny)/(4*pi*rˆ2);

316 Advanced numerical simulation methods

elseif(nstress == 3)
c3= 1.0-2*ny; c4= 3; c6=5; c7= 1- 4*ny;
c=c=1/(8*pi*(1-ny)*rˆ3); ndim= 3; nstr=6;

endif
% Voight notation
if(nstress < 3)
I(1:3)= [1 2 1]; J(1:3)= [1 2 2];

else
I(1:6)= [1 2 3 1 2 1]; J(1:6)= [1 2 3 2 3 3];
endif
for k=1:ndim
for ns=1:nstr
i=I(ns); j=J(ns);
RKbar(ns,k)= Rbarijk(i,j,k,c3,c4,c6,ny,dxr,vnor);

end
end
RKbar= RKbar*c
endfunction;

4 DERIVED SOLUTION FOR DISPLACEMENT S(x,y)

function S= Sijk(i,j,k,c3,c4,dxr)
% --------------------------
% Computes nonsingular part of derived Kernel
% for internal stress solution (to be multiplied with t)
%
% INPUT:
% i,j,k ... indices
% c3,c4 ... constants
% dxr ... first derivatives of r
%
% OUTPUT:
% S ... derived Kernel
%------------------------
S=0;
if(i == k) S=S+c3*dxr(j); endif
if(j == k) S=S+c3*dxr(i); endif
if(i == j) S=S-c3*dxr(k); endif
S=S+c4*dxr(i)*dxr(j)*dxr(k);
endfunction;

function SK = SKernel(r,dxr,E,ny,nstress)
% --------------------------
% Computes derived Kernel
% for internal stress solution (to be multiplied with t)

Appendix: Fundamental solutions 317

%
% INPUT:
% r ... distance between source and field point
% dxr ... x/r,y/r
% E ... modulus of elasticity
% ny ... Poissons ratio
% nstress ... stress state indicator
% (1= plane strain, 2= plane stress, 3= 3D)
%
% OUTPUT:
% SK ... derived Kernel
%------------------------
G= E/(2.0*(1+ny));
ndim=2; nstr=3;
if(nstress == 1)
c= 1.0/(8.0*pi*G*(1.0-ny)*r); c3= 1.0-2.0*ny; c4= 2;

elseif(nstress == 2)
c= (1.0+ny)/(8.0*pi*G*r); c3= (1.0-ny)/(1+ny); c4= 2;

elseif(nstress == 3)
c= 1.0/(16.0*pi*G*(1.0-ny)*rˆ2); c3= 1.0-2*ny; c4= 3;
ndim= 3; nstr=6;

endif
% Voight notation
if(nstress < 3)
I(1:3)= [1 2 1];
J(1:3)= [1 2 2];

else
I(1:6)= [1 2 3 1 2 1];
J(1:6)= [1 2 3 2 3 3];
endif
for k=1:ndim
for ns=1:nstr
i=I(ns); j=J(ns);
SK(ns,k)= Sijk(i,j,k,c3,c4,dxr);

end
end
SK= SK*c
endfunction;

5 DERIVED SOLUTION FOR TRACTION R(x,y)

function R= Rijk(i,j,k,c3,c4,c6,c7,ny,dxr,vnor)
% --------------------------
% Computes nonsingular part of derived Kernel
% for internal stress solution (to be multiplied with u)

318 Advanced numerical simulation methods

%
% INPUT:
% i,j,k ... indices
% c3,c4,c6,c7,ny ... constants
% dxr ... first derivatives of r
% vnor ... outward normal
%
% OUTPUT:
% R ... derived Kernel
%------------------------
cost= vecdotp(vnor,dxr); mult= c4*cost;
R=0;
if(i == j) R= R + c3*dxr(k); endif
if(i == k) R= R + ny*dxr(j); endif
if(j == k) R= R + ny*dxr(i); endif
R= R - c6*dxr(i)*dxr(j)*dxr(k);
R= mult*R;
if(i == k) R=R + c3*vnor(j); endif
if(j == k) R=R + c3*vnor(i); endif
R= R + c3*c4*dxr(i)*dxr(j)*vnor(k);
if(i == j) R=R - c7*vnor(k); endif
R=R + c4*ny*(vnor(j)*dxr(i)*dxr(k) + vnor(i)*dxr(j)*dxr(k));
endfunction;

function RK = RKernel(r,dxr,vnor,E,ny,nstress)
% --------------------------
% Computes derived Kernel
% for internal stress solution (to be multiplied with u)
%
% INPUT:
% r ... distance between source and field point
% dxr ... x/r,y/r
% vnor ... outward normal
% E ... modulus of elasticity
% ny ... Poissons ratio
% nstress ... stress state indicator
% (1= plane strain, 2= plane stress, 3= 3D)
%
% OUTPUT:
% RK ... derived Kernel
%------------------------
G= E/(2.0*(1+ny));
ndim=2; nstr=3;
if(nstress == 1)
c3= 1.0-2.0*ny; c4= 2; c6=4; c7= 1- 4*ny;c=G/(2*pi*(1-ny)*rˆ2);

elseif(nstress == 2)
c3= (1.0-ny)/(1+ny); c4= 2; c6=4; c7= (1- 3*ny)/(1+ny);
c=(1+ny)*G/(2*pi*rˆ2);

elseif(nstress == 3)

Appendix: Fundamental solutions 319

c3= 1.0-2*ny; c4= 3; c6=5; c7= 1- 4*ny;
c=G/(4*pi*(1-ny)*rˆ3); ndim= 3; nstr=6;
endif
% Voight notation
if(nstress < 3)
I(1:3)= [1 2 1];
J(1:3)= [1 2 2];
else
I(1:6)= [1 2 3 1 2 1];
J(1:6)= [1 2 3 2 3 3];
endif
for k=1:ndim
for ns=1:nstr
i=I(ns); j=J(ns);
RK(ns,k)= Rijk(i,j,k,c3,c4,c6,c7,ny,dxr,vnor);

end
end
RK= RK*c
endfunction;

6 DERIVATIVES OF KERNEL S(x,y)

function S= Sijkder(i,j,k,m,c3,c4,dxr,dxr2)
% --------------------------
% Computes nonsingular part of derivatives of S Kernel
% in tensor notation
%
% INPUT:
% i,j,k,m ... indices
% c3,c4 ... constants
% dxr ... first derivatives of r
% dxr2 ... second derivatives of r
%
% OUTPUT:
% S ... derivatives of Kernel
%------------------------
S=0;
if(i == k) S=S+c3*dxr2(j,m); endif
if(j == k) S=S+c3*dxr2(i,m); endif
if(i == j) S=S-c3*dxr2(k,m); endif
S=S+c4*(dxr2(i,m)*dxr(j)*dxr(k) + dxr2(j,m)*dxr(i)*dxr(k)

+ dxr2(k,m)*dxr(i)*dxr(j));
endfunction;

function SKder = SKernelder(r,dxr,dxr2,E,ny,nstress)
% --------------------------

320 Advanced numerical simulation methods

% Computes derivatives of Kernel S
%
% INPUT:
% r ... distance between source and field point
% dxr ... first derivatives of r
% dxr2 ... second derivatives of r
% E ... modulus of elasticity
% ny ... Poissons ratio
% nstress ... stress state indicator
% (1= plane strain, 2= plane stress, 3= 3D)
%
% OUTPUT:
% SKder ... derivatives of Kernel
%------------------------
ndim=2; nstr=3;
if(nstress == 1)
c2= 1.0/(4.0*pi*(1.0-ny));c3= 1.0-2.0*ny; c4= 2;c=c2/r;

elseif(nstress == 2)
c2= (1.0-ny)/4.0*pi; c3= (1.0-ny)/(1+ny); c4= 2; c=c2/r;

elseif(nstress == 3)
c2= (1.0-ny)/(8.0*pi*(1.0-ny)); c3= 1.0-2*ny; c4= 3;
c=c2/rˆ2; ndim= 3; nstr=6;

endif
% Voight notation
if(nstress < 3)
I(1:3)= [1 2 1];
J(1:3)= [1 2 2];

else
I(1:6)= [1 2 3 1 2 1];
J(1:6)= [1 2 3 2 3 3];
endif
for m=1:ndim
for k=1:ndim
for ns=1:nstr
i=I(ns); j=J(ns);
SK= Sijk(i,j,k,c3,c4,dxr)*dxr(m);
SKder(ns,k,m)= -SK/r + Sijkder(i,j,k,m,c3,c4,dxr,dxr2)*c;

end
end

end
endfunction;

7 DERIVATIVES OF KERNEL R(x,y)

function R= Rijkder(i,j,k,m,c3,c4,c6,ny,dxr,dxr2,vnor)
% --------------------------

Appendix: Fundamental solutions 321

% Computes derivatives of Kernel R
% for internal stress solution (to be multiplied with u)
% in tensor notation
%
% INPUT:
% i,j,k,m ... indices
% c3,c4,c6,c7,ny ... constants
% dxr ... first derivatives of r
% dxr2 ... second derivatives of r
% vnor ... outward normal
%
% OUTPUT:
% R ... derived Kernel
%------------------------
R=0; dim=length(dxr);
mult=0;
for n=1:dim
mult= mult + dxr2(n,m)*vnor(n);

end
mult= mult*2;
if(i == j) R= R + c3*dxr(k); endif
if(i == k) R= R + ny*dxr(j); endif
if(j == k) R= R + ny*dxr(i); endif
R= R - c6*dxr(i)*dxr(j)*dxr(k);
R= mult*R;
mult=0;
for n=1:dim
mult= mult + dxr(n)*vnor(n);

end
mult= mult*2;
R1=0;
if(i == j) R1= R1 + c3*dxr2(k,m); endif
if(i == k) R1= R1 + ny*dxr2(j,m); endif
if(j == k) R1= R1 + ny*dxr2(i,m); endif
R1= R1 - c6*(dxr2(i,m)*dxr(j)*dxr(k) + dxr2(j,m)*dxr(i)

*dxr(k) + dxr2(k,m)*dxr(i)*dxr(j));
R1= R1*mult;
R2= vnor(i)*(dxr2(j,m)*dxr(k) + dxr2(k,m)*dxr(j)) + vnor(j)*

(dxr2(i,m)*dxr(k) + dxr2(k,m)*dxr(i));
R2= R2*2*ny;
R2= R2 + c3*2*vnor(k)*(dxr2(i,m)*dxr(j)+dxr2(j,m)*dxr(i));
R= R + R1 + R2;
endfunction;

function RKder = RKernelder(r,dxr,dxr2,vnor,E,ny,nstress)
% --------------------------
% Computes derivatives of Kernel R

322 Advanced numerical simulation methods

%
% INPUT:
% r ... distance between source and field point
% dxr ... first derivatives of r
% dxr2 ... second derivatives of r
% vnor ... outward normal
% E ... modulus of elasticity
% ny ... Poissons ratio
% nstress ... stress state indicator
% (1= plane strain, 2= plane stress, 3= 3D)
%
% OUTPUT:
% RK ... derived Kernel
%------------------------
G= E/(2.0*(1+ny));
ndim=2; nstr=3;c=G/(2*pi*(1-ny)*rˆ2);
if(nstress == 1)
c3= 1.0-2.0*ny; c4= 2; c6=4; c7= 1- 4*ny;

elseif(nstress == 2)
c3= (1.0-ny)/(1+ny); c4= 2; c6=4; c7= (1- 3*ny)/(1+ny);

elseif(nstress == 3)
c3= 1.0-2*ny; c4= 3; c6=5; c7= 1- 4*ny;
c=G/(4*pi*(1-ny)*rˆ3); ndim= 3; nstr=6;

endif
% Voight notation
if(nstress < 3)
I(1:3)= [1 2 1];
J(1:3)= [1 2 2];

else
I(1:6)= [1 2 3 1 2 1];
J(1:6)= [1 2 3 2 3 3];
endif
for m=1:ndim
for k=1:ndim
for ns=1:nstr
i=I(ns); j=J(ns);
RK= Rijk(i,j,k,c3,c4,c6,c7,ny,dxr,vnor);
RKder(ns,k,m)= -RK*2/r*dxr(m) +

Rijkder(i,j,k,m,c3,c4,c6,ny,dxr,dxr2,vnor)*c;
end

end
end
endfunction;

Appendix: Fundamental solutions 323

BIBLIOGRAPHY

[1] G. Beer, I. Smith, and C. Duenser. The Boundary Element Method with Programming.
Springer-Verlag, Wien, 2008.

[2] M. Noronha, A.S. Müller, and A.M.B. Pereira. A novel pure-BEM approach for post-
processing and non-linear analysis. In Proceedings of MacMat2005, Louisiana, USA,
2005.

Subject index

Note: Page numbers followed by n refer to footnotes

assembly, 132, 147, 168–169, 211–213, 218,
225

Bernoulli beam theory, 117, 153
Bernstein polynomials, 22–24, 29
Bézier curves, 24n5
body forces, 137, 139, 183, 187–188, 260,

264–266, 268, 270–275, 277, 286–287,
289–290, 295

B-splines, 24–31, 38–39, 41–42, 47, 50,
106n3, 121–126, 128, 132–135, 140, 150,
163–164, 168, 171–172, 175

collocation, 196–197, 199
collocation points, 202–209, 211–213,

218–220, 222, 224–225, 227, 229,
235–239, 243–245, 249, 252–254,
256–257, 271, 280, 284–286, 289–292,
294

consistent mass matrix, 300
control points, 23–24, 31, 40–41, 45–47, 57,

59–62, 66, 69–70, 72–74, 77, 79–83, 85,
87, 90, 97, 101–102, 104, 106–109,
111–112, 121, 135, 142, 146, 149,
158–160, 165–166, 206–207, 216–217,
220, 227, 229, 232, 235–236, 244, 246,
252–254, 256, 267, 269, 284–285, 290,
292, 294

control polygon, 24, 67, 97

Dirac Delta, 176, 183, 187–188
Dirichlet conditions, 139, 139n6, 140–142,

158–159, 169, 210–212, 217, 218n1, 226

Eigenfrequencies, 300
Eigenperiod, 302, 309

elasto-plastic, 265, 276, 279–280, 283–285,
287, 295

Element stiffness matrix, 138
Element, 131–132
entity, 98n2, 100–102

finite difference method, 3–4, 301–302
fundamental solutions, 4, 6, 12, 175–179,

183–186, 199, 214, 216, 251, 263, 265,
271–272, 281, 311–322

Galerkin method, 196, 199
Gauss integration, 124–125, 205, 268, 270,

273, 291
generatrix, 73–74, 77–81, 100

h-refinement, 128–132, 143

inclusions, 260, 263–266, 271–275, 289,
295

initial stress, 214, 263–264
isoparametric, 11–13, 140–141, 201–206,

232, 253, 258–259
isotropic, 176

Jacobian, 11, 57, 59, 63–65, 67–68, 70, 72,
77–78, 84–87, 89–90, 92–93, 112,
121–122, 124–126, 136, 138, 140, 155,
194, 205, 208–209, 214, 218, 222–224,
236–237, 243–246, 268, 270, 272,
285–286, 289–291

Jacobi matrix, 84, 147, 268, 270, 273

Kernel, 175, 184–187, 190–191, 194–195,
201, 203–205, 214, 216, 224, 236–239,
243, 246, 268, 270, 286–287, 289–291,
293, 312–322

Kirchhoff-Love theory, 153

326 Subject index

knot insertion, 38, 132–135, 142–144, 147,
159, 217, 231, 309

knot vector, 24–31, 38–43, 45–48, 50, 52,
59, 61–62, 64, 66–67, 72, 74, 80, 85–86,
101–102, 106, 111, 115, 132, 140, 142,
146–148, 163, 207, 216–220, 222, 231,
244, 256, 285, 290, 292

knot, 24, 28–31, 41, 47–48, 61, 63, 68, 82,
208, 257

k-refinement, 132–135, 142–144, 150, 159,
231

Kroneker delta, 18, 24, 203–204

Lagrange polynomials, 9, 18–19, 21, 27,
31–32, 56, 63–64, 69–70, 75–76, 96,
128–129, 141, 175

Laplace equation, 176
lofting, 79–81, 98
lumped mass matrix, 300

mass matrix, 299–300, 305–307
metric tensor, 135, 156

Neumann conditions, 139n7, 210–212, 226
Newmark method, 301–306, 309
nonuniform knot vector, 25
numerical methods, 2–3, 5, 13, 309
NURBS patch, 87–92, 140–150, 154,

158–163, 165, 168–171, 195, 201,
206–208, 210–213, 218, 227, 229,
237–239, 241, 244, 246, 249, 253–254,
256, 271, 280, 284

Nyström method, 15, 193–196

open knot vector, 26, 38
order elevation, 52, 64, 76, 128, 134,

142–144, 147, 158–160, 166, 168, 217,
238–240

parameter space, 26, 28–30, 38, 56–57, 68,
83, 101–102, 106–107, 110, 114–115,
140, 256

partition of unity, 18, 31, 38, 210
patch, 140, 147–149, 168–169, 171–172,

210, 212–214, 217–222, 225, 229,
238–239, 241, 243, 245–246, 252, 256,
280–281

period, 298
pointer, 98–102, 104–106, 108, 110,

112–113, 218, 225

Poisson’s ratio, 137, 142, 144, 183–187,
216, 252, 293, 312, 314–315, 317–318,
320, 322

p-refinement, 128

quadrature, 138, 193, 204–206, 208–209,
236, 245, 260, 268, 270

residual, 120, 196, 263, 271–273, 275, 285,
289

rigid body trick, 191–192, 204, 207, 218

shape function, 33–34, 36, 41, 49, 87, 90,
136, 203, 207, 258

singular integral, 6, 203–205, 209, 233, 236
Somigliana identity, 189, 199, 214
stiffness matrix, 123, 130, 138–141, 147,

156, 169, 299–300, 305, 307
strain tensor, 135, 183
strain vector, 135
stress tensor, 183, 214
stress vector, 230–231, 233
strong form, 139, 141, 158
strongly singular, 178
sub-domains, 5, 264, 266–270
surface of revolution, 73–74, 77, 79, 100
symmetry, 3, 5, 144, 147, 182, 212–213,

216, 218–219, 227, 229, 247–249,
252–256

Trefftz method, 175–183, 194, 197–198
trimming, 82, 101–105, 107, 109, 114,

159–160, 166, 238, 255–256, 259
trimming curves, 81–86, 101–102, 104–110,

113, 115, 148–149, 159–160, 165–166,
169–170, 238–241, 256, 258, 288

T-splines, 13, 40–44, 81

visco-plastic, 278–279
viscosity parameter, 278
Voight notation, 135, 215, 251, 311,

313–314, 316–317, 319–320, 322

weak form, 119, 139–140, 158
weakly singular, 178, 203, 205, 209, 236,

243, 245, 256
weighting function, 33, 45
weights, 31–32, 38, 45, 47, 59–62, 66, 72,

74, 80, 101–102, 106, 121, 123, 142, 146,
149, 194, 205, 216–218, 220, 223–224,
237, 290, 292

Young’s modulus, 216, 252

	Cit p_4:1:
	Cit p_8:1:
	Cit p_4:2:
	Cit p_5:1:
	Cit p_5:2:
	Cit p_6:1:
	Cit p_3:1:
	Cit p_7:1:
	Cit p_3:2:
	1:
	Cit p_4:1:
	Cit p_4:2:
	Cit p_5:1:
	Cit p_3:1:

	Cit p_1:1:
	Cit p_2:1:
	2:
	Cit p_1:1:

	Cit p_1:2:
	3:
	Cit p_4:1:
	Cit p_2:1:

	4:
	Cit p_8:1:
	Cit p_1:1:
	Cit p_5:1:
	Cit p_5:2:
	Cit p_6:1:

	Cit p_9:1:
	Cit p_9:2:
	Cit p_397:1:
	Cit p_398:1:
	Cit p_398:2:
	Cit p_399:1:
	Cit p_399:2:
	5:
	Cit p_4:1:
	Cit p_1:1:
	Cit p_2:1:

	Cit p_6:2:
	6:
	Cit p_8:1:
	Cit p_1:1:
	Cit p_1:2:
	Cit p_9:1:
	Cit p_6:1:

	Cit p_11:1:

