
www.allitebooks.com

http://www.allitebooks.org

Add Audio and Video to Your
Site: The Mini Missing Manual
by Matthew MacDonald
Copyright © 2010 O’Reilly Media, Inc. All rights reserved.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles: safari.oreilly.com. For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

January 2010: First Edition.

The Missing Manual is a registered trademark of O’Reilly Media, Inc. The Missing Manual
logo, and “The book that should have been in the box” are trademarks of O’Reilly Media,
Inc. Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media is aware of a trademark claim, the designations are capitalized.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use of
the information contained in it.

ISBN: 9781449382506

Introduction
Nothing spices up a website like a cool sound effect
(think ker-thunk as a visitor presses a button) or an
embedded video. In this Mini Missing Manual, you’ll
learn how to add several kinds of
media files to your site: background music, a MIDI
player, sound
effects, and videos.

www.allitebooks.com

http://www.allitebooks.org

You’ll also find out where you can download free
multimedia files to get you started, and learn how to
prepare homegrown videos for quick, seamless playback.
And if you don’t have the storagespace (or the desire) to
host your own movies, you can embed them on your site
but host them on YouTube.

Tip: To learn more about building and improving
your site, see Creating a Web Site: The Missing
Manual.

www.allitebooks.com

http://www.allitebooks.org

Add Audio and Video
to Your Site

In the early days of the Internet, websites were about as
jazzy as an IRS form. You’d see pages filled with an
assortment of plain text, links, and more plain text. Over
time, the Web matured, and web pages started to change
as designers embraced the joys of color, pictures, and
tacky clip-art. But when that excitement started to wear
off, it was time for a new trick—multimedia.

Multimedia is a catchall term for a variety of technologies
and file types, all of which have dramatically different
PC requirements and pose different web-design
challenges. Multimedia includes everything from the
irritating jingle that plays in the background of your best
friend’s homepage to the wildly popular movie clip of a
cat playing the piano. (Depressing fact: with over 10
million views, it’s unlikely you’ll ever create web page
that’s half as popular.)

In this Mini Missing Manual, you’ll consider how to use
several types of multimedia. First, you’ll learn to play
background music and sound effects. Then you’ll use
Flash to put a real music player in your web page.
Finally, you’ll see how to use YouTube to popularize
your own movie clips, and take a shot at becoming the
center of attention.

www.allitebooks.com

http://www.allitebooks.org

Warning: Before you go any further, take a
moment to consider the worst examples of
multimedia abuse. These include flashing banner
ads, irritating background music, time-wasting intro
pages, and bandwidth-sucking commercials.
Before you jump on the multimedia bandwagon,
think about what you want to do. Are you planning
to showcase your musical compositions or provide
downloadable recordings of Junior’s first
moments? If so, multimedia probably makes
sense. But if you’re just looking for a way to dazzle
visitors with an animated logo, think twice. It’s
probably not worth the considerable effort to
design something that will only aggravate most of
your readers.

Understanding Multimedia
There comes a point when every new web designer wants
more than mere text and pictures. Even spruced-up fonts
and elegant page layouts don’t satisfy the design envy
many newcomers feel when they spot a site loaded with
sound and motion. That’s understandable: You, too, want
to trick out your pages with audio and video. But before
you can jazz up your site, you need to understand a few
basics.

Linking, Embedding, and Hosting

www.allitebooks.com

http://www.allitebooks.org

One of the key choices you make when you outfit your
pages with multimedia is whether to link to or embed the
files you’re adding.

Linking to multimedia content is the simplest but least
glamorous approach. It lets you create a link that points
to an audio or video file you’ve stored along with all your
other XHTML pages and files. There’s really nothing to
creating linked multimedia. You use the lowly anchor
element and href attribute; here’s an example:

Would you like to hear Industrial
Noise?

Figure 1-1 shows what happens when you click one of
these
babies.

Note: It makes absolutely no difference what kind
of software your web host’s server runs when you
add audio to your site. When someone clicks a link
to an audio file, the browser downloads the file to
the visitor’s PC and plays it there, not from the
server.

www.allitebooks.com

http://www.allitebooks.org

Figure 1-1: When you click a link to a multimedia file,
your browser asks whether you want to save the

multimedia file or open it straightaway. If you choose the
latter, your browser first downloads the file, then
launches it using a separate program. The actual

program your browser uses to play the file depends on
the software installed on your PC. For example, if you

use the popular Winamp program
(http://www.winamp.com/) to play MP3 files, the

downloaded song heads straight to your Winamp play
list. Other common players include Apple QuickTime

Player and Windows Media Player.

Embedding multimedia is a more advanced approach. It
integrates music or video into your XHTML page. As a

www.allitebooks.com

http://www.winamp.com/
http://www.allitebooks.org

result, you can create rich combinations of text, sound,
and video.

But embedding multimedia can be a challenge.
Multimedia files come in many different formats, as
you’ll see in the next section. Some browsers support
some of these formats, but few, if any, support all of
them. Other browsers have no native multimedia
compatibility at all. While visitors can add multimedia
support with browser plug-ins (small programs that
extend a browser’s capabilities), you have no way of
knowing which plug-in your visitors have. The bottom
line? There’s no guarantee that your visitors can see any
particular type of multimedia content you embed on a
page.

The Web offers a couple of solutions to embedded
multimedia, neither of them ideal. One exists in the form
of the slightly disreputable <embed> element, which
you’ll learn to use in “Background Music”, below.

Note: The distinction between linking and
embedding multimedia is the same as the
distinction between linking to a picture (using the
<a> XHTML element), and embedding it right in
your page (with the element). The only
difference is that images are a basic,
well-supported part of the XHTML standard, so
embedding pictures never causes much concern.

www.allitebooks.com

http://www.allitebooks.org

However, embedding audio and video takes you
into less-well-charted waters.

But there’s one other option for managing multimedia.
That solution is hosted multimedia—multimedia files
stored on someone else’s server but displayed (or linked
to) on your web page. The best-known example of hosted
multimedia is YouTube, a ridiculously popular site that
plays back more than 100 million video clips every day.

Hosted multimedia is an excellent choice if you want to
display really large files, particularly movie clips. It
won’t tap out your website’s bandwidth, and it works
with virtually all browsers and operating systems. Its only
drawback is that you give up a fair bit of control. For
example, if you use YouTube to host your videos, you
can’t show movies that are longer than 10 minutes, and
YouTube ratchets down your movie’s quality to make
sure it performs well. (Technically, YouTube reduces the
video’s file size so browsers can download them more
quickly—that way, visitors experience no delay in
playback when they push the play button.) You’ll learn to
use YouTube in “Uploading Your Videos to YouTube”,
below.

www.allitebooks.com

http://www.allitebooks.org

Types of Multimedia Files

Your decision to link or embed files depends, at least in
part, on the type of multimedia content you want to
showcase. Because XHTML has no multimedia standard
of its own, other companies have innovated to fill the
gap. Today, there’s a slightly bewildering field of
choices.

Here are the types of multimedia files you can add to
your pages:

▪ Synthesized music (MIDI). MIDI files store
notes that your PC’s sound card generates on
playback, rather than playing back a recording
of a musical instrument. As a result, MIDI files
are small but of questionable quality. Although
the actual audio quality depends on your
visitor’s sound card, the results most commonly
resemble a cheesy Casio keyboard. But because
MIDI files are lightweight, and since almost all
browsers support them, they’re commonly used
for web page background music. (MIDI stands
for Musical Instrument Digital Interface.)

▪ Digital audio (WAV and MP3). These file
types store recorded audio, which means they’re
of higher quality than MIDI files. But WAV
files are enormous, making them unsuitable for
all but the most bloated websites. MP3 files are
one-tenth the size of WAVs, but browsers often
require a plug-in to play them, which means you
can’t embed them with impunity.

www.allitebooks.com

http://www.allitebooks.org

▪ Digital video (MPEG, AVI, MOV, and
WMV). These file types are multimedia’s heavy
hitters. They let you play back video that ranges
in quality from thumbnail-sized windows with
jerky playback to DVD-quality movies. Digital
video files are a challenge for any web page
creator because they’re ridiculously large. To
have even a chance of making digital video
perform acceptably, you need to compress,
shrink, and reduce your clip’s size and quality
using video editing software.

▪ Animated GIFs. Animated GIFs consist of a
series of small, still images displayed one after
the other in rapid succession, like a flipbook. If
you see a website with dancing cartoon
characters, spinning text, or a pulsing globe
(don’t ask), you’re probably looking at an
animated GIF. Most web-heads dismiss
animated GIFs as not being “real” multimedia
because they’re so simple. But they’re small,
pretty easy to create, and widely supported.

▪ Flash. Flash is a versatile playback standard
designed especially for the Web. It supports
video files, animation, and interactivity. Flash
also supports vector-based animation, which
uses mathematically rendered images—shapes
built on the fly as a result of complex
calculations—rather than pixel-based graphics.
As a result, even intricate animations boast
small, quick-to-download files, making Flash
the perfect medium for animated logos,
commercials, and dazzling intro screens (see
Figure 1-2). Finally, Flash supports interactivity,

so Flash experts can build lightweight but slick
menus and embedded games that really enliven
sites.

Despite these impressive pluses, Flash has three
drawbacks: First, to create Flash content you need
specialized software from Adobe, which runs into the
hundreds of dollars. Second, even if you shell out the
Flash cash, creating professional animations requires
the skill of a talented Flash artiste. Finally, visitors
won’t be able to see Flash movies unless they have a
Flash plug-in installed. (That said, good estimates
suggest that over 90 percent of Web-connected
computers have the Flash plug-in.)

Note: Multimedia hosters, like YouTube, use Flash
to show their movies. That’s because Flash gives
the best combination of customizability,
performance, and compatibility. Of course, these
high-powered companies also have plenty of cash
to pay their programming teams.

Figure 1-2: The news and current affairs site Salon
(http://www.salon.com/) makes nonsubscribers sit

through a short commercial before letting them read
certain articles. Though the commercial varies, it’s

always a Flash animation—a fact you can confirm by
right-clicking it any time (Control-clicking on a Mac).

Instead of seeing options that let you download a file (as
you would with a picture), you see a command for

changing playback settings.

It’s difficult to digest all this information at once. If
you’re still mulling over your choices, take a look at the
scenarios in Table 1-1 to help you sort out the roles
different multimedia types play.

Table 1-1. Multimedia scenarios

http://www.salon.com/

If You Want To: Then Use:
Embedded,
Linked, or
Hosted?

Play a synthesized
version of your
favorite pop tune in
the background

MIDI files Embedded

Play a short loop of
digital audio
continuously in the
background

Flash. (You can use the
MP3 format instead, but
not all browsers support
it, and the looping is less
precise.)

Embedded

Let visitors
download your
band’s newest
indie recordings

MP3 files (record your
music using WAV files,
then covert them to MP3
format to save space).

Linked

Let visitors see
your favorite home
movie

MPEG, AVI, WMV, or
MOV files (but make sure
you use video-editing
software to dramatically
reduce file size).

Hosted (on
a service
like
YouTube)

Show a stock
animation effect,
like clapping
hands, a flashing
star, or a dancing
bean

Animated GIFs or Flash
(the latter for more
features and a slicker
animation).

Embedded

Show an animated
intro screen or
commercial

Flash Embedded

Show a humorous
animated story
you’ve created

Flash Embedded

Tip: If you plan to create a website with a lot of
digital audio and video, you’ll need to consider its
space and bandwidth requirements. Unlike
ordinary XHTML pages and web graphics,
multimedia files can grow quite large, threatening
to overwhelm your web host’s space and
bandwidth allotment.

Background Music

Most people like to browse the Web in peaceful silence.
That means no trance-hypno-ambient background tracks,
no strange disco beats, and no sudden cymbal crashes.
This aversion to noise may be due to the fact that
something like 98 percent of all Web browsing takes
place on company time.

But if you like to startle and annoy people, or if you’re
absolutely convinced that your Web audience really does
want some funky beats, keep reading to bring on the
background music.

The <embed> Element

Although the XHTML standard doesn’t support
background music, almost all browsers support the
<embed> element, first pioneered by Netscape in the
early days of the Web. You can put the <embed> element
anywhere on your page. Here’s a basic page that uses it
to play background music:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional //EN”
"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Background Music</title>
</head>

<body>
<h1>Automatic, Unsolicited Music</h1>
<p>The music now blaring from your speakers
is
Scarlatti’s first sonata (K. 500).
I hope you didn’t tell your colleagues you
were working!</p>
<embed src="soundfile.mid" />
</body>
</html>

The <embed> element gives you a slew of options for
playback control. If you use the element without
specifying any of them (as in the previous example), your
visitors see a page like the one shown in Figure 1-3 and
hear its audio file automatically.

Figure 1-3: If you use a plain-vanilla <embed> element,
the playback controls appear in your page wherever you

place the element. The exact style of the playback
controls varies depending on your operating system,

browser, and audio plug-ins.

Music playback isn’t always this seamless, however.
Because every browser handles embedded music a little
differently, you can run into problems like the ones
shown in Figure 1-4. The best advice is to test your page
on at least the three main browsers (Internet Explorer
[IE], Firefox, and Safari).

Figure 1-4: Top: Paranoid visitors sometimes step up
their security settings, which can lock out your music.

Bottom: Depending on what a web visitor has installed
or uninstalled, a browser might not find the components

it needs to play your background music.

The <embed> element harbors an ugly secret—it’s not
valid
XHTML. In fact, it’s not even a recognized part of the
HTML language. Despite its poor pedigree, it works
seamlessly in all modern browsers. But there’s still a
price to pay. Once you put the <embed> element in your
web page, you can no longer validate your page using an
XHTML checker. If you’ve sworn to uphold the
standards of XHTML, this may weigh heavily on your
heart. Or perhaps not—many rogue web designers think
nothing of using <embed> and retaining the XHTML
doctype. It’s up to you whether you’re ready to violate
the spirit of XHTML to get what you want.

Note: There’s one alternative to the <embed>
element. You can use the <object> element, which
lets you insert audio, video, and other types of
plug-in content in a web page. (Later in this
chapter, you’ll use the <object> element with Flash
files.) Even though the <object> element is more
standardized, it actually suffers from more browser
quirks; when you use the <object> element to play
sound, it’s surprisingly difficult to make sure your
web page works in different browsers.

www.allitebooks.com

http://www.allitebooks.org

Embedded audio options

Ordinarily, the <embed> element starts playing music as
soon as your browser downloads the specified music file.
Visitors can kill the sound with a quick click of the stop
button (assuming you display the playback controls), but
if they’re not expecting to hear a burst of music, it’s
enough to frazzle some nerves.

A more polite way to handle background audio is to
display the playback controls and let your visitors decide
whether to click the play button. This design is
easy—just use the autoplay attribute:

<p>If you’d like some soft music to browse
by, click the play button.</p>
<embed src="soundfile.mid" autoplay="false"
/>

Turning off autoplay is considered good web etiquette. A
much poorer idea is the hidden attribute, which lets you
hide the playback controls altogether. All too often,
you’ll find web pages that use <embed> elements like
this:

<embed src="soundfile.mid" hidden="true" />

In this example, the sound file plays automatically.
Because the playback controls are hidden, the only way
someone can stop it is to lunge for the volume control.
Websites that put their visitors through this ordeal rarely
see a return visit.

Note: Unfortunately, autoplay and hidden playback
controls are all too common on the Web. Some
web designers become intoxicated with their
newfound multimedia abilities, and decide it’s not
enough to let visitors listen to music—they force
them to. Resist the urge.

The <embed> element offers quite a few more frills.
Table 1-2 has the lowdown.

Table 1-2. Attributes for the <embed> element

Attribute Description

src The URL that points to an audio file.

autoplay

A true or false value that indicates whether the
audio should start playing immediately (true) or
wait for your visitor to click the play button
(false).

hidden A true or false value that indicates whether the
playback controls are visible.

loop

A true or false value that indicates whether the
audio should be played once (from start to
finish), or repeated endlessly. When looping
audio, you’ll notice a distinct pause before the
audio restarts.

volume

A value between 1 and 100 that specifies
playback volume as a percentage of maximum
volume. 100 percent is the loudest you can get.
50 percent tends to produce the standard volume
on a Windows computer; on Macs, you get that

effect at 75 percent. If you set your volume to
100 percent, you can be sure you won’t get any
repeat visitors. When you use the volume
attribute, supply a number only (leave out the %
sign).

border,
width,
and
height

These attributes let you set the dimensions of the
playback controls and the border around them, in
pixels.

GEM IN THE ROUGH

Finding MIDI Files

Although MIDI files usually sound cheesy, you can’t
complain about the number of tunes available online.
With a simple Google search, you can usually dig up
MIDI files for your favorite band, movie, computer
game, or classical composer.

Technically, it’s against copyright rules to use a MIDI
file of another artist’s work on your website. However,
there’s a fairly large gray area. First of all, fans or
amateur musicians usually sequence (transcribe onto
the computer) MIDI files. So not only do they lack real
instruments and vocals, they may also contain
outright errors. In that respect, putting a cheap MIDI
file on your Web site is a little bit like listening to a Led
Zeppelin cover band—it’s a tribute to the original, not
a competitive threat. That’s why music companies
haven’t made any effort to crack down on MIDI files.

If you want to steer clear of copyright issues
altogether, stick to music that’s in the public domain.
Music created before 1923 falls into this category,

which means you’re free to draw from a huge catalog
of classical pieces. To download your favorites, try the
Classical MIDI Archives
(http://www.classicalarchives.com/).

Other audio formats

As you learned earlier, MIDI files are remarkably small
because they store digitally generated notes. Because of
that, they don’t usually sound that great, and they don’t
sound the same on everyone’s computer. MIDI files are
fun, but they often make a site seem
amateurish.

What if you want something a little more upmarket? You
could use a WAV file, which are audio files recorded in
an uncompressed digital file format first introduced by
Microsoft but now supported everywhere. Most
computers have software for recording WAV files—for
example, on Windows PCs you can usually find a
program called Sound Recorder lurking in the
Programs?Accessories ?Entertainment section of the Start
menu (in Windows XP) or All
Programs?Accessories?Sound Record (in Windows
Vista). Mac fans may want to use the free program
Audacity (http://audacity.sourceforge.net/), which is also
available in a Windows version.

You can use the <embed> element to play a WAV file in
exactly the same way you did to play a MIDI file above:

http://www.classicalarchives.com/
http://audacity.sourceforge.net/

<embed src="soundfile.wav" autoplay="false"
/>

The problem with WAV files is that they’re really, really
big. In fact, they’re enormous. Think of the file size of an
MP3 file, and then multiply it by 10. As a result, it rarely
makes sense to use WAV files on web pages. With a
typical mid-speed Internet connection, your visitor will
wait a long time before the complete music file trickles
down and starts playing.

Note: A typical MIDI file is even smaller than a
typical image. A 100 kilobyte (KB) MIDI file could
handle the first movement of a detailed symphony.

Alternatively, you can use MP3 files. This approach
works great in modern browsers, but older ones may
ignore your playback attempt or they may launch an MP3
player (like Windows Media Player) to play the file:

<embed src="soundfile.mp3" autoplay="false"
/>

If you want to try this option, keep your file small and try
it out on all the browsers your visitors might use. A
10-second MP3 file takes a modest 170 KB. (As a rule of
thumb, most web authors suggest you limit autoplay clips
to 30 seconds.)

Sadly, the <embed> element won’t help you create those
nifty looping soundtracks you may have heard on some
websites. Even though <embed> supports a loop
attribute, the results aren’t good because it doesn’t loop
cleanly. It pauses each time it reaches the end of your
audio file. If you want a slick looping soundtrack, you
need to use Flash, as described in the “Flash MP3
Players” section below.

Tip: There’s lots of great shareware available for
recording WAV files and converting them into the
more compact MP3 format. Two bargain-basement
choices that are free to try are GoldWave
(http://www.goldwave.com/) and FlexiMusic
(http://www.fleximusic.com/). If all you want to do
is convert existing WAV files to MP3 format, you
can use Apple’s iTunes software, available free for
both Windows and the Mac (http://www.apple.com/
itunes/). You can get the job done by right-clicking
(Control-clicking on a Mac) any song name and
choosing “Convert Selection to MP3” from the
pop-up menu.

http://www.goldwave.com/
http://www.fleximusic.com/
http://www.apple.com/itunes/
http://www.apple.com/itunes/

Sound Effects

Ever wanted to create one of those web pages where
every mouse movement unleashes a sound? Maybe you
want a whoosh sound when visitors move over a button
or you want them to hear an audible click when they
select a link. Sadly, there’s no perfect solution that works
with every browser, but there are two compromises:

▪ Use Flash, which lets you create pages that run
rampant with sound effects. (To enjoy your
creativity, your visitors need the Flash browser
plug-in, but fortunately that’s the case for 90
percent of browsers.)

▪ Use the <bgsound> element (short for
“background sound’) along with a JavaScript
technique you’ll learn about next. The key
limitation with this trick is that it works only
with Internet Explorer 5 and later—most other
browsers and older versions of IE ignore the
background effects altogether. And like
<embed>, XHTML doesn’t officially welcome
the <bgsound> element.

You can find several versions of the background sound
script online. The one you’ll see in the next example is
one of the simplest. If you dig around on the Internet, you
can find similar versions that preload an audio file, which
delivers better performance. If you don’t use preloading,
visitors may experience a slight delay the first time you
play a given sound, because the browser needs to
download the audio file.

To use JavaScript-powered sounds, start by adding a
<bgsound> element in the <head> section of your web
page. The <bgsound> element is an IE-specific version of
the <embed> element:

<bgsound src="" id="ch01.xhtml_SoundEffect"
autostart="true" loop="1" />

The trick in this example is that you don’t supply any
source file at first. Instead, you set the src attribute when
something actually happens on the page, at which point
the sound begins playing.

Notice that you assign the name SoundEffect to the
<bgsound> element. (The id attribute uniquely identifies
an element in your document.) The last two attributes in
the element instruct it to play audio files immediately
(autostart=“true”) and play them exactly once
(loop=“1”).

The next step is to add the script that includes the
PlaySound() function to the <head> portion of your page.
The PlaySound() function has one role—to point the
<bgsound> element to the audio file you want to play:

<script type="text/javascript">
function PlaySound(soundfile) {
if (document.all &&
document.getElementById)
{

document.getElementById("SoundEffect").src
=
soundfile
}
}
</script>

In other words, to play a sound, you need to call the
PlaySound() function. PlaySound() finds the <bgsound>
element, and then sets its src attribute to point to the
audio file. This change causes the <bgsound> element to
play the sound immediately.

Remember, functions just hang around idly until you call
them. Your web page won’t make a peep until a visitor
triggers a Java-Script event that calls the PlaySound()
function.

Here’s how you use the PlaySound() function to play a
file named soundeffect.wav when a visitor moves her
mouse pointer over a link:

<a href=http://www.somesite.com
onmouseover="PlaySound('ding.wav')">Click
Me

The only problem here is that if you want to add sound
effects like this to several links, you need to add every
single link separately, even if they all use the same audio
file. But don’t despair. There’s a solution courtesy of
http://www.dynamicdrive.com/. There, you can download
a second JavaScript function named BindSound() that lets

http://www.somesite.com
http://www.dynamicdrive.com/

you add a sound effect to all the elements of a certain
type in a certain container.

For example, if you want to add a sound effect to a group
of links, pop them into a <div> element, like this:

<div>
Click
Me
Click
Me
...
</div>

Now, instead of adding the onmouseover attribute to
every <a> element, you can attach it to a <div> container
using the BindSound() function. The BindSound()
function takes three arguments—the type of element you
want to call, the sound effect file name, and the container
that holds the elements you want to effect. Here’s an
example:

<div onmouseover="BindSound('a',
'ding.wav', this)">
Click
Me
Click
Me
...
</div>

www.allitebooks.com

http://www.allitebooks.org

Notice that in the first argument, it’s important to leave
out the angle brackets (for example, you use “a” to apply
the function to every <a> anchor element). For the third
argument, you can always use the keyword this, which
refers to the current element (in this case, that’s the <div>
container). The end result of this is that you link every
anchor in the <div> section to the ding.wav audio file.

You can use this trick to put sounds on your entire
page—just add the onmouseover attribute to the <body>
element that contains the page.

Tip: Looking for some free sound effects to use
with this script? Try out http://www.grsites.com/
sounds/ and http://www.freeaudioclips.com/.

http://www.grsites.com/sounds/
http://www.grsites.com/sounds/
http://www.freeaudioclips.com/

Flash MP3 Players

As you already learned, Flash is a browser plug-in that
lets you add videos, animations, and even whole
miniature programs, like games, to a web page. Although
it takes a fair amount of work (and some pricey software)
to create a Flash program from scratch, it’s not nearly as
difficult to add a Flash-based music player to your page.
That’s because plenty of people have already done the
work for you. The web is awash in free Flash music
players.

Note: You can download the Flash plug-in at
http://get.adobe.com/flashplayer/.

Search on Google for “flash mp3 player” to find a few
free players. Most of them are surprisingly polished, with
scrolling song lists, slick playback buttons, and even tiny
animations that play in sync to your music.

The E-Phonic Player

One more-than-decent choice is E-Phonic (available at
http://www.e-phonic.com/mp3player/). It’s easy to use,
looks good, and you can style it in endlessly different
ways (see Figure 1-5). And if you’re a budding
JavaScript geek, you can use script code to add some cool
features. For example, you can have E-Phonic start

http://www.e-phonic.com/mp3player/

playback or switch songs when certain JavaScript events
take place, like when a visitor mouses over a picture.

Figure 1-5: The E-Phonic player has many different
skins. Each defines the layout and graphics that make

up the player’s interface. The standard skin (nobius
platinum) is at the top, the dazzling green alien skin is

shown in the middle, and the nearly invisible micro skin
appears at the bottom.

To get E-Phonic, click the Download link on their
website. You’ll get a compressed ZIP file with a whole
package of sample designs, including the three shown in
Figure 1-5.

To use E-Phonic on your website, you need the following
ingredients:

▪ The Flash file ep_player.swf. This miniature
Flash program runs in your web page. It’s the
heart of the E-Phonic player.

▪ The JavaScript files ep_player.js and
swfobject.js. These files set up the Flash player
and give you the ability to interact with it using
JavaScript. Although you won’t learn how to do
that in this book, you can get all the details at
(http://www.e-phonic.com/mp3player/
documentation/).

▪ Your skin folder. As Figure 1-5 shows, you can
deck out the E-Phonic player with a thousand
faces (“skins”). Once you choose a skin, copy it
to your website. For example, to use the
luminous green alien skin, add the alien_green
folder and all its contents to your site. (Skin
folders consist of one XML file, which defines
the player’s layout, and a whole bunch of
images, one for each of the player’s buttons and
components.)

▪ Your music. If you want to play some music,
you probably want to add the MP3 files to your
site. If you have several songs, put them in a
subfolder (for example, a folder named MP3).

http://www.e-phonic.com/mp3player/documentation/
http://www.e-phonic.com/mp3player/documentation/

▪ The playlist file playlist.xml. This lists all the
files you want to load into the player, in order.
You’ll see how to edit this file shortly.

▪ The XHTML page that includes the player.
You can add the player to any page on your site.
All you need to do is add the right markup. The
easiest way to get it is to copy it from one of the
example files included with the E-Phonic
download. You’ll find one example file for each
skin.

Figure 1-6 shows how these files are arranged.

The following sections show you how to get the E-Phonic
player up and running in one of your pages.

Create a playlist

The playlist tells the E-Phonic player what songs to load.
To create a track list with your garage band’s best tunes,
for example, copy your MP3 files into a subfolder named
MP3 (see Figure 1-6). Then create a playlist and tweak it
to play your songs. To make a playlist, start with the
following skeleton:

<playlist version="1"
xmlns="http://xspf.org/ns/0/">
<trackList>
</trackList>
</playlist>

Figure 1-6: The E-Phonic player requires a lot of files,
but you can use most of them as-is. The files that do
need your touch—the XHTML web page, the playlist,

and the actual songs—appear bolded in this figure. You
can copy everything else from the E-Phonic download,
as long as you make sure it stays in the right place in

your web page.

This looks a lot like an XHTML page because it uses a
combination of XML elements. But unlike XHTML, a
browser can’t display this content—instead, this format

exists solely to provide information to the E-Phonics
player.

In the <trackList> element, add one <track> element for
each song in your playlist. You need to add two other
elements inside the <track> element—a <location>
element, which indicates the song’s file name, and a
<title> element, which identifies the song title that the
player will display during playback:

<track>
<location>MP3/HotBananas.mp3</location>
<title>Hot Bananas</title>
</track>

Notice that the <location> element uses the relative link
system. That means the link is always relative to the
location of the XHTML page that displays the player. In
the example above, the location points to a file named
HotBananas.mp3 in a folder named MP3.

You can add two optional elements to the <track>
element (not shown in the example above)—a <creator>
element and an
<image> element. The <creator> element records the
artist who created the song, which is shown in the song
list next to the title. The <image> element points to an
image file, which some skins show while playing a song.
(For example, in the topmost skin in Figure 1-5, there’s a
spot in the top-left corner for song images, where the
music note appears.)

Here’s the complete playlist with all three songs:

<playlist version="1"
xmlns="http://xspf.org/ns/0/">
<trackList>
<track>
<location>MP3/HotBananas.mp3</location>
<title>Hot Bananas</title>
</track>
<track>
<location>MP3/LoveSong.mp3</location>
<title>Please Don’t Forget (That I Stopped
Loving You)</title>
</track>
<track>
<location>MP3/HappyTimes.mp3</location>
<title>Happy Times Have Gone Away</title>
</track>
</trackList>
</playlist>

Adding the player to a web page

Your final step is to embed the E-Phonic player and your
customized playlist in your web page. The easiest way to
do this is to start with one of the sample files included
with the E-Phonic download. Choose the file based on

the skin you want. For the alien skin, open
example_alien.html.

To use the E-Phonic player, your page needs three
ingredients. First, you need a <script> block in the
<head> section of your page that references the
E-Phonics JavaScript file:

<script type="text/javascript"
src="swfobject.js">
</script>

This gives your web page access to the JavaScript code
you used to create the player.

Next, you need a <div> element with the
id=“flashcontent” attribute. The E-Phonics player will
appear on your page at the location of the <div> element:

<div id="ch01.xhtml_flashcontent"></div>

You don’t actually need to put anything in the <div>
element, because the magic of JavaScript will create the
player for you. But it’s a good idea to supply some
alternate content. The browser displays this alternate
content if it can’t create the E-Phonics player, which
usually means that your reader’s browser doesn’t have
the required version of Flash:

<div id="ch01.xhtml_flashcontent">
To view the E-Phonic MP3 Player, you need
to have Javascript turned on and

you must have Flash Player 9 or better
installed. Download it (for free)
<a href="http://www.adobe.com/go/
getflashplayer/">
here.
</div>

Lastly, after the <div> element, you need to add a
<script> block with the code that actually creates the
player. This script also configures the player using
several JavaScript variables. The variables shown here
are the ones included with the samples in the E-Phonic
download. To keep life simple, you can copy this whole
<script> section from the E-Phonic sample web page
(like example_alien.html) into your own web pages:

<script type="text/javascript">
var so = new SWFObject("ep_player.swf",
"ep_player", "220", "265", "9",
"#000000");
so.addVariable("skin", "skins/alien_green/
skin.xml");
so.addVariable("playlist", "playlist.xml");
so.addVariable("autoplay", "false");
so.addVariable("shuffle", "false");
so.addVariable("repeat", "true");
so.addVariable("buffertime", "1");
so.addParam("allowscriptaccess", "always");
so.write("flashcontent");

www.allitebooks.com

http://www.allitebooks.org

</script>

You can tweak these variables to change the player’s
behavior. For example, to change song lists, point the
playlist variable to a different file. You can make the
player start the moment a browser creates it by changing
the autoplay value from false to true. You can modify
similar values to turn song shuffle and automatic repeat
on or off.

Whatever you do, don’t touch the skin setting. If you
want to change skins, find the matching XHTML sample
page and copy the <script> block from it. That’s because
the very first line of code in the skin script sets the size of
the player, and the player size has to match the skin
graphics or it won’t work properly.

Here’s a complete sample page that uses the alien skin
and the playlist you developed:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional //EN"
"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Page with a Player </title>
<script type="text/javascript"
src="swfobject.js">
</script>
</head>

<body>
<h1>You’ll Love E-Phonic</h1>
<p>This page has its own MP3 player built
in. It’s right here:</p>
<div id="ch01.xhtml_flashcontent">
To view the E-Phonic Player, you need to
have Javascript turned on and you must have
Flash Player 9 or better installed.
Download it (for free)
<a href="http://www.adobe.com/go/
getflashplayer/">here.
</div>
<script type="text/javascript">
var so = new SWFObject("ep_player.swf",
"ep_player", "220", "265", "9","#000000");
so.addVariable("skin", "skins/alien_green/
skin.xml");
so.addVariable("playlist", "playlist.xml");
so.addVariable("autoplay", "false");
so.addVariable("shuffle", "false");
so.addVariable("repeat", "true");
so.addVariable("buffertime", "1");
so.addParam("allowscriptaccess", "always");
so.write("flashcontent");
</script>
<p>(And this text is under the player.)</p>
</body>
</html>

Flashtrak Loops

The E-Phonic player is a great option if you want a
full-featured MP3 player in your web page. But
sometimes, you’re after a simpler goal. Rather than give
your visitors the ability to shuffle through a collection of
songs, you might just want to keep them happy with
endlessly looping background music.

Although many websites sell audio loops, you can
download free ones at Flash Kit, http://www.flashkit.com/
loops/ (see Figure 1-7). Flash Kit offers a large and
excellent catalogue of nearly 10,000 loops ranging in
style from ambient to urban.

Note: Loops are the audio equivalent of a
wallpaper tile. They’re short snippets of music
specially designed so the beginning picks up
where the end leaves off. That means you can
play an audio loop over and over again, and the
result is a seamless background track. In a
first-rate loop, the repetition isn’t immediately
obvious, and you can happily listen to it for several
minutes.

http://www.flashkit.com/loops/
http://www.flashkit.com/loops/

Figure 1-7: You can preview Flash Kit’s loops right in
your browser, without downloading them. Once you find
what you want, click the “flashtrak” link to download the

audio in one of three formats: MP3 (the usual), WAV
(good if you want to edit it), or in Flashtrak format, which
works with the specialized players available on the site.

In this example, a high-quality 10-second WAV file
weighs in at almost 2 MB, but the MP3 version is a

more respectable 700 KB. The Flashtrak format is even
smaller, requiring just

200 KB.

If you download one of these loops as an MP3 file, you
can use it with a free Flash MP3 player, like the E-Phonic
player discussed above. But there’s another alternative,
one that uses a slimmed-down audio format called
Flashtrak. Flashtrak files download in a jiffy, so your

visitors never have to wait to experience your site’s
ambience. They require a Flashtrak player, which you
can also download at the Flash Kit web site. (The
Flashtrak player is a Flash program, just like E-Phonic is,
but it doesn’t support MP3 files.)

To download the Flashtrak player, look for the “flashtrak
players” link on the web page (see Figure 1-7). You can
choose from more than a dozen player styles. Most have
snazzy effects as they play music, like pulsing lines or
expanding circles.

Note: When you download the Flashtrak player,
you may end up with more files than you actually
need. For example, you don’t need any files that
end with “.fla” (these are Flash source files that
you can only edit in the Flash software). You can
delete these files. Also, when you download a
player, you’ll probably find yourself with a pile of
extra song files. Delete the ones you don’t want, or
your player will cycle through all of them.

Once you download a player, you’re ready to embed it in
your web page. You can take care of that with a simple
<embed> element that points to the player file:

<embed
src="StarPlayerMultiTrackWithAutoStart.swf"
/>

Figure 1-8 shows you what you’ll see when you run the
page that contains this element.

Flash content is notoriously difficult to patch into a page
without breaking XHTML validation rules. The
following markup provides a nice, clean solution that
works in most browsers without requiring the pesky
<embed> element:

<object
data="StarPlayerMultiTrackWithAutoStart.swf"
type="application/x-shockwave-flash">
<param name="movie"
value="StarPlayerMultiTrackWithAutoStart.swf"
/>
</object>

Notice that this technique forces you to put the Flash file
name in two places.

Figure 1-8: Here are the Flash-based audio controls in
action, complete with playback buttons and soothing

graphics. The best way to try out this example (and the
E-Phonic example shown earlier) is to download the
sample content for this chapter, available from the

Missing CD page at http://www.missingmanuals.com/.

http://www.missingmanuals.com/

Video Clips

Now that you’ve conquered the challenges of audio and
learned to put everything from sound effects to looping
background music into your web pages, it’s time to move
on to one more challenge—video content.

Although browsers use many of the same tools to play
video as they do to play audio (plug-ins like Windows
Media Player, QuickTime, and Flash), there are some
hefty differences. Most importantly, video files are big.
Even the smallest of them is many times the size of an
audio recording of a full-length Mahler symphony.
Handling this data without trying your visitors’ patience
is a true test. In the following sections, you’ll learn how
to prepare your video content for the Web, and consider
two ways to let visitors view it.

POWER USERS’ CLINIC

Unlocking the Power of Flash

Flash files are utterly unlike ordinary multimedia
content.

First, Flash stores animations as a series of
instructions. So instead of, say, saving three dozen
pictures of a circle in slightly different positions to
simulate a ball in flight (as you would with an
animated GIF or a video clip), you simply instruct
Flash to “move this shape from here to there, at this
speed.” That makes complex animations much easier
to create and edit.

Second, Flash uses programming code. That means
you can program all kinds of devious logic into a Flash
program, like making shapes move and sounds play
when a web visitor moves his mouse or clicks a
portion of an animation. This ability brings all the tricks
of a self-contained program together with all the tools
of graphic design to make really slick animations. Best
of all, your web server doesn’t need any special
software to perform these tricks because the Flash
browser plug-in does it all.

If you’re an ambitious sort, the Flash music players
you learn about in this chapter just might have you
dreaming big about building your own Flash
animations or programs. You can certainly do that, but
it’s a major undertaking. Before you start, you need to
plunk down about $700 for the premier design tool
Adobe Flash CS5 Professional. Then, you face a
steep learning curve. And once you have the right
software and you’ve fought your way through all the
new concepts, you’ll find it takes more than a
modicum of artistic skill to create a professional Flash
animation.

To dip your toe into the fascinating world of Flash,
check out the basic online tutorials at
http://www.w3schools.com/flash/, or read a dedicated
book on the subject, like Flash CS5: The Missing
Manual. To get a sense of what’s possible with Flash,
check out the gorgeous graphics in the free Flash
games at http://www.ferryhalim.com/orisinal/, or take
on the detailed negotiation simulations at
http://www.zapdramatic.com/, which pit you against a
host of unsavory characters.

http://www.w3schools.com/flash/
http://www.ferryhalim.com/orisinal/
http://www.zapdramatic.com/

Preparing Video

Putting personal video on a website is a task meant for
ambitious multimedia mavens. The key stumbling block
is the sheer size of digital video. Consider the popular
MiniDV camcorder. It stores an hour of video on a single
tape. You can download that video to your
computer—but only if you have a spare 13 GB of drive
space handy. The ugly truth is that every second of raw,
high-quality video chews through a sizeable 3.5 MB of
storage. Not only is this enough to take a bite out of any
web master’s server and bandwidth allocations, it’s too
big for even the speediest browser to download.

What can you do to make a web video both look good
and perform well? You can always use someone else’s
Web-ready video (or pay a video editing company lots of
money to trim yours down to web proportions).
Assuming that’s not what you want, you have two
choices.

▪ Record at lower quality. Some video cameras
let you record video using lower quality settings
for the sole purpose of putting video on a
website. Cellphones, tiny computer spy cams,
and digital still cameras all create low-quality
movies, letting you both dodge conversion
headaches and send video straight to your site.
In fact, some video fans find the best solution is
to have two cameras, one for ordinary home
movies and one for lower-quality web movies.

www.allitebooks.com

http://www.allitebooks.org

▪ Lower the quality afterward. More
commonly, you’ll need to start with your
high-quality video and go through a long
process of re-encoding it to convert it to a size
suitable for the Web. To do this, you need a
video-editing program. Video cameras generally
include some sort of tool to help you out,
although you may want to pony up for more
powerful software. Two popular choices are
iMovie for the Mac (included with OS X) and
Windows Movie Maker, included with
Windows XP, Windows Vista, and Windows 7.
In addition, some video editing programs have a
feature that automatically picks suitably
scaled-down quality settings for videos you
want to upload to a website.

Note: For full details on how to operate Windows
Movie Maker, check out Windows 7: The Missing
Manual. If you’re using iMovie, take a look at
iMovie ‘09: The Missing Manual.

Here are the steps to follow to get your video ready for
the Web:

1. First, film your movie.

Take a couple of lessons from video aficionados and
film your video in a way that makes it easier to
compress and introduces less distortion. Keep camera

movements smooth and gradual, and don’t film
complex patterns. Your compressed video will be
smaller and look better.

2. Fire up the video capture program included with
your video camera. Use it to download your movie
to your computer’s hard drive.

Typically, this step involves connecting your camera to
your computer using a FireWire cable. Although USB
cables aren’t fast enough to keep up with huge chunks
of raw video data, you might use one if you transfer
video from less powerful devices, like a camera or
cellphone that records short video clips.

3. Now you need to use a video-editing program to
snip out just the video segment you want to post to
your site.

Some programs let you add music or special effects at
this point, too.

4. Next, re-encode that piece of video in a highly
compressed format. If all the format information in
your program sounds like gobbledy-gook, look for
an option that clearly says “Web video” when you
save your clip.

Technically, you make three choices in this step—you
specify a video format (the algorithm your editing
program uses to encode your video), the dimensions of
the playback window (web pages usually use 320×240
pixels), and the video quality (as with JPEGs, the
greater the compression, the more detail you lose).

Note: There is a range of competing web video
formats, but the most common is MPEG-4. Just to
make life more interesting, MPEG-4 has all kinds
of quality settings, so you can use it to create
DVD-quality movies or web-friendly video clips. If
in doubt, double-check the final file size of your
movie. If 60 seconds of video take up 1 MB on
your hard drive, you’re doing well.

Re-encoding video is a time-consuming operation—even
the speediest computer can take five times as long as the
length of the original clip. The good news is that at the
end of the process, you’ll have a more manageable
web-ready video file—say, 2 MB for a full 90-second
clip.

Linking to and Embedding Video

Surprisingly, you can pop a video into your web page
using the same techniques you used with digital audio
(see Figure 1-1). That means you can link to a video that
opens up in another browser window:

Click to download or open my home movie
Ouch, That Hurts.

Or you can use the <embed> element to put a video
window right inside your web page.

<embed src="ouch.mpg" autoplay="false" />

If you use the <embed> element, make sure you turn off
autoplay. Otherwise, visitors with feeble dial-up
connections will see their web pages slow to a crawl
while your video downloads.

The video window shows up wherever you place the
<embed> element (see Figure 1-9).

Figure 1-9: You can add a video window to your web
pages almost as easily as adding basic audio playback

controls. If you don’t specify a fixed size, the window
automatically adjusts to the dimensions of your video.

If this seems too easy to be true, that’s because it is.
Although this simple test page works well most of the
time, it’s not entirely reliable. Depending on your
movie’s encoding format and your browser’s settings,

visitors may be forced to download the entire movie
before they can start watching it. And if their browsers
don’t have the right plug-in or it’s incorrectly installed,
your video might not play at all.

Heavyweight companies that show videos on their
websites use special web server software to ensure good
performance. Budget web hosting companies can’t
compete. However, if you want to get serious about video
but avoid the hosting and compatibility headaches,
there’s an easy solution. You can use a video hosting
service like the insanely popular YouTube.

Uploading Your Videos to YouTube

Before YouTube hit the scene, video clips hadn’t really
taken off on the Web. Movie clips were all-around
inconvenient. They were slow to download, and playback
was often jerky and sporadic. But in a mere 5 years, the
landscape has shifted. Web connections are faster and
browser plug-ins that support movie playback (like Flash
and Microsoft’s Flash competitor, Silverlight) are more
common. Ordinary people own all sorts of digital video
gadgets that can shoot short movies, from true video
cameras to digital cameras, cellphones, and webcams.
Popular clips rocket around the world, going from
unknown to Internet sensation in a matter of hours.
Family members, adventurers, and wannabe political
commentators all regularly use video to keep in touch,
show their skills, and dish the dirt.

YouTube (http://www.YouTube.com/) is at the forefront
of this revolution. Despite being a web newcomer
(YouTube was created in 2005), it currently ranks as the
world’s second-most popular website. And YouTube’s
range of content is staggering. With a quick search, you
can turn up a range of both amateur and professional
content, including funny home videos, product reviews
and announcements, homemade music videos, clips from
movies and television shows, and ordinary people
spouting off on just about any topic.

http://www.YouTube.com/

If you’re still considering options for putting your video
content online, there are two great reasons to use
YouTube:

▪ It performs well. YouTube uses Flash to ensure
that virtually all browsers can play back its
videos. In addition, its videos support
progressive downloading, which means you can
watch the beginning of a video as your browser
downloads the rest of it, rather than waiting for
the whole enchilada.

▪ YouTube extends the reach of your website.
YouTube is one of the most popular sites on the
Web. Videos that get lucky can increase their
audience size from a few people to millions of
eager clip-watchers. By putting your movies on
YouTube, you increase the odds that someone
will discover it and possibly visit your site
afterward. For example, many of the most
popular clip-makers capitalize on their YouTube
popularity by selling themed merchandise on
their sites.

One disadvantage of YouTube is that you lose control
over video quality. YouTube is notorious for applying a
heavy dose of compression to shrink video size, making
some clips look terrible.

In the following sections, you’ll see how to upload your
first YouTube video, and even learn how to embed it in a
window on one of your own pages.

Signing up with YouTube

Anyone can browse and view YouTube’s full catalog of
videos (six million clips at the time of this writing). But
to upload your own, you need a YouTube account. Here’s
how to create one:

1. Go to http://www.YouTube.com/. Click the Sign Up
link (you can find it in the top right-hand corner of the
page).

2. Fill in your account information.

You need to supply the usual information, including
your email address, password, location, and date of
birth. Unlike some websites, which identify you solely
by your email address, YouTube requires a user name,
which is a string of letters and numbers like
JoeTheMovieMaker403. Given the site’s popularity, it
may take a few tries to find an available name. To find
out if a potential name is taken, click the Check
Availability link after you type it in.

Tip: If you already have a Google account, you
can use that with YouTube. Scroll down to the
bottom-left of the sign-up page, and then click the
“Sign in with your Google Account” link. You’ll still
need to pick a YouTube user name and supply
your address, but you’ll be able to log in to all the
Google services you use with the same email and
password combination.

3. Click Create My Account.

http://www.YouTube.com/

YouTube sends a confirmation message to your email
address. When you get this email, click the link inside
it to confirm your account.

Preparing a video

Now you’re ready to post a video. But before you do, it’s
time to double-check your video format to make sure
YouTube supports it.

YouTube helps out quite a bit in this regard. You can
upload a video in just about any popular video format,
including AVI, MOV, WMV, MPG, DivX, FLV, OGG,
and 3GP. Best of all, YouTube automatically re-encodes
your video with the right quality settings so web visitors
can download it without teeth-gnashing delays. This
doesn’t mean you can upload a video straight out of your
camcorder, however. YouTube limits uploads to files that
are less than 1 GB (1,000 MB) in size, and even a movie
file that’s half that size is still too large for many people
to upload in a reasonable amount of time. Best-case
scenario, it takes hours. Worst-case, your browser conks
out halfway through the process.

With that in mind, you need to use the re-encoding
process described in “Video Clips” above. Although it
may take a bit of trial and error to get the best settings for
your video, here are some guidelines:

▪ YouTube supports standard and widescreen
video formats. The device you use to make your
video usually determines which format you

www.allitebooks.com

http://www.allitebooks.org

choose. If you record video in standard size, use
a resolution of 480×360 pixels. For slightly
lower-quality content with standard video, you
can use the original YouTube playback window
size, which is 320×240. Either way, YouTube
uses a widescreen video window to play back
your standard video content, which means
you’ll see a black bar of empty space on the
sides of your video. For widescreen video, use a
resolution of 640×360 pixels for best results.

▪ Although YouTube supports a kitchen sink of
video formats, it recommends you use the
MPEG-4 or H.263 codecs when preparing your
video.

▪ Ordinarily, you should encode your videos at 30
frames per second. However, you can
sometimes cut this down to 15 frames per
second to save space, and still get good results.

▪ The longer your video, the more compression
you’ll need to get the file size down to
manageable proportions.

▪ Aim to create a file that’s less than 100 MB in
size. You may need to fiddle with your settings
and re-encode your video several times to get
the right balance of size and quality.

UP TO SPEED

Understanding Bit Rates

The main way you control video quality settings is by
adjusting the bit rate. The bit rate determines how

much raw information each frame of your movie
includes. For example, a mid-range bit rate of 400
kbps means there are 400 KB of data in every second
of video. If your movie is about 4 minutes long, it will
total about 96 MB in size.

Life isn’t quite that simple however, because many
encoding programs use variable bit-rate encoding.
That means they use a higher bit rate to encode more
complex sections (like fast-moving action), and a
lower bit rate to save space during simpler scenes. No
matter what encoding rate you use, you’ll always run
into the same trade-off. Bigger files have the potential
for better quality video after YouTube converts them.
But the smaller the file, the faster you can upload it.

Because every encoding program works a bit
differently, you need to experiment (and sit through a
few YouTube uploads to find out how fast your
Internet connection really is). You might also want to
try scouring the Web for tips on using your video
editor to prepare YouTube videos. You can even hunt
down one of the free programs that are designed to
streamline YouTube uploads.

Uploading a video

Once your video’s ready, it’s time to put it online. The
process is refreshingly straightforward:

1. Head back to YouTube and sign in.

You’ll see that YouTube offers plenty of features to
help you track down the videos you like. It keeps track
of the videos you watch, recommends related videos

for you to check out, and lets you subscribe to specific
video groups. But right now, ignore these features and
concentrate on adding your own video creation to the
mix.

2. Click the yellow Upload button at the top
right-hand side of the page.

This takes you to the upload page shown in Figure
1-10.

Figure 1-10: YouTube uses just a single page to collect
all the necessary information about your video and lets
you configure options like comment support. (Click the

“choose options” links to expand these sections.)

3. Fill in the information for your video.

You need to supply a title and description, which
YouTube displays on your video page and when your
video appears in the YouTube search results. You also

need to specify a category for your video, and add one
or more tags. When other people search YouTube
using keywords that match your tags, there’s a better
chance that your video will turn up in the search
results.

Along with this required information, YouTube offers
several sections of optional settings. You can click the
“choose options” link in any of these sections to change
your options.

Use Broadcast Options to switch your video from
public to private. Public videos turn up in YouTube
search results, while you share private videos only with
YouTubers you explicitly identify.

Use Date and Map Options to identify when and where
you recorded your video.

Use Sharing Options to control how other people can
offer feedback or use your video. For example, you can
ban people from commenting on your video, or allow
only comments that you approve. You can also specify
whether people can rate your videos, post a video
response (a video linked to yours), and play your video
on their own web page. YouTube allows all these
options automatically, giving the site a somewhat
raucous community atmosphere.

Note: You can prevent other people from
embedding your video by choosing the “External
sites may not embed this video” option. If you do

this, however, it not only stops other people from
showcasing your video, it prevents you from
embedding your own video on your web pages.

Don’t worry if you can’t decide on all your options
right now. You can change them (along with the
descriptive video information) any time.

4. Click the “Upload a video” button.

This is the simplest way to submit your video.
However, YouTube offers other options.

Click the Use Quick Capture button to record and
upload your video on the spot. You need to have a
webcam connected to your PC.

Click the “Use multi-video uploader” button on the
right side of the page to use a special uploading
interface. The multi-video uploader makes it easy to
upload several files at once. This way, if you have a
bunch of videos you want to put online, you can queue
them all up and walk away from your computer for the
day. The multi-video uploader also lets you upload files
larger than 100 MB, up to the 1,000 MB maximum. If
you click this button, YouTube prompts you to install
the free Google Gears web browser extension
(http://gears.google.com/), which YouTube requires to
make the multi-video uploader work.

5. It’s time to upload your file. Click Browse, find
your video file on your PC, and then click OK.

http://gears.google.com/

Finally, click Upload Video to start the transfer
process.

As YouTube uploads your video, it displays a status
message that counts the number of bytes copied and
displays the percent of the entire process it’s
completed.

YouTube says it typically takes 1 to 5 minutes to
upload each megabyte of video if you have a
high-speed connection, so this is a good time to get a
second cup of coffee.

6. When YouTube finishes the upload, it displays a
confirmation message.

The process isn’t really finished yet, however.
YouTube still needs to convert your video to the
streamlined Flash format, and that process could take
minutes or hours, depending on the number of requests
ahead of yours.

As long as you didn’t switch off video embedding in
step 3, YouTube gives you the block of XHTML you
need to embed the video on your own site (see Figure
1-11).

Figure 1-11: Even though your video isn’t ready yet, you
can already copy the markup needed to display it on a

Web page. At the moment, that markup won’t have
much effect—it’ll just create a blank YouTube window.
But once your video goes live on YouTube, you’ll see it

in your page.

Watching a video

Once your video is ready, you can watch it in several
ways:

▪ You can search for it on YouTube.
▪ You can browse through the videos in your

account. Log into YouTube, click the Account
link (at the top right-hand side of the page),
scroll down to the My Videos section, and then
click the Uploaded Videos link.

Tip: You can handle other management tasks in
the Uploaded Videos page as well. For example,
click Delete to remove a video, Edit to change the
video information and options you specified when
you uploaded your video, and Insight to get some
fascinating statistics on the people who’ve seen
your video.

▪ You can play it back in a YouTube window on
one of your web pages. To do so, copy the
markup shown in Figure 1-11 into your page. If
you neglected to copy this markup when you
uploaded your video, go to the YouTube page
for your video, where you’ll find these details
(see Figure 1-12).

▪ You can put a link on your web page that leads
to the YouTube video page. Figure 1-12 shows
the information you need to create this link.

Of all these options, embedding your video in a YouTube
window on your web page is the most interesting. It lets
you combine the look and feel of a self-hosted video with
YouTube’s high performance and solid browser support.
Best of all, embedding videos is as easy as copying a
snippet of XHTML markup into your page. You simply
put this markup where you want the video window to
appear. Often, you’ll put it in a <div> element, and use
style rules to position the <div> element.

www.allitebooks.com

http://www.allitebooks.org

Figure 1-12: Top: You can watch your video at its
YouTube home. The page provides two useful text

boxes (circled here): a URL box with the address you
need to link to this page, and an Embed box with the

markup you need to embed this video window in
another web page.

Bottom: Embedding lets you watch your video in a page
of your own

devising.

Here’s the complete markup that creates the page from
Figure 1-12:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional //EN"
"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>A Taste of YouTube</title>
</head>
<body>
<h1>A Taste of YouTube</h1>
<p>The following video window is brought to
you by the fine people
at YouTube.</p>
<object width="425" height="344">
<param name="movie"
value="http://www.youtube.com/v/
qx0QIUkRAGQ&hl=en&fs=1"></param>
<embed src="http://www.youtube.com/v/
qx0QIUkRAGQ&hl=en&fs=1"

type="application/x-shockwave-flash"
allowfullscreen="true"
width="425" height="344">
</embed>
</object>
<p>Click it to start playing.</p>
</body>
</html>

Keen eyes will notice that this video window consists of
an <embed> element wrapped in an <object> element.
This messy markup is great for browser compatibility,
because browsers that support the <object> element will
ignore the content inside, and browsers that don’t
recognize the <object> element will use the <embed>
element instead. However, like all uses of the <embed>
element, it has the unhappy side effect of breaking the
rules of XHTML. This simply goes to show that making
a page work perfectly still trumps any standard—at least
for the Web’s hottest video-sharing site.

Tip: To change the color of the border around your
video window, make it start playing automatically,
give it support for fullscreen mode, or tweak one of
several other details, you need to adjust the
parameters inside the markup. For the complete
scoop, check out http://code.google.com/apis/
youtube/player_parameters.html/.

Colophon
Peter McKie was the editor for Add Audio and Video to
Your Site: The Mini Missing Manual. Nellie McKesson
was the production editor.

Nellie McKesson designed the interior layout, based on a
series design by Phil Simpson. The text font for the PDF
version of this book is Myriad Pro; and the heading and
note font is Adobe Formata.

For best printing results of the PDF version of this book,
use the following settings in the Adobe Reader Print
dialog box: A: Pages: ii–[last page number]; B: Page
Scaling: Mulitple pages per sheet;
C: Pages per sheet: 2; D: Page Order: Horizontal.

	Add Audio and Video to Your Site
	Types of Multimedia Files
	Background Music
	Sound Effects
	Flash MP3 Players
	Flashtrak Loops
	Video Clips
	Linking to and Embedding Video
	Uploading Your Videos to YouTube

