
 ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Publisher: O'Reilly

Pub Date: December 2002

ISBN: 0-596-00396-X

Pages: 1088

ActionScript for Flash MX: The Definitive Guide is the most complete, up-to-date reference
available for the latest version of ActionScript. Author Colin Moock has added hundreds of
new code examples to show new Flash MX techniques in the real world. The book's
language reference alone has nearly doubled from the first edition, with more than 250 new
classes, objects, methods, and properties. You'll find exhaustive coverage of dozens of
undocumented, under-documented, and mis-documented features.

www.allitebooks.com

http://www.allitebooks.org

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Copyright © 2003, 2001 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps. The association between the image of
a siren and the topic of ActionScript is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

www.allitebooks.com

http://www.allitebooks.org

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Foreword

A scant eighteen months have passed since I penned the Foreword for the first edition of ActionScript: The
Definitive Guide. Since that time, the first edition has established itself as the essential guide to ActionScript
programming. It's become so indispensable to so many developers that it seems as if it has existed for a much
longer time.

Flash MX, which shipped in March 2002, was the most ambitious release of Flash to date. The team of talented
individuals that contributed to its creation was larger than ever, and we delivered over 100 major new features.
ActionScript was a key focus, which required a change in the way it was developed. Prior to Flash MX,
ActionScript was developed by a handful of individuals, including myself. In MX, our ambitious ActionScript
agenda required many engineers. With the additional resources, we were able to deliver a vastly improved script
editor and debugger, optimize performance, and add a plethora of new APIs providing new capabilities for
ActionScript programmers.

There is a great deal of excitement about Flash at Macromedia today. While the public may think of Flash as simply
an animation tool, the Flash developer community is beginning to recognize that Flash is something broader. With
Flash MX, web developers now have the means to deliver rich, interactive user experiences over the Web—not
only the traditional uses of Flash, such as cartoons and motion graphics, but also sophisticated web applications.

Flash always has been, and seems destined to remain, the best way to give your web site some pizzazz, but serious
web application developers are straining against the limitations of HTML. They are searching for a new platform
that offers more attractive, engaging, and usable experiences to their users—a rich client — and they are finding
Flash to be an ideal delivery vehicle. Flash's cross-platform consistency and ubiquitous distribution base offer a
runtime technology upon which developers can build a new breed of web applications that are more interesting and
nimble than those that existed previously. I'd wager that you'll be seeing a broad spectrum of new uses for Flash,
from multiplayer games to e-commerce to data visualization. And Macromedia is committed to ensuring that Flash
keeps up with the new demands placed on it by application developers. ActionScript plays an important role in this
new vision for Flash MX. Because the usefulness of the Flash platform depends on the power of its scripting
language, we set out to make ActionScript powerful enough to satisfy even the most ambitious web developer.

This initiative to make Flash a true application platform posed special challenges for developing Flash MX. Flash
is, in a sense, a product being pulled in many directions at once, as it addresses the needs of many different
customers, from character animation to motion graphics to the growing field of rich application development.
Scripting enhancements were seen as critical, but we realized that it was equally important to enhance Flash's
abilities for creative expression, because visual artistry is the heart and soul of Flash.

To ensure that we fulfilled the varied needs of our customers, we divided the Flash engineering team into three
groups, each with its own mandate:

Approachable

Provide an excellent initial experience for new users
Creative

Enhance Flash's abilities of creative expression
Power

Beef up ActionScript into a powerful tool for developing complex applications

I was delighted to lead the Power team, which went about enhancing ActionScript to support the notion of "Flash
as a platform." We revised and enhanced Flash's object and event models; we refined Flash 5 Smart Clips into a
more robust component architecture; and we rewrote frequently used ActionScript objects to optimize

www.allitebooks.com

http://www.allitebooks.org

performance. In addition, we added power tools for developers, such as Code Hints and the revamped Debugger.

We weren't the only ones working on ActionScript, however. The union of Macromedia and Allaire in 2001
brought the company formidable server expertise. The folks at the new Macromedia office in Newton,
Massachusetts built Macromedia Flash Remoting MX (Flash Remoting), a new server-side technology permitting
direct and easy-to-use communication with the back end. The all-stars on the Macromedia Flash Communication
Server MX (Comm Server) team pushed the envelope on what can be done with ActionScript, introducing new
ActionScript APIs (including ServerSide ActionScript) that enable truly trailblazing functionality: live two-way
communications and collaboration over the Internet!

Another entire team was dedicated to the task of building components. The Components Team—of which two
members served as technical editors for this book—built UI components that enable the quick construction of
HTML-like forms, and additional controls that go beyond what is possible with HTML, such as a full-blown tree
control, calendar control, and a data grid. Combined with Flash Remoting, the components are a formidable force
for building data-driven applications.

The components in Flash MX offer a potent taste of the future: high-level abstractions that can quickly be
assembled into interactive content and applications. At Macromedia, we will seek to make the construction and
usage of components easier and even more powerful in future releases of Flash. The components offered with
Comm Server are a great example of that power. Even without components, using Comm Server, it is relatively
easy to build a videoconferencing application in only a few lines of ActionScript. Comm Server components make
it even easier; by simply dragging a few components, novices can effectively script without using ActionScript.
This is the direction we're interested in, because it helps novice users become productive immediately. Rest
assured that as ActionScript and Flash become more approachable, greater possibilities will open up for advanced
developers. By taking care of the mundane plumbing and commonly used UI components, we enable expert users
and programmers to be even more productive. Flash MX's enhanced object model and component architecture
allows skilled developers to extend existing components or develop their own custom libraries. So, whereas this
book doesn't cover the existing components in detail, it offers advanced and aspiring developers the tools to create
their own. It is always exciting to see the new directions developers take ActionScript once they have the tools and
an understanding of how to use them.

Therefore, this second edition is unquestionably the essential book for ActionScript programming in Flash MX. It
has proven invaluable even for the engineers on the Macromedia Flash team, who see it as complementary to our
own product documentation. This book is the product of Colin Moock's boundless talent and energy, which have
driven him to delve deeply into ActionScript, probing its inner secrets for your benefit. His meticulous attention to
detail, evident throughout this fine volume, combined with his easygoing instructional style, ensure the book will
be appreciated by newcomers and experts alike. Enjoy the book, and enjoy ActionScript in Flash MX!

—Gary Grossman, Creator of ActionScript, Senior Engineering Manager, Macromedia Flash Team, October 2002.

www.allitebooks.com

http://www.allitebooks.org

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

Welcome to ActionScript for Flash MX: The Definitive Guide, Second Edition! This edition sports massive
changes from the first edition, with hundreds of pages of new material and exhaustive rewrites that bring old
material up to date with best practices for Flash MX. I hope you're as excited to read it as I was to write it!

Like the first edition, this book teaches ActionScript from the ground up, covering both basic concepts and
advanced usage, but with a special focus on Macromedia Flash MX techniques. In Part I, we'll explore ActionScript
fundamentals—from variables and movie clip control to advanced topics such as objects, classes, and server
communication. In Part II, the Language Reference, we'll cover every object, class, property, method, and event
handler in the core ActionScript language. You'll use the Language Reference regularly to learn new things and
remind yourself of the things you always forget, so keep this book on your desk, not on your shelf!

Though ActionScript's complexity has increased in Flash MX, you do not have to be a programmer to read this
book. I have continued to be mindful of the beginner throughout this edition. The text moves pretty quickly, but a
prior knowledge of programming is not required to read it. All you need is experience with the non-ActionScript
aspects of Flash and an eagerness to learn. Of course, if you are already a programmer, so much the better; you'll be
applying your code-junkie skills to ActionScript in no time. To make the transition to Flash easier for experienced
programmers, I've made a special effort to draw helpful analogies to languages such as JavaScript, Java, and C.

Above all, this book truly is a Definitive Guide to ActionScript in Flash MX. It's the product of nearly four years of
research, thousands of emails to Macromedia employees, and feedback from users of all levels. I hope that it is self-
evident that I've suffused the book with both my intense passion for the subject and the painfully won, real-world
experience from which you can benefit immediately. It covers ActionScript with exhaustive authority and—thanks
to a technical review by Gary Grossman, the creator of ActionScript—with unparalleled accuracy.

www.allitebooks.com

http://www.allitebooks.org

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

Second Edition Quick Start

If you're a returning first-edition reader dying to sink your teeth into this edition, here are the highlights I
recommend you start with. But don't end your exploration with this list. Read on to learn about many more
important updates to this edition.

The following chapters in Part I, ActionScript Fundamentals, have been heavily rewritten and enhanced. They
cover some of the most exciting additions, such as components, and meaningful changes to the way ActionScript
handles events and deals with objects.

Chapter 9

Chapter 10

Chapter 12

Chapter 14

See also the revised and new appendixes, especially:

Appendix C

Appendix E

Appendix F

Appendix G

Appendix H

The following entries in Part II, the Language Reference, are either all-new or have been heavily revised since the
first edition. For example, you'll want to read up on the new SharedObject object and check out the Drawing API
methods added to the MovieClip class.

Accessibility object

Button class

Capabilities object

Function class

_global object

#initclip and #endinitclip pragmas

LoadVars class

LocalConnection class

MovieClip class (new events and the Drawing API)

www.allitebooks.com

http://www.allitebooks.org

Object class

setInterval() and clearInterval() global functions

SharedObject object

Sound class

Stage object

System object

TextField class

TextFormat class

Listener Events for Key, Mouse, TextField, and Stage (see Table P-1)

www.allitebooks.com

http://www.allitebooks.org

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

What's New in Flash MX ActionScript

ActionScript evolved tremendously from Flash 5 to Flash MX (as the authoring tool is known) and the
corresponding Flash Player 6, and this book has evolved along with it. See Table P-2 in this Preface for details on
the Flash version naming conventions.

To preview many of the new features in action, visit:

http://www.moock.org/webdesign/lectures/newInMX

Table P-1 provides a high-level overview of the major additions to ActionScript and tells you where to find more
information about each new topic in this book. Unless otherwise stated, cross-references are to Part II, the
Language Reference.

Table P-1. New features in Flash MX ActionScript

Feature For details, see...

Drawing API: draw strokes,
shapes, and fills at runtime using
new MovieClip methods

MovieClip.beginFill(), MovieClip.beginGradientFill(), MovieClip.clear(),
MovieClip.curveTo(), MovieClip.endFill(), MovieClip.lineStyle(),
MovieClip.lineTo(), MovieClip.moveTo(); Section 13.8 in Chapter 13

Load JPEG-format images at
runtime

MovieClip.loadMovie(), loadMovie()

Load MP3-format sounds at
runtime

Sound.loadSound()

Check the length of a sound and
the amount of time it has been
playing

Sound.position, Sound.duration

Detect when a sound finishes
playing

Sound.onSoundComplete()

Create, manipulate, and format
text fields at runtime

The TextField class, the TextFormat class, MovieClip.createTextField()

Mask or unmask a movie clip at
runtime

MovieClip.setMask()

Create movie clips from scratch at
runtime

MovieClip.createEmptyMovieClip()

Determine a movie clip's depth at
runtime

MovieClip.getDepth()

Execute a function or method
periodically

setInterval(), clearInterval()

Manipulate XML, string, and
array data faster due to Flash
Player performance improvements

The XML class, the String class, the Array class

Store data locally (much like
JavaScript cookies)

The SharedObject object

www.allitebooks.com

http://www.allitebooks.org

Create packaged code modules
with MovieClip subclasses and
components

#initclip, #endinitclip, Object.registerClass(), attachMovie();

Chapter 14

Communicate between two Flash
Players on the same computer

The LocalConnection class

Declare global variables _global; Section 5.3 in Chapter 2

Use international characters in the
Unicode character set

Section 4.5 in Chapter 4, Appendix C

Define event handlers on movie
clips using callback functions

Chapter 10

Use event listeners to respond to
events from any object

Chapter 10 and Key.addListener(), Mouse.addListener(), Stage.addListener(
), Selection.addListener(), TextField.addListener()

Add button behavior to a movie
clip

Section 13.9 in Chapter 13

Control button objects at runtime The Button class

Make content accessible to screen
readers for the visually impaired

The Accessibility object

Check the movie width and height
at runtime, and reposition movie
elements when the movie is
resized

Stage.height, Stage.width, Stage.onResize()

Use lexical and nested function
scope, or execute a function as a
method of an arbitrary object

Function.call(), Function.apply(); Section 2.5.7 in Chapter 2; Section 9.7 in
Chapter 9

Access Player and system
information such as screen
resolution, operating system, and
current language

The Capabilities object

Capture keyboard and mouse
input events with a centralized
input API

The Key object, the Mouse object

Load variables using an intuitive
variable loading class rather than
the loadVariables() function

The LoadVars class

Monitor the download progress of
XML or loading variables

XML.getBytesLoaded(), LoadVars.getBytesLoaded()

Control the tab order for buttons,
text fields, and movie clips

TextField.tabIndex, Button.tabIndex,

MovieClip.tabIndex

Turn off the hand cursor for
buttons

Button.useHandCursor, MovieClip.useHandCursor

Add getter/setter properties to an
object, and receive notification
when a property changes

Object.addProperty(), Object.watch()

www.allitebooks.com

http://www.allitebooks.org

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

What's New in the Second Edition

The second edition of ActionScript for Flash MX: The Definitive Guide is not merely a "tack-on" update to the first
edition (which was titled ActionScript: The Definitive Guide). The entire text has been revised and restructured to
highlight the latest Flash MX ActionScript features. Nearly every paragraph has been updated, and 400 pages have
been added to cover ActionScript's new capabilities. Legacy descriptions of Flash 4 ActionScript syntax have been
moved from the body of the book to Appendix C or online technotes. We made this choice to keep the book
streamlined, although it is still considerably beefier than the first edition. By the time you read this, Flash Player 6
will be nearly ubiquitous, so it doesn't make sense to cover Flash 4 in detail anymore. We cover enough of it to
help you understand and upgrade any legacy code you may own or encounter. We've also paid close attention to
changes between Flash 5 and Flash 6 to help you understand the new paradigms and upgrade legacy code. The
legacy code examples from the first edition will all remain available at http://www.moock.org/asdg/codedepot.

Updated Code Examples

All code examples from the first edition have been rewritten to use Flash MX syntax and best practices. For
example:

The quiz samples now use callback functions — rather than Flash 5-style on() handlers — for button event
handlers.

Text fields that were formerly drawn in the authoring tool are now generated programmatically with
createTextField().

Classes are defined on _global (the new property that holds global variables)

The object-oriented LoadVars class is used instead of the older loadVariables() global function.

Likewise, dozens of new Flash MX-specific examples have been added. Here are just a few of the interesting ones:

A completely code-based, object-oriented quiz, downloadable from the online Code Depot (described later
in The Code Depot)

A configurable text ticker (see TextField.hscroll)

An array-to-table converter (see TextFormat.tabStops)

A sound preloader (see Sound.getBytesLoaded())

Hundreds of Tweaks

Subtle details have been added throughout this book to augment the first edition's content. Here are just a few of
the hundreds of tweaks made:

MovieClip._x discusses twips (the minimum distance a clip can be moved).

MovieClip._visible warns that button events don't fire when _visible is false.

www.allitebooks.com

http://www.allitebooks.org

XML.parseXML() covers CDATA and predefined XML entities (&, <, >, ", and ') at length.

MovieClip.getBytesLoaded() features a list of possible return values based on the asynchronous execution
of loadMovie().

Chapter 2 discusses qualified and unqualified variable references and Hungarian notation.

Chapter 4 explicitly contrasts null with delete and undefined.

Of course, there are plenty of not-so-subtle changes too. We'll look at them next.

Major Revisions Since the First Edition

The following list describes the major content and structural changes in this second edition. Note that some of
these chapters were in Part II, Applied ActionScript, in the first edition. Other material from the first edition's Part II
was redistributed elsewhere in this second edition, and some content was moved to online technotes. Despite the
organizational change, rest assured that this second edition includes dozens of applied examples sprinkled liberally
throughout the entire book. The ActionScript Language Reference, formerly Part III in the first edition, is now Part
II.

Chapter 1

Added an introduction to object-oriented programming

Revised the quiz tutorial for Flash MX

Revised the event handler section for Flash MX

Chapter 2

Added recommended suffixes for variable names

Added global variable coverage

Added a section on loading external variables

Added an explicit discussion of the scope chain

Chapter 3

Added the section Copying, Comparing, and Passing Data (formerly in Chapter 15)

Chapter 4

Added coverage of Unicode

Chapter 5

Added coverage of the strict equality and instanceof operators

Chapter 6

Added switch statement coverage

Revised the description of with to include the scope chain

Removed the legacy call statement (now covered in the ActionScript Language Reference only)

Chapter 8

Added a section on using setInterval() to execute code repeatedly

Revised "Timeline and Clip Event Loops" to use Flash MX features (MovieClip.createEmptyMovieClip()
and the MovieClip.onEnterFrame() handler)

Chapter 9

Added a section on the differences between function literals and the function statement

Added coverage of nested functions

Revised "Function Scope" to cover lexical scope in more detail

Revised the quiz tutorial for Flash MX

Chapter 10

Added complete coverage of event handler properties

Added coverage of event listeners, new in Flash MX

Added an in-depth discussion of scope, including Table 10-1, which compares old scope rules to new scope
rules

Added a description of the this keyword within various handlers, including a summary in Table 10-2

Moved all specific button and movie clip event descriptions to the ActionScript Language Reference (see
also Table 10-3)

Chapter 11

Added coverage of the Array.sortOn() method

Revised the quiz tutorial for Flash MX

Chapter 12

Revised the chapter entirely to focus more squarely on the process of making a class with methods and
properties

Added coverage of Flash MX's super keyword, used to invoke a superclass constructor and its methods

Added a formal discussion of the prototype chain

Added a formal discussion of issues with standard superclass assignment

Added a section on static methods and properties

Added a description of rendering an object to screen

Added an object-oriented programming (OOP) application template

Added an Section 12.9 section

Added a brief discussion of UML and design patterns

Chapter 13

Added information on creating a blank movie clip from scratch using MovieClip.createEmptyMovieClip()

Added a section on drawing in a movie clip at runtime using the new Drawing API

Added a section on implementing button behavior for a movie clip

Added a section on handling input focus for movie clips

Revised (fixed) the first edition's partially erroneous description of MovieClip.duplicateMovieClip() depths

Moved the list of MovieClip methods and properties to the ActionScript Language Reference

Moved the legacy Tell Target discussion to Appendix C

Updated the clock example to use Flash MX best practices

Removed the quiz example, which is superceded by the new downloadable OOP quiz (the legacy version is
still available online)

Chapter 14 (all new)

Covers how to make movie clip subclasses (specialized types of movie clip symbols associated with a class)

Covers how to create a basic component, of which the Flash UI Components are a complex example

Chapter 15 (previously Chapter 14)

Revised the list of reserved words

Removed and redistributed old Chapter 15, content as follows:

Moved Copying, Comparing, and Passing Data to Chapter 3

Moved "Bitwise Programming" to online technote at http://www.moock.org/asdg/technotes

Removed "Advanced Function Scope Issues" (the issue discussed was fixed in Flash MX)

Moved "The MovieClip Datatype" to online technote at http://www.moock.org/asdg/technotes

Chapter 16

Revised the section on legacy Smart Clips to cover new Flash MX Components architecture instead

Chapter 17

Revised the code example and tutorial to use LoadVars class instead of loadVariables()

Redistributed old Chapter 18, On-Screen Text Fields (in first edition only)

Contents of the entire chapter moved to the Language Reference (under TextField class) and to Appendix E
(and augmented with substantial additions to the TextField class)

Removed old Chapter 19, Debugging (in first edition only)

Entire chapter moved to online technote at http://www.moock.org/asdg/technotes

Part II, Language Reference (formerly Part III)

Earlier in this Preface, we highlighted the major changes and additions to the ActionScript Language
Reference. For a complete list of new methods, properties, classes, objects, global functions, and directives
added to the Language Reference, see http://www.moock.org/webdesign/lectures/newInMX. (Note that
CustomActions and LivePreview are not included in the ActionScript Language Reference, as discussed
next.)

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

What's Not in This Book

Although this book is vast, ActionScript is vaster. It is no longer feasible to cover every possible ActionScript topic
within the confines of a single book. We made a conscious editorial decision in this edition to omit formal
coverage of the following items (though these topics are covered in passing where relevant):

Features used exclusively to extend the Flash MX authoring tool (e.g., CustomActions and LivePreview).
These topics are covered in Macromedia's online article "Creating Components in Flash MX" at
http://www.macromedia.com/support/flash/applications/creating_comps.

Macromedia's library of Flash UI Components, which extend the authoring tool beyond the core language.
See Appendix G, for a summary of Flash UI Components properties and methods. For resources that cover
Flash UI Components in depth, see Section 14.7 in Chapter 14.

The Macromedia Flash Communication Server MX (Comm Server) API (e.g., Remote SharedObject,
Camera, Microphone, NetConnection, and NetStream). Comm Server is used to create multiuser web
applications with audio and video. See http://www.macromedia.com/software/flashcom/ for details.

The basics of the Flash MX authoring tool. However, if you are a programmer who is new to Flash, we give
you enough hints so you can input the code examples and follow along. To learn Flash MX animation and
graphic design, start with the online help and manual; then explore the web sites listed at
http://www.moock.org/moockmarks.

There is no CD in the back of the book, but all the code examples can be downloaded from the online Code Depot
(cited later in this The Code Depot).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

Undocumented ActionScript Features

The Flash development community has a knack for unearthing so-called undocumented features of
ActionScript—internal abilities of the language that are not officially released or sanctioned for use by
Macromedia. In general, use of undocumented features is not recommended because:

They are not tested for external use and may therefore contain bugs or be unstable.

They may be removed from future versions of the language without warning.

In this book, we chose to focus on providing the best possible documentation for features that are supported but
which may be poorly documented or misdocumented. Therefore, wholly undocumented or unsupported features
are not covered unless:

Macromedia sources have supplied or confirmed the information directly; or

Use of the feature is so widespread that it demands discussion.

In either case, descriptions in this book of undocumented features include the appropriate warning label in full
view. This book covers the following undocumented features:

__proto__ (as used to establish inheritance)

ASBroadcaster (partial coverage only, in Chapter 12)

ASSetPropFlags() (partial coverage only, in Chapter 8)

LoadVars.decode()

LoadVars.onData()

Object.hasOwnProperty()

System.showSettings()

TextField.condenseWhite

TextFormat.font's multiple font abilities

The XMLNode class

To see what the ActionScript sleuths have discovered, visit (with prudence):

http://chattyfig.figleaf.com/flashcoders-wiki/index.php?Undocumented%20Features

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

Flash Naming Conventions

With the introduction of the MX family of products, including Flash MX, Macromedia abandoned a standard
numeric versioning system for its Flash authoring tool. The Flash Player, however, is still versioned numerically.
Table P-2 describes the naming conventions used in this book for Flash versions.

Table P-2. Flash naming conventions used in this book

Name Meaning

Flash MX The Flash MX authoring tool (as opposed to the Flash Player)

Flash Player 6

The Flash Player, version 6. The Flash Player is a browser plugin for major web browsers on
Windows and Macintosh. There are both ActiveX and Netscape-style versions of the plugin, but
they are referred to collectively as "Flash Player 6" except where noted, such as under Accessibility
in the ActionScript Language Reference.

Flash Player
x.0.y.0

The Flash Player, specifically, the release specified by x and y, as in Flash Player 6.0.47.0. See

capabilities.version in the ActionScript Language Reference for details.

Flash 6
Short for "Flash Player 6," used primarily in the Language Reference or wherever the distinction
between Flash MX (the authoring tool) and Flash Player 6 (the browser plugin) is irrelevant.

Flash 5
authoring tool

The Flash 5 authoring tool (as opposed to the Flash Player), which came before Flash MX

Flash Player 5 The Flash Player, version 5

Flash 5
Short for "Flash Player 5," used primarily in the Language Reference or wherever the distinction
between Flash 5 (the authoring tool) and Flash Player 5 (the browser plugin) is irrelevant.

Flash 2, Flash
3, and Flash 4

Versions of the Flash Player prior to version 5, used primarily in the Language Reference to
indicate which versions of Flash support the given feature.

Standalone
Player

A version of the Flash Player that runs directly off the local system, rather than as a web browser
plugin or ActiveX control.

Projector
A self-sufficient executable that includes both a .swf file and a Standalone Player. Projectors can be
built for either the Macintosh or Windows operating system using Flash's File Publish
feature.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

What Can ActionScript Do?

ActionScript is used to create all kinds of interactive applications, typically for web-based use. Here are just a few
possibilities: an MP3 player, a multiuser drawing application, a 3D walkthrough of a home, an online store, a
message board, an HTML editor, and the game Pac-Man. Each of these applications uses a combination of
ActionScript's capabilities, a sampling of which follows. Begin thinking about how you can combine these
techniques to build your applications.

Timeline Control

Flash movies are composed of frames residing in a linear sequence called the timeline. Using ActionScript, we can
control the playback of a movie's timeline, play segments of a movie, display a particular frame, halt a movie's
playback, loop animations, and synchronize animated content. Movie clips within a main movie each have their
own timeline.

Interactivity

Flash movies can accept and respond to user input. Using ActionScript, we can create interactive elements such as:

Buttons that react to mouseclicks (e.g., a classic navigation button)

GUI elements such as list boxes, combo boxes (a.k.a. drop-down menus), and check boxes

Content that animates based on mouse movements (e.g., a mouse trailer)

Objects that can be moved via the mouse or keyboard (e.g., a car in a driving game)

Text fields that display information on screen or allow users to supply input to a movie (e.g., a fill-in form)

Visual and Audio Content Control

ActionScript can be used to examine or modify the properties of the audio and visual content in a movie. For
example, we can change an object's color and location, reduce a sound's volume, or set the font face of a text block.
We can also modify these properties repeatedly over time to produce unique behaviors such as animated effects,
physics-based motion, and collision detection.

Programmatic Content Generation

Using ActionScript, we can generate visual and audio content directly from a movie's Library or by duplicating
existing content on the Stage. In Flash MX, we can use the MovieClip class's Drawing API,
createEmptyMovieClip() method, and createTextField() method to create graphics and text from scratch at
runtime. Programmatically generated content may serve as a strictly static element — such as a random visual
pattern — or as an interactive element — such as a button in a dialog box, an enemy spaceship in a video game, or
an option in a pull-down menu.

Server Communication

One of the most common ways to extend Flash's functionality is via communication with some server-side

application or script, such as Macromedia ColdFusion MX or a Perl script. Although communicating with
ColdFusion is largely the purview of Macromedia Flash Remoting MX (Flash Remoting), the core ActionScript
language provides a wide variety of tools for sending information to, and receiving information from, any server-
side application or script (e.g., Java, PHP, ASP, etc.). The following applications all involve server communication:

Link to a web page

See getURL().
Guest book

See the LoadVars and XML classes, Chapter 17, and The Code Depot, described in the next section.
Chat application

See the XMLSocket class and the example at http://www.moock.org/chat.
Multiplayer networked game

See the XMLSocket class and http://www.moock.org/unity.
E-commerce transaction

See the LoadVars and XML classes.
Personalized site involving user registration and login

See the LoadVars and XML classes.

Detailed implementations of even this limited number of potential ActionScript applications are beyond the scope
of this book. Instead, our goal is to give you the fundamental skills to explore the myriad other possibilities on your
own. This is not a recipe book—it's a lesson in cooking code from scratch. What's on the menu is up to you.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

The Code Depot

We'll encounter dozens of code samples over the upcoming chapters. To obtain relevant source files and many
other tutorial files not included in the book, visit the online Code Depot, posted at:

http://www.moock.org/asdg/codedepot

The Code Depot is an evolving resource containing real-world ActionScript applications and code bases. Here's a
selected list of samples you'll find in the Code Depot:

A multiple-choice quiz

A pan-and-zoom image viewer

Text field tools, such as an array-to-table converter and a configurable text ticker

An XML-based chat application

A guest book application

A custom mouse pointer and button

An asteroids game code base

Programmatic motion effects

Demos of HTML text fields

Preloaders

String manipulation

Interface widgets, such as slider bars and text scrollers

Mouse trailers and other visual effects

Volume and sound control

Additionally, any book news, updates, technotes, and errata will be posted here.

www.allitebooks.com

http://www.allitebooks.org

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

Showcase

Practically every Flash site in existence has at least a little ActionScript in it. But some sites have, shall we say,
more than a little. Table P-3 presents a series of destinations that should provide inspiration for your own work. See
also the sites listed in Appendix A and the author's bookmarks at http://www.moock.org/moockmarks.

Table P-3. ActionScript Showcase

Topic URL

Experiments in design, interactivity, and
scripting

http://www.yugop.com
http://www.praystation.com[1]

http://www.presstube.com
http://www.pitaru.com
http://www.flight404.com
http://www.bzort-12.com
http://www.benchun.net/mx3d/[1]

http://www.protocol7.com[1]

http://www.uncontrol.com[1]

http://flash.onego.ru[1]

http://www.figleaf.com/development/flash5[1]

http://nuthing.com
http://www.deconcept.com
http://www.natzke.com

Games

http://www.orisinal.com
http://www.gigablast.com
http://www.sadisticboxing.com
http://www.huihui.de
http://www.sarbakan.com
http://www.electrotank.com/games/multiuser
http://www.titoonic.dk/products/games/spider
http://content.uselab.com/acno
http://www.neave.com/webgames

Interface, applications, and dynamic
content

http://www.mnh.si.edu/africanvoices
http://www.curiousmedia.com
http://www.smallblueprinter.com
http://davinci.figleaf.com/davinci
http://host.oddcast.com
http://www.enteryourinformation.com/broadmoor/onescreen.cfm

[1] Downloadable .fla files provided. Otherwise, only .swf files available.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

Typographical Conventions

In order to indicate the various syntactic components of ActionScript, this book uses the following conventions:

Menu options

Menu options are shown using the character, such as File Open.
Constant width

Indicates code samples, clip instance names, frame labels, property names, and variable names. Variable
names often end with the suffixes shown in Table 2-1 (such as _mc for variables that refer to movie clip

instances). Although using these suffixes is considered the best practice, we sometimes avoided them when
we found they made the surrounding text substantially more difficult to read. For brevity, therefore, the
preferred suffixes have sometimes been omitted.

Italic

Indicates function names, method names, class names, layer names, URLs, filenames, and file suffixes such
as .swf. In addition to being italicized, method and function names are also followed by parentheses, such as
duplicateMovieClip().

Constant width bold

Indicates text that you must enter verbatim when following a step-by-step procedure. Constant
width bold is also used within code examples for emphasis, such as to highlight an important line of

code in a larger example.
Constant width italic

Indicates code that you must replace with an appropriate value (e.g., your name here). Constant
width italic is also used to emphasize variable, property, method, and function names referenced in

comments within code examples.

In the ActionScript Language Reference, we played around with some font conventions. The following
conventions looked the best, while maintaining consistency with our overall approach, so we went for them:

Class-level properties are shown with both the class name and property in constant width, because

they should both be entered verbatim, as shown (e.g., Stage.width, Math.NaN).

Instance-level properties are shown with the class or object instance in constant width italic,

because the placeholder should be replaced by a specific instance. The property itself is shown in
constant width and should be entered as shown (e.g., Button.tabEnabled, where

Button should be replaced with a button instance).

Method and function names, and the class or object to which they pertain, are always shown in italics and
followed by parentheses, as in MovieClip.duplicateMovieClip(). Refer to the ActionScript Language
Reference, surrounding material, and nearby examples to determine whether to include the class name
literally, as in TextField.getFontList(), or replace it with an instance name, such as
ball_mc.duplicateMovieClip().

Within the ActionScript Language Reference, for brevity, we often omit the class name when discussing a
property or method of the class. For example, when discussing the htmlText property of the TextField

class, when we say "set the htmlText property," you should infer from context that we mean, "set the

someField_txt.htmlText property, where someField_txt is the identifier for your

particular text field."

In some cases, an object property contains a reference to a method or callback handler. It wasn't always clear
whether we should use constant width to indicate that it is a property (albeit one storing a method

name) or italics and parentheses to indicate it is a method (albeit one stored in a property). If the line
between a property referring to a method and the method itself is sometimes blurred, forgive us. To
constantly harp on the technical difference would have made the text considerably less accessible and
readable.

When summarizing properties for a class, the properties may be shown in italics, rather than constant
width, to save space. This applies only when the properties are summarized under a Properties heading

and they aren't followed by parentheses, so it is clear that they're properties and not methods.

If any or all of this is confusing now, it will be clear by the time you get to the ActionScript Language Reference,
having read about objects, classes, and movie clips in Chapter 12, Chapter 13, and Chapter 14.

Pay special attention to notes and warnings set apart from the text with the following icons:

This is a tip. It contains useful information about the topic at hand, often highlighting
important concepts or best practices.

This is a warning. It helps you solve and avoid annoying problems or warns you of
impending doom. Ignore at your own peril.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you may find that features
have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any additional information. You can access
this page at:

http://www.oreilly.com/catalog/actscript2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly Network, see our
web site at:

http://www.oreilly.com

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Preface

Acknowledgments

As with the first edition, this book would be a mere shadow of itself without the incredible contributions of
Macromedia Flash MX's engineering, quality assurance, support, and product management teams. In particular, I
can never thank Gary Grossman enough for his critiques, guidance, and patience, not to mention writing the
Foreword. Other Macromedians who helped shape this text include: Jonathan Gay, Jeremy Clark, Eric Wittman,
Michael Williams, Pete Santangeli, Matt Wobensmith, Ben Chun, Troy Evans, Lee Thomason, Bentley Wolfe,
John Dowdell, Rebecca Sun, Janice Pearce, Brian Dister, Henriette Cohn, Jeff Mott, Michael Morris, Deneb
Meketa, Tinic Uro, Robert Tatsumi, Colm McKeon, and Mike Chambers.

This book's editor is Bruce Epstein, who I am convinced is superhuman. His knowledge of writing and
programming is exceptional, and his ability to bestow that knowledge upon a text is astonishing. I am uncommonly
fortunate to be coached by such an outstanding editor (and author in his own right).

Next, it is my honor to present the technical reviewers of this edition, all of whom are members of Macromedia
Flash MX's engineering team: Gary Grossman, Chris Thilgen, Gilles Drieu, Nigel Pegg, Slavik Lozben, and
Michael Richards. Erica Norton edited the first edition. Thank you, my friends, for your time and devotion.

The beta readers for this edition are all renowned Flash developers for whom I have immense respect: Robert
Penner (http://www.robertpenner.com), Dave Yang (http://www.quantumwave.com), Branden Hall
(http://www.waxpraxis.org), Amit Pitaru (http://www.pitaru.com), Michael Kay (http://www.peep.org/wizard/), and
Veronique Brossier (http://www.v-ro.com). This book's accuracy is in many cases the result of their keen eyes.

Thanks to Tim O'Reilly for setting a standard of thoroughness, quality, and accuracy in everything he publishes.
And thanks to O'Reilly's Brian Sawyer, Claire Cloutier, Glenn Bisignani, Mike Sierra, Rob Romano, Edie
Freedman, Sandy Torre, and the many copyeditors, indexers, proofreaders, and sales and marketing folks at
O'Reilly who helped bring this book to the shelves.

I owe recognition to my good friend Derek Clayton for regularly sharing his programming expertise with me. Derek
contributed the Perl code in Chapter 17, the Java XMLSocket server in the Language Reference, and a generic flat
file database system, all available from the online Code Depot. He is also the lead developer of Unity Socket
Server, moock.org's commercial application for creating multiuser applications in Flash
(http://www.moock.org/unity).

To the Flash community: thank you for the inspiration and beauty you create. In particular, thanks to James
Patterson, Yugo Nakamura, Naoki Mitsuse, Joshua Davis, James Baker, Marcell Mars, Phillip Torrone, Robert
Reinhardt, Mark Fennell, Josh Ulm, Darrel Plant, Todd Purgason, John Nack, Jason Krogh, Hillman Curtis, Glenn
Thomas, Hoss Gifford, Manuel Clement, Andreas Heim, Robert Hodgin, Margaret Carlson, Erik Natzke, Andries
Odendaal, James Tindall, Jon Williams, Ferry Halim, Jobe Makar, Jared Tarbell, Geoff Stearns, Paul Szypula,
Lynda Weinman, the beta readers listed earlier, and whomever I've inevitably omitted.

Many thanks and much love to my wife, Wendy Schaffer, to my parents, and to family and friends. Hopefully this
edition wasn't as draining as the first.

And lastly I'd like to thank you, the reader, for taking the time to read this book. I hope it helps to make my passion
your own.

—Colin MoockToronto, CanadaDecember 2002

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Part I covers the core syntax and grammar of the ActionScript language: variables, data, statements,
functions, event handlers, arrays, objects, movie clips, and components. By the end of Part I, you'll know
everything there is to know about writing ActionScript programs.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 1. A Gentle Introduction for Nonprogrammers

I'm going to teach you to talk to Flash.

Not just to program in Flash, but to say things to it and listen to what it has to say in return. This is not a metaphor
or simply a rhetorical device. It's a philosophical approach to programming.

Programming languages are used to send information to and receive information from computers. They are
collections of vocabulary and grammar used to communicate, just like human languages. Using a programming
language, we tell a computer what to do or ask it for information. It listens, tries to perform the requested actions,
and gives responses. So, while you may think you are reading this book in order to "learn to program," you are
actually learning to communicate with Flash. But, of course, Flash doesn't speak English, French, German, or
Cantonese. Flash's native language is ActionScript, and you're going to learn to speak it.

Learning to speak a computer language is sometimes considered synonymous with learning to program. But there is
more to programming than learning a language's syntax. What would it be like if Flash could speak English—if we
didn't need to learn ActionScript in order to communicate with it?

What would happen if we were to say, "Flash, make a ball bounce around the screen?"

Flash couldn't fulfill our request because it doesn't understand the word "ball." Okay, okay, that's just a matter of
semantics. What Flash expects us to describe is the objects in the world it knows: movie clips, buttons, frames, and
so on. So, let's rephrase our request in terms that Flash recognizes and see what happens: "Flash, make the movie
clip named ball_one bounce around the screen."

Flash still can't fulfill our request without more information. How big should the ball be? Where should it be
placed? In which direction should it begin traveling? How fast should it go? Around which part of the screen
should it bounce? For how long? In two dimensions or three? Hmm . . . we weren't expecting all these questions. In
reality, Flash doesn't ask us these questions. Instead, when Flash can't understand us, it just doesn't do what we
want it to, or it yields an error message. For now, we'll pretend Flash asked us for more explicit instructions, and
reformulate our request as a series of steps:

A ball is a circular movie clip symbol named ball.1.

A square is a four-sided movie clip symbol named square.2.

Make a new green ball 50 pixels in diameter.3.
Call the new ball ball_one.4.

Make a new black square 300 pixels wide, and place it in the middle of the Stage.5.
Place ball_one somewhere on top of the square.6.

Move ball_one in a random direction at 75 pixels per second.7.

If ball_one hits one of the sides of the square, make it bounce (reverse course).8.

Continue until I tell you to stop.9.

Even though we gave our instructions in English, we still had to work through all the logic that governs our
bouncing ball in order for Flash to understand us. Obviously, there's more to programming than merely the syntax
of programming languages. Just as in English, knowing lots of words doesn't necessarily mean you're a great
communicator.

Our hypothetical English-speaking-Flash example exposes four important aspects of programming:

No matter what the language, the art of programming lies in the formulation of logical steps.

Before you try to say something in a computer language, it usually helps to say it in English.

A conversation in one language translated into a different language is still made up of the same basic
statements.

Computers aren't very good at making assumptions. They also have a very limited vocabulary.

Most programming has nothing to do with writing code. Before you write even a single line of ActionScript, think
through exactly what you want to do and write out your system's functionality as a flowchart or a blueprint. Once
your program has been described sufficiently at the conceptual level, you can translate it into ActionScript.

In programming—as in love, politics, and business—effective communication is the key to success. For Flash to
understand your ActionScript, you have to get your syntax absolutely correct, down to the last quote, equals sign,
and semicolon. And to assure that Flash knows what you're talking about, you must refer only to the world it knows
using terms it recognizes. What may be obvious to you is not obvious to a computer. Think of programming a
computer like talking to a child: take nothing for granted, be explicit in every detail, and list every step that's
necessary to complete a task. But remember that, unlike children, Flash will do precisely what you tell it and
nothing that you don't.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 1. A Gentle Introductionfor Nonprogrammers

1.1 Some Basic Phrases

On the first day of any language school you'd expect to learn a few basic phrases ("Good day," "How are you," etc.).
Even if you're just memorizing a phrase and don't know what each word means, you can learn the effect of the
phrase and can repeat it to produce that effect. Once you've learned the rules of grammar, expanded your
vocabulary, and used the words from your memorized phrases in multiple contexts, you can understand your early
phrases in a richer way. The rest of this chapter will be much like that first day of language school—you'll see bits
and pieces of code, and you'll be introduced to some fundamental programming grammar. The rest of the book will
build on that foundation. You may want to come back to this chapter when you've finished the book to see just how
far you've traveled.

1.1.1 Creating Code

For our first exercise, we'll add four simple lines of code to a Flash movie. Nearly all ActionScript programming
takes place in the Actions panel. Any instructions we add to the Actions panel are carried out by Flash when our
movie plays. Open the Actions panel now by following these steps:

Launch Flash with a new blank document.1.
On the main timeline, select frame 1 of layer 1.2.
Select Window Actions (F9). (Note that we use the " " symbol to separate a menu name from a
menu option; you should select the "Actions" item from Flash's "Windows" menu.)

3.

The Actions panel is divided into two sections: the Script pane (on the right) and the Toolbox pane (on the left).
The Script pane houses all our code. In Normal Mode, the top of the Script pane includes a Parameters pane that
simplifies code entry for novices. The Toolbox pane provides us with quick-reference access to the ActionScript
language. You'll likely recognize the Movie Control Actions, shown in Figure 1-1, from prior Flash versions.

Figure 1-1. Flash MX Movie Control Actions

But there's a lot more to discover in the Toolbox pane. This book covers Operators, Functions, Constants,
Properties, and Objects in detail. Some of the Communications components are specific to Macromedia Flash
Communication Server MX (Comm Server) and are beyond the scope of this book. Similarly, the Flash UI
Components are not part of the core ActionScript language; Appendix G summarizes their properties and methods.
Details on the Flash UI Components are available in Flash's documentation, under Help Tutorials

Introduction to Components.

The Toolbox pane's book-like hierarchical menus can be used to create ActionScript code. However, in order to
learn the syntax, principles, and structural makeup of ActionScript, we'll be entering all our code manually.

So-called Actions are more than just Actions—they include various fundamental programming-language tools:
variables, conditionals, loops, comments, function calls, and so forth. Although many of these are lumped together
in one menu, the generic name Action obscures the programming structures' significance. We'll be breaking
Actions down to give you a programmer's perspective on those structures. Throughout the book, I use the
appropriate programming term to describe the Action at hand. For example, instead of writing, "Add a while
Action," I'll write, "Create a while loop." Instead of writing, "Add an if Action," I'll write, "Add a new conditional."
Instead of writing, "Add a play Action," I'll write, "Invoke the play() function (or method)." These distinctions are
an important part of learning to speak ActionScript.

Ready to get your hands dirty? Let's say hello to Flash.

1.1.2 Say Hi to Flash

Before you can type code into the Actions panel, you must disengage the ActionScript autopilot. From the pop-up
menu in the top right corner of the Actions panel, select Expert Mode, as shown in Figure 1-2. Howdya like that?
You're already an expert.

Figure 1-2. Expert Mode selection

For brevity, I'll refer to any pop-up menu in one of Flash's panels as an "Options" menu for the remainder of the
book. So I might write, "choose Options Expert Mode in the Actions panel." While you're at it, you can also
turn on line numbering using Options View Line Numbers. See also Chapter 16 for more details on the
Actions panel.

When you enter Expert Mode, the Parameters pane disappears from the top of the Actions panel (in Flash 5, the
Parameters pane appeared at the bottom of the Actions panel while in Normal Mode). Don't worry—we're not
programming with menus, so we won't be needing it.

www.allitebooks.com

http://www.allitebooks.org

Next, select frame 1 of layer 1 in the main timeline.

Your ActionScript (a.k.a. code) must always be attached to a frame, movie clip, or button;
selecting frame 1 causes subsequently created code to be attached to that frame. Flash
executes the code attached to a frame when the timeline reaches that frame.

In Expert Mode, you can type directly into the Script pane on the right side of the Actions panel, which is where
we'll be doing all our programming.

Here comes the exciting moment—your first line of code. It's time to introduce yourself to Flash. Type the
following into the Script pane:

var message = "Hi there, Flash!";

That line of code constitutes a complete instruction, known as a statement. On the line below it, type your second
and third lines of code, shown following this paragraph. Replace your name here with your first name

(whenever you see constant-width italicized code in this book it means you have to replace that

portion of the code with your own content):

var firstName = "your name here";
trace (message);

Hmmm. Nothing has happened yet. That's because our code doesn't do anything until we export a .swf file and play
our movie. Before we do that, let's ask Flash to say hi back to us. Type your fourth line of code under the lines
you've already typed (man, we're really on a roll now . . .):

trace ("Hi there, " + firstName + ", nice to meet you.");

Okay, Flash is ready to meet you. Select Control Test Movie, and see what happens. Some text should appear
in the Output window as shown in Figure 1-3.

Figure 1-3. Flash gets friendly

Pretty neat, eh? Let's find out how it all happened. To return to editing the .fla source file, close the window of the
.swf file created by our test.

1.1.3 Keeping Track of Things (Variables)

Remember how I said programming was really just communicating with a computer? Well, it is, but perhaps with a
little less personality than I've been portraying so far. In your first line of code:

var message = "Hi there, Flash!";

you didn't really say hi to Flash. You said something more like this:

Flash, please remember a piece of information for me—specifically, the phrase "Hi there, Flash!" I may need
that information in the future, so please give it a label called message. If I ask you for message later,

give me back the text "Hi there, Flash!"

Perhaps not as friendly as saying hi, but it illustrates one of the true foundations of programming: Flash can
remember something for you, provided that you label it so that it can be found later. For example, in your second
line of code, we had Flash remember your first name, and we named the reference to it firstName. Flash

remembered your name and displayed it in the Output window, due to the trace() command, when you tested your
movie.

The fact that Flash can remember things for us is crucial in programming. Flash can remember any type of data,
including text (such as your name), numbers (such as 3.14159), and more complex kinds of information that we'll
discuss later.

1.1.3.1 Official variable nomenclature

It's time for a few formal terms to describe how Flash remembers things. So far, you know that Flash remembers
data. An individual piece of data is known as a datum. A datum (e.g., "Hi there, Flash!") and the label that identifies
it (e.g., message) are together known as a variable. A variable's label is called its name, and a variable's datum is

called its value. We say that the variable stores or contains its value. Note that "Hi there, Flash!" is surrounded by
double quotation marks (quotes) to indicate that it is a string of text, not a number or some other kind of
information (a.k.a. datatype).

In your first line of code, you specified the value of the variable message. The act of specifying the value of a

variable is known as assigning the variable's value or simply assignment. But before you can assign a value to a
variable, you should first create it (in ActionScript's cousin, JavaScript, you must create variables before using
them). We formally bring variables into existence by declaring them using the special keyword var, which you
used earlier.

So, in practice, here's how I might use more formal terms to instruct you to create the first line of code you created
earlier: declare a new variable named message, and assign it the initial value "Hi there, Flash!" This means you

should enter the following code in the Actions panel:

var message = "Hi there, Flash!";

1.1.4 The Wizard Behind the Curtain (the Interpreter)

Recall your first two lines of code:

var message = "Hi there, Flash!";
var firstName = "your name here";

In each of those statements, you created a variable and assigned a value to it. Your third and fourth lines, however,
are a little different:

trace (message);
trace ("Hi there, " + firstName + ", nice to meet you.");

These statements use the trace() command. You've already seen the effect of that command—it caused Flash to
display your text in the Output window. In the third line, Flash displayed the value of the variable message. In

the last line, Flash also converted the variable firstName to its value (whatever you entered as your name) and

stuck that into the sentence after the words "Hi there,". The trace() command, then, causes any specified data to
appear in the Output window (which makes it handy for determining what's going on when a program is running).

The question is, what made the trace() command place your text in the Output window? When you create a
variable or issue a command, you're actually addressing the ActionScript interpreter, which runs your programs,
manages your code, listens for instructions, performs any ActionScript commands, executes your statements, stores
your data, sends you information, calculates values, and even starts up the basic programming environment when a
movie is loaded into the Flash Player.

The interpreter translates your ActionScript into a language that the computer understands and can use to carry out
your instructions. During movie playback, the interpreter is always active, dutifully attempting to understand
commands you give it. If the interpreter can understand your commands, it sends them to the computer's processor
for execution. If a command generates a result, the interpreter provides that response to you. If the interpreter can't
understand the command, it either sends you an error message or fails silently. The interpreter, hence, acts like a
magic genie—it carries out the orders you specify in your code and reports back to you from Flash when it's done.
Like a genie, it always does exactly what you say, not necessarily what you think you mean!

Let's take a closer look at how the interpreter works by examining how it handles a simple trace() action.

Consider this command as the interpreter would:

trace ("Nice night to learn ActionScript.");

The interpreter immediately recognizes the keyword trace from its special list of legal command names. The
interpreter also knows that trace() is used to display text in the Output window, so it also expects to be told what
text to display. It finds, "Nice night to learn ActionScript." between parentheses following the word trace and
thinks, "Aha! That's just what I need. I'll have that sent to the Output window right away!"

Note that the entire command is terminated by a semicolon (;). The semicolon acts like the period at the end of a

sentence; with few exceptions, every ActionScript statement should end with a semicolon. With the statement
successfully understood and all the required information in hand, the interpreter translates the command for the
processor to execute, causing our text to appear in the Output window.

That's a gross oversimplification of the internal details of how a computer processor and an interpreter work, but it
illustrates these points:

The interpreter is always listening for your instructions.

The interpreter has to read your code, letter by letter, and try to understand it. This is the same as you trying
to read and understand a sentence in a book.

The interpreter reads your ActionScript using strict rules—if the parentheses in our trace() statement were
missing, for example, the interpreter wouldn't be able to understand what's going on, and the command
would fail.

You've only just been introduced to the interpreter, but you'll be as intimate with it as you are with a lover before
too long: lots of fights, lots of yelling—"Why aren't you listening to me?!"—and lots of beautiful moments when
you understand each other perfectly. Strangely enough, my dad always told me the best way to learn a new language
is to find a lover that speaks it. May I, therefore, be the first to wish you all the best in your new relationship with
the ActionScript interpreter. From now on, I'll regularly refer to "the interpreter" interchangeably with "Flash" when
describing how ActionScript instructions are carried out.

1.1.5 Extra Info Required (Arguments)

You've already seen one case in which we provided the interpreter with the text to display when issuing a trace()
command. This approach is common; we'll often provide the interpreter with ancillary data required to execute a
command. There's a special name for a datum sent to a command: an argument, or synonymously, a parameter. To
supply an argument to a command, enclose the argument in parentheses, like this:

command(argument);

When supplying multiple arguments to a command, separate them with commas, like this:

command(argument1, argument2, argument3);

Supplying an argument to a command is known as passing the argument. For example, in the code phrase
gotoAndPlay(5), the word gotoAndPlay is the name of the command, and 5 is the argument being passed (in this
case the frame number). Some commands, such as stop(), require parentheses but do not accept arguments. You'll
learn why in Chapter 9, where we discuss functions in detail.

1.1.6 ActionScript's Glue (Operators)

Let's take another look at your fourth line of code, which contains this trace() statement:

trace ("Hi there, " + firstName + ", nice to meet you.");

See the + (plus) signs? They're used to join (concatenate) our text together and are but one of many available

operators. The operators of a programming language are akin to conjunctions ("and," "or," "but," etc.) in human
languages. They're devices used to combine and manipulate phrases of code. In the trace() example, the plus
operator joins the quoted text "Hi there, " to the text contained in the variable firstName.

All operators link phrases of code together, manipulating those phrases in the process. Whether the phrases are text,
numbers, or some other datatype, an operator almost always performs some kind of transformation. Very
commonly, operators combine two things together, as the plus operator does. But other operators compare values,
assign values, facilitate logical decisions, determine datatypes, create new objects, and provide various other handy
services.

When used with two numeric operands, the plus sign (+) and the minus sign (-), perform basic arithmetic. The
following command displays "3" in the Output window:

trace(5 - 2);

The less-than operator (<) checks which of two numbers is smaller or determines which of two letters is
alphabetically first:

if (3 < 300) {
 // Do something...
}
if ("a" < "z") {
 // Do something else...
}

The combinations, comparisons, assignments, or other manipulations performed by operators are known as
operations. Arithmetic operations are the easiest operations to understand, because they follow basic mathematics:
addition (+), subtraction (-), multiplication (*), and division (/). But some operators will be less recognizable to

you, because they perform specialized programming tasks. Take the typeof operator, for example. It tells us what
kind of data is stored in a variable. So, if we create a variable x, and assign it the value 4, we can then ask the

interpreter what datatype x contains, like this:

var x = 4;
trace (typeof x);

When this code is executed, Flash displays the word "number" in the Output window. Notice that we provided the
typeof operator with a value upon which to operate—x — but without using parentheses: typeof x. You might

therefore wonder whether x is an argument of typeof. In fact, x plays the same role as an argument (it's an ancillary

piece of data needed in the computation of the phrase of code), but in the context of an operator, it is officially
called an operand. An operand is an item upon which an operator operates. For example, in the expression 4 + 9,
the numbers 4 and 9 are operands of the + operator.

Chapter 5 covers ActionScript operators in detail. For now, just remember that operators link together phrases of
code in an expression.

1.1.7 Putting It All Together

Let's review what you've learned. Here, again, is line one of our example:

var message = "Hi there, Flash!";

The keyword var tells the interpreter that we're declaring (creating) a new variable. The word message is the

name of our variable (a name we've chosen arbitrarily). The equals sign is an operator that assigns the text string
("Hi there, Flash!") to the variable named message. Hence, the text "Hi there, Flash!" becomes the value of

message. Finally, the semicolon (;) tells the interpreter that we're finished with our first statement.

Line two is pretty much the same as line one:

var firstName = "your name here";

It assigns the text string you typed in place of your name here to the variable firstName. A semicolon

ends our second statement.

We reuse the variables message and firstName in lines three and four:

trace (message);
trace ("Hi there, " + firstName + ", nice to meet you.");

The keyword trace tells the interpreter to display some text in the Output window. We pass the text to be displayed
as an argument. The opening parenthesis marks the beginning of our argument. The trace() command requires one
argument, but that argument might be a fairly complex expression. For example, in line four, the argument includes
two operations, both of which use the plus operator, joining three operands. The first operation joins its first
operand, "Hi there, " to the value of its second operand, firstName. The second operation joins the text ", nice

to meet you." to the result of the first operation. The closing parenthesis marks the end of our argument, and the
semicolon once again terminates our statement. Technically, parentheses demarcate a list of one or more
arguments. If a command requires more than one argument, the arguments are separated by commas (the commas in
the preceding example are part of the text, because they are enclosed in quotes, and should not be confused with
commas used to separate multiple arguments, as shown later).

Blam! You've written your first ActionScript program. That has a nice ring to it, and it's an important landmark.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 1. A Gentle Introductionfor Nonprogrammers

1.2 Further ActionScript Concepts

You've already seen many of the fundamental elements that make up ActionScript: data, variables, operators,
statements, functions, and arguments. Before we delve deeper into those topics, let's sketch out the rest of
ActionScript's core features.

1.2.1 Flash Programs

To most computer users, a program is synonymous with an application, such as Adobe Photoshop or Macromedia
Dreamweaver MX. Obviously, that's not what we're building when we program in Flash. Programmers, on the other
hand, define a program as a collection of code (a series of statements), but that's only part of what we're building.

A Flash movie is more than a series of lines of code. Code in Flash is intermingled with Flash movie elements,
such as frames, movie clips, graphics, and buttons. In the end, there really isn't such a thing as a Flash "program" in
the classic sense of the term. Instead of complete programs written in ActionScript, we have scripts: code segments
that give programmatic behavior to our movie, just as JavaScript scripts give programmatic behavior to HTML
documents. The real product we're building is not a program but a complete Flash movie (the exported .swf file,
including its code, timelines, visuals, sound, and other assets).

Our scripts include most of what you'd see in traditional programs, without the operating system-level stuff you
would write in languages like C++ or Java to place graphics on the screen or cue sounds. We're spared the need to
manage the nuts and bolts of graphics and sound programming, which allows us to focus most of our effort on
designing the behavior of our movies.

1.2.2 Expressions

The statements of a script, as we've learned, contain the script's instructions. But most instructions are pretty
useless without data. When we set a variable, for example, we assign some data as its value. When we use the
trace() command, we pass data as an argument for display in the Output window. Data is the content we
manipulate in our ActionScript code. Throughout your scripts, you'll retrieve, assign, store, and generally sling
around a lot of data.

In a program, any phrase of code that yields a single datum when a program runs is referred to as an expression.
The number 7 and the string "Welcome to my web site," are both very simple expressions. They represent simple
data that will be used as-is when the program runs. As such, these expressions are called literal expressions, or
literals for short.

Literals are only one kind of expression. A variable may also be an expression (variables contain data and can stand
in wherever data is needed, so they count as expressions). Expressions get even more interesting when they are
combined with operators to form larger expressions. For example, the complex expression 4 + 5 includes two
operands, 4 and 5, but the plus operator makes the entire expression yield the single value 9. Complex expressions
may contain other, shorter expressions, provided that the entire phrase of code can still be converted into a single
value.

Here we see the variable message:

var message = "Hi there, Flash!";

If we like, we can combine the variable expression message with the literal expression " How are you?" as

follows:

message + " How are you?"

which becomes "Hi there, Flash! How are you?" when the program runs. You'll frequently see complex expressions
that include shorter expressions when working with arithmetic, such as:

(2 + 3) * (4 / 2.5) - 1

It's important to be exposed to expressions early in your programming career, because the term "expression" is often
used in descriptions of programming concepts. For example, I might write, "To assign a value to a variable, type the
name of the variable, then an equals sign followed by any expression."

1.2.3 Two Vital Statement Types: Conditionals and Loops

In nearly all programs, we'll use conditionals to add logic to our programs and loops to perform repetitive tasks.

1.2.3.1 Making choices using conditionals

One of the really rewarding aspects of Flash programming is making your movies smart. Here's what I mean by
smart: Suppose a girl named Wendy doesn't like getting her clothes wet. Before Wendy leaves her house every
morning, she looks out the window to check the weather, and if it's raining, she brings an umbrella. Wendy's smart.
She uses basic logic—the ability to look at a series of options and make a decision about what to do based on the
circumstances. We use the same basic logic when creating interactive Flash movies.

Here are a few examples of logic in a Flash movie:

Suppose we have three sections in a movie. When a user goes to each section, we use logic to decide
whether to show her the introduction to that section. If she has been to the section before, we skip the
introduction. Otherwise, we show the introduction.

Suppose we have a section of a movie that is restricted. To enter the restricted zone, the user must enter a
password. If the user enters the right password, we show her the restricted content. Otherwise, we prohibit
access.

Suppose we're moving a ball across the screen, and we want it to bounce off a wall. If the ball reaches a
certain point, we reverse the ball's direction. Otherwise, we let the ball continue traveling in the direction it
was going.

These examples of movie logic require a special type of statement called a conditional. Conditionals let us specify
the terms under which a section of code should—or should not—be executed. Here's an example of a conditional
statement:

if (userName = = "James Bond") {
 trace ("Welcome to my web site, 007.");
}

The generic structure of a conditional is:

if (this condition is met) {
 then execute these lines of code
}

You'll learn more about the detailed syntax of conditionals in Chapter 7. For now, remember that a conditional
allows Flash to make logical decisions.

1.2.3.2 Repeating tasks using loops

Not only do we want our movies to make decisions, we want them to do tedious, repetitive tasks for us. That is,
until they take over the world and enslave us and grow us in little energy pods as . . . wait . . . forget I told you that .
. . ahem. Suppose you want to display a sequence of five numbers in the Output window, and you want the

sequence to start at a certain number. If the starting number is 1, you can display the sequence like this:

trace (1);
trace (2);
trace (3);
trace (4);
trace (5);

But if you want to start the sequence at 501, you'd have to retype all the numbers as follows:

trace (501);
trace (502);
trace (503);
trace (504);
trace (505);

We can avoid that retyping by making our trace() statements depend on a variable, like this:

var x = 1;
trace (x);
x = x + 1;
trace (x);
x = x + 1;
trace (x);
x = x + 1;
trace (x);
x = x + 1;
trace (x);

On line 1, we set the value of the variable x to 1. Then at line 2, we display that value in the Output window. On

line 3, we say, "Take the current value of x, add 1 to it, and stick the result back into our variable x," so x becomes

2. Then we display the value of x in the Output window again. We repeat this process three more times. By the

time we're done, we've displayed a sequence of five numbers in the Output window. The beauty is that if we now
want to change the starting number of our sequence to 501, we just change the initial value of x from 1 to 501.

Because the rest of our code is based on x, the entire sequence changes when we change the initial value.

That's an improvement over our first approach, and it works pretty well when we're displaying only five numbers,
but it becomes impractical if we want to count to 1,000. To perform highly repetitive tasks, we use a loop—a
statement that causes a block of code (i.e., one or more instructions) to be performed a specified number of times.
There are several types of loops, each with its own syntax. One of the most common loop types is the while loop.
Here's what our counting example would look like as a while loop instead of as a series of individual statements:

var x = 1;
while (x <= 5) {
 trace (x);
 x = x + 1;
}

The keyword while indicates that we want to start a loop. The expression (x <= 5) governs how many times the
loop should execute (as long as x is less than or equal to 5), and the statements trace(x); and x = x + 1; are

executed with each repetition (iteration) of the loop. As it is, our loop saves us only five lines of code, but it could
save us hundreds of lines if we were counting to higher numbers. And our loop is flexible. To make our loop count
to 1,000, we simply change the expression (x <=5) to (x <=1000):

var x = 1;
while (x <= 1000) {
 trace (x);
 x = x + 1;
}

Like conditionals, loops are one of the most frequently used and important types of statements in programming.

1.2.4 Modular Code (Functions)

So far, your longest script has consisted of five lines of code. But it won't be long before those five lines become
500, or maybe even 5,000. When you want to manage your code more efficiently, reduce your work, and make your
code easier to apply to multiple scenarios, you'll learn to love functions. A function is a packaged series of
statements that performs some useful action or calculation. In practice, functions serve mostly as reusable blocks of
code.

Suppose you want to write a script that calculates the area of a 4-sided figure. Without functions, your script might
look like this:

var height = 10;
var width = 15;
var area = height * width;

Now suppose you want to calculate the area of five 4-sided figures. Your code quintuples in length:

var height1 = 10;
var width1 = 15;
var area1 = height1 * width1;
var height2 = 11;
var width2 = 16;
var area2 = height2 * width2;
var height3 = 12;
var width3 = 17;
var area3 = height3 * width3;
var height4 = 13;
var width4 = 18;
var area4 = height4 * width4;
var height5 = 20;
var width5 = 5;
var area5 = height5 * width5;

Because we're repeating the area calculation over and over, we are better off putting it in a function once and
executing that function multiple times:

function area(height, width){
 return height * width;
}
area1 = area(10, 15);
area2 = area(11, 16);
area3 = area(12, 17);
area4 = area(13, 18);
area5 = area(20, 5);

In this example, we first create the area-calculating function using the function statement, which defines (declares)
a function just as var declares a variable. Then we give our function a name, area, just as we give variables

names. Between the parentheses, we list the arguments that our function receives every time it's used: height
and width. And between the curly braces ({ }), we include the statement we want executed:

return height * width;

After we create a function, we may run the code it contains from anywhere in our movie by using the function's
name. In our example we called the area() function five times, passing it the height and width values it

expects each time: area(10, 15), area(11, 16), and so on. The result of each calculation is returned to us, and we
store those results in the variables area1 through area5. This is nice and neat, and much less work than the

nonfunction version of our code shown earlier. Enclosing reusable code within functions save us time and reduces

the number of lines of code needed. It also makes our code much more legible and modular. Someone reading the
code can probably guess what the area() function does, based solely on its name.

Don't fret if you have questions about this function example; we'll learn more about functions in Chapter 9. For
now, just remember that functions give us an extremely powerful way to create complex systems. Functions help us
reuse our code and package its functionality, extending the limits of what is practical to build.

1.2.4.1 Built-in functions

Notice that functions take arguments just as the trace() command does. Invoking the function area(4, 5); looks
very much the same as issuing the trace() command such as trace (x); except that the area() function requires two
arguments, which are separated by commas, whereas the trace() command requires a single argument. The
similarity is not a coincidence. As we learned earlier, many Actions, including the trace() Action, are actually
functions. But they are a special type of function that is built into ActionScript (as opposed to user-defined
functions, like our area() function). It is, therefore, legitimate—and technically more accurate—to say, "Call the
gotoAndStop() function," than to say, "Execute a gotoAndStop Action." A built-in function is simply a reusable
block of code that comes with ActionScript for our convenience. Built-in functions let us do everything from
performing mathematical calculations to controlling movie clips. All the built-in functions are listed in Part II, the
ActionScript Language Reference. We'll encounter many of them as we learn ActionScript's fundamentals.

1.2.5 Objects and Object-Oriented Programming

We've learned that a statement is an ActionScript command that makes Flash do something. And we know that a
function groups multiple statements into a single convenient command. Functions provide organization for our
code that lets us build more complex programs. Objects take the next logical step—they package a series of related
functions and variables into a single code module.

As a program's complexity increases, it becomes more and more difficult to describe its operation as a single linear
set of instructions (statements). Objects help us conceptually model the behavior of a program as an interrelated
series of self-contained components, rather than a long list of commands. For example, in the bouncing ball
example from the beginning of this chapter, we could use objects to represent the bouncing ball and the square
room in which the ball bounces. The ball object would encompass functions that relate to the ball, such as
startMoving(), stopMoving(), and checkForWall(). It would also contain information about the ball, stored in
variables such as velocity, color, and diameter. The room object might include the functions

setRoomSize() and addBall() and the variables width and height. When we use objects, our program's

conceptual model is reflected by an intuitive syntax that looks like this:

room.addBall();
ball.diameter = 5;
ball.startMoving();

In general terms, the object (noun) comes first, followed by a dot (.), followed by either a function (verb) or a
variable (adjective). The function does something to the object, while the variable tells us something about the
object. Functions associated with an object are often called methods. Variables associated with an object are often
called properties. Here are some examples:

object.method();
boy.run();
someMovieClip.play();

object.property = value;
boy.speed = 5;
someMovieClip._width = 60;

Object-oriented programming (OOP) is an approach in which objects are the fundamental building blocks of a
program. There are, however, varying degrees of OOP depending on the language and the developer's taste. Purists
insist that every part of a program should be contained by an object (this rule is enforced by the Java programming
language). Others are happy using objects to structure only certain parts of a program (this is common in
ActionScript).

www.allitebooks.com

http://www.allitebooks.org

Regardless, you should become familiar with objects, because they are intrinsic to ActionScript's makeup. Nearly
everything in Flash—from buttons to text fields to movie clips—is represented in ActionScript by an object. Even
if you never organize your own code with objects, you'll have to use object-oriented programming techniques to
control the buttons, text, and movie clips in your movie. Chapter 12 covers object-oriented programming in
exhaustive detail. For now, just start thinking of things in Flash, such as movie clips, as objects that can perform
certain tasks (e.g., play()) or store information (e.g., _width).

1.2.6 Movie Clip Instances

With all this talk about programming fundamentals, I hope you haven't forgotten about the basics of Flash. One of
the keys to visual programming in Flash is movie clip instances. As a Flash designer or developer, you should
already be familiar with movie clips, but you may not think of movie clips as programming devices.

Every movie clip has a symbol definition that resides in the Library of a Flash movie. We can add many copies, or
instances, of a single movie clip symbol to a Flash movie by dragging the clip from the Library onto the Stage. We
can also create movie clips at runtime via ActionScript. All visual programming in Flash involves some degree of
movie clip instance control. For example, a bouncing ball is nothing more than a movie clip instance that is
repositioned on the Stage repetitively. Using ActionScript, we can alter an instance's location, size, current frame,
rotation, and so forth, during the playback of our movie.

If you're unfamiliar with movie clips and instances, see "Working with Movie Clips and Buttons" under Help
Using Flash before continuing with the rest of this book.

1.2.7 The Event-Based Execution Model

The final topic in our overview of ActionScript fundamentals is the execution model, which dictates when the code
in your movie runs (is executed). You may have code attached to various frames, buttons, and movie clips
throughout your movie, but when does it all actually run? To answer that question, let's take a short stroll down
computing history's memory lane.

In the early days of computing, a program's instructions were executed sequentially, in the order that they appeared,
starting with the first line and ending with the last line. The program was meant to perform some action and then
stop. That kind of linear program, called a batch program, doesn't handle the interactivity required of an event-
based programming environment like Flash.

Event-based programs don't run in a linear fashion. They run continuously (in an event loop), waiting for things
(events) to happen and executing code segments in response to those events. In a language designed for use with a
visual interactive environment (such as ActionScript or JavaScript), the events are typically user actions such as
mouseclicks or keystrokes.

When an event occurs, the interpreter notifies your program of the event. Your program can then react to the event
by asking the interpreter to execute an appropriate segment of code. For example, if a user clicks a button in a
movie, we could execute some code that displays a different section of the movie (navigation) or submits variables
to a database (form submission).

But programs don't react to events unless we create event handlers and/or event listeners that tell the interpreter
which function to run when a certain event happens. In Flash MX, we create an event handler using the general
form:

someObject.onSomeEvent = someFunction;

Flash MX allows this event syntax for movie clips and buttons, whereas Flash 5 required
a special event syntax for movie clips and buttons. For details, see Chapter 10.

Events always occur in relation to some object in our program. For example, a button might rotate the movie clip in
which it resides using the following event handler:

rotateButton.onRelease = rotate;

In natural language, this tells the interpreter, "When the mouse button is released over the rotateButton
object, execute the rotate function." The rotate function might look like this:

function rotate () {
 this._parent._rotation = 45;
}

A function that is executed when an event occurs is known as a callback function. As we'll learn in Chapter 10,
within a callback function, the keyword this refers to the object that defined the event handler (in our case,

rotateButton). In the case of a button reacting to a mouseclick, this refers to the button that was clicked.

Using object-oriented syntax, the movie clip in which the button resides is referred to as this. _parent
(the movie clip is the button's _parent because it contains the button). Finally, we set the rotation of the parent

movie clip to 45 degrees by assigning 45 to this._parent._rotation:

this._parent._rotation = 45;

This literally translates to, "Set the rotation of this button's parent movie clip to 45 degrees."

Our sample button event handler is commonly written more succinctly as:

rotateButton.onRelease = function () {
 this._parent._rotation = 45;
};

Event-based programs are always running an event loop, ready to react to the next event. Events are crucial to
interactivity. Without events, our scripts wouldn't do anything—with one exception: Flash executes any code on a
frame when the playhead enters that frame. The implied event is simply the playhead entering the particular frame,
which is so intrinsic to Flash that no explicit event handler is required.

Events literally make things happen, which is why they come at the end of your first day of ActionScript language
school. You've learned what's involved in writing scripts and that events govern when those scripts will be
executed. I'd say you're ready to try your first real conversation.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 1. A Gentle Introductionfor Nonprogrammers

1.3 Building a Multiple-Choice Quiz

Now that we've explored the basic principles of ActionScript, let's apply those principles in the context of a real Flash movie.
We'll start our applied study of Flash programming by creating a multiple-choice quiz, using very simple programming
techniques, most of which you've already learned. We'll revisit our quiz in later chapters to see how it can be improved after
learning more advanced programming concepts. We'll eventually make the code more elegant so that it's easier to extend and
maintain, and we'll add more features to our quiz so that it can easily handle any number of questions.

The finished .fla file for this quiz can be found in the online Code Depot, cited in the Preface. This is a lesson in Flash
programming, not Flash production. I assume that you are already comfortable creating and using buttons, layers, frames,
keyframes, and the Text tool. If not, consult the Flash Help documentation. The quiz shows a real-world application of the
following aspects of ActionScript programming:

Variables

Controlling the playhead of a movie with functions

Button event handlers

Simple conditionals

Text field objects used for on-screen display of information

1.3.1 Quiz Overview

Our quiz, part of which is shown in Figure 1-4, will have only two questions. Each question comes with three multiple-choice
answers. Users submit their answers by clicking the button that corresponds to their desired selections. The selections are
recorded in a variable that is later used to grade the quiz. When all the questions have been answered, the number of correct
answers is tallied, and the user's score is displayed.

Figure 1-4. A Flash quiz

1.3.2 Building the Layer Structure

When building Flash movies, it's important to organize your content into manageable divisions by keeping different content
elements on individual layers. Layering content is a good production technique in general, but it is essential in Flash
programming. In our quiz, and in the vast majority of our scripted movies, we'll keep all our timeline scripts on a single
isolated layer, called scripts. I keep the scripts layer as the first one in my layer stack so that it's easy to find.

We'll also keep all our frame labels on a separate layer, called (surprise, surprise) labels. The labels layer should live beneath
the scripts layer on all your timelines. In addition to these two standard layers (scripts and labels), our quiz movie has a series
of content layers on which we'll isolate our various content assets.

Start building your quiz by creating and naming the following layers (using Insert Layer) and arranging them in this
order:

scripts
labels
quiz end
question 2
question 1
choice buttons
housing

Now add 30 frames to each of your layers (by highlighting 30 frames in the timeline and choosing Insert Frame or F5).
Your timeline should look like the one in Figure 1-5.

Figure 1-5. Quiz timeline initial setup

1.3.3 Creating the Interface and Questions

Before we get to the scripts that run the quiz, we need to set up the questions and the interface that will let the user progress
through the quiz.

Follow these steps to create the questions and quiz title:

With frame 1 of the housing layer selected, use the Text tool to type your quiz title directly on the Stage.1.
At frame 1 of the question 1 layer, add the question number "1" and the text for Question 1, "When were movie clips
introduced into Flash?" Leave room for the answer text and buttons below your question.

2.

Below your question text (still on the question 1 layer), add the text of your three multiple-choice answers: "Version 1,"
"Version 2," and "Version 3," each on its own line.

3.

We'll use Question 1 as a template for Question 2. Select the first frame of the question 1 layer and choose Edit
Copy Frames (not Edit Copy).

4.

Select frame 10 of the question 2 layer and choose Edit Paste Frames (not Edit Paste). A duplicate of your
first question appears on the question 2 layer at frame 10.

5.

To prevent Question 1 from appearing behind Question 2, add a blank keyframe at frame 10 of the question 1 layer
using Insert Blank Keyframe.

6.

Back on frame 10 of the question 2 layer, change the question number from "1" to "2" and change the text of the
question to, "When was MP3 audio support added to Flash?" Change the multiple-choice answers to "Version 3,"
"Version 4," and "Version 5."

7.

Our questions are almost complete, but we must add the buttons the user will press to answer each question:

Create a simple button symbol (Insert New Symbol Button) that looks like a checkbox or radio button and
measures no higher than a line of text (see the buttons in Figure 1-4).

1.

At frame 1 of the choice buttons layer, next to your three Question 1 answers, place three instances of your checkbox
button.

2.

Select the topmost button (next to the first answer), and, using the Property inspector, set the <Instance Name> to
choice1_btn.

3.

Repeat step 3 to name the remaining two answer buttons choice2_btn and choice3_btn (from top to

bottom).

4.

Figure 1-6 shows how your timeline will look after you've added the two questions to the quiz. Notice that we use frames on
the timeline to represent so-called application states. Each "screen" of the quiz application gets its own frame. Later we'll add
labels to the question frames and see how this facilitates navigation between frames within our program, allowing us to
display the desired state — in this case, the appropriate question — easily.

Figure 1-6. Quiz timeline with two questions

1.3.4 Initializing the Quiz

Our first order of business in our quiz script is to create the variables we'll use throughout our movie.

In our quiz, we create variables on the first frame of the movie, but in other movies we'll normally
do it after preloading part or all of the movie. Either way, we want to initialize our variables before
any other scripting occurs.

Once our variables are defined, we invoke the stop() function to keep the user paused on the first frame (where the quiz
starts).

For more complex situations, we may also set the initial state of our application by calling functions in preparation for the rest
of the movie. This step is known as initialization. A function that starts processes in motion or defines the initial conditions
under which a system operates is traditionally named init.

Before attaching the quiz's init code, shown in Example 1-1, to frame 1 of the scripts layer, let's examine what it does.

Example 1-1. Init code for quiz

// Init main timeline variables
var q1answer; // User's answer for question 1
var q2answer; // User's answer for question 2
var totalCorrect = 0; // Counts number of correct answers

// Stop the movie at the first question
stop();

Line 1 of our init sequence is a comment. Comments are notes that you add to your code to explain what's going on. A single-
line comment starts with two forward slashes and (preferably) a space, which is then followed by a line of text:

// This is a comment

Notice that comments can be placed at the end of a line, following your code, like this:

var x = 5; // This is also a comment

Line 2 of Example 1-1 creates a variable named q1answer. Recall that to create a variable we use the var keyword

followed by a variable name, as in:

var favoriteColor;

So, the second through fourth lines of our code declare the variables we'll need, complete with comments explaining their
purpose:

q1answer and q2answer will contain the value of the user's answer (1, 2, or 3, indicating which of the three

multiple-choice answers was selected for each question). We'll use these values to check whether the user answered the
questions correctly.

totalCorrect will be used at the end of the quiz to tally the number of questions that the user answered

correctly.

Take a closer look at Line 4 of Example 1-1:

var totalCorrect = 0; // Counts number of correct answers

Line 4 performs double duty; it first declares the variable totalCorrect and then assigns the value 0 to that variable

using the assignment operator, =. We initialize totalCorrect to 0 because the user hasn't answered any of the

questions correctly at the beginning of the quiz. The other variables don't need default values because they are set explicitly
during the quiz.

After our variables have been defined, we call the stop() function, which halts the playback of the movie at the current frame
— in this case, frame 1 — where the quiz begins:

// Stop the movie at the first question
stop();

Observe, again, the use of the comment before the stop() function call. That comment explains the intended effect of the code
that follows.

Comments are optional, but they help clarify our code in case we leave it for a while and need a
refresher when we return, or if we pass our code onto another developer. Comments also make
code easy to scan, which is important during debugging.

Now that you know what our init code does, let's attach it to frame 1 of our quiz movie's scripts layer:

Select frame 1 of the scripts layer.1.
Use Window Actions (F9) to open the Actions panel.2.
Make sure you're using Expert Mode, which can be set as a permanent preference via the pop-up Options menu in the
top right corner of the Actions Panel.

3.

In the right side of the Actions panel, type the init code as shown earlier in Example 1-1.4.

Variable Naming Styles

By now you've seen quite a few variable names, and you may be wondering about the capitalization. If you've
never programmed before, a capital letter in the middle of a word, as in firstName, or

totalCorrect, may seem odd. Capitalizing the second word (and any subsequent words) of a variable

name visually demarcates the words within that name. We use this technique because spaces and dashes aren't
allowed in a variable name. But don't capitalize the first letter of a variable name—conventionally, an initial
capital letter is used to name object classes, not variables.

If you use underscores instead of capital letters to separate words in variables, as in first_name and

total_correct, be consistent. Don't use firstName for some variables and second_name for

others. Use one of these styles so that other programmers will find your code understandable. In some
languages, variable names are case-sensitive, meaning that firstName and firstname are considered

two different variables. ActionScript, however, treats them as the same thing, though it's bad form to use two
different cases to refer to the same variable. If you call a variable xPOS, don't refer to it elsewhere as xpos.

Always give your variables and functions meaningful names that help you remember their purpose. Avoid

meaningless names like foo, and use single-letter variables, such as x or i, only for simple things, such as the

index (i.e., counting variable) in a loop. Don't confuse x and y (as used in our introductory examples, without

an underscore) with _x and _y. Whereas x and y are arbitrary variable names chosen by the programmer, _x
and _y are built-in properties that represent the horizontal and vertical position of, for example, a movie clip.

See MovieClip._x in the Language Reference for details.

Some kinds of data in ActionScript have a recommended suffix of the form _suffix (see Table 2-1 in

Chapter 2). For example, movie clips are indicated by the suffix _mc, text fields by _txt, and buttons by

_btn. For clarity, add these to the end of your variable names, as in: ball_mc, or submit_btn.

1.3.5 Adding Frame Labels

We've completed our quiz's init script and built our questions. We will now add some frame labels to help control the
playback of our quiz.

In order to step the user through our quiz one question at a time, we've separated the content for Question 1 and Question 2
into frames 1 and 10. By moving the playhead to those keyframes, we'll create a slide show effect, where each slide contains a
question. We know that Question 2 is on frame 10, so when we want to display Question 2, we can call the gotoAndStop()
function like this:

gotoAndStop(10);

which causes the playhead to advance to frame 10, the location of Question 2. A sensible piece of code, right? Wrong!
Whereas using the specific number 10 with our gotoAndStop() function works, it isn't flexible (using literals in this manner is
called hardcoding, which is often ill-advised). If, for example, we added five frames to the timeline before frame 10, Question
2 would suddenly reside at frame 15, and our gotoAndStop(10) command would not bring the user to the correct frame. To
allow our code to work even if the frames in our timeline shift, we use frame labels instead of frame numbers. Frame labels
are expressive names, such as q2 or quizEnd, attached to specific points on the timeline.

Once a frame is labeled, we can use the label to refer to the frame by name instead of by number.
The flexibility of frame labels is indispensable. I hardly ever use frame numbers with playback-
control functions like gotoAndStop().

Let's add all the labels we'll need for our quiz now, so we can use them later to walk the user through the quiz questions:

On the labels layer, select frame 1.1.
In the Property inspector, for <Frame Label>, type init.2.

At frame 10 of the labels layer, add a blank keyframe.3.
In the Property inspector, for <Frame Label>, type q2.4.

At frame 20 of the labels layer, add a blank keyframe.5.
In the Property inspector, for <Frame Label>, type quizEnd.6.

1.3.6 Scripting the Answer Buttons

Our questions are in place, our variables have been initialized, and our frames have been labeled. If we were to test our movie
now, we'd see Question 1 appear with three answer buttons that do nothing when clicked, and we'd have no way for the user
to get to Question 2. We need to add some code to the answer buttons so that they will advance the user through the quiz and
keep track of answers along the way.

Recall that we named our button instances choice1_btn, choice2_btn, and choice3_btn, as shown in

Figure 1-7.

Figure 1-7. The answer buttons

To make the Question 1 buttons store the user's answer and display the next question when pressed, we'll use the code in
Example 1-2.

Example 1-2. Question 1 button code

// Code executed when button 1 is pressed.
choice1_btn.onRelease = function () {
 this._parent.q1answer = 1;
 this._parent.gotoAndStop("q2");
};

// Code executed when button 2 is pressed.
choice2_btn.onRelease = function () {
 this._parent.q1answer = 2;
 this._parent.gotoAndStop("q2");
};

// Code executed when button 3 is pressed.
choice3_btn.onRelease = function () {
 this._parent.q1answer = 3;
 this._parent.gotoAndStop("q2");
};

The code for each button consists of two statements that are executed only when a mouseclick is detected. In natural
language, the code for each button says, "When the user clicks this button, make a note that he chose answer 1, 2, or 3; then
proceed to Question 2." Let's dissect how it works, concentrating on the first button only:

choice1_btn.onRelease = function () {
 this._parent.q1answer = 1;
 this._parent.gotoAndStop("q2");
};

Line 1 is the beginning of an event handler. It specifies:

The name of the button that should respond to the event: choice1_btn

The name of the event to which the button should respond: onRelease (which occurs when the user clicks and releases
the mouse over the button)

The function to run when the event actually happens: function () { ... }

A function executed in response to an event is known as a callback function.

The opening curly brace ({) marks the beginning of the block of statements that should be executed when the onRelease

event occurs. The end of the code block is marked by a closing curly brace (}), which is the end of the event handler's

callback function.

choice1_btn.onRelease = function () {
 ...
}

The event handler waits patiently for the user to click button 1. When the button is clicked, Flash executes our callback
function, which contains the following two lines:

 this._parent.q1answer = 1;
 this._parent.gotoAndStop("q2");

The first line sets our variable q1answer to 1 (the other answer buttons set it to 2 or 3). The q1answer variable stores

the user's answer for the first question. However, as a matter of good form, we provide not just the name of the q1answer
variable, but also its location in relation to the button. The expression this._parent means "this button's parent movie

clip" or, synonymously, "the movie clip that contains this button." The keyword this represents the button itself, while

_parent is the button's parent movie clip. So, the complete statement this._parent.q1answer = 1 means,

"In this button's parent movie clip, set the variable q1answer to 1." If you're new to this syntax, you may find it overly

verbose. However, as we'll learn in Chapter 2, every variable has a home (usually a movie clip), and we're normally required
to provide not only a variable's name but also its location (e.g., this._parent.q1answer, as opposed to just

q1answer).

Once we have recorded the user's answer for Question 1 in q1answer, we advance to Question 2 via line 2 of our callback

function:

 this._parent.gotoAndStop("q2");

Line 2 calls the gotoAndStop() function, passing it the frame label "q2" as an argument, which advances the movie's

playhead to the frame q2, where Question 2 appears. However, once again we must specify, in relation to the button clicked,

precisely which movie clip's playhead should move to the label q2. Just as with our variable, we want to control the button's

parent movie clip, so we preface our gotoAndStop() function call with this._parent.

Each of our answer buttons performs the same basic tasks (sets q1answer and displays frame q2). Hence, the three button

event handlers differ in only two ways:

Each specifies a different button instance name (choice1_btn, choice2_btn, choice3_btn).

Each sets a different value for q1answer, recording the user's actual answer to the question.

To apply the event handlers to the Question 1 buttons, enter the code from Example 1-2 into your script, below the existing
init code on frame 1 of the scripts layer. When you're done, the Actions panel for frame 1 of the scripts layer should resemble
Figure 1-8.

Figure 1-8. Code on frame 1

www.allitebooks.com

http://www.allitebooks.org

That takes care of the code for the Question 1 buttons. Let's move on to the Question 2 buttons. They work exactly like the
Question 1 buttons, but they must record the user's selection for Question 2 instead of Question 1, and they must display the
quiz-end screen, not the next question. Happily, we can reuse the existing buttons in our movie. We must change only the
event handler functions that run when the buttons are pressed. To redefine the event handlers for the Question 2 buttons,
follow these steps:

At frame 10 of the scripts layer, add a blank keyframe.1.
With frame 10 of the scripts layer still selected, type the code in Example 1-3 into the Actions panel.2.

Any script placed on a keyframe in the timeline is automatically executed when the playhead enters that frame. Hence, when
Flash displays frame 10, our new button code will be applied to the Question 2 buttons.

Example 1-3. Question 2 button code

// Code executed when button 1 is pressed.
choice1_btn.onRelease = function () {
 this._parent.q2answer = 1;
 this._parent.gotoAndStop("quizEnd");
};

// Code executed when button 2 is pressed.
choice2_btn.onRelease = function () {
 this._parent.q2answer = 2;
 this._parent.gotoAndStop("quizEnd");
};

// Code executed when button 3 is pressed.
choice3_btn.onRelease = function () {
 this._parent.q2answer = 3;
 this._parent.gotoAndStop("quizEnd");
};

Our Question 2 button event handlers are the same as they were for Question 1, except that we use the variable q2answer
instead of q1answer, because we want the buttons to keep track of the user's response to Question 2. And we use

"quizEnd" as the argument for our gotoAndStop() function to advance the playhead to the end of the quiz (i.e., the frame

labeled quizEnd) after the user answers Question 2.

Having just added event handlers to six buttons, you will no doubt have noticed how repetitive the code is. The code on each
button differs from the code on the others by only a few text characters. That's not exactly efficient programming. Our button
code cries out for some kind of centralized command that records the answer and advances to the next screen in the quiz. In
Chapter 9, we'll see how to centralize our code with functions.

1.3.7 Building the Quiz End

Our quiz is nearly complete. We have two questions and an answer-tracking script that lets the user answer the questions and
progress through the quiz. We still need a quiz-ending screen where we score the quiz and tell the user how well he fared.

To build our quiz-end screen, we need to do some basic Flash production and some scripting. Let's do the production first:

At frame 20 of the question 2 layer, add a blank keyframe. This prevents Question 2 from appearing behind the
contents of our quiz-end screen.

1.

At frame 20 of the choice buttons layer, add a blank keyframe. This prevents our buttons from appearing behind the
contents of our quiz-end screen.

2.

At frame 20 of the quiz end layer, add a blank keyframe.3.
While you're still on that frame, put the following text on the Stage: "Thank you for taking the quiz." Make sure to
leave some space below for the user's score.

4.

At frame 20 of the scripts layer, add a blank keyframe.5.

That takes care of the production work for our quiz-end screen. Your end screen should look something like the one shown in
Figure 1-9.

Now let's work on the quiz-end script. When the playhead lands on our quizEnd frame, we want to calculate the user's

score. We need a calculation script, shown in Example 1-4, to execute when the playhead reaches frame 20. Select frame 20
of the scripts layer; then type the code from the example into the Actions panel.

Example 1-4. Quiz end code

// Tally up user's correct answers.
if (q1answer = = 3) {
 totalCorrect = totalCorrect + 1;
}
if (q2answer = = 2) {
 totalCorrect++;
}

// Create an onscreen text field do display the user's score.
this.createTextField("totalOutput_txt", 1, 150, 200, 200, 20);

// Show the user's score in the onscreen text field.
totalOutput_txt.text = "Your final score is: " + totalCorrect + "/2.";

In the calculation script, we first determine the user's score, and then we display that score on the screen. Lines 1, 9, and 12 (if
you count intervening blank lines) are code comments that summarize the functionality of the sections of the script. On line 2,
the first of two conditionals in our calculation script begins. In it, we put our q1answer variable to use. Notice that

because this code is attached directly to our movie's timeline, we aren't required to supply the location of the variable
q1answer.

Figure 1-9. Judgment day

if (q1answer = = 3) {

The keyword if tells the interpreter we're about to provide a list of statements that should be executed only if a certain
condition is met. The terms of that condition are described in the parentheses that follow the if keyword: (q1answer = = 3),
and the opening curly brace begins the block of statements to be executed conditionally. Therefore, line 2 translates into, "If
the value of q1answer is equal to 3, then execute the statements contained in the following curly braces."

But how exactly does the condition q1answer = = 3 work? Well, let's break the phrase down. We recognize q1answer as

the variable in which we've stored the user's answer to Question 1. The number 3 indicates the correct answer to Question 1
(movie clips first appeared in Flash version 3). The double equals sign (= =) is the equality comparison operator, which
compares two expressions. If the expression on its left (q1answer) equals the one on its right (3), then our condition is

met and the statements within the curly braces are executed. If not, our condition is not met, and the statements within the
curly braces are skipped.

Flash has no way of knowing the right answers to our quiz questions. Checking if q1answer is equal to 3 is our way of

telling Flash to check if the user got Question 1 right. If he did, we tell Flash to add 1 to his total score as follows:

totalCorrect = totalCorrect + 1;

Line 3 says, "Make the new value of totalCorrect equal to the old value of totalCorrect plus one," (i.e.,

increment totalCorrect). Incrementing a variable is so common that it has its own special operator, ++.

So, instead of using this code:

totalCorrect = totalCorrect + 1;

we normally write:

totalCorrect++;

which does exactly the same thing, but more succinctly.

At line 4, a curly brace ends the block of statements to execute if our first condition is met:

}

Lines 5 through 7 are another condition:

if (q2answer = = 2) {
 totalCorrect++;
}

Here we're checking whether the user answered Question 2 correctly (MP3 audio support first appeared in Flash 4). If the user
chose the second answer, we add 1 to totalCorrect using the increment operator ++.

Because there are only two questions in our quiz, we're done tallying the user's score. For each question that the user
answered correctly, we added 1 to totalCorrect, so totalCorrect contains the user's final score. The only thing

left is to show the user his score in an on-screen text field. In Flash MX, we can create a text field directly with code as
follows:

this.createTextField("totalOutput_txt", 1, 150, 200, 200, 20);

Here, the keyword this refers to the main movie timeline, which is where we want the new text field to appear. We then

execute createTextField(), which tells Flash to put a new text field named totalOutput_txt on depth 1, at an x-

position of 150 and a y-position of 200, with a width of 200 and a height of 20. We can display the value of
totalCorrect in the new text field like this:

totalOutput_txt.text = "Your final score is: " + totalCorrect + "/2";

As a new programmer, you're not expected to understand entirely how this code works. But it should give you a glimpse of
the exciting stuff ActionScript can do. Try exploring on your own by changing, say, the width and height of the text field, or
the text displayed in it. Text fields are covered exhaustively in the ActionScript Language Reference, under the TextField
class.

1.3.8 Testing Our Quiz

Well, that's it. Our quiz is finished. You can check whether the quiz works by using Control Test Movie. Click on the
answers in different combinations to see if your quiz is keeping score correctly. You can even create a restart button by
making a button instance named restart_btn and adding the following code to frame 1 of the scripts layer:

restart_btn.onRelease = function () {
 this._parent.totalOutput_txt.removeTextField();
 this._parent.gotoAndStop("init");
}

Because totalCorrect is set to 0 in the code on the init frame, the score will reset itself each time you send the

playhead to init.

If you find that your quiz isn't working, try comparing it with the sample quiz provided at the online Code Depot.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 1. A Gentle Introductionfor Nonprogrammers

1.4 Onward!

So how does it feel? You've learned a bunch of phrases, some grammar, some vocabulary, and even had a drawn-
out conversation with Flash (the multiple-choice quiz). Quite a rich first day of language school, I'd say.

As you can see, there's a lot to learn about ActionScript, but you can also do quite a bit with just a little knowledge.
Even the amount you know now will give you plenty to play around with. Throughout the rest of this book, we'll
reinforce the fundamentals you've learned by exploring them in more depth and showing them in concert with real
examples. Of course, we'll also cover some topics that haven't even been introduced yet.

Remember: think communication, think cooperation, and speak clearly. And if you find yourself doing any
fantastically engaging work or art that you'd like to share with others, send it over to me at
http://www.moock.org/contact/.

Now that you have a practical frame of reference, you'll be able to appreciate and retain the foundational knowledge
detailed over the next few chapters. It will give you a deeper understanding of ActionScript, enabling you to create
more complex movies.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 2. Variables

In a typical scripted movie, we have to track and manipulate everything from frame numbers to a user's password to
the velocity of a photon torpedo fired from a spaceship. In order to manage and retrieve all that information, we
need to store it in variables, the primary information-storage containers of ActionScript.

A variable is like a bank account that, instead of holding money, holds information (data). Creating a new variable
is like setting up a new account; we establish a place to store something we'll need in the future. And, just as every
bank account has an account number, every variable has a name associated with it that is used to access the data in
the variable.

Once a variable is created, we can put new data into it as often as we want—much like depositing money into an
account. Or, we can find out what's in a variable by using the variable's name—much like checking an account's
balance. If we no longer need our variable, we can "close the account" by deleting the variable.

The key feature to note is that variables let us refer to data that either changes or is calculated when a movie plays.
Just as a bank account's number remains the same even though the account balance varies, a variable's name
remains fixed even though the data it contains may change. Using that fixed reference to access changing content,
we can perform complex calculations, keep track of cards in a card game, save guest book entries, or send the
playhead to different locations based on changing conditions.

Is that a gleam of excitement I see in your eye? Good, I thought I might have lost you with all that talk about banks.
Let's start our exploration of variables by seeing how to create them.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 2. Variables

2.1 Creating Variables (Declaration)

Creating a variable is called declaration. Declaration is the "open an account" step of our bank metaphor, where we formally bring the
variable into existence. When a variable is first declared, it is empty—a blank slate waiting to be written upon. In this state, a variable
contains a special value called undefined (indicating the absence of data).

To declare a new variable, we use the var statement. For example:

var speed;
var bookTitle;
var x;

The word var tells the interpreter that we're declaring a variable, and the moniker that follows, such as speed, bookTitle, or x,

becomes our new variable's name. We can create variables anywhere we can attach code: on a keyframe, a button, or a movie clip.

If you enter code in the Actions panel while on a frame that is not a keyframe, the code is attached to the
nearest preceding keyframe.

We can also declare several variables with one var statement, like this:

var x, y, z;

However, doing so impairs our ability to add comments next to each variable.

Once a variable has been created, we can assign it a value, but before we learn how to do that, let's consider some of the subtler details
of variable declaration.

2.1.1 Automatic Variable Creation

Many programming languages require you to declare variables before depositing data into them; failure to do so causes an error.
ActionScript is not that strict. If we assign a value to a variable that does not exist, the interpreter creates a new variable for us. The
bank, to continue that analogy, automatically opens an account when you try to make your first deposit.

This convenience comes at a cost, though. If we don't declare our variables ourselves, we have no central inventory to consult when
examining our code. Furthermore, explicitly declaring a variable with a var statement can sometimes yield different results than
allowing a variable to be declared implicitly (i.e., automatically). It's safest to declare first and use later (i.e., explicit declaration), as
practiced throughout this book.

2.1.2 Legal Variable Names

Before running off to make any variables, be aware that variable names:

Must be composed exclusively of letters, numbers, dollar signs ($) and underscores (No spaces, hyphens, or other punctuation
marks are allowed.)

Must start with a letter, an underscore (e.g., _someVar), or a dollar sign (e.g., $someVar)

Must not exceed 255 characters (Okay, okay, that's a lie, but reevaluate your naming scheme if your variable names exceed 255

characters.)

Are case-insensitive (Upper- and lowercase letters are treated identically, but you should be consistent nonetheless.)

These are legal variable names:

var first_name;
var counter;
var reallyLongVariableName;

These are illegal variable names that cause errors:

var 1first_name; // Starts with a number
var variable name with spaces; // Contains spaces
var another-illegal-name; // Contains a hyphen

As a matter of good form, you should append suffixes to your variable names to indicate the type of information stored in the variable.

var firstName_str; // _str means the variable contains a string
var products_array; // _array means the variable contains an array

In Flash MX, some suffixes also activate code hinting in the Actions panel. For example, the suffix _txt in the variable name

output_txt not only indicates that the variable stores a text field but also causes the Actions panel to display a quick-reference

popup for text fields (the so-called code hint) when the variable name is entered. Table 2-1 lists the built-in suffixes that activate code
hinting in Flash MX.

Table 2-1. Flash MX code hinting suffixes

Suffix Datatype represented

_mc MovieClip

_array Array

_str String

_btn Button

_txt TextField

_fmt TextFormat

_date Date

_sound Sound

_xml XML

_xmlsocket XMLSocket

_color Color

_video Video

_ch FCheckBox[1]

_pb FPushButton[1]

_rb FRadioButton[1]

_lb FListBox[1]

_sb FScrollBar[1]

_cb FComboBox[1]

_sp FScrollPane[1]

[1] Flash UI Components (see Appendix G)

The programming industry's most popular alternative to Flash's suggested variable naming conventions is known as Hungarian
notation, developed by a Hungarian Microsoft engineer, Charles Simonyi. For information, see:

http://msdn.microsoft.com/library/techart/hunganotat.htm

For a discussion of the pros and cons of Hungarian notation, see:

http://ootips.org/hungarian-notation.html

2.1.2.1 Creating dynamically named variables

Although you'll rarely, if ever, use dynamically created variable names, it's possible to generate the name of a variable programmatically.
This technique was used primarily before arrays were introduced in Flash 5, so you will often encounter it in legacy code intended for
Flash 4 or earlier. To create a variable name from any expression, use the set statement. For example, here we assign the value "bruce" to
the variable player1name:

var i = 1;
set ("player" + i + "name", "bruce");

Arrays and objects, discussed in later chapters, provide us with a much more powerful means of tracking dynamically named data and
should be used instead of dynamic variable names.

2.1.3 Declare Variables at the Outset

It's good practice to declare your application's variables at the beginning of every movie's main script space, which is usually the first
keyframe that comes after a movie's preloader. Be sure to add a comment explaining each variable's purpose for easy identification later.
The beginning of a well-organized script might look like this:

// ^^^^^^^^^^^^^^^^^^^^
// Initialize variables
// ^^^^^^^^^^^^^^^^^^^^
var ballSpeed; // Velocity of ball, max 10
var score; // Player's current score
var hiScore; // High score (not saved between sessions)
var player1; // Name of player 1, supplied by user

We can give variables an initial value at the same time we create them, as follows:

var ballSpeed = 5; // Velocity of ball, default 5, max 10
var score = 0; // Player's current score
var hiScore = 0; // High score (not saved between sessions)
var player1 = "1P"; // Player's name defaults to 1P

For even tidier variable management, object-oriented programmers will want to store all variables within a class, as discussed in Chapter
12.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 2. Variables

2.2 Assigning Values to Variables

Now comes the fun part—putting some data into our variables. If you're still playing along with the bank analogy,
this is the "deposit money into our account" step. To assign a value to a variable, we use:

variableName = value;

where variableName is the name of a variable, and value is the data we're assigning to that variable.

Here's an example:

bookTitle = "ActionScript for Flash MX: The Definitive Guide";

On the left side of the equals sign, the word bookTitle is the variable's name (its identifier). On the right side

of the equals sign, the phrase "ActionScript for Flash MX: The Definitive Guide" is the variable's value—the datum
you're depositing. The equals sign is called the assignment operator. It tells Flash that you want to assign (i.e.,
deposit) whatever is on the right of the equals sign to the variable shown on the left. If the variable on the left
doesn't exist yet, Flash creates it (though relying on the interpreter to create variables implicitly isn't
recommended).

Here are two more variable assignment examples:

speed = 25;
output = "thank you";

The first example assigns the integer 25 to the variable speed, showing that variables can contain numbers as

well as text. We'll see shortly that variables can contain other kinds of data as well. The second example assigns the
text "thank you" to the variable output. Notice that we use straight double quotation marks (" ") to delimit a text

string in ActionScript.

Now let's look at a slightly more complicated example that assigns the value of the expression 1 + 5 to the variable
y:

y = 1 + 5;

When the statement y = 1 + 5; is executed, 1 is first added to 5, yielding 6, and then 6 is assigned to y. The

expression on the right side of the equals sign is evaluated (calculated or resolved) before assigning the result to
the variable on the left side. Here, we assign an expression that contains the variable y to another variable, z:

z = y + 4;

Once again, the expression on the right of the equals sign is evaluated, and the result is then assigned to z. The

interpreter retrieves the current value of y (the interpreter checks the variable's account balance, so to speak) and

adds 4 to it. Because the value of y is 6, z will be set to 10.

The syntax to assign any data—numbers, text, or any other type—to a variable is similar, regardless of the datatype.
Although we haven't studied arrays yet, you should already recognize the following as a variable assignment
statement:

myList = ["John", "Joyce", "Sharon", "Rick", "Megan"];

As before, we put the variable name on the left, the assignment operator (the equals sign) in the middle, and the
new value to assign to the variable on the right.

www.allitebooks.com

http://www.allitebooks.org

To assign the same value to multiple variables in a hurry, we can piggyback assignments alongside one another,
like this:

x = y = z = 10;

Variable assignment always works from right to left. The preceding statement assigns 10 to z, then assigns the

value of z to y, then assigns the value of y to x.

Don't confuse an equals sign, which is used to assign a value to a variable, with the
algebraic equals sign you learned about in math class. Furthermore, don't confuse the
equals sign (=), which is the assignment operator, with the double equals sign (= =)

used for comparing two expressions.

In algebra, the following makes no sense, because something can't be equal to itself plus one:

x = x +1;

But in a programming language, this statement is perfectly valid and even common. It says to take the old value of
x, add 1 to it, and store the new value back in the variable x. In this case, if the old value of x was 4, the statement

would change x to 5.

The following statement is usually incorrect, because it changes the value of x to 5:

if (x = 5) { //do whatever};

Most likely, the programmer intended to compare the current value of x to 5:

if (x = = 5) { //do whatever};

See Chapter 5 for more details on the comparison operator (= =).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 2. Variables

2.3 Changing and Retrieving Variable Values

After we create a variable, we can assign and reassign its value as often as we like, as shown in Example 2-1.

Example 2-1. Changing variable values

var firstName; // Declare the variable firstName
firstName = "Graham"; // Set the value of firstName
firstName = "Gillian"; // Change the value of firstName
firstName = "Jessica"; // Change firstName again
firstName = "James"; // Change firstName again
var x = 10; // Declare x and assign it a numeric value
x = "loading...please wait..."; // Assign x a text value

Notice that we changed the variable x's datatype from numeric to text data by simply assigning it a value of the desired type. Some

programming languages don't allow the datatype of a variable to change, but ActionScript does.

Of course, creating variables and assigning values to them is useless if you can't retrieve the values later. To retrieve a variable's value,
simply use the variable's name wherever you want its value to be used. Anytime a variable's name appears (except in a declaration or on
the left side of an assignment statement), the name is converted to the variable's value.

Here are some examples. Note that _x is a built-in property representing a movie clip's horizontal position with no relation to the

variable named x used in preceding examples (see the "Variable Naming Styles" sidebar in Chapter 1, and see MovieClip._x in the

Language Reference).

newX = oldX + 5; // Set newX to the value of oldX plus 5
ball._x = newX; // Set the horizontal position of the
 // ball movie clip to the value of newX
trace(firstName); // Display the value of firstName in the Output window

Note that in the expression ball._x, ball is a movie clip's name, and ._x indicates its x-coordinate property (i.e., horizontal

position on stage). We'll learn more about properties later. The last line, trace(firstName), displays a variable's value in the

Output window while a script is running, which is handy for debugging your code.

2.3.1 Checking Whether a Variable Has a Value

Occasionally, we may wish to verify that a variable has been assigned a value before we make reference to it. As we learned earlier, a
variable that has been declared but never assigned a value contains the special "nonvalue," undefined. To determine whether a

variable has been assigned a value, we check if that variable's value belongs to the datatype undefined. For example:

if (typeof someVariable != "undefined") {
 // Any code placed here is executed only if someVariable is not undefined
}

Note the use of the inequality operator, !=, which determines whether two values are not equal, and the quotes around "undefined",

because the typeof operator returns a string. In Flash MX, we can alternatively use the strict inequality operator (!= =) to check if a

value is not equal to undefined or not of the type undefined.

if (someVariable != = undefined) {

 // Any code placed here is executed only if someVariable is not undefined
}

Both the typeof and the strict inequality techniques just shown prevent Flash from performing automatic datatype conversion when
checking if someVariable is undefined. By contrast, due to automatic datatype conversion, the regular inequality operator

(!=) checks not only whether someVariable is undefined, but also whether it contains the null value. For example:

if (someVariable != undefined) {
 // Any code placed here is executed if someVariable is not undefined or null
}

The null value is often used by programmers to indicate that a variable is intentionally empty, but still exists.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 2. Variables

2.4 Types of Values

The data we use in ActionScript programming comes in a variety of types. So far, we've seen numbers and text, but
other types include Booleans, arrays, functions, and objects. Before we cover each datatype in detail, let's examine
some datatype issues that relate specifically to variable usage.

2.4.1 Automatic Typing

Any ActionScript variable can contain any type of data, which may seem unremarkable, but the ability to store any
kind of data in any variable is actually a bit unusual. Languages like C++ and Java use strictly typed variables; each
variable can accept only one type of data, which must be specified when the variable is declared. ActionScript
variables are automatically typed; when we assign data to a variable, the interpreter sets the variable's datatype for
us.

Not only can ActionScript variables contain any datatype, they can also dynamically change datatypes. If we assign
a variable a new value that has a different type than the variable's previous value, the variable is retyped
automatically. So the following code is legal in ActionScript:

x = 1; // x is a number
x = "Michael"; // x is now a string
x = [4, 6, "hello"]; // x is now an array
x = 2; // x is a number again

In languages that do not perform automatic retyping, such as C++ and Java, data of the wrong type is converted to
the variable's existing datatype (or it causes an error if conversion cannot be performed). By comparison, VB.NET
allows the programmer to decide whether the compiler should enforce strict typing. Strict typing may seem
cumbersome, but it can prevent the errors that unsuspecting programmers may encounter due to automatic and
dynamic typing, which we'll consider in the following sections.

2.4.2 Automatic Value Conversion

In some contexts, ActionScript expects a specific type of data. If we use a variable whose value does not match the
expected type, the interpreter attempts to convert the data to the necessary type. For example, if we use a text
variable where a number is needed, the interpreter will try to convert the variable's text value to a numeric value for
the sake of the current operation. In Example 2-2, z is set to 2. Why? Because the subtraction operator expects a

number, the value of y is converted from the string "4" to the number 4, which is subtracted from 6 (the value of

x), yielding the result 2.

Example 2-2. Automatic string-to-number conversion

x = 6; // x is a number, 6
y = "4"; // y is a string, "4"
z = x - y; // This sets z to the number 2

Conversely, if we use a numeric variable where a string is expected, the interpreter attempts to convert the number
to a string. In Example 2-3, z is set to the string "64", not the number 10. Why? Because the second operand in the

expression x + y is a string. Therefore, the + operator performs string concatenation instead of mathematical

addition. The value of x (6) is converted to the string "6" and then concatenated with the string "4" (the value of y),

yielding the result "64".

Example 2-3. Automatic number-to-string conversion

x = 6; // x is a number, 6
y = "4"; // y is a string, "4"
z = x + y; // This sets z to the string "64"

The automatic type conversion that occurs when evaluating a variable as part of an expression is performed on a
copy of the variable's data—it does not affect the original variable's type. A variable's type changes only when the
variable is assigned a data value that does not match its previous value's type. So, at the conclusion of Example 2-2
and Example 2-3, y remains a string, and x remains a number.

Notice that the operator on line 3 (- in Example 2-2, + in Example 2-3), has a profound impact on the value

assigned to z. In Example 2-2 the string "4" becomes the number 4, whereas in Example 2-3 the opposite occurs

(the number 6 becomes the string "6"), because the rules for datatype conversion are different for the + operator

than for the - operator. We'll cover data conversion rules in Chapter 3 and operators in Chapter 5.

2.4.3 Determining the Type Manually

Automatic datatyping and conversion can be convenient, but, as Example 2-2 and Example 2-3 illustrate, they may
also produce unexpected results. Before performing commands that operate on mixed datatypes, you may wish to
determine a variable's datatype using the typeof operator:

productName = "Macromedia Flash"; // String value
trace(typeof productName); // Displays: "string"

Once we know a variable's type, we can proceed conditionally. Here, for example, we check whether a variable is a
number before proceeding:

if (typeof age = = "number") {
 // okay to carry on
} else {
 trace ("Age isn't a number"); // Display an error message
}

For full details on the typeof operator, see Chapter 5.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 2. Variables

2.5 Variable Scope

Earlier we learned how to create variables and retrieve their values. But all our variables were attached to a single frame of the main
timeline of a Flash document. When a document contains multiple frames and multiple movie clip timelines, variable creation and value
retrieval becomes a little more complicated.

2.5.1 Timeline Variables

To illustrate the use of timeline variables, let's consider two simple scenarios.

2.5.1.1 Scenario 1: Accessing a value defined earlier on the same timeline

What happens when we define a variable in one frame of a timeline and try to access it later?

Suppose we create a variable, x, in frame 1 of the main timeline. After creating x, we set its value to 10:

var x;
x = 10;

Then, in the next frame (frame 2), we attach the following code:

trace(x);

When we play our movie, does anything appear in the Output window? We created our variable in frame 1, but we're attempting to
retrieve its value in frame 2; does our variable still exist? Yes. The Output window displays 10.

When you define a variable on a timeline, that variable is accessible from all the other frames of that
timeline.

2.5.1.2 Scenario 2: Accessing a value defined later on the same timeline

What happens if we try instead to access a variable before the frame in which it is assigned a value?

Suppose we add the following code to frame 30 of a movie's main timeline:

password = "let_me_in";
gotoAndStop(15);

and on frame 15 we add:

trace(password);

When the movie plays, we see the following in the Output window:

undefined
let_me_in

Here's why: when the movie's playhead reaches frame 15, Flash displays the value of password in the Output window. The first time

through, password does not exist, so Flash displays undefined. However, when the playhead reaches frame 30, password is

created and assigned the value "let_me_in". Then the playhead is sent back to frame 15 (gotoAndStop(15)), causing frame 15's code to
execute again. This time, even though password is defined on a later frame than our trace(password) statement, it is still part of

the same timeline; so, its value exists, and Flash displays it in the Output window.

Any variable declared on a timeline is available to all the scripts of its timeline for as long as that timeline
exists. However, a variable's value is not defined until the script that assigns it a value is reached. Once the
value of a variable is set, the value is maintained, even if the playhead jumps backward in the timeline. In
other words, the value of a variable is determined by the order in which scripts are executed, as determined
by the movement of the playhead, not the order of the frames to which scripts are attached on the timeline.

2.5.2 Variable Accessibility (Scope)

The two scenarios we just presented explore issues of scope. A variable's scope describes when and where the variable can be
manipulated by the code in a movie. Scope defines a variable's life span and its accessibility to other blocks of code in our scripts. To
determine a variable's scope, we must answer two questions: (a) how long does the variable exist? and (b) from where in our code can
we set or retrieve the variable's value?

In traditional programming, variables are often broken into two general scope categories: global and local. Variables that are accessible
throughout an entire program are called global variables. Variables that are accessible only to limited sections of a program are called
local variables. In addition to these two conventional variable types, Flash adds timeline variables that are scoped to individual movie
clip instances. Flash 5 supported conventional local variables but did not support true global variables; Flash MX introduces support for
true global variables.

In Flash, all variables are scoped to one of the following:

A function (local variable)

The main timeline or a movie clip (timeline variable)

In Flash MX, the _global object (global variable)

2.5.3 Movie Clip Variables and Global Variables

As shown in the two earlier scenarios, a variable defined on a timeline is available to all the scripts on that timeline—from the first frame
to the last frame. But what happens if we have more than one timeline in a movie, as described in Scenario 3?

2.5.3.1 Scenario 3: Variables declared on separate timelines

Suppose we have two basic geometric shapes, a square and a circle, defined as movie clip symbols. Recall that each movie clip
maintains its own independent timeline.

On frame 1 of the square clip symbol, we set the variable x to 3:

var x;
x = 3;

On frame 1 of the circle clip symbol, we set the variable y to 4:

var y;
y = 4;

We place instances of those clips on frame 1, layer 1 of the main timeline, and we name our instances square and circle.

First question: if we attach the following code:

trace(x);

trace(y);

to frame 1 of the main movie timeline (upon which square and circle have been placed), what appears in the Output window

when the movie plays?

Answer:

undefined
undefined

The variable x is defined on the square timeline, and y is defined on the circle timeline; neither are defined on our main

timeline. Because Flash cannot find any variable named x or y on the main timeline, it displays undefined in the Output window.

Variables attached to a movie clip timeline (like that of square or circle) have scope limited to that

timeline. They are not directly accessible to scripts on other timelines, such as our main movie timeline.

Second question: if we place the trace(x) and trace(y) statements on frame 1 of our square movie clip instead of frame 1 of our main

movie timeline, what will appear in the Output window?

Answer: the value of x, which is 3, and the value of y, undefined.

3
undefined

The value of x is displayed as 3, because x is defined on the timeline of square and is therefore accessible to the trace() command,

which also resides on that timeline. But the value of y doesn't appear in the Output window, because y is defined in circle, which is

a separate timeline.

In Flash, a variable attached to an individual timeline (i.e., any movie clip) is directly accessible to the scripts on that timeline only.
Furthermore, two or more movie clips can legitimately define a variable with the same name. For example, we could create a variable
named x in circle with a value of 25, even though there already is a variable named x in square with a value of 3. The result of

trace(x) from square would be 3, but from circle it would be 25.

We refer to variables attached to timelines as timeline variables or movie clip variables. Now let's create a global variable that is
directly accessible to all the scripts in a movie (any timeline). We'll put the following code on frame 1 of the square timeline, even

though the code would have the same effect from any movie clip:

_global.day = "Monday";

Now we place this code on frame 1 of the main movie:

trace(day);

Because the day variable is global, Flash can find it from the main timeline, even though it was created in square, and the Output

window displays:

Monday

As we'll see in Section 2.5.7, later in this chapter, when a timeline variable and a global variable both have the same name, the timeline
variable takes precedence. For example, if we create a timeline variable, day, inside our circle movie clip, as follows:

var day = "Friday";

and then we check the value of day inside circle:

trace(day);

the Output window displays "Friday" (the timeline variable's value), not "Monday" (the global variable's value). For more information on

global variables, see _global in the Language Reference.

Though true global variables were not supported in Flash 5, it was possible to simulate them using the Object class or MovieClip class.
To create a variable that is available on all timelines in Flash 5, use the following statement:

MovieClip.prototype.myGlobalVariable = myValue;

For example:

MovieClip.prototype.msg = "Hello world";

Alternatively, assign the variable as a property of Object, as follows:

Object.msg = "Hello world";

Then, from any other timeline, access msg like this:

trace(Object.msg);

We discuss this technique (and the reason it works) in Section 12.5.3.5, in Chapter 12. In Flash MX, the _global object is the

preferred way to store global variables.

2.5.4 Accessing Variables on Different Timelines

Even though variables on one timeline are not accessible directly to the scripts on other timelines, they are accessible indirectly. To
create, retrieve, or assign a variable on a separate timeline, we use dot syntax, a standard notation common to object-oriented
programming languages such as Java, C++, and JavaScript. Here's the generic dot syntax phrasing we use to address a variable on a
separate timeline:

movieClipInstanceName.variableName

That is, we refer to a variable on another timeline using the name of the movie clip that contains the variable, followed by a dot, and
finally the variable name itself. In our earlier scenario, for example, from the main timeline we can refer to the variable x in the

square clip as:

square.x

Also from the main timeline, we can refer to the variable y in the circle clip as:

circle.y

A reference to a variable that includes the variable's location is known as a qualified reference. Qualified references tell Flash where to
find the variable we're referring to; unqualified references require Flash to make assumptions about where the variable resides, as
discussed later in Section 2.5.7. Hence, it's always good form to use qualified references to variables.

We can use qualified references from our main movie timeline to assign and retrieve variables in square like this:

square.z = 5; // Assign 5 to z in square
var mainZ; // Create mainZ on the main timeline
mainZ = square.z; // Assign the value of z in square to mainZ

However, using the movieClipInstanceName.variableName syntax, we can't refer to variables in square from our

circle clip. If we put a reference to square.x on a frame in circle, the interpreter tries to find a clip called square inside

of circle, but square lives on the main timeline. So, we need a mechanism that lets us refer to the timeline that contains the

square clip (in this case, the main timeline) from the circle clip. That mechanism comes in the form of two special properties:

_root and _parent.

2.5.4.1 The _root and _ parent properties

The _root property is a direct reference to the main timeline of a movie. From any depth of nesting in a movie clip structure, we can

always address variables on the main movie timeline using _root, like this:

_root.mainZ // Access the variable mainZ on the main timeline
_root.firstName // Access the variable firstName on the main timeline

We can even combine a reference to _root with references to movie clip instances, drilling down the nested structure of a movie in

the process. For example, we can reference the variable x, inside the clip square that resides on the main movie timeline, as:

_root.square.x

This reference works from anywhere in our movie, no matter what the depth of clip nesting is, because the reference starts at our main
movie timeline, _root. Here's another nested example showing how to access the variable area in the instance triangle that

resides on the timeline of the instance shapes:

_root.shapes.triangle.area

Any reference to a variable that starts with the _root keyword is called an absolute reference or a fully qualified reference, because it

describes the location of the variable in relation to a fixed, immutable point in our movie: the main timeline.

There are times, however, when we want to refer to variables on other timelines without referring to the main timeline of a movie. To do
so, we use the _parent property, which refers to the timeline upon which the current movie clip instance resides. For example, from

code attached to a frame of the clip square, we can refer to variables on the timeline that contains square using this syntax:

_parent.myVariable

References that start with the keyword _parent are called relative references, because they are resolved relative to the location of

the clip in which they occur.

Suppose we have a variable, size, defined on the main timeline of a movie. We place a clip instance named shapes on our main

movie timeline, and on the shapes timeline we define the variable color. We also place a clip named triangle on the

shapes timeline, as shown in Figure 2-1.

Figure 2-1. A sample movie clip hierarchy

To display the value of the variable color (which is in the shapes clip) from code attached to the timeline of triangle, we

could use an absolute reference starting at the main timeline, like this:

trace(_root.shapes.color);

But that ties our code to the main movie timeline. To make our code more flexible, we should instead use the _parent property to

create a relative reference, like this:

trace(_parent.color);

Our first approach (using _root) works from the top down; it starts at the main timeline and descends through the movie clip

hierarchy until it reaches the color variable. The second approach (using _parent) works from the bottom up; it starts with the

clip that contains the trace() statement (the triangle clip), and ascends one level up the clip structure, which happens to be the

shapes clip, where it finds the color variable.

www.allitebooks.com

http://www.allitebooks.org

We can use _parent twice in a row, separated by a dot, to ascend the hierarchy of clips and access our size variable on the main

timeline. Here we attach some code to triangle that refers to size on the main movie timeline:

trace(_parent._parent.size);

Using the _parent property twice in succession ascends two levels up the movie clip hierarchy, which in this context brings us to

the main timeline of the movie.

Your approach to variable addressing will depend on what you want to happen when you place instances of a movie clip symbol on
various timelines. In our triangle example, if we wanted our reference to color to always point to color as defined in the

shapes clip, we would use the _root syntax, which gives us a fixed reference to color in shapes. But if we wanted our

reference to color to refer to a different color variable, depending on which timeline held a given triangle instance, we

would use the _parent syntax.

The meaning of _root changes when a .swf file is loaded into a movie clip. For example, suppose we load

myPictures.swf into a movie clip in container.swf. When myPictures.swf runs independently, _root
means the main timeline of the myPictures.swf file. But when myPictures.swf runs inside a movie clip of
container.swf, _root means the main timeline of container.swf.

Flash MX makes this problem easy to solve using a global variable. To retain a consistent reference to the main timeline of a movie,
even when the movie is loaded into a movie clip, place the following code on the main timeline:

_global.movieNameMainTimeline = this;

For example:

_global.myPicturesMainTimeline = this;

This command creates a global reference to the main timeline, which allows you to refer to variables on the main timeline from any
other timeline using:

myPicturesMainTimeline.variableName

instead of:

_root.variableName

2.5.4.2 Accessing variables on different document levels

The _root property refers to the main movie timeline of the current level (i.e., the current document), but the Flash Player can

accommodate multiple documents in its document stack. The main timeline of any movie loaded in the Player document stack can be
referenced using _leveln, where n is the number of the level on which the movie resides. Level numbering begins with 0, such as

_level0, _level1, _level2, _level3, and so on. For information on loading multiple movies, see Chapter 13. Here are

some examples of multiple-level variable references:

_level1.firstName // firstName on _level1's main timeline
_level4.ball.area // area in ball clip on _level4's main timeline
_level0.guestBook.email // email in guestBook clip on _level0's main timeline

When referring to variables across movie clip instances, make sure that you have named your clip instances
using the <Instance Name> field in the Property inspector and referred to them by the same name in your
code. Don't confuse the symbol name in the Library with the instance name on the Stage. If your instances
are not named, your code cannot refer to them by name. Unnamed instances and misspelled instance names
are extremely common sources of problems.

Prior to introducing support for dot syntax in Flash 5, Flash supported an older "path" style syntax that used backslashes instead of dots.

Flash MX still supports the legacy syntax, but you should update it to the more modern dot syntax as described in Table C-2 in
Appendix C.

2.5.5 Movie Clip Variable Life Span

Earlier, we said that the scope of a variable answers two questions: (a) how long does the variable exist? and (b) from where in our code
can we set or retrieve the variable's value? For movie clip variables, we have shown the factors involved in answering the second
question. But we skipped answering the first question. Let's return to it now with one final variable-coding scenario.

2.5.5.1 Scenario 4: Life span of movie clip variables

Suppose we create a new movie with keyframes at frames 1, 2, and 3. On frame 1, we place a clip instance, ball. On the ball
timeline, we create a variable, radius. Assume frame 3 of our main timeline is a blank keyframe (the ball instance is not present

there).

From frame 2 of the main movie timeline, we can find out the value of radius using this code:

trace(ball.radius);

Here's the question: if we move this line of code from frame 2 to frame 3 of the main timeline, what appears in the Output window when
our movie plays?

Answer: undefined. When the ball clip is removed from the main timeline at frame 3, all its variables are destroyed in the

process.

Movie clip variables last only while the clip in which they reside is present on stage. Variables defined on
the main timeline of a Flash document persist within each document but are lost if the document is unloaded
from the Player (either via the unloadMovie() function or because another movie is loaded into the movie's
level).

A variable's life span is important when scripting movies that contain movie clips placed across multiple frames on various timelines.
Always make sure that any clip you're addressing is present on a timeline before you try to use the variables in that clip.

2.5.6 Local Variables

Movie clip variables are scoped to movie clips and persist as long as the movie clip on which they are defined exists. Sometimes, that's
longer than we need them to live. For situations in which we need a variable only temporarily, ActionScript offers variables with local
scope (i.e., local variables), which live for a much shorter time than normal movie clip variables.

Local variables are used in functions. If you haven't worked with functions before, you should skip the rest of this section and come back
to it once you've read Chapter 9.

Functions often employ variables that are needed only within the function. For example, suppose we have a function that displays the
elements of an array:

function displayElements(theArray) {
 var counter = 0;
 while(counter < theArray.length) {
 trace("Element " + counter + ": " + theArray[counter]);
 counter++;
 }
}

The counter variable is required to display the elements of the array, but it has no use thereafter. We could leave it defined on the

timeline, but that's bad form for two reasons: (a) if counter persists, it takes up memory during the rest of our movie, and (b) if

counter is accessible outside our function, it may conflict with other variables named counter. We would, therefore, like

counter to die after the displayElements() function has finished.

To cause counter to be deleted automatically at the end of our function, we define it as a local variable. Unlike movie clip variables,

local variables are automatically marked for deallocation (removal from memory) by the interpreter when the function that defines them
finishes.

To specify that a variable should be local, declare it with the var keyword from inside your function, as in the preceding
displayElements() example.

Take heed, though; when placed outside of a function, the var statement creates a normal timeline variable, not a local variable. As
shown in Example 2-4, the location of the var statement makes all the difference.

Variables within functions need not be local. We can create or change a movie clip variable from inside a function by omitting the var
keyword. If we do not use the var keyword, but instead simply assign a value to a variable from within a function, Flash treats that
variable as a nonlocal variable under some conditions. Consider this variable assignment inside a function:

function setHeight () {
 height = 10;
}

The effect of the statement height = 10; depends on whether height is a local variable or movie clip variable. If height is a

previously declared local variable (which it is not in the example at hand), the statement height = 10; simply modifies the local

variable's value. If there is no local variable named height, as in this case, the interpreter creates a movie clip (nonlocal) variable

named height and sets its value to 10. As a nonlocal variable, height persists even after the function finishes.

Example 2-4 demonstrates local and nonlocal variable usage.

Example 2-4. Local and nonlocal variables

var x = 5; // New nonlocal variable, x, is now 5
function variableDemo () {
 x = 10; // Nonlocal variable, x, is now 10
 y = 20; // New nonlocal variable, y, is now 20
 var z = 30; // New local variable, z, is now 30
 trace(x + "," + y + "," + z); // Display values in Output window
}
variableDemo(); // Call our function. Displays: 10,20,30
// Now check the values of x, y, and z after the function has finished.
trace(x); // Displays: 10 (reassignment in our function was permanent)
trace(y); // Displays: 20 (nonlocal variable, y, still exists)
trace(z); // Displays "undefined" in Flash MX or nothing in Flash 5

Note that it is possible (though confusing and ill-advised) to have both a local and a nonlocal variable that share the same name within a
script but have different scopes. Example 2-5 shows such a case.

Example 2-5. Local and nonlocal variables with the same name

var myColor = "blue";
function hexRed () {
 var myColor = "#FF0000";
 return myColor;
}
trace(hexRed()); // Displays: #FF0000 (the local variable myColor)
trace(myColor); // Displays: "blue" (setting the local variable,
 // myColor, to #FF0000 did not affect the nonlocal version)

2.5.7 The Scope Chain

Internally, Flash resolves each unqualified variable reference in our code using a scope chain, which is simply a hierarchy of places

(scopes) to look when a reference to a variable is resolved (i.e., when the correct variable is located unambiguously and its value is
retrieved). Whenever Flash encounters a variable in a script or function, it seeks the variable's value in the scope chain associated with
that code. The hunt for the variable ends when the variable is found somewhere in the scope chain or when it is not found at all (the
variable is undefined.) The scope chain for a frame script (code attached directly to a movie clip keyframe) includes two scopes,

which are traditionally read from the bottom up:

Global object (interpreter looks here last)

Enclosing movie clip object (interpreter looks here first)

When a variable is referenced in a frame script, Flash checks the current movie clip for the variable. If the variable is not found in the
movie clip (or its prototype), Flash checks for a global variable of that name. If no global variable is found, Flash returns undefined.

When both a movie clip variable and a global variable of the same name are defined, Flash retrieves the movie clip variable, because it is
first in the search order for the scope chain. Hence, a movie clip variable always overrides a global variable of the same name.

By contrast, the scope chain for code in a nonnested function includes three scopes (again, read from the bottom up):

Global object (_global)

Enclosing movie clip object

Local variables

When a variable is referenced from within a function, Flash checks first for a local variable—defined with the var statement—within the
function, as shown in Example 2-5. If no local variable is found, Flash checks for a movie clip variable in the movie clip in which the
function was defined. (We'll consider this topic, including the behavior for nested functions, more thoroughly in Chapter 9.) If the
variable is not found in that movie clip (or its prototype), Flash checks for a global variable of the same name. If no global variable is
found, Flash returns undefined.

Using the with statement, we can add any object to the scope chain as the first place Flash should look for variables. For details, see
Chapter 5.

Until you're familiar with the scope chain, you may want to qualify your variable name references (e.g.,
myGameMainTimeline.numPlayers versus numPlayers) to tell Flash explicitly where to look for a variable.

Qualified references are unambiguous and are therefore easiest to understand for all levels of programmers. See "Accessing Variables on
Different Timelines," earlier in this chapter.

Don't confuse the scope chain with the prototype chain. Flash uses the scope chain to look up variables; it uses the prototype chain to
look up properties and methods. We'll discuss the prototype chain in Chapter 12.

Note that, technically, each scope chain is implemented internally as a series of objects used by the interpreter to look up variables. See
Chapter 9 of this book and David Flanagan's eloquent description of JavaScript's variable scope in JavaScript: The Definitive Guide
(O'Reilly & Associates, Inc.). Bear in mind, however, that ActionScript adds movie clips to JavaScript's global and local execution
contexts.

2.5.8 Event Handler Scope

As you'll see in Chapter 10, different kinds of event handlers have different scopes in Flash. Table 2-2 provides a summary of event
handler scope. For each type of handler, an unqualified, nonlocal variable declaration (one without a var statement) will create a new
variable in the movie clip listed in the Scope chain column of the table. We'll examine this topic more closely in Chapter 10.

Table 2-2. Event handler scope

Event handler type Scope chain

Callback function

Global object

Clip in which the function was defined

Local variables

Listener method

Global object

Clip in which the function was defined

Local variables

Movie clip with on() or onClipEvent() handler
Global object

Clip that physically bears the handler at authoring time

Button with on() handler
Global object

Clip on whose timeline the button resides

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 2. Variables

2.6 Loading External Variables

While most variables are created directly inside Flash, it's also common to load variables from an external text file, server script, or web
page. Loading external variables does not mean simply assigning a value from an external source to existing variables. Loading external
variables actually creates new variables at runtime. The following entries in the ActionScript Language Reference explain various
variable-loading techniques:

LoadVars

loadVariables()

fscommand()

Additionally, in some browsers, JavaScript can set a variable in Flash at runtime using the syntax:

movieObj.SetVariable("/someClip:firstName", "Colin");

where movieObj is an object reference to the Flash movie embedded in the page. This technique works only in the following

browsers:

Internet Explorer on Windows

Netscape 4 on Windows, Macintosh, and Linux

Netscape 6.2 with Flash Player 6.0.40.0 (or higher) on Windows, Macintosh, and Linux

For complete details, see:

http://www.moock.org/webdesign/flash/fscommand/

Similarly, an HTML document's <OBJECT> and <EMBED> tags can create variables in a Flash movie, when the movie initially

loads, via the FlashVars parameter or a query string. Variables passed to a Flash movie via FlashVars or a query string must

be URL-encoded according to the rules described in the LoadVars class in the Language Reference. The following code uses the
FlashVars parameter to create the variables authorName and bookName with the values "Colin Moock" and "ASDG" on

the main timeline of a movie called main.swf:

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 CODEBASE="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab"
 WIDTH="550"
 HEIGHT="400">
 <PARAM NAME=movie VALUE="main.swf">
 <PARAM NAME=FlashVars VALUE="authorName=Colin+Moock&bookName=ASDG">

 <EMBED src="main.swf"
 FlashVars="authorName=Colin+Moock&bookName=ASDG"
 WIDTH="550"
 HEIGHT="400"
 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>

</OBJECT>

The FlashVars parameter requires Flash Player 6 or later and can pass a maximum of 63 KB of data to Flash. To pass data from

HTML to earlier Flash Players, append the parameters to the URL of the .swf filename, as shown in the following example. In this case,
the data transfer limit depends on the web server.

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab"
 WIDTH="550"
 HEIGHT="400">
 <PARAM NAME=movie VALUE="main.swf?authorName=Colin+Moock">

 <EMBED src="main.swf?authorName=Colin+Moock"
 WIDTH="550"
 HEIGHT="400"
 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

The passed variables are always created on the movie's main timeline. There is no direct way to set variables in a nested movie clip
using FlashVars or a query string. See Appendix H for more details on the <OBJECT> and <EMBED> tags.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 2. Variables

2.7 Some Applied Examples

We've had an awful lot of variable theory. The following examples provide three variable-centric code samples that show some of these
concepts in use. Refer to the comments within the code for an explanation of each line of code.

Example 2-6 sends the playhead of a movie clip to a random destination.

Example 2-6. Send the playhead to a random frame on the current timeline

var randomFrame; // Stores the randomly picked frame number
var numFrames; // Stores the total number of frames in the clip
numFrames = this._totalframes; // Store the current movie clip's
 // _totalframes property in numFrames
// Pick a random frame
randomFrame = Math.floor(Math.random() * numFrames + 1);
this.gotoAndStop(randomFrame); // Send playhead of current movie clip to
 // chosen random frame

Example 2-7 determines the distance between two clips. A working version of this example is available from the online Code Depot.

Example 2-7. Calculate the distance between two movie clips

var c; // A convenient reference to the circle clip object
var s; // A convenient reference to the square clip object
var deltaX; // The horizontal distance between c and s
var deltaY; // The vertical distance between c and s
var dist; // The total distance between c and s
c = _root.circle; // Get reference to the circle clip
s = _root.square; // Get reference to the square clip
deltaX = c._x - s._x; // Compute the horizontal distance between the clips
deltaY = c._y - s._y; // Compute the vertical distance between the clips
// The distance is the square root of (deltaX squared plus deltaY squared).
dist = Math.sqrt((deltaX * deltaX) + (deltaY * deltaY));
// Using variables, the code above creates tidy references that
// are much more readable than the alternative, shown below:
dist = Math.sqrt(((_root.circle._x - _root.square._x) * (_root.circle._x -
_root.square._x)) + ((_root.circle._y - _root.square._y) * (_root.circle._y -
_root.square._y)));

Example 2-8 converts from Fahrenheit to Celsius. A working version showing bi-directional conversion is available in the online Code
Depot.

Example 2-8. A Fahrenheit/Celsius temperature converter

// Create variables
var fahrenheit; // Temperature in Fahrenheit
var result; // The value resulting from conversion

// Initialize variables
fahrenheit = 451; // Set a Fahrenheit temperature

// Calculate the Celsius equivalent
result = (fahrenheit - 32) / 1.8;
// Display the result
trace (fahrenheit + " degrees Fahrenheit is " + result + " degrees Celsius.");

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 2. Variables

2.8 Onward!

Now that we know the fundamentals of storing information in variables, including advanced topics such as variable
scope, it's time we learn something more about the content that variables store: data. Over the next three chapters,
we'll learn what data is, how it can be manipulated, and why it's an essential part of nearly everything we build with
ActionScript.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 3. Data and Datatypes

Having worked with variable values in Chapter 2, you've already had a casual introduction to data, the information
we manipulate in our scripts. In this chapter, we'll explore data in more depth, learning how ActionScript defines,
categorizes, and stores data. We'll also explore how to create and classify data.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 3. Data and Datatypes

3.1 Data Versus Information

In the broadest sense, data is anything that can be stored by a computer, from words and numbers to images, video, and
sound. All computer data is stored as a sequence of 1s and 0s, which you might recognize from high-tech marketing
materials:

010101010101010110101011011010101010101010000010101010101011010101010
101010101010101011101010101010101010101010101010111110101010101010101
01010101010101010101010101110

Data is information in its crude state—raw and meaningless. Semantics give information meaning. Consider, for
example, the number 8008898969. As raw data it isn't very meaningful, but when we classify it semantically as the
telephone number (800) 889-8969, the data becomes useful information.

This chapter shows how to add meaning to raw computer data so that it becomes human-comprehensible information.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 3. Data and Datatypes

3.2 Retaining Meaning with Datatypes

How do we store information as raw data without losing meaning? By categorizing our data and defining its
datatype, we give it context that defines its meaning.

For example, suppose we have three numbers: 5155534, 5159592, and 4593030. By categorizing our data—as, say,
a phone number, fax number, and parcel tracking number—the context (and, hence, the meaning) of our data is
preserved. When categorized, each of the otherwise-nondescript seven-digit numbers becomes meaningful.

Programming languages use datatypes to provide rudimentary categories for data. For example, nearly all
programming languages define datatypes to store and manipulate text (a.k.a. strings) and numbers. To distinguish
between multiple numbers, we can use well-conceived variable names, such as phoneNumber and

faxNumber. In more complex situations, we can create our own custom data categories with objects and object

classes, as covered in Chapter 12. Before we think about making our own data categories, let's see which categories
come built into ActionScript.

3.2.1 The ActionScript Datatypes

When programming, we may want to store a product name, a background color, or the number of stars to be placed
in a night sky. We use the following ActionScript datatypes to store our data:

string

For text sequences such as "hi there". A string is a series of characters (alphanumerics and

punctuation).
number

For numbers, such as 351 and 7.5. Numbers are used for counting and for mathematical equations.
boolean

For logical decisions. With Boolean data, we can represent or record the status of some condition or the
result of some comparison. Boolean data has only two legal values: true and false.

null and undefined

For representing an absence of data, ActionScript provides two special data values: null and

undefined. You can think of them as the only permissible values of the null and undefined datatypes.

array

For lists of one or more pieces of data.
movieclip

For manipulating movie clip instances.
object

For arbitrary built-in or user-defined classes of data.

Every piece of data we store in ActionScript will fall into one of these categories. Before studying each datatype in
Chapter 4, we'll consider the general issues that affect our use of all data.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 3. Data and Datatypes

3.3 Creating and Categorizing Data

There are two ways to create a new datum with ActionScript, and both methods require the use of expressions—phrases of code that
represent data in scripts.

A literal expression (or literal for short) is a series of letters, numbers, and punctuation that is the datum. A data literal is a verbatim
description of data in a program's source code. This contrasts with a variable, which is merely a container that holds a datum. Each
datatype defines its own rules for the creation of literals. For example, string literals are enclosed in quotes, whereas numeric literals are
not. Here are some examples of literals:

"loading...please wait" // A string literal
1.51 // A numeric literal
["jane", "jonathan"] // An array literal
{x: 10, y: 15} // An object literal

Note that movie clips cannot be represented by literals but are referred to by instance names.

We can also generate data programmatically with a complex expression. Complex expressions are phrases of code with a value that must
be calculated or computed, not taken literally. The calculated value is the datum being represented. For example, each of these complex
expressions results in a single datum:

1999 + 1 // Yields the numeric datum 2000
"1999" + "1" // Yields the string datum "19991"
"hi " + "ma!" // Yields the string datum "hi ma!"
firstName // Yields the value of the variable firstName
_currentframe // Yields the frame number of the playhead's current position
new Date() // Yields a new Date object with the current date and time

Notice that an individual literal expression, such as 1999 or 1, can be a valid part of a larger complex expression, as in 1999 + 1.

Whether we use a literal expression or a complex expression to create data, we must store every datum that we want to use later. The
result of the expression "hi" + "ma!" is lost unless we store it, say, in a variable. For example:

// This datum is fleeting and dies immediately after it's created
"hi " + "ma";
// This datum is stored in a variable and can be
// accessed later via the variable welcomeMessage
var welcomeMessage = "hi " + "ma!";

How do we categorize data into the appropriate type? That is, how do we specify that a datum is a number, a string, an array, or whatever?
In most cases, we don't categorize new data ourselves; the ActionScript interpreter automatically assigns or infers each datum's type based
on a set of internal rules.

3.3.1 Automatic Literal Typing

The interpreter infers a literal datum's type by examining its syntax, as explained in the comments in the following code fragment:

"animal" // Quotation marks identify "animal" as a string
1.35 // If it contains only integers and a decimal point,
 // it is a number
true // Special keyword true identifies this as a Boolean

null // Special keyword null identifies this as the null type
undefined // Special keyword undefined identifies the undefined type
["hello", 2, true] // Square brackets and values separated by commas
 // indicate that this is an array
{x: 234, y: 456} // Curly braces and property name/value pairs separated
 // by commas indicate that this is an object

As you can see, using correct syntax with data literals is extremely important. Incorrect syntax may cause an error or result in the
misinterpretation of a datum's content. For example:

animal // Missing quotes--animal is interpreted as a variable,
 // not a string of text
"1.35" // Numbers in quotes are treated as strings, not numbers
1. 35 // Space before the 3 causes an error
"animal // Missing closing quotation mark causes an error

3.3.2 Automatic Complex Expression Typing

The interpreter computes an expression's value in order to determine its datatype. Consider this example:

pointerX = _xmouse;

Because _xmouse stores the location of the mouse pointer as a number, the type of the expression _xmouse will always be a

number; so, the variable pointerX also becomes a number.

Usually, the datatype that is automatically determined by the interpreter matches what we expect and want. However, some ambiguous
cases require us to understand the rules that the interpreter uses to determine an expression's datatype (see Example 2-2 and Example 2-3).
Consider the following expression:

"1" + 2;

The operand on the left of the + is a string ("1"), but the operand on the right is a number (2). The + operator works on both numbers

(addition) and strings (concatenation). Should the value of the expression "1" + 2 be the number 3 or the string "12"? To resolve the

ambiguity, the interpreter relies on a fixed rule: the plus operator (+) always favors strings over numbers, so the expression "1" + 2
evaluates to the string "12", not the number 3. This rule is arbitrary, but it provides a consistent way to interpret the code. The rule was
chosen with typical uses of the plus operator in mind: if one of the operands is a string, it's likely that we want to concatenate the
operands, not add them numerically, as in this case:

trace ("The value of x is: " + x);

Combining disparate types of data or using a datum in a context that does not match the expected datatype causes ambiguity. This forces
the interpreter to perform an automatic datatype conversion according to arbitrary, but predictable, rules. Let's examine the cases in which
automatic conversions will occur and the results of converting a datum from one type to another.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 3. Data and Datatypes

3.4 Datatype Conversion

Take a closer look at the example from the previous section. In that example, each datum—"1" and 2—belonged to its own datatype; the first was a
string and the second was a number. We saw that the interpreter joined the two values together to form the string "12". Note that the interpreter first
had to convert the number 2 into the string "2". Only after that automatic conversion was performed could the value "2" be joined (concatenated) to
the string "1".

Datatype conversion simply means changing the type of a datum. Not all datatype conversions are automatic; we may also change a datum's type
explicitly in order to override the default datatype conversion that ActionScript would otherwise perform. Explicit conversion is known as
typecasting, or simply casting.

3.4.1 Automatic Type Conversion

Whenever we use a value in a context that does not match the expected datatype, the interpreter attempts a conversion. That is, if the interpreter
expects data of type A, and we provide data of type B, the interpreter will attempt to convert our type B data into type A data. For example, in the
following code we use the string "Flash" as the right-hand operand of the subtraction operator. Since only numbers may be used with the subtraction
operator, the interpreter attempts to convert the string "Flash" into a number:

999 - "Flash";

Of course, the string "Flash" can't be successfully converted into a legitimate number, so it is converted into the special numeric data value NaN
(i.e., Not-a-Number). NaN is a legal value of the number datatype, intended specifically to handle such a situation. With "Flash" converted to NaN,

our expression ends up looking like this to the interpreter (though we never see this interim step):

999 - NaN;

Both operands of the subtraction operator are now numbers, so the operation can proceed: 999 - NaN yields the value NaN, which is the final

value of our expression.

An expression that yields the numeric value NaN isn't particularly useful; most conversions have more functional results. For example, if a string

contains only numeric characters, it can be converted into a useful number. The expression:

999 - "9"; // The number 999 minus the string "9"

is interpreted as:

999 - 9; // The number 999 minus the number 9

which yields the value 990 when the expression is resolved. Automatic conversion is most common with the plus operator, the equality operator, the
comparison operators, and in conditional or loop statements. In order to be sure of the result of any expression that involves automatic conversion,
we have to answer three questions: (a) what is the expected datatype of the current context? (b) what happens when an unexpected datatype is
supplied in that context? and (c) when conversion occurs, what is the resulting value?

To answer the first and second questions, we need to consult the appropriate topics elsewhere in this book (e.g., to determine what datatype is
expected in a conditional statement, see Chapter 7).

The next three tables, which list the rules of automatic conversion, answer the third question, "When conversion occurs, what is the resulting value?
" Table 3-1 shows the results of converting each datatype to a number.

Table 3-1. Converting to a number

Original data Result after conversion

undefined 0

null 0

Boolean 1 if the original value is true; 0 if the original value is false

Numeric string
Equivalent numeric value if string is composed only of base-10 numbers, whitespace, exponent, decimal point, plus sign, or
minus sign (e.g., "-1.485e2")

Other strings Empty strings, nonnumeric strings, including strings starting with "x", "0x", or "FF", convert to NaN

"Infinity" Infinity

"-
Infinity"

-Infinity

"NaN" NaN

Array NaN

Object The return value of the object's valueOf() method

Movieclip NaN

Table 3-2 shows the results of converting each datatype to a string.

Table 3-2. Converting to a string

Original data Result after conversion

undefined "" (the empty string)

null "null"

Boolean "true" if the original value was true; "false" if the original value was false.

NaN "NaN"

0 "0"

Infinity "Infinity"

-Infinity "-Infinity"

Other numeric
value

String equivalent of the number. For example, 944.345 becomes "944.345".

Array A comma-separated list of element values.

Object

The value that results from calling toString() on the object. By default, the toString() method of an object returns "[object
Object]". The toString() method can be customized to return a more useful result (e.g., toString()of a Date object returns:

"Sun May 14 11:38:10 EDT 2000").

Movieclip
The path to the movie clip instance, given in absolute terms starting with the document level in the Player. For example,
"_level0.ball".

Table 3-3 shows the results of converting each datatype to a Boolean.

Table 3-3. Converting to a Boolean

Original data Result after conversion

undefined false

null false

NaN false

0 false

Infinity true

-Infinity true

Other numeric
value

true

Nonempty string
true if the string can be converted to a valid nonzero number, false if not; in ECMA-262, a non-empty string always

converts to true (Flash diverges from the ECMA standard to maintain compatibility with Flash 4)

Empty string ("") false

Array true

Object true

Movieclip true

3.4.2 Explicit Type Conversion

If the automatic (implicit) type-conversion rules do not suit our purpose, we can manually (explicitly) change a datum's type. When we take matters
into our own hands, we must remember that the rules listed in the preceding tables still apply.

3.4.2.1 Converting to a string with the toString() method

We can invoke the toString()method to convert any datum to a string. For example:

x.toString(); // Get the string value of the variable x.
(523).toString(); // Returns "523". Note that we use parentheses
 // so that the "." isn't treated as a decimal point.

When we invoke the toString() method on a number, we may also provide a numeric argument indicating the base of the number system in which
we'd like the converted string to be represented. This provides a handy means of switching between hexadecimal, decimal, and octal numbers. For
example:

var myColor = 255;
var hexColor = myColor.toString(16); // Sets hexColor to "ff"

3.4.2.2 Converting to a string with the String() function

The String() function has the same result as the toString() method, but it uses a different grammar:

String(x); // Convert x to a string
String(523); // Convert 523 to the string "523"

Don't confuse the global String() function with the built-in class constructor of the same name. Both are described in the Language Reference.

3.4.2.3 Converting to a string with empty string concatenation

Because the plus operator (+) favors strings in its automatic conversion rules, concatenating the empty string ("") with any datum converts that

datum to a string.

// Convert x to a string.

x + "";
// Here we check the character position of the number 2 in 523. We first
// concatenate 523 and "", before invoking a String method on the converted value.
trace((523 + "").indexOf(2));

3.4.2.4 Converting to a number with the Number() function

Just as the String() function converts data to the string type, the Number() function converts its argument to the number type. When conversion to a
real number is impossible or illogical, the Number() function returns a special numeric value as described in Table 3-1. Here are some examples:

Number(age); // Yields the value of age converted to a number
Number("29"); // Yields the number 29
Number("sara"); // Yields NaN

Don't confuse the global Number() function with the built-in class constructor of the same name. Both are described in the Language Reference.

Because user input in on-screen text fields always belong to the string type, it's necessary to convert text fields to numbers when performing
mathematical calculations. For example, if we want to find the sum of the text fields price1_txt and price2_txt, we use:

totalCost = Number(price1_txt.text) + Number(price2_txt.text);

Otherwise, price1_txt and price2_txt will be concatenated as strings, not added as numbers. For more information on text fields, see

TextField in the Language Reference.

3.4.2.5 Converting to a number by subtracting zero

To trick the interpreter into converting a datum to a number, we can subtract zero from that datum. Again, the conversion follows the rules
described in Table 3-1:

"953" - 0 // Yields 953
"molly" - 0 // Yields NaN
x - 0 // Yields the value of x converted to a number

3.4.2.6 Converting to a number using the parseInt() and parseFloat() functions

The parseInt() and parseFloat() functions convert a string containing numbers and letters into a number. The parseInt() function extracts the first
integer that appears in a string, provided that the string's first nonblank character is a legal numeric character. Otherwise, parseInt() yields NaN.

The number extracted via parseInt() starts with the first nonblank character in the string and ends with the character before either the first
nonnumeric character or the first occurrence of a decimal point.

Here are some parseInt() examples:

parseInt("1a") // Yields 1
parseInt("1.3a" // Yields 1
parseInt(" 1a") // Yields 1
parseInt("I am 14 years old") // Yields NaN (the first nonblank
 // character is not a number)
parseInt("14 years old") // Yields 14

// Convert decimal to hexadecimal.
(255).toString(16); // Yields: ff
// Convert hexadecimal to decimal.
parseInt("0xFF"); // Yields 255

The parseFloat() function returns the first floating-point number that appears in a string, provided that the string's first nonblank character is a valid
numeric character. (A floating-point number is a positive or negative number that contains a decimal value, such as -10.5 or 345.678.) Like
parseInt(), parseFloat() yields the special numeric value NaN if the string's first nonblank character is not a valid numeric character. The number

extracted by parseFloat() is the numeric conversion of the series of characters that starts with the first nonblank character in the string and ends

with the character before the first nonnumeric character (any character other than +, -, 0-9, a decimal point, or an e or E when used for exponential

notation).

Here are some parseFloat() examples:

parseFloat("1.3a"); // Extracts 1.3
parseFloat("2.75 years old") // Extracts 2.75
parseFloat("1nce upon a time") // Extracts 1
parseFloat("I'm 3.5 feet tall") // Yields NaN

For more information on parseInt() and parseFloat()—including how to specify a radix to convert between number systems—see the ActionScript
Language Reference.

3.4.2.7 Converting to a Boolean

When we want to convert a datum to a Boolean, we can use the global Boolean() function, which uses similar syntax to the String() and Number()
functions. For example:

Boolean(5); // The result is true
Boolean(x); // Converts value of x to a Boolean

Don't confuse the global Boolean() function with the built-in class constructor of the same name. Both are described in the Language Reference.

3.4.3 Conversion Duration

All type conversions performed on variables, array elements, and object properties are temporary unless the conversion happens as part of an
assignment. Here we see a temporary conversion:

var x = "10"; // x is a string.
y = x - 5; // y is now 5; x's value was temporarily converted to a number.
trace(typeof x); // Displays: "string"; the conversion was temporary because
 // it occurred incidentally while evaluating an expression.

Here we see a permanent conversion that is the result of an assignment:

x = "10"; // x is a string.
x = x - 5; // x is converted permanently to a number.
trace(typeof x); // Displays: "number"; the conversion was permanent because
 // it occurred as part of an assignment.

3.4.4 Determining the Type of an Existing Datum

To determine what kind of data is held in a given expression before, say, proceeding with a section of code, we use the typeof operator, as follows:

typeof expression;

The typeof operator returns a string telling us the datatype of expression, according to Table 3-4.

Table 3-4. Return values of typeof

Original datatype typeof return value

Number "number"

String "string"

Boolean "boolean"

Object "object"

Array "object"

null "null"

Movieclip "movieclip"

Function "function"

undefined "undefined"

Here are a few examples:

trace(typeof "game over"); // Displays: "string" in the Output window
var x = 5;
trace(typeof x); // Displays: "number"
var now = new Date();
trace(typeof now); // Displays: "object"

As shown in Example 3-1, when combined with a for-in statement, typeof provides a handy way to find all the movie clip instances on a timeline.
Once the clips are identified, we can assign them to an array for programmatic handling. (If you can't follow all of Example 3-1, revisit it after
completing Part I.)

Example 3-1. Populating an array with dynamically identified movie clips

// Create an array in which to store the clips.
var childClips = new Array();

// Check all the properties of the main timeline.
for (prop in _root) {
 // If the current property is a movie clip...
 if (typeof _root[prop] = = "movieclip") {
 // ...add it to the clips array.
 childClips.push(_root[prop]);
 }
}

// Now that our array is populated, we can use it to manipulate the clips it contains.
childClips[0]._x = 0; // Place the first clip on the left of the Stage.
childClips[1]._y = 0; // Place the second clip at the top of the Stage.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 3. Data and Datatypes

3.5 Primitive Data Versus Composite Data

So far we've been working mostly with numbers and strings, which are the most common primitive datatypes.
Primitive datatypes are the basic units of a language; each primitive value represents a single datum (as opposed to
an array of multiple items) and holds that datum directly, rather than holding its address elsewhere in memory.

ActionScript supports these primitive datatypes: number, string, boolean, undefined, and null. ActionScript does
not have a separate single-character datatype (e.g., char) as found in C/C++ (strings are a primitive datatype in
ActionScript, and not arrays of chars as they are in C/C++).

Primitive datatypes are, as their name suggests, simple. They can hold text messages, frame numbers, secret
passwords, and so on, but they don't readily accommodate higher levels of complexity. For more elaborate data
handling—such as simulating the physics of a dozen bouncing balls or managing a quiz with 500 questions and
answers—we turn to composite datatypes. Using composite data, we can manage multiple pieces of related data as
a single datum.

ActionScript supports the following composite datatypes: array, object, and movieclip. Technically, functions are a
type of object and are therefore considered composite data, but we rarely manipulate them as such. See Chapter 9
for more about functions as a datatype.

Whereas a single number is a primitive datum, a list (i.e., an array) of multiple numbers is a composite datum.
Here's a practical example of how composite datatypes are useful: suppose we want to store the name of a customer
named Derek. We can create a variable that stores Derek's name as a primitive value, like this:

var custName = "Derek";

However, this approach gets pretty cumbersome once we add more customers. We're forced to use sequentially
named variables to keep track of our customers—cust1Name, cust2Name, cust3Name, and so on.

Yuck! But if we use an array, we can store our information much more efficiently:

customers = ["Derek", "James", "Joe"];

Now that's nice and tidy. We'll learn much more about composite datatypes in the coming chapters.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 3. Data and Datatypes

3.6 Copying, Comparing, and Passing Data

There are three fundamental ways to manipulate data; we can copy it (e.g., assign the value of variable x to variable

y), compare it (e.g., check whether x equals y), and pass it (e.g., supply a variable to a function as an argument).

Primitive data values are copied, compared, and passed quite differently than composite data. When primitive data
is copied to a variable, that variable gets its own unique and private copy of the data, stored separately in memory.
Hence, the following lines of code cause the string "Dave" to be stored twice in memory, once in the memory
location reserved for name1 and again in the location reserved for name2:

name1 = "Dave";
name2 = name1;

We say that primitive data is copied by value because the data's literal value is stored in the memory location
allotted to the variable. In contrast, when composite data is copied to a variable, only a reference to the data (and
not the actual data) is stored in the variable's memory slot. That reference tells the interpreter where the actual data
is kept (i.e., its address in memory). When a variable that contains composite data is copied to another variable, it is
the reference (often called a pointer) and not the data itself that is copied. Hence, composite data is said to be
copied by reference.

This makes good design sense, because it would be grossly inefficient to duplicate large arrays and other composite
datatypes, but it has important consequences for our code. When multiple variables are assigned the same piece of
composite data as their value, each variable does not store a unique copy of the data (as it would if the data were
primitive). Rather, multiple variables can point to one copy of the composite data. If the value of the data changes,
all the variables that point to it reflect the updated value.

Let's see how this affects a practical application. When two variables refer to the same primitive data, each variable
gets its own copy of the data. Here we assign the value 12 to the variable x:

var x = 12;

Now let's assign the value of x to a new variable, y:

var y = x;

As you can guess, y is now equal to 12. But y has its own copy of the value 12, distinct from the copy in x. If we

change the value of x, the value of y is unaffected:

x = 15;
trace(x); // Displays: 15
trace(y); // Displays: 12

The value of y did not change when x changed because when we assigned x to y, y received its own copy of the

number 12 (i.e., the primitive datum contained by x).

Now let's try the same thing with composite data. We'll create a new array with three elements and then assign that
array to the variable x:

var x = ["first element", 234, 18.5];

Now, just as we did before, we'll assign the value of x to y:

var y = x;

The value of y is now the same as the value of x. But what is the value of x ? Remember that because x refers to

an array, which is a composite datum, the value of x is not literally the array ["first element", 234,

18.5] but merely a reference to that datum. Hence, when we assign x to y, what's copied to y is not the array

itself but the reference contained in x that points to the array. So, both x and y point to the same array, stored

somewhere in memory.

If we change the array through the variable x, like this:

x[0] = "1st element";

the change is also reflected in y:

trace(y[0]); // Displays: "1st element"

Similarly, if we modify the array through y, the change can be seen via x:

y[1] = "second element";
trace (x[1]); // Displays: "second element"

To break the association, use the slice() function to create an entirely new array:

var x = ["first element", 234, 18.5];
// Copy each element of x to a new array stored in y
var y = x.slice(0);
y[0] = "hi there";
trace(x[0]); // Displays: "first element" (not "hi there")
trace(y[0]); // Displays: "hi there" (not "first element")

Let's extend our example to see how primitive and composite data values are compared. Here we assign x and y an

identical primitive value; then we compare the two variables:

x = 10;
y = 10;
trace(x = = y); // Displays: true

Because x and y contain primitive data, they are compared by value. In a value-based comparison, data is

compared literally. The number 10 in x is considered equal to the number 10 in y because the numbers are made

up of the same bytes.

Now, let's assign x and y identical versions of the same composite data and compare the two variables again:

x = [10, "hi", 5];
y = [10, "hi", 5];
trace(x = = y); // Displays: false

This time, x and y contain composite data, so they are compared by reference. The arrays we assigned to x and y
have the same byte values, but the variables x and y are not equal because they do not store a reference to the same

composite datum. However, watch what happens when we copy the reference in y to x:

x = y;
trace(x = = y); // Displays: true

Now that the references are the same, the values are considered equal. Thus, the result of the comparison depends
on the references in the variables, not the actual byte values of the arrays to which they point.

Primitive and composite data are also treated differently when passed to functions, as discussed under Section 9.8.3
in Chapter 9. Most notably, when a primitive variable is passed as an argument to a function, any changes to the
datum within the function are not reflected in the original variable. However, when passing a composite variable,
changes within the function do affect the original variable. That is, if you pass an integer variable x to a function,

changes to the parameter within the function don't affect its original value in the calling routine. But if you pass an

array y to a function, any changes to that array within the function will alter the original value of y outside the

function (because changes to the array affect the data to which y points).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 3. Data and Datatypes

3.7 Onward!

We've introduced data in ActionScript, and we're ready for deeper study. In Chapter 4, we'll study the number,
string, boolean, undefined, and null datatypes. In Chapter 5, we'll explore how to manipulate data using operators.
In later chapters, we'll study the complex datatypes, such as movieclips, arrays and objects.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 4. Primitive Datatypes

Primitive data consists of simple characters or keywords, such as the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, or the
strings "a", "b", and "c". As shown in Chapter 3, the primitive datatypes supported by ActionScript are number,
string, boolean, undefined, and null. In this chapter, we'll explore how to define, examine, and change data of each
type.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.1 The Number Type

Numbers are used for counting, mathematics, and keeping track of numeric properties in our movies (such as the
current frame of a movie clip or its location on the Stage). Let's see how numbers are defined and manipulated in
ActionScript.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.2 Integers and Floating-Point Numbers

Most programming languages distinguish between two kinds of numbers: integers and floating-point numbers. An
integer is a whole number that has no fractional component. Integers can be positive, negative, or the number 0.
Floating-point numbers (floats for short) can include a fractional value represented after a decimal point, as in 0.56,
199.99, and 3.14159. So, 1, 34523, -3, 0, and -9999999 are integers, but 223.45 and -0.56 are floats.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.3 Numeric Literals

We learned earlier that a literal is a direct representation of a single, fixed data value. The number type supports three kinds
of literals: integer literals, floating-point literals, and special numeric values. The first two literal categories represent real
numbers (numbers that have a fixed mathematical value); the third category comprises values that represent numeric
concepts, such as infinity.

4.3.1 Integer Literals

Integer literals, such as 1, 2, 3, 99, and -200, must follow these rules:

Integers may not contain a decimal point or fractional value.

Integers must not exceed the minimum or maximum legal numeric values of ActionScript. See the MIN_VALUE
and MAX_VALUE properties of the Number object in the Language Reference for a discussion of legal values.

Base-10 integer numbers must not start with a leading zero (e.g., these are not valid base-10 integers: 002, 000023,
and 05).

Not all integer values are base-10 (i.e., decimal) integers. ActionScript also supports base-8 (octal) and base-16
(hexadecimal) numeric literals. For a primer on decimal, octal, and hexadecimal numbers, see:

http://www.moock.org/asdg/technotes/basePrimer/

We use a leading zero to indicate an octal number. For example, to represent the octal number 723 in ActionScript, we use:

0723 // 467 in decimal (7*64 + 2*8 + 3*1)

To indicate a hexadecimal (hex for short) literal integer, we put 0x (or 0X) in front of the number, such as:

0x723 // 1827 in decimal (7*256 + 2*16 + 3*1)
0xFF // 255 in decimal (15*16 + 15*1)

Hexadecimal numbers are often used to indicate color values, but most simple programs require only base-10 numbers. Be
careful to remove unwanted leading zeros when converting strings to numbers, as shown in Example 4-1.

Example 4-1. Trim leading zeros

function trimZeros (theString) {
 while (theString.charAt(0) = = "0" || theString.charAt(0) = = " ") {
 theString = theString.substring(1, theString.length);
 }
 return theString;
}
testString = "00377";
trace(trimZeros(testString)); // Displays: "377"

4.3.2 Floating-Point Literals

Floating-point literals represent numbers containing fractional parts. A floating-point literal may contain some or all of these
four components:

a base-10 integer
a decimal point (.)
a fractional portion (represented as a base-10 number)
an exponent

The first three components are pretty straightforward: in the number 3.14, "3" is the base-10 integer, "." is the decimal point,
and "14" (i.e., 14 one-hundredths) is the fractional portion. But the fourth component (the exponent) requires a closer look.

To represent a very large positive or negative number as a float, we can append an exponent to a number using the letter E
(or e). To determine the value of a number with an exponent, multiply the number by 10 to the power specified by the
exponent. For example:

12e2 // 1200 (10 squared is 100, times 12 yields 1200)
143E-3 // 0.143 (10 to the power -3 is .001, times 143 yields 0.143)

You may recognize the format as standard scientific notation (a.k.a. exponential notation). If math isn't your strong point,
here's an easy conversion tip: if the exponent is positive, move the decimal point that many places to the right; if the
exponent is negative, move the decimal point that many places to the left.

ActionScript may return a number with an exponent as the result of a calculation, if the result is a very large or very small
value. Note, however, that the exponent E (or e) is merely a notational convenience. If we want to raise a number to an
arbitrary power, we use the built-in Math.pow() function, which is documented in the ActionScript Language Reference.

4.3.2.1 Floating-point precision

Flash uses double-precision floating-point numbers, which offer precision to about 15 significant digits. (Any leading zeros,
trailing zeros, and/or exponents are not counted as part of the 15 digits.) This means that Flash can represent the number
123456789012345, but not 1234567890123456. The precision doesn't limit how big a number can get, only how precisely
a number can be represented; 2e16 is a bigger number than 123456789012345, but it employs only one significant digit.

Occasionally, ActionScript calculations are rounded in undesirable ways, producing numbers such as
0.14300000000000001 instead of 0.143. This happens because computers convert numbers of any base to an internal binary
representation, which can lead to nonterminating fractions in binary (much like 0.3333333 in decimal). Computers have
only finite precision, so they cannot perfectly represent nonterminating fractions. In order to compensate for the minute
discrepancy, you should round your numbers manually if the difference will adversely affect the behavior of your code. For
example, here we round myNumber to three decimal places:

myNumber = Math.round(myNumber * 1000) / 1000;

And here's a reusable function to round any number to an arbitrary number of decimal places:

function roundNum (theNumber, decPlaces) {
 if (decPlaces >= 0) {
 var temp = Math.pow(10, decPlaces);
 return Math.round(theNumber * temp) / temp;
 }
}
// Round a number to two decimal places
trace(roundNum(1.12645, 2)); // Displays: 1.13

4.3.3 Special Values of the Number Datatype

Integer and floating-point literals account for nearly all the legal values of the number datatype, but there are special
keyword values that represent the following numeric concepts: Not-a-Number, Minimum Allowed Value, Maximum
Allowed Value, Infinity, and Negative Infinity.

Each of the special values can be assigned to variables and properties or used in literal expressions, just like any other

numeric literal. More often than not, though, the special numeric values are returned by the interpreter as the result of some
expression evaluation.

4.3.3.1 Not-a-Number: NaN

Occasionally, a mathematical computation or an attempted datatype conversion results in a value that simply is not a
number. For example, 0/0 is an impossible calculation, and the following expression can't be converted to a finite number:

23 - "go ahead and try!"

In order to accommodate data that is of the number type but is not a calculable number, ActionScript provides the NaN
keyword value. Though NaN doesn't represent a calculable number, it is still a legal value of the number type, as

demonstrated by the following code:

x = 0/0;
trace(x); // Displays: NaN
trace(typeof x); // Displays: "number"

Since NaN is not a finite numeric value, it never compares as equal to itself. If two variables hold the value NaN, they are

considered not equal (though they may seem equal to us). To work around this problem, we use the built-in function isNaN(
) to check whether a variable contains the NaN value:

x = 12 - "this doesn't make much sense"; // x is now NaN
trace(isNaN(x)); // Displays: true

4.3.3.2 Minimum and maximum allowed values: MIN_VALUE and MAX_VALUE

ActionScript can represent a broad, but not unlimited, range of numbers. The maximum allowable value is
1.79769313486231e+308, and the minimum allowed value is 4.94065645841247e-324. Obviously, these numbers are
cumbersome, so ActionScript offers the special values Number.MAX_VALUE and Number.MIN_VALUE for

convenience.

Number.MAX_VALUE comes in handy when we are checking to see if a calculation results in a representable number:

z = x*y;
if (z <= Number.MAX_VALUE && z >= -Number.MAX_VALUE) {
 // Number is legal
}

Note that Number.MIN_VALUE is the smallest positive value allowed, not the most negative value. The "largest"

negative legal value is -Number.MAX_VALUE.

4.3.3.3 Infinity and negative infinity: Infinity and -Infinity

If a calculation results in a value larger than Number.MAX_VALUE, ActionScript uses the keyword Infinity to

represent the result of the calculation (this is known as an overflow condition). Similarly, if a calculation results in a value
more negative than the "largest" allowable negative value, ActionScript uses -Infinity to represent the result (this is

known as an underflow condition). Infinity and -Infinity can also be used directly as literal numeric

expressions.

4.3.3.4 Irrational numbers

In addition to the special numeric values—NaN, Infinity, -Infinity, Number.MAX_VALUE, and

Number.MIN_VALUE—ActionScript provides convenient access to mathematical constants via the Math object. For

example:

Math.E // The value of e, the base of the natural logarithm
Math.LN10 // Natural logarithm of 10

Math.LN2 // Natural logarithm of 2
Math.LOG10E // Base-10 logarithm of e
Math.LOG2E // Base-2 logarithm of e
Math.PI // Pi (i.e., 3.1415926...)
Math.SQRT1_2 // Square root of 1/2
Math.SQRT2 // Square root of 2 (i.e., 1.4142135...)

These constants are simply shorthand forms of floating-point values that approximate commonly used irrational numbers.
(Irrational numbers, by definition, are numbers that cannot be represented by a simple fraction, such as 1/3. They should not
be confused with NaN, Infinity, etc.) You can use these irrational numbers just as you would any other object

property:

area = Math.PI*(radius*radius);

For a complete list of supported constants, see the Math object in the Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.4 Working with Numbers

We can manipulate numbers by combining them with operators to form mathematical expressions and by calling built-in
functions to perform complex mathematical operations.

4.4.1 Using Operators

Basic arithmetic—addition, subtraction, multiplication, and division—is accomplished using the +, -, *, and / operators.
Operators can be used with any numeric literals or data containers such as variables. Mathematical expressions are evaluated in
the order determined by the precedence of the operators, as shown in Table 5-1. For example, multiplication is performed before
addition. All of these are legitimate uses of mathematical operators:

x = 3 * 5; // Assign the value 15 to x
x = 1 + 2 - 3 / 4; // Assign the value 2.25 to x
x = 56;
y = 4 * 6 + x; // Assign the value 80 to y
y = x + (x * x) / x; // Assign the value 112 to y

4.4.2 Built-in Mathematical Functions

To perform advanced math, we use the built-in mathematical functions of the Math object. For example:

Math.abs(x) // Absolute value of x
Math.min(x, y) // The smaller of the values x and y
Math.pow(x, y) // x raised to the power y
Math.round(x) // x rounded to the nearest integer

These math functions return values that we use in expressions, just as we use literal numbers. For example, suppose we want to
simulate a six-sided die. We can use the Math.random() function to retrieve a random float between 0 and 0.999 . . . :

dieRoll = Math.random();

Then, we multiply that value by 6, giving us a float between 0 and 5.999, to which we add 1:

dieRoll = dieRoll * 6 + 1; // Sets dieRoll to a number between 1 and 6.999

Finally, we use the floor() function to round our number down to the closest integer:

dieRoll = Math.floor(dieRoll); // Sets dieRoll to a number between 1 and 6

Condensed into a single expression, our die roll calculation looks like this:

// Sets dieRoll to a number between 1 and 6 inclusive
dieRoll = Math.floor(Math.random() * 6 + 1);

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.5 The String Type

String is the datatype used for textual data (letters, punctuation marks, and other characters). A string literal is any combination of characters
enclosed in single or double quotation marks:

"asdfksldfsdfeoif" // A frustrated string
"greetings" // A friendly string
"unity@moock.org" // A self-promotional string
"123" // It may look like a number, but it's a string
'singles' // Single quotes are acceptable too

Before we see how to form string literals, let's examine which characters are permitted in strings.

4.5.1 Character Encoding

Like all computer data, text characters are stored internally using a numeric code. They are encoded for storage and decoded for display using a
character set, which maps (i.e., relates) characters to their numeric codes. Character sets vary for different languages and alphabets. Originally,
most Western applications used some derivative of ASCII, a standard character set that includes only 128 characters—the English alphabet,
numbers, basic punctuation marks, and special control characters. In time, Western applications supported a family of character sets known
collectively as ISO-8859, an extension of ASCII. Each of the ISO-8859 character sets encodes the standard Latin alphabet (A to Z), plus a varying
set of letters needed in the target languages. Flash Player 5, for example, uses ISO-8859-1, also known as Latin 1, as its primary character map (it
also supports a second character set, called Shift-JIS, for Japanese characters).

The Latin 1 character set accommodates most Western European languages—French, German, Italian, Spanish, Portuguese, and so on—but not
languages such as Greek, Turkish, Slavic, and Russian. In order to support the full range of the world's languages, Flash Player 6 uses Unicode, the
preferred international standard for character encoding, which can map a million or more characters. Flash Player 6 can display most characters
supported by Unicode, regardless of the regional settings, provided that the appropriate font is available on the end user's system. However, Flash
Player 6 does not support right-to-left or bidirectional scripts, such as Arabic and Hebrew.

Appendix B lists each character's Unicode code point, which is the character's numeric position in the Unicode set. Later, we'll see how to use
code points to manipulate characters in our scripts and to display Unicode characters. For more information on Unicode, see the resources cited in
Appendix A.

4.5.2 String Literals

The most common way to create a string is to put either single or double quotation marks around a group of characters:

"hello"
'Nice night for a walk.'
"The equation is 12 + 4 = 16, which programmers see as 12 + 4 = = 16."

If we use a double quotation mark to start a string, we must end it with a double quotation mark as well. Likewise, if we use a single quotation
mark to start a string, we must end that string with a single quotation mark. However, a double-quoted string may contain single-quoted characters
and vice versa. These strings, for example, contain legal uses of single and double quotes:

"Nice night, isn't it?" // Single apostrophe inside double quotes
'I said, "What a pleasant evening!"' // Double quotes inside single quotes

4.5.2.1 The empty string

The shortest possible string is the empty string, a string with no characters:

""
''

The empty string is handy when we're trying to detect whether a variable contains a usable string value or not. Here we check whether the input
text field, firstName_txt, has a usable value:

if (firstName_txt.text = = "") {
 trace("You forgot to enter your name!");
}

The empty string is not considered equal to one or more space characters (e.g., "" is not the same as " "). To check if a string has at least one

usable character, we revise our code to detect any character above Unicode code point 32 (everything below code point 32 is either a control
character or a whitespace character), as shown in Example 4-2.

Example 4-2. A custom String.isEmpty() method

// Checks whether the string contains any characters above Unicode 32.
String.prototype.isEmpty = function () {
 // If a useful character is found...
 for (var i=0; i < this.length; i++) {
 if (this.charCodeAt(i) > 32) {
 // The string is not "empty."
 return false;
 }
 }

 // No useful characters were found. The string is "empty."
 return true;
}

// Now use the new method to test if our firstName_txt text field has a useful value.
if (firstName_txt.text.isEmpty()) {
 trace("You forgot to enter your name!");
} else {
 trace("Welcome, " + firstName_txt.text);
}

4.5.2.2 Escape sequences

We have seen that single quotes (') may be used inside double-quoted literals, and double quotes (") may be used inside single-quoted literals.
But what if we want to use both? For example:

'I remarked "Nice night, isn't it?"'

As is, this line of code causes an error because the ActionScript compiler thinks that the string literal ends with the apostrophe in the word "isn't."
The compiler reads it as:

'I remarked "Nice night, isn' // The rest is considered unintelligible garbage

To use the single quote inside a string literal delimited by single quotes, we must use an escape sequence. An escape sequence represents a literal
string value using a backslash (\), followed by the desired character or a code that represents the character. The escape sequences for single and
double quotes are:

\'
\"

So, our cordial evening greeting, properly expressed as a string literal, should be:

'I remarked "Nice night, isn\'t it?"' // Escape the apostrophe!

Other escape sequences, which can be used to represent various special or reserved characters, are listed in Table 4-1.

Table 4-1. ActionScript escape sequences

Escape
sequence

Meaning

\b Backspace character (ASCII 8)

\f Form feed character (ASCII 12)

\n Newline character; causes a line break (ASCII 10)

\r Carriage return (CR) character; causes a line break (ASCII 13)

\t Tab character (ASCII 9)

\' Single quotation mark

\" Double quotation mark

\\
Backslash character; necessary when using backslash as a literal character, to prevent \ from being interpreted as the beginning

of an escape sequence

4.5.2.3 Unicode escape sequences

Not all Unicode characters are accessible from a keyboard. In order to include inaccessible characters in a string, we use Unicode escape
sequences.

A Unicode escape sequence starts with a backslash and a lowercase u (i.e., \u) followed by a four-digit hex number that corresponds to the

Unicode character's code point, such as:

\u0040 // The @ sign
\u00A9 // The copyright symbol
\u0041 // The capital letter "A"
\u2014 // The em dash

A code point is a unique identification number that is assigned to each character in the Unicode character set. See Appendix B for a list of the
Unicode code points for Latin 1. Code points for other languages can be found in the character charts at the Unicode Consortium site:

http://www.unicode.org/charts

If you have trouble finding a character amongst the thousands of code points, consult the Unicode Consortium's helpful suggestions:

http://www.unicode.org/unicode/standard/where/

To escape characters from the Latin 1 character set only, we can use a short form for the standard Unicode escape sequence. The short form
consists of the prefix \x followed by a two-digit hexadecimal number that represents the Latin 1 code point of the character. Since Latin 1 code

points are the same as the first 256 Unicode code points, you can still use the reference chart in Appendix B, but simply remove the u00, as in the

following examples:

\u0040 // Unicode escape sequence
\x40 // \x shortcut form
\u00A9 // Unicode...
\xA9 // ...you get the idea

In addition to using Unicode escape sequences, we can insert any character into a string via the built-in fromCharCode() function, described later
in this chapter under Section 4.6.9. The fromCharCode() function accepts a code point as any number-yielding expression, whereas an escape
sequence requires a numeric literal.

Flash Player 5 supported Unicode-style escape sequences, but it did not support Unicode. A Unicode escape
sequence in Flash 5 could be used to specify code points in the Latin 1 or Shift-JIS character sets only, not Unicode
code points. Inserting Unicode code points will not yield the correct character in Flash Player 5 or in .swf files
exported in Flash 5 format.

4.5.3 Entering Multilingual and Special Characters

Though Flash Player 6 fully supports Unicode, the Flash MX authoring tool does not. The Flash MX authoring tool allows entry of characters from
the Latin 1, Shift-JIS, and MacRoman character sets. Other character sets, combined with international keyboards and OS combinations may pose
display problems. Hence, the most flexible way to enter Unicode text in Flash MX is to load it from an external Unicode-formatted text file. On
Windows, Notepad, Word, and WordPad all support saving as Unicode. On Macintosh OS X, TextEdit supports saving as Unicode. The simplest
way to import a Unicode text file is to use the #include directive in concert with the special //!-- UTF8 comment, which effectively

copies and pastes the contents of the file into a Flash movie at compile time. For information on using #include with Unicode, see the

#include directive in the Language Reference. External Unicode text can also be stored as XML or URL-encoded variables. For information

on loading external XML or variable files, see the XML.load() and LoadVars.load() methods in the ActionScript Language Reference.

Note that the specific encoding format supported by #include and LoadVars is UTF-8, while the encoding formats supported by XML are

UTF-8, UTF16-BE, and UTF-16LE (i.e., either big-endian or little-endian). When a file is UTF-16 encoded, it is expected to start with a byte
order marker (BOM) indicating whether the encoding is big-endian or little-endian. Most text editors add the BOM automatically. When no BOM
is present in a file, the encoding is assumed to be UTF-8. When in doubt, you should use UTF-8 encoding, where byte order is not an issue. For
more information on UTFs and BOMs, see:

http://www.unicode.org/unicode/faq/utf_bom.html

To include small amounts of Unicode directly within the Flash MX authoring tool, use either the standard Unicode hex escape sequence
(described earlier in this chapter) or String.fromCharCode() (described later in this chapter).

For example, the following code creates a global variable, euro, that contains the euro sign character, and then inserts that character into the

price_txt text field for display.

_global.euro = "\u20AC";
this.createTextField("price_txt", 1, 100, 100, 200, 20);
price_txt.text = "99 " + euro;

In Flash Player 5, all Unicode (\u) escape sequences must reference a code point in the Latin 1 or Shift-JIS character sets; other Unicode characters
will not display correctly. For example, in Flash Player 5, the code in our example would not display the euro sign character correctly.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.6 Working with Strings

By manipulating strings we can program anything, from a user-input validator to a word-scramble game. With a little ingenuity, we can make neat
visual text effects, text tickers, and other fun stuff.

We can manipulate strings with both operators and built-in functions. String operators can join multiple strings together or compare the characters
of two strings. Built-in functions can examine a string's properties and contents, extract a portion of a string, check a character's code point, create
a character from a code point, change the case of the characters in a string, and even turn a string into a variable or property name.

4.6.1 Joining Strings Together

Joining strings together (creating a new string from two or more strings) is called concatenation. As we've seen, we can concatenate two strings
with the plus operator (+), like this:

"Macromedia" + "Flash"

This line of code yields the single string value "MacromediaFlash". Oops! We forgot to put a space between the words. To add the space, we can
insert it within the quotes that define one of the strings, such as:

"Macromedia " + "Flash" // Yields "Macromedia Flash"

But that's not always practical. In most cases, we don't want to add a space to a company or a product name. So instead, we join three strings
together, the middle one of which is simply an empty space:

"Macromedia" + " " + "Flash" // Also yields "Macromedia Flash"

Note that the space character is not the same as the empty string we discussed earlier, because the empty string has no characters between the
quotes.

Ordinarily, you wouldn't concatenate literal strings, because you could more easily write the result as one string—"Macromedia Flash"—in the
first place. As a more realistic example, we can concatenate variables that contain string data. Consider the following code:

var company = "Macromedia";
var product = "Flash";
// Set the variable sectionTitle to "Macromedia Flash"
var sectionTitle = company + " " + product;

In lines 1 and 2, we store string values in variables. Then, we join these values together with a space. Two of our string values are contained in
variables, and one (the space) is a string literal. This is not a problem; it happens all the time.

Occasionally, we'll want to append characters onto an existing string. For example, we can create a custom welcome message for a web site like
this:

// Hard-code the userName for this example.
// (Normally it would be retrieved via an input text field or from a database.)
var userName = "Karsten";
var greeting = "Welcome to GreatSite.com"; // Our welcome message
greeting = greeting + " " + userName; // Add user's name to welcome message

This gets the job done, but notice that we have to refer to greeting twice in line 2. To be more efficient, we can use the += operator, which

appends the string on its right to the string variable on the left:

var greeting = "Welcome to GreatSite.com"; // Our welcome message
greeting += (" " + username); // Add user's name to welcome message

You may encounter the deprecated Flash 4 string concatenation operators & and add when examining legacy code. The + operator should be used

in Flash 5 and later. See Appendix C for more information on backward compatibility.

4.6.1.1 The concat() function

The concat() function appends characters to a string, similar to +=. Because concat() is a function, it uses the dot operator, like this:

var product = "Macromedia".concat(" Flash");
var sentence = "How are you";
var question = sentence.concat("?")

Take heed, though—unlike +=, the concat() function does not alter the string that it is applied to; it merely returns the concatenated string value.

In order to make use of that value, we must assign it to a variable or other data container. Study the following code closely, so you'll understand the
difference between += and concat():

// Here we mistakenly forget to store the return of concat() in a variable.
var userName = "Karsten";
var greeting = "Welcome to GreatSite.com";
greeting.concat(userName);
trace(greeting); // Displays "Welcome to GreatSite.com"
 // The value of greeting was unaffected by concat()
// Here we properly store the return of concat() in a variable.
finalGreeting = greeting.concat(" " + userName);

The concat() function also accepts multiple arguments (that is, it can combine multiple comma-separated strings into one string):

var userName = "Karsten";
// Sets finalGreeting to "Welcome to GreatSite.com, Karsten!"
finalGreeting = greeting.concat(" ", username, "!");

This code is the same as:

finalGreeting = greeting;
finalGreeting += " " + userName + "!";

4.6.2 Comparing Strings

To check whether two strings are the same, we use the equality (= =) and inequality (!=) operators. We often compare strings when executing

code based on a condition. For example, if a user enters a password, we need to compare his input string with the actual password. The result of
our comparison governs the behavior of our code, such as whether to grant access to the password-restricted functionality.

4.6.2.1 Using the equality (= =) and inequality (!=) operators

The equality operator takes two operands—one on its left and one on its right. For string comparisons, the operands can be string literals or any
variable, array element, object property, or expression that can be converted to a string:

"hello" = = "goodbye" // Compare two string literals
userGuess = = "fat-cheeks" // Compare a variable with a string
userGuess = = password // Compare two variables

Although Flash 4 used different operators for its string and nonstring comparisons, in Flash 5 and later, the = = and != operators can also be

used to compare numbers and other datatypes (see Appendix C). We limit the discussion here to strings. If the operand on the right has the exact
same characters in the exact same order as the operand on the left, the two strings are considered equal, and the result is the Boolean value true.

Two individual characters in ActionScript are considered equal only if they have the same Unicode code point. This means that upper- and

lowercase letters (which have different code points) are not considered equal. Likewise, letters with and without diacritical marks, such as u and u,
have different code points and are not considered equal. Furthermore, ActionScript does not consider any multiglyph character sequences to be
equal to the corresponding single-glyph character. For example, n~ is not considered equal to n (though the two might be considered equal in
other languages).

The following comparisons all evaluate to false:

"olive-orange" = = "olive orange" // Not equal
"nighttime" = = "night time" // Not equal
"Day 1" = = "day 1" // Not equal
"n~" = = "n" // Not equal
"u" = = "u" // Not equal

Because string comparisons result in the Boolean value true or false, we can use them as test expressions within conditional statements and

loops, like this:

if (userGuess = = password) {
 this.gotoAndStop("classifiedContent");
} else {
 this.gotoAndStop("entryFailed");
}

If the expression (userGuess = = password) is true, then the this.gotoAndStop("classifiedContent"); statement will be executed. If the

expression is false, the classified content is skipped, and the user is sent to a frame where an error message is displayed.

We'll learn more about Boolean values later in this chapter, and we'll learn about conditional statements in Chapter 7.

To check whether two strings are not equal, we use the inequality operator, which yields a result opposite to the equality operator. For example,
the following expressions represent the values false and true, respectively:

"Jane" != "Jane" // false, because the two strings are equal
"Jane" != "Biz" // true, because the strings are different

Here we use the inequality operator to take some action only if two strings are not equal:

if (userGender != "boy") {
 // Girls-only code goes here...
}

You may encounter the deprecated eq and ne operators, used for string equality and inequality comparisons in Flash 4, when examining legacy

code. The = = and != operators should be used in Flash 5 and later. See Chapter 5 for coverage of the strict equality and strict inequality

operators, which test equality without performing automatic datatype conversion.

4.6.2.2 Character order and alphabetic comparisons

We can also compare two strings on a character-order basis. We saw earlier that each character has a numeric code point assigned to it and that
these code points are ordered numerically in a character set (in ActionScript's case, that character set is Unicode). We can check which character
comes first in the order using the comparison operators: greater than (>), greater than or equal to (>=), less than (<), and less than or equal to

(<=). Each comparison operator compares two operands:

"a" < "b" // true
"2" > "&" // true
"r" <= "R" // false
"$" >= "@" // false

Much like equality and inequality expressions, comparison expressions yield a Boolean value, true or false, depending on the relationship

of the operands. Each operand can be anything that yields a string value. The comparison operators can also be used to compare other datatypes,
such as numbers, but we limit our discussion here to string operands.

Since the characters A to Z and a to z are grouped in alphabetic sequence in both Unicode and Latin 1, we frequently use character-order

comparisons to determine which of two letters comes first alphabetically in the Latin alphabet. Note, however, that all uppercase letters come
before all lowercase letters in the Latin 1 character set. If we forget this, we're in for some surprising results:

"Z" < "a" // Evaluates to true
"z" < "a" // Evaluates to false
"Cow" < "bird" // Evaluates to true

ActionScript does not use the Unicode Collation Algorithm (UCA) when sorting characters; characters are compared on a strict code-point basis.
The UCA outlines the rules for comparing international characters using regional alphabetization and accounting for case, diacritical marks, and
multicharacter sequences. For more information, see:

http://www.unicode.org/unicode/reports/tr10

Here's a closer look at each comparison operator; in the following descriptions, the comparison character is defined as the first nonidentical
character found in the two operands:

Greater than (>)

Yields true if the comparison character of the left operand appears later in the Unicode character order than the comparison character of

the right operand. If the two operands are identical, > returns false:

"b" > "a" // true
"a" > "b" // false
"ab" > "ac" // false (the second character is the comparison character)
"abc" > "abc" // false (the strings are identical)
"ab" > "a" // true (b is the comparison character)
"A" > "a" // false ("A" comes before "a" in the character order)
Greater than or equal to (>=)

Yields true if the comparison character of the left operand appears later in the character order than the comparison character of the right

operand or if the two operands are identical:
"b" >= "a" // true
"b" >= "b" // true
"b" >= "c" // false
"A" >= "a" // false ("A" and "a" occupy different code points)
Less than (<)

Yields true if the comparison character of the left operand appears earlier in the Unicode character order than the comparison character

of the right operand. If the two operands are identical, < returns false:

"a" < "b" // true
"b" < "a" // false
"az" < "aa" // false (the second character is the comparison character)
Less than or equal to (<=)

Yields true if the comparison character of the left operand appears earlier in the character order than the comparison character of the

right operand or if the two operands are identical:
"a" <= "b" // true
"a" <= "a" // true
"z" <= "a" // false

To determine which of two nonalphabetic characters comes first in the Latin 1 character order (which follows the Unicode order), consult
Appendix B. To determine the Unicode code point for any character, see http://www.unicode.org/charts.

The following example checks whether a character is a letter from the Latin alphabet (as opposed to a number, punctuation mark, or other symbol):

var theChar = "w";
if ((theChar >= "A" && theChar <= "Z") || (theChar >= "a" && theChar <= "z")) {
 trace("The character is in the Latin alphabet.");
}

Notice how the logical OR operator (||) lets us check two conditions at once. We'll study OR in Chapter 5.

You may encounter the deprecated gt, ge, lt, and le operators, used for string comparison in Flash 4, when examining legacy code. The >,

>=, <, and <= operators should be used in Flash 5 and later.

4.6.3 Using Built-in String Functions

With the exception of the concat() function, every tool we've used with strings so far has been an operator. Now we'll see how to use built-in
functions and properties to perform more advanced string manipulation.

To execute a built-in function on a string, we must perform a function call, which takes the form:

string.functionName(arguments)

For example, here we execute the charAt() function on myString:

myString.charAt(2)

Many string functions return a new string derived from the original string. We assign these return values to variables or object properties for future
use, such as:

thirdCharacter = myString.charAt(2);

4.6.4 Character Indexing

Many of the string functions make use of a character's index—its numeric position relative to the string's first character, starting at 0, not 1. The
first character is numbered 0, the second is numbered 1, the third is numbered 2, and so on. For example, in the string "red", the r is at index 0, the
e is at index 1, and the d is at index 2.

Using character indexes we identify portions of a string. We may, for example, instruct the interpreter to "Get the characters from index 3 to index
7," or we may ask it, "What character is at index 5?"

4.6.5 Examining Strings

We can inspect and search within strings using the built-in length property or the charAt(), indexOf() , and lastIndexOf() functions.

4.6.5.1 The length property

The length property tells us how many characters are in a string. Because it is a property, not a function, we don't use parentheses or arguments

when referring to it (the older Flash 4 length() function was deprecated in Flash 5). Here we see the length of several strings:

"Flash".length // length is 5
"skip intro".length // length is 10 (spaces count as characters)
"".length // The empty string contains 0 characters
var axiom = "all that glisters will one day be obsolete";
axiom.length // 42

Because character indexes start at 0 (i.e., they are zero-relative), the index of the last character is always equal to the length of the string minus

one.

A string's length property can be read but not set. We can't make a string longer by doing this:

axiom.length = 100; // Nice try, but it ain't gonna work

4.6.5.2 The charAt() function

We can determine the character at any index within a string using the charAt() function, which takes the form:

string.charAt(index)

where string may be any literal string value or an identifier that contains a string; index is an integer, or an expression that resolves to an

integer, that indicates the position of the character we want to retrieve. The value of index should be between 0 and string.length - 1. If

index does not fall in that range, the empty string is returned. Here are some examples:

"It is 10:34 pm".charAt(1) // Returns "t", the second character
var country = "Canada";
country.charAt(2); // Returns "n", the third character
var x = 4;
fifthLetter = country.charAt(x); // fifthLetter is "d"
lastLetter = country.charAt(country.length - 1); // lastLetter is "a"

4.6.5.3 The indexOf() function

We use the indexOf() function to search for characters in a string. If the string we're searching contains our search sequence, indexOf() returns the
index (i.e., position) of the sequence's first occurrence in the string. Otherwise, it returns the value -1. The general form of indexOf() is:

string.indexOf(character_sequence, start_index)

where string is any literal string value or an identifier that contains a string; character_sequence is the string for which we're

searching, which may be a string literal or an identifier that contains a string; and start_index is the zero-relative starting position of the

search. If start_index is omitted, the search starts at the beginning of string.

Let's use indexOf() to check whether a string contains the character W:

"GWEN!".indexOf("W"); // Returns 1

Yup, W is the second character in "GWEN!", so we get 1, the index of the W character. Remember, character indexes start at 0, so the second
character's index is 1.

What happens if we search for the lowercase character w? Let's see:

"GWEN!".indexOf("w"); // Returns -1

There is no w in "GWEN!", so indexOf() returns -1. The upper- and lowercase versions of a letter are different characters, and indexOf() is case
sensitive!

Now let's make sure that there's an @ sign in an email address:

var email = "daniella2dancethenightaway.ca"; // Oops, someone forgot to press Shift!
// If there's no @ sign, warn the user via the formStatus_txt text field
if (email.indexOf("@") = = -1) {
 formStatus_txt.text = "The email address is not valid.";
}

We don't have to limit our searches to single characters. We can also search for an entire character sequence in a string. Let's look for "Canada" in
the address of a company:

var iceAddress = "St. Clair Avenue, Toronto, Ontario, Canada";
iceAddress.indexOf("Canada"); // Returns 36, the index of the "C" in "Canada"

Notice that indexOf() returns the position of the first character in "Canada". Now let's compare the return value of iceAddress.indexOf("Canada")
to -1, and assign the result to a variable that stores the nationality of the company:

var isCanadian = iceAddress.indexOf("Canada") != -1;

The value of iceAddress.indexOf("Canada") != -1 will be true if iceAddress.indexOf("Canada") does not equal -1 (if "Canada" is found) and

false if iceAddress.indexOf("Canada") does equal -1 (if "Canada" is not found). We then assign that Boolean value to the variable

isCanadian, which we can use to create a country-specific mailing form for North America:

if (isCanadian) {

 mailDesc = "Please enter your postal code.";
} else {
 mailDesc = "Please enter your ZIP code.";
}

The indexOf() function can also help us determine which part of a string we need to extract. We'll see how that works when we learn about the
substring() function.

4.6.5.4 The lastIndexOf() Function

We just saw that the indexOf() function returns the location of a character sequence's first occurrence in a string. The lastIndexOf() function
returns the location of a character sequence's last occurrence in a string, or -1 if the sequence isn't found. The general form of lastIndexOf() is just
like that of indexOf():

string.lastIndexOf(character_sequence, start_index)

The only difference is that since lastIndexOf() searches a string backward, start_index refers to the rightmost character we want included

in our search (not the leftmost). If start_index is omitted, it defaults to string.length - 1 (the last character in the string).

For example:

paradox = "pain is pleasure, pleasure is pain";
paradox.lastIndexOf("pain"); // Returns 30; indexOf() would return 0

The following returns 0 (the index of the first occurrence of the word "pain"), because we started the backward search before the second
occurrence of "pain":

paradox.lastIndexOf("pain",29); // Returns 0

4.6.5.5 No regular expressions

Note that regular expressions (a powerful tool used to recognize patterns in textual data) are not supported in ActionScript by default. However,
developer Pavils Jurjans has made a custom RegExp object available at http://www.jurjans.lv/flash/RegExp.html.

4.6.6 Retrieving Portions of Strings

Sometimes a long string contains a sequence of characters that we'd like to access more conveniently. In the string "Steven Sid Mumby", for
example, we may want to extract the last name, "Mumby". To extract a shorter string (or substring), we use one of these functions: substring(),
substr(), splice(), or split(). We'll cover how each of them work before discussing performance considerations.

4.6.6.1 The substring() function

We use substring() to retrieve a sequence of characters from a string, based on starting and ending character indexes. The substring() function
takes the following form:

string.substring(start_index, end_index)

where string is any literal string value or an identifier that contains a string, start_index is the index of the first character to include in

the substring, and end_index is the character after the last character we want in our substring. If not provided, end_index defaults to

string.length. Hence:

var fullName = "Steven Sid Mumby";
middleName = fullName.substring(7, 10); // Assigns "Sid" to middleName
firstName = fullName.substring(0, 6); // Assigns "Steven" to firstName
lastName = fullName.substring(11); // Assigns "Mumby" to lastName

In reality, we wouldn't know where the first name, middle name, and last name begin and end, so we'd typically look for some delimiter, such as
the space character to help us guess where the word breaks are (see the discussion of the split() function for an easier way to do this). Here we

search for the last space in fullName and assume that the remainder of the string following it is the user's last name:

fullName = "Steven Sid Mumby";
lastSpace = fullName.lastIndexOf(" "); // Returns 10
// Characters from lastSpace+1 to the string's end are presumably the last name
lastName = fullName.substring(lastSpace+1);
trace ("Hello Mr. " + lastName);

If start_index is greater than end_index, the two arguments are swapped automatically before the function executes. Although the

following function invocations yield the same result, you shouldn't make a habit of using substring() with the indexes reversed because it makes
your code harder to understand:

fullName.substring(4, 6); // Returns "en"
fullName.substring(6, 4); // Returns "en"

4.6.6.2 The substr() function

The substr() function extracts a sequence of characters from a string using a starting index and a length (in contrast to substring(), which uses
starting and ending indexes). The general form of substr() is:

string.substr(start_index, subLength)

where string is, as usual, any literal string value or an identifier that contains a string; start_index is the first character to include in the

substring; and subLength specifies how many characters should be included in our string, starting at start_index and counting to the

right. If subLength is omitted, the substring starts at start_index and ends with the last character in the original string. Here are some

examples:

var fullName = "Steven Sid Mumby";
middleName = fullName.substr(7, 3); // Assigns "Sid" to middleName
firstName = fullName.substr(0, 6); // Assigns "Steven" to firstName
lastName = fullName.substr(11); // Assigns "Mumby" to lastName

The start_index can be specified relative to the end of a string by using a negative number. The last character is -1, the second-to-last

character is -2, and so on. So, the preceding three substr() examples could be written as:

middleName = fullName.substr(-9, 3); // Assigns "Sid" to middleName
firstName = fullName.substr(-16, 6); // Assigns "Steven" to firstName
lastName = fullName.substr(-5); // Assigns "Mumby" to lastName

A negative subLength, however, is not allowed.

4.6.6.3 The slice() function

Like substring(), the slice() function retrieves a sequence of characters from a string, based on starting and ending character indexes. While
substring() can specify only the indexes relative to the beginning of the original string, slice() can specify them relative to the string's beginning
or end.

The slice() function takes the following form:

string.slice(start_index, end_index)

where string is any literal string value or an identifier that contains a string and start_index is the first character to include in the

substring. If start_index is a positive integer, it is a normal character index; if start_index is a negative integer, the equivalent

character index is determined by counting backward from the end of the string (i.e., string.length + start_index). Finally,

end_index is the character after the last character we want in our substring. If end_index is not provided, it defaults to

string.length. If end_index is negative, the equivalent character index is determined by counting backward from the end of the string

(i.e., string.length + end_index).

Using nonnegative indexes with slice() works just like substring(). When using negative indexes, remember that you are not getting a substring
with reversed characters (i.e., you are not getting a string from end_index to start_index, in that order). You are merely specifying the

indexes relative to the end of the original string. Remember also that the last character of the string is -1, and the end_index argument

specifies the character after the last character in your substring, so it's impossible to refer to the last character in the original string using a negative
end_index. Take a careful look at how we use negative indexes to extract the following substrings:

var fullName = "Steven Sid Mumby";
middleName = fullName.slice(-9, -6); // Assigns "Sid" to middleName.
firstName = fullName.slice(-16, -10); // Assigns "Steven" to firstName.
lastName = fullName.slice(-5, -1); // Assigns "Mumb" to lastName: not what
 // we want, but the best we can do with
 // a negative end_index.
lastName = fullName.slice(-5, 16) // Assigns "Mumby" to lastName. Notice how
 // we combine negative and positive indexes.
lastName = fullName.slice(-5) // Also assigns "Mumby" to lastName.

The following code uses negative character indexes to check if the most recent letters entered into the text field guess_txt match one of the

special words in the specialWords array. Note that the example uses the TextField object's onChanged() handler to detect user input and

the String.toLowerCase() method to perform case-insensitive string comparison. For details, see TextField.onChanged() and
String.toLowerCase() in the Language Reference.

var specialWords = ["MEGAN", "SING", "SUNDAY"];

guess_txt.onChanged = function () {
 for (var i=0; i < specialWords.length; i++) {
 var guess = this.text.slice(-specialWords[i].length).toLowerCase();
 var special = specialWords[i].toLowerCase();
 if (guess = = special) {
 trace("The user entered a special word!");
 break;
 }
 }
}

4.6.6.4 The split() function

So far, the string-extraction functions we've seen have retrieved only one character sequence at a time. If we want to rip out a bunch of substrings
in one fell swoop, we can use the powerful split() function. (Because the split() function uses arrays, you may want to skip this function for now
and come back after you've read Chapter 11.)

The split() function breaks a string into a series of substrings and returns those substrings in an array. The split() function takes the following
form:

string.split(delimiter)

where string is any literal string value or an identifier that contains a string, and delimiter is the character or characters that indicate

where string should be split. Commas, spaces, and tabs are typical delimiters. To break up a string at each comma, for example, we use:

theString.split(",")

One of the neat tricks we can pull with split() is to break a sentence up into individual words. In our coverage of the substring(), substr(), and
slice() functions, we had to grab each name from the string "Steven Sid Mumby" manually. Look how much easier things are when we use split()
with a space (" ") as the delimiter:

var fullName = "Steven Sid Mumby";
var names = fullName.split(" "); // Man, that's easy!
// Now assign the names in our array to individual variables
firstName = names[0];

middleName = names[1];
lastName = names[2];

4.6.6.5 Flash 5 string extraction performance issues

Flash 5's substr() and slice() functions are actually implemented as veneer atop the old Flash 4 substring() function and, therefore, take
marginally longer to execute. The speed difference is on the order of milliseconds but can be noticeable in intensive string processing. When
carrying out highly repetitive operations in Flash 5, use Flash 4's substring() function for optimal performance, as follows:

fullName = "Steven Sid Mumby";
// Assign "Sid" to middleName using Flash 5 substr() function
middleName = fullName.substr(7, 3);
// Assign "Sid" to middleName using Flash 4 substring() function.
// Note that character indexes start at 1 with Flash 4's substring().
middleName = substring(fullname, 8, 3);

For the benefit of Flash 5 developers, Branden Hall has rewritten the methods of the String class to improve their speed. See:

http://chattyfig.figleaf.com/~bhall/code/string.as

In Flash Player 6, string performance was greatly improved, so this workaround is not necessary.

4.6.7 Combining String Examination with Substring Extraction

We've seen how to search for characters in a string and how to extract characters from a string. These two operations are most powerful when we
put them together.

Most of the examples we've seen so far use literal expressions as arguments, like this:

var msg = "Welcome to my website!";
var firstWord = msg.substring(0, 7); // 0 and 7 are numeric literals

That's a decent demonstration of the way substring() works, but it doesn't represent the typical real-world use of substring(). More often, we don't
know the content of the string in advance and we must generate our arguments dynamically. For example, instead of saying something static like,
"Get me the substring from index 0 to index 7," we usually say something dynamic like, "Get me the substring starting from the first character and
ending at the first occurrence of a space in this string." This more flexible approach doesn't require us to know the content of a string in advance.
Here we extract the first word of the variable msg, by combining substring() with indexOf():

var firstWord = msg.substring(0, msg.indexOf(" "));

The expression msg.indexOf(" ") evaluates to the numeric index of the first space in msg. Our technique will work regardless of the space's

location. This allows us to work with strings that change while our program is running and saves us from counting characters, which is prone to
error.

The combinations of string examination and string extraction are practically endless. Example 4-3 extracts the second word of the msg variable

without hard-coding the character indexes. In natural language, we want to "extract a substring from msg, starting with the character after the first

occurrence of a space and ending with the character before the second occurrence of a space." We store the location of the first and second spaces
as variables, making the code easier to follow.

Example 4-3. Retrieving the second word of a string

var msg = "Welcome to my website!";
firstSpace = msg.indexOf(" "); // Find the first space
secondSpace = msg.indexOf(" ", firstSpace + 1); // Find the next space
// Now extract the second word
var secondWord = msg.substring(firstSpace + 1, secondSpace);

4.6.8 Character Case Conversion

We can convert a string to upper- or lowercase using the built-in toUpperCase() and toLowerCase() functions. These functions are typically used
to display a string with nice formatting or to compare strings with different cases.

4.6.8.1 The toUpperCase() function

The toUpperCase() function converts all of the characters in a string to uppercase (i.e., capital letters) and returns the converted version. If no
uppercase version of a given character exists, the character is returned unchanged. The general form of toUpperCase() is:

string.toUpperCase()

where string is any literal string value or an identifier that contains a string. Here are some examples:

"listen to me".toUpperCase(); // Yields the string "LISTEN TO ME"
var msg1 = "Your Final Score: 234";
var msg2 = msg1.toUpperCase(); // Set msg2 to "YOUR FINAL SCORE: 234"

Note that toUpperCase() does not affect the string on which it's called; it merely returns an uppercase copy of that string. The following example
shows the difference:

var msg = "Forgive me, I forgot to bring my spectacles.";
msg.toUpperCase();
trace(msg); // Displays: "Forgive me, I forgot to bring my spectacles."
 // msg was unaffected by the toUpperCase() invocation.

4.6.8.2 The toLowerCase() function

The toLowerCase() function changes the characters in a string from upper- to lowercase. For example:

// Set normal to "this sentence has mixed caps!"
normal = "ThiS SenTencE Has MixED CaPs!".toLowerCase();

To compare two strings in a case-insensitive manner, first convert them both to the same case, such as:

if (userEntry.toLowerCase() = = password.toLowerCase()) {
 // They get secret access
}

We can use toUpperCase() and toLowerCase() together to capitalize the first letter of a word, as follows:

var word = "fLASH";
var firstLetter = word.charAt(0).toUpperCase();
var remainderOfWord = word.substring(1).toLowerCase();
initialCapWord = firstLetter + remainderOfWord;
trace(initialCapWord); // Displays: Flash

Example 4-4 shows how we can have a little fun using the case-conversion and string functions to animate text in a text field. It adds a new
method, caseAni(), to all text fields. Attach the script to frame 1 of a new movie and see what happens. Note that the code uses several advanced
techniques that we haven't encountered yet. Come back and study it again once you've read Chapter 9 and Chapter 12.

Example 4-4. Character case animation

// Add a new caseAni() method to the built-in TextField class.
TextField.prototype.caseAni = function (msg) {
 // Store a reference to the current text field in tf. We'll need to
 // access it from the nested function moveUppercaseLetter().
 var tf = this;
 tf.upperIndex = 0; // The current location of the uppercase letter.
 tf.msg = msg; // The message to animate.

 // Start the animation running by calling
 // the moveUppercaseLetter() function every 100 milliseconds.
 var id = setInterval(moveUppercaseLetter, 100);

 // Define the nested moveUppercaseLetter() function. Here's where we do
 // all our string manipulation.
 function moveUppercaseLetter () {
 // Chop the msg string into three pieces and make the middle one uppercase.
 var part1 = tf.msg.slice(0, tf.upperIndex);
 var part2 = tf.msg.charAt(tf.upperIndex);
 var part2 = part2.toUpperCase();
 var part3 = tf.msg.slice(tf.upperIndex+1, tf.msg.length);
 tf.msg = part1 + part2 + part3;

 // Display the formatted msg string.
 tf.text = tf.msg;

 // Reset the string for next time.
 tf.msg = tf.msg.toLowerCase();

 // Move the uppercase letter over one to the right.
 tf.upperIndex++;

 // If the uppercase letter is at the end of the string, move
 // it back to the beginning.
 if (tf.upperIndex > (tf.msg.length - 1)) {
 tf.upperIndex = 0;
 }
 }
}

// Try it out on a text field instance!
this.createTextField("msgOutput_txt", 1, 0, 0, 300, 30);
// Use a monospaced font...
msgOutput_txt.setNewTextFormat(new TextFormat("_typewriter", 16));
msgOutput_txt.caseAni("my what fat cheeks you have");

4.6.9 Character Code Functions

In Section 4.5.2.3, we saw how to insert characters into a string using escape sequences. ActionScript also includes two built-in functions for
working with character code points in strings: fromCharCode() and charCodeAt().

4.6.9.1 The fromCharCode() function

We can create any character or series of characters by invoking the fromCharCode() function. Unlike the other string functions, fromCharCode()
is not called on a string literal or an identifier that contains a string; it is called as a method of the built-in String class, like this:

String.fromCharCode(code_ point1, code_ point2, ...)

Every fromCharCode() call starts with String.fromCharCode. Then one or more code points (representing the characters we want to create) are
supplied as arguments. Unlike Unicode escape sequences, which must be in hex, the code points in a fromCharCode() call can be expressed in
either decimal or hex. If you're unfamiliar with hex numbers you may, therefore, find fromCharCode() easier to use than Unicode escape
sequences. For values less than 128, fromCharCode() essentially converts a numeric code to its equivalent ASCII character. Here are some
examples:

// Set lastName to "moock"

lastName = String.fromCharCode(109, 111, 111, 99, 107);
// For comparison, let's do the same thing with Unicode escape sequences
lastName = "\u006D\u006F\u006F\u0063\u006B";
// Make a copyright symbol
copyNotice = String.fromCharCode(169) + " 2003";
// Make a euro sign
price = "5.99 " + String.fromCharCode(0x20AC);

You may encounter the deprecated Flash 4 character-creation functions, chr() and mbchr(), when examining legacy code. The fromCharCode()
function should be used in Flash 5 and later.

4.6.9.2 The charCodeAt() function

To determine the code point of any character in a string, we use the charCodeAt() function, which takes the following form:

string.charCodeAt(index)

where string is any literal string value or an identifier that contains a string, and index is the position of the character we're examining. The

charCodeAt() function returns a decimal integer that matches the Unicode code point of the character at index. For values less than 128,

charCodeAt() essentially converts a character to its equivalent ASCII code. For example:

var msg = "A is the first letter of the Latin alphabet.";
trace(msg.charCodeAt(0)); // Displays: 65 (the code point for "A")
trace(msg.charCodeAt(1)); // Displays: 32 (the code point for a space)

We normally use charCodeAt() to perform string handling with characters we can't type directly using a keyboard. For example, in the following
code we check whether a character is the copyright symbol:

msg = String.fromCharCode(169) + " 2003";
if (msg.charCodeAt(0) = = 169) {
 trace("The first character of msg is a copyright symbol.");
}

You may encounter the deprecated Flash 4 code point functions, ord() and mbord(), when examining legacy code. The charCodeAt() function
should be used in Flash 5 and later.

4.6.10 Executing Code in a String with eval

In ActionScript, the eval() function converts a string to an identifier (i.e., a variable name). But to thoroughly understand the ActionScript eval()
function, you must first understand how JavaScript's analogous eval() function works. In JavaScript, eval() is a built-in function that converts any
string to a block of code and then executes that block of code. The syntax for JavaScript's eval() is:

eval(string)

When eval() is executed in JavaScript, the interpreter converts string to executable code, runs that code, and returns the resulting value (if a

value is generated). Consider the following JavaScript examples:

eval("parseInt('1.5')"); // Calls the parseInt() function, which returns 1
eval("var x = 5"); // Creates a new variable named x and sets its value to 5

If you've never seen eval() before, you may be thinking, "When would I ever have a string with code in it? Why not just write the code out?"
Answer: because eval() lets you dynamically generate code when you need to. For example, eval() could be used to programmatically create
functions to be assigned as event handler callbacks for a series of similar objects.

ActionScript's eval() function supports a small subset of its JavaScript cousin's functionality: it works only when its argument is an identifier.
Hence, ActionScript's eval() function can only retrieve the data associated with the specified identifier. For example:

var num = 1;
var person1 = "Eugene";

trace (eval("person" + num)); // Displays: "Eugene"

Even in this pared-back form, eval() is quite useful. Here we generate a series of movie clips dynamically with a loop. We place our clips in an
array by using eval() to refer to them:

for (var i = 0; i < 10; i++) {
 duplicateMovieClip("ballParent", "ball" + i, i);
 balls[i] = eval("ball" + i);
}

Note, however, that in nearly all cases eval() can be replaced by the array-access operator to generate dynamic clip references. For example:

duplicateMovieClip("ballParent", "ball" + i , i);
balls[ballCount] = _root ["ball" + i];

The eval() function was used frequently in Flash 4 to generate variables dynamically because support for arrays wasn't available until Flash 5.
Such uses of eval() should be rewritten using arrays when upgrading legacy code.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.7 The Boolean Type

Boolean data is used to represent the logical states of truth and falsehood. Hence there are only two legal values of
the boolean datatype: true and false. Notice that there are no quotation marks around the words true and

false because Boolean data is not string data. The keywords true and false are reserved primitive data

values and cannot be used as variable names or identifiers.

We use Boolean values with conditional expressions to add logic to the execution of code. For example, we might
assign the value true to a variable that tracks the status of a spaceship's firepower:

shipHasDoubleShots = true;

By comparing shipHasDoubleShots to the Boolean literal true, we can decide how much damage to

inflict when a shot hits its target:

if (shipHasDoubleShots = = true) {
 // Shoot them with twice the power.
 // This will be reached if the comparison is true.
} else {
 // Shoot them with a single dose.
 // This will be reached if the comparison is false.
}

When the double-shot power runs out, we can set the variable to false:

shipHasDoubleShots = false;

This will cause the larger expression shipHasDoubleShots = = true to become false, causing the single-

damage-dose script to execute when a shot hits its target.

All comparison operators express results with Boolean values. When we ask, "Is the user's guess the same as the
password?" the answer is given as a Boolean:

// userGuess = = password will yield either true or false
if (userGuess = = password) {
 gotoAndStop("secretContent");
}

And when we ask, "Is the movie clip rotated more than 90 degrees?" the answer, again, is a Boolean:

// theClip_mc._rotation > 90 will yield either true or false
if (theClip_mc._rotation > 90) {
 // Fade out the clip if it's rotated past 90 degrees
 theClip_mc._alpha = 50;
}

Many internal ActionScript properties and methods describe the Flash movie environment in Boolean terms. For
example, if we ask, "Is the spacebar being pressed?" the interpreter answers with a Boolean: true (yes) or

false (no):

// Key.isDown() is a function that returns either true or false

if (Key.isDown(Key.SPACE)) {
 // Spacebar is being pressed, so make our spaceship fire
}

In Chapter 5, we'll learn how to phrase complex logical expressions using Boolean operators.

4.7.1 Using Boolean Values to Build a Preloader

Let's consider an applied Boolean example. Suppose we have a document with 500 frames and lots of content. The
beginning of our opening sequence, frame 20, is labeled intro. We put the following code on frame 2 of that

movie's main timeline:

if (this._framesloaded >= this._totalframes) {
 this.gotoAndPlay("intro");
} else {
 this.gotoAndPlay(1);
}

When the movie plays, the playhead passes frame 1 and enters frame 2. The ActionScript interpreter reaches the
conditional statement and evaluates the Boolean expression within it: this._framesloaded >= this._totalframes.
While the movie is still loading, this._framesloaded is less than the total number of frames in our

movie (this._totalframes). If this._framesloaded is not greater than or equal to this.
_totalframes, then the expression this._framesloaded >= this._totalframes, yields false. Therefore, the

statement this.gotoAndPlay("intro") is skipped and the statement this.gotoAndPlay(1) is executed instead. The
this.gotoAndPlay(1) statement sends the playhead back to frame 1 and plays the movie. When the playhead enters
frame 2, our code is executed again. The playhead keeps looping in this way until the expression
this._framesloaded >= this._totalframes yields the value true (i.e., until all the frames have loaded). At that

point, the statement this.gotoAndPlay("intro"), which sends the playhead to the label intro, is executed. There

we can safely start our movie, now that all of the frames have loaded.

Whammo! You've created a preloader based on a Boolean expression. This is solid stuff. We'll learn much more
about conditionals and controlling movies with Booleans in Chapter 7.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.8 Undefined

Most of the datatypes we've explored so far have been used for storing and manipulating information. The
undefined datatype has a more narrow purpose: it is used to check whether a variable exists or whether a variable
has been assigned a value yet. The undefined datatype has only one legal value, the primitive value undefined.

When we first define a variable, it is assigned the value undefined by default:

var velocity;

To the interpreter, the preceding statement reads:

var velocity = undefined;

To check whether a variable has a value, we can compare the variable to undefined, as in:

if (myVariable != = undefined) {
 // myVariable has a value, so proceed as desired...
}

To remove a variable or object property, you should use the delete operator rather than assigning the value
undefined to the variable or property. Assigning undefined to a property leaves the property intact but

merely sets its value to undefined. Deleting the property removes it entirely.

Note that, in ActionScript, an undefined value is converted to the empty string when used as a string. For

example, in the following code we create two variables, firstName and lastName, which we concatenate

together and assign to the variable fullName. The variable firstName has no value (the value is

undefined), so it converts to "".

var firstName;
var lastName = "Moock";
var fullName = firstName + lastName; // Sets fullName to "Moock"

In JavaScript, the undefined value is converted to the string "undefined" when used in a string context, so the

above code in JavaScript would assign the value "undefinedMoock" to fullName. ActionScript converts

undefined to "" for the sake of backward compatibility. However, in Flash MX and later, when an

undefined value is sent to the Output window via the trace() function, the word "undefined" appears (this

makes undefined easier to detect during debugging).

Because there was no undefined type in Flash 4 ActionScript, many Flash 4 programs used the empty string to
check whether a variable had a useful value. Code like this was common in Flash 4:

if (myVar eq "") {
 // Don't do anything yet: myVar is undefined
}

If Flash converted undefined to anything other than "" in a string context, old code such as this wouldn't

work in Flash Player 5 and later.

Note that ActionScript returns undefined for both variables that do not exist and variables that have been

declared but have no value. This is also a departure from JavaScript, where references to variables that do not exist

cause an error.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.9 Null

Intellectually, the null type is nearly identical to the undefined type. Like the undefined datatype, the null datatype
is used to represent a lack of data and has only one legal value, the primitive value null. However, the null
value is not assigned by the interpreter automatically; it must be assigned by us deliberately.

We assign null to a variable, array element, or object property to indicate that the specified data container does

not contain a legal number, string, Boolean, array, or object value. For example, we might assign an initial value of
null to an object property to indicate that it exists but has not yet been assigned a useful value.

To remove a variable or object property, you should use the delete operator rather than assigning the value null
to the variable or property.

Note that null compares equal only to itself and undefined:

null = = undefined; // true
null = = null; // true

To guarantee that a variable or property contains null (rather than undefined), check its datatype using the

typeof operator:

var x = null;
if (typeof x = = "null") {
 trace("x is null");
}

Alternatively, as of Flash Player 6, we can use the strict equality operator (= = =), as follows:

if (x = = = null) {
 trace("x is null");
}

Though null and undefined are similar, their roles in ActionScript programs are distinct. The null value

is used by programmers to indicate that a variable or property has been left undetermined intentionally. By contrast,
the undefined value is assigned by the interpreter automatically whenever no other value is available.

Consider a photo album application that displays a series of images sequentially. The application is initialized with
title and description variables. If we choose not to bother with a description for a particular album, we

set description to null.

var title = "My Holiday Photos";
var description = null;

The ensuing initialization code can then tell that description was omitted intentionally.

// If there's a valid description...
if (description != = null) {
 // ...create description text field.
}

If we use undefined instead of null:

var title = "My Holiday Photos";
var description = undefined;

the initialization code has no way to tell whether the interpreter set description's value automatically or we

set it intentionally. The distinction is subtle, but it is valuable in large programs. Here we expand our earlier
initialization code to display an error message when no description value has been set.

// If there's a valid description...
if (description = = = undefined) {
 trace("WARNING: No description value was specified!");
} else if (description != = = null) {
 // ...create description text field.
}

By distinguishing between undefined and null in our initialization code, we can provide accurate

debugging feedback and catch potential programmer oversight. For another example of real-world null usage,

see the TextFormat class's constructor parameters in the Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 4. Primitive Datatypes

4.10 Onward!

You've learned a lot more so far than you may have realized. We've built a solid foundation for the advanced topics
coming in later chapters. If you haven't mastered all the details yet, don't worry. Your training will come back to
you when you need it. Keep the faith during the next chapter, in which you'll learn how to merge and transform
data. Following that, we'll get into some more fully formed applied examples.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 5. Operators

An operator is a symbol or keyword that manipulates, combines, or transforms data. If you're new to programming,
you'll notice that some mathematical operators, such as + (addition) and - (subtraction), are very familiar. In other

cases, you'll have to learn special programming syntax, even if the concepts are familiar. For example, to multiply
two numbers, ActionScript uses the symbol * (the multiplication operator) instead of the x typically taught in grade
school. For example, this multiplies 5 times 6:

5 * 6;

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.1 General Features of Operators

Though each operator has its own specialized task, all operators share a number of general characteristics. Before we consider the operators
individually, let's see how they behave generally.

5.1.1 Operators and Expressions

Operators perform actions using the data values (operands) supplied. For example, in the operation 5 * 6, the numbers 5 and 6 are the operands

of the multiplication operator (*). The operands can be any kind of expression; for example:

total = player1score + bonusScore; // Operands are variables
answer = (x+y) - (Math.PI * radius * radius); // Operands are complex expressions

Observe in the second example that both the left and right operands of the - operator are expressions that themselves involve other operations.
We can use complex expressions to create even larger expressions, such as:

answer =((x+y) - (Math.PI * radius * radius)) / 2 // Divide the whole thing by 2

When expressions become very large, consider using variables to hold interim results for both convenience and clarity. Remember to name your
variables descriptively, such as:

var radius = 10;
var height = 25;
var circleArea = (Math.PI * radius * radius);
var cylinderVolume = circleArea * height;

5.1.2 Number of Operands

Operators are sometimes categorized according to how many operands they take (i.e., require or operate on). Some ActionScript operators take
one operand, some take two, and one even takes three:

-x // One operand
x * y // Two operands
(x = = y) ? "true result" : "false result" // Three operands

Single-operand operators are called unary operators; operators that take two operands are called binary operators; operators that take three
operands are called ternary operators. For our purposes, we'll look at operators according to what they do, not the number of operands they take.

5.1.3 Operator Precedence

Operators' precedence determines which operation is performed first in an expression with multiple operators. For example, when multiplication
and addition occur in the same expression, multiplication is performed first:

4 + 5 * 6 // Yields 34, because 4 + 30 = 34

The expression 4 + 5 * 6 is evaluated as 4 + (5 * 6) because the * operator has higher precedence than the + operator. Similarly, when

less-than (<) and concatenation (+) operators occur in the same expression, concatenation occurs first. For example, this statement displays

false in the Output window (which is a surprise if you don't know the precedence of the < and + operators):

trace("result: " + "a" < "b");

First, "result: " is joined with "a", creating the new string "result: a". This new string is then compared with "b", which yields false.

Parentheses should be added to force the intended order of operation, as follows:

trace("result: " + ("a" < "b")); // Displays: result: true

When in doubt, or to ensure a different order of operation, use parentheses, which have the highest precedence:

(4 + 5) * 6 // Yields 54, because 9 * 6 = 54

Even if not strictly necessary, parentheses can make a complicated expression more readable. The expression:

// x is greater than y, or y equals z
x > y || y = = z

may be difficult to comprehend without consulting a precedence table. It's a lot easier to read with parentheses added:

(x > y) || (y = = z) // Much better!

Table 5-1 shows the precedence of each operator. Operators with the highest precedence (at the top of the table) are executed first. Operators
with the same precedence are performed in the order they appear in the expression, usually from left to right, unless the associativity is right to
left (see the Associativity column in Table 5-1). See Section 5.1.4 for details.

Table 5-1. ActionScript operator associativity and precedence

Operator Precedence Associativity Description

. 15 left to right object property access

[] 15 left to right array element access

() 15 left to right parentheses

function() 15 left to right function call

x++ 14 left to right postfix increment

x-- 14 left to right postfix decrement

++x 14 right to left prefix increment

--x 14 right to left prefix decrement

- 14 right to left unary negation

~ 14 right to left bitwise NOT

! 14 right to left logical NOT

new 14 right to left create object/array

delete 14 right to left remove object/property/array element

typeof 14 right to left determine datatype

void 14 right to left return undefined value

* 13 left to right multiply

/ 13 left to right divide

% 13 left to right modulo division

+ 12 left to right addition or string concatenation

- 12 left to right subtraction

<< 11 left to right bitwise left shift

>> 11 left to right bitwise signed right shift

>>> 11 left to right bitwise unsigned right shift

< 10 left to right less than

<= 10 left to right less than or equal to

> 10 left to right greater than

>= 10 left to right greater than or equal to

instanceof 10 left to right check an object's class

= = 9 left to right equality

!= 9 left to right not equal to

= = = 9 left to right strict equality

!= = 9 left to right strict inequality

& 8 left to right bitwise AND

^ 7 left to right bitwise XOR

| 6 left to right bitwise OR

&& 5 left to right logical AND

|| 4 left to right logical OR

?: 3 right to left conditional

= 2 right to left assignment

+= 2 right to left add and reassign

-= 2 right to left subtract and reassign

*= 2 right to left multiply and reassign

/= 2 right to left divide and reassign

%= 2 right to left modulo division and reassign

<<= 2 right to left bit-shift left and reassign

>>= 2 right to left bit-shift right and reassign

>>>= 2 right to left bit-shift right (unsigned) and reassign

&= 2 right to left bitwise AND and reassign

^= 2 right to left bitwise XOR and reassign

|= 2 right to left bitwise OR and reassign

, 1 left to right comma

5.1.4 Operator Associativity

As we've just seen, operator precedence indicates the pecking order of operators: those with a higher precedence are executed before those with a
lower precedence. But what happens when multiple operators occur together and have the same level of precedence? In such a case, we apply the
rules of operator associativity, which indicate the direction of an operation. Operators are either left-associative (performed left to right) or right-
associative (performed right to left). For example, consider this expression:

a = b * c / d

The * and / operators are left-associative, so the * operation on the left (b * c) is performed first. The preceding example is equivalent to:

a = (b * c) / d

In contrast, the = (assignment) operator is right-associative, so the expression:

a = b = c = d

says, "assign d to c, then assign c to b, then assign b to a," as in:

a = (b = (c = d))

Operator associativity is fairly intuitive, but if you're getting an unexpected value from a complex expression, consult Table 5-1 or add extra
parentheses. We'll note cases in which associativity is a common source of errors throughout the remainder of this chapter.

5.1.5 Datatypes and Operators

Some operators accept varying datatypes as operands. Depending on the datatype of an operand, the effect of an operator may change. The +
operator, for example, performs addition when used with numeric operands, but it performs concatenation when used with string operands. If
operands are of different datatypes or of the wrong type, ActionScript will perform type conversion according to the rules described in Chapter 3,
which can have serious effects on your code.

The remainder of this chapter offers reference-style descriptions of each ActionScript operator. Newer programmers may wish to skim past topics
that have not yet been covered in detail.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.2 The Assignment Operator

We've already used the assignment operator frequently. It can place a value into a variable, array element, or object property.
Assignment operations take the form:

identifier = expression

The identifier is the variable, array element, or object property into which we want to place our value. The expression
represents the value (i.e., data) that we want to store. For example:

x = 4; // Assign 4 to the variable x
x = y; // Assign the value of y to the variable x
name = "dj duong"; // Assign a string to the variable name
products[3] = "Flash"; // Assign a string to the 4th element of products
 // (array indices are zero-relative)
// Assign a number to the area property of square
square.area = square.width * 2;

We can also perform multiple assignment operations at once, like this:

x = y = 4; // Set both x and y to 4

Remember that assignment operations have right-to-left associativity, so 4 is assigned first to y, and then the value of y (which is

now 4) is assigned to x.

The left side of an assignment operation can never involve an operation. For example, this code is common in mathematics, but it is
illegal in programming:

x + y = 10; // ERROR!

As we'll see later, equality comparisons between two expressions are performed with the = = and != operators. For example, the

following checks whether x + y is equal to 10:

var x = 1;
var y = 8;
trace(x + y = = 10); // Displays: false

Again, this is not quite the same as mathematics, where x + y = 10 asserts that x + y is equal to 10, rather than checking whether that
is the case.

5.2.1 Combining Operations with Assignment

Assignment operations are often used to set a variable's new value, based in part on its old value. For example:

counter = counter + 10; // Add 10 to the current value of counter
xPosition = xPosition + xVelocity; // Add xVelocity to xPosition
score = score / 2; // Divide score by two

Don't confuse an equals sign, which is used to assign a value to a variable, with the algebraic equals sign.
For an explanation of the difference, see Section 2.2 in Chapter 2.

ActionScript supports a shorthand version of assignment, called compound assignment,that combines operators such as +, -, and /
with the assignment operator to form a single "calculate-while-assigning" operation. So, to combine addition with assignment we use
+=. To combine division with assignment, we use /=. Hence, the previous examples can be written more succinctly with compound
assignment operators as follows:

counter += 10;
xPosition += xVelocity;
score /= 2;

Refer to Table 5-1 for a list of the compound assignment operators.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.3 Arithmetic Operators

The arithmetic operators perform mathematical operations on numeric operands. If you use nonnumeric operands with most of
the arithmetic operators, ActionScript attempts to convert the foreign data to a number. For example, false - true
evaluates to -1, because false converts to the numeric value 0 and true converts to 1. Similarly, the expression "3" *

"5" results in the number 15, because the strings "3" and "5" are converted to the numbers 3 and 5 before the multiplication is

performed. The + operator, however, presents a special case: when used with at least one string operand, it performs string

concatenation, not mathematical addition.

If an attempt to convert a nonnumeric operand to a number fails, the operand is set to the special numeric value NaN. This

results in the entire operation yielding NaN. Refer to Table 3-1 for details on numeric conversion.

5.3.1 Addition

The addition operator returns the sum of its two operands:

operand1 + operand2

In order to return a meaningful mathematical result, the operands of + should be expressions that yield a numeric value, such

as:

234 + 5 // Returns 239
(2 * 3 * 4) + 5 // Returns 29

The addition operator is unique among the arithmetic operators in that if one or both of its operands are strings, it performs as a
string concatenation. Refer to Section 4.6.1 in Chapter 4.

5.3.2 Increment

A handy variation on addition, the increment operator accepts a single operand and simply adds 1 to its current value.
Increment has two general forms, called prefix increment and postfix increment, as follows:

++operand // Prefix increment
operand++ // Postfix increment

In both forms, increment adds 1 to a variable, array element, or object property, such as:

var x = 1;
x = x + 1; // x is now 2 (the verbose syntax)
++x; // Add 1 using the prefix operator: x is now 3
x++; // Add 1 using the postfix operator: x is now 4

When used in isolation, there is no difference between prefix and postfix increment, although postfix increment is more
common by convention.

However, when used in larger expressions, prefix and postfix increment have different behaviors: prefix increment adds 1 to
operand and returns the value of operand + 1; postfix increment adds 1 to operand but returns the value of

operand itself, not operand + 1:

var x = 1;

// Prefix increment: x is incremented first, so y is set to 2
var y = ++x;

var x = 1;
// Postfix increment: y is set to 1, then x is incremented to 2
var y = x++;

We'll revisit the increment operators in Chapter 8.

5.3.3 Subtraction

The subtraction operator subtracts the second operand from the first operand. It takes the general form:

operand1 - operand2

The operands can be any valid expression. If either operand is not of the number type, and conversion to a number fails, the
operation yields NaN:

234 - 5 // Yields 229
5 - 234 // Yields -229

To determine the absolute (i.e., positive) difference between two numbers, see the Math.abs() method in the ActionScript
Language Reference.

5.3.4 Decrement

The decrement operator is analogous to the increment operator, but it subtracts 1 from its operand's current value instead of
adding 1. Like increment, decrement has two general forms, called prefix decrement and postfix decrement, as follows:

--operand // Prefix decrement
operand-- // Postfix decrement

In both forms, it is used to subtract 1 from a variable, array element, or object property. Prefix decrement subtracts 1 from
operand and returns the value of operand - 1; postfix decrement subtracts 1 from operand but returns the value of

operand itself, not operand - 1. As with the increment operators, the form of decrement used matters only if the

operand is part of a larger expression:

var x = 10;
var y;
x = x - 1; // x is now 9
--x; // x is now 8 (prefix decrement)
x--; // x is now 7 (postfix decrement)
y = --x; // y is now 6, x is now 6 (prefix decrement)
y = x--; // y is still 6, x is now 5 (postfix decrement)

5.3.5 Multiplication

The multiplication operator multiplies two numeric operands and returns the result (i.e., the product). Multiplication takes the
general form:

operand1 * operand2

The operands can be any valid expression. The * symbol used for multiplication is in lieu of the x ("times") symbol used in
traditional mathematics. If either operand is not of the number type, and conversion to a number fails, the operation yields
NaN:

6 * 5 // Returns 30

5.3.6 Division

The division operator divides the first operand (the numerator) by the second operand (the divisor) and returns the result (the
quotient). Division takes the general form:

operand1 / operand2

The operands must be valid numeric expressions. The / symbol used for division is in lieu of the ÷ symbol used in traditional

mathematics. If either operand is not of the number type, and conversion to a number fails, the operation yields NaN. If it is

necessary to express a fractional result, the quotient is a floating-point number, even if both operands are integers:

20 / 5 // Returns 4
5 / 4 // Returns 1.25; In other languages, the result may be 1, not 1.25

Note that some other languages, such as Director's Lingo language, return an integer unless at least one operand is a float.

If the divisor (denominator) is zero:

The result is NaN if the numerator is zero or nonnumeric

The result is Infinity if the numerator is a positive number

The result is -Infinity if the numerator is a negative number

Here are some examples:

trace (0/0); // NaN
trace ("a"/0); // NaN
trace (1/0); // Infinity
trace (-1/0); // -Infinity

If there is any possibility of the divisor being zero, check its value before performing the division, such as:

if (numItems != 0) {
 trace ("Average is" + total / numItems);
} else {
 trace ("There are no items for which to calculate the average");
}

Note that in some languages, attempting to divide by zero causes an error.

5.3.7 Modulo Division

The modulo operator performs so-called modulo division. It returns the remainder (i.e., modulus) that results when the first
operand is divided by the second. Modulo division takes the general form:

operand1 % operand2

For example, 14 % 4 returns the value 2 because 4 divides evenly into 14 three times, with 2 being the remainder.

The operands of the modulo operator can be any valid numeric expression, including integers and (unlike in C and C++)
floating-point numbers. For example, 5 % 4 is 1, and 5 % 4.5 is 0.5. If either operand is not of the number type, and

conversion to a number fails, the operation yields NaN.

If a number is even, the modulo will be zero when we divide the number by two. We can use the trick shown in Example 5-1 to
test whether a number is even or odd.

Example 5-1. Using modulo division to test for even numbers

var x = 3;
if (x%2 = = 0) {
 trace("x is even");
} else {
 trace("x is odd");
}

5.3.8 Unary Negation

The unary negation operator takes only one operand. It switches the operand's sign (i.e., positive becomes negative, and
negative becomes positive). Unary negation takes the general form:

-operand

The operand can be any valid expression. Here we test whether something's horizontal position is greater than the positive limit
or less than the negative limit:

if (xPos > xBoundary || xPos < -xBoundary) {
 // We've gone too far
}

The unary negation operator is simply a negative sign (-). It is equivalent to the subtraction operator, where the first operand is
0, such as:

0 -operand

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.4 The Equality and Inequality Operators

We use the equality operator (= =) to test whether two expressions have the same value. An equality test takes the

general form:

operand1 = = operand2

where operand1 and operand2 can be any valid expression. The equality operator can compare operands of any

type. When operand1 and operand2 are equal, the expression returns the Boolean value true; when they differ,

it returns the Boolean value false. For example:

// Store the value 2 in x.
var x = 2;
// Is x equal to 1?
if (x = = 1) {
 // false; nothing is displayed
 trace("x is equal to 1);
}
// Is x equal to 2?
if (x = = 2) {
 // true; message is displayed
 trace("x is equal to 2);
}

The equality operator is created using two equals signs in a row (= =). It determines whether

two expressions are equal, and it should not be confused with the assignment operator (=),

which is a single equals sign used to assign a new value to a variable. Flash MX also supports
the strict equality operator, created using three equals signs (= = =). See the Section 5.5 later

in this chapter.

Consider this example:

if (x = 5) {
 trace("x is equal to 5")
}

This example does not check whether x equals 5. Instead, it sets x equal to 5. It then evaluates the variable x as a Boolean

expression, which yields true (positive numbers convert to the Boolean value true). Here is what our example looks

like to the interpreter:

x = 5;
if (x) {
 trace("x is equal to 5")
}

The proper construction is as follows:

// Use = = instead of =
if (x = = 5) {

 trace("x is equal to 5")
}

5.4.1 Primitive Datatype Equality

For the primitive datatypes, the result of most equality tests is fairly intuitive. Table 5-2 lists the rules that govern equality
for each primitive datatype.

Table 5-2. Equality of primitive datatypes

Type Terms of equality (both operands must be of given type)

Number

If operand1 is the same number as operand2, the result is true. If both operands are

+Infinity or both are -Infinity, the result is true. If both operands are either -0 or +0,

the result is true. For all other combinations, including if either or both operands are NaN, the result

is false:

1 = = 4 // false
4 = = 4 // true
NaN = = NaN // false
+Infinity = -Infinity // false

String[1]

Performs case-sensitive string comparison. If operand1 and operand2 are strings of the same

length that contain the exact same sequence of characters, the result is true; otherwise, the result is

false:

"Flash" = = "Flash" // true
"O'Reilly" = = "O Reilly" // false
"Moock" = = "moock" // false ("m" and "M" differ)

Boolean

If both operands are true or both operands are false, the result is true; otherwise, the result is

false:

true = = true // true
false = = false // true
true = = false // false

undefined
If both operands are undefined, or if one operand is undefined and the other is null, the

result is true; otherwise, the result is false.

null
If both operands are null, or if one operand is undefined and the other is null, the result is

true; otherwise, the result is false.

Composite
datatypes

See Section 5.4.2.

[1] Flash 4's string equality operator, eq, is deprecated. The = = operator should be used in Flash 5 and Flash MX.

5.4.2 Composite Datatype Equality

As shown in Section 3.6 in Chapter 3, variables containing composite data (objects, arrays, functions, or movie clips) store
references to the data and not the data itself; hence, it is possible for two variables to refer to the same underlying item.
Two such operands are considered equal if and only if they refer to the same underlying composite datum, not if the
operands refer to two different items that contain identical contents. Even if two operands can be converted to the same
primitive value, they are not necessarily considered equal.

The following examples illustrate how ActionScript compares the references that point to the composite data, not the data
itself. In the first example, the operands (nameList1 and nameList2) refer to arrays that have the same elements

but are actually two distinct arrays. The references are therefore different, and the comparison evaluates to false:

nameList1 = ["Linkovich", "Harris", "Sadler"];
nameList2 = ["Linkovich", "Harris", "Sadler"];
// The two arrays are not considered equal, so
// the trace() statement doesn't execute.
if (nameList1 = = nameList2) {
 trace("They're the same");
}

In this example, cities and canadianCities both refer to the same array, so they are equal:

canadianCities = ["Toronto","Montreal","Vancouver"];
cities = canadianCities;
// The two arrays are considered equal, so
// the trace() statement does execute.
if (cities = = canadianCities) {
 trace("They're the same");
}

In this example, myFirstBall and mySecondBall have the same constructor (i.e., are both objects derived from

the same class), but they exist as separate (unequal) instances:

function Ball () {
 // ...initialization code goes here...
}
myFirstBall = new Ball();
mySecondBall = new Ball();
myFirstBall = = mySecondBall // false

As shown in Chapter 3, composite data values are compared by reference, not by value.

To duplicate an array's contents without copying the array reference, we can use the Array.slice() method. In this example,
we copy the elements from the dishes array into kitchenItems:

dishes = ["cup", "plate", "spoon"];
kitchenItems = dishes.slice(0, dishes.length);
trace(kitchenItems = = dishes); // Displays: false

Now kitchenItems and dishes each contain their own private copy of the array elements and can alter them

without affecting each other.

5.4.3 Equality and Datatype Conversion

We've seen the results of equality tests when the two operands have the same datatype, but what happens when we
compare operands of different datatypes, such as a string and a number? For example:

"asdf" = = 13;

When the operands have disparate datatypes, the interpreter performs a type conversion before performing the comparison.
Here are the rules the interpreter follows:

If both operands are of the same type, compare them and return the result. (If null is compared to undefined,

true is returned.)

1.

If one operand is a number and the other operand is a string, convert the string to a number and go back to step 1.2.
If one operand is a Boolean, convert the Boolean to a number (true = 1, false = 0) and go back to step 1.3.

If one operand is an object, invoke the valueOf() method of the object to convert it to a primitive type. Return
false if this is not possible. Otherwise, go back to step 1.

4.

Return false if the previous steps don't obtain a valid result.5.

Note that if one operand is an object and the other is a Boolean, the Boolean will be converted to a number and compared

5.

to the primitive value of the object. This means that someObject = = true is normally false, even if

someObject exists, because someObject is converted to a number or a string for the comparison, while true is

converted to the number 1. To force someObject to be treated as a Boolean in a comparison, use the Boolean()

function, like this:

Boolean(someObject) = = true // Returns true if someObject exists,
 // or false if it doesn't

Conversions caused by equality operations favor the number type. If you're wondering about the results of the various type
conversions just described, see Section 3.4 in Chapter 3. Note that type conversions performed during a comparison do not
alter the original item's stored value or datatype. The results of the temporary conversion are discarded once the expression
has been evaluated.

5.4.4 The Inequality Operator

The inequality operator (also called the does-not-equal or not-equal-to operator) returns the opposite Boolean result of the
equality operator. It is often more readable to say, "If x is not equal to y, do this," than to say, "If x is equal to y, don't do

anything, otherwise do this," as shown later in Example 5-2. An inequality test takes the general form:

operand1 != operand2

For example:

var a = 5;
var b = 6;
var c = 6;
a != b // true
b != c // false

The inequality operator follows the same type conversion rules as the equality operator and always yields the opposite
result, including when NaN is used as an operand:

NaN != 7 // true
NaN != NaN // true!

In some languages, including Flash 4 ActionScript, the <> operator is used as the inequality operator. Flash 4 used the

deprecated ne operator for string comparisons. In Flash 5 and Flash MX, != should be used in lieu of <> and ne for

comparisons, regardless of the operands' datatypes. See also the logical NOT operator (!) discussed later in this chapter.

5.4.5 Common Uses of Equality Operations

We'll frequently use equality operations to form Boolean expressions within conditional statements or to assign a Boolean
value to a variable. Example 5-2 shows both situations and demonstrates the != and = = operators in action.

Example 5-2. Using the equality and inequality operators

version = getVersion(); // Retrieve Player version
// Check if the string "WIN" is in version. If so,
// set isWin to true, otherwise set it to false.
isWin = (version.indexOf("WIN") != -1);
// If isWin is true...
if (isWin = = true) {
 // ...perform Windows-specific actions here.
 trace("Please use IE5 or later on Windows.");
}

Experienced programmers will be quick to point out that we could have reduced if (isWin = = true) to if (isWin), because
isWin holds a Boolean value, which is what the if statement expects. While that's quite right, it doesn't make for a good

example of the equality operator, now does it? Furthermore, new programmers usually find the more verbose form clearer.
Both approaches are perfectly acceptable. We'll cover this topic in more detail in Chapter 7.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.5 The Strict Equality and Inequality Operators

We just saw that the standard equality operator (= =) can test whether two expressions have the same value. The

strict equality operator, written as three consecutive equals signs (= = =), tests whether two expressions are of

the same datatype before testing whether they have the same value.

For example, the following standard equality test yields true because the interpreter converts the string "13" to

the number 13 before comparing the values:

trace("13" = = 13); // Displays: true

In contrast, the following strict equality test yields false because the operands are not of the same datatype:

trace("13" = = = 13); // Displays: false

A strict equality test takes the general form:

operand1 = = = operand2

where operand1 and operand2 can be any valid expression. The strict equality operator determines the

equality of its two operands as follows:

If operand1 and operand2 are of different datatypes, they are not equal.

If operand1 and operand2 are both undefined, they are equal.

If operand1 and operand2 are both null, they are equal.

If operand1 and/or operand2 is the special numeric value NaN, they are not equal.

If operand1 and operand2 are both numbers and have the same numeric value, they are equal.

If operand1 and operand2 are both strings and have the same characters in the same order, they are

equal.

If operand1 and operand2 are both true or both false, they are equal.

If operand1 and operand2 store a reference to the same object, they are equal.

Under any other condition, operand1 and operand2 are not equal.

The primary purpose of strict equality is to prevent the interpreter from performing datatype conversions when
evaluating the equality of its two operands. For example, the following condition checks both whether
numLives is a number and whether it is equal to 0:

if (numLives = = = 0) {
 trace("Game over");
}

which is more succinct than the alternative:

if ((typeof numLives = = "number") && (numLives = = 0)) {
 trace("Game over");
}

A strict inequality test takes the form:

operand1 != = operand2

The strict inequality operator (!= =) returns the Boolean opposite of the strict equality operator.

The strict equality operator, added in Flash MX, is created using three equals signs in a
row (= = =). It should not be confused with either the standard equality operator (=
=) or the assignment operator (=). Similarly, strict inequality, also added in Flash MX, is

written as an exclamation point followed by two equals signs (!= =), while the

standard inequality operator is written as an exclamation point followed by one equals
sign (!=).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.6 The Comparison Operators

The comparison operators (also called relational operators) are used to determine which of two values appears first in a
given order. Like the equality and inequality operators, the comparison operators return one of the Boolean values, true
or false, indicating whether the relationship described in the comparison is accurate (true) or inaccurate (false).

Comparison operators are intended for comparing strings and numbers; when used with other types, automatic datatype
conversion occurs, as discussed later in this chapter. When the two operands of a comparison operator are numbers, the
comparison is performed mathematically: 5 < 10 is true, -3 < -6 is false, and so on. When the two operands of a

comparison operator are strings, the comparison is performed according to character code points, as described in Chapter 4
under Section 4.6.2.2.

The interpreter attempts to convert any nonstring or nonnumeric data value used in a comparison operation to the string or
number type. We'll consider the effect of datatype conversions on comparison operations after we discuss the comparison
operators themselves.

5.6.1 The Less-Than Operator

The less-than operator takes the general form:

operand1 < operand2

If the operands are numeric, the less-than operator returns the Boolean true if operand1 is mathematically smaller

than operand2:

5 < 6 // true
5 < 5 // false; they are equal, but 5 is not less than 5
-3 < -6 // false; -3 is larger than -6
-6 < -3 // true; -6 is smaller than -3

If the operands are strings, the less-than operator returns true if operand1 comes before operand2 in the Unicode

character set; otherwise, it returns false:

"a" < "z" // true; lowercase "a" comes before lowercase "z"
"A" < "a" // true; uppercase letters come before lowercase
"Z" < "a" // true; uppercase letters come before lowercase
"hello" < "hi" // true; "e" comes before "i"

For further string comparison details, see Section 4.6.2.2 in Chapter 4.

5.6.2 The Greater-Than Operator

The greater-than operator takes the general form:

operand1 > operand2

If the operands are numeric, the greater-than operator returns the Boolean true if operand1 is mathematically larger

than operand2:

5 > 6 // false

5 > 5 // false; they are equal, but 5 is not greater than 5
-3 > -6 // true; -3 is greater than -6.
-6 > -3 // false; -6 is not greater than -3.

If the operands are strings, the greater-than operator returns true if operand1 comes after operand2 in the

Unicode character set; otherwise, it returns false:

"a" > "z" // false; lowercase "a" comes before lowercase "z"
"A" > "a" // false; uppercase letters don't come after lowercase
"Z" > "a" // false; uppercase letters don't come after lowercase
"hello" > "hi" // false; "e" comes before "i"

For further string comparison details, see Section 4.6.2.2 in Chapter 4.

5.6.3 The Less-Than-or-Equal-to Operator

The less-than-or-equal-to operator takes the general form:

operand1 <= operand2

If the operands are numeric, the less-than-or-equal-to operator returns the Boolean true if operand1 is mathematically

smaller than or equal to operand2:

5 <= 6 // true
5 <= 5 // true; note the difference from 5 < 5
-3 <= -6 // false
-6 <= -3 // true

If the operands are strings, this operator returns true if operand1 comes before operand2 in the Unicode

character set or if the operands are identical (according to the rules described in Section 4.6.2); otherwise, <= returns

false:

"a" <= "z" // true; lowercase "a" comes before lowercase "z"
"A" <= "a" // true; although not equal, "A" comes before "a"
"Z" <= "a" // true; uppercase letters come before lowercase
"hello" <= "hi" // true; "e" comes before "i"

Note that the <= operator is written with the equals sign after the less-than sign. The following is not a valid operator: =<.

5.6.4 The Greater-Than-or-Equal-to Operator

The greater-than-or-equal-to operator takes the general form:

operand1 >= operand2

If the operands are numeric, the greater-than-or-equal-to operator returns the Boolean true if operand1 is

mathematically larger than or equal to operand2:

5 >= 6 // false
5 >= 5 // true; note the difference from 5 > 5
-3 >= -6 // true
-6 >= -3 // false

If the operands are strings, this operator returns true if operand1 comes after operand2 in the Unicode character

set or if the operands are identical (according to the rules described in Chapter 4, Section 4.6.2); otherwise, >= returns

false:

"a" >= "z" // false; lowercase "a" comes before lowercase "z"

"A" >= "a" // false; "A" comes before "a" and they are not equal
"Z" >= "a" // false; uppercase letters come before lowercase
"hello" >= "hi" // false: "e" comes before "i"

Note that the >= operator is written with the equals sign after the greater-than sign. The following is not a valid operator,

although it does make a nice emoticon: =>.

5.6.5 Comparison Operations and Datatype Conversion

Most of the time, when we're using comparison operators, we're comparing numbers. Hence, type conversions instigated by
the comparison operators favor numbers (just like the equality and inequality operators, discussed earlier). Note that this
differs from the + operator, which favors conversion to the string datatype. When the two operands of any comparison
operator belong to different datatypes, or when neither operand is a string or a number, the interpreter attempts a type
conversion according to the following steps:

If both operands are numbers, compare the operands mathematically and return the result. If either number is (or if
both numbers are) NaN, the result of the comparison is false, except in the case of the != operator.

1.

If both operands are strings, compare the operands by Unicode code point and return the result. For characters in the
Latin alphabet, this is a case-sensitive, alphabetic comparison.

2.

If one operand is a number and the other is a string, convert the string to a number and go back to Step 1.3.
If either operand is a Boolean, null, or undefined, convert the operand to a number and go back to Step 1.4.

If either operand is an object, invoke its valueOf () method to convert the object to a primitive value and go back to
Step 1. If the valueOf () method fails or does not return a primitive value, return false.

5.

For any other condition, return false.6.

Note that type conversions performed during a comparison do not alter the original item's stored value or datatype. The
results of the temporary conversions are discarded once the expression has been evaluated.

Here is a simple conversion example comparing two Booleans:

false < true // true: 0 is less than 1

Comparison operators always convert composite datatypes to strings or numbers for comparison. In the following example,
because both someObj and someOtherObj are members of the Object class, their string value, "[object Object]", is

the same:

someObj = new Object();
someOtherObj = new Object();
someObj <= someOtherObj; // true!

In contrast, the expression someObj = = someOtherObj yields false because objects are equality-tested by

reference, and they are therefore not converted to primitives during an equality test.

In the next example, even though "A" has the code point 65, converting "A" to a number yields NaN, which means the

whole expression yields false. Use the charCodeAt() function to check a string's code point:

"A" <= 9999 // false
"A".charCodeAt(0) < 9999 // true

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.7 The Flash 4 String Operators

You might encounter the deprecated Flash 4 string operators—concatenation (&), equality (eq), inequality (ne),

and comparison (lt, gt, le, ge)—when examining legacy code. The = =, !=, <, >, <=, and >= operators

should be used for all comparisons, including string comparisons, in Flash 5 and Flash MX. Likewise, use + for

string concatenation in Flash 5 and Flash MX instead of the deprecated add operator or the & operator, which is

the bitwise AND operator in Flash 5 and later.

For more details and a list of Flash 4 versus Flash 5 string-operation equivalencies, see Section C.3.6 in Appendix
C.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.8 The Logical Operators

In Chapter 4, we saw how to make logical decisions using conditional expressions and Boolean values. The decisions were based on
single factors: if a movie hasn't loaded, don't start playing; if a spaceship has double-shot power, increase the damage its shots inflict; and
so on. Not all programming logic is so simple. We'll often want to consider multiple factors in our branching (i.e., decision-making)
logic.

Suppose, for example, that we are making a personalized Flash site that requires users to log in. If a user logs in as a guest, the content he
can see is limited. When a registered user logs into the site, we set a variable that indicates, for the duration of our movie, that the user is
allowed to see privileged content:

var userStatus = "registered";

To decide whether to allow access to a restricted area, we use a Boolean check like this:

if (userStatus = = "registered") {
 // It's okay, let 'em in...
}

Suppose we want to demonstrate the site to prospective investors without forcing them to register and without showing them material
reserved for registered users. We can invent a new user category, "specialGuest", that allows investors to see more than a guest but not as
much as a registered user. When we want to identify someone as a special guest, we set userStatus to "specialGuest".

How do we perform a Boolean check now that there are two categories of users? We could do things the brutish, painful way by
duplicating portions of our code:

if (userStatus = = "registered") {
 // Execute legal-user code...
}
if (userStatus = = "specialGuest") {
 // Execute exact same legal-user code...
}

Obviously, that's going to turn into a real headache to maintain, because we have to duplicate our code changes in two places.

We'd prefer to perform a single Boolean check that says, "If the user is registered or if the user is a special guest, then grant access." We
can produce compound logical phrases such as this with Boolean logical operators. Here, the logical OR operator (||) lets us check the

status of multiple Boolean operations in a single expression. I've included extra parentheses to make the order of operation more obvious:

if ((userStatus = = "registered") || (userStatus = = "specialGuest")) {
 // Execute legal-user code...
}

Nice, huh? Sometimes programming is so elegant. Such distinctive vertical lines . . . such supple parentheses . . .

5.8.1 Logical Expressions and Data Values

Using logical operators to calculate a Boolean result is analogous to using arithmetic operators to calculate a numeric result. For example,
the following four operands and three operators are used to calculate a single result:

(userStatus = = "registered") || (userStatus = = "specialGuest")

If the user is not registered, but is a special guest, this expression reduces to:

false || true

which in turn reduces to the Boolean result true.

Here is an analogous arithmetic operation that reduces to a single number:

(1 + 2) * (3 + 4) // Four values (1, 2, 3, 4), which become...
3 * 7 // two values (3, 7), which become...
21 // a single value (21)

Remember, a complex expression that reduces to a Boolean can be used anywhere a single Boolean value is required (such as the test
expression of a conditional statement).

5.8.2 Logical OR

The logical OR operator is most commonly used to initiate some action when at least one of two conditions is met. For example, "If I am
hungry or I am thirsty, I'll go to the kitchen." The symbol for logical OR is made using two vertical line characters (||). Typically, the |
character is accessible using the Shift key and the Backslash (\) key in the upper right of most Western keyboards, where it may be
depicted as a dashed vertical line. Logical OR takes the general form:

operand1 || operand2

When both operands are Boolean expressions, logical OR returns true if either operand is true and returns false only if both

operands are false. In summary:

true || false // true because first operand is true
false || true // true because second operand is true
true || true // true (however, either operand being true is sufficient)
false || false // false because both operands are false

This is a simplified case in which both operands are Booleans, but the operands can be any valid expression, including non-Boolean ones.
In that case, the return value of a logical OR operation is not necessarily a Boolean (true or false). Technically, the first step in

evaluating a logical OR is to convert operand1 to a Boolean; if the result of such a conversion is true, logical OR returns

operand1's resolved value. Otherwise, logical OR returns operand2's resolved value. Here's some code to demonstrate:

null || "hi there!" // Operand1 does not convert to true, so the
 // operation returns operand2's value: "hi there!"
true || false // Operand1 is true, so the operation returns
 // operand1's value: true.
"hey" || "dude" // Operand1 is a nonempty string, so it converts to
 // false and the operation returns
 // operand2's value: "dude".
false || 5 + 5 // Operand1 does not convert to true, so the
 // value of operand2 (namely 10) is returned.

In practice, we rarely make use of non-Boolean values returned by a logical OR expression. Instead, we normally use the result in a
conditional statement where it is used to make a Boolean decision. Consider Example 5-3.

Example 5-3. A logical OR operation as a conditional test expression

var x = 10;
var y = 15;
if (x || y) {
 trace("One of either x or y is not zero");
}

On line 3, we see a logical OR operation (x || y) being used where a Boolean is expected as the test expression of an if statement. Our first
step in determining the value of x || y is to convert 10 (the value of the first operand, x) to a Boolean. As Table 3-3 shows, any nonzero

finite number converts to the Boolean true. When the first operand converts to true, the logical OR returns the value of the first

operand, in this case, 10. So, to the interpreter, our if statement looks like this:

if (10) {
 trace("One of either x or y is not zero");
}

But 10 is a number, not a Boolean. So what happens? The if statement converts the return value of the logical OR operation to a Boolean.
In this case, 10 is converted to the Boolean value true (again, according to the rules in Table 3-3), and the interpreter sees our code as:

if (true) {
 trace("One of either x or y is not zero");
}

And there you have it. The test expression is true, so the trace() statement between the curly braces is executed.

Note that if the first operand in a logical OR operation resolves to true, it is unnecessary, and therefore inefficient, to evaluate the

second operand. Therefore, ActionScript evaluates the second operand only if the first operand resolves to false. This fact is useful in

cases in which you don't want to resolve the second operand unless the first operand resolves to false. In the following example, we

check if a number is out of range. If the number is too small, there is no need to perform the second test, in which we check whether it is
too large.

if (xPos < 0 || xPos > 100) {
 trace ("xPos is not between 0 and 100 inclusive.");
}

Note that the variable xPos must be included in each comparison. The following code shows a common mistaken attempt to check

xPos's value twice:

// Oops! Forgot xPos in the comparison with 100
if (xPos < 0 || > 100) {
 trace ("xPos is not between 0 and 100 inclusive.");
}

5.8.3 Logical AND

Like the logical OR operator, logical AND is used primarily to execute a block of code conditionally—in this case, only when both of two
conditions are met. The logical AND operator takes the general form:

operand1 && operand2

Both operand1 and operand2 can be any valid expression. In the simplest case, in which both operands are Boolean expressions,

logical AND returns false if either operand is false and returns true only if both operands are true. In summary:

true && false // false because second operand is false
false && true // false because first operand is false
true && true // true because both operands are true
false && false // false because both operands are false (either is sufficient)

Let's see how the logical AND operator is used in two examples. In Example 5-4, we execute a trace() statement only when two variables
are both greater than 50.

Example 5-4. A logical AND operation as a conditional test expression

x = 100;
y = 51;
if (x>50 && y>50) {

 trace("Both x and y are greater than 50");
}

Because the expressions x>50 and y>50 are both true, the trace() statement is executed.

In Example 5-5, we return to our web site example, in which access was restricted to registered users and special guests. But this time
we'll let users in only if the date is not January 1. We combine expressions using the logical OR operator (to check the two allowed
userStatus values) and the logical AND operator (to check the date). Note the parentheses that ensure the logical OR statement

evaluates the userStatus before performing the logical AND with the date check. We determine the current date via the Date class,

whose getMonth() method returns 0 to indicate January.

Example 5-5. Compound logical expressions

userStatus = "registered";
now = new Date(); // Create a new Date object
day = now.getDate(); // Returns an integer between 1 and 31
month = now.getMonth(); // Returns an integer between 0 and 11
// Note the indentation style and parentheses...if statements may span
// multiple lines for the sake of readability
if (((userStatus = = "registered") || (userStatus = = "specialGuest"))
 && (month + day) > 1) {
 // Let the user in...
}

The technical behavior of the logical AND operator is quite similar to that of the logical OR operator. First, operand1 is converted to

a Boolean. If the result of that conversion is false, the value of operand1 is returned. If the result of that conversion is true, the

value of operand2 is returned.

If the first operand in a logical AND operation resolves to false, it is unnecessary, and therefore inefficient, to evaluate the second

operand. Therefore, ActionScript evaluates the second operand only if the first operand resolves to true. This fact is useful in cases in

which you don't want to resolve the second operand unless the first operand resolves to true. In this example, we perform the division

only if the divisor is nonzero:

if (numItems != 0 && total / numItems > 3) {
 trace("You've averaged more than 3 dollars per transaction");
}

5.8.4 Logical NOT

The logical NOT operator (!) returns the Boolean opposite of its single operand. It takes the general form:

!operand

where operand can be any legal expression. If operand is true, logical NOT returns false. If operand is false, logical

NOT returns true. If operand is not a Boolean, its value is converted to a Boolean for the sake of the operation and its opposite is

returned.

Like the does-not-equal operator (!=), the logical NOT operator is convenient for testing what something isn't rather than what it is.

Recall Example 5-5, in which we wanted to perform an action only if the date was not January 1. At first impression, this attempt might
seem correct:

month != 0 && day != 1

We find, however, that month != 0 is true anytime the month is not January (so far so good), but day != 1 is actually false on the

first day of every month. So the expression month != 0 && day != 1 would exclude our users on the first day of any month, not just

January 1. This is hardly what we intended.

It's much easier to check if today is January 1:

month = = 0 && day = = 1

This expression yields true only on the first day of January. Once we've gotten that far, all we need is the NOT operator to determine

when today is not January 1:

!(month= =0 && day= =1)

Obviously, this code's intent is much clearer than the month + day > 1 test used in Example 5-5.

Another typical usage of the NOT operator is to toggle a variable from true to false and vice versa. For example, suppose you have

a single button that is used to turn the sound on and off. You might use code like this:

soundState = !soundState // Reverse the current sound state
if (soundState) {
 // If sound is turned on, make sure sounds are audible
} else {
 // If the sound is off, set the volume to 0 to mute it
}

Notice that ! is also used in the inequality operator (!=). As a programming token (i.e., symbol), the ! character usually means not, or

opposite. It is unrelated to the ! symbol used to indicate "factorial" in common mathematical notation.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.9 The Grouping Operator

Aside from being used in function calls, parentheses—()—can also be used to group a phrase of code to override the precedence of various
operators. (They also enhance legibility, even if they are not required to override the default precedence.) Parentheses are also required in
some statements, most notably if statements. Parentheses take the general form:

(expression)

The expression within the parentheses is evaluated and returned. Here are some examples:

if (x = = y) { // Syntactically required for if statement
 trace("x and y are equal"); // Required for the function call
}
(5 + 6) * 7 // Force a nonstandard order of operation
(x >= 100) || (y <= 50) // Parentheses not required but added for legibility
x >= 100 || y <= 50 // No parentheses...a little harder to read

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.10 The Comma Operator

Rarely used, the comma operator (,) allows us to evaluate two expressions where a single expression is expected.

It takes the general form:

operand1, operand2

Both operands must be legal expressions. When a comma operation executes, operand1 is evaluated, then

operand2 is evaluated, and then the resolved value of operand2 is returned. In practice, the return value of

the comma operator is usually ignored.

The comma operator is used primarily in for loops that initialize multiple variables, as shown in Example 5-6. Note
that in the first line of the example, the expressions i=0 and j=10 are both operands of the comma operator.

(These expressions cause i and j to be initialized to 0 and 10.) The expressions i++ and j-- are both operands

of a second comma operator. (These expressions cause i to be incremented and j to be decremented each time the

loop executes.) The comma operator is used to squeeze multiple expressions within the confines of the for loop's
syntax.

Example 5-6. Using the comma operator in a for Loop

for (var i=0, j=10; i!=j; i++, j--) {
 trace ("i: " + i + " j: " + j);
}
// Which produces this output...
 i: 0 j: 10
 i: 1 j: 9
 i: 2 j: 8
 i: 3 j: 7
 i: 4 j: 6

The comma operator should not be confused with other uses of the comma, such as separating multiple arguments
passed to a function or separating elements of an array.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.11 The void Operator

The void operator is used to evaluate an expression without returning a value. It has the syntax:

void expression

where expression is the expression to evaluate. In JavaScript, void is used to evaluate a JavaScript expression

in a hypertext link without causing the result to appear in the browser's address bar. There are few, if any, such
applications for void in ActionScript; it is supported for the sake of compatibility with ECMA-262.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.12 Other Operators

The remaining operators apply to topics considered in other chapters. We'll include them here for quick reference only and
describe their usage fully in those chapters.

5.12.1 The typeof Operator

The typeof operator is used to determine the datatype of an expression or identifier. It takes one operand, as follows:

typeof operand

where operand can be any legal expression. The return value of the typeof operation is a string indicating the datatype of the

evaluated operand. See Chapter 3 for more details.

5.12.2 The new Operator

The new operator creates a new composite datum—either an array or an object. The object can be a member of a built-in class
or a user-defined class. The syntax for new is:

new constructor

where constructor must be a function that defines the properties of the newly created object. See Chapter 11, Chapter

12, and the Constructor headings in the Language Reference.

5.12.3 The delete Operator

We use the delete operator to remove an object, an object property, an array element, or variables from a script. The syntax for
delete is:

delete identifier

If identifier is not a data container (i.e., a variable, property, or element), the delete operation fails and returns the value

false; otherwise, it returns true, indicating success. The delete operator is commonly used to remove an event handler, as

follows:

// Add an event handler:
_root.onEnterFrame = function () {
 trace("A frame passed");
}

// Remove an event handler:
delete _root.onEnterFrame;

See Chapter 10, Chapter 11, and Chapter 12 for details on the delete operator.

5.12.4 Array-Element/Object-Property Operator

As we'll see in Chapter 11 and Chapter 12, we use the [] operator to retrieve and set the value of an array element or an

object property. When accessing an array, it takes the form:

array[element]

where array is the name of an array or an array literal and element is an expression that resolves to a zero-relative,

nonnegative integer representing the index of the array element to access.

When accessing an object, the [] operator takes the form:

object[property]

where object is an object name or object literal and property is any expression that resolves to a string representing the

name of the object property to access.

When used on the left side of an assignment operator (=), the element or property is assigned the new value shown on the right

side of the expression:

var colors = new Array(); // Create a new array
colors[0] = "orange"; // Set its first element
colors[1] = "green"; // Set its second element
var ball = new Object(); // Create a new object
var myProp = "xVelocity"; // Store a string in a variable
ball["radius"] = 150; // Set the radius property
ball[myProp] = 10; // Set the xVelocity property through myProp

When used anywhere else, the expression returns the value of the specified element or property:

diameter = ball["radius"] * 2; // Sets diameter to 300
trace(colors[0]); // Displays "orange"

5.12.5 The Dot Operator

The dot operator is our primary means of referring to object properties and nested movie clips. Functionally, the dot operator
has the exact same purpose as the [] operator—it lets us set and retrieve object-property values. But the two operators have

syntactic differences that make them unique. The general syntax of the dot operator is:

object.property

where object must be the name of an object or an object literal and property must be an identifier that represents a

property of object. Note that property cannot be an arbitrary expression or a string literal; it must be the name of a

property. Because array elements are numbered, not named, the dot operator cannot be used to access the elements of an array.

When used as the left-hand operand of an assignment operator, the dot operator is used to set a new value for a property:

var ball = new Object();
ball.radius = 150;
ball.xVelocity = 10;

When used anywhere else, a dot operation returns the value of the named object property:

diameter = ball.radius * 2;
newX = ball.xPosition + ball.xVelocity;

The dot operator is also used to invoke object methods (functions stored in properties), as follows:

intro_mc.gotoAndPlay("beginMovie");

See Chapter 12 and Chapter 13 for details on the dot operator.

5.12.6 The Conditional Operator

The conditional operator is a syntactic convenience that lets us succinctly represent a simple conditional statement. This
operator takes three operands, in the form:

condition ? result_if_true : result_if_false;

When a conditional operation is executed, the first operand (condition) is evaluated. If condition is true or can be

converted to true, the value of the second operand (result_if_true) is returned. Otherwise, the value of the third

operand (result_if_false) is returned. See Chapter 7 for details on the conditional operator.

5.12.7 The instanceof Operator

The instanceof operator, added in Flash MX, checks whether an object is an instance of a given class (or one of the class's
subclasses). It takes the form:

object instanceof classConstructor

where object is any object and classConstructor is a reference to any class's constructor function. The operation

returns true if object is an instance of classConstructor or one of its subclasses; otherwise, it returns false.

For example, the following code creates a Date object and then checks whether the object is an instance of the Date class:

// Create an instance of a built-in class.
var now = new Date();
trace(now instanceof Date); // Displays: true

The following code creates a Shape class with a Circle subclass and then checks whether a Circle object is an instance of
Shape:

// Create Shape and Circle classes (constructor body code omitted)
function Shape () {
 // ...
}
function Circle () {
 // ...
}
// Establish inheritance: Circle is a subclass of Shape
Circle.prototype = new Shape();

// Create a Circle object
var theCircle = new Circle();
// Check the class of the Circle object using instanceof
trace(myCircle instanceof Circle); // true
trace(myCircle instanceof Shape); // true

The instanceof operator can be used to operate on an object conditionally, based on its class. For example, the following code
uses instanceof to remove all text fields and movie clips from the current movie clip (this):

for (var p in this) {
 if (this[p] instanceof MovieClip) {
 this[p].removeMovieClip();
 } else if (this[p] instanceof TextField) {
 this[p].removeTextField();
 }
}

Note that the instanceof operator simply checks whether object's prototype chain includes classConstructor, as

discussed in Chapter 12 under Section 12.7.

5.12.8 The super "Operator"

Added in Flash MX, super is an operator-like tool that serves two distinct object-oriented programming purposes:

It can invoke an object's superclass constructor.

It can invoke a superclass's implementation of an overridden method.

In either case, super can be used only within a class constructor function or a method.

To invoke an object's superclass constructor function, use the following syntax:

super(arg1, arg2,...argn);

where arg1,...argn is a list of arguments passed to the superclass constructor function. Within the superclass

constructor function, the this keyword points to the object whose class or method invoked the constructor. Used in this

manner, the super operator is functionally equivalent to the following statement:

this.constructor.prototype.constructor.apply(this, arguments);

To invoke a superclass method, we use the following syntax:

super.methodName(arg1, arg2,...argn);

where methodName is some method of the superclass and arg1,...argn is a list of arguments passed to that method.

Within the method, the this keyword points to the object whose class or method invoked the superclass method. Used in this

manner, the super operator is functionally equivalent to the following rather unwieldy statement:

this.constructor.prototype._ _proto_ _.constructor.apply(this, arguments);

For practical examples showing super in use, see Section 12.5.2 and Section 12.5.3.2 in Chapter 12.

Note that super is not technically an operator. Rather, it is an identifier made available only during function execution, much
like the arguments object. ActionScript's super is not an implementation of ECMAScript v4's super operator.

Nevertheless, for the sake of discussion, both Macromedia's ActionScript Dictionary and this book categorize super with other
operators.

5.12.9 The Function Call Operator

As we've seen with the trace() function and the string-manipulation functions, we use the function call operator, (), to invoke

a function. A function call takes the general form:

function_name(argument_list)

The first operand, function_name, is the name of some function and must be an identifier, not an expression. If the

function does not exist, the interpreter will not produce an error but merely fails silently. The argument_list is a series

of zero or more arguments passed to the function, separated by commas. The return value of a function call operation is the
return value supplied by the function itself.

The function call operator can call any built-in or user-defined function:

trace("an internal function"); // Built-in function, one argument
theClip_mc.play(); // Method of a movie clip, no arguments
myRectangle.area(6, 9); // User-defined method, two arguments
init(); // User-defined function, no arguments

5.12.10 The Bitwise Operators

ActionScript supports a group of so-called bitwise operators that manipulate the binary digits (bits) of an integer. If you're
planning to develop large-scale systems in which every iota of memory, calculation speed, and transfer-rate optimization makes
a meaningful difference in performance, read about the bitwise operators online at:

http://www.moock.org/asdg/technotes/bitwise

Otherwise, use the Boolean logical operators (covered earlier in this chapter) instead. They perform the same tasks as the
bitwise operators, albeit in a less optimized way. For quick reference, the bitwise operators (<<, >>, >>>, ~, &, ̂ , and |) are

included in Table 5-1.

See the Color.getRGB() method in the ActionScript Language Reference for an example that uses the bitwise operators to
extract the red, green, and blue components from an RGB color triplet.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 5. Operators

5.13 Onward!

Like all languages, ActionScript has a grammar and different parts of speech. Over the last few chapters, you've
learned the equivalent of sentence structure, nouns, adjectives, and conjunctions. Now, let's move on to statements,
which, like verbs, can do things. Statements will complete our ability to form sentence-like instructions.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 6. Statements

We saw in earlier chapters how ActionScript stores and manipulates data. In this chapter we'll see how to do things
with that data. We'll give Flash instructions in the form of statements, or phrases of code that instruct the interpreter
to perform a specified task.

To make something happen in Flash—whether stopping a sound, playing a movie, running a function, or repeatedly
executing some code—we use a statement. In fact, an ActionScript program can be defined as nothing more than a
list of statements that tell the interpreter what we want Flash to do. Here, for example, is an entire ActionScript
program, which consists of four statements and tells the interpreter to load a web page into the browser:

var protocol = "http"; // Statement 1
var domain = "www.moock.org"; // Statement 2
var path = "webdesign/flash/"; // Statement 3
getURL(protocol + "://" + domain + "/" + path); // Statement 4

Scripting a movie with ActionScript is simply a matter of attaching statements to frames, movie clips, and buttons.
Unless instructed otherwise, Flash performs each statement in the order in which it appears in the script (later we'll
explore how and when Flash decides which script to execute). This chapter explores the syntactic makeup of
statements and lists the general statement categories. We'll touch on all the ActionScript statements in this chapter,
but some of the more important ones will be examined in detail in later chapters.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 6. Statements

6.1 Types of Statements

Conceptually speaking, there are five core types of statements:

Statements that control the execution flow of a program
loops
conditionals
ifFrameLoaded

Statements that declare variables
var
set

Statements that declare, call, and return values from functions
function
function call
return

Statements that deal with objects
with
for . . . in

Statements that represent a data value
any expression (especially expressions with side effects)

These informal categories help us understand what we can tell the interpreter to do using statements. At first
glance, the list may seem fairly limited. However, we'll see that there are many variations of conditionals and loops
and that there are thousands of things we can do with function calls. First, let's see how statements are formed.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 6. Statements

6.2 Statement Syntax

Statements are typically made up of keywords and expressions. We've already seen the var statement, which
declares, and optionally, initializes a variable. Here's an example of the var statement's general syntax:

var numFrames;

The keyword (var in this case) begins the statement. Each keyword is followed by the syntax (parentheses,
parameters, operands, etc.) required to complete the statement, which, in our example, is simply the name of a
variable, numFrames. Finally, a semicolon marks the end of the statement.

In ActionScript, every statement should end with a semicolon, which is not to say that
there is one semicolon per line of the script. Sometimes there are multiple statements on
a line, each deserving their own semicolon. Sometimes a statement continues onto more
than one line, and the semicolon doesn't appear until the end of the statement. You don't
need semicolons after the curly braces that sometimes enclose statements, except in the
special case of a function literal. It's good form to use semicolons, but it's not mandatory.
We'll study semicolon usage in Chapter 15.

Some statements can take multiple forms. For example, we can use var with or without an optional initial
assignment (in this case, 10 is a simple expression whose value is assigned to x):

var x; // Simple declaration
var x = 10; // Declaration with assignment

We'll discuss the specific syntax of each statement throughout the rest of this chapter.

6.2.1 Statement Blocks

Some statements actually include other statements, or substatements, as part of their syntax. For example, the if
statement has this syntax:

if (expression) substatement;

The substatement, which is executed only if expression evaluates to true, can be a single

statement, such as a variable declaration statement:

if (x = = 5) var numFrames = 2;

or it can be a series of statements grouped together as a statement block:

if (x = = 5) {
 var numFrames;
 numFrames = 10;
 play();
}

As you can see, a statement block is any number of statements on one or more lines, surrounded by curly braces.
Here we show three statements, separated by semicolons, all on one line:

{ statement1; statement2; statement3... }

By using a statement block as the substatement of our if statement, we can specify multiple statements to be
executed conditionally (only when the if statement is true). This can be very handy.

We can use a statement block anywhere ActionScript expects a single statement. In fact, statement blocks are
sometimes required. For example, the function statement must always include a statement block, even if the
function being declared has only one statement in its body:

function aheadTwoFrames () {
 gotoAndStop(_currentframe + 2);
}

For the sake of readability, statement blocks are typically formatted as shown here:

parent_syntax {
 substatement1;
 substatement2;
 substatement3;
}

where parent_syntax represents the statement for which we are defining a statement block.

Note that the opening curly brace appears at the end of the first line after parent_syntax. The substatements

of the statement block appear indented two spaces, each on its own line. The closing curly brace, also on its own
line, is flush with the main statement. Substatements within statement blocks should end with a semicolon, but
there are no semicolons on the lines with curly braces.

The indenting format is simply a convention, not a requirement of legal syntax. This book adheres to the style used
by the Flash ActionScript editor (the Actions panel). The following format is also valid and common:

parent_syntax
{
 substatement1;
 substatement2;
 substatement3;
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 6. Statements

6.3 The ActionScript Statements

Now that you know how a typical statement is formed, skim Table 6-1 to acquaint yourself with some of the things that ActionScript
statements do.

Table 6-1. The ActionScript statements

Statement Syntax Use

break break; Aborts a loop or switch statement

case
case expression:
 statements

Identifies a statement to be executed conditionally in a switch
statement

continue continue; Skips the remaining statements in the current loop and begins
the next iteration at the top of the loop

default
default:
 statements

Identifies the statement(s) to execute in a switch statement when
the test expression does not match any case clauses

do-while

do {
 statements
} while (expression);

A variation of a while loop that ensures at least one iteration of
the loop is performed

empty
statement

; Holds a place where a statement is expected; used with evaluate
in Normal Mode

for

for (init; test; increment) {
 statements
}

Executes a statement block repetitively (a for loop)

for-in

for (property in object) {
 statements
}

Enumerates the properties of an object

function

function name (parameters) {
 statements
}

Declares a function

if-else if-else

if (expression) {
 statements
} else if (expression) {
 statements
} else {
 statements
}

Executes one or more statements, based on a condition or a
series of conditions

ifFrameLoaded

ifFrameLoaded (frame) {
 statements
}

Executes specified code if a certain frame has loaded;
deprecated as of Flash 5

return
return;
return expression;

Exits and optionally returns a value from a function

set set(variable, value); Assigns a value to a dynamically named variable

switch

switch (expression) {
 statements
}

Executes specified code, based on a condition or a series of
conditions (alternative to if-else if-else)

var
var variableName;
var variableName = expression;

Declares and optionally initializes a variable

while

while (expression) {
 statements
}

Executes a statement block repetitively (a while loop)

with

with (objectName) {
 statements
}

Executes a statement block in the scope of a given object

6.3.1 Loops and Conditionals

We've already had several informal encounters with loops and conditionals. Together, these two statement types account for the
majority of complex flow in our programs. Loops allow us to execute statement blocks repeatedly, and conditionals allow us to
execute statement blocks under only the specified circumstances. See Chapter 7 and Chapter 8 for complete details.

6.3.2 Expression Statements

Although any expression can be used independently as a valid statement, if the expression performs no action and we don't do
anything with the result, the exercise is rather pointless:

"hi there"; // This doesn't do much
345 + 5; // Neither does this

Some expressions, however, have side effects that change the state of a system through variable or property assignments or by
physically altering the Flash environment. In this example, an expression changes the value of x:

x = 345 + 5; // Much more useful

Function calls are the most powerful type of expression statement. Even if a function doesn't return a useful value, it may have a very
useful side effect. For example, gotoAndStop() returns the value undefined but has an important side effect—it moves the

playhead to another frame:

gotoAndStop(5); // The value of _currentframe is changed to 5.

We'll learn more about function calls in Chapter 9 under "Running Functions."

6.3.3 The var Statement

The var statement declares a new variable:

var x;

You can assign the new variable's initial value as part of a var statement:

var x = 10;

When used outside a function, the var statement creates a variable scoped to the timeline containing the statement. When used inside a
function, the var statement creates a variable local to that function (i.e., one that dies when the function finishes). Refer back to
Chapter 2 for more information on variables.

6.3.4 The set Statement (Set Variable)

For most variable assignments, we use an assignment expression in statement form, like this:

x = 30;

This kind of expression, however, requires us to know the name of our variable in advance. If we want to generate the name of a
variable dynamically during an assignment, we can use the set statement, which has the following syntax:

set(variable, expression);

where variable is a string expression to be used as the variable name in the assignment and expression is the new value to

assign to it. For example:

var x;
set("x", 10); // x is now 10
var firstName;
set("first" + "Name", "jane"); // firstName is now "jane"

In the following, trickier example, y is not set in the set statement. Instead, y's value ("x") is retrieved and that value is used as the

name of the variable to set:

// Pay close attention to this one...
var y = "x";
var x;
set(y, 15); // x is now 15, y is still "x".

In Flash 4, set was called Set Variable, and it was often used to dynamically assign variables that had programmatically generated
sequential names. It allowed programmers to simulate arrays, which were not a native part of Flash 4 ActionScript. Since arrays were
added in Flash 5, set is rarely used anymore. In most cases, a variable can be referenced dynamically with the object property access
operator, []. For example,

// Set the value of firstName in the form_mc movie clip.
form_mc["first" + "Name"] = "jane";

// Set the value of firstName in the current movie clip.
this["first" + "Name"] = "jane";

However, set is required when dynamically referring to a local variable in a function (because local variables are not properties of any
exposed ActionScript object).

6.3.5 The function Statement

Just as the var statement is used to declare (i.e., create) variables, the function statement is used to declare functions. The function
statement has the following syntax:

function funcName (param1, param2, param3,...paramn) {
 statements
}

The keyword function begins the statement; funcName is the name of the function being declared; param1 through

paramn define the parameters required by the function when it executes (parameters are separated by commas); statements is

a list of one or more statements that will be executed when the function is called.

The function statement declares a function for later use but does not execute that function. To execute a function, we use the function's
name in a function call statement, which we'll discuss next.

6.3.6 Function Call Statements

A function call statement executes a built-in or user-defined function simply by using the function's name and providing the inputs that
the function needs to perform its job. The terms call, run, and invoke are often used interchangeably to mean that a function's name has
been used to cause it to execute. Function call statements have the following general syntax:

funcName(arg1, arg2, ... argn);

where funcName is the name of the function we want to execute and arg1 through argn is the list of arguments (i.e., input

values) that the function expects when it runs.

The function call statement is an extremely powerful and fundamental device; it's our primary means of controlling Flash movies.
When we want to manipulate a movie in some way, we often call a function. Here are a few examples:

play(); // Plays the current movie
gotoAndStop(5); // Sends the playhead to frame 5
startDrag("crosshair", true); // Makes the "crosshair" instance follow
 // the mouse pointer

Function calls are also used with objects to invoke methods:

circle.getArea();
today.getDate();

Because movie clip instances are objects, we frequently use method invocation in our scripts:

ball_mc.play()
intro_mc.gotoAndStop("end");

We'll cover the use of functions in Chapter 9, and in Chapter 12 we'll see how functions can become object methods.

6.3.7 The return Statement

When we call a function, we can optionally pass it one or more values (parameters or arguments) to manipulate during execution.
Likewise, a function can send us back a return value (a value that results from the execution of a function and is sent back to the
caller). Within the body of a function, we use the return statement to conclude the function's execution and optionally return a value.
A return statement takes one of the following forms:

return;
return expression;

The optional expression, if included, becomes the return value of the function. A return statement without a return value exits

the function and returns the value undefined. All return statements exit the current function. Note that return statements are not

required in functions; a function without a return statement simply ends after the last statement in the function body and implicitly
returns undefined. See Chapter 9 for more details on creating, calling, and terminating functions.

6.3.8 The with Statement

The with statement provides a shorthand way to refer to properties of an object without having to retype the object's name repeatedly.
A with statement takes the general form:

with (object) {
 statements
}

When a property is referenced within a with statement block, object is checked for the specified property. In other words, with

temporarily adds object to the end of the scope chain for the currently executing code. If the property exists in object, then

object's property is used to resolve the property reference. If the property does not exist in object, the remainder of the current

scope chain is consulted for the property in question, as described in Chapter 2.

The following example shows the difference between executing a statement inside a with statement and outside a with statement:

PI = 10; // Set a timeline variable, PI
with (Math) { // Execute statements in the context of Math

 trace("pi is: " + PI); // Displays: 3.1459... (PI is a property of Math)
}
trace("PI is: " + PI); // Displays: 10 (Math is no longer accessed)

In addition to providing convenient access to object properties, with can be used to invoke object methods:

x = 10;
y = 11;
with (Math) {
 larger = max(x, y);
}
trace(larger); // Displays: 11

It is not possible to define a new property on an object that is the target of a with statement. For example, in the preceding code, the
variable larger does not exist on the Math object, so the property assignment creates a new variable on the timeline that contains

the with statement (not on Math!). The following code shows a misguided attempt to set a variable in theClip_mc:

with (theClip_mc) {
 var x = 10; // x is set on the current timeline, not theClip_mc
}

We can, however, legitimately use with to affect movie clip instances in other ways. It can provide a handy way to work with deeply
nested instance structures. For example, we can change this:

this.player_mc.eyes_mc.blinkRate = 30;
this.player_mc.eyes_mc.gotoAndStop("eyesOpen");

to this:

with (this.player_mc.eyes_mc) {
 blinkRate = 30; // Resets an existing variable in eyes_mc instance
 gotoAndStop("eyesOpen"); // Function applied to eyes_mc instance
}

But with is not our only means of achieving this convenience. We can also simply assign our instance to a variable and use that
variable in our references:

var eyes = this.player_mc.eyes_mc;
eyes.blinkRate = 30;
eyes.gotoAndStop("eyesOpen");

Many developers find the variable approach easier to read and work with than the with statement, but both are valid. We'll learn more
about treating movie clips as objects in Chapter 13.

Note that inside a with statement, the value of the this keyword does not change; it retains the value it had outside the with

statement. For example:

// Place the following code on _level0
// On _level0, create a ball object with a radius property
_level0.ball = { radius: 20 };
// Check the value of 'this' outside of the with statement
trace(this); // Displays: _level0
// Start our with statement
with (_level0.ball) {
 // Check the value of 'this' inside the with statement
 trace(this); // Still displays: _level0 (not ball!)
 // Check the radius of the ball object
 trace(radius); // Displays: 20
}

6.3.9 The ifFrameLoaded Statement

The deprecated ifFrameLoaded statement executes its substatements only if the specified frame has been loaded. Here's the syntax:

ifFrameLoaded (frame_expression) {
 statements
}

where frame_expression must be either the number of a frame or a string indicating a frame label. If the frame indicated by

frame_expression has downloaded to the Player, statements are executed; if not, the statement block is skipped.

Because ifFrameLoaded lacks an else clause, it was deprecated in Flash 4. In Flash 4 and later, you should use the
_totalframes and _framesloaded properties with if-else statements to create a more versatile preloader. For example:

if (_totalframes > 0 && _framesloaded = = _totalframes) {
 gotoAndPlay("beginMovie");
} else {
 gotoAndPlay(_currentframe - 1);
}

6.3.10 The Empty Statement

For the sake of completeness, we should mention that it is legal to issue a statement with no content using a lone semicolon:

;

The empty statement has very little practical application, except that it can be used as a placeholder anywhere a statement is normally
expected. It is not needed if you simply want to add blank lines to your code. ActionScript ignores blank vertical lines, which can be
used to improve code readability.

In Flash's Normal Mode, the lone semicolon appears when the evaluate Action is added to a block of code. An arbitrary statement can
then be added by typing into the Expression field of the Parameters panel.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 6. Statements

6.4 Statements Versus Actions

If you look through the Flash ActionScript editing environment, you won't find any reference to the word
"statement." Even Macromedia's documentation uses the terms "Action" and "statement" interchangeably, claiming,
"Actions are statements that instruct a movie to do something while it is playing." Using the term "Action" as a
synonym for "statement" blurs the distinction between several different ActionScript tools. To see how, open the
Actions panel (F9) and look in the Actions folder. Under the list of Actions in that folder (and its subfolders), you'll
find the statements we saw earlier in Table 6-1. Interspersed with the statements, you'll also notice quite a few
functions: gotoAndPlay(), getURL(), startDrag(), and so on. Although the functions listed as Actions can be used
in statements, technically they're not unique statement types—they're just built-in functions. Statements, some
built-in functions, and event handlers are all called "Actions" by Macromedia. Throughout this book, we do not use
the generic term "Action". Instead, each Action is described with the term that matches its formal role in the
language: either statement, function, or event handler. Understanding ActionScript from this traditional perspective
makes it easier to migrate your skills to other languages and to understand general programming discussions that do
not relate specifically to ActionScript.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 6. Statements

6.5 Onward!

Though you've learned a lot about statements, two important statement types—conditionals and loops—are yet to
come. We'll deal with these kinds of statements in the next two chapters.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 7. Conditionals

Most of the code examples we've seen so far have been very linear—each statement is executed in turn, starting
with the first and ending with the last. Linear code always does the same thing. A conditional, in contrast, is a type
of statement that performs an action only when a specified condition is met. In linear code, the interpreter might
execute statement A, then statement B, then statement C. With conditional statements, we can tell the interpreter to
execute statement A, then execute either statement B or statement C, depending on condition X.

We can use conditionals to create and control situations that have more than one potential outcome. For example,
suppose we want to create a password-protected site. When users attempt to log in, either the password is correct
and the user is allowed to enter the site, or the password is wrong and the user sees an error message. The two
outcomes require two very different blocks of code in our movie's script. One block needs to send the Flash
playhead to a frame containing the site's welcome screen, and the other block needs to send the playhead to a frame
with an error message. But only one of the blocks should be executed when the user attempts to log in. A
conditional statement allows us to execute the appropriate block and skip the inappropriate one.

How does the interpreter know which code block to execute? When we define a conditional statement, we specify
the condition that must be met in order for the first block of code to be executed. If the condition is not met, an
alternate block of code may be executed (and that alternate block may, in turn, have its own condition). Essentially,
we set up flowchart-like logic in our program that, in pseudocode, reads like this:

if (the first condition is met) {
 // Execute this code if the first condition is met
} else if (the second condition is met) {
 // Execute this code if the second condition is met
} ...otherwise {
 // Execute this code if none of the earlier conditions were met
}

Of course, we must describe each condition in terms the interpreter understands. This isn't a problem—it's just a
question of syntax, which we'll cover next. Conceptually, all conditionals either allow or suppress the execution of
a code block, based on the specified condition. Now let's see how conditionals work in practice.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 7. Conditionals

7.1 The if Statement

The if statement is your everyday, all-purpose conditional. We can use an if statement to create a two-pronged branch in
our code, like a fork in the road. The if statement contains one or more substatements that are executed only when the
specified condition is met. The if statement has the following syntax:

if (condition) {
 substatements
}

An if statement starts, not surprisingly, with the keyword if. The condition that must be satisfied for

substatements to be executed is enclosed in parentheses. The substatements are one or more ActionScript

statements. Each substatement should be on its own line and terminated with a semicolon. The entire if statement ends
with a closing curly brace (}), without a trailing semicolon.

The condition of our if statement can be any valid expression. When an if statement is executed, the interpreter

checks the value of that expression (called the test expression). If it is true, the substatements are executed.

Otherwise, the substatements are not executed. Here we use simple Boolean values as the test expression:

if (true) {
 trace("The condition was met!"); // This statement will be executed
}
if (false) {
 trace("The condition was met!"); // This statement is never executed
}

Of course, there's no practical reason to use Boolean literals as test expressions, because their values never change.
Instead, we'll use complex expressions that return Boolean values. For example, expressions that involve a comparison
operation return a Boolean value, which makes them perfect for conditional test expressions:

var pointerX = _root._xmouse; // Horizontal location of the mouse
// If pointerX > 300 yields true...
if (pointerX > 300) {
 // ...this statement is executed
 trace("The mouse is past the 300 pixel mark");
}

Now for the cool part: the test expression of a conditional doesn't necessarily have to evaluate to a Boolean—any
expression will do. We can use a string or a number as the test expression of a conditional:

if ("hi") {
 trace("The condition was met!");
}
if (4) {
 trace("The condition was met!");
}

How does this work if the expressions "hi" and 4 are not Booleans? The answer lies in the marvels of datatype conversion,
as shown in Table 3-3. When the test expression of a conditional statement is not a Boolean value, the interpreter converts
the expression to a Boolean. For example, the interpreter converts "hi" to false because all nonnumeric strings convert

to false when used in a Boolean context. So the condition is not met and the first trace() statement is not executed.

Similarly, the interpreter converts the number 4 to true (any nonzero number converts to true), so the second trace()

statement is executed.

All our earlier work with datatype conversion has paid off! Here are some basic applied examples. Try to guess whether
each substatement will be executed:

x = 3;
if (x) {
 trace("x is not zero");
}

This example uses the OR operator, described in Chapter 5:

lastName = "";
firstName = "";
if (firstName != "" || lastName != "") {
 trace("Welcome " + firstName + " " + lastName);
}

Finally, we test whether a movie clip object exists (movie clips are converted to true when used in a Boolean context):

if (theClip_mc) {
 theClip_mc._x = 0; // If theClip_mc exists, put it on
 // the left edge of the Stage
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 7. Conditionals

7.2 The else Statement

With a lone if statement, we can cause a single code block to be optionally executed. By adding an else clause, we
can choose which of two code blocks should be executed. Syntactically, an else statement is an extension of an if
statement:

if (condition) {
 substatements1
} else {
 substatements2
}

where condition can be any valid expression. substatements1 will be executed if condition is

true; substatements2 will be executed if condition is false. In other words, an else statement

is perfect for depicting a mutually exclusive decision; one code block will be executed and the other will not.

Here's some code to demonstrate:

var lastName = "Grossman";
var gender = "male";
if (gender = = "male") {
 trace("Good morning, Mr. " + lastName + ".");
} else {
 trace("Good morning, Ms. " + lastName + ".");
}

The else clause often acts as the backup plan of an if statement. Recall our password-protected web site example. If
the password is correct, we let the user enter the site; otherwise, we display an error message. Here's some code we
can use to perform the password check (assume that userName and password are the user's entries and that

validUser and correctPassword are the correct login values):

if (userName = = validUser && password = = correctPassword) {
 this.gotoAndPlay("intro");
} else {
 this.gotoAndStop("loginError");
}

7.2.1 The Conditional Operator

Simple two-part conditional statements can be expressed conveniently with the conditional operator (?:). The

conditional operator has three operands, which you'll recognize as analogous to the components of an if-else
statement series:

condition ? expression1 : expression2;

In a conditional operation, if condition is true, expression1 is evaluated and returned. Otherwise,

expression2 is evaluated and returned. The conditional operator is just a quicker way to write the following

conditional statement:

if (condition) {

 expression1
} else {
 expression2
}

Like a conditional statement, the conditional operator can be used to control the flow of a program:

// If command is "go", play the movie; otherwise, stop
command = = "go" ? play() : stop();

The conditional operator also provides a terse way to assign values to variables:

var guess = "c";
var answer = "d";
var response = (guess = = answer) ? "Right" : "Wrong";

which is equivalent to:

var guess = "c";
var answer = "d";
if (guess = = answer) {
 response = "Right";
} else {
 response = "Wrong";
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 7. Conditionals

7.3 The else if Statement

Using if and else, we can optionally execute one of two code blocks. By using if and else if, we can optionally
execute one (or even none) of an unlimited number of code blocks. Like else, else if is a syntactic extension of an if
statement:

if (condition1) {
 substatements1
} else if (condition2) {
 substatements2
} else if (condition3) {
 substatements3
} else {
 substatements4 // Catchall if other conditions were not met
}

where condition1, condition2, and condition3 must be valid expressions.

substatements1 will be executed if condition1 is true. If condition1 is false,

substatements2 will be executed if condition2 is true. Otherwise, condition3 is evaluated,

and the process continues for as many else if statements are provided. If none of the test expressions are true, the

statements in the final catchall else clause will be executed. For example, we could write a login-checking routine
to provide insightful error messages, like this:

if (userName != validUser) {
 message = "User not found. Please try again.";
 this.gotoAndStop("loginError");
} else if (password != correctPassword) {
 message = "Password incorrect. Please try again.";
 this.gotoAndStop("loginError");
} else {
 this.gotoAndPlay("intro");
}

Note that an else if statement is merely a combination of an else statement with a nested if statement. Although the
following two code segments are equivalent, the first one is much easier to read:

// Normal "else if" syntax
if (x > y) {
 trace("x is larger than y");
} else if (x < y) {
 trace("x is smaller than y");
} else {
 trace("x and y are equal");
}
// Expanded Nested if/else chain
if (x > y) {
 trace("x is larger than y");
} else {
 if (x < y) {

 trace("x is smaller than y");
 } else {
 trace("x and y are equal");
 }
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 7. Conditionals

7.4 The switch Statement

The switch statement, introduced in Flash Player 6, lets us execute one (or sometimes more) of several possible
code blocks, based on the value of a single test expression. In some cases, the switch statement is easier to write and
more legible than an if statement. For example, in the following switch statement, we greet the user with a custom
message depending on the value of the test expression gender:

var surname = "Porter";
var gender = "male";
switch (gender) {
 case "femaleMarried":
 trace("Hello Mrs. " + surname);
 break;
 case "femaleGeneric":
 trace("Hello Ms. " + surname);
 break;
 case "male":
 trace("Hello Mr. " + surname);
 break;
 default:
 trace("Hello " + surname);
}

Our switch statement attempts to match the value of gender to one of the supplied case expressions:

"femaleMarried", "femaleGeneric", or "male". Because gender matches the expression "male", the substatement

trace("Hello Mr. " + surname); is executed. If the test expression had not matched any case clause, then the default
statement—trace("Hello" + surname);—would have been executed.

The general form of the switch statement is:

switch (testExpression) {
 case expression1:
 substatements1
 break;
 case expression2:
 substatements2
 break;
 default:
 substatements3
 break;
}

where testExpression is a value that the interpreter will attempt to match with each of the supplied case

expressions, from top to bottom. The case expressions are supplied with the statement label case, followed by a
colon. If testExpression matches a case expression, all statements immediately following that case label

are executed, including those in any subsequent case blocks! To prevent subsequent blocks from executing, we
must use the break statement at the end of each block. If no case expression matches testExpression, all

statements following the default label are executed.

Though the default label is normally listed last, it can legally come anywhere within the switch statement.

Furthermore, the default label is not mandatory in a switch statement. If no default is provided and
testExpression does not match a case expression, execution flow simply continues after the end of the

switch statement block (the code within the switch statement is skipped). However, if both the case and the default
labels are omitted, the switch statement generates an error (unlike JavaScript, which permits empty switch
statements).

To provide switch with value ranges rather than a single value, use the following technique:

switch (true) {
 case (x < 10):
 trace("x is less than 10.");
 break;
 case (x >= 10 && x <= 20):
 trace("x is between 10 and 20.");
 break;
 case (x > 20):
 trace("x is greater than 20.");
 break;
}

In this example, note that if more than one case yields true, the code following the first true expression is

executed.

To test for a group of cases rather than a single case, use the following "fall-through" technique (notice how the
break statement is intentionally omitted from case 1 and case 3:

x = 3;

switch (x) {
 case 1:
 case 3:
 case 5:
 trace("x is 1, 3, or 5");
 break;
 default:
 trace("x is not 1, 3, or 5");
}

The switch statement implicitly uses the strict equality operator (= = =), not the equality operator (= =), when

comparing the testExpression with case expressions. For a description of the difference, see Chapter 5.

The expressions following the switch and case keywords can be any datatype and need not be literal values.

Because a switch statement executes from top to bottom, case expressions that are most likely to match
testExpression should be listed first (obviously, this applies only to situations where case statement order

does not affect the result of the switch statement).

Although the switch statement was introduced for Flash Player 6, code using switch can be exported from the Flash
MX authoring tool to Flash Player 5 and Flash Player 4 formatted movies. When exporting to Flash 4 or Flash 5
format, however, switch expression matching uses the standard equality (= =), not the strict equality (= = =)

operator. In any case, switch does not offer any performance improvement over the analogous if-else if-else
construction.

Note that case and default clauses are two specific examples of a more general structure called a statement

label. Statement labels are a part of ECMAScript v3, but—other than case and default—they are not

supported by ActionScript.

7.4.1 Simulating the switch Statement in Flash 5

Though the switch statement is not supported in the Flash 5 authoring tool, it can be emulated using a chain of if-

else if-else statements, like this:

var surname = "Porter";
var gender = "male";
if (gender = = "femaleMarried") {
 trace("Hello Mrs. " + surname);
} else if (gender = = "femaleGeneric") {
 trace("Hello Ms. " + surname);
} else if (gender = = "male") {
 trace("Hello Mr. " + surname);
} else {
 trace("Hello " + surname);
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 7. Conditionals

7.5 Compact Conditional Syntax

Throughout this book we use statement blocks (statements surrounded by curly braces) with all conditional
statements, even if a block contains only one statement:

if (x = = y) {
 trace("x and y are equal");
}

For the sake of brevity, ActionScript does not require curly braces when a conditional has only one substatement. A
single substatement can, quite legitimately, be placed directly after an if or else if statement without any curly
braces, like this:

if (x = = y) trace ("x and y are equal");

or even on the next line, like this:

if (x = = y)
 trace ("x and y are equal");

For some programmers, this style can be a little slower to read and slightly more error-prone, though it undeniably
saves room in source code.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 7. Conditionals

7.6 Onward!

Conditional statements are an immensely important aspect of ActionScript. They give us precise control over the
execution of our code. In the next chapter, we'll examine another kind of important execution-control statement,
loops.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 8. Loop Statements

In Chapter 7, we saw that a conditional causes a statement block to be executed once if the value of its test
expression is true. A loop, on the other hand, causes a statement block to be executed repeatedly, for as long as

its test expression remains true.

Loops come in a variety of tasty flavors: while, do-while, for, and for-in. The first three types have very similar
effects, but with varying syntax. The last type of loop, for-in, is a specialized kind of loop used with objects. We'll
start our exploration of loops with the while statement, the easiest kind of loop to understand.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.1 The while Loop

Structurally, a while statement is constructed much like an if statement: a main statement encloses a block of substatements that are
executed only when a given condition is true:

while (condition) {
 substatements
}

If condition is true, substatements are executed. But, unlike the if statement, when the last substatement is finished,

execution begins anew at the beginning of the while statement (that is, the interpreter "loops" back to the beginning of the while statement).
The second pass through the while statement works just like the first: the condition is evaluated, and if it is still true,

substatements are executed again. This process continues until condition becomes false, at which point execution

continues with any statements that follow the while statement in the script.

Here's an example of a very simple loop:

var i = 3;
while (i < 5) {
 trace("x is less than 5");
}

The example reliably represents the correct syntax of a while loop but is most likely in error. To see why, let's follow along with the
interpreter as it executes the example.

The interpreter starts with the statement before the while statement, var i = 3, which sets the variable i to 3. Because the variable i is used

in the test expression of the loop, this step is often called the loop initialization. Next, the interpreter begins executing the while statement
by resolving the test expression: i < 5. Because i is 3, and 3 is less than 5, the value of the test expression is true; so, the interpreter

executes the trace() statement within the loop, sometimes called the loop body.

With that done, it's time to repeat the loop. Once again, the interpreter checks the value of the test expression. The value of the variable i
has not changed, so the test expression is still true and the interpreter executes the trace() statement again. At this point, the loop body

has finished executing, so it's time to repeat the loop. Guess what? The variable i still has not changed, so the test expression is still true
and the interpreter must execute the trace() statement again, and again, and again, forever. Because the test expression always returns
true, there's no way to exit the loop—Flash is trapped forever in an infinite loop. In ActionScript, an infinite loop causes an error, as

we'll see later.

Our loop is infinite because it lacks an update statement that changes the value of the variable used in the test expression. An update
statement typically causes the test expression to eventually yield false, which terminates the loop. Let's fix our infinite loop by adding

an update statement:

var i = 3;
while (i < 5) {
 trace("x is less than 5");
 i++;
}

The update statement, i++;, comes at the end of the loop body. When the interpreter goes through our loop, it executes the trace()
statement as before, but it also executes the statement i++;, which adds 1 to the variable i. With each iteration of the loop, the value of i
increases. After the second iteration, i's value is 5, so the test expression, i < 5, becomes false. The loop, therefore, safely ends after

two iterations.

Our loop's update statement performs a fundamental loop activity: it counts. The variable i (called a counter) runs through a predictable

numeric sequence—perfect for methodical tasks such as duplicating movie clips or accessing the elements of an array. Here we duplicate
the square movie clip five times without using a loop:

// Name each new clip sequentially and place it on its own depth
duplicateMovieClip("square", "square1", 1);
duplicateMovieClip("square", "square2", 2);
duplicateMovieClip("square", "square3", 3);
duplicateMovieClip("square", "square4", 4);
duplicateMovieClip("square", "square5", 5);

And here we perform the same operation with a loop:

var i = 1;
while (i <= 5) {
 duplicateMovieClip("square", "square" + i, i);
 i++;
}

Imagine the difference if we were duplicating square 100 times!

Loops are marvelously useful for manipulating data, particularly data stored in arrays. Example 8-1 shows a loop that displays all the
elements of an array to the Output window. Note that the first element is number 0, not number 1.

Example 8-1. Displaying an array with a while loop

var people = ["John", "Joyce", "Margaret", "Michael"]; // Create an array
var i = 0;
while (i < people.length) {
 trace("people element " + i + " is " + people[i]);
 i++;
}

The result in the Output window is:

people element 0 is John
people element 1 is Joyce
people element 2 is Margaret
people element 3 is Michael

Notice that the variable i is used both in the test expression and as the array index number, as is typical. Here we use i again as an

argument for the charAt() function:

var city = "Toronto";
trace("The letters in the variable 'city' are ");
var i = 0;
while (i < city.length) {
 trace(city.charAt(i));
 i++;
}

The Output window shows:

The letters in the variable 'city' are:
T
o
r
o

n
t
o

Finally, instead of dissecting data, we use a loop to construct a sentence from a series of words stored in an array:

var words = ["Toronto", "is", "not", "the", "capital", "of", "Canada"];
var sentence;
var i = 0;
while (i < words.length) {
 sentence += words[i]; // Add the current word to the sentence
 // If it's not the last word...
 if (i < words.length - 1) {
 sentence += " "; // ...tack on a space
 } else {
 sentence += "."; // ...otherwise, end with a period
 }
 i++;
}
trace(sentence); // Displays: "Toronto is not the capital of Canada."

Nearly all loops involve some kind of counter (sometimes called an iterator or index variable). Counters let us cycle sequentially through
data. This technique is particularly convenient when we determine the counter's maximum limit using the length property of the array

or string we want to manipulate, as we did in the preceding example.

It's also possible to create a loop whose end point doesn't depend on a counter. As long as the test expression of the loop eventually
becomes false, the loop will end. Here, for example, we examine the document level stack of the Flash Player to determine the first

vacant level:

var i = 0;
while (typeof eval("_level" + i) = = "movieclip") {
 i++;
}
trace("The first vacant level is " + i);
// Now load a movie into the vacant level, knowing it's free
loadMovieNum("myMovie.swf", i);

For more information on document levels, see Section 13.4 in Chapter 13.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.2 Loop Terminology

In the previous section we introduced several new terms. Let's look at these more formally, so that you'll
understand them well when working with loops:

Initialization

The statement or expression that defines one or more variables used in the test expression of a loop.
Test expression

The condition that must be met in order for the substatements in the loop body to be executed (often called
a condition or test, or sometimes, control).

Update

The statements that modify the variables used in the test expression before a subsequent test. A typical
update statement increments or decrements the loop's counter.

Iteration

One complete execution of the test expression and statements in the loop body (sometimes referred to as
one loop or one pass).

Nesting or nested loop

A loop that contains another loop, allowing you to iterate through some sort of two-dimensional data. For
example, you might loop through each row in a column for all the columns in a table. The outer or top-level
loop would progress through the columns, and the inner loop would progress through the rows in each
column.

Iterator or index variable

A variable whose value increases or decreases with each iteration of a loop, usually used to count or
sequence through some data. Loop iterators are often called counters. Iterators are conventionally named i,

j, and k, or sometimes x, y, and z. In a series of nested loops, i is usually the iterator of the top-level

loop, j is the iterator of the first nested loop, k is the iterator of the second nested loop, and so on. You can

use any variable name you like for clarity. For example, you can use charNum as the variable name to

remind yourself that it indicates the current character in a string.
Loop body

The block of statements that is executed when a loop's condition is met. The body may not be executed at
all, or it may be executed thousands of times.

Loop header

The portion of a loop that contains the loop statement keyword (while, for, do-while, or for-in) and the loop
controls. The loop control varies with the type of loop. In a for loop, the control comprises the
initialization, the test, and the update; in a while loop, the control comprises the test expression only.

Infinite loop

A loop that repeats forever because its test expression never yields the value false. Infinite loops cause

an error in ActionScript, as discussed later in this chapter under Section 8.6.3.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.3 The do-while Loop

As we saw earlier, a while statement allows the interpreter to execute a block of code repeatedly while a specified
condition remains true. Due to a while loop's structure, its body will be skipped entirely if the loop's condition is

not met the first time it is tested. A do-while statement lets us guarantee that a loop body will be executed at least
once with minimal fuss. The body of a do-while loop always executes the first time through the loop. The do-while
statement's syntax is somewhat like an inverted while statement:

do {
 substatements
} while (condition);

The keyword do begins the loop, followed by the substatements of the body. On the interpreter's first pass

through the do-while loop, substatements are executed before condition is ever checked. At the end

of the substatements block, if condition is true, the loop is begun anew and substatements
are executed again. The loop executes repeatedly until condition is false, at which point the do-while

statement ends. Note that a semicolon is required following the parentheses that contain the condition.

Obviously, do-while is handy when we want to perform a task at least once and perhaps subsequent times. In
Example 8-2 we duplicate a series of twinkling-star movie clips from a clip called starParent and place them

randomly on the Stage. Our galaxy will always contain at least one star, even if numStars is set to 0.

Example 8-2. Using a do-while loop

var numStars = 5;
var i = 1;
do {
 // Duplicate the starParent clip
 duplicateMovieClip(starParent, "star" + i, i);
 // Place the duplicated clip randomly on stage
 _root["star" + i]._x = Math.floor(Math.random() * 551);
 _root["star" + i]._y = Math.floor(Math.random() * 401);
} while (i++ < numStars);

Did you notice that we sneakily updated the variable i in the test expression? Remember from Chapter 5 that the

post-increment operator both returns the value of its operand and also adds 1 to that operand. The increment
operator is very convenient (and common) when working with loops.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.4 The for Loop

A for loop is essentially synonymous with a while loop, but it is written with more compact syntax. Most notably,
the loop header can contain both initialization and update statements in addition to the test expression.

Here's the syntax of the for loop:

for (initialization; condition; update) {
 substatements
}

The for loop places the key components of a loop tidily in the loop header, separated by semicolons. Before the
first iteration of a for loop, the initialization statement is performed (once and only once). It is typically

used to set the initial value of one or more iterator variables. As with other loops, if condition is true,

substatements are executed. Otherwise, the loop ends. Even though it appears in the loop header, the

update statement is executed at the end of each loop iteration, before condition is tested again to see if the

loop should continue. Here's a typical for loop that simply counts from 1 to 10:

for (var i = 1; i <= 10; i++) {
 trace("Now serving number " + i);
}

It's easier to understand how a for loop works when you see its equivalent constructed using the while loop syntax:

var i = 1;
while (i <= 10) {
 trace("Now serving number " + i);
 i++;
}

Once you're used to the for syntax, you'll find it saves space and allows for easy interpretation of the loop's body
and controls.

8.4.1 Multiple Iterators in for Loops

If we want to control more than one factor in a loop, we can use more than one iterator variable. A while loop with
multiple iterators might look like this:

var i = 1;
var j = 10;
while (i <= 10) {
 trace("Going up " + i);
 trace("Going down " + j);
 i++;
 j--;
}

The same effect can be achieved in a for statement using the comma operator:

for (var i = 1, j = 10; i <= 10; i++, j--) {

 trace("Going up " + i);
 trace("Going down " + j);
}

Notice that the var keyword is listed only once—it applies to all supplied variables.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.5 The for-in Loop

A for-in statement is a specialized loop used to list the properties of an object. New programmers may want to skip
this section for now and return to it after reading Chapter 12.

Unlike other loops, which repeat a series of statements until a given test expression is false, a for-in loop iterates

once for each property in the specified object. Therefore, for-in statements do not need an explicit update statement
because the number of loop iterations is determined by the number of properties in the object being inspected. The
syntax of a for-in loop looks like this:

for (var thisProp in object) {
 substatements // Substatements typically use thisProp in some way
}

The substatements are executed once for each property of object; object is a reference to any valid

object; thisProp is a variable name (and should not be hardcoded with the name of an existing object property).

During each loop iteration, the thisProp variable is automatically set to a string that is the name of the object

property currently being enumerated. That string value can be used during each iteration to access and manipulate the
current property. The simplest example of a for-in loop is one that lists the properties of an object. Here we create an
object and then enumerate its properties with a for-in loop:

var ball = new Object();
ball.radius = 12;
ball.color = "red";
ball.style = "beach";
for (var prop in ball) {
 trace("ball has the property " + prop);
}

Because prop stores the names of the properties of ball as strings, we can use prop with the [] operator to

retrieve the values of those properties, like this:

for (var prop in ball) {
 trace("ball." + prop + " is " + ball[prop]);
}

Retrieving property values with a for-in loop also provides a super way to detect the movie clips present on a
timeline. For a demonstration of the for-in loop used as a movie clip detector, see Example 3-1.

Note that the properties of the object being inspected in a for-in loop are not enumerated in any predictable order.
Also, for-in statements do not always list every property of an object. When the object is user-defined, all properties
are enumerated, including any inherited properties. But some properties of built-in objects are skipped by the for-in
statement. Methods of built-in objects, for example, are not enumerated by a for-in loop. If you want to use a for-in
statement to manipulate the properties of a built-in object, first build a test loop to determine the object's accessible
properties, such as:

thisFormat = new TextFormat();
for (var prop in thisFormat) {
 trace("Property found: " + prop);
}

When the object being inspected is an array, the value of thisProp is a string containing the integer index of

the element being enumerated.

To prevent a user-defined object property from appearing in a for-in loop, you can use the undocumented
ASSetPropFlags() function as follows:

// Create a new ball object with radius and color properties.
var ball = new Object();
ball.radius = 10;
ball.color = "red";

// Hide ball.radius from for-in loops.
ASSetPropFlags(ball, ["radius"], 1);

// Displays: color (radius is hidden)
for (var prop in ball) {
 trace(prop);
}

This technique is not officially documented by Macromedia and may be replaced by a more intuitive function in the
future. It is available in Flash Player 5 and Flash Player 6. For more information, see:

http://chattyfig.figleaf.com/flashcoders-wiki/index.php?ASSetPropFlags

In Flash Player 5, input text fields without a default value are not enumerated by a for-in
loop. Hence, form-validation code that detects empty text fields will not work properly
unless those text fields are explicitly declared as variables in the timeline upon which they
reside. In Flash Player 6, all text fields are represented by objects and are enumerated by
for-in even when empty.

The for-in statement can also be used to extract elements in an array, in which case it takes the form:

for (var thisElem in array) {
 substatements; // Substatements typically use thisElem in some way
}

This example lists the elements of an array:

var myArr = [123, 234, 345, 456];
for (var elem in myArr) {
 trace(myArr[elem]);
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.6 Stopping a Loop Prematurely

In a simple loop, the test expression is the sole factor that determines when the loop stops. When the test expression
of a simple loop yields false, the loop terminates. However, as loops become more complex, we may need to

terminate a running loop arbitrarily, regardless of the value of the test expression using the break statement. A related
statement, continue, ends the current iteration of the loop body and resumes execution with the next iteration.

8.6.1 The break Statement

The break statement ends execution of the current loop or switch statement (as we saw in Chapter 7). It has the
modest syntax:

break

The only requirement is that break must appear within the body of a loop or switch statement.

The break statement provides a way to halt a process that is no longer worth completing. For example, we can use a
for-in loop to build a form-checking routine that cycles through the input-text variables on a timeline. If a blank input
field is found, we alert the user that she hasn't filled in the form properly. We can abort the process by executing a
break statement. Example 8-3 shows the code. Note that the example assumes the existence of a movie clip called
form_mc that contains a series of declared input variables named input01_txt, input02_txt, and so

on.

Example 8-3. A simple form-field validator

for (var prop in form_mc) {
 // If this property is one of our "input" text fields
 if (prop.indexOf("input") != -1) {
 // If the form entry is blank, abort the operation
 if (form[prop].text = = "") {
 displayMessage = "Please complete the entire form.";
 break;
 }
 // Any substatements following the break command are not reached
 // when the break is executed
 }
}
// Execution resumes here after the loop terminates whether
// due to the break command or the test condition becoming false

8.6.2 The continue Statement

The continue statement is similar to the break statement in that it causes the current iteration of a loop to be aborted;
but, unlike break, it resumes the loop's execution with the next natural cycle. The syntax of the continue statement is
simply:

continue

In all types of loops, the continue statement interrupts the current iteration of the loop body, but the resumption of the

loop varies slightly depending on the type of loop statement. In a while loop and a do-while loop, the test expression
is checked before the loop resumes. But in a for loop, the loop update is performed before the test expression is
checked. And in a for-in loop, the next iteration begins with the next property of the object (or element of the array),
if one exists.

Using the continue statement, we can make the execution of the body of a loop optional under specified
circumstances. For example, here we move all the movie clip instances that aren't transparent to the left edge of the
Stage, and we skip the loop body for transparent instances:

for (var prop in _root) {
 if (typeof _root[prop] = = "movieclip") {
 if (_root[prop]._alpha < 100) {
 continue;
 }
 _root[prop]._x = 0;
 }
}

8.6.3 Maximum Number of Iterations

As noted earlier in this chapter, loops are not allowed to execute forever in ActionScript. In Flash Player 5 or later,
loops are limited to 15 seconds. The number of iterations that can be achieved in that time depends on what's inside
the loop and the computer's speed. To be safe, you shouldn't create loops requiring more than even a few seconds to
execute (which is eons in processing terms!). Most loops should take only milliseconds to finish. If a loop takes
longer to complete (for example, because it's processing hundreds of strings while initializing a word-scramble
game), it's worth rewriting the code using a timeline loop, as described in Section 8.7. Timeline loops allow us to
update the progress of a script's execution on screen and avoid the potential display of the error message shown in
Figure 8-1.

Figure 8-1. Bad loop! Down boy!

When a loop has run for more than 15 seconds in Flash Player 5 or later, an alert box warns the user that a script in
the movie is delaying the movie's playback. The user is offered the choice to either wait for the script to finish or to
quit the script.

Flash Player 4 is even stricter—it allows only 200,000 iterations, after which all scripts are disabled without any
warning.

Take special heed: the 15-second warning that users see does not mention that canceling a
runaway script will actually cause all scripts in the movie to stop functioning! If a user
selects Yes to stop a loop from continuing, all scripts in the movie are disabled.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.7 Timeline and Clip Event Loops

The loops we've looked at so far cause the interpreter to execute blocks of code repeatedly. Most of your loops will be
of this "ActionScript-statement" type. Sometimes it's desirable to create a timeline loop by looping Flash's playhead in
the timeline. To do so, attach a series of statements to any frame; on the next frame, attach a gotoAndPlay() function
whose destination is the previous frame. When the movie plays, the playhead will cycle between the two frames,
causing the code on the first frame to execute repeatedly.

We can make a simple timeline loop by following these steps:

Create a new Flash movie.1.
On frame 1, attach the following statement:2.
trace("Hi there! Welcome to frame 1");
On frame 2, add a blank keyframe and attach the following statements:3.
trace("This is frame 2");
this.gotoAndPlay(1);
Select Control Test Movie.4.

When we test our movie, we see an endless stream of the following text:

Hi there! Welcome to frame 1
This is frame 2
Hi there! Welcome to frame 1
This is frame 2

Timeline loops can do two things ordinary loops cannot:

They can execute a block of code an infinite number of times without causing an error.

They can execute a block of code that requires a Stage update between loop iterations.

This second feature of timeline loops requires a little more explanation. When any frame's script is executed, the movie
Stage is not updated visually until the end of the script. This means that traditional loop statements cannot be used to
perform repetitive visual or audio tasks because the task results aren't rendered between each loop iteration.
Repositioning a movie clip, for example, requires a Stage update, so we can't programmatically animate a movie clip
using a normal loop statement.

You might assume that the following code would visually slide the ball_mc movie clip horizontally across the

Stage:

for (var i = 0; i < 50; i++) {
 ball_mc._x += 10;
}

Conceptually, the loop statement has the right approach—it repetitively updates the position of ball_mc by small

amounts, which should give the illusion of movement. However, in practice, ball_mc doesn't move each time its

_x position is changed, because the Stage isn't updated between loop iterations. Instead, we'd see ball_mc
suddenly jump 500 pixels to the right—10 pixels for each of the 50 loop iterations—after the script completes.

To allow the Stage to update after each execution of the ball_mc._x += 10; statement, we can use a timeline

loop like this:

// CODE ON FRAME 1
ball_mc._x += 10;
// CODE ON FRAME 2
this.gotoAndPlay(1);

Because Flash updates the Stage between any two frames, the ball will appear to animate. But the timeline loop

completely monopolizes the timeline it's on. While it's running, we can't animate any other content on that timeline. A
better approach is to put our timeline loop into an empty, two-frame movie clip. We'll get the benefit of a Stage update
between loop iterations without freezing a timeline we may need for other animation.

8.7.1 Creating an Empty-Clip Timeline Loop

The following steps show how to create an empty-clip timeline loop:

Create a new Flash movie.1.
Create a movie clip symbol, named ball, that contains a circle shape.2.
On the main Stage, rename layer Layer 1, ball.3.
On the ball layer, place an instance of the ball symbol.4.
Name the instance of the ball clip ball_mc.5.

Select Insert New Symbol to create a blank movie clip symbol.6.
Name the clip symbol process.7.
On frame 1 of the process symbol, attach the following code:8.
_root.ball_mc._x += 10;
On frame 2 of the process symbol, add a blank keyframe and attach the following code:9.
this.gotoAndPlay(1);
Return to the main movie timeline and create a layer called scripts.10.
On the scripts layer, place an instance of the process symbol.11.
Name the instance processMoveBall_mc.12.

Select Control Test Movie.13.

The processMoveBall_mc instance will now move ball_mc without interfering with the playback of the

main timeline upon which ball_mc resides.

Note that step 12 isn't mandatory, but it gives us more control over our loop. By giving our process instance a name,
we can stop and start our loop by starting and stopping the playback of the instance, like this:

processMoveBall_mc.play();
processMoveBall_mc.stop();

Note that in this example, processMoveBall_mc and ball_mc must both exist on the main timeline for as

long as the loop is supposed to work. If we want to make the code more portable, we can use a relative reference to our
ball_mc clip in the process symbol:

_parent.ball_mc._x += 10;

Timeline loops can't loop on a single frame. That is, if we place a gotoAndPlay(5) function
on frame 5 of a movie, the function will be ignored. The Flash Player realizes that the
playhead is already on frame 5, and it simply does nothing.

You'll find the sample timeline loop and empty-clip loop .fla files in the online Code Depot.

8.7.2 Movie Clip onEnterFrame() Loops

Timeline loops are effective but not necessarily elegant. We can use an event handler on a movie clip to achieve the
same results as a timeline loop but with more flexibility (just try to follow along with this example, or see Chapter 10
for details on movie clip event handlers).

When placed on a movie clip, an onEnterFrame() event handler causes a block of code to execute once per tick of the
frame rate of a movie. We can use an onEnterFrame() event handler on a single-frame empty clip to execute a block of
code repetitively, while allowing for a Stage update between each repetition (just as a timeline loop does). Follow
these steps to try it out:

Create a ball_mc instance by following steps 1 through 5 from the previous section.1.

On the main timeline, create a new layer called scripts.2.
On frame 1 of the scripts layer, attach the following code:3.
// This code requires Flash Player 6 or later
this.createEmptyMovieClip("processMoveBall_mc", 1);
processMoveBall_mc.onEnterFrame = function () {
 _root.ball_mc._x += 10;
}
Select Control Test Movie.4.

The ball_mc instance should animate across the Stage.

The onEnterFrame() loop frees us from nesting our code inside a movie clip and doesn't require a two-frame loop, as
timeline loops do. All the action of a clip event loop happens in a single event handler. To stop an onEnterFrame()
loop, simply remove the movie clip that bears it. For example:

processMoveBall_mc.removeMovieClip();

Or, delete the onEnterFrame() handler:

delete processMoveBall_mc.onEnterFrame;

If our application is simple, we may wish to forego our empty clip onEnterFrame() loop altogether. In some cases, we
can, quite legitimately, attach an event loop directly to the clip being manipulated. In our ball_mc example, we can

avoid the need for a separate empty clip by defining our onEnterFrame() handler directly on the ball_mc instance:

ball_mc.onEnterFrame = function () {
 this._x += 10;
}

We can even define the onEnterFrame() event loop on the main timeline by placing this code on one of its frames:

this.onEnterFrame = function () {
 this.ball_mc._x += 10;
}

Notice that we intentionally avoid referring to the main timeline as _root, which may change meaning if the entire

movie is loaded into a movie clip.

In Flash Player 6, each movie clip (including the main timeline) can take only one onEnterFrame() event handler. In
most applications, a single, main application loop runs once per frame, updating the entire movie. For example:

// CODE ON MAIN TIMELINE
function mainLoop () {
 // Perform application-wide updates here
}
this.onEnterFrame = mainLoop;

Less frequently, multiple movie clips can update various aspects of the application, each with their own
onEnterFrame() handler.

8.7.3 Frame Rate's Effect on Timeline and onEnterFrame() Loops

Because timeline and onEnterFrame() loops iterate once per frame, their execution frequency is tied to the frame rate
of a movie. If we're moving an object around the screen with a timeline or an event loop, an increase in frame rate can

mean an increase in the speed of our animation.

When we programmed the movement of the ball_mc clip in our earlier examples, we implicitly specified the

velocity of the ball in relation to the frame rate. Our code says, "With each frame that passes, move ball_mc ten

pixels to the right":

ball_mc._x += 10;

Hence, ball_mc's velocity is dependent on the frame rate. If our movie plays at 12 frames per second, then our

ball_mc clip moves 120 pixels per second. If our movie plays at 30 frames per second, our ball_mc clip moves

300 pixels per second!

When timing scripted animations, it's tempting to calculate the distance to move an item in relation to the movie's
frame rate. So, if a movie plays 20 frames per second, and we want an item to move 100 pixels per second, we're
tempted to set the speed of the object to 5 pixels per frame (5 pixels * 20 frames per second = 100 pixels per second).
There are two serious flaws in this approach:

By relying on the frame rate to determine the speed of an item, we make it painful to change the frame rate. If we
change the frame rate, we have to recalculate our speed and edit our code accordingly.

The Flash Player does not necessarily play movies back at the frame rate set in the Flash authoring tool; it often
plays them slower. If the computer running the movie cannot render frames fast enough to keep up with the
designated frame rate, the movie slows down. This slowdown can even vary depending on the system load; if
other programs are running or if Flash is performing some processor-intensive task, the frame rate may drop for
only a short period and then resume its normal pace.

You can test a movie's actual frame rate yourself using the time-tracker tool available at:

http://www.moock.org/webdesign/flash/actionscript/fps-speedometer

In some cases, an animation that plays back at slightly different speeds can be deemed acceptable. But when visual
accuracy matters or when we're concerned with the responsiveness of an action game, it's much more appropriate to
calculate the distance to move an object based on elapsed time rather than relative to the frame rate. Example 8-4
shows a quick-and-dirty sample of time-based animation (i.e., the ball_mc speed is independent of the frame rate).

The new movie has three frames and two layers, one layer with the ball_mc instance and the other with our scripts.

Example 8-4. Calculating move distances based on time, not frame rate

// CODE ON FRAME 1
var distancePerSecond = 50; // Pixels to move per second
var now = getTimer(); // The current time
var then = 0; // The time when last frame was rendered
var elapsed; // Milliseconds between frame renders
var numSeconds; // elapsed expressed in seconds
var moveAmount; // Distance to move each frame

// CODE ON FRAME 2
then = now;
now = getTimer();
elapsed = now - then;
numSeconds = elapsed / 1000;
moveAmount = distancePerSecond * numSeconds;
ball_mc._x += moveAmount;

// CODE ON FRAME 3
gotoAndPlay(2);

Note that our time-based movement might appear jerky if the frame rate suddenly changes. We could smooth things
out by using an elapsed-time measurement that averages the time between a series of frames instead of just two.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.8 An Alternative to Timeline Loops:setInterval()

As of Flash Player 6, we can use setInterval() to execute a function every n milliseconds. For example, the
following code creates a function, moveBall(), that moves the ball_mc movie clip 10 pixels to the right, and

then uses setInterval() to execute that function every 20 milliseconds.

moveBall = function () {
 _root.ball_mc._x += 10;
}
ballMoverID = setInterval(moveBall, 20);

To stop our interval, we can later use:

clearInterval(ballMoverID);

Like a timeline loop or an onEnterFrame() loop, setInterval() can execute a block of code indefinitely, and it
allows for screen updates between iterations. However, the setInterval() function is not tied directly to a movie's
frame rate (though it is affected by it). For complete details, see setInterval() in the ActionScript Language
Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 8. Loop Statements

8.9 Onward!

Well, we've come pretty far. The end of this chapter marks a milestone—it ends our examination of the
ActionScript statements. This means we have variables, data, datatypes, expressions, operators, and statements
under our belt. These elements of the language are the foundation of all scripts. If you've read and understood
everything up to this point, or at least most of it, you can officially claim that you're able to "speak" ActionScript.

In the remainder of Part I, we'll work on making our conversations more eloquent and our commands more
powerful. We'll consider the advanced topics of how to make code portable, how to create events that initiate the
execution of our code, how to manage complex data, and how to manipulate movie clips programmatically. These
techniques will help us build more advanced applied examples.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 9. Functions

I'm almost giddy to tell you about functions because they're such a powerful part of ActionScript. A function is
simply a chunk of code that can be reused throughout a program. Not only do functions lend enormous flexibility
and convenience to our scripts, they also give us control over Flash movie elements. I can hardly imagine
programming without functions—they ease performing common operations, from sorting words to calculating the
distance between two movie clips. We'll introduce functions in this chapter before learning how to create complex,
powerful programs using functions with objects in Chapter 12.

We'll focus first on the simplest functions to understand—custom functions—the functions we create in our scripts,
as distinguished from the built-in functions provided with ActionScript.

The ECMA-262 specification refers to custom functions as program functions and built-
in functions as internal functions. We use the colloquial name in both cases rather than
the formal specification's terminology.

By learning to create your own functions, you'll become familiar with these fundamentals:

Function declaration or function definition

Creating functions for future use in our scripts.
Function invocation

Causing functions to execute. In other words, running the code in a function. Also known as calling a
function.

Function arguments and parameters

Providing functions with data to manipulate upon invocation.
Function termination

Ending the execution of a function and, optionally, returning a result.
Function scope

Determining the availability and life span of a function, and the accessibility of variables referenced in a
function body.

Let's get to it!

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.1 Creating Functions

To make a basic function we specify a function name and a block of statements to perform, like this:

function funcName (param1, param2,...paramn) {
 statements
}

The function keyword starts the declaration of our new function. Next comes our function name,

funcName, which we'll use later to invoke our function. The specified funcName must be a legal

identifier[1], but otherwise it can be any unique name we choose (avoid creating functions with the same name as
built-in functions). Next, we supply a pair of parentheses, (), that enclose any parameters (param1, param2,

etc.), separated by commas, which we'll discuss later. If our function does not have any parameters, we include the
parentheses but leave them empty. Finally, we provide the function body (i.e., statement block), which contains the
code that's executed when our function is called.

[1] See Chapter 15 for the rules that govern legal identifiers.

Let's make a very simple function:

Create a new empty Flash movie.1.
On frame 1 of Layer 1 of the main movie timeline, attach the following code:2.
function sayHi () {
 trace("Hi there!");
}

That was easy—we've just created a function named sayHi(). This simple function does not require any
parameters. When we run it, the trace() statement in its body will be executed. Don't close the movie you've
created; you'll learn to run the function next.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.2 Running Functions

We run a function like a wizard invokes a spell, by proclaiming the function's name, followed by the function call
operator, (), introduced in Chapter 5:

funcName(param1, param2,...paramn)

(You can almost detect the faint odor of smoldering mandrake root in the air.)

The parentheses contain the values for any parameters required by the function. If the function requires no
parameters (as determined by the function declaration), the parentheses are left empty. Let's try invoking our sayHi(
) function, which has no parameters, to get the hang of basic function invocation.

Here, again, is our sayHi() function declaration:

function sayHi () {
 trace("Hi there!");
}

And here's our sayHi() function invocation:

sayHi();

In this simple demonstration, we add the function invocation to the same script containing the function declaration,
but we'll see later that this isn't always the case. When the sayHi() function call is executed, the sayHi function is
invoked, so its function body runs, causing "Hi there!" to appear in the Output window.

You can see that typing sayHi(); is more convenient than typing the whole trace() statement, and the function
name, sayHi, is a more meaningful description of what our code does. Using thoughtful function names makes our
code more readable, almost like human sentences. In this book and in most programming documentation, function
names are conventionally listed with the invocation parentheses, as in "the sayHi() function" versus "the sayHi
function." This convention makes function names easy to spot in a sentence.

Before we continue, notice the semicolon at the end of the function call:

sayHi();

We add the semicolon because a function call is a complete statement, and good form dictates that all statements
should end in a semicolon.

Believe it or not, you've just learned the basics of creating and invoking functions—not too shabby. Functions keep
our code centralized and easier to maintain, especially when we need to perform the same operation repeatedly
throughout our program. Functions become even more powerful when used with parameters, which we'll consider
next.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.3 Passing Information to Functions

In the last section, we created a function that executed a simple trace() statement—not exactly the most compelling specimen of the function
species. Here's a more interesting function that moves a movie clip instance, named ball, a short distance. Follow these steps to create it in your

own movie:

Create a new empty Flash movie.1.
Create a new movie clip symbol, named ballSymbol, that contains a circle shape.2.
Place an instance of ballSymbol on Layer 1.3.
Name the ballSymbol instance ball.4.

On frame 1 of Layer 1 of the main movie timeline, attach the following code:5.
// Store a portable reference to the main timeline.
_global.mainTimeline = this;

function moveBall () {
 mainTimeline.ball._x += 10;
 mainTimeline.ball._y += 10;
}

As a matter of good form, functions should not access external timeline variables (such as ball) directly. Therefore, we access ball through our

application's global reference to the movie's main timeline. With the function moveBall() defined, we can move the ball clip diagonally by

calling the moveBall() function. Add the following code to the existing code on frame 1.

moveBall();

The ball moves diagonally down and to the right. (Note that the origin (0, 0) is in the upper left of the main Stage. Increasing values of _x move the

ball to the right, but, unlike the Cartesian coordinates, increasing values of _y move the ball down, not up.)

Our moveBall() function is convenient, but it lacks flexibility. It works only on one movie clip (ball), it moves ball in only one direction, and

it always moves ball the same distance.

A well-designed function should work in many circumstances. We can generalize our moveBall() function so that it can move any clip any distance
in any direction. The first step in generalizing a function is determining what factors control its behavior. In our moveBall() function, the factors are
the name of the movie clip to move, the distance to move it horizontally, and the distance to move it vertically. Such factors are known as the
parameters of the function—they're the information that we'd like to be able to change each time the function is called.

9.3.1 Creating Functions with Parameters

Recall the generic syntax of a simple function declaration:

function funcName (param1, param2,...paramn) {
 statements
}

A function's parameters are variables that can be used within the function but whose values are determined when the function is executed. We
specify parameters as a comma-separated list of legal identifiers between the parentheses of a function declaration, as shown in the previous code
fragment.

Once defined, we can access a function's parameter values from inside the function body just as we would any other variable. For example, here is a
function with one parameter:

function say (msg) { // Define the msg parameter
 trace("The message is " + msg); // Use msg within the trace() statement
}

Our function declaration defines the parameter msg. The trace() statement uses the msg parameter as it would any variable, in this case displaying

its value to the Output window.

Let's use parameters with our function so that we can set the clip's name, horizontal distance, and vertical distance differently each time it runs.
Example 9-1 shows the revised code.

Example 9-1. A generalized moveClip function

function moveClip (theClip, xDist, yDist) {
 theClip._x += xDist;
 theClip._y += yDist;
}

We renamed the function from moveBall() to the generic name moveClip() to reflect its ability to work with any clip. We also defined three
parameters: theClip (the movie clip we want to move), xDist (the horizontal distance to move), and yDist (the vertical distance to move).

Inside the function body, we use those parameters instead of the literal "hardcoded" values in the earlier moveBall() example, thereby allowing our
function to reposition any clip by any horizontal and vertical distance. Notice that we no longer need the global variable mainTimeline
because the function is told which clip to move when it is invoked. We'll cover invoking moveClip() and specifying its parameter values in the next
section.

9.3.2 Invoking Functions with Parameters

When we create a function, we define the parameter names, which are essentially placeholders for data values. When we invoke the function, we'll
provide values to be plugged in for each of the parameters.

The terms parameters and arguments are used interchangeably in common discussion and in most documentation. Technically, arguments are the
values used when invoking a function, and parameters are the placeholders in the function that "receive" the arguments.

Recall the generic syntax of function invocation with no arguments:

funcName()

To supply (or pass) arguments to a function, we provide a list of values within the parentheses when invoking the function:

funcName(arg1, arg2, arg3,...argn)

The values used as arguments can be any legitimate expression in ActionScript, including compound expressions. For example, earlier we defined a
simple function, say(), that expects a single parameter, msg:

function say (msg) {
 trace("The message is " + msg);
}

To invoke say(), we use a statement like this:

say("This is my first argument...how touching");

or like this:

say(99);

or even like this:

now = new Date();
say(now)

Notice that the values, "This is my first argument . . . how touching", 99, and today's date, belong to different datatypes. ActionScript allows us to
pass any data of any type to a function, as long as the function knows what to do with the passed value. (Languages such as C and Java require that
we predefine the datatype for each parameter, and they display an error if data of the wrong type is provided.)

Before each argument is passed, its value is fully resolved. Therefore, we can also invoke functions with complex expressions. It is very common to
use variables or expressions containing variables as arguments to functions. For example:

var name = "Gula";
say("Welcome to my web site " + name);

Because the expression "Welcome to my web site " + name is evaluated before it is passed to the say() function, the function receives the resolved
value "Welcome to my web site Gula". This means that we can programmatically generate function arguments—the arguments specified when
invoking the function can differ based on things that change at runtime, such as the user's name or the date. This is powerful stuff.

To pass more than one argument to a function, we separate our arguments with commas. Recall that our moveClip() function from Example 9-1
accepts three parameters: theClip, xDist, and yDist. Invoking moveClip(), therefore, looks like this:

moveClip(ball, 5, -15);

Each of the three arguments is assigned as the value of the corresponding parameter named in the function declaration: ball is assigned to

theClip, 5 is assigned to xDist, and -15 is assigned to yDist. The correspondence between parameters and arguments is based purely on

their order in the comma-separated lists; the first argument specified in the function invocation corresponds to the first parameter in the function
declaration, the second argument corresponds to the second parameter, etc. The contents of the arguments used in the function invocation are passed
into the function body, where they are referenced by the parameter names used in the function declaration. That is, even though the ball identifier

was used as the argument when invoking the moveClip() function, the ball movie clip instance is known by the parameter name theClip
within the function body.

The arguments used when invoking a function can be any valid expression, including complex expressions, literals, or
identifiers. The parameters specified in the function declaration and used within the function body are always
identifiers (i.e., the names of variables that are local to the function).

We can move any clip any distance by invoking our generic moveClip() function with different arguments. For example, to move a clip instance
named square to the right 2 pixels and down 100 pixels, we use:

moveClip(square, 2, 100);

Note that if we want to move the clip horizontally but not vertically, we can simply specify a yDist of 0, such as:

moveClip(square, 2, 0);

Conversely, we can move the clip vertically but not horizontally by specifying an xDist of 0:

moveClip(square, 0, 100);

Therefore, instead of three separate functions, we can use a single function to move the clip horizontally, vertically, or both, by specifying varying
arguments in the function invocation. Avoiding unnecessary proliferation of functions keeps our code compact and maintainable.

To pass a value for a single parameter only, even when multiple parameters are expected by a function, use undefined as a placeholder for

empty parameter values. For example,

function showName (first, middle, last) {
 trace("The name is " + first + " " + middle + " " + last);
}
showName(undefined, undefined, "moock");

Of course, you should use this approach only when the function allows empty arguments to be passed. When building a function that must receive a
value for a particular parameter, be sure to test for that value inside the function. For example, here we revise the showName() function so that it
demands a value for each of its parameters:

function showName (first, middle, last) {
 // If the parameters are not valid...
 if (first = = = undefined || middle = = = undefined || last = = = undefined) {
 // Show an error, then quit.
 trace("INVALID ARGUMENT VALUES SPECIFIED");
 return;
 }
 trace("The name is " + first + " " + middle + " " + last);
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.4 Exiting and Returning Values from Functions

Unless instructed otherwise, a function will end naturally when the interpreter finishes executing the last statement in the
function's body. You can, however, terminate a function before the last statement is reached. Additionally, a function can return
a result (send back a value) to the code that invoked it. Let's see how these things work.

9.4.1 Terminating a Function

The return statement, which we introduced in Chapter 6, can be used to terminate a function and, optionally, to return a result.
When the interpreter encounters a return statement during a function execution, it skips any remaining statements in the
function. Consider this example:

function say (msg) {
 return;
 trace(msg); // This line is never reached
}

This example is not realistic, because its return statement always causes the function to end before the trace() statement is
reached. Therefore, the return statement is normally the last statement in a function body, unless it is used inside a conditional
statement. In the following example, we use return to exit the function if the password is not correct:

var correctPass = "cactus";
function enterSite(pass) {
 if (pass != correctPass) {
 // Exit if the password is wrong
 return;
 }
 // This code is reached only if the password is correct
 gotoAndPlay("intro");
}
enterSite("hackAttack"); // Function will exit prematurely
enterSite("cactus"); // Function will end naturally

As its name implies, return tells the interpreter to return control to the script containing the function invocation. If no return
statement is present, ActionScript acts as if the last line of the function body contains a return statement:

function say (msg) {
 trace(msg);
 return; // The return statement is optional in this context
}

Regardless of whether the return statement is implied or explicit, whenever a function terminates, execution resumes at the line
of code following the function invocation. For example:

say("Something"); // This executes the code in the say() function
// Execution resumes here after the say() function terminates
trace("Something else");

9.4.2 Returning Values from Functions

As we've seen, return always terminates a function. But it can also be used to send a value back to the script that invoked the
function, using the following syntax:

return expression;

The value of expression becomes the result of the function invocation. For example:

// Define a function that adds two numbers
function combine (a, b) {
 return a + b; // Return the sum of the two arguments
}
// Invoke the function
var total = combine(2, 1); // Sets total to 3

The expression or result returned by the return statement is called the return value of the function.

Notice that our combine() function merely calculates and returns the sum of two numbers (it will also concatenate two strings).
It does not perform an overt action, as did the sayHi() function (which displayed a message) or the moveClip() function
(which repositioned a movie clip).

We can make use of a function's return value by assigning it to a variable:

var total = combine(5, 6); // Sets total to 11
var greet = combine("Hello ", "Cheryl"); // Sets greet to "Hello Cheryl"

The result of a function call is just an ordinary expression. Therefore, it can also be used in additional expressions. This
example sets phrase to "11 people were at the party":

var phrase = combine(5, 6) + " people were at the party";

Frequently, we'll use function return values as parts of compound expressions—even as arguments to another function
invocation. For example:

var a = 3;
var b = 4;
function sqr (x) { // Squares a number
 return x * x;
}
var hypotenuse = Math.sqrt(sqr(a) + sqr(b));

Notice how the example passes the return values of our sqr() function to the Math.sqrt() function! Along the same lines, our
earlier example could be rewritten as:

var phrase = combine (combine(5,6), " people were at the party");

In this example, the inner expression combine(5,6), which evaluates to 11, becomes an argument to the outer combine()
function call, where it is concatenated with the string " people were at the party".

If a return statement doesn't include an expression to be returned, or if the return statement is
omitted entirely, a function will return the value undefined. In fact, this is a common source of

error.

For example, the following won't do anything meaningful, because the return statement is missing:

function combine (a, b) {
 var result = a + b; // The result is calculated, but not returned
}

Likewise, this too is incorrect:

function combine (a, b) {
 var result = a + b;
 return; // You've forgotten to specify the return value
}

The correct function should read:

function combine (a, b) {
 var result = a + b;
 return result;
}

When creating a function that is supposed to return the result of a calculation, don't forget to include a return statement that
actually returns the desired value. Otherwise, the return value will be undefined and any subsequent calculations based on

that result will almost certainly be incorrect.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.5 Function Literals

ActionScript allows us to create function literals, which are convenient when we need a function temporarily or
when we want to use a function where an expression is expected.

Function literals have the same syntax as standard function declarations, except that the function name is omitted
and there's a semicolon after the statement block. The general form is:

identifier = function (param1, param2, ...paramn) { statements };

where param1, param2, ...paramn is an optional list of parameters and statements is one or more

statements that constitute the function body. Because it doesn't include a function name, a function literal's
definition is "lost" unless we store it in a variable (or an array element or object property). We can store a function
literal in a variable for later access, like this:

// Store a function literal in a variable
var mouseCoords = function () { return [_xmouse, _ymouse]; };
// Now we can execute the function
mouseCoords();

Note that because ActionScript does not support JavaScript's Function() constructor, dynamic functions cannot be
composed at runtime, as they can in JavaScript.

As we'll see in Chapter 12, function literals are often used when assigning methods to classes or objects. For
example:

Ball.prototype.startMoving = function () {
 // Movement code goes here
};

is the same as:

Ball.prototype.startMoving = startMoving;
function startMoving () {
 // Movement code goes here
}

However, there are three subtle differences between function literals and standard function declarations:

When assigned as a method, a function literal does not leave an extraneous function reference defined in the
scope of the function declaration. For example, in the first Ball example (assuming the Ball code is attached
to the main timeline), a function literal is stored in Ball.prototype.startMoving and no

separate function reference remains defined on _root. But in the second example, a reference to

startMoving() exists both in Ball.prototype.startMoving and on _root.

A standard function declaration does not end in a semicolon, whereas a function literal does.

Functions created with function statements are available throughout an entire script, even to statements that
come before the function declaration statement (on the same keyframe or within the same onClipEvent() or
on() event handler). Function literals are available only to statements that come after the literal in the script.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.6 Function Availability and Life Span

Like variables, program functions do not live forever and are not directly accessible from everywhere in a movie. In
order to invoke functions with confidence, we need to know how to access them from different areas of our movie,
and we need to be sure that they exist before we call them. In ActionScript, calling a nonexistent function has no
effect. The call fails silently and does not produce an error (in JavaScript, calling a nonexistent function generates
an error). To test whether a function ran when you called it, add a trace() statement, such as the following, to the
function:

trace("Function someName executed.");

9.6.1 Function Availability

Custom program functions (the functions we create in our code) are directly accessible for invocation only from:

Code attached to the timeline of the movie clip that bears the function declaration

Code in a Flash 5-style onClipEvent() handler on the movie clip that bears the function declaration

Code in a Flash 5-style on() event handler on a button on the timeline of the movie clip that bears the
function declaration

By "directly accessible," we mean that the function can be invoked simply by name, without reference to a movie
clip or object, like this:

myFunction();

Functions are also indirectly accessible (i.e., remotely accessible), using dot syntax, from any point in a movie. As
when referring to variables remotely, we must include the path to the movie clip that contains the function, such as:

myClip.myOtherClip.myFunction();
_parent.myFunction();
_root.myFunction();

So, suppose a clip instance named rectangle on the main timeline contains a function named area(). We can

invoke area() from anywhere in our movie, using an absolute path to rectangle, like this:

_root.rectangle.area();

To reference a function from a remote movie clip timeline, we follow the same rules used when referring to remote
variables, as described in Chapter 2. (We'll also cover more about invoking functions from other movie clips in
Chapter 13.)

Not all functions are attached to movie clip timelines. Some program functions may be attached to user-defined or
built-in objects. When attached to an object, a function is accessible only through its host object. We'll discuss the
availability and life span of methods (i.e., functions attached to objects) in Chapter 12.

To create a function that is directly available throughout an entire movie, define it as a function literal on the
_global object, as follows:

_global.functionName = function () {

 statements
}

Global functions and variables were not supported prior to Flash Player 6. For more information on globals, see
_global in the Language Reference.

How do you know where to define your functions? If the function is going to be used just
for a single movie clip, define it on the movie clip of interest. If the function is going to
be used by multiple movie clips, define it on the main timeline as a global function. We'll
discuss code organization when we study object-oriented programming in Chapter 12.

9.6.2 Function Life Span

A function defined on a movie clip timeline is lost when that clip is removed from the Stage. An attempt to invoke a
function that was defined in a clip that no longer exists will fail silently. In Flash 5, defining a function on the main
movie timeline is the best way to ensure the function's permanence, because the main timeline persists throughout
the movie. As of Flash 6, the most permanent location for a function is on the _global object, as described in

the previous section.

Note that functions in a frame's script are initialized and become available when the playhead first enters the frame
containing the script. Therefore, we can use a function invocation before the declaration of the function, as long as
both are in the same keyframe's script. For example:

// Invoke the tellTime() function before its declaration statement
tellTime();
// Declare the tellTime() function
function tellTime () {
 var now = new Date();
 trace(now);
}

This technique works within a single keyframe's script but not across timeline layers. Code on different layers is
executed independently, according to the timeline's order of execution, discussed in Chapter 13.

Because function literals are not available prior to declaration, even in the script in which they are defined, we must
define function literals prior to their invocation. As a best practice, you should define functions at the beginning of
your scripts. This ensures they will be available for the entirety of the script, even if they are declared as function
literals.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.7 Function Scope

As shown under Section 2.5 in Chapter 2, all ActionScript variables have a certain scope, or region of a program within which
they are valid. A statement's location in a movie determines:

Where the interpreter looks to resolve variables referenced by the statement

The scope of the variables created by the statement

For example, here we issue a statement that creates a variable, score:

var score = 10;

If this statement were attached to clipA, the interpreter would set the value of score in clipA. If the statement were

attached to clipB, the interpreter would set the value of score in clipB.

Statements in the body of a function operate in their own, separate scope, called a local scope. A function's local scope is
private to the function, distinct from the scope of the clip or object to which the function is attached. A new local scope for the
function is created each time the function is invoked and destroyed when the function finishes executing. When resolving
variables referenced in the statements of the function body, the interpreter looks first in the function's local scope.

Function parameters, for example, are defined in the local scope of a function—not on the timeline that bears the function.
Hence, parameters are accessible only to the statements of a function's body and only while the function is running. Statements
outside the function have no access to the function's parameters.

A function's local scope provides a place for temporary "local" variables used solely within a function. This eliminates potential
name conflicts between local function variables and timeline variables, and it reduces overall memory usage.

9.7.1 Functions and the Scope Chain

Even though functions operate in their own local scopes, normal timeline variables are still accessible to the statements of a
function body. The local scope of a function is the first place the interpreter looks to resolve variable references, but if the
variable reference can't be found in the local scope, the search extends to the movie clip in which the function was declared,
and then (as of Flash Player 6) to the global object.

For example, suppose we define a variable, firstName, on the timeline of a movie clip, clipA. We also declare a

function, getName(), on clipA. Inside getName(), we refer to the variable firstName in a trace() statement:

firstName = "Christine";
function getName () {
 trace(firstName);
}
getName();

When we invoke getName(), the interpreter must find the value of firstName. There is no parameter or local variable

called firstName in the local scope of getName(), so the interpreter checks the timeline of clipA for the variable

firstName. There, the interpreter finds firstName and displays its value, "Christine".

Our trace() statement is able to refer to a timeline variable from the body of our getName() function because getName() does
not, itself, define a parameter or local variable called firstName. Now consider what happens when we add a parameter

called firstName to the getName() function:

firstName = "Christine";
function getName (firstName) {
 trace(firstName);
}
getName("Kathy");

This time, when we invoke getName(), we pass "Kathy" as the first (and only) argument, and the interpreter assigns the value
"Kathy" to the parameter firstName. When the interpreter executes the trace() statement, it searches the local scope,

where it finds the firstName parameter and its value "Kathy". So, the output of the function this time is "Kathy", not

"Christine".

Even though the timeline variable firstName exists, the function's parameter called

firstName takes precedence. The parameter is said to override or occlude the timeline variable.

Our example demonstrates the operation of the scope chain—the hierarchy of objects used by the interpreter to resolve
references to variables. For functions attached to timelines, the scope chain has only three levels: the local function scope, the
scope of the movie clip that bears the function declaration, and the global scope. (Flash 5 does not have a global scope.) But
when we nest functions, the scope chain can involve many more levels, as we'll see later.

To access variables and properties that are not local to the function's scope, we must use dot syntax to form an explicit
reference (also called a qualified reference). For example:

function dynamicGoto () {
 // Deliberately go outside the function's local scope
 _root.myClip.gotoAndPlay(_root.myClip.targetFrame);
}

Note that a function's scope chain is determined permanently at compile time, relative to the function declaration statement,
not any function invocation statement. That is, the code in a function's body is scoped to the movie clip that bears the function
declaration, not the movie clip that bears the statement that invokes the function. Scope of this type is called lexical or static
scope (as opposed to dynamic scope, where the scope can change at runtime). We'll return to the topic of lexical scope when we
examine nested functions.

Here's an example showing a misguided use of the scope chain:

// CODE ON MAIN MOVIE TIMELINE
// This function's scope chain includes the main movie
function rotate (degrees) {
 _rotation += degrees;
}

If we attempt to rotate clipA using _root.rotate, it rotates the entire main movie, not just clipA:

// CODE ON clipA's TIMELINE
_root.rotate(30); // Oops! This rotates the entire movie!

In this situation, we can fix our problem by passing the clip to be rotated as an argument to the rotate() function:

function rotate (theClip, degrees) {
 theClip._rotation += degrees;
}
// From the _root timeline, invoke rotate() with a reference to clipA.
rotate(clipA, 30);

// Or, from clipA's timeline, invoke rotate() with a reference to clipA.

_root.rotate(_root.clipA, 30);

Alternatively, we can define the rotate() function as a method of the MovieClip class so that it has access to the this
keyword, which refers to the movie clip object through which it was invoked:

MovieClip.prototype.rotate = function (degrees) {
 this._rotation += degrees;
}

// CODE ON clipA's TIMELINE
this.rotate(30);

Functions that operate on a movie clip are best defined as methods of the MovieClip class, as
discussed in Chapter 12 under Section 12.8.4.

Due to a bug in Flash Player 5, function literals assigned as movie clip methods were not lexically scoped. For example:

// Create a variable on the current timeline.
var x = 10;
// Create a variable on theClip's timeline.
theClip.x = 20;
// Assign a function literal as a method of theClip.
theClip.traceX = function () {
 // Flash Player 5 erroneously displays the value of x in theClip: 20
 // Flash Player 6 correctly displays the value of x on the timeline
 // that bears the function declaration: 10
 trace("x is: " + x);
}
// Invoke the traceX() method.
theClip.traceX();

For the sake of backward compatibility, Flash Player 6 applies the correct scoping behavior only with Flash 6 format .swf files.
The behavior of Flash 5 .swf files does not change when they are played in Flash Player 6.

9.7.2 Local Variables

Variables assigned to a function's local scope are called local variables. Local variables, including parameters, are accessible
only to statements in the body of the function in which they are defined and exist only while that function runs. To create a
local variable (other than the parameters that automatically become local variables), we use the var statement inside any
function, like this:

function funcName () {
 var temp = "just testing!"; // Declares the local variable temp
}

Local variables are useful for holding information temporarily. Here, for example, we use the local variable
lastSpacePlusOne to hold an interim result. Like all local variables, it dies when the function ends:

function getLastWord (text) {
 var lastSpacePlusOne = text.lastIndexOf(" ") + 1; // Local
 var lastWord = text.subString(lastSpacePlusOne, text.length); // Local
 return lastWord;
}
// Displays: "word"
trace(getLastWord("Tell me the last word"));

// Displays: undefined. lastSpacePlusOne is local and not
// available outside the getLastWord() function.
trace(lastSpacePlusOne);

When local variables expire at the end of a function, the memory associated with them is marked for automatic deletion. By
using local variables to store all temporary values, we can conserve memory in a program. Furthermore, when we declare a
local variable, we need not worry that it might conflict with a timeline variable of the same name.

Of course, not all variables used in functions need to be local. Earlier we saw that we can create, read, and set timeline variables
from inside a function. Within a function, variable assignment statements that do not apply to a local variable are scoped to the
timeline that bears the function declaration. In this example, x is a local variable, but y and z are timeline variables:

var z = 1;

function createVars () {
 var x = 10; // Create local variable x
 y = 13; // Create timeline variable y
 z = 2; // Alter timeline variable z
}
createVars(); // Call the function
trace(x); // x is undefined (x dies when the function ends)
trace(y); // y is 13 (y exists after the function ends)
trace(z); // z is 2 (z was permanently altered by the function)

The rules for creating timeline variables apply even if our function is a method of an object. We won't cover objects until
Chapter 12, but for those familiar with object-oriented programming, Example 9-2 shows code that proves the point. Observe
that x is defined on the timeline because it doesn't exist in the local scope of newFunc().

Example 9-2. Variable scope within object methods

newObj = new Object(); // Create an object
newObj.newFunc = function () { x = 12; }; // Attach a new method
newObj.newFunc(); // Call the method

// Now let's check for x
trace("x is " + x); // x is 12
trace("newObj.x is " + newObj.x); // newObj.x is undefined

Using unqualified variable references inside functions to affect timeline variables may appear handy, but more often than not it
is confusing, particularly in large projects. It's wise to take the ambiguity out of variable access by using qualified variable
references (i.e., prefix the variable with an explicit object reference, such as this.x versus x, as discussed in Chapter 2

under Section 2.5.4).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.8 Function Parameters Revisited

Now that we're comfortable with how functions work, let's return to the topic of function parameters. Our current discussion
requires a little knowledge of objects, so new programmers may want to read Chapter 12 before reading this section.

9.8.1 Number of Parameters

Earlier we saw that the parameters of a function are declared when the function is created. Recall the syntax:

function funcName (param1, param2, ...paramn) {
 statements
}

Perhaps surprisingly, the number of parameters passed to a function can differ from the number specified in the formal function
declaration. Functions can accept any number of parameters, whether more than or fewer than the "expected" number. When a
function is called with fewer than the declared number of parameters, the value of each missing parameter is set to undefined.

For example:

function viewVars (x, y, z) {
 trace ("x is " + x);
 trace ("y is " + y);
 trace ("z is " + z);
}
viewVars(10); // In Flash Player 6, displays:
 // x is 10
 // y is undefined
 // z is undefined
 // (In Flash Player 5, undefined variables are displayed as a
 // blank string in the Output window.)

When a function is called with more parameters than the declared number, excess parameter values can be accessed using the
arguments object. (Obviously, the excess parameters can't be accessed by name, as explicitly declared parameters can, because
their names were not declared.)

9.8.2 The arguments Object

During the execution of any function, the built-in arguments object gives us access to the following:

The number of parameters that were passed to the function

An array containing each of those parameter values

A reference to the function being executed

A reference to the calling function, if any

The arguments object is really a special hybrid between an array and an object with some other properties. In Flash 5, arguments
was not an array instance. In Flash MX, however, arguments is an instance of the Array class and therefore supports Array's
methods and properties.

9.8.2.1 Retrieving parameter values from the arguments array

The arguments array lets us check the value of any function invocation argument, whether or not that parameter is defined

formally in the function's declaration statement. To access a parameter, we examine the indexes of the arguments array:

arguments[n]

where n is the index of the argument we're accessing. The first argument (the leftmost argument in the function-call invocation) is

stored at index 0 and is referred to as arguments[0]. Subsequent arguments are stored in order, proceeding to the right—so,

the second argument is arguments[1], the third is arguments[2], and so on.

From within a function, we can tell how many arguments were passed to the currently executing function by checking the number
of elements in arguments, as follows:

numArgs = arguments.length;

We can easily cycle through all the arguments passed to a function and display the results in the Output window, as shown in
Example 9-3.

Example 9-3. Displaying an unknown number of arguments

function showArgs () {
 for (var i = 0; i < arguments.length; i++) {
 trace("Argument " + (i + 1) + " is " + arguments[i]);
 }
}
showArgs(123, 23, "skip intro");
// Displays...
Argument 1 is 123
Argument 2 is 23
Argument 3 is skip intro

The arguments array allows us to create very flexible functions that accept an arbitrary number of arguments.

Here's a generic function that removes any number of duplicated movie clip instances from the Stage:

function killClip () {
 for (var i = 0; i < arguments.length; i++) {
 arguments[i].removeMovieClip();
 }
}
killClip(clip10, clip5, clip13);

Reader Exercise: Modify our earlier combine() function to accept an arbitrary number of inputs. What other functions might
benefit from accepting an arbitrary number of parameters? How about a function that averages a list of numbers? (Hint: sum all the
arguments and then divide by the number of arguments.)

9.8.2.2 The callee and caller properties

As we've seen, the arguments array lets us retrieve a function's arguments. The arguments object has two properties:

callee, which stores a reference to the executing function, and caller, which stores a reference to the function that called

the current function (or null if no function called the current function).

Normally, we know the name of the function we're calling, but if we are executing an anonymous function that was originally
created with a function literal, the callee property can prove useful. Example 9-4 shows a function, created with a function

literal, that performs recursive executions without knowing its own name.

Example 9-4. Counting down with callee

count = function (x) {
 trace(x);
 if (x > 1) {
 arguments.callee(x - 1);
 }
}
count(25);

Obviously we can count down without using recursive anonymous functions. We'll see a more realistic example of function
recursion in Section 9.9 later in this chapter. Using arguments.callee to refer to the current function (rather than the

function's actual name) alleviates the need to update our code if the function's name changes.

We can use arguments.caller to execute or identify a calling function, as described in the Language Reference.

9.8.3 Passing Parameters by Value Versus by Reference

There's one more parameter subtlety we should consider—the difference between passing data to a function by value and by
reference.

When we pass a primitive data value as an argument to a function, the function receives a copy of the data, not the original.
Changes made to a parameter in the function have no effect on the original argument outside that function. In Example 9-5,
variableName's value is initially set to 25. Changing its value to 10 within the setValue() function has no effect on y's

value.

Example 9-5. Primitive data is passed by value

var y = 25;
function setValue (variableName) {
 variableName = 10;
}
setValue(y);
trace("y is " + y); // Displays: "y is 25"

Primitive data is therefore said to be passed by value. When we pass composite data as an argument to a function, however, the
function receives a reference that points to the same data as the original argument, not just a duplicate of the data. Altering the data
via the parameter variable affects the original data and therefore affects other variables that point to the same data, even outside of
the function. Composite data is therefore said to be passed by reference.

In Example 9-6, changes to the myArray parameter variable affect the external boys array because they both point to the same

data in memory.

Example 9-6. Modifying composite data arguments passed by reference

// Create an array
var boys = ["Andrew", "Graham", "Derek"];

// setValue() sets the value of the first element of an array
function setValue (myArray) {
 myArray[0] = "Sid"; // Set the first element of the array
}

// Pass our array to the function
setValue(boys);

// Check the value of our array elements
trace("Boys: " + boys); // Displays: "Boys: Sid,Graham,Derek"

Note that new values assigned to individual elements of the array from inside a function are reflected outside the function as well.

However, suppose that instead of assigning new values to one or more elements, we assign a new value to the parameter itself.
Doing so will break its association with the original argument. Subsequent changes to the parameter variable will have no effect on
the original argument, as shown in Example 9-7. In this example, although the boys array is passed as an argument, the

myArray parameter variable is immediately set to girls. Subsequent changes to myArray affect the girls array, not the

boys array.

Example 9-7. Breaking the association between an argument and a parameter

// Create two arrays
var boys = ["Andrew", "Graham", "Derek"];
var girls = ["Alisa", "Gillian", "Daniella"];

// setValue() ignores the passed array and modifies the girls array
function setValue (myArray) {
 myArray = girls; // Make myArray point to girls, not boys

 myArray[0] = "Mary"; // Changes the first element of girls
}

// Pass the boys array to the setValue() function
setValue(boys);
trace("Boys: " + boys); // Displays: "Boys: Andrew,Graham,Derek"
trace("Girls: " + girls); // Displays: "Girls: Mary,Gillian,Daniella"

More information on primitive and composite data can be found in Chapter 3.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.9 Recursive Functions

A recursive function is a function that calls itself (by using its own name within its function body). Here's a simple
example that shows the principle of recursion. But because the code tells the trouble() function to execute
repeatedly (like an image reflected infinitely in two opposing mirrors), Flash will quickly exceed its maximum
recursion limits, causing an error:

function trouble () {
 trouble();
}

A recursive function that calls itself unconditionally, such as trouble() does, is said to exhibit infinite recursion
(i.e., the function never stops calling itself). Infinite recursion will cause the computer to run out of memory
quickly. To prevent this from happening, Flash sets a maximum of 256 levels of recursion, at which point the
recursive function call will fail.

Practical recursive functions call themselves only while a given condition is met (thus preventing infinite
recursion). Example 9-4 used recursion to count from a specified number down to 1, but obviously that can be
accomplished without recursion.

One classic use of recursion is to calculate the mathematical factorial of a number. The factorial of 3 (written as 3!
in mathematical nomenclature) is 3 * 2 * 1 = 6. The factorial of 5 is 5 * 4 * 3 * 2 * 1 = 120. Example 9-8 shows a
factorial function that uses recursion.

Example 9-8. Calculating factorials using recursion

function factorial (x) {
 if (x < 0) {
 return undefined; // Error condition
 } else if (x <= 1) {
 return 1;
 } else {
 return x * factorial(x-1);
 }
}
trace (factorial(3)); // Displays: 6
trace (factorial(5)); // Displays: 120

As usual, there is more than one way to skin a proverbial cat. Using a loop, we can also calculate a factorial without
recursion, as shown in Example 9-9.

Example 9-9. Calculating factorials without recursion

function factorial (x) {
 if (x < 0) {
 return undefined; // Error condition
 } else {
 var result = 1;
 for (var i = 1; i <= x; i++) {
 result = result * i;

 }
 return result;
 }
}

Examples Example 9-8 and Example 9-9 represent two ways of solving the same problem. The recursive method
says, "The factorial of 6 is 6 multiplied by the factorial of 5. The factorial of 5 is 5 multiplied by the factorial of 4 . .
." and so on. The nonrecursive method loops over the numbers from 1 to x and multiplies them all together into

one big number.

Which approach is better—recursive or nonrecursive—depends on the problem. Some problems are solved more
easily using recursion, but recursion can be slower than nonrecursive solutions. Recursion is best used when you
don't know how deeply a data structure may be nested. For example, suppose you wanted to list all the files within
a subdirectory, including listing all files within any nested subdirectory, ad infinitum. It would be inconvenient to
write a general solution that worked for any number of subdirectories without resorting to recursion. A recursive
solution might look like this in pseudocode:

function listFiles (directoryName) {
 do (check the next item in directoryName) {
 if (this item is a subDirectory itself) {
 // Recursively call this function with the new subdirectory
 listFiles(subDirectoryName);
 } else {
 // Display the name of this file
 trace(filename);
 }
 } while(there are still items to check);
}

When we consider the XML object the ActionScript Language Reference, we'll use recursion to list all the elements
in an XML document.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.10 Nested Functions

In ActionScript, functions can be declared within functions. Example 9-10 creates a function, showFullName(),
with two nested functions, showFirstName() and showLastName().

Example 9-10. A function with two nested functions

function showFullName () {
 function showFirstName () {
 trace("Colin");
 }
 function showLastName () {
 trace("Moock");
 }

 showFirstName();
 showLastName();
}

showFullName();

Inside showFullName(), the nested functions can be invoked as usual. However, like a local variable, a nested
function is accessible only to its parent function. Code outside the parent function cannot execute the nested
function.

Nested functions are often used to encapsulate a series of complex operations into a single package, while
preventing the outside world from gaining access to its internal workings. For an interesting example of nested
functions (sometimes called inner functions) used to simulate Java-style private members, see:

http://www.crockford.com/javascript/private.html

9.10.1 Nested Function Scope

When a nested function executes, the interpreter adds the nested function's local scope to the scope chain of its
parent function. For example, in Example 9-10 the scope chain of showFullName() is:

Global object (interpreter ends its search for variables here)

Enclosing movie clip object (where showFullName() was defined)

showFullName() local scope (interpreter starts its search for variables here)

And the scope chain of showFirstName() is

Global object (interpreter ends its search for variables here)

Enclosing movie clip object (where showFullName() was defined)

showFullName() local scope

showFirstName() local scope (interpreter starts its search for variables here)

The scope of the nested function is the same as its parent's with the addition of its own local scope. If a variable
does not exist in showFirstName()'s local scope, the interpreter will check showFullName()'s local scope, and so
on up the chain. Furthermore, all variables defined in an outer function are available to nested functions, even after
the outer function finishes executing. In the following example, the function enableZoom() creates an
onMouseDown() event handler on theClip, using a nested function literal.

function enableZoom (theClip) {
 var zoomFactor = 1.5;
 theClip.onMouseDown = function () {
 this._xscale *= zoomFactor;
 this._yscale *= zoomFactor;
 }
}

// Enable zooming for the current movie clip.
enableZoom(this);

The onMouseDown() handler will execute whenever the mouse is clicked—long after enableZoom() has finished
its own execution. However, even though enableZoom() has finished executing, its zoomFactor variable

continues to be available to the nested onMouseDown() function via the scope chain.

Here are two more advanced examples showing the power of nested function scope.

Example 9-11 creates a new global function, setTimeout(), that invokes a supplied function, func, after delay
milliseconds. A nested function, callFunc(), does the work of invoking func (which is passed as a parameter to

setTimeout()). Via the scope chain, callFunc() can refer to both setTimeout()'s func parameter and its local id
variable.

Example 9-11. Remembering an interval ID

_global.setTimeout = function (func, delay) {
 var id = setInterval(callFunc, delay);
 function callFunc () {
 clearInterval(id);
 func();
 }
}

// Usage:
setTimeout(sayHi, 1000);

function sayHi () {
 trace("hello world");
}

Example 9-12 is a variation on the same theme. It uses the scope chain to access the parameters of slideTo() from
the nested function assigned to the calling movie clip's onEnterFrame() event handler.

Example 9-12. Implementing a slideTo() method

// Method: MovieClip.slideTo()
// Desc: Animates a clip to the point (leaderX, leaderY) at
// the specified speed.
// Params: leaderX The x-coordinate to move to.
// leaderY The y-coordinate to move to.

// speed Rate of movement (pixels per frame).
MovieClip.prototype.slideTo = function (leaderX, leaderY, speed) {
 // Only move if the clip's not at the destination.
 if (this._x != leaderX && this._y != leaderY) {
 // Create a nested function and assign it as the clip's
 // onEnterFrame() event handler.
 this.onEnterFrame = function () {
 // Determine distance between clip and destination.
 // The parameters leaderX and leaderY are accessed via
 // the scope chain.
 var deltaX = this._x - leaderX;
 var deltaY = this._y - leaderY;
 var dist = Math.sqrt((deltaX * deltaX) + (deltaY * deltaY));

 // Allocate speed between x and y axes.
 var moveX = speed * (deltaX / dist);
 var moveY = speed * (deltaY / dist);

 // If the clip has enough speed to overshoot the destination,
 // just go to the destination. Otherwise, move according to
 // the speed specified by the slideTo() parameter.
 if (speed >= dist) {
 this._x = leaderX;
 this._y = leaderY;
 // The clip has arrived, so stop remove onEnterFrame().
 delete this.onEnterFrame;
 } else {
 this._x -= moveX;
 this._y -= moveY;
 }
 }
 }
}

// Example Usage:
// Slides the clip to the mouse position when the mouse is clicked.
theClip_mc.onMouseDown = function () {
 this.slideTo(_root._xmouse, _root._ymouse, 10);
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.11 Built-in Functions

Although we've seen how to create user-defined functions, let's not forget that ActionScript comes with a bevy of
built-in functions (akin to verbs in our language analogy). We've already seen some built-in functions that allow us
to manipulate data. We've also touched on functions that control the Flash movie and the user environment.

For example, to manipulate the playhead of a movie clip, we can call the gotoAndPlay() function with a frame
number as a parameter:

gotoAndPlay(5);

If you are a new programmer, you may be experiencing an epiphany. I hope you have noticed that you invoke built-
in functions using the function-call operator (the parentheses) and an argument list (the value 5 in this case) just
like our custom user-defined functions! Built-in functions, such as gotoAndPlay(), are used just like the functions
we've been declaring ourselves. Custom functions typically do something that a built-in ActionScript function
doesn't already offer. Like any custom function, each built-in function has a name, zero or more optional or
required arguments, and a return value (although sometimes the value is undefined).

Even though Flash has long referred to gotoAndPlay as an "Action," we now see it in its true form, as a built-in
function. In Chapter 6, you learned that some Flash Actions are statements and some are functions. Now that you've
studied both thoroughly, you'll be able to tell which are which.

By understanding certain Actions as functions, you'll have an easier time remembering and using their syntax. For
example, to load a movie into the Flash Player we need to know that a loadMovie() function exists and what
parameters it expects. After a quick jaunt over to the Language Reference, we find the info and can easily put
together a statement like this:

loadMovie("myMovie.swf", "_level1");

This will be easy stuff once you've become comfortable with using functions.

ActionScript's built-in functions are many and varied. They give us control over the elements of a movie,
empowering us to examine and change everything from the volume of a sound to the amount of text selected in an
editable text field. For a thorough description of ActionScript's built-in functions, consult the ActionScript
Language Reference. Skim it periodically to familiarize yourself with the type of functions that are available,
although there is no need to memorize their specific syntax. In addition to the built-in functions that are a native
part of the ActionScript language, Macromedia and third parties offer libraries of custom functions that can be
incorporated into your movies and used exactly like built-in functions. For more information on extending Flash,
see the resources in Appendix A.

9.11.1 Built-in Function Availability

Some built-in functions are universally available, while others can be invoked only through an object. If the
function is a global function, it can be used anywhere; if the function is a method of an object, however, it must be
used in conjunction with the appropriate object. Because we haven't covered objects yet and most of ActionScript's
built-in functions are object methods, we'll delay our consideration of the built-in methods until Chapter 12.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.12 Functions as Objects

In ActionScript, functions are technically a special type of built-in object. The Function class, formally exposed to ActionScript in
Flash Player 6 and documented in the ActionScript Language Reference, creates individual function objects. Let's see what that
means and how it affects what you can do with functions.

9.12.1 Passing Functions to Functions

We can use any function as an argument to another function, like this:

function1(function2);

Note that if there are no parentheses following function2, the interpreter doesn't execute function2 but instead just passes its

"object reference" as an argument to function1. That is, function1 receives a reference to function2 itself, not the return value of
function2(). Because objects are passed by reference, we can pass a function identifier to another function and it will arrive
unscathed. The passed function can be executed like this:

function doCommand (command) {
 command(); // Executes the passed function
}

// Some examples:
doCommand(stop); // Pass the built-in stop() function (stops current movie)
doCommand(play); // Pass the built-in play() function (plays current movie)

We can use this technique to assign a callback function to a series of text field objects:

function initFormFields (fields, callbackFunc) {
 // Set focus callback functions for text fields.
 for (var i = 0; i < fields.length; i++) {
 fields[i].onSetFocus = callbackFunc;
 }
}

// Create a list of the text fields.
editFields = [firstNameField, lastNameField, emailField,
 phoneField, companyField, commentsField];

// Function that colors a text field blue.
function handleFieldFocus () {
 this.background = true;
 this.backgroundColor = 0x333399;
}

initFormFields(editFields, highlightField);

9.12.2 Storing Functions in Variables

Because functions are a type of object, we can treat them as we treat any other data. In the following example, we assign the built-in

gotoAndPlay function to the variable gp, which gives us a shorter way to refer to the function:

var gp = gotoAndPlay; // Create a shortcut reference to gotoAndPlay
gp(25); // Invoke gotoAndPlay() using our reference

Note again the omission of the parentheses after gotoAndPlay in the first line of the example. As we'll see in Chapter 10 and Chapter
12, functions are commonly stored in object properties to create event handlers and methods.

9.12.3 Attaching Properties and Methods to Functions

In addition to passing and storing functions as objects, we can exploit the "objectness" of functions by attaching properties to them,
like this:

// Create a function
function myFunction () {
 trace(myFunction.x);
}

// Attach a property to it
myFunction.x = 15;

// Check the property value by invoking the function
myFunction(); // Displays: 15

By attaching properties to functions, we can maintain the state of a piece of information between
function executions without cluttering up a timeline with variables. However, properties should normally
be stored on objects rather than functions.

Function properties offer the benefits of local variables without expiring between function invocations. This is useful when a
function needs to be invoked with a unique identifier. Using function properties allows the function to maintain state. Although a
function typically "forgets" everything that happened in previous invocations, function properties allow the function to "remember"
what happened previously. This is most useful when you want to keep track of how many times an operation has been performed.
Here, for example, is a generic function that duplicates a movie clip and gives the duplicated clip a unique name and level by
remembering how many clips we've already assigned in the makeClip.count variable:

makeClip.count = 0; // Define a property of makeClip() (remember that
 // makeClip() already exists because functions are
 // defined before code runs)

// Duplicate a passed clip and assign the new clip an automatic name
function makeClip (theClip) {
 // Add one to our clip counter
 makeClip.count++

 // The previous line can be written more portably as:
 // arguments.callee.count++

 // Now duplicate the clip, assigning it a unique name and depth
 theClip.duplicateMovieClip(theClip._name + makeClip.count, makeClip.count);
}

makeClip(square); // Make a duplicate of square using makeClip()

square1._x += 100; // Now move the duplicated square to the right

A variable that maintains its value between function invocations is called a static variable in some languages, such as C. Static
variables should not to be confused with so-called static functions in C, in which the word static denotes "private." Note that we
initialize the makeClip.count variable to 0 once at the start of our script, but it is not reset (reinitialized) every time the

function is called. As a general rule, function properties should be used only to store information that pertains to the function. More
general information should be stored either in a class or as a global variable.

ActionScript functions can also have other functions attached to them, which can be used to simulate Java-style static class methods.
For example:

function SomeClass () {
 // Constructor code goes here.
}
SomeClass.staticMethod = function () {
 // Static method code goes here.
}

where SomeClass is the name of the class and staticMethod is the name of the static method.

For examples of function methods, see the built-in Function.call() and Function.apply() methods in the ActionScript Language
Reference. These methods execute a function in the context of a specified object. We'll revisit static methods and the prototype
property in Chapter 12.

9.12.4 Returning Functions from Functions

Finally, because function objects are data, they can be returned by functions. The following example shows a function,
makeGotoHandler(), that returns a nested function literal for use as the callback of a movie clip event handler. The function literal
sends the clip's playhead to the frame specified by frameNumber.

function makeGotoHandler (frameNumber) {
 return function () {
 this.gotoAndStop(frameNumber);
 };
}

// Usage:
_root.onMouseDown = makeGotoHandler(30);
_root.onMouseUp = makeGotoHandler(40);

Using makeGotoHandler(), we can conveniently create a callback function without the work of actually typing out the function each
time we want to assign it. Notice that we're once again using the scope chain to retrieve the value of frameNumber from the

event handler callback, long after makeGotoHandler() has finished executing. For details, see Section 9.10.1, earlier in this chapter.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.13 Centralizing Code

Probably the single most important feature of functions is their reusability—we can create reusable segments of
code that can be executed from anywhere in a movie. The mark of good code is that it is modularized and
centralized. Modules can be replaced without affecting other modules or calls to the updated module. Furthermore,
the code is in one central place that makes it easy to find and maintain. Importantly, there aren't multiple scripts in
which identical or nearly identical code is repeated. Instead, function calls are used to perform operations that are
centralized in a library of generalized functions. Code modularity and centralization make it easier to reuse all or
part of the code in other projects. Because functions can be executed from other movie clips, they can be stored in a
central location, easing code maintenance and upgrades.

Suppose, for example, that we have three buttons in three different movie clips, all with the same purpose. Instead
of triplicating our code by adding it to each button, we can put the code in a function on the main timeline and
invoke it from each button as needed. This saves time, reduces the potential for errors, and makes it easy to update
the behavior of all three buttons at once. Because the code is centralized, testing is more reliable, and
troubleshooting is much easier. If one button works and a second doesn't, chances are that the problem is in the
second button's function invocation and not in the centralized behavior.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.14 The Multiple-Choice Quiz Revisited

In Example 1-1, we introduced new programmers to a simple scripted movie—a multiple-choice quiz. Let's revisit that quiz now to see
how we can centralize its code.

Our new quiz's layer structure is set up exactly as before. We'll be changing the code on only the first frame, the quizEnd frame, and

the buttons.

You can obtain the .fla file for both the original and revised versions of the quiz from the online Code Depot.

9.14.1 Organizing the Quiz Code into Functions

In our first attempt at creating a multiple-choice quiz, we scattered our code around our movie. We placed the logic of our quiz in
three places: on the first frame, where we initialized our quiz; on the q2 frame, where we assigned Question 2's button event handlers;

and on the quizEnd frame, where we tallied the user's score. We're now going to centralize the quiz logic by performing all of those

tasks in the first frame. To initialize the quiz, we'll still use a simple series of statements as we did in the first version, but to track the
user's answers and tally the user's score, we'll use two functions, answer() and gradeUser(). We'll also use function literals to define
the behavior of the quiz answer buttons.

Example 9-13 shows the code on our quiz's first frame. This is where we'll store all the logic needed to run our quiz. Take a look at the
code in its entirety—then we'll dissect it. This code does not yet reflect best practices, such as using arrays to store a series of related
data items. Much of the code is still only intended for illustration purposes—in this case, to learn how to centralize code using
functions. We'll refine the example further later in the book.

Example 9-13. A multiple-choice quiz, version 2

// Stop the movie at the first question
stop();

// Init quiz variables
var quizTimeline = this; // Store a reference to the timeline that
 // contains the quiz user interface
var numQuestions = 2; // Number of questions in the quiz
var q1answer; // User's answer for question 1
var q2answer; // User's answer for question 2
var correctAnswer1 = 3; // The correct choice for question 1
var correctAnswer2 = 2; // The correct choice for question 2
answer.currentQuestion = 0; // Function property: the question being answered

// Function: answer()
// Desc: Registers the user's answers to quiz questions and
// advances the quiz through its questions
// Params: choice The user's answer for the current question
// Properties: currentQuestion The question being answered
function answer (choice) {
 // The answer() function is called once per question. We add one to
 // currentQuestion each time answer() is called so we can track the
 // question number we're on. Because currentQuestion is a function property,
 // it maintains its value between function calls.

 answer.currentQuestion++;

 // Display the question and answer in the Output window for debugging.
 trace("Question " + answer.currentQuestion
 + ". The user answered: " + choice + ".");

 // Record the user's answer to this question. The set()
 // function dynamically constructs a variable name in the
 // series q1answer, q2answer,...qnanswer.
 set("q" + answer.currentQuestion + "answer", choice);

 // If we're on the last question...
 if (answer.currentQuestion = = numQuestions) {
 // ...go to the quizEnd frame.
 quizTimeline.gotoAndStop("quizEnd");
 // And grade the user.
 gradeUser();
 } else {
 // ...otherwise, go to the next question frame.
 quizTimeline.gotoAndStop("q"+ (answer.currentQuestion + 1));
 }
}

// Function: gradeUser()
// Desc: Tallies the user's score at the end of the quiz.
function gradeUser () {
 // Report that we're about to grade the quiz in the Output window.
 trace("Quiz complete. Now grading...");

 // Create a local variable to track the
 // number of questions user answered correctly.
 var totalCorrect = 0;

 // Count how many questions the user answered correctly.
 // For each question...
 for (var i = 1; i <= numQuestions; i++) {
 // If the user's answer matches the correct answer.
 if (eval("q" + i + "answer") = = eval("correctAnswer" + i)) {
 // Give the user a point.
 totalCorrect++;
 }
 // Display the correct answer and the user's answer
 // in the Output window for debugging.
 trace("Question " + i
 + ". Correct answer: " + eval("correctAnswer" + i)
 + ". User's answer: " + eval("q" + i + "answer"));
 }

 // Display the final score in the Output window for debugging.
 trace("User's score: " + totalCorrect + "/" + numQuestions);

 // Create an onscreen text field to display the user's score.
 quizTimeline.createTextField("totalOutput_txt", 1, 150, 200, 200, 20);

 // Show the user's score in an onscreen text field.
 quizTimeline.totalOutput_txt.text = "Your final score is: "
 + totalCorrect + "/" + numQuestions;

 // Customize the font face, size, and color for the text field.
 var formatObj = new TextFormat();
 formatObj.size = 16;
 formatObj.color = 0xC7FF9C;
 formatObj.font = "_sans";
 formatObj.bold = true;
 quizTimeline.totalOutput_txt.setTextFormat(formatObj);
}

// Code executed when button 1 is pressed.
choice1_btn.onRelease = function () {
 // Call answer(), which records the user's choice (supplied as an argument)
 // and advances the quiz to the next question.
 this._parent.answer(1);
};

// Code executed when button 2 is pressed.
choice2_btn.onRelease = function () {
 this._parent.answer(2);
};

// Code executed when button 3 is pressed.
choice3_btn.onRelease = function () {
 this._parent.answer(3);
};

Our first chore is to stop the movie, using the stop() function, so that it doesn't play through all the questions. Next, we initialize our
quiz's timeline variables. You'll recognize q1answer and q2answer from the first version of the quiz. We've also added:

numQuestions, which we'll use in our answer() and gradeUser() functions.

correctAnswer1 and correctAnswer2, which we'll use when grading the quiz.

answer.currentQuestion, a function property that indicates which question is being answered when answer() is

called.

quizTimeline, which is a reference to the movie clip in which the quiz interface will be displayed. We use

quizTimeline rather than _root so that our movie can be loaded safely into a movie clip without breaking.

With our variables initialized, we can create the answer() function, which records the user's answers and advances the playhead to the
next question. The answer() function expects one parameter—choice, which is the number of the user's answer for each

question—so its function declaration begins like this:

function answer (choice) {

Each time an answer is given, the function increments currentQuestion, a function property that tracks the question being

answered:

answer.currentQuestion++;

Next, we set the user's choice in a dynamically named timeline variable that corresponds to the question being answered. We use the
value of the currentQuestion property to determine the name of our timeline variable—q1answer, q2answer, etc. (in

a later version of the quiz, we'll use a more elegant array):

set ("q" + answer.currentQuestion + "answer", choice);

With the user's choice stored in the appropriate variable, we need to decide what to show the user next:

If we are on the last question, we display the quizTimeline's quizEnd frame and run the gradeUser() function.

Otherwise, we display the next question, which is at the frame labeled "q" + (answer.currentQuestion + 1):
if (answer.currentQuestion = = numQuestions) {
 quizTimeline.gotoAndStop("quizEnd");
 gradeUser();
} else {
 quizTimeline.gotoAndStop("q"+ (answer.currentQuestion + 1));
}

That takes care of our question-answering logic. The answer() function is ready to handle answers from any question in the quiz. Now
let's build the function that evaluates those answers: gradeUser().

The gradeUser() function takes no parameters. It has to compare each user answer with each correct answer and display the user's
score. To tally the user's score, we use the variable totalCorrect, which was a timeline variable in the first version of the quiz

but is more appropriately a local variable in this version (totalCorrect is used only by the gradeUser() function, so it is best

kept private to that function).

We compare the user's answers with the correct answers in a for loop—we cycle through the loop body once for each question in the
quiz:

for (i = 1; i <= numQuestions; i++) {

Inside the loop, a comparison expression tests the user's answers against the correct answers. Using eval(), we dynamically retrieve the
value of each user-answer variable and each correct-answer variable. (In a later version of the quiz, we'll get rid of the eval() statement
by using an array.) If the two variables are equal, totalCorrect is incremented:

if (eval("q" + i + "answer") = = eval("correctAnswer" + i)) {
 totalCorrect++;
}

When the loop finishes, totalCorrect will contain the number of questions that the user answered correctly. We display that

number in a dynamically created text field:

quizTimeline.createTextField("totalOutput_txt", 1, 150, 200, 200, 20);

where totalOutput_txt is the name of the text field, 1 is the field's depth in quizTimeline's content stack, 150 and 200

are the field's (x, y) position, and 200 and 20 are its height and width. To display the value of totalCorrect in the text field, we

assign it to the text property:

quizTimeline.totalOutput_txt.text = "Your final score is: "
 + totalCorrect + "/" + numQuestions;

Finally, we apply custom formatting to the text field. See the TextFormat class in the Language Reference for details.

var formatObj = new TextFormat();
formatObj.size = 16;
formatObj.color = 0xC7FF9C;
formatObj.font = "_sans";
formatObj.bold = true;
quizTimeline.totalOutput_txt.setTextFormat(formatObj);

Voila! With both answer() and gradeUser() created and our quiz variables initialized, the logic of our quiz system is complete.
Notice how much easier it is to follow the quiz's operation when most of the code is contained in a single frame. All that's left is to call
the answer() function from the appropriate buttons in the quiz.

9.14.1.1 Calling the answer() function

We'll call the answer() function from the buttons that the user clicks to indicate answers. Here's the code for the "Answer 1" button:

choice1_btn.onRelease = function () {
 this._parent.answer(1);
};

This code assigns a function literal to the choice1_btn's onRelease() handler, which is invoked automatically when the button is

pressed. The function literal contains a single statement that says, "On the movie clip timeline that contains this button,
this._parent, invoke answer(), passing the user's choice for this question (1) as an argument:

this._parent.answer(1);"

Notice that the choice1_btn handler applies to any question, so we don't have to assign new button handlers for each question

(as we did in the first quiz). The button's job is simply to tell the answer() function which choice the user made. The answer()
function keeps track of which question the user is answering, so it records the choice in the appropriate variable.

With the code needed to handle each button neatly packed into the answer() function, our button code is kept to a bare minimum.
Furthermore, creating new buttons is a simple matter of passing the correct argument to answer(). To add a fourth choice button, for
example, we'd use:

choice4_btn.onRelease = function () {
 this._parent.answer(4);
};

While that's pretty flexible, we're still duplicating the single statement of the function literal. In the object-oriented version of the quiz,
we'll see how to rid our code of this redundancy.

9.14.2 Quiz Summary

By placing all our code on the first frame of our movie, we've separated the display of the system from the logic of the system. Hence,
we don't lose the logic in the maze of frames and buttons that Flash movies can often become.

Test your quiz to make sure that it works. Experiment to see what happens when you add quiz questions, remove quiz questions, and
change anything else that comes to mind. As we continue, think about how the techniques you learn might be applied to the quiz.
What visible features can we add to the user experience? What invisible changes will make the code more flexible or elegant, even if
the user experience is unchanged? Can you alter the quiz to allow more than one correct answer for a question?

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 9. Functions

9.15 Onward!

This chapter introduced one of the most powerful devices in ActionScript: functions. In the next chapter, you'll
learn about a special variety of functions, called event handlers, that are executed automatically by the interpreter.
Event handlers are one of the key building blocks of interactivity.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 10. Events and Event Handling

You've learned a lot about composing instructions for the ActionScript interpreter to execute. By now you should
be pretty comfortable telling the interpreter what you want it to do, but how do you tell it when to perform those
actions? ActionScript code doesn't just execute of its own accord—something always provokes its execution.

That "something" is either the synchronous playback of a movie or the occurrence of a predefined asynchronous
event.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.1 Synchronous Code Execution

As a movie plays, the timeline's playhead travels from frame to frame. Each time the playhead enters a new frame,
the interpreter executes any code attached to that frame. After the code on a frame has been executed, the screen
display is updated and sounds are played. Then, the playhead proceeds to the next frame.

For example, when we place code directly on frame 1 of a movie, that code executes before the content in frame 1
is displayed. If we place another block of code on a keyframe at frame 5 of the same movie, frames 1 through 4 will
be displayed, then the code on frame 5 will be executed, then frame 5 will be displayed. The code executed on
frames 1 and 5 is said to be executed synchronously because it happens in a linear, predictable fashion.

All code attached to the frames of a movie is executed synchronously. Even if some frames are played out of order
due to a gotoAndPlay() or gotoAndStop() command, the code on each frame is executed in a predictable
sequence, synchronized with the movement of the playhead.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.2 Event-Based Asynchronous Code Execution

Some code does not execute in a predetermined sequence. Instead, it executes when the ActionScript interpreter
notices that an event has occurred. Many events involve a user action, such as clicking the mouse, resizing the
movie, or pressing a key. Other events happen without user intervention, such as a sound completing or an XML
document loading. Just as the playhead entering a new frame executes synchronous code attached to the frame,
events can cause event-based code to execute. Event-based code (code that executes in response to an event) is said
to be executed asynchronously because the triggering of events can occur at arbitrary times.

Synchronous programming requires us to dictate, in advance, the timing of our code's execution. Asynchronous
programming, on the other hand, gives us the ability to react dynamically to events as they occur. Asynchronous
code execution is critical to ActionScript and interactivity.

This chapter explores asynchronous (event-based) programming in Flash.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.3 Types of Events

Conceptually, events can be grouped into two categories:

user events

Actions taken by the user (e.g., a mouseclick or a keystroke)
system events

Things that happen as part of the internal playback of a movie (e.g., a movie clip appearing on stage or
variables loading from an external file)

ActionScript does not distinguish syntactically between user events and system events. An event triggered
internally by a movie is no less palpable than a user's mouseclick. While we might not normally think of, say, a
movie clip's removal from the Stage as a noteworthy "event," being able to react to system events gives us great
control over a movie.

ActionScript events can also be categorized more practically according to the object to which they pertain. All
events happen relative to some object in the Flash environment. We'll study objects in depth in Chapter 12, but for
now, simply assume that content in Flash (buttons, movie clips, text fields, etc) is normally represented as
ActionScript objects and that we define events in relation to those objects.

The core ActionScript objects and classes that support events are:

Button

Key

LoadVars

LocalConnection

Mouse

MovieClip

Selection

SharedObject

Sound

Stage

TextField

XML

XMLSocket

For details on the specific events supported by these objects, see each object's entry in the Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.4 Event Handling

Not every event triggers the execution of code or affects a movie. For example, a user can generate dozens of events
by clicking repeatedly on a button, but those clicks may be ignored. Why? Because, on their own, events can't
cause code to execute—we must write code to react to events explicitly. To instruct the interpreter to execute some
code in response to an event, we create either an event handler or an event listener that describes the action to take
when the specified event occurs.

Due to its unusual evolution, ActionScript has four different ways of handling events:

Event handler properties

Event listeners

Button event handlers with the syntax:
on (eventName) {
 statements
}

Movie clip event handlers with the syntax:
onClipEvent (eventName) {
 statements
}

Let's take a look at these event-handling mechanisms individually. Much of the following discussion expects you to
understand objects, which are covered in Chapter 12.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.5 Event Handler Properties

Event handlers are so named because they catch, or handle, the events in a movie. An event handler is simply a
function that is invoked automatically when a particular event occurs. We've learned that all events occur in
relation to some object. Hence, in order to create an event handler, we must specify three things:

The object to which the event applies

The name of the event handler

The function to be executed when the event occurs (known as the event handler's callback function)

For example, suppose we want to animate a movie clip named ball by changing its position every time a frame

passes in the Flash Player. If we define an onEnterFrame() handler for the ball clip, it will be executed once for

each tick of the movie's frame rate. So, given a movie clip, ball, we can create an onEnterFrame() event handler

for ball as follows:

Create a new empty Flash movie.1.
Create a new movie clip symbol, named ballSymbol, that contains a circle shape.2.
Place an instance of ballSymbol on Layer 1.3.
Name the ballSymbol instance ball.4.

On frame 1 of Layer 1 of the main movie timeline, attach the following code:5.
ball.onEnterFrame = moveDown;
function moveDown () {
 // Move the ball down 5 pixels with each frame.
 this._y += 5;
}

In this code, ball is the object to which the event applies, onEnterFrame is the event we wish to handle, and

moveDown is the function that should run when onEnterFrame() occurs.

Notice that we assign the moveDown function reference, not the return value of a moveDown() function call, to
onEnterFrame. Therefore, the function invocation operator () must not be included.

// The following is incorrect! The () operator must not be used.
ball.onEnterFrame = moveDown();
// The following is correct.
ball.onEnterFrame = moveDown;

To be more succinct when assigning an event handler, we can specify the callback function with a function literal,
as follows:

ball.onEnterFrame = function () {
 this._y += 5;
};

The ball example shows how to specify a handler for an clip from outside the clip (i.e., from the main timeline).

To define an event handler for the current movie clip from a frame on its own timeline, use the following syntax
instead:

this.theEventHandler = function () {

 statements
};

In general, then, the syntax of an event handler is either:

someObject.someEventHandler = function () {
 statements
};

in which case the event handler is defined as a function literal, or:

someObject.someEventHandler = someFunction;

in which case someFunction must also be defined elsewhere, as in:

function someFunction () {
 statements
}

The latter approach is preferred in situations where the event handler is added and removed repeatedly, or where
multiple objects use the same function as an event handler.

Event handlers can also receive parameters generated by the event. For example, in the following code, a text field,
userName_txt, defines an event handler, onSetFocus(), that receives a reference to the previously focused

text field via the parameter oldFocus. The handler uses oldFocus to color the previously focused text field

black.

userName_txt.onSetFocus = function (oldFocus) {
 // Color the previously focused field black.
 oldFocus.backgroundColor = 0x000000;
 // Color the newly focused field orange.
 this.backgroundColor = 0xF5BF70;
}

Object-oriented programmers will recognize event handler syntax as identical to the syntax for defining an object
method. This is not a matter of coincidence. Event handlers are, in fact, methods that happen to be invoked
automatically by the interpreter. And since methods in ActionScript are object properties that store functions, the
event handler format shown in our onSetFocus() example is known as an event handler property.

Within the body of an event handler callback function, the this keyword refers to the object for which the event

was triggered. In our ball's onEnterFrame() handler, we used this to refer to the ball movie clip object,

which we moved down by 5 pixels:

this._y += 5;

Similarly, in our userName_txt.onSetFocus() handler this refers to userName_txt:

 this.backgroundColor = 0xF5BF70;

To remove an event handler from an object, use the delete operator as follows:

delete theObject.theEventHandler;

For example, executing the following code from the main timeline causes the ball movie clip to stop responding

to the onEnterFrame() event:

delete ball.onEnterFrame;

If the code were attached to the ball movie clip itself, you could instead write:

delete this.onEnterFrame;

For a list of event handlers offered by a specific class or object, see the appropriate entry in the Language
Reference. In particular, be sure to study the Button and MovieClip classes, which define the majority of user-
interaction events. For example, to cause a submitForm() function to execute when a Submit button is pressed, we
use:

submit_btn.onRelease = submitForm;
function submitForm () {
 // Validate data and send it to the server...
}

where submit_btn is the button object, the onRelease event is invoked when the button is pressed and then

released, and submitForm() is a custom function that sends the form data to the server. For a complete form-
submission example, see Chapter 17.

Event handlers are convenient, but they also suffer from a shortcoming: only one callback function can be
registered (assigned) to an event handler at a time. That is, only one action can be performed for each event when
using event handler properties. We'll learn how to overcome this limitation in the next section using listener
events.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.6 Listener Events

Conceptually, listener events are similar to event handler properties. Like event handler properties, listener events are handled with
a specially named object method (i.e., a property containing a callback function) that is invoked when a given event occurs.
However, listener events add two important event handling features:

An object can respond to events that occur for other objects, not just itself.

More than one object can respond to an event.

For example, suppose we want to center a text field, title_txt, in a movie by setting its position each time the movie changes

size. Consulting the Language Reference, we determine that when a movie changes size the Stage.onResize() listener event is
triggered. Our text field is not an instance of Stage, yet we want it to respond to Stage.onResize(). This is no problem. Because
State.onResize() is a listener event, it will let title_txt (and any other object) sign up to be notified when onResize()

occurs.

Here's how it works. First, we create our onResize() method directly on title_txt, just as we created our earlier event

handler properties:

title_txt.onResize = function () {
 // Center the text field.
 // Stage.width and Stage.height always store the current movie dimensions.
 // In the callback function body we refer to title_txt as this.
 this._x = Stage.width/2 - this._width/2;
 this._y = Stage.height/2 - this._height/2;
}

Next, we must tell the Stage object that we want it to execute title_txt's onResize() method when the onResize() event

occurs. This step is known as "adding a listener." The so-called listener is the object (in our case, title_txt) that wishes to

receive event notifications from the event source or, synonymously, the event broadcaster (in our case, Stage). All listener event
sources provide a special method, addListener(), that is used to register new listeners. For example, here's how we add
title_txt as a Stage listener:

Stage.addListener(title_txt);

Henceforth, when the Stage.onResize() event occurs, title_txt.onResize() is invoked. In fact, as a Stage listener, title_txt
will receive event notices for all of Stage's listener events (though in Stage's case, it defines only one listener event). Some event
sources define both event handler properties and listener events. In such a case, a listening object will receive notifications for the
listener events only, not the event handler properties. Each object's supported listener events and event handler properties are listed
in the ActionScript Language Reference.

Generally, an event is implemented as a handler property when it is of interest only to the object that generates it. Listener events
are more common when many different kinds of objects have interest in a single event (for example, a movie clip, a button, and a
text field may all want to know when a movie is resized, so Stage.onResize() is a listener event).

Here is the general syntax for creating an event listener (an object that defines a method that handles a listener event):

listenerObject.eventName = function () {
 statements
}

eventSource.addListener(listenerObject);

The listenerObject can be any object. The eventName is the name of the predefined event to listen for (e.g., onResize

in title_txt.onResize()). The eventSource is the object that notifies listenerObject when eventName occurs.

Therefore, unless eventName is one of the events broadcast by eventSource, the event listener method will never be

executed. For details on specific event sources see the Key, Mouse, Selection, TextField, and Stage objects in the Language
Reference.

Getting back to our example, suppose we want to center a second text field, subtitle_txt, underneath title_txt. We

follow the same process we did with title_txt. First, we create our onResize() method directly on subtitle_txt:

subtitle_txt.onResize = function () {
 this._x = Stage.width/2 - this._width/2;
 this._y = (Stage.height/2) + (title_txt._height/2) + 10;
}

Then, we register subtitle_txt as a Stage listener:

Stage.addListener(subtitle_txt);

Note that the onResize() methods must be written appropriately for each object that we wish to reposition. In this case, we
reposition title_txt based on the height and width of the Stage and the text object itself. We offset subtitle_txt
vertically, relative to the center of the Stage and title_txt's height.

In order to function properly, the Stage.onResize() event requires Stage.scaleMode and

Stage.align to be set, as shown in Example 10-1.

Adding a listener to an event source is sometimes referred to as subscribing the listener. We now have two text fields—each with
their own independent onResize() method—that respond to a single event, Stage.onResize(). We can also register movie clips,
buttons, or any other objects as Stage listeners, allowing for a entire movie's layout to adjust dynamically when the movie is
resized. When multiple listeners are registered to a single event source, their methods are executed in the order the listeners were
added.

To remove (or unsubscribe) any listener from an event source, use the removeListener() method. For example, the following code
causes subtitle_txt to stop receiving onResize events, so it won't reposition itself when the movie is resized:

Stage.removeListener(subtitle_txt);

The general form to remove a listener is:

eventSource.removeListener(listenerObject);

Example 10-1 shows our text field centering code in its entirety. To test it, attach the code to the first frame of the main timeline in
a new movie; then export the movie and try resizing the movie's window. For complete information on building resizable
interfaces, see the Stage object in the ActionScript Language Reference.

Example 10-1. Keeping two text fields centered in a movie

// Set the scaling behavior of the movie
Stage.scaleMode = "noScale";
Stage.align = "LT";

// Create the first text field
this.createTextField("title_txt", 1, 0, 0, 180, 20);
title_txt.text = "Welcome to my website.";
title_txt.border = true;

// Assign its listener callback function
title_txt.onResize = function () {
 this._x = Stage.width/2 - this._width/2;
 this._y = Stage.height/2 - this._height/2;
}

// Create the second text field
this.createTextField("subtitle_txt", 2, 0, 0, 180, 20);
subtitle_txt.text = "Thanks for visiting.";
subtitle_txt.border = true;

// Assign its listener callback function
subtitle_txt.onResize = function () {
 this._x = Stage.width/2 - this._width/2;
 this._y = (Stage.height/2) + (title_txt._height/2) + 10;
}

// Register the text fields as Stage listeners
Stage.addListener(subtitle_txt);
Stage.addListener(title_txt);

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.7 Flash 5's on() and onClipEvent() Handlers

Earlier in this chapter, we discussed how to assign callback functions to the event handler properties MovieClip.onEnterFrame() and
TextField.onSetFocus(). In Flash 5, these kinds of event handler properties were available on XML and XMLSocket only. Movie clips and
buttons used idiosyncratic event handler syntax attached directly to physical clips or buttons in the Flash authoring tool. Button event
handlers were defined using on(eventName), and movie clip event handlers were defined using onClipEvent(eventName), where

eventName specified the event to be handled. As of Flash MX, use of these older forms is generally discouraged. Event handler

properties and event listeners are preferred because they promote the separation of code from the visual elements of a movie. However, the
older syntax is still supported, and there are a few special cases where it is actually required (for examples, see MovieClip.onLoad() and
Button keyPress in the Language Reference).

Flash 5-style button on() event handlers take the form:

on (eventName) {
 statements
}

The eventName is the name of the corresponding Flash MX event handler property, without the word "on" and with the first letter

lowercase. For example, the onRelease() property in Flash MX was implemented as follows in Flash 5:

on (release) {
 statements
}

When exporting to Flash 5 format, you must use the Flash 5-style event syntax. A single button handler can respond to multiple events,
separated by commas. For example:

on (rollOver, rollOut) {
 // Invoke a custom function in response to both the rollOver and rollOut events
 playRandomSound();
}

To upgrade such code to Flash MX's preferred syntax, using the same callback handler to respond to both events, you'd use:

theButton.onRollOver = playRandomSound;
theButton.onRollOut = playRandomSound;

or, even more tersely:

theButton.onRollOver = theButton.onRollOut = playRandomSound;

Flash 5-style movie clip onClipEvent() handlers take the form:

onClipEvent (eventName) {
 statements
}

Again, the eventName is the name of the corresponding Flash MX event handler property, with the word "on" removed. For example,

the Flash MX MovieClip.onEnterFrame() event handler was implemented as follows in Flash 5:

onClipEvent (enterFrame) {

 statements
}

Unlike button handlers, clip handlers can respond to a single event only.

Events introduced after Flash 5 are not available in on() or onClipEvent() form. For example, there is no such
thing as onClipEvent(setFocus), because the onSetFocus() event was introduced in Flash MX and first
supported by Flash Player 6.

As of Flash MX, movie clip instances can take both onClipEvent() and button-style on() event handlers. For details, see Section 13.9 in
Chapter 13.

10.7.1 Attaching Event Handlers to Buttons and Movie Clips

To attach a Flash 5-style on() or onClipEvent() event handler to a button or a movie clip, we must physically place the code of the handler
onto the desired button or clip. We can do so in the Flash authoring tool only, by selecting the object on stage and entering the appropriate
code in the Actions panel, as shown in Figure 10-1.

Figure 10-1. Attaching an event handler to a button

Let's try making two simple event handler functions, one for a button and another for a movie clip. To create a button event handler, follow
these instructions:

Create a new, blank Flash movie.1.
Create a button and drag an instance of it onto the main Stage.2.
With the button selected, type the following code in the Actions panel:3.
on (release) {
 trace("You clicked the button");
}
Select Control Test Movie.4.
Click the button. The message, "You clicked the button", appears in the Output window.5.

When the movie plays and we click and release the mouse over the button, the release event is detected by the interpreter, which executes
the on(release) event handler. Each time we press and release the mouse, the message, "You clicked the button", appears in the Output
window.

Now let's try making a slightly more interesting event handler on a movie clip.

Create a new, blank Flash movie.1.
On the main movie Stage, draw a rectangle.2.
Select Insert Convert to Symbol.3.
In the Convert to Symbol dialog box, name the new symbol rectangle, and select Movie Clip as the Behavior.4.
Click OK to finish creating the rectangle movie clip.5.

Select the rectangle clip on stage, and then type the following in the Actions panel:6.

4.
5.

6.

onClipEvent (keyDown) {
 this._visible = false;
}
onClipEvent (keyUp) {
 this._visible = true;
}
Select Control Test Movie.7.
Click the movie to make sure it has keyboard focus, then press and hold any key. Each time you depress a key, the rectangle
movie clip disappears. Each time you release the depressed key, rectangle reappears.

8.

Unlike Flash 6's event handler properties and event listeners, Flash 5's on() and onClipEvent() handlers cannot be attached and removed
via ActionScript while the movie is playing. Therefore, in Flash 5 the following event handler property assignment is illegal:

theClip.onKeyDown = function () {
 _visible = 0;
};

We'll see how to work around this shortcoming later in this chapter under Section 10.15.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.8 Event Handler Lifespan

The lifespan of event handlers is tied to the life of the objects with which they are associated. When a clip or button
is removed from the Stage, or when an XML or TextField object is deleted, any event handlers associated with those
objects die with them. An object must be present on stage or in code for its handlers to remain active.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.9 Event Handler Scope

As with any function, the statements in an event handler or listener execute within a predefined scope. Scope dictates where the
interpreter looks to resolve unqualified variable references in an event handler's body. We'll consider event handler scope in relation to the
four event implementations supported by Flash.

10.9.1 Scope of Event Handler Properties and Event Listener Methods

Event listener methods and event handler properties are scoped exactly as functions are scoped. An event callback function has a scope
chain that is defined when the function is defined. Furthermore, event handler properties and event listener methods define a local scope.
All the rules of function scope described in Chapter 9 apply to event handler properties and event listener methods.

10.9.2 Scope of onClipEvent() Handlers

Unlike event handler properties and event listener methods, on() and onClipEvent() handlers do not define a local scope! When we
attach an onClipEvent() handler to a clip, the scope of the handler is the clip, not the event handler. This means that all variables are
retrieved from the clip's timeline. For example, if we attach an onClipEvent(enterFrame) handler to a clip named navigation and

write trace(x); inside the handler, the interpreter looks for the value of x on navigation's timeline:

onClipEvent (enterFrame) {
 trace(x); // Displays the value of navigation.x
}

The interpreter does not consult a local scope first, because there is no local scope to consult. If we write var y = 10; in the onClipEvent()
handler, y is defined on navigation's timeline, even though the var keyword ordinarily declares a local variable when used in a

function.

The easiest way to remember the scope rules of an onClipEvent() handler is to treat the handler's statements as though they were attached
to a frame of the handler's clip. For example, suppose we have a clip named ball on the main timeline that has a variable called

xVelocity in it. To access xVelocity from inside ball's onClipEvent() handler, we simply refer to it directly, like this:

onClipEvent (mouseDown) {
 xVelocity += 10;
}

Supplying the path to the variable as _root.ball.xVelocity is optional, because the interpreter already assumes we mean the

variable xVelocity in ball. The same is true of properties and methods; instead of using ball._x, we can use _x, and instead

of using ball.gotoAndStop(5), we can use gotoAndStop(5). For example:

onClipEvent (enterFrame) {
 _x += xVelocity; // Move the ball
 gotoAndPlay(_currentframe - 1); // Do a little loop
}

We can even define a function on ball using a function declaration statement in an onClipEvent() handler, like this:

onClipEvent (load) {
 function hideMe () {
 _visibility = 0;
 }

}

However, unqualified variable references are ambiguous and behave differently in an event handler property or event listener method than
they do in an onClipEvent() handler. Therefore, it's prudent to always use the this keyword when referring to the movie clip that

defines the handler:

// Preferred reference to the clip with the onClipEvent() handler:
this._x
// Legal, but discouraged reference to the clip with the onClipEvent() handler:
_x

// Preferred:
this.gotoAndStop(12);
// Discouraged:
gotoAndStop(12);

Additionally, use of this is required when we're dynamically generating the name of one of the current clip's properties (either a

variable name or a nested clip). Here we tell one of the nested clips in the series ball.stripe1, ball.stripe2, etc. to start

playing, depending on the current frame of the ball clip:

onClipEvent (enterFrame) {
 this["stripe" + this._currentframe].play();
}

The this keyword should also be used with movie clip methods that demand an explicit reference to a movie clip object upon

invocation. Any movie clip method with the same name as an ActionScript global function must be used with an explicit clip reference.
The this keyword is therefore necessary when invoking the following functions as methods inside an onClipEvent() handler:

duplicateMovieClip()
loadMovie()
loadVariables()
removeMovieClip()
startDrag()
unloadMovie()

For example:

this.duplicateMovieClip("ball2", 1);
this.loadVariables("vars.txt");
this.startDrag(true);
this.unloadMovie();

You'll learn all about the dual nature of these functions in Chapter 13 under Section 13.7.

Note that the this keyword allows us to refer to the current clip even when that clip has no assigned instance name in the authoring tool

or when we don't know the clip's name. In fact, using this, we can even pass the current clip as a reference to a function without ever

knowing the current clip's name. Here's some code to demonstrate:

// CODE ON MAIN TIMELINE
// Here is a generic function that moves any clip
function move (clip, x, y) {
 clip._x += x;
 clip._ y += y;
}

// CODE ON CLIP
// Call the main timeline function and tell it to move the
// current clip by passing a reference with the this keyword
onClipEvent (enterFrame) {
 _root.move(this, 10, 15);

}

In Flash Player 5.0.30.0, a bug prevents gotoAndStop() and gotoAndPlay()from working inside a clip
handler when used with string literal labels. Such commands are simply ignored. For example, this does not
work:

onClipEvent (load) {
 gotoAndStop("intro"); // Won't work in Flash 5.0.30.0
}

To work around the bug, use a self-reflexive clip reference (i.e., this), as in:

onClipEvent(load) {
 this.gotoAndStop("intro");
}

Remember that statements in onClipEvent() handlers are scoped to the clip's timeline, not to the handler
function's local scope or the clip's parent timeline (the timeline upon which the clip resides).

For example, suppose we place our ball clip on the main timeline of a movie, and the main timeline (not ball's timeline) has a

moveBall() function defined on it. We may absent-mindedly call moveBall() from an event handler on ball, like this:

onClipEvent (enterFrame) {
 moveBall(); // Does nothing! There's no moveBall() function in ball.
 // The moveBall() function is defined on _root.
}

We must refer to the moveBall() function explicitly on the main timeline using _root like this:

onClipEvent (enterFrame) {
 _root.moveBall(); // Now it works!
}

10.9.3 Scope of on() Handlers

The scope of an on() handler depends on the type of the object to which it is attached. When attached to a button, an on() handler is
scoped to the timeline upon which the button resides. When attached to a movie clip, an on() handler is scoped to the clip that bears the
handler, as with an onClipEvent() handler. Prior to Flash MX, movie clips did not support on() handlers (only Flash 5 buttons did).

For example, if we place a button on the main timeline and declare the variable speed in a handler on that button, speed will be

scoped to the main timeline (_root):

// CODE FOR BUTTON HANDLER
on (release) {
 var speed = 10; // Defines speed on _root
}

In contrast, if we place an on() handler on a movie clip object named ball and declare the variable speed in the handler, speed is

scoped to ball:

// CODE FOR ball HANDLER
on (release) {
 var speed = 10; // Defines speed on ball, not _root
}

Inside an on() handler for a button object, the this keyword refers to the timeline on which the button resides:

// CODE FOR BUTTON HANDLER
on (release) {
 // Make the clip on which this button resides 50% transparent
 this._alpha = 50;
 // Move the clip on which this button resides 10 pixels to the right
 this._x += 10;
}

But inside a movie clip's on() handler, the this keyword refers to the clip that bears the handler:

// CODE FOR MOVIE CLIP HANDLER
on (release) {
 // Make the clip with the handler 50% transparent
 this._alpha = 50;
 // Move the clip with the handler 10 pixels to the right
 this._x += 10;
}

See the MovieClip and Button classes in the Language Reference for details on movie clip and button events.

10.9.4 Scope Summary

The various scopes in the previous discussion can be confusing. Use the general rules outlined in Table 10-1 to determine the scope of a
specific handler in Flash MX. Note that of the following event handling mechanisms, Flash 5 supported only "MovieClip with
onClipEvent() handler" and "Button with on() handler."

Table 10-1. Event scope summary

Event handling mechanism Example Scope

Event handler property

someTextField.onSetFocus = function () {
 statements
}

The clip in which function
declaration occurred.[1]

Event listener method

GUIManager.onResize = function () {
 statements
}
Stage.addListener(GUIManager);

The clip in which function
declaration occurred.[1]

MovieClip with event
handler property

theClip_mc.onPress = function () {
 statements
}

The clip in which function
declaration occurred.[1]

MovieClip with on()
handler

on (press) {
 statements
}

The clip that bears the handler in
the authoring tool.

MovieClip with
onClipEvent() handler

onClipEvent (enterFrame) {
 statements
}

The clip that bears the handler in
the authoring tool.

Button with event handler
property

submit_btn.onRelease = function () {
 statements
}

The clip in which function
declaration occurred.[1]

Button with on() handler

on (release) {
 statements
}

The clip on whose timeline the
button resides.

[1] For handlers and listeners assigned within a function, the scope is that function (in accordance with the rules of nested
function scope, discussed in Chapter 9).

Finally, here's a scenario to test your understanding of event handler scope. Before reading the answer, see if you can determine it
yourself.

Suppose a movie clip instance named intro_mc is placed on the main timeline of a movie, and the following code is attached to the

main timeline:

intro_mc.onPress = function () {
 trace(this); // Here, this refers to intro_mc.
 this.play() // This line makes intro_mc play.
 play(); // Why won't this line make intro_mc play?
}

Question: In intro_mc's onPress() callback function, why does this refer to intro_mc, whereas unqualified statements do not?

In other words, why doesn't line 3 of the handler body make intro_mc play?

Answer: this is a reference to the object through which onPress() was invoked: intro_mc. But statements inside the onPress()

function are executed in the scope of the timeline on which the function was defined—the main timeline. Hence, the standalone play()
command plays the main timeline, not intro_mc.

Moral of the story: obviously, the location of the function declaration can change, so it's a little dangerous to
use unqualified references inside handlers at all. Qualify all nonlocal identifiers within handlers with this
or some other explicit object reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.10 Values of the this Keyword

In our study of ActionScript's event handling tools, we've encountered the this keyword several times. Within an

event handler, this normally refers to the object that received notification of the event. However, Flash's

evolution through multiple event systems has complicated the issue. Table 10-2 provides a guide to the values of
the this keyword in ActionScript's various event handling mechanisms.

Table 10-2. Values of the this keyword

Event handling mechanism Value of this

Event handler property The object that defines the handler property.

Event listener method The object registered as a listener.

MovieClip with event handler property The movie clip that defines the handler property.

MovieClip with on() handler The clip that bears the handler in the authoring tool.

MovieClip with onClipEvent() handler The clip that bears the handler in the authoring tool.

Button with event handler property The button that defines the handler property.

Button with on() handler The clip on whose timeline the button resides.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.11 Flash 5-style onClipEvent() Order of Execution

Some movies have code dispersed across multiple timelines and on() and onClipEvent() handlers. It's not
uncommon, therefore, for a single frame to require the execution of many separate blocks of code—some in event
handlers, some on frames in clip timelines, and some on the main timelines of documents in the Player. In these
situations, the order in which the various bits of code execute can become quite complex and can greatly affect a
program's behavior. We can prevent surprises and guarantee that our code behaves as desired by becoming familiar
with the order in which event handlers execute, relative to the various timelines in a movie.

User-input event handlers execute independently of the code on a movie's timelines. Button event handlers, for
example, are executed immediately when the event that they handle occurs, as are handlers for the onMouseDown(
), onMouseUp(), onMouseMove(), onKeyDown(), and onKeyUp() events.

Handlers for onClipEvent() events, however, execute in order, according to the progression of the movie, as shown
in Table 10-3.

Table 10-3. Flash 5-style onClipEvent() order of execution

Event
handler

Execution timing

load
Executes in the first frame in which the clip is present on stage after parent-timeline code executes,
but before clip-internal code executes, and before the frame is rendered. See special notes listed
under MovieClip.onLoad() in the ActionScript Language Reference.

unload
Executes in the first frame in which the clip is not present on stage, before parent-timeline code
executes.

enterFrame
Executes in the second frame and all subsequent frames in which the clip is present on stage. It is
executed before parent-timeline code executes and before clip-internal code executes.

data
Executes in any frame in which data is received by the clip. If triggered, it executes before clip-
internal code executes and before enterFrame code executes.

It's easier to see the effect of the rules in Table 10-3 with a practical example. Suppose we have a single-layer
movie with four keyframes in the main timeline. We attach some code to each keyframe. Then, we create a second
layer where we place a movie clip at frame 1, spanning to frame 3, but not present on frame 4. We add load,
enterFrame, and unload onClipEvent() handlers to our clip. Finally, inside the clip, we create three keyframes,
each of which also contains a block of code. Figure 10-2 shows what the movie looks like.

Figure 10-2. A code execution order test movie

When we play our movie, the execution order is as follows:

= = = = = = = =FRAME 1= = = = = = =
1) Main timeline code executed
2) load handler executed
3) Clip-internal code, frame 1, executed

= = = = = = = =FRAME 2= = = = = = =
1) enterFrame handler executed
2) Clip-internal code, frame 2, executed
3) Main timeline code executed

= = = = = = = =FRAME 3= = = = = = =
1) enterFrame handler executed
2) Clip-internal code, frame 3, executed
3) Main timeline code executed

= = = = = = = =FRAME 4= = = = = = =
1) unload handler executed
2) Main timeline code executed

The execution order of the code in our sample movie demonstrates some important rules of thumb to remember
when coding with movie clip event handlers:

Code in a load handler is executed before internal clip code, so a load handler can be used to initialize
variables that are used immediately on frame 1 of its associated clip, but only if the handler is created with
the onClipEvent() syntax. See MovieClip.onLoad() in the Language Reference for further details.

Before a movie clip is instantiated on a frame, the code of that frame is executed. Therefore, user-defined
variables and functions in a movie clip are not available to any code on its parent timeline until the frame
after the clip first appears on stage, even if those variables and functions are declared in the clip's load
handler. For a solution to this problem, see #initclip in the ActionScript Language Reference.

The enterFrame event never occurs on the same frame as the load or the unload event. The load and unload
events supplant enterFrame for the frames where a clip appears on the Stage or leaves the Stage.

On each frame, code in a clip's enterFrame handler is executed before code on the clip's parent timeline.
Therefore, using an enterFrame handler, we can change the properties of a clip's parent timeline and then
immediately use the new values in that timeline's code, all on the same frame.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.12 Copying Movie Clip Event Handlers

Here's a quick point that has important ramifications: onClipEvent() and on() handlers are duplicated when a
movie clip is duplicated via the duplicateMovieClip() function. However, event handler properties, such as
onEnterFrame(), are not! Suppose, for example, we have a movie clip on stage named square, which has an

onClipEvent(load) handler defined:

onClipEvent (load) {
 trace("movie loaded");
}

What happens when we duplicate square to create square2?

square.duplicateMovieClip("square2", 0);

Answer: Because the onClipEvent(load) handler is copied to square2 when we duplicate square, the birth

of square2 causes its load handler to execute, which displays "movie loaded" in the Output window. By using

this automatic retention of handlers, we can create slick recursive functions with very powerful results. For a
demonstration, refer to MovieClip.onLoad() in the ActionScript Language Reference.

In contrast, suppose we have a movie clip named circle and we assign it an onEnterFrame() event handler

property as follows:

circle.onEnterFrame = function () {
 trace(this._name);
}

What happens when we duplicate circle to create circle2?

circle.duplicateMovieClip("circle2", 1);

Answer: Only circle's name appears in the Output window. The onEnterFrame() event handler property is not

copied to circle2, so circle2's name does not appear in the Output window. To force every duplicate of

the circle clip to define an onEnterFrame() event handler property, we can set the property on a frame of

circle's timeline:

this.onEnterFrame = function () {
 trace(this._name);
}

Even more eloquently, we can define circle as a MovieClip subclass, and define the onEnterFrame() handler

on the circle constructor's prototype. There's much more to come on that topic in Chapter 14.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.13 Refreshing the Screen with updateAfterEvent()

The MovieClip event handler properties onMouseDown(), onMouseUp(), onMouseMove(), onKeyDown(), and
onKeyUp() are executed immediately upon the occurrence of their corresponding events. Immediately means
immediately—even if the event in question occurs between the rendering of frames.

This immediacy can give a movie great responsiveness, but that responsiveness can easily be lost by improper
coding. By default, the visual effects of onMouseDown(), onMouseUp(), onMouseMove(), onKeyDown(), and
onKeyUp() are not physically rendered by the Flash Player until the next available frame is rendered. To see this in
action, create a single-frame movie with a frame rate of 1 frame per second. Place a movie clip named
circle_mc on the Stage and attach the following code to frame 1 of the main timeline:

circle_mc.onMouseDown = function () {
 this._x += 10;
}

Then, test the movie and click the mouse as fast as you can. You'll see that all your clicks are registered, but the
movie clip still moves only once per second. So, if you click 6 times between frames, the clip will move 60 pixels
to the right when the next frame is rendered. If you click 3 times, the clip will move 30 pixels. The cumulative
effect of each execution of the onMouseDown() event is "remembered" between frames, but the results are
displayed only when each frame is rendered. This can have dramatic effects on certain forms of interactivity.

Fortunately, we can force Flash to immediately render any visual change that takes place during a user-input event
handler, without waiting for the next frame to come around. We simply use the updateAfterEvent() function from
inside our event handler, like this:

circle_mc.onMouseDown = function () {
 this._x += 10;
 updateAfterEvent();
}

The updateAfterEvent() function is available for use only with the onMouseDown(), onMouseUp(),
onMouseMove(), onKeyDown(), and onKeyUp() MovieClip events and the setInterval() function. It is often
essential for smooth and responsive visual behavior associated with user input. Later, in Example 10-3, we'll use
updateAfterEvent() to ensure the smooth rendering of a custom pointer. Note, however, that button events do not
require an explicit updateAfterEvent() function call. Button events update the Stage automatically between frames.

The onMouseDown(), onMouseMove(), and onMouseUp() listeners were added to the
Mouse object in Flash Player 6. Likewise, the onKeyDown() and onKeyUp() listeners
were added to the Key object. Generally, these Mouse and Key listeners are preferred
over the analogous MovieClip events. However, in Flash Player 6, the updateAfterEvent(
) function can be used only in MovieClip events. Hence, when a screen refresh is
required between frames, the MovieClip event handlers must be used. Future versions of
the Player will likely include support for updateAfterEvent() from Mouse and Key
listeners.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.14 Code Reusability

When using event handlers and listeners, don't forget the code-centralization principles discussed in Chapter 9.
Avoid unnecessary duplication and intermingling of code across movie elements. If you find yourself entering the
same code in more than one event handler's body, you should try defining it in a single function and pointing each
event handler to that function. Try generalizing your code, pulling it off the object and placing it in a code
repository somewhere in your movie; global code used throughout a movie should be attached to the _global
object.

In almost all cases, it's a poor idea to hide statements inside an on() or onClipEvent() handler. Remember that
encapsulating your code in a function makes your code reusable and easy to find. This is particularly true of
buttons—I rarely place any code on a button in Flash MX, and I rarely use more than a single function-invocation
statement in a Flash 5 on() handler. For movie clips, you'll need to employ keener judgment, as placing code
directly on clips can often be a healthy part of a clean, self-contained code architecture. Experiment with different
approaches until you find the right balance for your needs and skill level. Regardless, it always pays to be mindful
of redundancy and reusability issues.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.15 Dynamic Movie Clip Event Handlers

Earlier in this chapter, we saw that Flash 5-style on() and onClipEvent() handlers cannot be changed or removed
during movie playback. Furthermore, onClipEvent() event handlers cannot be attached to the main movie timeline
(the _root) of any movie.

In order to work around these limitations, we can—in the case of onClipEvent(enterFrame) and the movie clip
mouse and key events—use empty movie clips to simulate dynamic event-handler removal and alteration. Empty
movie clips even let us simulate onClipEvent() handlers for the main timeline. Follow these steps to see how it
works (note that the following technique applies to Flash 5 only, because event handler properties in Flash MX can
be removed directly via delete):

Create an empty movie clip named process.1.

Place another empty clip, named eventClip, inside process.2.

On eventClip, attach the desired event handler. The code in the eventClip's handler should target

the process clip's host timeline, like this:

3.

onClipEvent (mouseMove) {
 this._parent._parent.doSomeFunction();
}
To export process for use with the attachMovie() function, select it in the Library and choose Options

 Linkage. Set Linkage to Export This Symbol, and assign an appropriate identifier (e.g.,
mouseMoveProcess).

4.

Finally, to engage the event handler, attach the process clip to the appropriate timeline using

attachMovie().

5.

To disengage the handler, remove the process clip using removeMovieClip().6.

To see this technique in action, download "Event Loop, Controllable" from the online Code Depot.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.16 Event Handlers Applied

We'll conclude our exploration of ActionScript events and event handlers with a couple of real-world examples. These are
simple applications, but they give us a sense of how flexible event-based programming can be. For more event code samples,
see the ActionScript Language Reference coverage of the events associated with the objects listed at the beginning of this
chapter.

Example 10-2 makes a clip named box_mc shrink and grow.

Example 10-2. Oscillating the size of a movie clip

// Set oscillation parameters
box_mc.sizeIncrement = 10;
box_mc.maxHeight = 200;
box_mc.minHeight = 20;

// Size the box with each passing frame
box_mc.onEnterFrame = function () {
 if (this._height >= this.maxHeight || this._height <= this.minHeight) {
 this.sizeIncrement = -this.sizeIncrement;
 }
 this._height += this.sizeIncrement;
 this._width += this.sizeIncrement;
}

Example 10-3 simulates a custom mouse pointer by hiding the normal system pointer and making a clip follow the mouse
location around the screen. In the example, the onMouseDown() and onMouseUp() handlers resize the custom pointer
slightly to indicate mouseclicks. The code is placed inside the clip that acts as the custom pointer.

Example 10-3. A custom mouse pointer

Mouse.hide();

this.onMouseMove = function () {
 // When the mouse moves, position the current clip at
 // the mouse pointer's coordinates.
 this._x = _root._xmouse;
 this._y = _root._ymouse;
 updateAfterEvent(); // Refresh the screen for smooth movement.
}

this.onMouseDown = function () {
 // When the mouse clicks down, shrink the clip.
 this._width *= .5;
 this._height *= .5;
 updateAfterEvent();
}

this.onMouseUp = function () {

 // When the mouse clicks down, return the clip to its previous size.
 this._width *= 2;
 this._height *= 2;
 updateAfterEvent();
}

Example 10-4 creates a movie clip with button behaviors from ActionScript. It creates the clip on-the-fly with
MovieClip.createEmptyMovieClip(), then draws a square in the clip using the MovieClip drawing methods, and finally
assigns the clip button handlers to create on, off, down, and up states. For more information on the drawing API, see Section
13.8 in Chapter 13.

Example 10-4. A movie clip button from scratch

// Create the clip
this.createEmptyMovieClip("optionButton_mc", 1);

// Draw a 16-pixel dark red square from (-8,-8) to (8,8)
optionButton_mc.lineStyle(undefined);
optionButton_mc.moveTo(-8,-8);
optionButton_mc.beginFill(0x990000);
optionButton_mc.lineTo(8, -8);
optionButton_mc.lineTo(8, 8);
optionButton_mc.lineTo(-8, 8);
optionButton_mc.lineTo(-8, -8);
optionButton_mc.endFill();

// Turn the clip bright red when the mouse is over it
optionButton_mc.onRollOver = function () {
 var c = new Color(this);
 c.setRGB(0xFF0000);
}

// Turn the clip bright red when the mouse is off of it
optionButton_mc.onRollOut = function () {
 var c = new Color(this);
 c.setRGB(0x990000);
}

// Shrink the clip by 20% when it is pressed
optionButton_mc.onPress = function () {
 this._xscale = this._yscale = 80;
}

// Restore the clip to its original size when it is released
optionButton_mc.onRelease = function () {
 this._xscale = this._yscale = 100;
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 10. Events and Event Handling

10.17 Onward!

With statements, operators, functions, and now events and event handlers under our belt, we've covered how all of
the internal tools of ActionScript work. To round out your understanding of the language, in the next three chapters
we'll explore three extremely important datatypes: arrays, objects, and movie clips.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 11. Arrays

Back in Chapter 3, we saw that primitive datatypes—strings, numbers, Booleans, null, and

undefined—represent basic information in our scripts. We also saw that ActionScript supports several

composite datatypes, which can group several pieces of data together into a single datum.

The array type is the first composite datatype we'll study. Arrays are used to store and manipulate ordered lists of
information and are, therefore, fundamental tools in sequential, repetitive programming. We use them to do
everything from storing values retrieved via a user-input form, to generating pull-down menus, to keeping track of
enemy spacecraft in a game. In its most basic form, an array is just a list of items, like your grocery list or the entries
in your checkbook ledger.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.1 What Is an Array?

An array is a data structure that can encompass multiple individual data values, just like a building is a physical structure
encompassing multiple floors. Unlike a primitive datatype, an array can include more than one data value. Here is a simple
example showing two separate strings, followed by an array that contains two strings:

"oranges" // A single primitive string value
"apples" // Another primitive string value
["oranges", "apples"] // A single array containing two strings

An array is a general-purpose container. It can contain any number of items, including items of different types. An array can
even contain other arrays. Here is a simple example showing an array that contains both strings and numbers. It might represent
your shopping list and how many of each item you intend to buy:

shoppingList = ["oranges", 6, "apples", 4, "bananas", 3];

Here's another analogy to make the concept of an array a little more tangible. Consider a chest of drawers. An individual drawer
contains some content (socks, shirts, etc.). But the chest itself doesn't contain the content; it contains the drawers. The drawers
hold the content. The chest organizes the drawers into a single unit.

When we work with an array (the chest of drawers), we usually are interested in the values within the array (the contents of the
drawers). But we can also manipulate the containing structure itself. For example, we can change an array's size (add or subtract
drawers) or reorder its values (swap the contents of its drawers).

Though we speak of an array as containing many values, it's important to recognize that the array itself is a single datum, in the
same way that a string containing multiple characters is still a single string, and a number containing several digits is still a
single number. As a single datum, an array can be assigned to a variable or used as part of a complex expression:

product = ["ladies downhill skis", 475]; // Store an array in a variable
display(product); // Pass that array to a function

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.2 The Anatomy of an Array

Each item stored in an array is called an array element, and each element has a unique numeric position (index) by
which we can refer to it.

11.2.1 Array Elements

Like a variable, each array element can store any legal datum. An entire array, then, is akin to a collection of
sequentially named variables, but instead of each item having a different name, each item has an element number
(the first element is number 0, not number 1).

Figure 11-1 shows, conceptually, the structure of an array that contains three elements. Element 0 stores the value
"Erica", element 1 stores the value "Slavik", and element 2 stores the value "Gary".

Figure 11-1. A sample array structure

To manipulate the values in an array's elements, we ask for them by number. In our chest of drawers analogy, we
might ask ActionScript to store something in the first drawer or retrieve whatever is in the second drawer.

11.2.2 Array Element Indexing

An element's position in the array is known as its index. Just as we can access the seventh character in a string, we
can access the seventh element of an array via its index (in this case, the index is 6). We use an element's index to
set or retrieve the element's value or to work with the element in various other ways. Some of the array-handling
functions, for example, use element indexes to specify ranges of elements for processing.

We can also insert and delete elements from the beginning, end, or even middle of an array. An array can have gaps
(that is, some elements can be absent). We can have elements at positions 0 and 4, without requiring anything in
positions 1, 2, and 3. Arrays with gaps are called sparse arrays.

11.2.3 Array Size

At any point during its life span, an array contains a specific number of elements. The number of elements an array
can hold is called the array's length, which we'll discuss later in this chapter.

Arrays in Other Programming Languages

Almost every high-level computer language supports arrays or array-like entities. That said, there are
differences in the ways arrays are implemented across different languages. For example, many
languages do not allow arrays to contain differing types of data. In many languages, an array can
contain numbers or strings, but not both in the same array. Interestingly, in C, there is no primitive
string datatype. Instead, C has a single-character datatype named char; strings are considered a
complex datatype and are implemented as an array of chars.

In ActionScript, the size of an array changes automatically as items are added or removed. In many
languages, the size of an array must be specified when the array is first declared or dimensioned (i.e.,
when memory is allocated to hold the array's data). Lingo, the scripting language for Macromedia
Director, refers to its arrays by the name lists. Like ActionScript, Lingo allows arrays to contain data
values of differing types, and it resizes its arrays automatically as needed. Unlike ActionScript and C,
in which the first item in an array is numbered 0 (i.e., indexes are zero-relative), the first item in a
Lingo list is numbered 1 (i.e., indexes are one-relative).

Languages differ as to what happens when you attempt to access an element outside the bounds
(limits) of the array. ActionScript and Lingo add elements if you attempt to set a value for an element
beyond the existing bounds of the array. If you attempt to access an element outside the array bounds,
ActionScript returns undefined, whereas Lingo issues an error message. C pays no attention to

whether you are accessing a valid element number. It lets you retrieve and set elements outside the
bounds of the array, which usually causes you to overwrite other data in memory or access
meaningless data that is not part of the array (C gives you plenty of rope with which to hang yourself).
C even lets you specify a negative index, whereas ActionScript does not.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.3 Creating Arrays

We can create a new array with a data literal (i.e., by simply specifying its elements in a comma-separated list enclosed in brackets) or with
the built-in array constructor function, Array().

11.3.1 Array Literals

Usually, it's more convenient to create arrays using array literals than to create them with the Array() constructor. Recall that a literal is a
direct representation of a piece of fixed data. For example:

"beaver" // A string literal
234.2034 // A numeric literal
true // A boolean literal

In an array literal, square brackets demarcate the beginning and end of the array. Inside the square brackets, the values of the array's
elements are specified as a comma-separated list. Here's the general syntax:

[expression1, expression2, expression3]

The expressions are resolved and then stored as the elements of the array being defined. Any valid expression can be used, including
function calls, variables, literals, and even other arrays (an array within an array is called a nested array or a two-dimensional array).

Here are a few examples:

[4, 5, 63]; // Simple numeric elements
["jeremy", "janice", "eman"] // Simple string elements
[1, 4, 6 + 10] // Numeric expressions with an operation
[firstName, lastName, "tall", "skinny"] // Variables and strings as elements
["month end days", [31, 30, 28]] // A nested array literal

For comparison, let's do the same thing with the Array() constructor:

new Array(4, 5, 63)
new Array("jeremy", "janice", "eman")
new Array(1, 4, 6 + 10)
new Array(firstName, lastName, "tall", "skinny")
new Array("month end days", new Array(31, 30, 28))

As shown in the preceding example and noted in the Arrays in Other Programming Languages sidebar, elements of a single ActionScript
array can contain data of different types.

11.3.2 The Array Constructor

To create an array with the Array() constructor, we use the new operator, followed by the word Array, followed by parentheses, which

yields an empty array (one with no elements). As we'll see in Chapter 12, constructor functions create a new data object, in this case an
Array instance. We normally assign a newly created array to a variable or other data container for future reference. For example:

var myList = new Array(); // Store an empty array in variable myList

We often want to assign initial values to an array's elements. We can do so by passing parameters to the Array() constructor when invoking

it. Depending on the parameters we supply, the constructor invocation has different effects.

When we supply more than one argument to the Array() constructor, or when we supply a single nonnumeric argument to the Array()
constructor, each argument becomes one of the element values in our new array. For example:

var frameLabels = new Array("intro", "section1", "section2", "home");

The array stored in frameLabels has the following elements:

 0: "intro"
 1: "section1"
 2: "section2"
 3: "home"

When we supply exactly one numeric argument to the Array() constructor, it creates an array with the specified number of empty
placeholder elements:

var myList = new Array(14); // Creates an array with 14 empty elements

Arguments passed to the Array() constructor can be any legal expression, including compound expressions:

var x = 10;
var y = 5;
var myNumbers = new Array(x + 1, x * y, Math.random());

The myNumbers variable stores an array with the following elements:

 0: 11
 1: 50
 2: a floating-point number between 0 and 1

We mention the Array() constructor here because it can create an array with placeholder elements, which is more cumbersome to achieve
with an array literal. Furthermore, it serves as a gentle introduction to constructor functions. In practice, you'll usually create your arrays
using array literals or by importing them from an external source. The most common use for the Array() constructor is to create an empty
array (possibly with a given number of placeholder elements).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.4 Referencing Array Elements

Once we've created an array, we'll inevitably want to retrieve or change the value of its elements. To do so, we can use the array access
operator (i.e., square brackets), [], which we introduced in Chapter 5.

11.4.1 Retrieving an Element's Value

To access an individual element, specify the array's identifier, followed by the element's index within square brackets, like this:

arrayName[elementNumber]

where arrayName is usually a variable pointing to the array, and elementNumber is an integer value specifying the element's

index. The first element is number 0, and the last element number is 1 less than the array's length. Specifying an element number greater
than the last valid element number causes the interpreter to return undefined. For example:

// Create an array using an array literal, and store it in trees
var trees = ["birch", "maple", "oak", "cedar"];

// Display the first element of trees in the Output window
trace(trees[0]); // Displays: "birch"

// Assign the third element's value to the variable favoriteTree
// (remember indexes start at 0, so index 2 is the third element!)
var favoriteTree = trees[2]; // favoriteTree becomes "oak"

Now here's the fun part. Since we can specify the index of an element as any number-yielding expression, we can use variables or
complex expressions just as easily as we use numbers to specify an element index. For example:

var i = 3;
var lastTree = trees[i]; // Set lastTree to "cedar"

We can even use function-call expressions that have numeric return values as our array indexes:

// Set randomTree to a randomly picked element of trees
// by calculating a random number between 0 and 3
var randomTree = trees[Math.floor(Math.random() * 4)];

Hot dog, that's powerful! You might use a similar approach to pick a random question from an array of trivia questions or to pick a
random card from an array that represents a deck of cards.

Note that accessing an array element is very similar to accessing a variable value. Array elements can be used as part of any complex
expression, as follows:

var myNums = [12, 4, 155, 90];
var myTotal = myNums[0] + myNums[1] + myNums[2] + myNums[3]; // Sum the array

Summing the values of an array's elements manually isn't exactly the paragon of optimized code. Later, we'll see a much more
convenient way to access an array's elements sequentially.

11.4.2 Setting an Element's Value

To set an element's value, we use arrayName[elementNumber] as the left-hand operand of an assignment expression:

// Make an array
var cities = ["Toronto", "Montreal", "Vancouver", "Waterloo"];
// cities is now: ["Toronto", "Montreal", "Vancouver", "Waterloo"]

// Set the value of the array's first element
// cities becomes ["London", "Montreal", "Vancouver", "Waterloo"]
cities[0] = "London";

// Set the value of the array's fourth element
// cities becomes ["London", "Montreal", "Vancouver", "Hamburg"]
cities[3] = "Hamburg";

// Set the value of the array's third element
// cities becomes ["London", "Montreal", 293.3, "Hamburg"]
cities[2] = 293.3; // Notice that the datatype change is not a problem

Note that we can use any nonnegative numeric expression as the index when setting an array element:

var i = 1;
// Set the value of element i
// cities becomes ["London", "Prague", 293.3, "Hamburg"]
cities[i] = "Prague";

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.5 Determining the Size of an Array

All arrays come with a built-in property named length, which indicates the current number of elements (including undefined

elements). To access an array's length property, we use the dot operator, like so:

arrayName.length

Here are a few examples:

myList = [34, 45, 57];
trace(myList.length); // Displays: 3
myWords = ["this", "that", "the other"];
trace(myWords.length); // Displays: 3, the number of elements,
 // not the number of words or characters
frameLabels = new Array(24); // Note the single numeric argument
 // used with the Array() constructor
trace(frameLabels.length); // Displays: 24

The length of an array is always 1 greater than the index of its last element. For example, an array with elements at indexes 0, 1, and

2 has a length of 3. And an array with elements at indexes 0, 1, 2, and 50 has a length of 51. 51? Yes, 51. Even though indexes 3 through
49 are empty, they still contribute to the length of the array. The last element of an array is always myArray[myArray.length
- 1], because index numbers begin at 0, not 1.

If we add and remove elements, the array's length property is updated to reflect our changes. In fact, we can even set the length
property to add or remove elements at the end of an array. This is in contrast the string.length property, which is read-only, as

discussed in Chapter 4. Shortening the length of an array deletes elements beyond the new length. The length property

includes numbered elements only, not named elements, as described in Section 11.6.

Using an array's length property, we can create a loop that accesses all the elements of an array, as we saw in Example 8-1. Looping

through an array's elements is a fundamental task in programming. To get a sense of what's possible when we combine loops and arrays,
study Example 11-1, which hunts through a soundtracks array to find the location of the element with the value "hip hop". You

should recognize the for loop from Chapter 8, and the increment operator from Chapter 5. As for the array-access code, well, you just
finished learning about that.

Example 11-1. Searching an array

// Create an array
var soundtracks = ["electronic", "hip hop", "pop", "alternative", "classical"];

// Check each element to see if it contains "hip hop"
for (var i = 0; i < soundtracks.length; i++) {
 trace("Now examining element: " + i);
 if (soundtracks[i] = = "hip hop") {
 trace("The location of 'hip hop' is index: " + i);
 break;
 }
}

Let's extend Example 11-1 into a generalized search function that can check any array for any matching element, as shown in Example
11-2. Our search function returns the position within the array where the element was found, or null if it was not found.

Example 11-2. A generalized array-searching function

function searchArray (whichArray, searchElement) {

 // Check each element to see if it contains searchElement
 for (var i = 0; i < whichArray.length; i++) {
 if (whichArray[i] = = searchElement) {
 return i;
 }
 }
 return null;
}

Here's how you might make use of our new search function to check whether or not "Fritz" is one of the names in our userNames
array, which is an array of authorized usernames:

if (searchArray(userNames, "Fritz") = = null) {
 trace("Sorry, that username wasn't found");
} else {
 trace("Welcome to the game.");
}

Now that's invigorating! This is one of those rewarding moments when all our hard work comes together in a single system. Seemingly
trivial individual operations can combine to form extremely powerful and flexible programs. Like the letters in the alphabet or the
sequence of base-pairs in a strand of DNA, you can construct anything imaginable from the simple building blocks at your disposal. The
remainder of this chapter explains more about the mechanics of manipulating arrays, including the use of built-in functions that already
perform some common functions for you. As you encounter needs not met by the built-in functions, consider writing your own custom
functions, such as the searchArray() function in the preceding example.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.6 Named Array Elements

Numbered elements in an array are usually uniform in nature. For example, in an array of usernames, each element is a single user's
name. But sometimes we'll want to store a bunch of related information in an array, for convenience, when the elements are not
necessarily uniform. For example, in an array describing our computer, one element might be the processor speed, another might be
the amount of RAM, and another might be the name of the operating system. The elements are related by virtue of describing our
computer system, but the elements themselves are not uniform. Therefore, describing the elements as items 0, 1, and 2 may be
accurate, but it isn't very descriptive. Although elements are usually numbered, fortunately, they can also be named. Named elements
allow us to refer to elements in an array by a meaningful label—such as "processorSpeed", "ramInMB", or "osName"—instead of an
integer. Not only does this make our code more legible, it also means we can access an element in an array without knowing its
position. In Lingo, arrays that support named elements are called property lists. In many languages, they are known as hashes; in
Perl, they are also called associative arrays.

Unlike in some languages, which allow an array element to be accessed by either name or number, a named ActionScript element
cannot be accessed by number. Furthermore, named array elements cannot be manipulated by the Array methods (push(), pop(),
etc., covered later in this chapter) and are not considered part of the array's numbered element list. For example, an array with one
named element and two numbered elements will have a length of 2, not 3. To access all the named elements in an ActionScript

array, therefore, we must use a for-in loop (discussed in Chapter 8), which lists both named and numbered elements.

An array's named elements are simply object properties. In ActionScript, a generic object can hold a
group of related properties as legitimately as an array can hold named elements. Both approaches are
common practice.

11.6.1 Creating and Referencing Named Array Elements

To add an element that can later be retrieved by name, we use the familiar square brackets, with a string in place of the index
number, on an existing array:

arrayName[elementName] = expression

where elementName is a string. For example:

var importantDates = new Array(); // Create an empty array
importantDates["dadsBirthday"] = "June 1"; // Add a named element
importantDates["mumsBirthday"] = "January 16"; // Add another named element

Remember to create an empty array using the new Array() constructor before trying to add named elements to it. We can also use
the dot operator to specify a named array element, as follows:

arrayName.elementName = expression

In this case, elementName must be an identifier, not a string. For example:

var importantDates = new Array();
importantDates.dadsBirthday = "June 1";
importantDates.mumsBirthday = "January 16";

Assuming that we know an element's identifier (for example, dadsBirthday in the importantDates array), we can

access it in one of two ways:

var goShopping = importantDates["dadsBirthday"];
var goShopping = importantDates.dadsBirthday;

Just as is the case when assigning a value to a named element, when accessing an element with square brackets, elementName
must be a string or an expression that yields a string. Likewise, when used with the dot operator, elementName must be an

identifier (i.e., the element's name without quotes), not a string. Note that when square brackets are used, elementName need

not conform to the rules of forming a legal identifier. For example, the following elementName is not a legal identifier, but is

permitted by the [] operator:

importantDates["dad's Birthday"] = "June 1";

The equivalent dot operator expression generates a compile-time error:

importantDates.dad's Birthday = "June 1"; // ERROR!

As a matter of good form, you should always avoid using illegal identifiers as named elements, despite the flexibility of the []
operator.

11.6.2 Removing Named Elements

To rid an array of an unwanted named element, we use the delete operator, which we introduced in Chapter 5:

delete arrayName.elementName

Deleting a named element destroys both the element value and the element container, freeing up any memory being occupied by the
element and its contents. (Contrast this with the delete operator's behavior for numbered elements, where it simply clears the value
but leaves the container intact.)

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.7 Adding Elements to an Array

You can add elements to an array by specifying a value for a new element, increasing the array's length property, or using one of the built-in

array functions.

11.7.1 Adding New Elements Directly

We can add a new element to an existing array at a specific index simply by assigning a value to that element:

// Create an array, and assign it three values
var myList = ["apples", "oranges", "pears"];

// Add a fourth value
myList[3] = "tangerines";

The new element does not need to be placed immediately after the last element of the old array. If we place the new element more than one
element beyond the end of the array, ActionScript automatically creates undefined elements for the intervening indexes:

// Leave indexes 4 to 38 empty
myList[39] = "grapes";

trace(myList[12]); // Displays: undefined

If the element already exists, it will be replaced by the new value. If the element doesn't exist, it will be added.

11.7.2 Adding New Elements with the length Property

To extend an array without assigning values to new elements, we can simply increase the length property, and ActionScript will add enough

elements to reach that length:

// Create an array with three elements
var myColors = ["green", "red", "blue"];
// Add 47 empty elements, numbered 3 through 49, to the array
myColors.length = 50;

You can use this approach to create a number of empty elements to hold some data you expect to accumulate, such as student test scores.

11.7.3 Adding New Elements with Array Methods

We can use built-in array methods to handle more complex array operations. (In Chapter 12 you'll learn that a method is a function that operates
on an object.)

11.7.3.1 The push() method

The push() method appends one or more elements to the end of an array. It automatically appends the data after the last numbered element of the
array, so we don't need to worry about how many elements already exist. The push() method can also append multiple elements to an array at
once. To invoke push() on an array, we use the array name, followed by the dot operator, the keyword push, and zero or more items in
parentheses:

arrayName.push(item1, item2,...itemn);

where item1, item2, ...itemn is a comma-separated list of items to be appended to the end of the array as new elements. Here are some

examples:

// Create an array with two elements
var menuItems = ["home", "quit"];

// Add an element
// menuItems becomes ["home", "quit", "products"]
menuItems.push("products");

// Add two more elements
// menuItems becomes ["home", "quit", "products", "services", "contact"]
menuItems.push("services", "contact");

The push() method returns the new length of the updated array (i.e., the value of the length property, which excludes named elements):

var myList = [12, 23, 98];
trace(myList.push(28, 36)); // Appends 28 and 36 to myList and displays: 5

Note that the items added to a list can be any expression. The expression is resolved before being added to the list:

var temperature = 22;
var sky = "sunny";
var weatherListing = new Array();
weatherListing.push(temperature, sky);
trace(weatherListing); // Displays: "22,sunny", not "temperature,sky"

Pushing, Popping, and Stacks

The push() method takes its name from a programming concept called a stack. A stack can be thought of as a vertical array, like a
stack of dishes. If you frequent cafeterias or restaurants with buffets, you should be familiar with the spring-loaded racks that hold
plates for the diners. When clean dishes are added, they are literally pushed onto the top of the stack, and the older dishes sink
lower into the rack. When a customer pops a dish from the top of the stack, he is removing the dish that was most recently pushed
onto the stack. This is known as a last-in-first-out (LIFO) stack and is typically used for things like history lists. For example, if
you hit the Back button in your browser, it will take you to the previous web page you visited. If you hit the Back button again,
you'll be brought to the page before that, and so on. This is achieved by pushing the URL of each page you visit onto the stack
and popping it off when the Back button is clicked.

LIFO stacks can also be found in real life. The last person to check her luggage on an airplane usually receives her luggage first
when the plane lands, because the luggage is unloaded in the reverse order from which it was loaded. The early bird who checked
his luggage first is doomed to wait the longest at the luggage conveyor belt after the plane lands. A first-in-first-out (FIFO) stack
is more egalitarian—it works on a first-come-first-served basis. A FIFO stack is like the line at your local bank. Instead of taking
the last element in an array, a FIFO stack deals with the first element in an array next. It then deletes the first element in the array,
and all the other elements "move up," just as you move up in line when the person in front of you is "deleted" (i.e., either she is
served and then leaves, or she chooses to leave in disgust because she is tired of waiting). Therefore, the word push generally
implies that you are using a LIFO stack, whereas the word append implies that you are using a FIFO stack. In either case,
elements are added to the "end" of the stack; the difference lies in which end of the array holds the element that is taken for the
next operation.

11.7.3.2 The unshift() method

The unshift() method is much like push(), but it adds one or more elements to the beginning of the array, bumping all existing elements further
along (i.e., the indexes of existing elements increase to accommodate the new elements at the beginning of the array). The syntax of unshift()
follows the same style as all other array methods:

arrayName.unshift(item1, item2,...itemn);

where item1, item2, ...itemn is a comma-separated list of items to be added to the beginning of the array as new elements. Note that

multiple items are added in the order that they are supplied. Here are some examples:

var flashVersions = new Array();
flashVersions[0] = 6;
flashVersions.unshift(5); // flashVersions is now [5, 6]
flashVersions.unshift(2,3,4); // flashVersions is now [2, 3, 4, 5, 6]

The unshift() method, like push(), returns the length of the newly enlarged array.

11.7.3.3 The splice() method

The splice() method can add elements to, or remove elements from, an array. It is typically used to insert elements into the middle of an array
(latter elements are renumbered to make room) or to delete elements from the middle of an array (latter elements are renumbered to close the
gap). When splice() performs both of these tasks in a single invocation, it effectively replaces some elements with new elements (though not
necessarily with the same number of elements). Here's the syntax for splice():

arrayName.splice(startIndex, deleteCount, item1, item2,...itemn)

where startIndex is a number that specifies the index at which element removal and optional insertion should commence (remember that

the first element's index is 0); deleteCount is an optional argument that dictates how many elements should be removed (including the

element at startIndex). When deleteCount is omitted, every element after and including startIndex is removed. The optional

item1, item2, ...itemn parameters are items to be added to the array as elements starting at startIndex.

Example 11-3 shows the versatility of the splice() method.

Example 11-3. Using the splice() array method

// Make an array...
months = new Array("January", "Friday", "April", "May", "Sunday", "Monday", "July");
// Hmmm. Something's wrong with our array. Let's fix it up.
// First, let's get rid of "Friday".
months.splice(1,1);
 // months is now:
 // ["January", "April", "May", "Sunday", "Monday", "July"]

// Now, let's add the two months before "April".
// Note that we won't delete anything here (deleteCount is 0).
months.splice(1, 0, "February", "March");
 // months is now:
 // ["January", "February", "March", "April", "May", "Sunday", "Monday", "July"]

// Finally, let's remove "Sunday" and "Monday" while inserting "June".
months.splice(5, 2, "june");
 // months is now:
 // ["January", "February", "March", "April", "May", "June", "July"]

// Now that our months array is fixed, let's trim it
// so that it contains only the first quarter of the year,
// by deleting all elements starting with index 3 (i.e., "April").
months.splice(3); // months is now: ["January", "February", "March"]

Another useful feature of splice() is that it returns an array of the elements it removes. Thus it can be used to extract a series of elements from an
array:

myList = ["a", "b", "c", "d"];

trace(myList.splice(1, 2)); // Displays: "b,c"
 // myList is now ["a", "d"]

If no elements are removed, splice() returns an empty array (that is, an array with no elements).

11.7.3.4 The concat() method

Like push(), concat() adds elements to the end of an array. Unlike push(), concat() does not modify the array on which it is invoked—instead,
concat() returns a new array. Furthermore, concat() can combine two or more arrays into a single, new array. Here's the syntax for concat():

origArray.concat(elementList)

The concat() method appends the elements contained in elementList, one by one, to the end of origArray and returns the result as a

new array, leaving origArray untouched. Normally, we store the returned array in a variable. Here, simple numbers are used as the items to

be added to the array:

var list1 = new Array(11, 12, 13);
var list2 = list1.concat(14, 15); // list2 becomes [11, 12, 13, 14, 15]

In the following example, we use concat() to combine two arrays:

var guests = ["Panda", "Dave"];
var registeredPlayers = ["Gray", "Doomtrooper", "TRK9"];
var allUsers = registeredPlayers.concat(guests);
// allUsers is now: ["Gray", "Doomtrooper", "TRK9", "Panda", "Dave"]

Notice that concat() separated the elements of the guests array in a way that push() would not have. If we had tried this code:

var allUsers = registeredPlayers.push(guests);

we'd have ended up with this nested array:

["Gray", "Doomtrooper", "TRK9", ["Panda", "Dave"]]

Furthermore, push() would have altered the registeredPlayers array, whereas concat() does not.

Note, however, that concat() cannot break apart nested arrays (elements that are themselves arrays within the main array), as you can see from
the following code:

var x = [1, 2, 3];
var y = [[5, 6], [7, 8]];
var z = x.concat(y); // Result is [1, 2, 3, [5, 6], [7, 8]].
 // Elements 0 and 1 of y were not "flattened."

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.8 Removing Elements from an Array

You can remove elements from an array by using the delete operator, reducing the length property of an array, or using one of the

built-in array methods.

11.8.1 Removing Numbered Elements with the delete Operator

The delete operator sets an array element to undefined, using the following syntax:

delete arrayName[index]

where arrayName is any array and index is the number or name of the element we want to set to undefined. When used

with numbered (not named) elements, the name delete is misleading, frankly. It does not remove a numbered element from the array; it
merely sets the target element's value to undefined. A delete operation, therefore, is identical to assigning the undefined
value to an element. We can verify this by checking the length property of an array after deleting one of its elements:

var myList = ["a", "b", "c"];
trace(myList.length); // Displays: 3
delete myList[2];
trace(myList.length); // Still displays 3...the element at index 2 is
 // undefined instead of "c", but it still exists

To truly delete elements, use splice() (to delete them from the middle of an array), or use shift() and pop() (to delete them from the
beginning or end of an array). Note that delete behaves differently with named elements than with numbered elements. Using delete on
named elements destroys them permanently, leaving no trace. As we saw in Chapter 5, delete can also destroy object properties as it
does named array elements (in fact, named elements are actually object properties of the Array object).

11.8.2 Removing Elements with the length Property

Earlier we used the length property to add elements to an array. We can also set the array's length property to a number smaller

than the current length in order to delete elements from the array (i.e., truncate the array):

var toppings = ["pepperoni", "tomatoes", "cheese", "green pepper", "broccoli"];
toppings.length = 3;
trace(toppings); // Displays: "pepperoni,tomatoes,cheese"
 // We trimmed elements 3 and 4 (the last two).

11.8.3 Removing Elements with Array Methods

Arrays come equipped with several built-in methods for removing elements. We've already seen how splice() can delete a series of
elements from the middle of an array. The pop() and shift() methods are used to prune elements from the end or beginning of an array.

11.8.3.1 The pop() method

The pop() method is the antithesis of push()—it removes the last element of an array. The syntax of pop() is simple:

arrayName.pop()

I don't know why, but I always think that "popping" an array is kinda funny. Anyway, pop() decrements the array's length by 1 and

returns the value of the element it removed. For example:

x = [56, 57, 58];
trace(x.pop()); // Displays: 58 (the value of the popped element)
 // x is now [56, 57]

As we saw earlier, pop() is often used in combination with push() to perform LIFO stack operations. In Example 11-4, we create a
siteHistory array that tracks a user's navigation through a site. When the user navigates to a new frame, we add his location to

the array using push(). When the user navigates back, we pop() his last location off of siteHistory and send him to the

preceding location. Example 11-4 can be downloaded from the online Code Depot.

Example 11-4. A Back button with history

// CODE ON FRAME 1 OF OUR MOVIE
stop();
var siteHistory = new Array();

function goto (theLabel) {
 // If we're not already at the requested frame...
 if (theLabel != siteHistory[siteHistory.length - 1]) {
 // ...add the request to the history, then go to the requested frame
 siteHistory.push(theLabel);
 this.gotoAndStop(siteHistory[siteHistory.length - 1]);
 }
 trace(siteHistory);
}

function goBack () {
 // Remove the last item in the history
 siteHistory.pop();
 // If there is anything left in the history...
 if (siteHistory.length > 0) {
 // ...go to the most recent frame
 this.gotoAndStop(siteHistory[siteHistory.length - 1]);
 } else {
 // ...otherwise go home
 this.gotoAndStop("home");
 }
 trace(siteHistory);
}

// NAVIGATION BUTTON
gallery_btn.onRelease = function () {
 this._parent.goto("gallery");
}

// THE BACK BUTTON
back_btn.onRelease = function () {
 this._parent.goBack();
}

11.8.3.2 The shift() method

Remember unshift(), the method we used to add an element to the beginning of an array? Meet its alter ego, shift(), which removes an
element from the beginning of an array:

arrayName.shift()

Not as funny as pop. Oh well.

Like pop(), shift() returns the value of the element it removes. The remaining elements all move up in the pecking order toward the
beginning of the array. For example:

var sports = ["hackey sack", "snowboarding", "inline skating"];
trace(sports.shift()); // Displays: hackey sack
 // sports is now ["snowboarding", "inline skating"]
trace(sports.shift()); // Displays: snowboarding
 // sports is now ["inline skating"]

Because shift() truly deletes an element, it is more useful than delete for removing the first element of an array. We can also use shift()
to limit the number of elements in a list. For example, suppose we're calculating the frame rate of a movie. We push() the current time
onto an array after each frame renders. To limit the size of our array to the most recent 10 time samples, we shift() the oldest time off as
necessary. To find the frame rate, we average the times in our array. Example 11-5 shows this technique.

Example 11-5. Calculating the frame rate of a movie

// Create a movie clip to track the frame rate
this.createEmptyMovieClip("fpsTracker", 1);

// Create our time measurement array in the fpsTracker movie clip
fpsTracker.elapsedTime = new Array();

// Use an onEnterFrame() event handler to measure the time after each frame
fpsTracker.onEnterFrame = function () {
 // Add the current time to elapsedTime
 this.elapsedTime.push(getTimer());

 // If we have enough samples to calculate an average...
 if (this.elapsedTime.length > 10) {
 // ...remove the oldest time from elapsedTime
 this.elapsedTime.shift();

 // Average the number of elapsed milliseconds per frame
 this.elapsedAverage = (this.elapsedTime[this.elapsedTime.length - 1] -
 this.elapsedTime[0]) / this.elapsedTime.length;

 // To find the frames per second, divide 1 second by the elapsed average
 this.fps = 1000 / this.elapsedAverage;
 trace("Current fps " + this.fps);
 }
}

11.8.3.3 The splice() method

Earlier we saw that splice() can both remove elements from and add elements to an array. Since we've already looked at splice() in
detail, we won't reexamine it here. However, given our current context, we should specifically demonstrate splice()'s element-removal
capabilities:

var x = ["a", "b", "c", "d", "e", "f"];
x.splice(1,3); // Removes elements 1, 2, and 3, leaving ["a", "e", "f"]
x.splice(1); // Removes elements 1 through the end leaving just ["a"]

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.9 General Array-Manipulation Tools

We've now seen how array methods can be used to remove elements from and add elements to arrays. ActionScript also offers built-in
methods for reordering and sorting elements, converting array elements to strings, and extracting arrays from other arrays.

11.9.1 The reverse() Method

As its name suggests, the reverse() method reverses the order of the elements of an array. This method is simple but impressive. Here's the
syntax:

arrayName.reverse()

And here are the results:

var x = [1, 2, 3, 4];
x.reverse();
trace(x); // Displays: "4,3,2,1"

We typically use reverse() to reorder a sorted list. For example, if we have a list of products sorted by ascending price, we can display them
from least to most expensive, or we can reverse the list to display them from most to least expensive.

Reader Exercise: Try to write your own custom function to reverse the elements in an array. Not only is it harder than it looks, you'll most
likely find that the built-in reverse() method is substantially faster.

11.9.2 The sort() and sortOn() Methods

The sort() method rearranges elements in an array according to an arbitrary rule that we provide. If we provide no rule, sort() places the
elements in (roughly) alphabetical order by default. Sorting an array alphabetically is really easy, so let's first see how that works:

arrayName.sort()

When we invoke an array's sort() method with no arguments, its elements are temporarily converted to strings and sorted according to their
Unicode code points (equivalent to ASCII values for code points below 128). For the code points of most western European languages, see
Appendix B. See also Section 4.6.2.2 in Chapter 4 for important details.

// This works as expected...
var animals = ["zebra", "ape"];
animals.sort();
trace(animals); // Displays: "ape,zebra"
 // Cool! What a handy little method.

// Watch out, the sort order is not strictly alphabetical...
// The capital "Z" in zebra comes before the lowercase "a" in "ape"
var animals = ["Zebra", "ape"];
animals.sort();
trace(animals); // Displays: "Zebra,ape". Oops. See Appendix B.

We can also use sort() to organize array elements according to a rule of our own choosing. This technique is a little trickier to work with,
but it's quite powerful. We start by creating a compare function that dictates how the interpreter should sort any two elements of an array.
We then pass that function to the sort() method when we call it, like this:

arrayName.sort(compareFunction)

where compareFunction is the name of the function that tells the interpreter how to make its sorting decisions.

To build a compare function, we start with a new function that accepts two arguments (these represent any two elements in the array). In the
function's body, we determine, however we see fit, which of the elements we'd like to appear earlier in the element list after a sort
operation. If we want the first element to appear before the second element, we return a negative number from our function. If we want the
first element to appear after the second element, we return a positive number from our function. If we want the elements to be left in the
same positions, we return 0 from our function. In pseudocode, the approach generically looks like this:

function compareElements (element1, element2) {
 if (element1 should appear before element2) {
 return -1;
 } else if (element1 should appear after element2) {
 return 1;
 } else {
 return 0; // The elements should be left alone
 }
}

For example, to put elements in ascending numeric order, we can use a function like this:

function sortAscendingNumbers (element1, element2) {
 if (element1 < element2) {
 return -1;
 } else if (element1 > element2) {
 return 1;
 } else {
 return 0; // The elements are equal
 }
}

// Now that our compare function is ready, let's try it out
var x = [34, 55, 33, 1, 100];
x.sort(sortAscendingNumbers);
trace(x); // Displays: "1,33,34,55,100"

Numeric sorting functions can actually be phrased much more succinctly. The preceding sortAscendingNumbers() function can also be
written as:

function sortAscendingNumbers (element1, element2) {
 return element1 - element2;
}

In our optimized version, a negative number is returned if element1 is less than element2, a positive number is returned if

element1 is greater than element2, and a 0 is returned if the two are equal. Now that's elegant! Here is a version to perform a

descending sort:

function sortDescendingNumbers (element1, element2) {
 return element2 - element1;
}

Example 11-6 shows a compare function that adjusts the default alphabetic comparison behavior of sort() so that upper- and lowercase
letters are sorted without regard to case.

Example 11-6. Case-insensitive alphabetic array sort

var animals = ["Zebra", "ape"];

function sortAscendingAlpha (element1, element2) {
 return (element2.toLowerCase() < element1.toLowerCase());
}
animals.sort(sortAscendingAlpha);

trace(animals); // Displays: "ape,Zebra"

Of course, the comparison does not always have to involve simple strings and numbers. Here we sort an array of movie clips in ascending
order, according to their pixel area:

var clips = [square1, square2, square3];

function sortByClipArea (clip1, clip2) {
 clip1area = clip1._width * clip1._height;
 clip2area = clip2._width * clip2._height
 return clip1area - clip2area;
}

clips.sort(sortByClipArea);

That's a mighty fine sortin' machine!

Flash MX adds another useful sorting method not available in Flash 5. When the elements of an array are objects that share a specific
property name, we can use sortOn() to sort the objects quickly according to that property. For details, see Array.sortOn() in the
ActionScript Language Reference.

11.9.3 The slice() Method

Something of a subset of splice(), the slice() method retrieves a series of elements from an array. Unlike splice(), slice() only retrieves
elements. It creates a new array and does not affect the array on which it is invoked. The slice() method has the following syntax:

origArray.slice(startIndex, endIndex)

where startIndex specifies the first element to retrieve and endIndex specifies the element after the last element we want to

retrieve. The slice() method returns a new array containing a copy of the series of elements from origArray[startIndex] to

origArray[endIndex - 1]. If endIndex is omitted, it defaults to origArray.length, and the returned array contains

the elements from origArray[startIndex] through origArray[origArray.length - 1]. Here are a couple of

examples:

var myList = ["a", "b", "c", "d", "e", "f"];
myList.slice(1, 3); // Returns ["b", "c"], not ["b", "c", "d"]
myList.slice(2); // Returns ["c", "d", "e", "f"]

11.9.4 The join() Method

We can use join() to produce a string that represents all the numbered elements of an array. The join() method starts by converting each
element of the specified array to a string. Undefined elements are converted to the empty string (""). Then join() concatenates all the

strings into one long string, separating them with a character (or series of characters) called a delimiter. Finally, join() returns the resulting
string. The syntax of join() is:

arrayName.join(delimiter)

where delimiter is the string used to separate the converted elements of arrayName. If delimiter is unspecified, it defaults to a

comma. The result of a join() statement is most easily understood through an example:

var siteSections = ["animation", "short films", "games"];
// Sets siteTitle to "animation>> short films>> games"
var siteTitle = siteSections.join(">> ");
// Sets siteTitle to "animation:short films:games"

var siteTitle = siteSections.join(":");

Note that join() does not modify the array upon which it is invoked. Instead, it returns a string based on that array.

When called without a delimiter argument, join() behaves exactly like toString(). Because toString() does not add a space after the
comma it uses to delimit elements, we may wish to use join() with ", " as the delimiter if we want nicely formatted output:

var x = [1, 2, 3];
trace(x.join(", ")); // Displays: "1, 2, 3" instead of "1,2,3"

The join() method has a potentially surprising result when used on an array containing elements that are themselves arrays. Since join()
converts elements to strings, and arrays are converted to strings via their toString() method, nested arrays are converted to strings using a
comma delimiter, not the delimiter supplied as an argument to join(). In other words, any delimiter supplied to join() doesn't affect nested
arrays. For example:

var x = [1, [2, 3, 4], 5];
x.join("|"); // Returns "1|2,3,4|5" not "1|2|3|4|5"

Reader Exercise: Write your own custom function that uses the specified delimiter to join nested arrays. Hint: Loop through all the
elements of the array, checking for those that are arrays themselves. Use the instanceof operator (described in Chapter 5) to check whether a
datum is an array. Can you create a recursive version that will work with arrays nested to an arbitrary depth?

11.9.5 The toString() Method

As we'll see in Chapter 12, toString() is a method, common to all objects, that returns a string representation of the object upon which it is
invoked. In the case of an Array object, the toString() method returns a list of the array's elements, converted to strings and separated by
commas. The toString() method can be called explicitly:

arrayName.toString()

Typically, we don't use toString() explicitly; rather, it is invoked automatically whenever arrayName is used in a string context. For

example, when we write trace(arrayName), a list of comma-separated values appears in the Output window; trace(arrayName) is

equivalent to trace(arrayName.toString()). The toString() method is often helpful during debugging when we need a quick,

unformatted look at the elements of an array. For example:

var sites = ["www.moock.org", "www.macromedia.com", "www.oreilly.com"];
// Display our array in a text field
debugOutput_txt.text = "The sites array is " + sites.toString();

trace("The sites array is " + sites.toString()); // Explicit use of toString()
trace("The sites array is " + sites); // Implicit use of toString()

The join() method covered in the previous section offers greater formatting flexibility than toString().

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.10 Arrays as Objects

Once you've read Chapter 12, you should recognize that arrays are a type of object, specifically, instances of the Array class. As with
other objects, Array objects can have properties added to them. When we add named elements to an array, we're really just adding
properties to an Array object. However, as we saw earlier, to use the built-in methods of the Array class we must work with numbered
elements.

In Chapter 9, we saw a useful "array-object" hybrid, the arguments object, that combined numbered elements with properties. (Recall
that the arguments object has callee and caller properties but also stores an array of parameters as array elements.) Now we can

see that all arrays contain their numbered list of elements, plus the built-in property length, plus any custom properties we add.

In addition, because arrays are instances of the Array class, we can add new Array methods that work on all arrays. For example, the
following code creates a method named searchArray(), based on the function we created earlier in Example 11-2.

// Add a new searchArray() method to all arrays
Array.prototype.searchArray = function (searchElement) {
 // Check each element to see if it contains searchElement
 for (var i = 0; i < this.length; i++) {
 if (this[i] = = searchElement) {
 return i;
 }
 }
 return null;
};

// Create an array
var soundtracks = ["electronic", "hip hop", "pop", "alternative", "classical"];

// Use the searchArray method to find the index of the word "classical"
trace(soundtracks.searchArray("classical")); // Displays: 4

To determine whether an object is an array, use the instanceof operator. For example:

var colors = ["red", "blue", "green"];
trace(colors instanceof Array); // Displays: true

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.11 Multidimensional Arrays

So far, we've limited our discussion to one-dimensional arrays, which are akin to a single row or a single column in a
spreadsheet. But what if we want to create the equivalent of a spreadsheet with both rows and columns? We need a
second dimension. ActionScript natively supports only one-dimensional arrays, but we can simulate a
multidimensional array by creating arrays within arrays. That is, we can create an array that contains elements that are
themselves arrays (sometimes called nested arrays).

The simplest type of multidimensional array is a two-dimensional array, in which elements are organized conceptually
into a grid of rows and columns—the rows are the first dimension of the array, and the columns are the second.

Using a practical example, let's consider how a two-dimensional array works. Suppose we're processing an order that
contains three products, each with a quantity and a price. We want to simulate a spreadsheet with three rows (one for
each product) and two columns (one for the quantity and one for the price). We create a separate array for each row,
with each row's elements representing the values in each column:

var row1 = [6, 2.99]; // Quantity 6, Price 2.99
var row2 = [4, 9.99]; // Quantity 4, Price 9.99
var row3 = [1, 59.99]; // Quantity 1, Price 59.99

Next, we place the rows into a container array named spreadsheet:

var spreadsheet = [row1, row2, row3];

Now we can find the total cost of the order by multiplying the quantity and price of each row and adding them all
together. We access a two-dimensional array's elements using two indexes (one for the row and one for the column).
The expression spreadsheet[0], for example, represents the first row's two-column array. Hence, to access the

second column in the first row of spreadsheet, we use spreadsheet[0][1]:

// Create a variable to store the total cost of the order.
var total;

// Now find the cost of the order. For each row, multiply the columns
// together, and add that to the total.
for (var i = 0; i < spreadsheet.length; i++) {
 total += spreadsheet[i][0] * spreadsheet[i][1];
}

trace(total); // Displays: 117.89

Aside from storage and access, multidimensional arrays behave just like normal arrays. We can use all of the Array
methods to manipulate data stored in multidimensional arrays.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.12 The Multiple-Choice Quiz, Take 3

In Example 9-13, we revised the multiple-choice quiz from Chapter 1 (Examples Example 1-1 through Example 1-4). At that time,
we improved the quiz code by creating reusable, centralized functions. Now that we've studied arrays, we can return to the quiz to
make a few more improvements. This time, we'll use arrays to store both the user's answers and the correct answers for each
question, making our code more succinct, legible, and easier to extend if we want to add new questions.

The changes we need to make to the quiz take place on the scripts layer of frame 1, where our main quiz code is located. Both the
previous version and this updated version of the quiz can be found in the online Code Depot. To see what improvements we'll
make this time around, read through the code in Example 11-7, paying special attention to the comments.

Example 11-7. A multiple-choice quiz, version 3

// Stop the movie at the first question.
stop();

// = = = = = = = = = = = = = = = = = = =
// INIT QUIZ VARIABLES
// = = = = = = = = = = = = = = = = = = =
// Store a reference to the timeline that contains the quiz user interface.
var quizTimeline = this;
// Create an array to contain user's answers.
var userAnswers = new Array();
// Create an array to contain each question's correct answer.
var correctAnswers = [3, 2];
// Convenience variable to store number of questions in quiz.
var numQuestions = correctAnswers.length;

// = =
// CREATE QUIZ FUNCTIONS
// = =
// Function: answer()
// Desc: Registers the user's answers to quiz questions and
// advances the quiz through its questions.
// Params: choice The user's answer for the current question.
function answer (choice) {
 // Add the current answer to the list of user answers.
 userAnswers.push(choice);

 // Convenience variable to store number of current question.
 var currentQuestion = userAnswers.length;

 // Display the question and answer in the Output window for debugging.
 trace("Question " + currentQuestion
 + ". The user answered: " + userAnswers[currentQuestion-1] + ".");

 // If we're on the last question...
 if (currentQuestion = = numQuestions) {
 // ...go to the quiz end frame.

 quizTimeline.gotoAndStop("quizEnd");
 // And grade the user.
 gradeUser();
 } else {
 // ...otherwise, go to the next question frame.
 quizTimeline.gotoAndStop("q"+ (currentQuestion + 1));
 }
}

// Function: gradeUser()
// Desc: Tallies the user's score at the end of the quiz.
function gradeUser () {
 // Report that we're about to grade the quiz in the Output window.
 trace("Quiz complete. Now grading...");

 // Create a local variable to track the
 // number of questions the user answered correctly.
 var totalCorrect = 0;

 // Count how many questions the user answered correctly.
 // For each question...
 for (var i=0; i < numQuestions; i++) {
 // If the user's answer matches the correct answer.
 if (userAnswers[i] = = correctAnswers[i]) {
 // Give the user a point.
 totalCorrect++;
 }
 // Display the correct answer and the user's answer
 // in the Output window for debugging.
 trace("Question " + (i + 1)
 + ". Correct answer: " + correctAnswers[i]
 + ". User's answer: " + userAnswers[i]);
 }

 // Display the final score in the Output window for debugging.
 trace("User's score: " + totalCorrect + "/" + numQuestions);

 // Create an onscreen text field to display the user's score.
 quizTimeline.createTextField("totalOutput_txt", 1, 150, 200, 200, 20);

 // Show the user's score in an onscreen text field.
 quizTimeline.totalOutput_txt.text = "Your final score is: "
 + totalCorrect + "/" + numQuestions;

 // Customize the font face, size, and color of the text field.
 var formatObj = new TextFormat();
 formatObj.size = 16;
 formatObj.color = 0xC7FF9C;
 formatObj.font = "_sans";
 formatObj.bold = true;
 quizTimeline.totalOutput_txt.setTextFormat(formatObj);
}

// = =
// DEFINE QUIZ BUTTON EVENT HANDLERS
// = =
// Code executed when button 1 is pressed.

choice1_btn.onRelease = function () {
 // Call answer(), which records the user's choice
 // and advances the quiz to the next question.
 this._parent.answer(1);
};

// Code executed when button 2 is pressed.
choice2_btn.onRelease = function () {
 this._parent.answer(2);
};

// Code executed when button 3 is pressed.
choice3_btn.onRelease = function () {
 this._parent.answer(3);
};

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 11. Arrays

11.13 Onward!

This chapter gave you an introduction to—and considerable practice using—your first composite datatype, arrays.
Now that you understand how multiple pieces of data can be represented within a single container, you have a solid
foundation to take into Chapter 12. There we'll explore an even more powerful type of composite data—and a
fundamental component of ActionScript—objects.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 12. Objects and Classes

This chapter covers object-oriented programming (OOP), which is new territory for many readers. We'll cover
OOP methodology and terminology, using applied examples to make it all concrete. For the benefit of both
experienced programmers and new programmers who appreciate a broad perspective, we'll compare ActionScript's
OOP practices with those of Java and other languages. Experienced object-oriented programmers who simply want
an overview of ActionScript's OOP syntax may want to skip directly to the Section 12.9 at the end of this chapter.

If you're new to object-oriented programming, you may have heard that OOP is some big mystery or that it's
difficult to understand. Quite to the contrary, the concepts are highly intuitive, and the OOP process is much easier
than you may have been led to believe. At its heart, OOP simply means that you treat portions of your program as
self-contained modules called "objects." By "self-contained," we don't mean that objects are isolated, but rather that
they can be independent of each other, and that you can use an object without worrying about its internal details.
OOP concepts are easy to grasp once you realize that everything you deal with in the real world is a self-contained
object. Your dog, your parents, your car, and your computer are all self-contained objects—meaning that they do
some things independently and do other things at your request, even if you don't know the inner details of how they
work.

You don't have to be a biologist to get your dog to fetch a stick; you don't need to be a mechanical engineer to drive
your car; you don't need to be a psychoanalyst to interact with your parents; and, rumors to the contrary, you don't
need to be a computer scientist to check your email. All you need to know is the commands an object is willing to
obey (which are called methods) and the results those commands produce. For example, if you press the gas pedal
of your car, you expect the car to accelerate. If you tell your dog to sit, you expect him to sit. Armed with this
commonsense context of what an object is in the real world, let's see how to relate these concepts to ActionScript.

The classic example of a programming object is a bouncing ball. Like a real ball, a ball object can have properties
that represent its attributes, such as its radius, color, mass, position, and bounciness (elasticity). To represent our
bouncing ball in a program, we'll create a ball object with a radius property, a color property, and so

forth. The properties of an object represent its state at any given time, but some of its properties change over time.
For example, to make our ball move, we need to simulate Newton's laws of motion. That is, we need to describe in
computer terms how a ball moves over time. In the simplest case, recalling that speed multiplied by time equals
distance, we can determine a ball's horizontal position in the future using this equation:

Position = Speed * Time

We can translate this equation into ActionScript that calculates the ball's new position:

ball.xPosition += ball.xVelocity * elapsedTime;

This equation starts with the ball's current position and adds the distance it has traveled (based on its velocity and
the elapsed time) to come up with the new position.

An object's behaviors are simply the things it can do or the services it can perform (one
of our ball's behaviors is its ability to move). To describe an object's behaviors in code,
we create so-called methods, which are simply the functions that implement an object's
behaviors.

For example, we might create a move() method on our ball object that uses the preceding equation. Therefore,

methods can be thought of as the commands that an object obeys. Of course, an object can have multiple methods.
Let's say we want to make our ball bounce. We can create a bounce() method that reverses the ball's direction and
reduces its speed (our ball isn't perfectly elastic). The bounce() method might implement this equation:

ball.xVelocity = -(ball.xVelocity) * 0.95 // Ball is 95% elastic

Before getting into the esoterica of how to create objects, add properties, and implement methods, let's formalize
some of our definitions. An object is a data structure that groups together related properties (variables) and methods
(functions). An object typically encapsulates its behaviors, meaning that the internal details of how it performs its
functions are not necessarily visible outside the object. Instead, a program interacts with an object via its so-called
interfaces (i.e., methods that are publicly accessible outside the object). The rest of the program doesn't have to
worry about how an object does what it does; instead, the program provides inputs to the object and checks the
outputs (results) when applicable.

You'll also hear talk of classes and instances. A class is a generic object category, and an instance is a specific case
(i.e., a copy) of the class of object. For example, your particular pet dog is an instance of the generic Dog class. All
dogs in the Dog class bark and have four legs, but your specific dog has its own particular values for the height,

weight, and color properties used to describe dogs. If you've seen a three-legged dog and therefore just

objected to the assertion that "all dogs have four legs," you're already understanding OOP—a class should
accommodate all possible variations of its instances. Hence, to satisfy your objection to the Dog class design, you
could add a numberOfLegs property that would be set separately for each individual Dog object.

Object-oriented programming (OOP) is merely the name given to programs that make use of objects. Objects and
OOP are so intrinsic to ActionScript that we've already used them, perhaps without your realizing it. A movie clip
is a familiar object in Flash, and like all objects, it is implemented as a collection of properties and methods. When
we determine the height of a movie clip using someClip._height, we're accessing that clip object's

_height property. And when we tell a movie clip to play using someClip.play(), we're invoking that clip

object's play() method.

Typically, all instances of an object class share the same methods and property names; it
is the property values of each instance that distinguish it from other instances of the same
class.

Whether we create objects ourselves or use those built into ActionScript, OOP keeps different parts of a program
cleanly separated from one another (encapsulated) and allows them to interoperate without knowing the internal
details of other objects. This allows an object to change its internal functionality without adversely affecting other
portions of the program that rely on the object, so long as the object's public methods (i.e., its interfaces to the
outside world) don't change. Returning to our ball object, for example, we don't care if the laws of physics

change the behavior of our ball's motion. We just call the ball's move() method and let the object itself worry about
the details.

Another nice feature of OOP is that we can treat different objects that have different behaviors in a uniform manner,
as long as they implement methods of the same name. For example, suppose we have a circle object and a

square object. As long as both objects implement a getArea() method that returns the shape's area, we can call

their getArea() methods without worrying about how each object calculates its own area.

In this chapter, you'll learn how to make a basic object and how to define a category of objects (i.e., a class). Once
you're comfortable with the basics, you'll learn how to use inheritance to share common characteristics between
classes. For example, we might implement a Horse class that, along with our Dog class, is a descendant of the
Mammal class. The Mammal class could implement methods and properties common to all mammals, such as the
fact that they have hair, give milk, are warm-blooded, and have (up to!) four legs. Thus, inheritance can be used to
create a "family tree" of related classes. Later on, you'll also learn how OOP is used to control the Flash
environment through ActionScript's built-in objects and classes.

Note that not all objects represent some physical aspect of a Flash movie. At the end of this chapter, we'll show
how to implement our multiple-choice quiz using OOP. We'll use objects of the Quiz, Question, and QuizGUI
classes, of which the first two are abstract concepts, not physical things, in the movie. Our Quiz class, rather than
bouncing movie clips around the screen, encapsulates all the behaviors of a typical quiz—adding questions, setting
the title, setting the user's answer for a particular question, and so on. Even ActionScript itself uses objects to
represent intangible things, such as times, dates, or the formatting applied to a text field.

Finally, bear in mind that ActionScript is quite flexible and does not force OOP on you. You can use OOP in only

part of your program, or you can use it to structure everything you do. This flexibility can cause confusion for both
experienced and new OOP programmers. Java developers, for example, expect everything in a program to be built
as a class, which is possible, but not required in Flash. New OOP programmers, on the other hand, wonder how
much OOP they should use to build what they want to build. In this chapter, we'll work towards the Java mentality,
where everything in a program is represented as an object. Even if this never becomes your approach to Flash
development, the exposure to rigorous OOP should enrich your understanding of objects and Flash at any level. If
you're new to OOP, consider using objects whenever you create more than one of something; for example, fifteen
balls, ten enemies, or two kinds of quizzes (multiple-choice or fill in the blank).

I hope that this introduction has shed some light on objects and OOP. Now let's dive in to the specifics.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.1 The Anatomy of an Object

Like an array, an object is a container of containers. A typical array holds multiple data values in individual
numbered elements; an object, analogously, holds multiple data values in individual named properties. A property
is, effectively, a variable defined on an object. In fact, the Java programming language calls object properties
instance variables or simply variables (everything is an object in Java, so there is no need to distinguish a variable
from an object property). A method, by comparison, is a function defined on an object. Practically speaking, then,
an object is nothing more than a collection of related variables and functions.

Figure 12-1 depicts the properties of a sample object called ball. The ball object contains two properties:

radius and color. The values of these properties are 50 and 0xFF0000 (the hex value of red). The properties

are named with unique identifiers, exactly like variables. Even though each property has its own name, both are
contained by the single encompassing object, ball.

Figure 12-1. A sample object structure

Typically, an object defines properties that are meaningfully related. More specifically, the properties of an object
should be chosen such that they capture the characteristics that distinguish one instance of the object from another.
MovieClip objects, for example, have properties specific to individual movie clips, such as their number of frames
(_totalframes) and position on screen (_x and _y).

Traditionally, object properties are set via methods of the object to preserve the encapsulated nature of an object.
That is, in strict OOP, an object should set its own properties. If an outside entity wants to set an object's property,
it should do so by calling an appropriate method of the object. For example, a purist would frown on setting the
_width property of a movie clip directly. The purist would argue that it is best to let the movie clip object set the

_width property itself, and that code outside of the object should do so only indirectly, by calling one of the

movie clip object's methods (say, setWidth()). By moderating access to properties with method calls, the
maintainer of the MovieClip class could change the name of the _width property to w without adversely

affecting other users of the class.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.2 Instantiating Objects

Although it may sound backward, let's assume that we have already created an object class. This assumption isn't
too ludicrous, because ActionScript provides many built-in classes, and the custom classes we'll build will behave
similarly. Assuming we have an object class, we have to create a specific object instance (i.e., a copy) based on the
class. For example, ActionScript provides the TextField class, but it is up to us to create individual text fields.

To create an instance of an object (i.e., to instantiate the object), we normally use the new operator with a
constructor function, which initializes the object. The general syntax is:

new ConstructorFunction()

Let's instantiate our first object, using a constructor function that's already built into ActionScript: the Date()
constructor. A Date object represents a particular point in time. When we instantiate a new object, we normally
store the resulting instance in a variable, an array element, or a property of another object for later access. For
example, the following code creates a new Date object and stores a reference to it in the variable named now:

var now = new Date();

A specific time is a complex set of numbers that includes a second, minute, hour, day, month, and year. Using a
Date object's methods, we can easily check or set any aspect of the time represented by the object. For example, we
can invoke the getHours() method to check the hour (in 24-hour format), as follows:

trace("The current hour is: " + now.getHours());

Let's take a closer look at how to use an object's properties and methods before showing how to add them to our
own custom classes.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.3 Object Properties

As you learned earlier, properties are named data containers associated with an object. They are defined once by an object's class but
set individually for each object instance. Like variables, object properties can contain any kind of data—strings, numbers, Booleans,
null, undefined, functions, arrays, movie clips, or even other objects.

12.3.1 Referring to Properties

The familiar dot operator gives us access to an object's properties. We separate the name of the property from the object it belongs to
using a dot (a period), as follows:

objectName.propertyName

where objectName is the name of our object and propertyName must be a legal identifier that names a property of

objectName.

For example, if we have a redBall object instance with a radius property, we can retrieve the value of radius and assign

it to a variable, r, as follows:

var r = redBall.radius;

Or, to set redBall's radius property to 50, we can use:

redBall.radius = 50;

Alternatively, we can refer to a property using the [] operator, as follows:

objectName[propertyNameString]

The [] operator allows us to compose a property name using any expression that evaluates to a string. For example, here we first

retrieve and then assign the value of radius, achieving the same results as our previous example:

var r = redBall["radius"]; // Retrieve
redBall["radius"] = 50; // Assign

In this case, the [] operator is less concise than the dot operator and offers no apparent benefit. The [] operator is useful when

the property name is a complex expression. Next, rather than using a string literal, we specify the property name with an expression
that yields the string "radius":

var prop = "radius"; // Set a variable that contains the property name.
trace(redBall[prop]); // The variable prop contains the
 // property name "radius".

Built-in ActionScript properties are also accessed via the dot and [] operators. Here we access the value of the Math object's PI
property, first using the dot operator, then using the [] operator:

trace(Math.PI);
trace(Math["PI"]);

However, in pure OOP, we'll almost never access an object's properties directly; instead, we'll use methods to access property values.
For example, to check the volume property of an instance of the built-in Sound class, we use:

trace(mySound.getVolume());

not:

trace(mySound.volume); // INCORRECT!

Remember that the dot operator requires us to specify a property as an identifier, not a string, whereas
the [] operator requires a string, not an identifier.

12.3.2 Using a for-in Loop to Iterate over an Object's Properties

In Chapter 8, you learned that a for-in loop can be used to enumerate the properties of an object. Now that you know a little more
about objects, it's worth returning to the for-in statement briefly to review how it can be used to iterate over (i.e., access each one of)
an object's properties.

Like all loops, the for-in statement includes a header and a body. The body of a for-in statement is automatically executed once for
each property in the specified object. We don't need to know the number of properties or their names in advance, because as each
cycle of the loop executes, our "iterator" variable automatically becomes the name of the next property. We can therefore iterate over
the properties of the object, like this:

// List all the properties of the ball object
for (var prop in ball) {
 trace("Property " + prop + " has the value " + ball[prop]);
}

Note that the iterator variable, prop, in this example is not an integer, as it would be in a for loop. That is, don't confuse a standard

for loop, often used for accessing numbered array elements, with a for-in loop used to access an object's properties. For more
information on for-in loops, including how to prevent an object's properties from being exposed to for-in, see Chapter 8.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.4 Object Methods

Methods are functions that are associated with objects and are typically used to perform an object-related task or
access an object's data (i.e., set and retrieve its properties). We invoke methods with the function call operator, (
), using the dot operator to separate the method name from its object:

objectName.methodName()

For example:

ball.getArea(); // Call the getArea() method of ball

As with properties, methods are defined by a class and then used with individual object instances. For example, the
MovieClip class defines a play() method that we use on a particular movie clip instance (such as the main timeline
of a movie):

_root.play();

Methods can take parameters, return values, and otherwise behave exactly like functions, with the added feature
that they can access and operate on the object through which they are invoked. For example, here we invoke
gotoAndPlay() as a method of the _root movie clip object, passing the destination frame number, 5, as an

argument:

_root.gotoAndPlay(5);

And here we invoke the getDepth() method, which returns an integer depth level:

trace(_root.getDepth());

Now that you know how to use methods and properties with objects of existing classes, we'll show how to create
properties and methods for our own custom classes.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.5 Classes and Object-Oriented Programming

It's not uncommon to create dozens of complex objects that store rich information about everything from products in a shopping-cart system
to bad guys with artificial intelligence in a video game. To expedite the creation of objects and to define object hierarchies (relationships
between objects), we use object classes. A class is a template-style definition of an entire category of objects. As you learned in the
introduction to this chapter, classes describe the general features of a specific breed of objects, such as "all dogs bark."

12.5.1 Object Classes

Are you ready to get your hands dirty? Let's create a custom Ball class. The first step in class creation is designing the properties and
methods the class supports. Our Ball class will have the following properties:

radius

Half the diameter of a ball
color

A ball's color
xPosition

A ball's horizontal location
yPosition

A ball's vertical location

Our Ball class will have the following methods:

moveClipTo()

Used to reposition a ball
getArea()

Used to determine the amount of space an individual ball occupies

In natural language, our Ball class would be described to the interpreter as follows:

A Ball is a type of object. All ball objects have the properties radius, color, xPosition, yPosition, which are set

individually for each ball. All ball objects also share the methods moveClipTo() and getArea(), which are identical across all

members of the Ball class.

Instances of our Ball class will have no on-screen presence; for now, they will simply represent balls conceptually in our program. Later in
this chapter, under Section 12.5.4, we'll consider how to actually render the ball to screen. Then, in Chapter 14, we'll show how to
implement our Ball class as a type of movie clip. Stay tuned!

12.5.2 Making a Class

There is no specific "class declaration" device in ActionScript; there is no "class" statement that creates a new class as the var statement
creates new variables. Instead, we define a special type of function, called a constructor function, that generates a new instance of our class.
By defining the constructor function, we are effectively creating our class template or class definition.

Syntactically, constructor functions (or simply constructors) are formed just like normal functions. For example:

function Constructor () {
 statements
}

The name of a class's constructor function can be any valid function name, but, by convention, it is capitalized to indicate that it is a class
constructor. A constructor's name should describe the class of objects it creates, as in Ball, Product, or Vector2d. The statements of a

constructor function initialize the objects it creates.

An ActionScript class and an ActionScript constructor are one in the same. All instance variables are created
inside the constructor; however, methods typically are not, as you'll learn shortly. Java developers should note
that in ActionScript there is only one constructor per class (i.e., constructor functions cannot be overloaded).

We'll make our Ball() constructor function as simple as possible to start. All we want it to do for now is create an empty object. To create
an empty object, our Ball() constructor need not include any statements.

// Make a Ball() constructor
function Ball () {

}

That didn't hurt much. Shortly, we'll see how to create properties inside our constructor and initialize new ball objects, but first let's see

how to generate ball objects using our Ball() constructor function.

12.5.2.1 Creating instances of a class

A constructor function both defines our class and is used to instantiate new instances of the class. As you learned earlier in this chapter
under Section 12.2, when invoked in combination with the new operator, a constructor function creates, and then returns, an object instance.

Recall the general syntax for creating a new object based on a constructor function:

new Constructor(); // Returns an instance of the Constructor class

So, to create a ball object (an instance) using our Ball class, we write:

// Stores an instance of the Ball class in the variable bouncyBall
var bouncyBall = new Ball();

Notice that even though our Ball() constructor function is currently empty, and does not explicitly return an instance of the Ball class, when
the constructor is invoked together with the new operator, ActionScript generates an instance automatically. Now let's make our Ball class
constructor assign properties to the ball objects it creates.

12.5.2.2 Creating a class's properties

To customize an object's properties during the object-creation stage, we use the special this. Within a constructor function, the this
keyword is a reference to the object currently being generated. Using that reference, we can assign whatever properties we like to the
embryonic object. The following syntax shows the general technique:

function Constructor () {
 this.propertyName = value;
}

where this is the object being created, propertyName is the property we want to attach to that object, and value is the data value

we're assigning to that property.

Let's apply the technique to our Ball example. Here's how the Ball class constructor might assign initial values for the radius, color,

xPosition, and yPosition properties to its instances. Note the use of the this keyword, and remember that inside our Ball

constructor function, this means "the new ball being created."

function Ball () {
 this.radius = 10;
 this.color = 0xFF0000;
 this.xPosition = 59;
 this.yPosition = 15;
}

When creating object properties, the var keyword (used to create variables) must not be used. The following
code generates a compile-time error:

var this.radius = 10;

With the Ball() constructor thus prepared, we can create Ball instances (i.e., objects of the Ball class) bearing our predefined
properties—radius, color, xPosition, and yPostion—by invoking Ball() with the new operator, just as we did earlier. For

example:

// Make a new instance of Ball
var bouncyBall = new Ball();

Now we can access the properties of bouncyBall that were set when it was made by the Ball() constructor, as follows:

trace(bouncyBall.radius); // Displays: 10
trace(bouncyBall.color); // Displays: 16711680 (decimal for 0xFF0000)
trace(bouncyBall.xPosition); // Displays: 59
trace(bouncyBall.yPosition); // Displays: 15

Now wasn't that fun?

Unfortunately, so far our Ball() constructor uses fixed values when it assigns properties to the objects it creates (e.g., the initial radius is
always 10). Every object of the Ball class, therefore, will have the same initial property values, which is very inflexible. Let's add parameters
to our class constructor that let us specify varying initial property values, so that each ball can be unique when it is born.

Here's the general syntax used to define parameters for a class constructor:

function Constructor (value1, value2, value3) {
 this.property1 = value1;
 this.property2 = value2;
 this.property3 = value3;
}

Inside the Constructor function, we refer to the object being created with the this keyword, just as we did earlier. This time, however, we

don't hardcode the object properties' values. Instead, we assign the values of the arguments value1, value2, and value3 to the object's
properties. When we want to create a new, unique instance of our class, we pass our class constructor function the initial property values for
our new instance:

someObject = new Constructor (value1, value2, value3);

Let's see how this applies to our Ball class, shown in Example 12-1.

Example 12-1. A ball class with properties

// Make the Ball() constructor accept property values as arguments.
function Ball (radius, color, xPosition, yPosition) {
 this.radius = radius;
 this.color = color;
 this.xPosition = xPosition;
 this.yPosition = yPosition;

}

// Invoke our constructor twice, passing it arguments to use as
// our new objects' property values.
var greenBall = new Ball(42, 0x00FF00, 59, 15);
var whiteBall = new Ball(14, 0xFFFFFF, 50, 12);

// Now let's see if it worked...
trace(greenBall.radius); // Displays: 42, :) Pretty cool...
trace(whiteBall.radius); // Displays: 14
 // Each instance has unique property values.

By convention, the parameters being passed in (radius, color, etc.) use names similar to the corresponding internal properties

(this.radius, this.color, etc.), but don't confuse the two. The former are transient parameter variables used simply to transmit

the arguments passed to the constructor function; the latter (beginning with this) are the object properties where those values are

permanently stored.

In general, a class's properties should all be declared at the top of the class constructor. Typically, a new property should not be added to a
class by a method. Unlike Java, ActionScript leniently allows methods to create new object properties, but doing so leads to unmanageable
class structures. Methods should only modify properties declared in the constructor. However, for the sake of reduced memory
consumption, a class with, say, 100 properties can be forced to relegate property creation to methods if instantiating instances has a
noticeable effect on Flash Player performance.

We're almost done building our Ball class. But you'll notice that we're still missing the moveClipTo() and getArea() methods discussed
earlier. Let's take care of that now.

12.5.2.3 Creating a class's methods

Methods are added to a class by assigning a function to the special prototype property of the class constructor (we'll cover the

technical role of prototype later in this chapter under Section 12.7). The general syntax is:

Constructor.prototype.methodName = function;

where Constructor is the class constructor function, methodName is the name of the method, and function is the function

executed when the method is used. The function can be supplied as a function reference or a function literal. For example:

// Function reference
Ball.prototype.getArea = calcArea;
function calcArea () {
 // ...method body goes here...
}

// Function literal
Ball.prototype.getArea = function () {
 // ...method body goes here...
};

The function literal approach is generally preferred for methods because it does not leave an unneeded function reference in memory after
method assignment is finished.

Java developers should note that the datatypes of a method's return value and parameters need not be specified
in ActionScript. Similarly, a method's access level cannot be set, nor is there any syntactic facility for creating
static methods (though we'll learn how to simulate them later).

You learned earlier that a method of an object often retrieves or sets the properties of the object on which it is invoked. So, the question is,
how does the method refer to that object in order to access its properties? Answer: through the magic of the this keyword. Remember that

we used the this keyword inside our Ball constructor function to refer to new ball objects being created by the constructor. Inside a

method, this similarly refers to the ball object currently being operated on. For example, to access an individual Ball instance's radius
property inside getArea(), we use this.radius, as shown in the following listing for our Ball.getArea() method:

Ball.prototype.getArea = function () {
 // The this keyword means the ball on which getArea() was invoked.
 return Math.PI * this.radius * this.radius;
};

Likewise, a method can set the value of a property via this, as shown in our Ball class's moveClipTo() method. The moveClipTo()

method assigns new values to the xPosition and yPosition properties of a ball. Notice that the moveClipTo() method takes two

parameters, x and y, which specify the ball's new position:

Ball.prototype.moveClipTo = function (x, y) {
 // Notice the use of this to refer to the ball being moved.
 this.xPosition = x;
 this.yPosition = y;
};

We've now created the all properties and methods of our Ball class, so our work is done! The final code is shown in Example 12-2. Attach
the example code to frame 1 of a new movie; then choose Control Test Movie to see it in action.

Example 12-2. The completed Ball class

// The Ball() class constructor.
function Ball (radius, color, xPosition, yPosition) {
 // Create Ball properties.
 this.radius = radius;
 this.color = color;
 this.xPosition = xPosition;
 this.yPosition = yPosition;
}
// The Ball.getArea() method.
Ball.prototype.getArea = function () {
 // The keyword this means the ball on which getArea() was invoked.
 return Math.PI * this.radius * this.radius;
};

// The Ball.moveClipTo() method.
Ball.prototype.moveClipTo = function (x, y) {
 // Notice the use of this to refer to the ball being moved.
 this.xPosition = x;
 this.yPosition = y;
};
// Make a large red ball, positioned at the origin (0, 0).
var bigBall = new Ball(600, 0xFF0000, 0, 0);

// Check the ball's area, which is based on its radius.
trace(bigBall.getArea()); // Displays: 1130973.35529233

// Reposition our ball via the moveClipTo() method.
bigBall.moveClipTo(100, 200);

// Check the ball's new xPosition.
trace(bigBall.xPosition); // Displays: 100

Invoking a method and defining a method have similar syntax but very different results. It's crucial to understand the difference. When
defining a method, omit the parentheses:

SomeClass.prototype.someMethod = someFunction;

When invoking a method, include the parentheses:

someObj.someMethod();

The difference in syntax is subtle. Make sure to get it right.

12.5.2.4 Getter and Setter Methods

As you learned earlier, strict OOP practice frowns upon accessing an object property directly. Instead, so-called getter/setter methods should
be used to access the property. A getter method retrieves the value of the property, while a setter method assigns it. For example, our Ball
class defines a radius property. Rather than access that property directly, it's considered good form to access it with a getRadius()

method and a setRadius() method. For example, consider this simplified version of our Ball class:

// The Ball class
function Ball (radius) {
 // Instance properties
 this.radius = 0;

 // Initialization
 this.setRadius(radius);
}

Ball.prototype.getRadius = function () {
 return this.radius;
}

Ball.prototype.setRadius = function (newRadius) {
 this.radius = newRadius;
}

Ball.prototype.getArea = function () {
 return Math.PI * this.getRadius() * this.getRadius();
};

// A ball instance
var largeBall = new Ball(400);
largeBall.setRadius(500);
trace(largeBall.getArea()); // Displays: 78.5398163397448

The class constructor declares the radius property and suggests its datatype by assigning it a number (0). However, all other access to

radius is mediated by the getRadius() and setRadius() methods. Even the constructor itself uses setRadius() to assign radius its

starting value. Inside the getArea() method, the radius property is retrieved via calls to getRadius(). And in the outside world, we use

setRadius() to assign the largeBall's new radius. By using getter/setter methods, we indicate that we want to change some attribute of

the ball, but we let the object itself worry about how that change is implemented. Changing the internal implementation from, say, using a
radius property measured in pixels to using a radius property measured in centimeters won't break any code that properly uses the

getter and setter methods; only the getter/setter methods need to be modified. If code outside the object refers to the radius property

directly, the programmer maintaining the object has less freedom to change it.

Getter/setter methods safely encapsulate the workings of an object, but they are admittedly more verbose than a property assignment (and
often make the code harder to read). Therefore, in practice, many programmers don't bother implementing getter/setter methods, and many
programmers don't use them even when they are available. To address this issue, Flash MX added the addProperty() method to all objects
(derived from the Object class). The addProperty() method creates a so-called getter/setter property that, when accessed, automatically
invokes the appropriate getter/setter method. This lets programmers set and retrieve object properties with somewhat more brevity, while
still maintaining the benefits of pure OOP practice. The following example shows the general technique. For much more information, see
Object.addProperty() in the ActionScript Language Reference.

// The Ball class
function Ball (radius) {
 // Instance properties.
 this._radius = 0;

 // Initialization
 this.setRadius(radius);
}

Ball.prototype.getRadius = function () {
 return this._radius;
}

Ball.prototype.setRadius = function (newRadius) {
 this._radius = newRadius;
}

Ball.prototype.getArea = function () {
 return Math.PI * this.radius * this.radius;
};

// The getter/setter radius property, defined on prototype
Ball.prototype.addProperty("radius",
 Ball.prototype.getRadius,
 Ball.prototype.setRadius);

// A ball instance
var largeBall = new Ball(400);
largeBall.radius = 5; // Invokes the setRadius() method automatically.
trace(largeBall.getArea()); // Displays: 78.5398163397448

Note that the class uses an internal _radius property to store the value of the getter/setter property called radius. The internal

property must not have the same name as the externally visible getter/setter property, and is therefore prefaced with an underscore by
convention. Getter/setter properties can be used to create read-only properties, as discussed under Object.addProperty() in the ActionScript
Language Reference.

Reader Exercise: Try adding getColor() and setColor() methods that get and set the color property in the Ball class. Once you get that

far, try using Object.addProperty() to turn color into a getter/setter property. Don't forget to use an internal _color property to store

the value of the getter/setter property called color!

12.5.2.5 Alternate means of method assignment

It's possible, though not advised, to add a method to each instance by assigning a function to an instance property within the class
constructor. Here's the generic syntax:

function Constructor () {
 this.methodName = function;
}

Assigning a method on a per-instance basis in a class constructor is possible in ActionScript because an ActionScript method is technically
just a function stored in an object property. The function assigned as the new method can be supplied in several ways, as shown in the

following examples. The function can be a function literal, as in:

function Ball (radius) {
 this.radius = radius;
 // Add the getArea() method...
 this.getArea = function () { return Math.PI * this.radius * this.radius; };

}

Alternatively, the function can be declared inside the constructor:

function Ball (radius) {
 this.radius = radius;
 // Add the getArea() method...
 this.getArea = calcArea;
 function calcArea () {
 return Math.PI * this.radius * this.radius;
 }
}

Finally, the function can be declared outside the constructor but assigned inside the constructor:

// Declare the getArea() function
function calcArea () {
 return Math.PI * this.radius * this.radius;
}

function Ball (radius) {
 this.radius = radius;
 // Add the getArea() method...
 this.getArea = calcArea;
}

There's no real difference between the three approaches. Function literals often prove the most convenient to use, but they are perhaps not
as reusable as defining a function outside of the constructor so that it can also be used in other constructors.

Regardless, all three approaches lack efficiency and are not recommended. When we assign a method to the objects of a class using the
techniques we've just seen, we are unnecessarily duplicating the method on every instance of our class. The getArea() formula is the same
for every ball, and hence the code that performs this task should be stored in a central location—the constructor's prototype
property. For better or worse, ActionScript is not a strict language; it often provides several ways of accomplishing a similar goal.

12.5.2.6 Static Methods and Properties

In Java, a static method (also called a class method) is a method that is invoked through a class directly, rather than through an object (i.e.,
an instance of a class). Similarly, a static variable in Java is akin to a property that is accessed through a class, independent of any object
instance. Java's static methods and properties are used to store behavior and information that logically relates to a class but should be
universally available, rather than available only through a specific object instance. For example, a Square class might define a static
property, numSides, that indicates the number of sides for all square instances. By convention, the getter/setter methods for a static

property—such as getNumSides() and setNumSides()—would be implemented as static methods. ActionScript's built-in TextField class
defines the static method getFontList(), which returns a list of fonts on the user's system. The getFontList() method is logically associated
with text fields in general, not a specific text field, so it is implemented as a static method.

ActionScript does not have a syntactic mechanism for explicitly declaring methods or properties as static (as Java does). Instead, static
methods and properties are created by attaching properties and methods to a class's constructor function, as follows:

// Class definition
function SomeClass () {
 statements
}

// Static Property
SomeClass.someStaticProperty = value;

// Static Method
SomeClass.someStaticMethod = function;

Note that, unlike Java, ActionScript's static methods have no limitation on the variables, properties, or methods they can access (in Java, a
static method can refer only to static variables and methods). Furthermore, in a static ActionScript method, the this keyword refers to the

class constructor function, whereas Java's static methods cannot use the this keyword.

When defining a property that will hold a constant value, it is also perfectly legitimate to use the class's prototype property, as follows:

function Square () {
 statements
}
Square.prototype.numSides = 4;

However, this approach demands that numSides be accessed through an instance of Square, not through the Square class directly. If you

want to use a property without first creating an instance of a class, you should make that property static.

Sometimes, static properties and methods are used to package a series of related constants and functions into a class that will never be
instantiated. In ActionScript, this is normally achieved by adding properties and methods to a generic instance of the Object class. For
example, the Math, Key, Mouse, and Stage objects are implemented in this manner.

For the benefit of Java programmers, Table 12-1 outlines the rough equivalencies between Java and ActionScript methods and properties.

Table 12-1. Java and ActionScript property equivalencies

Java
name

Java
description

ActionScript description ActionScript example

Instance
variables

Variables local
to an object
instance

Properties defined in a class
constructor function and
copied to objects

function Square (side) {
 this.side = side;
}

Instance
methods

Methods
invoked on an
object instance

Methods defined on the
prototype object of a

class constructor function
and accessed automatically
through prototype
when invoked on an
instance

Square.prototype.getArea = function () { ... };

mySquare.getArea();

Class
variables

Variables with
the same value
across all object
instances of a
class

Properties defined on a
class constructor function

Square.numSides = 4;

Class
methods

Methods
invoked
through a class

Methods defined on a class
constructor function

Square.findSmaller =
function (square1, square2) { ... }

12.5.3 Inheritance: Superclasses and Subclasses

One of the crucial features of classes in advanced object-oriented programming is their ability to inherit properties and methods. That is, an
entire class can adopt the properties and methods of another class and add its own specialized features. The class that borrows the properties
and methods of another class is known as the subclass. The class that has the properties and methods borrowed is known as the superclass.
The subclass is said to extend the superclass because it borrows (inherits) the superclass's methods and properties but also adds its own.
Several subclasses can inherit from the same superclass; for example, there may be a Car superclass with Coupe and Sedan subclasses. The
ability of classes to adopt methods and properties from other classes is known as inheritance.

For example, suppose we want to create two types of quiz programs: a multiple-choice quiz and a fill-in-the-blank quiz. The two programs
will have much in common. They'll both load questions, display questions, accept answers, and tally the user's score. However, there will be
minor variations in the ways they present questions, receive answers, and tally the score. Rather than creating two highly similar programs
separately, we create a general Quiz class that defines methods and properties common to both quizzes. Then, to represent our specific quiz

types, we create two Quiz subclasses, MultipleChoiceQuiz and FillInBlankQuiz. The subclasses inherit all of Quiz's abilities but add
methods and properties specific to the tasks of multiple-choice or fill-in-the-blank question management. The subclasses can even replace
(or override) the behavior of one or more Quiz methods.

Let's see how to implement inheritance in ActionScript with our simple Ball example class. Earlier we created a getArea() method on Ball.
Now suppose that we want to create many different types of circular objects. Rather than creating a getArea() method on each circular
object class, we create a general superclass, Circle, that defines a general method, getArea(), used to calculate the area of any circular
object. Then, we make Ball (and any other circular object class) a subclass of Circle, so Ball inherits the getArea() method from Circle.
Notice the hierarchy—the simplest class, the Circle superclass, defines the most general methods and properties. Another class, the Ball
subclass, builds on that simple Circle class, adding features specific to Ball-class instances but relying on Circle for the basic attributes that
all circular objects share.

12.5.3.1 Making a superclass

Earlier you learned that methods are defined on the special prototype property of a class's constructor function.

To specify a superclass for a given class, we completely replace the class's prototype property with a new

instance of the desired superclass.

We'll delay our technical consideration of the prototype property until later. For now, concentrate on the general syntax used to

specify a superclass:

SubclassConstructor.prototype = new SuperClassConstructor();

where SubclassConstructor is the subclass's constructor function and SuperClassConstructor is the superclass's

constructor function. Example 12-3 applies the technique to our Ball and Circle example.

Example 12-3. Creating a superclass

// Create a Circle (superclass) constructor
function Circle () {
 // Instance properties and initialization go here.
}

// Create the Circle.getArea() method
Circle.prototype.getArea = function () {
 return Math.PI * this.radius * this.radius;
};

// Create our usual Ball class constructor
function Ball (radius, color, xPosition, yPosition) {
 this.radius = radius;
 this.color = color;
 this.xPosition = xPosition;
 this.yPosition = yPosition;
}

// Make Ball a subclass of Circle
Ball.prototype = new Circle();

// Now let's make an instance of Ball and check its properties
var bouncyBall = new Ball (16, 0x445599, 34, 5);
trace(bouncyBall.xPosition); // 34
trace(bouncyBall.getArea()); // 804.247719318987
 // The getArea() method was inherited from Circle

By default, new objects inherit directly from the generic Object class. We set a class constructor function's
prototype property to make the class inherit from a class other than the generic Object class. We'll learn

precisely how this works later in this chapter under Section 12.7.

The class hierarchy in Example 12-3 has poor structure—Ball defines radius, but radius is a property common to all circles, so it

belongs in our Circle class. The same is true of xPosition and yPosition. To fix the structure, we'll move radius,

xPosition, and yPosition to Circle, leaving only color in Ball. (For the sake of the example, we'll treat color as a property

only balls can have.)

Conceptually, here's the setup of our revised Circle() and Ball() constructors (the Circle.getArea() method is not shown):

// Create the Circle (superclass) constructor
function Circle (radius, xPosition, yPosition) {
 this.radius = radius;
 this.xPosition = xPosition;
 this.yPosition = yPosition;
}

// Create the Ball class constructor
function Ball (color) {
 this.color = color;
}

Having moved the properties around, we're faced with a new problem. How can we provide values for radius, xPosition, and

yPosition when we're creating objects using Ball and not Circle? We have to make one more adjustment to our Ball() constructor

code. First, we set up Ball to receive all the required properties as parameters:

function Ball (color, radius, xPosition, yPosition) {

Next, within our Ball() constructor, we use the super operator to invoke the Circle's constructor function on the Ball object being
constructed. While we're at it, we pass Circle's constructor the arguments that were supplied to Ball:

super(radius, xPosition, yPosition);

Our completed class/superclass code is shown in Example 12-4.

Example 12-4. A class and its superclass

// Create a Circle (superclass) constructor
function Circle (radius, xPosition, yPosition) {
 this.radius = radius;
 this.xPosition = xPosition;
 this.yPosition = yPosition;
}

// Create the Circle.getArea() method
Circle.prototype.getArea = function () {
 return Math.PI * this.radius * this.radius;
};

// Create our Ball class constructor
function Ball (color, radius, xPosition, yPosition) {
 // Invoke the Circle() constructor on the ball object, passing values
 // supplied as arguments to the Ball() constructor
 super(radius, xPosition, yPosition);
 // Set the color of the ball object

 this.color = color;
}

// Set Ball's superclass to Circle
Ball.prototype = new Circle();

// Now let's make an instance of Ball and check its properties
var bouncyBall = new Ball (0x445599, 16, 34, 5);
trace(bouncyBall.xPosition); // 34
trace(bouncyBall.getArea()); // 804.247719318987
trace(bouncyBall.color); // 447836

In Flash 5, the super operator is not available, so we must replace this line:

 super(radius, xPosition, yPosition);

with these three lines, which accomplish the same thing.

 this.superClass = Circle;
 this.superClass(radius, xPosition, yPosition);
 delete this.superClass;

When a class's superclass is set using the standard technique shown in Example 12-4, all existing methods
defined on the prototype property of the subclass constructor are destroyed! Make sure to always set a

subclass's superclass before creating the subclass's methods!

12.5.3.2 Accessing overridden methods

When a subclass implements a method by the same name as a method of its superclass, the subclass version overrides the superclass
version. That is, instances of the subclass use the subclass's implementation of the method, not the superclass's, if it exists. However, within
a subclass method, the super operator gives us access to the superclass version of any method. For example, suppose both Circle and Ball
define a toString() method, as follows:

Circle.prototype.toString = function () {
 return "A circular object";
}

Ball.prototype.toString = function () {
 return "A ball object";
}

By default, Ball instances will use the Ball class's toString() method and ignore the method of the same name in Circle. However, we can
create another Ball method, named superToString(), that specifically accesses Circle.toString(), as follows:

Ball.prototype.superToString = function () {
 return super.toString();
}

See more about the super operator in Chapter 5.

12.5.3.3 Polymorphism

Inheritance makes another key OOP concept, polymorphism, possible. Polymorphism is a fancy word meaning "many forms." It simply
means that you tell an object what to do but leave the details up to the object. It is best illustrated with an example. Suppose you are creating
a cops and robbers game. There are multiple cops, robbers, and innocent bystanders displayed on the screen simultaneously, all moving
independently according to different rules. The cops chase the robbers, the robbers run away from the cops, and the innocent bystanders
move randomly, confused and frightened. In the code for this game, suppose we create an object class to represent each category of person:

function Cop () { ... }
function Robber () { ... }
function Bystander () { ... }

In addition, we create a superclass, Person, from which the classes Cop, Robber, and Bystander all inherit:

function Person () { ... }
Cop.prototype = new Person();
Robber.prototype = new Person();
Bystander.prototype = new Person();

On each frame of the Flash movie, every person on the screen should move according to the rules for his class. To make this happen, we
define a move() method on every object (the move() method is customized for each class):

Person.prototype.move = function () { ... default move behavior ... }
Cop.prototype.move = function () { ... move to chase robber ... }
Robber.prototype.move = function () { ... move to run away from cop ... }
Bystander.prototype.move = function () { ... confused, move randomly ... }

On each frame of the Flash movie, we want every person on the screen to move. To manage all the people, we create a master array of
Person objects. Here's an example of how to populate the persons array:

// Create our cops
var cop1 = new Cop();
var cop2 = new Cop();

// Create our robbers
var robber1 = new Robber();
var robber2 = new Robber();
var robber3 = new Robber();

// Create our bystanders
var bystander1 = new Bystander();
var bystander2 = new Bystander();

// Create an array populated with cops, robbers, and bystanders
persons = [cop1, cop2, robber1, robber2, robber3, bystander1, bystander2];

In every frame of the Flash movie, we call the moveAllPersons() function, which is defined as follows:

function moveAllPersons () {
 for (var i=0; i < persons.length; i++) {
 // Call the move() method for each person in the array
 persons[i].move();
 }
}

When moveAllPersons() is invoked, each cop, robber, and bystander will move according to the individual rules associated with his class,
as defined by its move() method. This is polymorphism in action—objects with common characteristics can be organized together, but they
retain their individual identities. The cops, robbers, and bystanders have much in common, embodied by the superclass Person. They have
operations in common, such as movement. However, they can implement the common operations differently, and they can support other
class-specific operations and data.

Polymorphism permits dissimilar objects to be treated uniformly. We can use the move() function to cause
each object to move, even though the move() function for each class is unique. In fact, even if the Cop, Robber,
and Bystander classes do not inherit from Person, we can still use their move() method in a uniform manner.

12.5.3.4 Determining whether an object belongs to a superclass

Suppose we have a Rectangle class that is a subclass of Shape. To check whether an object is a descendant of Shape, we can use the
instanceof operator, introduced in Flash MX:

rect = new Rectangle(15, 35);
trace(rect instanceof Rectangle); // Yields true
trace(rect instanceof Circle); // Yields false
trace(rect instanceof Shape); // Yields true

We can use instanceof to operate conditionally on an object, depending on its class. The following sample, taken from the quiz at the end of
this chapter, deletes all movie clips and text fields in quizClip. It cycles through quizClip's properties and invokes the appropriate

removal method on each, depending on whether it is an instance of the TextField class or belongs to the MovieClip datatype.

for (var p in quizClip) {
 if (typeof quizClip[p] = = "movieclip") {
 quizClip[p].removeMovieClip();
 } else if (quizClip[p] instanceof TextField) {
 quizClip[p].removeTextField();
 }
}

In Flash 5, the instanceof operator doesn't exist, so we must use the chain of prototype objects (called the prototype chain) to

determine an object's class, as shown in Example 12-5. We'll learn more about prototype objects and _ _proto_ _ shortly.

Example 12-5. Walking the prototype chain

// This function checks if theObj is a descendant of theClass
function objectInClass (theObj, theClass) {
 while (theObj._ _proto_ _ != null) {
 if (theObj._ _proto_ _ = = theClass.prototype) {
 return true;
 }
 theObj = theObj._ _proto_ _;
 }
 return false;
}

// Make a new instance of Rectangle
myObj = new Rectangle();

// Now check if myRect inherits from Shape
trace (objectInClass(myRect, Shape)); // Displays: true

12.5.3.5 The end of the inheritance chain

All objects descend from the top-level Object class. Hence, all objects inherit the properties defined in the Object constructor (for example,
the toString() and valueOf() methods). We can, therefore, add new properties to every object in a movie by adding new properties to the
Object class. Properties attached to Object.prototype will proliferate throughout the entire class hierarchy, including all built-in

objects, such as Array, TextField, and even MovieClip objects. This approach can be used to make a sort of global variable or function. In
the following code, for example, we hardcode the Stage width and height dimensions into the Object class prototype. We can then

access that information from any movie clip (this technique was common in Flash 5 movies, although in Flash Player 6, the Stage
dimensions are available as Stage.width and Stage.height):

Object.prototype.mainstageWidth = 550;
Object.prototype.mainstageHeight = 400;
trace(anyClip.mainstageWidth); // Displays: 550

Object.prototype properties are inherited not only by movie clips, but also by every object, so even our own custom objects and

instances of built-in classes such as XML, Date, and Sound inherit properties assigned to Object.prototype. This side-effect

causes unwanted properties to appear in for-in loops. Therefore, when exporting for Flash Player 6, always use the _global object to

create global properties and methods. See _global in the Language Reference for details.

Reader Exercise: We can attach new properties and methods to any built-in class. Try adding the case-insensitive alphabetical sort function
from Example 11-6 to the Array class as a custom method.

12.5.4 Displaying the Ball on Screen

Throughout this chapter, we've followed the bouncing Ball class through a lot of theory. However, for all our work, we still haven't actually
made a single ball appear on screen. That's because updating the display isn't necessarily the Ball class's concern. Drawing the current
content of the screen is often the responsibility of a separate class that deals specifically with the screen and graphical user interface. How
the screen is drawn, when it is drawn, and what draws the screen can vary greatly from application to application. For example, in our Quiz
at the end of this chapter, we'll update the screen from a QuizGUI class every time a question is displayed. But, in other applications, a ball
object would probably move around a lot, so it would need to be displayed repeatedly via either MovieClip.onEnterFrame() or setInterval(
).

Here are the major issues to consider when designing an application's display system.

First decide whether the display elements will render themselves or be rendered by a central class. For example, will the Ball class
provide its own drawBall() method, or will there be a drawBalls() or drawScreen() method on some other class?

Decide how often the elements should be displayed—either when some event occurs (such as a mouse click) or repeatedly (as fast as
frames are displayed in the Flash Player).

Decide on the rendering technique. Each visual element in a Flash movie must be displayed in a movie clip. However, movie clips
can be placed manually at authoring time, attached with ActionScript at runtime, or even created from scratch using the MovieClip
Drawing API.

Decide on a screen refresh strategy. Will each visual element be maintained as a single persistent movie clip that is updated regularly,
or will the entire contents of the Stage be cleared and recreated each time the display is updated?

These decisions will dictate exactly how an application manages its visual assets. For example, we might have a BallSimulation class that
updates the screen by drawing circles that represent a list of ball objects. Or, we might add a Ball property, mc, that holds a movie clip

representing each Ball object. A Ball.drawBall() method could then update the display of a Ball object's corresponding movie clip. When
an object and the movie clip that represents it are tied that tightly together, it's often wise to implement the class as a MovieClip subclass, as
described in Chapter 14.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.6 Using Standalone Object Instances as Associative Arrays

As we saw earlier, ActionScript leniently allows methods to assign new properties to objects. In fact, ActionScript is even more flexible
than that—it allows any code to create a new property or method on a single object instance (rather than on all instances of a class). For
example, the following code creates an instance, obj, of the generic Object class and immediately assigns it the new properties x (set to

10) and y (set to 20):

var obj = new Object();
obj.x = 10;
obj.y = 20;

Assigning properties and methods to individual objects is, of course, bad OOP practice. But in ActionScript, it is also a completely
legitimate way to store a group of named values (much like a hash or associative array). In fact, many of ActionScript's built-in methods
take generic objects as parameters. For example, MovieClip.globalToLocal() takes a point object parameter that must supply an x property

and a y property. The x and y properties represent a global position that will be converted to a movie clip's local coordinate system.

pt = new Object(); // Create generic object to hold our point
pt.x = 0; // Left border of main Stage
pt.y = 0; // Top border of main Stage
this.globalToLocal(pt); // Convert pt to local coordinates
trace("From the current clip, the top-left corner of the main Stage is at ");
trace("x: " + pt.x + "y: " + pt.y);

Similarly, MovieClip.attachMovie() takes an initObj parameter used to transfer an object's properties to a new movie clip instance,

car_mc, as follows:

// Create an object
var initObj = new Object();

// Create properties on the object
initObj.speed = 3;
initObj.onEnterFrame = function () {
 this._x += this.speed;
};

// Transfer the object's properties to car_mc
this.attachMovie("CarSymbol", "car_mc", 1, initObj);

Notice that this code defines onEnterFrame() as a method on initObj, which, given the task at hand, is perfectly legal (and

convenient!).

12.6.1 Object Literals

To create a generic object of the Object class directly in our code without using the Object constructor, we can use an object literal, just as
we might use a string literal or an array literal. An object literal is a series of comma-separated property name/value pairs, enclosed in curly
braces. Here's the general syntax:

{ property1: value1, property2: value2, property3: value3 }

The names of properties in an object literal must be legal identifiers, as described in Chapter 14. The values can be any valid expression.

For example:

// An object literal with two numeric properties
myObject = { x: 30+10, y: 20*2 };

Object literals are used for the sake of terseness. For example, in the following code we transfer the speed and onEnterFrame
properties to car_mc more succinctly (though perhaps less legibly) than we did earlier:

this.attachMovie("CarSymbol", "car_mc", 1, {speed:3, onEnterFrame: function () {
 this._x += this.speed;}});

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.7 The Almighty Prototype Chain

In Chapter 2, we saw that the interpreter uses a scope chain to resolve (look up the value of) unqualified variable references. To resolve property
values, the interpreter uses a prototype chain. We've already encountered the prototype property in our examination of methods and

superclasses. Now let's take a look "under the hood" of ActionScript's inheritance system to see how the prototype property really works.

For the sake of the current discussion, the term property refers to object properties, methods, and event handlers (the latter two of which are,
technically, functions stored in properties).

As we've seen, every class constructor function is automatically given a property called prototype. For example, when we create a Book

class, the Book constructor automatically defines Book.prototype:

function Book () {
}
trace(Book.prototype); // Displays: [object Object]

Initially, a constructor function's prototype property contains a generic object (i.e., an instance of the generic Object class). Earlier, we

added methods to the prototype object that were accessible to all instances created by the constructor. How does this work?

Suppose we define a property directly on an object, either outside of a constructor, like this:

var importantDates = new Object();
// Define gwenBirthday property.
var importantDates.gwenBirthday = "January 17";

or inside a constructor, like this:

function Book (author) {
 // Define author property.
 this.author = author;
}
var asGuide = new Book("Colin Moock");

When we ask the interpreter to retrieve any property, it first checks if the object, itself, defines the property. For example, in the following code,
the interpreter checks asGuide for the author property, finds it, and displays its value in the Output window:

trace(asGuide.author); // Displays: Colin Moock

But if the interpreter cannot find the specified property on the object instance, it searches the object's class constructor's prototype
property. For example, suppose we define a property, description, on Book.prototype:

Book.prototype.description = "Bound paper with writing on it.";

Then we check the value of asGuide.description:

trace(asGuide.description); // Displays: Bound paper with writing on it.

The interpreter can't find description directly on asGuide, so it looks for it on Book.prototype. Book.prototype
defines description, so the interpreter uses it as the value of asGuide.description. But if we add a description
property directly to an instance of Book, either inside or outside the Book constructor, the instance property overrides the
Book.prototype property. For example:

function Book (author, desc) {

 // Define author property
 this.author = author;
 // Define description property
 this.description = desc;
}
Book.prototype.description = "Bound paper with writing on it.";

var asGuide = new Book("Colin Moock", "A book about ActionScript");
trace(asGuide.description); // Displays: "A book about ActionScript"
 // NOT: "Bound paper with writing on it."

Let's see how this applies to methods by adding a getAuthor() method to Book:

Book.prototype.getAuthor = function () {
 return this.author;
}

When we call asGuide.getAuthor(), the interpreter checks asGuide to see if it defines a property named getAuthor. It does not, so the

interpreter checks Book.prototype for getAuthor. There the interpreter finds our custom method and executes it.

What would have happened if Book.prototype had not defined getAuthor? Astute readers will recall that, by default,

Book.prototype stores a generic object instance. When the interpreter cannot find a property on that generic instance, it checks the

instance's own class constructor's prototype property—which is, you guessed it, Object.prototype. That's how the prototype

chain works: when a property is not found on an object instance, the object's class's prototype is searched. If the property is not there, the

prototype object's own class's prototype is searched, and so on up the chain, until Object.prototype is reached. If

Object.prototype does not define the property, the property is undefined. Here's the prototype chain for our asGuide
instance (note that prototype chains, like scope chains, are read from the bottom up):

Object.prototype // If not found here, return undefined
Book.prototype // If not found here, look on Object.prototype
asGuide // If not found here, look on Book.prototype
 // INTERPRETER STARTS LOOKING FOR PROPERTIES HERE

When a property name appears more than once in the prototype chain, the lowest property value on the chain is used (as we saw earlier with the
description property). The lower property is said to override the higher property. For example, the Object class defines a toString()

method on Object.prototype. We can override that version of toString() for our Book class by defining toString() on

Book.prototype:

Book.prototype.toString = function () {
 return this.description + ", by " + this.getAuthor();
}

trace(asGuide.toString()); // Displays: "A book about ActionScript, by Colin Moock"
 // But if we remove Book.prototype.toString,
 // Displays: [object Object]
 // which is the return of Object.prototype.toString().

Now recall the syntax used to assign the superclass of a class:

// Make Book a subclass of Product
Book.prototype = new Product();

Let's walk through how this statement establishes inheritance between Book and Product. First, we know that all Book instances have all the
properties defined on Book.prototype. We also know that, by default, Book.prototype is a generic instance of the Object class.

Assigning Product as the superclass for Book, using this approach, replaces the generic instance in Book.prototype with a completely

new instance of Product. Hence, all properties defined by Product become defined on Book.prototype and therefore become available to

all Book instances. With a Product instance stored in Book.prototype, the prototype chain for our asGuide Book instance becomes:

Object.prototype // If not found here, return undefined
Product.prototype // If not found here, look on Object.prototype
Book.prototype // If not found here, look on Product.prototype
asGuide // If not found here, look on Book.prototype
 // INTERPRETER STARTS LOOKING FOR PROPERTIES HERE

The prototype chain can include any number of levels. The Product class can itself have a superclass that hands down properties to all of its
subclasses.

If you're dying to know whether an object defines its own property or inherits a property of the same name via the prototype chain, you can use
the Object.hasOwnProperty() method, described in the Language Reference. For example:

trace(asGuide.hasOwnProperty("author")); // true
trace(asGuide.hasOwnProperty("getAuthor")); // false
 // (because getAuthor is defined
 // on Book.prototype, not asGuide)

Conversely, if you want to access a property on the prototype chain that is overridden, you can use the _ _proto_ _ property (discussed

next) to refer explicitly to the prototype property of an object's class. For example, the following code shows how to access

Book.prototype.description through a particular Book instance, asGuide:

trace(asGuide._ _proto_ _.description);

12.7.1 The _ _proto_ _ Property

We saw earlier in this chapter that the instanceof operator tells us whether an instance belongs to a particular class. But how does the interpreter
know an individual object's class? Or, more specifically, how does the interpreter know which constructor's prototype to access when

searching for an object property? While that kind of internal information normally is hidden in object-oriented languages, ActionScript exposes
it to the developer.

When any object is created, the interpreter automatically assigns it a special property called _ _proto_ _ (note the two underscores on

either side of the word proto). Then, into _ _proto_ _, the interpreter copies a reference to the object's class's prototype property.

For example, when we create an instance of Book called asGuide, asGuide._ _proto_ _ is set to Book.prototype:

var asGuide = new Book("Colin Moock", "A book about ActionScript");
trace(asGuide._ _proto_ _ = = Book.prototype); // Displays: true

Primarily, the _ _proto_ _ property is used internally by the ActionScript interpreter. However, we can use it to determine the class of an

object (as shown earlier in Example 12-5) or to access overridden properties. Although _ _proto_ _ is writable, it should not be tampered

with in most situations. However, soon we'll encounter a special case that uses _ _proto_ _ as part of an alternative inheritance system.

12.7.2 The constructor Property

When a constructor's prototype object is created, the interpreter automatically assigns it a special property called constructor. The

constructor property is a reference to the class constructor function on which the prototype object is defined. For example, the

following equality test checks whether Book and Book.prototype.constructor refer to the same function:

trace(Book.prototype.constructor = = Book); // Displays: true

Note that the constructor property contains a reference to a constructor function, not a string representing the function's name. The

constructor can be used to invoke a constructor function on an object in order to reinitialize it. The following example invokes the Book

constructor on asGuide:

asGuide.constructor.call(asGuide,
 "Colin Moock",
 "A large book about ActionScript");

See Function.call() in the Language Reference for details.

The constructor property can also be used to access static properties and methods from an instance. For example:

function Box () {
 // Constructor code goes here
}
Box.numSides = 4;

var bigBox = new Box();
trace(bigBox.constructor.numSides); // Displays: 4

In ECMA-262, JavaScript, and ActionScript, the constructor property is written to a class's prototype (as

Class.prototype.constructor), where instances of the class can retrieve it via the prototype chain.

However, ActionScript also adds a constructor property directly to instances (as

instanceName.constructor) effectively obscuring Class.prototype.constructor.

ActionScript's nonstandard implementation is considered a bug by Macromedia — the ECMA-262 standard
requires that an instance retrieve its constructor via Class.prototype.constructor. In a future

version of Flash, Macromedia will likely fix this bug (that is, in the future constructor will no longer be

written directly to instances). We'll see how writing a constructor property to individual instances affects

inheritance in the next section.

12.7.3 Advanced Issues with Standard SuperClass Assignment

As we've seen, the standard means for establishing a class's superclass is:

SubClass.prototype = new SuperClass();

When using the new operator to establish inheritance, some developers have encountered minor problems, discussed in detail next. To sidestep
these problems, some developers use the following unofficial technique, so-called _ _proto_ _-based inheritance, to establish a class's

superclass:

SubClass.prototype._ _proto_ _ = SuperClass.prototype;

Here's how _ _proto_ _-based inheritance works. We know that instances of SubClass have access to the properties and methods defined

on SubClass.prototype. Further, we know that SubClass.prototype is itself an object that accesses the properties and

methods of its own class via the _ _proto_ _ property (remember the prototype chain?). Hence, _ _proto_ _-based inheritance

says, "Give the SubClass.prototype object access to the properties and methods defined on SuperClass.prototype (via

SubClass.prototype._ _proto_ _)."

Macromedia does not recommend using _ _proto_ _ instead of the new operator to establish inheritance. However, establishing

inheritance with _ _proto_ _ is a relatively common advanced workaround that addresses the following issues.

12.7.3.1 Issue 1: Overwriting of prototype.constructor

Given a constructor function, SubClass, the property SubClass.prototype.constructor initially stores a reference to SubClass.

What happens when you attempt to access the constructor property of an instance of SubClass as

instanceName.constructor? In ECMA-262, constructor is not defined on the instance, so the reference is resolved via the

prototype chain, and the value of SubClass.prototype.constructor is returned. In ActionScript, however, constructor is

defined on the instance itself, so instanceName.constructor is returned, and the interpreter doesn't look any further up the

prototype chain. Let's see this in an example:

function Ball () {
 // Class definition goes here
}
b = new Ball();
trace(b.constructor);

In ECMA-262, b.constructor refers to the Ball() constructor function as stored in Ball.prototype.constructor. In

ActionScript for Flash Player 5 and Flash Player 6, b.constructor also refers to the Ball() constructor function, but this time, the value

is read from the constructor property attached directly to b.

For this simple example, b.constructor ultimately resolves to the same value in both ECMA-262 and ActionScript. So does it matter

that ECMA-262 reads the constructor property from the class's prototype, whereas ActionScript reads it from each separate

instance? The answer lies in whether the two constructor properties are the same when constructor is accessed. In the simplest

case, where an instance is created from a class, the discrepancy between ECMA-262 and ActionScript is indeed moot because the instance's
constructor value matches its class's prototype.constructor property. However, when a superclass is established for a

subclass using standard inheritance syntax (SubClass.prototype = new SuperClass();), the subclass's previous prototype property is

entirely replaced with a new SuperClass instance. Hence, any existing properties attached to SubClass.prototype, including

constructor, are lost; conversely, all properties of the new SuperClass instance are added. Therefore, after an instance of SuperClass is

assigned to SubClass.prototype, SubClass.prototype.constructor refers to the SuperClass constructor function, not

the SubClass constructor as it once did.

The following code demonstrates this issue:

// Create SubClass
function SubClass () {
 // Class definition goes here
}

// Check subclass constructor before inheritance is established
trace(SubClass.prototype.constructor = = SubClass); // Displays: true

// Create SuperClass
function SuperClass () {
 // Class definition goes here
}

// Set inheritance using standard syntax (with the new operator)
SubClass.prototype = new SuperClass();

// Check SubClass.prototype.constructor after inheritance is established
trace(SubClass.prototype.constructor = = SubClass); // Now displays: false!
trace(SubClass.prototype.constructor = = SuperClass); // Now displays: true!

Note that SubClass.prototype.constructor matches the SuperClass class constructor function instead of the SubClass class

constructor function. What are the ramifications of this apparent discrepancy? And is ActionScript's departure from the ECMA-262 standard still
moot?

Recall that in JavaScript and ECMA-262, SubClass instances retrieve the value of constructor from

SubClass.prototype.constructor, so SubClass instances report the SuperClass's constructor instead of their own SubClass

constructor. This is the intentional, albeit confusing, implementation of the ECMA-262 standard and is not considered a bug.

Recall also that in Flash Player 5 and Flash Player 6, ActionScript deviates from the ECMA-262 standard and writes the constructor
property directly to each instance. Hence, in Flash Player 5 and Flash Player 6, anyInstance.constructor always refers to the

function that created anyInstance, in this case SubClass, even after superclass inheritance is established. For example:

subInstance = new SubClass();
trace(subInstance.constructor == SuperClass); // false in Flash 5 and 6
trace(subInstance.constructor == SubClass); // true in Flash 5 and 6
// Note that these equality tests always return true in Flash Player 5 due
// to an unrelated bug in the == operator (which was fixed in Flash Player 6).

Because it is obscured by subInstance.constructor, ActionScript programmers wouldn't ordinarily notice the misleading

SubClass.prototype.constructor property at all. Therefore the issue is somewhat moot in ActionScript for Flash Player 5 and

6. However, you should not rely on the constructor property that Flash 5 and 6 attach directly to instances, because it is expected to

disappear from future versions of the Flash Player.

Some readers might be tempted to "fix" the quirky ECMA-262 implementation by reassigning SubClass.prototype.constructor
so that it refers to the original SubClass constructor function, as follows:

SubClass.prototype.constructor = SubClass;

However, Macromedia recommends against directly modifying SubClass.prototype.constructor, because doing so alters the

intended (albeit, perhaps unexpected) ECMA-compliant value of the property. If you need an accurate and consistent reference to an instance's
constructor function, consider adding a custom property that stores a reference to the constructor (add the property after superclass assignment):

// Assign SuperClass
SubClass.prototype = new SuperClass();
// Create custom constructorFunc property
SubClass.prototype.constructorFunc = SubClass;

If you are using the constructor property merely to determine whether an object belongs to a given class, use the instanceof operator

instead. The instanceof operator returns true when the specified instance belongs to the specified class or any of its subclasses. The instanceof

operator works as expected, regardless of whether inheritance is establish with _ _proto_ _ or with the new operator, as shown here:

SubClass.prototype = new SuperClass();
var subInstance = new SubClass();
trace(subInstance instanceof SuperClass); // Displays: true
trace(subInstance instanceof SubClass); // Displays: true

12.7.3.2 Issue 2: Undesirable SuperClass constructor invocation

When the following statement is executed, the SuperClass function executes:

SubClass.prototype = new SuperClass();

This extraneous function execution needlessly consumes resources and might perform unwanted tasks in the SuperClass constructor (such as
attaching a movie clip or incrementing an instance counter). To prevent unwanted code execution, use a parameter that indicates if the
constructor is being called merely to establish inheritance. For example:

function SuperClass () {
 // If the first argument is an object with a noConstruct property set to true...
 if (arguments[0].noConstruct = = = true) {
 // ...abort construction
 return;
 }

 // Do regular construction
}
SubClass.prototype = new SuperClass({noConstruct:true});

In some cases, it may be satisfactory to simply check the number of arguments that were passed to the SuperClass constructor function. Here, the
function expects two arguments; it exits if no arguments are passed in, as is typical when using new to establish inheritance:

function SuperClass (param1, param2) {
 // If no arguments were passed...
 if (arguments.length = = 0) {
 // ...abort construction
 return;
 }

 // Do regular construction
}
SubClass.prototype = new SuperClass();

In the alternative style of inheritance, based on _ _proto_ _:

SubClass.prototype._ _proto_ _ = SuperClass.prototype;

the SuperClass.prototype object is assigned directly to SubClass.prototype._ _proto_ _, and the SuperClass

constructor does not execute.

12.7.3.3 Issue 3: Undefined properties appear in SubClass.prototype

A superclass constructor normally assigns properties to the instances it creates. In this example, the constructor SuperClass assigns instances a
property, p:

function SuperClass (p) {
 this.p = p;
}

When inheritance is established with the standard new syntax, an instance of SuperClass is assigned to SubClass.prototype, and the

property p is created on SubClass.prototype with a value of undefined (because a value for p was not passed to the SuperClass

constructor). Hence, the undefined property p appears in for-in loops executed on all SubClass instances. For example:

// SubClass constructor
function SubClass (p) {
 // Call superclass constructor
 super(p);
}

// SuperClass constructor
function SuperClass (p) {
 this.p = p;
}

// Establish inheritance
SubClass.prototype = new SuperClass();

// Create an instance of SubClass with no value for p
subInstance = new SubClass();

// Check subInstance's properties. The property p shows up
// even though it was not assigned a value when constructed.
for (var prop in subInstance) {
 // Displays: Property p is: undefined
 trace("Property " + prop + " is: " + typeof subInstance[prop]);
}

Though bothersome to some developers, the appearance of p on all instances of SubClass is normal and expected behavior. When a class or

superclass defines a property, that property is expected to be accessible on all instances, whether or not it contains useful data. However, if
preferred, we can prevent undefined properties from being assigned to instances as follows:

function SuperClass (p) {
 // Create p only if it is not undefined
 if (p != undefined) this.p = p;
}

That's not necessarily good OOP practice, but it does the job of hiding p when it has no value (again, as would be typical if the constructor was

called to due a superclass assignment).

12.7.3.4 A custom setSuperClass() function

If you decide to use _ _proto_ _ to establish inheritance (despite Macromedia's recommendations against it), consider creating a custom

function that hides the slightly obtuse _ _proto_ _ syntax. Example 12-6 shows a custom setSuperClass() function that assigns a

superclass to a subclass (i.e., establishes inheritance) using _ _proto_ _.

Example 12-6. A setSuperClass() function

// Add setSuperClass() to Function.prototype so it's
// available to all function objects
Function.prototype.setSuperClass = function (theSuperClass) {
 // Establish the super/sub class relationship.
 this.prototype._ _proto_ _ = theSuperClass.prototype;
}

// Create a superclass
function Circle (radius) {
 this.r = radius;
}

// Create a subclass
function Ball (radius) {
 // Can't use super when establishing inheritance with _ _proto_ _
 this.base = Circle;
 this.base(radius);
 delete this.base;
}

// Now establish inheritance with our custom setSuperClass() function
Ball.setSuperClass(Circle);

// Create an instance of Ball
var theBall = new Ball(15);

// Check the property assigned by the Circle class
trace(theBall.r); // Displays: 15

Note that we might have naturally used the name "extends" instead of "setSuperClass" (following Java terminology), but "extends" is reserved as
a potential keyword.

A word of warning to _ _proto_ _ users: when inheritance is established via prototype._ _proto_ _, Flash Player 6's super

operator cannot be used to invoke a superclass constructor. The superclass constructor must be invoked with the following older style syntax if
inheritance was established using _ _proto_ _:

function SubClass (someArg) {
 this.base = SuperClass;
 this.base(someArg);
 delete this.base;
}

However, after establishing inheritance via _ _proto_ _, the super operator can still be used to invoke a superclass's methods. For

example:

SubClass.prototype.hello = function () {
 super.hello(); // Works even when inheritance is
 // established through prototype._ _proto_ _
}

12.7.4 Is There a Test?

While the preceding information about prototype, constructor, and _ _proto_ _ is perhaps interesting to programming

language enthusiasts, one might still wonder, must I really know it all? Does it change my use of classes and objects?

Quite frankly, no, you should not have to know this information. The inner workings of a language's OOP implementation are not typically the
concern of the language's users. It's not normal for users to concoct their own OOP system, nor should developing an OOP system be the user's
responsibility. However, ECMAScript (the specification upon which ActionScript and JavaScript are based) was originally designed as a
lightweight scripting language. The current demands put upon it have in some ways outstripped its expected purpose. Hence, ECMAScript
developers have been forced to take matters into their own hands, attempting to fix problems inherent in the language implementation, in order
to achieve their goals. Meanwhile, work is underway to completely revise the inheritance system in ECMAScript 4 and JavaScript 2.0. See:

http://www.mozilla.org/js/language/js20
http://www.mozilla.org/js/language/es4

At the time of this writing, the ECMAScript 4 specification was very much under development, so Macromedia's position on the future of
ECMAScript remains to be seen.

In any case, the only time you should concern yourself with prototype and _ _proto_ _ is when you hit a real limitation in your

work. Unless the standard inheritance system in ActionScript causes problems for your programs, you should not bother with _ _proto_ _;

however, if you encounter problems caused by standard inheritance, investigate alternatives. Luckily, other developers have paved some of the
way for you. See Dave Yang's information for one perspective:

http://www.quantumwave.com/flash/inheritance.html

Branden Hall and Robert Penner have also written about inheritance issues (see their books, listed in Appendix A). For the most part, however,
you can simply use the standard means of establishing inheritance (assigning a new instance of a superclass to the subclass's prototype
property) without worrying about the technicalities of the prototype system.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.8 Built-in ActionScript Classes and Objects

We've really come a long way since Chapter 1. Our first exposure to ActionScript was a simple perusal of the items in
the Actions panel. Since then, we've studied data and expressions, operators, statements, and functions; and now
we've explored the concept of classes and objects. It's time to put the final brush strokes on the picture we've been
painting of the ActionScript language.

ActionScript comes with a variety of syntactic tools: expressions contain data; operators manipulate data; statements
give instructions; and functions group instructions into portable commands. They constitute ActionScript's grammar,
but until now, our vocabulary has been very limited. The built-in classes and objects of ActionScript fill that void and
give us lots of interesting things to talk about.

12.8.1 Built-in Classes

Just as we define our own classes to describe and manipulate objects created according to our specifications,
ActionScript defines its own classes of data. A variety of prefabricated classes, including the Object class, are built
right into the ActionScript language. The built-in classes can control the physical environment of a Flash movie.

For example, one of the built-in classes, the Color class, defines methods that can detect or set the color of a movie
clip. To use these methods, we first create a Color object using the Color() class constructor, as follows:

clipColor = new Color(target);

where clipColor is a variable, array element, or object property that stores our Color object. The Color()

constructor takes one argument, target, which specifies the name of the movie clip whose color we want to set or

examine.

So, suppose we have a movie clip named square, and we want to change its color. We create a new Color object

like this:

squareColor = new Color(square);

Then, to set our square clip's color, we invoke one of the Color methods on our squareColor object:

squareColor.setRGB(0x999999);

The setRGB() method sets the RGB color value of our Color object's target, which in this case is square. So,

the previous method invocation sets the color of square to gray.

Because the Color object is a built-in class, it can set the color of a movie clip on screen. Other classes give us
control over sounds, text fields, buttons, the date, and XML documents. You'll learn all about the built-in classes in
the ActionScript Language Reference.

12.8.2 Built-in Objects

Like built-in classes, built-in objects let us control the movie environment. The Key object, for example, defines a
series of properties and methods that tell us about the state of a computer's keyboard. To use these properties and
methods, we don't instantiate a Key object, we simply use the Key object directly. Built-in objects are made
automatically by the interpreter when the Flash Player starts, and they are globally available throughout a movie.

Here, for example, we display the keycode of the currently depressed key by invoking the Key object's getCode()

method:

trace(Key.getCode());

And here, we check whether the spacebar is depressed, using the isDown() method and supplying the spacebar's
keycode as an argument:

trace(Key.isDown(Key.SPACE));

In the ActionScript Language Reference, you'll learn about the other built-in objects.

12.8.3 Learning the Ropes

Learning to write valid ActionScript code is only half the job of learning to program in Flash. The other half comes
with learning the available built-in classes and objects and their many wonderful properties and methods. We'll
undertake that task in the ActionScript Language Reference. However, it's not necessary to study all the classes and
objects in one sitting. Learn about movie clips to start, and branch out as you need to. Over time, you'll come to
know what's essential to get your particular job done. What's important is that you understand the general structure of
object-oriented programming. Once you know the rules of the system, learning a new object or a new class is a
simple matter of looking up its method and property names.

12.8.4 Adding Custom Methods and Properties to Built-in Classes and
Objects

Though the built-in classes and objects are predetermined by ActionScript, we can still give them new abilities by
adding custom methods and properties to them exactly as we do with own custom classes and objects. Entirely new
classes can also be derived from built-in classes.

The following code adds a randomInt() method to the static Math object:

// Returns a number in the range minVal to maxVal, inclusive
Math.randomInt = function (minVal, maxVal) {
 return minVal + Math.floor(Math.random() * (maxVal + 1 - minVal));
};

The following code adds a scrollToBottom() method to the TextField class:

TextField.prototype.scrollToBottom = function () {
 this.scroll = this.maxscroll;
};

The following code creates a subclass of the XML class:

function CustomXML (src) {
 super(src);
}
CustomXML.prototype = new XML();

Some built-in classes actually require the execution of their constructor function as part of the setup for new objects.
When in doubt, always invoke the superclass constructor as shown in our previous examples. Note that not all built-
in classes can be subclassed, because some built-in classes (e.g., TextField, Button) are tied to physical objects on
screen. See each class entry in the ActionScript Language Reference for details.

Many, many more examples of extending the built-in classes and objects can be found on the developer community
site [PROTO]type:

http://www.layer51.com/proto/

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.9 OOP Quick Reference

We've covered a lot of material in this chapter. For review and reference, here's a quick-and-dirty overview of OOP techniques in
ActionScript. At the end, you'll find a template for creating a new OOP application.

To create a class:

function ClassName (param1, param2) {
 // ...constructor code goes here...
}

To create instance properties for a class:

function ClassName (param1, param2) {
 // Instance properties
 this.propName1 = param1;
 this.propName2 = param2;
}

Best practice is to create all properties used in a class's methods in the class constructor, even if the properties initially have no value:

function ClassName (param1, param2) {
 // Declare all instance properties
 this.propName1 = param1;
 this.propName2 = param2;
 this.propName3 = null; // Used by method1();
 this.propName4 = null; // Used by method2();
}

After creating properties, initialize the object:

function ClassName (param1, param2) {
 // Declare all instance properties
 this.propName1 = param1;
 this.propName2 = param2;

 // Initialize object.
 // ...initialization code goes here...
}

Instead of putting the initialization code in the constructor, consider using an init() method, which can be called to reset the object to its
default state:

function ClassName (param1, param2) {
 // Declare all instance properties
 this.propName1 = null;
 this.propName2 = null;

 // Initialize object
 this.init.apply(this, arguments);

}

ClassName.prototype.init = function (param1, param2) {
 this.prop1 = param1;
 this.prop2 = param2;
};

To create an instance method:

ClassName.prototype.methodName = function () {
 // ...method body goes here...
};

To refer to an instance within a method of the instance, use the this keyword:

ClassName.prototype.methodName = function () {
 this.propName1 = value;
 this.doSomething();
};

To create a static property, attach it to the class constructor function:

ClassName.staticPropName = value;

To create a static method, attach it to the class constructor function:

ClassName.staticMethodName = function () {
 // ...method body goes here...
};

To create a subclass, set the prototype property of the class constructor function:

function SubClassName (param1, param2) {
 // ...constructor code goes here...
}
// DO THIS BEFORE DEFINING SubClassName's METHODS!
SubClassName.prototype = new SuperClassName();

12.9.1 Some OOP Tips

We've covered a lot of conceptual ground, so let's synthesize some of these ideas to help you put OOP into practice.

Define everything in a class. All variables and functions should be properties and methods of a class. This ensures that properties and
methods are grouped logically and are always qualified by some object (which helps avoid scope problems).

For the sake of organization and reuse across projects, store each class in a single, separate .as text file.

Define all classes on _global.

Use simulated namespaces. Create an object on _global that will hold all your classes, as shown in Section 12.9.2.

Create a single main() function that starts your application rolling.

Create all instance methods on your constructor's prototype object, not in the constructor.

Always document your classes, properties, and methods. For an example, see Section 12.9.2. In your documentation, specify which
methods and properties are intended for public use and which are intended for private, internal use by the class.

12.9.2 OOP Application Template

Sometimes ActionScript is so flexible that it becomes slippery. There are so many ways to create a legal object-oriented application that
finding a standard approach can become an arduous task. The following sample template for an object-oriented application attempts to
provide some initial direction. You should adapt it to your needs. An electronic version of the template is available at the online Code
Depot.

12.9.2.1 Main application template

The following code should be attached to the main timeline of yourApp.fla, where yourApp.fla is your application's main Flash source file.
The frame to which you attach the code should be preloaded (see MovieClip._framesloaded in the ActionScript Language

Reference for preloading information).

// = =
// LOAD CLASSES
// =

// Create namespace in which to store classes
if (_global.com = = undefined) {
 _global.com = new Object();
}
if (_global.com.yourDomain = = undefined) {
 _global.com.yourDomain = new Object();
}
// Load external .as files, one per class
#include "YourClass.as"
#include "YourSubClass.as"

// = =
// START APPLICATION
// = =
main();

// Function: main()
// Desc: The single entry point for your application
function main () {
 // Create and use instances of your classes
 var yourInstance = new com.yourDomain.YourClass(arg1, arg2);
 var yourSubInstance = new com.yourDomain.YourSubClass(arg1, arg2, arg3, arg4);
 yourInstance.yourMethod();
 yourSubInstance.yourSubMethod();
 yourSubInstance.yourMethod();
}

12.9.2.2 Class template

The following code should be saved in a file named YourClass.as. In this example, YourClass.as and yourApp.fla reside in the same
directory.

/*
 * YourClass Class
 * Version: 1.0.0
 * Desc: Your description goes here.
 *
 * Constructor Params:
 * param1 -Short description
 * param2 -Short description
 *

 * Methods:
 * yourMethod() -Short description
 *
 * Static Properties
 * staticProp1 -Short description
 * staticProp2 -Short description
 *
 * Static Methods
 * staticMeth() -Short description
 */

/*
 * Class Constructor
 */
_global.com.yourDomain.YourClass = function (param1, param2) {
 // Create instance properties
 this.prop1 = param1; // Short description. Type: state datatype
 this.prop2 = param2; // Short description. Type: state datatype
 this.prop3 = null; // Short description. Type: state datatype

 // Initialize object
 // ...initialization code goes here...
 // Consider packaging init code into an init() method
};

/*
 * Static Properties
 */
com.yourDomain.YourClass.staticProp1 = value;
com.yourDomain.YourClass.staticProp2 = value;

/*
 * Static Methods
 */
com.yourDomain.YourClass.staticMeth = function () {

};

/*
 * Instance Methods
 */

/*
 * Method: YourClass.yourMethod()
 * Desc: Short description.
 *
 * Params:
 * param1 -Short description
 */
com.yourDomain.YourClass.prototype.yourMethod = function (param1) {
 // Method body...
 trace("yourMethod invoked");
};

12.9.2.3 SubClass template

The following code should be saved in a file named YourSubClass.as. In this example, YourSubClass.as and yourApp.fla reside in the same

directory.

/*
 * YourSubClass Class. Extends YourClass.
 * Version: 1.0.0
 * Desc: Your description goes here.
 *
 * Constructor Params:
 * param1 -Superclass parameter
 * param2 -Superclass parameter
 * param3 -Short description
 * param4 -Short description
 *
 * Methods:
 * yourSubMethod() -Short description
 */

/*
 * Class Constructor
 */
_global.com.yourDomain.YourSubClass = function (param1, param2, param3, param4) {
 // Invoke superclass constructor.
 super(param1, param2);

 // Create instance properties.
 this.subProp1 = param3; // Short description. Type: state datatype
 this.subProp2 = param4; // Short description. Type: state datatype
 this.subProp3 = null; // Short description. Type: state datatype

 // Initialize object.
 // ...initialization code goes here...
 // Consider packaging init code into an init() method
};

/*
 * Establish Inheritance. MUST COME BEFORE METHODS!
 */
com.yourDomain.YourSubClass.prototype = new com.yourDomain.YourClass();

/*
 * Instance Methods
 */

/*
 * Method: YourSubClass.yourSubMethod()
 * Desc: Short description.
 *
 * Params:
 * param1 -Short description
 */
com.yourDomain.YourSubClass.prototype.yourSubMethod = function (param1) {
 // Method body...
 trace("yourSubMethod invoked");
};

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.10 Further Topics

The scope of this book precludes an in-depth discussion of the following topics. You are encouraged to pursue
them using the external sources listed.

12.10.1 Custom Events

You may have noticed that you have learned how to create methods and properties, but not event handlers or
listener events. ActionScript does not provide a documented means of defining custom events for a class. However,
the undocumented ASBroadcaster provides internal support for custom events. For details, see:

http://chattyfig.figleaf.com/flashcoders-wiki/index.php?AsBroadcaster

Branden Hall has also developed a custom event engine known as FLEM. See:

http://chattyfig.figleaf.com/flem/
http://chattyfig.figleaf.com/flem/extend.php

12.10.2 Design Patterns and UML

Once you've learned the syntax and methodology of object-oriented programming, you'll eventually realize that the
challenging part is not the technical implementation but the design of the classes used to represent any given
application. In the OOP world, consistent designs for similar problems have arisen and been dubbed "design
patterns." Though there is little design pattern documentation available that specifically addresses ActionScript,
design patterns are intended to be applied to any OOP-based language. For the adventurous ActionScripter willing
to learn a little Java and/or C++, the following books are recommended:

Design Patterns Explained: A New Perspective on Object-Oriented Design, Shalloway and Trott, Addison
Wesley, 2001.
Design Patterns: Elements of Reusable Object-Oriented Software, Gamma et al, Addison Wesley, 1995.

Typically, design patterns are charted with a special diagram language known as UML (Unified Modeling
Language). UML is a standard for depicting class hierarchies visually. For information, see:

http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.devx.com/uml/
UML Distilled: A Brief Guide to the Standard Object Modeling Language, Fowler and Scott, Addison
Wesley, 1999.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.11 Simulating Namespaces

A namespace is a unique area of a program within which all identifiers are guaranteed to be unique. It lets a
program use, say, both Company X's and Company Y's unique Ball classes without conflicts (i.e., without one class
declaration overwriting the other). ActionScript in Flash MX does not have formal support for namespaces, but we
can simulate them by creating a unique global object and defining all of a program's identifiers on it (as we saw in
the earlier Section 12.9.2). Typically, the unique global object is named after a domain name, because domains are
guaranteed to be unique. For example, to create a namespace for my classes I use the following code (my site's
domain is moock.org):

if (_global.org = = undefined) {
 _global.org = new Object();
}
if (_global.org.moock = = undefined) {
 _global.org.moock = new Object();
}

This code appears in all my classes (each class has the responsibility of creating the namespace if it doesn't already
exist.) Here's a convenient function, AsSetupPackage(), that you can use to create a namespace for your own
classes:

_global.AsSetupPackage = function (path) {
 var a = path.split('.');
 var o = _global;
 for (var i = 0; i < a.length; i++) {
 var name = a[i];
 if (o[name] = = undefined) {
 o[name] = new Object();
 }
 o = o[name];
 }
}

Within each class, you can use AsSetupPackage() to create the class's namespace, as follows:

AsSetupPackage("com.yourdomain");

For example, I use:

AsSetupPackage("org.moock");

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.12 The Multiple-Choice Quiz, OOP Style

Now that you understand the principles of OOP, let's return to our multiple-choice quiz example to see them in
action. The source code for our OOP quiz is too long to present here, but it can be downloaded from the Code
Depot. The important part of the application is its object design, listed next. Even without seeing the code in the
quiz, the following tables—which describe the classes, methods, properties, and events in the quiz—should give
you a complete picture of how the application works. In fact, using the following structure, you may want to try to
build the quiz yourself before you download its source code. Note that some properties are not listed in the tables,
because they are used by a class's methods only, and they are therefore considered internal ("private") to the class.

Our quiz comprises three classes, shown in Table 12-2. The entire quiz is generated from ActionScript—there's not
a single asset in the movie's Library. All buttons are drawn with the Drawing API, and all text is created with
MovieClip.createTextField(), giving the quiz a flexible layout that adapts to the current Player size, question
length, and answer length. Navigation buttons—Next, Back, Grade, and Try Again—let the user proceed
nonlinearly through the quiz, change an existing answer, be graded, or retry the quiz.

Table 12-2. Multiple-choice quiz classes

Class name Class description

Quiz

Manages the data (questions and answers) in the quiz

Handles loading questions from an external XML file

Starts the quiz and tracks the current question

Grades the user

QuizGUI Displays the quiz on screen and receives user input

Question Manages the data of an individual question and its answer

The Quiz class defines the methods and properties listed in Table 12-3.

Table 12-3. The Quiz class

Name Type Description

loadQuizData() Method Loads an XML file and generates the quiz based on it

startNewQuiz() Method Resets the quiz and tells the QuizGUI it's time to begin the quiz

setQuizGUI Method Stores a reference to a QuizGUI instance that will represent the quiz on screen

setTitle() Method Stores the quiz title

getTitle() Method Returns the quiz title

setDescription() Method Stores a short text description for the quiz

getDescription() Method Returns the quiz description

getScore() Method
Calculates and returns the user's current score, based on the questions answered
so far

setCurrentQuestion() Method Sets the question being answered

getCurrentQuestion() Method Returns the index of the question currently being answered

getNumUserAnswers(
)

Method Returns the number of questions answered so far

setNumUserAnswers(
)

Method Sets the number of questions answered so far

setUserAnswer() Method Stores the user's answer for a specific question

addQuestion() Method Inserts a new Question object into the quiz

getQuestionAt() Method Returns a specific Question object from the list of questions in the quiz

getNumQuestions() Method Returns the number of questions in the quiz

isComplete() Method
Returns true if the quiz is considered finished; otherwise it returns false. In

the simplest case, a quiz is complete when all the questions have been answered
by the user.

quizGUI Property A reference to the QuizGUI instance that will display the quiz

The QuizGUI class defines the methods, properties, and events listed in Table 12-4. Note that the event handlers on
the QuizGUI class should more appropriately be defined as Quiz listener events. However, because ActionScript
does not provide a built-in means of creating listener events, we keep the code simple by placing the handlers
directly on QuizGUI.

Table 12-4. The QuizGUI class

Name Type Description

displaySplashScreen(
)

Method Displays a welcome screen for the quiz

displayQuestion() Method Displays an entire question, including answer and navigation buttons

displayQuizEnd() Method Displays a final status report for the quiz, showing the user's score

displayTitle() Method Displays the quiz title on screen

createNavButton() Method A convenience function that creates and returns a navigation button

clearScreen() Method Removes all visual assets from the screen

onQuizStart()
Event
Handler

Invoked when a new quiz begins

onQuestionUpdate()
Event
Handler

Invoked when the content of a question changes, the user submits an answer,
or the current question index changes

onQuizComplete()
Event
Handler

Invoked when the user has answered every question

quizObj Property A reference to the Quiz instance for which this QuizGUI is handling display

quizClip Property A reference to the movie clip in which the quiz display assets will be created

The Question class defines the methods listed in Table 12-5. The Question constructor can receive question data
either as a series of values or as a single XML fragment.

Table 12-5. The Question class

Name Type Description

setQuestionText() Method Assigns the text for the question

getQuestionText() Method Returns the text for the question

setAnswers() Method Assigns the multiple-choice answers, as an array

getAnswers() Method Returns the multiple-choice answers, as an array

setCorrectAnswer() Method Assigns the correct answer for the question, as an index in the answers array

getCorrectAnswer(
)

Method Returns the correct answer for the question, as an index in the answers array

setUserAnswer() Method
Assigns the user's answer for the question, as an index in the answers array. This can
be set more than once.

getUserAnswer() Method Returns the user's current answer for the question, as an index in the answers array

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 12. Objects and Classes

12.13 Onward!

Classes and inheritance open up a world of potential for sharing common information among many objects. Object-
oriented programming is the basis of all code in ActionScript. Whether or not you use every aspect of classes and
objects in your scripts, understanding the general concepts involved is an essential part of understanding the Flash
programming environment. Confidence with object-oriented programming greatly influences confidence with
ActionScript in general.

For further reading on object-oriented programming with ECMA-262-derived languages, see Netscape's
documentation for JavaScript, Details of the Object Model:

http://developer.netscape.com/docs/manuals/js/core/jsguide/obj2.htm

David Flanagan's canonical text, JavaScript: The Definitive Guide (O'Reilly), also provides valuable information
on OOP in JavaScript.

For a general introduction to OOP from a Java perspective, see Sun's Object Oriented Programming Concepts
(from "The Java Tutorial"):

http://java.sun.com/docs/books/tutorial/java/concepts

For a complete online walkthrough of OOP in ActionScript, try Robin Debreuil's tutorial:

http://www.debreuil.com/docs/

And, for the curious, here's an extensive set of articles attempting to deflate the oft-hyped OOP system. Whether
you agree or disagree with the author, you'll likely learn from the discussion.

http://www.geocities.com/tablizer/oopbad.htm

We've certainly come a long way, and I hope you're still as enthusiastic about the journey as I am. Next we'll
explore the most important class of objects available in ActionScript, the MovieClip class.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 13. Movie Clips

Every Flash document contains a Stage—on which we place shapes, text, and other visual elements—and a main
timeline, through which we define changes to the Stage's contents over time. The Stage (i.e., the main movie) can
contain independent submovies, called movie clips (or clips for short). Each movie clip has its own independent
timeline and canvas (the Stage is the canvas of the main movie) and can even contain other movie clips. A clip
contained within another clip is called a nested clip. A clip that contains another clip is referred to as the nested
clip's host clip or parent clip.

A single Flash document can contain a hierarchy of interrelated movie clips. For example, the main movie may
contain a mountainous landscape. A separate movie clip containing an animated character can be moved across the
landscape to give the illusion that the character is walking. Another movie clip inside the character clip can be used
to animate the character's blinking eyes independently. When the independent elements in the cartoon character are
played back together, they appear as a single piece of content. Furthermore, each component can react intelligently
to the others; we can tell the eyes to blink when the character stops moving or tell the legs to walk when the
character starts moving.

ActionScript offers detailed control over movie clips; we can play a clip, stop it, move its playhead within its
timeline, programmatically set its properties (such as its size, rotation, transparency level, and position on the
Stage) and manipulate it as a true programming object. As a formal component of the ActionScript language, movie
clips can be thought of as the raw material used to produce programmatically generated content in Flash. For
example, a movie clip can serve as a ball or a paddle in a pong game, as an order form in a catalog web site, or
simply as a container for background sounds in an animation.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.1 The "Objectness" of Movie Clips

As of Flash 5, movie clips can be manipulated like the objects we learned about in Chapter 12. We can retrieve and
set the properties of a clip, and we can invoke built-in or custom methods on a clip. An operation performed on a
clip often has a visible or audible result in the Flash Player.

Movie clips are not truly a type of object, but they are object-like; although we can neither create movie clips via a
class constructor nor use an object literal to instantiate a movie clip, we can instantiate movie clips using
attachMovie() , duplicateMovieClip() and createEmptyMovieClip() (introduced in Flash Player 6). So what, then,
are movie clips, if not objects? They are members of their very own object-like datatype, called movieclip (we can
prove it by executing typeof on a movie clip, which returns the string "movieclip"). The main difference between
movie clips and other objects is how they are allocated (created) and deallocated (disposed of, or freed). For details,
see:

http://www.moock.org/asdg/technotes/movieclipDatatype

Despite this technicality, however, we nearly always treat movie clips exactly as we treat objects.

So how does the "objectness" of movie clips affect our use of them in ActionScript? Most notably, it allows us to
call methods on clips and examine their properties, just as we can for other objects. Movie clips can be controlled
directly through built-in methods. For example:

eyes_mc.play();

We can retrieve and set a movie clip's properties using the dot operator, just as we access the properties of any
object:

ball_mc._xscale = 90;
var radius = ball_mc._width / 2;

A variable in a movie clip is simply a property of that clip, and we can use the dot operator to set and retrieve
variable values:

theClip_mc.someVariable = 14;
x = theClip_mc.someVariable;

Nested movie clips can be treated as object properties of their parent movie clips. We therefore use the dot operator
to access nested clips:

clipA.clipB.clipC.play();

and we use the reserved _parent property to refer to the clip containing the current clip:

_parent.clipC.play();

Treating clips as objects affords us all the luxuries of convenient syntax and flexible playback control. But our use
of clips as objects also lets us manage clips as data; we can store a movie clip reference in an array element or a
variable, and we can even pass a clip reference to a function as an argument. Here, for example, is a function that
moves a clip to a particular location on the screen:

function moveClipTo (clip, x, y) {
 clip._x = x;
 clip._y = y;

}
moveClipTo(ball_mc, 14, 399);

In this chapter, we'll cover the specifics of referencing, controlling, and manipulating movie clips as data objects.

13.1.1 The MovieClip Class

All individual movie clips are instances of the MovieClip class, which defines the properties, methods, and event
handlers supported by movie clips. The MovieClip class can be manipulated like other built-in classes; we can
overwrite its methods or add new methods to it using the techniques we studied in Chapter 12. For example, the
following code adds a new method, getArea(), to all movie clips:

MovieClip.prototype.getArea = function () {
 return this._width * this._height;
};

As we'll see in Chapter 14, as of Flash MX, the MovieClip class can even be used as the superclass for new classes
(i.e., new subclasses can be derived from the MovieClip class). For full coverage of every property, method, and
event handler supported by the MovieClip class, see the Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.2 Types of Movie Clips

Not all movie clips are created equal. In fact, there are three distinct types of clip available in Flash:

Main movies

Regular movie clips

Components (formerly known as Smart Clips in Flash 5)

In addition to these three official varieties, we can distinguish four subcategories of regular movie clips:

Process clips

Script clips

Linked clips

Seed clips

While these unofficial subcategories are not formal terms used in ActionScript, they provide a useful way to think
about programming with movie clips. Let's take a closer look at each movie clip type.

13.2.1 Main Movies

The main movie of a Flash document is the main timeline and Stage present in every .swf document. The main
movie is the foundation for all the content in the document, including all other movie clips. We sometimes refer to
the main movie as the main timeline, the main movie timeline, the main Stage, or simply the root.

Note that while each .swf file contains only one main movie, more than one .swf file can reside in the Flash Player
at once—we can load multiple .swf documents (and therefore multiple main movies) onto a stack of levels via the
loadMovie() and unloadMovie() functions, which we'll study later.

Main movies can be manipulated in much the same way as regular movie clips, with the following exceptions:

A main movie cannot be removed from a .swf file (although a .swf file, itself, can be removed from the Flash
Player).

The following movie clip methods do not work when invoked on a main movie: duplicateMovieClip(),
removeMovieClip(), and swapDepths().

The following properties are not supported by main movies: enabled, focusEnabled, hitArea,

_name, _parent, tabChildren, tabEnabled, tabIndex, trackAsMenu, and

useHandCursor.

In Flash 5, event handlers cannot be attached to the main movie. As of Flash Player 6, the following event
handler properties can be assigned to the main movie: onData(), onEnterFrame(), onKeyDown(),
onKeyUp(), onMouseDown(), onMouseMove(), and onMouseUp().

Main movies cannot receive keyboard input focus.

Main movies can be referenced through the built-in global _root and _leveln properties.

13.2.2 Regular Movie Clips

Regular movie clips are the most common and fundamental content containers; they hold visual elements and
sounds, and they can even react to user input and movie playback through event handlers. For JavaScript
programmers who are used to working with DHTML, it may be helpful to think of the main movie as analogous to
an HTML document object and regular movie clips as analogous to that document's layer objects.

13.2.3 Components

An improvement over Flash 5 Smart Clips, a Flash MX component is a movie clip that includes a graphical user
interface used to customize the clip's properties in the authoring tool. Components typically are developed by
advanced programmers to distribute as self-contained program modules, such as a pull-down menu or slider bar.
Components also provide an easy way for less-experienced Flash authors to customize a movie clip's behavior
without knowing how the code of the clip works. We'll cover components in detail in Chapter 14 and Chapter 16.
Flash MX comes with a collection of ready-made interface components known as the Flash UI Components. To
access the Flash UI Components, choose Window Components.

13.2.4 Process Clips

A process clip is a movie clip used not for content but simply to execute a block of code repeatedly. Process clips
can be built with an onEnterFrame() event handler or with a timeline loop, as we saw in Chapter 8 under Section
8.7.

As of Flash MX, the functionality of process clips can be partially replaced by the setInterval() function, which
executes a function or method periodically. Timed code should be implemented with setInterval(), whereas code
synched specifically with the frame rate should be implemented with a process clip. See the ActionScript Language
Reference for a discussion of setInterval().

13.2.5 Script Clips

Like a process clip, a script clip is an empty movie clip used not for content but for tracking some variable,
defining some class, or simply executing some arbitrary script. For example, in Flash 5, we can use a script clip to
hold event handlers that detect keypresses or mouse events. In Flash MX, we can use a script clip to create a so-
called "code only" component.

13.2.6 Linked Clips

A linked clip is a movie clip that either exports from or imports into the Library of a movie. Export and import
settings are available through every movie clip's Linkage option, found in the Library. We most often use linked
clips when dynamically generating an instance of a clip directly from a Library symbol using the attachMovie()
method, as we'll see later.

13.2.7 Seed Clips

Before the attachMovie() method was introduced in Flash 5, we used the duplicateMovieClip() function to create
new movie clips based on some existing clip, called a seed clip. A seed clip is a movie clip that resides on stage
solely for the purpose of being copied via duplicateMovieClip(). With the introduction of attachMovie(), which
instantiates clips from the Library, the need for on-stage seed clips has diminished. However, we still use seed clips
and duplicateMovieClip() when we wish to retain a clip's transformations and onClipEvent() handlers in the
process of copying it.

In a movie that makes heavy use of duplicateMovieClip() to dynamically generate content, it's common to see a
row of seed clips on the outskirts of the movie canvas. The seed clips are used only to derive duplicate clips and
are, therefore, kept off stage.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.3 Creating Movie Clips

We usually treat movie clips just as we treat objects—we set their properties with the dot operator; we invoke their methods with the
function-call operator (parentheses); and we store them in variables, array elements, and object properties. We do not, however, create
movie clips in the same way we create objects. We cannot literally describe a movie clip in our code as we might describe an object with an
object literal. And we cannot generate a movie clip with the new operator:

myClip = new MovieClip(); // Nice try buddy, but it won't work

Although Flash Player 6 supports the new MovieClip() command, that command establishes a MovieClip subclass; it cannot be used to
create a new movie clip instance in a movie. Instead, we normally create movie clips directly in the authoring tool, by hand. Once a clip is
created, we can use commands such as duplicateMovieClip() and attachMovie() to make new, independent duplicates of it. As of Flash
Player 6, we can also create a completely new movie clip at runtime with the createEmptyMovieClip() method.

13.3.1 Movie Clip Symbols and Instances

Just as all object instances are based on a class, all movie clip instances are based on a template movie clip, called a symbol (sometimes
called a definition). A movie clip's symbol acts as a model for the clip's content and structure. With the exception of clips created via
createEmptyMovieClip(), we generate a specific clip instance from a movie clip symbol stored in the Library. Using a symbol, we can both
manually and programmatically create clips to be rendered in a movie.

A specific copy of a movie clip symbol is called an instance . Instances are the individual clip objects that can be manipulated with
ActionScript; a symbol is the mold from which instances of a specific movie clip are derived. Movie clip symbols are created in the Flash
authoring tool. To make a new, blank symbol, we follow these steps:

Select Insert New Symbol. The Create New Symbol dialog box appears.1.
In the Name field, type an identifier for the symbol.2.
For Behavior, select the Movie Clip radio button.3.
Click OK.4.

Normally, the next step is to fill the symbol's canvas and timeline with the content of our movie clip. Once a symbol has been created, it
resides in the Library, waiting for us to use it to instantiate a movie clip instance. However, it is also possible to convert a group of shapes
and objects that already exist on stage into a movie clip symbol. To do so, we follow these steps:

Select the desired shapes and objects.1.
Select Insert Convert to Symbol.2.
In the Name field, type an identifier for the symbol.3.
For Behavior, select the Movie Clip radio button.4.
Click OK.5.

The shapes and objects we select to create the new movie clip symbol are replaced by an unnamed instance of that new clip. The
corresponding movie clip symbol appears in the Library, ready to be used to create further instances.

13.3.2 Creating Instances

There are four ways to create a new movie clip instance. Three of these are programmatic; the other is strictly manual and is undertaken in
the Flash authoring tool. All but one method, createEmptyMovieClip(), require an existing movie clip symbol from which to derive the
new instance.

13.3.2.1 Manually creating instances

We can create movie clip instances manually using the Library in the Flash authoring environment. By physically dragging a movie clip
symbol out of the Library and onto the Stage, we generate a new instance. An instance created in this way should be named manually via
the Instance panel (Flash 5) or Property inspector (Flash MX). You'll learn more about instance names later in this chapter. Refer to "Using
Symbols, Instances, and Library Assets" in the Macromedia Flash Help if you've never worked with movie clips in Flash.

13.3.2.2 Creating instances with duplicateMovieClip()

Any instance that already resides on the Stage of a Flash movie can be duplicated with ActionScript. We can then treat that copy as a
completely independent clip. Both manually created and programmatically created clip instances can be duplicated. In other words, it's
legal to duplicate a duplicate.

There are two ways to duplicate an instance using duplicateMovieClip():

We can invoke duplicateMovieClip() as a global function, using the following syntax:
duplicateMovieClip(target, newName, depth);

where target is a string indicating the name of the instance we want to duplicate, newName is a string that specifies the

identifier for the new instance, and depth is an integer that designates where in the content stack (we'll discuss the content stack

soon) we want to place the new instance.

We can also invoke duplicateMovieClip() as a method of an existing instance:
theClip.duplicateMovieClip(newName, depth);

where theClip is the name of the clip we wish to duplicate, and newName and depth both operate as in the previous

example.

When created using the duplicateMovieClip() function, the newly created clip is attached as a child of either
target's or theClip's parent. That is, the new clip becomes a sibling of either target or myClip in

the movie clip hierarchy.

When created via duplicateMovieClip(), an instance is initially positioned directly on top of its seed clip. Our first post-duplication task,
therefore, is usually moving the duplicated clip to a new position. For example:

ball_mc.duplicateMovieClip("ball2_mc", 0);
ball2_mc._x += 100;
ball2_mc._y += 50;

Duplicated instances whose seed clips have been transformed (e.g., colored, rotated, or resized), via ActionScript or manually in the Flash
authoring tool, inherit the transformation of their seed clips at duplication time. Subsequent transformations to the seed clip do not affect
duplicated instances. Likewise, each instance can be transformed separately. For example, if a seed clip is rotated 45 degrees and then
duplicated, the duplicate instance's initial rotation is 45 degrees:

seedClip_mc._rotation = 45;
seedClip_mc.duplicateMovieClip("newClip_mc", 0);
trace(newClip_mc._rotation); // Displays: 45

If we then rotate the duplicate instance by 10 degrees, its rotation is 55 degrees, but the seed clip's rotation is still 45 degrees:

newClip_mc._rotation += 10;
trace(newClip_mc._rotation); // Displays: 55
trace(seedClip_mc._rotation); // Displays: 45

By duplicating many instances in a row and adjusting the transformation of each duplicate slightly, we can achieve interesting compound
effects, such as stars in the sky, trails effects, and geometric animations (for an example, see "Load Event Starfield" in the online Code
Depot).

Using duplicateMovieClip() offers other advantages over placing clips manually in a movie, such as the ability to:

Control exactly when a clip appears on the Stage, relative to a program's execution

Control exactly when a clip is removed from the Stage, relative to a program's execution

Copy a clip's event handlers

These abilities give us advanced programmatic control over the content in a movie. With a manually created clip, we must preordain the
birth and death of the clip using the timeline.

13.3.2.3 Creating instances with attachMovie()

Like duplicateMovieClip(), the attachMovie() method lets us create a movie clip instance at runtime; however, attachMovie() creates a
new instance from a Library symbol instead of from another movie clip instance. To "attach" a movie clip means to make one movie clip the
child of either the main timeline or another movie clip in the movie clip hierarchy. In order to use attachMovie() to create an instance of a
symbol, we must first export that symbol from the Library. Here's how:

In the Library, select the desired symbol.1.
In the Library's pop-up Options menu, select Linkage. The Linkage Properties dialog box appears.2.
Select the Export For ActionScript checkbox.3.
In the Identifier field, type a unique name for the clip symbol. The name can be any string—often simply the same name as the
symbol itself—but should be different from all other exported clip symbols.

4.

In Flash MX, we can also set the frame at which the link clip will be exported with the movie. For details, see
MovieClip.attachMovie() in the ActionScript Language Reference.

5.

Click OK.6.

Once a clip symbol has been exported, we can attach new instances of that symbol to an existing clip by invoking attachMovie() with the
following syntax:

theClip.attachMovie(symbolIdentifier, newName, depth, [initObject]);

where theClip is the name of the movie clip to which we want to attach the new instance. If theClip is omitted, attachMovie()

attaches the new instance to the current clip (the clip on which the attachMovie() statement resides). The symbolIdentifier
parameter is a string containing the name of the symbol we're using to generate our instance, as specified in the Identifier field of the
Linkage options in the Library (Step 4). The symbolIdentifier is not necessarily the same name as the symbol itself. The

newName parameter is a string that specifies the identifier for the new instance we're creating. If newName is not a string that converts

to a legal identifier, you're in for some potentially surprising results, as shown in the examples later in this section. Finally, depth is an

integer that designates where in the host clip's content stack to place the new instance. Flash MX adds support for a fourth, optional
parameter called initObject, which lets you copy properties from an existing object to the new clip. See MovieClip.attachMovie() in

the ActionScript Language Reference for full details.

For example, to attach a new movie clip, based on the "square" symbol, to the current timeline, use:

this.attachMovie("square", "square1_mc", 1);
square1_mc._x = 50; // Position the new clip at a horizontal position of 50
square1_mc._y = 200; // ...and a vertical position of 200

The attachMovie() method attaches the new clip as a child of theClip (or of the current clip if no clip is

specified). Contrast this with duplicateMovieClip(), which attaches the clip as a sibling of the duplicated clip.

When we attach an instance to another clip, the instance is positioned in the center of the clip, among the clip's content stack. When we
attach an instance to the main movie of a document, the instance is positioned in the upper-left corner of the Stage, at coordinates (0, 0).

In Flash Player 6, the attachMovie() function returns a reference to the newly created movie clip, which is useful for debugging. If the
function returns undefined, then the movie clip creation failed (except in Flash 5, where attachMovie() always returns

undefined). In this case, you most likely specified the wrong name for symbolIdentifier (remember to specify the quotes

around the string, enter the name correctly, and use the export name specified in the Linkage options, not the symbol's Library name). The
symbolIdentifier string is not case-sensitive, so if the symbol is exported as "Symbol 1", you can (but should not, as a matter of

good form) specify "symbol 1" as symbolIdentifier.

The return value of the attachMovie() function is particularly useful if the operation succeeds and yet you are still having trouble referring
to your newly created movie clip by the expected identifier. Technically, newName does not need to be a legal identifier, but you'll have

trouble referring to the new clip if it isn't, unless you store the return value in a variable. That is, you can use the return value to access the
clip after it is attached, if the newName parameter was specified incorrectly and could not be converted to a legal identifier. The

newName parameter is actually converted first to a string, and later converted again to an identifier. Let's see how this works.

In our first example, newName is specified as "newClip 1", which has a space in it, so it can't be converted to a legal identifier. Luckily,

you can use the return value stored in newClip_mc to refer to the newly created clip:

newClip_mc = _root.attachMovie("Symbol 1", "newClip 1", 0);
trace(newClip_mc); // Displays: _level0.newClip 1
 // (which is not a valid identifier)

In the next example, newName is specified as newClip1, which takes the form of a legal identifier but is missing the necessary quotes

to make it a string. The attachMovie() command first tries to convert it to a string, but because newClip1 looks to the interpreter like

an undefined variable, the conversion yields the empty string. Luckily, you can again use the return value stored in newClip_mc
to refer to the newly created clip:

newClip_mc = _root.attachMovie("Symbol 1", newClip1, 0);
trace(newClip_mc); // Displays _level0.
 // (the clip's name is an empty string!)

What if newName is specified as a legal identifier, such as ball_mc, that already refers to an existing movie clip? Again, the

attachMovie() command first tries to convert it to a string, which (referring to Table 3-2 for string conversion of movie clips) yields the
interim string "_level0.ball_mc" for newName. This series of conversions results in the newly created movie clip having the incorrect

name "_level0._level0.ball_mc". Luckily, yet again you can use the return value stored in newClip_mc to refer to the newly created clip

properly:

//Assume ball_mc is an existing (valid) movie clip identifier
newClip_mc = _root.attachMovie("Symbol 1", ball_mc, 0);
trace(newClip_mc); // Displays "_level0._level0.ball_mc"

As you can see, life is much easier when we make sure to provide a string that converts to a legal identifier for newName.

13.3.2.4 Creating instances with createEmptyMovieClip()

As of Flash Player 6, completely blank new movie clip instances can be created in an existing clip with the createEmptyMovieClip()
method, which has the following syntax:

theClip.createEmptyMovieClip(newName, depth);

where theClip is the name of an existing movie clip to which we want to attach a new, empty movie clip. The new clip instance is

given a name of newName and placed in theClip's content stack at the specified depth.

Movie clips created with createEmptyMovieClip() are not derived from a Library symbol; they are simply blank movie clip instances with
one frame. Empty movie clips can be used as drawing canvases, script clips, or containers for nested clips (e.g., a form clip that contains
text fields and a Submit button).

13.3.3 Movie Clip Instance Names

When we create instances, we assign them identifiers, or instance names, that allow us to refer to them later. Assigning identifiers to movie
clips differs from assigning them to regular objects. When we create a typical object (not a movie clip), we must assign that object to a
variable or other data container in order for the object to persist and in order for us to refer to it by name in the future. For example:

new Object(); // Object dies immediately after it's created, and
 // we can't refer to it because we didn't store it.
var thing = new Object(); // Object reference is stored in thing,
 // and can later be referred to as thing.

Movie clip instances need not be stored in variables in order for us to refer to them. Unlike typical objects, movie clip instances are
accessible in ActionScript via their instance names as soon as they are created, either programmatically or in the authoring tool. The manner
in which an instance gets its initial name depends on how it was created. Programmatically generated instances are named at runtime by the
function that creates them. Manually created instances are normally assigned explicit instance names in the authoring tool through the
Property inspector, as follows:

Select the instance on stage.1.
In the Property inspector, for <Instance Name>, enter the instance name.2.

(In Flash 5, the instance name is set via the Instance panel.) Once the instance is named in the authoring tool, it can be accessed via
ActionScript using the same name. (It is good practice to add "_mc" as a suffix to the identifier name of any movie clips you create during
authoring or at runtime.) For example, if there exists an instance named ball_mc on stage, we can access its properties like this:

ball_mc._y = 200;

If a manually created clip is not given an instance name, it is assigned one automatically by the Flash Player at runtime. Automatic instance
names fall in the sequence instance1, instance2, instance3, ...instancen, but these names don't meaningfully

describe our clip's content (and we must guess at the automatic name that was generated). For example, the first unnamed clip instance can
be accessed as:

instance1._y = 200;

Because instance names assigned during either authoring or runtime are used as identifiers in ActionScript, we
should always compose them according to the rules for creating a legal identifier, as described in Chapter 15.
Most notably, instance names should not begin with a number or include hyphens or spaces. By convention,
movie clip instance names should include the suffix "_mc", particularly if they are going to be referenced via
ActionScript at runtime.

Each clip's instance name is stored in its built-in _name property, which can be both retrieved and set. For clips defined manually during

authoring, the default _name is a string version of the original clip identifier:

trace(ball_mc._name); // Displays "ball_mc"

For programmatically defined clips, the initial value for _name is specified by the newName parameter passed to duplicateMovieClip()

or attachMovie().

The _name property is useful for debugging or displaying the name of a clip (without the fully qualified path). Note how the value

returned by _name differs from other representations of a movie clip identifier (see also the legacy _target property discussed later in

this chapter):

trace(instance1._name); // Displays instance1
trace(instance1); // Displays _level0.instance1
trace(String(instance1)); // Displays _level0.instance1
trace(targetPath(instance1)); // Displays _level0.instance1
trace(instance1.toString()); // Displays [object Object]

Example 13-1 uses the _name property to find a particular movie clip. See Section 13.5.6.4 later in this chapter for an example showing

how to use the _name property to prevent an infinite loop.

Example 13-1. Finding movie clips on a timeline

// Finds all movie clips inside gameboard_mc with the word "enemy" in their name.
for (var prop in gameboard_mc) {

 if (typeof gameboard_mc[prop] = = "movieclip") {
 if (gameboard_mc[prop]._name.indexOf("enemy") != -1) {
 // Found an enemy movie clip...make it attack the player.
 gameboard_mc[prop].attackPlayer();
 }
 }
}

If we change an instance's _name property, all future references to the instance must use the new name. For example, if we change the

value of ball_mc._name, the ball_mc reference ceases to exist, and we must subsequently use the new name to refer to the

instance:

ball_mc._name = "circle_mc"; // Change ball_mc's name to circle_mc
trace(typeof ball_mc); // Displays "undefined" because ball_mc
 // no longer exists.
circle_mc._x = 59; // After the name change, you must
 // use the clip's new name.

Therefore, you shouldn't change a movie clip's _name property at runtime, as it is can make your code fail, or at least make it very difficult

to follow.

13.3.4 Importing External Movies and Images

We've discussed creating movie clip instances within a single document, but the Flash Player can also display multiple .swf documents
simultaneously. We can use loadMovie() — as either a global function or a movie clip method — to import an external .swf file into the
Player and place it either in a clip instance or on a numbered level above the base movie (i.e., in the foreground relative to the base movie).

In Flash Player 6, loadMovie() can also load JPEG image files into a movie clip or document level. For details,
see loadMovie() and MovieClip.loadMovie() in the Language Reference.

Dividing content into separate files gives us precise control over the downloading process and makes partial application updates easier.
Suppose, for example, we have a movie containing a main navigation menu and five subsections. Before the user can navigate to section
five, sections one through four must finish downloading. But if we place each section in a separate .swf file, the sections can be loaded in an
arbitrary order, giving the user direct access to each section. To update a section, we can simply replace the appropriate .swf file with a new
one.

When an external .swf is loaded into a level, its main movie timeline becomes the root timeline of that level, and it replaces any prior movie
loaded in that level. Similarly, when an external movie is loaded into a clip, the main timeline of the loaded movie replaces that clip's
timeline, unloading the existing graphics, sounds, and scripts in that clip.

Like duplicateMovieClip(), loadMovie() can be used as both a standalone function and an instance method. The standalone syntax of
loadMovie() is as follows:

loadMovie(url, location)

where url specifies the address of the external .swf file to load. The location parameter is a string indicating the path to an existing

clip or a document level that should host the new .swf file (i.e., where the loaded movie should be placed). For example:

loadMovie("circle.swf", "_level1");
loadMovie("photos.swf", "viewClip_mc");

Because a movie clip reference is converted to a path when used as a string, location can also be supplied as a movie clip reference,

such as _level1 instead of "_level1". Take care when using references, however. If the reference supplied does not point to a

valid clip, the loadMovie() function has an unexpected behavior—it loads the external .swf into the current timeline. See Section 13.7 later
in this chapter for more information on this topic.

The MovieClip method version of loadMovie() has the following syntax:

theClip.loadMovie(url);

When used as a clip method, loadMovie() assumes we're loading the external .swf into theClip, so the location parameter

required by the standalone loadMovie() function is not needed. Therefore, we supply only the path to the .swf to load via the url
parameter. Naturally, url can be either an absolute or a relative filename, such as:

viewClip.loadMovie("photos.swf");

When placed into a clip instance, a loaded movie adopts the properties of that clip (e.g., the clip's scale, rotation, color transformation, etc.).

Note that theClip must exist in order for loadMovie() to be used in its method form. For example, the following attempt to load

circle.swf will fail if _level1 is empty:

_level1.loadMovie("circle.swf");

Using loadMovie() with attachMovie()

Loading an external .swf file into a clip instance with loadMovie() has a surprising result—it prevents us from attaching
instances to that clip via attachMovie(). Once a clip has an external .swf file loaded into it, that clip can no longer bear
attached movies from the Library from which it originated. For example, if movie1.swf contains an instance named clipA,

and we load movie2.swf into clipA, we can no longer attach instances to clipA from movie1.swf's Library.

Why? The attachMovie() method works only within a single document. That is, we can't attach instances from one
document's Library to another document. When we load a .swf file into a clip, we are populating that clip with a new
document and, hence, a new (different) Library. Subsequent attempts to attach instances from our original document to the
clip fail, because the clip's Library no longer matches its original document's Library. However, if we unload the document
in the clip via unloadMovie(), we regain the ability to attach movies to the clip from its own document Library.

Similarly, loading a .swf file into a clip with loadMovie() prevents us from copying that clip via duplicateMovieClip().

13.3.4.1 Load movie execution order

The loadMovie() function is not immediately executed when it appears in a statement block. In fact, it is not executed until all other
statements in the block have finished executing.

We cannot access an externally loaded movie's properties or methods in the same statement block as the
loadMovie() invocation that loads it into the Player.

Because loadMovie() loads an external file (usually over a network), its execution is asynchronous. That is, loadMovie() may finish at any
time, depending on the speed of the file transfer. Therefore, before we access a loaded movie, we should always check that the movie has
finished transferring to the Player. We do so with what's commonly called a preloader—code that checks how much of a file has loaded
before allowing some action to take place. Preloaders can be built with the _totalframes and _framesloaded movie clip

properties and the getBytesLoaded() and getBytesTotal() movie clip methods. See the appropriate entries under the MovieClip class in the
Language Reference for sample code.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.4 Movie and Instance Stacking Order

All movie clip instances and externally loaded movies displayed in the Player reside in a visual stacking order akin
to a deck of cards. When instances or externally loaded .swf files overlap in the Player, one clip (the "higher" of the
two) obscures the other clip (the "lower" of the two). This appears simple enough in principle, but the main content
stack, which contains all the instances and .swf files, is actually divided into many smaller substacks. We'll first
look at these substacks individually first, and then we'll see how they combine to form the main stack. (The content
stack in this discussion has no direct relation to the LIFO and FIFO stacks discussed in Chapter 11.)

13.4.1 Movie Clip Depths

Each movie clip instance, including the main timeline of a movie, places its various contents (movie clips, text
fields, and buttons) on one of two stacks: the internal layer stack (for author-time assets) or the programmatically
generated content stack (for runtime assets). The items in these stacks (known collectively as the clip's content
stack) are given an integer depth position that governs how they overlap on screen. Depth positions range from -
16384 to 1048575. Depths from 0 to 1048575 are reserved for dynamically generated content; depths from -16383
to -1 are reserved for author-time content; and depth -16384 is reserved for dynamic content that appears beneath
all author-time content in each clip. To retrieve the depth position of an item, we use the getDepth() method. To
change the depth position of two movie clips, we use the swapDepths() method.

13.4.2 The Internal Layer Stack

Instances created manually in the Flash authoring tool reside in the internal layer stack. This stack's order is
governed by the actual layers in a movie's timeline; when two manually created instances on separate timeline
layers overlap, the instance on the uppermost layer obscures the instance on the lowermost layer. (Here,
"uppermost" means that a layer appears at the top of the timeline panel in the Flash authoring tool).

Furthermore, because multiple clips can reside on a single timeline layer, each layer in the internal layer stack
actually maintains its own ministack. Overlapping clips that reside on the same layer of a timeline are stacked in the
authoring tool via the Modify Arrange commands.

We can swap the position of two instances in the internal layer stack using the swapDepths() method, provided
they reside on the same timeline (that is, the value of the two clips' _parent property must be the same). Prior

to Flash 5, there was no way to alter the internal layer stack via ActionScript.

The depth position of author-time assets can be unpredictable and is considered reserved for use by the authoring
tool. Therefore, when swapping the depths of an author-time movie clip and a dynamically created clip, always use
the target parameter of swapDepths() — not an integer depth level — as described in the ActionScript Language
Reference entry for MovieClip.swapDepths().

13.4.3 The Programmatically Generated Content Stack

Programmatically generated instances are normally stacked separately from the manually created instances held in
the internal layer stack. Each movie clip has its own programmatically generated content stack that holds:

Movie clip instances created via duplicateMovieClip(), attachMovie(), and createEmptyMovieClip()

Text field instances created via createTextField()

The stacking order for movie clips in the programmatically generated content stack varies, depending on how they
were created.

13.4.3.1 How clips generated via attachMovie() and createEmptyMovieClip() are added to the
stack

A new instance generated via attachMovie() or createEmptyMovieClip() is always stacked above (i.e., in the
foreground relative to) the clip to which it was attached. For example, suppose that we have two clips—X and

Y—in the internal layer stack of a movie and that X resides on a layer above Y. Now further suppose we attach a

new clip, A, to X and a new clip, B, to Y:

x.attachMovie("A", "A", 0);
y.attachMovie("B", "B", 0);

In our scenario, the clips appear from top to bottom in this order: A, X, B, Y, as shown in Figure 13-1.

Figure 13-1. A sample instance stack

Once a clip is generated, it too provides a separate space above its internal layer stack for more programmatically
generated clips. That is, we can attach clips to attached clips.

Clips attached to the _root movie of a Flash document are placed in the _root movie's programmatically

generated content stack, which appears in front of all clips in the _root movie, even those that contain

programmatically generated content.

Let's extend our example. If we attach clip C to the _root of the movie that contains clips X, Y, A, and B, then

clip C appears in front of all the other clips. Figure 13-2 shows the extended structure.

Figure 13-2. An instance stack showing a clip attached to _root

13.4.3.2 How clips generated via duplicateMovieClip() are added to the stack

Each instance duplicated via duplicateMovieClip() is assigned to the programmatic stack of its seed clip's parent
(the movie clip upon whose timeline the seed clip resides). Let's return to our example to see how this works.

If we create clip D by duplicating clip X (which was created manually), then clip D is placed in the stack above

_root, with clip C. A seed clip and its duplicate always share the same parent (in this example, _root).

Similarly, if we create clip E by duplicating clip D, then E is also placed in the stack above _root, with C and D.

But if we create clip F by duplicating clip A — which was created with attachMovie() — then F is placed in the

programmatic stack above X, with clip A. Again, F and its seed clip, A, share the same parent: X. Figure 13-3 is

worth a thousand words.

Figure 13-3. An instance stack showing various duplicated clips

13.4.3.3 Assigning depths to instances in the programmatically generated content stack

You may be wondering what determines the stacking order of clips C, D, and E, or of clips A and F, in Figure 13-

3. The stacking order of a programmatically generated clip is determined by the depth argument passed to the

attachMovie(), createEmptyMovieClip(), or duplicateMovieClip() methods, and can be changed at any time
using the swapDepths() function. Each programmatically generated clip's depth (sometimes called its z-index)

determines its position within a particular stack of programmatically generated clips.

The depth of a clip can be any integer and is measured from the bottom up — so, depth 5 is lower than depth 6,

depth 7 is higher than (i.e., in front of) depth 6, depth 8 is higher still, and so on. When two programmatically
generated clips occupy the same position on screen, the one with the greater depth value is rendered in front of

the other.

Although multiple clips can occupy a single author-time timeline layer, all depth positions are single-occupant
dwellings. Only one clip can occupy a depth position at a time—placing a clip into an occupied position displaces
(and deletes) the layer's previous occupant.

It's okay for there to be gaps in the depths of clips; you can have a clip at depth 0, another at depth 500, and a third
one at depth 1000. No performance hit or increase in memory consumption results from having gaps in your depth
assignments.

13.4.4 The .swf Document "_level" Stack

In addition to the internal layer stack and the programmatically generated content stack, there's a third (and final)
kind of stack, the document stack (or level stack), which governs the overlapping not of instances, but of entire .swf
files loaded into the Player via loadMovie().

The first .swf file loaded into the Flash Player is placed in the lowest level of the document stack (represented by
the global property _level0). If we load any additional .swf files into the Player after that first document, we can

optionally place them in front of the original document by assigning them to a level above _level0 in the

document stack. All of the content in the higher-level documents in the level stack appears in front of lower-level
documents, regardless of the movie clip stacking order within each document.

Just as the programmatically generated content stack allows only one clip per layer, the document stack allows only
one document per level. If we load a .swf file into an occupied level, the level's previous occupant is replaced by the
newly loaded document. For example, you can supplant the original document by loading a new .swf file into
_level0. Loading a new .swf file into _level1 visually obscures the movie in _level0, but it does not

remove it from the Player.

Figure 13-4 summarizes the relationships of the various stacks maintained by the Flash Player.

Figure 13-4. The complete Flash Player content stack

13.4.5 Stacks and Order of Execution

The layering of movie clips and timeline layers affects code execution order. The rules are as follows:

Code on frames in different timeline layers always executes from top to bottom (relative to the timeline
panel).

When manually created instances are initially loaded, code in their timeline and onLoad() event handlers
executes according to the Load Order set in the Publish Settings of a Flash document—either Bottom Up,
which is the default, or Top Down.

For example, suppose we have a timeline with two layers, top and bottom, where top is above bottom in the
layer stack. We place clip X on layer top and clip Y on layer bottom. If the Load Order of the document is set

to Bottom Up, then the code in clip Y will execute before the code in clip X. If, on the other hand, the Load

Order of the document is set to Top Down, then the code in clip X will execute before the code in clip Y.

This execution order applies only to the frame on which X and Y appear for the first time.

Once loaded, all instances of a movie are added to an execution order, which is the reverse of the load order;
the last instance added to the movie is always the first to have its code executed.

Use caution when relying on these rules. Layers are mutable, so you should avoid producing code that relies on
their relative position. Strive to create code that executes safely without relying on the execution order of the clips

in the stack. We can avoid some of the issues presented by the execution stack by keeping all our code on a scripts
layer at the top of each code-bearing timeline.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.5 Referring to Instances and Main Movies

In earlier sections of this chapter, we saw how to create and layer movie clip instances and external .swf files in the Flash Player. We must be
able to refer to that content in order to effectively control it with ActionScript.

We refer to instances and main movies under four general circumstances, when we want to:

Get or set a property of a clip or a movie

Create or invoke a method of a clip or a movie

Apply some function to a clip or a movie

Manipulate a clip or movie as data — for example, by storing it in a variable or passing it as an argument to a function

While the circumstances under which we refer to clip instances and movies are fairly simple, the tools we have for making references are
many and varied. We'll spend the rest of this section exploring ActionScript's instance- and movie-referencing tools.

13.5.1 Using Instance Names

Earlier, we saw that movie clips are referred to by their instance names. For example:

trace(someVariable); // Refer to a variable
trace(someClip_mc); // Refer to a movie clip

In order to refer to an instance directly (as shown in the preceding trace() example), the instance must reside on the timeline to which our
code is attached. For example, if we have an instance named clouds_mc placed on the main timeline of a document, we can refer to

clouds_mc from code attached to the main timeline, as follows:

// Set a property of the instance
clouds_mc._alpha = 60;
// Invoke a method on the instance
clouds_mc.play();
// Place the instance in an array of other related instances
var background = [clouds_mc, sky_mc, mountains_mc];

If the instance we want to reference does not reside on the same timeline as our code, we must use a more elaborate syntax, as described later
in this section under Section 13.5.3.

13.5.2 Referring to the Current Instance or Movie

We don't always have to use an instance's name when referring to a clip. Code attached to a frame in an instance's timeline can refer to that
instance's properties and methods directly, without any instance name.

For example, to set the _alpha property of a clip named cloud_mc, we can place the following code on a frame in the cloud_mc
timeline:

_alpha = 60;

Similarly, to invoke the play() method on cloud_mc from a frame in the cloud_mc timeline, we can simply use:

play();

This technique can be used on any timeline, including timelines of main movies. For example, the following two statements are synonymous
if attached to a frame on the main timeline of a Flash document. The first refers to the main movie implicitly, whereas the second refers to the
main movie explicitly via the global _root property:

gotoAndStop(20);
_root.gotoAndStop(20);

However, not all methods can be used with an implicit reference to a movie clip. Any movie clip method that has the same name as a
corresponding global function, such as duplicateMovieClip() or unloadMovie(), must be invoked with an explicit instance reference.
Hence, when in doubt, use an explicit reference. We'll have more to say about method and global function conflicts later in in this chapter
under Section 13.7.

Note that it's always safest to use explicit references to variables or movie clips rather than using implicit references. Implicit references are
ambiguous, often causing unexpected results and confusing other developers reading your code.

13.5.2.1 Self-references with the this keyword

When we want to refer explicitly to the current instance from a frame in its timeline or from one of its event handlers, we can use the this
keyword. For example, the following statements are synonymous when attached to a frame in the timeline of our cloud_mc instance:

_alpha = 60; // Implicit reference to the current timeline
this._alpha = 60; // Explicit reference to the current timeline

There are three reasons to use this to refer to a clip even when we could legitimately refer to the clip's properties and methods directly.

First, explicit references are easier for other developers to read, because they make the intention of a statement unambiguous.

Second, when used without an explicit instance reference, certain movie clip methods are mistaken for global functions by the
interpreter. If we omit the this reference, the interpreter thinks we're trying to invoke the analogous global function and complains

that we're missing the target movie clip parameter. To work around the problem, we use this, as follows:

this.duplicateMovieClip("newClouds_mc", 0); // Invoke a method on an instance

// If we omit the this reference, we get an error
duplicateMovieClip("newClouds_mc", 0); // Oops!

Third, using this, we can conveniently pass a reference to the current timeline to functions that operate on movie clips:

// Here's a function that manipulates clips
function moveClipTo (theClip, x, y) {
 theClip._x = x;
 theClip._y = y;
}

// Now let's invoke it on the current timeline
moveClipTo(this, 150, 125);

New and experienced object-oriented programmers alike, take note: the meaning of this inside a method is a

reference not to the current timeline but to the object through which the method was invoked. If an object's
method needs to refer to a specific movie clip, a reference to that clip should be passed to the method as a
parameter. See Chapter 12 for details on using the this keyword inside methods.

13.5.3 Referring to Nested Instances

As we discussed in the introduction to this chapter, movie clip instances are often nested inside of one another. That is, a clip's canvas can
contain an instance of another clip, which can itself contain instances of other clips. For example, a game's spaceship clip can contain

an instance of a blinkingLights clip or a burningFuel clip. Or a character's face clip can include separate eyes, nose,

and mouth clips.

Earlier, we saw briefly how we can navigate up or down from any point in the hierarchy of clip instances, much like you navigate up and
down a series of subdirectories on your hard drive. Let's examine this in more detail and see some more examples.

Let's first consider how to refer to a clip instance that is nested inside of the current instance.

When a clip is placed on the timeline of another clip, it becomes a property of that clip, and we can access it as
we would access any object property (with the dot operator).

For example, suppose we place clipB on the canvas of clipA. To access clipB from a frame in clipA's timeline, we use a direct

reference to clipB:

clipB._x = 30;

We could also use an explicit reference, as in:

this.clipB._x = 30;

Now suppose clipB contains another instance, clipC. To refer to clipC from a frame in clipA's timeline, we access clipC as a

property of clipB, like this:

clipB.clipC.play();
clipB.clipC._x = 20;

Beautiful, ain't it? And the system is infinitely extensible. Because every clip instance placed on another clip's timeline becomes a property of
its host clip, we can traverse the hierarchy by separating the instances with the dot operator, like so:

clipA.clipB.clipC.clipD.gotoAndStop(5);

Now that we've seen how to navigate down the instance hierarchy, let's see how we navigate up the hierarchy to refer to the instance or movie
that contains the current instance. As we saw earlier, every instance has a built-in _parent property that refers to the clip or main movie

containing it. We use the _parent property like so:

theClip._ parent

where theClip is a reference to a movie clip instance. Recalling our recent example with clipA on the main timeline, clipB inside

clipA, and clipC inside clipB, let's see how to use _parent and dot notation to refer to the various clips in the hierarchy. Assume

that the following code is placed on a frame of the timeline of clipB:

_parent // A reference to clipA
this // An explicit relative reference to clipB (the current clip)
this._parent // An explicit relative reference to clipA
// Sweet Sheila, I love this stuff! Let's try some more...
_parent._parent // A reference to clipA's parent (clipB's grandparent),
 // which is the main timeline in this case

Note that although it is legal to do so, it is unnecessarily roundabout to traverse down the hierarchy using a reference to the clipC property

of clipB only to traverse back up the hierarchy using _parent. These roundabout references are unnecessary but do show the

flexibility of dot notation:

clipC._parent // A roundabout reference to clipB
 // (the current timeline)
clipC._parent._parent._parent // A roundabout reference to the main timeline

Notice how we use the dot operator to descend the clip hierarchy and use the _parent property to ascend it.

If this is new to you, you should probably build the clipA, clipB, clipC hierarchy in Flash and test the code in our example. Proper

instance referencing is one of the fundamental skills of a good ActionScript programmer.

Note that the hierarchy of clips is like a family tree. Unlike a typical family tree of a sexually reproducing species, in which each offspring
has two parents, our clip family tree expands asexually. That is, each household is headed by a single parent who can adopt any number of
children. Any clip (i.e., any node in the tree) can have one and only one parent (the clip that contains it) but can have multiple children (the
clips that it contains). Of course, each clip's parent can in turn have a single parent, which means that each clip can have only one
grandparent (not the four grandparents humans typically have). Figure 13-5 shows a sample clip hierarchy.

Figure 13-5. A sample clip hierarchy

No matter how far you go down the family tree, if you go back up the same number of steps you will always end up in the same place you
started. It is therefore pointless to go down the hierarchy only to come back up. However, it is not pointless to go up the hierarchy and then
follow a different path back down. For example, suppose that our example main timeline also contains clipD, which makes clipD a

"sibling" of clipA because both have the main timeline as their _parent. In this case, you can refer to clipD from a script attached to

clipB as follows:

_parent._parent.clipD // This refers to clipD, a child of the main
 // timeline (clipA's _parent) and therefore
 // a sibling of clipA

Note that the main timeline does not have a _parent property (main movies are the top of any clip hierarchy and cannot be contained by

another timeline); references to _root._parent yield undefined.

13.5.4 Referring to Main Movies with _root and _leveln

Now that we've seen how to navigate up and down the clip hierarchy relative to the current clip, let's explore other ways to navigate along
absolute pathways and even among other documents stored in other levels of the Player's document stack. In earlier chapters, we saw how
these techniques applied to variables and functions; here we'll see how they can be used to control movie clips.

13.5.4.1 Referencing the current level's main movie using _root

When an instance is deeply nested in a clip hierarchy, we can repeatedly use the _parent property to ascend the hierarchy until we reach

the main movie timeline. But in order to ease the labor of referring to the main timeline from deeply nested clips, we can also use the built-in
global property _root, which is a shortcut reference to the main movie timeline. For example, here we play the main movie:

_root.play();

The _root property is said to be an absolute reference to a known point in the clip hierarchy because unlike the _parent and this

properties, which are relative to the current clip, the _root property refers to the main timeline of the current level, no matter which clip

within the hierarchy references it (see the exception in the next warning). These are all equivalent (except from scripts attached to the main
timeline, where _parent is not valid):

_parent._root
this._root
_root

Therefore, you can use _root when you don't know where a given clip is nested within the hierarchy. For example, consider the following

hierarchy in which circle is a child of the main movie timeline and square is a child of circle:

main timeline
 circle
 square

Now consider this script attached to a frame in both circle and square:

_parent._x += 10 // Move this clip's parent clip 10 pixels to the right

When this code is executed from within circle, it causes the main movie to move 10 pixels to the right. When it is executed from within

square, it causes circle (not the main movie) to move 10 pixels to the right. In order for the script to move the main movie 10 pixels

regardless of where the script is executed from, the script can be rewritten as:

_root._x += 10 // Move the main movie 10 pixels to the right

Furthermore, the _parent property is not valid from within the main timeline; the version of the script using _root is valid even when

used in a frame of the main timeline.

The _root property can be combined with ordinary instance references to descend a nested-clip hierarchy:

_root.clipA.clipB.play();

References that start with _root refer to the same, known, starting point from anywhere in a document. There's no guessing required.

When a .swf file is loaded into a movie clip instance, _root refers no longer to that .swf file's main timeline

but to the main timeline of the movie into which the .swf was loaded!

If you know your movie will be loaded into a movie clip, you should not use _root to refer to the main timeline. Instead, define a global

reference to the main timeline by placing the following code on your movie's main timeline:

_global.myAppMain = this;

where myApp is the name of your application and Main is used, by convention, to denote the main timeline. Then use myAppMain in

place of _root.

13.5.4.2 Referencing other documents in the Player using _leveln

If we have loaded multiple .swf files into the document stack of the Flash Player using loadMovie(), we can refer to the main movie
timelines of the various documents using the built-in series of global properties _level0 through _leveln, where n represents the

level of the document we want to reference.

Therefore, _level0 represents the document in the lowest level of the document stack (documents in higher levels will be rendered in the

foreground). Unless a movie has been loaded into _level0 via loadMovie(), _level0 is occupied by the movie that was initially

loaded when the Player started.

Here is an example that plays the main movie timeline of the document in level 3 of the Player's document stack:

_level3.play();

Like the _root property, the _leveln property can be combined with ordinary instance references via the dot operator:

_level1.clipA.stop();

As with references to _root, references to _leveln properties are called absolute references because they lead to the same destination

from any point in a document.

Note that _leveln and _root are not synonymous. The _root property is always the current document's main timeline, regardless of

the level on which the current document resides, whereas the _leveln property is a reference to the main timeline of a specific document

level. For example, suppose we place the code _root.play() in myMovie.swf. When we load myMovie.swf onto level 5, our code plays
_level5's main movie timeline. In contrast, if we place the code _level2.play() in myMovie.swf and load myMovie.swf into level 5, our

code plays _level2's main movie timeline, not _level5's. Of course, from within level 2, _root and _level2 are equivalent.

13.5.5 Authoring Instance References with Insert Target Path

When the instance structure of a movie gets very complicated, composing references to movie clips and main movies can be laborious. We
may not always recall the exact hierarchy of a series of clips and, hence, may end up frequently selecting and editing clips in the authoring
tool just to determine their nested structure. The Actions panel's Insert Target Path tool generates clip references visually, relieving the
burden of creating them manually. The Insert Target Path button is shown in Figure 13-6.

Figure 13-6. The Insert Target Path button

To use Insert Target Path, follow these steps:

Position the cursor in your code where you want a clip reference to be inserted.1.
Click the Insert Target Path button, shown in Figure 13-6.2.
In the Insert Target Path dialog box, select the clip to which you want to refer.3.
Choose whether to insert an absolute reference, which begins with _root, or a relative reference, which expresses the reference to

the target clip in relation to the clip that contains your code (this).

4.

If you are exporting to Flash 4 format, choose the Slashes Notation button for Flash 4 compatibility. (The Dot Notation button,
selected by default, composes references that won't work in Flash 4).

5.

The Insert Target Path tool cannot generate relative references that ascend a hierarchy of clips. That is, the tool cannot be used to refer to a
clip that contains the current clip (unless you want to begin the path from _root and proceed downward). To create references that ascend

the clip hierarchy, we must either use absolute references starting with _root (which therefore become descending references) or manually

enter the appropriate relative references in our code using the _parent property.

13.5.6 Dynamic References to Clip Objects

Normally, we know the name of the specific instance or movie we are manipulating, but there are times when we'd like to control a clip
whose name we don't know. We may, for example, want to scale down a whole group of clips using a loop or create a button that refers to a
different clip each time it is clicked. To handle these situations, we must create our clip references dynamically at runtime.

13.5.6.1 Using the array-element access operator

As we saw in Chapter 5 and Chapter 12, the properties of an object can be retrieved via the dot operator or through the array-element access
operator, []. For example, the following two statements are equivalent:

someObject.myProperty = 10;
someObject["myProperty"] = 10;

The array-element access operator has one important feature that the dot operator does not; it lets us (indeed requires us to) refer to a
property using a string expression rather than an identifier. For example, here's a string concatenation expression that acts as a valid reference
to the property propertyX:

someObject["prop" + "ertyX"];

We can apply the same technique to create our instance and movie references dynamically. We already saw that clip instances are stored as
properties of their parent clips. Earlier, we used the dot operator to refer to those instance properties. For example, from the main timeline we
can refer to clipB — which is nested inside of another instance, clipA — as follows:

clipA.clipB; // Refer to clipB inside clipA
clipA.clipB.stop(); // Invoke a method on clipB

Because instances are properties, we can also legitimately refer to them with the [] operator, as in:

clipA["clipB"]; // Refer to clipB inside clipA
clipA["clipB"].stop(); // Invoke a method on clipB

Notice that when we use the [] operator to refer to clipB, we provide the name of clipB as a string, not an identifier. That string

reference can be any valid string-yielding expression. For example, here's a reference to clipB that involves a string concatenation:

var clipCount = "B";
clipA["clip" + clipCount]; // Refer to clipB inside clipA
clipA["clip" + clipCount].stop(); // Invoke a method on clipB

We can create clip references dynamically to refer to a series of sequentially named clips:

// Here's a loop that stops clip1, clip2, clip3, and clip4
for (var i = 1; i <= 4; i++) {
 _root["clip" + i].stop();
}

Now that's powerful!

13.5.6.2 Storing references to clips in data containers

We began this chapter by saying that though movie clips are technically their own datatype, they are treated as objects in ActionScript.
Hence, we can store a reference to a movie clip instance in a variable, an array element, or an object property.

Recall our earlier example of a nested instance hierarchy (clipC nested inside clipB nested inside clipA) placed on the main

timeline of a document. If we store these various clips in data containers, we can control them dynamically using the containers instead of
explicit references to the clips. Example 13-2, which shows code that is placed on a frame in the main timeline, uses data containers to store
and control instances.

Example 13-2. Storing clip references in variables and arrays

var x = clipA.clipB; // Store a reference to clipB in the variable x
x.play(); // Play clipB
// Now let's store our clips in the elements of an array
var theClips = [clipA, clipA.clipB, clipA.clipB.clipC];
theClips[0].play(); // Play clipA
theClips[1]._x = 200; // Place clipB 200 pixels from clipA's registration point

// Stop all the clips in our array using a loop
for (var i = 0; i < myClips.length; i++) {
 myClips[i].stop();
}

By storing clip references in data containers, we can manipulate the clips (such as playing, rotating, or stopping them) without knowing or
affecting the document's clip hierarchy. Storing clip references in variables also make our code more legible. You can use a shorter, simpler
variable name instead of a lengthy absolute or relative path through the movie clip hierarchy.

13.5.6.3 Using for-in to access movie clips

In Chapter 8, we saw how to enumerate an object's properties using a for-in loop. Recall that a for-in loop's iterator variable automatically
cycles through all the properties of the object, so that the loop is executed once for each property:

for (var prop in someObject) {
 trace("the value of someObject." + prop + " is " + someObject[prop]);
}

Example 13-3 shows how to use a for-in loop to enumerate all the clips that reside on a given timeline.

Example 13-3. Finding movie clips on a timeline

for (var property in someClip) {
 // Check if the current property of someClip is a movie clip
 if (typeof someClip[property] = = "movieclip") {
 trace("Found instance: " + someClip[property]._name);
 // Now do something to the clip
 someClip[property]._x = 300;
 someClip[property].play();
 }
}

The for-in loop gives us convenient access to the clips contained by a specific clip instance or main movie. Using for-in, we can control any
clip on any timeline, whether or not we know the clip's name and whether the clip was created manually or programmatically.

Example 13-4 shows a recursive version of Example 13-3. It finds all the clip instances on a timeline, plus the clip instances on all nested
timelines.

Example 13-4. Finding all movie clips on a timeline recursively

function findClips (theClip, indentSpaces) {
 // Use spaces to indent the child clips on each successive tier
 var indent = " ";
 for (var i = 0; i < indentSpaces; i++) {
 indent += " ";
 }
 for (var property in theClip) {
 // Check if the current property of theClip is a movie clip
 if (typeof theClip[property] = = "movieclip") {
 trace(indent + theClip[property]._name);
 // Check if this clip is parent to any other clips
 findClips(theClip[property], indentSpaces + 4);
 }
 }
}
findClips(_root, 0); // Find all clip instances descended from main timeline

For more information on recursion, see Section 9.9 in Chapter 9.

13.5.6.4 The _name property

As we saw earlier in this chapter under Section 13.3.3, every instance's name is stored as a string in the built-in property _name. We can

use that property, as we saw in Example 13-1, to determine the name of the current clip or the name of some other clip in an instance
hierarchy:

this._name; // The current instance's name
_parent._name // The name of the clip that contains the current clip

The _name property comes in handy when we want to perform conditional operations on clips according to their identities. For example,

here we duplicate the seedClip clip when it loads:

onClipEvent (load) {
 if (this._name = = "seedClip") {
 this.duplicateMovieClip("clipCopy", 0);
 }
}

By checking explicitly for the seedClip name, we prevent infinite recursion—without our conditional statement, the load handler of

each duplicated clip would cause the clip to duplicate itself.

13.5.6.5 The _target property

Every movie clip instance has a built-in _target property, which is a string that specifies the clip's absolute path using the deprecated

Flash 4 "slash" notation. For example, if clipB is placed inside clipA, and clipA is placed on the main timeline, the _target
property of these clips is as follows:

_root._target // Contains: "/"
_root.clipA._target // Contains: "/clipA"
_root.clipA.clipB._target // Contains: "/clipA/clipB"

13.5.6.6 The targetPath() function

The targetPath() function returns a string that contains the clip's absolute reference path, expressed using dot notation. The targetPath()
function is the modern, object-oriented equivalent of _target. It takes the form:

targetPath(theClip)

where theClip is the identifier of the clip whose absolute reference we wish to retrieve. Here are some examples, using our familiar

example hierarchy:

targetPath(_root); // Contains: "_level0"
targetPath(_root.clipA); // Contains: "_level0.clipA"
targetPath(_root.clipA.clipB); // Contains: "_level0.clipA.clipB"

The targetPath() function gives us the complete path to a clip, whereas the _name property gives us only the name of the clip. (This is

analogous to having a complete file path versus just the filename.) So, we can use targetPath() to compose code that controls clips based not
only on their name but also on their location. For example, we might create a generic navigational button that, by examining its targetPath(),
sets its own color to match the section of content within which it resides. See the example under the Selection object in the ActionScript
Language Reference for a demonstration of targetPath() in action.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.6 Removing Clip Instances and Main Movies

We've seen how to create and refer to movie clips; now let's see how to turn them into so many recycled electrons (in other words, blow
'em away).

The manner in which we create an instance or a movie determines the technique we use to remove that instance or movie later. We can
remove movies and instances explicitly using unloadMovie() and removeMovieClip(). Additionally, we can evict a clip implicitly by
using loadMovie(), attachMovie(), or duplicateMovieClip() to place a new clip in its stead. Let's look at these techniques individually.

13.6.1 Using unloadMovie() with Instances and Levels

The built-in unloadMovie() function can remove any clip instance or main movie—both those created manually and those created via
loadMovie(), duplicateMovieClip(), and attachMovie(). It can be invoked either as a global function or as a instance-level method:

unloadMovie(clipOrLevel); // Global function
clipOrLevel.unloadMovie(); // Method

In the global function form of unloadMovie(), clipOrLevel is a string indicating the path to the clip or level to unload. Because

movie clips are converted to paths when used as strings, clipOrLevel can also be a movie clip reference. In the method form of

unloadMovie(), clipOrLevel must be a reference to a movie clip object. The exact behavior of unloadMovie() varies according

to whether it is used on a level or an instance.

13.6.1.1 Using unloadMovie() with levels

When applied to a level in the document stack (e.g., _level0, _level1, or _level2), unloadMovie() completely removes the

target level and the movie that the level contains. Subsequent references to the removed level yield undefined. Removing

document levels is the most common use of the unloadMovie() function:

unloadMovie("_level1");
_level1.unloadMovie();

13.6.1.2 Using unloadMovie() with instances

When applied to an instance (whether the instance is manually or programmatically created), unloadMovie() removes the contents of
the clip, but it does not remove the clip itself ! The timeline and canvas of the clip are removed, but an empty shell remains on stage.
That shell can be referenced until the instance is removed permanently via removeMovieClip() or until the span of frames on which the
instance resides ends. Furthermore, any onClipEvent() handlers on the shell remain active.

This "partial" deletion of the instance presents an interesting possibility; it lets us maintain a generic container clip whose contents can
be changed repeatedly via loadMovie() and unloadMovie(). For example, we could use a single clip to load sections of a web site or
images in a photo album. The following series of statements demonstrates the technique with an instance called clipA (though in a

real application, these statements would include the appropriate preloader code):

clipA.loadMovie("section1.swf"); // Load a document into clipA
clipA.unloadMovie(); // Unload the document, leaving clipA intact
clipA.loadMovie("section2.swf"); // Load another document into clipA

One note of caution with this approach: when used on an instance, unloadMovie() removes all custom properties of the clip contained
by the instance. Physical properties — such as _x and _alpha — persist, but custom variables, functions, and event handler

callbacks are lost.

If you use the global function form of unloadMovie() with a nonexistent clip or level instance as its
argument, the clip from which you invoked the unloadMovie() function will, itself, unload.

For example, if _level1 is undefined, and we issue the following code from the main timeline of _level0, then _level0 will

unload:

unloadMovie(_level1);

Yes, there's some logic to this behavior, but we'll cover that later in this chapter under Section 13.7. You can avoid the problem by
using a string when specifying the clipOrLevel argument of unloadMovie() or by checking explicitly that clipOrLevel
exists before unloading it. Here's an example of each approach:

unloadMovie("_level1"); // clipOrLevel specified as a string
if (_level1) { // Explicit check to make sure level exists
 unloadMovie(_level1);
}

13.6.2 Using removeMovieClip() to Delete Instances

To delete instances created via duplicateMovieClip(), attachMovie() or createEmptyMovieClip(), we can use removeMovieClip().
We delete an instance when it is no longer needed in our application, such as when an enemy spaceship is destroyed or an alert window
is closed. Note that removeMovieClip() works on duplicated or attached instances only. It cannot delete a manually created instance or
a main movie. Like unloadMovie(), removeMovieClip() can be used in both method and global function form (though the syntax is
different, the effect is the same):

removeMovieClip(theClip) // Global function
theClip.removeMovieClip() // Method

In the global function form of removeMovieClip(), theClip is a string indicating the path to the clip to remove. Because movie

clips are converted to paths when used as strings, theClip can also be a movie clip reference. In the method form of

removeMovieClip(), theClip must be a reference to a movie clip object.

Unlike using unloadMovie(), deleting an instance via removeMovieClip() completely obliterates the entire clip object, leaving no shell
or trace of the clip and its properties. When we execute theClip.removeMovieClip(), future references to theClip yield

undefined.

13.6.3 Removing Manually Created Instances Manually

Clip instances created manually in the Flash authoring tool have a limited life span—they are removed when the playhead enters a
keyframe that does not include them. Hence, manually created movie clips live in fear of the almighty blank keyframe.

Remember that when a movie clip disappears from the timeline, it ceases to exist as a data object. All variables, functions, methods, and
properties that have been defined inside it are lost. Therefore, if we want a clip's information or functions to persist, we should be
careful about removing the clip manually, and we should ensure that the span of frames on which the clip resides extends to the point
where we need that clip's information. (In fact, to avoid this worry entirely, we should attach most permanent code to a frame in the
main movie timeline or to the _global object.) To hide a clip while it's present on the timeline, simply set the clip's _visible
property to false. Setting a clip's _x property to a very large positive number or very small negative number will also hide it from

the user's view, but this approach is discouraged because the clip is still rendered off screen, consuming resources.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.7 Method Versus Global Function Overlap Issues

As we've mentioned several times during this chapter, some movie clip methods have the same name as equivalent global functions.
You can see this for yourself in the Flash authoring tool. Open the Actions panel, make sure you're in Expert Mode, and then take a
look in the Actions folder under Movie Control and Movie Clip Control. You'll see a list of Actions, including gotoAndPlay(),
gotoAndStop(), nextFrame(), and unloadMovie(). These Actions are also available as movie clip methods. The duplication is not
purely a matter of categorization; the Actions are global functions, fully distinct from the corresponding movie clip methods.

So, when we execute:

theClip.gotoAndPlay(5);

we're accessing the movie clip method named gotoAndPlay(). But when we execute:

gotoAndPlay(5);

we're accessing the global function called gotoAndPlay(). These two commands have the same name, but they are not the same
thing. The gotoAndPlay() global function operates on the current instance or movie. The gotoAndPlay() method operates on the
clip object through which it is invoked. Most of the time, this subtle difference is of no consequence. But for some overlapping
method/function pairs, this difference is potentially quite vexing.

Some global functions require a target parameter that specifies the clip on which the function should operate. This target
parameter is not required by the comparable clip methods because the methods automatically operate on the clips through which
they are invoked. For example, in its method form, unloadMovie() works like this:

theClip.unloadMovie();

As a method, unloadMovie() is invoked without parameters, and it automatically affects theClip. But in its global function form,

unloadMovie() works like this:

unloadMovie(target);

The global function version of unloadMovie() requires target as a parameter that specifies which movie to unload. Why should

this be a problem? Well, the first reason is that we may mistakenly expect to be able to unload the current document by using the
global version of unloadMovie() without any parameters, as we'd use gotoAndPlay() without parameters:

unloadMovie();

This format does not unload the current clip. It causes a "Wrong number of parameters" error. The second reason that target
parameters in global functions can cause problems is a little more complex and can be quite a pain to track down if you're not
expecting it. To supply a target clip to a global function that requires a target parameter, we can use either a string, which

expresses the path to the clip we wish to affect, or a clip reference. For example:

unloadMovie(_level1); // Target clip is a reference
unloadMovie("_level1"); // Target clip is a string

We can use a reference simply because references to clip objects are converted to movie clip paths when
used in a string context. This is simple enough, but if the target parameter resolves to an empty

string or an undefined value, the function operates on the current timeline!

These examples demonstrate how an incorrect target clip reference can unintentionally unload the current timeline:

unloadMovie(x); // If x doesn't exist, x yields undefined, so
 // the function operates on the current timeline
unloadMovie(""); // The target is the empty string, so the function operates
 // on the current timeline

This can cause some quite unexpected results. Consider what happens if we refer to a level that doesn't exist:

unloadMovie(_level1);

If _level1 is empty, the interpreter resolves the reference as though it were an undeclared variable. This yields undefined,

so the function operates on the current timeline, not _level1! So, how do we accommodate this behavior? There are a few

options. We can check for the existence of our target before executing a function on it:

if (_level1) {
 unloadMovie(_level1);
}

Or, we can choose to always use a string to indicate the path to our target. If the path specified in our string does not resolve to a real
clip, the function fails silently:

unloadMovie("_level1");

In some cases, we can use the equivalent numeric function for our operation:

unloadMovieNum(1);

Finally, we can choose to avoid the issue altogether by always using clip methods:

_level1.unloadMovie();

For reference, here are the troublemakers (the ActionScript global functions that take target parameters):

duplicateMovieClip()
loadMovie()
loadVariables()
print()
printAsBitmap()
removeMovieClip()
startDrag()
unloadMovie()

If you're experiencing unexplained problems in a movie, you may want to check this list to see if you're misusing a global function.
When passing a clip reference as a target parameter, be sure to double-check your syntax.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.8 Drawing in a Movie Clip at Runtime

Flash MX introduces the ability to draw strokes, curves, shapes, and fills in a movie clip using the Drawing API, a
collection of methods for drawing at runtime. The Drawing API methods are documented in the ActionScript
Language Reference, under the following entries:

MovieClip.beginFill()
MovieClip.beginGradientFill()
MovieClip.clear()
MovieClip.curveTo()
MovieClip.endFill()
MovieClip.lineStyle()
MovieClip.lineTo()
MovieClip.moveTo()

The Drawing API uses the concept of a drawing pen (or simply pen) to refer to the current drawing position,
similar to the drawing pen used in old line plotters. Initially, the drawing pen resides at the registration point of a
movie clip. Using the drawing methods, we can:

Move the pen without drawing any lines or fills, via MovieClip.moveTo()

Draw a straight line from the pen's current position to a specific point, via MovieClip.lineTo()

Draw a curved line from the pen's current position to a specific point, via MovieClip.curveTo()

Draw a shape, via MovieClip.beginFill() and MovieClip.endFill() or MovieClip.beginGradientFill() and
MovieClip.endFill().

Before, during, or after drawing, we can specify the characteristics of the drawing stroke used in any drawing
operation, via MovieClip.lineStyle(). To remove a drawing, we use MovieClip.clear().

Notice that the Drawing API does not include methods for drawing shapes such as a triangle, rectangle, or circle.
We must draw these using the primitive drawing methods, as demonstrated under MovieClip.beginFill() in the
Language Reference.

Detailed coverage of the drawing methods is left to the ActionScript Language Reference. For now, let's take a look
at a couple of examples showing the general use of the Drawing API.

Example 13-5 creates a 100-pixel-long, 2-pixel-thick, straight line extending to the right from the current clip's
registration point.

Example 13-5. Drawing a straight line

// Set stroke to 2-point
this.lineStyle(2);
// Draw the line
this.lineTo(100,0);

Example 13-6 creates a 200-pixel-wide, red square centered on the current clip's registration point.

Example 13-6. Drawing a square

// Set stroke to 3-point
this.lineStyle(3);
// Move the pen to 100 pixels left and above the registration point
this.moveTo(-100,-100);
// Start our red square shape
this.beginFill(0xFF0000);
// Draw the lines of our square
this.lineTo(100, -100);
this.lineTo(100, 100);
this.lineTo(-100, 100);
this.lineTo(-100, -100);
// Close our red square shape
this.endFill();

For a variety of interesting applications of the Drawing API (including drawing arcs, polygons, dashed lines, stars,
and wedges), see:

http://www.formequalsfunction.com/downloads/drawmethods.html

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.9 Using Movie Clips as Buttons

As of Flash Player 6, movie clips (but not main movies) have all the features previously reserved for button symbols. A movie
clip can dynamically define and redefine button event handlers, a hit region, and Up, Over, and Down states; and, unlike
button symbols, movie clips can be instantiated dynamically at runtime. If you are implementing simple interactivity at
authoring time, you can continue to use button symbols happily. But if you are generating complex, dynamic button behavior
at runtime, you'll want to use movie clips.

The first step in implementing button-like behaviors for a movie clip is to define one or more button events for the clip.
Normally, this means assigning a callback function to a predefined button event property (shown next), but the on(event)

button syntax can also be applied to a movie clip directly in the authoring tool. The following code creates a movie clip, adds
a text field to it, and then defines the onRelease() button event handler:

// Create clip
this.createEmptyMovieClip("submit_mc", 1);

// Add text field
this.submit_mc.createTextField("submit_txt", 1, 0, 0, 50, 20);
this.submit_mc.submit_txt.text = "Submit";

// Define button handler
this.submit_mc.onRelease = function () {
 trace("You pressed the submit button.");
}

As is, this movie clip operates perfectly well as a button. But suppose we want to make the word "Submit" easier for users to
click. To define a larger hit area (the region that activates the button) for our movie clip, we'll create a separate hit area movie
clip as follows:

Create a movie clip the size of the desired hit area.1.
Conceal the hit area movie clip by setting its _visible property to false.2.

Assign the hit area movie clip to the hitArea property of the clip with the button events.3.

The movie clip that acts as the hit area can reside on any timeline, but it is normally placed inside the clip with the button
events so that the hit area moves and scales with its parent. For example, the following code uses the Drawing API to create a
hit area movie clip larger than the word "Submit":

// Create hit_mc inside submit_mc
this.submit_mc.createEmptyMovieClip("hit_mc", 0);

// Draw a rectangle in hit_mc
this.submit_mc.hit_mc.moveTo(-30,-15);
this.submit_mc.hit_mc.beginFill(0xFF0000);
this.submit_mc.hit_mc.lineTo(80, -15);
this.submit_mc.hit_mc.lineTo(80, 35);
this.submit_mc.hit_mc.lineTo(-30, 35);
this.submit_mc.hit_mc.lineTo(-30, -15);
this.submit_mc.hit_mc.endFill();

// Hide the hit area movie clip

this.submit_mc.hit_mc._visible = false;

// Set hit_mc as submit_mc's hit area
this.submit_mc.hitArea = this.submit_mc.hit_mc;

So far, our example does not change visually when the mouse is pressed or moved over the Submit button. Using
ActionScript, visual changes to a button can be implemented dynamically within each button event handler. For example, we
can bold the word "Submit" from our submit_mc's onRollOver() event as follows:

// Bold text on roll over
this.submit_mc.onRollOver = function () {
 this.submit_txt.setTextFormat(new TextFormat(null, null, null, true));
}

// Normal text on roll out
this.submit_mc.onRollOut = function () {
 this.submit_txt.setTextFormat(new TextFormat(null, null, null, false));
}

Alternatively, if we are creating our movie clip in the authoring tool, we can define button-state visual changes by creating
keyframes with the special labels _up, _over, and _down, corresponding to the button states Up (mouse is not over the

button), Over (mouse is over the button), and Down (button is being pressed). (Use the Property inspector to assign a label to
a keyframe.) When the mouse interacts with the movie clip, Flash automatically moves the clip's playhead to the appropriately
labeled frame. For example, when the mouse moves over the clip, Flash performs the equivalent of this:

theClip.gotoAndStop("_over");

At each of the labeled button-state frames, we can issue a play() command to create animated button effects. However, we
must be sure to also issue a stop() command on frame 1 of the movie clip, which prevents the movie from playing through all
its button states. Normally, this first frame is labeled _up (the default inactive state for the button).

Movie clips with button events can also use the button properties enabled (used to toggle button behavior on and off),

useHandCursor (used to prevent or enable changes to the mouse pointer when it is over the button), and

trackAsMenu (used to modify the button's onRelease() handler requirements, enabling menu-style behavior). For

example, we can suppress the display of the hand mouse pointer for our submit_mc clip as follows:

submit_mc.useHandCursor = false;

Typical web browser Submit buttons do not show a hand pointer on rollover. For deeper discussion of the button properties
available to movie clips, see the MovieClip class in the ActionScript Language Reference.

Nested button behavior is not supported for movie clips. That is, movie clips inside a movie clip with button behavior cannot
themselves define button behaviors. Furthermore, if a mask and a masked movie clip both define button handlers, only the
mask movie clip's button handlers are activated.

The various types of event handlers for buttons and movie clips have important scope differences, which are discussed in
Chapter 10 under Section 10.9 and summarized in Table 10-1.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.10 Input Focus and Movie Clips

As of Flash Player 6, movie clips instances (but not main movies) can receive keyboard input focus, allowing them
to be controlled by keystrokes, much like a button object is controlled. Input focus is most commonly used by
components that take input in complex graphical user interfaces. For example, a list box can allow the user to scroll
through its items via the up and down arrow keys. The Enter key activates the selected item.

Generally speaking, if a keyboard-driven action is not tied directly to a specific movie
clip, you should use the Key object's listener events — not movie clips with input focus
— to trap the keystrokes. See Key in the Language Reference.

Despite what you might assume, movie clips do not receive keyboard input focus when they are clicked. Instead,
they receive focus either due to the Tab key being pressed or, programmatically, by using the setFocus() method.
To allow a movie clip to receive input focus programmatically, we must explicitly set its focusEnabled
property to true. In contrast, movie clips with button handlers can always receive input focus, even when

focusEnabled is false. Once focusEnabled is true for a clip, we can focus the clip

programmatically with Selection.setFocus(). The user can also focus the clip with the Tab key, provided that the
movie clip's tabEnabled property is true. The movie clip's position in the tab order is dictated by its

tabIndex property.

When a movie clip has input focus, its onKeyUp() and onKeyDown() event handlers become active in their
callback-function form. From these handlers, we can implement keyboard-specific behaviors, such as expanding a
hierarchical menu when the right arrow key is pressed or jumping to the nearest item in a list when a letter is
pressed.

We can detect when a movie clip gains and loses input focus via the onSetFocus() and onKillFocus() events,
defined both by the MovieClip class and the Selection object.

By default, keyboard focus is indicated by a yellow rectangle. The highlight is useful for debugging the tab order,
but it may not be visually appealing. To remove the yellow rectangle, set the MovieClip._focusrect
property to false. If you do this, you should give the end user some indicator as to which screen element has

keyboard focus at runtime. To do so, use the clip's onSetFocus() and onKillfocus() handlers, as shown in the next
example, to toggle some indicator of focus.

In Flash Player 6, moving the mouse while a movie clip or button has focus removes
focus from that clip or button.

The following simplified code shows how an item in a shopping basket might respond to being focused and deleted
via the X key. In a real application, the behavior would most likely be implemented at the class level rather than on
a specific movie clip instance. The doHighlight() and doRemoveHighlight() methods are left as an exercise for the
reader. You might use those handlers to jump the playhead to a label that shows or hides some focus indicator, such
as the dotted line or thick border typically seen around the button with focus in Windows or Macintosh dialog
boxes.

// Allow user to focus item_mc via Tab key
item_mc.tabEnabled = true;

// Allow Selection.setFocus() to focus item_mc
item_mc.focusEnabled = true;

// Highlight item_mc when it is focused
item_mc.onSetFocus = function () {
 this.doHighlight();
}

// Remove highlight from item_mc when it loses focus
item_mc.onKillFocus = function () {
 this.doRemoveHighlight();
}

// Remove item_mc when "x" is pressed and item_mc has focus
item_mc.onKeyDown = function () {
 if (Key.getCode() = = 88) { // The keycode for "x" is 88
 this.removeMovieClip();
 }
}

For much more information on movie clip input focus, consult the ActionScript Language Reference entries for the
properties and methods discussed in this section.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.11 Building a Clock with Clips

Now that you've learned the fundamentals of movie clip programming, let's put this knowledge to use by creating a sample analog clock
application, which exemplifies the typical role of movie clips as basic content containers. See also the various versions of the multiple-choice
quiz posted at the online Code Depot.

In this chapter we saw how to create movie clips with attachMovie() and how to set movie clip properties with the dot operator. With these
relatively simple tools and a little help from the Date and Color classes, we have everything we need to make a clock with functional hour,
minute, and second hands.

First, we'll make the face and hands of the clock using the following steps (notice that we don't place the parts of our clock on the main
Stage—our clock will be generated entirely through ActionScript):

Create a new, empty Flash movie.1.
Create a movie clip symbol, named clockFace, that contains a 100-pixel-wide black circle shape, centered on the clip's registration
point.

2.

Create a movie clip symbol, named hand, that contains a 50-pixel-long, vertical red line.3.
Select the line in hand; then choose Window Info (Flash MX) or Window Panels Info (Flash 5).4.
Because we want the hands to rotate around the center of the clock, we must position the line so that one end is at the registration
point (the center) of the hand clip. Therefore, position the bottom of the line at the center of the clip by setting the line's x-coordinate
to 0 and its y-coordinate to -50.

5.

Now we have to export our clockFace and hand symbols, so that instances of them can be attached dynamically to our movie:

In the Library, select the clockFace clip; then select Linkage from the pop-up Options menu. The Linkage Properties dialog box
appears.

1.

Select the Export For ActionScript checkbox.2.
In the Identifier box, type clockFace, and then click OK.3.

Repeat Steps 1 through 3 to export the hand clip, giving it the identifier hand.4.

The face and hands of our clock are complete and ready to be attached to our movie. Now let's write the script that places the clock assets on
stage and refreshes them with each passing second:

Add the script shown in Example 13-7 to frame 1 of Layer 1 of the main timeline.1.
Rename Layer 1 to scripts.2.

Skim Example 13-7 in its entirety first; then we'll dissect it.

Example 13-7. An analog clock

// Create clock face and hands
attachMovie("clockFace", "clockFace_mc", 0);
attachMovie("hand", "secondHand_mc", 3);
attachMovie("hand", "minuteHand_mc", 2);
attachMovie("hand", "hourHand_mc", 1);

// Position and size the clock face
clockFace_mc._x = 275;
clockFace_mc._y = 200;
clockFace_mc._height = 150;
clockFace_mc._width = 150;

// Position, size, and color the clock hands
secondHand_mc._x = clockFace_mc._x;
secondHand_mc._y = clockFace_mc._y;
secondHand_mc._height = clockFace_mc._height / 2.2;
secondHandColor = new Color(secondHand_mc);
secondHandColor.setRGB(0xFFFFFF);
minuteHand_mc._x = clockFace_mc._x;
minuteHand_mc._y = clockFace_mc._y;
minuteHand_mc._height = clockFace_mc._height / 2.5;
hourHand_mc._x = clockFace_mc._x;
hourHand_mc._y = clockFace_mc._y;
hourHand_mc._height = clockFace_mc._height / 3.5;

// Update the rotation of hands with each passing frame
function updateClock () {
 var now = new Date();
 var dayPercent = (now.getHours() > 12 ?
 now.getHours() - 12 : now.getHours()) / 12;
 var hourPercent = now.getMinutes()/60;
 var minutePercent = now.getSeconds()/60;
 hourHand_mc._rotation = 360 * dayPercent + hourPercent * (360 / 12);
 minuteHand_mc._rotation = 360 * hourPercent;
 secondHand_mc._rotation = 360 * minutePercent;
}

// Update the clock every 100 milliseconds
setInterval(updateClock, 100);

That's a lot of code, so let's review it.

We first attach the clockFace clip and assign it a depth of 0 (we want it to appear behind our clock's hands):

attachMovie("clockFace", "clockFace_mc", 0);

Next, we attach three instances of the hand symbol, assigning them the names secondHand_mc, minuteHand_mc, and

hourHand_mc. Each hand resides on its own layer in the programmatically generated content stack above the main timeline. The

secondHand_mc clip (depth 3) sits on top of the minuteHand_mc clip (depth 2), which sits on top of the hourHand_mc clip

(depth 1):

attachMovie("hand", "secondHand_mc", 3);
attachMovie("hand", "minuteHand_mc", 2);
attachMovie("hand", "hourHand_mc", 1);

We want our clock centered — not in the top-left corner of the Stage — so, we center the clockFace_mc clip on stage and make it

larger using the _height and _width properties. In this example, we assume the movie size is the default (550 x 400 pixels), but we

could have used Stage.width and Stage.height to dynamically retrieve the dimensions of the movie at runtime. As an exercise,

use Stage.onResize() to keep the clock centered even when the movie is resized.

clockFace_mc._x = 275;
clockFace_mc._y = 200;
clockFace_mc._height = 150;
clockFace_mc._width = 150;

Next, we move the secondHand_mc clip onto the clock and make it almost as long as the radius of the clockFace_mc clip:

secondHand_mc._x = clockFace_mc._x;
secondHand_mc._y = clockFace_mc._y;

secondHand_mc._height = clockFace_mc._height / 2.2;

Remember that the line in the hand symbol is red, so all our hand instances thus far are also red. To make our secondHand_mc clip

stand out, we color it white using the Color class. Note the use of the hexadecimal color value 0xFFFFFF (see the Color Class in the

Language Reference for more information on manipulating color):

// Create a new Color object to control secondHand_mc
secondHandColor = new Color(secondHand_mc);
// Assign secondHand_mc the color white
secondHandColor.setRGB(0xFFFFFF);

Next, we set the position and size of the minuteHand_mc and hourHand_mc clips, just as we did for the secondHand_mc
clip:

// Place minuteHand_mc on top of clockFace_mc
minuteHand_mc._x = clockFace_mc._x;
minuteHand_mc._y = clockFace_mc._y;
// Make minuteHand_mc shorter than secondHand_mc
minuteHand_mc._height = clockFace_mc._height / 2.5;
// Place hourHand_mc on top of clockFace_mc
hourHand_mc._x = clockFace_mc._x;
hourHand_mc._y = clockFace_mc._y;
// Make hourHand_mc the shortest of all
hourHand_mc._height = clockFace_mc._height / 3.5;

Now we have to set the rotation of the hands on the clock to reflect the current time. However, we don't just want to set the rotation once. We
want to set it repeatedly, so that our clock hands animate over time. Therefore, we put our rotation code in a function called updateClock(),
which we'll call periodically:

function updateClock () {
 // Store the current time in now
 var now = new Date();

 // getHours() works on a 24-hour clock. If the current hour is greater
 // than 12, we subtract 12 to convert to a regular 12-hour clock.
 var dayPercent = (now.getHours() > 12 ?
 now.getHours() - 12 : now.getHours()) / 12;

 // Determine how many minutes of the current hour have passed, as a percentage
 var hourPercent = now.getMinutes()/60;

 // Determine how many seconds of the current minute have passed, as a percentage
 var minutePercent = now.getSeconds()/60;

 // Rotate the hands by the appropriate amount around the clock
 hourHand_mc._rotation = 360 * dayPercent + hourPercent * (360 / 12);
 minuteHand_mc._rotation = 360 * hourPercent;
 secondHand_mc._rotation = 360 * minutePercent;
}

The first task of updateClock() is to retrieve and store the current time. This is done by creating an instance of the Date class and placing it
in the local variable now. Next we determine, as a percentage, how far around the clock each hand should be placed—much like determining

where to slice a pie. The current hour always represents some portion of 12, while the current minute and second always represent some
portion of 60. We assign the _rotation of each hand based on those percentages. We calculate the hourHand_mc clip's position to

reflect not only the percent of the day but also the percent of the current hour.

Our clock is essentially finished. All that's left to do is call the updateClock() function with the following line of code, which refreshes the
clock display every 100 milliseconds:

setInterval(updateClock, 100);

Test the movie to see if your clock works. If it doesn't, compare it to the sample clock .fla file provided at the online Code Depot, or check
your code against Example 13-7. Updating the clock 10 times per second should create a nice smooth sweep of the second hand, but it may
also be overkill (or a drain on performance of a larger piece).

Reader Exercise: Modify Example 13-7 to update the clock only once per second, and add a "tick-tock" sound synchronized with the second
hand's movement (which should give the illusion of a nice firm snap).

Think of other ways to expand on the clock application: Can you draw the clock programmatically with the Drawing API? Can you make the
clock more portable by turning it into a component? How about dynamically adding minute and hour markings on the clockFace_mc
clip? Can you modify it to display different or multiple time zones? Can you create a stopwatch, complete with a reset button?

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 13. Movie Clips

13.12 Onward!

We've come so far that there's not much more to move on to! Once you understand objects and movie clips
thoroughly, you can tackle most ActionScript projects on your own. But there's still some interesting ground ahead.
Chapter 14 shows how to create MovieClip subclasses and components, such as the UI Components shipped with
Flash MX.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 14. Movie Clip Subclasses and Components

In Chapter 12 we created a custom Ball class and used it to instantiate individual Ball objects. When it came time to display the ball
objects, we were faced with several options. A separate Room class might contain balls and be responsible for drawing them on screen
with the Drawing API. Or, a Ball object might have a property, mc, that contains a movie clip used to represent the ball. In some cases,

it's redundant to have one object that represents a thing (such as a ball) and a separate movie clip object that displays it on screen. Movie
clips, themselves, are already objects, so it often makes sense to use a movie clip to both describe an object and display that object on
screen. In Flash MX, we can do so by creating a subclass based on the MovieClip class, thus creating a specialized type of object that
provides built-in screen display.

In Flash 5, creating a MovieClip subclass involved an arduous series of workarounds that proved
impractical for most developers. Flash MX introduces a formal MovieClip subclassing architecture that
involves the following new features: #initclip, new MovieClip(), Object.registerClass(), and

attachMovie()'s initObj parameter.

To see how MovieClip subclasses are created, we'll implement our Ball class from Chapter 12 as a MovieClip subclass. In our example,
each ball instance will be a movie clip responsible for moving itself around the screen. Read through the code in Example 14-1. We'll
discuss it in the sections that follow. Generally, the code uses the OOP techniques we studied in Chapter 12, but with a few twists
required by the MovieClip subclassing architecture. All of the example code in this chapter can be downloaded from the online Code
Depot.

Example 14-1. The Ball class, a sample MovieClip subclass

// = =
// Create namespace in which to store classes
// = =
if (_global.org = = undefined) {
 _global.org = new Object();
}
if (_global.org.moock = = undefined) {
 _global.org.moock = new Object();
}
// = =
// Create the Ball class
// = =
/*
 * Ball Class. Extends MovieClip.
 * Version: 1.0.0
 * Desc: A movie clip subclass for depicting balls.
 * Requires a Library symbol named ballSymbol.
 *
 * Constructor Params:
 * radius -The ball's size (half its diameter)
 * ballColor -The ball's color
 * x -The ball's initial x position
 * y -The ball's initial y position
 * velocity -The ball's movement vector: {x:0, y:0}
 *

 * Methods:
 * setSize() -Make the ball clip's size match the supplied radius
 * setPosition() -Place the ball clip at an (x,y) coordinate
 * setColor() -Apply an RGB color value to the ball clip
 * move() -Apply the ball's velocity vector to its current position
 *
 * Event Handlers:
 * onEnterFrame() -Invokes move() every frame.
 */
/*
 * Ball Class Constructor (parameters are passed by attachMovie()'s initObj)
 */
org.moock.Ball = function () {
 // Create instance properties
 this.velocity = this.params.velocity;
 // Initialize instance
 this.setPosition(this.params.x, this.params.y);
 this.setColor(this.params.ballColor);
 this.setSize(this.params.radius);
 this.onEnterFrame = this.move;
 // Remove constructor params object from the instance
 delete this.params;
}
/*
 * Set MovieClip as Ball's superclass
 */
org.moock.Ball.prototype = new MovieClip();
/*
 * Associate the Library's ballSymbol with the Ball class
 */
Object.registerClass("ballSymbol", org.moock.Ball);
/*
 * Instance Methods
 */
/*
 * Method: Ball.setSize()
 * Desc: Sets the ball clip's size
 *
 * Params:
 * newRadius -The ball's new radius
 */
org.moock.Ball.prototype.setSize = function (newRadius) {
 this._width = this._height = (newRadius * 2);
};
/*
 * Method: Ball.setPosition()
 * Desc: Sets the ball clip's position to the point (x, y)
 *
 * Params:
 * x -The new horizontal position
 * y -The new vertical position
 */
org.moock.Ball.prototype.setPosition = function (x, y) {
 this._x = x;
 this._y = y;
};

/*
 * Method: Ball.setColor()
 * Desc: Changes the ball clip's color
 *
 * Params:
 * newColor -The numeric RGB color to apply to the ball clip
 *
 */
org.moock.Ball.prototype.setColor = function (newColor) {
 var col = new Color(this);
 col.setRGB(newColor);
};
/*
 * Method: Ball.move()
 * Desc: Moves the ball according to its velocity vector
 *
 * Params: None
 *
 */
org.moock.Ball.prototype.move = function () {
 this._x += this.velocity.x;
 this._y += this.velocity.y;
}
// = =
// START APPLICATION
// = =
main();
// Function: main()
// Desc: Application entry point
function main () {
 // Create an object whose properties will be used
 // as the Ball constructor's parameters
 var ballParams = new Object();
 ballParams.radius = 10;
 ballParams.ballColor = 0xFF0000;
 ballParams.x = 250;
 ballParams.y = 250;
 ballParams.velocity = {x:12, y:4};

 // Assign the ballParams object to a single property
 // of initObj, which we'll pass to attachMovie().
 // Properties of initObj are copied to each ball instance at attach-time.
 var initObj = new Object();
 initObj.params = ballParams;

 // Create a ball
 this.attachMovie("ballSymbol", "redBall", 1, initObj);
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 14. Movie Clip Subclasses and Components

14.1 Creating the Library Symbol

Before returning to the code in Example 14-1, let's set up our movie's assets. Each movie clip subclass is associated
with a movie clip symbol stored in the Library. To create instances of the subclass programmatically, we must
export the symbol for use with ActionScript. Here are the steps we follow to create and export a movie clip symbol
for our Ball class:

Create a movie clip symbol, named ballSymbol, that contains a circle shape.1.
In the Library, select ballSymbol.2.
From the Library's pop-up Options menu, select Linkage. The Linkage Properties dialog box appears.3.
Select the Export For ActionScript checkbox.4.
In the Identifier field, type ballSymbol.5.

Click OK.6.

Next, we'll create the Ball constructor function that will be invoked automatically every time an instance of
ballSymbol is created.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 14. Movie Clip Subclasses and Components

14.2 Creating and Invoking the Subclass Constructor

For now, our Ball constructor (from Example 14-1) is defined on the main timeline of our .fla file. Later, we'll see how to
move the constructor to our ballSymbol Library symbol. The Ball constructor looks very much like the constructor
functions we saw in Chapter 12, with the added feature that it is defined in a global namespace corresponding to the
domain name, moock.org (your classes should be defined in your domain's namespace, as in

com.yoursite.YourClass):

/*
 * Ball Class Constructor.
 */
org.moock.Ball = function () {
 // Create Instance properties.
 // ...
 // Initialize instance.
 // ...
};

However, you'll notice that our class constructor does not define any parameters! Remember that we're creating a
MovieClip subclass, and movie clip instances are not created with the standard new Object() instantiation, which
facilitates parameters. Instead, movie clip instances are created with the functions attachMovie() or duplicateMovieClip(
), which generate the instance and invoke its class constructor (if one is defined). Hence, to supply arguments to our Ball
constructor function, we have to pass them through either attachMovie() or duplicateMovieClip(). But we can't pass the
arguments directly, as we would with the syntax: new Object(arg1,...argn). Instead, we must use a so-called

initObject—an object whose properties are copied to the new instance just before the constructor function runs.

For example, the following code attaches an instance of the movie clip symbol exported as "boxSymbol":

var initObj = new Object();
initObj.description = "A four-sided figure";
this.attachMovie("boxSymbol", "box_mc", 2, initObj);

The code names the new instance "box_mc", places it on depth 2, and passes it an initObject with a single property,

description. After the code runs, the box_mc instance will have a description property set to the value

"A four-sided figure".

In place of true parameters, MovieClip subclass constructors are expected to use the properties set by the attachMovie()
or duplicateMovieClip() initObject. For example, our Ball constructor (shown next) relies on the initObject's params
property—which itself is an object—to pass the parameters x, y, velocity, radius, and ballColor to the

constructor:

org.moock.Ball = function () {
 // Create instance properties
 this.velocity = this.params.velocity;

 // Initialize instance
 this.setPosition(this.params.x, this.params.y);
 this.setColor(this.params.ballColor);
 this.setSize(this.params.radius);
 this.onEnterFrame = this.move;

 // Remove constructor params object from the instance
 delete this.params;
}

When attaching a new instance, we create our initObject like this:

// Create an object whose properties will be used
// as the Ball constructor's parameters.
var ballParams = new Object();
ballParams.radius = 10;
ballParams.ballColor = 0xFF0000;
ballParams.x = 250;
ballParams.y = 250;
ballParams.velocity = {x:12, y:4};

// Assign the ballParams object to the single initObj.params property.
var initObj = new Object();
initObj.params = ballParams;

// Now pass initObj to the instance via attachMovie(). The params
// property is copied to the new instance, with all the constructor
// parameters defined by ballParams.
this.attachMovie("ballSymbol", "redBall", 1, initObj);

In Example 14-1, these instance-creation statements occur within the main() function, so both ballParams and

initObj variables are local, and they are deleted automatically when main() finishes executing. Otherwise, we would

have had to delete ballParams and initObj explicitly, or supply our initObject as an object literal that would

not persist after being passed to attachMovie().

You might wonder why we bothered with a params property. That is, why not just define the radius,

velocity, ballColor, _x, and _y properties directly on the initObject and use them directly in our Ball

constructor, as follows?

// Constructor code
org.moock.Ball = function () {
 // Initialize instance.
 this.setColor(this.ballColor);
 this.setSize(this.radius);
 this.onEnterFrame = this.move;
};

// Attach movie call
var initObj = new Object();
initObj.radius = 10;
initObj.velocity = {x:44, y:2};
initObj.ballColor = 0xFF0000;
initObj._x = 30;
initObj._y = 12;
this.attachMovie("ballSymbol", "redBall", 1, initObj);

While setting object properties directly on the initObj works, it poses two problems:

Code is not properly centralized: the attachMovie() function takes on the responsibility of creating instance
properties, which should be the role of the constructor function.

Constructor parameters (which should be temporary) are left as permanent properties of the new instance. The
property ballColor, for example, is no longer needed after construction, yet it remains defined for as long as

the instance exists.

To centralize our code and ensure that our instance is not unnecessarily cluttered with constructor-parameter properties,
we define all our parameters on a single params property of the initObject. When the constructor finishes executing, it

then deletes the params property:

 // Remove constructor params object from the instance.
 delete this.params;

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 14. Movie Clip Subclasses and Components

14.3 Assigning the MovieClip Superclass

We've created our Ball class constructor, and we have seen how to instantiate Ball objects with attachMovie().
Now we have to make our Ball class a subclass of the MovieClip class. As we saw in Chapter 12, we declare a
class's superclass like this:

SubClass.prototype = new SuperClass();

Hence, it comes as no surprise that we declare MovieClip as Ball's superclass like this:

/*
 * Set MovieClip as Ball's superclass.
 */
org.moock.Ball.prototype = new MovieClip();

However, although we've defined Ball as a subclass of MovieClip, we still need to tell the interpreter to execute the
Ball constructor when we create a new instance of our exported ballSymbol from the Library. To associate an
exported symbol with the desired class constructor, we use Object.registerClass(). Here we associate ballSymbol
with the Ball class:

/*
 * Associate the Library's ballSymbol with the Ball class.
 */
Object.registerClass("ballSymbol", org.moock.Ball);

In plain English, this tells the interpreter, "when a ballSymbol instance is created, invoke the org.moock.Ball()
constructor, with the this keyword pointing to the new ballSymbol instance."

The new MovieClip() statement only establishes a class as a subclass of the MovieClip
class (i.e., it merely establishes inheritance). It cannot be used to create new movie clips
for use in a movie! Use attachMovie(), duplicateMovieClip(), or
createEmptyMovieClip() to create new instances of movie clips or movie clip
subclasses, such as Ball.

For more information on Object.registerClass(), see the ActionScript Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 14. Movie Clip Subclasses and Components

14.4 Packaging Subclass Code and Library Symbols Together

With our superclass assigned, we've created a fully functioning MovieClip subclass, Ball. We can add methods and properties to it via
Ball.prototype, just as we would with any class (as shown in Example 14-1). However, suppose we wanted to share our Ball

class with another developer. We might sensibly put our class in an external .as file and tell the developer to #include the file. But

we'd also have to tell her to make a Library symbol for the class and export that symbol as "ballSymbol". If the developer doesn't

export the symbol, or if she exports it with the wrong linkage identifier, our class won't work.

Maintaining both a class file and an accompanying movie clip symbol can be inconvenient and error prone. To make a MovieClip
subclass more self-contained, we can place our code inside the movie clip symbol itself, between the #initclip and

#endinitclip pragmas (creating a so-called #initclip block).

For example, to package our Ball class inside our ballSymbol movie clip, we place the following code on frame 1 of the ballSymbol's
timeline. (The function body code and some comments have been omitted for brevity).

#initclip

// = =
// Create namespace in which to store classes
// = =
if (_global.org = = undefined) {
 _global.org = new Object();
}
if (_global.org.moock = = undefined) {
 _global.org.moock = new Object();
}

// = =
// Create the Ball class
// = =

// Class Constructor
org.moock.Ball = function () { ... };

// Set MovieClip as Ball's superclass
org.moock.Ball.prototype = new MovieClip();

// Associate the Library's ballSymbol with the Ball class
Object.registerClass("ballSymbol", org.moock.Ball);

// Method: Ball.setSize()
org.moock.Ball.prototype.setSize = function (newRadius) { ... };

// Method: Ball.setPosition()
org.moock.Ball.prototype.setPosition = function (x, y) { ... };

// Method: Ball.setColor()
org.moock.Ball.prototype.setColor = function (newColor) { ... };

// Method: Ball.move()
org.moock.Ball.prototype.move = function () { ... };

#endinitclip

An #initclip block can appear only on frame 1 of a movie clip timeline. If the code is placed on the main timeline or outside of

frame 1 of a movie clip timeline, it generates a compile-time error. Code within the block is executed once, and only once, per movie
clip symbol, just before the first instance of the symbol is created. By defining our Ball class inside the ballSymbol's #initclip
block, we guarantee that the Ball class constructor will be available before the first instance of ballSymbol appears. Methods and
properties defined by Ball will be available immediately to each new Ball instance.

With our Ball class stored in our ballSymbol's #initclip block, we can easily move the entire package between movies by

dragging the ballSymbol from one .fla file's Library to another. Without any more effort, the destination .fla file can then attach and use
instances of ballSymbol.

For more on #initclip, see the Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 14. Movie Clip Subclasses and Components

14.5 Making Movie Clip Components

So far, we've ignored the possibility that an instance of our ballSymbol may be dragged to the Stage manually in the Flash
authoring environment. If that happens, the Ball() constructor executes at runtime, even for instances dragged to the Stage during
authoring (assuming that Ball has been defined as a subclass before the instance is placed on the timeline). But there's no
opportunity to set parameters via an initObject—as with attachMovie() or duplicateMovieClip()—when the instance is created
manually during authoring. To overcome this problem, we must define our movie clip symbol as a component.

A component is simply a movie clip symbol that provides a GUI for setting properties in author-time instances. Typically,
components are also MovieClip subclasses that use the author-time properties as constructor parameters.

Flash MX components are the new and improved incarnation of Flash 5's Smart Clips.

We'll study component creation more closely in Chapter 16. For now, let's see how to turn our ballSymbol into a component. We'll
continue working with ballSymbol from the last section, which defines the Ball class constructor within its #initclip block.

Select ballSymbol in the Library.1.
In the Library's pop-up Options menu, select Component Definition. The Component Definition dialog box appears.2.
Click the + button five times to insert placeholders for five new component parameters.3.
For the five parameters, under Name, enter radius, velocity, color, x, and y. These are the cosmetic author-

time parameter names shown to the end user. You'll recognize them as our Ball constructor parameters.

4.

For the five parameters, under Variable, enter cp_radius, cp_velocity, cp_ballColor, cp_x, and

cp_y. These are the property names that will be set in each ballSymbol instance. The prefix cp_ is our own convention,

meaning "component parameter." We'll use it to identify and delete component parameters after our constructor is finished
using them.

5.

For the five parameters, using the pop-up menu under Type, choose Number, Object, Color, Number, and Number. These
indicate the datatype of each parameter. The Color type also provides the user with a color picker for color selection.

6.

Finally, for the five parameters, under Value, enter 0, {x:0, y:0}, #000000, 0, and 0. Notice that for

velocity and color, a specialized interface offers easy entry of object properties and color values. These are the

default values, but the user can change them when he drags the instance to the Stage.

7.

Click OK.8.

Figure 14-1 shows our ballSymbol component definition.

Figure 14-1. The ballSymbol component definition

Henceforth, when a user drags an instance of ballSymbol to the Stage, the Property inspector will provide them with a GUI for
setting the instance's "component parameters," as shown in Figure 14-2.

Figure 14-2. The ballSymbol component parameter GUI

The parameter values specified by the user in the Property inspector are automatically assigned to properties in the ballSymbol
instance (the property names used are those we specified earlier in Step 5—cp_radius, cp_velocity,

cp_ballColor, cp_x, and cp_y). Although we could simply use these instance properties as-is, we'll modify our Ball

constructor to improve code modularity.

Recall that our original Ball constructor function expects its parameters to be supplied in a single package—the params object.

Therefore, the constructor accesses each parameter as this.params.paramName, as shown in Example 14-1. The

params object also neatly contains all our constructor parameters so that they can be deleted conveniently after construction.

But our component parameters (cp_radius, cp_velocity, etc.), in contrast, are defined directly as properties of new

ballSymbol instances, not on a params object. Just as with the attachMovie() initObject, it's legal to use these direct properties

as-is, without any constructor function intervention. However, doing so encroaches on the duties of our constructor. A normal
constructor function is responsible for creating instance properties and performing instance initialization; it also uses constructor
parameters only to initialize the new instance.

In addition, normal constructor parameters are local to the constructor function, and they expire automatically when the constructor
finishes executing. Our Ball constructor forces the component parameters (cp_radius, cp_velocity, etc.) into the role

of constructor parameters by using them only to initialize the new Ball instance and by deleting them explicitly at the end of the
function. In our Ball constructor, the component parameters are temporary and do not equate to the instance's internal properties.
For example, we might ask the user to specify the ball's diameter as a component parameter but derive and store the ball's radius as
a property instead. Distinguishing between component parameters and our Ball class's properties keeps our code centralized;
properties are created in the constructor as expected, rather than through the Component Definition GUI.

Here's the revised code for our "componentized" Ball constructor. All other code for the Ball class remains the same. Notice how
important code comments become—the constructor defines no parameters, so we must rely on comments to determine the

expected parameters. (In the following code, the comments for version information, methods, and event handlers are omitted for
brevity.) The constructor recognizes component parameters for deletion by looking for the cp_ prefix, which we specified earlier

in the Component Definition dialog box.

/*
 * Ball Class. Extends MovieClip.
 *
 * Component Params:
 * cp_radius -The ball's size
 * cp_ballColor -The ball's color
 * cp_x -The ball's initial x position
 * cp_y -The ball's initial y position
 * cp_velocity -The ball's movement vector: {x:0, y:0}
 *
 * Methods: ...
 *
 * Event Handlers: ...
 */
/*
 * Class Constructor. Parameters are passed by attachMovie()'s initObj.
 */
org.moock.Ball = function () {
 // Create instance properties.
 this.velocity = this.cp_velocity;

 // Initialize instance.
 this.setPosition(this.cp_x, this.cp_y);
 this.setColor(this.cp_ballColor);
 this.setSize(this.cp_radius);
 this.onEnterFrame = this.move;

 // Remove component parameters from the instance (any property that starts
 // with the prefix cp_ is a component parameters).
 for (var p in this) {
 if (p.indexOf("cp_") != -1) {
 delete this[p];
 }
 }
};

Of course, now that we've changed our Ball constructor, we must modify our initObject to use the component property names
when creating ballSymbol instances with attachMovie(). This lets us use one consistent constructor function, whether the
component is created manually at authoring time or programmatically at runtime.

Here's the revised attachMovie() approach:

var initObj = new Object();
initObj.cp_radius = 10;
initObj.cp_ballColor = 0xFF0000;
initObj.cp_x = 250;
initObj.cp_y = 250;
initObj.cp_velocity = {x:12, y:4};

// Create a ball.
this.attachMovie("ballSymbol", "redBall", 1, initObj);

If all clip instances of a subclass will be generated programmatically using attachMovie() or duplicateMovieClip(), you should
design the constructor to accept parameters attached to a single params object within the initObject. However, if you are

creating components that will be instantiated at authoring time, you should design the constructor to accept individual component

parameters starting with the cp_ prefix (and you should attach parameters of the same name directly to the initObject when

instantiating the component programmatically).

14.5.1 Packaging Component Graphics

Many visual components dynamically create their on-screen display at runtime by attaching exported movie clips inside the
component instance. When a component that relies on exported assets is transferred from one .fla file to another, each asset must
be transferred to the target Library. In Flash MX, there is no formal means of packaging a multisymbol component into a single
unit. However, the conventional approach is to place an instance of each asset onto a timeline guide layer inside the component
(see the Flash online Help for a discussion of guide layers). The assets on a guide layer are transferred automatically when the
component is dragged between Libraries, but they do not show up in the component at runtime (unless the component attaches
them explicitly).

14.5.2 Component Template

The following code presents a generic component template that implements a MovieClip subclass. The template does not use a
namespace, such as org.moock, as we did in our Ball example. Nor does the template store all constructor parameters on a

single params object. These optional techniques can be implemented at your discretion. However, the template expects

constructor parameters to be prefixed with cp_, and it deletes all component parameters after construction. Though deleting

constructor parameters is not mandatory, it is wise coding practice.

// CODE PLACED ON FRAME 1 OF someClassSymbol IN THE LIBRARY.

#initclip

/*
 * SomeClass Class. Extends MovieClip
 * Version: 1.0.0
 * Desc: Your description goes here
 *
 * Component Params:
 * cp_param1 -Short description
 * cp_param2 -Short description
 *
 * Methods:
 * someMethod() -Short description
 */

/*
 * Class Constructor
 * (Parameters are passed by an initObj or set as component parameters)
 */
_global.SomeClass = function () {
 // Create Instance properties
 this.prop1 = this.cp_param1;
 // Initialize instance
 this.someMethod(this.cp_param2);
 // Remove component params (those with the cp_ prefix) from the instance
 for (var p in this) {
 if (p.indexOf("cp_") != -1) {
 delete this[p];
 }
 }
};

/*
 * Set MovieClip as SomeClass's superclass
 */

SomeClass.prototype = new MovieClip();

/*
 * Associate the someClassSymbol in the Library with SomeClass
 */
Object.registerClass("someClassSymbol", SomeClass);

/*
 * Instance Methods
 */

/*
 * Method: SomeClass.someMethod()
 * Desc: Short description
 *
 * Params:
 * param -Short description
 *
 */
SomeClass.prototype.someMethod = function (param) {
 trace("someMethod invoked with parameter of: " + param);
};

#endinitclip

The following code shows example usage of the SomeClass template. To see a manually created SomeClass instance, download
the componentTemplate.fla file from the Code Depot.

// Create an instance
var initObj = new Object();
initObj.cp_param1 = 15;
initObj.cp_param2 = "Hello world";
this.attachMovie("someClassSymbol", "someClassInstance", 1, initObj);

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 14. Movie Clip Subclasses and Components

14.6 MovieClip Sub-Subclasses

Just like a regular class, a MovieClip subclass can itself be extended by another subclass. When a parent class is defined outside of its
corresponding movie clip symbol (as in the very first Ball example in this chapter), its child subclass can be defined by:

Setting the child's prototype to a new parent instance

Registering the child class with its symbol via Object.registerClass()

Remember also to invoke the parent's constructor function from the child constructor. For example, the following code shows how to
create a subclass, Baseball, of our existing class, Ball:

// Baseball class constructor
org.moock.Baseball = function () {
 // ... init code ...

 // Invoke Ball class constructor
 super();
}

// Set Baseball's superclass to Ball
org.moock.Baseball.prototype = new org.moock.Ball();

// Associate the Baseball class with its own Library symbol
Object.registerClass("baseballSymbol", org.moock.Baseball);

However, when both the subclass (Ball) and the sub-subclass (Baseball) are defined inside a movie clip symbol's #initclip block,

we must ensure that the subclass is initialized before any of the sub-subclasses. To do so, we use the order parameter of the

#initclip pragma, which is a nonnegative integer specifying the execution order of a particular #initclip block, relative to

all other #initclip blocks in the movie. Those #initclip blocks with lower order numbers are always executed before

those with higher ones. All #initclip blocks without a specified order are executed before those with a specified order.

For example, to create a Baseball class inside the movie clip baseballSymbol, we must change the first line of our Ball class code to:

#initclip 0

Then we can create our Baseball class as follows:

// Use a higher #initclip order than Ball uses, guaranteeing that Ball
// will be available before this code runs.
#initclip 1

// = =
// Create namespace in which to store classes
// = =
if (_global.org = = undefined) {
 _global.org = new Object();
}
if (_global.org.moock = = undefined) {
 _global.org.moock = new Object();
}

// = =
// Create the Baseball class
// = =

/*
 * Baseball Class. Extends Ball.
 * Version: 1.0.0
 * Desc: A movie clip subclass for depicting baseballs
 *
 * Constructor Params:
 * signature -The ball's signature
 *
 * Methods:
 * setSignature() -Set the signature on the ball
 */

/*
 * Class Constructor. Parameters are passed by attachMovie()'s initObj.
 */
org.moock.Baseball = function () {
 // Create Instance properties.
 this.sig = null;

 // Initialize instance before calling Ball constructor. (Otherwise,
 // Ball will delete the params object before we get a chance to use it.)
 this.setSignature(this.params.signature);
 // Invoke Ball class constructor.
 super();

 // No need to delete params object, because the Ball constructor does that.
};
/*
 * Set Ball as Baseball's superclass.
 */
org.moock.Baseball.prototype = new org.moock.Ball();

/*
 * Associate the Library's baseballSymbol with the Baseball class
 */
Object.registerClass("baseballSymbol", org.moock.Baseball);
/*
 * Instance Methods
 */

/*
 * Method: Ball.setSignature()
 * Desc: Sets the ball's signature
 *
 * Params:
 * newSig -The ball's new signature
 */
org.moock.Ball.prototype.setSignature = function (newSig) {
 this.sig = newSig;
};

#endinitclip

Note that multiple #initclip blocks can share a single order position. For example, if we create three subclasses of Ball, we

can set all of their #initclip order parameters to 1. All that matters is that the Ball's #initclip order is lower than all its

subclasses.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 14. Movie Clip Subclasses and Components

14.7 Summary

Over the course of this chapter, we've studied three related but distinct types of MovieClip subclasses:

A subclass defined outside of its Library symbol

A subclass embedded in its Library symbol (inside an #initclip directive)

A component, which allows component parameters to be specified at authoring time via a GUI

The type of MovieClip subclass you use in your application depends entirely upon your situation. If you must allow
for author-time placement of instances, you'll very likely need to create a component. Similarly, if you plan to
distribute your subclass to other developers, a component makes for a good transport mechanism. Otherwise, you
can skip the component-definition step. In any event, you should normally define your subclass directly inside its
associated Library symbol, within an #initclip block. While not legally required, storing a subclass in its

associated symbol makes the entire package easier to maintain.

Movie clip subclasses and components are two cornerstones of the Flash MX application development process. By
creating code libraries as components, we can rapidly assemble applications based on reusable assets. Macromedia
bundles a number of useful UI Components with Flash MX. You should familiarize yourself with these
components, their methods, and parameters (see Appendix G). The Flash UI Components source code is included
with Flash MX, so you can study and extend these components to create your own.

For further component study, see:

Introduction to Components Tutorial

In the Flash MX authoring tool, select Help Tutorials Introduction to Components.
Using Components

In the Flash MX authoring tool, select Help Using Flash Using Components.
Building an Address Book with Components (by Colin Moock)

http://www.macromedia.com/desdev/mx/flash/articles/addressbook.html
Creating Forms with Components in Macromedia Flash MX

http://www.macromedia.com/support/flash/applications/creating_forms/
Creating Components in Macromedia Flash MX

http://www.macromedia.com/support/flash/applications/creating_comps/
Creating a Flash MX Component

http://www.flashcomponents.net/tutorials/triangle/triangle.html
Extending Components in Macromedia Flash MX

http://www.macromedia.com/desdev/mx/flash/articles/fmx_components.html
Customizing the ListBox and ComboBox Components

http://www.macromedia.com/desdev/mx/flash/articles/extending_components.html
Macromedia's Flash Component Exchange

http://www.macromedia.com/exchange/flash

Third-Party Component Exchange

http://www.flashcomponents.net/

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 14. Movie Clip Subclasses and Components

14.8 Onward!

Components and movie clip subclasses were our last major topic of study in ActionScript's language fundamentals.
Before we move on to the ActionScript Language Reference, we'll study lexical structure (the finicky details of
ActionScript syntax), and we'll put things together in a final application tutorial, Chapter 17. See also Chapter 16
for more information on the component definition process.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 15. Lexical Structure

The lexical structure of a language is the set of rules that govern its syntactic composition. We must follow these
rules when writing the source code of our scripts.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 15. Lexical Structure

15.1 Whitespace

The tab, space, and carriage return (i.e., line break) characters are used in ActionScript just as they are used in English: to
separate words from each other so that they don't all runtogetherlikethis. In programmer-speak, these characters are known as
whitespace and are used in source code to separate tokens (the keywords, identifiers, and expressions roughly akin to words,
phrases, and sentences in English). Here is an example of incorrect and correct whitespace usage:

varx; // Oops! No whitespace between the var keyword and the variable x.
var x; // That's better...because of the whitespace, the interpreter
 // can now understand our code.

Whitespace is optional when there is some other delimiter (separator) that tells ActionScript where one token ends and another
begins. The following code is quite legitimate, because the operators =, +, and / separate x, 10, 5, and y from one another:

x=10+5/y; // Crowded, but legitimate
x = 10 + 5 / y; // Easier to read, but the same as above

Similarly, whitespace is optional when there are other characters—such as square brackets, parentheses, curly braces, commas,
and greater-than or less-than signs—to act as delimiters. These are all perfectly legal, if somewhat claustrophobic:

for(var i=0;i<10;i++){trace(i);}
if(x= =7){y=[1,2,3,4,5,6,7,8,9,10];}
myMeth=function(arg1,arg2,arg3){trace(arg1+arg2+arg3);};

Extra whitespace is simply a matter of style, because it is ignored by the ActionScript interpreter. That said, there are
conventions you should follow to make your code more readable. For example, the following is another legitimate way to
rewrite the earlier assignment expression, but it is obviously harder to read:

x =
 10
 + 5
 / y;

Notice that the statement is terminated by the semicolon, not the line breaks. In nearly all cases, line breaks are inconsequential
and do not act as statement terminators. Hence, we often use one or more line breaks (in concert with spaces or tabs) to make
complex statements easier to read:

myNestedArray = [[x, y, z],
 [1, 2, 3],
 ["joshua davis", "yugo nakamura", "james patterson"]];
// Much nicer than:
myNestedArray = [[x, y, z], [1, 2, 3],["joshua davis","yugo nakamura",
"james patterson"]];
// And also nicer than:
myNestedArray = [[x, y, z],
[1, 2, 3],
["joshua davis","yugo nakamura","james patterson"]];

You don't need to do anything special to break a statement onto more than one line. Simply add a carriage return and keep
typing. For good advice on making your code more readable, see Code Complete, by Steve McConnell (Microsoft Press).
However, there are times when line breaks may be misinterpreted as statement terminators, as we'll see in the next section.

Note that whitespace within the quotes that delimit a string is relevant, whereas whitespace outside the quotes is ignored.
Compare these two examples:

x = 5;
trace("The value of x is" + x); // Displays: "The value of x is5"
trace("The value of x is "+x); // Displays: "The value of x is 5"

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 15. Lexical Structure

15.2 Statement Terminators (Semicolons)

As we saw in Chapter 6, the semicolon terminates an ActionScript statement. Though by convention you should
always end your statements with semicolons, they are not strictly required in ActionScript. If the semicolon is
omitted, the interpreter attempts to infer the end of a statement. For example:

// These are preferred
var x = 4;
var y = 5;
// But these are also legal
var x = 4
var y = 5

The ActionScript interpreter assumes that the line breaks in this code are intended as statement terminators.
(Compilers in stricter languages such as C would complain.) However, omitting semicolons from statements in
code is somewhat like omitting periods from sentences in normal writing—the reader will probably understand
most of your sentences, but there will always be cases that lead to confusion. Not to mention it's more taxing to
read. For example, consider what happens when we omit a semicolon after the return statement:

function addOne (value) {
 return
 value + 1
}

ActionScript will assume that we meant to write this:

function addOne (value) {
 return;
 value + 1;
}

Instead of returning value + 1, the function will always return undefined, because the keyword return
alone is a legal statement. Even if "return" appears alone on a line, and even if we add a semicolon after

value + 1, the return statement is still treated as a complete statement.

To avoid this type of ambiguity, it's good practice to include semicolons. Furthermore, in the specific case of the
return statement, don't separate the keyword return from its expression with a line break, as that alters the

statement's meaning. Therefore, the preceding example should be written as:

function addOne (value) {
 return value + 1;
}

Similarly, a postfix ++ or -- operator should always appear on the same line as its operand:

// Right
x++
// Wrong
y
++

Note that semicolons terminate individual statements but are not required where statement block delimiters (curly
braces) occur. For example:

for (var i=0;i<10;i++) { // No semicolon here
 trace(i); // Semicolon here
} // No semicolon here

if (x = = 10) { // No semicolon here
 trace("x is ten"); // Semicolon here
} else { // No semicolon here
 trace("x is not ten"); // Semicolon here
} // No semicolon here

on (release) { // No semicolon here
 trace("Click"); // Semicolon here
} // No semicolon here

However, the semicolon is mandatory following a function literal:

function (param1, param2, ... paramn) { statements };

The special #include directive, and the #initclip and #endinitclip pragmas should not be

followed by a semicolon and will cause an error if used with one. For correct usage, see the Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 15. Lexical Structure

15.3 Comments

So-called comments are text that is ignored by the interpreter but entered by the programmer specifically for the benefit of
humans reading the code. Comments should be used liberally to explain what the code does, provide version control
information, or describe other relevant information, such as how a data structure is being used or why certain programming
choices were made. Comments should describe your code at the conceptual level, not merely mirror the syntax of the code
itself. For example, the following comment is useless:

// Set x equal to 5
var x = 5;

whereas the following comment tells us why we're setting x to 5, which helps us follow the flow of the code:

// Initialize our player's x position
var x = 5;

Note that you can go a long way toward making your code "self-commenting" by using descriptive variable names and handler
names. Consider which of the following is clearer:

x = y / z; // This is very cryptic
average = sum / numberOfItems; // This hardly needs explanation

ActionScript supports both one-line comments and extended, multiline comments. One-liners, as we've seen throughout this
book, begin with two forward slashes (//):

// Ah, human contact...this will never be read by the interpreter

One-line comments are automatically terminated by the line break at the end of the line. You must repeat the // characters to

add more comment text on the following line:

// Here is the start of a comment...
// ...and here's some more of it.

One-line comments can also follow real code on the same line:

var x; // This is a valid comment on the same line as code

ActionScript also supports multiline comments, used to accommodate larger blocks of code commentary, that are not
terminated by line breaks. Multiline comments start with the two-character sequence /* and continue until the terminating two-

character sequence */ is encountered, as in:

/* -----BEGIN VERSION CONTROL INFO----
 Name: MyApplication, Version 1.3.1
 Author: Killa Programma
 Last Modified: August 07, 2002
 ------END VERSION CONTROL INFO-----
*/

Multiline comments are available only in Expert Mode in the Actions panel or in external .as source files included via the
#include directive. Multiline comments are converted to single-line comments when you switch from Expert Mode to

Normal Mode. In Flash MX, switching back to Expert Mode restores multiline comments. Note that nested comments are legal:

/* This is an example of
/* a nested // comment */

/* This another
/* example of nested comment */
The comment doesn't end until the second terminator is encountered here */

The following is avoided by convention, but it is valid:

/* This comment is followed by real code */ var x = 5;

When making major (or even minor) revisions to some code, it is common practice to include your initials and the date of the
change in a comment, such as this:

// Fixed error in financial calculation. BAE 12-04-02. V1.01

Comments let us temporarily disable code (or permanently disable old code) instead of deleting it. Disabling code by making it
into a comment is known as commenting out the code. It is easy to reenable the code by removing the comment delimiters:

/* Disable this block of code until I change my mind
duplicateMovieClip("character", "newCharacter", 1);
newCharacter._rotation = 90;
*/

You can disable a single line of code by simply preceding it with two slashes:

// newCharacter._rotation = 90;

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 15. Lexical Structure

15.4 Reserved Words

Some reserved words are used by the ActionScript interpreter to denote specific built-in language features, such as statements and operators.
They are reserved for use by the interpreter, and we must avoid using them as identifiers in our code. Using a reserved word for any purpose
other than its reserved internal purpose causes an error in most cases. ActionScript's reserved words are listed in Table 15-1.

Table 15-1. ActionScript's reserved words

add[1] delete ge[1] le[1] onClipEvent this

and[1] do gt[1] lt[1] or[1] typeof

break else if ne[1] return var

case eq[1] ifFrameLoaded[1] new super void

continue for in not[1] switch while

default function instanceof on tellTarget[1] with

[1] Flash 4 reserved words that have been deprecated as of Flash 5.

You should also try to avoid using the keywords listed in Table 15-2. They are not reserved words for ActionScript in Flash MX, but they
may become a part of the language in the future, because they are slated for potential use by ECMA-262.

Table 15-2. Potential reserved words in the future

abstract const final int protected transient

boolean debugger finally interface public try

byte double float long short volatile

catch enum goto native static

char export implements package synchronized

class extends import private throws

In addition to the formally defined reserved keywords, you should also avoid using the names of built-in
properties, methods, and objects as identifiers in your code. Doing so overrides the default behavior of the
property, method, or object in question.

The following is a bad idea because the Date variable overrides the built-in constructor of the same name:

Date = new Object(); // Oops! We just disabled the Date() constructor

Now we can no longer create Date objects:

var now = new Date(); // Sets now to undefined
trace(now); // Displays the empty string, not the current time and date

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 15. Lexical Structure

15.5 Identifiers

All variables, functions, and object properties are named with identifiers. ActionScript identifiers must be
composed according to the following rules:

Identifiers must start with a letter, underscore, or dollar sign (not a number).

Identifiers cannot be identical to reserved words.

For safety, identifiers should include only letters (A-Z or a-z), numbers, underscores, and dollar signs. Be
especially careful never to use spaces, periods, backslashes, or other punctuation in identifiers. However,
most Unicode characters are, in fact, permitted in identifiers, according to the rules outlined in section 3.16
of the Unicode standard. (See http://www.unicode.org/unicode/standard/standard.html).

A character in an identifier cannot be specified with a Unicode escape sequence (\uxxxx). (This is a
departure from ECMA-262, v3, which allows escape sequences in identifiers.)

See the next section on case-sensitivity for more caveats about identifiers.

Though not strictly required, it's also good practice to follow these rules when composing movie clip instance
names, symbols, symbol export identifiers, frame labels, and layer names. For information on using standardized
suffixes in identifier names (such as _mc to indicate a movie clip) see Table 2-1 in Chapter 2.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 15. Lexical Structure

15.6 Case Sensitivity

When a language is fully case sensitive, every token in the language—including all identifiers and keywords—must be
entered with the correct capitalization. For example, in case-sensitive languages, the statement:

If (x = = 5) {
 x = 10;
}

would cause an error, because the if keyword is improperly capitalized as If. Furthermore, in case-sensitive languages, the

following two statements would declare two separate variables (one named firstName and a second one named

firstname):

var firstName = "doug";
var firstname = "terry";

The ECMA-262 specification, upon which ActionScript is based, demands complete case sensitivity. ActionScript, however,
diverges from the standard in the area of case sensitivity in order to maintain backward compatibility with Flash 4 movies. In
ActionScript, the keywords in Table 15-1 are case sensitive, but identifiers, frame labels, and symbol export IDs are not. In
the following example, the onClipEvent keyword is incorrectly capitalized as onclipevent and causes an error:

// ERROR! Should be onClipEvent (enterFrame) {
onclipevent (enterFrame) {
 this._x++;
}

But unlike keywords, identifiers are not case sensitive in ActionScript, so the following statements assign a value to the same
variable:

var firstName = "margaret";
var firstname = "michael";
trace(firstName); // Yields "michael"
trace(firstname); // Also yields "michael" (the variables are the same)

Even internal identifiers, such as property names and function names, are not case sensitive in ActionScript. The following
line causes an error in JavaScript but successfully creates an array in ActionScript:

myList = new array(); // Should preferably be new Array();

This can present problems when porting JavaScript code to ActionScript or for JavaScript programmers learning
ActionScript. Case sensitivity is often used in JavaScript to apply the same name to different purposes. For example, the
statement:

date = new Date(); // Works in JavaScript but not ActionScript

will have destructive effects in ActionScript where the identifier date is not distinguished from the object class Date. In

ActionScript, the preceding code disables the built-in Date class. We must therefore ensure that our identifiers are
distinguished by more than just case, both from one another and from any predefined identifiers, such as Date or Array.
Here's how we rewrite the previous code in ActionScript:

theDate = new Date(); // Use this approach in ActionScript

Frame labels and symbol export IDs are also not case-sensitive. For example, the following gotoAndPlay() function will
work even if the destination label is INTRO instead of Intro:

gotoAndPlay("Intro");

Similarly, a symbol exported as "SHIP" can be attached as follows:

this.attachMovie("ship", "enemyShip", 1);

However, these case mismatches are not recommended practice. The key in all situations is to be consistent—even when
consistency is not strictly required by the language. Consistently capitalizing variables, functions, instances, and other items
makes our code easier to read and prevents future changes in ActionScript's case rules from breaking our hard work.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 15. Lexical Structure

15.7 Onward!

As far as ActionScript language fundamentals go, we've reached the end of the road. You're now fully equipped to
both read and write ActionScript. Chapter 16 covers the ActionScript authoring environment.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 16. ActionScript Authoring Environment

This chapter examines the practical details of authoring ActionScript code. We'll cover the following topics:

Using the Actions panel to place code on buttons, movie clips, and frames

Loading code from an external file

Creating components (reusable code modules)

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.1 The Actions Panel

The Actions panel is Flash's ActionScript-editing environment. Every script in a movie is created in the Actions
panel, which is accessed via Window Actions (F9).

The Actions panel can operate in Expert Mode or Normal Mode. When in Expert Mode, the panel is divided into
two sections: the Toolbox pane (on the left) and the Script pane (on the right), as shown in Figure 16-1.

Figure 16-1. The Actions panel

The Script pane houses code attached to the currently selected frame, button, or movie clip. The Toolbox acts as
both a quick reference guide and a means of adding code to the Script pane. Double-clicking any item in the
Toolbox adds that item to the Script pane. Items can also be dragged from the Toolbox into the Script pane.

The Actions panel's title bar indicates whether our current code lives on a frame ("Actions - Frame"), a button
("Actions - Button"), or a movie clip ("Actions - Movie Clip"). When code cannot be attached to the current
selection, the Actions panel title is simply "Actions", and the Script pane is disabled.

The Actions panel's pop-up Options menu button provides access to various tools and settings, such as printing and
enabling line numbers. The script navigation bar indicates the exact location of the current script and can be used
to navigate quickly between scripts on the current timeline.

The organization of the items in the Toolbox differs somewhat from the categories used in this book to describe the
features of ActionScript. Most notably, in the Toolbox, statements are not separated into their own folder, and
classes and objects are grouped together under the Objects folder. In this book, we distinguish between statements,
classes, and objects in keeping with more traditional programming terminology. For an alphabetical list, use the
index at the bottom of the Toolbox or, of course, this book's ActionScript Language Reference.

16.1.1 Editing Modes

The Actions panel has two different modes of operation, Normal Mode and Expert Mode, which govern how we

add code to the Script pane.

16.1.1.1 Normal Mode

In Normal Mode, the Toolbox is used to build new statements, and the Script pane is used as a viewer for those
statements. To add a new statement to the Script pane in Normal Mode, we double-click the desired Action or drag
an Action from the Toolbox to the Script pane. To add a statement of arbitrary code, we select the evaluate Action
(under Actions Miscellaneous Actions) and enter the statement into the Expression field of the Parameters
pane at the top of the Actions panel (the Parameters pane is not shown in Figure 16-1).

After adding a statement to the Script pane, we can customize it via the Parameters pane at the top of the Actions
panel. The layout and contents of the Parameters pane change to suit the statement selected in the Script pane.
Notice that when the Actions panel is operating in Normal Mode, code cannot be entered directly into the Script
pane. In Normal Mode, the Script pane is not a text-editing environment, but rather a read-only list of statements;
alterations to statements in the Script pane are performed through the Parameters pane.

Normal Mode is comforting for new programmers but constricting for most nontrivial programming projects. In
this book, therefore, we use only the Expert Mode to author code. However, with the exception of multiline
comments (which can be used only in Expert Mode), any code produced in one mode can also be produced in the
other.

16.1.1.2 Expert Mode

In Expert Mode, the Script pane functions as a traditional text-editing window. When authoring or changing code
in Expert Mode, we enter text directly into the Script pane. However, we can still double-click items in the
Toolbox to add them to the Script pane. The Parameters pane is not used in Expert Mode; instead, parameters are
typed directly into the Script pane.

16.1.1.3 Setting the editing mode

In Flash 5, the editing mode of the Actions panel is set on a per-frame and per-object basis. That is, Flash
remembers the editing mode chosen for every object and frame in a movie. If we select Normal Mode for frame 2
and Expert Mode for frame 3, the Actions panel automatically switches to Normal Mode when we edit the code on
frame 2 and Expert Mode when we edit the code on frame 3.

In Flash MX, the editing mode of the Actions panel is a permanent toggle, accessed via the pop-up Options menu
shown in Figure 1-2 in Chapter 1.

In Flash 5, the editing mode can be set globally under Edit Preferences General Actions Panel
Mode.

In Flash 5, switching from Expert Mode to Normal Mode destroys all source-code formatting. The code is
reformatted according to Flash's standard formatting rules—extra whitespace is lost, and statement block
indentation is adjusted to match the style shown throughout this book. In Flash MX, source-code formatting is
preserved between mode switches.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.2 Adding Scripts to Frames

Flash documents are fundamentally structured around the concept of animation. Every Flash document comprises a
linear sequence of frames, or slices of visual and audio content. A great deal of ActionScript code is tied to this
frame-based structure. By placing a code block on a frame, we stipulate the timing of that block's execution relative
to the playback of the movie. Whenever we add code to a frame, we must always consider not only what we want
the code to do, but also when we want the code to execute.

For example, we may want to write some code that places a new movie clip on stage when the 20th frame of a
movie is displayed:

_root.attachMovie("myClip", "clip1", 0);

In order for this code to execute when the 20th frame is displayed, we must attach it to a keyframe at frame 20 of the
movie.

ActionScript code attached to a frame must reside in a keyframe. Use Insert
Keyframe or Insert Blank Keyframe to create a keyframe to which your code can be
attached.

To attach code to a keyframe, we select the keyframe in the timeline, open the Actions panel, and then add the
desired code to the Script pane. During playback, code on a keyframe is executed before the content of the frame is
displayed.

Code on keyframes is used to perform tasks synchronized to the movie's playback and to establish program
elements such as variables, functions, and objects for use throughout a movie clip or movie. A timeline loop is a
simple example of a synchronized task. Suppose we attach the following code to frame 15 of a movie:

gotoAndPlay(10);

When the playhead of the movie reaches frame 15, the code executes, and the movie begins playing back at frame
10 again. When frame 15 is reached for the second time, the code is executed again, and the movie again starts
playing at frame 10. This causes the movie to cycle endlessly between frames 10, 11, 12, 13, 14, and 15.

However, code on keyframes does not always control or synchronize with a movie's playhead. We can also use
keyframes to represent application states (e.g., as a stopping point in a movie, such as for each quiz question in
Chapter 1), or simply as storage devices for functions, variables, and objects. For example, we can attach the
function moveClipTo() to frame 1 of a movie clip and invoke moveClipTo() from a button later in the movie:

function moveClipTo (x, y) {
 _x = x;
 _y = y;
}

One caution: because the execution of code on frames is dictated by the playback of a movie, we must always
ensure that variables, functions, and other program elements are available before they are accessed. For example,
we can't invoke a function at frame 3 if that function isn't defined until frame 10. Code used globally throughout a
movie should therefore be placed on the first frame of the main timeline or on the first frame after the movie's
preloader. See the _global object in the Language Reference for more information on global code placement.

See also Chapter 2 and Chapter 9 for a discussion of variable and function scope.

We must also ensure that no code attempts to access portions of a movie that have not yet loaded. To check
whether a specific portion of a movie has loaded, use either the movie clip _framesloaded property or the

getBytesLoaded() method. For sample code, see the entry for Movieclip._framesloaded in the

ActionScript Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.3 Adding Scripts to Buttons

In Flash 5, button code is attached directly to button objects on stage. For example, in Flash 5, if we want the clicking of a
button to advance the playhead of a movie to a frame labeled section1, we attach the following code to that button:

on (release) {
 gotoAndStop("section1");
}

In most cases, Flash MX's button callback-function-based event handlers should be used on a movie clip timeline in place
of the older style on(event) syntax. However, in some trivial situations it is more convenient to add code directly to a
button.

To add code to a button, select the button on the Stage, and add the code to the Script pane of the Actions panel. Code on
buttons must always be placed in an event handler that identifies the circumstances under which the code should execute.
For example, the event that triggers most button actions is release. We might also use the rollOver event, causing code to
execute when the mouse moves over the button, not when the button is pressed:

on (rollOver) {
 this.gotoAndStop("section1");
}

For a complete description of button event handlers, see Chapter 10.

Though it is legal to place thousands of lines of code on a button, it's always a bad idea to overload a button with code.
Whenever possible, generalize and package the behavior of button code into functions attached to the button's parent
timeline. For example, we could add the following code to a button:

on (release) {
 this.title._xscale = 20;
 this.title._yscale = 20;
 this.title._alpha = 50;
 this.title.gotoAndPlay("fadeout");
}

But we're better off placing that code in a function and calling the function from the button:

// CODE ON FRAME 1 OF THE MOVIE. ADDS A fadeOut() METHOD TO ALL CLIPS.
MovieClip.prototype.fadeOut = function (scale, transparency) {
 this._xscale = scale;
 this._yscale = scale;
 this._alpha = transparency;
 this.gotoAndPlay("fadeout");
}
// CODE ON BUTTON
on (release) {
 this.title.fadeOut(20, 50);
}

Or, better yet, in Flash MX we should add an event handler to the Button instance as follows:

theButton.onRelease = function () {
 this._parent.title.fadeOut(20, 50);
}

This approach keeps all of our code centralized and easy to maintain and allows us to apply the button's behavior to many
buttons quickly and with minimal effort.

Button code must be attached to a button object on stage and must include an event handler.
Button code without an event handler will cause an error, and it's not possible to attach code to
the internal Up, Over, Down, and Hit frames of a button symbol.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.4 Adding Scripts to Movie Clips

We've already seen that we can attach code to the frames of a movie clip's timeline. It is also possible to attach code
to a movie clip instance itself. To do so, we select the instance on stage and then add our code to the Script pane of
the Actions panel. As with buttons, all code attached to movie clip objects must be contained within event
handlers. Event handlers tell the interpreter when to execute the movie clip code. For example, the following code
sets the variable x to 10 when a movie clip loads:

onClipEvent (load) {
 var x = 10;
}

Movie clip event handlers can react to mouse and keyboard activity, data loading, frames rendering, and the birth
and death of movie clips. For complete coverage of movie clips and event handlers, see MovieClip in the Language
Reference.

With the introduction of the callback-function event model in Flash MX, attaching code
directly to movie clip instances is rarely necessary. Event handlers should be applied to
movie clip instances either from a central code repository on the main timeline or, if the
handler applies to all instances of the symbol, from within the movie clip symbol itself.
Event handlers can also be specified for an entire movie clip symbol with a MovieClip
subclass (see Chapter 14). For very specific exceptions, consult the MovieClip event
handler entries in the ActionScript Language Reference.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.5 Where's All the Code?

Even for experienced Flash users, locating the code in a movie can sometimes be challenging. Because code can be
attached to any frame in any timeline, any button, or any movie clip on stage, it is often lost in a sea of content.
Obviously, a highly organized structure and thorough code documentation can save dozens or hundreds of hours
over the life span of a project. But if you're faced with a movie that mysteriously seems to be missing important
code, open the Actions panel and try these techniques for finding it:

To search the current scene for ActionScript code, use the Movie Explorer window's search option as
described in the paragraph that follows this list.

Click on any frame that has a little circle icon on it in the timeline. A circle indicates the presence of
ActionScript code.

Look for, and select, any white circle with a black outline on stage. These circles indicate empty movie clips,
which often contain nothing but code. If there's no code on the empty clip itself, double-click the clip to edit
it and investigate its frames.

Select each button in the movie, one at a time. Some programmers tend not to centralize code and instead
place long, important scripts directly on buttons.

Check the timeline for hidden or masked layers. A layer with a red X icon next to it is hidden during

authoring but may contain clips and buttons with code that appear during movie playback. Similarly, masked
layers may contain obscured objects that bear code. Unlock masked layers to reveal their contents.

Unlock all layers. Empty movie clips (the little circles with black outlines) are hidden when the layer they're
on is locked.

Use Ctrl+F (Windows) or Command+F (Macintosh) to open the Find dialog box. It is useful for searching
large scripts for the specified text. Use the Movie Explorer, as described next, to search across all scripts.

Sometimes even these techniques can fail us. If someone's determined to hide some code, there are lots of places in
Flash to do so. For example, an empty clip can be placed far beyond the limits of the Stage, making it nearly
impossible to find. Fortunately, when all seems lost, our code isn't—we can always use the Movie Explorer to hunt
down any script in a movie. Select Window Movie Explorer for a bird's-eye view of all the assets in the
current scene, including any scripts attached to a frame, button, or movie clip. Make sure the Show Action Scripts
icon is depressed under the Show menu at the top of the Explorer panel, so that the search includes scripts. You can
use the same window to search for text fields containing a certain word. There is no easy way to search the entire
movie; you'll need to search each scene separately. Scripts are marked with a blue arrow Actions icon similar to the
icons in the Actions panel Toolbox. To filter the display to show only scripts, select the Show Action Scripts icon
under the Show menu, and deselect all other icons.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.6 Productivity

Here are some tips to streamline ActionScript source code authoring:

Keep all timeline scripts on an independent layer called scripts. Do not place any content on the scripts
layer; use it exclusively for code. Store this layer at the top of your timeline panel so that its code executes
after all other layers have loaded (or at the bottom if you set your Load Order to Top Down). Keeping the
scripts layer in the same place makes your code easy to find. (We saw in the previous section how valuable
that can be!)

Keep all frame labels on an independent layer called labels. Do not place any content on the labels layer; use
it exclusively for frame labels.

Take a look under the pop-up Options menu button in the top-right corner of the Actions panel. You'll find
handy tools such as search and replace, source code printing, and Script pane font control.

When working with code libraries used on multiple projects, save code in external files. See Section 16.7 for
details.

To save typing, use the shortcut keys provided for Actions; for example, use Esc+G+P for gotoAndPlay().
Shortcut sequences are listed under the plus (+) button in the Actions panel.

Notice that the Toolbox is resizable. To save space while coding, you can hide the Toolbox, partially or
completely, by dragging the border between the Toolbox and the Script pane.

For a brief reference description of any item in the Toolbox, select the item, and then click the Reference
(book) icon in the top right corner of the Actions panel.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.7 Externalizing ActionScript Code

ActionScript code can be saved in external text files (which use the .as extension, by convention) or .swf files and
imported into a Flash document. By maintaining code in external files, we facilitate the use of standard code
libraries across many projects. We can import external code into Flash using Import From File, the #include
directive, or a shared library.

16.7.1 Import From File (Author-Time Import)

While editing a .fla file, we can bring code into the Action panel's Script pane using Import From File, found under
the pop-up Options menu button in the top-right corner of the Actions panel (see Figure 16-1). Import From File is
a one-time operation that copies the contents of the external file into the Actions panel, replacing any script
currently there. Code imported via Import From File is not persistently linked to the .fla file in any way. To append
or insert script text instead of replacing it, you must manually copy and paste the text from an external text-editing
application.

16.7.2 #include (Compile-Time Import)

When we export (compile) a .swf file from a .fla file, we can incorporate code from an external text file using the
#include directive. For information on using #include, see the Language Reference.

16.7.3 Shared Library (Runtime Import)

To import code from an external source while a movie is actually playing, we must create a shared library .swf file
with a movie clip containing the code to import. Runtime import offers the most flexible approach to sharing code
across movies, because it does not require recompilation of the movies that import the shared code; when the
shared library .swf file is updated, the movies that link to it reflect the update automatically.

The following procedures describe how to share a simple test function from a movie called codeLibrary.swf to a
movie called myMovie.swf. We'll create the codeLibrary.swf movie first:

Create a new Flash document.1.
Create a new movie clip symbol named sharedFunctions.2.
On frame 1 of the sharedFunctions clip, add the following code:3.
function test () {
 trace("The shared function, test, was called.");
}
Select the sharedFunctions clip in the Library.4.
From the Library panel, select Linkage from the pop-up Options menu.5.
Select Export for Runtime Sharing.6.
In the Identifier box, type sharedFunctions.7.

In the URL box, type codeLibrary.swf.8.

Click OK.9.
Save the document as codeLibrary.fla.10.
Use File Export Movie to create codeLibrary.swf from codeLibrary.fla.11.
Close the codeLibrary.swf and codeLibrary.fla files.12.

Now, we'll create the myMovie.swf file, which will execute the code imported from codeLibrary.swf:

Create a new Flash document.1.
2.
3.
4.

1.
Save the new document as myMovie.fla in the same folder as codeLibrary.fla.2.
Rename Layer 1 to sharedCode.3.
Select File Open As Library, and choose codeLibrary.fla. The codeLibrary.fla Library appears.4.
From the codeLibrary.fla Library, drag an instance of the sharedFunctions clip onto the Stage at frame 1 of
myMovie.fla.

5.

Name the instance sharedFunctions.6.

On the main timeline of myMovie.fla, create a new layer called scripts.7.
Add a keyframe to the scripts layer at frame 2.8.
Add a new frame to the sharedCode layer.9.
On frame 2 of the scripts layer, attach the following code:10.
stop();
sharedFunctions.test();
Export myMovie.swf.11.
The following text appears in the Output window: "The shared function, test, was called."12.

Note that a shared library is a linked asset, much like a .gif image is linked to a .html file. Therefore, shared library
.swf files must always be uploaded correctly with the files that use them. To change the location of a link from an
imported symbol to a shared library, follow these steps:

Select the symbol in the Library.1.
From the Library panel's pop-up Options menu, choose Linkage.2.
Under URL, set the new location.3.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.8 Defining Components

A component is a movie clip that allows some of its properties to be assigned through a special graphical user interface in
the Flash authoring tool. Components allow nonprogrammers to customize programmatically-controlled movie clips.
Components separate the behavior-determining variables from the code of a clip, which lets people treat them as "black
boxes"—their operation can remain mysterious as long as their inputs, outputs, and behavior are known.

Components are Flash MX's new and improved version of Flash 5's Smart Clips.

In Chapter 14, we saw how a component can be defined for a MovieClip subclass. Our intention in Chapter 14 was to
provide an easy-to-use GUI for constructing instances of a subclass. We'll now focus more directly on the process of
defining component parameters for any movie clip, not just MovieClip subclasses.

Normally, variable initialization occurs in the source code of a movie clip. For example, here we set up the variables used to
control a fireworks effect:

// User-defined variables
this.numSparks = 10; // Number of spark clips in the explosion
this.randomDispersion = true; // Explosion style (true for random,
 // false for uniform)
this.duration = 1300; // Length of explosion, in milliseconds

Modifying source code of this sort can be intimidating for nonprogrammers. But if we build our code into a component,
nonprogrammers can configure the fireworks effect through a familiar application-style interface in the Property inspector.
Figure 16-2 shows a component interface equivalent to our variable-initialization code.

Figure 16-2. A sample component-configuration interface

In a component interface, each variable appears with its name and value clearly distinguished in separate rows and columns.
Variable names cannot be edited, so there's no chance of inadvertent typographical errors breaking the system. Each variable
also has its own verbose name explaining more plainly what it does. Finally, variables with a limited set of legal values
(such as randomDispersion) can be assigned via drop-down menus.

For nonprogrammers, the interface shown in Figure 16-2 is certainly more approachable than source code. But components
can be made even more user friendly. We can replace the default component interface with our own custom interface, such
as the one shown in Figure 16-3. Notice how the custom interface hides our component's variables entirely, allowing the
nonprogrammer to tailor each instance of the fireworks effect with text fields and pull-down menus. The interface even
provides a preview of the effect in action!

Figure 16-3. A customized component-configuration interface

Let's see how all this works.

16.8.1 Building a Component with a Standard Interface

As we've just seen, components have either the standard system interface or a customized interface. We'll show how to build
the standard kind first.

The first step in building any component is creating a regular movie clip that is controlled by the value of one or more
variables. In the following code, for example, the variables xPos and yPos determine the location of a clip on stage:

this._x = this.xPos;
this._y = this.yPos;

When we build a movie clip as a component for ourselves or someone else to use, we expect certain designated variables to
be set via the Property inspector when the clip is placed on stage. These variables are known as component parameters.
Once we've created a clip with behavior dictated by one or more component parameters, we must give the clip a component
interface through which these parameters can be set.

16.8.1.1 Adding a standard interface to a component

To add a default component interface to a movie clip, follow these steps:

Select the clip in the Library.1.
Choose Component Definition from the Library's pop-up Options menu. (The Component Definition dialog box
appears.)

2.

Above the Parameters pane, click the plus (+) button to add a component parameter.3.
Repeat step 3 for each parameter in the component.4.
Configure the component parameters, as described in the following section.5.

16.8.1.2 Configuring standard component parameters

After we add a component parameter to a component, we must assign the parameter an on-screen name, a variable name,
and, optionally, a default value. Like variables, component parameters can contain different types of data. However, the
datatypes supported by component parameters are not quite the same as those supported by variables. Component
parameters can be Arrays, Objects, Lists, Strings, Numbers, Booleans, Font Names, and Colors. These differ from the
datatypes supported by variables in two ways:

Component parameters support three interface-only types: List, Font Name, and Color. A List is used to limit the
assignment of a parameter's value to one of a predetermined set of options. For example, a parameter named
difficulty may have its value set from the list: "hard", "normal", "easy". A Font Name gives the

user a font selection menu for picking a font on the local system. The font name can then be used by TextFormat
objects. A Color gives the user a visual color picker used to select an integer RGB value.

The primitive types null and undefined cannot be set directly as the value of a component parameter. This is

a limitation of the component interface, not the component parameter itself; code inside the clip can assign null or

undefined values to a variable initialized as a component parameter.

To give a component parameter an on-screen name, a variable name, and an optional default value, follow these steps:

Click the parameter Name, and enter a short string describing the parameter.1.
Click the parameter Variable, and enter the actual variable name for the parameter.2.
Click the parameter Type, and then select one of the following:

Default for parameters that can accept either string or numeric values

Array for parameters with array values

Object for parameters with object values, including points containing x and y coordinates

List for parameters with a predetermined set of possible string or numeric values

String for string values

Number for numeric (either integer or floating-point) values

Boolean for true or false values

Font Name to provide a font selection menu for the parameter

Color to provide a visual color picker for the parameter

3.

Click the parameter Value, and enter the default value if one is required. This value will appear in the component
interface as the initial value for the parameter. The manner in which default values are entered depends on the type of
parameter:

For Default, String, and Number parameters, click the parameter Value and enter the string or number.

For Array, Object, and List parameters, click the parameter Value. In the Values dialog box, add, remove, and
arrange items using the plus, minus, and arrow buttons. Click OK to accept your settings.

For Boolean, Font Name, and Color parameters, click the parameter Value. Use the menu that appears to select
a Boolean value, a font name, or a color.

4.

To prevent the parameter's Name from being changed by the component user, select the Parameters are Locked in
Instances checkbox.

5.

In the Component Definition dialog box, click OK to finalize your parameter settings.6.

16.8.1.3 Removing and reordering standard component parameters

Sometimes you'll want to remove or rearrange your component's parameters.

To remove a component parameter, follow these steps:

In the Library, select the component to modify.1.
Select Component Definition from the Library's pop-up Options menu. (The Component Definition dialog box
appears.)

2.

Select the parameter to remove.3.
Click the minus (-) button.4.
Click OK.5.

To rearrange component parameters, follow these steps:

In the Library, select the component to modify.1.
Select Component Definition from the Library's pop-up Options menu.2.
Select the parameter to move.3.
Click the arrow buttons until the parameter is in the desired location.4.
Click OK.5.

3.
4.
5.

16.8.2 Building a Component with a Customized Interface

To build a component with a customized interface, we first create a regular movie clip whose behavior is governed by a
series of component parameters as described in the preceding section. Next, we create an independent .swf file (the so-called
interface swif) that will be used to set component parameters via custom text boxes, menus, buttons, and other GUI
elements. Selected values will automatically be collected and passed to the component as parameters.

The component communicates with the interface .swf via the xch instance (short for exchange), a specially named instance

in the interface .swf. (We'll see how to create the xch instance in a minute.) Figure 16-4 shows how parameter names and

values are sent from the interface .swf to the component.

Figure 16-4. Custom component communication

Communication between the interface .swf and the component occurs in a cycle. When a component instance is selected on
stage, the corresponding interface .swf loads into the Property inspector or Component Parameters panel. The current
parameters in the component instance are then passed to the .swf file's xch instance. The .swf file is expected to retrieve

those parameters and set the interface state accordingly. Subsequent variables set in xch by the .swf file are automatically

passed to the component as parameters. When the component instance is unselected, the interface .swf is removed from the
Component Parameters panel. However, the parameter values are not lost; they are retained by the component instance.
Each time the component instance is selected, it passes its parameters back to the .swf file's xch clip. This cycle allows the

interface .swf file to stay synchronized with the Component Parameters panel.

The following sections explain how to create the custom interface .swf and associate it with a component. For further study,
a sample Random Frame component with a customized user interface is available under "Playhead Control" at the online
Code Depot.

16.8.2.1 Creating a custom interface .swf file

To create a .swf file for use as the custom interface of a component, follow these steps:

Create a new Flash document.1.
Create a new layer named xchLayer.2.
Select Insert New Symbol to create a blank movie clip symbol.3.
Name the new symbol xchClip.4.
On the xchLayer layer, place an instance of the xchClip symbol.5.
Name the instance xch.6.

On frame 1 of the main timeline, create a series of buttons, text fields, and other interface elements used to set
variable values (use the built-in Flash UI Components to make this job easier).

7.

On frame 2 of the main timeline, add code to read the value of existing component parameters from the xch
instance. Set the state of the custom interface to reflect the component parameter values. For example, the following
code initializes the param1Input_txt text field with the value of param1 from the component:

8.

param1Input_txt.text = xch.param1;
On frame 3 of the main timeline, stop the playhead. Add interface code that sets component parameters as variables in9.

the xch instance. Variables in xch will automatically be added to the component as parameters. For example, here

is how you set values for two custom parameters:

9.

xch.param1 = value1; // Values can be of any datatype
xch.param2 = value2;
Export the .swf file.10.

16.8.2.2 Adding a custom interface to a component

Once we've created the interface .swf, we must add it to the component as follows:

Close the custom interface .swf, and return to the original .fla file containing the component.1.
Select the component in the Library.2.
Choose Component Definition from the Library's pop-up Options menu. (The Component Definition dialog box
appears.)

3.

Next to Custom UI, click Set.4.
In the Custom UI box, for Type, select one of the following:

To embed the interface .swf file directly into the component .fla file, select "Custom UI with .swf file
embedded in .fla file." Embedded interface .swf files are stored inside the component .fla file, allowing the
component .fla file to be used and moved independently, without relying on an interface .swf file. If an
embedded interface .swf file changes, it must be updated manually via the Update button in the Custom UI
box.

To link externally to the interface .swf file, select "Custom UI in external .swf file." Externally linked interface
.swf files must always be available at the specified "Custom UI .swf file" location and are updated automatically
each time a component instance is selected.

5.

For Display, select one of the following:

If the interface .swf file is small enough to fit in the Property inspector, select Display in Property Inspector.

If the interface .swf file is too large to fit in the Property inspector, select Display in Component Parameters
Panel.

6.

For a Custom UI .swf file, enter the location of the .swf file to use as the custom interface, relative to the current .fla
file. (You can also select the .swf file using the Browse button.)

7.

16.8.3 Professional Component Distribution Features

For advanced developers and third parties distributing custom code libraries as components, Flash MX provides a series of
features designed to give components a professional polish. These features, outlined next, are described in detail in the
article, "Creating Components in Macromedia Flash MX," available at:

http://www.macromedia.com/support/flash/applications/creating_comps/

The features are also discussed in Macromedia's updated Flash MX documentation, available at:

http://www.macromedia.com/support/flash/ts/documents/doc_update_mx.htm
Component description

A component description can be added to the Flash MX Reference panel and the Actions panel Toolbox via plain
text or an XML file.

Custom component icon

A component's default icon can be changed to a preset icon (available in the Component Definition box) or a custom
icon (supplied as a BMP or PNG file in the component .fla file Library). The icon appears next to the component in
the Library, Components panel, and Movie Explorer.

Components panel tooltip

A tooltip can be added to components displayed in the Components panel. A tooltip offers a one-line description of
the component when the user points to it with the mouse.

Component live preview

A representation of a component (called a live preview) can be displayed on stage to give a component user a
general idea of what a component looks like at authoring time. A live preview is implemented as a .swf file, much
like a custom UI. In Flash MX, live previews can be updated once per second.

Components panel installation

A component can be installed into the Flash MX authoring tool so that it is available to any new document via the
Components panel. Installation involves either manually dragging the component .fla file to the authoring tool's
FlashMX\Configuration\Components folder or using the Macromedia Extension Manager available at
http://www.macromedia.com/exchange/flash.

16.8.4 Using Components

Once component parameters have been assigned to a movie clip, the movie clip officially becomes a "component." By
default, components are identified with a special icon:

Components appear in either the Library or the Components panel (if set to display in the Components panel).

To use a component instance in a movie, follow these steps:

Drag the component from the Library or the Components panel onto the Stage.1.
To set the component's parameters, open either the Property inspector (Window Properties) or the Component
Parameters panel (Window Component Parameters), which is used only for components with custom interfaces
that will not fit in the Property inspector.

2.

If the clip has a standard interface, set each parameter value as follows:

For Default, String, and Number parameters, click the parameter value and enter the string or number.a.
For Boolean parameters, click the parameter value and select either true or false.b.

For Array parameters, double-click the parameter value. In the Values dialog box, click each array element
value and enter a string or number. Click OK to accept your array element values.

c.

For Object parameters, double-click the parameter value. In the Values dialog box, click each object property
value and enter a string or a number. Click OK to accept your Object properties.

d.

For List parameters, click the parameter value and select an option.e.
For Color parameters, click the parameter value and select a color from the color palette, or simply enter the
integer (hex or decimal) RGB color value.

f.

For Font Name parameters, click the parameter value and select a font from the pull-down menu.g.

3.

If the component has a custom interface, use the tools provided in the custom interface to set the component's
parameters.

4.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 16. ActionScript Authoring Environment

16.9 Onward!

Well, we're finished our tour of ActionScript fundamentals. It's time to put all your learning to work in a sample
application. In Chapter 17 we'll integrate ActionScript with a simple server application to produce a Flash form.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part I: ActionScript Fundamentals

Chapter 17. Building a Flash Form

Like HTML, Flash supports fill-in forms that can transfer user input to a server-side application or script. In this
chapter, we'll see how to capture user input and use the Flash MX LoadVars class to communicate with a server-
side Perl script. You can use these techniques to save high scores for a video game or retrieve stock ticker data from
a server.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 17. Building a Flash Form

17.1 The Flash Form Data Cycle

Before we delve into the particulars, let's take a macroscopic look at the typical steps in a form submission process:

Flash receives data as user input.1.
Flash prepares data for submission to the web server (collects and validates variables).2.
Flash sends data to the web server via HTTP (or, optionally, HTTPS).3.
The web server receives data and passes it to a server-side data-handling application (e.g., Perl script, PHP
script, Cold Fusion, or ASP).

4.

The data-handling application parses and processes the submitted data.5.
The data-handling application passes the results to the web server, which sends the results to Flash.6.
Flash stores and, optionally, displays the results.7.

Therefore, a functioning Flash form requires:

A front end (what the user sees)

Some Flash scripting that submits the form's contents to a server-side script or application

A server-side script or application

Some Flash scripting that handles data returned from the server

Let's examine these in a little more detail.

17.1.1 Flash Client-Side User Input

To supply text-based input, users enter text into on-screen text fields. In ActionScript, an on-screen text field
corresponds to an instance of the TextField class, which we use to access the field's data. Users can also provide
input using interface elements such as pull-down menus, radio buttons, and checkboxes. Prior to Flash MX, these
typical form elements were created from scratch by the developer. Flash MX introduced prebuilt form widgets
called the Flash UI Components: CheckBox, ComboBox, ListBox, PushButton, RadioButton, ScrollBar, and
ScrollPane. These components are not a native part of ActionScript; they are sophisticated movie clips that come
with the Flash MX authoring tool. To learn how to use the Flash MX UI Components, see Help Tutorials

 Introduction to Components Tutorial. For a summary of the Flash UI Components' properties and methods,
see Appendix G.

Once a user's input has been collected, it should be validated before it's sent to the server. This ensures that our
server-side data-handling application always receives usable data. Common validations include checking that all
required fields have been filled out and verifying that the correct type of data has been entered. For example, an
email address should include a name, followed by an @ symbol, followed by a domain name.

17.1.2 Transmitting Data for Server-Side Processing

Once the input data is validated, we can safely pass it to the web server. ActionScript provides several tools for
transferring form-based data to a web server:

The LoadVars class, described later in this chapter

The loadVariables() function (used in Flash 4 and Flash 5, but superceded by LoadVars in Flash MX)

The XML class's send() and sendAndLoad() methods, described in the Language Reference

The getURL() global function, also described in the ActionScript Language Reference

The web server passes the Flash data to a server-side application (e.g., Macromedia ColdFusion or Microsoft ASP)
or a CGI script (e.g., a Perl or PHP script, or a Java servlet).

When describing the web client/server data cycle, we make a point of distinguishing between the web server and a
data-handling application. Often, this distinction is implicit—the client always has to make an HTTP request in
order to send data to the data-handling application, so it naturally follows that a web server is involved. In Flash
form development, however, we must remain aware of the invisible handoff between the web server and the data-
handling application. Data moves from Flash to the server either on the end of a URL (using GET) or in a stream of
variable names and values (using POST). When a web server error is encountered, Flash does not display the HTTP
error messages that the server sends (as a browser would). For example, if the web server can't find a CGI script, it
sends a "404 Not Found" message, but Flash doesn't display this message. Similarly, if a CGI script's permissions
aren't set correctly, Flash doesn't display an execution-failure error message. In order to isolate client/server
problems when working with Flash, monitor the web server's HTTP error log while attempting to run scripts. The
web server log will tell you things that Flash won't. For information on problems associated with the HTTP POST
method in Flash, see Appendix F.

17.1.3 The Data-Handling Application

Upon receiving data, the data-handling application must parse it (i.e., it must interpret the data intelligently and
split it into manageable pieces). The parsed data can be manipulated in endless ways by the server application, such
as saving it to a database or flat text file for future retrieval.

Once data processing is complete, the data-handling application produces a result to pass back to Flash. The result
can be a simple confirmation message (e.g., "Thank you for submitting your information"), a list of records from a
database, or the current price of a product.

The application passes the result to the web server, which forwards it on to Flash for storage or display.

If you're writing a data-handling application, you must set the MIME type of the result to
"application/x-www-form-urlencoded". If the MIME type is missing or incorrect, Flash
can't interpret the result properly.

17.1.3.1 Sending international characters to Flash

If the response from your server application uses characters above Unicode 127 (i.e., high ASCII characters or
characters outside Latin 1), you should use UTF-8-encoded XML to send your data. It is also possible to encode a
stream of variables in UTF-8 for use by the LoadVars class, but not all server-side applications can specify that
encoding. As a last resort, if you know that the server's code page (i.e., its primary character set) will definitely
match the code page of the Flash client system, you can use System.useCodepage to force Flash Player 6

to interpret characters using the system's current code page rather than Unicode (this is, in fact, Flash 5's only
supported behavior). For more information, see Section 4.5.1 and System.useCodepage in the Language

Reference.

17.1.4 Flash Receives and Interprets Results

We're nearing the end of the Flash form cycle, but we're not done yet. Consider a movie that looks up stock prices.
The user enters a stock ticker symbol and clicks the Get Stock Price button. Before the price can be displayed, the
stock-retrieval application must identify and return the share price. While the movie is waiting, you should display
a "Loading" message. When the share price is received (i.e., once the data finishes loading), Flash triggers the target
LoadVars object's onLoad() handler, where we can interpret the data and display it to the user. (Data received via
LoadVars.sendAndLoad() is stored in the target LoadVars object.)

The Flash form cycle is complete, and we're free to do whatever we like with our precious, well-traveled bytes of
content. Now let's put our knowledge to practice by creating a simple fill-in form.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 17. Building a Flash Form

17.2 Creating a Flash Fill-in Form

This example demonstrates how to send a single text field variable from Flash to a Perl script, named echo.pl, and how to receive a response
from echo.pl in Flash. The movie we'll build consists of an interface and two functions—initForm() and submitForm(). The interface
includes an input text field, a Submit button, and a movie clip that displays echo.pl's response. The initForm() function creates the server
communication objects that send our variable between Flash and echo.pl. The submitForm() function formats the data and sends it to
echo.pl. For simplicity, our code is attached to frame 1 of the scripts layer. In practice, you should attach the code to a frame following your
preloader.

The example files are available at the online Code Depot.

17.2.1 Building the Interface

HTML uses tags such as <SELECT>, <OPTION>, and <INPUT> to create a form's interface. In Flash, a form's interface can be built

manually in the authoring tool (as in this example) or at runtime via ActionScript. Our form's text field and button are equivalent to HTML's
<INPUT TYPE="TEXT">, <INPUT TYPE="TEXTAREA">, and <INPUT TYPE="SUBMIT"> tags.

Flash MX offers sophisticated form widgets under the Components panel (Window Components). For
information on instantiating components manually and with ActionScript, see Help Tutorials
Introduction to Components Tutorial. For information on creating your own components, see Chapter 14 and
Chapter 16.

Start building the interface by creating three layers: scripts, input form, and output.

Next, place a user-input text field on the input form layer, as follows:

Select the Text tool from the Tools panel.1.
On the input form layer, drag a rectangle big enough for a user to enter a single line of text.2.
Open the Property inspector (Window Properties).3.
In the Property inspector, for Text Type, select Input Text.4.
In the Property inspector, for Line Display, select Single Line.5.
In the Property inspector, for Instance Name, enter input_txt. (The _txt suffix activates code hinting in the Actions panel.)6.

In the Property inspector, select the Show Border Around Text button.7.

Alternatively, Flash MX users can create the input_txt text field at runtime with the MovieClip.createTextField() method, as follows:

// Create and place the text field on the main timeline. Parameters are:
// instance name, depth, x position, y position, width, height
_root.createTextField("input_txt", 1, 250, 235, 150, 20);

// Make the field an input text field
input_txt.type = "input";

// Set line display to single line
input_txt.multiline = false;

// Enable border and background
input_txt.border = true;
input_txt.background = true;

// Optionally, set colors for the border and background
input_txt.borderColor = 0x666666;
input_txt.backgroundColor = 0x999999;

Next, add a Submit button to the input form layer as follows:

Choose Window Common Libraries Buttons.1.
From the Buttons.fla library's Push Buttons folder, drag an instance of the push button - blue button onto the Stage.2.

To make the Submit button call our custom function submitForm(), which we'll build later, follow these steps:

Select the push button - blue button instance.1.
Choose Window Actions.2.
Enter the following code in the Actions panel:3.
on (release, keyPress "<Enter>") {
 submitForm();
}

Flash MX allows us to achieve a similar result by assigning submitForm() as the callback function for the button's onRelease() handler. To
do so, assign an instance name, such as submit_btn, to the button in the Property inspector. Then attach the following code to the

main timeline (most suitably in initForm()):

submit_btn.onRelease = submitForm;

In most cases, this syntax is preferable, because it keeps the code separated from the physical button on stage. However, we want our form
to respond to the Enter key, so we use the Flash 5-style on(keyPress "<ENTER>") button handler, which provides an easy way to capture
the Enter key. In more complex cases (for example, when handling multiple Submit buttons), we must resort to more advanced key
handlers. See Key.addListener(), Key.onKeyDown(), and Key.onKeyUp() in the Language Reference for details.

To complete the form's front end, build a movie clip, named response, to display the results sent by echo.pl. The response clip has

three states, represented by three keyframes labeled idle, loading, and doneLoading:

When the movie loads, response displays the idle frame (ordinarily invisible to the user), in which response waits for

data to begin loading.

When variables are submitted, response displays the loading frame, indicating that data has been submitted to the server and

that Flash is waiting for a reply.

When variables are received, response displays the doneLoading frame, in which the results are displayed to the user via a

text field, output_txt.

To build response, first create a new movie clip symbol:

Choose Insert New Symbol, which opens the Create New Symbol dialog box.1.
In the Name box, enter responseClip.2.

For Behavior, choose Movie Clip.3.
Click OK.4.

Next, create an instance of responseClip:

From the Library, drag an instance of responseClip onto the main Stage's output layer.1.
Name the responseClip instance response.2.

Finally, create the labeled "state" frames in the responseClip symbol:

In the Library, double-click the responseClip symbol (this edits the clip).1.
Create four timeline layers named, from top to bottom, scripts, labels, loading, and outputField.2.
Create three keyframes on each layer in frames 1, 2, and 3.3.
On the labels layer, label keyframes 1, 2, and 3 as idle, loading, and doneLoading.4.
On the scripts layer, at frame 1, add the following code: stop();.5.

6.

7.
8.
9.

3.
4.
5.

On the loading layer, at frame 2, add the static text, "loading, please wait".6.

On the outputField layer, at frame 3, use the Text tool to draw a text box.7.
In the Property inspector, for Text Type, select Dynamic Text.8.
In the Property inspector, for Line Display, select Multiline.9.
In the Property inspector, for Instance Name, enter output_txt.10.

17.2.2 Sending Data to the Server

To send the value of input_txt to echo.pl, we'll create the custom functions initForm(), shown in Example 17-1, and submitForm(),

shown in Example 17-2. The initForm() function creates one instance of the LoadVars class to send our data (dataSender) and

another to receive echo.pl's response (dataReceiver). The initForm() function also assigns a callback function to

dataReceiver's onLoad() handler, which executes when echo.pl's reply arrives. The callback function displays the reply in the

response clip. Notice that initForm() creates a global variable used to refer to the form's timeline. Hence, all our references to the

response clip are fully qualified.

Example 17-1. The initForm() function

/*
 * Function: initForm()
 * Desc: Creates LoadVars objects for sending and
 * receiving data to and from the server.
 * Parameters: None.
 */
function initForm () {
 // Create a reference to the form timeline.
 _global.form_mc = this;

 // Create the LoadVars objects.
 // One to send...
 dataSender = new LoadVars();
 // ...and one to receive.
 dataReceiver = new LoadVars();

 // Assign a callback function to the dataReceiver's onLoad handler.
 // It will process the variables when they arrive.
 dataReceiver.onLoad = function () {
 // Prepare the response clip for data display.
 form_mc.response.gotoAndStop("doneLoading");

 // Display the value of output, the loaded variable, in the output_txt field.
 form_mc.response.output_txt.text = this.output;
 }
}

The submitForm() function, shown in Example 17-2, gathers the data and transmits it to echo.pl.

Example 17-2. The submitForm() function

/*
 * Function: submitForm()
 * Desc: Retrieves user input and sends it to the server.
 * Parameters: None.
 */
function submitForm () {
 // Assign the value of input_txt to a property of dataSender. The escape()
 // function encodes the & character to avoid network transfer errors.
 dataSender.formInput = escape(input_txt.text);

 // Display a loading message in the response clip.
 form_mc.response.gotoAndStop("loading");

 // Display what we're sending in the Output window, for debugging purposes.
 trace("Sending " + dataSender.toString());

 // Send the properties of dataSender to the server, and wait for a reply.
 dataSender.sendAndLoad("http://www.yourserver.com/cgi-bin/echo.pl",
 dataReceiver, "GET");
}

The formInput property of the dataSender object contains the data to be transmitted—the current input of the input_txt
text field, escaped (encoded) for safe network transfer:

dataSender.formInput = escape(input_txt.text);

While the user waits for echo.pl to respond to our form submission, the code displays a loading message in the response clip:

form_mc.response.gotoAndStop("loading");

For testing purposes, we display the data to be sent in the Output window, using the toString() method:

trace("Sending " + dataSender.toString());

Finally, we submit the form using sendAndLoad(), instead of send() or load(), because we're both sending variables to, and receiving
variables from, echo.pl. The sendAndLoad() method sends formInput (and any other dataSender properties) to echo.pl:

dataSender.sendAndLoad("http://www.yourserver.com/cgi-bin/echo.pl",
 dataReceiver, "GET");

The sendAndLoad() method takes three parameters: url (the location of the server script), targetObject (the LoadVars object that

should receive the results), and method (the HTTP method, either "GET" or "POST"). When sendAndLoad() executes,

dataSender's properties are converted to a single ampersand-delimited string of variable name/value pairs and sent to echo.pl.

17.2.3 The Perl Script, echo.pl

When the user clicks the Submit button in our form, Flash initiates an HTTP GET request that executes the Perl script echo.pl. For our form
to work, echo.pl must be placed in a CGI-enabled directory of a web server and configured by the server's administrator as follows:

The script must be executable (typically, this means setting the script file's permissions to 755).

On Unix, the path to the Perl interpreter must be set in the script.

Example 17-3 shows the source code for echo.pl. Note that in Perl, the # character indicates a comment.

Example 17-3. The source code for echo.pl

#! /usr/local/bin/perl
#---
Name: Simple Flash Echo
Version: 1.2.1
Author: Derek Clayton derek@moock.org
Description: Echoes back name/value pairs received from a Flash GET or POST.
#---
MAIN
#---
use CGI; # Use the CGI.pm for easy parsing
$query = new CGI; # Query object

$echoString = "output="; # Initialize our output string
&getInput; # Get the input received from Flash
&writeResponse; # Write the response back to Flash
exit; # Exit the script
#---
sub getInput {
 # For each key get the associated value and add to the echo string
 foreach $key ($query->param) {
 $value = $query->param($key);
 $echoString .= "$key:$value\n";
 }
 # Remove the trailing newline (\n) before writing response
 chomp($echoString);
}

sub writeResponse {
 # Set content type for Flash
 print $query->header({"Content-Type"=>"application/x-www-form-urlencoded"});
 # Write the output
 print $echoString;
}

The echo.pl script simply returns a single variable, output, that contains a single string representing all the variables we sent to the

server. Here are the specific tasks echo.pl performs.

It accepts data sent by Flash and parses that data into a series of variable names and values. For example, it converts our
dataSender.formInput property to the variable formInput. Any other properties attached to dataSender would

likewise be converted to variables.

1.

It assembles those variable names and values into a single string (to return to Flash) of the form:2.
output=name1:value1\nname2:value2\n...namen:valuen

For example, in response to our form submission, echo.pl creates the string:

output=formInput:theInputValue

If we give dataSender another property, country, with a value of "Canada", then echo.pl creates the string:

output=formInput:theInputValue\ncountry:Canada
It returns the string to Flash.3.

When Flash receives the string from echo.pl, it finds the output variable and automatically adds a corresponding output property on

dataReceiver. The value of the output property is the string containing the list of variables we sent to echo.pl.

Obviously, echo.pl is merely a proof of concept. When applied, however, the concept can have interesting and powerful results. For an
example of a more fully developed Perl system, see the flat file database sample available under "Server Communication" at the online Code
Depot.

17.2.4 Receiving Results from the Server

Recall that when we sent the properties of dataSender to echo.pl, we requested that echo.pl's return value be stored in the

dataReceiver object:

dataSender.sendAndLoad("http://www.yourserver.com/cgi-bin/echo.pl",
 dataReceiver, "GET");

When data is received from echo.pl, Flash executes the callback assigned to dataReceiver.onLoad(). We originally assigned that callback
inside our initForm() function in Example 17-1; let's take a closer look at it now:

dataReceiver.onLoad = function () {

 // Prepare the response clip for data display.
 form_mc.response.gotoAndStop("doneLoading");

 // Display the value of output, the loaded variable, in the output_txt field.
 form_mc.response.output_txt.text = this.output;
}

This function moves response's playhead to the doneLoading frame, where the text field output_txt resides. Then, it

displays the value of output (supplied by echo.pl) in the response clip's output_txt text field. Note that the callback is

executed as a method of dataReceiver, so the dataReceiver object is referred to as this inside the function.

All that's left to do is try the form out! Export your movie, enter some text in the input text field, and click the Submit button. If you

entered "test" you should see "formInput:test" appear in the output_txt text field. If the form doesn't work the first time, make sure

your server script is configured properly. And remember, you can study the functional version posted at the online Code Depot.

Reader Exercise: Add a Reset button that clears the value of the form's input field. Simply create a new button in the formClip and

attach the following code to it:

on (release) {
 input_txt.text = "";
}

Also, try adding more than one input field to your form; the Perl script will faithfully return as many variables as you send it, assigned as a
group to the variable output. Can you split them up, using the String class's methods, and display each variable's value separately?

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 17. Building a Flash Form

17.3 Onward!

Well, I'd say our work in this chapter wasn't too shabby. Think of all the powerful things you can do with Flash
forms, such as remembering a user's preferences, providing a discussion forum, or loading dynamic product
information for a catalog. The flat file Perl database at the online Code Depot will take you further down the road
toward building those kinds of applications.

Our ActionScript conversation is over, but yours has just begun. By reading Part I, you've learned to speak
ActionScript—now it's time to apply that knowledge to your own projects. Before you embark, here are a few
parting thoughts:

As with any art form, learning to program is a process, not an event. For as long as you program, you'll learn
more about programming. Consider the multiple-choice quiz from earlier—see Chapter 1 (Examples
Example 1-1 through Example 1-4), Chapter 9 (Example 9-13), Chapter 11 (Example 11-7), and Chapter 12
(Tables Table 12-2 through Table 12-5)—we rebuilt it four times! Each time we refined our approach, added
features, and learned something we hadn't considered before. Just as each painting teaches the painter
something new about her subject matter, so creating and recreating applications will reveal new approaches
to you.

There's practical help in Part II, the ActionScript Language Reference, which contains detailed descriptions
of ActionScript's built-in functions, properties, classes, and objects. While you may not want to read it from
start to finish, you should definitely skim each topic to get a sense of ActionScript's capabilities.

Revisit this book, including the Language Reference, often. You'll pick up new insights each time through,
because you'll be considering the information with a higher level of understanding and will be able to relate
concepts to real-world experiences. Treat the ActionScript Language Reference as a dictionary and keep it
by your side while you work.

There's a thriving community of Flash developers offering ideas and solutions and—most
importantly—sharing source code! Dissect as much as you can. Identify the things you can't understand and
look those topics up in this book. Macromedia maintains a list of web sites and mailing lists devoted to Flash
at http://www.macromedia.com/support/flash/ts/documents/flash_websites.htm.

Don't limit your exploration of ActionScript to this book. Look at things from multiple angles by consulting
other sources of knowledge and inspiration, such as those listed in Appendix A and the Preface. You'll also
find a long list of Flash resources at http://www.moock.org/moockmarks and reviews of worthwhile Flash
books at http://www.moock.org/webdesign/books.

Finally, remember to drop by the support site for ActionScript for Flash MX: The Definitive Guide,
http://www.moock.org/asdg, for lots of code samples, technotes, and discussions of new topics.

With that, I wish you happy coding! Throw an extra iteration into a while loop for me sometime. :)

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part II: Language Reference

This Language Reference explains how to use each built-in class, object, function, property, event handler,
directive, and pragma supported by ActionScript. You'll use this Language Reference regularly to
accomplish specific tasks in your daily programming work.

ActionScript Language Reference

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part II: Language Reference

Chapter 18. ActionScript Language Reference

This Language Reference documents all the supported classes and objects of ActionScript, explaining their general
purpose, usage, properties, methods, and event handlers. Also covered are the global functions and global
properties (those not attached to a class or an object, but available in standalone form, throughout a movie).

All entries in the Language Reference are alphabetized regardless of whether an entry is a property, method, global
function, or event handler. For example, the global function duplicateMovieClip() is listed under "D" after the
Date class (not, say, in a separate "Global Functions" section). However, each entry's title clearly indicates the type
of item being described so that there can be no confusion as to the item's purpose or usage. Furthermore, many
items are alphabetized by the object or class to which they belong. For example, duplicateMovieClip() comes in
both a global function and movie clip method form, so you'll find it listed separately as duplicateMovieClip()
Global Function under "D" and as MovieClip.duplicateMovieClip() Method under "M." Some operators, such as
delete and typeof, are included in the Language Reference, but for complete coverage of operators (including
arithmetic and logical operators) see Chapter 5. Likewise, statements and loops, such as if and for, are covered in
Chapter 6, Chapter 7, and Chapter 8. If you're unsure of where to find an item, consult the Index at the back of the
book.

All Language Reference entries have been updated to reflect additions and changes implemented in Flash MX and
Flash Player 6 (for the sake of brevity, we refer to the Flash MX authoring tool and the Flash Player 6 browser
plugin collectively as "Flash 6"). Compatibility information is provided for previous versions. New objects and
classes have been added; new methods and properties have also been added to existing classes. So, you should
skim the entire Language Reference to familiarize yourself with the current capabilities of the language. In some
cases, the entries for items supported in Flash 5 have been augmented with better examples, even if the changes
were not directly related to Flash 6.

For an explanation of the formatting conventions used in this Language Reference, see Section P.10 in the Preface.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

18.1 Global Functions

Global functions are built-in functions that are available throughout an entire movie—they can be invoked from
any frame, button, or event handler in a movie (unlike methods, which must be invoked using a reference to a
specific object).

Table 18-1 lists the global functions available in Flash 6, including two new global functions: clearInterval() and
setInterval(). All other global functions listed in the table are available in Flash 5 as well. Table 18-1 also lists the
directives and pragmas, which begin with the # character — namely, #include, #initclip, and

#endinitclip.

Table 18-1. ActionScript global functions

Boolean() gotoAndStop() parseInt() stopAllSounds()

call() #include play() stopDrag()

clearInterval()[1] #initclip[1] prevFrame() String()

Date() int()[2] prevScene() targetPath()

duplicateMovieClip() isFinite() print() tellTarget()[2]

#endinitclip[1] isNaN() printAsBitmap() toggleHighQuality()[2]

escape() loadMovie() printAsBitmapNum() trace()

eval() loadMovieNum() printNum() unescape()

fscommand() loadVariables() random()[2] unloadMovie()

getProperty() loadVariablesNum() removeMovieClip() unloadMovieNum()

getTimer() nextFrame() setInterval()[1] updateAfterEvent()

getURL() nextScene() setProperty()

getVersion() Number() startDrag()

gotoAndPlay() parseFloat() stop()

[1] Supported in Flash 6, but not in prior versions.

[2] Deprecated in Flash 5 and later versions.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

18.2 Global Properties

Global properties, like global functions, can be accessed from any script in a movie. They store information that is
generally useful from any point in our code. Many of them affect the entire Flash Player, not just a particular movie
clip or movie.

Table 18-2 lists the global properties available in Flash 6, including the new global property _global. All other

global properties listed in the table are available in Flash 5 as well.

Table 18-2. ActionScript global properties

Property name Description

_focusrect The highlight state of buttons activated via the keyboard

_global[3] A reference to the global object

_highquality[4] The rendering quality of the Player

Infinity A constant representing the Infinity value of the number type

-Infinity A constant representing the -Infinity value of the number type

_leveln A document level in the Player, such as _level0

NaN Not-A-Number; the value of the number type representing invalid numeric data

_quality The rendering quality of the Player

_root A reference to the main movie timeline of the current level

_soundbuftime Number of seconds of a streaming sound to preload

$version[4] The version of the Flash Player

[3] Supported in Flash 6, but not in prior versions.

[4] Deprecated in Flash 5 and later versions.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

18.3 Built-in Classes and Objects

This Language Reference assumes that you understand the terms class, object, and instance, as discussed
exhaustively in Chapter 12. The built-in classes of ActionScript are used to create objects that can control a movie
and manipulate data. The built-in ActionScript classes added in Flash MX include:

Button
Function
LocalConnection
LoadVars
TextField
TextFormat

They join the Array, Boolean, Button, Color, Date, MovieClip, Number, Object, Sound, String, XML, XMLnode,
and XMLSocket classes, which were also supported in Flash 5.

The MovieClip class is enhanced substantially in Flash 6. Most notably, an entire
Drawing API and support for button events have been added.

To create an instance of a particular class, we use the class's constructor function with the new operator. For
example, to make a new object of the Color class, we use the Color constructor as follows:

theColor = new Color(_root);

For each class entry in the Language Reference, the Constructor subheading shows how to create new objects of
that particular class (i.e., it demonstrates each class's constructor function syntax). The class entry also includes a
summary of the properties, methods, and event handlers available for objects in the class, along with a description
of the class's purpose and typical use. Some classes also define methods or properties that are accessed through the
class constructor itself, not individual instances. These methods and properties are listed as Class Methods and
Class Properties. Full details for each class's properties, methods, and event handlers are given in an alphabetical
list after each class's general introduction.

The built-in ActionScript objects added in Flash MX include:

Accessibility
Capabilities
SharedObject
Stage
System

They join the Arguments, Key, Math, Mouse and Selection objects, which were also supported in Flash 5. (See the
Preface for notes on the CustomActions and LivePreview objects, which were added in Flash MX but are not
covered in this Language Reference.) Objects are interspersed alphabetically with the class descriptions in this
Language Reference but are distinguished by the word Object (e.g., Math Object). Unlike true classes, which use a
constructor function to instantiate multiple objects, these standalone objects are never instantiated (i.e., they are not
constructed with the new operator); rather, they are predefined objects that exist solely to collect related
functionality into a single package. The Math object, for example, provides convenient access to common
mathematical functions and constants.

Book: ActionScript for Flash MX: The Definitive Guide, 2nd Edition
Section: Chapter 18. ActionScript Language Reference

18.4 Entry Headings

Each entry in the Language Reference is presented in the following basic format:

Entry Name Availability

Purpose Access

Synopsis

Table 18-3 describes these headings, as well as additional headings used to document each item.

Table 18-3. Language Reference headings

Heading Description

Availability

Indicates when the item was added to ActionScript (or when it became an Action, if the item predates
formal ActionScript). For example, if the Availability is listed as "Flash 5," the feature is also
supported in Flash 6, unless otherwise noted. Furthermore, if the Availability explicitly or implicitly
includes Flash 6, the feature is supported both in the Flash MX authoring tool and the Flash Player 6
browser plugin, unless otherwise noted. This heading also summarizes backward-compatibility and
deprecation status.

Access
Applies to property entries only. Describes whether the property value can only be retrieved ("read-
only") or both retrieved and assigned ("read/write").

Purpose A brief summary of the item's purpose.

Synopsis

Illustrates the abstract syntax required by the item. Italicized code indicates text that must be replaced
by the programmer, such as with a string, integer, expression, or identifier. Some functions can be
called with differing types and numbers of arguments, in which case the Synopsis may show multiple
supported syntaxes. Note that the Synopsis does not indicate whether function, method, or constructor
arguments are optional; that information is available under the Arguments subheading.

Arguments
Applies to method and function entries only. Describes the parameters used with the method or
function, as listed in the Synopsis.

Operands
Applies to operator entries only. Describes the operands used with the operator, as listed in the
Synopsis.

Returns

Applies to method and function entries only (properties always "return" the value stored within them).
Describes the return value of the method, if any. If the method does not have a return value, the
Returns subheading is omitted. Functions without documented return values always return
undefined.

Description Explains how the item works and how it might be used in a practical scenario.

Usage Describes noteworthy peculiarities of the item.

Bugs Describes known problems associated with the item.

Example
Offers sample code showing the item in use, although shorter samples sometimes appear under the
Description subheading.

See Also
Lists cross-references to related entries within this Language Reference and to related material in Part
I. Refer also to the book's index and resources listed in the Preface and Appendix A.

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

Book: ActionScript for Flash MX: The Definitive Guide, 2nd Edition
Section: Chapter 18. ActionScript Language Reference

18.5 Alphabetical Language Reference

The following entries document ActionScript's event handlers, methods, and properties of objects and classes, plus
global functions and properties. Refer to the Index for the operators and statements covered elsewhere in this book.
This reference documents the core ActionScript language. For a summary of the methods and properties of the Flash
UI Components included with Flash MX, and an explanation of why they are not documented here, see Appendix
G. See Chapter 14 for more information about components, including resources for documentation on the Flash UI
Components.

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Accessibility Object Flash 6 (ActiveX for Windows IE only)

tools for developing advanced accessible UI components

Methods

isActive()

Indicates whether an accessibility aid program (generally a screen reader) is communicating with the Flash
Player.

sendEvent()

Sends an event notice to Microsoft Active Accessibility (MSAA).

Description

The Accessibility object manages communication between the Flash Player and screen readers or accessibility aids
such as GW Micro's Window-Eyes (http://www.gwmicro.com). The isActive() method checks whether an
accessibility aid is communicating with the Flash Player. It is useful when dynamically generating content in a
movie based on the presence of accessibility support. The sendEvent() method allows you to send information
about UI component events to accessibility aids and is intended for developers of accessible UI components.

At the time of this writing, the Macromedia ActionScript Component Accessibility (MASCA) API works with
Microsoft Active Accessibility (MSAA) only; hence, only the ActiveX version of Flash Player 6 supports
communication with an external accessibility application. In the future, more versions of the Flash Player are likely
to include support. Use of the MASCA API requires some knowledge of MSAA. To determine whether the current
Player has accessibility support, use capabilities.hasAccessibility.

Note that Accessibility is a predefined object, not a class. Its properties, methods, and event handlers are accessed
directly, as in:

Accessibility.isActive();

Many of the Accessibility implementation details have yet to be fully exposed to the developer community. In
general, ActionScript accessibility is required only by advanced interface components. For examples, see the Flash
UI Components included in the Flash MX authoring tool. As third-party component development proliferates,
Macromedia plans to publish accessibility specifications and tutorials.

For more information on accessibility in Flash, see:

http://www.macromedia.com/macromedia/accessibility/features/flash/

See Also

capabilities.hasAccessibility

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Accessibility.isActive() Method Flash 6

indicates whether an accessibility aid program (generally a
screen reader) is communicating with the Flash Player

Accessibility.isActive()

Returns

A Boolean: true if an accessibility aid is communicating with the Player, or false if not.

Description

The isActive() method returns a Boolean indicating whether an external accessibility application, such as a screen
reader, is currently being used to read what the Flash Player is displaying. If a screen reader is in use, isActive()
returns true, otherwise, it returns false.

Not all Flash Players support communication with an accessibility application. To check whether the specific Flash
Player running the movie supports accessibility, use capabilities.hasAccessibility. Currently,

only the ActiveX version of Flash Player 6 for Windows Internet Explorer supports accessibility. Players that do
not support accessibility, including the Netscape plugin for Windows and the Macintosh plugin, always return
false for Accessibility.isActive().

The isActive() method depends on the Flash Player having received an initial communication from an accessibility
aid program. There is a small, but not negligible, delay between when the Flash Player starts up and when it
receives the first such message. Thus, when isActive() is invoked early in a Flash movie, it may return false
even though there is actually an accessibility aid running. To work around this problem, build a delay of
approximately one second into your movie before calling isActive().

See Also

Accessibility.sendEvent(), capabilities.hasAccessibility

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Accessibility.sendEvent()
Method

Flash 6 (ActiveX for
Windows IE only)

send an event notice to MSAA

Accessibility.sendEvent(movieClip, childID, event, isNonHtml)

Arguments

movieClip

The movie clip instance sending the event.
childID

The child interface element to which the event applies (for example, an individual list item in a list box). Use 0
to indicate that the event applies to the specified movieClip.

event

A constant indicating the type of event. The event names and values used are a subset of the MSAA event
constants listed in Microsoft's MSAA documentation at http://msdn.microsoft.com/at.

isNonHtml

A Boolean indicating whether the event is (false) or is not (true) one of the standard event types that can

be generated by an HTML form. When set to true, this argument prevents problems in some screen readers

that interpret Flash content in Internet Explorer as part of the HTML page. Defaults to false.

Description

The sendEvent() method is used by accessible UI components to notify Microsoft Active Accessibility (MSAA) of an
interface change in the component. MSAA passes the message on to a screen reader application that reports the change
to the user. For example, a radio button movie clip would use sendEvent() to notify MSAA when its name changes or
when it is selected or unselected. If movieClip is not a movie clip instance, or if childID or event are

missing, sendEvent() fails silently. If no accessibility aids are running, calling sendEvent() has no effect.

The sendEvent() method is only one part of the MASCA API that, at the time of this writing, is not yet publicly
documented, but it is an important part of the company's Flash component strategy. The API requires components to
define special objects and constants in order to communicate with MSAA. For example, each component that wishes
to be accessible must store an object in the reserved _accImpl property. This object, known as the ActionScript

Accessibility Object (ASAO), implements methods and properties that describe the component in accessibility terms
and expose it to MSAA (much like the C++ IAccessible interface, for which an ASAO is, in fact, a simplified wrapper).

Once the required objects and constants have been defined according to the MASCA API, a component depicts
interface interaction in accessible terms via sendEvent(). For example, the setLabel() method of the radio button
component uses sendEvent() to notify a screen reader when the button's label changes:

FRadioButtonClass.prototype.setLabel = function(label)
{
 this.fLabel_mc.setLabel(label);
 this.txtFormat();
 // ACCESSIBILITY

 if(Accessibility.isActive()){
 Accessibility.sendEvent(this, 0, this.EVENT_OBJECT_NAMECHANGE);
 }
}

For more information on the IAccessible interface, see:

http://msdn.microsoft.com/library/en-us/msaa/msaapndx_6qlh.asp

For more information on MSAA, see:

http://msdn.microsoft.com/library/en-us/msaa/msaastart_9w2t.asp

Microsoft regularly changes links on its developer web site. If these documents are no longer available, consult
http://msdn.microsoft.com/at.

See Also

capabilities.hasAccessibility

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Arguments Object Flash 5; caller property added in Flash 6

access to function arguments, the current function, and the
calling function

arguments[elem]
arguments.propertyName

Properties

callee

A reference to the function being executed.
caller

A reference to the calling function.
length

The number of arguments passed to the function being executed.

Description

The Arguments object is stored in the local arguments variable of every function and is accessible only while a

function is executing. Arguments is both an array and an object. As an array, arguments stores the values of the

parameters passed to the currently executing function. For example, arguments[0] is the first passed

parameter, arguments[1] is the second passed parameter, and so on. All arguments passed are stored in the

array, including those arguments not formally declared as parameters. As an object, Arguments stores the callee
and the caller properties, which can be used to identify or invoke the current function and the calling function.

As of Flash 6, arguments supports all Array methods and properties (pop(), shift(), etc.); prior to Flash 6,

arguments supported the length property, but not the Array methods.

See Also

Section 9.8.2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

arguments.callee Property Flash 5

a reference to the function being executed read/write

arguments.callee

Description

The callee property stores a reference to the function currently executing. We can use this reference to execute

the current function again or to identify the current function through comparison.

Example

function someFunction () {
 trace(arguments.callee = = someFunction); // Displays: true
}

// An unnamed recursive function
countToTen = function () {
 i++;
 trace(i);
 if (i < 10) {
 arguments.callee();
 }
};

// Invoke the unnamed recursive function
countToTen();

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

arguments.caller Property Flash 6

a reference to the calling function read/write

arguments.caller

Description

The caller property stores a reference to the function that called the current function. If the current function

was not called by another function, caller is null. For example:

// Create a function that calls two other functions
function formatPage () {
 formatTitle();
 formatBody();
}

function formatTitle () {
 // Check if the function was called by formatPage()
 trace(arguments.caller = = formatPage);
}

function formatBody () {
 // Check if the function was called by formatPage()
 trace(arguments.caller = = formatPage);
}

// Now call formatTitle() and formatBody() from formatPage()

formatPage();
// Displays: true and true

// Then call formatTitle() directly
formatTitle();
// arguments.caller will be null. Displays: false

We can use caller to execute or identify a calling function and to check whether a function was called directly

or by another function.

Usage

Note that in Netscape 4, JavaScript's arguments.caller refers to the Arguments object of the calling

function, not the calling function itself. In JavaScript, arguments.caller is deprecated as of version 1.3,

and it is not supported by Internet Explorer or later versions of Netscape.

Bugs

Macromedia's initial documentation for Flash MX incorrectly claims that arguments.caller refers to the

calling function's Arguments object. It refers, in fact, to the calling function itself, not the caller's Arguments object.

Example

The following code shows a function that aborts itself when called directly, ensuring that it is only called by a
larger routine:

function subFunction () {
 if (arguments.caller = = null) {
 return "Function cannot be called directly.";
 }
 // proceed with function...
}

See Also

arguments.callee

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

arguments.length Property Flash 5

the number of parameters passed to an argument read/write

arguments.length

Description

The length property stores an integer representing the number of elements in the arguments array, which

equates to the number of parameters passed to the currently executing function.

Example

We can use the length property of arguments to determine whether a function was invoked with the

correct number of parameters. The following example checks whether two arguments have been passed to
someFunction(). Checking whether the passed arguments are of the correct type is left as an exercise to the reader.
(Hint: see the typeof operator.) Here's the code:

function someFunction (y, z) {
 if (arguments.length != 2) {
 trace("Function invoked with wrong number of parameters");
 return;
 }
 // Proceed with normal function body...
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array Class Flash 5; sortOn() method added in Flash 6

support for ordered lists of data

Constructor

new Array()
new Array(len)
new Array(element0, element1, element2,...elementn)

Arguments

len

A nonnegative integer specifying the size of the new array.
element0, ...elementn

A list of one or more initial values to be assigned as elements of the array.

Properties

length

The number of elements in an array (including empty elements).

Methods

concat()

Create a new array by appending additional elements to an existing array.
join()

Convert the elements of an array to strings, and concatenate using a customizable delimiter.
pop()

Remove and return the last element of an array.
push()

Add one or more elements to the end of an array.
reverse()

Reverse the order of elements in an array.
shift()

Remove and return the first element of an array.
slice()

Create a new array using a subset of elements from an existing array.
sort()

Sort the elements of an array according to the specified rule.
sortOn()

Sort an array of objects by the specified property.
splice()

Remove elements from, and/or add elements to, an array.
toString()

Convert an array to a string of comma-separated element values.
unshift()

Add one or more elements to the beginning of an array.

Description

We use the properties and methods of the Array class to manipulate the data stored in the elements of an Array
object. See Chapter 11 for exhaustive details on what arrays are and how you can use them, plus detailed
definitions of the terminology used in this section. See also the [] and dot operators, which are used to access

array elements and form array literals, as described in Chapter 5.

Usage

If the Array constructor is invoked with a single integer argument, that argument is used to set the length of the
new array, which is then filled with undefined values. If two or more arguments are supplied to the

constructor or if a single nonnumeric argument is supplied to the constructor, the arguments are used as the initial
values for elements in the array, and the length of the array is determined by the number of arguments specified.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.concat() Method Flash 5

create a new array by extending an existing array

array.concat(value1, value2, value3,...valuen)

Arguments

value1, ...valuen

A list of expressions to be added to the end of array as new elements.

Returns

A new array containing all the elements of array, followed by the elements value1, ...valuen.

Description

The concat() method returns a new array created by appending new elements to the end of an existing array. The original array is
left unchanged. Use the push(), splice(), or shift() method to modify the original array.

If an array is used as an argument to concat(), each element of that array is appended separately. That is, the result of
arrayX.concat(arrayY) will be an array formed by appending each element of arrayY to the end of arrayX. The resulting

array will have a length equal to arrayY.length + arrayX.length. Nested arrays, however, are not similarly

flattened.

Example

// Create an array
myListA = new Array("apples", "oranges");

// Set myListB to ["apples", "oranges", "bananas"]
myListB = myListA.concat("bananas");

// Create another new array
myListC = new Array("grapes", "plums");

// Set myListD to ["apples", "oranges", "bananas", "grapes", "plums"]
myListD = myListB.concat(myListC);

// Set myListA to ["apples", "oranges", "bananas"]
myListA = myListA.concat("bananas");

// Create an array
settings = ["on", "off"];
// Append an array containing a nested array
options = settings.concat(["brightness", ["high", "medium", "low"]]);
// Sets options to: ["on", "off", "brightness", ["high", "medium", "low"]]

// not: ["on", "off", "brightness", "high", "medium", "low"]

See Also

Array.push(), Array.shift(), Array.splice(); Section 11.7.3.4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.join() Method Flash 5

convert an array to a string

array.join()
array.join(delimiter)

Arguments

delimiter

An optional string to be placed between elements in the newly created string. Defaults to a comma if not supplied.

Returns

A string composed of all the elements of array, converted to strings and separated by delimiter.

Description

The join() method returns a string created by combining all the elements of an array, as follows:

Convert each element in the array to a string according to the rules specified in Table 3-2 in Chapter 3.1.
Add delimiter to the end of each converted-element string, except the last one.2.

Concatenate the converted-element strings into one long string.3.

Note that elements that are themselves arrays are converted to strings via the toString() method, so nested array elements are
always delimited by commas, not by the delimiter used in the join() invocation.

Example

fruit = new Array("apples","oranges","bananas","grapes","plums");
// Set fruitString to "apples,oranges,bananas,grapes,plums"
// (default delimiter is a comma with no following space)
fruitString = fruit.join();
// Use ", " as the delimiter to create nicer formatting than toString()
// and set fruitString to "apples, oranges, bananas, grapes, plums" (with a
// space after each comma)
fruitString = fruit.join(", ");

See Also

Array.toString(), String.split(); "The join() Method," in Chapter 11

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.length Property Flash 5

the number of elements in an array read/write

array.length

Description

The length property is a nonnegative integer specifying the number of elements in an array. An array with no

elements has a length of 0; an array with 2 elements has a length of 2. Note that the index number of the first
element in an array is 0, so length is always one greater than the index of the last element in the array.

The length property of an array indicates how many numbered elements the array currently contains, including

empty elements (those containing null or undefined). For example, an array may have values for elements

0, 1, 2, and 9, but elements 3 through 8 may be empty. Such an array has a length of 10, because it has 10 element
positions (0 through 9), even though only 4 positions are occupied by useful values.

The length property changes automatically whenever any elements are added or removed via the Array class

methods, such as push(). The length property reflects numbered elements only; it does not include named array

elements, which are treated as properties of the Array object. Although we ordinarily use Array class methods to
change length indirectly, length can also be manipulated directly. Setting the length of an array changes

the number of elements in the array. If we increase length, empty elements are added to the end of the array and

assigned the value undefined. If we decrease length, existing elements are removed from the end of the

array without warning; therefore splice() or pop() are the preferred methods of deleting elements from an array.

Example

myList = new Array("one", "two", "three");
trace(myList.length); // Displays: 3

// Loop through the array's elements
for (var i = 0; i < myList.length; i++) {
 trace(myList[i]);
}

See Also

Section 11.5

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.pop() Method Flash 5

remove the last element of an array

array.pop()

Returns

The value of the last element of array, which is also deleted.

Description

The pop() method deletes the last element of an array, reduces the array's length by 1, and returns the value of the deleted

element. Compare it with the shift() method, which deletes the first element of an array.

Example

myList = new Array("one", "two", "three");
trace ("Now deleting " + myList.pop()); // myList is now: ["one", "two"]

See Also

Array.push(), Array.shift(), Array.splice(); Section 11.8; Section 5.12.3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.push() Method Flash 5

add one or more elements to the end of an array

array.push(value1, value2,...valuen)

Arguments

value1, ...valuen

A list of one or more values to be added to the end of array.

Returns

The new length of array.

Description

The push() method appends a list of values to the end of an array as new elements. Elements are added in the order
provided. It differs from concat() in that push() modifies the original array, whereas concat() creates a new array.
It differs from unshift() in that push() adds elements at the end of an array, not the beginning.

Example

myList = new Array (5, 6);
myList.push(7); // myList is now [5, 6, 7]
myList.push(10, 8, 9); // myList is now [5, 6, 7, 10, 8, 9]

See Also

Array.concat(), Array.pop(), Array.unshift(); "Adding Elements to an Array," in Chapter 11

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.reverse() Method Flash 5

reverse the order of elements in an array

array.reverse()

Description

The reverse() method reverses the order of elements in an array, swapping the last element with the first element, the
second-to-last element with the second element, and so on.

Example

myList = new Array(3, 4, 5, 6, 7);
myList.reverse(); // myList is now [7, 6, 5, 4, 3]

See Also

Array.sort()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.shift() Method Flash 5

remove the first element of an array

array.shift()

Returns

The value of the first element of array, which is also deleted.

Description

The shift() method deletes the first element of an array and then moves all the remaining elements of the array up
one position. The affected array's length is reduced by 1. Note that shift() differs from the pop() method, which

deletes the last element of an array.

Example

myList = new Array ("a", "b", "c");
myList.shift(); // myList becomes ["b", "c"]

See Also

Array.pop(), Array.splice(), Array.unshift(); "Removing Elements from an Array," in Chapter 11

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.slice() Method Flash 5

create a new array using a subset of elements from an
existing array

array.slice(startIndex, endIndex)

Arguments

startIndex

A zero-relative integer specifying the first element of array to add to the new array. If negative,

startIndex indicates an element number counting backward from the end of array (-1 is the last

element, -2 is the second-to-last element, etc.).
endIndex

An integer specifying the element after the last element of array to add to the new array. If negative,

endIndex counts backward from the end of array (-1 is the last element, -2 is the second-to-last

element, etc.). If omitted, endIndex defaults to array.length.

Returns

A new array containing the elements of array from startIndex to endIndex-1.

Description

The slice() method creates a new array by extracting a series of elements from an existing array. The original array
is not modified. The new array is a subset of the elements of the original array, starting with

array[startIndex] and ending with array[endIndex - 1].

Example

myList = new Array("a", "b", "c", "d", "e");

// Set myOtherList to ["b", "c", "d"]
myOtherList = myList.slice(1, 4);

// Set anotherList to ["d", "e"]
anotherList = myList.slice(3);

// Set yetAnotherList to ["c", "d"]
yetAnotherList = myList.slice(-3, -1);

See Also

Array.splice(); "The slice() Method," in Chapter 11; "The delete Operator," in Chapter 5

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.sort() Method Flash 5

sort the elements of an array

array.sort()
array.sort(compareFunction)

Arguments

compareFunction

An optional function that dictates how to sort array.

Description

When invoked without the optional compareFunction argument, sort() temporarily converts the elements

of array to strings and orders the elements according to the Unicode code points of those strings (approximately

alphabetical order for Western European languages). Alphabetic comparisons and code points are described in
Section 4.6.2.2 in Chapter 4.

When invoked with a compareFunction argument, sort() reorders the elements of array according to

the return value of compareFunction, which is a user-defined function that dictates how to sort any two

values in the array. Your user-defined compareFunction should be designed to accept two array elements

as arguments. It should return a negative number if the first element should come before the second element; it
should return a positive number if the first element should come after the second element; and it should return a 0
if the elements should not be reordered. If additional elements are added to the array after it has been sorted, they
are not added in sorted order. You must resort the array to reorder any newly added elements. Note that numbers
are sorted according to their Unicode code points by default (which are the same code points as Latin 1 and ASCII).
Chapter 11 explains how to sort numbers by their numeric values. To ensure case-insensitive alphabetic sorting for
Latin 1 letters, use String.toUpperCase() to convert strings to uppercase before calling sort() or inside the
compareFunction, as shown in Example 11-6.

To sort a group of objects by a given property's value, use the sortOn() method.

Bugs

In Flash Player 5, Array.sort() has several sorting errors, described at:
http://moock.org/asdg/technotes/arraySortBugs. These are fixed in Flash Player 6.

Example

The following example sorts an array of movie clips according to their horizontal location on screen. This is useful
to create a fade effect that travels from left to right across the screen and fades the movie clips based on their
position, even if that position changes dynamically.

var clips = [clip1, clip2, clip3, clip4];

function compareXposition (element1, element2) {
 if (element1._x < element2._x) {

 return -1;
 } else if (element1._x > element2._x) {
 return 1;
 } else {
 return 0; // The clips have the same x position
 }
}

clips.sort(compareXposition);

See Also

Array.reverse(), Array.sortOn(); "The sort() and onsort() Methods," in Chapter 11

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.sortOn() Method Flash 6

sort an array of objects by the specified property

array.sortOn(key)

Arguments

key

A mandatory string specifying which property should be used to sort the objects in array.

Description

The sortOn() method is used to sort an array of objects according to the value of a specified property. The elements of array
are expected to be objects. Each object is expected to have a property, specified by the string key, that will be used to sort the

object. If key is not provided, sortOn() silently fails and no sort is performed.

The following code populates a three-element array with object literals that define fruit and meat properties:

var shoppingList = new Array();
shoppingList[0] = {fruit:"mango", meat:"beef"};
shoppingList[1] = {fruit:"orange", meat:"pork"};
shoppingList[2] = {fruit:"apple", meat:"chicken"};

To sort the shoppingList array by the fruit property, we use:

shoppingList.sortOn("fruit");
// shoppingList now contains:
// ELEMENT 0: {fruit:"apple", meat:"chicken"}
// ELEMENT 1: {fruit:"mango", meat:"beef"}
// ELEMENT 2: {fruit:"orange", meat:"pork"};

More typically, the objects in the array will be instances of some class. For example:

// Create a simple Contact class with firstName and lastName properties
function Contact (firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
}

// Override toString() for our class so it returns a more legible value
Contact.prototype.toString = function () {
 return this.firstName + " " + this.lastName;
}

// Populate a contacts array with Contact instances
var contacts = new Array();
contacts[0] = new Contact("Colin", "Moock");

contacts[1] = new Contact("Bruce", "Epstein");
contacts[2] = new Contact("Derek", "Clayton");

// Sort by lastName...
contacts.sortOn("lastName");
trace(contacts); // Displays: Derek Clayton,Bruce Epstein,Colin Moock
// Sort by firstName...
contacts.sortOn("firstName");
trace(contacts); // Displays: Bruce Epstein,Colin Moock,Derek Clayton

Note that sortOn() uses the standard compare function to sort values (as if sort() had been called with no arguments). The
sortOn() method does not offer any custom compare function capabilities. For sorting routines that require a custom compare
function, use the sort() method instead. To ensure case-insensitive alphabetic sorting for Latin 1 letters, use String.toUpperCase()
to convert property values to uppercase before calling sortOn().

When an element does not contain an object with a key property, that element is converted to a string and then ordered according

to the default sort rules.

Bugs

In Flash Player 6, using sortOn() on an array that contains both strings and objects can crash the Player and the browser in which it
is running. For example, the following code crashes Flash Player 6:

var shoppingList = new Array();
shoppingList[0] = {fruit:"mango", meat:"beef"};
shoppingList[1] = "hi";
shoppingList[2] = {fruit:"apple", meat:"chicken"};

shoppingList.sortOn("fruit");

Therefore, it is advisable to user a wrapper function that first checks whether all elements are objects before calling sortOn(), such
as:

Array.prototype.safeSortOn = function (key) {
 for (i=0; i < this.length; i++) {
 if (typeof this[i] != "object") {
 trace ("Element " + i + " is not an object.");
 return;
 }
 }
 // If it passes the test, then call sortOn()
 this.sortOn(key);
}

// Usage:
// This won't crash Flash Player 6.
shoppingList.safeSortOn("fruit");

The sort order is indeterminate when multiple elements have the identical value for the key property. In this case, sortOn() may

produce inconsistent results between multiple calls. For example:

function Contact (firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
}

Contact.prototype.toString = function () {
 return this.firstName + " " + this.lastName;

}

// Populate a contacts array with Contact instances that
// share identical lastName property values.
var contacts = new Array();
contacts[0] = new Contact("Makiko", "Pitaru");
contacts[1] = new Contact("Amit", "Pitaru");
contacts[2] = new Contact("Richard", "Clayton");
contacts[3] = new Contact("Derek", "Clayton");

// Sort by lastName...
contacts.sortOn("lastName");
trace(contacts); // Displays:
 // Richard Clayton,Derek Clayton,Makiko Pitaru,Amit Pitaru

// Sort AGAIN by lastName...
contacts.sortOn("lastName");
trace(contacts); // Displays DIFFERENT RESULTS:
 // Richard Clayton,Derek Clayton,Amit Pitaru,Makiko Pitaru

See Also

Array.sort()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.splice() Method Flash 5

remove elements from, and/or add elements to, an array

array.splice(startIndex)
array.splice(startIndex,
deleteCount)
array.splice(startIndex, deleteCount, value1,...valuen)

Arguments

startIndex

The zero-relative element index at which to start element deletion and optional insertion of new elements.
If negative, startIndex specifies an element counting back from the end of array (-1 is the last

element, -2 is the second-to-last element, etc.).
deleteCount

An optional, nonnegative integer representing the number of elements to remove from array, including

the element at startIndex. If deleteCount is 0, no elements are deleted. If deleteCount
is omitted, all elements from startIndex to the end of the array are removed.

value1, ...valuen

An optional list of one or more values to be added to array at index startIndex after the specified

elements have been deleted. If this list is omitted, no elements are added.

Returns

A new array containing the deleted elements (the original array is modified separately to reflect the requested

changes).

Description

The splice() method removes the elements from array[startIndex] to array[startIndex +
deleteCount - 1] and then, optionally, inserts new elements starting at startIndex. The splice()

method does not leaves gaps in array; it compacts deleted elements and moves remaining elements as needed to

ensure the contiguity of elements in the array.

Example

myList = new Array (1, 2, 3, 4, 5);
// Deletes the second and third elements from the list
// and inserts the elements "x", "y", and "z" in their place.
// This changes myList to [1, "x", "y", "z", 4, 5].
myList.splice(1, 2, "x", "y", "z");

See Also

Array.slice(); "The splice() Method," in Chapter 11

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.toString() Method Flash 5

convert an array to a string of comma-separated element
values

array.toString()

Returns

A comma-separated list of array's elements, converted to strings.

Description

The toString() method creates a string representation of array. The string returned by toString() is a list of array elements

converted to strings and separated by commas (the same as is returned by the join() method when join() is invoked without
parameters). An array's toString() method is invoked automatically whenever the array is used in a string context. Therefore,
it is rarely necessary to invoke toString() manually. Normally, when we want a precise string representation of an array, we
use the join() method, which offers more control over the string we're creating.

Example

myList = new Array("a", "b", "c"); // Create an array
trace(myList.toString()); // Displays: "a,b,c"
myList = new Array([1, 2, 3], "a", "b", "c"); // Create a nested array
trace(myList.toString()); // Displays: "1,2,3,a,b,c"

See Also

Array.join()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Array.unshift() Method Flash 5

add one or more elements to the beginning of an array

array.unshift(value1, value2,...valuen)

Arguments

value1, ...valuen

A list of one or more element values to be added to the beginning of array.

Returns

The new length of array.

Description

The unshift() method adds a series of elements to the beginning of an array. Elements are added in the order
specified. To add elements at the end of an array, use push().

Example

myList = new Array (5, 6);
myList.unshift(4); // myList becomes [4, 5, 6]
myList.unshift(7, 1); // myList becomes [7, 1, 4, 5, 6]

See Also

Array.push(), Array.shift(); "Adding Elements to an Array," in Chapter 11

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Boolean() Global Function Flash 5

convert a value to the boolean datatype

Boolean(value)

Arguments

value

An expression containing the value to be converted to a Boolean.

Returns

The result of converting value to a primitive Boolean (either true or false).

Description

The Boolean() global function converts its argument to a primitive Boolean value and returns that converted value.
The results of converting various datatypes to a primitive Boolean are described in Table 3-3 in Chapter 3. It's
normally not necessary to use the Boolean() function; ActionScript automatically converts values to the boolean
type when appropriate.

Usage

Be sure not to confuse the global Boolean() function with the Boolean class constructor. The Boolean() function
converts its argument to the boolean datatype, whereas the Boolean class constructor creates a new Boolean object.
Note that in ECMA-262, all nonempty strings convert to true. In Flash, only strings that can be converted to a

valid nonzero number convert to true. Therefore, even the string "true" converts to the Boolean false.

Example

var x = 1;
if (Boolean(x)) {
 trace("x is true");
}

See Also

The Boolean class; "Datatype Conversion," in Chapter 3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Boolean Class Flash 5

wrapper class for primitive Boolean data

Constructor

new Boolean(value)

Arguments

value

An expression to be resolved and, if necessary, converted to a Boolean value, then wrapped in a boolean
object. If the value argument is omitted, the stored value will be the Boolean false.

Methods

toString()

Convert the value of a Boolean object to a string.
valueOf()

Retrieve the primitive value of a Boolean object.

Description

The Boolean class creates a Boolean object, which contains a primitive Boolean value in an internal property.
Boolean objects are used purely for the sake of manipulating and examining primitive Boolean values using
methods of the Boolean class. Hence, a Boolean object is known as a wrapper object because it simply packages
a primitive Boolean value, giving it some object-like methods. Compare the Boolean class with the String and
Number classes, which similarly wrap string and number primitive values, but with more useful results.

For the most part, Boolean objects are used internally. They are created automatically by the interpreter
whenever a method is invoked on a primitive Boolean value and are deleted automatically after each use. We
can create Boolean objects ourselves using the Boolean constructor, but there is seldom reason to do so.

Usage

Note that in practice it is much more common to use the Boolean() global function as a datatype-conversion
tool than it is to use the Boolean class.

See Also

Boolean() global function; "The Boolean Type," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Boolean.toString() Method Flash 5

the value of the Boolean object converted to a string

booleanObject.toString()

Returns

The string "true" if the primitive value of booleanObject is true; "false" if the primitive value of

booleanObject is false. The value of the Boolean object is specified when the object is constructed,

and it is stored internally thereafter. Although the internal value of a Boolean object is obtainable via valueOf(),
we can use toString() to convert it to its string equivalent.

Description

The toString() method retrieves the primitive value of a Boolean object, converts that value to a string, and
returns the resulting string.

Example

x = new Boolean(true);
trace(x.toString()); // Displays: "true"

See Also

Object.toString()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Boolean.valueOf() Method Flash 5

the primitive value of the Boolean object

booleanObject.valueOf()

Returns

The Boolean value true if the primitive value of booleanObject is true; false if the primitive

value of booleanObject is false. The value of the Boolean object is specified when the object is

constructed, and it is stored internally thereafter.

Description

The valueOf() method returns the primitive Boolean datum associated with a Boolean object. The valueOf()
method returns the value argument with which the constructor was called, converted to its primitive Boolean

equivalent.

Example

x = new Boolean(0);
trace(x.valueOf()); // Displays: false

See Also

Object.valueOf()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button Class Flash 6

control over buttons in a movie.

Constructor

None. Button objects must be created manually in the authoring tool. Use movie clips to simulate runtime-
generated buttons.

Properties

_alpha

Opacity percentage: 0 is transparent; 100 is opaque.
enabled

Boolean; allows or disallows button interaction.
_focusrect

Boolean; enables or disables automatic highlighting of buttons activated via the keyboard.
_height

Height of the button, in pixels.
_name

The instance name of the Button object.
_parent

A reference to the movie clip in which the button resides.
_rotation

Clockwise rotation, in degrees, of the button.
tabEnabled

Boolean; includes or excludes the button from the current tab order.
tabIndex

Specifies the button's index in the custom tab order.
_target

The target path of the button, in slash syntax.
trackAsMenu

Modifies the button's onRelease() handler requirements, enabling menu-style behavior.
_url

The network address of the movie clip that contains the button.
useHandCursor

Boolean; dictates whether a hand icon is displayed when the mouse is over the button.
_visible

Boolean; controls whether the button is shown or hidden.
_width

Width of the button, in pixels.
_x

Horizontal location of the button's registration point, in pixels.
_xmouse

Horizontal location of mouse pointer, relative to the button's registration point, in pixels.
_xscale

Width of the button, as a percentage of its original width.
_y

Vertical location of the button's registration point, in pixels.
_ymouse

Vertical location of mouse pointer, relative to the button's registration point, in pixels.
_yscale

Height of the button, as a percentage of its original height.

Methods

getDepth()

Returns the position of the button in the content stack.

Event Handlers

on (keyPress)

Occurs when the specified key is pressed.
onDragOut()

Occurs when the mouse is clicked while the pointer is over a button and then the pointer moves off the
Flash button without the mouse button being released.

onDragOver()

Occurs when the mouse is clicked while the pointer is over a button and then the pointer moves off and
back onto the Flash button without the mouse button being released.

onKillFocus()

Occurs when the button loses focus.
onPress()

Occurs when the mouse is clicked while the pointer is over a Flash button.
onRelease()

Occurs when the mouse is pressed and then released while the pointer is over a Flash button.
onReleaseOutside()

Occurs when the mouse is clicked over the Flash button and then released after rolling off the button.
onRollOut()

Occurs when the pointer moves off the Flash button (while the mouse is not depressed).
onRollOver()

Occurs when the pointer moves over the Flash button (while the mouse is not depressed).
onSetFocus()

Occurs when the Flash button gains focus.

Description

The Button class provides programmatic control over the buttons in a movie. Each Button object represents a
single Button symbol instance created manually at authoring time. Buttons cannot be created or destroyed via
ActionScript, even though the Button class constructor technically exists for the sake of containing the class's
methods and properties. That is, calling new Button() does not create a visual button instance for use in a movie.
However, movie clips—which have all the capabilities of buttons—can be both created and destroyed via
ActionScript at runtime. To remove a button instance, place it in movie clip, and remove the clip using
MovieClip.removeMovieClip().

Prior to Flash 6, buttons were not accessible to ActionScript. As of Flash 6, the Button class lets us manipulate
buttons much as we do movie clips, by setting position, size, rotation, etc. In fact, many button properties are
borrowed directly from the MovieClip class (for example, _x, _y, _width, _height, and

_rotation). For the sake of backward compatibility, button properties corresponding to movie clip

properties that existed prior to Flash 6 are prefixed with an underscore (_). To conform more closely with other
ECMA-262 languages, properties that are completely new in Flash 6 do not use the underscore convention.

The Button class's event handlers provide tools for creating navigation, forms, games, and other interface
elements. Each type of event is described in detail later in this entry. To respond to events, a button object can
use either of two different types of event handlers — an event handler property:

go_btn.onPress = function () {
 // statements
};

or the idiosyncratic Flash 5 notation attached directly to the button in the authoring tool:

on (press) {
 // statements
}

However, one of the button events, keyPress, supports the Flash 5 on(keyPress) form only. See Button keyPress
for details.

For general information on creating event handlers, see Chapter 10. Note that as of Flash 6, all button event
handlers are also supported by the MovieClip class.

Button events are sent only to the button with which the mouse is interacting. If multiple buttons overlap, the
topmost button receives all events; no other buttons can respond, even if the topmost button has no handlers
defined.

In the following entries for Button property, method, and event descriptions:

The hit area refers to the physical region of the button that must be under the mouse pointer in order for
the Flash button to be activated. (A Flash button's hit area is defined graphically when you create the
button in the Flash authoring tool.)

The Up, Over, and Down states correspond to the button frames of the same name in the Flash authoring
tool. These are displayed automatically when the mouse is not over the Flash button's hit area (Up), the
mouse is over the Flash button's hit area (Over), or the mouse is depressed over the Flash button's hit area
(Down).

To enable Actions panel code-hinting for button objects, use an instance name that includes the suffix "_btn",

as in: submit_btn.

Usage

Using Button objects, even novice developers can add interactivity with minimal effort. However, for advanced
applications, movie clips are often more appropriate than buttons. Movie clips offer all the capabilities of
buttons, but with added features such as a dynamic hit area, changeable button states (Up, Over, and Down), and
the full suite of MovieClip methods, events, and properties.

See Also

The MovieClip class; Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._alpha Property Flash 6

opacity percentage: 0 is transparent; 100 is
opaque

read/write

theButton._alpha

Description

The floating-point _alpha property specifies the opacity (or, conversely, the transparency) of theButton
as a percentage—0 is completely transparent, whereas 100 is completely opaque. All states (Up, Over, and
Down) of theButton are affected.

Example

The following code makes go_btn 50% transparent.

go_btn._alpha = 50;

See Also

Button._visible, MovieClip._alpha

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.enabled Property Flash 6

Boolean; allows or disallows button interaction read/write

theButton.enabled

Description

The Boolean enabled property turns a button on (true) and off (false). It defaults to true. When enabled is false,

theButton does not receive any user input; the hand cursor is not shown, no events are triggered, and only the Up state is

displayed. However, a disabled button can still receive keyboard focus with the Tab key. To disable tab focus, set
theButton.tabEnabled to false.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is enabled. Be sure to test
keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all targeted web browsers.

Example

Buttons can be disabled in order to control a user's interaction with an interface. For example, a form's Submit button can be
disabled until all of the form's input text fields have been filled out by the user:

// Disable the Submit button at the outset
submit_btn.enabled = false;
submit_btn.tabEnabled = false;

// Add code that reenables the button when all fields have been filled out...
// For example:
mandatoryField.onChanged = function () {
 if (this.text != "") {
 submit_btn.enabled = true;
 submit_btn.tabEnabled = true;
 }
}

See Also

Button.tabEnabled, Button.useHandCursor

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._focusrect Property Flash 6

Boolean; enables or disables automatic
highlighting of buttons activated via the keyboard

read/write

theButton._focusrect

Description

When the mouse pointer hovers over a Flash button, the content of the button's Over state is displayed. Buttons
can also gain keyboard focus when the user presses the Tab key. When a button has keyboard focus, Flash
displays the button's Over state and also places a yellow rectangle around the button, which is not always
aesthetically desirable. You can turn off the yellow rectangle for an individual button by setting its
_focusrect property to false:

go_btn._focusrect = false;

When _focusrect is set to false, Flash displays only the Over state of keyboard-focused buttons. When

_focusrect is set to true, Flash displays the Over state and the yellow rectangle. When it is null (the

default), the value of the global _focusrect property is used. To disable the yellow focus rectangle for all

buttons in a movie, set the global _focusrect property to false. Note that the value of the global

_focusrect property is not reflected by the _focusrect property of individual button instances.

Furthermore, setting an individual button's _focusrect property overrides the global setting for that

button.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

See Also

focusrect, MovieClip.focusrect

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.getDepth() Method Flash 6

returns the position of the button in the content stack

theButton.getDepth()

Returns

An integer depth level.

Description

Buttons, movie clips, and text fields are all placed in the Player in an order that governs how objects stack
visually. An internal integer depth property indicates each object's order in the stack. The getDepth() method
tells us theButton's integer depth position. Each depth level can have only one occupant, whether it is a

text field, button, or movie clip. Objects on higher depths appear in front of those with lower depths.

Because all buttons are created at authoring time, Button.getDepth() always returns a depth in the range of -
16383 to 0 (which is reserved for authored content). Unlike the MovieClip class, Button has no swapDepths()
method, so each button's depth is fixed once it is assigned.

For much more information about depths, see Section 13.4 in Chapter 13.

Example

Check the depth of cancel_btn, placed on the lowest layer of the main timeline:

trace(cancel_btn.getDepth()); // Displays: -16383

See Also

MovieClip.getDepth(), MovieClip.swapDepths(), TextField.getDepth(); "Movie and Instance Stacking Order,"
in Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._height Property Flash 6

height of the button, in pixels read/write

theButton._height

Description

The floating-point _height property is a nonnegative number specifying the height of theButton's

current frame (Up, Over, Down), in pixels. It can be both retrieved and set (the latter action changes the button's
size on screen). In all other respects, it behaves identically to MovieClip._height; see that property

entry under the MovieClip class for details.

See Also

Button._width, MovieClip._height

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button keyPress Event Handler Flash 4

occurs when the specified key is pressed

on (keyPress key) {
 statements
}

Description

The keyPress event is triggered by the pressing of a specified key. It uses the Flash 5-style on(eventName) syntax and is not

available in the more modern callback-function form. In Flash 6, Key.onKeyUp() and Key.onKeyDown() are the preferred
keyboard-handling tools, because they do not require an on-stage object and support the detection of multiple simultaneous key
presses.

To trap key events, we specify the key that triggers the event, using the syntax listed at the beginning of this entry, where key is

a string representing the key associated with the event. The string can be either the character corresponding to the key (such as
"s" or "S", because it is case-insensitive) or a keyword representing the key in the format "<Keyword>". Only one key

can be specified with each handler. To capture multiple keys using keyPress, we must create multiple keyPress event handlers.
For example:

// Detects the "a" key
on (keyPress "a") {
 trace("The 'a' key was pressed");
}

// Detects the Enter key
on (keyPress "<Enter>") {
 trace("The Enter key was pressed");
}

// Detects the down arrow key
on (keyPress "<Down>") {
 trace("The down arrow key was pressed");
}

The legal values of Keyword are as follows (note that the function keys, F1 through F12, are not supported by keyPress but are

detectable using the Key object):

<Backspace>
<Delete>
<Down>
<End>
<Enter>
<Home>
<Insert>
<Left>
<PgDn>
<PgUp>

<Right>
<Space>
<Tab>
<Up>

In Flash 4, keyPress was the only means of interacting with the keyboard.

Usage

Unlike all other keyboard event-handling tools in ActionScript, the keyPress Button event intercepts the default keyboard
behavior in the Player. For example, if a button traps the left arrow key via keyPress, the left arrow will not move the I-beam
cursor in a text field.

on (keyPress "<Left>") {
 // We're just blocking the <Left> key, but we must provide some code here
 // or this function will get optimized out.
 1 + 1;
}

See Also

Key.onKeyDown(), Key.onKeyUp()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._name Property Flash 6

the instance name of the Button object read/write

theButton._name

Description

The string _name property indicates theButton's instance name, which is specified via the Property

inspector at authoring time. Though rarely (if ever) necessary, setting _name reassigns the instance name for

theButton; thereafter, references to the old instance name yield undefined.

More commonly, the _name property is read, not written. For example, it can be used to identify a specific

button when one of many is clicked. The following function performs different actions based on the calling
button:

function doAction () {
 if (this._name = = "ok_btn") {
 doConfirm();
 } else if (this._name = = "cancel_btn") {
 doCancel();
 }
}

// Assign button handlers
ok_btn.onRelease = doAction;
cancel_btn.onRelease = doAction;

Or, if we're looking for a single button in a group of unknown buttons, we can use a for-in loop to hunt for the
button's instance name:

// Access all properties of someClip
for (var p in someClip) {
 // If it's a Button object...
 if (someClip[p] instanceof Button) {
 // ...show its name:
 trace("Found " + someClip[p]._name);

 // Look for edit_btn
 if (someClip[p]._name = = "edit_btn") {
 // Disable the edit button.
 someClip[p].enabled = false;
 }
 }
}

See Also

Button.onRelease(), "The for-in Loop," in Chapter 8

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onDragOut() Event
Handler

Flash 6; on (dragOut)
supported since Flash 2

occurs when the depressed mouse is rolled off a Flash
button

theButton.onDragOut()

on (dragOut) {
 statements
}

Description

The onDragOut() event handler executes when the primary mouse button is depressed while the mouse pointer
is in theButton's hit area, and then, while the mouse button is still depressed, the pointer is moved out of

the hit area. It is similar to onRollOut(), except that it is generated only if the mouse button is down when the
pointer leaves a button's hit area. The onDragOut() event is followed by either the onReleaseOutside() event (if
the user releases the mouse button) or the onDragOver() event (if the user moves the pointer back into the
button's hit area without releasing the mouse button).

Example

cancel_btn.onDragOut = function () {
 // Handle event...
 trace("dragOut detected");
};

See Also

Button.onDragOver(), Button.onRollOut(), MovieClip.onDragOut(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onDragOver() Event
Handler

Flash 6; on (dragOver)
supported since Flash 2

occurs when the depressed mouse rolls off and back onto a
Flash button

theButton.onDragOver()

on (dragOver) {
 statements
}

Description

The onDragOver() event handler is a seldom-seen woodland creature. It is conjured up when the following
sequence is performed:

The mouse pointer moves into the hit area of a button (onRollOver() event occurs).1.
The primary mouse button is pressed and held (onPress() event occurs).2.
The mouse pointer moves out of the button's hit area (onDragOut() event occurs).3.
The mouse pointer moves back into the button's hit area (onDragOver() event occurs).4.

Thus, the dragOver event indicates that the user has moved the mouse pointer out of and back into the hit area,
all the while holding down the mouse button. Note that dragOver, instead of the rollOver event, is generated if
the mouse button is still down when the pointer reenters the button's hit area.

Example

cancel_btn.onDragOver = function () {
 // Handle event...
 trace("dragOver detected");
};

See Also

Button.onDragOut(), Button.onRollOver(), MovieClip.onDragOver(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onKillFocus() Event Handler Flash 6

callback invoked when the button loses focus

theButton.onKillFocus(newFocus)

Arguments

newFocus

The TextField, MovieClip, or Button object that now has focus, or null if no object has received focus.

Description

The onKillFocus() event handler is triggered when theButton loses focus. A button is said to "have focus"

when:

The user navigates to it using the Tab key.

Selection.setFocus() assigns it focus programmatically.

When _focusrect is true or null (null is the default) a yellow rectangle appears around the

focused button. A button loses focus when:

The user navigates to a different button, text field, or movie clip using the Tab key.

Selection.setFocus() assigns focus to another object programmatically. (The newly focused object is
accessible within onKillFocus() via newFocus.)

The user moves the mouse.

In the first two cases, onKillFocus() is executed. In the last case, due to a bug in Flash Player 6, onKillFocus()
is not executed, but it should be. When a button's tabEnabled property is false, the button cannot be

focused by the user but can be focused programmatically with Selection.setFocus(). To capture all focus events
centrally, rather than for a single instance, use Selection.onSetFocus().

Example

The following example adds callback handlers, for onSetFocus() and onKillFocus(), to cancel_btn. It

also creates a text field that displays the focus status. Finally, it focuses cancel_btn. To try the code, create

two buttons, one called "cancel_btn". Then run the movie in the Standalone Player and press the Tab key
(without touching the mouse!). If you test in a browser, you must first click the movie before pressing Tab.

this.createTextField("status_txt", 1, 0, 0, 300, 20);
status_txt.border = true;

cancel_btn.onKillFocus = function () {
 // Handle event...

 status_txt.text = ("killfocus detected for cancel_btn");
};

cancel_btn.onSetFocus = function () {
 // Handle event...
 status_txt.text = ("setfocus detected for cancel_btn");
};

Selection.setFocus(cancel_btn);

See Also

Button.onSetFocus(), Selection.onSetFocus(), Selection.setFocus(), MovieClip.onKillFocus(),
TextField.onKillFocus(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onPress() Event
Handler

Flash 6; on (press) supported
since Flash 2

occurs when the mouse button is clicked while the pointer
is over a Flash button

theButton.onPress()

on (press) {
 statements
}

Description

The onPress() event handler executes when the primary mouse button is depressed while the mouse pointer is
in the button's hit area. Other mouse buttons (right, middle, scroll, etc.) are not detectable. Note that a
"mouseclick" is a two-step process: the mouse button is depressed (press) and then released (release). Button
press events are appropriate for radio buttons or weapons firing in a game, but use release events to allow the
user to change his mind before releasing the mouse.

Example

cancel_btn.onPress = function () {
 // Handle event...
 trace("press detected");
};

See Also

Button.onRelease(), MovieClip.onPress(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onRelease() Event
Handler

Flash 6; on (release) supported
since Flash 2

occurs when the mouse is pressed and then released while
the pointer is over a Flash button

theButton.onRelease()

on (release) {
 statements
}

Description

The onRelease() event handler is executed when the following sequence is detected:

The mouse pointer is in the hit area of theButton.1.

The primary mouse button is pressed while the mouse pointer is still in the hit area of theButton (at

which point an onPress() event occurs).

2.

The primary mouse button is released while the mouse pointer is still in the hit area of theButton (at

which point an onRelease() event occurs).

3.

By using the release event instead of the press event, you give users a chance to move the pointer off of a button
even after the mouse has been pressed, thus allowing them to retract their action. The onRelease() handler is the
most common button handler in Flash. It is used to respond to the classic button click. Note that the
trackAsMenu property can alter the behavior of onRelease(), as described under

Button.trackAsMenu.

Example

The following code shows two onRelease() handlers. When ok_btn is clicked, the playhead of the button's

parent movie clip is sent to the frame labeled begin. When cancel_btn is clicked, the playhead is sent to

the frame labeled quit.

ok_btn.onRelease = function () {
 this._parent.gotoAndStop("begin");
}

cancel_btn.onRelease = function () {
 this._parent.gotoAndStop("quit");
}

See Also

Button.onPress(), Button.trackAsMenu, MovieClip.onRelease(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onReleaseOutside()
Event Handler

Flash 6; on(releaseOutside)
supported since Flash 2

occurs when the mouse is clicked over the button, then
released after rolling off the button

theButton.onReleaseOutside()

on (releaseOutside) {
 statements
}

Description

The onReleaseOutside() event typically indicates that the user changed his mind after clicking on a button,
moving the pointer off the button before releasing the mouse button. The onReleaseOutside() event handler is
executed when the following sequence is detected:

The mouse pointer is in the hit area of theButton.1.

The primary mouse button is pressed and held (the onPress() event occurs).2.
The mouse pointer moves out of theButton's hit area (the onDragOut() event occurs).3.

The primary mouse button is released while the pointer is no longer in the hit area of theButton.4.

You will rarely bother to detect onReleaseOutside() events, as they usually indicate that the user intended not to
perform any action.

Example

cancel_btn.onReleaseOutside = function () {
 trace("releaseOutside detected");
}

See Also

Button.onRelease(), MovieClip.onReleaseOutside(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onRollOut() Event
Handler

Flash 6; on(rollOut) supported
since Flash 2

occurs when the pointer moves off the button (while the
mouse is not depressed)

theButton.onRollOut()

on (rollOut) {
 statements}

Description

The onRollOut() event handler is onRollOver()'s counterpart; it executes when the mouse pointer is moved out
of the hit area of a button while the mouse button is not depressed. As with onRollOver(), onRollOut()
normally is not used to create button highlight states, because visual button changes are created directly in the
authoring tool. You should use the provided Up, Over, and Down frames in the authoring tool to create highlight
states for buttons.

Example

cancel_btn.onRollOut = function () {
 trace("rollOut detected");
};

See Also

Button.onDragOut(), Button.onRollOver(), MovieClip.onRollOut(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onRollOver() Event
Handler

Flash 6; on(rollOver) supported
since Flash 2

occurs when the pointer moves over the button (if mouse is
not depressed) or when the button gains keyboard focus

theButton.onRollOver()

on (rollOver) {
 statements
}

Description

The onRollOver() event handler executes when the mouse pointer moves into the hit area of a button without
the mouse button depressed. It also executes when theButton gains keyboard focus, as described under

Button.onSetFocus(). The rollOver event is not required to depict visual states for a button, because visual
button changes are created directly in the authoring tool, not with scripting. You should use the provided Up,
Over, and Down frames in the authoring tool to create highlight states for buttons.

The rollOver event provides a handy means of retrieving a text field selection. For more details, see
TextField.replaceSel() and the Selection object.

Example

cancel_btn.onRollOver = function () {
 trace("rollOver detected");
};

See Also

Button.onDragOut(), Button.onRollOut(), Button.onSetFocus(), MovieClip.onRollOver(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.onSetFocus() Event Handler Flash 6

callback invoked when the button gains focus

theButton.onSetFocus(oldFocus)

Arguments

oldFocus

The TextField, MovieClip, or Button object that previously had focus, or null if no object was

previously focused.

Description

The onSetFocus() event handler is executed when theButton gains focus. A button gains focus when:

The user navigates to it with the Tab key.

Selection.setFocus() assigns focus programmatically.

When a button's tabEnabled property is false, the button cannot be focused by the user but can be

focused programmatically with Selection.setFocus(). The following code registers a callback function that
responds to onSetFocus():

// Assign the onSetFocus() callback using a function literal
next_btn.onSetFocus = function (oldFocus) {
 trace(this + " now has focus. Old focus was " + oldFocus);
};

Notice that from the body of the callback, we can refer to next_btn using the this keyword. To stop a

callback from handling the onSetFocus() event, use the delete operator, as in:

// Make sure to omit the () operator after the function name!
delete next_btn.onSetFocus;

To detect attainment of focus via either the keyboard or mouse, use the onRollOver() handler, which executes
both when the mouse is over theButton and when theButton gains keyboard focus. To capture all

focus events centrally, rather than for a single instance, use Selection.onSetFocus().

To activate a keyboard-focused button, the user must press the Enter key or spacebar (which has the same effect
as clicking the button and causes the button's onRelease() handler to execute).

See Also

Button.onKillFocus(), Button.onRollOver(), MovieClip.onSetFocus(), Selection.onSetFocus(),
Selection.setFocus(), TextField.onSetFocus(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._parent Property Flash 6

a reference to the movie clip in which the button
resides

read/write

theButton._parent

Description

The _parent property is an object reference to the movie clip that contains theButton. For example, if

we have a button named go_btn in a clip named mainSection_mc, then go_btn. _parent
refers to mainSection_mc.

Usage

Though it is possible to reassign the _parent property to another clip (or any other value), doing so has little

purpose—only the reference is changed, not the physical structure of the clip and buttons.

Example

The _parent property is often used to control a movie clip from a button event handler, based on some user

interaction. For example, in the following code, when begin_btn is clicked, the movie clip in which it

resides plays:

begin_btn.onRelease = function () {
 this._parent.play();
}

Note that in the Flash 5-style of attaching event handlers directly to objects (e.g., on (press)), the _parent
reference is not necessary, because this refers to the containing movie clip. For information on button event

handler scope, see Chapter 10.

See Also

Button.onRelease(), MovieClip._parent; Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._rotation Property Flash 6

rotation, in degrees, of a button read/write

theButton._rotation

Description

The floating-point _rotation property specifies the number of degrees theButton is rotated about its

registration point. Both author-time and runtime adjustments are reflected in _rotation. See

MovieClip._rotation for details on various positive and negative values for rotation, including

values that are out of range.

Example

The following code rotates a button when the button is clicked:

fun_btn.onRelease = function () {
 this._rotation += 10;
}

See Also

Button.onRelease(), MovieClip._rotation

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.tabEnabled Property Flash 6

Boolean; includes or excludes the button from
the current tab order

read/write

theButton.tabEnabled

Description

The Boolean tabEnabled property governs whether theButton is part of the tab order for the text

fields, movie clips, and buttons currently on screen. The tab order is the sequence in which objects are focused
when the Tab key is pressed in a movie. See TextField.tabEnabled for complete details.

For buttons, the tabEnabled property can exclude a button with a defined tabIndex from the custom

tab order, or it can exclude any button from the automatic tab order. A button is typically removed from the tab
order when it is disabled (its enabled property is false) or when it should be accessible only to mouse

input, such as in games that use transparent buttons to act as mouse hit regions.

A movie clip's tabChildren property controls whether the text fields, clips, and buttons it contains are

included in the automatic tab order. To disable tabbing for a group of buttons quickly, put them in a movie clip
and set its tabChildren to false.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

Example

The following code prevents the keyboard from accessing done_btn:

done_btn.tabEnabled = false;

See Also

Button.enabled, Button.tabIndex, MovieClip.tabChildren,

MovieClip.tabEnabled, TextField.tabEnabled

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.tabIndex Property Flash 6

specifies the button's index in the custom tab
order

read/write

theButton.tabIndex

Description

The integer tabIndex property specifies theButton's position in the custom tab order. When no text

field, clip, or button has a tabIndex property defined, Flash determines the tab order automatically, and

pressing the Tab key moves focus between buttons and text fields from right to left, then top to bottom. Use the
tabIndex property to force Tab key navigation to follow a custom sequence, overriding the automatic order.

For complete details, see TextField.tabIndex.

Objects with _visible set to false are not included in the tab order. When at least one object has

tabIndex set, any object without an assigned tabIndex cannot be accessed via the Tab key.

By default, buttons are tab-enabled, so the tabEnabled property need only be set to exclude a button from

the tab order while retaining its tabIndex value (allowing segments of a keyboard-controlled interface to be

disabled and restored with minimal effort).

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

Example

The following code restricts Tab key access to three buttons, in this order: jump_btn, moveLeft_btn,

moveRight_btn. The order applies regardless of the position of the buttons on screen.

jump_btn.tabIndex = 1;
moveLeft_btn.tabIndex = 2;
moveRight_btn.tabIndex = 3;

See Also

Button.tabEnabled, TextField.tabIndex, MovieClip.tabIndex

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._target Property Flash 6

the target path of the button, in slash syntax read/write

theButton._target

Description

The _target property represents the path to theButton in a Flash 4-style slash notation string. For

example, if go_btn resides on the main movie timeline, go_btn's _target property is "/go_btn".

To retrieve a string that gives the path to a button in dot notation, use the global targetPath() function. Because
slash notation is deprecated, this property is not commonly used and is supported only for consistency with the
legacy MovieClip._target property.

See Also

targetPath(), MovieClip._target

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.trackAsMenu Property Flash 6

modifies the button's onRelease() handler
requirements, enabling menu-style behaviorFlash
3; property form introduced in

read/write

theButton.trackAsMenu

Description

The Boolean trackAsMenu property modifies the conditions that cause theButton's onRelease()

event handler to execute. It is normally used to turn a group of buttons into a menu. When trackAsMenu is

undefined (the default) or false, a button's onRelease() handler will execute only when the mouse is

both pressed and released over the button. When trackAsMenu is true, releasing the mouse over the

button will always trigger its onRelease() handler, unless the mouse was originally pressed over a button for
which trackAsMenu is false or undefined. The following scenarios demonstrate the result of this

subtle change in behavior.

Consider a "Products" menu button with three suboption buttons: Music, Books, and Software. These steps
show how the menu works when trackAsMenu is false for all four buttons:

Products button is pressed.1.
Suboption buttons appear (are attached at runtime).2.
Mouse moves over first option, Music. The Music button's Up state is shown.3.
Mouse is released over Music. No onRelease() handler is executed, because the mouse was pressed over
Products but released over a different button, Music. User's selection is not activated.

4.

These steps show how the menu works when trackAsMenu is true for all four buttons:

Products button is pressed.1.
Suboption buttons appear (are attached at runtime).2.
Mouse moves over first option, Music. The Music button's Down state is shown, revealing the user's
current selection.

3.

Mouse is released over Music. The Music button's onRelease() handler is executed. The user's selection
is activated.

4.

Notice that as a side effect of trackAsMenu being true, the Down state of a button is always shown when

the mouse pointer is over the button and the mouse button is down (even if the mouse was originally pressed on
another button). The button's onRollOver() and onRollOut() handlers, however, are not triggered unless the
mouse button is up.

The trackAsMenu property should be set the same for all buttons in a menu or other group-based interface;

otherwise, mayhem and confusion can ensue.

Example

On frame 1 of a movie, create three button instances, named b1, b2, and b3, each with unique Up, Over, and

Down states. Then attach the following code to frame 1 and choose Control Test Movie. Click the mouse
over b1 and release it over b2. Notice that b2's Down state is displayed, and its onRelease() handler executes.

b1.trackAsMenu = true;
b2.trackAsMenu = true;
b3.trackAsMenu = true;

b1.onRelease = b2.onRelease = b3.onRelease = release;

function release () {
 trace(this._name + " released");
}

See Also

Button.onRelease, Button.onRollOver, Button.onRollOut

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._url Property Flash 6

the network address of the movie clip that contains
the button

read-
only

theButton._url

Description

The _url property represents the URL (Uniform Resource Locator) indicating the Internet or local disk

location of theButton._parent, as a string. The _url property is always an absolute URL, such as

"http://www.moock.org/asdg/examples/someMovie.swf", never a relative one. See MovieClip._url for

details. Note that theButton._url is always the same as theButton._parent._url.

See Also

Button._parent, MovieClip._url

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button.useHandCursor Property Flash 6

Boolean; dictates whether a hand icon is
displayed when the mouse pointer is over the
button

read/write

theButton.useHandCursor

Description

When set to false, the Boolean useHandCursor property disables the display of the hand pointer icon

normally shown when the mouse pointer is over theButton's hit area. When the hand cursor is disabled, the

regular arrow cursor is used (this is more typical behavior for operating system buttons). Movies that use large
transparent buttons, for interfaces such as picture slide shows, often disable the hand cursor.

Note that other than the hand icon, no other built-in mouse pointer icons are available. For instructions on
creating a custom mouse pointer icon, see Mouse.hide().

Example

The following code disables the hand cursor for ok_btn:

ok_btn.useHandCursor = false;

The following code disables the hand cursor for all buttons in a movie (unless a button overrides the global
setting with its own useHandCursor property):

Button.prototype.useHandCursor = false;

See Also

Mouse.hide(); "The Almighty Prototype Chain," in Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._visible Property Flash 6

whether the button is shown or hidden read/write

theButton._visible

Description

The Boolean _visible property indicates whether theButton is shown (true) or hidden (false).

We use _visible as a quick means of hiding a button from view. Hidden buttons can still be controlled via

ActionScript; they simply are not displayed on screen. However, a hidden button cannot receive focus or user
input, so its events do not get triggered.

Button._visible is directly analogous to MovieClip._visible; see that property entry for full

details.

Example

The following code hides quit_btn:

quit_btn._visible = false;

See Also

Button._alpha, MovieClip._visible

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._width Property Flash 6

width of the button, in pixels read/write

theButton._width

Description

The floating-point _width property stores a nonnegative number specifying the current width of theButton, in

pixels. If theButton has no content, _width is 0. The _width property measures the content of a button as the

distance between the leftmost occupied pixel and the rightmost occupied pixel, even if there is empty space between those
pixels. By setting _width, we change the size of theButton, affecting all of its states (its Up, Over, and Down

frames). Note that the _width of a button can change as it switches between these states.

Button._width is directly analogous to MovieClip._width; see that property entry for full details.

Example

// Check start_btn's width
trace(start_btn._width);

// Set start_btn's width to 200
start_btn._width = 200;

// Create a text field 10 pixels to the right of start_btn, assuming
// that start_btn's top left corner is at the registration point
start_btn._parent.createTextField("theField_txt",
 1,
 start_btn._x + start_btn._width + 10,
 start_btn._y,
 200, 20);
theField_txt.border = true;
theField_txt.text = "Click the button to start.";

See Also

Button._height, MovieClip._width

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._x Property Flash 6

horizontal location of the button, in pixels read/write

theButton._x

Description

The floating-point _x property indicates the horizontal position of theButton's registration point. It is measured relative to

one of two possible coordinate spaces:

If theButton resides on the main timeline, _x is measured relative to the Stage's left edge.

If theButton resides on a movie clip instance's timeline, _x is measured relative to the registration point of that parent

instance.

The _x property (along with all horizontal coordinates in Flash) increases to the right and decreases to the left.

Button._x is directly analogous to MovieClip._x; see that property entry for full details.

Example

// Place quit_btn 100 pixels to the right of its parent's registration point
quit_btn._x = 100;
// Move the button over 10 more pixels to the right
quit_btn._x += 10;

See Also

Button._y, MovieClip._x

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._xmouse Property Flash 6

horizontal location of mouse pointer, relative to the
button's registration point

read-
only

theButton._xmouse

Description

The floating-point _xmouse property indicates the horizontal location of the mouse pointer's hotspot, relative

to theButton's registration point. To obtain a consistent _xmouse coordinate that is always measured

relative to the Stage, use _root._xmouse.

See Also

Button._ymouse, MovieClip._xmouse

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._xscale Property Flash 6

width of a button, as a percentage read/write

theButton._xscale

Description

The floating-point _xscale property specifies the width of theButton, relative to its original width,

expressed as a percentage. Its "original width" is the pixel width of its Library symbol. When the current width
of theButton is the same as its original width, _xscale is 100. An _xscale of 200 doubles

theButton's original width; an _xscale of 50 halves its original width.

Button._xscale is directly analogous to MovieClip._xscale; see that property entry for full

details.

Example

// Double run_btn's width, relative to its Library symbol's width
run_btn._xscale = 200;

See Also

Button._width, Button._yscale, MovieClip._xscale

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._y Property Flash 6

vertical location of the button, in pixels read/write

theButton._y

Description

The floating-point _y property indicates the vertical position of theButton's registration point. It is

measured relative to one of two possible coordinate spaces:

If theButton resides on the main timeline, _y is measured relative to the Stage's top edge.

If theButton resides on a movie clip instance's timeline, _y is measured relative to the registration

point of that parent instance.

The _y property (along with all vertical coordinates in Flash) increases downward and decreases upward—the

opposite of the Cartesian coordinate system.

Button._y is directly analogous to MovieClip._y; see that property entry for full details.

Example

// Place quit_btn directly on its parent's registration point.
quit_btn._x = 0;
quit_btn._y = 0;

See Also

Button._x, MovieClip._y

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._ymouse Property Flash 6

vertical location of mouse pointer, relative to the
button's registration point

read-
only

theButton._ymouse

Description

The floating-point _ymouse property indicates the vertical location of the mouse pointer's hotspot, relative to

theButton's registration point. To obtain a consistent _ymouse coordinate that is always measured

relative to the Stage, use _root._ymouse.

See Also

Button._xmouse, MovieClip._ymouse

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Button._yscale Property Flash 6

height of a button, as a percentage read/write

theButton._yscale

Description

The floating-point _yscale property specifies the height of theButton, relative to its original height,

expressed as a percentage. Its "original height" is the pixel height of its Library symbol. When the current height
of theButton is the same as its original height, _yscale is 100. A _yscale of 300 triples

theButton's original height; a _yscale of 50 halves its original height.

Button._yscale is directly analogous to MovieClip._yscale; see that property entry for full

details.

Example

// Restore sort_btn to its original (Library symbol) size
sort_btn._yscale = 100;
sort_btn._xscale = 100;

See Also

Button._height, Button._xscale, MovieClip._yscale

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

call() Global Function Flash 4

execute the script of a remote frame

call(frameLabel)
call(frameNumber)

Arguments

frameLabel

A string representing the label of the frame whose script should be executed.
frameNumber

The number of the frame whose script should be executed.

Description

The call() function executes the script attached to the frame at frameLabel or frameNumber. For

example, the following code runs the script on frame 20 of the current timeline:

call(20);

In Flash 4, call() was used to create a crude kind of reusable subroutine (one that could not accept parameters or
return a value). As of Flash 5, the function statement is the preferred way to define a function.

Note that in Flash 5 and later, when a script is executed remotely via call(), any variables declared with the var
keyword are considered local to that execution and expire after the script completes. To create nonlocal variables
in a remotely-executed script, omit the var keyword:

var x = 10; // Local variable; dies after script completes
x = 10; // Timeline variable; persists after script completes

To invoke call() on frames outside the current timeline, use the deprecated tellTarget() function. The following
example executes the script on frame 10 of the box clip:

tellTarget ("box") {
 call(10);
}

See Also

Chapter 9; Appendix C

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Capabilities Object Flash 6

information about the Flash Player and its host system

Properties

hasAccessibility

Indicates whether the Player supports accessibility (MSAA).
hasAudio

Indicates whether the Player supports audio playback.
hasAudioEncoder

Indicates whether the system can encode audio.
hasMP3

Indicates whether the Player supports MP3 sound playback.
hasVideoEncoder

Indicates whether the system can encode video.
input

The user input device for the system, such as a mouse (indicated by the word "point").
isDebugger

Indicates whether the Player is a debugging version.
language

The current language setting on the operating system.
manufacturer

The creator of the Player.
os

The operating system on which the Player is running.
pixelAspectRatio

The width-to-height ratio of a pixel on the screen.
screenColor

The color mode supported by the screen (color, grayscale, or black and white).
screenDPI

The number of pixels per inch displayed by the screen.
screenResolutionX

The width of the screen, in pixels.
screenResolutionY

The height of the screen, in pixels.
serverString

All Capabilities property values, as a string of URL-encoded variables.
version

The Flash Player version.

Description

The Capabilities object represents the specifications of the Flash Player and the system on which the Player is
running. It is stored as a property of the System object (i.e., System.capabilities). Hence, references

to Capabilities properties always start with the System object, as follows:

System.capabilities.propertyName

For example, the following code displays the screen width in the Output window:

trace(System.capabilities.screenResolutionX);

The Capabilities object is used to write code that adapts a movie to its playback environment. It applies
primarily to mobile devices, such as Pocket PCs and cell phones. For example, by querying the value of
hasAudio, a movie playing on a handheld device can check if the device can play audio. If hasAudio is

false, the movie can provide text subtitles.

All properties of Capabilities have corresponding short-form names and values that can be used to send the
client-side Player abilities to a server-side script. For example, the screenColor property's short form is

COL, with possible values of "color", "gray", and "bw". The capabilities.serverString property

joins all short-form property name/value pairs into a URL-encoded string suitable for transmission to a server. A
server can read this information and respond by sending the appropriate movie or data for the playback
environment. See capabilities.serverString for details.

For information on authoring Flash movies for devices, see:

http://www.macromedia.com/software/flashplayer/resources/devices/
http://www.flashenabled.com/mobile/

For a list of devices that the Flash Player runs on, see:

http://www.macromedia.com/software/flashplayer/resources/devices/supported_devices/

Usage

Though the properties of Capabilities are writable, there is no practical reason to overwrite their system-
assigned values. Doing so obscures the information they contain. Custom assignments to properties other than
serverString are not reflected in the value of serverString.

See Also

The System object, the Stage object

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.hasAccessibility Property Flash 6

indicates whether the Player supports Microsoft
Active Accessibility (MSAA)

read/write

System.capabilities.hasAccessibility

Description

In Flash Player 6, the Boolean hasAccessibility property is true if the Player supports accessibility.

At the time of this writing, only the Windows ActiveX version of Flash Player 6 supports accessibility (via
Microsoft Active Accessibility, MSAA). MSAA is a Microsoft API that exposes an application's user interface
elements to screen readers and other accessibility aids, such as GW Micro's Window-Eyes
(http://www.gwmicro.com).

Movies that rely on accessibility aids should check that both hasAccessibility and

Accessibility.isActive() return true before sending any accessibility information. The

hasAccessibility property tells us that the Player supports accessibility, but the Accessibility.isActive(

) method tells us that a screen reader is actually running and communicating with the Flash Player.

For more information on MSAA, see:

http://msdn.microsoft.com/library/en-us/msaa/msaastart_9w2t.asp

See the Accessibility object for more details on accessibility.

The corresponding server string for hasAccessibility is ACC, with possible values of t (true) and f
(false). See capabilities.serverString for details.

See Also

The Accessibility object

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.hasAudio Property Flash 6

indicates whether the Player supports audio
playback

read/write

System.capabilities.hasAudio

Description

The Boolean hasAudio property is true for Flash Players that support audio playback, and false for

Players that cannot play sounds. While all desktop versions of Flash support sound, not all handheld or set-top
device versions necessarily do. Movies can use this property to provide alternative content, such as subtitles,
when sound is not available.

Note that hasAudio indicates only whether the Flash Player supports audio playback, not whether the

computer actually has audio enabled (i.e., has a sound card, speakers turned on, volume on, etc.).

The corresponding server string for hasAudio is A, with possible values of t (true) and f (false). See

capabilities.serverString for details.

See Also

capabilities.hasAudioEncoder, capabilities.hasMP3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.hasAudioEncoder Property Flash 6

indicates whether the system can encode audio read/write

System.capabilities.hasAudioEncoder

Description

The Boolean hasAudioEncoder property indicates whether the Player can encode an audio stream (for

example, coming from a microphone), normally for transmission to a server such as Macromedia Flash
Communication Server MX (Comm Server). In the desktop version of Flash Player 6, hasAudioEncoder
is always true, indicating that audio encoding is available. This does not guarantee, however, that the

necessary hardware is present.

The corresponding server string for hasAudioEncoder is AE, with possible values of t (true) and f
(false). See capabilities.serverString for details.

See Also

capabilities.hasAudio, capabilities.hasVideoEncoder

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.hasMP3 Property Flash 6

indicates whether the Player supports MP3 sound
playback

read/write

System.capabilities.hasMP3

Description

The Boolean hasMP3 property is true for Flash Players that can play MP3 audio files, and false for

those without MP3 support. It typically is used to determine the appropriate type of sound file to load at runtime.
For example, a movie that detects a system with audio support (via hasAudio), but no MP3 support, could

load a regular ADPCM sound.

The corresponding server string for hasMP3 is MP3, with possible values of t (true) and f (false). See

capabilities.serverString for details.

See Also

capabilities.hasAudio

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.hasVideoEncoder Property Flash 6

indicates whether the system can encode video read/write

System.capabilities.hasVideoEncoder

Description

The Boolean hasVideoEncoder property indicates whether the Player can encode a video stream (for

example, coming from a webcam), normally for transmission to a server such as Macromedia Flash
Communication Server MX (Comm Server). In the desktop version of Flash Player 6, hasVideoEncoder
is always true, indicating that video encoding is available. This does not guarantee, however, that the

necessary hardware (such as a webcam) is present.

The corresponding server string for hasVideoEncoder is VE, with possible values of t (true) and f
(false). See capabilities.serverString for details.

See Also

capabilities.hasAudioEncoder

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.input Property Flash 6

the user input device for the system read/write

System.capabilities.input

Description

The string input property indicates the type of input device provided by the system hardware. For mouse-

style devices, the type is "point". Other names for input devices, such as a stylus or a cursor pad on a cell phone,
will be determined as they become available. The input property allows a movie to switch to, say, a custom

made keypad-only input mode, which would be much more limited than the typical mouse input mode.

The corresponding server string for input is I, with possible values of point and other input device names

to be determined. See capabilities.serverString for details.

See Also

The Mouse object

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.isDebugger Property Flash 6

indicates whether the Player is a debugging
version

read/write

System.capabilities.isDebugger

Description

The Boolean isDebugger property indicates whether the Player is the release version (false) or the

debugging version (true). The debugging version of the Player is used in conjunction with the Flash

authoring tool to debug Flash movies. This property is not normally needed by Flash developers.

The corresponding server string for isDebugger is DEB, with possible values of t (true) and f (false). See

capabilities.serverString for details.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.language Property Flash 6

the current language setting on the operating
system

read/write

System.capabilities.language

Description

The string language property contains a two-letter code representing the language used for text on the

operating system. The cross-platform codes used are a subset of those in the ISO-639-1 standard, "Codes for the
Representation of Names of Languages" (see http://lcweb.loc.gov/standards/iso639-2/englangn.html). For
example, "en" indicates English, and "fr" indicates French. Where applicable, language also includes a two-

letter country code indicating the local variant of the language, as defined by ISO 3166 (see
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html). A hyphen separates
the language code from the country code, if both are present. For example, "en-UK" indicates English, United
Kingdom variant.

By checking the language setting, a movie can intelligently provide text in the appropriate language for the

user's system. Multiple language assets can be embedded directly into a single movie or loaded dynamically as
variables, XML, or entire movies.

The corresponding server string for language is LAN, with possible values listed in Table 18-4. See

capabilities.serverString for details.

Table 18-4. Flash language codes

Language ISO 639-1 language code ISO 3166 country code

English, United States en US

English, United Kingdom en UK

French fr

Korean ko

Japanese ja

Swedish sv

German de

Spanish es

Italian it

Simplified Chinese zh CN

Traditional Chinese zh TW

Portuguese pt

Polish pl

Hungarian hu

Czech cs

Turkish tr

Finnish fi

Danish da

Norwegian no

Dutch nl

Russian ru

Other/Unknown xu

Bugs

The English language country codes (UK and US) are not properly set by all versions of Flash Player 6; In both
countries, System.capabilities.language returns "en" and does not include a country code.

Example

The following code loads the English or French version of a movie, depending on the current language setting:

if (System.capabilities.language.substring(0,2) = = "en") {
 trace("English language");
 content_mc.loadMovie("news-english.swf");
} else if (System.capabilities.language = = "fr") {
 trace("French language");
 content_mc.loadMovie("news-french.swf");
}

See Also

Character Encoding," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.manufacturer Property Flash 6

indicates the manufacturer of the Flash Player read/write

System.capabilities.manufacturer

Description

The string manufacturer property indicates the name of the organization that created the Flash Player.

Third parties can license Macromedia's Flash Player source code and port the Player to new platforms or
devices. Developers of ported or custom Players can provide a custom value for the manufacturer
property. For the desktop version of the Flash Player, the only values are "Macromedia Windows" and
"Macromedia Macintosh". Do not rely on manufacturer to provide operating system or version

information. Use capabilities.os and capabilities.version instead.

The manufacturer property can be used to react to special support for custom capabilities implemented

by a specific Player manufacturer.

For further information, see:

http://www.macromedia.com/software/flash/open/licensing/

The corresponding server string for manufacturer is M, with values determined by individual

manufacturers. See capabilities.serverString for details.

See Also

capabilities.os, capabilities.version

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.os Property Flash 6

indicates the operating system on which the
Player is running

read/write

System.capabilities.os

Description

The string os property indicates the name of the operating system on which the Player is running. It provides

more granular information than the getVersion() function, which does not distinguish between OS varieties
such as "Windows 2000" and "Windows 98". The current values for os on Windows are:

Windows XP
Windows 2000
Windows NT
Windows 98/ME
Windows 95
Windows CE

On Macintosh, os returns "MacOS x.y.z", where x is the major release, y is the minor release, and z is the

dot release. For example:

MacOS 9.2.1
MacOS 10.1.4

The corresponding server string for os is OS, with the preceding values listed for Windows or Macintosh or

determined by individual manufacturers. See capabilities.serverString for details.

Bugs

Macromedia's documentation for Flash MX incorrectly claims that os defaults to an empty string. It defaults to

the value appropriate for the OS under which the Player is running.

See Also

capabilities.version, capabilities.manufacturer

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.pixelAspectRatio Property Flash 6

the width-to-height ratio of a pixel on the screen read/write

System.capabilities.pixelAspectRatio

Description

The floating-point pixelAspectRatio property indicates the proportions of a single pixel on the screen.

It is the ratio of a pixel's width to its height. For example, on screens where pixels are half as wide as they are
high, pixelAspectRatio will return .5 (1/2). On most desktop computers, pixels are square, so

pixelAspectRatio is 1.

The pixelAspectRatio property lets a movie compensate for potential distortion caused by the aspect

ratio of the pixels on the playback device. For example, a circle with a constant radius will appear as an ellipse
on devices whose pixel aspect ratio is not 1. On a device with pixels twice as wide as they are high, you might
load an alternate movie authored at half of the original width so that the final output displays correctly. At the
time of this writing, pixelAspectRatio always returns 1, and the development process for nonsquare

pixel devices is not yet determined. Always test on the target device to ensure correct appearance at a nonunity
aspect ratio. More information will be provided by Macromedia when it becomes relevant.

The corresponding server string for pixelAspectRatio is AR, with a value of a floating-point number,

such as 1.0.

Bugs

Macromedia's documentation for Flash MX incorrectly claims that the server string for
pixelAspectRatio is PAR. The correct server string is AR.

See Also

capabilities.screenDPI, capabilities.screenResolutionX,

capabilities.screenResolutionY

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.screenColor Property Flash 6

the color mode supported by the screen (color,
grayscale, or black and white)

read/write

System.capabilities.screenColor

Description

The string screenColor property indicates the color mode supported by the device on which the Flash

Player is running. It allows movies with subtle color differences to switch to a high-contrast color scheme when
played on a grayscale or black and white system. Possible values are: "color" (supports more than two colors),
"gray" (grayscale), and "bw" (black and white or 2-color display).

The corresponding server string for screenColor is COL, with possible values of "color", "gray", and

"bw". See capabilities.serverString for details.

See Also

The Color class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.screenDPI Property Flash 6

the number of pixels per inch displayed by the
screen, typically 72 dpi

read/write

System.capabilities.screenDPI

Description

The integer screenDPI property indicates the number of dots (pixels) per inch displayed by the screen.

Typical desktop computer monitors display at 72 pixels per inch. Small handheld devices may display much
lower or higher pixels per inch. Relatively speaking, the higher the screenDPI, the smaller elements in a

movie will appear.

Though two screens may have the same horizontal and vertical resolution, the actual display size of a movie can
vary greatly according to the physical dimensions of the screen and the number of pixels per inch. For example,
consider two screens, each with a resolution of 100 x 100. If one screen is 2 inches square (50 pixels per inch)
and the other is 5 inches square (20 pixels per inch), then a 10-pixel font will be one-fifth of an inch high on the
first screen, and half an inch high on the second. Depending on the differences between screens, text can easily
be readable on one screen and illegible on another. By checking the screenDPI,

screenResolutionX, and screenResolutionY properties, a movie can scale its contents to be

legible on the given display.

The corresponding server string for screenDPI is DP, with a possible value of any integer. See

capabilities.serverString for details.

Usage

Print designers will recognize the use of the acronym DPI (dots per inch) as a slight misnomer. Canonically,
"DPI" applies to the printed page, while "PPI" (pixels per inch) applies to the screen. The imprecision, however,
is here to stay. Note that it is pixels per linear inch, not pixels per square inch.

See Also

capabilities.pixelAspectRatio, capabilities.screenResolutionX,

capabilities.screenResolutionY, Stage.scaleMode

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.screenResolutionX Property Flash 6

the width of the screen, in pixels read/write

System.capabilities.screenResolutionX

Description

The integer screenResolutionX property returns the total width, in pixels, of the screen on which the Flash

Player is displayed. It is analogous to JavaScript's Screen.width property. You can use the

screenResolutionX to center a browser pop-up window or inform the user when their resolution is too small

to display a movie, as shown in the Example.

If we know the physical dimensions of a screen, we can use screenResolutionX and

screenResolutionY in combination with screenDPI to calculate the actual size of an element in a movie.

This is useful for scaling text to appear at the same size on all displays, as discussed under
capabilities.screenDPI.

To retrieve the width of a movie's Stage rather than the whole screen or monitor, use Stage.width.

The corresponding server string for screenResolutionX is R, with a possible value that includes both the

width and height of the screen, formatted as "WIDTHxHEIGHT" (for example, "1600x1200").

Example

The following code displays a warning when the screen resolution is too small:

// Specify required resolution
minResolutionX = 800;
// If the requirement is not met...
if (System.capabilities.screenResolutionX < minResolutionX) {
 // ...display a warning message
 this.createTextField("warning_txt", 1, 300, 300, 250, 30);
 this.warning_txt.border = true;
 this.warning_txt.text = "Movie requires an 800-pixel wide screen.";

 // Display a disabled frame
 this.gotoAndStop("movieDisabled");
}

Bugs

In the first release of Macromedia's documentation for Flash MX, this property is incorrectly listed as
System.capabilities.screenResolution.x. There should be no period before the final x, and

the X should be capitalized.

See Also

capabilities.pixelAspectRatio, capabilities.screenDPI,

capabilities.screenResolutionY, Stage.width

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.screenResolutionY Property Flash 6

the height of the screen, in pixels read/write

System.capabilities.screenResolutionY

Description

The integer screenResolutionY property returns the total height, in pixels, of the screen on which the

Flash Player is displayed. It is analogous to JavaScript's Screen.height property. To retrieve the height

of a movie's Stage rather than the whole screen, use Stage.height.

The corresponding server string for screenResolutionY is R, with a possible value that includes both

the width and height of the screen, formatted as "WIDTHxHEIGHT" (for example, "800x600"). See

capabilities.screenResolutionX for an example that checks the screen resolution.

Bugs

In the first release of Macromedia's documentation for Flash MX, this property is incorrectly listed as
System.capabilities.screenResolution.y. There should be no period before the final y,

and the Y should be capitalized.

See Also

capabilities.pixelAspectRatio, capabilities.screenDPI,

capabilities.screenResolutionX, Stage.height

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.serverString Property Flash 6

all Capabilities object property values, as a string
of URL-encoded variables

read/write

System.capabilities.serverString

Description

The string serverString property contains a list of URL-encoded variable names and values corresponding to the property

names and values of the Capabilities object.

For example, on my system, the value of serverString is:

A=t&MP3=t&AE=t&VE=t&ACC=f&DEB=t&V=WIN%206%2C0%2C21%2C0&M=Macromedia Windows&
R=1600x1200&DP=72&COL=color&AR=1.0&I=point&OS=Windows XP&L=en

To determine the variable name and value used for each property, see the entry for that property. The serverString property

is provided as a convenience to the developer who wishes to retrieve assets from the server, based on the client-side Player
specifications. The string can be used when loading external XML, variables, or even other movies. For example, a simple movie,
loadStub.swf, could be used as a loading module for subsequent content. The loadStub.swf movie should issue a loadMovie()
command to a server script and append the serverString property value to a GET request:

content_mc.loadMovie("content.swf?" + System.capabilities.serverString);

The server would then respond by sending the appropriate movie for the client-side environment.

Usage

Though the properties of the Capabilities object are writable, custom property assignments are not reflected in the value of
serverString.

See Also

MovieClip.loadMovie(), the LoadVars class, the XML class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

capabilities.version Property Flash 6

the Flash Player version read/write

System.capabilities.version

Description

The string version property contains version and platform information for the Flash Player hosting the current movie. As of Flash 6, it

is favored over the getVersion() function, though the two return the same value. Because capabilites.version is not

available in Flash 5, getVersion() must be used for movies that will be played in Flash Player 5. Similarly, $version must be used for

movies played in Flash Player 4.

The string stored in version takes the form:

platform majorVersion,minorVersion,buildNumber,patch

where platform is a code indicating the platform ("WIN", "MAC", or "UNIX"), followed by the major version number, the

minor version number, and the build (a.k.a. revision) number. The last item, patch, is typically 0. For example:

WIN 5,0,30,0 // Version 5.0, Build 30 (5.0r30) on Windows
MAC 5,0,41,0 // Version 5.0, Build 41 (5.0r41) on Macintosh
UNIX 4,0,12,0 // Version 4.0, Build 12 (4.0r12) on Unix

To obtain a more detailed description of the current operating system, use capabilities.os.

In Test Movie mode, version reports the version number of the Player embedded in the authoring tool (which is not the same as the

version of the authoring tool itself). For example, the Flash 5 authoring tool embeds the 5.0 r30 version of the Player, so it has a version
of:

WIN 5,0,30,0

or:

MAC 5,0,30,0

Any time a major or minor version of the authoring tool is created, the buildNumber restarts at 0. However, in the typical

development cycle of the Flash authoring tool, many builds of the Flash Player are produced before the final version of the authoring tool
is released. Hence, the build number of the first new major version of a Player is usually greater than 0. For example, Flash Player 5 was
first officially released at Build 30. Flash Player 6 was officially released at Build 23. A movie running in the first publicly released Flash
Player 6 on Windows has a version of WIN 6,0,23,0.

Typically, we're concerned only with the platform, the major version, and the build number of a Player. To extract the portion of the
version string we're after, we can use the string manipulation tools described in Chapter 4, or we can construct a custom object with

each component of the version string assigned to a property of that object, as shown in the following Example.

When a movie is embedded in the browser, JavaScript and VBScript provide external tools for version detection, browser sniffing, and
automatic page redirection. For details on detecting the Flash Player's presence and version with JavaScript and VBScript, see:

http://www.moock.org/webdesign/flash/detection/moockfpi

The corresponding server string for version is V, with possible values as described earlier in this Description.

Example

The following code extracts the various portions of the version string and stores them as the properties of an object for easy access:

// Split up the version string into usable pieces.
var version = System.capabilities.version;
var firstSpace = version.indexOf(" ");
var tempString = version.substring(firstSpace + 1, version.length);
var tempArray = tempString.split(",");

// Assign the various parts of the getVersion() string to our object.
// Note that we convert the version number portions to integers.
var thePlayer = new Object();
thePlayer.platform = version.substring(0,firstSpace);
thePlayer.majorVersion = parseInt(tempArray[0]);
thePlayer.minorVersion = parseInt(tempArray[1]);
thePlayer.build = parseInt(tempArray[2]);
thePlayer.patch = parseInt(tempArray[3]);

// Now use our object to perform version-specific code.
if ((thePlayer.majorVersion = = 6) && (thePlayer.build <= 23)) {
 this.createTextField("warning_txt", 1, 300, 300, 250, 30);
 this.warning_txt.border = true;
 this.warning_txt.text = "Please upgrade your Player to avoid streaming bugs.";
}

Bugs

Macromedia's documentation for Flash MX incorrectly claims that the server string for version is VER (it actually is V) and that the

value of version is an integer (it actually is a string).

See Also

capabilities.os, getVersion(), $version

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

clearInterval() Global Function Flash 6

stop the periodic execution of a function or method

clearInterval(intervalID)

Arguments

intervalID

An integer interval identifier returned by an earlier call to setInterval().

Description

The setInterval() and clearInterval() functions are used to create and destroy intervals, which execute a
specified function or object method periodically. An interval is created by calling setInterval(), which returns a
unique identifier that can later be passed to clearInterval() to halt the interval. An interval can be cleared either
inside or outside of the executing interval function.

For examples and further details, see setInterval().

Usage

There is no JavaScript-style setTimeout() function in ActionScript. To emulate setTimeout(), create an interval
function that clears itself the first time it runs, as shown under the Example for setInterval().

See Also

setInterval()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Color Class Flash 5

control over movie clip color values

Constructor

new Color(target)

Arguments

target

A string or reference indicating the path to the movie clip or document level whose color will be controlled by the new object
(references are converted to paths when used in a string context).

Methods

getRGB()

Retrieve the current offset values for Red, Green, and Blue.
getTransform()

Retrieve the current offset and percentage values for Red, Green, Blue, and Alpha.
setRGB()

Assign new offset values for Red, Green, and Blue, while reducing percentage values to 0.
setTransform()

Assign new offset and/or percentage values for Red, Green, Blue, and Alpha.

Description

We use objects of the Color class to dictate the color and transparency of a movie clip or main movie programmatically. Once we've
created an object of the Color class for a specific target, we can then invoke the methods of that Color object to affect its

target's color and transparency. That is, there is no color property used to manipulate a movie clip's color; instead we create a

Color object that targets the desired movie clip. For example, suppose we have a clip instance named ball that we want to color red.

We first make a Color object with a target of ball, and store it in the variable ballColor. Then we can use

ballColor.setRGB() to assign ball the color red, as follows:

var ballColor = new Color("ball");
ballColor.setRGB(0xFF0000); // Pass setRGB() the hex value for red

For a custom example that adds a color-setting method directly to the MovieClip class, see the
Color.setRGB() method.

The preceding example provides color control for simple applications. But to handle more complex scenarios, we need to know more
about how color is represented in Flash. Every individual color displayed in a movie clip is defined by four separate components: Red,
Green, Blue, and Alpha (or transparency). These four components are combined in different amounts to generate each color we see on
screen. The amount of Red, Green, Blue, and Alpha in a given color is described as a number between 0 and 255. The higher the value
of Red, Green, or Blue, the more each of those colors contributes to the final color. However, remember that computer color is
additive, not subtractive like paint, so higher values tend to be brighter, not darker. If all three RGB components are equal, the result is
a shade of gray; if they are all 0, the result is black; if they are all 255, the result is white. The higher the value of Alpha, the more
opaque the final color will be. (A color with an Alpha of 0 is completely transparent, and a color with an Alpha of 255 is completely
opaque.)

For example, pure red is described by the following values:

Red: 255, Green: 0, Blue: 0, Alpha: 255

whereas a partially transparent red might have the values:

Red: 255, Green: 0, Blue: 0, Alpha: 130

For the purposes of this discussion, we adopt the so-called RGB triplet notation (R: red, G: green, B: blue) when talking about color
values. Although ActionScript doesn't support decimal RGB triplets such as (255, 0, 255), it does support the hexadecimal equivalent
form 0xRRGGBB, where RR, GG, and BB are each two-digit hex numbers representing Red, Green and Blue. For example, the RGB

triplet (R:51, G:51, B:102) is equivalent to the hexadecimal value 0x333366.

We'll also adopt the so-called RGBA quadlet notation (R: red, G: green, B: blue, A: alpha) for convenience during the following
discussion. Note that although there is no color property for a movie clip, clips do have an _alpha property that represents the

alpha channel setting.

The initial Red, Green, Blue, and Alpha values for each color in a movie clip are set in the Flash authoring tool using the Color Mixer
panel. (In the Color Mixer panel, Alpha is shown as a percentage, not a number from 0 to 255.) To alter all the colors in a movie clip
via ActionScript, we make universal adjustments (known as transformations) to the Red, Green, Blue, and Alpha components of the
clip's color. Transformations can be applied at authoring time via the Property inspector (Flash MX) or Effect panel (Flash 5).

We have two means of setting transformations for each color component:

We can set the percentage of the component's original value to a number between -100 and 100. For example, we can say, "set
all red used in this clip to 80% of its original value." Although negative percentages aren't meaningful in isolation, they are used
to calculate the final transformation as shown later in this Description.

We can specify an amount to offset the component's original value. The offset is a number between -255 and 255. For example,
we can say, "add 20 to all blue values in this clip," or, using a negative number, we can say, "subtract 30 from all blue values in
this clip."

The final value of a color in a transformed clip is determined by combining its original (author-time) color component values with the
transformation percentages and offsets set through the Color object, as follows:

R = originalRedValue * (redTransformPercentage/100) + redTransformOffset
G = originalGreenValue * (greenTransformPercentage/100) + greenTransformOffset
B = originalBlueValue * (blueTransformPercentage/100) + blueTransformOffset
A = originalAlphaValue * (alphaTransformPercentage/100) + alphaTransformOffset

If no transformations have been performed through ActionScript, the initial transformation percentage for each component defaults to
100, while the initial offset defaults to 0.

Let's look at how color transformations work with a practical example. Suppose that a clip contains an opaque red triangle (R:255,
G:0, B:0, A:255) and an opaque green circle (R:0, G:255, B:0, A:255). Also suppose that we apply a universal transformation to the
clip, setting the percentage of Green to 50, the percentage of Alpha to 80, and the offset of Blue to 100, but leaving the other offsets
and percentages at their defaults (0 or 100). Here's how the universal transformation affects our red triangle:

R = = 255 * (100/100) + 0 = = 255 // No change to Red
G = = 0 * (50/100) + 0 = = 0 // Green reduced to 50%

B = = 0 * (100/100) + 100 = = 100 // Blue offset by 100
A = = 255 * (80/100) + 0 = = 204 // Alpha reduced to 80%

The final transformed red triangle has the color value (R:255, G:0, B:100, A:204).

Now here's how the transformation affects our green circle:

R = = 0 * (100/100) + 0 = = 0 // No change to Red
G = = 255 * (50/100) + 0 = = 127.5 // Green reduced to 50%
B = = 0 * (100/100) + 100 = = 100 // Blue offset by 100
A = = 255 * (80/100) + 0 = = 204 // Alpha reduced to 80%

The final transformed green circle has the color value (R:0, G:127.5, B:100, A:204).

To apply our hypothetical color transformations to a real clip, we use a Color object as we saw earlier. To set a clip's universal color
offset and percentage values we use the setRGB() and setTransform() methods (see the entries for those methods for example code).
Conversely, to examine the current color transformations of a clip, we use the getRGB() and getTransform() methods. The Color
class methods can produce animated color effects, such as fade-ins, fade-outs, and tinting. Furthermore, because we can apply tints to
each clip instance individually, the Color class provides a very efficient way to create diverse graphics with minimal assets. For
example, we can create a scene full of balloons from a single movie clip that we colorize and tint in myriad ways, as shown under the
Example heading that follows.

Usage

Here are some points of interest for Color objects:

Changing the color of a movie clip with a Color object will cause author-time tweens applied to the clip to cease functioning.

Setting the _alpha property of a clip affects the clip's Alpha percentage, as reflected by the aa property of the object

returned by getTransform().

Color transformations do not affect the background color of a movie or a movie clip. They apply only to solid shapes placed on
the Stage. To change the background color, first fill the background with a shape and then colorize that shape.

Manual color transformations can be applied to movie clips in the Flash MX authoring tool via the Property inspector and in
Flash 5 via the Effect panel (Window Panels Effect). All such transformations are reflected in the properties of the
object returned by getTransform(). The authoring tool serves as an excellent means of viewing and choosing color
transformations.

Example

The first example shows how to generate a series of randomly colored balloon movie clips, based on an existing clip called
balloon:

var balloonColor;

// Loop to make 20 duplicates of the clip balloon
for (var i = 0; i < 20; i++) {
 // Duplicate this balloon
 balloon.duplicateMovieClip("balloon" + i, i);

 // Position this balloon on stage
 this["balloon" + i]._x = Math.floor(Math.random() * 550);
 this["balloon" + i]._y = Math.floor(Math.random() * 400);

 // Create a Color object for this balloon
 balloonColor = new Color(this["balloon" + i]);
 // Randomly assign this balloon's color using the setRGB() method

 balloonColor.setRGB(Math.floor(Math.random() * 0xFFFFFF));
}

// We don't need the Color object anymore, so delete it
delete balloonColor;

By setting the Red, Green, and Blue offsets to the same value, we can effectively brighten or darken a movie clip. For example, the
following code darkens myClip:

brightness = new Color("myClip");
brightnessTransform = new Object();
brightnessTransform.rb = -30;
brightnessTransform.bb = -30;
brightnessTransform.gb = -30;
brightness.setTransform(brightnessTransform);

This last example adds a new method, MovieClip.doMouseFade(), that brightens and darkens a clip according to the mouse position:

MovieClip.prototype.doMouseFade = function () {
 var brightness = new Color(this);
 var brightnessTransform = new Object();

 this.onMouseMove = function () {
 var brightnessAmount = -255 + (_level0._xmouse / Stage.width) * 510;
 brightnessTransform.rb = brightnessAmount;
 brightnessTransform.bb = brightnessAmount;
 brightnessTransform.gb = brightnessAmount;
 brightness.setTransform(brightnessTransform);
 updateAfterEvent();
 }
}

box.doMouseFade();

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Color.getRGB() Method Flash 5

retrieve the current offset values for Red, Green, and Blue

colorObj.getRGB()

Returns

A number representing the current RGB offsets of colorObj's target.

Description

The getRGB() method returns a number, ranging from -16777215 to 16777215, that represents the current color offsets for the Red, Green,
and Blue components in a clip; to retrieve the color percentages, you must use getTransform(). Because color offset values normally range
from 0 to 255, it's convenient to work with the return value of getRGB() in hexadecimal, where each color offset can be represented by a
two-digit hex number. To decipher the number returned by getRGB(), we treat it as a six-digit hex number of the form 0xRRGGBB, where

RR is the Red offset, GG is the Green offset, and BB is the Blue offset. For example, if getRGB() returns the number 10092339, we convert

it to the hex number 0x99FF33, from which we derive the color offsets (R:153, G:255, B:51). Or if getRGB() returns the number 255, we

convert it to the hex number 0x0000FF, from which we derive the color offsets (R:0, G:0, B:255). The return value of getRGB() can be

converted to hexadecimal with toString(), as follows:

// Create a Color object
myColor = new Color("myClip");
// Set the Red offset to 255 (FF in hex)
myColor.setRGB(0xFF0000);
// Retrieve the RGB offset and convert it to hexadecimal
hexColor = myColor.getRGB().toString(16);
trace(hexColor); // Displays: ff0000

Hexadecimal color values are familiar to most web developers, as they are often used in HTML tags. For example, here we use a hexadecimal
number to specify the background color of an HTML page (equal values for red and blue combine to form pink):

<BODY BGCOLOR="#FF00FF">

The hex color format used in HTML tags is, in fact, the same as the format used by getRGB() and setRGB(). However, it's not mandatory to
use hexadecimal to interpret the return value of getRGB(); we can also extract the individual Red, Green and Blue color offsets from the
return value of getRGB(), using the bitwise operators:

var rgb = myColorObject.getRGB();
var red = (rgb >> 16) & 0xFF; // Isolate the Red offset and assign it to red
var green = (rgb >> 8) & 0xFF; // Isolate the Green offset and assign it to green
var blue = rgb & 0xFF; // Isolate the Blue offset and assign it to blue

With the offset values separated into individual variables (one for each primary color), we can examine and manipulate them individually as
decimal numbers. However, when we want to apply any offset value changes to a Color object, we must reassemble the offsets into a single
number, as shown in the entry for the setRGB() method.

Usage

The getRGB() and setRGB() methods are convenient when we're assigning new colors directly to a clip, without reference to the clip's
original color values. However, the getTransform() and setTransform() methods are better suited to modifying the RGB components of a
clip's color transformation in relation to the clip's original colors.

Color offsets are most easily read using getTransform(), which returns each component separately, rather than as an encoded number
containing all three colors as getRGB() does. This is especially true when setting negative offsets with setTransform(), due to the way that
negative numbers are represented in binary.

Example

// Create a new Color object for a clip named box
boxColor = new Color("box");
// Set a new RGB offset for box
boxColor.setRGB(0x333366);
// Check the RGB offset for box
trace(boxColor.getRGB()); // Displays: 3355494

See Also

Color.getTransform(), Color.setRGB()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Color.getTransform() Method Flash 5

retrieve both the current offset and percentage values for a
clip's Red, Green, Blue, and Alpha components

colorObj.getTransform()

Returns

An object whose properties contain the color transformation values for the target clip of colorObj.

Description

The getTransform() method returns an object containing properties that tell us which transformations are currently
applied to the target of a Color object. That is, it returns multiple individual values, wrapped in an object for
convenience. The returned object is a instance of the generic Object class; it is not a Color object. The property
names and values of the returned object are described in Table 18-5.

Table 18-5. Properties of object returned by getTransform()

Property name Property value Property description

ra -100 to 100 The Red transformation percentage

rb -255 to 255 The Red offset amount

ga -100 to 100 The Green transformation percentage

gb -255 to 255 The Green offset amount

ba -100 to 100 The Blue transformation percentage

bb -255 to 255 The Blue offset amount

aa -100 to 100 The Alpha transformation percentage

ab -255 to 255 The Alpha offset amount

Usage

Note in Table 18-5 that both the percentage and the offset can have negative values; although negative percentages
aren't meaningful in isolation, they can be factored in when calculating the RGB color components, which always
range from 0 to 255. Values outside that range are clipped to the allowable range. See the Color class description for
an explanation of the calculation used to determine final RGB and Alpha color components.

Example

We can use getTransform() in combination with setTransform() to modify the Red, Green, Blue, or Alpha
components of a color transformation individually. For example, in the following code, we adjust the Red and Alpha
components of a clip named box:

// Create a new Color object for a clip named box

boxColor = new Color("box");

// Assign the return object of getTransform() to boxTransform
boxTransform = boxColor.getTransform();

// Now, make some modifications to the transform object's properties
boxTransform.rb = 200; // Set Red offset to 200
boxTransform.aa = 60; // Set Alpha percentage to 60

// Apply the new transformations to box via boxColor
boxColor.setTransform(boxTransform);

See Also

Color.setTransform()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Color.setRGB() Method Flash 5

assign new offset values for Red, Green, and Blue

colorObj.setRGB(offset);

Arguments

offset

A number in the range 0 to 16777215 (0xFFFFFF), representing the new RGB offsets of

colorObj's target clip. Can be a decimal integer or a hexadecimal integer. Numbers outside the

allowed range are converted to numbers within the allowed range (using the rules of twos-complement
binary notation). Therefore, setRGB() cannot be used to set negative offset values (as setTransform()
can).

Description

The setRGB() method assigns new transformation offsets for a movie clip's RGB components. The new
offset is most easily specified as a six-digit hexadecimal number of the form 0xRRGGBB, where RR, GG,

and BB are two-digit numbers between 00 and FF, representing the Red, Green, and Blue components. For

example, the RGB triplet (R:51, G:51, B:102) is equivalent to the hexadecimal value:

0x333366

Hence, to assign a gray RGB offset to a clip named menu, we can use:

var menuColor = new Color("menu");
menuColor.setRGB(0x999999);

Web developers comfortable with six-digit hexadecimal color values in HTML will have an easy time using
setRGB() with the preceding hexadecimal format. For a primer on decimal, octal, and hexadecimal numbers, see
http://www.moock.org/asdg/technotes/basePrimer.

Note that in addition to setting offsets, setRGB() also automatically sets the Red, Green, and Blue percentages
of a clip's color transformation to 0, meaning that color changes performed via setRGB() behave as direct color
assignments (not adjustments of the original colors in the clip). To adjust the color of a movie clip in relation to
the clip's original colors, use the setTransform() method.

Example

Here's a handy technique for generating a number to use with the setRGB() method. Our custom combineRGB()
function shifts the red and green numbers into the proper position in a 24-bit number and then combines

the red, green, and blue values using the bitwise OR operator (|). We use the result to assign a color

value to the box movie clip. For more information on bitwise operations, see the online technote at

http://www.moock.org/asdg/technotes/bitwise.

function combineRGB (red, green, blue) {
 // Combine the color values into a single number

 var RGB = (red<<16) | (green<<8) | blue;
 return RGB;
}
// Create the Color object
var boxColor = new Color("box");
// Set the color of box to the RGB triplet (R:201, G:160, B:21)
boxColor.setRGB(combineRGB(201, 160, 21));

The following example adds a convenient setRGB() method to all movie clips. It automatically creates the
necessary Color object and then calls the Color.setRGB() method:

MovieClip.prototype.setRGB = function (colorValue) {
 new Color(this).setRGB(colorValue);
};

// Usage:
theClip_mc.setRGB(0xFF0000); // Set theClip_mc's color to red

See Also

Color.getRGB(), Color.setTransform()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Color.setTransform() Method Flash 5

assign new offset and/or percentage values for Red, Green,
Blue, and Alpha

colorObj.setTransform(transformObject)

Arguments

transformObject

An object whose properties contain the new color transformation values for the target clip of colorObj.

Description

The setTransform() method gives us precise control over the percentage and offset of the Red, Green, Blue, and Alpha components of a
movie clip's color. To use setTransform(), we must first create an object (normally an instance of the Object class) with a series of
predefined properties. The transformation we wish to apply to our Color object is expressed using those properties, which are listed in
Table 18-5 for the getTransform() method (except that setTransform() sets their values rather than reading their values).

Once we have created an object with the properties described in Table 18-5, we pass that object to the setTransform() method. The
values of the properties on our transformObject become the new offset and percentage transform values of colorObj and,

hence, colorObj's target movie clip. The final color values in the clip are then determined according to the calculation discussed

under the Color class Description.

To examine the current offsets and percentages of a particular Color object, we use the getTransform() method.

Example

// Create a new Color object for the box clip
boxColor = new Color("box");

// Create a generic object (not a Color object) and store it in boxTransform
boxTransform = new Object();

// Assign the required properties of boxTransform (ra, rb, etc.), setting our
// transformation values as desired
boxTransform.ra = 50; // Red percentage
boxTransform.rb = 0; // Red offset
boxTransform.ga = 100; // Green percentage
boxTransform.gb = 25; // Green offset
boxTransform.ba = 100; // Blue percentage
boxTransform.bb = 0; // Blue offset
boxTransform.aa = 40; // Alpha percentage
boxTransform.ab = 0; // Alpha offset

// Now that our transform object has been prepared, pass it to setTransform()
boxColor.setTransform(boxTransform);

This approach to creating a transform object is fairly labor-intensive. We can generate a new transform object more easily using the
getTransform() method, as follows:

// Create a new Color object for the box clip
boxColor = new Color("box");

// Invoke getTransform() on boxColor, which retrieves a transform object
boxTransform = boxColor.getTransform();

// Now alter boxTransform's properties as needed, leaving others unchanged
boxTransform.rb = 51; // Red offset
boxTransform.aa = 40; // Alpha percentage

// Use our transform object with setTransform()
boxColor.setTransform(boxTransform);

See Also

Color.getTransform()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date() Global Function Flash 5

a string representing the current date and time

Date()

Returns

A string containing the current date and time.

Description

The Date() function returns a human-readable string that expresses the current date and local time. The string
also includes the GMT offset (the number of hours difference between local time and Greenwich Mean Time).

Be sure not to confuse the global Date() function with the Date() class constructor. The Date() function
returns the date formatted as a standard, if terse, string. It is convenient for humans but not very useful inside a
program where you need to manipulate dates and times. For that purpose, you are better off using objects of the
Date class, which allow convenient independent access to the year, month, day, and time.

Example

To place the current time and date in a text field with minimal fuss, we can use the Date() function as follows:

someMovieClip.createTextField("output_txt", 1, 0, 0, 200, 20);
output_txt.text = Date();

// Sets the displayed text to a string formatted as follows:
// "Mon Aug 28 16:23:09 GMT-0400 2000"

Reader Exercise: Modify the preceding example using String.substring() to show the date and time (including
the hours and minutes), but eliminate the seconds and GMT offset from the display. See the Example in the
Date class entry for a much more flexible approach.

See Also

The Date class, Date.UTC()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date Class Flash 5

current time and structured support for date information

Constructor

new Date()
new Date(milliseconds)
new Date(year, month, day, hours, minutes, seconds, ms)

Arguments

milliseconds

The number of milliseconds between the new date and midnight of January 1, 1970 UTC (Coordinated Universal Time, akin to
GMT — positive if after; negative if before. Any required local time zone adjustment is made after the date in UTC time is
determined. For example, specifying a milliseconds argument of 1000 in Eastern Standard Time creates a date 1 second

past midnight on January 1, 1970 in UTC time, which translates to 7:00:01 P.M. on December 31, 1969 in EST time (5 hours
behind UTC time).

year

An integer specifying the year. Required when using the year,...ms constructor format. If year is one or two digits, it is

treated as the number of years since 1900 (e.g., a year of 11 refers to the year 1911, not 2011). Use four-digit numbers to specify

year 2000 or later (e.g., use 2010, not 10). Three-digit years are treated as prior to 1000 A.D. In Flash 5, when year is negative

or less than 800, the calculation is unreliable. In Flash 6, a negative year specifies the number of years before 1900. To specify
dates prior to 1000 A.D., it's safest to use the single milliseconds constructor format.

month

An integer specifying the month, from 0 (January) to 11 (December), not from 1 to 12. Required when using the year,...ms
constructor format. Out-of-range months are carried over to the next or previous year. For example, a month argument of 13 is

treated as February of the following year.
day

An optional integer specifying the day, from 1 to 31. Defaults to 1 if not specified. Out-of-range days are carried over to the next
or previous month. For example, September 31 is treated as October 1, September 0 is treated as August 31, and September -1 is
treated as August 30.

hours

An optional integer specifying the hour, from 0 (midnight) to 23 (11 P.M.). Defaults to 0 if not specified. A.M. and P.M. notation
are not supported, so use 24-hour time. Out-of-range hours are carried over to the next or previous day. For example, an hours
argument of 25 is treated as 1 A.M. of the following day.

minutes

An optional integer specifying the minute, from 0 to 59. Defaults to if not specified. Out-of-range minutes are carried over to the
next or previous hour. For example, a minutes argument of 60 is treated as the first minute of the following hour.

seconds

An optional integer specifying the seconds, from 0 to 59. Defaults to if not specified. Out-of-range seconds are carried over to the
next or previous minute. For example, a seconds argument of -1 is treated as the last second of the previous minute.

ms

An optional integer specifying the milliseconds, from 0 to 999. Defaults to 0 if not specified. Out-of-range milliseconds are
carried over to the next or previous second. For example, a ms argument of 1005 is treated as 5 milliseconds into the following

second.

Class Methods

UTC()

Retrieve the number of milliseconds between January 1, 1970 and a supplied UTC date.

Methods

getDate()

Retrieve the day of the month, from 1 to 31.
getDay()

Retrieve the day of the week, as a number from 0 (Sunday) to 6 (Saturday).
getFullYear()

Retrieve the four-digit year.
getHours()

Retrieve the hour of the specified Date object, from 0 to 23.
getMilliseconds()

Retrieve the milliseconds of the specified Date object, from 0 to 999.
getMinutes()

Retrieve the minutes of the specified Date object, from 0 to 59.
getMonth()

Retrieve the month of the year, as a number from 0 (January) to 11 (December).
getSeconds()

Retrieve the seconds of the specified Date object, from 0 to 59.
getTime()

Retrieve the date in internal format (i.e., the number of milliseconds between the date and January 1, 1970).
getTimezoneOffset()

Retrieve the number of minutes between UTC and local time.
getUTCDate()

Retrieve the day of the month, from 1 to 31, in UTC time.
getUTCDay()

Retrieve the day of the week, from 0 (Sunday) to 6 (Saturday), in UTC time.
getUTCFullYear()

Retrieve the four-digit year in UTC time.
getUTCHours()

Retrieve the hour of the day, from 0 to 23, in UTC time.
getUTCMilliseconds()

Retrieve the milliseconds, from 0 to 999, in UTC time.
getUTCMinutes()

Retrieve the minutes, from 0 to 59, in UTC time.
getUTCMonth()

Retrieve the month of the year, from 0 (January) to 11 (December), in UTC time.
getUTCSeconds()

Retrieve the seconds, from 0 to 59, in UTC time.
getYear()

Retrieve the year, relative to 1900.
setDate()

Assign the day of the month.
setFullYear()

Assign the year in four-digit format.
setHours()

Assign the hour of the day.
setMilliseconds()

Assign the milliseconds.
setMinutes()

Assign the minutes.
setMonth()

Assign the month of the year.
setSeconds()

Assign the seconds.
setTime()

Assign the date in internal format (i.e., the number of milliseconds between the date and January 1, 1970).
setUTCDate()

Assign the day of the month in UTC time.
setUTCFullYear()

Assign the four-digit year in UTC time.
setUTCHours()

Assign the hour of the day in UTC time.
setUTCMilliseconds()

Assign the milliseconds in UTC time.
setUTCMinutes()

Assign the minutes in UTC time.
setUTCMonth()

Assign the month of the year in UTC time.
setUTCSeconds()

Assign the seconds in UTC time.
setYear()

Assign the year in four-digit format, or in two-digit format for the twentieth century.
toString()

A human-readable string representing the date.
valueOf()

The number of milliseconds between the date and midnight of January 1, 1970 UTC.

Description

We use objects of the Date class to determine the current time and date and as a means of storing arbitrary dates and times in a structured
format.

In ActionScript, a specific date is represented by the number of milliseconds before or after midnight of January 1, 1970. If the number of
milliseconds is positive, the date comes after midnight, January 1, 1970; if the number of milliseconds is negative, the date comes before
midnight, January 1, 1970. For example, if a date value is 10000, the date being described is 12:00:10, January 1, 1970. If a date value is -
10000, the date being described is 11:59:50, December 31, 1969.

Normally, however, we needn't worry about calculating the number of milliseconds to a particular date; the ActionScript interpreter takes
care of that for us. When we construct a Date object, we simply describe our date as a year, month, day, hour, minute, second, and
millisecond. The interpreter then converts that point in time to the internal milliseconds-from-1970 format. We can also ask the
interpreter to create a new Date object using the current time. Once a Date object is created, we can use the Date class's methods to
retrieve and set the date's year, month, day, hour, minute, second, and millisecond.

There are three ways to make a new Date object:

Invoke the Date() constructor with no arguments. This sets the new Date object to the current time.

Iinvoke the Date() constructor with one numeric argument: the number of milliseconds between midnight, January 1, 1970 and the
date we're creating.

Invoke the Date() constructor with two to seven numeric arguments, corresponding to the year and month (mandatory) and
(optionally) the day, hour, minute, second, and millisecond of the date we're creating.

Because dates are stored internally as a single number, objects of the Date class do not have properties to retrieve and set. Rather, they
have methods that we use to access the various components of a date in human-readable terms (i.e., in more convenient units). For
example, to determine the month of a particular Date object, we use:

myMonth = myDate.getMonth();

We cannot use:

myMonth = myDate.month; // There's no such property! We have to use methods.

Many Date methods contain the letters "UTC," which is an abbreviation for Coordinated Universal Time. For most purposes, UTC time is
directly synonymous with the more colloquial Greenwich Mean Time, or GMT, the time as measured on the Greenwich meridian. UTC
simply is a newer standard that is less ambiguous than GMT, which has had several meanings over history. The UTC methods allow us to
work with times directly in Coordinated Universal Time without converting between time zones. The equivalent non-UTC methods all
generate values based on local, adjusted time zones.

Usage

All dates and times, including the UTC times, are determined according to the settings on the client-side operating system on which the
Flash movie is running (not the web server) and include regional offsets and, in some cases, daylight savings times. Times and dates,
therefore, are only as accurate as the user's system.

When Date() is used as a global function — without the new keyword — it generates a string that expresses the current time in the same

format as would be returned by Date.toString().

ActionScript does not include a built-in means to convert a string into a Date object, as is supported in JavaScript.

Example

Dates can be added and subtracted to calculate cumulative times or elapsed times. Suppose our friend Graham decides to go traveling for
a little less than a year. While he's gone, we want to keep track of how many days he's been away and how many days we have to wait for

him to return. The following code takes care of our countdown:

// Assign the current time to now.
var now = new Date();

// Graham leaves September 7, 2000 (remember, months start at 0,
// so September is 8, not 9).
var departs = new Date(2000, 8, 7);

// Graham comes back August 15, 2001.
var returns = new Date(2001, 7, 15);

// Convert the times to milliseconds for easy comparison.
// Then check how many milliseconds have elapsed between the two times.
var gone = now.getTime() - departs.getTime();

// Divide the difference between the departure date and now by the number
// of milliseconds in a day. This tells us how many days we've been waiting.
var numDaysGone = Math.floor(gone/86400000);

// Use the same technique to determine how many days we have left to wait.
// But this time round up (using the ceil() function) instead of rounding down.
var left = returns.getTime() - now.getTime();
var numDaysLeft = Math.ceil(left/86400000);

// Display our days in text fields.
this.createTextField("goneOutput_txt", 1, 0, 0, 200, 20);
this.createTextField("leftOutput_txt", 2, 0, 40, 200, 20);
goneOutput_txt.text = "gone for: " + numDaysGone + " days";
leftOutput_txt.text = "returns in: " + numDaysLeft + " days";

When adding a day to, or subtracting a day from, an existing date, we normally assign the number of milliseconds in a day (86400000) to
a variable, for convenient use. The following code adds one day to the current date:

oneDay = 86400000;
now = new Date();
tomorrow = new Date(now.getTime() + oneDay);

// We could also add one day to the date in now like this
now.setTime(now.getTime() + oneDay);

To apply custom formatting to a date, we must manually map the return values of getDate(), getDay(), getHours(), and so on, to custom
strings as shown in the following example:

// Takes any Date object and returns a string of the format:
// Saturday December 16
function formatDate (theDate) {
 var months = ["January", "February", "March", "April",
 "May", "June", "July", "August", "September",
 "October", "November", "December"];
 var days = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday"];
 var dateString = days[theDate.getDay()] + " "
 + months[theDate.getMonth()] + " "
 + theDate.getDate();
 return dateString;
}

now = new Date();
trace("Today is " + formatDate(now));

The next example shows how to convert the 24-hour clock return value of getHours() to a 12-hour clock with AM and PM:

// Takes any Date object and returns a string of the format:
// "2:04PM"
function formatTime (theDate) {
 var hour = theDate.getHours();
 var minute = theDate.getMinutes() > 9 ?
 theDate.getMinutes() : "0" + theDate.getMinutes();
 if (hour > 12) {
 var timeString = (hour - 12) + ":" + minute + "PM";
 } else {
 var timeString = hour + ":" + minute + "AM";
 }
 return timeString;
}

now = new Date();
trace("The time is " + formatTime(now));

For an example that uses the Date class to create an analog-style clock, see Section 13.11 in Chapter 13. Note that programming time-
based behavior, such as a 10-second pause in a movie, is often accomplished more easily with the global functions getTimer() and
setInterval().

See Also

Date(), Date.UTC(), getTimer()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getDate() Method Flash 5

the day of the month

date.getDate()

Returns

An integer from 1 to 31, representing the day of the month for date.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getDay() Method Flash 5

the day of the week

date.getDay()

Returns

An integer from 0 (Sunday) to 6 (Saturday), representing the day of the week for date.

Example

The following code loads a .swf file specific to the current day of the week into the movie clip
welcomeHeader (the seven .swf files are named in the series sun.swf, mon.swf, and so on):

now = new Date();
today = now.getDay();
days = ["sun", "mon", "tue", "wed", "thu", "fri", "sat"];
welcomeHeader.loadMovie(days[today] + ".swf");

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getFullYear() Method Flash 5

the four-digit year

date.getFullYear()

Returns

A four-digit integer, representing the year for date (for example, 1999 or 2000).

See Also

Date.getYear()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getHours() Method Flash 5

the hour of the day

date.getHours()

Returns

An integer from 0 (midnight) to 23 (11 P.M.), representing the hour of the day for date. A.M. and P.M.

notation are not supported but can be constructed manually, as shown in the Date class examples.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getMilliseconds() Method Flash 5

the milliseconds of a date

date.getMilliseconds()

Returns

An integer from 0 to 999, representing the milliseconds of date. Note that it does not represent the

milliseconds from 1970 — see Date.getTime() — rather, it represents the fractional remainder of the seconds
indicated by the specified Date object.

See Also

Date.getTime()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getMinutes() Method Flash 5

the minutes of a date

date.getMinutes()

Returns

An integer from 0 to 59, representing the minutes of the hour of date.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getMonth() Method Flash 5

the month of the year

date.getMonth()

Returns

An integer from 0 (January) to 11 (December), not 1 to 12, representing the month of the year of date.

Usage

Be careful not to assume that 1 is January! The return value of getMonth() starts at 0, not 1.

Example

Here we convert the number returned by getMonth() to a human-readable abbreviation:

var months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sept", "Oct", "Nov", "Dec"];
myDateObj = new Date();
trace("The month is " + months[myDateObj.getMonth()]);

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getSeconds() Method Flash 5

the seconds of a date

date.getSeconds()

Returns

An integer from 0 to 59, representing the seconds of the minute of date.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getTime() Method Flash 5

retrieve the number of milliseconds between January 1,
1970 and the time of a Date object

date.getTime()

Returns

An integer expressing the number of milliseconds between the time of date and midnight, January 1, 1970 —

positive if after January 1, 1970; negative if before.

Description

Internally, all dates are represented as a single number—the number of milliseconds between the time of the
date and midnight, January 1, 1970. The getTime() method gives us access to that number of milliseconds so

that we can use it to construct other dates or calculate the elapsed time between two dates.

Example

Suppose we place the following code on frame 10 of a movie:

time1 = new Date();

Then we place the following code on frame 20 of a movie:

time2 = new Date();

With the following code, we can determine the amount of time that elapsed, in milliseconds, between frames 10
and 20 of our movie:

elapsedTime = time2.getTime() - time1.getTime();

Note that Flash's global getTimer() function also gives us access to elapsed time in a movie.

See Also

Date.setTime(), getTimer(), setInterval()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getTimezoneOffset() Method Flash 5

the number of minutes between local time and UTC (a.k.a.
GMT)

date.getTimezoneOffset()

Returns

An integer representing the current number of minutes between the local time zone and the actual UTC
(Greenwich meridian) time — positive if local time is behind UTC; negative if local time is ahead of UTC.
Includes adjustments for local daylight savings time depending on the day of the year.

Example

When invoked in Eastern Daylight Time (EDT) during daylight savings, the following code returns the value
240 (240 minutes is 4 hours):

myDate = new Date();
trace(myDate.getTimezoneOffset()); // Displays: 240

However, when invoked in EDT, during non-daylight savings times of year, the same code returns 300 (300
minutes is 5 hours), which is the offset between Eastern Standard Time (EST) and UTC.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getUTCDate() Method Flash 5

the day of the month (UTC time)

date.getUTCDate()

Returns

An integer from 1 to 31, representing the day of the month for date, where date is treated as a UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getUTCDay() Method Flash 5

the day of the week (UTC time)

date.getUTCDay()

Returns

An integer from 0 (Sunday) to 6 (Saturday), representing the day of the week for date, where date is treated

as a UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getUTCFullYear() Method Flash 5

the four-digit year (UTC time)

date.getUTCFullYear()

Returns

A four-digit integer, representing the year for date, where date is treated as a UTC time (for example, 1999

or 2000).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getUTCHours() Method Flash 5

the hour of the day (UTC time)

date.getUTCHours()

Returns

An integer from 0 (midnight) to 23 (11 P.M.), representing the hour of the day for date, where date is

treated as a UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getUTCMilliseconds() Method Flash 5

the milliseconds of a date (UTC time)

date.getUTCMilliseconds()

Returns

An integer from 0 to 999, representing the milliseconds of date, where date is treated as a UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getUTCMinutes() Method Flash 5

the minutes of a date (UTC time)

date.getUTCMinutes()

Returns

An integer from 0 to 59, representing the minutes of the hour of date, where date is treated as a UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getUTCMonth() Method Flash 5

the month of the year (UTC time)

date.getUTCMonth()

Returns

An integer from 0 (January) to 11 (December), not 1 to 12, representing the month of the year of date, where

date is treated as a UTC time.

Usage

Be careful not to assume that 1 is January! The return value of getUTCMonth() starts at 0, not 1.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getUTCSeconds() Method Flash 5

the seconds of a date (UTC time)

date.getUTCSeconds()

Returns

An integer from 0 to 59, representing the seconds of the minute of date, where date is treated as a UTC

time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.getYear() Method Flash 5

the year, relative to 1900

date.getYear()

Returns

The value of date.getFullYear() minus 1900. For example, getYear() of 1999 is 99, getYear() of 2001 is

101, and getYear() of 1800 is -100. This function is most useful for dates in the twentieth century.

See Also

Date.getFullYear()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setDate() Method Flash 5

assign the day of the month

date.setDate(day)

Arguments

day

An integer from 1 to 31, representing the new day of the month for date. If you specify a day greater

than the number of days in the current month, it causes the month to increment accordingly. For
example, if the current month is 8 (September), and you specify 31 for the new day, the date is

treated as October 1. The day becomes 1, and the month becomes 9 (October).

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970.

See Also

Date.getDate(), Date.setMonth()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setFullYear() Method Flash 5

assign the century and year in four-digit format

date.setFullYear(year, month, day)

Arguments

year

A four-digit integer, representing the new year for date (for example, 1999 or 2000).

month

An optional integer from 0 (January) to 11 (December), not 1 to 12, representing the new month of the
year of date. Defaults to 0 if not specified.

day

An optional integer from 1 to 31, representing the new day of the month of date. Defaults to 1 if not

specified.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970.

See Also

Date.getFullYear(), Date.setYear()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setHours() Method Flash 5

assign the hour of the day

date.setHours(hour)

Arguments

hour

An integer from 0 (midnight) to 23 (11 P.M.), specifying the new hour of the day for date.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970.

See Also

Date.getHours()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setMilliseconds() Method Flash 5

assign the milliseconds of a date

date.setMilliseconds(ms)

Arguments

ms

An integer from 0 to 999, representing the new milliseconds of date, not the number of milliseconds

since 1970. Values above 999 or below 0 are carried over to the seconds of date.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970.

See Also

Date.getMilliseconds(), Date.setTime()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setMinutes() Method Flash 5

assign the minutes of a date

date.setMinutes(minutes)

Arguments

minutes

An integer from 0 to 59, representing the new minutes of the hour of date. Values above 59 or below 0

are carried over to the hours of date.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970.

See Also

Date.getMinutes()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setMonth() Method Flash 5

assign the month of the year

date.setMonth(month)

Arguments

month

An integer from 0 (January) to 11 (December), not from 1 to 12, representing the new month of the year
of date. Values above 11 or below 0 are carried over to the year of date.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970.

Usage

Be careful not to assume that 1 is January! Months start at 0, not 1.

See Also

Date.getMonth()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setSeconds() Method Flash 5

assign the seconds of a date

date.setSeconds(seconds)

Arguments

seconds

An integer from 0 to 59, representing the new seconds of the minute of date. Values above 59 or

below 0 are carried over to the minutes of date.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970.

See Also

Date.getSeconds()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setTime() Method Flash 5

assign a new date based on the number of milliseconds
between January 1, 1970 and the new date

date.setTime(milliseconds)

Arguments

milliseconds

An integer expressing the number of milliseconds between the new desired date and midnight, January 1,
1970 — positive if after January 1, 1970; negative if before.

Returns

The value of milliseconds.

Description

Internally, all dates are represented as the number of milliseconds between the time of the date and midnight,
January 1, 1970. The setTime() method specifies a new date using the internal millisecond representation.
Setting a date using milliseconds from 1970 is often handy when we're determining differences between
multiple dates and times using getTime().

Example

Using setTime() in concert with getTime(), we can adjust the time of an existing date by adding or subtracting
milliseconds. For example, here we add one hour to a date:

now = new Date();
now.setTime(now.getTime() + 3600000);

And here we add one day:

now = new Date();
now.setTime(now.getTime() + 86400000);

To improve the readability of our code, we create variables representing the number of milliseconds in an hour
and milliseconds in a day:

oneDay = 86400000;
oneHour = 3600000;
now = new Date();
// Subtract one day and three hours.
now.setTime(now.getTime() - oneDay - (3 * oneHour));

See Also

Date.getTime(), Date.setMilliseconds(), Date.UTC(), getTimer()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setUTCDate() Method Flash 5

assign the day of the month (UTC time)

date.setUTCDate(day)

Arguments

day

An integer from 1 to 31, representing the new day of the month for date in UTC time. If you specify a

day greater than the number of days in the current month, it causes the month to increment accordingly.
For example, if the current month is 8 (September) and you specify 31 for the new day, it is treated as

October 1. The day becomes 1, and the month becomes 9 (October).

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970, in
UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setUTCFullYear() Method Flash 5

assign the century and year in four-digit format (UTC time)

date.setUTCFullYear(year)

Arguments

year

A four-digit integer, representing the new year for date, in UTC time (for example, 1999 or 2000).

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970, in
UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setUTCHours() Method Flash 5

assign the hour of the day (UTC time)

date.setUTCHours(hour)

Arguments

hour

An integer from 0 (midnight) to 23 (11 P.M.), representing the new hour of the day for date, in UTC

time.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970, in
UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setUTCMilliseconds() Method Flash 5

assign the milliseconds of a date (UTC time)

date.setUTCMilliseconds(ms)

Arguments

ms

An integer from 0 to 999, representing the new milliseconds of date, in UTC time.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970 in
UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setUTCMinutes() Method Flash 5

assign the minutes of a date (UTC time)

date.setUTCMinutes(minutes)

Arguments

minutes

An integer from 0 to 59, representing the new minutes of the hour of date, in UTC time.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970, in
UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setUTCMonth() Method Flash 5

assign the month of the year (UTC time)

date.setUTCMonth(month)

Arguments

month

An integer from 0 (January) to 11 (December), not from 1 to 12, representing the new month of the year
of date, in UTC time.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970, in
UTC time.

Usage

Be careful not to assume that 1 is January! Months start at 0, not 1.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setUTCSeconds() Method Flash 5

assign the seconds of a date (UTC time)

date.setUTCSeconds(seconds)

Arguments

seconds

An integer from 0 to 59, representing the new seconds of the minute of date, in UTC time.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970, in
UTC time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.setYear() Method Flash 5

assign the year, relative to 1900

date.setYear(year, month, day)

Arguments

year

A required integer specifying the new year of date. If one or two digits are supplied, the year is

assumed to be in the twentieth century (1900s). For example, 1 is the year 1901, and 99 is the year 1999.
Three-digit years are assumed to be prior to 1000 A.D. Use four digits to specify the year 2000 and later.
A negative number specifies the number of years B.C., not the number of years before 1900.

month

An optional integer from 0 (January) to 11 (December), not from 1 to 12, representing the new month of
the year of date.

day

An optional integer from 1 to 31, representing the new day of the month of date.

Returns

An integer representing the number of milliseconds between the new date and midnight, January 1, 1970.

Description

setYear() is identical to setFullYear(), except that it interprets one- and two-digit years as being relative to
1900, whereas setFullYear() interprets them as being relative to 0 A.D.

See Also

Date.getYear(), Date.setFullYear()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.toString() Method Flash 5

a human-readable string representing the date

date.toString()

Returns

A string giving the time and date of date in human-readable format, including the UTC (GMT) offset. To

compose customized representations of the date, use the methods for retrieving the day, hours, minutes, and so
on, and concatenate those values to form your own strings, as shown earlier in the Example under Date class.

Example

trace (myDate.toString()); // Displays a date in the format:
 // Wed Sep 15 12:11:33 GMT-0400 1999

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.UTC() Class Method Flash 5

retrieve the number of milliseconds between January 1,
1970 and a supplied UTC date

date.UTC(year, month, day, hours, minutes, seconds, ms)

Arguments

year, ...ms

A series of numeric values describing the date and time, supplied in UTC time, not local time. For descriptions of
each argument see the Date() constructor.

Returns

The number of milliseconds between the specified date and midnight, January 1, 1970.

Description

The Date.UTC() method takes the same arguments as the Date() constructor, but instead of returning an object for the
specified date, Date.UTC() returns a number indicating the date in the internal milliseconds-from-1970 format. The returned
number is typically used to construct a new Date object in UTC time or to assign a UTC time to an existing Date object via
the setTime() method.

Example

The following code shows how to measure the milliseconds elapsed between midnight, January 1, 1970 and midnight,
January 1, 2000 in UTC time:

trace(Date.UTC(2000, 0) + " milliseconds passed between 1970 and 2000.");
// Displays: "946684800000 milliseconds passed between 1970 and 2000."

Here we use those elapsed milliseconds to construct a UTC-time-based Date object:

nowUTC = new Date(Date.UTC(2000, 0));

If we invoke that code in EST (Eastern Standard Time), which is 5 hours behind UTC, nowUTC represents the local time, 7

P.M. on December 31, 1999. When we check the hour using the non-UTC method getHours(), we get the local hour, 19 (7
P.M. in a 24-hour clock):

trace(nowUTC.getHours()); // Displays: 19

But when we check the hour using the UTC method getUTCHours(), we get the correct UTC hour, (midnight in a 24-hour
clock):

trace(nowUTC.getUTCHours()); // Displays: 0

See Also

Date(), Date.setTime(), the Date class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Date.valueOf() Method Flash 5

the number of milliseconds between January 1, 1970 and
the time of the Date object

date.valueOf()

Returns

An integer expressing the number of milliseconds between the time of the Date object and midnight, January 1,
1970 — positive if after January 1, 1970; negative if before.

Description

In practice, Date.valueOf() is equivalent to Date.getTime().

See Also

Date.toString()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

delete Operator Flash 5

delete the contents of a variable, property, or array element

delete identifier

Operand

identifier

The identifier to be deleted.

Returns

The Boolean true if the identifier was deleted, false if not (because the identifier doesn't

exist or its value cannot be deleted).

Description

The delete operator removes an object, an object property, an array element, or variable from a script.

See Also

"The delete Operator," in Chapter 5

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

duplicateMovieClip() Global Function Flash 4

create a copy of a movie clip

duplicateMovieClip(target, newName, depth)

Arguments

target

A string indicating the path to the movie clip to duplicate (known as the seed clip). Nested clips can be
referred to with dot syntax, as in duplicateMovieClip ("_root.myClip", "myClip2", 0). Because a movie
clip reference is converted to a path when used in a string context, target can also be a movie clip

object reference, as in duplicateMovieClip(_root.myClip, "myClip2", 0).
newName

A string that becomes the instance name of the duplicated clip. The string used must adhere to the rules
for creating an identifier outlined in Section 15.5 in Chapter 15.

depth

An integer, between -16384 and 1048575 (inclusive), specifying the depth on which to place the
duplicated clip inside target's parent. Higher depths obscure lower depths, so a depth of 6 is in front

of 5, which is in front of 4, and so on. Depths above -1 are reserved for dynamically generated content.
Therefore, in most cases, you should use a depth between 0 and 1048575 with duplicateMovieClip().
However, when creating dynamic content that you want to appear beneath all author-time content in
target (e.g., a run-time background), use depth -16384. Depths from -16383 to -1 (inclusive) are

reserved for author-time content and shouldn't be used with duplicateMovieClip(). For important
details, see Section 13.4.

Description

The global duplicateMovieClip() function is one way to create a new movie clip during movie
playback—others are MovieClip.attachMovie(), MovieClip.createEmptyMovieClip(), and
MovieClip.duplicateMovieClip(). The duplicateMovieClip() function creates an identical copy of target
and places the copy in target's parent's clip stack on layer depth. The duplicated clip begins playing at

frame 1, no matter which frame target is at when duplication occurs.

A duplicated clip inherits any transformations (rotation, scale, etc.) that had been applied to target, but it

does not inherit the timeline variables of target. Callback functions assigned to target's event handler

properties (e.g., onEnterFrame()) are not copied to the duplicated clip. However, Flash 5-style onClipEvent()
handlers are copied to the duplicate. The global duplicateMovieClip() function is also available as a movie clip
method, though when used in that form, the target argument is not used.

To delete a duplicated clip, use removeMovieClip() (see the global removeMovieClip() function description for
more important details).

Bugs

The global form of duplicateMovieClip() lacks the following abilities added to MovieClip.duplicateMovieClip(

) in Flash 6:

The global form does not include support for the initObject parameter (used to initialize properties

of the newly created clip).

The global form does not return a reference to the duplicated clip.

Example

// Copy the ball_mc clip and name the copy ball2_mc
duplicateMovieClip(ball_mc, "ball2_mc", 0);
// Move the new ball2_mc clip over so we can see it
ball2_mc._x += 100;

See Also

MovieClip.duplicateMovieClip(), removeMovieClip(); "Creating instances with duplicateMovieClip()," "How
clips generated via duplicateMovieClip() are added to the stack," and "Method versus global function overlap
issues," in Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

#endinitclip Pragma Flash 6

ends a movie clip initialization code block

#endinitclip

Description

The #endinitclip pragma ends a special block of code (begun with #initclip) that initializes a

movie clip symbol before any instances of it are created. It can appear only on frame 1 of a movie clip symbol (it
causes a compile-time error elsewhere) and must be preceded by #initclip. For complete details, see

#initclip.

See Also

#initclip

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

escape() Global Function Flash 6

encode a string for safe network transferFlash 5; enhanced
to support UTF-8 in

escape(string)

Arguments

string

A string (or an expression that yields a string) to be encoded.

Returns

An encoded version of string.

Description

The escape() function creates a new encoded string, based on a supplied string. The new string contains a hexadecimal escape sequence in
place of any character in the supplied string that is not a digit or a basic, unaccented Latin letter between A and Z or a and z. As of Flash
Player 6, the replacement hexadecimal escape sequences take the following format:

If System.useCodepage is false (the default), the character is replaced by one or more hexadecimal escape sequences of

the form %xx, representing the UTF-8 sequence for the character. Characters in the Unicode range 0-127 are encoded as %xx
(single-byte), characters 128-2047 are encoded as %xx%xx (double-byte), and characters 2048 and above are encoded as

%xx%xx%xx (triple-byte).

If System.useCodepage is true and the system is not an Asian language double-byte system, the character is replaced

with a hexadecimal escape sequence %xx, where xx is the hex code point for the character. The code point is determined using the

system code page (typically Latin 1 on most Western computers). Note that on Macs, the system code page is Mac Roman, but Flash
uses Latin 1 instead.

If System.useCodepage is true and the system is an Asian language double-byte system, the character is replaced with a

hexadecimal escape sequence %xx or %xx%xx, using the double-byte character encoding supported by the system (for example,

Shift-JIS).

Flash Player 5 behaves as if System.useCodepage is always true (earlier versions did not support escape()).

The escape() function is sometimes used when a Flash movie sends information to server applications or writes cookies in a browser. To
decode an encoded string, use the global unescape() function.

Usage

Note that for characters above Unicode code point U+007F (decimal 127), the UTF-8 escape sequence is not the same number as the
Unicode code point! For example, the code point for e is U+00E9 (decimal 233), but the UTF-8 sequence is %C3%A9. See the LoadVars
class for information on loading external encoded text.

Example

trace(escape("6-5 is 4")); // Displays: 6%2D5%20is%204 (- is %2D, space is %20)
trace(escape("resume")); // Displays: resum%C3%A9

See Also

unescape(); Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

eval() Global Function Flash 6

interpret a string as an identifierFlash 4; illegal on left side
of assignment in

eval(stringExpression)

Arguments

stringExpression

A string expression that matches some identifier. Can be qualified (e.g., "_root.speed") or unqualified (e.g., "speed").

Returns

The value of the variable represented by stringExpression or a reference to the object, movie clip, or function represented by

stringExpression. If stringExpression does not represent an existing identifier, undefined is returned.

Description

The eval() function provides a means of dynamically constructing an identifier based on a string of text. It looks up the variable
identified by stringExpression and returns its value. For example, here we use the return value of eval() to set the value of

currentName:

var name1 = "Kathy";
var count = 1;
// Look up name1 and return its value, "Kathy", which we assign to currentName
var currentName = eval("name" + count);

And here we control a dynamically named movie clip, star1:

var count = 1;
eval("star" + count)._x += 100; // Move star1 right 100 pixels

In Flash 4 and 5 (but not Flash 6), we can also use an eval() invocation in place of an identifier that is the left-hand operand of an
assignment expression, as in:

var count = 4;
eval("name" + count) = "Simone"; // Sets name4 to "Simone" in Flash 4 and 5

However, in Flash 6 eval() cannot be used on the left side of an assignment (in keeping with the ECMA-262 specification). To
dynamically construct the left-hand side of an assignment expression, use the property access operator, [], or the set statement

instead:

// Using []
var count = 4;
this["name" + count] = "Simone"; // Sets name4 to "Simone"
trace (name4);

// Using set
var count = 4;
set("name" + count, "Simone"); // Also sets name4 to "Simone"
trace (name4);

Note that, unlike its JavaScript cousin, eval() in ActionScript does not allow for the compiling and execution of arbitrary blocks of code
in a string. Full support of eval() would require an ActionScript compiler in the Player, which would cause too great an increase in the
Player size.

Usage

As of Flash 5, eval() is rarely needed for dynamic variable access. When managing multiple pieces of data, use arrays and objects
instead.

Example

The eval() function is often used to convert the MovieClip._droptarget string property or the Selection.getFocus() return

value to an object reference. In the following example, suppose we have a series of cartoon face clips. When the user drops a food clip

onto one of the faces, we retrieve the path to the face in question using _droptarget, and then we use eval() to retrieve an object

reference to that face. Finally, we send the face to a frame showing the mouth full of food:

// Convert _droptarget string to a reference
theFace = eval(food._droptarget);
// Control appropriate face clip using converted reference
theFace.gotoAndStop("full");

See Also

"Executing Code in a String with eval," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

_focusrect Global Property Flash 4

the highlight state used for buttons and movie
clips activated via the keyboard

read/write

_focusrect

Description

When the mouse pointer hovers over a button in Flash, the content of the button's Over state is displayed.
Buttons can also gain keyboard focus when the user presses the Tab key. When a button has keyboard focus,
Flash places a yellow rectangle around that button, which is not always aesthetically desirable. You can turn off
the yellow rectangle using the _focusrect global property, like so:

_focusrect = false;

When _focusrect is set to false, Flash displays the Over state of buttons with keyboard focus, or the

frame labeled _over in movie clips with keyboard focus. When _focusrect is set to true (its default),

Flash displays the yellow rectangle in addition to displaying the Over state (or _over frame).

Note that _focusrect can be set for individual button or movie clip instances via

Button._focusrect and MovieClip._focusrect.

See Also

Button._focusrect, MovieClip.focusEnabled, MovieClip._focusrect,

MovieClip.tabEnabled, Selection.getFocus(), Selection.setFocus()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

fscommand() Global
Function

Flash 3; enhanced in Flash 5 to
support "trapallkeys"

send a message to the Standalone Player or to the Player's
host application (usually a web browser)

fscommand(command, parameters)

Arguments

command

A string passed to the host application, often the name of a JavaScript function.
parameters

A string passed to the host application, often an argument to the function named by command.

Description

With the fscommand() function, a Flash movie can communicate with the Standalone Player or with the Player's host application—the
environment in which the Flash Player is running (usually a web browser, but possibly Macromedia Director or an application that can host
ActiveX controls). The fscommand() function typically is used in one of three ways:

To send one of a limited set of built-in commands to the Standalone Player

To send commands to a scripting language, such as JavaScript or VBScript, in a web browser

To communicate with Lingo in a Macromedia Director movie

When used with the Standalone Player, fscommand() takes one of the built-in sets of command/argument pairs, as shown in Table 18-6.
Note that as of Flash 6, the Stage.scaleMode and Stage.showMenu properties are preferred over the "allowscale"
and "showmenu" fscommand() calls.

Table 18-6. Command/argument pairs in Standalone Player

Command Argument Description

"allowscale" "true" or "false"

When "false", prevents the contents of a movie from growing or shrinking in

relation to the window size of the Player. "allowscale" is often used in

combination with "fullscreen" to create a Standalone Player that covers the

entire screen while maintaining the movie's original size. See also
Stage.scaleMode.

"exec" "application_name"

Launches an external application (works in Standalone Player only). The path to the
application is specified in the string application_name. In Flash MX, the

application must reside in a folder named "fscommand" directly beneath the .swf file
(if a .swf file resides in /demo/, the application to launch must reside in
/demo/fscommand/). For example, to launch someApp.exe, use "fscommand("exec",
"someApp.exe")", without the subfolder name /fscommand/. Attempts to use
"exec" with an executable in another directory will fail silently. In Flash 5, the

application to launch can reside anywhere on the drive from which the movie was
loaded. For details on forming paths for Flash 5 Projectors, see:
http://www.macromedia.com/support/flash/ts/documents/fscommand_projectors.htm.

"fullscreen" "true" or "false"
When "true", causes the Standalone Player's window to maximize (fill the entire

screen).

"quit" not applicable Closes the movie and exits the Standalone Player.

"showmenu" "true" or "false"

When "false", suppresses the display of the controls in the contextual menu of the

Player, leaving only minimal options. The contextual menu is accessed via right-click
on Windows and Ctrl-click on Macintosh. As of Flash 6, the Stage.showMenu
is preferred.

"trapallkeys" "true" or "false"

When "true", causes all keystrokes—even keyboard shortcuts—to be sent to the

Flash movie. "trapallkeys" is used to disable the control keys in the Standalone

Player (e.g., Ctrl-F or Command-F for Full Screen mode, Ctrl-Q or Command-Q for
Exit, Esc for Stop/exit Full Screen mode, etc.). Added to fscommand in Flash 5.

When used from within a .swf file playing in a browser, fscommand() invokes a special JavaScript function (in Netscape) or VBScript
function (in Internet Explorer) on the HTML page that contains the movie. The name of this special function takes the general form
movieID_DoFSCommand(), where movieID is the name specified in the HTML <OBJECT> tag's ID attribute (in Internet

Explorer) or the <EMBED> tag's NAME attribute (in Netscape). In the following Example, the <OBJECT> tag's ID attribute is

"testmovie", so Internet Explorer executes the VBScript function testmovie_DoFSCommand() when the Flash Player invokes an

fscommand().

When movieID_DoFSCommand() is invoked, the values of the fscommand()'s command and parameters parameters are passed

as arguments to the movieID_DoFSCommand() function. If no movieID_DoFSCommand() function exists in the host HTML page,

fscommand() fails silently. Although a detailed discussion of writing a movieID_DoFSCommand() function in JavaScript or VBScript

is beyond the scope of this book, see the following Example for a sample.

Regardless, calls to fscommand() won't work unless your HTML page's <OBJECT> tag includes the ID attribute, or the <EMBED> tag

includes the NAME attribute (the latter should not be confused with the unrelated NAME attributes used in <OBJECT> tags). These

attributes are not included by default but can be added easily in the authoring tool under File Publish Settings HTML
Template Flash with FSCommand. See the Example for sample <OBJECT> and <EMBED> tags. Note that in order for fscommand(

) to work with Netscape, the SWLIVECONNECT attribute of the HTML <EMBED> tag must be set to "true" (and don't forget the

NAME attribute, which is also required) as shown in the Example.

Usage

It is not possible to communicate with a browser via fscommand() under the following system configurations:

Internet Explorer on the Macintosh OS

Any version of Netscape 6 prior to 6.2 (fscommand() in Netscape 6.2 and later requires at least Flash Player 6.0.40.0)

Any browser running on a 68K-series Macintosh

Any browser running on Windows 3.1

Note that fscommand() does not always provide the best means of communicating with a Director movie from Flash. The preferred way to
communicate with Macromedia Director is via the getURL() function using either the event: or lingo: protocol. For details, see the

getURL() function or the following Macromedia technotes:

http://www.macromedia.com/support/director/ts/documents/flash_xtra_sending_events.htm
http://www.macromedia.com/support/director/ts/documents/flash_xtra_lingo.htm
http://www.macromedia.com/support/director/ts/documents/flash_tips.htm

Example

To quit a Standalone Player (Projector), use:

fscommand("quit");

To run a Standalone Player fullscreen, use:

fscommand("fullscreen", "true");

To run a Standalone Player fullscreen while maintaining the original movie's size, use:

fscommand("fullscreen", "true");
fscommand("allowscale", "false");

For information on launching a movie in a fullscreen web browser window, see:

http://www.moock.org/webdesign/flash/launchwindow/fullscreen.

The following code shows an HTML page with the JavaScript and VBScript needed to respond to a simple fscommand() from a movie.
Notice that the VBScript function simply calls the JavaScript function; this allows us to handle both Internet Explorer and Netscape with a
single JavaScript function. Note the ID, NAME, and SWLIVECONNECT attributes in bold:

<HTML>
<HEAD>
<TITLE>fscommand demo</TITLE>

<SCRIPT LANGUAGE="JavaScript">
<!--
function testmovie_DoFSCommand(command, args) {
 alert("Here's the Flash message " + command + ", " + args);
}
//-->
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
<!--
Sub testmovie_FSCommand(ByVal command, ByVal args)
 call testmovie_DoFSCommand(command, args)
end sub
//-->
</SCRIPT>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<OBJECT
 ID="testmovie"
 CLASSID="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 WIDTH="100%"
 HEIGHT="100%"
 CODEBASE="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab">
 <PARAM NAME="MOVIE" VALUE="flash-to-javascript.swf">

 <EMBED
 NAME="testmovie"
 SRC="flash-to-javascript.swf"
 WIDTH="100%"
 HEIGHT="100%"
 SWLIVECONNECT="true"
 PLUGINSPAGE="http://www.macromedia.com/go/flashplayer/"
 </EMBED>
</OBJECT>

</BODY>
</HTML>

To invoke the preceding testmovie_DoFSCommand() JavaScript function from the flash-to-javascript.swf movie, we use:

fscommand("hello", "world");

See Also

For more information on fscommand() and controlling Flash with JavaScript, see:

http://www.moock.org/webdesign/flash/fscommand
http://www.macromedia.com/support/flash/publishexport/scriptingwithflash

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Function Class Flash 6

object-oriented representation of ActionScript functions

Properties

prototype

An object specifying methods and properties for a class.

Methods

apply()

Invoke a function as an object method, passing parameters in an array.
call()

Invoke a function as an object method.
toString()

Returns a string representation of the function object.

Description

In ActionScript, every function, both user-defined and built-in, is an instance of the Function class. As an object, every function can have
properties and methods, and every function can be stored, passed, and compared as ActionScript data. While functions-as-objects is a
foreign (and perhaps strange) concept to some programmers, it is a core component of the ECMA-262 implementation of object-oriented
programming. In ActionScript, every function has the potential to be used as a class constructor. Hence, every function defines a
prototype property specifying the methods and properties that will be inherited by the instances of the class. Furthermore, every

function has the potential to be used as a method. Hence, every function can be stored as an object property (defining it as a method for
that object). These and other uses of functions in ActionScript's inheritance system are discussed in Chapter 12.

Although functions were objects in Flash 5, it was not until Flash 6 that the Function class was formally exposed in ActionScript (at
which time the apply() and call() methods were added, providing specialized tools for invoking functions as methods of arbitrary
objects).

Some commands originally implemented in Flash 4 (e.g., getURL() and trace()) work like functions but are actually compiled to their
own bytecodes, are not members of the Function class, and do not have prototype properties.

For general information on creating and using functions in ActionScript, see Chapter 9.

Usage

Note that new Function objects cannot be created with the Function constructor in ActionScript. All functions must be defined with
either the function statement or a function literal. For example, the following code is legal in JavaScript, but not in ActionScript:

var divide = new Function ("numerator", "divisor", "return numerator/divisor;");

See Also

The Arguments object; Chapter 9, Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Function.apply() Method Flash 6

invoke a function as an object method, passing parameters
in an array

theFunction.apply(thisObj, parametersArray)

Arguments

thisObj

The object on which theFunction is called as a method.

parametersArray

An array of values passed as arguments to theFunction.

Returns

The return value of theFunction.

Description

The apply() method invokes theFunction as a method of thisObj and passes the values of

parametersArray to theFunction as arguments. Within theFunction, the value of the this
keyword is a reference to thisObj. The return value of apply() is simply the return value of theFunction. To

invoke theFunction without specifying an object reference, use null as the value of thisObj. To pass a

comma-delimited list of arguments to theFunction, instead of passing the values in a parametersArray,

use Function.call().

The apply() method is normally used to alter the value of the this keyword when running a function, or to supply an

array of arguments to a function in place of a comma-delimited list.

The following code shows the basic syntax of apply():

// Create a function
function square (x) {
 return x*x;
}

// Invoke the function as a method of _root, passing an array literal
// containing the single argument value 10.
tenSquared = square.apply(_root, [10]);

This example has little practical purpose—it would be easier to invoke the function directly, as in:
_root.square(10);. The apply() method becomes more useful when we need to dynamically specify the

object on which to invoke a method, for example, when we want to use one method with many different objects that do
not share a common class or superclass. Suppose we have getWidth() and moveClipTo() methods that we want to use
with both a rectangle and a circle object. Here's the code we can use to create a generic method,

Rectangle.invokeAsMethod(), that invokes getWidth(), moveClipTo(), or any other function as a method of a
rectangle object:

// A Rect class
function Rect (width, height, x, y) {
 this.width = width;
 this.height = height;
 this.x = x;
 this.y = y;
}

// Method to invoke any passed func as a method of a Rect object.
// Note that func is a function reference, not a string.
Rect.prototype.invokeAsMethod = function (func) {
 // Invoke func as a method of this Rect, passing along any
 // arguments that were supplied.
 func.apply(this, arguments.slice(1));
};

// A simple generic getWidth function that takes no arguments
function getWidth () {
 trace("width: " + this.width);
 return this.width;
}

// A slightly more complex example, moveClipTo, that takes arguments
function moveClipTo (newX, newY) {
 this.x = newX;
 this.y = newY;
}

// Make a new Rect object
box = new Rect(15, 20);
// Invoke getWidth on box
box.invokeAsMethod(getWidth); // Displays: width: 15
// Invoke moveClipTo on box, passing the newX and newY arguments
box.invokeAsMethod(moveClipTo, 100, 200);
// Check if it worked...
trace("box x: " + box.x); // Displays: box x: 100
trace("box y: " + box.y); // Displays: box y: 200

This practice is not necessarily recommended when the objects can logically be assigned a common class or superclass.
For example, rather than use apply() in our rectangle example, it's more appropriate to create a Shape superclass that
defines moveClipTo() and getWidth() methods inherited by both Rect and Circle. For a more legitimate

application of the apply() method, see the CountDown class shown in the following Example.

Example

The following class, CountDown, invokes a specified object's method after a delay. It uses apply() to ensure that the
method executes on the correct object and to pass the method arguments as a convenient array.

/*
 * CountDown Class
 * Desc: Calls a method after delay milliseconds.
 * Params: obj An object whose method will be called.
 * meth The string method name to call.
 * delay The time (milliseconds) to wait before calling.

 * arg4...argn The arguments to pass to meth.
 */
function CountDown (obj, meth, delay) {
 // Remember how long to wait before calling meth.
 this.delay = delay;
 // Store a reference to the method.
 this.callback = obj[meth];
 // Store a reference to the object.
 this.obj = obj;
 // Store extra arguments. We'll pass them to meth later.
 this.args = arguments.slice(3);
 // Set an empty intervalID. Used with setInterval().
 this.intervalID = -1;
 // Start the countdown
 this.start();
}

/*
 * Method: start()
 */
CountDown.prototype.start = function () {
 // Invoke the method-caller after this.delay milliseconds.
 this.intervalID = setInterval(this, "invokeCallback", this.delay);
};

/*
 * Method: stop()
 */
CountDown.prototype.stop = function () {
 // Stop the interval so that it doesn't call the method again.
 clearInterval(this.intervalID);
 this.intervalID = -1;
};

/*
 * Method: invokeCallback()
 */
CountDown.prototype.invokeCallback = function () {
 // Time's up! Stop the countdown.
 this.stop();
 // Invoke the callback as a method of this.obj, and pass
 // along this.args to use as method arguments.
 this.callback.apply(this.obj, this.args);
};

// SAMPLE USE
// Create the countdown. Will invoke
// _root.output("hello", "world") after 1000 milliseconds.
count = new CountDown(_root, "output", 1000, "hello", "world");

// The method to invoke
function output (arg1, arg2) {
 trace("output: " + arg1 + ", " + arg2);
}

See Also

Function.call(), the Arguments object; Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Function.call() Method Flash 6

invoke a function as an object method

theFunction.call(thisObj, param1, param2,...paramn)

Arguments

thisObj

The object on which theFunction is called as a method.

param1, ...paramn

A list of values passed as arguments to theFunction.

Returns

The return value of theFunction.

Description

The call() method invokes theFunction as a method of thisObj, and passes the values of param1,

param2, ...paramn to theFunction as arguments. It is functionally identical to the apply()

method, except that it specifies arguments to theFunction as a comma-delimited list, rather than as an

array. For complete details, see Function.apply().

Example

function moveClipTo (newX, newY) {
 this._x = newX;
 this._y = newY;
}
moveClipTo.call(ball_mc, 100, 200); // Moves ball_mc to 100, 200

See Also

Function.apply(), the Arguments object; Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Function.prototype Property Flash 5

an object specifying methods and properties for a
class

read/write

theFunction.prototype

Description

The prototype property is the centerpiece of ActionScript's class and object inheritance system. By default,

it is a generic object waiting to be assigned properties and methods that will become available to objects
constructed by theFunction. Like any generic object, theFunction.prototype starts off with

the built-in properties _ _proto_ _ and constructor. ActionScript automatically ensures that

theFunction.prototype.constructor refers to theFunction (in all other situations, an

object's constructor property initially refers to its own constructor function, which in the case of a generic object
would be Object, not theFunction).

The prototype object can also be replaced by a new object, as is commonly done when specifying a class's

superclass.

The Function class itself is also a function, so it too defines a prototype property that can be used to add

methods and properties to all functions. For example, the following code adds a getName() and setName()
method to all functions, and overrides the default Function.toString() method:

Function.prototype.getName = function () {
 return this.funcName;
};
Function.prototype.setName = function (name) {
 this.funcName = name;
};
Function.prototype.toString = Function.prototype.getName;

// Usage:
function squareNum (x) {
 return x * x;
}

squareNum.setName("squareNum");
trace(squareNum); // Displays: squareNum
 // (instead of [type Function])

For a full discussion of prototype's role in object-oriented ActionScript programming, see Chapter 12.

Within the advanced developer community, the prototype property is the focus of a lively debate on

superclass assignment methodology. See Section 12.7.3.

See Also

Object.constructor, Object._ _proto_ _; Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Function.toString() Method Flash 5

returns a string representation of the function object

theFunction.toString()

Returns

A string representing the function object.

Description

The toString() method returns a string describing theFunction. By default, all functions return the string

"[type Function]". Checking the return value of toString() can be useful during debugging, as it distinguishes
function objects from other objects. The instanceof and typeof operators can also be used to determine the datatype
of a Function object. For example:

function moveClipTo (newX, newY) {
 this._x = newX;
 this._y = newY;
}
trace(moveClipTo.toString()); // Displays: [type Function]
trace(typeof moveClipTo); // Displays: function
trace(moveClipTo instanceof Function); // Displays: true

To provide a more descriptive return value for toString(), you can override the toString() method for the function:

moveClipTo.toString = function () {
 return "moveClipTo function";
};

trace(moveClipTo.toString()); // Displays: moveClipTo function

See Also

instanceof, Object.toString(), typeof

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

getProperty() Global Function Flash 5

retrieve the value of a movie clip propertyFlash 4;
deprecated in

getProperty(movieClip, property)

Arguments

movieClip

An expression that yields a string indicating the path to a movie clip. As of Flash 5, this can also be a movie
clip reference, because movie clip references are converted to paths when used in a string context.

property

The name of the built-in property to retrieve. Must be an identifier, not a string (e.g., _x, not "_x").

Returns

The value of movieClip's property.

Description

The getProperty() function retrieves the value of one of a movie clip's built-in properties. Though getProperty()
was the only way to access object properties in Flash 4, the dot and [] operators are the preferred property-access
tools as of Flash 5.

Example

Each of the following getProperty() invocations retrieve the values of the _x property of a movie clip, named

ball, on the main movie timeline:

getProperty(ball, _x); // Relative movie clip reference
getProperty(_root.ball, _x); // Absolute movie clip reference
getProperty("ball", _x); // Relative path in string
getProperty("_root.ball", _x); // Dot path in string
getProperty("/ball", _x); // Slash path in string

The following code shows similar property access using the preferred dot and [] operators:

ball._x;
_root.ball._x;
ball["_x"];
_root["ball"]["_x"];
_root["ball"]["_x"];

See Also

setProperty(); Section 13.1

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

getTimer() Global Function Flash 4

determine how long the Player has been running, in
milliseconds

getTimer()

Returns

The number of milliseconds that have elapsed since the Player started running.

Description

The getTimer() function indicates how long the Player has been running, in milliseconds. The getTimer() function returns a single
value, per Player instance, for all movies in the Player. Loading a new .swf does not reset the timer. Prior to Flash 6, developers used
multiple calls to getTimer() to govern the timed execution of a block of code, or to add time-based features to a movie, such as a
countdown in a video game. As of Flash 6, timed code execution should be implemented using setInterval().

The following code shows a countdown timer function, doCountdown(), that displays the seconds remaining on screen. For a more
sophisticated CountDown class that uses setInterval(), see Function.apply().

function doCountdown (countAmount) {
 // Record the starting time, in milliseconds
 var startTime = getTimer();
 // Initialize a variable to keep track of how much time has passed
 var elapsed = 0;
 // Create a text field to display the countdown time in seconds
 this.createTextField("counterOutput_txt", 1, 0, 0, 200, 20);

 // With each frame that passes...
 this.onEnterFrame = function () {
 // ...check how much time has passed
 elapsed = getTimer() - startTime;
 // If the elapsed time is less than the length of our countdown...
 if (elapsed < countAmount * 1000) {
 // ...set the text field to show the number of seconds left
 this.counterOutput_txt.text = countAmount - Math.floor(elapsed / 1000);
 } else {
 // ...otherwise, our countdown is done, so tell the user
 this.counterOutput_txt.text = "Time's Up!";
 // Stop checking the time
 delete this.onEnterFrame;
 }
 }
}

// Usage:
doCountDown(60);

Example

To determine the number of full seconds (rather than milliseconds) that have elapsed during a movie, divide the return value of
getTimer() by 1000, and trim off the decimal portion with either Math.floor(), Math.round(), or Math.ceil(). For example:

numSeconds = Math.floor(getTimer()/1000);

The following code loops between two frames until a movie has been playing for more than 10 seconds, after which it breaks out of
the timeline loop:

now = getTimer();
if (now > 10000) {
 play();
} else {
 gotoAndPlay(_currentframe - 1);
}

The following code does the same thing using setInterval():

stop();
intID = setInterval(function () { play(); clearInterval(intID); }, 1000);

See Also

clearInterval(), Date(), the Date class, setInterval()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

getURL() Global Function Flash 4

load a document into a browser, execute server-side
scripts, or trigger Macromedia Director eventsFlash 2;
method parameter added in

getURL (url)
getURL (url, window)
getURL (url, window)
getURL (url, window, method)

Arguments

url

A string specifying the absolute or relative location of the document to load or external script to run, or a command (depending on
the protocol, as shown in Table 18-7).

window

An optional string specifying the name of the browser window or frame into which to load the document. Can be a custom name
or one of the four presets: "_blank", "_parent", "_self", or "_top".

method

An optional string specifying the method by which to send the current timeline's variables to an external script—either "GET" or

"POST". This parameter must be a literal string, not a variable or other expression. On Windows, the Standalone Player always

uses the "GET" method, regardless of the method specified. See Appendix F for details on support for GET and POST.

Description

The getURL() function is used to:

Load a document (usually a web page) into a web browser frame or window

Execute a server-side script and receive the results in a browser frame or window

Execute JavaScript code in a web browser

Trigger events from Flash assets imported as sprites into Macromedia Director

To load a document into the current window or frame, simply specify the URL of the document as the first parameter, url, without

supplying a window or method argument. Naturally, Flash supports absolute URLs (those that contain a protocol such as "http:" plus

a server name or hardware device) and relative URLs (those that are relative to the current location):

getURL("http://www.moock.org/"); // Absolute URL to web page
getURL("file:///C:/WINDOWS/Desktop/index.html"); // Absolute URL to local file
getURL("/whatever/index.html"); // Relative URL, http protocol
 // is assumed

To load a document into a named window or frame, supply the window or frame name as the window argument. For example:

getURL("http://www.moock.org/", "contentFrame"); // Load into named frame
getURL("http://www.moock.org/", "remoteWin"); // Load into named window

To replace the frameset that contains the current movie, use "_parent" as the value of the window argument. For example:

getURL("http://www.moock.org/", "_parent");

To replace all framesets in a web page with a loaded document, use "_top" as the value of the window argument. For example:

getURL("http://www.moock.org/", "_top");

To open a loaded document in a new, anonymous browser window, use "_blank" as the value of the window argument. For

example:

getURL("http://www.moock.org/", "_blank");

Note that launching a new window with "_blank" does not give us any control over the appearance of the new window (e.g., its size,

toolbar configuration, location, etc.). To launch customized windows with getURL(), we must invoke a JavaScript function on the
movie's host page. Techniques for launching windows with JavaScript are described at:

http://www.moock.org/webdesign/flash.

Prior to Flash 6, the getURL() function was used to send variables to a remote server application or script, and receive results in a web
browser. As of Flash 6, the LoadVars.send() method is better suited for that task. To send the current movie clip's timeline variables to an
external script using getURL(), specify the name of the script as the url argument, and use either "GET" or "POST" as the

method argument. For example:

getURL("http://www.someserver.com/cgi-bin/search.pl", "resultsFrame", "GET");

When invoked as a movie clip method, getURL() sends the timeline variables of that clip to the remote script, as in:

// Sends myClip's variables to search.pl
myClip.getURL("http://www.server.com/cgi-bin/search.pl", "resultsFrame", "GET");

The results of the script execution will appear in the window or frame specified by getURL()'s window argument (which is required

when variables are submitted).

To load the results of a script execution into the current frame or window, use "_self" as the window argument value, as in:

getURL("http://www.someserver.com/cgi-bin/search.pl", "_self", "GET");

When the method argument is "GET", the current movie clip's timeline variables are sent as a query string attached to the script URL

in an HTTP GET request. Query strings are composed of variable name/value pairs, separated by ampersands (&). For example:

http://www.someserver.com/cgi-bin/search.pl?term=javascript&scope=entiresite

When the method argument is "POST", the current movie clip's timeline variables are sent to the script as a separate block of data

after the HTTP POST-request header (exactly like a regular HTML form that uses the POST method). Note that on Windows, "POST"
is not available in the Standalone Player.

Because many web servers restrict the length of URLs to between 255 and 1024 characters, use "POST" instead of "GET" to transfer

larger amounts of data.

Note that any information returned by a script invoked by getURL() is displayed as regular web content in the browser, not in Flash. To
accept the results of a script execution into Flash, use loadVariables() or, preferably, the LoadVars class. To load a .swf file, see the
loadMovie() function.

The getURL() function can also be used with protocols other than "http:", as shown in Table 18-7.

Table 18-7. Supported protocols for getURL()

Protocol Format Purpose

event "event: eventName params" Send an event to Director if the Flash asset is a Director sprite.

file "file:///driveSpec/folder/filename" Access a local file.

ftp "ftp://server.domain.com/folder/filename" Access a remote file via FTP (file transfer protocol).

http "http://server.domain.com/folder/filename" Access remote file via HTTP (hypertext transfer protocol).

javascript "javascript: command " Perform JavaScript command in browser.

lingo "lingo: command " Perform Lingo command if Flash asset is a Director sprite.

print "print:", "targetClip " Print the target clip. In Flash 5 or later, use print() instead.

vbscript "vbscript: command " Perform VBScript command in browser.

mailto "mailto:user@somedomain.com" Send email via the default mail program on the user's system.

telnet "telnet://domain.com:8888/" Telnet to domain.com on port 8888.

As shown in Table 18-7, if a Flash asset is imported into a Macromedia Director file, getURL() can be used to trigger Lingo events or
execute a Lingo command. (Lingo is Director's scripting language, akin to ActionScript). For example, you can add a frame event of this
form:

getURL ("event: eventName params");

which will cause the Lingo event handler named on eventName to be called in Director. Here is a getURL() statement that generates

an event named "myEvent" and passes it the string "A". Note that the " character is escaped using the sequence \":

getURL ("event: myEvent \"A\""); // Send an event to Director

Here is the Lingo sprite event handler that should be attached to the Flash sprite asset in Director in order to receive the event. Note that a
Director sprite is roughly equivalent to a Flash movie clip instance; the Lingo keyword put is akin to ActionScript's trace() command,
and && is Lingo's string concatenation operator:

on myEvent msg
 put "The message received from Flash was " && msg
end

You can also trigger Lingo to be executed from a Flash sprite within Director using the "lingo:" keyword, such as:

getURL ("lingo: beep"); // Tell Director to play a beep sound

Using Flash assets in Macromedia Director requires an appropriate version of the so-called Flash Asset Xtra,
a free plugin for Director, provided by Macromedia. Director 8.5 includes the Flash Asset Xtra for Flash 5
.swf files, but it cannot import Flash 6 .swf files. An updated Flash 6 (Flash MX) Asset Xtra ships with
Director MX (i.e., Director 9) and is also available from Macromedia's site. The Flash MX Asset Xtra also
works with Shockwave 8.5.1, but requires Mac OS 8.6 or later, or Windows 98 or later.

Finally, getURL() can also be used to execute JavaScript code. Here we invoke a simple JavaScript alert using getURL():

getURL ("javascript: alert('hello world');");

Note that execution of JavaScript code from a URL does not work in Internet Explorer 4.5 for Macintosh.

Example

Here's the code for a standard button that links to a web page:

link_btn.onRelease = function () {

 getURL("http://www.macromedia.com/");
}

Bugs

Internet Explorer 4.5 (IE 4.5) and older versions on Macintosh do not support the "POST" method of a getURL() call. To service those

browsers, use "GET" instead of "POST" (subject to the length limitations cited earlier).

In most browsers, relative URLs passed to getURL() are resolved relative to the HTML file that contains the .swf file. In IE 4.5 and older
versions on Macintosh, relative links are resolved relative to the location of the .swf file, not the HTML file, which causes problems when
the two are in different directories. To avoid the problem, either place the .swf and .html files in the same directory or use absolute URLs
when invoking getURL(), such as:

getURL ("http://www.someserver.com/")

See Also

loadMovie(), loadVariables(), the LoadVars class, MovieClip.getURL(), MovieClip.loadVariables(); "< A> (Anchor or Hypertext
Link)" in Appendix E

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

getVersion() Global Function Flash 5

examine the platform and version of the Flash Player

getVersion()

Returns

A string containing version and platform information for the Flash Player hosting the current movie.

Description

The getVersion() function tells us the platform and Flash Player version being used to view a movie. It can be
used to execute different code conditionally for specific versions of the Flash Player or on certain operating
systems. As of Flash 6, the capabilities.version property is preferred over getVersion(). However,

for movies running in Flash Player 5, getVersion() must still be used. In Flash 4, the global $version
property must be used.

See capabilities.version for sample code and a complete description of the possible return values

of getVersion().

See Also

capabilities.version, $version; Appendix C

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

_global Object Flash 6

container for global variables

_global.variableName

Description

The _global object enables the creation of global variables (i.e., variables that are available from the timeline of any movie clip or
level). Unlike in JavaScript, in ActionScript there is no "global execution context" where variable definitions automatically create
global variables. All nonlocal variables created in ActionScript are scoped to the movie clip in which they are created. To make a
variable directly accessible throughout all timelines in a movie, we must deliberately add a property to _global. For example:

// Add a property, age, to _global. Creates a global variable, age.
_global.age = 31;
// Access age from any timeline:
trace(age); // Displays: 31

Using global variables, we can make a function, property, or object available globally, much like the built-in classes and objects
(Math, TextField, Mouse, etc.). For example, if we want to make the CountDown class a global class, we can use the following code
(see Function.apply() for the full listing for CountDown):

_global.CountDown = function (obj, meth, delay) {
 // ... Class code here
};

Then, from any timeline, we can create instances of CountDown directly, as in:

theTimer = new CountDown(game, "timesUp", 10000);

Global variables do not become properties of all objects. For example, you cannot access the global variable age as a property of a

Date object:

_global.age = 31; // Make the global variable
now = new Date(); // Make the Date object
trace(now.age); // age is not a property of now. Displays: undefined

Similarly, global variables cannot be accessed on movie clips via property-style dot notation. For example, a global variable named
password cannot be accessed as form_mc.password (where form_mc is a movie clip). Similarly, from form_mc's

timeline, password cannot be accessed as this.password. The global variable password can be accessed only as

_global.password or directly as password (without any qualifying object reference) from the current timeline.

Assigning a timeline variable with the same name as a global variable overrides (but does not overwrite!) the value of the global
variable. For example, if a movie clip named player1_mc assigns the variable age a value of 10, then age will contain 10

inside player1_mc:

// CODE ON player1_mc TIMELINE
_global.age = 31; // Create a global variable named age
var age = 10; // Create a timeline variable also named age
trace(age); // Displays: 10

But from any other timeline, the global variable age will still contain 31. In fact, if we remove the timeline variable age from

player1_mc, references to age will then access the global variable:

delete age;
trace(age); // Displays: 31

To assign or reassign the value of a global variable, we must use a fully qualified reference to the _global property, as in:

_global.age = 21; // This change in age is visible from every timeline that
 // does not specify its own value for age.

Local function variables similarly override globals:

_global.age = 21; // Set global variable
function showAge () {
 var age = 5; // Set local variable
 trace(age);
}
showAge(); // Displays: 5
 // Local variable overrides global variable
trace(age); // Displays: 21
 // Global variable still exists outside the function

For more information on how variables override each other, see Section 9.7.1. To remove a global variable, use the delete operator,
as follows:

delete _global.age; // Deletes age. (The reference to _global is mandatory.)

When using global variables, be careful to specify uniquely identifiable names, particularly in movies that will be used by other
developers or loaded into their movies. One option is to preface variables with your domain name, as in:

_global.moockorgGravity = 9.8;

Or, for easier reading, create an object that contains all globals, as in:

_global.moockorg = new Object();
_global.moockorg.gravity = 9.8;

Java developers may even prefer:

// Create namespace.
if (!_global.org) {
 _global.org = new Object();
}
if (!_global.org.moock) {
 _global.org.moock = new Object();
}

// Assign variable in namespace.
_global.org.moock.gravity = 9.8;

To make globals easy to identify, consider using a naming convention such as the suffix _gl, as in:

_global.moockorgGravity_gl = 9.8;

Bugs

In Flash 6, a so called "getter/setter" property cannot be added directly to the _global object. See Object.addProperty() for

details.

See Also

Chapter 2; "The Scope Chain," in Chapter 9

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

gotoAndPlay() Global Function Flash 2

move the playhead to a given frame, and play the current
clip or movie

gotoAndPlay(frameNumber)
gotoAndPlay(frameLabel)
gotoAndPlay(scene, frameNumber)
gotoAndPlay(scene, frameLabel)

Arguments

frameNumber

A positive integer indicating the number of the frame to which the playhead of the current timeline should jump before
playing. If frameNumber is less than 1 or greater than the number of frames in the timeline, the playhead is sent to

either the first or last frame, respectively.
frameLabel

A string indicating the label of the frame to which the playhead of the current timeline should jump before playing. If
frameLabel is not found, the playhead is sent to the first frame of the current scene.

scene

An optional string indicating the name of the scene that contains the specified frameNumber or frameLabel. If

not supplied, the current scene is assumed.

Description

When invoked without a scene argument, gotoAndPlay() sends the playhead of the current timeline to the frame specified by

either frameNumber or frameLabel and then plays the timeline from that point. The "current timeline" is the timeline of

the movie clip or main movie from which the gotoAndPlay() function is invoked.

When jumping to another frame, any intervening frames are skipped and their scripts are not executed.

If two arguments are specified in the gotoAndPlay() function call, the first argument is assumed to be the scene. If only one

argument is specified, it is treated as a frameNumber or frameLabel, and the current scene is assumed.

When invoked with a scene argument, gotoAndPlay() moves the playhead to the frame number or label in the specified

scene and then plays that scene. If a scene argument is used, the gotoAndPlay() function must be invoked from the _root
timeline; otherwise, the operation fails silently and the playhead is not sent to the destination frame. Note that scenes are flattened
into a single timeline during movie playback. That is, if scene 1's timeline contains 20 frames, and scene 2's timeline contains 10
frames, then we can send the playhead to frame 5 of scene 2 by placing the following code in scene 1:

gotoAndPlay(25);

I recommend against using scenes when working with ActionScript-intensive movies. Unlike movie
clips, scenes are not represented by objects and cannot be manipulated directly by most built-in
functions. It's normally better to use labels and movie clips as pseudo-scenes in your timeline, instead
of using Flash's scene feature.

The global gotoAndPlay() function affects the current timeline only. The frames or state of other movie clips within the current
timeline are not affected. To cause other movie clips to play, you must issue a separate play() or gotoAndPlay() command for each
movie clip, including nested ones. To apply the gotoAndPlay() function to a clip other than the current movie clip, use the movie
clip method form, MovieClip.gotoAndPlay().

Bugs

In Flash Player 5 and Flash Player 6, the gotoAndPlay() function does not work when used in an onClipEvent() handler with a
string literal for frameLabel.

In Flash Player 4 and later, when a nonliteral frameLabel argument is specified in any scene other than the first, the playhead

jumps to the specified label plus the total number of frames in all scenes before the current scene.

To work around both bugs, use the movie clip alternative, MovieClip.gotoAndPlay(), and specify this to indicate the current

clip, as in this.gotoAndPlay("myLabel"), rather than gotoAndPlay("myLabel").

Example

// Go to frame 5 of the current timeline, and play it
gotoAndPlay(5);
// Go to frame 10 of the exitSequence scene, and play it
gotoAndPlay("exitSequence", 10);
// Go to frame "goodbye" of the exitSequence scene, and play it
gotoAndPlay("exitSequence", "goodbye");
// Caution! This plays the frame labeled "exitSequence" in the current scene
gotoAndPlay("exitSequence");
// This plays frame 1 of the exitSequence scene
gotoAndPlay("exitSequence", 1);

Reader Exercise: Write a function that recursively plays all nested movie clips within the clip from which gotoAndPlay() is called.
(Hint: Use a for-in loop to retrieve a list of child clips nested within each clip.)

See Also

gotoAndStop(), MovieClip.gotoAndPlay(), play(), stop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

gotoAndStop() Global Function Flash 2

move the playhead to a given frame, and stop the current
clip or movie

gotoAndStop(frameNumber)
gotoAndStop(frameLabel)
gotoAndStop(scene, frameNumber)
gotoAndStop(scene, frameLabel)

Arguments

frameNumber

A positive integer indicating the number of the frame to which the playhead of the current timeline should jump. If
frameNumber is less than 1 or greater than the number of frames in the timeline, the playhead is sent to either the first or

last frame, respectively.
frameLabel

A string indicating the label of the frame to which the playhead of the current timeline should jump. If frameLabel is not

found, the playhead is sent to the first frame of the current scene.
scene

An optional string indicating the name of the scene that contains the specified frameNumber or frameLabel. If not

supplied, the current scene is assumed.

Description

When invoked without a scene argument, gotoAndStop() sends the playhead of the current timeline to the frame specified by either

the frameNumber or frameLabel argument. The "current timeline" is the movie or movie clip from which the gotoAndStop()

function is invoked. The playhead will stop at the target frame; it will not advance automatically after arriving at the target frame.

If two arguments are specified in the gotoAndStop() function call, the first argument is assumed to be the scene. If only one argument

is specified, it is treated as a frameNumber or frameLabel, and the current scene is assumed.

When invoked with a scene argument, gotoAndStop() moves the playhead to the frame number or label in the specified scene and

then halts playback. If a scene argument is used, the gotoAndStop() function must be invoked from the _root timeline; otherwise,

the operation fails silently and the playhead is not sent to the destination frame.

The global gotoAndStop() function affects only the current timeline. The frames or state of other movie clips within the current
timeline are not affected. To move the playhead of other movie clips, you must issue a separate gotoAndStop() command for each
movie clip. To apply the gotoAndStop() function to a clip besides the current movie clip, use the movie clip method form,
MovieClip.gotoAndStop().

Bugs

In Flash Player 5 and Flash Player 6, gotoAndStop() does not work when used in an onClipEvent() handler with a string literal for
frameLabel.

In Flash Player 4 and later, when a nonliteral frameLabel argument is specified in any scene other than the first, the playhead

jumps to the specified label plus the total number of frames in all scenes before the current scene.

To work around both bugs, use the movie clip variation of gotoAndStop() and specify this to indicate the current clip, as in

this.gotoAndStop("myLabel"), rather than gotoAndStop("myLabel").

Example

// Go to frame 5 of the current timeline, and stop there
gotoAndStop(5);
// Go to frame 20 of the introSequence scene, and stop there
gotoAndStop("introSequence", 20);
// Go to frame "hello" of the introSequence scene, and stop there
gotoAndStop("introSequence", "hello")
// Caution! This goes to the frame labeled "introSequence" in the current scene
gotoAndStop("introSequence")
// This goes to frame 1 of the introSequence scene
gotoAndStop("introSequence", 1)

Reader Exercise: Write a custom function, gotoDeltaAndStop(), that allows the caller to specify a relative frame number, including a
negative one. For example, gotoDeltaAndStop(-5) would jump backward by 5 frames. (Hint: You'll need the
MovieClip._currentframe property.) Remember to add any special code to handle the end conditions (i.e., when a relative

frame number would cause it to jump beyond the beginning or end of the current timeline).

See Also

gotoAndPlay(), MovieClip.gotoAndStop(), play(), stop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

_highquality Global Property

the rendering quality of the Player read/write

_highquality

Description

The _highquality global property stores an integer between 0 and 2 that dictates the rendering quality of

the Flash Player as follows:

0

Low quality. Neither bitmaps nor vectors are antialiased (smoothed).
1

High quality. Vectors are antialiased. Bitmaps are antialiased when no animation is occurring.
2

Best quality. Both bitmaps and vectors are always antialiased.

As of Flash 5, _highquality has been superceded by _quality, which can be used to set a movie's

quality to "Medium", "AutoLow", and "AutoHigh", as well as "Low", "High", and "Best".

See Also

_quality, toggleHighQuality()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

#include Directive Flash 5

import the text of an external ActionScript file

#include path

Arguments

path

A string indicating the name and location of the script file to import, which can be specified relative to the .fla file or as an
absolute path (see samples under Example). Note that forward slashes, not backslashes, should be used in the path. Script files
should be named with the .as file extension.

Description

The #include directive imports script text from an external text file (preferably one with the .as extension) into the current script,

placing it directly where the #include command occurs in the script. If the file can't be found at the specified path, the directive

will cause an error and no external text will be included.

The #include operation is performed at compile time, meaning that the text included in a movie is the text that existed at the time

the movie was tested, exported, or published from the authoring tool. If the external file changes after the movie is exported, the
changes will not be reflected in the movie. In order for the changes to be incorporated into the movie, the movie must be reexported.

Including an external file with the #include directive does not alter the .fla file permanently; nor does

it allow you to view the imported file's contents easily. Likewise, if the external file is missing, or if it has
changed, the next time the .fla file is recompiled into a .swf, your code may break unexpectedly. To
permanently import an external .as file's code and break the connection to the external .as file itself, you
must copy and paste the text into the current .fla file (and remove the #include directive).

Note that an #include directive is always executed, even when it is placed inside a conditional statement. For example, the

following code does not cause theScript.as to be left out of the movie:

if (false) {
 #include "theScript.as"
}

The #include directive commonly is used to incorporate the same block of code in multiple scripts or across Flash projects (much

as you'd use an external asset library). You would do this in order to centralize your code, to maintain code in a version-control system
tool (such as CVS or Microsoft Visual Source Safe), or to use an external text editor that you prefer over the ActionScript editor. It is
also handy when a programmer is working separately from, say, a graphic artist creating the Flash animations. External files lend
themselves well to code repositories, such as a library of classes or functions that are independent of the current timeline or movie clip.
They tend to be less useful for code that needs to be integrated tightly with the Flash timeline.

To use international characters in an included file, save the file in UTF-8 format in your text editor, and add the following line to the
beginning of the file (note the forward slashes and the space following the two dashes):

//!-- UTF8

The #include directive does not support UTF-16-encoded files.

Nested includes are supported, so a wrapper .as file can be used to include a series of related classes via a single statement, much like a
Java package.

The text in an included file is checked when a syntax check is performed using the Check Syntax command (Ctrl-T or Command-T) in
the Actions panel menu (found under the arrow button in the upper-right corner of the panel).

Usage

Note that an #include directive begins with a pound sign (#), does not use parentheses, and must not end in a semicolon. Any

#include statements that end in a semicolon will cause an error and will not successfully import the external script.

Bugs

In Flash 5, a blank line is required between #include directives. The blank line can be inserted between the directives themselves

or in the source of the file being included. This is a known bug that affects Flash 5 only. For example:

// This always works.
#include "file1.as"

#include "file2.as"

// In Flash 5, this only works if there's a blank line at the end of file1.as.
#include "file1.as"
#include "file2.as"

In Flash 5 and Flash MX, if the last line of an included file is a comment, subsequently included files will not be incorporated (they
will be commented out by the trailing comment in the previously included file). For example:

// WRONG!
doSomething(); // This comment will disable subsequently included files.
// RIGHT
// This comment is nice and safe.
doSomething();

Example

The following code imports an external .as file, named myScript.as, into the current .fla file. When using a relative path, myScript.as
must be in the same folder as the .fla file containing the #include directive:

#include "myScript.as"

We can construct a relative path including a subdirectory. The following assumes that myScript.as is one level down from the current
.fla file in a subdirectory named includes:

#include "includes/myScript.as"

Use two dots to indicate the folder above the current folder. The following assumes that myScript.as is one level up from the current
.fla file:

#include "../myScript.as"

The following assumes that myScript.as is in a subdirectory named includes, adjacent to the subdirectory containing the current .fla
file:

#include "../includes/myScript.as"

You can also specify an absolute path to any folder, such as:

#include "C:/WINDOWS/Desktop/myScript.as"

but absolute paths are not cross-platform and may need to be changed if you compile the .fla file on a different machine with a different
directory structure. Note the differences in the drive letter specification and folder separators on the two platforms:

#include "C:/WINDOWS/Desktop/myScript.as" // Windows
#include "Mac HD:Desktop folder:working:myScript.as" // Macintosh

See Also

"Externalizing ActionScript Code," in Chapter 16

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Infinity Global Property Flash 5

a constant representing an infinite number read-only

Infinity

Description

A number that exceeds the maximum allowed numeric value in ActionScript is represented by the numeric
constant Infinity (although incalculable numbers are represented by NaN). The largest value allowed in

ActionScript is represented by Number.MAX_VALUE, which equates to 1.79769313486231e+308.

Exceeding the largest allowed number in ActionScript is known as an overflow condition and is typically caused
by a mathematical error.

Example

The result of a calculation that exceeds the largest allowed number is Infinity. For example:

Number.MAX_VALUE * 2; // Yields Infinity

Infinity also results when dividing a positive number by zero:

1000 / 0; // Yields Infinity

Usage

Infinity is shorthand for Number.POSITIVE_INFINITY.

See Also

-Infinity, isFinite(), NaN, Number.POSITIVE_INFINITY; Section 4.3.3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

-Infinity Global Property Flash 5

a constant representing an infinitely negative
number

read-
only

-Infinity

Description

A number that exceeds the allowed negative numeric value in ActionScript is represented by the numeric
constant -Infinity (although incalculable numbers are represented by NaN). The smallest negative value

(the one with the largest absolute value) allowed in ActionScript is -Number.MAX_VALUE, which is

equivalent to -1.79769313486231e+308. Exceeding the most-negative number representable in ActionScript is
known as an underflow condition and is typically caused by a mathematical error.

Example

The result of a calculation that is smaller than (i.e., more negative than) the smallest allowed negative number is
-Infinity. For example:

-Number.MAX_VALUE * 2; // Yields -Infinity

-Infinity also results when dividing a negative number by zero:

-1000 / 0; // Yields -Infinity

Usage

-Infinity is normally used in place of its more verbose equivalent

Number.NEGATIVE_INFINITY.

See Also

-Infinity, isFinite(), NaN, Number.MAX_VALUE, Number.NEGATIVE_INFINITY;

"Special Values of the Number Datatype," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

#initclip Pragma Flash 6

starts a movie clip initialization code block

#initclip order

Arguments

order

A nonnegative integer specifying the execution order of this #initclip block relative to all other #initclip blocks in

the movie. Those with lower order numbers are executed before those with higher ones. Multiple #initclip blocks can

share a single order position.

Description

The #initclip pragma starts a special block of code that allows you to perform initialization for a movie clip symbol before any

instances of it are created. As explained in Chapter 14, #initclip typically is used to create so-called components, which are

subclasses of the MovieClip class that have been made self-contained for easy use by nonprogrammers. Therefore, the #initclip
code block typically is used to register a movie clip symbol with an ActionScript class (i.e., to create a subclass of the MovieClip class, as
shown in Chapter 14). An #initclip block can appear only on frame 1 of a movie clip symbol (it causes a compile-time error

elsewhere). It is executed only once per movie, according to the export settings for the symbol (set under Options Linkage in the
Library panel):

If the symbol is not exported, the #initclip block is executed immediately before the frame where the first instance of the

symbol appears.

If the symbol is exported for ActionScript and "Export in first frame" is not selected, the #initclip block, as in the previous

case, is executed before the frame where the first instance of the symbol appears.

If the symbol is exported for ActionScript and "Export in first frame" is selected, the #initclip block is executed before the

first frame of the movie.

When the #initclip code block is executed, instances of the associated movie clip symbol (even those placed at authoring time),

haven't yet been created, so the code executes in the context of the main timeline (_root). Hence, #initclip code has no access to

any instance of the symbol in which it is defined. This behavior is intentional; #initclip is used to initialize the whole symbol, not a

specific instance, so it must run before any instances are created.

In its most basic form, an #initclip block looks like this:

// CODE ON FRAME 1 OF A MOVIE CLIP SYMBOL
#initclip
// ...code to link the movie clip symbol to an ActionScript class
#endinitclip

The #endinitclip pragma closes the #initclip block (if #endinitclip is omitted, Flash generates a compile-time

error). The following code shows a more complete #initclip block placed in a movie clip symbol named ballSymbol. The code

creates a custom MovieClip subclass, Ball, and then it uses Object.registerClass() to link the ballSymbol (in the movie's Library) to the
ActionScript Ball class. Although the #initclip block executes only once, it typically is used to define a constructor that will

execute every time an instance of the symbol is created. See Chapter 14 for details on movie clip subclasses.

// CODE ON FRAME 1 OF THE MOVIE CLIP SYMBOL ballSymbol
#initclip

// Create the custom ActionScript class, Ball.
// The constructor is defined when #initclip executes. The constructor runs
// whenever a ballSymbol instance is placed on stage (dynamically or manually),
// with the keyword this pointing to that instance.
function Ball () {
 // Note that this.color is provided via attachMovie()'s initObj.
 // See MovieClip.attachMovie() for details.
 this.setRGB(this.color);
}

// Set the Ball superclass to MovieClip.
Ball.prototype = new MovieClip();

// Associate the Ball class with the library symbol named ballSymbol.
Object.registerClass("ballSymbol", Ball);

#endinitclip

When an instance of ballSymbol is placed on stage (manually or via ActionScript), the Ball constructor runs with this pointing to the

instance. The instance inherits the properties and methods of both Ball and MovieClip. For example:

// Invoke the Ball constructor, which sets the redBall color. Note that
// the color property is assigned the value 0xFF0000 by the attachMovie()
// method's initObj parameter.
this.attachMovie("ballSymbol", "redBall", 1, { color: 0xFF0000 });
// Invoke a MovieClip method on the new instance.
redBall.play();

Interestingly, all the code in our #initclip example could have been placed on the main timeline. Creating a custom MovieClip

subclass and linking it to a movie clip symbol is not unique to #initclip code. However, by placing the code directly in the movie

clip symbol, we create a portable package that can easily be moved from one .fla file to another. To use our MovieClip subclass, a
developer simply drags ballSymbol from our Library to hers and creates instances as usual. In fact, to make the movie clip even easier for
nonprogrammers to use, we can define component parameters for it, allowing instances to be customized via the Properties inspector. For
more information on component parameters, see Chapter 16 and Macromedia's component-building article at:

http://www.macromedia.com/support/flash/applications/creating_comps/

Returning to our example, we saw earlier that #initclip code executes in the context of the main timeline. Hence, the constructor

function Ball is actually created on the main timeline and will appear as _root.Ball. If we know we will not create any subclasses of

Ball, we can even delete the constructor from the main timeline by adding this code as the last line of our #initclip block:

delete Ball;

A constructor registered to a movie clip symbol is stored internally by the Flash Player and will execute
normally even after being deleted. However, the _root.Ball function should not be deleted if it defines

static properties (e.g., Ball.gravity) or if other movie clip symbols use it as a superclass. Furthermore,

to be used as a superclass, the Ball function must be created before any of its subclasses.

To guarantee that a superclass, such as our Ball class, is created before its subclasses, we use the order parameter of the #initclip
pragma, which assigns the code block an execution priority level. Multiple #initclip blocks can share the same order level, but

those with lower numbers are always executed before those with higher ones. Blocks without a specified order are executed before all

numbered blocks. For example, to create a BasketBall subclass of Ball, we use:

// CODE ON FRAME 1 OF THE MOVIE CLIP SYMBOL ballSymbol
// Note the order parameter!
#initclip 1
// Create the custom ActionScript class
function Ball () {
 this.setRGB(this.color);
}

// Set the Ball superclass to MovieClip
Ball.prototype = new MovieClip();
// Associate the Ball class with the library symbol named ballSymbol
Object.registerClass("ballSymbol", Ball);
#endinitclip

// CODE ON FRAME 1 OF THE MOVIE CLIP SYMBOL basketballSymbol
// Note the order parameter!
#initclip 2
// Create the custom ActionScript class
function BasketBall () {
 // Invoke the superclass constructor
 super();
}

// Set BasketBall's superclass to Ball
BasketBall.prototype = new Ball();
// Associate the BasketBall class with the Library symbol named basketballSymbol
Object.registerClass("basketballSymbol", BasketBall);
#endinitclip

Because functions defined in an #initclip block are scoped to the _root timeline, all variable,

property, and method references inside the function must be qualified explicitly.

For example, to create a fully qualified reference, we must use this._x to refer to the current movie clip's _x property; if we use an

implicit reference to _x, as shown next, the property referenced is _root._x!

Ball.prototype.onEnterFrame = function () {
 // WRONG! Moves _root, NOT the ball!
 _x++;

 // RIGHT. Moves the ball.
 this._x++;
}

Duplicate class names inside separate #initclip blocks do not conflict. For example, if a class constructor named Vehicle is created

inside two different #initclip blocks, each movie clip will be associated with its own version of the function, but

_root.Vehicle will point to the last one created. This prevents multiple components from breaking due to name conflicts.

However, as a matter of good form, using identical class names in a single movie is not recommended. It's normally good form to store
each #initclip class on the _global object under a unique namespace, such as _global.org.moock, as described in

Chapter 12 and shown throughout Chapter 14.

Code in an #initclip block is not limited to linking a class to a movie clip symbol, although that is its most common use. There's

nothing stopping #initclip from performing some other task the first time a particular symbol is used in a movie. The

#initclip directive can define an arbitrary block of code that executes before the symbol containing the #initclip block is

used for the first time (or when the movie starts, if the symbol is exported in the first frame of the movie):

For example, a movie clip exported for ActionScript in the first frame can be a convenient way to package a global library. The following
code creates a Timer class that is available throughout a movie. The movie clip symbol is simply a container for the code; an instance of
the symbol is never created.

// CODE ON FIRST FRAME OF AN EXPORTED MOVIE CLIP
#initclip
_global.Timer = function () {
 // ...Timer class code goes here...
};
#endinitclip

// CODE ON ANY TIMELINE IN THE MOVIE
gameclock = new Timer();

For much more information on building movie clip subclasses, see Chapter 14.

See Also

#endinitclip, MovieClip.attachMovie(), MovieClip.duplicateMovieClip(), Object.registerClass(); Chapter 14

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

instanceof Operator Flash 6

determines whether an object is an instance of a given
class

object instanceof classConstructor

Operands

object

Any object.
classConstructor

A reference to any class's constructor function.

Returns

The Boolean true if object is an instance of classConstructor; otherwise, it returns false.

Usage

The instanceof operator does not take parentheses (it is an operator, not a function).

Example

var now = new Date();
trace(now instanceof Date); // Displays: true

See Also

typeof; the Constructor subheading for the Date class; Chapter 12; Section 5.12.7

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

int() Global
Function

Flash 4; deprecated in Flash 5 in favor of
analogous Math methods

truncate the decimal portion of a number

int(number)

Arguments

number

A number or an expression that yields a number, typically with a fractional (decimal) portion.

Returns

The integer portion of number.

Description

The int() function was used in Flash 4 to extract the integer portion of a number. It effectively rounds positive
numbers down and rounds negative numbers up. The int() function works only for numbers in the range -
2147483648 (-231) to 2147483647 (231-1); it produces undefined results for numbers outside this range. If

number is a string composed of only numbers, int() converts the string to a number before operating on it. If

number is the Boolean value true, int() returns the value 1. For all other nonnumeric data (including

undefined and null), int() returns the value 0.

Usage

The int() function has been deprecated in favor of the more precise and standard Math.floor(), Math.ceil(), and
Math.round() methods. Use parseInt() or Number() to convert nonnumeric data to an integer or number.

Example

int(4.5) // Yields 4
int(-4.5) // Yields -4
int(3.999) // Yields 3

The int() function is useful to check if a number is a whole number, by comparing the original number to the
result of the int() function:

if (int(x) != x) {
 trace("Please enter a whole number for your age in years");
}

See Also

Math.ceil(), Math.floor(), Math.round(), Number(), parseFloat(), parseInt()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

isFinite() Global Function Flash 5

check if a number is less than Infinity and greater than -
Infinity

isFinite(number)

Arguments

number

Any numeric value or expression that yields a numeric value.

Returns

The Boolean true if the number falls between -Number.MAX_VALUE and Number.MAX_VALUE
(inclusive); otherwise, false. If number does not belong to the number datatype, number is converted to the

number type before isFinite() executes.

Description

The isFinite() function simply checks if a number is in the legal numeric value range of ActionScript. It is equivalent
to checking whether number is a number less than Infinity and greater than -Infinity. Use isFinite()

before executing code that requires a legitimate number to operate properly.

Example

if (!isFinite(x * y)) { // Test if the number is not finite
 trace("The answer is too large to display. Try again.");
}
isFinite(-2342434); // Yields true
isFinite(Math.PI); // Yields true
isFinite(Infinity) // Yields false
isFinite(-Infinity) // Yields false
isFinite(NaN) // Yields false

See Also

-Infinity, Infinity, isNaN(), Number.MAX_VALUE, Number.MIN_VALUE; Section 4.3.3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

isNaN() Global Function Flash 5

equality test for the special NaN value

isNaN(value)

Arguments

value

The expression to test.

Returns

The Boolean true if value is the special numeric value NaN; otherwise, false.

Description

To test whether or not a value is equal to the special numeric value NaN, we must use the isNaN() function, because NaN does not test equal

to itself in an ordinary equality test. For example, the expression:

NaN = = NaN;

yields the value false. The isNaN() function is often used to check whether a mathematical error (such as zero divided by itself) has

occurred, or whether converting a value to a legitimate number has failed. Because isNaN() returns true when the expression is not a valid

numeric expression, you'll often use the logical NOT operator (!) along with isNaN() (i.e., something that is not not-a-number is a number).
Note that 0/0 yields NaN, but any positive number divided by 0 yields Infinity, and any negative number divided by 0 yields -
Infinity.

Example

// Set a value
var x = "test123";
// Check if x is a legitimate number before using it is in a math expression. This
// is a handy for user input in text fields, which are always treated as strings.
if (!isNaN(parseFloat(x))) {
 var y = parseFloat(x) * 2;
}

See Also

isFinite(), NaN; "Special Values of the Number Datatype," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key Object Flash 5

determine the state of keys on the keyboard

Key.property
Key.methodName()

Properties

Table 18-8 lists the properties of the Key object.

Table 18-8. Key object keycode properties

Property Equivalent keycode Property Equivalent keycode

BACKSPACE 8 INSERT 45

CAPSLOCK 20 LEFT 37

CONTROL 17 PGDN 34

DELETEKEY 46 PGUP 33

DOWN 40 RIGHT 39

END 35 SHIFT 16

ENTER 13 SPACE 32

ESCAPE 27 TAB 9

HOME 36 UP 38

Methods

addListener()

Registers an object to receive onKeyUp() and onKeyDown() events.
getAscii()

Returns the ASCII value of the last key pressed.
getCode()

Returns the keycode of the last key pressed.
isDown()

Checks if a specific key is currently depressed.
isToggled()

Checks if the Num Lock, Caps Lock, or Scroll Lock keys are activated.
removeListener()

Cancels event notices for the specified listener.

Listener Events

onKeyDown()

Occurs when a key is depressed.
onKeyUp()

Occurs when a key is released.

Description

The Key object is used to determine which keys are currently depressed and which key was last released. We can
use it to build interfaces controlled by the keyboard, such as a game with a spaceship moved via the arrow keys.

Because not all keyboards are identical, keyboard-controlled interfaces can sometimes be tricky to create. By
choosing our scripting tools correctly, however, we can ensure that all users have the same experience.

There are two general approaches to detecting keyboard commands:

We can check if a key is currently depressed via the isDown() method. This is recommended for cases in
which the keyboard state needs constant polling (i.e., checking repeatedly), such as in video games. To
poll the keyboard, use isDown() to check the keyboard state within a MovieClip.onEnterFrame()
handler or during an interval created via setInterval().

We can check which key was last released using the getCode() and getAscii() methods. This is
recommended for typical keyboard-driven interfaces in which specific operations are performed in
response to individual keys being pressed. We ordinarily use these methods from an onKeyDown() or
onKeyUp() event listener, or a movie clip's onClipEvent(keyDown) or onClipEvent(keyUp) handler.
There is no need to constantly check (i.e., poll) for the last key pressed. In fact, doing so leads to
erroneously repeating some operation even if a key wasn't pressed repeatedly. That is, you should
generally check getCode() and getAscii() from a listener or clip event only to guarantee the code is
executed once and only once for each keystroke.

The isDown() method is synchronous, as is the isToggled() method. They both report
on the current state of the keyboard at the time the method is called. For example,
isDown() returns false if the key of interest is released before the call to isDown()

is made. On the other hand, the getAscii() and getCode() methods are asynchronous.
They report on the last key pressed, even if it has been released. Therefore, it is usually
a mistake to call getAscii() or getCode() unless a keyboard event has been detected
via, say, an onKeyDown() listener. Both getAscii() and getCode() will continue to
report the same value indefinitely (or until another key is pressed), even if no key is
currently being pressed.

The so-called Windows virtual keycode (or simply keycode) returned by getCode() and required by isDown() is
a number representing the physical keys on the keyboard, not the symbols on those keys and not their ASCII
values. By using the keycode, we can identify keys even when a movie is running on different operating systems
or when two keyboards use different languages or have different symbol layouts.

On most keyboards, the keycodes of the keys A to Z are the same as the code points (65-90) for the equivalent
uppercase Latin 1 letters (also the same as their ASCII codes). The keycodes of the keys 0 to 9 are, likewise, the
same as the Latin 1 and ASCII values for those numbers (48-57). The key codes of other keys do not necessarily
match Latin 1 code points, although some, such as the Tab key, match the ASCII values. However, many of the
nonletter and nonnumber keycodes are available as properties of Key, as shown in Table 18-8. For example, we
don't have to remember that the up arrow uses keycode 38; we simply use the Key.UP property. The following

code checks whether the up arrow key is currently depressed:

if (Key.isDown(Key.UP)) {
 trace("The up arrow is being pressed");
}

When working with a keycode that is not a letter or a number and is not available as a property of Key—such as
those of the function keys (F1, F2, etc.)—it's safest to create a quick test movie to check the keycode of the
desired key, as follows:

var keyTester = new Object();
keyTester.onKeyDown = function () {
 trace(Key.getCode());
}
Key.addListener(keyTester);

When testing keys in Test Movie mode, be sure to disable keyboard shortcuts via Control Disable
Keyboard Shortcuts.

The keycodes are listed in Appendix B.

Usage

The onKeyDown() and onKeyUp() listener events were added to the Key object in Flash 6. They are preferred
over MovieClip.onKeyDown() and MovieClip.onKeyUp() and the Flash 5-style onClipEvent(keyDown) and
onClipEvent(keyUp) handlers in most cases.

However, the following caveats apply:

In Flash 6, the updateAfterEvent() function, which refreshes the screen between frames, can be used only
with MovieClip mouse and key events and setInterval(). Hence, to create instant-refresh keyboard
applications, use onClipEvent(keyDown) and onClipEvent(keyUp), which are directly analogous to
Key.onKeyDown() and Key.onKeyUp().

To capture keystrokes while a specific movie clip has input focus only, use the MovieClip.onKeyDown()
and MovieClip.onKeyUp() handlers. See those entries for details.

See Also

MovieClip.onKeyDown(), MovieClip.onKeyUp(); Chapter 10, Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key.addListener() Method Flash 6

registers an object to receive onKeyDown() and onKeyUp()
events

Key.addListener(listener)

Arguments

listener

An object with a defined onKeyDown() and/or onKeyUp() method.

Description

The addListener() method adds listener to the list of objects notified when Key's onKeyDown() and

onKeyUp() events occur. The listener is an object of any class that defines methods by the name

onKeyDown and/or onKeyUp; these need not be built-in methods of the object but can instead be custom-
defined. The methods are invoked when the corresponding event occurs for Key. To stop a listener object from
receiving events, use Key.removeListener().

Multiple objects can respond independently to each Key event. When multiple listeners are registered to Key,
their methods are invoked in the order the listeners were added.

For general information on how listeners and callback functions work, see Chapter 10. For sample Key listener
code, see Key.getAscii() and Key.onKeyDown().

See Also

Key.getAscii(), Key.onKeyDown(), Key.onKeyUp(), Key.removeListener(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key.getAscii() Method Flash 5

returns the ASCII value of the last key pressed

Key.getAscii()

Returns

An integer representing the ASCII value of the last key pressed.

Description

The getAscii() method returns the ASCII value of the last key that was pressed (note that it does not accept any
arguments). Since not all keys have an ASCII value, getAscii() is normally used for detecting letters and
numbers from the Latin 1 character set (used for Western European languages). Unlike getCode(), getAscii()
distinguishes between upper- and lowercase letters. But unlike getCode(), it cannot differentiate between two
keys with the same ASCII value, such as the 8 key on the main keyboard and the 8 key on the numeric keypad.

To convert an ASCII value to a string character, use String.fromCharCode(), as shown in the following
example.

To detect the pressing of specific keys relative to their physical location on a keyboard rather than their ASCII
value (as would be desirable when using four keys in a diamond pattern to control game play), use getCode().
Both getAscii() and getCode() are typically used within an onKeyDown() event listener, so that they are called
once and only once per keypress.

Example

The following example shows how to distinguish between uppercase A and lowercase a.

if (Key.getAscii() = = 65) {
 trace("Uppercase A was pressed last.");
} else if (Key.getAscii() = = 97) {
 trace("Lowercase a was pressed last.");
} else {
 trace("Some other key was pressed last.");
}

Note that using getCode() in this example would not allow you to distinguish between uppercase A and
lowercase a, as both use keycode 65. To rewrite it with getCode(), you'd have to check the state of the Shift key,
with isDown(), or the Caps Lock key, with isToggled().

The following example demonstrates keystroke detection for a simple hangman word game. It uses an
onKeyDown() event listener to detect a keypress and adds that key to a list of user guesses. Notice that
keyListener is a generic object, demonstrating that any object defining an onKeyDown() or onKeyUp() callback
handler can act as a listener. Objects without such callback handlers don't get notified of keyboard events, even
if the objects are added to the event listener list with Key.addListener().

keyListener = new Object();
userGuesses = new Array();

guessNum = 0;
keyListener.onKeyDown = function () {
 var lastKey = Key.getAscii();
 userGuesses[guessNum] = String.fromCharCode(lastKey);
 guessNum++;
 trace(userGuesses);
}
Key.addListener(keyListener);

See Also

Key.getCode(), Key.isDown(); Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key.getCode() Method Flash 5

returns the keycode of the last key pressed

Key.getCode()

Returns

An integer representing the keycode of the last key pressed.

Description

The getCode() method returns the keycode of the last key that was pressed; the keycode is an arbitrary number
representing the physical location of a key on the keyboard. On non-Windows operating systems, the native
keycode system is translated automatically by Flash to the Windows equivalent, so getCode() provides a cross-
platform means of detecting specific physical keys. The getCode() method can also be used to differentiate
between two keys with the same ASCII value. For example, it can differentiate between the 8 key on the main
keyboard and the 8 key on the numeric keypad, whereas getAscii() cannot. However, getCode() cannot
differentiate between upper- and lowercase letters (for example, A and a use the same keycode because they are
produced using the same key). Nor does it detect modifier keys such as the Ctrl or Shift key.

Many common keycode values are available as properties of the Key object, as shown in Table 18-8 under the
Description for the Key object. To determine the keycode of a particular key, see Appendix B, or construct a
keycode tester as follows:

Create a new Flash document.1.
On frame 1, add the following code:2.
var keyTester = new Object();
keyTester.onKeyDown = function () {
 trace(Key.getCode());
}
Key.addListener(keyTester);
Choose Control Test Movie.3.
Choose Control Disable Keyboard Shortcuts.4.
Click the movie's Stage.5.
Press a key. The key code for that key will appear in the Output window.6.

Example

Unlike isDown(), getCode() is useful for creating interfaces in which an individual key press has a single, direct
result. Both getAscii() and getCode() are typically used with an onKeyDown() event listener, so that they are
called once and only once per keypress.

For example, the user may be allowed to skip a movie's intro by pressing the spacebar. When the spacebar is
depressed, we send the playhead to the main interface of the movie (on the main timeline) as follows:

keyListener = new Object();
keyListener.onKeyDown = function () {
 if (Key.getCode() = = Key.SPACE) {
 _root.gotoAndStop("mainInterface");

 }
}
Key.addListener(keyListener);

See Also

Button keyPress, Key.getAscii(), Key.isDown(); Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key.isDown() Method Flash 5

check whether a specific key is currently depressed

Key.isDown(keycode)

Arguments

keycode

A number representing the keycode of the key to check. Can also be one of the Key constants (e.g., Key.UP, Key.BACKSPACE).

Returns

A Boolean indicating whether the key specified by keycode is currently depressed (true) or not (false).

Description

The isDown() method tells us whether the key specified by keycode is currently being pressed, such as:

trace(isDown(65)); // Displays: true if the "A" key is depressed during the test

It offers immediate access to the state of the keyboard and is best used with systems that require constant key-based input or that detect the
pressing of simultaneous keys.

The isDown() method offers three advantages over getCode() and getAscii(); it can:

Detect the state of modifier keys such as Ctrl, Command, Shift, and Option, which do not trigger keyboard events on their own. (To
determine whether the Caps Lock, Num Lock, and Scroll Lock keys are in their locked (down) state, use isToggled() instead.)

Detect the state of arbitrary keys, allowing programmers to check for the simultaneous pressing of multiple keys.

Detect whether a key is currently being pressed (getCode() and getAscii() tell you which key was last pressed, but it may have been
subsequently released).

Unlike getCode() and getAscii(), which always return the last key pressed (even if it has since been released), isDown() accepts a keycode
argument specifying which keycode to test. By checking both Key.UP and Key.RIGHT in separate calls to isDown(), for example, we

can determine whether a spaceship in a game should be moved diagonally. Depending on the placement of the specific keys being tested, the
maximum number of keys that can be detected simultaneously may be as low as three.

Example

The isDown() method normally is used to create systems that undergo repeated updates with each passing frame. In the following code, we
rotate and thrust a spaceship on any frame where the appropriate arrow keys are being pressed. Note that if you need to detect two keys
simultaneously, you should use separate if statements. In this example, the state of the right arrow key is ignored if the left arrow key is
depressed. Regardless, the state of the up arrow key is always checked in a separate if statement. A working version of this spaceship example
is available at the online Code Depot:

// Code for a spaceship clip

spaceship_mc.onEnterFrame = function () {
 if (Key.isDown(Key.LEFT)) { // Left arrow
 this._rotation -= 10;
 } else if (Key.isDown(Key.RIGHT)) { // Right arrow
 this._rotation += 10;
 }
 if (Key.isDown(Key.UP)) { // Up arrow
 this.thrust += 10;
 }
}

See Also

Button keyPress, Key.getAscii(), Key.getCode(), Key.isToggled(); Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key.isToggled() Method Flash 5

check whether the Caps Lock, Num Lock, or Scroll Lock
keys are activated

Key.isToggled(keycode)

Arguments

keycode

An integer keycode, usually the keycode of the Caps Lock key (20), Num Lock key (144), or Scroll Lock
key (145). Can also be the key constant Key.CAPSLOCK.

Returns

A Boolean indicating whether the key specified by keycode is locked on (true) or off (false).

Description

The isToggled() method detects the state of the special Caps Lock, Num Lock, or Scroll Lock keys. Unlike
other keys, these keys have a locked "on" state and an unlocked "off" state, indicating whether or not the feature
they represent is active. The return value of isToggled() tells us if the specified key is locked or not. Though
isToggled() accepts any keycode, the return value is useful only for special keys that support a toggle

feature. For all other keycodes it returns false. To detect the state of other keys, use isDown(). Note that

getCode() or getAscii() detect the last key pressed, which may have been subsequently released, and therefore
do not reflect the current state of a key.

See Also

Key.getAscii(), Key.getCode(), Key.isDown(); Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key.onKeyDown() Listener Event Flash 6

occurs when a key is depressed

listener.onKeyDown()

Description

The onKeyDown() and onKeyUp() events are the keyboard analogues of Mouse.onMouseDown() and Mouse.onMouseUp().
Together, they provide fundamental tools for coding keyboard-based interactivity. The onKeyDown() event can be handled by
an event listener, as specified by listener, that has been added using addListener(). The onKeyDown() event occurs

whenever a key on the keyboard is depressed, including modifier keys such as Shift and Ctrl. When a key is held down,
onKeyDown() may occur repeatedly, depending on the operating system and keyboard setup. Unlike the on(keyPress) button
event, onKeyDown() occurs when any key—not just a specified key—is pressed.

An onKeyUp() event handler is sometimes preferred to onKeyDown() when inexperienced users,
such as children, tend to hold down a key, potentially generating multiple unwanted keyDown
events for each keyUp event. Conversely, an onKeyDown() handler is generally more responsive
than an onKeyUp() handler and therefore should be used if responsiveness is important.

To trap (i.e., detect or catch) an onKeyDown() event, we must first assign a callback function to the onKeyDown property

of some object, such as listener, and then add listener as a listener using Key.addListener(), as follows:

// Create a generic object
keyListener = new Object();

// Assign a function to the object's onKeyDown property
keyListener.onKeyDown = function () {
 trace("Some key was pressed!");
}

// Register the listener with the Key object
Key.addListener(keyListener);

Any number of listener objects of any class can respond to the onKeyDown() event.

Keyboard events are triggered only if the Flash Player has mouse focus. Users must click the Stage
of a movie before the movie's keystroke handlers will become active. Consider forcing users to
click a button before entering any keyboard-controlled section of a movie. This ensures that the
Flash Player has keyboard focus.

You'll notice that our preceding onKeyDown() function does not tell us which key was pressed. If we're waiting for generic
input, such as the user pressing any key to skip to the next section of a movie, we might not care which key was pressed. But
often, we want to tie some action to a specific key. For example, we might want different keys to turn a spaceship in different
directions.

Using onKeyDown() handlers is appropriate for navigational interfaces that treat each keypress as a discrete action in need of

a response (e.g., the spacebar causing a slide show presentation to advance). If you don't care which key was pressed, simply
execute the desired code from your onKeyDown() listener. To determine which key triggered the onKeyDown event, use the
Key.getAscii() or Key.getCode() method inside a conditional (if statement).

For cases when you want to know the current state of the keyboard, or in applications such as games, that require instant,
continuous feedback from potentially simultaneous keypresses, use the Key.isDown() and Key.isToggled() methods instead.
Those methods would ordinarily be used within a handler that is called repeatedly, allowing you to check the state of the
keyboard even if the system doesn't generate repeated events while keys are being held down. For example, you might check
the keyboard state within a MovieClip.onEnterFrame() handler, or using an interval created by setInterval().

The following example creates an onKeyDown() listener that tells us the ASCII value of the last key pressed:

keyListener = new Object();
keyListener.onKeyDown = function () {
 lastKeyPressed = String.fromCharCode(Key.getAscii());
 trace("You pressed the '" + lastKeyPressed + "' key.");
}
Key.addListener(keyListener);

The following example checks whether the up arrow was the last key pressed:

keyListener = new Object();
keyListener.onKeyDown = function () {
 // Check to see if the up arrow was the last key pressed.
 // The up arrow is represented by the Key.UP property.
 if (Key.getCode() = = Key.UP) {
 trace("The up arrow was the last key depressed");
 }
}
Key.addListener(keyListener);

As a rule of thumb, use Key.getAscii() when you care about the character of the key that was pressed, such as whether it was
an uppercase A or lowercase a. Use Key.getCode() when your care which physical key was pressed, such as when using four
adjacent keys for navigation, regardless of the characters they represent. See the Discussion under the Key object entry for
more information.

The onKeyDown() event executes immediately when a key is pressed, independent of the code on a movie's timeline(s).
However, visual changes to the movie made by the listener are not rendered until the next frame refresh, which is determined
by the frame rate of the movie. Unfortunately, in Flash 6, updateAfterEvent() cannot be used to force a screen refresh from an
onKeyDown() listener; updateAfterEvent() has an effect only when invoked either from a movie clip mouse or key event, or a
setInterval() callback.

Handling special keys

To disable the Standalone Player's contextual menu commands (Open, Close, Fullscreen, etc.), add the following line of code
to the beginning of your movie:

fscommand("trapallkeys", "true");

This command also prevents the Escape key from exiting fullscreen mode in a Standalone Player. To capture Escape in a
Standalone Player, use:

keyListener.onKeyDown = function () {
 if (Key.getCode() = = Key.ESCAPE) {
 // Respond to Escape keypress
 }
}

Note that the Escape key cannot be trapped in every browser. Furthermore, there is no way to disable the Alt key or the
Windows Alt-Tab or Ctrl-Alt-Delete key sequences.

The following code captures Tab keypresses:

keyListener.onKeyDown = function () {
 if (Key.getCode() = = Key.TAB) {
 trace("Tab was the last key depressed");
 }
}

In some browsers, Flash Player 5 detects the Tab key only within an on(keyPress) button event. The following code
successfully detects the Tab key in all browsers using Flash Player 5:

// CODE ON BUTTON ON MAIN TIMELINE
on (keyPress "<Tab>") {
 // Set a dummy variable here
 foo = 0;
}

// CODE ON MOVIE CLIP ON MAIN TIMELINE
// Notice that this is a keyUp event. The keyDown event doesn't work with
// Flash 5 running in Internet Explorer.
onClipEvent (keyUp) {
 if (Key.getCode() = = Key.TAB) {
 // Now place the cursor in myTextField on _level0
 Selection.setFocus("_level0.myTextField");
 }
}

In Flash Player 6, the Tab key can safely be detected with a Key listener. We typically trap the Tab key in order to move the
insertion point to a particular text field in a form. However, as of Flash 6, custom Tab key behavior can be controlled precisely
via the tabIndex and tabEnabled properties of the TextField, MovieClip, and Button classes, without the need for

any Key listeners. For a Flash 5-compatible Tab order example, see:

http://moock.org/asdg/codedepot/interface-widgets/taborder.fla

To capture a key combination, such as Ctrl-G, use:

keyListener.onKeyDown = function () {
 if (Key.isDown(Key.CONTROL) && Key.isDown(71)) {
 // Respond to Ctrl-G. Keycode 71 is the keycode for the G key.
 }
}

To capture the Enter (or Return) key, use:

keyListener.onKeyDown = function () {
 if (Key.getCode() = = Key.ENTER) {
 // Respond to Enter keypress (e.g., submit a form)
 }
}

Usage

To emulate onKeyDown() in Flash 5, use a movie clip onClipEvent(keyDown) clip event attached to the clip at authoring
time. For example:

onClipEvent (keyDown) {
 trace("Some key was pressed");
}

See Also

Key.addListener(), Key.getAscii(), Key.getCode(), Key.isToggled(), Key.onKeyUp(), MovieClip.onKeyDown()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key.onKeyUp() Listener Event Flash 6

occurs when a key is released

listener.onKeyUp()

Description

The onKeyUp() event is triggered when a key is depressed and then released. It is sometimes used in game
programming to turn off something that was turned on by an earlier onKeyDown() event—the classic example
being a spaceship's thrust. The onKeyUp() event can be handled by an event listener, as specified by
listener, that has been added using addListener(). The onKeyUp() event can also allow a key to modify

an application's behavior temporarily. For example, in the Flash authoring tool, holding down the spacebar
temporarily switches to the Hand tool, and releasing the spacebar restores the previous tool. A similar approach
can be used to show and hide things in an application, such as temporary menus.

To respond to an onKeyUp() event, we must first assign a callback function to the onKeyUp property of some

object, such as listener, and then add listener as a listener using Key.addListener(), as follows:

// Make a generic object
keyListener = new Object();

// Assign a function to the object's onKeyUp property
keyListener.onKeyUp = function () {
 trace("A key was released!");
}

// Register the listener with the Key object
Key.addListener(keyListener);

Any number of listener objects can respond to the onKeyUp() event. As with onKeyDown(), in order to obtain
useful information from an onKeyUp() event, we normally use it with other methods of the Key object:

keyListener.onKeyUp = function () {
 trace("The last key released was " + Key.getAscii());
 }
}

The onKeyDown() and onKeyUp() events are triggered precisely once for each keypress and key release. When
using onKeyUp() and onKeyDown(), you need not concern yourself with whether the key is still being pressed
at any given instant. Using these events allows you to detect keypresses accurately even if the user releases the
key between frames, and it also prevents you from checking the same key twice if it was pressed only once. In
any case, you will ordinarily use the Key.getCode() and Key.getAscii() methods to check for the last key
pressed within an onKeyDown() or onKeyUp() listener.

The onKeyUp() event executes immediately when a key is released, independent of the code on a movie's
timeline(s). However, visual changes to the movie made by the listener are not rendered until the next frame
refresh, which is determined by the frame rate of the movie. Unfortunately, in Flash 6, updateAfterEvent()
cannot be used to force a screen refresh from onKeyUp(); updateAfterEvent() has an effect only when invoked
either from a movie clip mouse or key event, or a setInterval() callback.

Usage

To emulate onKeyUp() in Flash 5, use the MovieClip class's on(keyUp) clip event attached to a movie clip at
authoring time. For example:

onClipEvent (keyUp) {
 trace("Some key was released");
}

See Also

Key.addListener(), Key.onKeyDown(), MovieClip.onKeyUp()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Key.removeListener() Method Flash 6

cancels event notices for the specified listener

Key.removeListener(listener)

Arguments

listener

An object that was previously registered as a listener for Key using Key.addListener()

Returns

A Boolean; true if listener was found and removed, false if listener was not registered as an

event listener for Key. The return value is useful for debugging code that removes listeners.

Description

The removeListener() method stops listener from receiving Key event notifications. It should be used

only after listener has been registered as an event listener via addListener(). The listener object is not

deleted but can be removed and added repeatedly.

Example

Event listeners should be removed when the task they perform is no longer required. For example, when a modal
dialog box is displayed in a keyboard-controlled application, the application should ignore general keyboard
input until the dialog box is closed. We can disable keyboard input outside the dialog box by removing the
default key listener for the application, as shown here:

// Method definition for launching a dialog box from theApp
theApp.displayModalDialog = function () {
 // Disable the regular key listener
 Key.removeListener(this.defaultKeyListener);
 // Enable the temporary modal dialog key listener
 Key.addListener(this.modalKeyListener);
 // Continue with launching the dialog...
}

See Also

Key.addListener(), Key.onKeyDown(), Key.onKeyUp(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

_leveln Global Property

a document level in the PlayerFlash 3 read-only

_level0
_level1
_level2
...
_leveln

Description

Multiple .swf files can be loaded into the Flash Player for simultaneous display. Each loaded .swf can be placed in a movie clip or
on its own "level" in the document level stack. The _leveln property stores a reference to the main timeline of a .swf loaded

into a document level in the Player. Each document level is represented by a numbered property, such as _level0, _level1,

_level2, and so on. A .swf file on a higher level will obscure lower levels if they occupy the same portion of the Stage. The

original document loaded into any Flash Player is considered _level0.

Note that _leveln is not always synonymous with _root; _root refers to the main timeline of the current movie, while

_leveln refers to the main timeline of a movie on a specific document level. To create global variables that are available from

any document level, use _global.

Example

A _leveln reference normally is used to control movies on other levels of the document stack. For example, here we play the

movie on level 2:

_level2.play();

We can also use _leveln in combination with movie clip references to control clips contained by a movie on any level in the

document stack. For example:

_level1.orderForm.titleBar.play();

A _leveln reference may also be used as the value of the target argument of several functions, including loadMovie(),

unloadMovie(), loadVariables() and print(). If the level does not yet exist, you should specify the level reference within quotes.
If used without quotes, a nonexistent level is considered undefined and may cause the command to operate on the current

timeline instead of the new, undefined level. For example, when executed from the main timeline of _level0, the following

will replace the movie in _level0 if _level1 has not yet been defined:

loadMovie("myMovie.swf", _level1);

The following is a safer approach if you can't guarantee that the level already exists:

loadMovie("myMovie.swf", "_level1"); // Works even if _level1 doesn't exist

However, the existence of _level0 is always guaranteed, so we can always refer to it using _level0 without quotes, as in:

startDrag(_level0, true);

See Also

_global, loadMovie(), _root, unloadMovie(); "Importing External Movies," and "Movie and Instance Stacking Order," in

Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

loadMovie() Global
Function

Flash 4; Flash 6 adds .jpg loading and
security restrictions

load an external .swf or .jpg file into the Player

loadMovie(url, target)
loadMovie(url, target, method)

Arguments

url

A string specifying the absolute or relative file path of the external .swf movie or .jpg image file to load. All URLs must use
forward slashes, and absolute URLs must include the protocol reference (e.g., http:// or file:///). Relative URLs are resolved
relative to the URL of the movie on _level0 (i.e., _level0._url) and use the http:// protocol by default.

target

A string indicating the movie clip or document level that will host the external .swf or .jpg file. Can also be a reference to an
existing movie clip or document level (references are converted to paths when used in a string context).

method

An optional string indicating the method by which to send variables to an external script. The legal values for method are

"GET" and "POST". This parameter must be a literal, not a variable or other expression. On Windows, prior to Flash 6, the

Standalone Player always used the "GET" method, regardless of the method specified. As of Flash 6, both "GET" and

"POST" are supported. See Appendix F.

Description

The loadMovie() function is the global analogue of the MovieClip.loadMovie() method. Both versions import the .swf movie or .jpg
(JPEG) image file located at url into the Flash Player, but the global version uses target to identify the new location of the loaded

file, whereas the MovieClip method version always uses the calling movie clip as the target. If url is a JPEG image, it cannot be a .jpg

file saved in progressive format.

If target is a reference to an existing movie clip or a string indicating the path to a movie clip, the loaded .swf or .jpg file is placed into

the specified clip (causing the eviction of any previous content). To load a movie or image into the current movie clip, use the empty
string as the target parameter, as in:

loadMovie("myMovie.swf", "");

or use the MovieClip.loadMovie() version with the keyword this:

this.loadMovie("myMovie.swf");

If target is a reference to an existing document level (such as _level2) or a string indicating the path to a document level (such as

"_level2"), then the .swf or .jpg file is placed into the specified document level. Loading a movie into _level0 clears the Player

of all content on all levels and places the new .swf or .jpg file into _level0.

Note that loadMovie() executes asynchronously; the load operation does not actually begin until after all scripts on the current frame
execute (specifically, Flash requests the external asset from the operating system just before the screen is updated). Once the .swf or .jpg

file begins loading into the Player, download progress can be monitored via MovieClip.getBytesLoaded() and
MovieClip._framesloaded. For details on preloading movies, see those entries and the following article:

http://design.oreilly.com/news/action_0501.html

Be careful not to check load progress before loadMovie() actually executes. To ensure an accurate progress reading for a loading .swf file,
set a flag on its first frame, indicating that loading has started:

var loadStarted = true;

Then, poll for that variable from outside the .swf file before checking load progress:

if (target_mc.loadStarted = = true) {
 // It's safe to display accurate load progress...
}

It is possible to send variables along with a loadMovie() invocation, in which case url normally is the location of a script that returns a

.swf or .jpg file based on the variables sent. To send variables with a loadMovie() call, we include the method argument (set to either

"GET" or "POST"). "GET" sends the current movie clip timeline variables as a query string attached to the script url. "POST"
sends the current movie clip timeline variables after the HTTP POST-request header. Prior to Flash 6, the "POST" method was not

available in the Standalone Player, but it is functional in the Flash 6 Standalone Player. Because most web servers restrict the length of
URLs to no more than 1024 characters (and some to as little as 255 characters), use "POST" instead of "GET" to transfer larger

amounts of data.

A loadMovie() invocation that uses the "GET" method can pass variables to a loaded movie without the help of an intervening script,

provided the movie is served from a web server and not by the local filesystem. For example, the following code loads the external movie
myMovie.swf into level 1 of the Player document stack, passing it the variables from the current timeline:

loadMovie("myMovie.swf", "_level1", "GET");

Variables passed to the loaded movie are defined on its main timeline. This technique works only when the loadMovie() request is
handled by a web server. Attempts to use the "GET" method with loadMovie() using local files will cause an "Error opening URL"

error.

As of Flash 6, a movie from one domain can load a movie from another domain but cannot access its variables, properties or functions
unless it provides special permission. For full details, see System.security.allowDomain().

Usage

Be careful when using movie clip and level references as the target argument of loadMovie(). If a loadMovie()'s target argument

yields undefined or the empty string, the loadMovie() function uses the current timeline as its target (i.e., it replaces the current

timeline with the newly loaded content). In particular, this causes problems for loading movies onto new, unoccupied levels. Consider the
following code:

loadMovie("myMovie.swf", _level1);

If no _level1 object exists prior to the execution of this statement, the code will load myMovie.swf into the timeline that contains the

loadMovie() statement, not _level1! To avoid the problem, you can use loadMovieNum() instead. Alternatively, you can use a string

for the target parameter to loadMovie(), as in:

loadMovie("myMovie.swf", "_level1");

In this case, the level will be created if it doesn't already exist (only _level0 exists by default in all movies). For more information, see

Section 13.7.

The global loadMovie() function replaces the target path version of Flash 4's Load Movie action.

Example

Here are some loadMovie() examples:

loadMovie("myMovie.swf", "_level1"); // Place myMovie.swf on level 1
loadMovie("myMovie.swf", "_level0"); // Place myMovie.swf on level 0
loadMovie("myMovie.swf", "myClip"); // Place myMovie.swf into myClip
// Replace the contents of the Player with coolmovie.swf, using an absolute path
loadMovie("http://www.yourflashsite.com/coolmovie.swf", "_level0");
// Load a movie into level 1 from the Windows desktop. Note the
// file:/// protocol and the forward slashes.
loadMovie("file:///C|/WINDOWS/Desktop/animation.swf", "_level1");
// Load a JPEG image into imageHolder_mc
loadMovie("photo.jpg", "_level0.imageHolder_mc");

The following code loads a .jpg file into a movie for use as a button. It first creates a clip to act as the button, then creates a clip inside that
clip to act as the image holder. Note the clip nesting. If onRelease() were attached to the image holder clip rather than the outer button
clip, it would be deleted by the loading .jpg file.

this.createEmptyMovieClip("btn_mc", 1);
this.btn_mc.createEmptyMovieClip("imgHolder_mc", 1);
this.btn_mc.onRelease = function () {
 trace("Image clicked");
}
this.btn_mc.imgHolder_mc.loadMovie("buttonPhoto.jpg");

A generic image loading utility with pan, zoom, and preloading support is available at the online Code Depot.

See Also

loadMovieNum(), MovieClip.loadMovie(), System.security.allowDomain(), unloadMovie(); Section 13.3.4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

loadMovieNum() Global
Function

Flash 3; Flash 6 adds .jpg loading
and security restrictions

load an external .swf or .jpg file into a document level

loadMovieNum(url, level)
loadMovieNum(url, level, method)

Arguments

url

A string specifying the absolute or relative file path of the external .swf movie or .jpg image file to load.
All URLs must use forward slashes, and absolute URLs must include the protocol reference (e.g., http://
or file:///). Relative URLs are resolved relative to the URL of the movie on _level0 (i.e.,

_level0._url) and use the http:// protocol by default.

level

A nonnegative integer, or an expression that yields one, indicating the number of the document level that
will host the external .swf or .jpg file.

method

An optional string indicating the method by which to send variables to an external script. The legal
values for method are "GET" and "POST". This parameter must be a literal, not a variable or other

expression. On Windows, prior to Flash 6, the Standalone Player always used the "GET" method,

regardless of the method specified. As of Flash 6, both "GET" and "POST" are supported. See

Appendix F.

Description

The loadMovieNum() function is nearly identical to loadMovie() used with a document level as its target,

except that the target level is specified as a number rather than as a string. This means that loadMovieNum()

can load movies only into document levels, not host clips. The loadMovieNum() function is safer than
loadMovie(), insofar as there is no chance of inadvertently replacing the current clip or movie; if the specified
level doesn't exist, it will be created. If the specified level does exist, its occupant is replaced by the new .swf or
.jpg file. It is valid to load a movie into _level2 even if _level1 hasn't been created.

The loadMovieNum() function can be used when we wish to assign the level of a loaded movie or image
dynamically, as in:

var x = 3;
loadMovieNum("myMovie.swf", x);

which could also be achieved via a string concatenation expression with the regular loadMovie() function:

loadMovie("myMovie.swf", "_level" + x);

Usage

The global loadMovieNum() function replaces Flash 3's Load Movie action, which accepted level numbers only
(Flash 4 added the method parameter).

See Also

loadMovie(), MovieClip.loadMovie()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

loadVariables() Global Function Flash 4

retrieve an external set of variables

loadVariables(url, target)
loadVariables(url, target, method)

Arguments

url

A string specifying the path to a variable source—either a server-side script that returns variables or a text file
containing variables.

target

A string indicating the path to the movie clip or document level on which the loaded variables will be defined. Can
also be a reference to a movie clip or document level (references are converted to paths when used in a string
context).

method

An optional string indicating the method by which to send variables to an external script. If specified, the variables
from the current timeline are sent to the script and target receives the loaded variables. If omitted, variables are

retrieved but none are sent. The legal values for method are "GET" and "POST". This parameter must be a

literal, not a variable or other expression. On Windows, prior to Flash 6, the Standalone Player always used the
"GET" method, regardless of the method specified. As of Flash 6, both "GET" and "POST" are supported.

See Appendix F.

Description

Using loadVariables(), we can import variables into a movie from a text file or a server-side application such as a Perl
script. However, as of Flash 6, the LoadVars class provides a more flexible and powerful means of importing and
exporting variables.

Variables loaded via loadVariables() are scoped to the movie clip or level specified by target and are always of the

string datatype. To attach loaded variables to the current timeline, use the empty string as the value of the target
argument. For example:

loadVariables("myVars.txt", ""); // Loads variables from myVars.txt
 // onto the current timeline

Whether the variables to be loaded reside in a text file or are composed by a script, they must be formatted according to
the rules of URL encoding, described in the LoadVars class entry.

A text file for use with loadVariables() is simply a plain text file containing URL-encoded variables (as described in the
LoadVars class entry). To load variables from an external text file, we specify the path of the file as the url argument in

our loadVariables() function invocation. For example:

// Load the variables from myVariables.txt into the main movie timeline
loadVariables("myVariables.txt", "_root");

The loadVariables() function can also be used with a script or server application that outputs URL-encoded variables.
When a script sends data to a Flash movie in response to a loadVariables() invocation, the script should set the MIME
type of the data as: "application/x-www-form-urlencoded". Here's a line from a typical Perl script to

set the MIME type:

print "Content-type: application/x-www-form-urlencoded\n\n";

Though the name loadVariables() suggests only a single direction of variable transmission, this function can also be used
to send variables to a server-side script. To send all the variables defined on the current timeline to a script, we set the
method argument of a loadVariables() function invocation to either "GET" or "POST". Variables are sent in URL-

encoded format. If method is set to "GET", the variables are appended as a query string to url and sent to the remote

script. If method is set to "POST", the variables are sent after the HTTP POST-request header. The "POST" method

was not available in the Standalone Player for Windows prior to Flash 6, but it is functional in the Flash 6 Standalone
Player for Windows (see Appendix F for details on support for GET and POST). Because most web servers restrict the
length of URLs to no more than 1024 characters (and some to as little as 255 characters), use "POST" instead of

"GET" to transfer larger amounts of data.

For important information on domain-based security restrictions that apply to loadVariables(), see
System.security.

Usage

The results of multiple loadVariable() calls to the same url may be cached by some browsers, preventing new data from

loading from the server. To avoid this problem, append a dummy variable to each loadVariables() call so that the URL is
unique. For example, here we generate a unique URL by appending the time in milliseconds:

loadVariables("http://www.mysite.com/cgi-bin/myScript.pl?cacheKiller="
 + new Date().getTime(), serverResponse);

Bugs

The POST method is not supported by Internet Explorer 4.5 on Macintosh. This problem was fixed in Version 5 of the
browser.

On Macintosh, the loadVariables() method does not work with Flash 5 executable Projectors (i.e., movies bundled with
the Flash 5 Standalone Player into a single executable file). However, loadVariables() does work with movies opened
manually in the Standalone Player. To work around this problem, send data via the XML.send() and XML.sendAndLoad()
methods.

See Also

loadVariablesNum(), the LoadVars class, MovieClip.loadVariables(), System.security.allowDomain(); Chapter 17

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

loadVariablesNum() Global Function Flash 5

attach an external set of variables to a document level

loadVariablesNum(url, level)
loadVariablesNum(url, level, method)

Arguments

url

A string specifying the path to a variable source—either a server-side script that returns variables or a
text file containing variables.

level

A nonnegative integer, or an expression that yields one, indicating the number of the document level on
which the loaded variables will be defined.

method

An optional string indicating the method by which to send variables to an external script. If specified, the
variables from the current timeline are sent to the script and level receives the loaded variables. If

omitted, variables are retrieved but none are loaded. The legal values for method are "GET" and

"POST". This parameter must be a literal, not a variable or other expression. On Windows, prior to

Flash 6, the Standalone Player always used the "GET" method, regardless of the method specified. As

of Flash 6, both "GET" and "POST" are supported. See Appendix F.

Description

The loadVariablesNum() function is nearly identical to loadVariables(), except that it requires the target
level to be specified as a number rather than as a string. This means that loadVariablesNum() can attach

variables to document levels only, not movie clips. The target level can be specified dynamically, as in:

var myLevel = 2;
loadVariablesNum("myVars.txt", myLevel);

A similar effect can be achieved using string concatenation with the regular loadVariables() function:

loadVariables("myVars.txt", "_level" + myLevel);

See Also

loadVariables()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars Class Flash 6

export variables to, or import variables from, an external
source

Constructor

new LoadVars()

Properties

contentType

The MIME content type used for send() and sendAndLoad() operations.
loaded

Status of a load() or sendAndLoad() operation.

Methods

decode()

Convert a URL-encoded string of variables to properties.
getBytesLoaded()

Check what portion of loading variables has arrived, in bytes.
getBytesTotal()

Check the expected total byte size of loading variables.
load()

Import URL-encoded variables from a text file or a server-side application.
send()

Transfer URL-encoded variables to a server-side application or script.
sendAndLoad()

Transfer variables to a server-side application, and receive variables in return.
toString()

Returns the URL-encoded string of variables that would be sent by send() or sendAndLoad().

Event Handlers

onData()

Handler executed when external variable data finishes loading.
onLoad()

Handler executed when external variables have been converted into object properties.

Description

The LoadVars class transfers variables to or from an external source, such as a text file or a server-side script.
Table 18-9 shows typical LoadVars usage scenarios and lists the method associated with each scenario.

Table 18-9. LoadVars usage scenarios

Desired Action Method

Retrieve external variables from a text file or server-side script. LoadVars.load()

Send ActionScript variables to a server-side script, and receive optional results in a
web browser.

LoadVars.send()

Send ActionScript variables to a server-side script, and receive results in Flash. LoadVars.sendAndLoad()

The send(), load(), and sendAndLoad() methods must be invoked through an instance of LoadVars, not
through the class itself. The properties of the instance are either the variables to be sent or those that have been
received. The send() method converts the properties of the LoadVars instance to a string of URL-encoded
variables, and sends them as an HTTP request to a server-side application. The load() method retrieves URL-
encoded variables and converts them to properties of the LoadVars object. The sendAndLoad() method does
both. For details and examples, see each method's listing.

The LoadVars class provides the same basic service as the global loadVariables() function, first introduced in
Flash 4, but in a more logical format and with several important advantages:

An onLoad() handler executes when variables arrive, notifying you automatically rather than requiring
you to poll for results as you must with loadVariables().

Variable load progress can be monitored with getBytesLoaded() and getBytesTotal(), allowing you to
diagnose problems or provide a status bar during lengthy operations.

Variables are stored as properties of LoadVars objects, not in physical movie clips, allowing you to
separate code from media more effectively. This also allows you to send a subset of variables from a
timeline, rather than sending all variables on a timeline, as is the case with loadVariables().

Variables transferred by a load() or sendAndLoad() operation are formatted according to the rules of URL
encoding, as follows:

Every variable name is separated from its value with an equals sign, without spaces, as in
firstName=stephen.

Multiple variable name/value pairs are separated by ampersands (&), as in

firstName=stephen&lastName=burke.

Spaces are replaced with plus (+) signs, not %20.

Any character that is not a space, a number (1-9), or an unaccented Latin 1 letter (a-z or A-Z) is replaced
as follows:

If System.useCodepage is false (the default), the character is replaced by one or more

hexadecimal escape sequences of the form %xx, representing the UTF-8 sequence for the

character. Characters in the Unicode range 0-127 are encoded as %xx (single-byte), characters

128-2047 are encoded as %xx%xx (double-byte), and characters 2048 and above are encoded as

%xx%xx%xx (triple-byte).

If System.useCodepage is true and the system is not an Asian language double-byte

system, the character is replaced with a hexadecimal escape sequence %xx, where xx is the hex

code point for the character. The code point is determined using the system code page (typically
Latin 1 on most Western computers). Note that on Macs, the system code page is Mac Roman, but
Flash uses Latin 1 instead.

If System.useCodepage is true and the system is an Asian language double-byte

system, the character is replaced with a hexadecimal escape sequence %xx or %xx%xx, using the

double-byte character encoding supported by the system (for example, Shift-JIS).

Flash 5 and previous Players behave as if System.useCodepage is true.

The following code shows the contents of a text file to be imported into Flash. The imported variables are
name and address, which have the values "stephen" and "65 nowhere st!", respectively

(note that the exclamation point is encoded as %21):

name=stephen&address=65+nowhere+st%21

Generally, server-side applications automatically URL encode variables for transmission to Flash, but variables
in text files must be URL-encoded by hand. For example, in Flash Player 5 (or when
System.useCodePage is true in Flash Player 6), the high-ASCII character e is at code point 233,

which is hex E9, so it is written manually as %E9. The word resume becomes resum%E9. In contrast, in

Flash Player 6, when System.useCodePage is false (the default), the character e should be entered

directly, and the variables file should be saved in Unicode UTF-8 format. (In Windows Notepad, the UTF-8
format can be chosen in the "Save as..." dialog box.) If the file cannot be saved as UTF-8, or if the character
cannot be entered directly, the single-, double-, or triple-byte UTF-8 escape sequence for the character must be
used. For example, the UTF-8 sequence for e is %C3%A9, so the word resume would be written as

resum%C3%A9. You can check the UTF-8 escape sequence for a character in Flash Player 6 using the

escape() function. For example:

trace(escape("e")); // Displays: %C3%A9

As a general rule, where many international characters are required, data should be loaded from Unicode-
formatted XML files rather than via LoadVars.

For security reasons, LoadVars works only with hosts in the domain from which the movie was downloaded. For
more information, see System.security.

The LoadVars class is not always the best means of importing data into Flash. For variables that need to be
imported only once at load-time in a browser, consider using the FLASHVARS attribute of the HTML

<OBJECT> and <EMBED> tags (see Section 2.6). For large quantities of data, consider using the XML class.

See Also

loadVariables(), System.security, the XML class; "Loading External Variables," in Chapter 2; Chapter

17

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.contentType Property Flash 6

the MIME type used for send() and sendAndLoad(
) operations

read/write

loadVarsObject.contentType

Description

The contentType property is the MIME content type that is sent to a server when LoadVars.send() or LoadVars.sendAndLoad(

) is invoked. For most practical purposes, its default value (application/x-www-form-urlencoded) need never be

changed. It is writable to allow MIME type flexibility in unique circumstances.

The LoadVars.prototype.contentType property can be used to change the MIME content type for all LoadVars

instances that do not set it themselves. For example:

LoadVars.prototype.contentType = "yourContentTypeGoesHere";

Example

dataSender = new LoadVars();
trace(dataSender.contentType); // Displays: application/x-www-form-urlencoded

See Also

LoadVars.send(), LoadVars.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.decode() Method Flash 6 (undocumented)

Convert a URL-encoded string of variables to properties

loadVarsObject.decode(varString)

Arguments

varString

A string of URL-encoded variables. For information on URL encoding, see the Description heading
under the LoadVars class entry.

Description

The decode() method converts the URL-encoded variables in varString to properties of the specified

loadVarsObject. It offers a handy means of converting URL-encoded variables to object properties, as

required by LoadVars.onData(). Although undocumented, you can expect it to remain supported, because it is
used internally by Flash to receive loaded variables.

Note that the property values created by decode() are always strings.

Example

// Create a LoadVars instance
varsObj = new LoadVars();

// Convert a string to the object properties x and y
varsObj.decode("x=10&y=20");

// Check the value of y
trace(varsObj.y); // Displays: 20

See Also

LoadVars.load(), LoadVars.onData()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.getBytesLoaded() Method Flash 6

check what portion of loading variables has arrived, in
bytes

loadVarsObject.getBytesLoaded()

Returns

The number of bytes transferred so far, or undefined if neither load() nor sendAndLoad() has ever been called on

loadVarsObject.

Description

The getBytesLoaded() method tells us what portion of loading variables has arrived in the Player. For a new LoadVars object,
getBytesLoaded() returns undefined. Immediately after load() or sendAndLoad() is called, getBytesLoaded() returns 0. As data

arrives, getBytesLoaded() returns the number of bytes transferred so far, until all the variables have loaded. From then on, it returns the
total number of bytes last transferred, until the next call to load() or sendAndLoad(). To convert bytes to kilobytes (KB), divide by 1024.

Along with getBytesTotal(), getBytesLoaded() is most commonly used to display the progress of variable retrieval, as shown in the
following Example.

Example

Example 18-1 displays load progress for variables loaded from a text file, vars.txt, which contains two URL-encoded variables, msg1 and

msg2. There are two items of special interest in the code:

We use sendAndLoad(), instead of load(), to prevent unwanted caching. See LoadVars.load() for details.

We use separate objects for sending and receiving. See LoadVars.sendAndLoad() for details.

Example 18-1. A LoadVars preloader

// Create a text field to display load progress
this.createTextField("loadmsg_txt", 1, 200, 200, 100, 20);

// Create an object to send variables
varSender = new LoadVars();

// Add a dummy property to prevent the browser from using its
// cache to retrieve variables
varSender.cacheKiller = new Date().getTime();

// Create an object to receive variables
varReceiver = new LoadVars();

// Assign a callback function to execute when the variables finish loading

varReceiver.onLoad = function () {
 // Display the loaded variables in the Output window
 trace("msg1 is " + this.msg1);
 trace("msg2 is " + this.msg2);

 // Loading is done, so stop calling our load checker function
 clearInterval(varPreloader);

 // Call checkVarStatus() at the end to display the final bytes loaded
 checkVarStatus();
}

// Request variables using sendAndLoad() instead
// of load() to prevent the browser from using its cache.
varSender.sendAndLoad("http://www.moock.org/temp/vars2.txt", varReceiver, "GET");

// Create an interval to check the variable load status every 100 ms
varPreloader = setInterval(checkVarStatus,100);

// Function to report variable load status
function checkVarStatus () {
 // Check bytes loaded and convert to KB
 var kbLoaded = Math.floor(varReceiver.getBytesLoaded()/1024);
 // Check bytes total and convert to KB
 var kbTotal = Math.floor(varReceiver.getBytesTotal()/1024);
 // If the bytes total can't be determined...
 if (kbTotal = = undefined) {
 // ...use question marks instead of a total
 kbTotal = "???";
 }

 // Display the current load status in our text field
 loadmsg_txt.text = kbLoaded + "/" + kbTotal;
}

Bugs

Macromedia's documentation for Flash MX claims that getBytesLoaded() returns undefined when no load operation is in progress. In

Flash Player 6, it actually returns the total bytes transferred in the most recent load, even after that load has finished.

See Also

LoadVars.getBytesTotal(), LoadVars.load(), LoadVars.sendAndLoad(), setInterval(), the TextField class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.getBytesTotal() Method Flash 6

check the expected total byte size of loading variables

loadVarsObject.getBytesTotal()

Returns

The total number of bytes being transferred as a result of a load() or sendAndLoad() call, or undefined
before the number of bytes is determined.

Description

The getBytesTotal() method tells us the expected total byte size of the current variable transfer. For a new
LoadVars object, getBytesTotal() returns undefined. Immediately after load() or sendAndLoad() are

called, getBytesTotal() continues to return undefined until the size of the variables being loaded is

determined (normally within a second). It then returns the total byte size of the loading variables until the next
call to load() or sendAndLoad(). If the total byte size cannot be determined (for example, due to a missing
Content-Length in an HTTP response header), getBytesTotal() continues to return undefined. To convert

bytes to kilobytes (KB), divide by 1024.

For an example that uses getBytesTotal() to create a variable preloader, see Example 18-1 under
LoadVars.getBytesLoaded().

Usage

Be careful not to divide by getBytesTotal() until it returns some positive integer.

See Also

LoadVars.getBytesLoaded(), LoadVars.load(), LoadVars.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.load() Method Flash 6

import URL-encoded variables from a text file or server-side
application

loadVarsObject.load(url)

Arguments

url

A string specifying the path to a variable source—either a server-side script that returns variables or a text file containing variables.

Returns

A Boolean indicating whether the method executed successfully. Note that the return value is less useful than it appears. The load() method
returns false only if it is invoked with no arguments. Because loading is asynchronous, load()'s return value indicates only whether the

load was initiated successfully; it will return true even if the load operation eventually fails, in which case onLoad() is called with a

false status.

Description

The load() method initiates the download of URL-encoded variables from url, which can be a local or remote text file, or a server-side

application. Download progress can be monitored with the getBytesLoaded() and getBytesTotal() methods. When the variables have
finished downloading, they are parsed and converted into properties of loadVarsObject, and loadVarsObject.onLoad() is

invoked. All properties are typed as strings. To intercept the loaded data before it is converted into properties, use LoadVars.onData(). Note
that no variables are accessible as loadVarsObject properties before onLoad() executes; all variables must be downloaded and

parsed before any are available as properties. Likewise, all variables must be downloaded before they are available to ActionScript in the
onData() event handler.

When url is a server-side application or script, the MIME type of the transmitted data must be set as "application/x-www-
form-urlencoded". Here's a typical MIME-setting statement from a Perl script:

print "Content-type: application/x-www-form-urlencoded\n\n";

For more information on URL encoding in Flash, see the Description heading of the LoadVars class.

For security reasons, LoadVars.load() works only with hosts in the domain from which the movie was downloaded. For more information,
see System.security.

Usage

In practice, the load() and sendAndLoad() methods may not trigger a download if the variables at url are cached by the browser hosting

the Flash movie. To force the browser to always download variables (and bypass its cache) we can use a query string with a dummy variable
that contains a unique value. By convention, the current time in milliseconds is used, as it is assumed to be sufficiently unique. For example:

theVars = new LoadVars();
theVars.load("http://www.site.com/vars.txt?cacheKiller=" + new Date().getTime());

The same effect can be achieved using the sendAndLoad() method to invoke an HTTP GET request with a dummy variable
(cacheKiller):

varSender = new LoadVars();
varReceiver = new LoadVars();
varSender.cacheKiller = new Date().getTime();
varSender.sendAndLoad("http://www.yourserver.com/vars.txt", varReceiver, "GET");

In all cases, data should be verified inside the onLoad() handler before being used, because cached data can be corrupt or incomplete. See
LoadVars.onLoad() for an example.

Example

The following code uses a LoadVars object to retrieve the variable in the text file vars.txt, which looks like this:

msg1=hello+world

Two variations of load() are shown, one with a unique cache-prevention variable:

// Make a text field in which to display the loaded variable
this.createTextField("msg1_txt", 1, 200, 200, 100, 20);

// Create the LoadVars instance
externalVars = new LoadVars();

// Assign an onLoad() callback to tell us that the variable has arrived
externalVars.onLoad = function () {
 // When the variable arrives, display it in our text field
 msg1_txt.text = this.msg1;
}

// Now load the text file
externalVars.load("http://www.site.com/vars.txt");

// Or, to bypass browser cache, append a unique dummy variable to the query string
externalVars.load("http://www.site.com/vars.txt?cacheKiller="
 + new Date().getTime());

See Also

loadVariables(), LoadVars.getBytesLoaded(), LoadVars.onData(), LoadVars.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.loaded Property Flash 6

status of a load() or sendAndLoad() operation read/write

loadVarsObject.loaded

Description

The loaded property provides a quick means of determining whether variables have finished loading. For a new LoadVars object,

loaded is set to undefined. After the first call to load() or sendAndLoad(), loaded is set to false. If download never

completes, due to an error or poor connection, it remains false. If download does complete, loaded is set to true by

loadVarsObject.onData() and remains true until the next call to load() or sendAndLoad().

In most cases, LoadVars.onLoad() provides the best way to respond when variable loading completes. However, the loaded property

is handy when a separate segment of code needs immediate access to the load status of a LoadVars object, as described in the following
Example.

Example

Consider a game that loads high scores and offers a button to email scores to a friend. The button should work only if the scores are
loaded, as follows:

// highScoreVars is assumed to be a global variable containing a LoadVars object
emailButton.onRelease = function () {
 if (highScoreVars.loaded = = true) {
 // Proceed with email code...
 } else {
 // Variables aren't loaded. Tell user to wait...
 }
}

See Also

LoadVars.onLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.onData() Event Handler Flash 6 (undocumented)

handler executed when external variable data finishes
loading, but before it is parsed

loadVarsObject.onData(src);

Arguments

src

A string containing raw URL-encoded variables.

Description

The onData() handler executes automatically when raw variables requested by load() or sendAndLoad() have
finished downloading but have not yet been parsed.

The onData() handler can be assigned a custom callback function to intercept raw variable source before
ActionScript has a chance to convert the URL-encoded variables to loadVarObject properties and before

onLoad() is called. This unmediated access to data loaded from the server can be useful for debugging.
However, in most other cases a custom callback for onData() is not required.

By default (unless you define a custom callback function), onData() has the following behavior:

If the raw source received is undefined, it calls loadVarsObject.onLoad() with the

success parameter set to false.

Otherwise, it uses loadVarsObject.decode() to convert the variables in src to properties of

loadVarsObject, then sets loadVarsObject.loaded to true, and calls

loadVarsObject.onLoad() with the success parameter set to true.

When implementing onData(), be sure to convert the loaded variables to properties via decode(), as shown in
the following Example.

Example

The following example shows how to display raw loaded-variable source while preventing it from being parsed
by ActionScript. The onLoad() method is not called, and the loaded property is not set:

loadedVars = new LoadVars();
loadedVars.onData = function (src) {
 trace("Variables received: " + src);
};
loadedVars.load("http://www.thesite.com/cgi-bin/getData.pl");

Here we display raw loaded-variable source but call onLoad() as it normally would be. Note that we take care to
recreate all the default onData() behavior, including converting the loaded variables to properties with decode(

) and setting the loaded property to true:

loadedVars = new LoadVars();
loadedVars.onData = function (src) {
 trace("Variables received: " + src);
 if (src = = undefined) {
 this.onLoad(false);
 } else {
 this.decode(src);
 this.loaded = true;
 this.onLoad(true);
 }
};

loadedVars.onLoad = function (success) {
 trace("Vars load successfully? " + success);
}

loadedVars.load("http://www.thesite.com/cgi-bin/getData.pl");

See Also

LoadVars.decode(), LoadVars.onLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.onLoad() Event Handler Flash 6

handler executed after external variables have been
converted into object properties

loadVarsObject.onLoad(success)

Arguments

success

A Boolean value indicating whether loading was successful (true) or unsuccessful (false).

Description

The onLoad() handler executes automatically whenever external variables have finished loading and have been converted
(parsed) into loadVarsObject properties. We rely on onLoad() to tell us when it's safe to process loaded variables; if

onLoad() is triggered, we know that we can access our loaded content. By default, the onLoad() handler of a LoadVars object
is an empty function. To use onLoad(), we must assign it a callback function. For example:

// Create the LoadVars instance
varReceiver = new LoadVars();

// Assign the callback function to onLoad()
varReceiver.onLoad = handleLoad;

// Define the callback function
function handleLoad (success) {
 // Process variables as desired here...
}

This syntax, which uses a function literal, is also common:

varReceiver.onLoad = function (success) {
 // Process variables as desired here...
}

From inside our callback function, we access loadVarsObject's properties via the this keyword. For example:

function handleLoad (success) {
 // Display the value of the loaded variable score in the Output window
 trace(this.score);
}

The success parameter tells us whether any variables were actually loaded. If the data loaded from the server was empty,

success is false; otherwise, it's true. We can use success to provide basic verification that something useful was

actually loaded, as follows:

function handleLoad (success) {

 if (success) {
 // Display the value of the loaded variable score in the Output window
 trace(this.score);
 } else {
 trace("No variables were found");
 }
}

Note, however, that a success of true does not guarantee that the variables were properly formatted or useful, it merely

indicates that the HTTP response's content was not empty. Occasionally, variable data is not received properly even when
success is true. For example, a server-side script may have sent the wrong data, or stale data may have been read out of

the browser cache. It is good practice to test explicitly for the variables we expect to receive before using them. For example,
here we test for the variable msg before using it:

function handleLoad (success) {
 if (success) {
 // Check for msg
 if (this.msg != undefined) {
 // It's safe to proceed...
 } else {
 // msg didn't arrive...abort, or try loading the variables again...
 }
 } else {
 trace("No variables were found");
 }
}

The onLoad() handler alleviates the need to write custom polling code that waits for data to arrive after invoking load() or
sendAndLoad(). For a complete example showing onLoad() and variable preloading techniques, see
LoadVars.getBytesLoaded() and LoadVars.sendAndLoad().

See Also

LoadVars.getBytesLoaded(), LoadVars.load(), LoadVars.onData(), LoadVars.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.send() Method Flash 6

transfer URL-encoded variables to a server-side application
or script

loadVarsObject.send(url, target)
loadVarsObject.send(url, target, method)

Arguments

url

A string specifying the absolute or relative location of the external script or application that receives the variables.
target

A string specifying the name of the browser window or frame into which to load results. Can be a custom name or one of the four
presets: "_blank", "_parent", "_self", or "_top".

method

An optional string specifying the HTTP method by which to send the properties of loadVarsObject to an external

script—either "GET" or "POST". If omitted, it defaults to "POST". The Standalone Flash Player for Windows always uses the

"GET" method, regardless of the method specified. See Appendix F for details on support for GET and POST.

Returns

A Boolean indicating whether the method executed successfully. Note that the return value is less useful than it appears. When passed any
value for url (including undefined!), send() returns true. When invoked with no arguments, send() returns false.

Description

The send() method converts all properties of loadVarsObject to a string of URL-encoded variables, which it then sends to url in

an HTTP request, using the method specified by method. If the script or application at url outputs a result, it is displayed in the

browser frame or window specified by target. If the movie is running in the Standalone Player, the system's default browser is

launched. See the global getURL() function for a detailed explanation of the target and method parameters. For an explanation of

URL encoding, see the Description heading of the LoadVars class. The URL-encoded string sent to url can be viewed locally via the

LoadVars.toString() method.

Note that the getURL() function also can pass variables to a remote script, but it is less convenient than LoadVars.send() because it
requires the use of a movie clip to hold the variables.

Bugs

Macromedia's documentation states that when the target parameter is not specified, the script at url is executed, but the results are

discarded. However, in Flash Player 6, tests show that when target is not specified, the send() the method fails to execute the script at

url.

Example

The following code uses a LoadVars object to send the properties name and age as URL-encoded variables to the script userFind.pl:

// Create the LoadVars object
varSender = new LoadVars();

// Assign properties to the varSender object
// These are the variables sent to the server
varSender.name = "Bruce";
varSender.age = "13";

// Send variables to server, and catch reply in a new browser window
varSender.send("http://www.someserver.com/cgi-bin/userFind.pl", "_blank", "GET");

See Also

getURL(), LoadVars.onLoad(), LoadVars.sendAndLoad(), LoadVars.toString()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.sendAndLoad() Method Flash 6

transfer variables to a server-side application and receive
variables in return

loadVarsObject.sendAndLoad(url, targetObject)
loadVarsObject.sendAndLoad(url, targetObject, method)

Arguments

url

A string specifying the absolute or relative location of the external script or application that receives the Flash variables.
targetObject

A reference to the LoadVars object that will receive the server's response.
method

An optional string specifying the HTTP method by which to send the properties of loadVarsObject to an external

script—either "GET" or "POST". If omitted, it defaults to "POST". Unlike the send() method, sendAndLoad() can use "POST"
successfully in all versions of the Standalone Player. See Appendix F for details on support for GET and POST.

Returns

A Boolean indicating whether the method executed successfully. Note that because the sendAndLoad() operation is asynchronous, the return
value indicates only whether the operation commenced successfully; it may still eventually fail, in which case onLoad() will be invoked with a
success value of false. The sendAndLoad() method returns false if it is passed the incorrect number of arguments (must be two or

three), if the targetObject parameter is not an object, or if the request is prohibited due to security restrictions.

Description

The sendAndLoad() method converts all properties of loadVarsObject (excluding the contentType and loaded properties) to

a string of URL-encoded variables, which it then sends to url in an HTTP request, using the method specified by method. The script or

application at url is expected to return a string of URL-encoded variables, which are downloaded into the Player and converted to

targetObject properties, as described under LoadVars.load(). The targetObject's onLoad() handler executes when the

properties become available. All properties are typed as strings.

Though a single LoadVars object can be used to both send and receive variables, it's best to separate the two operations into two LoadVars
objects, as shown in the following Example. This keeps outgoing and incoming data confined to its own object and prevents unwanted
transmission of the receiving object's properties, such as the loadVarsObject.onLoad handler.

For security reasons, LoadVars.sendAndLoad() works only with hosts in the domain from which the movie was downloaded. For more
information, see System.security.

Usage

In practice, the sendAndload() and load() methods may not trigger a download if the variables at url are cached by the browser hosting the

Flash movie. See LoadVars.load() for techniques that force the browser to bypass its cache.

Example

The following code uses a LoadVars object to send variables to the script lookup.pl. The varReceiver object catches the response sent

by lookup.pl:

// Create the LoadVars objects. One to send...
varSender = new LoadVars();
// ...and one to receive.
varReceiver = new LoadVars();

// Assign properties to the sender, which will be the variables sent to the server.
varSender.name = "Bruce";
varSender.age = "13";

// Assign a callback function to the varReceiver's onLoad property.
// The handler will process the variables when they arrive.
varReceiver.onLoad = function () {
 // We can access the loaded variables as properties of this, as in this.age.
 // We use a for-in loop to list the properties of the varReceiver object.
 // Note that the loaded and contentType properties are not enumerated.
 for (p in this) {
 // We don't want to list the onLoad property, so check if the
 // current property is a string. If it is...
 if (typeof this[p] = = "string") {
 // ...show its value in the Output window. All loaded
 // variables are received as strings.
 trace("The variable " + p + " has the value " + this[p]);
 }
 }
}

// Before sending our variables, we'll display them
// in the Output window. (Good for debugging)
trace("Sending " + varSender.toString());

// Now send the variables to the server, and wait for a reply
varSender.sendAndLoad("http://www.yourserver.com/cgi-bin/lookup.pl",
 varReceiver, "GET");

See Also

LoadVars.load(), LoadVars.onLoad(), LoadVars.send(), LoadVars.toString()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LoadVars.toString() Method Flash 6

retrieve the same URL-encoded string of variables that
would be sent by send() or sendAndLoad()

loadVarsObject.toString()

Returns

A string of URL-encoded variables.

Description

The toString() method returns the enumerable properties of loadVarsObject as a string of URL-encoded variables (the

enumerable properties are those exposed to a for-in loop). It returns the same data that would be sent to a server script in a send() or
sendAndLoad() call, which is handy for debugging. Properties are added to the returned string in the reverse order of their creation (the
most recently created property is first in the string, followed by the second most recently created, and so on). Each property's value is
converted to a string before being URL encoded.

Example

loadedVars = new LoadVars();
loadedVars.day = 22;
loadedVars.month = "Feb.";
loadedVars.year = 2002;

// Displays: year=2002&month=Feb%2E&day=22
// Notice that the '.' after "Feb" is converted to the hex value %2E.
// See the Description heading of the LoadVars class for details on URL encoding
trace(loadedVars.toString());

See Also

LoadVars.onLoad(), LoadVars.send(), LoadVars.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LocalConnection Class Flash 6

transmit data directly between movies running on the same
system

Constructor

new LocalConnection()

Methods

close()

Stop a connection from receiving messages.
connect()

Open a named connection.
domain()

Returns a string indicating the movie's subdomain.
send()

Invoke a method on a remote LocalConnection object.

Event Handlers

allowDomain()

Callback to permit or deny a cross-domain connection attempt.
onStatus()

Callback indicating initial status of a send() invocation.

Description

The LocalConnection class lets movies running in different Flash Players communicate with each other. The
Players must be running on the same computer, but they can be embedded in any application. For example,
movies running in the Netscape Flash 6 plugin, the Internet Explorer ActiveX Flash Player, and the Standalone
Flash Player can all communicate with each other as long as they are running on the same machine. To transfer
information between two Flash Players running on different machines use XML, LoadVars, XMLSocket, or the
Macromedia Flash Communication Server MX (Comm Server).

All LocalConnection applications involve at least two LocalConnection objects, one in the receiver (the movie
that receives messages) and one in the sender (the movie that sends messages). Although, in practice, both
movies may act as both senders and receivers, let's start with simple one-way communication for illustration
purposes.

The first line of code in the receiver is:

receiveConn = new LocalConnection();

And the first line in the sender is:

sendConn = new LocalConnection();

Once the receiver and sender have each created a LocalConnection object, they must agree in advance on a name
for the connection. On the receiver's end, the connection name is specified when the connection is opened.
However, the connection should not be opened until the receiver has defined methods that the sender will invoke
remotely. These methods form the basis of all intermovie communication. For example, here we define a method
on our receiveConn object that displays a supplied argument in a text field:

// Create the text field
this.createTextField("received_txt", 1, 50, 100, 400, 100);
received_txt.border = true;

// Define the method
receiveConn.displayMsg = function (msg) {
 received_txt.text = msg;
}

With the receiveConn.displayMsg() method defined, we now can safely open the receiver's connection. On the
receiver side, we use the connect() method to start listening for messages. The connection name is supplied as an
argument to the connect() method; in the following line, it is "channel1":

receiveConn.connect("channel1");

Our receiver movie is now open for business. All that's left to do is send a request from the sender to invoke
displayMsg() on the receiver movie. The sender uses the send() method to perform remote method invocations.
Arguments to send() specify the connection name ("channel1"), the method to invoke ("displayMsg"), and the
method argument(s) ("hello world"), as follows:

sendConn.send("channel1", "displayMsg", "hello world");

Here is the complete code required to establish basic LocalConnection communication:

// CODE IN THE RECEIVING MOVIE
receiveConn = new LocalConnection();
receiveConn.methodName = function (param1, param2) {
 // statements
}
receiveConn.connect("connectionName");

// CODE IN THE SENDING MOVIE
sendConn = new LocalConnection();
sendConn.send("connectionName", "methodName", "value1", "value2");

For security reasons, when the sender and receiver are posted at different domains, they cannot, by default,
communicate over a LocalConnection. See LocalConnection.allowDomain() for details on allowing movies to
communicate across domains. All movies running on the local filesystem are considered in the same domain
("localhost"), and are therefore not subject to security restrictions.

Communication over LocalConnection is many-to-one, from the sender's perspective. Any number of senders can
send messages to a specific named connection, but only one receiver can listen on that connection. If a different
receiver tries to open a named connection that is already open, the latter connection attempt fails, and the
connect() method returns false.

A LocalConnection object can act as both a sender and a receiver, allowing two objects to engage in bidirectional
communication. For sample code, see the Example heading under LocalConnection.onStatus().

Prior to Flash 6, local intermovie communication could be achieved only with fscommand() and JavaScript, and
only in specific browser/platform combinations. See fscommand() for details.

See Also

fscommand()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LocalConnection.allowDomain() Event Handler Flash 6

callback to permit or deny a cross-domain connection
attempt

receiveConn.allowDomain(domain)

Arguments

domain

A string representing the sender's subdomain.

Returns

true if the connection is allowed, otherwise false.

Description

The allowDomain() event is triggered on a receiving LocalConnection object whenever a message is received. The allowDomain()
callback is expected to permit or deny the connection attempt by returning a value of true (permitted) or false (denied). When the

sender and receiver are loaded from the same domain, including the same localhost, Flash automatically permits all connections, and
allowDomain() should not be used. However, when the sender and receiver are loaded from separate domains, a connection is not allowed
unless allowDomain() is implemented and returns true. When implemented, allowDomain() normally compares the value of its

domain parameter with a list of trusted hosts. Note that LocalConnection.allowDomain() is a callback handler that returns whether to

allow a connection. Unlike Security.settings.allowDomain(), it is not a method to be configured once with the names of allowed
subdomains.

The following receiver movie code creates a LocalConnection object that opens a connection named "channel1":

// Create a text field to display messages
this.createTextField("output_txt", 1, 50, 100, 400, 100);
output_txt.border = true;

// Create the connection object
receiveConn = new LocalConnection();
// Assign a method to be invoked remotely
receiveConn.displayMsg = function (msg) {
 output_txt.text += msg + "\n";
}

// Attempt to open a connection named "channel1". Store the result in a variable.
connectSuccess = receiveConn.connect("channel1");
// Display whether the connection succeeded
output_txt.text = "Receiver connection succeeded? " + connectSuccess + "\n";

Now suppose we post this receiver movie at http://www.graydient.com, and we want to allow messages from moock.org only (not even
from graydient.com!). Here is the callback we assign to allowDomain():

// Handle incoming messages
receiveConn.allowDomain = function (domain) {
 // If this handler is running, a new message arrived.
 // Show where the message is from.
 output_txt.text += "New message from: " + domain + "\n";

 // Now the key decision: if the message is from moock.org...
 if (domain = = "moock.org") {
 // ...permit it
 return true;
 } else {
 // ...otherwise deny it
 return false;
 }
}

If we want to allow messages from moock.org and the current receiving movie's subdomain (in this case graydient.com), we can use the
domain() method, which returns a string indicating the movie's subdomain:

// Handle incoming messages
receiveConn.allowDomain = function (domain) {
 // Show where the message is from
 output_txt.text += "New message from: " + domain + "\n";

 // If the message is from moock.org or the receiver's domain...
 if (domain = = "moock.org" || domain = = this.domain()) {
 // ...permit it
 return true;
 } else {
 // ...otherwise deny it
 return false;
 }
}

Or, more succinctly:

receiveConn.allowDomain = function (domain) {
 return domain = = "moock.org" || domain = = this.domain();
}

Our receiver work is done, but there's still a minor issue to contend with—the sender movie must identify the connection name correctly
when sending messages. When it opened the connection, receiveConn set the connection name as "channel1", but in order to prevent

connection name conflicts across domains, Flash automatically prefixes the connection name with the movie's subdomain and a colon. For
example, when our receiver movie is posted at graydient.com, the actual connection name is not "channel1", but "graydient.com:channel1".
Hence, when specifying the connection name in the sender, we must use:

sendConn = new LocalConnection();
// Add domain name of receiver to connection name
sendConn.send("graydient.com:channel1", "displayMsg", "hello world");

If we know our receiver will receive messages only while posted at graydient.com, we're done. However, if we want to receive connections
no matter where our receiver is posted, the plot gets a little thicker. For example, suppose we want to run a receiver both on the local
filesystem (domain name "localhost") and on graydient.com. When we invoke the connect() method from a movie residing on
graydient.com:

receiveConn.connect("channel1");

the final connection name becomes "graydient.com:channel1". But when we invoke the connect() method from a movie residing on the
local filesystem, the final connection name becomes "localhost:channel1". Obviously, the sender cannot specify both connection names at

once. The solution is to instruct Flash not to prefix the connection name with the domain name, by adding a leading underscore (_). For

example:

receiveConn.connect("_channel1");

With no prefix domain, the sender can now address the connection directly as follows:

sendConn.send("_channel1", "displayMsg", "hello world");

Note, however, that names starting with an underscore will conflict across domains. For example, if a receiver at oreilly.com opens a
connection named "_bookComm", and then moock.org opens a connection by the same name, the connection at moock.org will fail. Hence,
use unique names when a leading underscore is specified (for example: "_org.moock.channel1").

See Also

LocalConnection.connect(), LocalConnection.domain(), LocalConnection.send(), Security.settings.allowDomain()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LocalConnection.close() Method Flash 6

stop a connection from receiving messages

receiveConn.close()

Returns

A Boolean—true if an open connection was closed, false if no open connection was found for

receiveConn.

Description

The close() method is used only by a receiving LocalConnection object to close an open connection, thus
preventing future senders from invoking its methods. For example, the following code opens a connection
named "channel2", making displayMsg() eligible for remote execution:

receiveConn = new LocalConnection();
receiveConn.displayMsg = function (msg) {
 output_txt.text += msg + "\n";
}
receiveConn.connect("channel2");

Later, we can close the "channel2" connection by invoking close():

receiveConn.close();

Closing the connection prevents all senders from invoking displayMsg(). A LocalConnection object can
maintain only one open connection at a time. Hence, close() does not take the name of a connection to close as
a parameter. Note that close() applies only to receivers; a LocalConnection object that only sends messages
need not open or close a connection.

See Also

LocalConnection.connect()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LocalConnection.connect() Method Flash 6

open a named connection

receiveConn.connect(connectionName)

Arguments

connectionName

A string name for the connection.

Returns

A Boolean—true if the connection opened successfully, false if the operation failed (for example, if a

connection named connectionName already exists in any Player or if receiveConn already has an

open connection).

Description

The connect() method is used by a receiving LocalConnection object to open a connection, thus enabling future
senders to invoke its methods. All methods should be defined before connect() is invoked. For example, the
following code creates a LocalConnection object, then defines its methods, then opens a connection named
"channel3" (making displayMsg() eligible for remote execution):

receiveConn = new LocalConnection();
receiveConn.displayMsg = function (msg) {
 output_txt.text += msg + "\n";
}
receiveConn.connect("channel3");

By checking the return value of connect(), we can respond gracefully to connection attempt failures. For
example:

connectSuccess = receiveConn.connect("channel3");
if (connectSuccess) {
 // ...proceed with application
} else {
 // ...display failure screen
}

When connectionName does not start with an underscore (_), the name specified is automatically

prefixed with receiveConn's subdomain and a colon (e.g., "channel3" becomes "oreilly.com:channel3" if

the movie is posted at www.oreilly.com). When connectionName starts with an underscore, no prefix is

applied.

Senders invoking remote methods on receiveConn must match the final connection name (automatic

prefix + connectionName) when invoking send(). See LocalConnection.allowDomain() and

LocalConnection.send() for a discussion of connection name matching.

A LocalConnection object can maintain only one open connection at a time and cannot open a connection with a
connection name that is already in use. To close an open connection, use LocalConnection.close().

See Also

LocalConnection.allowDomain(), LocalConnection.close(), LocalConnection.send()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LocalConnection.domain() Method Flash 6

returns a string indicating the movie's subdomain

localConn.domain()

Returns

The movie's subdomain, as a string.

Description

The domain() method simply returns the so-called subdomain of the current movie, as a string. For one- and
two-component domain names, such as apollo and oreilly.com, the subdomain is identical to the complete
domain. For domain names with three or more components, such as www.moock.org or
events.news.thedailybugle.com, the subdomain is defined as everything after the first dot, in this case
"moock.org" and "news.thedailybugle.com". For movies running on the local filesystem, domain() returns
"localhost". The subdomain is used for a variety of security checks in the Flash Player, including LoadVars and
XML network communication.

The domain() method is used by LocalConnection objects communicating across domains. It lets us specify the
subdomain of a sender or receiver movie without knowing its name beforehand. For example, the following
code allows messages from a sender at either oreilly.com or the same domain as the receiver (whatever that
domain happens to be):

receiveConn.allowDomain = function (domain) {
 return domain = = "oreilly.com" || domain = = this.domain();
}

See Also

LocalConnection.allowDomain(), LocalConnection.send(), MovieClip._url,

System.security.allowDomain()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LocalConnection.onStatus() Event Handler Flash 6

callback indicating initial status of a send() invocation

sendConn.onStatus(infoObject)

Arguments

infoObject

An object indicating the status of the most recent send() operation.

Description

The onStatus() event is triggered whenever LocalConnection.send() is invoked by sendConn. It tells us whether the send() operation

found a valid connection that matched the specified connectionName. The onStatus() callback receives a single argument,

infoObject, whose level property will have the value "error" if the specified connectionName was not found, or "status" if it

was found. This handler is used for debugging and error-handling code. For example:

sendConn.onStatus = function (infoObject) {
 if (infoObject.level = = "status") {
 trace("Connection found.");
 } else if (infoObject.level = = "error") {
 trace("No connection found.");
 // ...handle the failed connection attempt...
 }
}

Even if infoObject.level is "status" (a connection is found), the connection may not be accepted by the receiver, and the receiver may

not define the specified method. For information on allowing cross-domain connections, see LocalConnection.allowDomain(). To verify that a
method was successfully invoked, the receiver must call a reply method on the sender, as shown in the following Example.

Example

The following code shows a sender object that invokes displayMsg() on a receiver object. The receiver object responds by invoking
methodReturn() on the sender. If no connection is found, the sender displays a debugging message. Notice how each LocalConnection object
acts as both a sender and a receiver, but we'll refer to the primary sender as "the sender" and the primary receiver as "the receiver" for
convenience. In the following example, the remote invocation is transacted over "channelA" (which is opened by the receiver and accessed by
the sender), and the response is transmitted over "channelB" (which is opened by the sender and accessed by the receiver). This relies on both
the sender and receiver agreeing on the channel names ahead of time. Furthermore, it assumes that both the sending and receiving movies are
hosted on the same subdomain. Refer to the Discussion under LocalConnection.send() for dealing with senders and receivers hosted on
different domains.

Here is the code in the sender:

// Create a text field to display messages
this.createTextField("sendOutput_txt", 1, 50, 100, 400, 100);
sendOutput_txt.border = true;

// Create the sender LocalConnection object
sendConn = new LocalConnection();
// Create a method to catch receiver method return values
sendConn.methodReturn = function (result) {
 sendOutput_txt.text += result + "\n";
}

// Attempt to open a connection named "channelB" to be used for the response
connectSuccess = sendConn.connect("channelB");

// Display whether the connection succeeded
sendOutput_txt.text = "Sender connection succeeded: " + connectSuccess + "\n";

// Invoke displayMsg() remotely using "channelA",
// which hopefully the receiver opened
sendConn.send("channelA", "displayMsg", "hello world");

// Check whether the connection is available
sendConn.onStatus = function (infoObject) {
 if (infoObject.level = = "status") {
 sendOutput_txt.text += "Connection found.\n";
 } else if (infoObject.level = = "error") {
 sendOutput_txt.text += "No connection found.\n";
 }
}

And here is the code in the receiver:

// Create a text field to display messages
this.createTextField("receiveOutput_txt", 1, 50, 100, 400, 100);
receiveOutput_txt.border = true;

// Create the LocalConnection object
receiveConn = new LocalConnection();

// Assign a method to be invoked remotely
receiveConn.displayMsg = function (msg) {
 receiveOutput_txt.text += msg + "\n";
 // Let the sender know the method was called. Response is sent on "channelB"
 this.send("channelB", "methodReturn", "displayMsg() called");
}

// Attempt to open a connection named "channelA" to be used to receive messages
connectSuccess = receiveConn.connect("channelA");

// Display whether the connection succeeded
receiveOutput_txt.text = "Receiver connection succeeded: " + connectSuccess + "\n";

See Also

LocalConnection.allowDomain(), LocalConnection.connect(), LocalConnection.domain(), LocalConnection.send()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

LocalConnection.send() Method Flash 6

invoke a method on a remote LocalConnection object

localConn.send(connectionName, methodName, arg1, arg2,...argn)

Parameters

connectionName

The string name of the connection on which to invoke methodName, as set by the receiver's connect(

) method.
methodName

The string name of the method to invoke on the receiver. Must not be one of the following reserved
words: "send", "connect", "close", "domain", "onStatus", or "allowDomain".

arg1, ...argn

Optional arguments to pass to methodName.

Returns

A Boolean—true if the send() structure is syntactically correct, otherwise false.

Description

The send() method sends a request to invoke the methodName at the connection specified by

connectionName. The send() method can transfer a maximum of 40 KB of data. The optional arguments

passed can be any datatype (Boolean, object, number, etc.). If an object is sent, its class is retained only if it is
registered on both sides of the LocalConnection using Object.registerClass(). See Object.registerClass() for
more details.

When the sender and receiver movies are both loaded from the same domain, the connectionName for

send() should simply match the connectionName specified by the receiver's connect() method. When

the sender and receiver movies are loaded from different domains, the final connection name generated by Flash
for the sender must match the final name generated for the receiver.

For the sender, the final connection name is generated as follows:

If the connectionName passed to send() does not start with an underscore (_) and contains no

colon (:), the sender's subdomain and a colon are prefixed to connectionName. For example, a

connectionName of "channel1" resolves to a final name of

"senderdomain.com:channel1" (where senderdomain.com is the subdomain of the

sending movie).

If the connectionName passed to send() contains a colon, the specified value is used verbatim. For

example, a connectionName of "moock.org:channel1" remains unchanged.

If the connectionName passed to send() starts with an underscore, the specified value is used

verbatim. For example, a connectionName of "_channel1" remains unchanged.

For the receiver, the final connection name is generated as follows:

If the connectionName passed to connect() does not start with an underscore and contains no

colon, the receiver's subdomain and a colon are prefixed to connectionName. For example, a

connectionName of "channel1" resolves to a final name of

"receiverdomain.com:channel1" (where receiverdomain.com is the

subdomain of the receiving movie).

If the connectionName passed to connect() starts with an underscore, the specified value is used

verbatim. For example, a connectionName of "_channel1" remains unchanged.

On the receiver, the connectionName format "moock.org:channel1" cannot be used (the

receiver is not allowed to specify its own subdomain). Table 18-10 shows the specified and final connection
name values for both the sender and receiver, and indicates whether each combination would match when the
movies are running on the same domain or on different domains. For a full discussion of connection name
matching, including overriding the security restrictions across domains, see LocalConnection.allowDomain().

Table 18-10. Connection name matching

Sender
specified

Sender final
Receiver
specified

Receiver final
Same domain

match?
Different domain match?

name senddomain:name name recdomain:name Yes
No (The automatic
subdomain prefixes would
not match.)

name senddomain:name _name _name

No (No
subdomain is
used by the
receiver.)

No

_name _name name recdomain:name

No (No
subdomain is
used by the
sender.)

No

_name _name _name _name Yes
Yes (But allowDomain()
must permit the
connection.)

subdomain:name subdomain:name name subdomain:name

Yes, if sender's
specified
subdomain
matches
receiver's actual
subdomain

Yes (But allowDomain()
must permit the
connection, and sender's
specified subdomain must
match receiver's actual
subdomain.)

subdomain:name subdomain:name _name _name

No (No
subdomain is
used by the
receiver.)

No

See Also

LocalConnection.allowDomain(), LocalConnection.connect(), LocalConnection.domain()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math
Object

Flash 5; can be used when exporting Flash 4
movies

access to mathematical functions and constants

Math.propertyName
Math.methodName()

Properties

E

The constant e, the base of natural logarithms, approximately 2.71828.
LN10

The natural logarithm of 10 (loge10), approximately 2.30259.
LN2

The natural logarithm of 2 (loge2), approximately 0.69315.
LOG10E

The base-10 logarithm of e, approximately 0.43429.
LOG2E

The base-2 logarithm of e, approximately 1.44270.
PI

The ratio of a circle's circumference to its diameter, approximately 3.14159.
SQRT1_2

The reciprocal of the square root of 2, approximately 0.70711.
SQRT2

The square root of 2, approximately 1.41421.

Methods

abs()

Compute the absolute value of a number.
acos()

Compute the arc cosine of a number.
asin()

Compute the arc sine of a number.
atan()

Compute the arc tangent of a number.
atan2()

Compute the angle of a point, relative to the x-axis.
ceil()

Round a number up to the next integer.
cos()

Compute the cosine of an angle.
exp()

Raise e to a specified power.
floor()

Return the closest integer less than or equal to the input.
log()

Compute the natural logarithm of a number.
max()

Determine the larger of two numbers.
min()

Determine the smaller of two numbers.
pow()

Raise a number to a specified power.
random()

Retrieve a random floating-point number between 0 and 1.
round()

Calculate the closest integer to a number.
sin()

Compute the sine of an angle.
sqrt()

Compute the square root of a number.
tan()

Compute the tangent of an angle.

Description

The Math object provides access to built-in mathematical functions (accessed through methods) and constant
values (accessed through properties). These functions and constants are used to perform potentially complex
calculations with relative ease.

Note that the properties and methods of the Math object can be used in movies exported in Flash 4 format, in
which case Flash will approximate the calculations. The resulting values are reasonable approximations, but they
are not necessarily identical to the native functions supported in Flash 5 and later. The Flash 4 values are
sufficiently accurate for "close-enough" applications, such as graphics display, but are not accurate enough for
critical financial or engineering calculations.

Note that the trigonometric functions require angles to be measured in radians, whereas Flash's
MovieClip._rotation property is measured in degrees. There are 2 radians in a circle (1 radian is

approximately 57.3 degrees). To convert from radians to degrees, use the formula:

degrees = (radians / Math.PI) * 180;

To convert from degrees to radians, use the formula:

radians = (degrees / 180) * Math.PI;

Flash automatically converts all Math object constants to literal numbers at compile-time.

See Also

Section 4.1

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.abs()
Method

Flash 5; can be used when exporting Flash
4 movies

compute the absolute value of a number

Math.abs(x)

Arguments

x

Any integer or floating-point number.

Returns

The absolute value of x (a positive number of magnitude x).

Description

The abs() method calculates the distance between x and 0 (i.e., the absolute value of x). It leaves zero and

positive numbers unchanged and converts negative numbers into positive numbers of the same magnitude. It is
useful for calculating the difference between two numbers without regard to which is larger. For example, it is
useful when calculating the distance between two points, because distances are always positive.

Example

Math.abs(-5); // Returns 5

// Calculate the difference between two numbers
function diff (num1, num2) {
 return Math.abs(num1-num2);
}

diff(-5, 5); // Returns 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.acos()
Method

Flash 5; can be used when exporting
Flash 4 movies

compute the arc cosine of a number

Math.acos(x)

Arguments

x

A number between -1.0 and 1.0 (the cosine of an angle).

Returns

The angle, in radians, whose cosine is x. If x is not in the range -1.0 to 1.0, returns NaN.

Description

The arc cosine function (sometimes written as cos-1) is the inverse of the cosine function. It returns the angle
whose cosine has the specified value, in radians. The return value is in the range of 0 to (i.e., 0 to 3.14159).

Example

trace (Math.acos(1.0)); // Displays: 0
trace (Math.acos(0.0)); // Displays: 1.5707... (i.e., pi/2)

See Also

Math.asin(), Math.atan(), Math.cos()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.asin()
Method

Flash 5; can be used when exporting
Flash 4 movies

compute the arc sine of a number

Math.asin(x)

Arguments

x

A number between -1.0 and 1.0 (the sine of an angle).

Returns

The angle, in radians, whose sine is x. If x is not in the range -1.0 to 1.0, returns NaN.

Description

The arc sine function (sometimes written as sin-1) is the inverse of the sine function. It returns the angle whose
sine has the specified value, in radians. The return value is in the range of - /2 to /2 radians.

Example

trace (Math.asin(1.0)); // Displays: 1.5707... (i.e., pi/2)
trace (Math.asin(0.0)); // Displays: 0

See Also

Math.acos(), Math.atan(), Math.sin()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.atan()
Method

Flash 5; may be used when exporting
Flash 4 movies

compute the arc tangent of a number

Math.atan(x)

Arguments

x

A number between -Infinity and Infinity, inclusive (the tangent of some angle).

Returns

The angle, in radians, whose tangent is x.

Description

The arc tangent function (sometimes written as tan-1) is the inverse of the tangent function. It returns the angle
whose tangent has the specified value, in radians. The return value is in the range of - /2 to /2.

Example

trace (Math.atan(1.0)); // Displays: 0.78539...
trace (Math.atan(0.0)); // Displays: 0
trace (Math.atan(-Infinity)); // Displays: -1.5707... (i.e., -pi/2)

See Also

Math.acos(), Math.asin(), Math.tan()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.atan2()
Method

Flash 5; may be used when exporting
Flash 4 movies

determine an angle based on a point

Math.atan2(y, x)

Arguments

y

The y-coordinate of the point.
x

The x-coordinate of the point.

Returns

The angle, in radians, of the point (x, y) from the center of a circle, measured counterclockwise from the circle's positive horizontal axis

(i.e., the X-axis). Ranges from to - . (Negative values indicate angles below the X-axis).

Description

The atan2() method, like atan(), performs an arc tangent calculation but uses x- and y-coordinates, rather than their ratio, as arguments.
That is, calculating an arc tangent with atan2() as:

Math.atan2(9, 3); // Yields 1.24904577239825

is equivalent to calculating the arc tangent with atan(), using the ratio of 9/3 (or 3), as follows:

Math.atan(3); // Same thing

Usage

Note that the y-coordinate is passed as the first argument to atan2(), whereas the x-coordinate is passed as the second argument. This is
intentional and required. It mirrors the structure of tangent, which is the ratio of the side opposite an angle (y) divided by the side adjacent
to the angle (x).

Example

The atan2() method can be used to make a movie clip point toward a moving target. The following example, available at the online Code
Depot, adds a custom method, rotateTowardsMouse(), to all movie clips. It then assigns rotateTowardsMouse() to the onEnterFrame()
handler of the clip triangle_mc, so that with every passing frame, the clip rotates towards the mouse pointer. The same technique

could be used to orient an enemy spaceship toward a player's spaceship.

// Convert radians to degrees. There are 2*pi radians per 360 degrees.
_global.radiansToDegrees = function (radians) {
 return (radians/Math.PI) * 180;

}

// Method: MovieClip.rotateTowardsMouse()
// Desc: Rotates a clip's positive x-axis towards the mouse pointer.
MovieClip.prototype.rotateTowardsMouse = function () {
 // Create a point object that stores the x- and y-coordinates of
 // this clip relative to its parent's registration point.
 var point = {x:this._x, y:this._y};
 // Convert the clip's parent's local coordinates to global (Stage) coordinates.
 this._parent.localToGlobal(point);
 // Measure the distance between the registration
 // point of this clip and the mouse.
 var deltaX = _root._xmouse - point.x;
 var deltaY = _root._ymouse - point.y;
 // Calculate the angle of the line from the registration point
 // of this clip to the mouse. Note that the y-coordinate is passed first.
 var rotationRadian = Math.atan2(deltaY, deltaX);
 // Convert the radian version of the angle to degrees.
 var rotationAngle = radiansToDegrees(rotationRadian); // See earlier function
 // Update the rotation of this clip to point to the mouse.
 this._rotation = rotationAngle;
}

// Call rotateTowardsMouse() on every frame.
triangle_mc.onEnterFrame = rotateTowardsMouse;

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.ceil()
Method

Flash 5; can be used when exporting Flash
4 movies

round a number up to the next integer

Math.ceil(x)

Arguments

x

A number.

Returns

The next integer greater than or equal to x.

Description

The ceil() (i.e., ceiling) method converts a floating-point number to the first integer greater than or equal to x. It

leaves integers unchanged.

Example

Math.ceil(1.00001); // Returns 2
Math.ceil(5.5); // Returns 6
Math.ceil(-5.5); // Returns -5
Math.ceil(3); // Returns 3

See Also

Math.floor(), Math.round()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.cos()
Method

Flash 5; can be used when exporting Flash
4 movies

compute the cosine of an angle

Math.cos(theta)

Arguments

theta

An angle, in radians (not degrees), normally in the range of 0 to 2 , although any angle will suffice, as cosine is a
periodic function.

Returns

The cosine of theta (the result is in the range of -1.0 to 1.0).

Description

The cos() function returns the trigonometric cosine of an angle. In a right triangle, the cosine of an angle is the result of
dividing the length of the side adjacent to the angle by the triangle's hypotenuse.

Usage

Note that cos() expects angles to be provided in radians, not degrees.

Example

trace (cos(0)); // Displays: 1.0
trace (cos(Math.PI)); // Displays: -1.0

The cos() function can be used along with sin() to calculate a point on a circle, which we use in the following example to
move a movie clip in a circular path. Given the radius of a circle, r, and an angle, xxxthetaxxx, measured counterclockwise
from the positive horizontal axis, a point's location is (r*cosxxxthetaxxx, r*sinxxxthetaxxx):

// Global Function: degreesToRadians()
// Converts degrees to radians. There are 2*pi radians per 360 degrees.
_global.degreesToRadians = function (degrees) {
 return (degrees/180) * Math.PI;
}

// Method: MovieClip.moveInCircle()
// Desc: Starts moving the clip around a circular path.
// Params: radius Radius of circle path.
// x Horizontal center of circular path.
// y Vertical center of circular path.
// degPerFrame Number of degrees to move per frame rendered.

MovieClip.prototype.moveInCircle = function (radius, x, y, degPerFrame) {
 var deg = 0; // Angle of object in degrees, measured
 // counterclockwise from the horizon (X-axis).

 // Assign a movement function to run once per frame.
 this.onEnterFrame = function () {
 // Increase the rotation angle by 5 degrees
 deg += degPerFrame;

 // Place the object. Note that Flash inverts the Y-axis of Cartesian
 // coordinates so we decrement y to obtain our new location.
 var rotAngRad= degreesToRadians(deg);
 this._x = x + Math.cos(rotAngRad) * radius;
 this._y = y - Math.sin(rotAngRad) * radius;
 }
}

// Usage:
ball_mc.moveInCircle(100, 200, 200, 5);

See Also

Math.acos(), Math.PI, Math.sin(), Math.tan()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.E
Property

Flash 5; can be used when exporting Flash 4
movies

the constant e (the base of the natural logarithm)

Math.E

Description

The E property stores an approximation of the natural logarithmic base (roughly 2.71828), which in

mathematics is represented by the symbol e. It is a transcendental number, like , used in mathematical
equations involving growth or change. Don't confuse it with the E that is used for exponential notation, as
described in Section 4.3.2. The two are unrelated.

See Also

Math.log(), Math.LN10, Math.LN2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.exp()
Method

Flash 5; can be used when exporting Flash
4 movies

raise the constant e to a specified power

Math.exp(x)

Arguments

x

The exponent to which to raise Math.E.

Returns

Math.E to the power x .

See Also

Math.E, Math.LN10, Math.LN2, Math.log(), Math.LOG10E, Math.pow()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.floor()
Method

Flash 5; can be used when exporting
Flash 4 movies

round a number down to the previous integer

Math.floor(x)

Arguments

x

A number.

Returns

The closest integer less than or equal to x.

Description

The floor() method converts a floating-point number to the first integer less than or equal to x. It leaves

integers unchanged.

Example

Math.floor(1.99999); // Returns 1
Math.floor(5.5); // Returns 5
Math.floor(-5.5); // Returns -6
Math.floor(3); // Returns 3

function minutesToHHMM (minutes) {
 var hours = Math.floor(minutes/60);
 minutes -= hours * 60;
 minutes = minutes < 10 ? "0" + minutes : minutes;
 return hours + ":" + minutes;
}

See Also

Math.ceil(), Math.round()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.LN10
Property

Flash 5; can be used when exporting
Flash 4 movies

natural logarithm of 10 (loge10), approximately 2.30259

Math.LN10

Description

The LN10 property represents the natural logarithm of 10 (the base-e logarithm of 10), a constant equaling

approximately 2.30259.

See Also

Math.exp(), Math.LN2, Math.LOG10E

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.LN2
Property

Flash 5; can be used when exporting Flash
4 movies

natural logarithm of 2 (loge2), approximately 0.69315

Math.LN2

Description

The LN2 property represents the natural logarithm of 2 (the base-e logarithm of 2), a constant equaling

approximately 0.69315

See Also

Math.exp(), Math.LN10, Math.LOG10E

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.log()
Method

Flash 5; can be used when exporting Flash
4 movies

compute the natural logarithm of a number

Math.log(x)

Arguments

x

A positive integer.

Returns

The natural logarithm of x.

Description

The log() method calculates the natural logarithm (i.e., the base-e logarithm) of a number. See the following
Example to calculate the base-10 logarithm.

Example

trace (Math.log(Math.E)); // Displays: 1

// Compute the base-10 logarithm of a number
function log10 (x) {
 return (Math.log(x) / Math.log(10));
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.LOG10E
Property

Flash 5; can be used when exporting
Flash 4 movies

base-10 logarithm of e, approximately 0.43429

Math.LOG10E

Description

The LOG10E property represents the common logarithm of e (the base-10 logarithm of e), a constant equaling

approximately 0.43429.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.LOG2E
Property

Flash 5; can be used when exporting
Flash 4 movies

base-2 logarithm of e, approximately 1.44270

Math.LOG2E

Description

The LOG2E property represents the base-2 logarithm of e (log2e), a constant equaling approximately 1.44270.

Bugs

In Flash Player 5.0.30.0, LOG2E erroneously returns the value of Math.LN2 (0.69315). This is fixed in

Flash 6.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.max()
Method

Flash 5; can be used when exporting
Flash 4 movies

determine the larger of two numbers

Math.max(x, y)

Arguments

x

A number.
y

A number.

Returns

The larger of x and y.

Description

The max() function compares two numbers and returns the larger of the two. When comparing two negative numbers, the one
with a smaller absolute value is actually larger (see the following Example). If used on strings, max() returns NaN.

Example

Math.max(5, 1); // Returns 5
Math.max(-6, -5); // Returns -5
Math.max(Math.abs(-6), Math.abs(-5)); // Returns 6

This example constrains (clips) a value to the specified range:

function constrainToRange (checkVal, minVal, maxVal) {
 return Math.min(Math.max(checkVal, minVal), maxVal);
}
// Constrain the slider to between 100 and 200
mySlider._x = constainToRange(mySlider._x, 100, 200);

This example returns the maximum value in an array:

function maxInArray (checkArray) {
 maxVal = -Number.MAX_VALUE; // Initialize maxVal to a very small number
 for (var i = 0; i < checkArray.length; i++) {
 maxVal = Math.max(checkArray[i], maxVal);
 }
 return maxVal;
}

trace(maxInArray([2,3,66,4,342,-90,0])); // Displays: 342

See Also

Math.abs(), Math.min()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.min()
Method

Flash 5; can be used when exporting Flash
4 movies

determine the smaller of two numbers

Math.min(x, y)

Arguments

x

A number.
y

A number.

Returns

The smaller of x and y.

Description

The min() function compares two numbers and returns the smaller of the two. When comparing two negative
numbers, the one with a larger absolute value is actually smaller (see the following Example). If used on strings,
min() returns NaN.

Example

Math.min(5, 1); // Returns 1
Math.min(-6, -5); // Returns -6
Math.min(Math.abs(-6), Math.abs(-5)); // Returns 5

Reader Exercise: Modify the example under Math.max() to return the minimum value in an array rather than the
maximum.

See Also

Math.abs(), Math.max()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.PI
Property

Flash 5; can be used when exporting Flash 4
movies

the ratio of a circle's circumference to its diameter,
approximately 3.14159

Math.PI

Description

The PI property represents the constant , the ratio of the circumference of a circle to its diameter.

Example

Math.PI is famously used in calculating the area of a circle:

function circleArea (radius) {
 // PI times the radius squared can also be written
 // as Math.PI * Math.pow(radius, 2)
 return Math.PI * (radius * radius);
}

See Also

Math.cos(), Math.sin()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.pow()
Method

Flash 5; can be used when exporting
Flash 4 movies

raise a number to a specified power

Math.pow(base, exponent)

Arguments

base

A number representing the base of the exponential expression.
exponent

A number representing the power (i.e., exponent) to which to raise base. If the base is negative, the

exponent must be an integer, else NaN is returned.

Returns

The base raised to the power exponent.

Description

The pow() method can be used to raise any number to any power. If exponent is negative, pow() returns 1 /

(baseabs(exponent)). If exponent is a fraction, pow() can be used to take the square root or cube root,

and so on, of a number (in which case it returns the positive root, although, mathematically, there may also be a
negative root).

Example

Math.pow(5, 2); // Returns 25 (5 squared)
Math.pow(5, 3); // Returns 125 (5 cubed)
Math.pow(5, -2); // Returns 0.04 (1 divided by 25)
Math.pow(8, 1/3); // Returns 2 (cube root of 8)
Math.pow(9, 1/2); // Returns 3 (square root of 9)
Math.pow(10, 6); // Returns 1000000 (can also be written as 1e6)

Bugs

Flash Player 5.0.30.0 did not correctly calculate Math.pow() for negative values of base. For example,

Math.pow(-2, 2) was calculated as NaN, whereas it should be 4. This was fixed in Flash Player 6.

See Also

Math.exp(), Math.sqrt(), Math.SQRT2, Math.SQRT1_2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.random()
Method

Flash 5; can be used when exporting
Flash 4 movies

generate a random number from 0 to 1.0

Math.random()

Returns

A floating-point number greater than or equal to 0.0 and less than 1.0.

Description

The random() method provides a way to produce random numbers, which can then be used to choose randomly between actions in a
script. The random() method generates a random value between 0 and .99999..., inclusive, which we can scale according to our needs.
For example, to obtain a random number between 0 and 5, we use:

Math.random() * 5

And to obtain a random integer between 1 and 6, we use:

Math.floor(Math.random() * 6) + 1

This custom function returns an integer number in a specified range rather than a floating-point number in the range 0 to 1:

// Returns a number in the range of minVal to maxVal, inclusive
function myRandom (minVal, maxVal) {
 return minVal + Math.floor(Math.random() * (maxVal + 1 - minVal));
}

// Invoke the function
dieRoll = myRandom(1, 6); // Emulates a six-sided die
trace(dieRoll);

// Note that to simulate two dice, you can use this:
twoDice = myRandom(2, 12); // The minimum value is 2, not 1

// To return the die values separately, use an array
function rollTwoDice () {
 return [myRandom(1, 6), myRandom(1, 6)];
}

Due to a bug in Flash Player 5.0.30.0, this approach is prone to an extremely rare, but potentially important inaccuracy. In Flash Player
5.0.30.0, random() generates values in the range of 0.0 to 1.0, inclusive. When we multiply the return of random() by an integer, n, we
produce values in the range of 0.0 to n. In our example, we multiplied Math.random() by 6, so that the returned value ranges from 0.0
to 6.0. By invoking floor() on the adjusted value, we produce integers in the range of 0 to n (0 to 6 in our example). The scaling and
rounding leads to an inaccurate distribution of random numbers—the chance of producing n is much smaller than the chance of
producing any other number in the series.

The Math.random() was fixed in Flash Player 5.0.41.0. If supporting older versions of the Player, the following version of the

myRandom() function avoids the problem by simply discarding the value 1.0 if it happens to be chosen by Math.random():

// Returns an integer in the range of minVal to maxVal, inclusive
function myRandom (minVal, maxVal) {
 do {
 r = Math.random(); // Keep picking a number until it is not 1.
 } while (r = = 1);
 return minVal + Math.floor(r * (maxVal + 1 - minVal));
}

// Invoke the function
dieRoll = myRandom(1, 6); // Emulates a six-sided die safely in Flash 5.0.30.0

Usage

Math.random() replaces the deprecated Flash 4 random function.

Example

Math.random() is often used to cause the playhead to jump to a random frame in the timeline. The following code invokes the
myRandom() function from the preceding example and then sends the playhead to the randomly chosen frame:

// Invoke the function; pick a random number between 10 and 20
var destinationFrame = myRandom(10, 20);

// Now send the playhead to that frame
gotoAndStop(destinationFrame);

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.round()
Method

Flash 5; can be used when exporting
Flash 4 movies

calculate the closest integer to a number

Math.round(x)

Arguments

x

A number.

Returns

The integer mathematically closest to x (or x itself, if x is an integer). If the fractional component of x is

exactly 0.5 (x is equidistant from the two closest integers), round() returns the first integer greater than x.

Description

The round() method performs traditional rounding; it converts a floating-point number to the nearest integer.
Positive numbers with a fractional portion less than 0.5, and negative numbers with a fractional portion greater
than 0.5, are rounded down. Positive numbers with a fractional portion greater than or equal to 0.5, and negative
numbers with a fractional portion less than or equal to 0.5, are rounded up.

Example

Math.round(1.4); // Returns 1
Math.round(1.5); // Returns 2
Math.round(1.6); // Returns 2
Math.round(-5.4); // Returns -5
Math.round(-5.5); // Returns -5
Math.round(-5.6); // Returns -6

See Also

int(), Math.ceil(), Math.floor()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.sin()
Method

Flash 5; can be used when exporting Flash
4 movies

compute the sine of an angle

Math.sin(theta)

Arguments

theta

An angle, in radians (not degrees), normally in the range of 0 to 2 , although any angle will suffice, as
sine is a periodic function.

Returns

The sine of theta (the result is in the range of -1.0 to 1.0).

Description

The sin() method returns the trigonometric sine of an angle. In a right triangle, the sine of an angle is the result
of dividing the length of the side opposite the angle by the triangle's hypotenuse.

Usage

Note that sin() expects angles to be provided in radians, not degrees.

Example

trace(Math.sin(0)); // Displays: 0
trace(Math.sin(Math.PI/2)); // Displays: 1.0

The sin() function can be used along with cos() to calculate a point on a circle. See the Example under
Math.cos().

See Also

Math.asin(), Math.cos(), Math.PI, Math.tan()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.sqrt()
Method

Flash 5; can be used when exporting
Flash 4 movies

calculate the square root of a number

Math.sqrt(x)

Arguments

x

A nonnegative integer.

Returns

The square root of x, or NaN if x is less than 0.

Description

The sqrt() method returns the positive root of its operand (even though there may also be a mathematically valid
negative root). It is equivalent to:

Math.pow(x, 0.5)

Example

Math.sqrt(4); // Returns 2, although -2 is also a valid root
Math.sqrt(36); // Returns 6, although -6 is also a valid root
Math.sqrt(-20); // Returns NaN

// Calculate the distance between two points,
// the square root of (deltaX squared plus deltaY squared):
var dist = Math.sqrt((deltaX * deltaX) + (deltaY * deltaY));

See Also

Math.pow(), Math.SQRT2, Math.SQRT1_2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.SQRT1_2
Property

Flash 5; can be used when exporting
Flash 4 movies

the reciprocal of the square root of 2, approximately
0.70711

Math.SQRT1_2

Description

The SQRT1_2 property is a constant approximating the value 1/Math.SQRT2 (the reciprocal of the

square root of 2), equaling approximately 0.70711.

See Also

Math.SQRT2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.SQRT2
Property

Flash 5; can be used when exporting
Flash 4 movies

the square root of 2, approximately 1.41421

Math.SQRT2

Description

The SQRT2 property is a constant approximating the square root of 2, an irrational number equaling

approximately 1.41421.

See Also

Math.SQRT1_2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Math.tan()
Method

Flash 5; can be used when exporting Flash
4 movies

compute the tangent of an angle

Math.tan(theta)

Arguments

theta

An angle, in radians (not degrees), normally in the range of - /2 to /2, although any angle will suffice,
as tangent is a periodic function.

Returns

The tangent of theta (the result is in the range of -Infinity to Infinity).

Description

The tan() method returns the trigonometric tangent of an angle. In a right triangle, the tangent of an angle is the
result of dividing the length of the side opposite the angle by the length of the side adjacent to the angle. This is
also the same as the ratio Math.sin(theta)/Math.cos(theta), so as cos(theta) approaches zero,

tan(theta) approaches Infinity. Therefore, tan(theta) is not calculable for the values - /2, /2, -3

/2, 3 /2, etc.

Example

trace (Math.tan(0)); // Displays: 0
trace (Math.tan(Math.PI/4)); // Displays: 1

See Also

Math.atan(), Math.cos(), Math.sin()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

maxscroll Property Flash 6

the last legal top line of a text fieldFlash 4; replaced by
TextField.maxscroll in

theTextField.maxscroll

Returns

A positive integer representing the line number of the last legal top line of a text field.

Description

The maxscroll property tells us the largest allowed scroll value for a text field. It represents the

number of the last line in a text field that can be used as the top line in its viewable region. In Flash 4 and Flash
5, the maxscroll property is used with the scroll property to manage a scrolling-text field. As of Flash

6, maxscroll is formalized as a property of the TextField class, TextField.maxscroll.

See Also

scroll, TextField.bottomScroll, TextField.hscroll,

TextField.maxscroll, TextField.scroll

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Mouse
Object

Flash 5; enhanced in Flash 6 to add listener
events

mouse events and control over mouse pointer visibility

Mouse.methodName()

Methods

addListener()

Registers an object to receive onMouseDown(), onMouseMove(), and onMouseUp() events.
hide()

Hides the mouse pointer.
removeListener()

Cancels event notices for the specified listener.
show()

Enables the mouse pointer.

Listener events

onMouseDown()

Occurs when the primary mouse button is depressed.
onMouseMove()

Occurs when the mouse pointer moves.
onMouseUp()

Occurs when the primary mouse button is released.

Description

The Mouse object provides feedback from mouse events and control over the visibility of the mouse pointer.
Using the Mouse events, we can create mouse-driven interfaces that respond to mouseclicks and mouse
movement. However, for menu- and button-based applications, the mouse-related Button events (onPress(),
onRelease(), onRollOver(), etc.) provide easier access to mouse actions. The mouse event handlers, such as
onMouseDown(), are useful when you want to trap mouseclicks not associated with a particular button. For
example, you can use them to trap a mouseclick anywhere on-screen, which might be useful to advance a
slideshow.

We use Mouse.hide() to conceal the system mouse pointer, usually in order to replace it with a customized
mouse pointer, as shown in the Example under Mouse.hide(). It may also be desirable to hide the mouse pointer
in fullscreen, keyboard-controlled movies or for touch-screen kiosks.

Note that the Mouse object does not tell us the location of the mouse pointer. Use _root._xmouse and

_root._ymouse to determine the mouse pointer's location relative to the main Stage. Use the _xmouse

and _ymouse properties of a movie clip object to determine the mouse pointer's location relative to the clip.

Usage

The onMouseDown(), onMouseMove() and onMouseUp() listener events were added to the Mouse object in
Flash 6. They are generally preferred over the analogous Flash 5-style clip events mouseDown, mouseMove, and
mouseUp, which are used within an onClipEvent block to detect mouse input. However, in Flash 6, the
updateAfterEvent() function, which refreshes the screen between frames, can be used only with MovieClip
mouse or key events or with setInterval(). Hence, when a screen refresh is required between frames, the
MovieClip.onMouseDown(), MovieClip.onMouseMove(), and MovieClip.onMouseUp() handlers must be
used. See those entries in this Language Reference for details. Future versions of the Player will likely include
support for updateAfterEvent() from Mouse listener events.

See Also

Button.onPress(), Button.onRelease(), MovieClip.onMouseDown(), MovieClip.onMouseMove(),
MovieClip.onMouseUp(), MovieClip._xmouse, MovieClip._ymouse, updateAfterEvent()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Mouse.addListener() Method Flash 6

register an object to receive onMouseDown(),
onMouseMove(), and onMouseUp() events

Mouse.addListener(listener)

Arguments

listener

An object with onMouseDown(), onMouseMove(), and/or onMouseUp() methods defined.

Description

The addListener() method adds listener to the list of objects notified when Mouse's onMouseDown(),

onMouseMove(), and onMouseUp() events occur. The listener parameter is an object of any class that

defines methods by the names onMouseDown, onMouseMove, and/or onMouseUp; the methods are invoked
when the corresponding event occurs for Mouse. Instances of built-in classes, such as TextField or Button, can
respond to Mouse events. To stop a listener object from receiving events, use Mouse.removeListener().

Multiple objects can respond independently to each Mouse event. When multiple listeners are registered to
Mouse, their methods are invoked in the order the listeners were added.

For general information on how listeners and callback functions work, see Chapter 10. For sample Mouse
listener code, see Mouse.onMouseDown().

See Also

Mouse.onMouseDown(), Mouse.onMouseMove(), Mouse.onMouseUp(), Mouse.removeListener(); Chapter 10

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Mouse.hide() Method Flash 5

make the mouse pointer disappear

Mouse.hide()

Returns

Either 1 or 0, indicating whether the mouse was shown (1) or hidden (0) before the call to hide().

Description

The hide() method causes the normal mouse pointer (usually an arrow, although sometimes a hand) to disappear when the
mouse is over any part of the Flash Player. The normal system pointer reappears when the mouse passes outside the Flash
Player's active Stage area.

Usage

Note that even after Mouse.hide() has been invoked, the normal system text I-beam cursor appears when the mouse hovers
over an editable text field.

Example

The hide() method is used to conceal the default system mouse pointer, typically in order to replace it with a custom
pointer. In Flash, a custom pointer is nothing more than a movie clip that follows the mouse. Using the
MovieClip.onMouseMove() event handler, we can cause a movie clip to follow the mouse by updating the clip's _x and _y
properties when the mouse moves. The following code demonstrates the technique:

Mouse.hide();

// Makes the customPointer_mc movie clip follow the mouse.
// Note that customPointer_mc must be on the main timeline for this
// example to work. To place customPointer_mc on another timeline, we'd
// have to use globalToLocal() to convert from main timeline coordinates
// to the local customPointer_mc coordinate space.
customPointer_mc.onMouseMove = function () {
 this._x = _root._xmouse;
 this._y = _root._ymouse;
 // Refresh screen immediately, without waiting for the next frame.
 updateAfterEvent();
}

This code does not use a Mouse.onMouseMove() listener, because in Flash 6 updateAfterEvent() works only with a
MovieClip mouse or key event or with setInterval().

It may also be desirable to hide the custom pointer when the mouse is inactive, say, because the pointer has left the Flash
Player's active Stage area, in which case the system pointer appears, and there are two pointers on screen (the custom pointer
and the system pointer). The following example shows how to adapt the preceding code to hide the cursor after 5 seconds of

inactivity:

Mouse.hide();

// Makes the customPointer_mc movie clip follow the mouse.
customPointer_mc.onMouseMove = function () {
 this._x = _root._xmouse;
 this._y = _root._ymouse;
 this.lastMove = getTimer();
 // Refresh screen immediately, without waiting for the next frame.
 updateAfterEvent();
}

customPointer_mc.onEnterFrame = function () {
 if (getTimer() - this.lastMove > 5000) {
 this._visible = false;
 } else {
 this._visible = true;
 }
}

To change a custom pointer to a custom hand pointer when the mouse hovers over a button, use that button's rollOver event
to set the custom pointer clip to a frame containing the custom hand, and use the rollOut event to set the custom pointer
back to the default, as follows:

go_btn.onRollOver = function () {
 _root.customPointer_mc.gotoAndStop("hand");
}

go_btn.onRollOut = function () {
 _root.customPointer_mc.gotoAndStop("default");
}

In all cases, remember to place the custom pointer on the top layer of your movie so that it appears above all other content.
Alternatively, use duplicateMovieClip() or attachMovie() to generate the custom pointer clip dynamically and assign it a
very high depth.

See Also

Mouse.show(), MovieClip._xmouse, MovieClip._ymouse

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Mouse.onMouseDown() Listener Event Flash 6

occurs when the primary mouse button is depressed

listener.onMouseDown()

Description

Like the Button.onPress() event, the onMouseDown() event detects the downstroke of a mouseclick. Unlike the button press
event, onMouseDown() is not tied to the hit area of a button object (a button's hit area is defined graphically when you create the
button in the Flash authoring tool, whereas a movie clip's hit area can also be set via the hitArea property). The

onMouseDown() event occurs each time the primary mouse button is depressed while the mouse pointer is over any part of the
Stage.

To respond to an onMouseDown() event, we must assign a callback function to the onMouseDown property of some object,

such as listener, and then add listener as a listener using Mouse.addListener(), as follows:

// Create a generic object (although it can be any type of object)
mouseListener = new Object();

// First assign a callback function to the object's onMouseDown property
mouseListener.onMouseDown = function () {
 trace("The mouse was pressed!");
}

// Then register the listener with the Mouse object
Mouse.addListener(mouseListener);

Any number of listener objects of any class can respond to the onMouseDown() event.

The onMouseDown() event executes immediately when the mouse is pressed, independently of the code on a movie's timeline(s).
However, visual changes to the movie made by the listener are not rendered until the next frame refresh, which is determined by
the frame rate of the movie. Unfortunately, in Flash 6, updateAfterEvent() cannot be used to force a screen refresh from within an
onMouseDown() listener; updateAfterEvent() has an effect only when invoked either from a movie clip mouse or key event or a
setInterval() callback. For example:

someMovieClip_mc.onMouseDown = function () {
 // Scale the clip to 200% of its original size.
 this._xscale = this._yscale = 200;
 // Refresh the screen. In Flash 6, this does not work in a mouse listener.
 updateAfterEvent();
}

See Also

Button.onPress(), Mouse.addListener(), Mouse.onMouseMove(), Mouse.onMouseUp(), MovieClip.onMouseDown()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Mouse.onMouseMove() Listener Event Flash 6

occurs when the mouse pointer moves

listener.onMouseMove()

Description

The onMouseMove() event lets us detect changes in the mouse pointer's position. Whenever the mouse is in motion,
onMouseMove() events are issued repeatedly, as fast as the processor can generate new events. Each time
onMouseMove() executes, we know the mouse pointer has changed position. We can check that position relative to any
movie clip by querying the clip's _xmouse and _ymouse properties. To check the position of the mouse pointer

relative to the main Stage, use _root._xmouse and _root._ymouse.

To respond to an onMouseMove() event, we must assign a callback function to the onMouseMove property of some

object, such as listener, and then add listener as a listener using Mouse.addListener(), as follows:

// Create a generic object (although it can be any type of object)
mouseListener = new Object();

// Assign a callback function to the object's onMouseMove property
mouseListener.onMouseMove = function () {
 trace("The mouse was moved!");
}

// Register the listener with the Mouse object
Mouse.addListener(mouseListener);

Any number of listener objects of any class can respond to the onMouseMove() event.

The onMouseMove() event is useful for code that wakes up idle applications, displays mouse trails, or creates custom
pointers. However, for visual applications in Flash 6, the MovieClip.onMouseMove() handler is preferred over the
Mouse.onMouseMove() listener event because the former allows for between-frame screen refreshes.

The onMouseMove() event executes immediately when the mouse moves, independently of the code on a movie's
timeline(s). However, visual changes to the movie made by the listener are not rendered until the next frame refresh,
which is determined by the frame rate of the movie. Unfortunately, in Flash 6, updateAfterEvent() cannot be used to
force a screen refresh from within an onMouseMove() listener; updateAfterEvent() has an effect only when invoked
either from a movie clip mouse or key event or a setInterval() callback. Hence, in Flash 6, it's often appropriate to create
a movie clip simply to implement onMouseMove() with a screen refresh. For example:

// Create the movie clip
this.createEmptyMovieClip("mouseListener_mc", 1);
// Assign a callback function to the clip's onMouseMove handler
mouseListener_mc.onMouseMove = function () {
 // Respond to mouse movement (details omitted)...then refresh screen
 updateAfterEvent();
}

See the Example under Mouse.hide() for custom pointer code. Mouse trailer code is available at the online Code Depot,

in varying degrees of complexity.

See Also

Mouse.addListener(), Mouse.onMouseDown(), Mouse.onMouseUp(), MovieClip.onMouseMove()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Mouse.onMouseUp() Listener Event Flash 6

occurs when the primary mouse button is released

listener.onMouseUp()

Description

The onMouseUp() event is the counterpart of onMouseDown(). It occurs each time the primary mouse button is
pressed (while the mouse pointer is over any part of the Stage) and then released.

To respond to an onMouseUp() event, we must assign a callback function to the onMouseUp property of

some object, such as listener, and then add listener as a listener using Mouse.addListener(), as

follows:

// Create a generic object (although it can be any type of object)
mouseListener = new Object();

// Assign a callback function to the object's onMouseUp property
mouseListener.onMouseUp = function () {
 trace("The mouse was released!");
}

// Register the listener with the Mouse object
Mouse.addListener(mouseListener);

Any number of listener objects of any class can respond to the onMouseUp() event.

The onMouseUp() event executes immediately when the mouse is released, independently of the code on a
movie's timeline(s). However, visual changes to the movie made by the listener are not rendered until the next
frame refresh, which is determined by the frame rate of the movie. Unfortunately, in Flash 6, updateAfterEvent()
cannot be used to force a screen refresh from within an onMouseUp() listener; updateAfterEvent() has an effect
only when invoked either from a movie clip mouse or key event or a setInterval() callback.

See Also

Button.onRelease(), Mouse.addListener(), Mouse.onMouseDown(), Mouse.onMouseMove(),
MovieClip.onMouseUp()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Mouse.show() Method Flash 5

make the mouse pointer appear

Mouse.show()

Returns

Either 1 or 0, indicating whether the mouse was shown (1) or hidden (0) before the call to show().

Description

The show() method causes the default system mouse pointer to reappear after hide() has been invoked. It can be
used to provide a normal pointer at necessary times in a movie, such as when the user is expected to fill in a
form.

See Also

Mouse.hide()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Mouse.removeListener() Method Flash 6

cancels event notices for the specified listener

Mouse.removeListener(listener)

Arguments

listener

An object that was previously registered as a listener for Mouse.

Returns

A Boolean; true if listener was found and removed, false if listener was not registered as an

event listener for Mouse. The return value is useful for debugging code that removes listeners.

Description

The removeListener() method stops listener from receiving Mouse event notifications. It should only be

used after listener has been registered as an event listener via addListener(). The listener object is not

deleted, but it can be removed and added repeatedly. Event listeners should be removed when the task they
perform is no longer required.

See Also

Mouse.addListener(), Mouse.onMouseDown(), Mouse.onMouseMove(), Mouse.onMouseUp(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip Class Flash 6

class-like datatype for main movies and movie clipsFlash 3;
enhanced in Flash 4, Flash 5, and

Constructor

new MovieClip();

The constructor syntax is used only to create MovieClip subclasses. It does not create an on-stage movie clip! To
create a movie clip instance, use attachMovie(), createEmptyMovieClip(), or duplicateMovieClip().
MovieClip symbols, on which instances are based, must be created manually in the Flash authoring tool.

Properties

Movie clip properties provide descriptions of, and control over, various physical features of movie clips and
main movies. As with any object, MovieClip properties are accessed using the dot or [] operators. See Section
13.1 for details on using movie clip properties.

Here are three property-related issues to note:

Changing a physical property of a MovieClip object places that clip under programmatic control, breaking
the internal timeline's hold on it. This halts any tween currently in progress.

Some MovieClip properties appear to be floating-point numbers but are mapped to other formats
internally. The _alpha property, for example, is mapped internally to an integer between 0 and 255.

This results in a loss of precision between setting and retrieving values of certain properties. For example,
we may set a property value to 90 and then immediately retrieve the value back as 89.84375. If minor
variations in property values make a difference to a script, we must manually round those values using
Math.round(), Math.floor(), or Math.ceil() after retrieval, or we must store the original value in a
variable separate from the property.

The built-in MovieClip properties are not enumerated by a for-in loop.

Table 18-11 lists the properties of the MovieClip class. Movie clip properties can be accessed for any movie clip
instance and, in most cases, on the main movie timeline (_root). Those that cannot be used with the main

movie timeline are marked by [5] in Table 18-11.

Prior to Flash 6, all built-in movie clip properties were prefaced with an underscore. To conform more closely
with other ECMA-262 languages, properties that are new in Flash 6, and are not analogous to legacy Flash 5
Button properties such as _focusRect, do not obey the underscore convention. Properties introduced in

Flash 6 are marked by [6] character in Table 18-11.

In the Access column of Table 18-11, R/W indicates that a property's value can be both retrieved and set (i.e.,
read/write), and RO indicates that it can be retrieved but not set (i.e., read-only). Some read-only properties can
sometimes be set indirectly through the authoring tool or via some related function (e.g., gotoAndStop() sets the
_currentframe property), but only read/write properties can be set directly via ActionScript. The Type

column describes the datatype of each property's value. The Property description column gives a quick summary
of the property's purpose, but the full descriptions that follow later provide important details. All properties of

the current timeline can be accessed without an explicit reference to it, as in _alpha versus

someClip._alpha.

Table 18-11. Movie clip property summary

Property name Access Type Property description

_alpha R/W number Opacity percentage: 0 is transparent; 100 is opaque

_currentframe RO number Frame number at which playhead resides

_droptarget RO string
Target path of the clip over which a dragged clip hovers or
has been dropped, in slash notation

enabled R/W Boolean Allows or disallows button interaction

focusEnabled R/W Boolean
Allows the clip to receive keyboard focus
programmatically

_focusrect R/W Boolean
Disables automatic yellow rectangle around focused movie
clips

_framesloaded RO number Number of frames that have been downloaded

_height R/W number Height, in pixels, of the current contents

hitArea[5][6] R/W string Assigns the clickable area for a button-enabled movie clip

_name[5] R/W string Identifier of an instance as a string (not a reference)

_parent[5] RO
MovieClip
reference

A reference to the instance or movie that contains the
current instance

_rotation R/W number Degrees of rotation

tabChildren[5][6] R/W Boolean
Controls whether contained objects are included in the
automatic tab order

tabEnabled[5][6] R/W Boolean
Includes or excludes the movie clip from the current tab
order

tabIndex[5][6] R/W Boolean Specifies the movie clip's index in the custom tab order

_target RO string Target path in absolute terms, in slash notation

_totalframes RO number Number of frames in the timeline

trackAsMenu[5][6] R/W
Modifies the onRelease() handler requirements, enabling
menu-style behavior

_url RO string Disk or network location of the source .swf file

useHandCursor[5][6] R/W Boolean
Dictates whether a hand cursor is displayed when the
mouse is over the clip (applies to clips with button
handlers only)

_visible R/W Boolean Visibility: true if shown; false if hidden

_width R/W number Width, in pixels, of the current contents

_x R/W number Horizontal position, in pixels

_xmouse RO number Horizontal location of mouse pointer, in pixels

_xscale R/W number Horizontal scaling percentage

_y R/W number Vertical position, in pixels

_ymouse RO number Vertical location of mouse pointer, in pixels

_yscale R/W number Vertical scaling percentage

[5] Applies to movie clip instances only; does not apply to the main timeline (_root).

[6] New in Flash 6. Not supported in prior versions.

Methods

Table 18-12 and Table 18-13 list the methods of the MovieClip class.

Movie clip methods can be invoked on any movie clip instance and, in most cases, on the main movie timeline
(_root). Those in Table 18-12 that cannot be used with the main movie timeline are marked by [8]. Methods

introduced in Flash 6 are marked by [7] in the tables. The movie clip methods marked by [9] character in Table
18-12 provide the same functionality as analogous global functions but use the preferred MovieClip.method()
dot syntax format (that is, a movie clip instance must precede the dot). Methods that do not correspond to a
global function can be applied to the current clip without an explicit reference to the movie clip instance, as in
attachMovie() versus someClip.attachMovie().

Table 18-12. Movie clip method summary

Method name Method description

attachMovie()
Creates a new instance based on an exported symbol from the current document's
Library

createEmptyMovieClip(
)[7] Creates a new, empty MovieClip instance

createTextField()[7] Creates a new TextField object

duplicateMovieClip(
)[8][9] Creates a copy of a movie clip instance

getBounds()
Returns an object whose properties give the coordinates of the bounding box that
defines the visual region occupied by the clip

getBytesLoaded()
Returns the number of downloaded bytes of an instance or a movie (not applicable
to internal clips)

getBytesTotal() Returns the physical byte size of an instance or a main movie

getDepth()[7] Returns the movie clip's position in the visual content stack

getURL()[9] Loads an external document (usually a web page) into the browser

globalToLocal()
Converts the properties of a coordinates object from Stage coordinates to instance
coordinates

gotoAndPlay()[9] Moves the playhead of an instance or movie to a specific frame and then plays the
instance or movie

gotoAndStop()[9] Moves the playhead of an instance or movie to a specific frame and then stops the
playhead

hitTest()
Returns a Boolean indicating whether a clip intersects with a given point or another
clip

loadMovie()[9] Loads an external .swf file into the Player

loadVariables()[9] Retrieves external data composed of variable names and values, and converts that
data into equivalent ActionScript variables

localToGlobal()
Converts the properties of a coordinates object from an instance's coordinates to
Stage coordinates

nextFrame()[9] Moves the playhead of an instance or movie ahead one frame and stops it there

play()[9] Starts the playhead of an instance or movie in motion (i.e., plays the clip)

prevFrame()[9] Moves the playhead of an instance or movie back one frame and stops it there

removeMovieClip()[8][9] Deletes a duplicated or attached instance

setMask()[7] Assigns a movie clip as a mask for another clip

startDrag()[9] Causes an instance or movie to follow the mouse pointer physically

stop()[9] Halts the playback of an instance or movie

stopDrag()[9] Ends any drag operation in progress

swapDepths()[8] Alters the position of an instance in the content stack

unloadMovie()[9] Removes an instance or main movie from a document level or host clip

valueOf() Returns an object reference to the instance

[7] New in Flash 6. Not supported in prior versions.

[8] Applies to movie clip instances only; does not apply to the main timeline (_root).

[9] MovieClip method that is analogous to a global function of the same name.

Methods to draw lines and fills in a movie clip instance, the so-called Drawing API, are also new in Flash 6 and
are shown in Table 18-13. Refer also to the MovieClip.createEmptyMovieClip(), method, which is convenient
for creating an empty canvas on which to draw.

Table 18-13. Movie clip Drawing API methods

Method name Method description

beginFill()[10] Starts a solid-filled shape

beginGradientFill()[10] Starts a gradient-filled shape

clear()[10] Removes all drawings from the movie clip

curveTo()[10] Draws a curved line

endFill()[10] Finishes a filled shape

lineStyle()[10] Sets stroke thickness, color, and transparency

lineTo()[10] Draws a straight line

moveTo()[10] Moves the drawing pen to a new position without drawing a line

[10] New in Flash 6. Not supported in prior versions.

Events

Movie clip instances support event handlers, which respond automatically to a predefined set of events (e.g.,
mouse and keyboard interaction or movie playback). As of Flash 6, Button events (e.g., onPress(), onRelease(),
and onRollOver()) are also available for movie clips, although not for main movie timelines (_root). Movie

clip event handlers can be created in the following ways:

By attaching an onClipEvent() block directly to a movie clip instance at authoring time

By attaching a button-style on() block directly to a movie clip instance at authoring time

By assigning a callback function to the associated event property with ActionScript

Here are examples of each of these techniques:

// An onClipEvent() block
onClipEvent (enterFrame) {
 // statements
}

// An on() block
on (release) {
 // statements
}

// Two callback functions
theClip_mc.onEnterFrame = function () {
 // statements
}

theClip_mc.onPress = function () {
 // statements
}

Callback functions are not supported by Flash 5 but are generally preferred over onClipEvent() and on() blocks
as of Flash 6. For important details on the differences between the types of event handlers, see Chapter 10. In
particular, note that:

When the contents of a movie clip are unloaded, event handler properties (e.g., onEnterFrame()) are lost,
but onClipEvent() handlers (e.g., onClipEvent(enterFrame)) are not.

When a movie clip is duplicated via duplicateMovieClip(), the event handler properties are not copied to
the duplicate clip, but the onClipEvent() handlers are.

The supported movie clip event handlers are listed in Table 18-14. Handlers listed with [11] are not supported
by main movies (_root). All the event handlers in Table 18-14 are new in Flash 6, but the Flash 5 equivalents

are shown where applicable. With the exception of onKillFocus() and onSetFocus(), events listed without
Flash 5 equivalents are adopted Button events.

Table 18-14. Movie clip event handler summary

Clip event handler Clip event occurs when... Flash 5 equivalent

onData()
The clip receives the end of a stream of loaded variables, or
a portion of a loaded movie

onClipEvent(data)

onDragOut()[11] The mouse is pressed over the clip, then the mouse moves
off the clip before the mouse is released

None

onDragOver()[11] The mouse is pressed over the clip, then the mouse moves
off and back onto the clip

None

onEnterFrame() One tick of the frame rate passes in the Flash Player onClipEvent(enterFrame)

onKeyDown()
A key is pressed down while the clip is on stage and has
keyboard focus

onClipEvent(keyDown)

onKeyUp()
A depressed key is released while the clip is on stage and
has keyboard focus

onClipEvent(keyUp)

onKillFocus()[11] The clip loses keyboard focus None

onLoad()[11] The clip first appears on stage, or a .swf file finishes loading
into the clip

onClipEvent(load)

onMouseDown() Primary mouse button is depressed while the clip is on stage onClipEvent(mouseDown)

onMouseMove()
Primary mouse button is depressed and then released while
the clip is on stage

onClipEvent(mouseMove)

onMouseUp()
Mouse pointer moves (even a teensy bit) while the clip is on
stage

onClipEvent(mouseUp)

onPress()[11] The mouse is pressed over the clip None

onRelease() The mouse is pressed and then released over the clip None

onReleaseOutside(
)[11]

The mouse is pressed over the clip and then released after
moving off the clip

None

onRollOut()[11] The mouse pointer moves off the clip while the mouse
button is not depressed

None

onRollOver()[11] The mouse pointer moves over the clip while the mouse
button is not depressed

None

onSetFocus()[11] The clip gains keyboard focus None

onUnload()[11] The clip is removed from the Stage onClipEvent(unload)

[11] Applies to movie clip instances only; does not apply to the main timeline (_root).

Description

MovieClip is not just a class in ActionScript; it is also a unique ActionScript datatype used to represent
information about, and allow control of, movies and movie clips. For most purposes, we treat movie clips and
movies as objects; we can create and access movie clip properties, and we can create and invoke movie clip
methods. For a full consideration of the MovieClip class, see Chapter 13.

We do not use a constructor to create new MovieClip instances. Instead, we create movie clip symbols in the
authoring tool and place instances on the Stage manually. Some methods, however, allow us to copy existing
clips (e.g., duplicateMovieClip()) or add new clips to the Stage programmatically (e.g., attachMovie() and
createEmptyMovieClip()).

Not all MovieClip objects are equal; some MovieClip methods and properties apply to movie clip instances only,
not to main movies (a main movie is the _root timeline of a .swf document). In our consideration of the

MovieClip properties and methods, we'll note cases in which functionality is limited to one type of MovieClip
object. Note that we use the word MovieClip to refer to the "class" of the objects, and the word movieclip
(lowercase) to refer to the ActionScript datatype; we use the words movie clip, clip, or instance to refer to a
particular movie clip, and we use movie to refer to the main movie of a .swf file. In the synopsis for each detailed
property and method entry, the abbreviation mc stands in for the name of a clip or main movie. For many

properties and methods, mc is optional—if omitted, the current timeline is assumed (see Table 18-12).

Throughout this MovieClip section, when talking about coordinates, we need to refer to the location of movie
clips. We measure the position of a clip in reference to one representative point, its so-called registration point,
as marked by a crosshair in the clip's Library symbol.

When a clip resides on the main Stage, we describe its location relative to the top-left corner of the Stage, which
corresponds to the point (0,0). When a clip resides within another clip, we describe its location relative to the
registration point of the parent clip, which again corresponds to the point (0,0). The point (0,0) in both cases is
the origin point (or simply origin) of the coordinate space being used to plot the location of the clip. We'll see
how the localToGlobal() and globalToLocal() methods can convert between these two coordinate spaces.

Flash's coordinate system inverts the Y-axis of Cartesian coordinates; that is, y values
increase in a downward direction, not upward. For example, a y-coordinate of 100
indicates a point 100 pixels below the X-axis.

We'll often use the coordinate-related properties and methods to move a clip, determine where a clip is, or
determine whether it intersects another object or point. The last technique is referred to as collision detection
because it is often used to determine whether to change the direction in which a clip is animating, as if it
bounced off another object (see the MovieClip.hitTest() method).

Note that ActionScript doesn't have a native datatype to represent a point (i.e., an x- and y-coordinate). See
MovieClip.globalToLocal() for an explanation of how to create a point object from a generic object.

In Flash 5, no direct API was available to create ActionScript subclasses of the MovieClip class. As of Flash 6,
the Object.registerClass() method can be used to register a custom class as a subclass of MovieClip. For full
details, see Chapter 14.

As of Flash 6, movie clip instances can behave exactly like buttons. To implement button behaviors for a movie
clip, define one or more of the following button event handlers: onDragOut(), onDragOver(), onPress(),
onRelease(), onReleaseOutside(), onRollOut(), onRollOver() (see Table 18-14). Once a button handler is
defined for a movie clip, the following button-related properties become active: enabled, hitArea,

trackAsMenu, and useHandCursor. These properties can be set at any time, but they have an effect

only when at least one button handler is defined. To provide button-style Up, Over, and Down states for a movie
clip, create frames with the special labels "_up", "_over", and "_down". To define the button-style Hit state

for a movie clip, use the hitArea property. If no hitArea property is defined, the clip's own content is

used as the hit area. Note that though Macromedia's documentation refers to movie clips with button handlers as
"button movie clips," there is no such symbol type or class. A "button movie clip" is simply Macromedia's term

for a movie clip that happens to define at least one button handler. See Section 13.9.

See Also

Chapter 13, Chapter 14

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._alpha Property Flash 4

opacity of a clip or movie read/write

mc._alpha

Description

The floating-point _alpha property specifies the opacity (or, conversely, the transparency) of mc as a

percentage—0 is completely transparent, whereas 100 is completely opaque. Setting the _alpha property of

mc affects the visual transparency of all clips nested inside mc but does not affect their _alpha properties.

That is, if we have a clip, square, that contains another clip, circle, and we set square._alpha to

50, then circle will be 50% transparent on-screen but will have an _alpha of 100. However, if both

circle and its parent clip (square) set their _alpha properties, the effect is cumulative. If each have an

_alpha of 50, circle will appear 25% opaque (75% transparent) on-screen. Therefore, don't set the

_alpha of nested clips unless they are supposed to have different transparencies from any siblings. To keep it

simple, set the _alpha of the parent clip instead.

Usage

Note that setting the _alpha of a movie clip affects the aa property of the object returned by

Color.getTransform().

Example

ball_mc._alpha = 60; // Make ball_mc partially transparent
ball_mc._alpha = 0; // Make ball_mc invisible

The following clip event handler makes theClip_mc more transparent as the mouse moves down the

screen:

theClip_mc.onEnterFrame = function () {
 this._alpha = 100 - (_root._ymouse / 400) * 100;
}

See Also

The Color class; MovieClip._visible

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.attachMovie() Method Flash 6

create a new movie clip instance from an exported Library
symbolFlash 5; initObject and return value added in

mc.attachMovie(symbolIdentifier, newName, depth)
mc.attachMovie(symbolIdentifier, newName, depth, initObject)

Arguments

symbolIdentifier

A string specifying the linkage identifier of an exported movie clip symbol, as set in the Library under Options Linkage.
newName

A string specifying the new instance name of the clip being created. The name must adhere to the rules for creating an identifier,
outlined under Section 15.5.

depth

An integer between -16384 and 1048575 (inclusive), specifying the level on which to place the new clip inside mc. Higher depths

obscure lower depths, so a depth of 6 is in front of 5, which is in front of 4, and so on. Depths above -1 are reserved for dynamically
generated content. Therefore, in most cases, you should use a depth between 0 and 1048575 with attachMovie(). However, when
creating dynamic content that you want to appear beneath all author-time content in mc (e.g., a run-time background), use depth -

16384. Depths from -16383 to -1 (inclusive) are reserved for author-time content and shouldn't be used with attachMovie(). For
important details, see Section 13.4.

initObject

An optional object whose properties are copied to the new movie clip instance. Not supported in Flash 5.

Returns

In Flash 6, attachMovie() returns an object reference to the attached movie clip, or undefined if creation fails (in Flash 5, it always returns

undefined).

Description

The attachMovie() method creates a new instance, called newName, based on the exported movie clip symbol specified by

symbolIdentifier. If mc is the main movie, the new instance is placed in the top-left corner of the Stage. If mc is a movie clip

instance, the new instance is placed at mc's registration point. In either case, the new instance is placed inside mc's visual content stack on the

level specified by depth. For example, the following code attaches a movie clip exported from the Library with a linkage identifier of

"ball_symbol". It names the new instance tennisBall_mc and places it inside court_mc on depth 1, above all author-time

content in court_mc:

court_mc.attachMovie("ball_symbol", "tennisBall_mc", 1);

We can then control the new instance as follows:

// Double the ball's width
court_mc.tennisBall_mc._xscale = 200;

As of Flash 6, attachMovie() returns a reference to the new instance, so this code can be shortened to:

tBall = court_mc.attachMovie("ball_symbol", "tennisBall_mc", 1);
tBall_mc._xscale = 200;

or, even more succinctly (but cryptically):

court_mc.attachMovie("ball_symbol", "tennisBall_mc", 1)._xscale = 200;

To delete an attached instance, use MovieClip.removeMovieClip() (see the global removeMovieClip() function description for further
important details).

In Flash 5, all exported movie clips are loaded before the first frame of the movie, causing a delay before the movie loads. As of Flash 6,
exported clips can be loaded on other frames as follows:

In the Library's upper-right corner, select Linkage from the pop-up Options menu.1.
In the Linkage Properties dialog box, uncheck "Export in first frame," and then choose OK.2.
On the main timeline, at the frame where the exported clip should load, create a keyframe and place an instance of the clip on it.3.

A movie clip is not available to attachMovie() until the frame at which it is exported.

When the optional initObject parameter is provided, its direct properties (properties attached directly to initObject, not those

retrieved via the prototype chain) are copied into the new clip and become immediately accessible. For example:

// Create a generic object to transfer properties to the new tennisBall_mc instance
var tempObj = new Object();
// Add a speed property for transfer to tennisBall_mc
tempObj.speed = 200;
// Pass tempObj to attachMovie()
court_mc.attachMovie("ball_symbol", "tennisBall_mc", 1, tempObj);
// Check the value of speed on tennisBall_mc
trace(court_mc.tennisBall_mc.speed); // Displays: 200

However, properties inherited through initObject's prototype chain are not copied to the clip. Only direct properties are transferred. To

determine whether a property is inherited or direct, use Object.hasOwnProperty(). Built-in movie clip properties, such as _x and

_rotation, and event handlers, such as onEnterFrame(), can be set (i.e., copied to the newly created movie clip instance) via

initObject. For example:

var tempObj = new Object();
// Set _rotation
tempObj._rotation = 200;
// Assign an onEnterFrame() callback
tempObj.onEnterFrame = function () {
 this._x++
};
// Once attached, tennisBall_mc will be rotated by 200 degrees and will
// start moving one pixel right per frame due to the onEnterFrame() handler
court_mc.attachMovie("ball_symbol", "tennisBall_mc", 1, tempObj);

In Flash 6, the initObject parameter is used to set properties in newName that will be used by its class constructor (effectively the

same as passing arguments to the constructor). A movie clip symbol's class constructor is defined by the Object.registerClass() method. For
convenience, initObject can be specified as an anonymous object. For example:

court_mc.attachMovie("ball_symbol", "tennisBall_mc", 1, {speed: 200, _x: 165});

The initObject parameter is not supported prior to Flash 6.

See Also

duplicateMovieClip(), MovieClip.createEmptyMovieClip(), MovieClip.duplicateMovieClip(); Section 13.3.2.3 and Section 13.4.3.1; Chapter
14

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.beginFill() Method Flash 6

starts drawing a solid-filled shape

mc.beginFill(RGB, alpha)

Arguments

RGB

An integer specifying the color of the shape, normally supplied in RGB hexadecimal triplet notation—0xRRGGBB, where RR, GG,

and BB are two-digit hex numbers representing Red, Green, and Blue. For example, the hex integer 0xFF0000 indicates red. If

RGB is omitted or undefined, no fill is drawn. For a complete discussion of RGB triplet notation, see the Color class.

alpha

An integer between 0 and 100 specifying the opacity (or, conversely, the transparency) of the shape as a percentage—0 is completely
transparent, whereas 100 is completely opaque. Defaults to 100. Values above 100 are interpreted as 100; those below 0 are
interpreted as 0.

Description

Part of the Drawing API, the beginFill() method starts drawing a new shape within mc, filled with a solid color of RGB and a transparency

of alpha. The shape appears above any existing Drawing API content in mc but beneath all other content in mc (e.g., movie clips, shapes,

text, and buttons placed at authoring time, or content attached at runtime via attachMovie(), duplicateMovieClip(), or createTextField()).
To draw a shape with a gradient fill, use beginGradientFill().

The beginFill() method is only one component of the shape drawing process. Think of the Drawing API as an old line plotter (like the kind
used for architectural drawings) with an imaginary pen that can be lifted, dropped, or moved in order to draw lines and curves. To draw a
filled shape, we must combine beginFill() with other MovieClip drawing methods, as follows:

Position the drawing pen with moveTo().1.
Start the shape with beginFill().2.
Draw the shape's outline with a series of lineTo() and/or curveTo() calls, the last of which must end at the point specified in the
original moveTo() call.

3.

Close the shape with endFill().4.

You can draw into an existing or empty movie clip with the Drawing API. Either use a movie clip created during
authoring or use one created programmatically. To start with a fresh canvas, use
MovieClip.createEmptyMovieClip(). You can draw on the main timeline by specifying _root as the movie

clip in which to draw, but drawing into a clip attached to the main timeline is the preferred approach.

The following code creates an empty movie clip, drawing_mc, and draws a red triangle in it, 100 pixels below and to the right of the

clip's registration point:

// Create the clip
this.createEmptyMovieClip("drawing_mc", 1);
// Position the drawing pen
var startX = 100;

var startY = 100;
drawing_mc.moveTo(startX , startY);
// Start the shape
drawing_mc.beginFill(0xFF0000, 100);
// Draw the lines of the triangle
drawing_mc.lineTo(startX+100, startY); // Right 100 pixels
drawing_mc.lineTo(startX+50, startY+100); // Left 50 pixels, down 100 pixels
drawing_mc.lineTo(startX, startY); // Return to start point to close shape
// End the shape
drawing_mc.endFill();

The stroke defined by the most recent call to lineStyle() is automatically added to the shape. If lineStyle() has never been called, the shape is
not stroked. For example, the following code draws the same red triangle, but with a 1-pixel black line around its perimeter. This time we
specify positions using numeric literals only, rather than the variables startX and startY:

this.createEmptyMovieClip("drawing_mc", 1);
// Indicate a 1-pixel black stroke for the shape
drawing_mc.lineStyle(1, 0x000000);
drawing_mc.moveTo(100, 100);
drawing_mc.beginFill(0xFF0000, 100);
drawing_mc.lineTo(200, 100);
drawing_mc.lineTo(150, 200);
drawing_mc.lineTo(100, 100);
drawing_mc.endFill();

Even though Flash attempts to fix improperly specified shapes (e.g., a shape with no endFill() method), predictable results can be guaranteed
only when these shape-drawing rules are observed:

The line around the shape's perimeter must have identical start and end points.

The shape must be formally closed with a call to endFill().

The beginFill() call must be preceded immediately by a moveTo() call that defines the starting point of the shape to be filled.

For example, the following code draws a line to the point (100, 100) and then draws our red triangle starting at that point. Before the triangle
is drawn, moveTo() sets the starting point to (100, 100), even though the pen need not move. If the call to moveTo() is omitted or placed
after the beginFill() call, Flash will not properly render the line and triangle.

this.createEmptyMovieClip("drawing_mc", 1);
drawing_mc.lineStyle(1);
drawing_mc.lineTo(100, 100); // Draw the line
// Now draw a triangle
drawing_mc.moveTo(100, 100); // Set the triangle's starting point. Required!
drawing_mc.beginFill(0xFF0000);
drawing_mc.lineTo(200, 100);
drawing_mc.lineTo(150, 200);
drawing_mc.lineTo(100, 100);
drawing_mc.endFill();

Movie clips that contain content drawn via ActionScript behave exactly like movie clips with content created in the Flash MX authoring tool.
For example, the _width and _height properties reflect content drawn at runtime, as do calls to getBounds() and hitTest().

Furthermore, provided they're not completely transparent, shapes created with calls to beginFill() or beginGradientFill() are available as hit
test areas for onRollover() and onPress() events or for use as a mask (see MovieClip.setMask()).

To draw a fully contained hole within a shape, draw the shape and then the hole within a single beginFill()/endFill() block. For example,
the following code draws a "square doughnut":

this.lineStyle(3);
this.beginFill(0xFF0000, 100);

 // First square
 this.moveTo(100, 100);
 this.lineTo(200, 100);
 this.lineTo(200, 200);
 this.lineTo(100, 200);
 this.lineTo(100, 100);

 // Second square (the hole in the doughnut!)
 this.moveTo(150, 150);
 this.lineTo(170, 150);
 this.lineTo(170, 170);
 this.lineTo(150, 170);
 this.lineTo(150, 150);
this.endFill;

Note that bitmap fills are not directly supported by the Drawing API, but it is possible to achieve a similar effect by loading an image into a
movie clip, then drawing a shape in a second clip and applying the second clip as a mask to the image clip. The image clip must be fully
loaded before the mask is applied. For example:

// Create the mask clip
this.createEmptyMovieClip("mask_mc", 2);

// Draw the mask
mask_mc.beginFill(0xFF0000);
mask_mc.moveTo(100,100);
mask_mc.lineTo(200,100);
mask_mc.lineTo(200,200);
mask_mc.lineTo(100,200);
mask_mc.lineTo(100,100);
mask_mc.endFill();

// Create a clip to hold the image to be masked
this.createEmptyMovieClip("image_mc", 1);
// Load image to be masked
image_mc.loadMovie("image.jpg");

// Apply the mask once the image is loaded
this.onEnterFrame = function () {
 // Wait until the image is loaded
 if (image_mc._width > 0 && image_mc._totalframes = = image_mc._framesloaded) {
 // The image has loaded, so apply the mask
 this.setMask(mask_mc);
 // Stop checking for the image to load
 delete this.onEnterFrame;
 }
}

Example

The Drawing API does not include methods for drawing primitive shapes, such as rectangles, circles, or polygons. These must be custom-
created by ActionScript developers, as shown in Example 18-2, which adds drawRect() and drawCircle() methods to all movie clips.

Example 18-2. Custom drawRect() and drawCircle() methods

// Method: MovieClip.drawRect()
// Desc: Draws a rectangle with optional fill.
// Params: x Horizontal position of rectangle's top-left corner.

// y Vertical position of rectangle's top-left corner.
// w Width of rectangle, in pixels.
// h Height of rectangle, in pixels.
// RGB Color of rectangle.
// alpha Transparency of rectangle.
MovieClip.prototype.drawRect = function (x, y, w, h, RGB, alpha) {
 this.moveTo(x, y);
 this.beginFill(RGB, alpha);
 this.lineTo(x+w, y);
 this.lineTo(x+w, y+h);
 this.lineTo(x, y+h);
 this.lineTo(x, y);
 this.endFill;
};

// drawRect() usage:
// Set line width to 3 pixels.
this.lineStyle(3);
// Draw two overlapping rectangles with a transparency effect. Ooohhh...
this.drawRect(300, 200, 50, 20, 0x0000FF, 100);
this.drawRect(320, 210, 100, 120, 0x00FF00, 60);

// Method: MovieClip.drawCircle()
// Desc: Draws a circle outline (no fill) as a series of n curves.
// Params: x Horizontal position of circle's center.
// y Vertical position of circle's center.
// segments Number of curves used to draw the circle (defaults to 8).
MovieClip.prototype.drawCircle = function (x, y, r, segments) {
 // Variables to hold the end and control points of each curve.
 var endX, endY, controlX, controlY;
 // Use 8 segments if not specified.
 if (segments = = undefined) {
 segments = 8;
 }
 // Calculate how many degrees are in each segment
 // (360/segments), and convert that to radians.
 var segmentAngle = (360/segments)/180 * Math.PI;
 // Calculate the distance to the control point of each curve.
 var controlDist = r / Math.cos(segmentAngle/2);
 // Start drawing on the circle's positive X-axis.
 this.moveTo(x+r, y);
 // Draw the circle segments.
 for (var i = 1; i <= segments; i++) {
 // Calculate the end point of this curve.
 endX = x + r * Math.cos(i*segmentAngle);
 endY = y - r * Math.sin(i*segmentAngle);

 // Calculate the control point of this curve.
 controlX = x + controlDist * Math.cos(i*segmentAngle-segmentAngle/2);
 controlY = y - controlDist * Math.sin(i*segmentAngle-segmentAngle/2);

 // Draw this curve.
 this.curveTo(controlX, controlY, endX, endY);
 }
};

// drawCircle() usage:

// Outlined circle
this.lineStyle(1);
this.drawCircle(200, 200, 100);
// Outlined and filled circle
this.lineStyle(3, 0xFF0000);
this.beginFill(0x0000FF);
this.drawCircle(300, 250, 50);
this.endFill();

Ric Ewing has posted more custom drawing methods at:
http://www.formequalsfunction.com/downloads/drawmethods.html

See Also

MovieClip.beginGradientFill(), MovieClip.clear(), MovieClip.curveTo(), MovieClip.endFill(), MovieClip.lineStyle(), MovieClip.lineTo(),
MovieClip.moveTo(); Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.beginGradientFill() Method Flash 6

starts a gradient-filled shape

mc.beginFill(fillType, colors, alphas, ratios, matrix)

Arguments

fillType

A string indicating the type of gradient, either "linear" or "radial". If any other value is specified, no gradient is drawn.
colors

An array of integers specifying the colors in the gradient. Normally supplied in RGB hexadecimal triplet notation—0xRRGGBB,

where RR, GG, and BB are two-digit hex numbers representing Red, Green, and Blue. For example, the hex integer 0xFF0000
indicates red. For a complete discussion of RGB triplet notation, see the Color class.

alphas

An array of integers between 0 and 100, specifying the percentage opacity (or, conversely, the transparency) of the colors in the
gradient. 0 is completely transparent, whereas 100 is completely opaque. Values above 100 are interpreted as 100; those below 0
are interpreted as 0. If the number of elements in the alphas array does not match the number of elements in the colors
array, no gradient is drawn.

ratios

An array of integers specifying the spatial distribution of colors in the gradient on a scale from 0 to 255. Each element in the array
indicates the relative position where the corresponding color from the colors array will display as a pure, unblended color. If

the number of elements in the ratios array does not match the number of elements in the colors array, no gradient is

drawn.
matrix

An object specifying the position, size, rotation, and skew of the gradient. The object takes one of two forms: a simple bounding
box, where the gradient's position, size, and rotation are supplied through intuitive properties, or a raw 3 x 3 transformation matrix
that maps a unit gradient centered about (0,0) to a final size, rotation, skew, and position. See details under the Description.

Description

Like beginFill(), beginGradientFill() starts a shape, but it fills that shape with a linear or radial gradient (shown in Figure 18-1) instead
of a solid fill.

Figure 18-1. A radial and a linear gradient

The gradient is defined, positioned, sized, and rotated by the fillType, colors, alphas, ratios, and matrix parameters.

The filled shape appears above all Drawing API content already in mc, but beneath all other content in mc (e.g., movie clips, shapes,

text, and buttons placed at authoring time, or content attached at runtime via attachMovie(), duplicateMovieClip(), or createTextField(
)).

Just as with beginFill() we start drawing a gradient-filled shape with a call to moveTo(), which indicates the starting position of the
outline we'll draw around the shape. Next, we call beginGradientFill() to start the shape and define the attributes of the gradient. We then
draw the shape's outline with lineTo() and/or curveTo() calls. Conceptually, the gradient is distinct from the shape, as though the two
were separated onto two layers, with the gradient beneath the shape. The shape acts as a hole through which the gradient layer is visible
(that is, the gradient is "clipped" by the shape). For example, if we draw a 100 x 100 square at position (25,0) and a 75 x 300 two-color
linear gradient at position (0,0), the blended portion of the gradient extends 50 pixels into the square, and the remainder of the square is
filled with the rightmost color in the gradient, as shown in Figure 18-2.

Figure 18-2. A linear gradient and a square

To make the gradient span the entire square perfectly, we'd have to change its size to 100 x 100, and position it at (25,0), the top-left
corner of the square. Let's see how this works in code, first with the offset gradient, then with the perfectly aligned one. First, we make a
clip in which to draw the square:

this.createEmptyMovieClip("drawing_mc", 1);

Then we position the drawing pen at (25,0):

drawing_mc.moveTo(25, 0);

Now we have to define the gradient. We'll store each of beginGradientFill()'s arguments in a variable for easy reading. The fillType
parameter should be "linear" or "radial", indicating whether the bands of color in the gradient will form straight lines or circles. We use a
"linear" gradient (straight lines):

var fillType = "linear";

Next, we specify an array of color values (the colors parameter); these are the bands of color that will be blended together in our

gradient. We have two colors, white and black, but you can specify as many as you like:

var colors = [0xFFFFFF, 0x000000];

Next, we specify the transparency of each color as an array of integers between 0 and 100 (the alphas parameter). Each element in

alphas corresponds to an element in colors (both arrays must have the same number of elements). An alpha of 0 is completely

transparent, whereas 100 is completely opaque. Our colors are not transparent, so we set them both to 100:

var alphas = [100, 100];

Next, we define the proportional position of each color band in our gradient as an array of integers between 0 and 255 (the ratios
parameter). As before, the ratios array must have the same number of elements as the colors array. A value of 0 means the color is

pure at the leftmost (linear) or innermost (radial) point of the gradient. A value of 255 means the color is pure at the rightmost (linear) or
outermost (radial) point of the gradient. We want our gradient to blend evenly from white to black across its entire width, so we set the
position of pure white to 0, and the position of pure black to 255:

var ratios = [0, 255];

Finally, we set the position, width, height, and rotation of our gradient as an object (the matrix parameter). We set the matrix
object's matrixType property to "box" and then provide values for the following properties: x (horizontal position), y (vertical

position), w (width), h (height), and r (rotation). The x and y properties specify the gradient's top-left corner, relative to the clip's

registration point, and the r property specifies the gradient's angle of rotation, in radians, not degrees. Our code calls a custom toRadians(

) function that converts degrees to radians:

var matrix = { matrixType:"box", x:0, y:0, w:75, h:300, r:toRadians(0) };
function toRadians (deg) {
 return deg * Math.PI/180;
}

With our gradient arguments defined, we can now invoke beginGradientFill():

drawing_mc.beginGradientFill(fillType, colors, alphas, ratios, matrix);

And then we simply draw our square, exactly as we would with a solid fill, being sure to return to the starting point (25,0) with our last
call to lineTo():

drawing_mc.lineTo(125, 0);
drawing_mc.lineTo(125, 100);
drawing_mc.lineTo(25, 100);
drawing_mc.lineTo(25, 0);

Finally, we formally close the shape with endFill(), which completes our gradient-filled square:

drawing_mc.endFill();

Now, how about aligning our gradient perfectly with the square? No problem, we just change the gradient's starting position to the shape's
origin, (25,0), and set its size to 100 x 100 by adjusting our matrix object:

var matrix = { matrixType:"box", x:25, y:0, w:100, h:100, r:toRadians(0) };

By setting the r property of matrix to the number of radians in 45 degrees, using toRadians(45), we can create a diagonal gradient

instead:

var matrix = { matrixType:"box", x:25, y:0, w:100, h:100, r:toRadians(45) };

To fill the nicely aligned box with a white circular gradient, we can set fillType to radial:

var fillType = "radial";

To switch the order of the colors, we simply reverse the colors array, as follows:

var colors = [0x000000, 0xFFFFFF];

The stroke defined by the most recent call to lineStyle() is automatically added to the shape. If lineStyle() has never been called, the
shape is not stroked. For example, placing the following code before our moveTo() statement adds a red stroke to our square:

drawing_mc.lineStyle(1, 0xFF0000);

For most purposes, the bounding box object we used for matrix in our square example provides ample gradient control. However, a

gradient's position, rotation, scale, and skew can also be specified by a 3 x 3 transformation matrix applied to a unit gradient centered at
position (0,0). Transformation matrices are useful when programmatically generating fills, as is necessary in, say, a 3D engine. To use a 3
x 3 transformation matrix, we set the matrix parameter of beginGradientFill() to an object with the properties a, b, c, d, e, f, g, h,

and i, corresponding to the following positions in our 3 x 3 matrix:

| a b c |
| d e f |
g h i

To scale, rotate, and translate (move) the unit gradient, we use the following transformation matrices:

 SCALE TRANSLATE ROTATE (clockwise)
--------------- --------------- --------------------------------
sx 0 0		1 0 0		cos(theta) sin(theta) 0
0 sy 0		0 1 0		-sin(theta) cos(theta) 0
0 0 1		tx ty 1		0 0 1
--------------- --------------- --------------------------------
sx = x scale factor tx = amount of x-shift
sy = y scale factor ty = amount of y-shift

In the simplest case, where we neither scale, rotate, nor translate the gradient, the matrices reduce to:

 SCALE TRANSLATE ROTATE (clockwise)
--------------- --------------- --------------------------------
1 0 0		1 0 0		1 0 0
0 1 0		0 1 0		0 1 0
0 0 1		0 0 1		0 0 1
--------------- --------------- --------------------------------
sx = x-scale factor tx = amount of x-shift
sy = y-scale factor ty = amount of y-shift

and our matrix object is set as follows:

var matrix = { a:1, b:0, c:0, d:0, e:1, f:0, g:0, h:0, i:1 };

To scale the unit gradient to 100 x 100, we set the a and e properties to 100, leaving the i property as 1 and the others as 0, as follows:

var matrix = { a:100, b:0, c:0, d:0, e:100, f:0, g:0, h:0, i:1 };

This transformation is close to the one we specified earlier for our square's gradient, but it is not identical. The x-scale and y-scale factors
of the matrix (a and e) cause the unit gradient, which is centered around the origin (0,0), to be scaled up to a height and width of 100.

Scaling alone, however, does not change the center point of the gradient—it remains at (0,0) when the translation properties (g and h) are

set to 0.

To also move the gradient's origin to position (25,0), we set the horizontal translation parameter (g) to move the gradient 25 pixels to the

right, as follows:

var matrix = { a:100, b:0, c:0, d:0, e:100, f:0, g:25, h:0 , i:1 };

This produces a gradient that is centered about the point (25,0).

However, our earlier matrix positioned the gradient's top-left corner, not its center, at (25,0). To center the gradient in our square (as we
did earlier), we need to translate from the point (25,0) to the middle of the destination by adding 50 to the horizontal and vertical
coordinates (50 is half of our square's width and height).

Therefore, to center our gradient, we set g to 75 (which is 25 + 50) and h to 50 (which is 0 + 50), as follows:

var matrix = { a:100 , b:0 , c:0 , d:0 , e:100 , f:0 , g:75 ,h:50 , i:1 };

For comparison, here's the complete square code, showing both ways of specifying our beginGradientFill()'s matrix argument:

// Convenient degree-to-radian converter.

function toRadians (deg) {
 return deg * Math.PI/180;
}

// Define our beginGradientFill() parameters.
var fillType = "linear";
var colors = [0xFFFFFF, 0x000000];
var alphas = [100, 100];
var ratios = [0, 255];
// Use either the box matrix version:
var matrix = { matrixType:"box", x:25, y:0, w:100, h:100, r:toRadians(0) };
// or the transformation matrix version:
var matrix = { a:100 , b:0 , c:0 , d:0 , e:100 , f:0 , g:75 ,h:50 , i:1 };

// Make the movie clip.
this.createEmptyMovieClip("drawing_mc", 1);

// Draw the gradient-filled square.
drawing_mc.moveTo(25, 0);
drawing_mc.beginGradientFill(fillType, colors, alphas, ratios, matrix);
drawing_mc.lineTo(125, 0);
drawing_mc.lineTo(125, 100);
drawing_mc.lineTo(25, 100);
drawing_mc.lineTo(25, 0);
drawing_mc.endFill();

By combining matrices, we can use a single matrix to describe scale, rotation, and translation together. Matrix multiplication is outside
the scope of this discussion; however, Macromedia provides a TransformMatrix class on the Flash MX CD under:
Goodies\Macromedia\Other Samples\transformmatrix.as. It defines easy-to-use methods for specifying and combining transformation
matrices.

Usage

Even though Flash attempts to fix improperly specified shapes (e.g., a shape with no endFill() method), predictable results can be
guaranteed only when the shape-drawing rules described under MovieClip.beginFill() are observed.

Example

The following code draws a triangle with a red, green, and blue radial gradient. The triangle is centered about the clip's registration point,
and the gradient is centered within the triangle:

// Create an empty clip for drawing, and set the pen position
this.createEmptyMovieClip("drawing_mc", 1);
drawing_mc._x = drawing_mc._y = 200;
drawing_mc.lineStyle(1, 0xFF0000);
drawing_mc.moveTo(0, -50);

// Set gradient parameters
var fillType = "radial";
var colors = [0xFF0000, 0x00FF00, 0x0000FF];
var alphas = [100, 100, 100];
var ratios = [0, 127, 255];
var matrix = { matrixType:"box", x:-50, y:-35, w:100, h:100, r:toRadians(0) };
function toRadians (deg) {
 return deg * Math.PI/180;
}

// Start the shape
drawing_mc.beginGradientFill(fillType, colors, alphas, ratios, matrix);
// Draw the lines of the triangle
drawing_mc.lineTo(50, 50);
drawing_mc.lineTo(-50, 50);
drawing_mc.lineTo(0, -50);
// End the shape
drawing_mc.endFill();

See Also

MovieClip.beginFill(), MovieClip.clear(), MovieClip.curveTo(), MovieClip.endFill(), MovieClip.lineStyle(), MovieClip.lineTo(),
MovieClip.moveTo(); Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.clear() Method Flash 6

erases all Drawing API content from a movie clip

mc.clear()

Description

The clear() method erases all lines (strokes) and shapes (fills) created with the MovieClip Drawing API methods in
mc, but it does not affect content created in the Flash authoring tool. It also clears the current line style (as if

lineStyle(undefined) were called) and returns the drawing pen to position (0,0). To activate lines for subsequent
drawings, call lineStyle() before invoking any drawing methods.

You can't erase author-time content using the Drawing API. Instead, use the _visible property to hide a movie

clip.

Example

The following code draws a single line with a random line style on every frame. It uses clear() to erase the line drawn
in the previous frame:

// A custom function to return a random integer
Math.randomInt = function (minVal, maxVal) {
 r = Math.random();
 return minVal + Math.floor(r * (maxVal + 1 - minVal));
}

this.createEmptyMovieClip("drawing_mc", 1);
drawing_mc.onEnterFrame = function () {
 this.clear();
 this.lineStyle(Math.randomInt(1, 40), Math.randomInt(1, 0xFFFFFF));
 this.moveTo(Math.randomInt(1, 550),Math.randomInt(1, 400));
 this.lineTo(Math.randomInt(1, 550),Math.randomInt(1, 400));
}

Reader Exercise 1: Try removing the call to clear() to see how calls to the drawing functions are cumulative until
clear() is invoked.

Reader Exercise 2: Using clear() erases the Drawing API content from the specified clip only. Write a custom function
to erase all Drawing API content from all movie clips, starting with the specified clip and recursively erasing the
dynamic content from any nested clips. Use a for-in loop to detect nested clips. You can use your function with the
main timeline to erase all dynamic content.

See Also

MovieClip.beginFill(), MovieClip.beginGradientFill(), MovieClip.curveTo(), MovieClip.endFill(),
MovieClip.lineStyle(), MovieClip.lineTo(), MovieClip.moveTo(), MovieClip._visible; Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.createEmptyMovieClip() Method Flash 6

creates a new, empty MovieClip instance

mc.createEmptyMovieClip(instanceName, depth)

Arguments

instanceName

A string specifying the instance name of the clip to create. The name must adhere to the rules for creating
an identifier outlined under Section 15.5. To enable code hinting in the Flash authoring tool, use clip
instance names that include the suffix "_mc", as in ball_mc.

depth

An integer between -16384 and 1048575 (inclusive), specifying the level on which to place the new clip
inside mc. Higher depths obscure lower depths, so a depth of 6 is in front of 5, which is in front of 4, and

so on. Depths above -1 are reserved for dynamically generated content. Therefore, in most cases, you
should use a depth between 0 and 1048575 with createEmptyMovieClip(). However, when creating
dynamic content that you want to appear beneath all author-time content in mc (e.g., a run-time

background), use depth -16384. Depths from -16383 to -1 (inclusive) are reserved for author-time content
and shouldn't be used with createEmptyMovieClip(). For important details, see Section 13.4.

Returns

A reference to the new MovieClip instance.

Description

The createEmptyMovieClip() method creates a new, blank movie clip instance and attaches it to mc at the

specified depth. If mc is the main movie, the new instance is placed in the top-left corner of the Stage. If mc is

a movie clip instance, the new instance is placed at mc's registration point. The new instance is placed in mc's

content stack at the specified depth, replacing any previous occupant of that depth.

The createEmptyMovieClip() method is used to create content at runtime without requiring any Library symbol.
For example, to create a spaceship dynamically, we can create an empty clip and then use the MovieClip Drawing
API methods to draw the ship. Likewise, to create a form or interface panel at runtime, we can create an empty
clip and then populate it with text fields, as follows:

this.createEmptyMovieClip("form_mc", 1);
form_mc.createTextField("firstName_txt", 1, 0, 0, 200, 20);
form_mc.firstName_txt.border = true;
form_mc.firstName_txt.type = "input";
form_mc.createTextField("lastName_txt", 2, 0, 30, 200, 20);
form_mc.lastName_txt.border = true;
form_mc.lastName_txt.type = "input";
form_mc.createTextField("email_txt", 3, 0, 60, 200, 20);
form_mc.email_txt.border = true;
form_mc.email_txt.input = "input";

An empty movie clip can also be used simply as a holder for events, such as onEnterFrame(), onKeyDown(),
onMouseDown(), etc:

this.createEmptyMovieClip("process_mc", 1);
process_mc.onEnterFrame = function () {
 // perform per-frame tasks here
}

The createEmptyMovieClip() method returns a reference to the clip it creates. We can store this reference in a
variable for easy access. For example, the following code creates an empty clip deeply nested inside an
application's interface but stores a reference to the clip in the variable fileMenu:

// Create the clip.
var fileMenu = appPanels.editPanel.menuBar.createEmptyMovieClip
 ("fileMenu_mc", 1);
// Now manipulate the clip through the variable fileMenu.
fileMenu._x = 20;
fileMenu._y = 50;

A movie clip created with createEmptyMovieClip() can be used as a mask for other clips (see
MovieClip.setMask()) and can receive button events such as onPress() and onRelease(). However, strokes and
transparent fills are not recognized for masking or hit-testing for button events.

To delete a movie clip, use MovieClip.removeMovieClip(). However, note that a movie clip placed on a negative
depth cannot be removed via removeMovieClip(). To remove a clip at a negative depth, first swap it to a positive
depth, then remove it:

theClip_mc.swapDepths(1234); // Pick a positive depth to swap to
theClip_mc.removeMovieClip(); // Remove the clip

See the removeMovieClip() global function Description for more important details.

Usage

Depths above 1048575 are partially functional but not supported. For example, though a movie clip can be
attached to depth 1048576, it cannot be removed. An attempt to attach a movie clip to a depth below -16384 fails
silently.

See Also

duplicateMovieClip(), MovieClip.attachMovie(), MovieClip.createTextField(), MovieClip.duplicateMovieClip(
), MovieClip.getDepth(), MovieClip.removeMovieClip(), MovieClip.swapDepths()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.createTextField() Method Flash 6

creates a new TextField object

mc.createTextField(instanceName, depth, x, y, width, height)

Arguments

instanceName

A string specifying the instance name of the TextField object to create. The name must adhere to the rules for creating an
identifier outlined under Section 15.5. To enable code hinting in the Flash authoring tool, use text field instance names that
include the suffix "_txt", as in firstName_txt.

depth

An integer, between -16384 and 1048575 (inclusive), specifying the level on which to place the new text field inside mc.

Higher depths obscure lower depths, so a depth of 6 is in front of 5, which is in front of 4, and so on. Depths above -1 are
reserved for dynamically generated content. Therefore, in most cases, you should use a depth between 0 and 1048575 with
createTextField(). However, when creating dynamic content that you want to appear beneath all author-time content in mc
(e.g., a run-time background), use depth -16384. Depths from -16383 to -1 (inclusive) are reserved for author-time content
and shouldn't be used with createTextField(). For important details, see Section 13.4.

x

A floating-point number specifying the horizontal position of the newly created field's left edge, in pixels, relative to the
coordinate space of mc. See TextField._x.

y

A floating-point number specifying the vertical position of the newly created field's top edge, in pixels, relative to the
coordinate space of mc. See TextField._y.

width

A floating-point number specifying the width of the newly created field's bounding box, in pixels. See
TextField._width.

height

A floating-point number specifying the height of the newly created field's bounding box, in pixels. See
TextField._height.

Description

The createTextField() method creates a new on-screen text field controlled by the ActionScript TextField object named
instanceName. It is the runtime equivalent of creating a text field with the Text tool in the Flash authoring tool. If mc is the

main movie, the new text field is placed at the point (x, y), relative to the top-left corner of the Stage. If mc is a movie clip instance,

the new text field is placed at the point (x, y), relative to mc's registration point. The new text field is placed in mc's content stack

at the specified depth, replacing any previous occupant of that depth. The text field's default type is "dynamic".

Once the text field has been created, it is controlled by the methods and properties of the TextField class. For instructions on
deleting a text field, see the TextField.removeTextField() method.

Example

The following code creates a text field on the main timeline of a movie (_root), at depth 2, positioned at point (0, 0) (the top-left

corner of the movie), with a bounding box width of 200 and height of 20. Once the field is created, the text "Hello world!" is
displayed in it:

_root.createTextField("welcome_txt", 1, 0, 0, 200, 20);
_root.welcome_txt.text = "Hello world!";

The following code creates the same text field, but also gives it a border and positions it at the center of the movie's Stage:

// Create the text field.
_root.createTextField("welcome_txt", 1, 0, 0, 200, 20);
// Add a border and some text.
_root.welcome_txt.border = true;
_root.welcome_txt.text = "Welcome to my site!";
// Make the border match the text size.
_root.welcome_txt.autoSize = true;

// Set the alignment mode of the movie.
Stage.align = "LT";
Stage.scaleMode = "noScale";

// Center the text field any time the movie changes size.
_root.welcome_txt.onResize = function () {
 this._x = (Stage.width/2) - (this._width/2);
 this._y = (Stage.height/2) - (this._height/2);
}
// Make the text field listen for the Stage.onResize() event.
Stage.addListener(_root.welcome_txt);

// Center the text field manually. This is required in the Standalone Player,
// which does not automatically trigger onResize() when the movie loads.
_root.welcome_txt.onResize();

See Also

MovieClip.createEmptyMovieClip(), TextField.getDepth(), TextField.removeTextField(); the Stage class, the TextField class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._currentframe Property Flash 4

the frame number of the playhead of a clip or
movie

read-only

mc._currentframe

Description

The integer _currentframe property represents the frame number at which the playhead of mc currently

resides. Note that the first frame is 1, not 0; therefore, _currentframe ranges from 1 to

mc._totalframes.

Example

// Send the playhead backward two frames from its current location
this.gotoAndStop(this._currentframe - 2);

See Also

MovieClip.gotoAndPlay(), MovieClip.gotoAndStop(), MovieClip._totalframes

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.curveTo() Method Flash 6

draws a curved line

mc.curveTo(controlX, controlY, anchorX, anchorY)

Arguments

controlX

The horizontal position of the off-curve control point of the quadratic Bezier curve, as a floating-point
number. Measured relative to mc's registration point.

controlY

The vertical position of the off-curve control point of the quadratic Bezier curve, as a floating-point
number. Measured relative to mc's registration point.

anchorX

The horizontal end position of the curve to be drawn, as a floating-point number. Measured relative to
mc's registration point.

anchorY

The vertical end position of the curve to be drawn, as a floating-point number. Measured relative to mc's

registration point.

Description

The curveTo() method draws a quadratic Bezier curve from the current drawing pen position to the point
(anchorX, anchorY) using an off-curve control point of (controlX, controlY). The tangents to

the curve at the start and end points both pass through the control point. Conceptually speaking, the straight line
that would run from the pen position to the end point (anchorX, anchorY) is pulled by the control point

(controlX, controlY) to make a curve. An alternate method that draws a curve through three specific

points and does not require the user to supply a control point is shown in the following Example.

The stroke characteristics of the curve (thickness, color, alpha) are determined by the most recent call to
lineStyle().

If lineStyle() hasn't been called, the stroke style will be undefined. In that case,

curveTo() moves the drawing pen position to (anchorX, anchorY), exactly as if

moveTo() had been called, but does not draw a curve on screen.

The curve, when drawn, appears above all Drawing API content already in mc, but beneath all other content in

mc (e.g., movie clips, shapes, text, and buttons placed at authoring time, or content attached at runtime via

attachMovie(), duplicateMovieClip(), or createTextField()).

The following code creates a movie clip named drawing_mc and draws a 4-point black curve from the

drawing pen's default position (0,0) to the anchor point (100,0) using the control point (50,-100). The resulting
curve is shown in Figure 18-3.

// Create a clip to draw in
this.createEmptyMovieClip("drawing_mc", 1);

// Set the stroke to 4-point, black
drawing_mc.lineStyle(4);

// Draw the curve
drawing_mc.curveTo(50, -100, 100, 0);

// Center the drawing clip on the Stage
drawing_mc._x = 200;
drawing_mc._y = 225;

Figure 18-3. A sample quatratic Bezier

After a curve is drawn, the drawing pen remains at the end point of the curve. Here, multiple calls to curveTo()
and/or lineTo() can be used to draw complex curves or closed shapes, such as circles and polygons. For details,
see Example 18-2 under MovieClip.beginFill().

If any of curveTo()'s arguments are missing, the operation fails silently and the position of the drawing pen
remains unchanged. For a description of the drawing pen, see the Discussion under MovieClip.moveTo().

For a primer on Bezier curve mathematics and programming, see:

http://www.ipm.sci-nnov.ru/~demidov/VRML/Splines/Intro/Bezier.htm

Example

Sometimes it is more convenient to specify three points on a curve rather than two anchor points and a control
point. The following code adds a custom curveThrough3Pts() method to all movie clips; the method accepts
three points as arguments and draws a quadratic curve that passes through them. The second point is assumed to
be halfway along the curve, in time (t = .5):

// Adapted from Robert Penner's drawCurve3Pts() method
MovieClip.prototype.curveThrough3Pts =
 function (startX, startY, throughX, throughY, endX, endY) {
 var controlX = (2 * throughX) - .5 * (startX + endX);
 var controlY = (2 * throughY) - .5 * (startY + endY);
 this.moveTo(startX, startY);
 this.curveTo(controlX, controlY, endX, endY);
};

// Usage
this.createEmptyMovieClip("drawing_mc", 1);
drawing_mc.lineStyle(1, 0xFF0000);
drawing_mc.curveThrough3Pts(100, 100, 150, 50, 200, 100);

See Also

MovieClip.beginFill(), MovieClip.beginGradientFill(), MovieClip.clear(), MovieClip.curveTo(),
MovieClip.endFill(), MovieClip.lineStyle(), MovieClip.lineTo(), MovieClip.moveTo()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._droptarget Property Flash 4

the path to the clip or movie on which a dragged
clip was dropped

read-
only

mc._droptarget

Description

If mc is being dragged, _droptarget returns a string indicating the path to the clip over which mc hovers (if any). If mc is

not hovering over a clip, _droptarget returns undefined. If mc was previously dragged and then dropped on a clip,

_droptarget returns a string indicating the path to the clip upon which mc was dropped. The path is provided in slash

notation. A movie clip is considered to be "over" another clip if the registration point of the dragged clip overlaps any portion of
the target clip. If mc hovers over two or more overlapping clips, only the topmost clip is considered the _droptarget. To

detect intersection between any number of overlapping clips, use MovieClip.hitTest().

Example

The _droptarget property is convenient for creating drag-and-drop interfaces. The following example demonstrates how

to create a simple shopping-basket interface using _droptarget. When the item_mc clip is dropped onto the basket
clip, it is allowed to stay in the basket; otherwise, the item_mc is returned to its original location:

// Set original location
item_mc.origX = _x;
item_mc.origY = _y;

// Define a function to call when the item is clicked
item_mc.drag = function () {
 this.startDrag();
}

// Define a function to call when the item is dropped
item_mc.drop = function () {
 stopDrag();
 if (this._droptarget != "/basket") {
 this._x = this.origX;
 this._y = this.origY;
 }
}

// Assign our drag/drop callback to the appropriate item_mc button handlers
item_mc.onPress = item_mc.drag;
item_mc.onRelease = item_mc.onReleaseOutside = item_mc.drop;

Note that _droptarget stores a string in slash notation, not as a clip reference. To convert a _droptarget string to a

movie clip reference, use the technique shown in the Example under the eval() global function.

See Also

MovieClip.startDrag(), MovieClip.stopDrag()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.duplicateMovieClip() Method Flash 6

create a copy of a movie clipFlash 5; initObject and return
value added in

mc.duplicateMovieClip(newName, depth)
mc.duplicateMovieClip(newName, depth, initObject)

Arguments

newName

A string that will become the instance name of the duplicated clip. The name must adhere to the rules for
creating an identifier outlined under Section 15.5.

depth

An integer between -16384 and 1048575 (inclusive), specifying the level on which to place the new clip
inside mc's parent. Higher depths obscure lower depths, so a depth of 6 is in front of 5, which is in front

of 4, and so on. Depths above -1 are reserved for dynamically generated content. Therefore, in most
cases, you should use a depth between 0 and 1048575 with duplicateMovieClip(). However, when
creating dynamic content that you want to appear beneath all author-time content in mc (e.g., a runtime

background), use depth -16384. Depths from -16383 to -1 (inclusive) are reserved for author-time
content and shouldn't be used with duplicateMovieClip(). For important details, see Section 13.4.

initObject

An optional object whose properties are copied to the new movie clip instance. Not supported in Flash 5.

Returns

In Flash 6, duplicateMovieClip() returns an object reference to the attached movie clip (in Flash 5, it always
returns undefined).

Description

The MovieClip.duplicateMovieClip() method is an alternative to the global duplicateMovieClip() function.
When invoked as a MovieClip method, duplicateMovieClip() takes no target parameter (as it does with the

global version)—it duplicates mc and returns a reference to the new duplicate. The MovieClip method syntax is

less prone to user error than its global function counterpart because no target parameter is required.

For general usage instructions, see the global duplicateMovieClip() function. For details on the
initObject parameter, see MovieClip.attachMovie() and Chapter 14.

Usage

The global form of duplicateMovieClip() does not include support for the initObject parameter, nor does

it return a reference to the newly duplicated clip (these limitations also apply to the movie clip method form in
Flash 5).

Example

Make a duplicate of ball1_mc named ball2_mc. The duplicate is placed on depth 1 inside

ball1_mc's parent:

ball1_mc.duplicateMovieClip("ball2_mc", 1);

See Also

duplicateMovieClip(), MovieClip.attachMovie()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.enabled Property Flash 6

Boolean; allows or disallows button interaction read/write

mc enabled

Description

Like Button.enabled, the Boolean MovieClip.enabled property determines whether mc's

button behavior is (true) or is not (false) enabled. By default, MovieClip.enabled is true;

however, it has an effect only when one or more button events (onPress(), onRelease(), etc.) are defined for
mc. When enabled is false, mc does not receive button event notifications, the hand cursor is not

shown, and mc's playhead does not jump automatically to the movie clip's _up, _over and _down frames

in response to mouse interaction. However, mc will still play normally, and it can be focused with the Tab key.

To disable tab focus, set mc.tabEnabled to false.

For information on implementing button behavior for a movie clip, see the MovieClip class Description,
MovieClip.hitArea, and Section 13.9.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

See Also

Button.enabled, MovieClip.hitArea, MovieClip.tabEnabled,

MovieClip.useHandCursor; Section 13.9

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.endFill() Method Flash 6

terminates the fill begun with beginFill() or
beginGradientFill()

mc.endFill()

Description

The endFill() method terminates the filling of a shape that was begun with an earlier call to beginFill() or
beginGradientFill(), causing the shape to be drawn on-screen. If the current drawing pen position is not the
same as when beginFill() or beginGradientFill() was called, Flash closes the shape with a straight line and
applies the fill. However, creating open shapes can have unpredictable results and is not recommended.

For complete details on drawing shapes, see MovieClip.beginFill() and MovieClip.beginGradientFill().

Example

// Draws a four-sided shape on the main timeline
_root.moveTo(225, 200);
_root.beginFill(0x00FF00, 50);
_root.lineTo(100,100);
_root.lineTo(0,100);
_root.lineTo(0,300);
_root.lineTo(225,200);
_root.endFill();

See Also

MovieClip.beginFill(), MovieClip.beginGradientFill(), MovieClip.clear(), MovieClip.curveTo(),
MovieClip.lineStyle(), MovieClip.lineTo(), MovieClip.moveTo()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.focusEnabled Property Flash 6

allow the clip to be focused programmatically read/write

mc.focusEnabled

Description

When the Boolean focusEnabled property is false or undefined (the default) and mc defines no button handlers

(onPress(), onRelease(), etc.), mc cannot be focused via Selection.setFocus(). When focusEnabled is true, mc can be

focused via Selection.setFocus() at any time, even when no button handlers are defined. When mc defines at least one button

handler, it can still be focused via Selection.setFocus(), even when focusEnabled is false. To disable focus for a movie

clip with button handlers, remove the handlers and set focusEnabled to false. For example, the following code removes

the onPress() handler of theClip_mc:

delete theClip_mc.onPress;

We use focusEnabled when creating movie clips that act as keyboard-controlled interface elements, such as a modal dialog

box with Yes and No buttons activated by the keys "Y" and "N." The dialog box should respond to "Y" and "N" only when it has
focus. The following code shows a simplified function that creates a dialog box clip and focuses it:

function displayAlert () {
 // appInterface is a movie clip containing the main application interface.
 // getFreeDepth(), not shown, is a function that returns an unoccupied
 // depth on which to place the dialog clip. dialog is the dialog box clip.
 var dialog = appInterface.attachMovie("dialog",
 "alertDialog",
 appInterface.getFreeDepth());
 // Allow the dialog box to be focused.
 dialog.focusEnabled = true;
 // Focus the dialog box.
 Selection.setFocus(dialog);
}

To highlight our dialog clip when it is focused, we can create frames with the special labels _over and _up in the

dialog clip's timeline. The _up and _over frames will be displayed automatically by Flash when the clip loses and receives

focus, respectively. You also might want to set the clip's _focusrect property to false. For a discussion of special focus

issues for keyboard-controlled movie clips, see MovieClip.onKeyDown().

Note that focusEnabled and tabEnabled are not synonyms. Even when focusEnabled is false, a movie clip

can be focused with the Tab key when tabEnabled is true. Conversely, setting focusEnabled to true does not

enable Tab-focusing for the clip; Tab-focusing is controlled independently by tabEnabled and tabIndex.

See Also

MovieClip._focusrect, MovieClip.tabEnabled, MovieClip.tabIndex,

TextField.selectable, Selection.setFocus()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._focusrect Property Flash 6

disable automatic yellow rectangle around
focused movie clips

read/write

mc._focusrect

Description

When a movie clip has keyboard focus, Flash displays a yellow rectangle around it, which is not always
aesthetically desirable. You can turn off the yellow rectangle for an individual movie clip by setting its
_focusrect property to false:

listbox_mc._focusrect = false;

When _focusrect is true and mc has keyboard focus, Flash displays the yellow rectangle and the

contents of mc's _over frame (if a frame labeled _over exists). When _focusrect is set to false,

Flash displays just the _over frame. When _focusrect is null (the default), the value of the global

_focusrect property is used. To disable the yellow focus rectangle for all movie clip and buttons in a

movie, set the global _focusrect property to false. Note that the value of the global _focusrect
property is not reflected by the _focusrect property of individual movie clip instances. However, setting

an individual movie clip's _focusrect property overrides the global setting.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

See Also

Button._focusrect, _focusrect

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._framesloaded Property Flash 4

the number of frames of a clip or movie that have
downloaded to the Player

read-
only

mc._framesloaded

Description

The integer _framesloaded property indicates how many frames of mc have been loaded into the Player. It is

normally used to create preloaders that pause playback until a sufficient number of frames have downloaded. For a movie
clip, the _framesloaded property will equal _totalframes (because clips are loaded in their entirety before

playing) unless the instance is in the process of loading an external .swf file due to a loadMovie() invocation. Therefore, the
_framesloaded property is useful only with main movies or external .swf files loading into instances or levels. To

monitor load progress in bytes rather than frames, use getBytesLoaded() and getBytesTotal().

Preloader code is traditionally placed directly on the main timeline of the movie being preloaded. A simple approach is to
loop between frames 1 and 2 until the movie has loaded, at which point we send the playhead to the movie's start frame. For
example:

// CODE ON FRAME 1
if (_framesloaded > 0 && _framesloaded = = _totalframes) {
 gotoAndPlay("beginMovie");
}

// CODE ON FRAME 2
gotoAndPlay(1);

As of Flash 6, we can alternatively use the onEnterFrame() movie clip event handler to build a more portable preloader. In
the movie we wish to preload, at the frame where we want preloading to start, we invoke the stop() function. Then, on that
movie's timeline, we create a movie clip with the following onEnterFrame() handler:

stop();
this.createEmptyMovieClip("loader", 1);
loader.onEnterFrame = function () {
 this.loaded = this._parent._framesloaded;
 if (this.loaded > 0 && this.loaded = = this._parent._totalframes) {
 this._parent.gotoAndPlay("beginMovie");
 this.removeMovieClip();
 }
}

In this example, the clip tracks its parent's load progress and starts its parent playing when loading has finished. By using a
movie clip as a preloader, we avoid the need for a loop on the preloading movie's timeline. A movie clip preloader can even
be turned into a component, providing easier workflow for less experienced developers.

Notice that in our preloader examples we checked whether _framesloaded > 0 in addition to whether

_framesloaded = = _totalframes. This is necessary because when a movie is unloaded from a clip, that clip

has a _totalframes of 0. Hence, if _framesloaded is 0 (as it might be on a very slow connection), the

comparison _framesloaded = = _totalframes can return true even when no frames have yet loaded. Our

check prevents the movie from skipping ahead before the appropriate content has loaded. This precaution is not necessary
with preloaders placed on the main timeline of loading .swf files, because their _totalframes property is never 0.

The loadMovie() and unloadMovie() functions are executed asynchronously. Hence, the value of _framesloaded
varies according to when it is called and the value of mc, as follows:

If mc is undefined, _framesloaded returns undefined.

After a loadMovie() or unloadMovie() statement occurs in source code, but before it executes, and before any of the
external file has been retrieved, _framesloaded returns the number of frames in the old mc (that existed prior

to the loadMovie() or unloadMovie() statement).

Once part of the new .swf file has been retrieved, _framesloaded returns the number of frames loaded so far,

from 0 to _totalframes, unless the file at url is not found.

If the file at url is not found and mc is a movie clip, _framesloaded returns -1 and

mc._totalframes stores 0. However, if mc is a document _level, then _framesloaded and

_totalframes both return undefined.

After an unloadMovie() command executes, _framesloaded returns 0 if mc is a movie clip, and it returns

undefined if mc is a document level, such as _level0.

Example

Preloaders often include a horizontal loading bar and a text field indicating the percentage of a movie that has downloaded.
Loading bars are implemented as clips, resized with either the _width property or the _xscale property. However,

note that a clip scales proportionately on the right and left sides of its registration point. Therefore, to resize a clip from one
side only, we must place all of the clip's content on one side of the registration point in the clip's symbol. The following
example shows how to add a loading bar and a status text field to our preceding clip handler code. It draws the preload bar
using the MovieClip Drawing API, but the loading code would also work with manually drawn movie clips.

// A Portable Preloader with a Status Bar
// Stop the loading movie
stop();
// Create a container clip to do the preloading
this.createEmptyMovieClip("loader", 1);
// Create load bar clips
this.loader.createEmptyMovieClip("totalBar", 2);
this.loader.createEmptyMovieClip("loadedBar", 3);
// Create a text field for output
this.loader.createTextField("loadProgress_txt", 4, 80, 10, 200, 20);
// In the load bar clips, draw a red line on top of a thicker black line
this.loader.loadedBar.lineStyle(5, 0xFF0000);
this.loader.totalBar.lineStyle(8, 0x000000);
this.loader.loadedBar.lineTo(250, 0);
this.loader.totalBar.lineTo(250, 0);
// Assign the onEnterFrame() handler that will do the preloading work
this.loader.onEnterFrame = function () {
 // Determine the percentage of bytes that have loaded
 this.percentDone = Math.floor((this._parent.getBytesLoaded()
 / this._parent.getBytesTotal()) * 100);
 // Display the percentage of loaded bytes in our text field
 this.loadProgress_txt.text = this.percentDone + "% complete";
 // Set the size of our loadedBar clip
 this.loadedBar._xscale = this.percentDone;
 // Check how many frames have loaded
 this.loaded = this._parent._framesloaded;

 // If loading is complete...
 if (this.loaded > 0 && this.loaded = = this._parent._totalframes) {
 // ...start the movie, and...
 this._parent.gotoAndPlay("beginMovie");
 // ...delete the loader.
 this.removeMovieClip();
 }
}

Use the View Bandwidth Profiler command in Test Movie mode to simulate movie download for preloader testing.

See Also

MovieClip.getBytesLoaded(), MovieClip.onData(), MovieClip._totalframes; "The Bandwidth Profiler," in

the online technote http://www.moock.org/asdg/technotes

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.getBounds() Method Flash 5

determine the bounding box of a clip or movie

mc.getBounds(targetCoordinateSpace)

Arguments

targetCoordinateSpace

A string indicating the path to the movie or clip in whose coordinate space mc's dimensions are

measured. Because a movie clip reference is converted to a path when used in a string context,
targetCoordinateSpace can also be a movie clip object reference, as in

mc.getBounds(_root) versus mc.getBounds("_root"). Defaults to mc if not specified.

Returns

An object whose properties—xMin, xMax, yMin, and yMax—describe the bounding box of the space

occupied by mc. These four properties of the object specify the leftmost, rightmost, topmost, and bottommost

pixel coordinates of mc.

Description

The getBounds() method returns an anonymous object with properties that define the rectangular area occupied
by mc (i.e., mc's bounding box). To retrieve the values stored in the returned object, we must access that

object's properties, as shown in the following Example.

The dimensions of the bounding box of a clip can be measured relative to any other clip or movie. Using the
targetCoordinateSpace argument, we can pose the question, "If mc resided on

targetCoordinateSpace's canvas, what area would it occupy?" The answer differs depending on

whether targetCoordinateSpace is a main movie or a clip instance; the origin point of the main

movie's coordinate space is the top-left corner of the Stage, but the origin point of an instance's coordinate space
is its registration point, as marked in the clip's Library symbol (where it is shown as a crosshair).

The getBounds() method can be used to perform basic collision detection between a movie or clip and some
other point (though MovieClip.hitTest() serves this purpose better). It might also be used to identify a
rectangular region in which to place a clip added to a movie with MovieClip.attachMovie().

Example

// Retrieve the bounds for the current clip
var clipBounds = this.getBounds();
// Store the bounds in corresponding variables
var leftX = clipBounds.xMin;
var rightX = clipBounds.xMax;
var topY = clipBounds.yMin;
var bottomY = clipBounds.yMax;

See Also

MovieClip.globalToLocal(), MovieClip.hitTest(), MovieClip.localToGlobal

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.getBytesLoaded() Method Flash 5

check the number of bytes that have downloaded to the
Player

mc.getBytesLoaded()

Returns

An integer representing the number of bytes of mc that have finished downloading to the Player. Divide by 1024 to convert bytes to kilobytes

(KB).

Description

The getBytesLoaded() method tells us the number of bytes of a movie or JPEG image that have downloaded into the Flash Player. However,
data usually arrives in chunks of several hundred or several thousand bytes, and getBytesLoaded() measures bytes in terms of these chunks
only. So, if a movie's first frame is 200 bytes in size and its second frame is 3000 bytes in size, getBytesLoaded() may return 200 and 3200,
but it will never return any increment in between.

Note that internal movie clips are always loaded entirely before they are displayed, so the return value of getBytesLoaded() on an internal
movie clip is always the same as getBytesTotal(), unless the movie clip is currently loading an external file in response to loadMovie().
Therefore, getBytesLoaded() is generally useful only when used with an external .swf or .jpg file being loaded into an instance or level.

The loadMovie() and unloadMovie() functions are executed asynchronously. Hence, the return value of getBytesLoaded() varies according
to when it is called and the value of mc, as follows:

If mc is undefined, getBytesLoaded() returns undefined.

After a loadMovie() or unloadMovie() statement occurs in source code, but before it executes, and before any of the external file has
been retrieved, getBytesLoaded() returns the size of the existing content in mc (prior to the loadMovie() or unloadMovie()

statement). An empty movie clip created during authoring has a byte size of 4. An empty movie clip created via
MovieClip.createEmptyMovieClip() has a byte size of 0.

Once bytes have been retrieved, getBytesLoaded() returns the number of bytes loaded so far, unless the file at url is not found.

If the file at url is not found, getBytesLoaded() returns 0 (even if mc is a document _level that did not previously exist).

However, getBytesTotal() returns -1.

After an unloadMovie() command executes, getBytesLoaded() returns 0 if mc is a movie clip, or it returns undefined if mc is a

document level, such as _level0. The same applies to getBytesTotal().

Like _framesloaded, getBytesLoaded() is normally used to build preloaders. It can be used in concert with getBytesTotal() to create

a more accurate progress bar than is possible with _framesloaded and _totalframes (because the byte size of each frame may

not be equal—a movie with 10 frames is not 30% loaded when three frames are loaded if the frames differ widely in size). See
_framesloaded for example preloader code based on the number of downloaded frames.

Usage

Unfortunately, in Flash 6, the return value of getBytesLoaded() reflects the uncompressed size of Flash .swf files being loaded, not the size of
the file after Flash compression has been applied. This means that getBytesLoaded() for a .swf file with a post-compression size of 2,000
bytes might return, say, 10,000 bytes.

Example

The following code shows a simple preloader that displays download progress in two text fields:

// CODE ON FRAME 1 OF A MOVIE'S MAIN TIMELINE
if (this._framesloaded > 0 && this._framesloaded = = this._totalframes) {
 this.gotoAndPlay("beginMovie");
} else {
 // Show the load progress in text fields. Divide by 1024 to convert bytes to KB.
 loadProgressOutput_txt.text = Math.floor(this.getBytesLoaded()/1024);
 loadTotalOutput_txt.text = Math.floor(this.getBytesTotal()/1024);
}

// CODE ON FRAME 2
this.gotoAndPlay(1);

See Also

loadMovie(), MovieClip._framesloaded, MovieClip.getBytesTotal(), MovieClip.loadMovie(),

MovieClip._totalframes, MovieClip.unloadMovie(), unloadMovie()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.getBytesTotal() Method Flash 5

check the size of a clip or movie, in bytes

mc.getBytesTotal()

Returns

An integer representing the uncompressed size of mc, in bytes. Divide by 1024 to convert bytes to kilobytes

(KB).

Description

The getBytesTotal() method tells us the uncompressed size, in bytes, of a clip instance or the main movie.
When invoked on the main movie, getBytesTotal() reports the size of the entire .swf file. It is normally used in
concert with getBytesLoaded() to create preloaders for main movies and .swf or .jpg files loaded into instances
or levels via loadMovie().

The loadMovie() and unloadMovie() functions are executed asynchronously. Hence, the return value of
getBytesTotal() varies according to when it is called and the value of mc, as follows:

If mc is undefined, getBytesTotal() returns undefined.

After a loadMovie() or unloadMovie() statement occurs in source code, but before it executes, and
before the size of the external file has been determined, getBytesTotal() returns the size of the existing
content in mc (prior to the loadMovie() or unloadMovie() statement). An empty movie clip created

manually during authoring has a byte size of 4. An empty movie clip created via
MovieClip.createEmptyMovieClip() has a byte size of 0.

Once the file size is determined, getBytesTotal() returns the complete size of mc, unless the file at url
is not found.

If the file at url is not found, getBytesTotal() returns -1 (even if mc is a document _level that did

not previously exist) and getBytesLoaded() returns 0.

After an unloadMovie() command executes, getBytesTotal() returns 0 if mc is a movie clip or

undefined if mc is a document level, such as _level0. The same applies to getBytesLoaded().

Usage

As with getBytesLoaded(), in Flash 6 the return of getBytesTotal() reflects the uncompressed size of the .swf
file being loaded, not the size of the file after Flash compression has been applied. This means that
getBytesTotal() for a .swf file with a post-compression size of 2,000 bytes might return, say, 10,000 bytes. As
such, it cannot be used to predict the time left in the download of a compressed .swf file. It is intended to offer
only a relative measure of the percentage of the file that is downloaded, in concert with getBytesLoaded().

See Also

loadMovie(), MovieClip._framesloaded, MovieClip.getBytesLoaded(), MovieClip.loadMovie(),

MovieClip._totalframes, MovieClip.unloadMovie(), unloadMovie()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.getDepth() Method Flash 6

returns the movie clip's position in the visual content stack

mc.getDepth()

Returns

An integer specifying the depth of mc in its parent's visual content stack.

Description

The getDepth() method returns the integer position of mc in its parent movie clip's content stack. Higher depths obscure lower

depths, so a depth of 6 is in front of 5, which is in front of 4, and so on. Depth positions range from -16384 to 1048575. Depths
above -1 are reserved for dynamically generated content; depths from -16383 to -1 (inclusive) are reserved for author-time content;
and depth -16384 is reserved for dynamic content that appears beneath all author-time content in each clip (e.g., a runtime
background).

Each instance's depth is initialized when the clip is created (either in the Flash authoring tool or via attachMovie(),
createEmptyMovieClip(), or duplicateMovieClip()). However, an instance can be moved to a different depth via swapDepths().
Content placed at a given depth replaces any content previously loaded at that depth.

For important details, see Section 13.4.

Example

The following code creates three clips and draws a line in each. The first line clip (red) is created behind the second line clip (blue).
Then the third line clip (green) is placed in the red line clip's depth, effectively replacing it. The redline_mc clip's depth is

dynamically determined via getDepth().

// Red line appears in back (depth 1)
this.createEmptyMovieClip("redline_mc", 1);
redline_mc.lineStyle(10, 0xFF0000);
redline_mc.lineTo(100, 10);

// Blue line appears in front (depth 2)
this.createEmptyMovieClip("blueline_mc", 2);
blueline_mc.lineStyle(10, 0x0000FF);
blueline_mc.lineTo(100, 0);

// Green line replaces red line, because it was created at redline_mc's depth
this.createEmptyMovieClip("greenline_mc", redline_mc.getDepth());
greenline_mc.lineStyle(10, 0x00FF00);
greenline_mc.lineTo(100, 10);

See Also

MovieClip.swapDepths(); Section 13.4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.getURL() Method Flash 5

load a document into a browser window

mc.getURL(url)
mc.getURL(url, window)
mc.getURL(url, window, method)

Arguments

url

A string specifying the location of the document to load or external script to run.
window

An optional string, specifying the name of the browser window or frame into which to load the
document. Can be a custom name or one of the four presets: "_blank", "_ parent", "_self", or

"_top".

method

An optional string literal specifying the method by which to send the variables from mc to an external

script. Must be either the literal "GET" or "POST"; no other expression is allowed.

Description

The MovieClip.getURL() method is an alternative to the global getURL() function. This MovieClip method
form is useful only if variables are being sent via url to a server-side script, in which case getURL() sends the

variables from mc, which does not have to be the current timeline. For general usage instructions, see the global

getURL() function. For an object-oriented means of sending variables to a server, see LoadVars.send().

See Also

getURL(), LoadVars.send()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.globalToLocal() Method Flash 5

convert a point on the main Stage to clip coordinates

mc.globalToLocal(point)

Arguments

point

A reference to an object with two properties, x and y, that describe a point on the main Stage of the Player (i.e., on

_level0). Both x and y can be any floating-point number.

Description

The globalToLocal() method converts the x and y properties of point from coordinates on the main Stage to coordinates in the

coordinate space of mc. Note that globalToLocal() does not return a new object, it merely modifies the existing x and y values of

point. It has no effect when invoked on a main movie object (i.e., _root), because the original and target coordinate spaces are

identical.

To use globalToLocal(), we must first create a so-called point or coordinates object with x and y properties. To do so, create a

generic object from the Object class, and add x and y properties to it. For example:

var myPoint = new Object();
myPoint.x = 10;
myPoint.y = 20;

The x and y properties of our object are positions on the horizontal and vertical axes of the main Stage, relative to its top-left corner.

For example, an x of 10 is 10 pixels to the right of the Stage's left edge, and a y of 20 is 20 pixels below the Stage's top border. With

our object created and our x and y properties set, we then pass the object to the globalToLocal() method, as in:

myClip_mc.globalToLocal(myPoint);

When globalToLocal() is executed, the values of myPoint's x and y properties are transformed to represent a point in the space

of myClip_mc, measured from its registration point. By examining the new values of our myPoint object's properties, we

answer the question, "Where does the point (x, y) of the main Stage appear in myClip ?" For example:

xInClip = myPoint.x;
yInClip = myPoint.y;

Example

The following example calculates the offset from the upper-left corner of the main Stage to the registration point of the current clip:

pt = new Object(); // Create generic object to hold our point
pt.x = 0; // Left border of main Stage
pt.y = 0; // Top border of main Stage
this.globalToLocal(pt); // Convert pt to local coordinates

trace("From the current clip, the top-left corner of the main Stage is at ");
trace("x: " + pt.x + "y: " + pt.y);

See Also

MovieClip.localToGlobal

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.gotoAndPlay() Method Flash 5

jump to a given frame, then play the movie or clip

mc.gotoAndPlay(frameNumber)
mc.gotoAndPlay(frameLabel)

Arguments

frameNumber

A positive integer indicating the number of the frame to which the playhead of mc should jump before

playing. If frameNumber is less than 1, the call to MovieClip.gotoAndPlay() is ignored. Note that

this behavior differs from the global version of gotoAndPlay(), where a value less than 1 is treated as 1.
If frameNumber is greater than the number of frames in mc's timeline, the playhead is sent to the

last frame.
frameLabel

A string indicating the label of the frame to which the playhead of mc should jump before playing. If

frameLabel is not found, the operation fails silently. This behavior differs from the global version

of gotoAndPlay(), where a missing frame label is treated as frame 1.

Description

The MovieClip.gotoAndPlay() method is an alternative to the global gotoAndPlay() function. Use the
MovieClip method form to control remote movie clips or movies, specified by mc.

For general usage instructions, see the global gotoAndPlay() function.

Example

// Send the part1_mc clip to the label intro, then play part1_mc
part1_mc.gotoAndPlay("intro");

See Also

gotoAndPlay(), MovieClip.gotoAndStop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.gotoAndStop() Method Flash 5

jump to a given frame, and stop the playhead

mc.gotoAndStop(frameNumber)
mc.gotoAndStop(frameLabel)

Arguments

frameNumber

A positive integer indicating the number of the frame to which the playhead of mc should jump. If

frameNumber is less than 1, the call to MovieClip.gotoAndStop() is ignored. Note that this behavior

differs from the global version of gotoAndStop(), where a value less than 1 is treated as 1. If
frameNumber is greater than the number of frames in mc's timeline, the playhead is sent to the last

frame.
frameLabel

A string indicating the label of the frame to which the playhead of mc should jump. If frameLabel is not

found, the operation fails silently. This behavior differs from the global version of gotoAndStop(), where a
missing frame label is treated as frame 1.

Description

The MovieClip.gotoAndStop() method is an alternative to the global gotoAndStop() function. Use the MovieClip
method form to control remote movie clips or main movies specified by mc.

For general usage instructions, see the global gotoAndStop() function.

Example

// Send the mainMenu_mc clip to frame 6, and stop the playhead there
mainMenu_mc.gotoAndStop(6);

See Also

gotoAndStop(), MovieClip.gotoAndPlay()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._height Property Flash 5

height of a clip or movie, in pixelsFlash 4; enhanced in
Flash 5read-only in Flash 4; read/write in

mc._height

Description

The floating-point _height property is a nonnegative number specifying the height of mc, in pixels. If mc has no content,

_height is 0. The _height property measures the content of a clip as the distance between the topmost occupied pixel and the

bottommost occupied pixel, even if there is empty space between those pixels. An occupied pixel is a pixel that contains a shape,
graphic, button, movie clip, text field or other content element. Changes made to a clip's height in the authoring tool or via
_yscale are reflected by _height.

Setting the value of _height resizes a movie clip vertically. Attempts to set _height to a negative value are ignored. Setting a

clip's _height to 0 does not make it invisible; rather, the clip becomes a one-pixel horizontal line. Flash's basic unit of measure is a

twentieth of a pixel (a "twip"), so the smallest legal _height change is .05 pixels. Smaller increments are ignored:

trace(ball_mc._height); // Displays: 100.
ball_mc._height += .01;
trace(ball_mc._height); // Still displays 100. The assignment had no effect.

The _height of the main movie (either _root._height or _leveln._height) is not the Stage height as specified

under Modify Movie Dimensions in the authoring tool, but rather the height of the contents of the main movie. As of Flash
6, the movie's specified dimensions are available via Stage.height and Stage.width.

For a loading movie, the _height property returns undefined until the movie has completely loaded.

Usage

Note that when we set the height of a movie clip, lines are scaled proportionally, losing their original point size as set in the Stroke
panel. However, the point size of lines set to Hairline in the Stroke panel is not scaled when a movie clip is resized. Use hairlines to
prevent your strokes from appearing fat or distorted when a clip is scaled.

Example

ball_mc._height = 20; // Set the height of ball_mc to 20 pixels
ball_mc._height /= 2; // Reduce the height of ball_mc by a factor of 2

See Also

MovieClip._width, MovieClip._yscale, Stage.height

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.hitArea Property Flash 6

assigns the hotspot for a button-enabled movie
clip

read/write

mc.hitArea

Description

The hitArea property is used only with movie clips that define button event handlers (e.g., onPress(), onRelease(

), etc.). It sets mc's button hit area—the physical region that must be under the mouse pointer in order for the button to

be activated by a mouseclick. When the value of hitArea is null or undefined, the shape of mc's content is

used as the hit area. When the value of hitArea is a reference to a movie clip, the shape of that clip's content is

used as mc's hit area. The hitArea clip can move, be invisible, or even be reassigned at any time, allowing great

flexibility for dynamically generated buttons. For example, an animated button can have a hit area that changes size
with the animation, or a button can have a different hit area for its Over, Up, and Down states.

The movie clip used as the hitArea for mc can reside on any clip's timeline, including mc's. For example:

// Set button_mc's hit area to a clip inside itself
button_mc.hitArea = button_mc.shape_mc;
// Set button_mc's hit area to a clip outside itself
button_mc.hitArea = _root.shapeClips.shape_mc;

When the mouse pointer moves into the hit area, it changes from an arrow pointer to a hand pointer. To suppress the
display of the hand pointer, set useHandCursor to false.

For information on implementing button behavior for a movie clip, see the MovieClip class, MovieClip.hitTest(), and
Section 13.9.

Example

The following code creates a button-enabled movie clip and draws its hit area entirely from scratch. It automatically
adjusts the size of the hit area to be twice the size of the text in the button. By defining the hitArea property

explicitly, we prevent any future content added to the button from being included in the hit area.

// Make a clip that will act as a button
this.createEmptyMovieClip("button_mc", 1);

// Add some text to the clip
button_mc.createTextField("button_txt", 1, 0, 0, 0, 0);
button_mc.button_txt.autoSize = true;
button_mc.button_txt.text = "click here!";
button_mc.button_txt.selectable = false;

// Define a button handler for the button clip
button_mc.onPress = function () {
 trace("thank you for clicking");

}

// Make a clip to be the button clip's hit area, and
// put it inside the button clip
button_mc.createEmptyMovieClip("hitarea_mc", 2);
// Set the hit area rectangle to be twice the size of the button text
var x1 = -button_mc.button_txt._width / 2;
var y1 = -button_mc.button_txt._height / 2;
var x2 = x1 + button_mc.button_txt._width * 2;
var y2 = y1 + button_mc.button_txt._height * 2;
// Draw the hit area rectangle
button_mc.hitarea_mc.moveTo(x1, y1);
button_mc.hitarea_mc.beginFill(0x000000);
button_mc.hitarea_mc.lineTo(x2, y1);
button_mc.hitarea_mc.lineTo(x2, y2);
button_mc.hitarea_mc.lineTo(x1, y2);
button_mc.hitarea_mc.lineTo(x1, y1);
button_mc.hitarea_mc.endFill();

// Make the hit clip invisible
button_mc.hitarea_mc._visible = false;

// Assign the drawn clip as the button's hit area
button_mc.hitArea = button_mc.hitarea_mc;

See Also

The Button class, MovieClip.enabled, MovieClip.hitTest(), MovieClip.useHandCursor; Section

13.9

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.hitTest() Method Flash 5

check if a point or another clip intercept a given clip

mc.hitTest(x, y, shapeFlag)
mc.hitTest(target)

Arguments

x

The horizontal coordinate of the point to test.
y

The vertical coordinate of the point to test.
shapeFlag

An optional Boolean value indicating whether the function should test for intersection of the point (x, y)

against the bounding box of mc (false) or against the actual pixels of mc (true). Defaults to

false if not supplied. Note that shapeFlag can be used only with the x and y argument syntax,

not with the target argument. It is meaningful only when mc has an irregular contour or a hole like a

doughnut; it has no impact if mc is a solid rectangular object.

target

A string indicating the path to the movie clip to test for collision with mc. Because movie clip references

are converted to paths when used in a string context, target can also be a movie clip object

reference, as in mc.hitTest(ball) versus mc.hitTest("ball").

Returns

A Boolean indicating the result of the collision-detection test. The result is true under any of the following

circumstances:

The point (x,y) on the main Stage intersects with any occupied pixel of mc. An occupied pixel is one that

contains a visual element, such as a shape or text.

The shapeFlag property is false and the point (x,y) on the main Stage intersects with any pixel in

the bounding box of mc. The bounding box of mc is the smallest rectangle that can encompass every

occupied pixel of mc (as returned by MovieClip.getBounds()).

Any pixel in the bounding box of target intersects any pixel in the bounding box of mc.

The result is false under any of the following circumstances:

The shapeFlag property is true and the point (x,y) on the main Stage does not intersect with any

occupied pixel of mc. An occupied pixel is one that contains a visual element, such as a shape or text.

The point (x,y) on the main Stage does not intersect with any pixel in the bounding box of mc. The

bounding box of mc is the smallest rectangle that can encompass every occupied pixel of mc.

No pixels in the bounding box of target intersect with any pixel in the bounding box of mc.

Description

The hitTest() method is used to determine whether a movie clip or specific point intersects with (i.e., "hits")
mc.

When checking to see if a point intersects mc, we provide hitTest() with the x and y coordinates of the point to

check (relative to the main Stage). We can also provide the optional shapeFlag argument, which indicates

whether the collision test should use the actual pixels of mc or just mc's bounding box (the smallest rectangle

that can encompass every occupied pixel of mc). Checking the actual pixels of mc allows us to determine

whether the point (x, y) is an occupied pixel inside the contour of mc, not merely whether it is any point inside

mc's bounding box.

When we're checking to see if a movie clip intersects mc, we provide hitTest() with the target argument

specifying the clip to check against. Collision detection between target and mc always uses the bounding

boxes of the clips; hitTest() does not support pixel-perfect clip-versus-clip detection. Manual pixel-perfect
collision-detection routines can be difficult to create and processor-intensive to run. In many situations—for
example, a simple spaceship game—it's common practice to detect against a bounding circle rather than exact
pixels (see the following Example).

The return value of hitTest() is unaffected by the _visible or _alpha properties, which can hide a movie

clip from view. An invisible movie clip can still be hit-tested against a point or another invisible clip.

Usage

Note that collision is always tested relative to the location of mc on the main Stage of the Player. Therefore,

when hitTest() is used with a single point, the arguments x and y should always describe a point using Stage

coordinates. See MovieClip.localToGlobal for information on converting clip coordinates to Stage coordinates.
In clip-versus-clip detection, the coordinates of clips on different timelines are automatically converted to global
(i.e., Stage) coordinates.

Example

This example shows how to detect the intersection of two circles manually, without using hitTest():

// Check the distance between two circular clips on both axes.
var deltaX = clip1._x - clip2._x; // Horizontal distance
var deltaY = clip1._y - clip2._y; // Vertical distance

// Store the radius of each circle in a convenient property.
var radius1 = clip1._width / 2;
var radius2 = clip2._width / 2;

// If the distance between the circles' centers squared is less
// than or equal to the total length of the two radii squared,
// an intersection occurs.
if ((deltaX * deltaX) + (deltaY * deltaY)
 <= (radius1 + radius2) * (radius1 + radius2)) {
 trace("intersecting");
} else {
 trace("not intersecting");
}

Here we check whether paddle_mc intersects ball_mc using hitTest():

if (paddle_mc.hitTest("ball_mc")) {
 trace("The paddle hit the ball.");
}

Here we check whether the mouse pointer is over an occupied pixel within house_mc's contour. Notice that

the coordinates of the pointer are given in relation to _root (the main Stage). Gaps in a movie clip are

detectable when shapeFlag is true; for example, if the house_mc clip uses empty space to represent

its windows, then hitTest() will return false when the pointer is over a window:

if (house_mc.hitTest(_root._xmouse, _root._ymouse, true)) {
 trace("You're pointing to the house.");
}

See Also

MovieClip.getBounds(), MovieClip.localToGlobal()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.lineStyle() Method Flash 6

sets stroke thickness, color, and transparency for drawing
at runtime

mc.lineStyle(thickness, RGB, alpha)

Arguments

thickness

The integer line point size, ranging from 0 to 255, where 0 is hairline. If not specified, lines are not drawn.
Values below 0 are interpreted as 0; those above 255 are interpreted as 255.

RGB

The integer color of the line, normally supplied in RGB hexadecimal triplet notation—0xRRGGBB, where RR,

GG, and BB are two-digit hex numbers representing Red, Green, and Blue. For example, the hex integer

0xFF0000 indicates red. Defaults to black if not supplied. For a complete discussion of RGB triplet notation,

see the Color class.
alpha

An integer between 0 and 100 specifying the opacity (or, conversely, the transparency) of the shape as a
percentage—0 is completely transparent, whereas 100 is completely opaque. Defaults to 100 if not supplied.
Values above 100 are interpreted as 100; those below 0 are interpreted as 0.

Description

The lineStyle() method sets the stroke thickness, color, and transparency for all lines and curves subsequently drawn in
mc via the lineTo() and curveTo() methods. By default, no stroke is applied to drawings in mc. The lineStyle() method

must be invoked explicitly for each new movie clip and after every call to clear(), or no stroke will appear (although
filled regions can still be drawn without a stroke).

The following examples are valid ways to modify the line style for drawing_mc:

drawing_mc.lineStyle() // Clears the style
 // (lines and curves not stroked)
drawing_mc.lineStyle(1) // 1 pt solid black
drawing_mc.lineStyle(1,0x00FF00) // 1 pt solid green
drawing_mc.lineStyle(1,0x00FF00, 50) // 1 pt semi-transparent green

We may change the stroke at any time by calling lineStyle() again. For example, the following code draws a square with
progressively thicker lines colored black, red, green, and blue:

this.createEmptyMovieClip("drawing_mc", 2);

drawing_mc.lineStyle(1, 0x000000, 100);
drawing_mc.lineTo(100, 0);
drawing_mc.lineStyle(5, 0xFF0000, 100);
drawing_mc.lineTo(100, 100);

drawing_mc.lineStyle(10, 0x00FF00, 100);
drawing_mc.lineTo(0, 100);
drawing_mc.lineStyle(15, 0x0000FF, 100);
drawing_mc.lineTo(0, 0);

A thickness of 0 sets the stroke to hairline (a one-pixel line that does not increase in thickness when the clip or

movie is scaled up). To turn the stroke off completely, set thickness to undefined or call lineStyle() with no

parameters. For example:

drawing_mc.lineStyle(undefined); // Turn off lines in drawing_mc
drawing_mc.lineStyle(); // Same thing

Even if a line style is defined for a movie clip, we can move the drawing pen to a new location without drawing a line or
curve using MovieClip.moveTo(). When the clear() method is invoked to erase all drawings in a clip, the clip's line
style reverts to undefined (no line).

See Also

MovieClip.beginFill(), MovieClip.beginGradientFill(), MovieClip.clear(), MovieClip.curveTo(), MovieClip.endFill(),
MovieClip.lineTo(), MovieClip.moveTo()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.lineTo() Method Flash 6

draws a straight line at runtime

mc.lineTo(x, y)

Arguments

x

The horizontal position of the endpoint of the line to be drawn, as a floating-point number. Measured relative to mc's registration

point.
y

The vertical position of the endpoint of the line to be drawn, as a floating-point number. Measured relative to mc's registration

point.

Description

The lineTo() method draws a straight line from the current drawing pen position to the point (x,y) (for a description of the drawing pen
see MovieClip.moveTo()). The most recent call to lineStyle() determines the stroke characteristics of the line (thickness, color, and
alpha). If the lineStyle() is undefined, lineTo() moves the drawing pen position but does not draw a line on screen (exactly as if

moveTo() had been called). The line drawn appears above all Drawing API content already in mc, but beneath all other content in mc
(e.g., movie clips, shapes, text, and buttons placed at authoring time, or content attached at runtime via attachMovie(),
duplicateMovieClip(), or createTextField()). If either of lineTo()'s arguments is missing, the operation fails silently.

The following code creates a movie clip named drawing_mc and draws a 2-point black line downward to the point (0,100) from the

drawing pen's current position (0,0). Until the drawing pen's position is modified by moveTo(), lineTo(), or curveTo(), the drawing pen's
position is the registration point of mc, or the upper-left corner of the Stage if mc is _root.

this.createEmptyMovieClip("drawing_mc", 1); // Create a clip to draw in
drawing_mc.lineStyle(2); // Set the stroke to 2 point, black
drawing_mc.lineTo(0, 100); // Draw the line

After a line or curve is drawn, the drawing pen remains at the end point of the line or curve. Hence, a continuous jagged line can easily be
drawn using a series of lineTo() and/or curveTo() calls:

// Create a clip to draw in
this.createEmptyMovieClip("drawing_mc", 1);

// Set the stroke to 1 point, red
drawing_mc.lineStyle(1, 0xFF0000);

// Draw a jagged line as a series of line segments
drawing_mc.lineTo(50, 100);
drawing_mc.lineTo(-20, 150);
drawing_mc.lineTo(75, 200);
drawing_mc.lineTo(50, 300);

Multiple calls to lineTo() and/or curveTo() can be used similarly to draw closed shapes. For details, see MovieClip.beginFill().

Of course, movie clips that contain Drawing API content can be manipulated as usual. For example, this code makes our drawing_mc
clip spin:

drawing_mc.onEnterFrame = function () {
 this._rotation++;
}

Reader Exercise: Notice that lineTo() accepts absolute coordinates, not relative coordinates. Write a custom method, lineToDelta(), that
accepts relative coordinates. For example, mc.lineToDelta(5, 10) would draw a line to a point 5 pixels to the right of, and 10 pixels below,
the current pen position. (Hint: See Example 18-3 under MovieClip.moveTo(), which stores the pen's current position.)

See Also

MovieClip.beginFill(), MovieClip.beginGradientFill(), MovieClip.clear(), MovieClip.curveTo(), MovieClip.endFill(),
MovieClip.lineStyle(), MovieClip.moveTo()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.loadMovie()
Method

Flash 5; Flash 6 adds .jpg loading
and security restrictions

load an external .swf file into the Player

mc.loadMovie(url)
mc.loadMovie(url, method)

Arguments

url

A string specifying the location of the external .swf or .jpg file to load.
method

An optional string literal indicating the method by which to send variables to an external script. Must be
either the literal "GET" or "POST"; no other expression is allowed.

Description

The MovieClip.loadMovie() method is an alternative to the global loadMovie() function. When invoked as a
MovieClip method, loadMovie() does not take a target parameter; it loads the .swf or .jpg from url into

mc. The MovieClip method syntax is less prone to user error than its global function counterpart because no

target parameter is required.

For usage instructions, see the global loadMovie() function.

See Also

loadMovie(), loadMovieNum(), MovieClip.getURL(); Section 13.7

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.loadVariables() Method Flash 5

retrieve an external set of variables

mc.loadVariables(url)
mc.loadVariables(url, method)

Arguments

url

A string specifying the path to one of two variable sources: a script that produces variables as output, or a
text file containing variables.

method

An optional string literal indicating the method by which to send the variables from mc to an external

script. If specified, variables are both sent and loaded. If omitted, variables are loaded only. Must be
either the literal "GET" or "POST"; no other expression is allowed.

Description

The MovieClip.loadVariables() method is an alternative to the global loadVariables() function. When invoked
as a MovieClip method, loadVariables() takes no target parameter; it loads the variables at url into mc.

The MovieClip method syntax is less prone to user error than its global function counterpart because no
target parameter is required.

For usage instructions, see the global loadVariables() function. As of Flash 6, the LoadVars class is preferred
over MovieClip.loadVariables(), as it provides a more flexible and powerful means of importing and exporting
variables.

See Also

loadVariables(), the LoadVars class; Section 13.7

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.localToGlobal() Method Flash 5

convert a point in a clip to main Stage coordinates

mc.localToGlobal(point)

Arguments

point

A reference to an object with two properties, x and y, that describe a point in mc's coordinate space. Both x and y can be any

floating-point number.

Description

The localToGlobal() method converts the x and y properties of point from coordinates given in mc's coordinate space to

coordinates on the main Stage of the Player. Note that localToGlobal() does not return a new object; it merely modifies the existing x
and y values of point. It has no effect when invoked on a main movie object (i.e., _root), because the original and target

coordinate spaces are identical.

To use localToGlobal(), we must first create a so-called point or coordinates object with x and y properties. To do so, create a generic

object from the Object class, and add x and y properties to it:

myPoint = new Object();
myPoint.x = 10;
myPoint.y = 20;

The x and y properties of our object are positions on the horizontal and vertical axes of mc, relative to mc's registration point (shown

as a crosshair in mc's Library symbol). For example, an x of 10 is 10 pixels to the right of mc's registration point, and a y of 20 is 20

pixels below mc's registration point. With our object created and our x and y properties set, we then pass the object to the

localToGlobal() method, as in:

myClip.localToGlobal(myPoint);

When localToGlobal() is executed, the values of myPoint's x and y properties are transformed to represent the corresponding point

on the main Stage, measured from the Stage's upper-left corner. By examining the new values of our myPoint object's properties, we

answer the question, "Where does the point (x,y) of the movie clip appear on the main Stage?" For example:

mainX = myPoint.x;
mainY = myPoint.y;

Example

The following example determines the location of a clip's registration point, relative to the main Stage:

pt = new Object(); // Create generic object to hold our point
pt.x = 0; // Horizontal registration point of clip
pt.y = 0; // Vertical registration point of clip
this.localToGlobal(pt); // Convert pt to main Stage coordinates

trace("On the main Stage, the registration point of the current clip is at: ");
trace("x: " + pt.x + "y: " + pt.y);

The localToGlobal() method can be used to convert a point to Stage coordinates for use with the hitTest() method, which expects
points to be supplied in the Stage's coordinate space. It can also be used to compare points in two different movie clips using a common
coordinate space.

See Also

MovieClip.globalToLocal(), MovieClip.hitTest()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.moveTo() Method Flash 6

moves the drawing pen to a new position without drawing a
line

mc.moveTo(x, y)

Arguments

x

The new horizontal position of the pen, as a floating-point number. Measured relative to mc's registration point.

y

The new vertical position of the pen, as a floating-point number. Measured relative to mc's registration point.

Description

Conceptually, lines and curves are drawn in Flash by a theoretical "drawing pen." For all new movie clips, the pen starts out at position (0,0)—the
clip's registration point—which is typically at its center and is represented by a crosshair in the movie clip's Library symbol. As lines and curves
are drawn (via lineTo() and curveTo()), the pen moves around the movie clip's coordinate space, resting at the end point of the last line or curve
drawn. The pen's current position always indicates the starting point of the next line or curve to be drawn.

The moveTo() method lets us arbitrarily set the starting point of a line or curve by "picking up" the drawing pen and moving it to a new position
without drawing a line to the specified point.

For example, suppose we want to draw a single straight line from (100,100) to (200,200) in a new movie clip. We must first move the pen from
(0,0) to (100,100) and then draw a line from there to (200,200), as follows:

this.createEmptyMovieClip("drawing_mc", 1); // Create a clip to draw in
drawing_mc.lineStyle(1); // Set the stroke to 1 point, black
drawing_mc.moveTo(100, 100); // Move the pen without drawing a line
drawing_mc.lineTo(200, 200); // Draw the line (this also moves the pen)

When the clear() method is invoked to erase all drawings in a clip, the pen position reverts to (0,0). If either of moveTo()'s arguments is missing,
the operation fails silently.

Usage

Though Flash does not provide built-in access to the current pen position, the moveTo(), lineTo(), curveTo(), and clear() methods can be
modified to store the pen's horizontal and vertical position in properties, as shown in Example 18-3. Before replacing each built-in method, we
store the old version in a property, such as origLineTo. This is considered a best practice, in case you want to restore the default

functionality, although we don't do so here.

Example 18-3. Custom pen position properties

MovieClip.prototype.origLineTo = MovieClip.prototype.lineTo;
MovieClip.prototype.lineTo = function (x, y) {
 this.penx = x;

 this.peny = y;
 this.origLineTo(x, y);
};

MovieClip.prototype.origMoveTo = MovieClip.prototype.moveTo;
MovieClip.prototype.moveTo = function (x, y) {
 this.penx = x;
 this.peny = y;
 this.origMoveTo(x, y);
};

MovieClip.prototype.origCurveTo = MovieClip.prototype.curveTo;
MovieClip.prototype.curveTo = function (controlX, controlY, anchorX, anchorY) {
 this.penx = anchorX;
 this.peny = anchorY;
 this.origCurveTo(controlX, controlY, anchorX, anchorY);
};

MovieClip.prototype.origClear = MovieClip.prototype.clear;
MovieClip.prototype.clear = function () {
 this.penx = 0;
 this.peny = 0;
 this.origClear();
};

// Usage:
this.createEmptyMovieClip("drawing_mc", 1);
drawing_mc.lineStyle(1, 0xFF0000);
drawing_mc.lineTo(50, 100);
trace(drawing_mc.penx); // Displays: 50
drawing_mc.moveTo(-20, 150);
trace(drawing_mc.penx); // Displays: -20
drawing_mc.curveTo(200, 200, 70, 300);
trace(drawing_mc.peny); // Displays: 300

See Also

MovieClip.beginFill(), MovieClip.beginGradientFill(), MovieClip.clear(), MovieClip.curveTo(), MovieClip.endFill(), MovieClip.lineStyle(),
MovieClip.lineTo()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._name Property Flash 4

the identifier of a clip instance, as a string read/write

mc._name

Description

The _name property specifies the instance name of a movie clip instance as a string. Because it initially

reflects the instance name set in the Property inspector during authoring, the _name property doesn't apply to

main movies (the main movie is most easily referred to by the global property _root).

Example

We can use _name to determine whether or not to perform some manipulation of a given clip, as shown in the

Example for MovieClip.onLoad(). The _name property can also be used to reassign the identifier of a clip. For

example:

// Change ball to circle
ball._name = "circle";

// Now control the former ball as circle
circle._x = 500;

See Also

MovieClip._target, targetPath(); "Movie Clip Instance Names" in Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.nextFrame() Method Flash 5

advance a clip or movie's playhead one frame and stop it

mc.nextFrame()

Description

The MovieClip.nextFrame() method is an alternative to the global nextFrame() function. Use the MovieClip
method form to control remote movie clips or main movies specified by mc.

For general usage instructions, see the global nextFrame() function.

Example

// Advance slideshow_mc one frame and stop the playhead
slideshow_mc.nextFrame();

See Also

gotoAndStop(), MovieClip.gotoAndStop(), MovieClip.prevFrame(), nextFrame()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onData () Event
Handler

Flash 5; callback form
introduced in Flash 6

handler executed when the clip receives variables, or a
portion of a loaded movie

mc.onData()

onClipEvent (data) {
 statements
}

Description

The onData() event handler is the callback form (and more modern analogue) of the legacy onClipEvent (data) event handler. The onData(
) handler executes when external data is loaded into a movie clip. It can be triggered by two quite different circumstances, according to the
kind of data being loaded—either external variables, or a .swf or .jpg file. Note that as a variable loader, the onData() event is made obsolete
in Flash 6 by the LoadVars class's download monitoring methods. As a movie loader, the onData() event is (in my experience) too buggy to
use in Flash 5, though it appears to be working properly in Flash 6.0.29.0.

When we request a series of variables from a server using loadVariables(), we must wait for them to load completely before using their
information. When a movie clip receives the end of a batch of loaded variables, the onData() event is triggered, telling us it's safe to execute
code that relies on the variables.

For example, suppose we have a guest book movie in which visitors enter comments that we store on a server. When a user attempts to view
a comment, we request it from the server using loadVariables(). But before we can display the comment, we must pause at a loading screen
until we know that the requested data is available. An onData() event handler tells us when our variables have loaded, at which point we can
safely display the comment to the user.

The following code shows a simplified excerpt of a guest book that loads variables when the user clicks a button. In the example, the button
loads two URL-encoded variables from a text file into a movie clip using loadVariables(). The movie clip defines an onData() event
handler that executes when the variables have loaded. From inside that handler, we display the values of the variables. We know the variables
are safe to display, because the code in the handler isn't executed until it's triggered by the onData() event (i.e., after the data is received):

// CONTENT OF OUR guestbook.txt FILE
name=judith&message=hello

// BUTTON INSIDE OUR CLIP
guestBook_mc.go_btn.onRelease = function {
 this._parent.loadVariables("guestbook.txt");
};

// HANDLER ON OUR CLIP
guestBook_mc.onData = function {
 trace(name);
 trace(message);
};

The second use of the onData() event relates to the loading of external .swf and .jpg files into movie clips with the loadMovie() function.
When a .swf file is loaded into a host clip, the file begins playing immediately by default, even if it is only partially loaded. This is not always

desirable—sometimes we want to guarantee that all or a certain percentage of a .swf has loaded before playback begins. We can make that
guarantee with an onData() event handler and some preloading code.

The onData() event occurs each time a host movie clip receives a portion of an external .swf file. The definition of what constitutes a
"portion" is more complex than you might expect. In order for an onData() event to be triggered, at least one complete new frame of the
external .swf file must have loaded since either the last onData() event fired or the .swf file started loading. (More than one frame of the .swf
file may actually have loaded in that amount of time, but one frame is the minimum number required to prompt an onData() event.)

The execution of onData() event handlers is tied to the rendering of frames in the Player. With every frame rendered, the interpreter checks
to see if part of an external .swf file has been loaded into a clip that has an onData() event handler. If part of an external .swf file has been
loaded into such a clip, and the loaded portion contains at least one new frame, then the onData() event handler is executed. This process
happens once—and only once—per tick of the frame rate (even while the playhead is stopped).

Note that because the onData() event happens on a per-frame basis, movies with higher frame rates tend to have smoother-looking
preloaders because they receive more frequent updates on the status of loading .swf (or .jpg) files.

The exact number of onData() events triggered during a loadMovie() operation depends on the distribution of content in the .swf file being
loaded and the speed of the connection. A single-frame .swf file, no matter how large, will trigger only one onData() event. On the other
hand, a .swf file with 100 frames may trigger up to 100 separate onData() events, depending on the movie's frame rate, the byte size of each
frame, and the speed of the network connection. If the frames are large and the connection is slow, more onData() events will be triggered
(up to a maximum of one per frame). If the frames are small and the connection is fast, fewer onData() events will be triggered (the entire
100 frames may be transferred between the rendering of two frames in the Player, prompting only one onData() event).

So how do we use an onData() event handler to build a preloader? First and foremost, we must be sure to use the Flash 5-style onClipEvent(
) format of the handler:

onClipEvent (data) {
 // preload code
}

Using onClipEvent(data) instead of onData() ensures that the handler is not deleted when we load our .swf file, because the former is
attached to a clip at authoring time rather than created as a variable that will be lost when the clip loads its new content. Then, whenever an
onData() event occurs due to a loadMovie() function call, we know that an external .swf file download is in progress. Therefore, from inside
an onClipEvent(data) event handler, we can check whether enough of the file has downloaded before allowing it to play. We do so using the
getBytesLoaded() and getBytesTotal() methods, as shown in the following example. (The _framesloaded and _totalframes
movie clip properties can also be used.)

onClipEvent (data) {
 trace("data received"); // The show's about to start!

 // Turn on data-transfer light (indicator)
 _root.transferIndicator.gotoAndStop("on");

 // If we're done loading, turn off data-transfer light, and let the movie play
 if (getBytesTotal() > 0 && getBytesLoaded() = = getBytesTotal()) {
 _root.transferIndicator.gotoAndStop("off");
 play();
 }

 // Display some loading details in text field variables on the _root
 _root.bytesLoaded = getBytesLoaded();
 _root.bytesTotal = getBytesTotal();
 _
root.clipURL = _url.substring(_url.lastIndexOf("/") + 1, _url.length);
}

This example also provides feedback while the movie is loading. Note that the .swf file being loaded should have a stop() function call on its
first frame to prevent it from automatically playing before it is completely downloaded. A variation of this example is available at the online
Code Depot.

Bugs

In Flash 5 on a high-speed connection, the onData() event does not always execute when a .swf file completely loads. This unofficial bug
has not been verified by Macromedia, but it appears to be fixed in the release 29 of Flash Player 6 (6.0.29.0).

See Also

loadMovie(), loadVariables(), the LoadVars class, MovieClip.getBytesLoaded(), MovieClip.getBytesTotal(),
MovieClip._framesloaded, MovieClip._framestotal, MovieClip.onLoad(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onDragOut() Event Handler Flash 6

Button event; occurs when mouse is pressed over the clip
and then moves off the clip

mc.onDragOut()

on (dragOut) {
 statements
}

Description

The onDragOut() event handler is identical to the Button.onDragOut() event, except that it can also be applied
to movie clip instances (though not main movies such as _root, _level0, etc.). For details, see

Button.onDragOut() and Section 13.9.

See Also

Button.onDragOut(), MovieClip.onDragOver(); Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onDragOver() Event Handler Flash 6

Button event; occurs when the mouse is pressed over the
clip then moves off and back on the clip

mc.onDragOver()

on (dragOver) {

on (dragOver) {
 statements

on (dragOver) {
 statements
}

Description

The onDragOver() event handler is identical to the Button.onDragOver() event, except that it can also be
applied to movie clip instances (though not main movies such as _root, _level0, etc.). For details, see

Button.onDragOver() and Section 13.9.

See Also

Button.onDragOver(), MovieClip.onDragOut(); Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onEnterFrame () Event Handler Flash 6

handler executed at every tick of the frame rate in the Flash
PlayerFlash 5; callback form introduced in

mc.onEnterFrame()

onClipEvent (enterFrame) {
 statements
}

Description

The onEnterFrame() event handler is the callback form (and more modern analogue) of the legacy onClipEvent
(enterFrame) event handler. The onEnterFrame() handler is executed once for every tick of the frame rate of a
movie, such as when the playhead advances or when the Player rerenders the current frame while the playhead is
stopped. In either case, the frequency of the onEnterFrame() event is directly related to the frame rate achieved
by the Player. If the frame rate specified at authoring time under Modify Document is 20 frames per
second, then a tick of the frame rate will theoretically occur every 1/20th of a second. But if the Player cannot
display the movie at the frame rate specified (for example, because the computer is too slow or has many
applications open), the actual frame rate will be lower and a tick will be longer. For example, if the actual frame
rate is 12 frames per second, a tick will be 1/12th of a second. Note that a tick is not a constant time
measurement, nor is it even a formal term in ActionScript (as it is in Lingo); it simply denotes a single cycle of
the frame rate in the Flash Player.

The following handler increases cloud_mc's size by 10 pixels per frame-rate tick:

cloud_mc.onEnterFrame = function () {
 this._height += 10;
 this._width += 10;
};

When displayed in the Flash Player, all Flash movies are constantly running, even when nothing is moving on
screen or when a movie's playhead is stopped on a frame. Hence, an individual movie clip's onEnterFrame()
handler will be executed repeatedly for as long as that clip is on stage, regardless of whether the clip is playing
or stopped. If a clip's playhead is moved by a gotoAndStop() function call, the clip's onEnterFrame() event
handler is still triggered with each passing frame. And if every playhead of an entire movie has been halted with
a stop() function, all onEnterFrame() event handlers on all clips will still execute.

The onEnterFrame() event normally is used to update the state of a movie clip repeatedly over time. But an
onEnterFrame() event handler need not apply directly to the clip that bears it—onEnterFrame() can be used on
a movie's main timeline or on a single-frame, empty clip to execute code repeatedly. This technique, called a
clip event loop (or, more loosely, a process) is demonstrated in Section 8.7. The setInterval() function is also a
useful tool for repeatedly executing code.

To stop a callback from handling the onEnterFrame() event, use the delete operator to remove the handler, as
in:

// Make sure to omit the () operator after the function name!
delete theClip_mc.onEnterFrame;

Note that the code in an onEnterFrame() event handler is executed before any code that appears on the timeline
of the clip containing the handler.

Example

The following code extends our earlier example to make the cloud_mc clip grow to a specific size:

cloud_mc.maxHeight = 300

cloud_mc.onEnterFrame = function () {
 if (this._height < this.maxHeight) {
 this._height += 10;
 } else {
 delete this.onEnterFrame;
 }
}

See Also

setInterval(); Section 8.7

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onKeyDown () Event Handler Flash 6

handler executed when a key is depressed while the clip
has focusFlash 5; callback form introduced in

mc.onKeyDown()

onClipEvent (keyDown) {
 statements
}

Description

The onKeyDown() event handler is the callback form (and more modern analogue) of the legacy
onClipEvent(keyDown) event handler. However, it is one of the few handlers whose behavior changes between
its callback form and its Flash 5-style onClipEvent() form. When implemented as a callback function,
onKeyDown() executes only when a key is depressed and the clip specified by mc has keyboard focus. By

default, keyboard focus is indicated by a yellow rectangle. However, in Flash 6, a couple of caveats make the
callback form of onKeyDown() tricky to use. First, a movie clip without button handlers is not focusable unless
one or both of its focusEnabled or tabEnabled properties is explicitly set to true. Second,

keyboard focus on a movie clip is lost the instant mouse movement over the Flash Player is detected. In the
following code, we specify an onKeyDown() callback, then we enable focusing, and finally we focus the clip
programmatically. Only then will the clip rotate when keys are pressed.

theClip_mc.onKeyDown = function () {
 this._rotation++;
}
theClip_mc.focusEnabled = true;
Selection.setFocus(theClip_mc);

If you try this code in Test Movie mode, it will work only when your mouse pointer is not over the movie's
Stage; otherwise, focus will immediately be lost, and the event will not fire. These caveats limit the general
usefulness of the onKeyDown() movie clip event. Indeed, the Key.onKeyDown() listener event, not
MovieClip.onKeyDown(), is Macromedia's intended all-purpose keyboard response tool. However,
MovieClip.onKeyDown() proves important when movie clips function as keyboard-controlled interface
elements. For example, by implementing onKeyDown() on two separate "menu" movie clips, we can easily use
the same shortcut key to trigger different operations, depending on which menu has focus. Unfortunately, this
scenario applies strictly to keyboard-only interfaces because even the slightest mouse movement removes the
current focus. Macromedia's keyboard-focus implementation is slated for further refinement in future versions of
Flash, so a different model may arise to address this situation in Flash 7.

In contrast, the onClipEvent(keyDown) version of the handler is intuitive and unchanged from its Flash 5
behavior; it executes whenever any key is pressed, period. It requires only that the Flash Player itself be focused.
As of Flash 6, the Key.onKeyDown() listener event is usually preferred over MovieClip.onKeyDown(); see
complete documentation under Key.onKeyDown(). However, there's one final ingredient in the onKeyDown()
stew: the updateAfterEvent() function (which refreshes the screen between frames) works with
MovieClip.onKeyDown() but not with Key.onKeyDown(). The general rules of usage, therefore, are:

If you need a general key-handling mechanism but do not require between-frame screen updates, use

Key.onKeyDown().

If you need a general key-handling mechanism, but your application must update the screen between
frames, use the Flash 5-style onClipEvent (keyDown).

If you need keyboard control over a movie clip only when it has keyboard focus, use
MovieClip.onKeyDown().

Usage

The onKeyDown() handler does not work with main movie timelines (e.g., _root, _level0, _level1)

because main timelines cannot receive input focus.

See Also

Key.onKeyDown(), Key.onKeyUp(), MovieClip.focusEnabled, MovieClip.onKeyUp(),

MovieClip.tabEnabled

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onKeyUp () Event Handler Flash 6

handler executed when a key is released while the clip has
focusFlash 5; callback form introduced in

mc.onKeyUp()

onClipEvent (keyUp) {
 statements
}

Description

The onKeyUp() event handler is the callback form (and more modern analogue) of the legacy
onClipEvent(keyUp) event handler. However, its behavior changes depending on the form it takes. When
implemented as a callback function, onKeyUp() executes only when a key is released while the clip specified by
mc has keyboard focus. A clip can be focused via the Tab key or Selection.setFocus(), but only when it either

defines at least one button handler or when its tabEnabled or focusEnabled properties are true.

For example:

// Specify the onKeyUp() callback
theClip_mc.onKeyUp = function () {
 this._xscale++; // Make the clip wider when a key is released.
}
// Allow focusing
theClip_mc.focusEnabled = true;
// Focus the clip
Selection.setFocus(mc);

Take heed that keyboard focus on a movie clip is lost the instant mouse movement over the Flash Player is
detected. For details, see MovieClip.onKeyDown().

The onClipEvent(keyUp) form of onKeyUp() executes whenever any key is released. It requires only that the
Flash Player itself be focused. For example:

// Code on a movie clip instance
onClipEvent (keyUp) {
 trace("A key was pressed!");
}

As of Flash 6, the Key.onKeyUp() listener event is generally preferred over MovieClip.onKeyUp(); see the Key
object for much more information.

Usage

In Flash 6, the updateAfterEvent() function (which refreshes the screen between frames) works with
MovieClip.onKeyUp(), but not with Key.onKeyUp().

The onKeyUp() handler does not work with main movie timelines (e.g., _root, _level1, _level2)

because main timelines cannot receive input focus.

See Also

Key.onKeyDown(), Key.onKeyUp(), MovieClip.focusEnabled, MovieClip.onKeyDown(),

MovieClip.tabEnabled

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onKillFocus () Event Handler Flash 6

handler executed when the clip loses keyboard focus

mc.onKillFocus(newFocus)

Arguments

newFocus

The TextField, MovieClip, or Button object that now has focus, or null if no object has received focus.

Description

The onKillFocus() event handler executes when mc loses keyboard focus. A movie clip can be keyboard-

focused only under one or more of the following circumstances:

It defines at least one button event handler (onPress(), onRollOver(), etc.).

Its tabEnabled property is true, in which case it can be focused by the Tab key.

Its focusEnabled property is true, in which case it can be focused by Selection.setFocus().

A movie clip loses focus in the same manner as a button, as described under Button.onKillFocus(). The
onKillFocus() handler can be used to remove a highlight state on a focused interface element. In simple cases,
this can also be done with the special _up and _over frame labels. See MovieClip.focusEnabled
and MovieClip._focusrect.

To capture all focus events centrally, rather than for a single instance, use Selection.onSetFocus().

Usage

Take note that onKillFocus() cannot be used in a Flash 5-style onClipEvent() block.

The onKillFocus() handler does not work with main movie timelines (e.g., _root, _level1, _level2)

because main timelines cannot receive input focus.

See Also

Button.onKillFocus(), MovieClip.focusEnabled, MovieClip.tabEnabled,

MovieClip._focusrect, Selection.setFocus(), Selection.onSetFocus()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onLoad () Event Handler Flash 6

handler executed when the clip first appears on the Stage
or when a .swf file finishes loading into the clipFlash 5;
callback form introduced in

mc.onLoad()

onClipEvent (load) {
 statements
}

Description

The onLoad() event handler is the callback form (and more modern analogue) of the legacy onClipEvent(load) event
handler. The onLoad() event handler executes when a movie clip is born—that is, when a movie clip appears on stage
for the first time. It does not apply to main movies (e.g., _root, _level1, etc.). A movie clip appears on stage (i.e.,

it triggers an onLoad() event) in one of the following ways:

The playhead moves onto a keyframe that contains a new instantiation of the clip, placed in the authoring tool.

The clip is duplicated from another clip via the duplicateMovieClip() or MovieClip.duplicateMovieClip()
function.

The clip is added to the Stage programmatically via the attachMovie() function.

An external .swf file is loaded into the clip with the loadMovie() or MovieClip.loadMovie() function.

The body of an onLoad() event handler is executed after any code on the timeline where the movie clip first appears.

When implemented as a Flash 5-style onClipEvent(load) block, the onLoad() event handler is often used to initialize
variables in a clip or to perform some setup task (such as sizing or positioning a dynamically generated clip). An
onClipEvent(load) handler can also provide a nice way to prevent a movie clip from automatically playing:

// Code placed directly on a movie clip object at authoring time
onClipEvent (load) {
 stop();
}

An onClipEvent(load) handler can also be used to trigger some function that relies on the existence of a particular clip or
loaded .swf file in order to execute properly.

The callback form of onLoad() operates quite differently from onClipEvent(load)—it has an
effect only when assigned at the class level, not the instance level. In the latter case, it will be
ignored.

Suppose we assign an onLoad() callback to a clip created with, say, attachMovie() or duplicateMovieClip():

this.attachMovie("BallSymbol", "theBall_mc", 1);
// THIS WILL NEVER EXECUTE:
theBall_mc.onLoad = function () {
 trace("loaded");
};

When the first line runs, theBall_mc is attached to the current movie clip and the onLoad() phase passes. When

the second line runs, a callback function is assigned to theBall_mc.onLoad, but it never executes because the

clip is already loaded before the callback is assigned. Similarly, an attempt to assign onLoad() from frame 1 of a movie
clip will fail:

// THIS WILL NEVER EXECUTE:
this.onLoad = function() {
 trace("loaded");
};

Unlike its Flash 5-style onClipEvent(load) cousin, the onLoad() event handler is not applied on a per-instance basis to
movie clip instances. Instead, it is used at the class level to initialize the instances of a MovieClip subclass. The intended
location of an onLoad() callback assignment is, therefore, in a movie clip subclass's #initclip block. For example:

// CODE ON FRAME 1 OF THE MOVIE CLIP SYMBOL "ballSymbol"
#initclip
// Ball constructor
function Ball () {
 // Initialize the ball instance here...
}

// Set the Ball superclass to MovieClip
Ball.prototype = new MovieClip();

// Associate the Ball class with the Library symbol named "ballSymbol"
Object.registerClass("ballSymbol", Ball);

// Assign the onLoad handler to all instances
Ball.prototype.onLoad = function () {
 trace(this._name + " loaded.");
}
#endinitclip

For details on movie clip subclasses, see the #initclip pragma and Chapter 14.

Assigning onLoad() at the class level, as shown in the Ball code, admittedly works, but it is
effectively a duplication of roles. Instance initialization code should normally be placed inside
the class constructor function.

Note that a clip's onLoad() callback is deleted when an external .swf or .jpg file is loaded into the clip, but its
onClipEvent(load) handler is not deleted and will execute across multiple loadMovie() calls. (The onLoad() callback is
deleted because an onLoad() event handler property is technically a function stored in a clip's property; clip properties
are deleted when a clip is removed from the player.)

Usage

The Flash 5-style onClipEvent(load) handler executes when the contents of a clip are unloaded with the unloadMovie()
function (because an empty placeholder clip is loaded into the clip when its contents are expelled). In contrast, on its
own, an onLoad() callback function will not execute when a clip's contents are unloaded. However, strangely enough,
when both types of handlers are applied to the same clip, both will execute when unloadMovie() runs.

Example

The following code uses the onClipEvent(load) form of onLoad() to generate an entire field of star clips using a

single event handler in a cascading chain. The onClipEvent(load) handler is attached to a clip instance named star0.

When the clip loads, it duplicates itself and its onClipEvent(load) handler, causing the duplicate, in turn, to duplicate
itself. The process stops when the 100th clip is duplicated. Note that we cannot use the callback form of onLoad() to
achieve the same effect because callbacks are not copied to duplicated movie clips.

The .fla file for this example is available at the online Code Depot:

// Attach this onLoad() handler to a clip named star0
onClipEvent (load) {
 // Place the current clip at a random position
 _x = Math.floor(Math.random() * 550);
 _y = Math.floor(Math.random() * 400);

 // Reset clip scale so we don't inherit previous clip's scale
 _xscale = 100;
 _yscale = 100;

 // Randomly size current clip between 50 and 150 percent
 randScale = Math.floor(Math.random() * 100) - 50;
 _xscale += randScale;
 _yscale += randScale;

 // If we're not at the 100th star, make another one
 if (_name != "star100") {
 nextStarNumber = Number(_name.substring(4, _name.length)) + 1;
 this.duplicateMovieClip("star" + nextStarNumber, nextStarNumber);
 }
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onMouseDown() Event Handler Flash 6

handler executed when primary mouse button is depressed
while the clip is on stageFlash 5; callback form introduced
in

mc.onMouseDown()

onClipEvent (mouseDown) {
 statements
}

Description

The onMouseDown() event handler is the callback form (and more modern analogue) of the legacy onClipEvent (mouseDown) event
handler. The onMouseDown() event handler is identical to the Mouse.onMouseDown() listener event, except that it allows for
screen refreshes between frames via updateAfterEvent(). It executes when mc is on stage and the primary mouse button is

depressed. The MovieClip.onMouseDown() handler would be obsolete in Flash 6 if Mouse.onMouseDown() supported
updateAfterEvent(). For complete details, see Mouse.onMouseDown().

Example

// Callback form
_root.onMouseDown = function () {
 trace("The mouse was pressed");
}

// Flash 5-style onClipEvent() block placed directly on a movie clip instance
onClipEvent (mouseDown) {
 trace("The mouse was pressed");
}

See Also

Mouse.onMouseDown(), MovieClip.onMouseMove(), MovieClip.onMouseUp()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onMouseMove() Event Handler Flash 6

handler executed when mouse pointer moves while the clip
is on stageFlash 5; callback form introduced in

mc.onMouseMove()

onClipEvent (mouseMove) {
 statements
}

Description

The onMouseMove() event handler is the callback form (and more modern analogue) of the legacy onClipEvent (mouseMove) event
handler. The onMouseMove() event handler is identical to the Mouse.onMouseMove() listener event, except that it allows for
screen refreshes between frames via updateAfterEvent(). It executes when mc is on stage and the mouse pointer moves. The

MovieClip.onMouseMove() handler would be obsolete in Flash 6 if Mouse.onMouseMove() supported updateAfterEvent(). For
complete details, see Mouse.onMouseMove().

Example

// Callback form
_root.onMouseMove = function () {
 trace("The mouse moved");
}

// Flash 5-style onClipEvent() block placed directly on a movie clip instance
onClipEvent (mouseMove) {
 trace("The mouse moved");
}

See Also

Mouse.onMouseMove(), MovieClip.onMouseDown(), MovieClip.onMouseUp()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onMouseUp() Event Handler Flash 6

handler executed when primary mouse button is released
while the clip is on stage

mc.onMouseUp()

onClipEvent (mouseUp) {
 statements
}

Description

The onMouseUp() event handler is the callback form (and more modern analogue) of the legacy onClipEvent (mouseUp) event
handler. The onMouseUp() event handler is identical to the Mouse.onMouseUp() listener event, except that it allows for screen
refreshes between frames via updateAfterEvent(). It executes when mc is on Stage and the primary mouse button is released. The

MovieClip.onMouseUp() handler would be obsolete in Flash 6 if Mouse.onMouseUp() supported updateAfterEvent(). For
complete details, see Mouse.onMouseUp().

Example

// Callback form
_root.onMouseUp = function () {
 trace("The mouse was released");
}

// Flash 5-style onClipEvent() block placed directly on a movie clip instance
onClipEvent (mouseUp) {
 trace("The mouse was released");
}

See Also

Mouse.onMouseUp(), MovieClip.onMouseDown(), MovieClip.onMouseMove()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onPress() Event Handler Flash 6

Button event; occurs when the mouse is pressed over the
clip

mc.onPress()

on (press) {
 statements
}

Description

The onPress() event handler is identical to the Button.onPress() event, except that it can also be applied to
movie clip instances (though not main movies such as _root, _level0, etc.).

See Also

Button.onPress(); Section 13.9

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onRelease() Event Handler Flash 6

Button event; occurs when the mouse is pressed and then
released over the clip

mc.onRelease()

on (release) {
 statements
}

Description

The onRelease() event handler is identical to the Button.onRelease() event, except that it can also be applied to
movie clip instances (though not main movies such as _root, _level0, etc.).

See Also

Button.onRelease(); Section 13.9

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onReleaseOutside() Event Handler Flash 6

Button event; occurs when the mouse is pressed over the
clip and then released off the clip

mc.onReleaseOutside()

on (releaseOutside) {
 statements
}

Description

The onReleaseOutside() event handler is identical to the Button.onReleaseOutside() event, except that it can
also be applied to movie clip instances (though not main movies such as _root, _level0, etc.).

See Also

Button.onReleaseOutside(); Section 13.9

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onRollOut() Event Handler Flash 6

Button event; occurs when the mouse pointer moves off of
the clip while the mouse button is not depressed

mc.onRollOut()

on (rollOut) {
 statements
}

Description

The onRollOut() event handler is identical to the Button.onRollOut() event, except that it can also be applied to
movie clip instances (though not main movies such as _root, _level0, etc.).

See Also

Button.onRollOut(); Section 13.9

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onRollOver() Event Handler Flash 6

Button event; occurs when the mouse pointer moves over
the clip

mc.onRollOver()

on (rollOver) {
 statements
}

Description

The onRollOver() event handler is identical to the Button.onRollOver() event, except that it can also be applied
to movie clip instances (though not main movies such as _root, _level0, etc.).

See Also

Button.onRollOver(); Section 13.9

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onSetFocus() Event Handler Flash 6

callback invoked when the clip gains focus

mc.onSetFocus(oldFocus)

Arguments

oldFocus

The TextField, MovieClip, or Button object that previously had focus, or null if no object was

previously focused.

Description

The onSetFocus() event handler is executed when mc gains focus. A clip gains focus when:

The user navigates to the clip with the Tab key.

Selection.setFocus() assigns focus programmatically.

A movie clip can be keyboard-focused under only one or more of the following circumstances:

It defines at least one button event handler (onPress(), onRollOver(), etc.).

Its tabEnabled property is true, in which case it can be focused by the Tab key.

Its focusEnabled property is true, in which case it can be focused by Selection.setFocus().

The following code registers a callback function that responds to onSetFocus():

// Assign the onSetFocus() callback using a function literal
theClip_mc.onSetFocus = function (newFocus) {
 trace(this + " now has focus. Old focus was " + newFocus);
};

Notice that from the body of the callback, we can refer to theClip_mc using the this keyword. To stop a

callback from handling the onSetFocus() event, use the delete operator, as in:

// Make sure to omit the () operator after the function name!
delete clip_mc.onSetFocus;

The onSetFocus() handler normally is used to highlight an interface element when it has focus. For example, a
dark blue dial can be colored light blue and surrounded with a black circle.

To capture all focus events centrally, rather than for a single instance, use Selection.onSetFocus().

Usage

Note that onSetFocus() cannot be used in a Flash 5-style onClipEvent() block.

The onSetFocus() handler does not work with main movie timelines (e.g., _root, _level1, _level2)

because main timelines cannot receive input focus.

See Also

Button.onSetFocus(), MovieClip.focusEnabled, MovieClip.onKillFocus(),

MovieClip.tabEnabled, Selection.onSetFocus(), Selection.setFocus(), TextField.onSetFocus();

Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.onUnload() Event Handler Flash 6

callback invoked when the clip is removed from the Stage
or when unloadMovie() executesFlash 5; callback form
introduced in

mc.onUnload()

onClipEvent (unload) {
 statements
}

Description

The onUnload() event handler is the callback form (and more modern analogue) of the legacy onClipEvent
(unload) event handler. The onUnload() event is the opposite of the onLoad() event; it occurs when mc
expires?that is, it occurs immediately after the last frame in which mc is present on stage (but before the first

frame in which it is absent). The onUnload() event does not apply to main movies (e.g., _root, _level1,

etc.)

The following incidents trigger onUnload():

The playhead reaches the end of the span of frames upon which mc resides.

mc is removed via the removeMovieClip() function (which deletes clips generated by the attachMovie()

and duplicateMovieClip() functions).

The unloadMovie() function is invoked on mc.

mc has an external .swf file loaded into it.

This last onUnload() event trigger may seem a little odd, but it is actually a natural result of the way movies are
loaded into Flash. Anytime a .swf or .jpg file is loaded into a movie clip, the previous contents of that clip are
displaced, triggering an onUnload() event. Here's an example that illustrates the behavior of the onLoad() and
onUnload() events in connection with loadMovie():

In the Flash authoring tool, we place an empty movie clip on stage at frame 1 of a movie's main timeline.
We name our clip emptyClip.

1.

At frame 5 of the main timeline, we load the movie test.swf into emptyClip using the following code:2.

emptyClip.loadMovie("test.swf");
We play the movie using Control Play movie.3.

The results are:

The emptyClip clip appears on frame 1, causing an onLoad() event.1.

On frame 5, the loadMovie() function is executed in two stages:

The placeholder content of emptyClip is removed to make room for the incoming test.swf,

causing an onUnload() event.

a.

b.

2.

a.

The movie test.swf loads, causing an onLoad() event.b.

2.

The onUnload() event typically is used to perform housecleaning code?code that cleans up the Stage or resets
the program environment in some way. An onUnload() handler also provides a means for performing some
action (such as playing another movie) after a movie clip ends.

Unlike its cousin onLoad(), whose callback form has limited use, onUnload() works identically whether
defined as a callback or in an onClipEvent(unLoad) block. However, the usual differences between callback
handlers and onClipEvent() handlers still apply:

When the contents of mc are unloaded, the onUnload() callback is lost, but the onClipEvent(unload)

handler is retained.

When mc is duplicated via duplicateMovieClip(), the onUnload() callback is not copied to the duplicate

clip, but the onClipEvent(unLoad) handler is.

Usage

Perhaps surprisingly, in Flash 6, onUnload() is not triggered when the Flash Player is closed or when
_level0 (the main movie) is removed from the Player. Macromedia may address this idiosyncrasy in the

future.

See Also

MovieClip.onLoad(), MovieClip.unloadMovie()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._parent Property Flash 4

a reference to the host clip or movie containing
this clip

read-
only

mc._parent

Description

The _parent property stores a reference to the clip object upon whose timeline mc resides. Main movies don't support the

_parent property because they are at the top level (conveniently referred to as _root). References to

_root._parent return undefined. The _parent property gives us the powerful ability to manipulate clips in

relation to the current clip.

Bugs

Though it is possible in Flash 5 and Flash 6 to reassign the _parent property to another clip, doing so has little purpose?

only the reference is changed, not the physical structure of the clips. This unintentional behavior will likely be changed in the
future.

Example

If mc resides on the main timeline of a movie, we can play the main timeline from mc using:

_parent.play();

We can also set the parent timeline's properties, as in:

_parent._alpha = 50;

The _parent property can also be used in succession; that is, we can access the _parent of a _parent, as follows:

_parent._parent.play(); // Play the clip two clips above the current clip

See Also

_root; Section 13.5.3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.play() Method Flash 5

begin the sequential display of frames in a clip or movie

mc.play()

Description

The MovieClip.play() method is an alternative to the global play() function. Use the MovieClip method form to
control remote movie clips or main movies specified by mc.

For general usage instructions, see the global play() function.

Example

// Begin playing clip named intro_mc
intro_mc.play();

See Also

MovieClip.stop(), play()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.prevFrame() Method Flash 5

send a clip or movie's playhead backward one frame and
stop it there

mc.prevFrame()

Description

The MovieClip.prevFrame() method is an alternative to the global prevFrame() function. Use the MovieClip
method form to control remote movie clips or main movies specified by mc.

For general usage instructions, see the global prevFrame() function.

Example

// Rewind slideshow_mc one frame and stop it
slideshow_mc.prevFrame();

See Also

MovieClip.nextFrame(), prevFrame()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.removeMovieClip() Method Flash 5

delete a movie clip from the Flash Player

mc.removeMovieClip()

Description

The MovieClip.removeMovieClip() method is an alternative to the global removeMovieClip() function. When
invoked as a MovieClip method, removeMovieClip() takes no target parameter; it always removes mc. The

MovieClip method syntax is less prone to user error than its global function counterpart.

For usage instructions, see the global removeMovieClip() function.

See Also

duplicateMovieClip(), MovieClip.attachMovie(), MovieClip.duplicateMovieClip(), removeMovieClip();
Section 13.7

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._rotation Property Flash 4

rotation, in degrees, of a clip or movie read/write

mc._rotation

Description

The floating-point _rotation property specifies the number of degrees mc is rotated from its original

orientation (if mc is not a main movie, the original orientation is that of mc's symbol in the Library). Both

authoring-time and programmatic adjustments are reflected in _rotation. Numbers in the range of 0 to

180.0 rotate the clip clockwise. Numbers in the range of 0 to -180.0 rotate the clip counterclockwise. The same
effect is achieved when rotating a clip n degrees or n-360 degrees (where n is positive). For example, there is

no difference between rotating a clip +299.4 degrees or -60.6 degrees. Likewise, when n is negative, there is no

difference between n degrees and n+360 degrees. For example, rotating a clip -90 degrees is the same as

rotating it +270 degrees.

When _rotation is set to anything outside the range of -180 to 180, the value is brought into the proper

range according to the equivalent of the following calculation:

x = newRotation % 360;
if (x > 180) {
 x -= 360;
} else if (x < -180) {
 x += 360;
}
_rotation = x;

Bugs

In Flash Player 4, setting the _rotation of a clip reduces the scale of that clip by a fractional amount. Over

many _rotation settings, a clip will actually shrink noticeably. To account for this bug, set the _xscale
and _yscale of the clip to 100 (or whatever their previous values are) whenever setting the _rotation.

Example

The following onEnterFrame() handler causes the box_mc clip to rotate 5 degrees clockwise each time a

frame is rendered:

box_mc.onEnterFrame = function {
 this._rotation += 5;
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.setMask() Method Flash 6

assigns a movie clip as a mask for another clip

mc.setMask(maskMovieClip)

Arguments

maskMovieClip

A string indicating the path to the movie clip to be used as mc's mask. Because movie clip references are

converted to paths when used in a string context, maskMovieClip can also be a movie clip object

reference, as in mc.setMask(maskClip) versus mc.setMask("maskClip").

Description

The setMask() method assigns maskMovieClip as a mask for mc. When invoked, the content of

maskMovieClip becomes a hole through which the content of mc is visible. Those portions of mc beneath

occupied pixels of maskMovieClip are displayed, but portions of mc beneath empty pixels in

maskMovieClip are hidden. Therefore, masks typically are created with black pixels in the areas where you want

the masked clip, mc, to show through. For example, maskMovieClip may contain a filled black circle used as a

spotlight on mc's content. To remove any mask currently applied to mc, call setMask() with a maskMovieClip
parameter of null.

The following code sets flashlight_mc as the mask of darkroom_mc:

darkroom_mc.setMask(flashlight_mc);

And the following code removes the flashlight_mc mask:

darkroom_mc.setMask(null);

Shapes drawn with the movie clip drawing methods (beginFill(), lineTo(), curveTo(), etc.) can be used in masks. As of
Flash 6 (but not before), timelines of movie clips used as masks play normally. Each frame's content becomes the mask
when the content is displayed. Mask clips can also be dragged, sized, and moved programmatically, and they can take
movie clip and button-style event handlers. For example, a mask clip can define an onEnterFrame() handler that
changes its position with each passing frame. Or, a mask clip can define onPress() and onRelease() handlers that drag
and drop it, as follows:

darkroom_mc.setMask("spotlight_mc");

spotlight_mc.onPress = function () {
 trace("Dragging spotlight");
 this.startDrag();
}

spotlight_mc.onRelease = spotlight_mc.onReleaseOutside = function () {
 trace("Dropping spotlight");
 this.stopDrag();

}

When maskMovieClip defines at least one button event handler or contains a button object, no button events pass

through to mc. That is, a masked clip cannot respond to button events when its mask defines a button event or contains a

button.

If we apply a runtime mask to a movie clip used in an author-time mask layer, Flash removes the author-time mask and
places the newly masked clip behind the layers it masked at authoring time.

Usage

Masks in Flash have several limitations:

Prior to Flash Player 6.0.40.0, text fields without embedded fonts cannot be masked with a mask movie clip. As of
Flash Player 6.0.40.0, the rectangular bounding box of a runtime mask movie clip can mask a text field even when
its fonts are not embedded. To mask a text field in older versions of the Player, be sure to embed its font(s).

Text fields without embedded fonts cannot be used as masks.

Text fields without embedded fonts cannot be masked with an author-time mask layer.

Lines cannot be used as masks. Use fills, not lines, in mask movie clips. Lines can be turned into fills via Modify
 Shape Convert Lines to Fills.

The setMask() method cannot assign more than one clip to be masked by a single mask movie clip. To apply an
identical mask to several clips, duplicate the original mask movie clip as often as needed, or use an author-time
mask, which can be applied to multiple movie clips simultaneously.

In Flash 6, fully contained holes in shapes inside movie clips are not reflected by masks. For example, it is
impossible to create a doughnut-shaped mask using a movie clip (the doughnut's hole will be filled, and the mask
will simply be a solid circle). However, an author-time primitive shape in a mask layer can be used to create mask
shapes with fully contained holes. The beginFill() method can also be used at runtime to draw a shape with a
hole that functions properly as a mask.

See Also

MovieClip.beginFill()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.startDrag() Method Flash 5

make a movie or movie clip follow the mouse

mc.startDrag()
mc.startDrag(lockCenter)
mc.startDrag(lockCenter, left, top, right, bottom)

Arguments

lockCenter

A Boolean indicating whether the registration point of mc should be centered under the mouse pointer

(true) or dragged relative to its original location (false).

left

A number specifying the x-coordinate to the left of which mc's registration point cannot be dragged.

top

A number specifying the y-coordinate above which mc's registration point may not be dragged.

right

A number specifying the x-coordinate to the right of which mc's registration point cannot be dragged.

bottom

A number specifying the y-coordinate below which mc's registration point cannot be dragged.

Description

The MovieClip.startDrag() method is an alternative to the global startDrag() function. When invoked as a
MovieClip method, startDrag() does not take a target parameter; it drags mc. The MovieClip method

syntax is less prone to user error than its global function counterpart because no target parameter is

required.

For usage instructions, see the global startDrag() function.

Bugs

Note that the correct order of the constraining rectangular coordinates is left, top, right, bottom, but the Flash 5
ActionScript Dictionary lists them in the wrong order under MovieClip.startDrag().

Example

// Code to drag and drop the current clip or movie
this.onPress = function () {
 this.startDrag(true);
};

this.onRelease = function () {
 stopDrag();
}

See Also

MovieClip.stopDrag(), startDrag(), stopDrag(); Section 13.7

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.stop() Method Flash 5

pause a clip or movie

mc.stop()

Description

The MovieClip.stop() method is an alternative to the global stop() function. Use the MovieClip method form to
control remote movie clips or main movies specified by mc. The Flash Player continues to render the Stage's

contents and process events even when the playhead is stopped.

For general usage instructions, see the global stop() function.

Example

// Halt the playback of spinner_mc
spinner_mc.stop();

See Also

MovieClip.nextFrame(), MovieClip.play(), MovieClip.prevFrame(), stop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.stopDrag() Method Flash 5

end a drag operation in progress

mc.stopDrag()

Description

The MovieClip.stopDrag() method is an alternative to the global stopDrag() function. However, there is no need to
use the MovieClip method form; stopDrag() cancels any drag operation in progress, whether invoked through a movie
clip or as a global function.

See Also

MovieClip.startDrag(), stopDrag()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.swapDepths() Method Flash 5

change the graphic layering of an instance in the visual
content stack

mc.swapDepths(target)
mc.swapDepths(depth)

Arguments

target

A string indicating the path to the movie clip to be swapped with mc. Because movie clip references are

converted to paths when used in a string context, target can also be a movie clip object reference, as

in mc.swapDepths(window2) versus mc.swapDepths("window2").

depth

An integer, between -16384 and 1048575 (inclusive), specifying a level in mc's parent's clip stack.

Higher depths obscure lower depths, so a depth of 6 is in front of 5, which is in front of 4, and so on.
Depths above -1 are reserved for dynamically generated content; depths from -16383 to -1 (inclusive) are
reserved for author-time content; and depth -16384 is reserved for dynamic content that appears beneath
all author-time content in mc (e.g., a runtime background). For important details, see Section 13.4.

Description

All movie clip instances in a .swf document reside in a stack that governs the visual layering of instances in the
Player. The stack is structured like a deck of cards; clips in higher positions in the stack appear in front of clips
in lower positions. The position of an instance in the stack is initialized when the clip is created (either in the
Flash authoring tool or via attachMovie(), duplicateMovieClip(), or createEmptyMovieClip()). Using
swapDepths(), we can change the position of an instance in the stack.

The swapDepths() method takes two forms. When used with a target argument, swapDepths() trades the

stack position of mc and target, provided that mc and target share the same parent clip (i.e., they reside

on the same timeline). When used with a depth argument, swapDepths() places mc in a new position in mc's

parent stack. If that position is occupied, the previous occupant is moved to mc's old position. Note that

swapDepths() cannot be used to move a clip outside of the stack maintained by its parent. For information on
how movies and movie clips are stacked in the Player, see Section 13.4. To determine the current depth of a clip,
use MovieClip.getDepth().

Bugs

Note that swapping a duplicated or attached instance with a manually created instance via the depth argument

can cause redraw problems in Flash Player 5. Treat the depth argument with prudence, and always test depth-

swapping code extensively.

See Also

MovieClip.attachMovie(), MovieClip.createEmptyMovieClip(),, MovieClip.createTextField(),

MovieClip.duplicateMovieClip(), MovieClip.getDepth(); Section 13.4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.tabChildren Property Flash 6

controls whether contained objects are included
in the automatic tab order

read/write

mc.tabChildren

Description

The Boolean tabChildren property specifies whether the text fields and buttons inside mc are included in

the automatic tab order. It applies only to movie clips, not main movies (e.g., _root, _level1). When

tabChildren is true (the default), all buttons, movie clips with button handlers, and text fields

contained by mc are part of the automatic tab order, even when mc.tabEnabled is false. When

tabChildren is false, the objects contained by mc are not accessible via the Tab key.

The tabChildren property has two typical uses:

It can conveniently disable tabbing for a whole group of objects. For example, to disable a set of toolbar
buttons, place the buttons inside a movie clip and set the clip's tabChildren to false.

It can prevent a movie clip's contents from interfering with the clip's keyboard accessibility. For example,
to prevent the Tab key from accessing, say, the handle inside a slider bar, set the slider bar's
tabEnabled to true and tabChildren to false. This way, the entire bar counts as a single

tab index in the tab order.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

Example

The following code enables sliderBar_mc to receive focus via the Tab key, but it prevents any of its

contents from being focused:

sliderBar_mc.tabEnabled = true;
sliderBar_mc.tabChildren = false;

See Also

MovieClip.tabEnabled, MovieClip.tabIndex

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.tabEnabled Property Flash 6

includes or excludes the movie clip from the
current tab order

read/write

mc.tabEnabled

Description

The Boolean tabEnabled property governs whether mc is part of the tab order for the text fields, movie clips, and buttons

currently on screen. The tab order is the sequence in which objects are focused when the Tab key is pressed in a movie. See
TextField.tabEnabled for complete details.

For movie clips, the tabEnabled property can:

Exclude a movie clip with a defined tabIndex from the custom tab order

Exclude any clip with button event(s) from the automatic tab order

Include a movie clip in the automatic tab order (the automatic tab order does not, by default, include clips without button events)

By default, tabEnabled is undefined and mc is excluded from the automatic tab order unless it defines at least one button

handler (onPress(), onRelease(), etc.), in which case it is included in the automatic tab order.

A movie clip that does not define button handlers typically is added to the automatic or custom tab order when it is an interface element
that is keyboard accessible. For example, a listbox movie clip should be focusable via the Tab key and controllable via the arrow keys,
so it should have a tabEnabled property of true.

By default, when a movie clip has focus, Flash surrounds it with a yellow rectangle. To supply a custom highlight state, we should first
turn the yellow rectangle off by setting MovieClip._focusrect to false, and then either create the highlight state inside

the clip's onSetFocus() handler, or define _up and _over frames in the clip that correspond to the unfocused and focused states,

respectively. (Flash automatically displays those special frames when the clip loses and gains focus.)

To allow a movie clip to be focused programmatically via Selection.setFocus(), we must set its focusEnabled property to true.

Note that the tabEnabled property applies to the Tab key only, while the focusEnabled property applies to

Selection.setFocus() only. For many interface widgets, it is appropriate to disable automatic tabbing for all of the clip's children (the
nested clips, buttons, and text fields it contains). We can do this conveniently by setting the tabChildren property to false.

Disabling automatic child tabbing allows us to dictate the keyboard behavior of a clip explicitly, without worrying about interference
from any subordinate interface elements it may contain.

In general, to enable focus for a movie clip interface widget we combine the following property settings:

// Disable automatic yellow focus rectangle
theClip_mc._focusrect = false;
// Allow the clip to be focused by the Tab key
theClip_mc.tabEnabled = true;
// Allow the clip to be focused by Selection.setFocus()
theClip_mc.focusEnabled = true;
// Prevent automatic tabbing to clips, text fields, and buttons inside the clip

theClip_mc.tabChildren = false;

Note that when a clip's tabEnabled is false, any text fields, buttons, or movie clips it contains may still have tabbing enabled.

To disable tabbing for a clip and all its contained objects, set both tabEnabled and tabChildren to false.

Movie clips that behave as buttons (i.e., that define button event handlers) normally have tabEnabled set to false when they

are disabled (when the enabled property is set to false) or when they are accessible only to mouse input, such as in games that

use transparent buttons to detect mouse hit regions.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is enabled. Be sure to test
keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all targeted web browsers.

See Also

MovieClip.enabled, MovieClip.focusEnabled, MovieClip.onSetFocus(), MovieClip.tabChildren,

MovieClip.tabIndex, Selection.setFocus(), TextField.tabEnabled

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.tabIndex Property Flash 6

specifies the movie clip's index in the custom tab
order

read/write

mc.tabIndex

Description

The integer tabIndex property specifies mc's position in the custom tab order. When no text field, clip, or

button has a tabIndex property defined, Flash determines tab order automatically, and pressing the Tab key

moves focus between movie clips with button handlers, buttons, and text fields from right to left, then top to
bottom. We use the tabIndex property to force Tab key navigation to follow our own sequence, overriding

the automatic order. For complete details, see TextField.tabIndex.

Objects with _visible set to false are not included in the tab order. When at least one object has

tabIndex set, any objects without an assigned tabIndex cannot be accessed via the Tab key.

By default, movie clips are not tab-enabled unless they define button handlers. To include in the automatic tab
order a movie clip that does not define button handlers, set its tabEnabled property to true. To include

any movie clip in a custom tab order, set its tabIndex property to an integer (the tabEnabled property

need not also be set). A movie clip without button handlers typically is added to the automatic or custom tab
order when it is an interface element that is keyboard accessible (in which case, it typically responds to keyboard
control via either Key.onKeyUp() or MovieClip.onKeyUp()).

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

Example

The following code restricts Tab key access to a listbox movie clip, a text field, and a Submit button:

phoneListBox_mc.tabIndex = 1;
firstName_txt.tabIndex = 2;
submit_btn.tabIndex = 3;

See Also

MovieClip.tabChildren, MovieClip.tabEnabled, TextField.tabIndex

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._target Property Flash 4

the target path of a clip or movie, in slash syntax read-only

mc._target

Description

The _target property represents the path to mc in a Flash 4-style slash notation string. For example, if a

clip, ball, resides on the main movie timeline, ball's _target property is "/ball". A clip named

stripe inside ball would have a _target of "/ball/stripe".

To retrieve a string giving the path to a clip in dot notation, use the global targetPath() function. To convert the
slash notation string into an object reference, use eval().

See Also

eval(), targetPath()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._totalframes Property Flash 4

the total number of frames in a clip or movie
timeline

read-
only

mc._totalframes

Description

The integer _totalframes property represents the number of frames in mc's timeline, where mc is a

movie clip or main movie. The _totalframes property is most often used along with

_framesloaded to create preloaders, as shown in the entry for MovieClip._framesloaded.

The loadMovie() and unloadMovie() functions are executed asynchronously. Hence, the value of
_framesloaded varies according to when it is called and the value of mc, as follows:

If mc is undefined, _totalframes is undefined.

After a loadMovie() or unloadMovie() statement occurs in source code, but before it executes, and
before the number of frames of the external file has been determined, _totalframes returns the

existing number of frames in mc (prior to the loadMovie() or unloadMovie() statement).

After the number of frames is determined, _totalframes returns the number of frames in the

loading movie, unless the file at url is not found.

If the file at url is not found and mc is a movie clip, _totalframes returns 0 and

_framesloaded returns -1. However, if mc is a document level, such as _level0, both

_framesloaded and _totalframes return undefined.

After an unloadMovie() command executes, _totalframes returns 0 if mc is a movie clip and

undefined if mc is a document level, such as _level0.

See Also

MovieClip._framesloaded

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.trackAsMenu Property Flash 6

modifies the onRelease() handler requirements,
enabling menu-style behavior

read/write

mc.trackAsMenu

Description

The Boolean trackAsMenu property modifies the conditions that cause mc's onRelease() event handler to

execute. It normally is used to turn a group of buttons into a menu and applies only to movie clips that define at
least one button event handler. For complete details, see Button.trackAsMenu.

See Also

Button.trackAsMenu, MovieClip.onRelease()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.unloadMovie() Method Flash 5

remove a movie or movie clip from the Player

mc.unloadMovie()

Description

The MovieClip.unloadMovie() method is an alternative to the global unloadMovie() function. When invoked
as a MovieClip method, unloadMovie() does not take a target parameter; it always unloads mc. The

MovieClip method syntax is less prone to user error than its global function counterpart because no target
parameter is required.

For usage instructions, see the global unloadMovie() function.

Example

// Removes a loaded document from level 1
_level1.unloadMovie();

See Also

MovieClip.loadMovie(), unloadMovie(); Section 13.7

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._url Property Flash 4

the network address from which a clip or movie
was loaded

read-
only

mc._url

Description

The string _url property represents the URL (Uniform Resource Locator) indicating the Internet or local disk

location from which the content of mc was loaded. The _url property is always an absolute URL, never a

relative one. For main movies, _url is simply the location of the current .swf file. The _url of all movie

clips in a .swf file is the same as the main movie of that file unless external .swf files have been loaded into
individual clips via MovieClip.loadMovie(). The _url of a clip that hosts an externally loaded .swf file is the

location of the externally loaded file.

The _url property sometimes is used to create simple security systems that prevent a movie from playing

when displayed in a unwanted location.

Example

The value of _url in a movie loaded from a web site looks like this:

"http://www.moock.org/gwen/meetgwen.swf"

The value of _url in a movie loaded from a local PC hard drive looks like this:

"file:///C|/data/flashfiles/movie.swf"

Here we check whether a movie is hosted in the desired location (if it's not, we display a frame that contains an
error):

if (this._url != "http://www.moock.org/gwen/meetgwen.swf") {
 trace("This movie is not running from its intended location.";
 this.gotoAndStop("accessDenied");
}

See Also

MovieClip.loadMovie(), System.security.allowDomain()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.useHandCursor Property Flash 6

dictates whether a hand pointer is displayed
when the mouse is over the clip (button-enabled
clips only)

read/write

mc.useHandCursor

Description

When set to false, the Boolean useHandCursor property disables the display of the hand pointer

normally shown when the mouse is over mc's hit area. It applies only to movie clips with button event handlers.

For details, see Button.useHandCursor.

Example

The following code disables the hand cursor for checkBox_mc:

checkBox_mc.useHandCursor = false;

The following code disables the hand cursor for all movie clips in a movie:

MovieClip.prototype.useHandCursor = false;

See Also

Button.useHandCursor, Mouse.hide()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip.valueOf() Method Flash 5

a reference to a clip or movie

mc.valueOf()

Returns

An object reference to mc.

Description

The valueOf() method returns an object reference to mc. The reference is synonymous with mc itself, so it is

rarely, if ever, necessary to invoke valueOf() explicitly.

See Also

Object.valueOf(), targetPath()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._visible Property Flash 4

whether a clip or movie is shown or hidden read/write

mc._visible

Description

The Boolean _visible property indicates whether mc is currently shown (true) or hidden (false). We

use _visible as a quick means of hiding a movie clip or movie from view. Note that button events and the

onKeyUp() and onKeyDown() event handler properties do not fire when a clip is not visible, but otherwise the
clip operates as normal. It can still be controlled via ActionScript; it can still be played, stopped, and detected
with hitTest(); and it can still receive other movie clip events. Invisible clips are simply not displayed on screen.

The initial value of the _visible property for all movie clips is true, even for movie clips that are fully

transparent or completely off stage. The _visible property changes only when it is deliberately modified by

a script; think of it as a way to show and hide clips programmatically, not as a reflection of all factors (such as
position and transparency) that can affect a clip's visibility.

Hiding a movie clip using the _visible property is preferred to setting it to fully transparent or moving it

off stage, because the Flash Player does not attempt to draw the graphics in movie clips with _visible set to

false, thus improving rendering performance.

Example

The following event handlers hide the current clip when the mouse button is pressed and reveal it when the
mouse button is released:

this.onMouseDown = function () {
 this._visible = false;
}

this.onMouseUp = function () {
 this._visible = true;
}

See Also

MovieClip._alpha

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._width Property Flash 5

width of a clip or movie, in pixelsFlash 4; enhanced in Flash
5read-only in Flash 4; read/write as of

mc._width

Description

The floating-point _width property stores a nonnegative number specifying the current width of mc, in pixels. If mc has no

content, _width is 0. The _width property measures the content of a clip or movie as the distance between the leftmost occupied

pixel and the rightmost occupied pixel, even if there is empty space between those pixels. An occupied pixel is a pixel that contains a
shape, graphic, button, movie clip, text field, or other content element. Changes made to a clip's width in the authoring tool or via
_xscale are reflected by _width.

Setting the value of _width resizes a movie clip horizontally. Attempts to set _width to a negative value are ignored. Setting a

clip's _width to 0 does not hide the clip; it turns it into a one-pixel vertical line. Flash's basic unit of measure is a twentieth of a

pixel (a "twip"), so the shortest legal _width change is .05 pixels. Smaller increments are ignored:

trace(ball_mc._width); // Displays: 100
ball_mc._width += .01;
trace(ball_mc._width); // Still displays 100. The assignment had no effect.

The _width of the main movie (either _root._width or _leveln._width) is not the Stage width as specified under

Modify Document Dimensions (or Modify Movie Dimensions in Flash 5) in the authoring tool, but rather the
width of the contents of the main movie. As of Flash 6, the movie's specified dimensions are available via Stage.height and

Stage.width.

For a loading movie, the _width property returns undefined until the movie has completely loaded.

Usage

Note that when we set the width of a movie clip, lines are scaled proportionally, losing their original point size as set in the Stroke
panel. However, the point size of lines set to Hairline in the Stroke panel is not scaled when a movie clip is resized. Use hairlines to
prevent your strokes from appearing fat or distorted when a clip is scaled.

Example

ball_mc._width = 20; // Set the width of ball_mc to 20 pixels
ball_mc._width *= 2; // Double the width of ball_mc

See Also

MovieClip._height, MovieClip._xscale, Stage.width

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._x Property Flash 4

horizontal location of a clip or movie, in pixels read/write

mc._x

Description

The floating-point _x property always indicates the horizontal position of mc's registration point, but it is measured relative to

one of three possible coordinate spaces:

If mc resides on the main timeline, _x is measured relative to the Stage's left edge. For example, an _x of 20 indicates

that the registration point of mc is 20 pixels to the right of the Stage's left edge; -20 indicates 20 pixels to the left.

If mc resides on another movie clip instance's timeline, _x is measured relative to the registration point of that parent

instance. For example, an _x of 20 indicates that the registration point of mc is 20 pixels to the right of its parent

instance's registration point; -20 indicates 20 pixels to the left.

If mc is the main movie, _x is the horizontal offset of the entire .swf document, relative to the Stage's left edge. For

example, an _x of 200 indicates that the contents of the Stage are offset 200 pixels to the right of their author-time

position; -200 indicates 200 pixels to the left.

The _x property (along with all horizontal coordinates in Flash) increases to the right and decreases to the left. Fractional _x
values are approximated in Flash with antialiasing (blurring). Flash's basic unit of measure is a twentieth of a pixel (a "twip"), so
the shortest distance a clip can be moved horizontally is .05 pixels. Smaller increments are ignored:

trace(ball_mc._x); // Displays: 0
ball_mc._x += .01;
trace(ball_mc._x); // Still displays 0. The assignment had no effect.

If mc is contained by an instance that is scaled and/or rotated, the coordinate space it inhabits is also scaled and/or rotated. For

example, if mc's parent is scaled by 200% and rotated 90 degrees clockwise, _x will increase in the downward direction rather

than to the right, and a single unit of _x will actually be 2 pixels instead of 1.

Because switching between instance and main movie coordinate spaces can be cumbersome, the MovieClip object provides the
localToGlobal() and globalToLocal() methods for performing coordinate-space transformations.

Example

The following onEnterFrame() handler causes ball_mc to move 5 pixels to the right with each passing frame (assuming

that its coordinate space hasn't been altered by transformations to its parent):

ball_mc.onEnterFrame = function () {
 this._x += 5;
}

Positioning clips via _x and _y is a fundamental task in visual ActionScript programming. The following example adds to all

movie clips a follow() method that moves a clip towards a point at a fixed rate specified by the custom speed property (many

other motion samples can be obtained from the online Code Depot):

// Method: MovieClip.follow()
// Moves a clip toward the point (leaderX, leaderY)
MovieClip.prototype.follow = function (leaderX, leaderY) {
 // Move only if we're not at the destination
 if (this._x != leaderX || this._y != leaderY) {
 // Determine the distance between the clip and leader
 var deltaX = this._x - leaderX;
 var deltaY = this._y - leaderY;
 var dist = Math.sqrt((deltaX * deltaX) + (deltaY * deltaY));

 // Allocate speed between X and Y axes
 var moveX = this.speed * (deltaX / dist);
 var moveY = this.speed * (deltaY / dist);

 // If the clip has enough speed to overshoot the destination, just go
 // to the destination. Otherwise move according to the clip's speed.
 if (this.speed >= dist) {
 this._x = leaderX;
 this._y = leaderY;
 } else {
 this._x -= moveX;
 this._y -= moveY;
 }
 }
}

// Usage...
butterfly_mc.speed = 10;
butterfly_mc.onEnterFrame = function () {
 this.follow(_root._xmouse, _root._ymouse);
}

See Also

MovieClip.globalToLocal(), MovieClip.localToGlobal(), MovieClip._xscale, MovieClip._y

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._xmouse Property Flash 5

horizontal location of the mouse pointer read-only

mc._xmouse

Description

The floating-point _xmouse property indicates the horizontal location of the mouse pointer's hotspot, relative

to the coordinate space of mc. If mc is a main movie, _xmouse is measured from the Stage's left edge. If mc
is an instance, _xmouse is measured from the instance's registration point. To obtain a consistent _xmouse
coordinate that is always measured relative to the Stage, use _root._xmouse.

Example

Placing the following code on a clip causes it to follow the mouse pointer's horizontal position relative to the
Stage (the clip moves left and right in a straight line):

this.onEnterFrame = function () {
 this._x = _level0._xmouse;
}

See Also

MovieClip._ymouse

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._xscale Property Flash 4

width of a clip or movie, as a percentage read/write

mc._xscale

Description

The floating-point _xscale property specifies the width of mc, relative to its original width, expressed as a

percentage. If mc is an instance, its original width is the width of the instance's symbol in the Library. If mc is a

main movie, its original width is the width of the movie at authoring time.

When the current width of mc is the same as its original width, _xscale is 100. An _xscale of 200

doubles mc's width relative to its original width. An _xscale of 50 halves mc's width relative to its original

width.

The _xscale property scales a clip proportionately on the right and left sides of its registration point. To size

a clip from one side only, place all of the clip's content on one side of the registration point in the clip's symbol
(this is a useful technique for creating horizontal preloader bars). When a clip's _xscale is set to a negative

value, the clip is flipped horizontally, as if across a vertical mirror running through its registration point (i.e., it
becomes a mirror image of itself), after which the negative value is treated as a positive. To flip a clip
horizontally without resizing it, set the clip's _xscale to -_xscale.

Example

// Double the width of ball_mc (the height remains unchanged)
ball_mc._xscale *= 2;

// Create a mirror image of ball_mc
ball_mc._xscale = -ball_mc._xscale;

See Also

MovieClip._yscale

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._y Property Flash 4

vertical location of a clip or movie, in pixels read/write

mc._y

Description

The floating-point _y property always indicates the vertical position of mc's registration point, but it is measured relative

to one of three possible coordinate spaces:

If mc resides on the main timeline, _y is measured relative to the Stage's top edge. For example, a _y of 20

indicates that the registration point of mc is 20 pixels below the Stage's top edge; -20 indicates 20 pixels above.

If mc resides on another movie clip instance's timeline, _y is measured relative to the registration point of that

parent instance. For example, a _y of 20 indicates that the registration point of mc is 20 pixels below its parent

instance's registration point; -20 indicates 20 pixels above.

If mc is the main movie, _y is the vertical offset of the entire .swf document, relative to the Stage's top edge. For

example, a _y of 200 indicates that the contents of the Stage are offset 200 pixels below their author-time position; -

200 indicates 200 pixels above.

The _y property (along with all vertical coordinates in Flash) increases downward and decreases upward?the opposite of

the Cartesian coordinate system. Fractional _y values are approximated in Flash with antialiasing (blurring). Flash's basic

unit of measure is a twentieth of a pixel (a "twip"), so the shortest distance a clip can be moved vertically is .05 pixels.
Smaller increments are ignored:

trace(ball_mc._y); // Displays: 0
ball_mc._y += .01;
trace(ball_mc._y); // Still displays 0. The assignment had no effect.

If mc is contained by an instance that is scaled and/or rotated, the coordinate space it inhabits is also scaled and/or rotated.

For example, if mc's parent is scaled by 200% and rotated 90 degrees clockwise, _y will increase toward the left rather than

downward, and a single unit of _y will actually be 2 pixels instead of 1.

Because switching between instance and main movie coordinate spaces can be cumbersome, the MovieClip object provides
the localToGlobal() and globalToLocal() methods for performing coordinate-space transformations.

Example

The following onEnterFrame() handler causes ball_mc to move down 5 pixels with each passing frame (assuming that

its coordinate space hasn't been altered by transformations to its parent):

ball_mc.onEnterFrame = function () {
 this._y += 5;
}

See Also

MovieClip.globalToLocal(), MovieClip.localToGlobal(), MovieClip._x

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._ymouse Property Flash 5

vertical location of the mouse pointer read-only

mc._ymouse

Description

The floating-point _ymouse property indicates the vertical location of the mouse pointer's hotspot, relative to

the coordinate space of mc. If mc is a main movie, _ymouse is measured from the Stage's top edge. If mc is

an instance, _ymouse is measured from the instance's registration point. To obtain a consistent _ymouse
coordinate that is always measured relative to the Stage, use _root._ymouse.

Example

Placing the following code on a clip causes it to follow the mouse pointer's vertical position, relative to the
Stage (the clip moves up and down in a straight line):

onEnterFrame = function () {
 this._y = _level0._ymouse;
}

See Also

MovieClip._xmouse

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

MovieClip._yscale Property Flash 4

height of a clip or movie, as a percentage read/write

mc._yscale

Description

The floating-point _yscale property specifies the height of mc, relative to its original height, expressed as a

percentage. If mc is an instance, its original height is the height of the instance's symbol in the Library. If mc is

a main movie, the original height is the height of the movie at authoring time.

When the current height of mc is the same as its original height, _yscale is 100. A _yscale of 200

doubles mc's height relative to its original height. A _yscale of 50 halves mc's height relative to its original

height.

The _yscale property scales a clip proportionately above and below its registration point. To size a clip from

above or below only, place all of the clip's content above or below the registration point in the clip's symbol
(this is a useful technique for creating vertical preloader bars). When a clip's _yscale is set to a negative

value, the clip is flipped vertically, as if across a horizontal mirror running through its registration point (i.e., it
becomes a vertical mirror image of itself), after which the negative value is treated as a positive. To flip a clip
vertically without resizing it, set the clip's _yscale to -_yscale.

Example

// Double the height of ball_mc (the width remains unchanged)
ball_mc._yscale *= 2;
// Flip ball_mc vertically
ball_mc._yscale = -ball_mc.yscale;

See Also

MovieClip._xscale

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

NaN Global Property Flash 5

constant representing invalid numeric data (Not-a-
Number)

read-
only

NaN

Description

NaN is a special numeric constant used to represent invalid numeric data (NaN is an acronym for "Not-a-Number").

Numeric operations that cannot be resolved to a legitimate number yield the value NaN. For example:

Math.sqrt(-1); // An imaginary number that cannot be represented.
15 - "coffee cup"; // "coffee cup" cannot be converted to a number.

Note that NaN is still numeric data, even though it is not a calculable number:

typeof NaN; // Yields "number"

Usage

The value NaN is hardly ever used directly in source code; rather, it serves as a way for an operation to return an error

condition. Because NaN does not compare equal to itself, the only way you can detect it is with the global function

isNaN(). NaN is shorthand for Number.NaN.

See Also

isNaN(), Number.NaN; Section 4.3.3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

new Operator Flash 5

instantiate a new object

new constructor()

Operands

constructor

A class constructor function used to initialize the new object.

Returns

A reference to the newly created object.

Description

The new operator creates an instance of the class specified by constructor. For complete coverage of the

role new plays in object-oriented programming, see Chapter 12.

See Also

Object._ _proto_ _; Section 5.12.2; Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

newline Constant Flash 4

insert a line break

newline

Returns

A newline character.

Description

The constant newline represents a standard line break character (ASCII 10). It is synonymous with the

escape sequence "\n" or the HTML tag
 and is used to force a line break in a block of text (usually for

display in a text field variable).

Example

myOutput = "hello" + newline + "world";

See Also

TextField.htmlText, TextField.text; Section 4.5.2.2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

nextFrame() Global Function Flash 2

advance a movie or movie clip's playhead one frame and
stop it

nextFrame()

Description

The nextFrame() function moves the playhead of the current timeline ahead one frame and stops it there. The
current timeline is the timeline from which the nextFrame() function is invoked. The nextFrame() function is
synonymous with gotoAndStop(_currentFrame + 1);. If it is invoked on the last frame of a timeline, nextFrame(
) simply stops the playhead on that frame, unless another scene follows the current scene, in which case
nextFrame() moves the playhead to frame 1 of the next scene.

See Also

gotoAndStop(), MovieClip.nextFrame(), nextScene(), prevFrame()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

nextScene() Global Function Flash 2

advance a movie's playhead to frame 1 of the next scene

nextScene()

Description

The nextScene() function moves the main playhead of a movie to frame 1 of the scene following the current
scene and stops the main movie timeline. The current scene is the scene from which the nextScene() function is
invoked. It must be invoked on a scene's main timeline in order to have an effect; that is, nextScene() does not
work inside a movie clip instance. If it is invoked from the last scene in a movie, nextScene() sends the playhead
to frame 1 of that scene and halts movie playback.

I recommend against using scenes when working with ActionScript-intensive movies.
Unlike movie clips, scenes are not represented by objects and cannot be manipulated
directly by most built-in functions. Normally it's better to use labels and movie clips as
pseudo-scenes in your timeline instead of using Flash's scene feature.

See Also

nextFrame(), prevScene()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Number() Global Function Flash 5

convert a value to the Number datatype

Number(value)

Arguments

value

An expression containing the value to be converted to a number.

Returns

The result of converting value to a primitive number.

Description

The Number() function converts its value argument to a primitive numeric value and returns that converted

value. The results of converting various types of data to primitive numbers are described in Table 3-1 in Chapter
3. It's rarely necessary to use the Number() function; ActionScript automatically converts values to the number
type when appropriate.

Be sure not to confuse the global Number() function with the Number class constructor. The former is a
function that converts a value to the number type, whereas the latter is the class used to wrap a primitive numeric
datum in an object that can take properties and methods.

Usage

Note that the Number() function frequently appears in Flash 4 .fla files that have been converted to the Flash 5
format. For information on how datatypes are handled when Flash 4 files are converted to Flash 5, see Section
C.3.4.

See Also

The Number class, parseFloat(), parseInt(); Section 3.4.2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Number Class Flash 5

wrapper class for primitive numeric data

Constructor

new Number(value)

Arguments

value

An expression to be resolved and, if necessary, converted to a numeric value, then wrapped in a Number object.

Class Properties

The following properties are accessed directly as properties of the Number class, using Number.propertyName. To access

them you do not need to instantiate a new Number object (i.e., there is no need for the constructor function). Some of these properties,
such as NaN, don't even require the Number.propertyName notation. You can simply use NaN as shorthand for

Number.NaN (details follow in entries for each property).

MAX_VALUE

The largest representable positive number in ActionScript.
MIN_VALUE

The smallest representable positive number in ActionScript.
NaN

Special Not-a-Number value indicating invalid numeric data.
NEGATIVE_INFINITY

Any number more negative than -MAX_VALUE.

POSITIVE_INFINITY

Any number larger than MAX_VALUE.

Methods

toString()

Convert a number to a string.

Description

The Number class has two purposes:

It gives us access to built-in properties that represent special numeric values—MAX_VALUE, MIN_VALUE, NaN,

NEGATIVE_INFINITY, and POSITIVE_INFINITY—that can be used to check whether numeric data is valid or

within the acceptable range.

It can be used to convert between different number systems, such as base-10 (decimal) and base-16 (hexadecimal). Refer to the
Number.toString() method for details.

Usage

There is no need to create a Number object if you simply want to access the numeric properties it defines. In fact, where applicable, it
is easier to use global property equivalents (NaN, Infinity, and -Infinity). Frankly, it is rare that you'll need the Number

class properties at all.

On the other hand, the Number class's toString() method is used with a Number object. However, the interpreter takes care of creating
a Number instance for us whenever we invoke a method on a primitive numeric value. For example, here we use toString() to convert
a decimal number to its hexadecimal equivalent:

x = 102;
hex = x.toString(16); // A Number instance is automatically and (temporarily)
 // created to "wrap" x for the sake of this operation.

As this is a fairly rare task, you probably won't be using instances of the Number class much.

See Also

The Math object; "Section 4.1

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Number.MAX_VALUE Property Flash 5

the largest representable positive number in
ActionScript

read-
only

Number.MAX_VALUE

Description

The MAX_VALUE property returns the largest representable positive number in ActionScript

(1.79769313486231e+308). It is convenient when you want to start with a very large value, as shown in the
following Example. Any number greater than MAX_VALUE can't be represented by ActionScript and is

therefore considered to be POSITIVE_INFINITY (i.e., Infinity).

Example

Here we are looking for a minimum value in an array. We initialize the minVal variable to MAX_VALUE,

knowing that any subsequent value will be less than it:

var myArray = [-10, 12, 99];
var minVal = Number.MAX_VALUE;
for (var thisValue in myArray) {
 if (myArray[thisValue] < minVal) {
 minVal = myArray[thisValue];
 }
}
trace ("The minimum value is " + minVal);

See Also

Infinity, Number.MIN_VALUE, Number.POSITIVE_INFINITY; Section 4.3.3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Number.MIN_VALUE Property Flash 5

the smallest representable positive number in
ActionScript

read-
only

Number.MIN_VALUE

Description

The MIN_VALUE property stores the smallest representable positive number in ActionScript,

4.94065645841247e-324 (not to be confused with -Number.MAX_VALUE, the most-negative number

allowed in ActionScript).

See Also

Number.MAX_VALUE; Section 4.3.3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Number.NaN Property Flash 5

constant representing invalid numeric data (Not-a-
Number)

read-
only

Number.NaN

Description

The Number.NaN property is provided for ECMA-262 compatibility. See the entry for its more convenient

global property equivalent, NaN.

See Also

isNaN(), NaN

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Number.NEGATIVE_INFINITY Property Flash 5

constant representing any number more negative
than -Number.MAX_VALUE

read-
only

Number.NEGATIVE_INFINITY

Description

The Number.NEGATIVE_INFINITY property is provided for ECMA-262 compatibility. You should

instead use its more convenient global property equivalent, -Infinity.

See Also

Infinity, -Infinity, Number.POSITIVE_INFINITY

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Number.POSITIVE_INFINITY Property Flash 5

constant representing any number greater than
Number.MAX_VALUE

read-
only

Number.POSITIVE_INFINITY

Description

The POSITIVE_INFINITY property is provided for ECMA-262 compatibility. You should instead use its

more convenient global property equivalent, Infinity.

See Also

Infinity, -Infinity, Number.NEGATIVE_INFINITY

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Number.toString() Method Flash 5

convert a number to a string

numberObject.toString(radix)

Arguments

radix

An integer between 2 and 36 specifying the base of the number system used to represent numberObject in string format. This

argument is optional; if omitted, it defaults to 10.

Returns

The value of numberObject converted to a string.

Description

The toString() method retrieves the value of a Number instance, converts that value to a string, and returns that string. We can use the optional
radix argument to convert numeric values between different bases (e.g., binary, octal, decimal, and hexadecimal). The letters A-Z are used to

represent digits with the values of 10-35, respectively, although ordinarily only A through F are used (to represent the hex digits equivalent to 10
through 15).

To use Number.toString() with a primitive numeric value, surround the value with parentheses, as in:

(204).toString(16);

Example

x = new Number(255);
trace(x.toString()); // Displays: "255" (string version of decimal)
trace(x.toString(16)); // Displays: "ff" (string version of hexadecimal)
trace(x.toString(2)); // Displays: "11111111" (string version of binary)

// Convert a hex literal to a decimal string
trace((0xFFFFFF).toString(10)); // Displays: "16777215" (a string)
// Convert a hex literal to a decimal integer
x = parseInt(0xFFFFFF).toString(10)); // x equals 16777215 (a number), not "16777215"

See Also

Number(), Object.toString(), parseInt(); Section 4.3.1

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object Class Flash 5

the basis for all other classes and the basis for generic
objects

Constructor

new Object()

Properties

constructor

A reference to the class constructor function used to create the object.
_ _proto_ _

A reference to the prototype property of the object's constructor function.

Class Methods

The following method is invoked through the Object class itself, not through an instance of the Object class:

registerClass()

Assign a constructor for a movie clip symbol.

Methods

The following are instance-level methods of the Object class.

addProperty()

Define a getter/setter property for an object or class.
hasOwnProperty()

Check whether a property is defined directly on an object.
toString()

Convert the value of the object to a string.
unWatch()

Remove an existing watchpoint.
valueOf()

Retrieve the primitive value of the object, if one exists.
watch()

Create a watchpoint to filter property assignment.

Description

The Object class is the base class of the ActionScript object model. Object is used for two general purposes: as a
constructor for creating new, generic objects, and as a superclass upon which to base new classes. All classes in
ActionScript, whether user-defined or built-in, are descendants of the Object class. All instances of all classes
therefore inherit the properties and methods of Object (though some classes override those properties).
However, the class method Object.registerClass() is accessed directly as a method of the Object class's
constructor, Object, not through an instance of the class.

To create a generic object of the Object class directly in our code without using a constructor, we can use an
object literal just as we might use a string literal or an array literal. An object literal is a series of comma-
separated property name/value pairs, enclosed in curly braces. Here's the general syntax:

{ property1: value1, property2: value2, property3: value3 }

The names of properties in an object literal must be legal identifiers, as described in Chapter 15. The values can
be any valid expression. For example:

// An object literal with two numeric properties
myObject = { x: 30, y: 23 };
// Set the x property's value using a complex expression
myOtherObject = { x: Math.floor(Math.random() * 50 + 1) };

Because object literals always create generic, anonymous objects, they typically are used when we need object-
formatted data temporarily, such as when invoking Sound.setTransform(), Color.setTransform(), or
MovieClip.localToGlobal().

See Also

Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object.addProperty Method Flash 6

define a getter/setter property for an object or class

someObject.addProperty(propertyName, getterFunction, setterFunction)

Arguments

propertyName

A string indicating the name of the property to add. The name must adhere to the rules for creating an identifier, outlined under Section
15.5 in Chapter 15.

getterFunction

A "getter" function that returns propertyName's current value. By convention, it should be named getPropertyName,

where PropertyName matches the propertyName parameter. It can be either a custom function or a built-in method of the

object, as shown under the following Example.
setterFunction

A "setter" function, expected to set the value of propertyName internally. By convention, it should be named

setPropertyName, where PropertyName matches the propertyName parameter. It can be either a custom function

or a built-in method of the object, as shown under the following Example. Use null for setterFunction when the property is

read-only.

Returns

A Boolean; true if the operation was successful, false if propertyName is not a valid identifier or if either getterFunction
or setterFunction is not a function object.

Description

The addProperty() method defines a so-called "getter/setter" property, named propertyName, on someObject. A getter/setter

property behaves ostensibly like a regular property, except that retrieval and assignment of its value is handled automatically by the two
functions: getterFunction and setterFunction. This allows developers to provide convenient property-style access to

complex operations. When someObject.propertyName is used in any expression (except on the left side of an assignment

operation), the interpreter must determine and return the property's value. To do so, the interpreter executes the function specified by
getterFunction, and its return value is used as propertyName's value. For example:

// Create an object.
var gamePlayer = new Object();
// Add the getter/setter property. We make the property read-only by
// using null for the setFunction parameter.
gamePlayer.addProperty("score", getScore, null);
// Define the function to execute when gamePlayer.score's value is read.
// This isn't a realistic example, but see the next example for realistic usage.
function getScore () {
 return 1500;
}

// Read gamePlayer.score, which automatically calls the getScore() function
// and uses its return value (1500) as the value to print in the Output window.
trace(gamePlayer.score);

When someObject.propertyName is used on the left side of an assignment operation (on the left of the equals sign), the interpreter

must set the property's value. To do so, the interpreter executes the function specified by setterFunction, passing it the new value (as

specified in the property assignment statement) as an argument. Often, the argument is simply stored internally for later retrieval by the
getterFunction. For example:

// Create an object.
var gamePlayer = new Object();
// Add the getter/setter property, this time specifying setScore() as the
// function to execute when gamePlayer.score is written.
gamePlayer.addProperty("score", getScore, setScore);
// Here's our getterFunction (a.k.a., the "getter").
function getScore () {
 return gamePlayer.currentScore;
}
// Here's our setterFunction (a.k.a., the "setter"). The newly assigned
// property value is passed in as the only parameter, which we call newVal.
function setScore (newVal) {
 // Store the assigned property value internally in a separate property
 // for later retrieval by getScore().
 gamePlayer.currentScore = newVal;
}
gamePlayer.score = 2000; // Here, setScore() is invoked with a newVal of 2000.
trace(gamePlayer.score); // Here, getScore() is invoked. Displays: 2000
// Just to prove it's working behind the scenes, check the
// internal currentScore property value.
trace(gamePlayer.currentScore); // Displays: 2000

The value passed to the setterFunction must not be written into a property with the same name as

propertyName.

The following code mistakenly assigns newVal to score, which collides with the getter/setter property of the same name:

function setScore (newVal) {
 // OOPS! THIS BREAKS THE GETTER/SETTER PROPERTY!
 gamePlayer.score = newVal;
}

To remove a getter/setter property, simply delete it and the supporting getter/setter functions, as in:

delete someObject.propertyName
delete getterFunc;
delete setterFunc;

Getter/setter properties normally are used when a property value must be calculated internally by a method, or when the exposed property value
differs from the value stored internally by the class. For example, suppose we want to define a Ball object's color property. Externally, we

want color to use the natural language string values "blue", "red", and "green". But internally we want our color property value to be

stored as an RGB integer. We want the color property to be set like this:

redBall.color = "red";

But we want to store the equivalent of "red" internally as 0xFF0000. And when the value of redBall.color is retrieved, we must

internally convert the number 0xFF0000 back to the string "red". Here's how we create our natural language color property as a

getter/setter:

// Create the Ball class constructor.
function Ball () {
 // Create the setter method for the color property.
 this.setColor = function (newVal) {
 // Convert the assigned value to lowercase.
 var theColor = newVal.toLowerCase();
 // Convert the natural name to an equivalent number, and store
 // it internally in the property colorNum.
 if (theColor = = "red") {
 this.colorNum = 0xFF0000;
 } else if (theColor = = "green") {
 this.colorNum = 0x00FF00;
 } else if (theColor = = "blue") {
 this.colorNum = 0x0000FF;
 } else {
 // If the color specified isn't red, green, or blue, use black.
 this.colorNum = 0x000000;
 }
 }

 // Create the getter method for the color property.
 this.getColor = function () {
 // Convert the internal colorNum property to its equivalent natural
 // name, and return the name as the value of the color property.
 if (this.colorNum = = 0xFF0000) {
 return "red";
 } else if (this.colorNum = = 0x00FF00) {
 return "green";
 } else if (this.colorNum = = 0x0000FF) {
 return "blue";
 } else {
 return "black";
 }
 }

 // Add the getter/setter color property.
 this.addProperty("color", this.getColor, this.setColor);
}

// Create a ball instance.
redBall = new Ball();

// Assign our ball a color. Note that the setter function accepts
// any mixture of uppercase and lowercase letters in the color name.
redBall.color = "RED";
// Check the color now. The getter function always returns lowercase names.
trace(redBall.color); // Displays: red

Notice that the getter and setter functions are invoked as methods of the object containing the getter/setter property, so they can refer to the
object as this and access its properties and methods. So far, however, this code is inefficient because it assigns the setColor() and getColor(

) methods directly to every instance of Ball. Luckily, getter/setter properties can be added to a class constructor's prototype property,

where a class's methods are normally defined. Here's the improved version of our color getter/setter property, attaching method and property

definitions to prototype:

// The Ball class

function Ball () {
 // Instance initialization code goes here...
}

// The setter function
Ball.prototype.setColor = function (newVal) {
 var theColor = newVal.toLowerCase();
 if (theColor = = "red") {
 this.colorNum = 0xFF0000;
 } else if (theColor = = "green") {
 this.colorNum = 0x00FF00;
 } else if (theColor = = "blue") {
 this.colorNum = 0x0000FF;
 } else {
 this.colorNum = 0x000000;
 }
}

// The getter function
Ball.prototype.getColor = function () {
 if (this.colorNum = = 0xFF0000) {
 return "red";
 } else if (this.colorNum = = 0x00FF00) {
 return "green";
 } else if (this.colorNum = = 0x0000FF) {
 return "blue";
 } else {
 return "black";
 }
}

// The getter/setter color property, defined on Ball.prototype
Ball.prototype.addProperty("color",
 Ball.prototype.getColor,
 Ball.prototype.setColor);

// Create a ball instance
redBall = new Ball();

// Assign and check our ball's color
redBall.color = "RED";
trace(redBall.color); // Displays: red

Note that getter/setter properties are used entirely for convenience. It is perfectly legitimate to expose getter and setter methods directly,
without providing getter/setter property access to the values they manipulate. For example, our Ball class could simply require the direct use of
the setColor() and getColor() methods rather than providing the color getter/setter property. Conversely, it is legitimate in ActionScript,

though considered poor object-oriented programming (OOP) practice, to access the internal colorNum directly. That is, one could retrieve

and assign the colorNum property as redBall.colorNum, to avoid or bypass getter and setter functions altogether.

Bugs

In Flash 6, getter/setter properties cannot be added directly to the _global object. They can, however, be added to objects defined on the

_global object.

Example

The following nifty code—suggested by Guy Watson of http://www.flashguru.co.uk—creates a getter/setter depth property for all movie

clips. It provides an interface that's easier to use and remember than the built-in getDepth() and swapDepths() methods:

// Add the property.
MovieClip.prototype.addProperty("depth",
 MovieClip.prototype.getDepth,
 MovieClip.prototype.swapDepths);

// Try it out. Note that swapDepths() can accept either a number or a target clip.
this.createEmptyMovieClip("empty_mc", 15);
trace(empty_mc.depth); // Displays: 15
empty_mc.depth = 20; // Pass an integer to swapDepths(). Depth becomes 20.
trace(empty_mc.depth); // Displays: 20
empty_mc.depth = ball_mc; // Trade depths with ball_mc (passed to swapDepths())

See Also

MovieClip.getDepth(), MovieClip.swapDepths(), Object._ _proto_ _, Object.watch(); Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object.constructor Property Flash 5

a reference to the class constructor function used
to create the object

read/write

someObject.constructor

Description

The constructor property stores a reference to the constructor function that was used to create

someObject. For example, the constructor property of a Date object is the Date constructor

function:

now = new Date();
now.constructor = = Date; // Yields true

Note that in JavaScript, the constructor property is always read from someObject's constructor's

prototype property (someObject._ _proto_ _.constructor). In Flash Player 6 and

Flash Player 5, the constructor property is written directly to someObject so that it always faithfully

refers to someObject's actual constructor function. For a complete discussion of this subtle deviation, see

Section 12.7.3 in Chapter 12.

Usage

Overwriting an object's constructor property is not recommended, because it alters the natural structure

of class inheritance.

See Also

Section 12.7.2 and Section 12.7.3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object.hasOwnProperty() Method Flash 6 (undocumented)

checks whether a property is defined directly on an object

someObject.hasOwnProperty(propName)

Arguments

propName

A string indicating the name of the property to check.

Returns

A Boolean; true if propName is a direct property or method of someObject, otherwise false.

Description

The undocumented hasOwnProperty() method returns a Boolean indicating whether someObject directly

defines a property or method with the name propName, in which case it is true; otherwise, it is false. It

is used mostly during debugging to distinguish a property assigned directly to an object instance from a property
inherited from a class via the prototype chain. For example:

// A Rectangle class
function Rectangle (w, h) {
 // Direct properties
 this.width = w;
 this.height = h;
}
// An inherited property
Rectangle.prototype.numSides = 4;

// A Rectangle instance
rect = new Rectangle(10, 100);
// Check direct property:
trace(rect.width); // Displays: 10
trace(rect.hasOwnProperty("width")); // Displays: true

// Check inherited property:
trace(rect.numSides); // Displays: 4
trace(rect.hasOwnProperty("numSides")); // Displays: false

Notice that numSides is accessible through rect, but is not defined on rect itself, so

rect.hasOwnProperty("numSides") returns false. However, it would also return false if the property

wasn't defined anywhere (on either rect or its class).

Reader Exercise: Write a custom function, hasProperty(), that returns the number 2 if hasOwnProperty() is
true, returns 1 if hasOwnProperty() is false but the property is inherited from a class, and returns 0 if the

property doesn't exist for the object. (Hint: Even a declared property can contain an undefined value, so use

hasOwnProperty() to check each object in the prototype chain. If you get to the Object class and
hasOwnProperty() still returns false, the property doesn't exist.)

Reader Exercise 2: Write a custom function, showProperties(), that displays the names and values of all of an
object's properties and indicates which are read through the prototype chain.

Reader Exercise 3: Write a custom function, showMethods(), that is analogous to showProperties() but displays
the names of an object's methods instead of its properties. (Hint: use instanceof to determine if a property is an
instance of the Function class).

The hasOwnProperty() method can be used with getter/setter properties added via Object.addProperty(). It is
defined by the ECMA-262 specification but not officially documented by Macromedia.

See Also

instanceof, Object._ _proto_ _; Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object._ _proto_ _ Property Flash 5

a reference to the object's constructor's
prototype property

read/write

someObject._ _ proto_ _

Description

The _ _proto_ _ property stores a reference to the automatically-assigned prototype property of

someObject's constructor function, which is used to transfer properties down through a class hierarchy. An
object's _ _proto_ _ property is mostly used internally by the interpreter to look up inherited properties

for an object, but we can also use it to determine the class of an object, as shown in Example 12-5. Some
developers also use _ _proto_ _ to establish inheritance between a subclass and its superclass, as

discussed in Section 12.7.3 in Chapter 12.

Note that the _ _proto_ _ property is formed using two underscore characters at

its beginning and another two underscore characters at its end.

Usage

Overwriting an object's _ _proto_ _ property is not recommended, because it alters the natural structure

of class inheritance.

See Also

Function.prototype, instanceof; Section 12.7.1

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object.registerClass() Class Method Flash 6

assign a constructor for a movie clip symbol

Object.registerClass(symbolID, theClass)

Arguments

symbolID

A string specifying the linkage identifier of an exported movie clip symbol, as set in the Library under Options
Linkage.

theClass

The class constructor function to associate with symbolID. Must be a function object reference, not a string. Use

null to unregister a class.

Returns

A Boolean; true if registerClass() was invoked with the correct number of arguments, false if not. Note that Flash 6

returns false only when registerClass() is invoked with the wrong number of arguments; it does not check whether the

class was registered successfully.

Description

The registerClass() method is part of the toolset used to create a movie clip subclass from a movie clip Library symbol. It
connects an ActionScript class to an exported Library symbol. When instances of the symbol are placed on the timeline
manually or programmatically via attachMovie() or duplicateMovieClip(), Flash automatically invokes theClass as the

new instance's constructor function and sets the instance's class to theClass. When the constructor function runs, its

this keyword points to the instance being created. For example, the following code creates a constructor function, Vehicle(

), and then links it to the movie clip symbol exported as carSymbol in the Library:

// The constructor function
function Vehicle () {
 // Set speed on the new clip
 this.pixelsPerFrame = this.pixelsPerSecond / 12;
}

// Link the constructor to carSymbol
Object.registerClass("carSymbol", Vehicle);

When instances of the carSymbol movie clip are created, they are constructed by the Vehicle() function. Inside the

function, the this keyword refers to the new instance. Notice, however, that Vehicle() takes no parameters. Parameters are

expected to be provided as object properties by attachMovie() or duplicateMovieClip() (using an initObject). For example,
the pixelsPerSecond property is passed by attachMovie() and is available when Vehicle() executes. The Vehicle()

function uses pixelsPerSecond to calculate the speed of the instance in pixels per frame (assuming the movie's frame

rate is 12 frames per second).

To ensure that instances of our Vehicle class inherit all the methods and properties of the MovieClip class, we must make

Vehicle a subclass of MovieClip, as follows:

// Set Vehicle's superclass to MovieClip
Vehicle.prototype = new MovieClip();

Registered classes should always inherit from MovieClip. Once we've registered our class and set MovieClip as its superclass,
we can create the rest of the class as usual. Here's the completed class:

// The constructor takes no parameters. They are optionally passed by
// attachMovie() and duplicateMovieClip() via the initObject parameter.
function Vehicle () {
 this.pixelsPerFrame = this.pixelsPerSecond / 12;
}

// Associate the Vehicle class with a Library symbol.
Object.registerClass("carSymbol", Vehicle);

// Set Vehicle's superclass to MovieClip.
Vehicle.prototype = new MovieClip();

// Add the goForward() method to the Vehicle class.
Vehicle.prototype.goForward = function () {
 this.onEnterFrame = function () {
 this._x += this.pixelsPerFrame;
 }
}

// Add the brake() method to the Vehicle class.
Vehicle.prototype.brake = function () {
 delete this.onEnterFrame;
}

// Make an instance. The Vehicle constructor is called automatically.
// The properties of our initObject (attachMovie()'s last argument)
// are set on the fastCar_mc instance before the constructor runs.
this.attachMovie("carSymbol", "fastCar_mc", 1, { pixelsPerSecond: 100 });

// Call a method.
this.fastCar_mc.goForward();

To remove a class registration, invoke registerClass() using the ID of the movie clip to be unregistered as the symbolID
parameter, and null as theClass. For example:

// Revert carSymbol to a normal movie clip. This sets carSymbol's
// class back to MovieClip instead of being a subclass of MovieClip.
// fastCar_mc remains an instance of Vehicle, however.
Object.registerClass("carSymbol", null);

Movie clips in existence when a symbol is unregistered remain instances of their registered class.
The deregistering of a class affects subsequently created instances only.

Note that once a class is registered, instances of that class can immediately be created programmatically with attachMovie()
or duplicateMovieClip(), as in our Vehicle example. However, instances placed manually on the timeline at authoring time
must be created at least one frame after the class registration. Instances placed manually on the same frame as the class
registration will not be members of the registered class. Use of the #initclip pragma can solve this problem.

For information on making a movie clip class self-contained (i.e., placing the class code on the timeline of the movie clip
itself), see the #initclip pragma's entry in this Language Reference. For much more information on creating classes

from movie clip symbols, see Chapter 14.

Note that a single class constructor can be registered to multiple Library symbols, but a single Library symbol cannot be
registered to more than one class.

Though normally used with movie clips, Object.registerClass() can also assign an arbitrary string identifier to a class
constructor. Flash uses the identifier to reestablish the class of an object when it is imported into the Flash Player via
SharedObject, LocalConnection, or Macromedia Flash Remoting MX (Flash Remoting). When Flash sends an instance of a
registered class out of the Player, it includes the class identifier with the instance. When Flash later reads the instance back
into the Player, it checks the instance's class identifier and reassociates the instance with its class (this is known as casting the
object).

For example, suppose we create an instance, p1, of a custom class, GamePlayer, which defines a score property and an

addPoints() method, as follows:

// The class constructor
function GamePlayer () {
 // The score property
 this.score = 0;
}

// The addPoints() method
GamePlayer.prototype.addPoints = function (points) {
 this.score += points;
}

// The p1 instance
p1 = new GamePlayer();
p1.addPoints(100);

As the code is shown, p1 is saved to disk via SharedObject (shown later) if its association with the GamePlayer class is lost,

because GamePlayer has no identifier that links it to the serialized p1 object. We can still retrieve the p1 object and find its

score property (because score is defined directly on p1), but we cannot access its class's addPoints() method via the

prototype chain. To maintain the relationship between p1 and GamePlayer, we must add the following class registration,

which assigns an arbitrary identifier ("GamePlayerClass") to the GamePlayer class:

Object.registerClass("GamePlayerClass", GamePlayer);

Henceforth, all instances of GamePlayer will be marked transparently as belonging to the class with the identifier
"GamePlayerClass" (this name is arbitrary, but by convention you should use the name of the class with the word "Class"
appended). When Flash serializes p1 before sending it out of the Player, it includes the identifier "GamePlayerClass" in the

data to be sent. (Serialization is the process of converting an object's properties into a different format for transmission.)
When Flash reads p1 from an external source, it notices that a class identifier has been saved with the data. It then attempts to

cast p1 to the class registered to that identifier (GamePlayer). Technically, there is no guarantee that the GamePlayer class in

effect when the SharedObject was saved is the same GamePlayer class in effect when the SharedObject is retrieved. Flash
simply attempts to cast the retrieved object to a class whose registered identifier matches the object's registered identifier
(which is assumed to be the same class constructor that was used when the data was first stored).

However, in the process of reconnecting the object with its class, Flash also executes the class constructor on the deserialized
object. Normally, the object need not (indeed, should not) be reconstructed, so we must add to our constructor a flag that
prevents any unwanted reinitialization. Here, then, is the basic code required to create a registered class:

// The GamePlayer class
function GamePlayer () {
 // Initialize the first time the constructor runs only
 if (this.inited) {
 return;

 }
 // Make a note that we've initialized this object
 this.inited = true;

 // Carry on with initialization
 this.score = 0;
}

// The addPoints() method
GamePlayer.prototype.addPoints = function (points) {
 this.score += points;
}

// Associate GamePlayer with the identifier GamePlayerClass
Object.registerClass("GamePlayerClass", GamePlayer);

And here is the code to create an object instance and save it as player1 using a SharedObject:

// Create a GamePlayer instance
p1 = new GamePlayer();
p1.addPoints(100);
// Create the SharedObject
gameData_so = SharedObject.getLocal("gameData");
// Make a property to save our GamePlayer object
gameData_so.data.player1 = p1;
// Attempt to save the SharedObject
gameData_so.flush();

Here is the code required to retrieve a registered object from a SharedObject. There is no way to store an object's constructor
or methods, even by registering its class. So, the GamePlayer class constructor and addPoints() method must be defined in
the receiving movie, and the class must be registered with registerClass(). Note that, as mentioned earlier, the GamePlayer
constructor and method(s) need not be identical to the ones used at the time the object was saved, but ordinarily they would
be. So, our receiving code begins identically to the code shown earlier for the sending movie. This code can be in the same
movie as the sender (in which case it need not be repeated), or it can be in a different movie (perhaps even on the same
machine, communicating with the sending movie via a LocalConnection object).

// The GamePlayer class
function GamePlayer () {
 // Initialize the first time the constructor runs only
 if (this.inited) {
 return;
 }
 // Make a note that we've initialized this object
 this.inited = true;

 // Carry on with initialization
 this.score = 0;
}

// The addPoints() method
GamePlayer.prototype.addPoints = function (points) {
 this.score += points;
}

// Associate GamePlayer with the identifier GamePlayerClass
Object.registerClass("GamePlayerClass", GamePlayer);

And here is the code to retrieve the SharedObject and recreate the object instance saved in player1. Note that the

GamePlayer constructor is invoked when the SharedObject.getLocal() function is executed (and the data is deserialized),
although we don't access the player1 instance object directly until it is assigned to the variable, p1.

// Retrieve the SharedObject.
gameData_so = SharedObject.getLocal("gameData");
// Retrieve our GamePlayer object.
p1 = gameData_so.data.player1;
// Check p1's score:
trace(p1.score);
// Add 50 points to p1's score. This works
// only because the GamePlayer class is registered.
p1.addPoints(50);

A similar workflow applies to objects sent over a network via LocalConnection and Flash Remoting. For more information on
Flash Remoting, see:

http://www.macromedia.com/software/flash/flashremoting/

See Also

#initclip, LocalConnection, MovieClip.attachMovie(), Object._ _proto_ _, the SharedObject object;

Chapter 14

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object.toString() Method Flash 5

the value of the object, as a string

someObject.toString()

Returns

An internally defined string that describes or otherwise represents the object.

Description

The toString() method returns a string description for someObject. The ECMA-262 specification states

that, by default, Object.toString() should return the expression:

"[object " + class + "]"

where class is the internally defined name of the class to which someObject belongs. In practice, some

ActionScript classes overwrite the default toString() method of Object in order to provide more meaningful
information about each instance of the class. For those classes that don't provide a custom toString() method,
ActionScript does not provide the individual class name. So, the default toString() method for instances of most
classes returns:

[object Object]

The ActionScript interpreter automatically invokes the toString() method whenever someObject is used in

a string context. For example:

x = new Object();
trace(x); // Displays: "[object Object]"

We can implement a custom toString() method when constructing our own classes. For example, the
Date.toString() method returns the date and time; the Array.toString() method returns a comma-separated list
of array elements; and the Number.toString() method returns a string version of the number.

Example

This example shows how to provide a custom toString() method for the Ball class that we created in Chapter
12:

// Make the Ball constructor
function Ball (radius, color, xPosition, yPosition) {
 this.radius = radius;
 this.color = color;
 this.xPosition = xPosition;
 this.yPosition = yPosition;
}

// Add a custom toString() method

Ball.prototype.toString = function () {
 return "A ball with the radius " + this.radius;
};

// Create a new Ball object
myBall = new Ball(6, 0x00FF00, 145, 200);

// Now check myBall's string value
trace(myBall); // Displays: "A ball with the radius 6"

See Also

Array.toString(), Date.toString(), Number.toString(), Object.valueOf()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object.unwatch() Method Flash 6

remove an existing watchpoint

someObject.unwatch(prop)

Arguments

prop

A string indicating the name of the property that should no longer be watched. The name must adhere to
the rules for creating an identifier outlined under Section 15.5 in Chapter 15.

Returns

A Boolean indicating whether prop was previously being watched; true if prop exists and was previously

being watched; false otherwise.

Description

The unwatch() method removes a watchpoint previously set on prop via the Object.watch() method. Once

the watchpoint is removed, value assignments to prop will no longer be moderated by the watch() callback

function. Note that a watchpoint can be removed only via Object.unwatch()—deleting the watched property
does not remove the watchpoint. For complete details, see Object.watch().

See Also

Object.watch()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object.valueOf() Method Flash 5

the primitive value of the object

someObject.valueOf()

Returns

The internally defined primitive value of someObject, if a primitive value is associated with

someObject. If no primitive value is associated with someObject, then someObject itself is

returned.

Description

The valueOf() method returns the primitive datum associated with an object, if such an association exists. This
method is most commonly used with instances of the Number, String, and Boolean classes, which all have
associated primitive data. It is rarely necessary to invoke valueOf() explicitly; it is automatically invoked by the
interpreter whenever someObject is used where a primitive is expected.

See Also

Boolean.valueOf(), MovieClip.valueOf(), Number.valueOf(), Object.toString(), String.valueOf()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Object.watch() Method Flash 6

create a watchpoint to moderate property assignment

someObject.watch(prop, callback, userData)

Arguments

prop

A string indicating the name of the property to watch on someObject. The name must adhere to the rules for creating an

identifier, outlined under Section 15.5 in Chapter 15.
callback

A function called whenever a value assignment attempt is made on prop. The function return value becomes the actual value

assigned to the property.
userData

An arbitrary data value passed to callback.

Returns

A Boolean; true if the watchpoint was created successfully; false otherwise (for example, if callback is not a valid function).

Description

The watch() method registers a so-called watchpoint for someObject.prop. When a watchpoint is in effect, callback acts as a

moderator for all value assignments to someObject.prop.

Whenever a value is assigned to prop, callback is executed and passed the following four arguments:

prop

The name of the property modified.
oldval

The old value of the property.
newval

The proposed new value of the property, as specified in the property assignment that triggered the watchpoint.
userData

An optional data value supplied by the original watch() call.

Hence, callback must take the generalized form:

function someWatch (prop, oldval, newval, userData) {
 return theNewPropertyValue;
}

The callback function is expected to return the actual value to be assigned to the property. For example, the following code places on

rectangle.numSides a watchpoint that rejects all numSides assignments by simply returning oldval (effectively making

numSides read-only). This is known as nullifying the assignment.

// Create the object and numSides property
var rectangle = new Object();
rectangle.numSides = 4;
// Add the watchpoint
rectangle.watch("numSides", rectWatch);
// Create the callback function that moderates assignments to numSides
function rectWatch (prop, oldval, newval, userData) {
 // Return the old value, which is, therefore, reassigned to the property
 return oldval;
}
// Usage: Attempt to change the value of numSides
rectangle.numSides = 3;
// Check if we changed it...
trace(rectangle.numSides); // Nope! Displays: 4

To allow the property assignment to proceed unaltered, callback can return newval. For example:

function rectWatch (prop, oldval, newval, userData) {
 // Return the proposed new value unscathed
 return newval;
}

A watchpoint callback function that returns newval, and therefore has no net effect on property assignment,

can still be useful. By adding a trace() command or a debugger breakpoint within the callback function, you
can debug, log, or monitor any changes to the property.

Alternatively, callback can use newval to calculate or filter the property's final value (for example, by bringing an out-of-range

value into valid range). Or callback can perform other tasks related to the property assignment. For example, consider a game in which

a Buy button is disabled when the player has no money. By watching the player's cash property, we can turn the Buy button on and off,

depending on the players current amount of money:

// Simplified GamePlayer class
function GamePlayer (startingMoney) {
 // Add watchpoint (notice that watchpoints can be set before a property exists)
 this.watch("cash", this.assignCash);
 // Assign the cash property an initial value
 this.cash = startingMoney;
}

// Method: assignCash()
GamePlayer.prototype.assignCash = function (prop, oldval, newval) {
 trace("Assigning cash: " + newval);
 // If the player has no cash...
 if (newval = = 0) {
 // ...turn off the Buy button
 trace("Player has no money. Disabling Buy button.");
 gameGUI.buyButton.enabled = false;
 } else if (newval > 0) {
 // ...otherwise, turn on the Buy button
 trace("Player has some money. Enabling Buy button.");
 gameGUI.buyButton.enabled = true;

 }

 // Assign the new value to the cash property
 return newval;
}

// Make the player and issue 10 money units to start
p1 = new GamePlayer(10);

// Take away all the player's money
p1.cash = 0;

// OUTPUT:
Assigning cash: 10
Player has some money. Enabling Buy button.
Assigning cash: 0
Player has no money. Disabling Buy button.

A watchpoint can be set before a property exists, and the watchpoint continues to exist even if the watched property is deleted. If the
property is recreated, the watch is triggered. To stop watching a property (i.e., to remove a watchpoint) use Object.unwatch().

There are limitations on which properties can be watched:

Properties inherited through an object's prototype cannot be watched. The watched property must be assigned directly to
someObject (use Object.hasOwnProperty() to distinguish between direct and inherited properties).

Properties available in Flash 4 (_x, _y, _width, _height, etc.) cannot be watched. See the Availability heading for each

property's entry in this Language Reference.

Getter/setter properties created with Object.addProperty() cannot be watched. The getter/setter properties defined internally by
Flash 6 ActionScript are listed in Table 18-15. Note that the Camera, Microphone, NetStream, and Video objects apply to
Macromedia Flash Communication Server MX (Comm Server) and are not covered in this book (see
http://www.macromedia.com/software/flashcom/ and Appendix A for additional resources).

Table 18-15. Getter/setter properties (Flash 6), which cannot be watched

Object Getter/setter properties

Button tabIndex

Camera All properties

Microphone All properties

MovieClip tabIndex

NetStream All properties

Sound
duration

position

Stage All properties

TextField All properties

TextFormat All properties

Video All properties

XML

contentType

docTypeDecl

ignoreWhite

loaded

status

xmlDecl

XMLnode

attributes

childNodes

firstChild

lastChild

nextSibling

nodeName

nodeType

nodeValue

parentNode

previousSibling

See Also

Object.addProperty(), Object._ _proto_ _, Object.unwatch()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

parseFloat() Global Function Flash 5

extract a floating-point number from a string

parseFloat(stringExpression)

Arguments

stringExpression

The string from which a floating-point number is to be extracted.

Returns

The extracted floating-point number or, if extraction was unsuccessful, the special numeric value NaN.

Description

The parseFloat() function converts a string to a floating-point number (a number with a fractional portion). It
returns a useful value only for strings that contain a valid string representation of a floating-point number;
otherwise, NaN is returned. The string must be of the following form:

A valid starting character. Valid characters are +, -, 0 through 9, e, E, and ., although optional leading
whitespace is acceptable (and ignored).

Optional sign indicator (+ or -).

At least one digit from 0-9 and an optional decimal point.

Optional exponent starting with e or E followed by integer exponent, which can itself include an optional

sign indicator (+ or -) — for example, "10e-3".

Trailing characters that cannot be parsed as part of the preceding numeric format are ignored but do not
necessarily cause NaN to be returned. The number derived from the supplied string starts with the first nonblank

character in the string and ends with the character before the first character that is not a legitimate character.

Usage

Because user-input data entered into text fields always belongs to the string datatype, we often use parseFloat()
to extract numeric data from user-supplied text. Note that parseFloat() can extract numbers from strings that
contain both numbers and nonnumeric characters, whereas Number() cannot.

Examples

parseFloat("14.5 apples"); // Yields 14.5
parseFloat(".123"); // Yields 0.123
var x = "15b, 4, 23, 9";
parseFloat(x); // Yields 15

See Also

isNaN(), NaN, Number(); Section 3.4.2; Section 4.2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

parseInt() Global Function Flash 5

extract an integer from a string, or convert numbers to
base-10.

parseInt(stringExpression)parseInt(stringExpression, radix)

Arguments

stringExpression

The string from which an integer is to be extracted.
radix

An optional integer, between 2 and 36, specifying the base (or radix) of the integer contained in stringExpression. If not

specified, the default radix depends on the contents of stringExpression (as described in the following Description).

Returns

The extracted integer value, as a base-10 number regardless of the original radix; or, if extraction was unsuccessful, the special numeric value

NaN.

Description

The parseInt() function converts a string expression to an integer. It works only with strings that contain a valid string representation of an integer
using the specified radix. The string must be of the following form:

A valid starting character. Valid characters include +, -, and 0 through 9, although optional leading whitespace is acceptable (and ignored).
Alphabetic characters (a-z and A-Z) are valid if the characters represent legitimate digits in the specified radix. For example a-f and A-F

are valid characters if radix is 16 (hexadecimal) but not if radix is 10 (decimal).

Leading zero to indicate an octal number.

Leading zero followed by an X or x, such as "0x" to indicate hexadecimal.

Optional sign indicator (+ or -).

One or more digits that are valid in the number system of the specified radix.

Trailing characters that cannot be parsed as part of the preceding numeric form are ignored but do not necessarily cause NaN to be returned.

The number derived from the supplied string starts with the first nonblank character in the string and ends with the character before the first
character that is not a legitimate digit in the supplied radix. For example, in the base-10 system, the letter F is not a valid digit, so the following

expression yields the number 2:

parseInt("2F", 10);

But in the base-16 system (hexadecimal), the characters A, B, C, D, E, and F are valid numerals, so the following expression yields the number 47:

parseInt("2F", 16); // 2F in hexadecimal is 47 in base-10

The radix argument of parseInt() specifies the base of the number as it exists in the string. In other words, the radix argument says to the

interpreter, "Treat this string as a base-16 (hexadecimal) number," or, "Treat this string as a base-2 (binary) number."

The parseInt() function also interprets the prefix 0x to indicate a hexadecimal (a.k.a. hex) number, as if a radix of 16 was specified, and a

leading 0 (zero) to indicate an octal number, as if a radix of 8 was specified:

parseInt("0xFF"); // Parsed as hex, (implicit radix of 16) yields 255
parseInt("FF", 16); // Parsed as hex, (explicit radix of 16) yields 255
parseInt("FF", 10); // Parsed as decimal, (explicit radix of 10) yields NaN
parseInt("0377"); // Parsed as octal, (implicit radix of 8) yields 255
 // because (3 * 64) + (7 * 8) + (7 * 1) = 255
parseInt("377", 8); // Parsed as octal (explicit radix of 8), yields 255

An explicit radix overrides any implicit radix:

parseInt ("0xFF", 10) // Parsed as decimal, yields 0
parseInt ("0x15", 10) // Parsed as decimal, yields 0 (not 15, and not 21)
parseInt ("0377", 10) // Parsed as decimal, yields 377

Note that the parseInt() function extracts integer values only, unlike parseFloat(), which can also extract fractional values but can be used only
with base-10 numbers.

Example

We use parseInt() primarily to extract integers from a string that contains both numbers and text or to remove the decimal place from a number
(similar to Math.floor()):

parseInt("Wow, 20 people were there"); // Yields NaN
parseInt("20 people were there"); // Yields 20
parseInt("1001", 2); // Yields 9 (1001 evaluated in binary)
parseInt(1.5); // Yields 1 (the number 1.5 is converted
 // to the string "1.5" before the parseInt
 // operation proceeds)

See Also

Math.floor(), NaN, Number(), parseFloat(); Section 3.4.2; Section 4.2

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

play() Global Function Flash 2

begin the sequential display of frames in a movie (i.e., play
the movie)

play()

Description

Invoking the play() function initiates the sequential display of the frames in the current timeline. The current
timeline is the timeline of the main movie or movie clip from which the play() function was invoked. Frames
are displayed at a rate dictated by the frames per second (or FPS) setting of the entire movie, which is set under
the Movie Properties (Modify Movie Frame Rate). If the movie is already playing, invoking play()
has no effect.

Once started, the playback of a movie or movie clip continues until another function invocation specifically
stops the playback. All movie clips loop (begin playing again at frame 1) when the playhead reaches the end of
the timeline. In a browser, however, main movies loop only if the code used to embed the movie in the HTML
page specifies that the movie should loop, as determined by the LOOP attribute. If you're using the Publish

command to embed your movie in an HTML page, set the LOOP attribute by selecting File Publish

Settings HTML Playback Loop. See Appendix H for more details.

Example

Play the current timeline:

play()

Use the MovieClip.play() function instead of the legacy Tell Target action to instruct a different movie clip to
play.

Reader Exercise: Write a recursive function, named allPlay(), that plays the current timeline and recursively
plays all nested movie clips contained within the current timeline.

See Also

gotoAndPlay(), MovieClip.play(), stop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

prevFrame() Global Function Flash 2

send a movie's playhead back one frame and stop it there

prevFrame()

Description

The prevFrame() function moves the playhead of the current timeline back one frame and stops it there. The
current timeline is the timeline of the main movie or movie clip from which the prevFrame() function was
invoked. The prevFrame() function is synonymous with gotoAndStop(_currentFrame - 1). If it is invoked on
the first frame of a timeline, prevFrame() simply stops the playhead on that frame, unless another scene
precedes the current scene, in which case prevFrame() moves the playhead to the last frame of the previous
scene.

See Also

gotoAndStop(), MovieClip.prevFrame(), nextFrame(), prevScene(), stop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

prevScene() Global Function Flash 2

send a movie's playhead to frame 1 of the previous scene

prevScene()

Description

The prevScene() function moves the main playhead of a movie to frame 1 of the scene before the current scene
and stops the main movie timeline. The current scene is the scene from which the prevScene() function is
invoked. It must be invoked on a scene's main timeline in order to have an effect; that is, prevScene() has no
effect inside a movie clip or onClipEvent() handler. If invoked from the first scene in a movie, prevScene()
sends the playhead to frame 1 of that scene and halts movie playback there.

I recommend against using scenes when working with ActionScript-intensive movies.
Unlike movie clips, scenes are not represented by objects and cannot be manipulated
directly by most built-in functions. Normally, it's better to use labels and movie clips
as pseudo-scenes in your timeline instead of using Flash's scene feature.

See Also

nextScene(), prevFrame()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

print() Global Function Flash 5

print the frames of a movie or movie clip using vectors

print(target, boundingBox)

Arguments

target

A string or reference indicating the path to the movie clip or document level to print (references are converted to paths when
used in a string context).

boundingBox

A string indicating how the printed frames of target should be cropped when printed. Cropping is defined by a bounding

box that represents the entire printed page. The region of target included in the printed page can be set using one of three

legal values for boundingBox (which must be a literal string):

"bframe"

The bounding box for each printed frame is set individually to match the size of each frame's contents. Hence, every
printed frame's content is scaled to fill the entire printed page. This maximizes the size of the printed images.

"bmax"

The area occupied by the content of all printed frames is combined to form a maximum bounding box. Each printed
frame's content is scaled and placed on the printed page relative to the maximum bounding box. That is, each frame
maintains its size relative to other frames, but all frames don't necessarily fill the printed page.

"bmovie"

The bounding box for all printed frames is set to the size of a single, designated frame in the target clip. Content of

printed frames larger than the designated frame is cropped to the bounding box of the designated frame. Content of
printed frames smaller than the designated frame is not scaled. To designate a frame as the one on which the bounding
box should be based, assign it the label #b.

Description

Printing a Flash movie using a web browser's built-in File Print function behaves inconsistently and often results in poor quality
printouts that don't use vector printing. In some browsers, the movie won't print at all, nor will most browsers print more than one
frame at a time. Using the print() function, we can print the contents of one or more frames of a movie with accuracy and quality,
directly from Flash. By default, print() causes all of the frames of target's timeline to be printed, one frame per page, cropped or

scaled according to the boundingBox argument. To designate specific frames for printing (while excluding undesignated frames),

we assign the label #p to the desired frames.

The print() function sends vectors directly to PostScript printers and sends vectors converted to bitmaps to non-PostScript printers.
Because print() uses vectors, it cannot be used to print movies with alpha transparency or color transformations. To print movies that
have color effects, use printAsBitmap().

Usage

In Flash Player 4, the print functions are available via the Get Url Action (not available prior to build 4.0.20.0). For more details, see

Macromedia's Flash Printing SDK, available at:

http://www.macromedia.com/software/flash/open/webprinting/authoring.html

Example

// Print every frame in the main movie timeline, scaling each to fill the page
print("_root", "bframe");

// Print every frame in the main movie timeline,
// sizing each frame relative to the combined size of all frames
print("_root", "bmax");

When the print_btn button is clicked, Flash prints all frames in the button's parent timeline, cropped to the bounding box of the

frame with the label #b, and sized to fill the page:

print_btn.onRelease = function () {
 print(this._parent, "bmovie");
}

See Also

getURL(), printAsBitmap(), printAsBitmapNum(), printNum()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

printAsBitmap() Global Function Flash 5

print the frames of a movie or movie clip as bitmaps

printAsBitmap(target, boundingBox)

Arguments

target

A string or reference indicating the path to the movie clip or document level to print (references are
converted to paths when used in a string context).

boundingBox

A string—either "bframe", "bmax", or "bmovie"—indicating how the printed frames of

target should be cropped or scaled when printed, as described earlier under print().

Description

The printAsBitmap() function is functionally identical to print(), except that it outputs rasterized content to the
printer, not vectors. Therefore, it can successfully print movies with alpha channels and color transformations,
but it produces poorer quality for vector-based artwork.

Usage

See Usage notes under the print() function.

See Also

print(), printAsBitmapNum(), printNum()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

printAsBitmapNum() Global Function Flash 5

print the frames of a document level as bitmaps

printAsBitmapNum(level, boundingBox)

Arguments

level

A nonnegative integer or an expression that yields a nonnegative integer, indicating the document level
to print.

boundingBox

A string—either "bframe", "bmax", or "bmovie"—indicating how the printed frames of

target should be cropped or scaled when printed, as described earlier under print().

Description

The printAsBitmapNum() function is nearly identical to printAsBitmap(), except that it requires the target
level of the print operation to be specified as a number rather than as a string. This means that

printAsBitmapNum() can print document levels only, not movie clips. It normally is used to dynamically assign
the level of a movie to print, as in:

var x = 3;
printAsBitmapNum(x, "bmax");

which can also be achieved using string concatenation with the regular printAsBitmap() function:

printAsBitmap("_level" + x, "bmax");

Usage

See Usage notes under the print() function.

See Also

print(), printAsBitmap(), printNum()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

printNum() Global Function Flash 5

print the frames of a document level using vectors

printNum(level, boundingBox)

Arguments

level

A nonnegative integer or an expression that yields a nonnegative integer, indicating the document level
to print.

boundingBox

A string—either "bframe", "bmax", or "bmovie"—indicating how the printed frames of

target should be cropped or scaled when printed, as described earlier under print().

Description

The printNum() function is nearly identical to print(), except that it requires the target level of the print

operation to be specified as a number rather than as a string. This means that printNum() can print document
levels only, not movie clips. It normally is used to dynamically assign the level of a movie to print, as in:

var x = 3;
printNum(x, "bmax");

which can also be achieved using string concatenation with the regular print() function:

print("_level" + x, "bmax");

Usage

See Usage notes under the print() function.

See Also

print(), printAsBitmap(), printAsBitmapNum()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

_quality Global Property Flash 5

the rendering quality of the Player read/write

_quality

Description

The _quality property stores a string that dictates the rendering quality of the Flash Player, as follows:

"LOW"

Low quality. Neither bitmaps nor vectors are antialiased (smoothed).
"AUTOLOW"

Start in low quality, but switch to high quality if the Player detects enough processing power.
"MEDIUM"

Medium quality. Vectors are moderately antialiased using a 2 x 2 pixel grid.
"AUTOHIGH"

Start in high quality, but drop to low quality if the Player detects poor performance (based on frame rate).
"HIGH"

High quality (default). Vectors are highly antialiased using a 4 x 4 pixel grid. Bitmaps are antialiased
when no animation is occurring.

"BEST"

Best quality. Vectors are highly antialiased using a 4 x 4 pixel grid. Bitmaps are always antialiased.

Lower rendering quality means that fewer calculations are required to draw a frame of the movie, resulting in
faster performance. The typical setting of _quality for most movies is "HIGH".

Example

Here we set the rendering quality of a movie to the best it can be (which also causes the slowest playback):

_quality = "BEST";

See Also

_highquality, toggleHighQuality()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

random() Global
Function

Flash 4; deprecated in Flash 5 in favor
of Math.random()

generate a random number

random(number)

Arguments

number

A positive integer.

Returns

A random integer between 0 and number - 1 (inclusive).

Description

The deprecated random() function was used in Flash 4 to generate random numbers. This function has been
retired from the language and is available only for the sake of backward compatibility. In Flash 5 and later, use
the preferred Math.random() method. Note that random() generated integers from 0 to number - 1,

whereas Math.random() generates floats from 0.0 to .999.

See Also

Math.random()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

removeMovieClip() Global Function Flash 4

delete a movie clip from the Flash Player

removeMovieClip(target)

Arguments

target

A string or reference indicating the path to the movie clip instance to be removed from the Player (references to movie
clips are converted to paths when used in a string context).

Description

The removeMovieClip() function deletes the specified movie clip from the Player, leaving no trace of the clip's contents or
shell. Subsequent references to the clip or any variables or properties it contained yield undefined.

The removeMovieClip() function can be used only on movie clip instances that were originally created via
duplicateMovieClip(), attachMovie(), or createEmptyMovieClip(). It has no effect on movie clips on negative depths
(normally those created at authoring time). To remove a negative-depth clip, first swap it to a positive depth, then remove it:

theClip_mc.swapDepths(1234); // Pick a safe number to swap to.
theClip_mc.removeMovieClip(); // Remove the clip.

If more than one variable refers to the same movie clip, removeMovieClip() deletes the movie clip from the Stage but other
references to it remain. That is, the movie clip persists as a data object until all references to the clip have been removed. For
example:

// Create a new clip, clipInstance_mc, from the Library symbol clipSymbol.
// Store a convenient reference to clipInstance_mc in the variable c.
var c = this.attachMovie("clipSymbol", "clipInstance_mc", 1);
// At this point, two references to the movie clip exist:
// one in c, and one in clipInstance_mc.

// Remove clipInstance_mc
clipInstance_mc.removeMovieClip();
// Check if clipInstance_mc still exists...
trace(typeof clipInstance_mc); // Nope. Displays: undefined
// Check if the reference to clipInstance_mc in c still exists....
trace(typeof c); // Yup! Displays: movieclip
 // (the reference still exists!)

To fully remove all traces of the clip, we must delete any remaining variables that store a reference to it. Continuing the
preceding example:

// Remove the reference in c.
delete c;
trace(typeof c); // Displays: undefined (now it's really gone)

See Also

attachMovie(), duplicateMovieClip(), MovieClip.removeMovieClip(), MovieClip.swapDepths(), unloadMovie(), Section
13.6

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

_root Global
Property

Flash 5 (same as "/" in Flash 4
movies)

a reference to the main timeline of the movie in the
current level

read-
only

_root

Description

The _root property stores a reference to the main timeline of the current document level. We use _root to

invoke methods on the main movie or to retrieve and set the main movie's properties. For example:

_root.play(); // Play the main timeline
_root._alpha = 40; // Make the whole movie partially transparent

The _root property can also be used as the starting point from which to access nested clips using dot syntax.

For example:

_root.myClip.play();
_root.shapes.square._visible = false;

The _root property provides access to a movie clip in explicit terms. That is, a reference that starts with

_root is valid (and invariant) from anywhere in a movie. However, note that _root is not necessarily

synonymous with _leveln (the main timeline of a given document level) or _global (the global variable

space). For information on creating global variables, see _global.

When used in a .swf file that is loaded into a movie cilp, the _root property changes

meaning. For complete details, see "The _root and _parent properties" in Chapter 2.

See Also

_leveln; _parent; "Accessing Variables on Different Timelines," and "The _root and _parent
properties," in Chapter 2; "Referring to Main Movies with _root and _leveln," in Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

scroll Property Flash 4

the current top line displayed in a text field read/write

textFieldVar.scroll

Description

The scroll text field property can be both retrieved and set. This legacy property is accessed as a property of

textFieldVar, an identifier associated with an on-screen text field. The textFieldVar identifier is

specified in the Text Options panel (in Flash 5) or the Text Field Properties dialog box (in Flash 4). As of Flash
6, use the object-oriented TextField.scroll property instead, where TextField is an instance of

the TextField class. See TextField.variable for more information.

A text field's scroll property indicates the number of the line currently displayed as the first line in the

field's viewable region. When we set the value of scroll, it scrolls the text field, making the supplied line

number the top line in the field's viewable region.

The scroll property normally is used with maxscroll to create text-scrolling interfaces, as described

under TextField.scroll.

Bugs

When using text fields with embedded fonts in Flash Player 5.0.30.0, scroll may cause some text to be

displayed outside the bounding box of the field. Some artifacts may not be removed as the text in the field
scrolls. To work around the problem, use a mask over the text field layer. This problem is fixed in Flash Player
5.0.41.0 and later.

Example

// Sets x to the index of the top line displayed in myField
var x = myField.scroll;
// Scrolls the text in myField down one line
myField.scroll++;

See Also

maxscroll; TextField.scroll, TextField.variable

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection
Object

Flash 5; enhanced in Flash 6 to support
buttons and movie clips

control over text field selections and movie input focus

Selection.methodName()

Methods

addListener()

Register an object to receive onSetFocus() event notices.
getBeginIndex()

Retrieve the index of the first selected character in the text field with keyboard focus.
getCaretIndex()

Retrieve the index of the insertion point in a text field.
getEndIndex()

Retrieve the index of the character following the selection in a text field.
getFocus()

Identify the text field, button, or movie clip that is currently focused.
removeListener()

Cancel event notices for the specified listener.
setFocus()

Assign input focus to a text field, button, or movie clip object.
setSelection()

Select characters in the currently focused text field.

Listener Events

onSetFocus()

Occurs when input focus changes.

Description

We use the Selection object to control user interaction with text fields, to capture portions of text fields, and to
detect input focus for buttons, movie clips, and text fields. Selection is a predefined object, not a class, so its
methods are accessed directly, as in:

Selection.setFocus(input_txt); // Focuses the input_txt text field

Character-manipulation methods of the Selection object always refer implicitly to the text
field with keyboard focus, so we need only one Selection object. This is why, for
example, Selection.getBeginIndex() is accessed through the Selection object directly, not
through an instance of the TextField class.

The methods of a Selection object can position the insertion point in the focused text field and select or retrieve a
text field's content. These abilities add subtle but important behavior to user-input systems. For example, in a user-
login screen, we can prompt a user to enter his name by placing the text insertion point in a name-entry text field.
Or, we can highlight an error in a form by selecting the problematic text. Such control is also central to word
processing-style applications.

Positions of the characters in a text field are referred to with zero-relative indexes, in which the first character is
index 0, the second is index 1, and so on. Character indexing is described in detail under Section 4.6.4, in Chapter
4.

In Flash 6 the TextField.replaceSel() method can be used to simulate cut, copy, and paste operations for a text
field. Furthermore, the cut, copy, and paste shortcut keys (Ctrl-X, Ctrl-C, and Ctrl-V on Windows, or Cmd-X, Cmd-
C, and Cmd-V on the Macintosh) are operational in Flash Player 6. The secondary mouse button (right-click on
Windows, Ctrl-click on Macintosh) provides access to the cut, copy, and paste commands in Flash Player 5.

The Selection object can also control and report on keyboard focus (a.k.a. input focus) in a movie. When an object
has keyboard focus, it accepts all keystrokes from the keyboard. For example, when a text field contains the text
insertion point, it has keyboard focus, and keys pressed display as characters in the field. When a button has
keyboard focus, it can be activated by pressing either the Enter key or spacebar. When a movie clip has keyboard
focus, it can respond to keystrokes via its onKeyDown()/onKeyUp() event handlers. Buttons and movie clips are
given keyboard focus either by the user via the Tab key (not by a mouseclick!) or programmatically via
Selection.setFocus(). By default, a focused button or movie clip is surrounded by a yellow rectangle (see the global
_focusrect property). Changes in focus can be captured globally by the Selection.onSetFocus() event or

individually by the onSetFocus()/onKillFocus() event handlers for Button, MovieClip, and TextField. The
currently focused item can always be determined with Selection.getFocus().

Usage

Clicking a form's Submit button automatically removes focus from any previously focused text field. To capture a
text selection before focus is lost, use the rollover handler attached to the Submit button, because rollover events
occur before the button is pressed. For example:

submit_btn.onRollOver = function () {
 // Note which field is focused before the button is pressed.
 focusedField = Selection.getFocus();

 // Note which characters are selected.
 beginIdx = focusedField.getBeginIndex();
 endIdx = focusedField.getEndIndex();
}

By storing the focused field in a variable, we can then operate on the selected characters in that field or return focus
to the field after, say, checking the user's input for errors.

See Also

The Button class, _focusrect, the MovieClip class, the TextField class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.addListener() Method Flash 6

register an object to receive onSetFocus() event notices

Selection.addListener(listener)

Arguments

listener

An object with an onSetFocus() method defined.

Description

The addListener() method adds listener to the list of objects notified when Selection's onSetFocus()

event occurs. The listener argument is an object of any class that defines a method by the name

onSetFocus; the method is invoked when the onSetFocus() event occurs for Selection. To stop a listener
object from receiving events, use Selection.removeListener().

Multiple objects can respond independently to each onSetFocus() event. When multiple listeners are registered
to Selection, their methods are invoked in the order the listeners were added.

For sample Selection.addListener() code, see Selection.onSetFocus(). For general information on how listeners
and callback functions work, see Chapter 10.

See Also

Selection.onSetFocus(), Selection.removeListener(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.getBeginIndex() Method Flash 5

retrieve the index of the first selected character in the text
field with keyboard focus

Selection.getBeginIndex()

Returns

The index of the first character in the current selection (highlighted block of text). If no text field has keyboard focus, it returns -1. If
a text field has focus but no characters are selected, it returns the value of Selection.getCaretIndex().

Description

The getBeginIndex() method identifies the beginning of a selection. To determine the span of characters currently selected, use both
getBeginIndex() and getEndIndex().

Example

The following example creates a string representing the currently selected characters and then displays that string in the Output
window:

var firstChar = Selection.getBeginIndex();
var lastChar = Selection.getEndIndex();
// eval() is required because Selection.getFocus() returns a string
var currentSelection =
 eval(Selection.getFocus()).text.substring(firstChar, lastChar);
trace(currentSelection);

The following code extends the current selection by one character to the left:

Selection.setSelection(Selection.getBeginIndex()-1, Selection.getEndIndex());

See Also

Selection.getCaretIndex(), Selection.getEndIndex(), TextField.replaceSel()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.getCaretIndex() Method Flash 5

retrieve the index of the insertion point in a text field

Selection.getCaretIndex()

Returns

The index of the insertion point in the currently focused text field. If no text field has keyboard focus, it returns -
1. If the text field with focus is empty, it returns 0.

Description

The getCaretIndex() method indicates the insertion point (i.e., the location of the cursor) in a text field. The
cursor appears as an I-beam when a text field has keyboard focus. Use setSelection() to set the location of the
insertion point.

Example

Because getCaretIndex() returns -1 when no text field has focus, we can determine whether any field has focus
by checking whether getCaretIndex() is equal to -1

The following example checks whether any text field has keyboard focus:

if (Selection.getCaretIndex() = = -1) {
 trace("No field has focus");
}

Reader Exercise: Rewrite the preceding example as a Boolean function, isTextFieldActive(), which returns
true if a text field has focus and returns false otherwise. Modify it to accept an optional text field

identifier and check whether that specific text field is active. (Hint: See Selection.getFocus()).

See Also

Selection.getFocus(), Selection.setSelection()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.getEndIndex() Method Flash 5

retrieve the index of the character following the selection in
a text field

Selection.getEndIndex()

Returns

The index of the character after the last character in the current selection (highlighted block of text). If no text field has focus, it
returns -1. If a text field has focus but no characters are selected, it returns the value of Selection.getCaretIndex().

Description

The getEndIndex() method identifies the end of a selection. To identify the span of characters currently selected, use both
getEndIndex() and getBeginIndex().

Example

The following code extends the current selection by one character to the right:

Selection.setSelection(Selection.getBeginIndex(), Selection.getEndIndex()+1);

See Also

Selection.getBeginIndex(), Selection.getCaretIndex()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.getFocus()
Method

Flash 5; enhanced in Flash 6 to
support buttons and movie clips

identify the currently focused button, movie clip, or text
field

Selection.getFocus()

Returns

A string indicating the full path to the object that has keyboard focus (for example,
"_level1.theField_txt" or "_level0.listBox_mc"). If no button, movie clip, or text

field currently has keyboard focus, it returns null.

Description

The getFocus() method identifies which button, movie clip, or text field (if any) currently has input focus by
returning its string path. To turn that string into an object reference, we use eval(). In the following example, we
retrieve the instance name of the focused field using getFocus(), and we convert that name into an object
reference using eval(). We then count the number of characters in the text field (not just the length of the
selection) :

var numChars = eval(Selection.getFocus()).text.length;

Example

Because getFocus() returns null when no object is selected, we can determine whether any object has focus

by checking whether getFocus() is equal to null, as follows:

if (Selection.getFocus() = = null) {
 trace("No button, movie clip, or text field has focus");
}

See Also

eval(), Selection.getCaretIndex(), Selection.setFocus()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.onSetFocus() Listener Event Flash 6

invoked when a movie's input focus changes

Selection.onSetFocus(oldFocus, newFocus)

Arguments

oldFocus

The Button, MovieClip, or TextField object that previously had focus, or null if no object was

previously focused.
newFocus

The Button, MovieClip, or TextField object that now has focus, or null if no object is currently

focused.

Description

The onSetFocus() event is triggered whenever input focus in a movie changes—for example, when the user
presses the Tab key to navigate from a form field to the form's Submit button. We can use onSetFocus() to
manage input focus from a central location. To handle focus for individual objects, we can alternatively use the
Button, MovieClip, or TextField class's onSetFocus() and onKillFocus() handlers, which are triggered only
when focus is given to or removed from a particular instance.

To respond to an onSetFocus() event, we must first assign a callback function to the onSetFocus property

of some object and then register that object as a listener. The onSetFocus() callback should accept the
oldFocus and newFocus parameters, as follows:

// Create a generic object
selListener = new Object();

// Assign a callback function to the object's onSetFocus property
selListener.onSetFocus = function (oldFocus, newFocus) {
 trace("Focus changed from " + oldFocus + " to " + newFocus);
}

// Register the listener with the Selection object
Selection.addListener(selListener);

Any number of listener objects of any class can respond to the onSetFocus() event. To stop a listener from
handling the onSetFocus() event, use removeListener(), as in:

Selection.removeListener(selListener);

Any TextField, MovieClip, or Button object can receive and lose focus when:

The user navigates to or from it with the Tab key.

The Selection.setFocus() assigns focus to or from it programmatically.

In addition, a text field object can gain or lose focus when the user clicks in or out of it with the mouse.
However, the tabEnabled property of Button, MovieClip, and TextField and the selectable property

of TextField all affect input focus. For a detailed description of how and when buttons, movie clips, and text
fields can be focused, see each class's onSetFocus() entry.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

See Also

Button.enabled, Button.onSetFocus(), Button.tabEnabled, MovieClip.onSetFocus(),

MovieClip.selectable, MovieClip.tabEnabled, Selection.addListener(),

Selection.removeListener(), Selection.setFocus(), TextField.onSetFocus(), TextField.tabEnabled

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.removeListener() Method Flash 6

cancels event notices for the specified listener

Selection.removeListener(listener)

Arguments

listener

An object that was previously registered as a listener for Selection.

Returns

A Boolean: true if listener was found and removed; false if listener was not registered as an

event listener for Selection. The return value is useful for debugging code that removes listeners.

Description

The removeListener() method stops listener from receiving Selection event notifications. It should be

used only after listener has been registered as an event listener via addListener(). The listener object is

not deleted, but it can be removed and added repeatedly. Event listeners should be removed explicitly when the
task they perform is no longer required.

See Also

Selection.addListener(), Selection.onSetFocus(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.setFocus()
Method

Flash 5; enhanced in Flash 6 to
support buttons and movie clips

set input focus to a specific button, movie clip, or text field

Selection.setFocus(instanceName)

Arguments

instanceName

A string indicating the path to the button, movie clip, or text field instance to focus. Because instance references are converted to
paths when used in a string context, instanceName can also be an object reference, as in "_level0.listBox_mc"

versus _level0.listBox_mc.

Returns

A Boolean indicating whether the focus attempt succeeded (true) or failed (false). A focus attempt fails if the instanceName
is not found or if it is not a button, text field, or movie clip instance. The setFocus() method also returns false if focus is disabled for

instanceName, as explained in the following Description.

Description

The setFocus() method sets the input focus to the button, movie clip, or text field specified by instanceName.

If instanceName is a button, when focused, its Over frame is displayed, and it is surrounded by a yellow rectangle (unless

_focusrect is false). While focused, the button can be activated by pressing the Enter key or spacebar.

If instanceName is a movie clip, when focused, the frame labeled _over is displayed, if such a label exists, and the clip is

surrounded by a yellow rectangle (unless _focusrect is false). While focused, the clip receives onKeyDown(), onKeyUp(),

onMouseDown(), and onMouseUp() event notices.

Take special note:

In Flash 6, moving the mouse over the Stage removes button and movie clip focus, but not text field focus.

Main movie timelines (e.g., _root and _level1) cannot receive keyboard focus.

A movie clip cannot be focused via Selection.setFocus() unless its focusEnabled property is true.

A movie clip without button events cannot be focused via the keyboard unless its tabEnabled property is true.

If instanceName is an input text field, the cursor appears in the field when it is focused, allowing characters to be entered into the

field. Dynamic and static text fields cannot be focused. However, a user-input text field with its selectable and tabEnabled
properties set to false can still be focused with setFocus().

Normally, an input text field is focused in order to draw attention to it or to allow the user to enter data. The setFocus() method can also
provide a handy means of drawing a user's attention to erroneous input. In an online form, for example, a user may mistype an email

address. To alert the user to the error, we can set the focus to the email-address text field and ask her to fix the problem. In Flash 5, we can
also use setFocus() to create a custom Tab key order for the fields in a form, as shown in the following Example. In Flash 6, tab order
should be assigned directly via the TextField.tabIndex property.

Usage

Note that setting the focus of a text field automatically selects any content in that field. To set a field's focus without selecting any
characters, use the following code:

// First, focus theField
Selection.setFocus("theField_txt");

// Now place the insertion point at the start of theField
Selection.setSelection(0, 0);

// Or at the end of theField
Selection.setSelection(theField.length, theField.length);

When a movie is viewed in a browser, a focused text field will accept text entry only if the Flash movie itself
has focus (that is, if the user has clicked on the movie at some point during movie playback). Make sure a
movie has focus before asking a user to type into one of its text fields. One way to do this is to include a
button that says "Click Here to Start" at the beginning of your movie.

Example

This example shows how to assign a custom tab order to the fields in a fill-in form. While relevant only in Flash 5, the example shows the
powerful control Selection provides over user input. The corresponding sample .fla file can be downloaded from the online Code Depot.
For more information on trapping the Tab key, see TextField.tabIndex.

// Custom tab order
// CODE ON THE MOVIE CLIP CONTAINING THE FORM FIELDS
onClipEvent (load) {
 // Store the path to this clip in a string. We'll use it
 // later when invoking Selection.setFocus() .
 path = targetPath(this);
 // Create an array with the names of our text fields, supplied in the
 // desired tab order. The first field listed is the default. In Flash 6,
 // these must be instance names, not Flash 5-style variable names.
 tabOrder = ["field1", "field3", "field2", "field4"];
}

onClipEvent (keyUp) {
 // If the Tab key was pressed...
 if (Key.getCode() = = Key.TAB) {
 // ...If no field has focus...
 if (Selection.getFocus() = = null) {
 // ...then set focus to the first field in the array of fields.
 Selection.setFocus(path + "." + tabOrder[0]);
 } else {
 // Otherwise, locate the currently focused field in the array of fields.
 i = 0;
 focused = Selection.getFocus();
 while (i < tabOrder.length) {
 // Extract the name of the field variable from the full path
 // that's returned by Selection.getFocus() .

 fieldName = focused.substring(focused.lastIndexOf(".") + 1);
 // Check each element of tabOrder for the focused field.
 if (tabOrder[i] = = fieldName) {
 // Stop when we find a match.
 currentFocus = i;
 break;
 }
 i++;
 }
 // Now that we know where the focused field lies in the tabOrder array,
 // set the new focus to either the next field or the previous field,
 // depending on whether the Shift key is down.
 if (Key.isDown(Key.SHIFT)) {
 // Shift key is down, so go to the previous field, unless we're
 // already at the beginning, in which case go to the last field.
 nextFocus = currentFocus-1 = = -1 ? tabOrder.length-1 : currentFocus-1;
 } else {
 // Shift key is not down, so go to the next field, unless we're
 // already at the end, in which case go to the first field.
 nextFocus = currentFocus+1 = = tabOrder.length ? 0 : currentFocus+1;
 }
 // Finally, assign the new focus.
 Selection.setFocus(path + "." + tabOrder[nextFocus]);
 }
 }
}

// CODE ON BUTTON ON MAIN TIMELINE
on (keyPress "<Tab>") {
 // This placeholder code just traps the Tab key in Internet Explorer
 var tabCatcher = 0;
}

See Also

MovieClip.focusEnabled, Selection.getFocus(), Selection.setSelection(), TextField.selectable,

TextField.tabEnabled

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Selection.setSelection() Method Flash 5

select characters in the text field with focus, or set the
insertion point

Selection.setSelection(beginIndex, endIndex)

Arguments

beginIndex

A nonnegative integer specifying the index of the first character to be included in the new selection.
endIndex

A nonnegative integer specifying the index of the character after the last character to be included in the new selection.

Description

The setSelection() method selects (highlights) the characters from beginIndex to endIndex - 1 in the text field with

focus. If no field has focus, setSelection() has no effect. It commonly is used to highlight problematic user input. To replace the
text in the current selection, use TextField.replaceSel().

Usage

Though the Selection object does not have a "setCaretIndex" method, we can use the setSelection() method to set the insertion
point to a specific location within a text field. To do so, we specify the same beginIndex and endIndex values, as in:

// Set the insertion point after the third character
Selection.setSelection(3, 3);

Example

// Select the second and third letters of the currently focused text field
Selection.setSelection(1, 3);

See Also

Selection.getBeginIndex(), Selection.getCaretIndex(), Selection.getEndIndex(), TextField.replaceSel()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

setInterval() Global Function Flash 6

execute a function or method every n milliseconds

setInterval(function, interval, arg1, arg2,...argn)
setInterval(object, method, interval, arg1, arg2,...argn)

Arguments

function

A reference to the function to execute.
interval

The amount of time between function or method executions, in milliseconds.

arg1,...argn

A list of optional arguments to pass to function or method.

object

An object whose method will be executed every interval milliseconds.

method

The string name of the method to execute (must be defined on object).

Returns

An interval identifier, used to stop the timed execution of function or method (which is called "clearing the interval").

Description

The setInterval() function starts an interval, which executes the specified function or method every interval
milliseconds. Here we start a very simple interval that executes the function helloWorld() once per second:

function helloWorld () {
 trace("Hello world!");
}
setInterval(helloWorld, 1000); // 1000 milliseconds is 1 second

Notice that the function reference, helloWorld, is specified without the function call operator, (). The following attempt to set

an interval fails because the call operator is included erroneously:

setInterval(helloWorld(), 1000); // Oops! Use helloWorld, not helloWorld().

We can also pass a function literal to setInterval(). For example:

setInterval(function () {trace("Hello world!");}, 1000);

Arguments can be provided to the specified function after the interval parameter:

function hello (person) {
 trace("Hello, " + person);
}
setInterval(hello, 1000, "Mr. Thilgen");

However, the arguments provided are evaluated only once, when the interval is initialized. For example, the following code
mistakenly attempts to position a movie clip under the mouse pointer by passing the pointer's location to the interval function:

function followMouse (clip, mousex, mousey) {
 clip._x = mousex;
 clip._y = mousey;
}
// Won't work because _root._xmouse and _root._ymouse are evaluated only once
setInterval(followMouse, 100, trailer_mc, _root._xmouse, _root._ymouse);

In the corrected version, we retrieve data that changes between function invocations inside the function itself:

function followMouse (clip) {
 // Check _root._xmouse and _root._ymouse inside function
 clip._x = _root._xmouse;
 clip._y = _root._ymouse;
}
setInterval(followMouse, 100, trailer_mc);

The alternative syntax of the setInterval() function invokes a method on an object periodically. The following code executes the
nextFrame() method of the main timeline (_root) every quarter-second, creating a slideshow effect:

setInterval(_root, "nextFrame", 250);

Remember to specify the method name as a string, not as a function reference!

When setInterval() is passed a function reference, the value of the this keyword within the function is undefined:

function showThis () {
 trace(this);
}
setInterval(showThis, 100); // 'this' will be undefined

However, when setInterval() is passed an object reference and a method name, the value of the this keyword is the object passed

as the first argument:

setInterval(_root, "showThis", 100); // 'this' will be a reference to _root

When an interval is created, it is assigned an ID (interval identifier) that is returned by setInterval(). This ID should be stored in a
variable so that the interval can later be stopped with clearInterval(), as follows:

// Start the interval
var intervalID = setInterval(someFunction, 50);
// Stop the interval some time later
clearInterval(intervalID);

Often, the interval is cleared inside the function specified in the original setInterval() call:

var counter = 1;
function countToTen () {
 trace(counter);
 // If we've made it to ten...

 if (counter = = 10) {
 // ...stop the interval
 clearInterval(counterInterval);
 }
 counter++;
}

// Start the interval
var counterInterval = setInterval(countToTen, 200);

If the interval ID is not stored, the interval can never be stopped. In Flash 6, interval IDs are integer values, but you should not stop
intervals by guessing their numeric interval ID. The ID architecture is internal and subject to change in the future. To stop a group of
intervals en masse, store their IDs in an array and use clearInterval() on each element.

Note that overwriting a variable that contains an interval ID does not clear the interval (which keeps running). Intervals can be
cleared only via clearInterval(). For example, in the following code, the variable intervalID is assigned two interval IDs, but

both functionA() and functionB() continue to run every 100 ms, and intervalID stores the ID of the second interval only:

var intervalID = setInterval(functionA, 100);
var intervalID = setInterval(functionB, 100);
// The variable intervalID now contains the second interval ID, but
// the first interval still runs (and cannot be stopped!)

The setInterval() function provides a time-based alternative to the onEnterFrame() MovieClip handler, which executes code once
for every tick of the frame rate. However, setInterval() is still dependent on the frame rate of a movie. An interval can run 10 times
per frame at most. So, even in a movie with a frame rate of 1 frame per second, an interval can still run only 10 times per second
(every 100 ms) at most, even when a smaller interval value is specified. Theoretically, at 10 frames per second, an interval can

run 100 times per second (10 times per frame x 10 frames per second), or every 10 ms. To update the screen within an interval
function that runs more often that the frame rate, call updateAfterEvent() from within the function or method that the interval
executes. For example:

function moveClip (clip) {
 // Move the clip
 clip._x += 5;
 // Update the screen
 updateAfterEvent();
}

setInterval(moveClip, 1, ball_mc);

When an interval is set to run less often than the duration of a tick of the frame rate, it will execute on the frame after the interval
time has expired. For example, given an interval set to 400 ms and a frame rate of 10 fps (1 frame per 100 ms), Table 18-16 shows
the frames on which the interval should execute.

Table 18-16. Interval execution relative to frame display

Frame number Total time (milliseconds) Interval executed?

0 0 no

1 100 no

2 200 no

3 300 no

4 400 yes

5 500 no

6 600 no

7 700 no

8 800 yes

9 900 no

10 1000 no

However, whether an interval runs more or less often than the frame rate of a movie, interval times are by no means guaranteed. In an
actual test movie, the intervals in Table 18-16 may execute at frames 5 and 9, or even at frames 4 and 9. Code execution, Player
rendering, and available system resources can all affect the actual timing of intervals. Where time is an important factor in an
application (for example, in a game), functions should be written to account for variance in interval times.

Usage

There is no JavaScript-style setTimeout() function in ActionScript. To emulate setTimeout(), create an interval function that clears
itself the first time it runs, as shown in the following Example.

Example

The following code shows a simple timer that executes after 5 seconds and never executes again:

function timesUp () {
 trace("Time's up!");
 // Stop the timer
 clearInterval(timerInterval);
}
timerInterval = setInterval(timesUp, 5000);

See Also

clearInterval(), MovieClip.onEnterFrame()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

setProperty() Global Function Flash 4

assign a value to a movie clip property

setProperty(movieClip, property, value)

Arguments

movieClip

An expression that yields a string indicating the path to a movie clip. In Flash 5 and later, this may also be a movie
clip reference because movie clip references are converted to paths when used in a string context.

property

The name of the built-in Flash 4 property to which value will be assigned. Must be an identifier, not a string

(e.g., _alpha, not "_alpha").

value

The new data value to be assigned to the specified property of movieClip.

Description

The legacy setProperty() function assigns value to one of movieClip's built-in Flash 4 properties. It cannot be

used to set the value of custom (i.e., user-defined) properties or properties added to MovieClip in Flash 5 or later. In Flash
4, setProperty() was the only means to assign movie clip property values; as of Flash 5, the dot and [] operators are the

preferred means of setting both built-in and custom movie clip properties.

Example

// Flash 4 syntax: Rotate the main movie by 45 degrees:
setProperty("_root", _rotation, 45);
// Flash 5 and later syntax: Also rotates the main movie by 45 degrees:
_root._rotation = 45;

See Also

getProperty(); "The `Objectness' of Movie Clips," in Chapter 13; Appendix C

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

SharedObject Object Flash 6

local data storage and remote data transmission

Constructor

None; instances are created with getLocal() or getRemote().

Properties

data

Container for the SharedObject's data.

Methods

close()

Closes the connection between a remote shared object and Comm Server. See the Comm Server
documentation.

connect()

Connects to a remote shared object on Comm Server. See the Comm Server documentation.
flush()

Forces data to be written to disk.
getLocal()

Returns a reference to a specified local SharedObject instance.
getRemote()

Returns a reference to a remote SharedObject instance managed by Comm Server. See the Comm Server
documentation.

getSize()

Returns the size of the SharedObject, in bytes.
setFPS()

Sets the frequency with which changes to a remote shared object are sent to Comm Server. See the
Comm Server documentation.

Event Handlers

onStatus()

Invoked when a SharedObject generates a status message (e.g., an error, information, or a warning).

Description

The SharedObject object provides tools for storing ActionScript data on the end user's computer and
transferring data between Flash clients via Comm Server. When used for local data storage, the SharedObject is
referred to as a local SharedObject (LSO). When used for remote data transfer, the SharedObject is referred to
as a remote SharedObject (RSO). This section covers only the local data storage capabilities of SharedObject.
Information on remote data transfer features can be found in the Comm Server documentation at:

http://www.macromedia.com/software/flashcom/

Like JavaScript cookies in a web browser, a local SharedObject saves information permanently on the local
filesystem. When a movie is closed, the information is stored in a file. When the movie is reopened, the
information is available once again. This allows movies to, say, record a player's high score and make it available
across multiple game sessions. Local SharedObjects are more flexible than JavaScript cookies. They allow typed
data to be stored and accessed directly through object properties rather than through an awkward cookie string of
name/value pairs. Specifically, SharedObjects support the following datatypes: number, string, boolean,
undefined, null, array, and object (custom classes plus XML and Date). Other built-in ActionScript classes and
objects (such as MovieClip and Function) cannot be stored in a SharedObject.

We do not create SharedObject instances with a constructor function. Instead, to create a new local
SharedObject, we use the getLocal() method, which takes the name of the SharedObject to create as an
parameter:

player1Info_so = SharedObject.getLocal("player1");

If a SharedObject by the specified name ("player1") already exists for the current movie, this code retrieves it
from the local filesystem; if no such object exists, the Player creates it. Note the use of the suffix "_so"; this is

Macromedia's official SharedObject suffix, which will enable code hinting in future versions of Flash.

After our shared object is created (or retrieved), we can add information to it by assigning custom properties to
the built-in data property, such as:

player1Info_so.data.highScore = 1200;

When the movie is closed, the flush() method is invoked, or the SharedObject is
deleted and garbage-collected, Flash attempts to save the properties of data to a

binary file with an extension of .sol. The save attempt fails if the size of the saved data
exceeds the user-defined size limits, as discussed under SharedObject.getLocal().
Therefore, you should always flush() your data deliberately rather than relying on
automatic saving, which does not allow you to handle size overages.

Once saved, the SharedObject can be retrieved later with the getLocal() method, exactly as it was created:

// Load the SharedObject we created earlier
player1Info_so = SharedObject.getLocal("player1");

Any properties defined on the object can be used immediately after getLocal() is invoked to retrieve the LSO.
For example, here we set the value of the hiScore_txt text field to the value of

player1Info_so.data.highScore, which we created earlier:

hiScore_txt.text = player1Info_so.data.highScore;

By default, movies from any given domain can store a cumulative total of up to 100 KB of data on the user's
computer. For information on requesting more space and handling storage requests that exceed the user's defined
space limits, see SharedObject.flush().

For a prolonged example showing how to store address book contacts with a SharedObject, see the following
article, written by me:

http://www.macromedia.com/desdev/mx/flash/articles/addressbook.html

Example

The following code creates a SharedObject, named userProfile, that tracks the total amount of time the

user has spent viewing the movie:

var userProfile_so = SharedObject.getLocal("userProfile");
trace(userProfile_so.data.totalVisitTime);
var then = 0;

this.onEnterFrame = function () {
 var now = getTimer();
 var frameTime = now - then;
 userProfile_so.data.totalVisitTime += frameTime;
 this.then = now;
}

See Also

"Object Properties," in Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

SharedObject.data Property Flash 6

container for data stored locally or sent to Comm
Server

read-
only

theSharedObj.data

Description

The data property contains a generic object whose properties are saved to disk when the movie is unloaded from the

Player or when SharedObject.flush() is invoked. If theSharedObj is a local SharedObject that has been retrieved

from disk, the properties of data contain the values last saved. Properties can contain the following datatypes: number,

string, boolean, undefined, null, array, and object (custom classes plus XML and Date). Other built-in ActionScript classes
and objects (such as MovieClip and Function) cannot be stored in a SharedObject.

For a value to be saved, it must be stored within a property of data. Properties attached directly to theSharedObj
are not saved to disk, while assignments to data itself are ignored completely. Therefore, you should attach properties to

theSharedObj.data, not directly to theSharedObj itself, and don't try to overwrite the data property. For

example:

timeTracker_so = SharedObject.getLocal("punchClock");

timeTracker_so.data.time = new Date(); // CORRECT! Will be saved.
timeTracker_so.time = new Date(); // INCORRECT! Will not be saved.
timeTracker_so.data = new Date(); // INCORRECT! Will be ignored.

Properties of data can be removed with the delete operator. For example:

delete theSharedObj_so.data.score;

Assigning a value of null or undefined to a property removes the value, but the property itself still exists and will

still show up in a for-in loop and be saved to disk, albeit as an empty value.

The default maximum amount of data that can be saved to disk is 100 KB per domain. For details, see SharedObject.flush(
). To determine the size of the properties assigned to data, use SharedObject.getSize().

When a property of data is an object that belongs to a custom class, the save/retrieve process disconnects the object from

its class. Methods and properties accessed via the prototype chain will not be available to the object after it is retrieved.
However, we can use Object.registerClass() to associate the object with an identifier used to restore its class at retrieval
time. For details, see Object.registerClass().

Example

The following code retrieves a local SharedObject named "gameData". It then assigns a property, player1score, and

saves the object by invoking flush():

// Create/retrieve the SharedObject.
gameData_so = SharedObject.getLocal("gameData");
// Make a property to save.

gameData_so.data.player1score = 2600;
// Attempt to save the SharedObject.
gameData_so.flush();

See Also

Object.registerClass(), SharedObject.flush(), SharedObject.getLocal(), SharedObject.getSize()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

SharedObject.flush() Method Flash 6

forces data to be written (flushed) to disk

theSharedObj.flush()
theSharedObj.flush(minimumDiskSpace);

Arguments

minimumDiskSpace

An optional integer specifying the amount of local disk space requested for the current domain, in bytes. This allows you to request
more disk space than is required by theSharedObj. If minimumDiskSpace is omitted, flush() requests the amount of

space returned by theSharedObj.getSize().

Returns

The string value "pending" if more disk space is required to store the object, or a Boolean: true if the save succeeded, false if it failed.

Description

The flush() method attempts to save theSharedObj.data's properties to an .sol file, as described under

SharedObject.getLocal(). Functionally, it is similar to the automatic save that occurs when the movie is unloaded from the Player,

but it offers a movie the chance to ask the user for more disk space if required.

When flush() executes, Flash checks the local storage settings for the domain from which the movie was loaded. If local storage is set to
"Never" for the domain, flush() simply returns false and the SharedObject is not saved. If the allowed local storage space is greater than

both the size of the SharedObject and the value of minimumDiskSpace, flush() returns true and the SharedObject is saved. If the

allowed local storage space is less than either the size of the SharedObject or the value of minimumDiskSpace, flush() returns

"pending" and Flash prompts the user to increase the local storage space limit. Once the user has either allowed or denied the request to
increase the limit, theSharedObj.onStatus() handler is invoked with an infoObject that indicates whether the save attempt

succeeded.

The minimumDiskSpace argument is used to force Flash to request from the user more space than the SharedObject actually

requires. This prevents Flash from repeatedly requesting space each time a SharedObject grows.

Example

The following code shows a typical Save button for a game. The game stores a large amount of game data in a SharedObject. When the
Save button is pressed, the movie reports save progress and, if necessary, asks the user to authorize space to save the game. The getSize()
method is used to show the user the game's space requirements. Notice that a complete save interface requires an implementation for
onStatus():

// Create the SharedObject.
var gameData_so = SharedObject.getLocal("gameData");
// Assign a large map object as a property (assume mapObj holds the game data).
gameData_so.data.customUserMap = mapObj;
// Call saveGame() when save_btn is pressed.

save_btn.onRelease = saveGame;

// The saveGame() function attempts to save the shared object
function saveGame () {
 // Create a text field to tell the user what's happening.
 this._parent.createTextField("output_txt", 1, 0, 0, 300, 100);
 output_txt.border = true;
 output_txt.wordWrap = true;

 // Tell the user that saving has started.
 output_txt.text = "Saving game...please wait...\n";
 // Request space based on getSize(). Divide by 1024 to convert bytes to KB, and
 // ask for 10 KB extra up front to prevent repeated requests for more room.
 output_txt.text += "Space required: "
 + (Math.floor(gameData_so.getSize() / 1024) + 10) + "KB.\n";

 // Save the SharedObject and store the return value in a local variable.
 var saveAttempt = gameData_so.flush(gameData_so.getSize() + 10240);
 // If flush() returned...
 if (saveAttempt = = true) {
 // ...true, the save was successful, and we're done.
 output_txt.text += "Game saved.\n";
 } else if (saveAttempt = = "pending") {
 // ..."pending", Flash asks the user for more disk space.
 // The user's decision is reflected by the infoObject
 // passed to onStatus() when the user closes the settings dialog box.
 output_txt.text += "Please increase disk space to continue.\n";
 } else if (saveAttempt = = false) {
 // ...false, the user has permanently disabled.
 // local storage for this domain. Ask the user to enable local storage.
 output_txt.text += "Save failed. To enable saving, "
 + "uncheck 'Never' under Local Settings.\n";
 // Just to make our point, open the local storage settings dialog box
 // where the user can reenable storage by unchecking the Never option.
 System.showSettings(1);
 }
}

// Callback invoked after a flush() overflow precipitated a
// "pending" condition. User has been prompted and either increased
// the domain's disk space limit or denied the request.
gameData_so.onStatus = function (infoObject) {
 // The infoObject.code property tells us what happened.
 if (infoObject.code = = "SharedObject.Flush.Success") {
 // Yay! They gave us space!
 output_txt.text += "Required disk space added. Game saved.";
 } else if (infoObject.code = = "SharedObject.Flush.Failed") {
 // Oh well. No space granted. We can't save the game.
 output_txt.text += "Insufficient disk space. Save failed.";
 }
}

See Also

SharedObject.getSize(), SharedObject.onStatus(), System.showSettings()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

SharedObject.getLocal() Method Flash 6

returns a reference to a specified SharedObject instance

theSharedObj.getLocal(objectName)
theSharedObj.getLocal(objectName, localPath);

Arguments

objectName

The string name of the local SharedObject. Can contain a forward slash (/). Cannot contain the following
characters: ~ % & \ ; : " ' , < > ? #

localPath

An optional string specifying part of the local path to the .sol file saved on the client computer. Must
match all or part of the actual path to the movie that creates theSharedObj.

Returns

A local SharedObject named objectName, or null if an illegal localPath was specified.

Description

The getLocal() method is the means by which a local SharedObject is created and retrieved. When invoked, it
searches for an .sol file named objectName at a location partially specified by localPath. The .sol file

contains the data needed to recreate the ActionScript SharedObject object as it was last saved. If a matching .sol
file is found, getLocal() returns a local SharedObject with a data property populated with the values last

saved to the .sol file. If no matching .sol file is found, getLocal() creates and returns a new SharedObject named
objectName. If the specified localPath is not valid, getLocal() returns null, indicating that the

operation failed.

When localPath is not specified, the .sol file is retrieved from an operating system-dependent location that

mirrors the path to the movie that invoked getLocal(). The path normally includes the movie name itself. For
example, on my Windows XP system, a SharedObject named "player1", created by the movie so.swf at
http://www.moock.org/asdg/so.swf, is retrieved from:

C:\Documents and Settings\fritz\Application Data\Macromedia\Flash
Player\moock.org\asdg\so.swf\player1.sol

Notice that so.swf actually is used as a directory name in the path to the .sol file. This prevents .sol filename
conflicts amongst SharedObjects created by multiple movies in the same directory. For example, if the movies
asteroids.swf and pong.swf (posted at moock.org/games/) both use a SharedObject named "player1", then their
locations on my computer are:

// Asteroids
C:\Documents and Settings\fritz\Application Data\Macromedia\Flash
Player\moock.org\games\asteroids.swf\player1.sol

// Pong
C:\Documents and Settings\fritz\Application Data\Macromedia\Flash
Player\moock.org\games\pong.swf\player1.sol

If both asteroids.swf and pong.swf want to share a single SharedObject, they must specify a common
localPath when invoking getLocal(). The localPath must contain part or all of the actual path to the

.swf file, after the domain name. For example, pong.swf can use a localPath of "/", "/games", or

"/games/pong.swf", resulting in the following file locations (again on my computer):

// For localPath "/", the location is:
C:\Documents and Settings\fritz\Application Data\Macromedia\Flash
Player\moock.org\player1.sol

// For localPath "/games", the location is:
C:\Documents and Settings\fritz\Application Data\Macromedia\Flash
Player\moock.org\games\player1.sol

// For localPath "/games/pong.swf", the location is:
C:\Documents and Settings\fritz\Application Data\Macromedia\Flash
Player\moock.org\games\pong.swf\player1.sol

Hence, any movie in the /games directory on moock.org can access the SharedObject named "player1" by
invoking getLocal(), like this:

getLocal("player1", "/games");

And any movie on the entire moock.org site can access the SharedObject named "userInfo" by invoking
getLocal() like this:

// Use this notation to store globally available SharedObjects
getLocal("userInfo", "/");

However, a movie in the /products directory cannot access a SharedObject created with a localPath of

"/games".

The local path of an .sol file is not always guaranteed to be human-readable (as it is in
our examples). For a very long path, an .sol file might be named
.../domain/343345345345345.sol. Hence, you should not rely on the local .sol file's
location or name; rather, you should rely only on the SharedObject API to retrieve
your data. The getLocal() method's localPath parameter is unaffected by the

internal name used by Flash to store the actual .sol file.

If a movie creates a SharedObject and is then moved to a new directory on the same domain, it will thereafter
look for SharedObjects according to its new location, and it will not find any SharedObjects created at its old
location unless a valid localPath is specified.

Movies running on the local filesystem (say, in the Standalone Player) are assigned the domain "localhost". For
example, here is the location of phoneNumbers.sol, created by a movie running on the root of any hard drive on
my computer:

C:\Documents and Settings\fritz\Application Data\Macromedia\Flash
Player\localhost\phoneNumbers.sol

Note that two local movies running from identical paths but on different local drives will conflict with each
other because the .sol files are always stored on the system disk by default. For example, the following two
movies can read and write each other's local SharedObjects:

C:\circle\demo.swf

D:\circle\demo.swf

To delete an .sol file from disk, delete all the properties assigned to the corresponding SharedObject's data
property. For example:

// Retrieve the SharedObject player1
player1Info_so = SharedObject.getLocal("player1");

// Delete all properties of player1Info_so.data
for (var p in player1Info_so.data) {
 delete playerInfo_so.data[p];
}

A small local storage limit setting in the Player does not prevent the creation of SharedObject instances in
ActionScript. However, when the movie closes or when flush() is invoked, the corresponding .sol file will not
be created unless enough space is available. See SharedObject.flush() and System.showSettings().

Bugs

In Flash 6, up through build 29 (version 6.0.29.0), when a movie is retrieved from a URL with a query string, the
query string is included in the directory name that contains the local .sol file. For example, an .sol file saved
from a movie loaded from:

http://www.moock.org/intro.swf?type=long

is stored erroneously in the local directory:

www.moock.org/intro.swf?type=long/

On Windows, question marks are not allowed in filenames, so the attempt to write the local .sol file fails in the
preceding case. In later versions of the Flash Player (build 6.0.30.0 or later), the .sol file is stored correctly in:

www.moock.org/intro.swf/

When using a local SharedObject in a movie loaded with a query string, use the localPath parameter of
getLocal() to prevent the query string from being included in the directory name for the local .sol file.

Refer to the Flash Comm Server documentation for details on the SharedObject object's getRemote(), connect(
), and close() methods, which are used to manage remote shared objects.

See Also

SharedObject.getSize(), System.showSettings()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

SharedObject.getSize() Method Flash 6

returns the size of the SharedObject, in bytes

theSharedObj.getSize()

Returns

The integer size of theSharedObj, in bytes.

Description

The getSize() method returns the total byte size of all the properties of theSharedObj.data. When

requesting an increase in the local storage setting for a domain, the getSize() method can be used to tell the user
exactly how much space is required by a movie (see the Example for SharedObject.flush()). To convert bytes to
kilobytes (KB), divide by 1024:

soKB = Math.floor(theSharedObj.getSize() / 1024);

The more properties theSharedObj.data has, the longer getSize() takes to execute.

See Also

SharedObject.flush()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

SharedObject.onStatus() Event Handler Flash 6

invoked when a SharedObject generates a status message
(error, information, warning)

theSharedObj.onStatus(infoObject)

Arguments

infoObject

An object whose code and level properties contain the status message.

Description

For local SharedObjects, the onStatus() event occurs only when flush() is invoked and the local storage limit for the domain is too low
to save the SharedObject to disk. When the limit is too low, Flash displays a Settings dialog box asking the user to increase the disk
space for the current domain. Once the user's decision has been made, onStatus() is invoked and passed an infoObject that

indicates whether the requested space was added. The infoObject defines two properties, code and level, with possible

values pertaining to local SharedObjects listed in Table 18-17. Note that there is no "pending" status associated with onStatus();
however, the word "pending" is a possible return value of the flush() method.

Table 18-17. SharedObject.onStatus() infoObject property values for local SharedObjects

code property values level property values Meaning

"SharedObject.Flush.Failed" "error" The user did not add enough space to store the SharedObject.

"SharedObject.Flush.Success" "status" The user added enough space to store the SharedObject.

For local SharedObjects, we need to check the value of the code property only, as shown in the following Example.

Example

The following onStatus() handler is executed after the user has decided whether to allow enough disk space to save
theSharedObj_so. If enough space is not provided, the code disables the application:

theSharedObj_so.onStatus = function (infoObject) {
 // The infoObject's code property tells us whether the user
 // provided enough space to save the SharedObject.
 if (infoObject.code = = "SharedObject.Flush.Success") {
 // Space was provided.
 output_txt.text = "Required disk space added. Application saved.";
 } else if (infoObject.code = = "SharedObject.Flush.Failed") {
 // Space was not provided.
 output_txt.text += "You must increase disk space to use this application.";
 // Display an "application disabled" frame.

 gotoAndStop("disabled");
 }
}

See Also

SharedObject.flush(), SharedObject.getSize()

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound Class Flash 6

control over sounds in a movie and external sound loading
toolsFlash 5; enhanced in

Constructor

new Sound()
new Sound(target)

Arguments

target

A string indicating the path to the movie clip or document level whose sound is to be controlled. It can also be a reference to
a movie clip or document level (references are converted to paths when used in a string context).

Properties

duration

The total length of the sound, in milliseconds.
id3

Access to the ID3 tags of an MP3 file.
position

The length of time the sound has played, in milliseconds.

Methods

attachSound()

Associate a sound from the Library with a Sound instance.
getBytesLoaded()

The number of downloaded bytes of an external sound file.
getBytesTotal()

The physical disk size of an external sound file, in bytes.
getPan()

Retrieve the current pan setting.
getTransform()

Determine the current distribution of the channels of a sound to the left and right speakers (i.e., balance).
getVolume()

Retrieve the current volume.

loadSound()

Download an external sound file into the Player.
setPan()

Set the pan across a sound's left and right channels.
setTransform()

Distribute the left and right channels between the left and right speakers (i.e., balance).
setVolume()

Set the sound volume.
start()

Start playing an attached or loaded event sound.
stop()

Silence all sounds or silence a specified attached or loaded sound.

Event Handlers

onLoad()

Occurs when an external sound finishes loading.
onSoundComplete()

Occurs when a sound finishes playing.

Description

Objects of the Sound class are used to load external sounds and control both existing and loaded sounds in a movie. Sound objects
can control:

All the sounds in the Flash Player

All the sounds in a particular movie clip instance or main movie (including all sounds in any nested clips)

An individual programmatically attached or downloaded sound

To create a Sound object that controls all the sounds in the Player (including sounds in .swf files on document levels), use the Sound
constructor without any parameters. For example:

myGlobalSound = new Sound();

To create a Sound object that controls all the sounds in a particular clip or main movie, supply a target parameter indicating the

clip or movie to control. Note that this also controls sounds in clips nested within target. For example:

spaceshipSound = new Sound("spaceship"); // Control sounds in spaceship clip
mainSound = new Sound("_root"); // Control sounds on main timeline

To make an individual sound that can be started, stopped, and looped independently, create any kind of Sound object, and then add a
sound to it using the attachSound() or loadSound() method.

To load an external sound file into a Sound object, use loadSound(). A loading sound's progress can be monitored with
getBytesLoaded(), getBytesTotal(), and onLoad().

Flash does not provide access to, or control over, sound frequency or pitch information, but Flash does expose the length of a sound
(duration) and the elapsed time (position).

Flash can play a maximum of eight individual sounds simultaneously. When loaded via attachSound(), each simultaneous sound

needs its own Sound instance.

A sound does not stop playing when the object that controls it is deleted. Use Sound.stop() to halt the
playback of loaded or attached sounds.

See Also

capabilities.hasAudio, stopAllSounds(); _soundbuftime

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.attachSound() Method Flash 5

associate a sound from the Library with a Sound object

soundObject.attachSound(linkageIdentifier)

Arguments

linkageIdentifier

The name of the sound to attach, as specified in the Library under Options Linkage.

Description

The attachSound() method places an exported Library sound under soundObject's control. Once attached,

the sound can be started and stopped individually by invoking start() and stop() on soundObject. For

instructions on pausing a sound, see the online technote posted at:

http://www.moock.org/asdg/technotes/pauseSound/

In order for a sound to be attached to soundObject, the sound must be exported from the movie's Library.

To export a sound, follow these steps:

In the Library, select the sound to export.1.
Select Options Linkage. The Linkage Properties dialog box appears.2.
Under Linkage, select Export For ActionScript.3.
In Flash 6, optionally uncheck the "Export in first frame" checkbox.4.
In the Identifier box, enter a unique name by which to identify the sound.5.

In Flash 5, all exported sounds are loaded in the first frame of the movie that contains
them (not when they are actually attached or played via ActionScript), which can cause
long load delays if the sounds are large.

In Flash 5, you can gain better control over the loading of sounds by placing them in external .swf files and using
loadMovie() or MovieClip.loadMovie() to import them as necessary.

In Flash 6, attached sounds can be exported on any frame. In the Linkage Properties dialog box, uncheck "Export
in first frame," and then place the sound on the movie's main timeline at the desired export frame. The
attachSound() method will work only after that frame. Alternatively, use loadSound() to retrieve an external
sound file when one is needed.

Only one sound can be attached to a Sound object at a time, but you can create up to eight simultaneous Sound
objects. Attaching a new sound to a Sound object replaces any sound previously attached to that object. To keep
multiple attached sounds in synch, attach them to separate Sound objects and start them all in a single frame,
then use Sound.setVolume() to silence each sound or make it audible as necessary.

When a movie with an exported sound is loaded into a target level or movie clip, the exported sound can be
attached only if the Sound object's specified target matches that level or clip. For example, suppose we've

stored exported sounds in linkedSounds.swf, and then we load linkedSounds.swf into a movie clip named host.

When the .swf file has completely loaded, we can safely attach and play its exported sounds as follows:

// Create a new sound with a target of host
host.bang = new Sound(host);
host.bang.attachSound("loudBang");
host.bang.start();

It's a common mistake to omit the target argument when constructing Sound objects in loaded movies. If

target is not supplied, it defaults to _level0, where the exported sound cannot be found. For example,

the following attempt to play a sound in host fails because the sound loudBang is not available in the

Library of _level0:

// Create a new sound with an implied target of _level0.
host.bang = new Sound();

// This operation fails..."loudBang" is not in _level0's Library.
host.bang.attachSound("loudBang");

// The sound won't start because it wasn't successfully attached.
// We forgot to specify a target when we constructed host.bang.
host.bang.start();

From within a movie that will be loaded into other movies, we can ensure that exported sounds will always be
attachable by using the this keyword as the target parameter of all Sound objects. For example:

// Code inside sounds.swf, which will be loaded into other movies
music = new Sound(this); // Set target to current movie clip
music.attachSound("song");
music.start();

Example

The following example adds a sound with the identifier phaser to the Sound object phaserSound. It

then starts and stops the phaser sound. We need not specify the target in the constructor, provided this is

the main move and not a movie loaded into a movie clip:

phaserSound = new Sound();
phaserSound.attachSound("phaser");

// Start the phaser sound
phaserSound.start();

// Stop just the phaser sound
phaserSound.stop("phaser");

See Also

Sound.loadSound(), Sound.start(), Sound.stop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.duration Property Flash 6

the total length of the sound, in milliseconds read-only

soundObject.duration

Description

The duration property returns the length, in milliseconds, of the attached or loaded sound associated with

soundObject. It does not apply to timeline sounds placed at authoring time. If multiple sounds are loaded into a single

soundObject, the duration property reflects the most recently loaded sound. If the sound is looped, duration
returns the length of one loop. If no attached or loaded sound exists, duration returns undefined. While an external

streaming sound is loading, duration reflects the length of the sound loaded so far. While an external event sound is

loading, duration stores 0 until the sound has completely loaded, at which point it stores the actual length of the sound.

Theoretically, duration should be available from Sound.onLoad(), but a bug in Flash 6 prevents access to it (see the

following Bugs).

The duration property can be used with position to determine the percentage of a sound that has played so far. See

Sound.position for example code that increases the volume of a sound proportionate to the percentage played.

Bugs

In Flash 6, when a sound is exported from the Library and loadSound() is invoked on soundObject, the duration
property matches the Library sound's length until part of the external sound has been downloaded to the Player. To ensure an
accurate reading for duration, test its value only after getBytesLoaded() returns a positive value.

In Flash 6, the duration property is not initially available within onLoad(). Use setInterval() to poll for a valid

duration, as follows:

song = new Sound();
song.onLoad = function (success) {
 // Because of the bug, no duration displays
 trace("Initial Duration: " + this.duration);

 // Store a reference to the current sound
 var theSound = this;

 // Create a function that checks if duration exists
 function pollForDuration () {
 if (theSound.duration >= 0) {
 // Show the duration, now that it's available
 trace("Actual duration: " + theSound.duration);
 // Play the sound
 theSound.start();
 // Stop polling for a valid duration
 clearInterval(intID);
 }
 }

 // If the sound loaded properly...
 if (success = = true) {
 // Repeatedly check for a valid duration
 var intID = setInterval(pollForDuration, 100);
 }
}

// Load the MP3 file
song.loadSound("track1.mp3", false);

Example

The following code attaches the exported sound "JingleBells" to a Sound object and then checks the length of the sound:

music = new Sound();
music.attachSound("JingleBells");
trace(music.duration); // Displays length of JingleBells, in milliseconds

See Also

Sound.position

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.getBytesLoaded() Method Flash 6

the number of downloaded bytes of an external sound file

soundObject.getBytesLoaded()

Returns

An integer representing the number of bytes that have finished downloading to the Player. Divide by 1024 to convert bytes to kilobytes
(KB).

Description

The getBytesLoaded() method tells us the number of bytes of an external sound file that have downloaded into the Flash Player due to a
loadSound() call. For a new Sound object, getBytesLoaded() returns undefined. Immediately after each call to loadSound(),

getBytesLoaded() also returns undefined. As data arrives, getBytesLoaded() returns the number of bytes transferred so far (from 0

to getBytesTotal()), until the entire sound has loaded. From then on, it returns the total number of bytes last transferred, until the next
call to loadSound().

For Sound objects, getBytesLoaded() is used with getBytesTotal() to determine (and display, normally) the load progress of a
downloading sound file. However, merely detecting the completion of a load operation does not require getBytesLoaded(); the onLoad(
) event handler is executed automatically when a sound finishes loading.

Example

The following code adds a new method, preloadSound(), to all Sound objects. It operates in the same way as loadSound(), except that
it uses getBytesLoaded() to report load progress while the sound is loading. The onLoad() handler responds to completion of the
sound load operation, as usual. Note that as is, the code cannot load multiple sounds simultaneously because it does not queue preload
requests. A queuing preloader is left as an exercise for the reader.

/*
 * Method: Sound.checkLoadProgress()
 * Desc: Checks progress of a load(). Called only by preload().
 * Reports progress by invoking a custom Sound.onBytesLoaded() handler.
 */
Sound.prototype.checkLoadProgress = function () {
 // Check how many KB have loaded.
 var kbLoaded = Math.floor(this.getBytesLoaded()/1024);
 // Check the size of the file loading, in KB.
 var kbTotal = Math.floor(this.getBytesTotal()/1024);
 // Calculate the percent complete.
 var percentDone = isNaN(Math.floor(kbLoaded/kbTotal * 100)) ?
 0 : Math.floor(kbLoaded/kbTotal * 100);
 // Execute onBytesLoaded(), which typically would display load progress.
 this.onBytesLoaded(this.getBytesLoaded(), this.getBytesTotal(),
 kbLoaded, kbTotal, percentDone);
 // If the amount loaded is equal to the total file size,
 // the file is finished loading. However, we must ensure

 // that getBytesLoaded() returns a value greater than 0
 // because both getBytesLoaded() and getBytesTotal()
 // return 0 until the first bit of data arrives.
 if (this.getBytesLoaded() > 5
 && this.getBytesLoaded() = = this.getBytesTotal()) {
 // ...stop calling checkLoadProgress().
 this.clearLoadCheck();
 }
}

/*
 * Method: Sound.clearLoadCheck()
 * Desc: Cancels an interval calling checkLoadProgress().
 */
Sound.prototype.clearLoadCheck = function () {
 // If there is a load interval for this Sound object...
 if (this.loaderID) {
 // ...stop calling it.
 clearInterval(this.loaderID);
 }
}

/*
 * Method: Sound.preloadSound()
 * Desc: Begins the download of a sound file and executes
 * checkLoadProgress() every 200 ms until the file has loaded.
 */
Sound.prototype.preloadSound = function (url, isStreaming) {
 // Always stop any previous preload before proceeding.
 this.clearLoadCheck();

 // Load the Sound file.
 this.loadSound(url, isStreaming);
 // Call checkLoadProgress() every 200 milliseconds.
 this.loaderID = setInterval(this, "checkLoadProgress", 200);
}

// Usage:
// Create a Sound object.
music = new Sound();
// Assign an onLoad() callback.
music.onLoad = function (success) {
 // If the load was successful...
 if (success) {
 // ...use the new sound.
 trace("done loading!");
 this.start();
 } else {
 // ...otherwise, perform failure operations and
 // cancel the preload interval (REQUIRED!).
 trace("load failed");
 this.clearLoadCheck();
 }
}
// Assign an onBytesLoaded() callback. This is where each individual
// Sound object can decide what to do with the preload information.

music.onBytesLoaded = function (bytesLoaded, bytesTotal,
 kbLoaded, kbTotal, percentLoaded) {
 trace("Loading: " + kbLoaded + " of " + kbTotal);
 trace(percentLoaded + " percent complete.");
}

// Load a streaming sound.
music.preloadSound("http://www.yoursite.com/sounds/song.mp3", true);

See Also

setInterval(), Sound.getBytesTotal(), Sound.onLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.getBytesTotal() Method Flash 6

the physical disk size of an external sound file, in bytes

soundObject.getBytesTotal()

Returns

An integer representing the size of the sound file, in bytes. Divide by 1024 to convert bytes to kilobytes (KB).

Description

The getBytesTotal() method tells us the byte size of an external file being loaded into soundObject via

loadSound(). For a new Sound object, getBytesTotal() returns undefined. Immediately after each call to

loadSound(), getBytesTotal() also returns undefined until the size of the sound file being loaded is

determined. After that, it returns the total byte size of the loading sound until the next call to loadSound().

For Sound objects, getBytesTotal() is used together with getBytesLoaded() to determine (and display,
normally) the load progress of a downloading sound file. See Sound.getBytesLoaded() for details and example
code.

See Also

Sound.getBytesLoaded(), Sound.onLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.getPan() Method Flash 5

retrieve the last pan value set

soundObject.getPan()

Returns

A number indicating the last value set by setPan(). Usually in the range of -100 (left channel on, right channel
off) to 100 (right channel on, left channel off). Default value is 0 (left and right channels in equal proportions).

Description

By adjusting the pan of a sound, you can create the illusion of a moving sound source. The getPan() method is
used to determine the current distribution of the left and right channels of the sounds controlled by
soundObject. Normally, getPan() is used in combination with setPan() to adjust the current pan of a

sound.

Example

Here we alter the pan of a sound by 20 towards the left channel:

mySound = new Sound();
mySound.setPan(mySound.getPan() - 20);

See Also

Sound.getTransform(), Sound.setPan()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.getTransform() Method Flash 5

determine the current distribution of the channels of a
sound to the left and right speakers

soundObject.getTransform()

Returns

An anonymous object whose properties contain the channel percentage values for the sounds controlled by
soundObject.

Description

The getTransform() method returns an object with properties that tell us how the channels in the sounds
controlled by soundObject are distributed to the left and right speakers. The properties of the returned

object are ll, lr, rl, and rr, as described in the entry for the Sound.setTransform() method.

See Also

Sound.getPan(), Sound.setTransform()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.getVolume() Method Flash 5

retrieve the current volume setting

soundObject.getVolume()

Returns

A number indicating the current volume as set by setVolume(). Usually in the range of 0 (no volume) to 100
(default volume), but it can be higher.

Description

The getVolume() method is used to determine the current volume of the sounds controlled by
soundObject. Normally, getVolume() is used in combination with setVolume() to adjust the current

volume of a sound.

Example

Here we reduce the volume of a sound by 20:

mySound = new Sound();
mySound.setVolume(mySound.getVolume() - 20);

See Also

Sound.setVolume()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.id3 Property Flash 6.0.40.0

access to the ID3 tags of an MP3 file read-only

soundObject.id3

Description

The id3 property is an object whose properties represent the ID3 tags of an MP3 sound file. MP3 files can be loaded into

soundObject from a URL, via loadSound(), or from the movie's Library via attachSound(). The available id3 object properties

are listed in Table 18-18. Note that Flash Player 6 supports ID3v1 and ID3v1.1 tags only.

Table 18-18. Sound.id3 object properties

Property Description

album The name of the album from which the song originates.

artist The performer of the song.

comment Arbitrary notes about the song.

genre An integer that maps to a description of the song's musical style. For details, see Usage.

songname The title of the song.

track The number of the song on its album. (ID3v1.1 only)

year The year the song was produced.

An MP3 file must be loaded in its entirety before its ID3 tags are available (ID3v1 and ID3v1.1 tags are stored at the end of an MP3 file).
If the MP3 file does not contain valid ID3 tags in a version supported by the Flash Player, the id3 object's properties are undefined.

Usage

The ID3 "standard" is not an official specification maintained by a recognized standards body. Rather, it is an agreed-upon system for
embedding metadata in an MP3 file; this system was created by a single programmer, Eric Kemp (who also assembled the first list of 80
genre names). Genre names above 80 are not formalized, nor is the entire genre system considered adequate by most music professionals.
For one list of genres, see:

http://www.mp3dev.org/mp3/doc/html/id3.html

For more information on the ID3 format, see http://www.id3.org/.

Bugs

The id3 properties are not immediately available from Sound.onLoad(). Use setInterval() to poll for a valid duration before

accessing the id3 object, as shown in the following Example. (The id3 properties themselves will be undefined if no ID3 tags are

found, so they cannot be polled reliably.)

Example

The following code loads an MP3 file and displays its ID3 tags once it has finished loading:

// REQUIRES FLASH PLAYER 6.0.40.0 OR HIGHER
// Create a text field in which to display the ID3 information.
this.createTextField("output_txt", 1, 100, 100, 400, 300);
output_txt.border = true;

// Create a Sound object.
song = new Sound();
// When the sound loads, display the ID3 information.
song.onLoad = function (success) {
 // Store a reference to the current sound.
 var theSound = this;

 // Create a function that displays the ID3 info once sound duration is valid.
 function pollForDuration () {
 if (theSound.duration > 0) {
 // Display ID3 information.
 output_txt.text += "Title: " + theSound.id3.songname + "\n";
 output_txt.text += "Artist: " + theSound.id3.artist + "\n";
 output_txt.text += "Album: " + theSound.id3.album + "\n";
 output_txt.text += "Year: " + theSound.id3.year + "\n";
 output_txt.text += "Track: " + theSound.id3.track + "\n";
 output_txt.text += "Genre: " + theSound.id3.genre + "\n";
 output_txt.text += "Notes: " + theSound.id3.comment + "\n";

 // Play the sound.
 theSound.start();

 // Stop polling for a valid duration. This is required due to a
 // bug: the id3 property is not immediately available from Sound.onLoad().
 clearInterval(intID);
 }
 }

 // If the sound loaded properly...
 if (success = = true) {
 // ...repeatedly check for a valid duration.
 var intID = setInterval(pollForDuration, 100);
 }
}

// Load the MP3 file
song.loadSound("track1.mp3", false);

See Also

capabilities.hasMP3, Sound.loadSound(), Sound.onLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.loadSound() Method Flash 6

download an external sound file into the Player

soundObject.loadSound(url, isStreaming)

Arguments

url

A string specifying the network or local path of the sound file to load.
isStreaming

A Boolean specifying the type of sound to load: either streaming (true) or event (false).

Description

The loadSound() method loads an external sound file from url. In Flash 6, only MP3 files can be loaded via loadSound(). If

isStreaming is true, the loaded sound will behave as a streaming sound and will automatically begin playback as soon as

the required buffer has loaded (see the global _soundbuftime property). If isStreaming is false, the loaded sound

will behave as an event sound and will not begin playing automatically. To play a loaded event sound, use Sound.start() after the
sound has fully loaded (see the following Example). To stop the playback of a loaded sound (either streaming or event), use
Sound.stop(). In versions of the Flash Player prior to 6.0.40.0, a streaming sound cannot be played via Sound.start(). See that
method's entry for more information.

A loading sound file's download progress can be monitored via getBytesLoaded() (see that method's entry for sample preloading
code). When the sound finishes loading, Sound.onLoad() executes. If the sound file cannot be found at url, loadSound() fails

silently and Sound.onLoad() executes with a success parameter set to false.

To load a sound from a movie's Library instead of from a file, use attachSound(). Unlike attached sounds, multiple loaded sounds
can be loaded into a single Sound object simultaneously. However, the position and duration properties and the start()

method apply only to the most recently loaded sound. Hence, for best control over multiple sounds, each sound file should be
loaded into its own Sound instance. When both attached and loaded sounds are present in a single Sound object, start() applies to
the loaded sound, even if the attached sound is added after the loaded sound is loaded. For example:

// Load track1.mp3
bgMusic.loadSound("track1.mp3");
// Sometime after track1.mp3 loads, attach track2 using attachSound()
bgMusic.attachSound("track2");
// Play the sound...
bgMusic.start(); // Plays track1.mp3 (the loaded sound)

Flash can play a maximum of eight individual sounds simultaneously. When loaded via attachSound(), each sound needs its own
Sound instance.

To determine whether the Flash Player being used supports MP3 audio playback, use System.capabilities.hasMP3.

Usage

Compressed MP3 files often contain minor imperfections (such as an initial delay) that affect looped playback in Flash. To
compensate, a loaded event sound can be offset by a small amount, as follows:

loopSound.start(0.05, 3);

However, this technique does not account for any ending silence on the sound, so results may vary. For best loop performance, use
ADPCM or MP3 compression directly in Flash and attach the loop sound from the Library using attachSound().

Example

To load a sound, we first create a Sound object, then call the loadSound() method. Often, it's also a good idea to respond to the
completion of the sound's download by defining a callback function for onLoad(), as shown in the following example. First, we
load an event sound; notice that the onLoad() handler must be defined before the loadSound() call:

// Create a Sound object
music = new Sound();
// Define an onLoad() callback function for our object
music.onLoad = function () {
 // Place code here to respond to sound load completion
 trace("Sound has fully loaded");
 // It's an event sound and it's fully loaded, so we can safely play it now
 this.start();
}
// Load an event sound
music.loadSound("http://www.somesite.com/song.mp3", false);

Now, we load the same sound, but as a streaming sound. It's not as important to define an onLoad() callback for a streaming sound
because the sound starts playing automatically when it has been buffered sufficiently:

// Create a Sound object
music = new Sound();
// Load a stream sound
music.loadSound("http://www.somesite.com/song.mp3", true);

See Also

capabilities.hasAudio, Sound.getBytesLoaded(), Sound.getBytesTotal(), Sound.onLoad(), _soundbuftime

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.onLoad() Event Handler Flash 6

occurs when an external sound finishes loading

soundObject.onLoad(success)

Arguments

success

A Boolean: true if the load succeeded; otherwise, false. If the sound file was not found in a call to loadSound(

), onLoad() is executed with a success parameter of false.

Description

The onLoad() event handler executes when a sound file has downloaded completely into soundObject due to an

earlier call to loadSound(). To use onLoad(), we assign it a callback (i.e., a custom-made function) that performs the action
we take when our sound loads properly and/or the action we take when the load attempt fails. For example:

// Create the Sound object
carSound = new Sound();
// Assign a callback
carSound.onLoad = function (success) {
 if (success) {
 // Respond to completed sound load operation here
 } else {
 // Execute load-failure code here
 }
}

If the loaded sound is an event sound, we can use onLoad() to start playing it, as follows:

carSound = new Sound();
carSound.onLoad = function (success) {
 if (success) {
 this.start();
 } else {
 displayLoadError();
 }
}
carSound.loadSound("http://www.somesite.com/sounds/driving.mp3", false);

The onLoad() callback handler should be defined before the call to loadSound() is made. Notice that from the body of the
onLoad() handler we can refer to our sound object with the this keyword.

Before a sound has fully loaded, we can check its download progress with getBytesLoaded().

Bugs

The duration, position, and id3 Sound properties are not initially available from within an onLoad() handler.

See those property entries for details and workarounds.

See Also

Sound.getBytesLoaded(), Sound.getBytesTotal(), Sound.loadSound(), Sound.onSoundComplete()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.onSoundComplete() Event Handler Flash 6

occurs when a sound finishes playing

soundObject.onSoundComplete()

Description

The onSoundComplete() event handler executes when an attached or loaded sound finishes playing (i.e., when
soundObject.position = = soundObject.duration). It can be used to create a playlist of sounds that play in sequence or to cue
some animation that starts precisely when a sound ends. To use onSoundComplete(), we assign it a callback function that
performs the action we wish to take when our sound finishes playing. For example, the following code loads an "introduction"
voiceover track. When the track is done, the menu at frame chapter1 appears:

narrative = new Sound();
narrative.attachSound("introduction");
narrative.start();

narrative.onSoundComplete = function () {
 // Intro's done. Display the chapter1 menu.
 _level0.gotoAndStop("chapter1");
}

Flash checks ten times per frame tick to see if the onSoundComplete() event should be triggered. Hence, theoretically,
movies with higher frame rates have more accurate onSoundComplete() events.

Example

The following code displays the playback progress of a sound in the Output window:

// Create a Sound object
s = new Sound();
// Attach and play a Library sound
s.attachSound("groove");
s.start();

// When the sound finishes, display "done!" in the Output window
s.onSoundComplete = function () {
 trace("done!");
}

// Every frame, check how much of the sound has played
this.onEnterFrame = function () {
 trace("Played: " + s.position + " of " + s.duration + " milliseconds");
}

See Also

Sound.duration, Sound.onLoad(), Sound.position

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.position Property Flash 6

the length of time the sound has played, in
milliseconds

read-
only

soundObject.position

Description

The position property indicates how long an attached or loaded sound has been playing, in milliseconds. If multiple sounds are loaded

into a single soundObject, the position property reflects the first loaded sound. See the following Bugs for details. The

position property can be used to cue animations that synch directly to the playback of a sound. For example, this code plays an explosion

animation after a sound has played for five seconds:

// Create the sound
introMusic = new Sound();
// Attach the Library sound exported as "song"
introMusic.attachSound("song");

// Every frame, check if the sound has played for 5 seconds
this.onEnterFrame = function () {
 // If the sound has played for 5 seconds...
 if (introMusic.position > 5000) {
 // Show the explosion
 this.gotoAndPlay("explosion_animation");
 // Stop checking the sound position
 delete this.onEnterFrame;
 }
}

// Start playing the sound
introMusic.start();

Used with the duration property, position can also tell us what percentage of a sound has played so far (see the following Example).

However, for looped sounds, position resets to 0 with each loop. Hence, to determine the percentage of a looping track that has played,

the position of each loop must be tallied and compared to the sound's duration multiplied by the number of loops.

Before a sound plays, its position property returns 0, but after a sound completes, position is not reset to 0; instead, it equals the

sound's duration.

The position property is read-only and cannot be used to play a sound at a certain position. Use Sound.start() with an offset value to

start a sound at a specified time offset.

Bugs

In Flash 6, the position property is not reset for each sound loaded into a single Sound instance. For example, if the instance

theMusic loads and completely plays song1.mp3 and then loads song2.mp3, its position property will be equal to song1.mp3's total

duration. To avoid this problem, load each sound into a unique Sound instance. Where possible, delete completed instances to save memory.

In Flash 6, while a streaming sound is loading, the position property can be inaccurate (on the order of milliseconds). Use nonstreaming

sounds when position accuracy is critical (for example, when synching multiple sounds).

In Flash 6, the position property is not initially available within onLoad(). Use setInterval() to poll for a valid position, as follows:

song = new Sound();
song.onLoad = function (success) {
 // Because of the bug, no position displays
 trace("Initial Position: " + this.position);

 // Store a reference to the current sound
 var theSound = this;

 // Create a function that checks if position exists
 function pollForPosition () {
 if (theSound.position >= 0) {
 // Show the position, now that it's available
 trace("Actual position: " + theSound.position);
 // Stop polling for a valid position
 clearInterval(intID);
 }
 }

 // If the sound loaded properly...
 if (success = = true) {
 // Play the sound
 theSound.start();
 // Repeatedly check for a valid position
 var intID = setInterval(pollForPosition, 10);
 }
}

// Load the MP3 file
song.loadSound("track1.mp3", false);

Example

The following code adds to all sounds a startFadeIn() method that increases the volume of a sound proportionate to the amount played. As is,
the method works with attached sounds only, because it lacks the preloader code required for applying the effect to loaded sounds:

/*
 * Method: Sound.startFadeIn()
 * Desc: Fades a sound in from 0-100% volume.
 * Params: fadeDuration. The length, in milliseconds, of the fade in.
 */
Sound.prototype.startFadeIn = function (fadeDuration) {
 this.setVolume(0);
 this.fadeDuration = (fadeDuration = = undefined) ? this.duration : fadeDuration;
 this.volInterval = setInterval(this, "fadeIn", 10);
}

/*
 * Method: Sound.fadeIn()
 * Desc: Internal method that performs a sound fade. Called by startFadeIn().
 */
Sound.prototype.fadeIn = function () {

 this.vol = Math.floor(this.position / this.fadeDuration * 100);
 this.setVolume(this.vol);
 // Stop calling fadeIn() if the sound has finished playing
 if (this.fadeDuration < this.position) {
 clearInterval(this.volInterval);
 }
 trace("volume: " + this.vol);
}

// Usage:
// Create a new Sound object.
var music = new Sound();

// Attach a sound from the Library and play it
music.attachSound("song");
music.start();

// Invoke the startFadeIn() method with a 2 second fade (2000 milliseconds)
music.startFadeIn(2000);

See Also

Sound.attachSound(), Sound.duration, Sound.loadSound()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.setPan() Method Flash 5

set the balance of a sound's left and right channels

soundObject.setPan(pan)

Arguments

pan

A number between -100 (left) and 100 (right), indicating the distribution between the left and right speakers for sounds
controlled by soundObject. If the pan supplied is greater than 100, the actual value assigned is 200 - pan. If the

pan supplied is less than -100, the actual value assigned is -200 - pan.

Description

The setPan() method dictates the balance of the right and left channels of the sounds controlled by soundObject. By

adjusting the pan over time, we can cause a sound to move from one speaker to the other (known as panning).

To play the sounds controlled by soundObject in the left speaker only, use a pan of -100. To play the sounds controlled

by soundObject in the right speaker only, use a pan of 100. To balance the two channels evenly, use a pan of 0.

Note that setPan() affects all the sounds controlled by soundObject. If soundObject is a Player-wide sound, setPan(

) affects all the sounds in a movie. If soundObject is tied to a clip or a main timeline, setPan() affects all the sounds in that

clip or timeline and all the clips it contains.

The effects of setPan() can be changed only by another call to setPan(). A setPan() assignment affects all future sounds
controlled by soundObject, even if soundObject is deleted.

Example

The following code adds a new method, doPanEffect(), to all movie clips, which causes sounds in a movie clip to pan endlessly
between the left and right speakers:

// Method: MovieClip.doPanEffect()
MovieClip.prototype.doPanEffect = function () {
 var panEffect = new Sound(this);
 var panDirection = "right";
 var panIncrement = 10;

 this.onEnterFrame = function () {
 if (panDirection = = "right") {
 newPan = panEffect.getPan() + panIncrement;
 if (newPan > 100) {
 panDirection = "left";
 panEffect.setPan(panEffect.getPan() - panIncrement);
 } else {
 panEffect.setPan(newPan);

 }
 } else {
 newPan = panEffect.getPan() - panIncrement;
 if (newPan < -100) {
 panDirection = "right";
 panEffect.setPan(panEffect.getPan() + panIncrement);
 } else {
 panEffect.setPan(newPan);
 }
 }
 }
}

// Usage:
theSoundClip_mc.doPanEffect();

The following example causes sounds in soundClip_mc to react to the mouse. Assuming a Stage width and height of 550

and 400, the sounds pan left and right with the mouse's horizontal position and increase or decrease in volume with the mouse's
vertical position. To try out the effect, create a new movie clip instance named soundClip_mc on the main timeline and

attach the following code to frame 1 of the main timeline. Then either place sounds inside soundClip_mc or export a sound

from the Library with an export identifier of "bgMusic".

// Create a new Sound object and attach the sound bgMusic to it
soundClip_mc.volControl = new Sound(soundClip_mc);
soundClip_mc.volControl.attachSound("bgMusic");
soundClip_mc.volControl.start(0, 999); // Play and loop the sound

// With every frame, set volume and pan
soundClip_mc.onEnterFrame = function () {
 // Measure the mouse's horizontal location, then set the pan accordingly
 var mouseX = (_root._xmouse / 550) * 200;
 this.volControl.setPan(mouseX - 100);
 // Measure the mouse's vertical location, then set the volume accordingly
 var mouseY = (_root._ymouse / 400) * 300;
 this.volControl.setVolume(300 - mouseY);
}

See Also

Sound.getPan(), Sound.setTransform(), Sound.setVolume()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.setTransform() Method Flash 5

distribute the left and right channels between the left and
right speakers

soundObject.setTransform(transformObject)

Arguments

transformObject

A user-defined object that specifies new channel settings as a series of reserved properties.

Description

The setTransform() method gives us precise control over how the channels in a sound are output to the left and
right speakers. In principle, setTransform() is not unlike setPan(), but it provides more detailed sound control
over stereo sounds.

A stereo sound is a combination of two distinct sounds—the left channel and the right channel—which
normally are sent separately to the left and right speakers. However, using setTransform(), we can dictate how
much of each channel is broadcast in each speaker. For example, we can tell Flash to play half of the left channel
in the left speaker, none of the left channel in the right speaker, and all of the right channel in both speakers. Or
we can tell Flash to play all of the left and right channels in the left speaker only.

To use setTransform(), we must first create an object with a series of predefined properties. The properties
express how to distribute the left and right channels of a stereo sound between the left and right speakers, as
described in Table 18-19.

Table 18-19. Properties of a transformObject

Property name Property value Property description

ll 0 to 100 The percentage of the left channel to play in the left speaker

lr 0 to 100 The percentage of the right channel to play in the left speaker

rl 0 to 100 The percentage of the left channel to play in the right speaker

rr 0 to 100 The percentage of the right channel to play in the right speaker

Once we have created an object with the properties described in Table 18-19, we pass that object to the
setTransform() method of our Sound object. The values of the properties on our transformObject
become the new channel output percentages for the sounds controlled by soundObject.

To examine the current percentages of a particular Sound object, we use the Sound.getTransform() method.

Example

// Create a new Sound object

mySound = new Sound();

// Create a new generic object to use with setTransform()
transformer = new Object();

// Set the properties of the transform object
transformer.ll = 0; // None of left channel in left speaker
transformer.lr = 0; // None of right channel in left speaker
transformer.rl = 0; // None of left channel in right speaker
transformer.rr = 100; // All of right channel in right speaker

// Apply the new channel distribution by passing the transform
// object to the setTransform() method
mySound.setTransform(transformer);

See Also

Sound.getTransform(), Sound.setPan(), Sound.setVolume()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.setVolume() Method Flash 5

set the volume of sounds controlled by a Sound object

soundObject.setVolume(volume)

Arguments

volume

A number indicating the loudness of the sound controlled by soundObject, where 0 is no volume (mute). The larger

volume's absolute value (regardless of whether volume is positive or negative), the louder the sounds controlled by

soundObject will be. For example, -50 is the same volume as 50. The default value for volume is 100.

Description

The setVolume() method makes the sounds controlled by soundObject louder or softer. To entirely mute a sound, use a

volume of 0. To make a sound louder, increase volume's absolute value. Values in the range of 100-200 are generally quite

loud, but there is no predefined maximum.

Note that setVolume() affects all the sounds controlled by soundObject. If soundObject is a global sound,

setVolume() affects all the sounds in a movie. If soundObject is tied to a clip or a main timeline, setVolume() affects all

the sounds in that clip or timeline.

The volume set by setVolume() remains in effect until it is overridden by another setVolume() call. A setVolume() assignment
affects all future sounds controlled by soundObject, even if soundObject is deleted.

Example

This first example simply sets the volume of a movie clip named theClip_mc:

var mySound = new Sound(theClip_mc);
mySound.setVolume (65);

The following example shows how to make buttons that adjust a movie's volume level:

var globalSound = new Sound();
var maxVolume = 200;
var minVolume = 0;
var volumeIncrement = 20;

volumeUp_btn.onRelease = function () {
 globalSound.setVolume(Math.min(globalSound.getVolume() + volumeIncrement,
 maxVolume));
}

volumeDown_btn.onRelease = function () {
 globalSound.setVolume(Math.max(globalSound.getVolume() - volumeIncrement,

 minVolume));
}

See Also

Sound.getVolume(), Sound.stop(), Sound.stopAllSounds()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.start() Method Flash 5

begin playing an attached or loaded event sound

soundObject.start(secondOffset, loops)

Arguments

secondOffset

A floating-point number indicating the time, in seconds, at which to start playing the sound attached to soundObject
(often called an entry point). For example, a secondOffset of 1 starts playback one second after the sound's actual

beginning, as defined in the Library. The default is 0. There is no provision for an exit point (the time at which to stop playing
the sound). The sound plays until its end unless it is stopped manually. See the position property for code that stops a

sound after n milliseconds.

loops

A positive integer indicating how many times to play the sound attached to soundObject. To play the sound once, use 1

(the default); to play the sound twice in succession, use 2; and so on. The portion of the sound from secondOffset is

repeated to its end the number of times specified by loops. Applies to nonstreaming sounds only.

Description

The start() method is used to play programmatically defined sounds that were added to soundObject via attachSound() or

loadSound(). The start() method does not play all the sounds in a clip or movie; it plays only the sound most recently attached to
soundObject via attachSound() or loadSound(), and it always plays a loaded sound in favor of an attached sound if both are

present in the same Sound object.

To play only a portion of the sound attached to soundObject, use the secondOffset argument. To play the sound attached

to soundObject repeatedly, use the loops argument. Normally, multiple calls to soundObject.start() play multiple instances

of the same sound (rather than restarting the sound), except when the sound is a streaming loaded sound, in which case the sound
begins playing at the specified secondOffset. In general, sounds should be stopped via stop() before being restarted.

The start() method works with loaded streaming sounds in Flash Player 6.0.40.0 and later only. However, the loops parameter is

not available for streaming sounds in any version of the Player.

Example

// Create a new Sound object
boink = new Sound();

// Attach a sound exported as boink to the Sound object
boink.attachSound("boink");

// Play all of boink (soundOffset defaults to 0)
boink.start();

// Play only a portion of boink, starting 0.5 seconds in (loops defaults to 1)

boink.start(.5);

// Play boink three times from beginning to end
boink.start(0, 3);

See Also

Sound.loadSound(), Sound.position, Sound.stop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Sound.stop() Method Flash 5

silence all sounds or a specified attached or loaded sound

soundObject.stop()
soundObject.stop(linkageIdentifier)

Arguments

linkageIdentifier

The name of any sound attached to any Sound object with the same target as soundObject.

Linkage identifiers are specified in the Library under Options Linkage.

Description

When invoked without a linkageIdentifier, stop() silences all sounds controlled by

soundObject; if soundObject is a global sound, stop() silences all sounds in a movie; if

soundObject was created with a target parameter, stop() silences all sounds in target.

When invoked with a linkageIdentifier, stop() silences only the specific sound named by

linkageIdentifier. In that case, linkageIdentifier must be a sound that was attached to a

Sound object via attachSound(). However, the sound to stop need not be attached to soundObject itself. It

can be attached to any Sound object that shares the same target as soundObject. Or, if

soundObject was created with no target (i.e., is a global Sound object), the sound to stop can be

attached to any other global Sound object.

Example

// Create a global Sound object
mySound = new Sound();

// Attach the sound doorbell to the object
mySound.attachSound("doorbell");

// Stop all sounds in the movie
mySound.stop();

// Play doorbell
mySound.start();

// Stop just doorbell
mySound.stop("doorbell");

// Create another global Sound object
myOtherSound = new Sound();

// Attach a doorknock sound to the object
myOtherSound.attachSound("doorknock");

// Play doorknock
myOtherSound.start();

// Now stop the doorknock through mySound, not myOtherSound.
// This works because the two Sound objects have the same target.
mySound.stop("doorknock");

See Also

Sound.attachSound(), Sound.start(), stopAllSounds()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

_soundbuftime Global Property Flash 4

length of a streaming sound, in seconds, to
preload

read/write

_soundbuftime

Description

The _soundbuftime property is an integer specifying the number of seconds of a streamed sound to

preload before playing the sound (the default is 5 seconds). It applies to both timeline sounds and sounds loaded
at runtime via Sound.loadSound().

Flash synchronizes movie playback with streaming sounds to ensure that, say, a cartoon character's lips match an
accompanying soundtrack. Animations will pause until _soundbuftime seconds of streaming sound are

downloaded; therefore, a large setting (long delay) can cause excessive startup times on slower connections.
Because network streaming may be slow or briefly interrupted, a short _soundbuftime setting can cause

sound to skip (i.e., if enough sound data wasn't buffered, sounds may be interrupted temporarily). The ideal
setting will vary from movie to movie based on the complexity of the graphics, the quality settings of the sound,
and the bandwidth of the end user's Internet connection. The default setting (5 seconds) usually works well, but
experimentation may be required to find the best setting for individual cases. The streaming buffer time can be
changed during playback, but it is a global property and cannot be set separately for individual sounds.

Example

_soundbuftime = 10; // Buffer 10 seconds of audio

See Also

The Sound object, stopAllSounds()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage Object Flash 6

access to a movie's size, scale settings, and alignment

Properties

align

Placement of the movie in the Flash Player.
height

Pixel height of the available Flash Player display area or the author-time document height, depending on
the value of scaleMode.

scaleMode

Dictates how the movie is sized, relative to the Player.
showMenu

Boolean; determines the items displayed in the Flash Player's contextual menu.
width

Pixel width of the available Flash Player display area or the author-time document width, depending on
the value of scaleMode.

Methods

addListener()

Registers an object to receive onResize() events.
removeListener()

Cancels event notices for the specified listener.

Listener Events

onResize()

Occurs when movie is resized.

Description

The Stage object represents the characteristics of the Flash Player's runtime display area. It tells us the current
dimensions of the movie, notifies us when the movie changes size, and provides control over global movie
settings, such as which options appear in the Player's contextual menu (brought up via right-click on Windows
or Ctrl-click on Macintosh). Mostly, the Stage object is used to adjust the visual layout of a movie when the
browser or Standalone Player is resized.

Note that Stage is a predefined object, not a class. Its properties and methods are accessed directly, as in:

trace(Stage.width); // Displays the width of the movie

See Also

MovieClip._height, MovieClip._width

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage.addListener() Method Flash 6

registers an object to receive onResize() events

Stage.addListener(listener)

Arguments

listener

An object with an onResize() method defined.

Description

The addListener() method adds listener to the list of objects notified when Stage's onResize() event

occurs. The listener argument is an object of any class that defines a method by the name onResize; the

method is invoked when the corresponding event occurs for Stage. Instances of built-in classes, such as
TextField, Button, or MovieClip, can all respond to Stage.onResize(). To stop a listener object from receiving
events, use Stage.removeListener().

Multiple objects can respond independently to the onResize() listener event. When multiple listeners are
registered to Stage, their methods are invoked in the order the listeners were added.

For general information on how listeners work, see Chapter 10.

Example

The following code assigns an onResize() method to the ball_mc movie clip and registers the clip to

respond to the onResize() event. Note that Stage.scaleMode must be set to "noScale" in order for the

onResize() event to be triggered:

Stage.align = "LT";
Stage.scaleMode = "noScale";
ball_mc.onResize = function () {
 // Place ball_mc in the center of the Stage (assumes that
 // ball_mc's content is centered on its registration point).
 // Inside the method, 'this' refers to ball_mc.
 this._x = Stage.width/2;
 this._y = Stage.height/2;
}
Stage.addListener(ball_mc);

See Also

Stage.onResize(), Stage.removeListener(), Stage.scaleMode; Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage.align Property Flash 6

alignment of the movie within the Flash Player read/write

Stage.align

Description

When a movie is embedded in a web page, the HTML OBJECT and EMBED tags can specify dimensions that

do not match those of the Flash document. When the movie is displayed in the Standalone Player, the Player can
be resized by the user. In both cases, the string align property dictates the positioning of the movie, relative

to the space available to the Flash Player. By default, align is the empty string, indicating that the movie

should be centered horizontally and vertically in the Player. Table 18-20 lists the available alignment settings:

Table 18-20. Stage.align property values

align property Description Horizontal alignment Vertical alignment

"" (empty string) centered center center

"B" bottom, center center bottom

"T" top, center center top

"L" left side, center left center

"LB" left, bottom corner left bottom

"LT" left, top corner left top

"R" right side, center right center

"RB" right, bottom corner right bottom

"RT" right, top corner right top

The effect of align is most obvious (and most useful) when scaleMode is set to "noScale", in which case

the movie does not change size in the Player — it changes placement only.

When the Player is resized, the .swf document it contains is automatically repositioned according to align. To

force a custom positioning for elements in a movie at resize time, use the onResize() listener event.

When a movie is embedded in a web page, the OBJECT or EMBED tag can also set the value of align; any

assignment in ActionScript overrides the HTML setting.

Usage

ActionScript corrects any imprecise assignments of align to match the closest valid setting. For example,

assigning "tl" results in "LT", and assigning "jjjt" results in "T". For code clarity, however, the

documented settings should always be used.

Example

The following code pins the movie to the top-left corner of the Player:

Stage.scaleMode = "noScale";
Stage.align = "LT";

See Also

Stage.onResize(), Stage.scaleMode

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage.height Property Flash 6

pixel height of the available Flash Player display
area or author-time document

read-
only

Stage.height

Description

The integer height property indicates the pixel height of the movie, depending on the setting of

Stage.scaleMode. When scaleMode is set to "noScale", height reports the size of the Flash

Player's available display area—either the Standalone Player window's dimensions or the current size of the
OBJECT/EMBED region in the browser. When scaleMode is not set to "noScale", height reports the

size of the Flash movie as specified at authoring time via Modify Document Dimensions.

In Test Movie mode, scaleMode defaults to "noScale", so height may not match the dimensions set at

authoring time. In a browser or the Standalone Player, scaleMode defaults to "showAll", so height
matches the dimensions set at authoring time unless scaleMode is explicitly set to "noScale".

To receive notification when Stage.height changes, add listeners for the Stage.onResize() listener event.

Usage

Don't confuse Stage.height with _root._height. The former is the height of the available Player

space or the specified document dimensions, whereas the latter is the height of all objects on the main movie
timeline.

Bugs

When scaleMode is "noScale" and height is accessed on the first few frames of a movie, an incorrect

value may be reported. For safety, wait several frames before accessing height, or, better yet, access it only

within an onResize() listener.

In Test Movie mode, the height of the movie is reported as four pixels less than actual size.

Example

The following code creates a text field and centers it on stage:

Stage.scaleMode = "noScale";
Stage.align = "LT";

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.text = "Derek got a haircut.";
theField_txt._x = Stage.width/2 - theField_txt._width/2;
theField_txt._y = Stage.height/2 - theField_txt._height/2;

See Also

MovieClip.createTextField(), MovieClip._height, Stage.addListener(), Stage.onResize(),

Stage.width, the TextField class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage.onResize() Listener Event Flash 6

invoked when the movie is resized

listenerObject.onResize()

Description

The onResize() event is triggered when Stage.scaleMode is set to "noScale" and the Player dimensions change. The Player

dimensions change when either:

The Standalone Player is resized by the user or in response to an fscommand ("fullscreen", "true") call.

The user resizes a browser window containing a movie embedded using percentage values for the OBJECT/EMBED tag's

HEIGHT or WIDTH attributes.

The onResize() event lets us dynamically reposition elements in a movie, relative to the currently available space. We can use this
ability to create "stretchy" layouts that behave like percentage-width tables in web pages created with HTML. A movie in a browser
window triggers resize events only if its HTML HEIGHT or WIDTH is set to a percentage value. For example:

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab"
 WIDTH="100%"
 HEIGHT="75">
 <PARAM NAME=movie VALUE="theMovie.swf">

 <EMBED src="theMovie.swf"
 WIDTH="100%"
 HEIGHT="75"
 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

Notice that one dimension can be set to a fixed pixel size (HEIGHT="75") while the other is a percentage (WIDTH="100%").

When a movie first loads into a browser, onResize() is not triggered, even if percentage dimensions are specified. We must trigger the
movie's initial layout code manually.

The following code registers an event listener that responds to onResize(). Notice the mandatory setting of scaleMode to

"noScale":

Stage.align = "T"; // Position the movie at top, center
Stage.scaleMode = "noScale"; // Prevent scaling (required!)

// Create the listener object
resizeListener = new Object();
resizeListener.onResize = function () {
 trace("New width: " + Stage.width);
};

Stage.addListener(resizeListener);

Any number of listener objects can respond to the onResize() event. For example, in dynamic layouts, each visual object (a text field,
button, or movie clip) can be registered as a listener for onResize() so that each element can position itself independently when the
movie changes size, as discussed in Chapter 10. See the following Example for code that positions a movie clip when the movie is
resized.

To stop a listener from responding to the onResize() event, use removeListener(), as in:

Stage.removeListener(resizeListener);

Visual changes made to a movie inside an onResize() listener are rendered immediately, independent of any frame rate setting. No call
to updateAfterEvent() is required.

Example

The following code pins the movie clip logo_mc to the top-right corner of the Player's display area even when the Stage is resized:

Stage.align = "LT";
Stage.scaleMode = "noScale";
stageListener = new Object();
stageListener.onResize = function () {
 logo_mc._x = Stage.width - logo_mc._width;
 logo_mc._y = 0;
}
Stage.addListener(stageListener);

A more extensive sample of a resizable star field can be downloaded from:

http://www.moock.org/webdesign/flash/actionscript/resizableMovie/resizableMovie.zip

Bugs

When a call to fscommand("fullscreen", "true") triggers onResize(), the values of Stage.width and Stage.height within

the callback function are incorrect. To determine the actual size of the fullscreen Standalone Player, use setInterval() to poll for the
width and height, or check the screen size directly with System.capabilities.screenResolutionX and

System.capabilities.screenResolutionY.

See Also

Stage.addListener(), Stage.height, Stage.removeListener(), Stage.scaleMode, Stage.width; Chapter 10.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage.removeListener() Method Flash 6

cancels event notices for the specified listener

Stage.removeListener(listener)

Arguments

listener

An object that was previously registered as a listener for Stage.

Returns

A Boolean: true if listener was found and removed, false if listener was not registered as an event

listener for Stage. The return value is useful for debugging code that removes listeners.

Description

The removeListener() method stops listener from receiving Stage event notifications. It should be used only

after listener has been registered as an event listener via addListener(). The listener object is not deleted, but it

can be removed and added repeatedly. To delete a listener, first remove it with removeListener() and then delete it with
the delete operator.

Example

You should remove event listeners when the task they perform is no longer required. For example, a text field might
have two display settings in an application, "percentage width" (stretch the field to match the movie width) and "fixed
width" (stay the same width). A listener could be added to, or removed from, the field, depending on the current mode,
as follows:

// Set scaleMode to allow onResize() to operate.
Stage.align = "LT";
Stage.scaleMode = "noScale";

// Create the text field.
this.createTextField("body_txt", 1, 5, 0, 200, 20);
body_txt.border = true;
body_txt.type = "input";
body_txt.onResize = function () {
 this._width = Stage.width - 10;
};

// Mode-switching function. Adds and removes the listener dynamically.
function setEditMode (mode) {
 if (mode = = "fixed") {
 Stage.removeListener(body_txt);
 } else if (mode = = "percent") {

 Stage.addListener(body_txt);
 }
}

// Set the mode.
setEditMode("percent");

See Also

Stage.addListener(), Stage.onResize(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage.scaleMode
Property

Flash 6; partially available through
fscommand() since Flash 3

dictates how the movie is sized, relative to the
Player

read/write

Stage.scaleMode

Description

The string scaleMode property governs how the movie scales (resizes) when the Flash Player's available space

does not match the movie's Stage dimensions set at authoring time via Modify Document Dimensions.
The allowed settings for scaleMode are:

"exactFit"

Forces every edge of the movie to the edge of the Player, distorting the movie's aspect ratio, if necessary, to
fit the available space.

"showAll"

Fits the width or height of the movie to the smaller of the width or height of the Player. The movie will not
be cropped or skewed to fit the Player, but there will be borders around the movie (according to the current
setting of Stage.align). By default, either the top and bottom or right and left of the movie will have

a border.
"noBorder"

Fits the height or width of the movie to the larger of the width or height of the Player. When the aspect ratio
of the movie does not match the aspect ratio of the Player, the movie will be cropped according to the
current setting of Stage.align. By default, either the top and bottom or both sides will be cropped.

"noScale"

Preserves the movie's author-time size. When the Player is smaller than the movie, the movie is cropped;
when the Player is larger than the movie, the excess space displays the movie's background color.
Positioning of the movie is controlled by the Stage.align property.

The default scaleMode for the Standalone Player and web browser plugin is "showAll". The default

scaleMode for Test Movie mode is "noScale".

The scaleMode property normally is used in concert with the align property and the onResize() event for

movies with dynamically positioned content.

When a movie is embedded in a web page, the OBJECT or EMBED tag can also set the value of scaleMode;

any assignment in ActionScript overrides the HTML setting.

Usage

In Flash Player versions 3 through 5, the equivalent of Stage.scaleMode = "noScale" can be

achieved via fscommand("allowscale", "false").

Example

// Distort the movie to fill the Player area
Stage.scaleMode = "exactFit";

// Prevent scaling completely, regardless of the size of the Player
Stage.scaleMode = "noScale";

See Also

Stage.addListener(), Stage.align, Stage.onResize()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage.showMenu
Property

Flash 6; available through
fscommand() since Flash 3

Boolean; determines the items displayed in the
Flash Player's contextual menu

read/write

Stage.showMenu

Description

The Boolean showMenu property indicates whether the Flash Player's contextual menu contains a full list of

items (true) or a minimal list of items (false). It defaults to true but is often set to false to prevent

users from manipulating the movie in undesirable ways, such as stopping it, rewinding it, or zooming it. The
contextual menu is accessed using right-click under Windows or Ctrl-click on the Macintosh.

In Flash 6, the following menu items are available when showMenu is true:

Zoom In
Zoom Out
100%
Show All
Quality
Play
Loop
Rewind
Forward
Back
Settings...
Print...
About Macromedia Flash Player 6

The following items are available when showMenu is false:

Settings...
About Macromedia Flash Player 6

In both cases, the Settings option leads to the Settings dialog box, where the user can set the SharedObject disk
space limit and configure her camera and microphone.

There is no built-in way to disable the Flash Player's contextual menu entirely. However, several third-party
tools can remove the menu from the Standalone Player. See:

http://www.flashjester.com/software/jugglor/ and http://www.northcode.com/studio/

When a movie is embedded in a web page, the OBJECT or EMBED tag can also set the value of showMenu;

any assignment in ActionScript overrides the HTML setting.

Usage

In Flash versions 3 through 5, showMenu must be set via fscommand(), such as fscommand ("showMenu",

"false").

Example

// Reduces the contextual menu to minimal items
Stage.showMenu = false;

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

Stage.width Property Flash 6

pixel width of the available Flash Player display
area or the author-time document

read-
only

Stage.width

Description

The integer width property indicates the pixel width of the movie, depending on the setting of

Stage.scaleMode. When scaleMode is set to "noScale", width reports the size of the Flash

Player's available display area—either the Standalone Player window's dimensions or the current size of the
OBJECT/EMBED region in the browser. When scaleMode is not set to "noScale", width reports the

size of the Flash movie as specified at authoring time via Modify Document Dimensions.

In Test Movie mode, scaleMode defaults to "noScale", so width may not match the dimensions set at

authoring time. In a browser or the Standalone Player, scaleMode defaults to "showAll", so width
matches the dimensions set at authoring time unless scaleMode is explicitly set to "noScale".

To receive notification when Stage.width changes, add listeners for the Stage.onResize() listener event.

Usage

Don't confuse Stage.width with _root._width. The former is the width of the available Player

space or the specified document dimensions, whereas the latter is the width of all objects on the main movie
timeline.

Bugs

When scaleMode is "noScale" and width is accessed on the first few frames of a movie, an incorrect

value may be reported. For safety, wait several frames before accessing width, or, better yet, access it only

within an onResize() listener.

In Test Movie mode, the width of the movie is reported as four pixels less than actual size.

Example

The following code uses MovieClip drawing methods to draw a line across the entire width of the Stage, 30
pixels below its top border:

Stage.scaleMode = "noScale";
Stage.align = "LT";

this.lineStyle(1);
this.moveTo(0, 30);
this.lineTo(Stage.width, 30);

See Also

MovieClip._width, Stage.addListener(), Stage.height, Stage.onResize()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

startDrag() Global Function Flash 4

make a movie or movie clip follow the mouse pointer

startDrag(target)
startDrag(target, lockCenter)
startDrag(target, lockCenter, left, top, right, bottom)

Arguments

target

A string or reference indicating the path to the movie or movie clip instance that should follow the mouse pointer
(references to movie clips are converted to paths when used in a string context).

lockCenter

A Boolean indicating whether target's registration point should be centered under the mouse pointer (true) or

dragged relative to its original location (false).

left

A number specifying the minimum x-coordinate to the left of which target's registration point cannot be dragged.

top

A number specifying the minimum y-coordinate above which target's registration point cannot be dragged.

right

A number specifying the maximum x-coordinate to the right of which target's registration point cannot be

dragged.
bottom

A number specifying the maximum y-coordinate below which target's registration point cannot be dragged.

Description

The startDrag() function causes target to follow the mouse pointer around in the Player visually (known as dragging the

clip). The movement of a dragged clip can be constrained to a bounding box whose coordinates are provided as arguments to
the startDrag() function. Bounding box coordinates are given relative to the canvas on which target resides. If that

canvas is the main movie Stage, then (0,0) is the top-left corner of the Stage. If that canvas is a movie clip, then (0,0) is the
registration point of the clip's canvas. Note that Flash's coordinate system reverses the Cartesian Y-axis; y values increase
toward the bottom of the screen and decrease toward the top of the screen. Negative y values are above the origin (i.e., above
the X-axis).

Dragging can be stopped at any time via the stopDrag() function. Only one movie clip or movie can be dragged at a time, so
issuing a startDrag() function on a new target automatically cancels any drag operation already in progress. That said,

when a movie or movie clip is dragged, all the movie clips it contains are dragged along with it.

Example

// Drag ball, limiting its movement to the upper-left corner of the Stage

startDrag("ball", true, 0, 0, 225, 200);

See Also

MovieClip._dropTarget, MovieClip.startDrag(), stopDrag()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

stop() Global Function Flash 2

pause the movie's playhead at the current frame

stop()

Description

The stop() function is a simple but fundamental function that halts the playback of a movie or movie clip. It is
the global counterpart of the MovieClip.stop() method and the arch-enemy of play(). Commonly, it is used to
wait for the user to choose from a graphical menu. Even while a movie is stopped, the Player continues to play
sounds, react to user actions, and process events. Flash also continues to render changes to the screen in other
movie clips or buttons, even if the playhead of the current movie clip is stopped. Similarly, visual changes
performed in event handlers or via setInterval() are rendered even when the playhead is stopped. The stop()
function merely prevents the playhead from advancing in the current timeline.

See Also

MovieClip.stop(), play()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

stopAllSounds() Global Function Flash 3

silence a movie

stopAllSounds()

Description

The stopAllSounds() function mutes all the sounds currently playing in a movie, no matter how deeply the
sounds are nested in movie clips. This applies to every sound in a movie, including programmatically generated
Sound objects. For more precise control over stopping, starting, and setting the volume of sounds, see the Sound
class.

Note that stopAllSounds() has only a temporary effect. Any sound that starts after a stopAllSounds() invocation
will play normally. Because button sounds are not controllable via the Sound class, there is no way to mute an
entire movie permanently. However, a Player-wide Sound object with a volume of 0 will silence all nonbutton
sounds.

See Also

Sound.setVolume(), Sound.stop()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

stopDrag() Global Function Flash 4

end a drag operation in progress

stopDrag()

Description

The startDrag() function causes a movie clip to follow the mouse pointer around the Stage. A stopDrag()
operation stops a dragged movie clip from following the mouse pointer. Because only one movie clip or movie
can be dragged at a time, stopDrag() does not require a target argument; it simply cancels any drag

operation in progress.

Together with startDrag(), stopDrag() is used to create simple drag-and-drop interfaces in Flash, as
demonstrated under "Interface Widgets" in the online Code Depot. If a dragged clip is dropped on top of another
clip, the clip on which it was dropped is available through the MovieClip._droptarget property.

Example

The following code causes window_mc to be dragged while the mouse is pressed over it and dropped when

the mouse is released. Note that we stop dragging the clip when either onRelease() or onReleaseOutside() is
detected, ensuring that the clip is dropped, regardless of whether the mouse is actually over the clip when it is
released:

window_mc.onPress = function () {
 this.startDrag();
}

window_mc.onRelease = window_mc.onReleaseOutside = function () {
 stopDrag();
}

See Also

MovieClip._dropTarget, MovieClip.stopDrag(), startDrag()

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

#strict Pragma Flash 5 (undocumented)

activates enhanced conformance to ECMA-26 standard

#strict

Description

An undocumented and volatile feature, the #strict pragma forces the Flash Player to conform more closely

to the ECMA-262 specification, upon which ActionScript is based. It affects datatype conversion for the
undefined and string datatypes, and it enforces complete case sensitivity.

The #strict pragma is known to crash Internet Explorer on Windows under Flash

Player 6 and should therefore not be used. At the time of this writing, Macromedia
officially rescinded support for #strict in Flash Player 6.0.61.0 after the public

beta test of Flash Player 6.0.60.48 revealed outstanding problems. For more details
and the latest information on the status of #strict, see:

http://www.moock.org/asdg/technotes/strict.

See Also

Appendix D

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String() Global Function Flash 5

convert a value to the string datatype

String(value)

Arguments

value

An expression containing the value to be converted to a string.

Returns

The result of converting value to a primitive string.

Description

The String() function converts its argument to a primitive string value and returns that converted value. The
results of converting various types of data to a primitive string are described in Table 3-2 in Chapter 3. Normally
it's not necessary to use the String() function; ActionScript automatically converts values to the string type
when appropriate.

Be sure not to confuse the String() global function with the String class constructor. The former converts an
expression to a string, whereas the later is a class that wraps primitive string data in an object so that properties
and methods can be applied to it.

Usage

Note that the String() function sometimes appears in Flash 4 .fla files that have been converted to a later Flash
format. For information on how datatypes are handled when Flash 4 files are converted to Flash 5 or later, see
Section C.3.4 in Appendix C.

See Also

The String class; "Explicit Type Conversion," in Chapter 3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String Class Flash 6

wrapper class for string primitive typeFlash 5; performance
enhanced in

Constructor

new String(value)

Arguments

value

An expression to be resolved and, if necessary, converted to a string, then wrapped in a String object.

Properties

length

The number of characters in a string.

Class Methods

The following method is invoked through the String class itself, not through an object of the String class:

fromCharCode()

Generate a string from one or more Unicode code points.

Methods

The following object methods are invoked through an instance of the String class:

charAt()

Retrieve a character at a specific position in the string.
charCodeAt()

Retrieve the code point of a character at a specific position in the string.
concat()

Combine one or more items into a single string.
indexOf()

Find the first occurrence of a specified substring in a string.
lastIndexOf()

Find the last occurrence of a specified substring in a string.
slice()

Extract a substring from a string, based on positive or negative character positions.
split()

Convert a string to an array.
substr()

Extract a substring from a string, based on a starting position and length.
substring()

Extract a substring from a string, based on positive character positions only.
toLowerCase()

Return a lowercase version of a string.
toUpperCase()

Return an uppercase version of a string.

Description

The String class has several purposes:

It allows us to access the length property of strings and perform string-related operations, such as

indexOf() and slice(). String objects are created (and eventually deleted) automatically by the interpreter
whenever a method is invoked on a primitive string value.

It can be used to convert a datum of any type to a string.

It is used to access the fromCharCode() class method to create a new string, based on specified Unicode
code points.

It can be used to create a String object, which contains a primitive string value in an unnamed, internal
property; however, there is little reason to do so.

In Flash 6, the performance (speed) of the String class methods is vastly improved over Flash 5 performance.
Flash Player 6 executes most String methods 50 to 1000 times faster than Flash Player 5.

Usage

In practice, the String class constructor is used primarily to convert other datatypes to strings. See the String()
global function for more details.

See Also

"The String Type," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.charAt() Method Flash 5

retrieve the character from a specific position in a string

string.charAt(index)

Arguments

index

The integer position of the character to retrieve, which should be in the range of 0 (the first character) to
string.length - 1 (the last character).

Returns

The character in the position index within string.

Description

The charAt() method determines the character that resides at a certain position (index) in a string.

Example

trace("It is 10:34 pm".charAt(1)); // Displays: "t" (the second letter)
var country = "Canada";
trace(country.charAt(0)); // Displays: "C" (the first letter)

// This function removes all the spaces from a string and returns the result
function stripSpaces (inString) {
 var outString = "";
 for (i = 0; i < inString.length; i++) {
 if (inString.charAt(i) != " ") {
 outString += inString.charAt(i);
 }
 }
 return outString;
}

See Also

String.charCodeAt(), String.indexOf(), String.slice(); "The charAt() function," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.charCodeAt() Method Flash 5

retrieve the code point of the character at a specific
position in a string

string.charCodeAt(index)

Arguments

index

The integer position of a character in string, which should be in the range of 0 (the first character) to string.length - 1
(the last character).

Returns

An integer representing the Unicode code point of the character in the position index within string. For the code points of the first 256

characters, see Appendix B.

Example

var msg = "A is the first letter of the Latin alphabet.";
trace(msg.charCodeAt(0)); // Displays: 65 (the code point for the "A" character)
trace(msg.charCodeAt(1)); // Displays: 32 (the code point for the space character)

See Also

String.charAt(), String.fromCharCode(); "The charCodeAt() function," in Chapter 4; Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.concat() Method Flash 5

combine one or more values into a single string

string.concat(value1, value2,...valuen)

Arguments

value1,...valuen

Values to be converted to strings (if necessary) and concatenated with string.

Returns

The result of concatenating string with value1, value2, ...valuen.

Description

The concat() method creates a string from a series of values. It is equivalent to using the concatenation operator (+) with strings

but is sometimes preferred for clarity, as the + operator can also be used to add numbers. For details on concat(), see Chapter 4.

Usage

Note that concat() does not modify string; it returns a completely new string.

Example

var greeting = "Hello";
excitedGreeting = greeting.concat("!");
trace(greeting); // Displays: "Hello"
trace(excitedGreeting); // Displays: "Hello!"

var x = 4; // Initialize x as an integer
trace(x + 5); // Displays: 9
trace(x.concat(5)); // Fails because x is not a string
trace(String(x).concat(5)); // Displays: "45"

var x = "4"; // Initialize x as a string
trace(x.concat(5)); // Displays: "45"
trace(concat("foo", "fee")); // Fails because concat() must be
 // invoked as a method of a string

See Also

Section 4.6.1 and Section 4.6.1.1; Section 5.3.1

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.fromCharCode() Class Method Flash 5

generate a string from one or more code points

String.fromCharCode(code_point1, code_point2,...code_pointn)

Arguments

code_ point1,...code_ pointn

A series of one or more integers corresponding to Unicode character code points.

Returns

A string formed by concatenating the characters represented by the specified code points.

Description

The fromCharCode() class method produces a character or series of characters from character code points, as
described in Chapter 4. For code points below 128, it effectively builds a string from a series of ASCII codes.

Example

// Makes a copyright symbol, followed by the year (2003)
copyNotice = String.fromCharCode(169) + " 2003";

See Also

String.charCodeAt(); "The fromCharCode() function," in Chapter 4; Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.indexOf() Method Flash 5

find the first occurrence of a substring in a string

string.indexOf(substring)
string.indexOf(substring, startIndex)

Arguments

substring

A string containing the character or characters for which to search.
startIndex

An optional integer position in string at which to start searching for substring. Should be in the range of 0

(the first character) to string.length - 1 (the last character). Defaults to 0.

Returns

The position of the first occurrence of substring in string (starting at startIndex). Returns -1 if

substring is not found at or after startIndex in string.

Description

The indexOf() method is used to search for characters in strings or to check whether a string contains a certain substring. The
search is case-sensitive. Use toLowerCase() to ensure a case-neutral search, as shown in the third Example.

Example

// Check if an email address contains an @ sign
var email = "derekaol.com";
if (email.indexOf("@") = = -1) {
 trace("This isn't a valid email address");
}

// Check if an email address has an @ sign and is from the domain aol.com
var email = "derek@aol.com";
var atPos = email.indexOf("@");
if (atPos != -1 && email.indexOf("aol.com") = = atPos + 1) {
 gotoAndStop("AOLuserOffer");
}

The following code creates a generic function that performs a case-insensitive search for a keyword in a string, as you might
need when grading a fill-in-the-blank quiz:

// Generic function to search origStr for any occurrence
// of searchStr, using a case-insensitive comparison
function search (origStr, searchStr) {

 var origStr = origStr.toLowerCase();
 var searchStr = searchStr.toLowerCase();
 return origStr.indexOf(searchStr) != -1;
}

var answer = "einstein";
var guess = "Dr. Albert Einstein";

// Increment score if guess contains "einstein"
if (search(guess, answer)) {
 score++;
}

See Also

String.charAt(), String.lastIndexOf(), String.toLowerCase(); "The indexOf() function," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.lastIndexOf() Method Flash 5

find the last occurrence of a substring in a string

string.lastIndexOf(substring)
string.lastIndexOf(substring, startIndex)

Arguments

substring

A string containing the character or characters for which to search.
startIndex

An optional integer position in string at which to start the search for substring. The string
is searched backward from startIndex, which should be in the range of 0 (the first character) to

string.length - 1 (the last character). Defaults to string.length - 1.

Returns

The position of the last occurrence of substring in string prior to startIndex. Returns -1 if

substring is not found prior to startIndex in string.

Description

The lastIndexOf() method is used to search for the last occurrence of a substring in a string or to check whether
a string contains a certain substring. The search is case-sensitive. Use toLowerCase() to ensure a case-neutral
search, as shown in the Example under String.indexOf().

Example

URL = "http://www.moock.org/webdesign/flash/fillthewindow.html";
// Finds the last slash character
lastSlash = URL.lastIndexOf("/");
// Extracts the filename from the URL
file = URL.substring(lastSlash + 1);
trace(file); // Displays: fillthewindow.html

See Also

String.charAt(), String.indexOf(), String.toLowerCase(); "The lastIndexOf() Function," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.length Property Flash 5

the number of characters in a string read-only

string.length

Description

The length property returns the number of characters in string. Note that a null character (ASCII 0) does not signal the

end of a string, as it would in some languages (such as C), but neither is it counted in the string's length. For example:

// Create the string "A" + null + "B"
var myString = String.fromCharCode(65,0,66);
trace(myString.length); // Displays: 2 (The null character is ignored)

Example

var myString = "hello";
trace (myString.length); // Displays: 5
trace ("hello".length); // Displays: 5

// Here we convert the number 1000 to a string in order to test its length
var age = 1000;
// Display an error message if the number has the wrong number of digits
if (String(age).length != 2) {
 trace ("Please enter a two-digit number");
}

See Also

Array.length(); "The length property," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.slice() Method Flash 5

extract a substring from a string, based on positive or
negative character positions

string.slice(startIndex, endIndex)

Arguments

startIndex

The integer position of the first character to extract from string. If startIndex is negative, the position is

measured from the end of the string, where -1 is the last character, -2 is the second-to-last character, and so on (i.e., a
negative startIndex specifies the character at string.length + startIndex).

endIndex

The integer position of the character after the last character to extract from string. If endIndex is negative, the

position is measured from the end of the string, where -1 is the last character, -2 is the second-to-last character, and so
on (i.e., a negative endIndex specifies the character at string.length + endIndex). Defaults to

string.length if omitted.

Returns

A substring of string, starting at startIndex and ending at endIndex - 1, where both startIndex and

endIndex are zero-relative.

Description

The slice() method is one of three methods that can be used to extract a substring from a string (the others being substring()
and substr()). The slice() method offers the option of using negative start and end index values, which allows us to extract a
substring by measuring back from the end of a string.

Usage

Note that slice() does not modify string; it returns a completely new string.

Example

var fullName = "Steven Sid Mumby";
middleName = fullName.slice(7, 10); // Assigns "Sid" to middleName
middleName = fullName.slice(-9, -6); // Also assigns "Sid" to middleName

See Also

String.substr(), String.substring(); "The slice() function," and "Combining String Examination with Substring Extraction,"
in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.split() Method Flash 5

convert a string into a series of array elements

string.split(delimiter)

Arguments

delimiter

The character or series of characters at which to break string when forming elements of the new array.

Returns

An array whose elements contain the substrings formed by breaking string into segments demarcated by delimiter.

Description

The split() method breaks a string into substrings, assigns those substrings to the elements of an array, and returns that array. Contiguous
occurrences of delimiter without intervening characters result in empty elements. For example, the following code:

owners = "terry,doug,,,jon";
ownersArray = owners.split(",");

assigns the following elements to ownersArray (elements 2 and 3 contain undefined):

0: terry
1: doug
2:
3:
4: jon

The split() method typically is used to convert a string received from a CGI script or text file into an array for further manipulation. It is
also useful when parsing the parameters of an asfunction call from an HTML text field <A> tag, which can pass only one string argument

to a function. See Section E.7 in Appendix E. Commonly used delimiters include the comma and the tab character. Use a space as the
delimiter to split a string into a series of words.

Example

Suppose we store a list of names in a text file named names.txt. Each name is separated from the others by a Tab character, as implied by
the whitespace shown:

owners=terry doug jon

On frame 1 of our movie, we load the names.txt file into our movie:

this.loadVariables("names.txt");

After ensuring that names.txt has fully loaded (see loadVariables()), we split the loaded owners variable into an array:

splitString = String.fromCharCode(9); // Assign the Tab character to splitString
ownersArray = owners.split(splitString);

trace(ownersArray[1]); // Displays: "doug"

Note that in Flash 5 split() can take a long time to execute with large bodies of text; it is considerably faster in Flash 6. If performance is a
problem, break your data into manageable portions or consider using XML instead. See the XML class.

Bugs

In Flash 5, using the empty string as a delimiter adds all of string to the first element of the array being generated. According to ECMA-

262, an empty string delimiter should cause string to be broken at each character. Similarly, multicharacter delimiters are not

recognized by Flash 5 and cause all of string to be assigned to the first element of the returned array. These bugs are fixed in Flash

Player 6.

See Also

Array.join(); "The split() function," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.substr() Method Flash 5

extract a substring from a string, based on a starting
position and length

string.substr(startIndex, length)

Arguments

startIndex

The integer position of the first character to extract from string. If startIndex is negative, the position is

measured from the end of the string, where -1 is the last character, -2 is the second-to-last character, and so on (i.e., a
negative startIndex specifies the character at string.length + startIndex).

length

The number of characters to extract from string, starting at (and including) the startIndex. If not specified,

all the characters from startIndex to the end of string are extracted.

Returns

A substring of string, starting at startIndex and including length characters. If length is omitted, the result

contains characters from startIndex to the end of string.

Description

The substr() method is one of three methods that can be used to extract a substring from a string (the others being slice() and
substring()). The substr() method extracts a string based on the number of characters specified by length, not based on an

ending character index.

Usage

Note that substr() does not modify string; it returns a completely new string.

Example

var fullName = "Steven Sid Mumby";

middleName = fullName.substr(7, 3); // Assigns "Sid" to middleName
firstName = fullName.substr(0, 6); // Assigns "Steven" to firstName
lastName = fullName.substr(11); // Assigns "Mumby" to lastName

// Notice the negative starting indexes...
middleName = fullName.substr(-9, 3); // Assigns "Sid" to middleName
firstName = fullName.substr(-16, 6); // Assigns "Steven" to firstName
lastName = fullName.substr(-5); // Assigns "Mumby" to lastName

See Also

String.slice(), String.substring(); "Combining String Examination with Substring Extraction," and "The substr() function," in
Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.substring() Method Flash 5

extract a substring from a string, based on positive
character positions

string.substring(startIndex, endIndex)

Arguments

startIndex

The positive integer position of the first character to extract from string. If negative, 0 is used.

endIndex

The positive integer position of the character after the last character to extract from string. Defaults to string.length
if omitted. If negative, 0 is used.

Returns

A substring of string, starting at startIndex and ending at endIndex - 1, where both startIndex and endIndex
are zero-relative.

Description

The substring() method is one of three methods that can be used to extract a substring from a string (the others being slice() and substr(
)). The substring() method is identical to slice(), except that it does not allow for negative startIndex and endIndex values

and it automatically reorders the two indexes if endIndex is less than startIndex.

Usage

Note that substring() does not modify string ; it returns a completely new string.

Example

// Extract names from a string
var fullName = "Steven Sid Mumby";
middleName = fullName.substring(7, 10); // Assigns "Sid" to middleName
middleName = fullName.substring(10, 7); // Assigns "Sid" to middleName
 // (indexes are swapped automatically)
firstName = fullName.substring(0, 6); // Assigns "Steven" to firstName
lastName = fullName.substring(11); // Assigns "Mumby" to lastName

Example 18-4 is a reusable function to search for and replace all occurrences of a substring within a string.

Example 18-4. A search-and-replace function

function replace (origStr, searchStr, replaceStr) {

 var tempStr = "";
 var startIndex = 0;
 if (searchStr = = "") {
 return origStr;
 }

 if (origStr.indexOf(searchStr) != -1) {
 while ((searchIndex = origStr.indexOf(searchStr, startIndex)) != -1) {
 tempStr += origStr.substring(startIndex, searchIndex);
 tempStr += replaceStr;
 startIndex = searchIndex + searchStr.length;
 }
 return tempStr + origStr.substring(startIndex);
 } else {
 return origStr;
 }
}

msg = "three times three is four";
trace(replace(msg, "three", "two")); // Displays: "two times two is four"

See Also

String.slice(), String.substr(); "Combining String Examination with Substring Extraction," and "The substr() function," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.toLowerCase() Method Flash 5

generate a lowercase version of a string

string.toLowerCase()

Returns

The lowercase equivalent of string as a new string. Characters without a lowercase equivalent are left

unchanged.

Description

The toLowerCase() method creates a new, lowercase version of string; it can be used for formatting or for

facilitating case-insensitive character comparisons.

Usage

Note that toLowerCase() does not modify string; it returns a completely new string.

Example

// Set msg to "this sentence has mixed caps!"
msg = "ThiS SenTencE Has MixED CaPs!".toLowerCase();

// Perform a case-insensitive comparison of two strings
function caseInsensitiveCompare (stringA, stringB) {
 return (stringA.toLowerCase() = = stringB.toLowerCase());
}

trace(caseInsensitiveCompare("Colin", "colin")); // Displays: true

See Also

String.toUpperCase(); "The toLowerCase() function," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

String.toUpperCase() Method Flash 5

generate an uppercase version of a string

string.toUpperCase()

Returns

The uppercase (a.k.a. ALL CAPS) equivalent of string as a new string. Characters without an uppercase equivalent

are left unchanged.

Description

The toUpperCase() method creates a new, uppercase version of string; it can be used for formatting or for

facilitating case-insensitive character comparisons.

Usage

Note that toUpperCase() does not modify string; it returns a completely new string.

Example

"listen to me".toUpperCase(); // Yields the string "LISTEN TO ME"
var msg1 = "Your Final Score: 234";
var msg2 = msg1.toUpperCase(); // Set msg2 to "YOUR FINAL SCORE: 234"

See Also

String.toLowerCase(); "The toUpperCase() function," in Chapter 4

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

super "Operator" Flash 6

invoke an object's superclass constructor, or invoke a
superclass's implementation of an overridden method

super(arg1, arg2,...argn);
super.methodName(arg1, arg2,...argn);

Operands

arg1, ...argn

A list of arguments passed to the superclass constructor function.
methodName

The superclass's implementation of an overridden method to be invoked.

Description

The super "operator," added in Flash 6, serves two distinct object-oriented programming purposes:

It can invoke an object's superclass constructor.

It can invoke a superclass's implementation of an overridden method.

See "The super `Operator'" in Chapter 5 for many more details.

Usage

Technically, super is not a real operator in ActionScript, which is why it is presented here as the super
"operator."

See Also

instanceof, new, Object.hasOwnProperty(); "The super `Operator'," in Chapter 5; "Making a superclass,"
"Accessing overridden methods," and "A custom setSuperClass() function,"in Chapter 12.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

System Object Flash 6

access to Player and system settings and specifications

Properties

capabilities

A reference to the Capabilities object.
security

Object for setting cross-domain movie permissions.
useCodepage

Force Flash Player to use the operating system's code page rather than Unicode.

Methods

showSettings()

Display the Flash Player Settings dialog box.

Description

The System object provides information about, and control over, features of the Flash Player and the system on which it is running. With
the exception of showSettings() (used to display the Flash Player Settings dialog box) and useCodepage (used to control the

character encoding mode), Player and system features are accessed through the Capabilities and Security objects, which themselves are
stored as properties of System. The Capabilities object is documented separately as the Capabilities Object (under the letter "C") in this
Language Reference. The Security object's single method, allowDomain(), which can permit movies loaded from different domains to
access and control each other, is documented under System.security.allowDomain().

Note that System is a predefined object, not a class. Its properties and methods are accessed directly, as in:

System.showSettings(0); // Displays the Privacy tab of the Settings dialog box

See Also

The Capabilities object, the Stage object

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

System.capabilities Property Flash 6

a reference to the Capabilities object read/write

System.capabilities

Description

The capabilities property is an object reference to the built-in Capabilities object. See the Capabilities

object entry (under "C") in this Language Reference for complete details. Although, technically,
System.capabilities is writable, it should not be overwritten in your movies.

See Also

The Capabilities object

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

System.security.allowDomain() Method Flash 6

sets cross-domain movie permissions

System.security.allowDomain(domain1, domain2,...domainn)

Arguments

domain1, ...domainn

A list of one or more domains for which access to the movie should be granted.

Description

The security property is a reference to the built-in Security object, which defines a single important method, allowDomain(). We use

allowDomain() to grant movies at other domains access to the current movie. Though security limitations have been a part of the Flash
Player since version 4, Flash 6 formalizes the concept of the security sandbox. Under the rules of the sandbox, a movie hosted at one domain
cannot:

Invoke methods or functions in a movie loaded from another domain

Access data (user-defined variables, user-defined properties, and nested movie clips) in a movie loaded from another domain

Load XML or variables from another domain via the LoadVars class, loadVariables(), XML.load(), or XML.sendAndLoad()

Connect to an XMLSocket server on another domain

By default, the security sandbox is active, and all attempts to perform the above operations are ignored by Flash Player 6. Using
allowDomain(), we can override these restrictions.

The allowDomain() method is invoked by the movie that wishes to grant access to a particular domain or domains, specified by domain1,

domain2, ...domainn. For example, suppose Graham posts his resume, grayResume.swf, on graydient.com and wants to allow

jobBoard.swf, posted on moock.org, to access it. On the first frame of grayResume.swf, he must use allowDomain() to grant movies at
moock.org access, as follows:

System.security.allowDomain("moock.org");

Once moock.org has been added to grayResume.swf's list of trusted domains, jobBoard.swf (at moock.org) can load grayResume.swf from
graydient.com and set its variables, stop its playhead, or otherwise manipulate it without any security limitations. For example:

// Make a container into which to load grayResume.swf
this.createEmptyMovieClip("holder", 1);
// Load grayResume.swf
holder.loadMovie("http://www.graydient.com/grayResume.swf");

// Create a preloader that detects when the movie has loaded
var preloadInterval = setInterval(setText, 1000);

// Function to be called every second. When the movie has loaded,

// the function assigns it some text and stops its playhead.
function setText () {
 if (holder._framesloaded > 0 && holder._framesloaded = = holder._totalframes) {
 // Stop the loaded movie
 holder.stop();
 // Assign some text
 holder.subtitle_txt.text = "Gray's resume brought to you by moock.org.";
 // Stop the load checker
 clearInterval(preloadInterval);
 }
}

Movies that are hosted at the same domain are not affected by sandbox restrictions. Table 18-21 demonstrates when the security sandbox
comes into effect. To check the domain of the current movie, use LocalConnection.domain().

Table 18-21. Domain-based security restrictions

Domain of movie origin Host to connect to Permitted? Permitted via allowDomain()?

www.somewhere.com www.somewhere.com Yes Yes

www.somewhere.com other.somewhere.com Yes Yes

www.somewhere.com somewhere.com Yes Yes

somewhere.com www.somewhere.com Yes Yes

www.somewhere.com www.elsewhere.com No Yes

For backward compatibility, Flash 4 and Flash 5 movies loaded from different domains into Flash Player 6 can still access each other's data
(as was possible in the older versions of the Player). However, a Flash 5 movie cannot access the data in a Flash 6 movie loaded from a
different domain, nor vice versa.

The allowDomain() method cannot directly override security restrictions on loading XML, loading variables, or communicating over
XMLSocket. However, it is possible to load XML or variables from a different domain by using a movie on that domain as a proxy for
communications. For example, suppose main.swf at moock.org wants to load a file, newsFeed.xml, from graydient.com. The main.swf file
must load a proxy movie, xmlloader.swf, from graydient.com. Then, xmlloader.swf must load the newsFeed.xml file and use allowDomain()
to grant moock.org access to it. The main.swf movie can then access the loaded data via xmlloader.swf. Unfortunately, at the time of writing,
a bug prevents this proxy-movie system from working in the current build of Flash Player 6 (6.0.61.0). Macromedia is aware of the issue and
is working to address it.

XML and loaded variable security can also be circumvented with a either a DNS alias or a server-side proxy script that acts as a go-between
for Flash and the external site. For more information, see:

http://www.macromedia.com/support/flash/ts/documents/loadvars_security.htm
http://www.macromedia.com/support/flash/ts/documents/load_xdomain.htm

A Flash client at one domain can connect to an XMLSocket server on a different domain by using a movie on the server's domain as a proxy
for communications (the bug mentioned earlier does not affect XMLSocket communications). For example, suppose a chat socket server is
running on moock.org. The owner of graydient.com wants to post a chat movie (chat.swf) at graydient.com that uses moock.org's chat server.

The owner of moock.org must create a proxy movie for graydient.com by following these steps:

Create a movie called socketObject.swf.1.
On frame 1 of socketObject.swf, add the following code:2.
// Grant access to graydient.com
System.security.allowDomain("graydient.com");
// Create the XMLSocket object. This must be done here.
sock = new XMLSocket();
Post socketObject.swf at moock.org (the socket server's domain).3.

1.

3.

From chat.swf, the owner of graydient.com must use the socketObject.swf proxy movie to communicate with moock.org's socket server, as
follows:

On frame 1 of chat.swf, load socketObject.swf onto level 1 (any level or target will work):1.
loadMovieNum("http://www.moock.org/socketObject.swf", 1);
Once socketObject.swf has loaded, use the _level1.sock object to connect to and communicate with the socket server. For

example:

2.

// Create an output text field
this.createTextField("out_txt", 1, 100, 100, 400, 100);
out_txt.border = true;

// Set callback to handle connection
_level1.sock.onConnect = function (success) {
 out_txt.text += ("\n Connected: " + success);
}
// Set callback to handle incoming XML
_level1.sock.onXML = function (doc) {
 out_txt.text += ("\n XML arrived: " + doc);
}
// Make the connection
_level1.sock.connect("moock.org", 2001);

// Code for a button that sends XML to the socket server
sendMessage_btn.onPress = function () {
 _level1.sock.send("<MESSAGE>hello world</MESSAGE>");
}

A movie running off the local filesystem in the Flash Standalone Player or browser-based Player (i.e., plugin) is not subject to the security
sandbox. It can load XML or variables from any domain, and it can control and access the data of any movie it loads. However, the opposite
is not true. For example, if a local movie loads another movie, booklist.swf, from oreilly.com, booklist.swf cannot access or control the local
movie unless the local movie includes the following call to allowDomain():

System.security.allowDomain("oreilly.com");

The general rule of thumb is, "local can control loaded, but loaded cannot control local."

Note that built-in properties, such as _framesloaded and _x, are not restricted by the sandbox. For example, a movie that loads

another movie can change the position of the loaded movie regardless of its domain of origin.

See Also

loadMovie(), loadVariables(), the LoadVars class, XML.load(), XML.sendAndLoad(), the XMLSocket class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

System.showSettings() Method Flash 6 (undocumented)

displays the Flash Player Settings dialog box

System.showSettings(tabID)

Arguments

tabID

An integer indicating the specific tab to display.

Description

The showSettings() method displays the Macromedia Flash Player Settings dialog box, from which the user can
set per-movie Player options. In Flash Player 6, the Settings dialog box includes four tabs, each of which
corresponds to an integer tabID, as follows: Privacy (0), Local Storage (1), Microphone (2), and Camera (3).

Normally, the user must access the Macromedia Flash Player Settings dialog box manually by right-clicking on
the movie under Windows (Ctrl-click on Macintosh) and selecting "Settings . . . " from the contextual menu. The
showSettings() method lets us assist the user by displaying the settings dialog box programmatically when
asking the user to change an option required by a movie. For example, if a movie needs more than 100 KB of
local disk space to run, we can ask the user to increase the limit, and then we can issue the following command
to open the Settings dialog box to the tab where the user can specify the local disk storage limit:

System.showSettings(1); // Display Local Storage settings tab

See Also

SharedObject.flush(), SharedObject.getSize(), Stage.showMenu

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

System.useCodepage Property Flash 6

force Flash Player to use the operating system's
code page rather than Unicode

read/write

System.useCodepage

Description

Unicode is an international character set comprising all the characters of the world's languages. Most modern
applications, including Flash Player 6, use Unicode to manage and display text. Older applications, including
Flash Player 5, manage text using the operating system's so called code page (essentially, a regional character
set).

The System.useCodepage property controls:

Display of text fields

XML.load(), XML.send(), and XML.sendAndLoad() operations

LoadVars.load(), LoadVars.send(), and LoadVars.sendAndLoad() operations

getURL(), loadMovie(), and loadVariables() actions that transmit/receive variables

XMLSocket communications

escape() and unescape() functions

When a non-Unicode application renders a character to the screen, it looks up the character by its code point in
the system's current code page. The character displayed on screen is the one specified by the code page in use at
display time. If the input code page (the one in effect when the character was input) does not match the display
code page (the one in use when the application renders the character), the input character specified will likely
not match the character displayed. The Unicode standard was introduced to solve this problem. Because Flash 6
uses Unicode, you should have no need for the System.useCodepage property as long as you:

Use Unicode (encoded using either UTF-8 or UTF-16) for all external text

Use a Unicode escape sequence to include any character you cannot enter via your keyboard in the Flash
authoring tool

The Boolean useCodepage property can force Flash Player 6 to use the operating system's current code

page, rather than Unicode, when rendering text, as follows:

// Force use of the operating system's code page
System.useCodepage = true;

System.useCodepage can be modified at any time—for example, at the beginning and end of an

operation that requires a legacy text encoding, such as loading an existing text file that uses a specific encoding.

When exporting Flash 6-format .swf files from the Flash MX authoring tool, it rarely is necessary to use the

useCodepage property (Flash MX automatically converts text entered in the authoring tool to Unicode

upon export). However, when the following conditions are both true, setting the useCodepage property to

true will force non-Unicode text to display as intended:

Non-Unicode text is loaded into the Flash Player, from either an external text file or a server script.

The external text happens to be encoded with the same code page as is currently set on the operating
system running the Flash Player.

The text will not display correctly if the operating system's current code page does not
match the input code page! Though forcing the use of the operating system's code page
may appear to magically fix text display problems on one computer, setting
System.useCodepage to true almost never suitably addresses international

text display issues. Hence, whenever possible, all external files should use Unicode,
and useCodepage should be left at its default setting, false.

By default, most western Windows computers use code page CP1252 (WinLatin1). Mappings from CP1252 to
Unicode can be found at:

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1252.TXT

By default, most Japanese Windows computers use code page CP932 (Windows Shift-JIS). Mappings from
CP932 to Unicode can be found at:

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP932.TXT

The complete list of Windows code pages is available at:

http://www.microsoft.com/globaldev/reference/WinCP.asp

For a partial list of code pages used by other vendors see:

http://czyborra.com/charsets/codepages.html

For more information on Unicode in Flash, see Section 4.5.1 in Chapter 4.

See Also

Section 4.5

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

targetPath() Global Function Flash 5

the absolute path to a movie or movie clip

targetPath (movieClip)

Arguments

movieClip

A reference to a movie clip object.

Returns

A string representing the path to movieClip in absolute terms, using dot notation (e.g.,

"_level0.myMovie").

Description

The targetPath() function returns a movie clip's reference as a string that describes the absolute path to the clip
(identical to the return value of MovieClip.valueOf()). The targetPath() function sometimes is used to
compose placement-sensitive code that operates on a movie clip, relative to the timeline upon which the clip
resides. To retrieve the slash-notation path to a movie clip (rather than targetPath()'s dot notation), use
MovieClip._target.

Example

If square is a movie clip contained by shapes, which resides on the main timeline of _level0, then

inside the shapes clip, the statement:

targetPath(square);

returns:

"_level0.shapes.square"

See Also

MovieClip._target, MovieClip.valueOf(); "The targetPath() function," in Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

tellTarget() Global Function Flash 5

execute statements in the scope of a remote movie clip"Tell
Target tool" in Flash 3; deprecated in

tellTarget (target) {
 statements}

Arguments

target

A string or reference indicating the path to a movie or movie clip instance (references are converted to
paths when used in a string context).

statements

The statements to be executed in the scope of target.

Description

In Flash 3 and Flash 4, tellTarget() was the primary means of communicating between two movie clips (i.e.,
controlling one from the other). It was used to invoke functions such as play(), stop(), and gotoAndStop() on
remote movie clips. In Flash 4, when variables were added to ActionScript, we could also use tellTarget() to get
and set remote clip variable values. As of Flash 5, these endeavors are better accomplished with the dot operator,
., and the array access operator, []. Another alternative to the tellTarget() function is the with statement,

described in Chapter 6.

Usage

The tellTarget() function may be better described as a statement because it requires a substatement block.
However, the point is academic, as tellTarget() has been deprecated.

Example

// Move the ball movie clip over 300 pixels to the right and
// send its playhead to the frame labeled "redStripes".
tellTarget ("ball") {
 gotoAndStop("redStripes");
 _x += 300;
}

See Also

"The with Statement," in Chapter 6; "The `Objectness' of Movie Clips," in Chapter 13; "Whither Tell Target?,"
in Appendix C

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField Class Flash 6

display and manipulate text on screen

Constructor

None. TextField objects are created manually in the authoring tool or programmatically via the MovieClip.createTextField()
method.

Properties

_alpha

Opacity percentage: 0 is transparent; 100 is opaque.
autoSize

Matches the text field's bounding rectangle size to its text.
background

Boolean; turns text field background on and off.
backgroundColor

RGB number specifying the text field's background color.
border

Boolean; turns text field border on and off.
borderColor

RGB number specifying the text field's border color.
bottomScroll

The 1-relative index of the text field's lowest visible line.
condenseWhite

Boolean; enables or disables condensing of whitespace in HTML text.
embedFonts

Boolean; renders text using fonts exported with the movie.
_height

Height of the text field's bounding box, in pixels.
hscroll

Text's horizontal scroll position, in pixels.
html

Boolean; enables or disables HTML display.
htmlText

HTML source code to render in the text field.
length

The number of characters in the text field.
maxChars

Limits the allowed length of user input.
maxhscroll

The farthest position text can be scrolled to the left.
maxscroll

The last legal top line of a text field.
multiline

Boolean; enables or disables multiple-line user input.
_name

The instance name of the TextField object.
_parent

A reference to the movie clip in which the text field resides.
password

Boolean; obscures characters displayed in the field.
restrict

Limits text entry to a series of characters.
_rotation

Rotation, in degrees, of the text field.
scroll

The current top line displayed in the text field.
selectable

Boolean; enables or disables selection by the user.
tabEnabled

Boolean; includes or excludes the text field from the current tab order.
tabIndex

Specifies the text field's index in the custom tab order.
_target

The target path of the text field, in slash syntax.
text

Specifies the characters to be rendered in the field.
textColor

Sets the color for all characters in the text field.
textHeight

Pixel height of all the text in the text field.
textWidth

Pixel width of the longest line in the text field.
type

Specifies whether the field can accept user input.
_url

The network address of the movie clip that contains the field.
variable

Associates a variable with the text property.
_visible

Boolean; whether the text field is shown or hidden.
_width

Width of the text field's bounding box, in pixels.
wordWrap

Boolean; enables or disables automatic line-breaking for long lines.
_x

Horizontal location of the text field, in pixels.
_xmouse

Horizontal location of mouse pointer, relative to the text field.
_xscale

Width of the text field, as a percentage of original.
_y

Vertical location of the text field, in pixels.
_ymouse

Vertical location of mouse pointer, relative to the text field.
_yscale

Height of the text field, as a percentage of original.

Class Methods

getFontList()

Returns an array of fonts on the user's system.

Methods

addListener()

Registers an object to receive onChanged() and onScroller() events.
getDepth()

Returns the position of the text field in the movie stack.
getNewTextFormat()

Retrieves the default TextFormat object for the text field.
getTextFormat()

Retrieves a TextFormat object for specified characters.
removeListener()

Cancels event notices for the specified listener.
removeTextField()

Deletes a runtime-created text field.
replaceSel()

Replaces selected text (without disturbing formatting).
setNewTextFormat()

Sets the default formatting for the text field.

setTextFormat()

Sets the formatting of specified characters.

Event Handlers

onChanged()

Callback invoked when user input is detected.
onKillFocus()

Callback invoked when the field loses focus.
onScroller()

Callback invoked when any scroll property changes.
onSetFocus()

Callback invoked when the field gains focus.

Listener Events

onChanged()

Occurs when user input is detected.
onScroller()

Occurs when any scroll property changes.

Description

The TextField class provides control over text displayed on screen. Each TextField object represents a rectangular text container
that can be filled with text, sized, or formatted, and can even receive user input. When we speak of a "text field," we mean the
rectangular container on screen; when we speak of a TextField object or instance, we mean the ActionScript object that controls a
text field.

TextField objects are not constructed with the new operator; instead, they are created automatically by Flash whenever author-time
text is drawn (with the Text tool) or when the MovieClip.createTextField() method is invoked. For example, the following code
creates a text field named theField_txt, and places it on depth 1, at Stage coordinates (0,0), with a width of 200 and a

height of 20. The this keyword refers to the current movie clip. The suffix "_txt" activates code hinting in the Actions panel:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);

In order to gain access to a TextField instance for a field created at authoring time, we must set its type to Dynamic Text or Input
Text and assign it an instance name via the Property inspector.

The following steps describe the typical workflow for creating an ActionScript-controllable text field at authoring time:

Select the Text tool.1.
Drag a rectangle big enough to display the desired text on stage .2.
Make sure the Property inspector (Window Properties) is open.3.
In the Property inspector, for Type, select Dynamic Text or Input Text (the default type, Static Text, cannot be accessed
through ActionScript).

4.

In the Property inspector, for Instance Name, type someName_txt. An Instance Name cannot be specified until the

Type is set, as described in Step 4.

5.

For instructions on deleting a text field at runtime, see the TextField.removeTextField() method.

Plain text displayed in a text field is retrieved through the text property and set through either the replaceSel() method or the

text property. HTML text can be set through the htmlText property, provided that the html property is also set.

Prior to Flash 6, a text field's ActionScript identifier (known as its "variable") was synonymous with the
content of the field, but in Flash 6, a text field's identifier is an object instance name. The contents of
the text field are retrieved and set in Flash 6 via the TextField.text property.

Hence, in Flash 5, we used the following syntax to set the highScore_txt text field to "15, 000":

highScore_txt = "15, 000";

But in Flash 6, we must use the text property to set a text field's text:

highScore_txt.text = "15, 000";

The Var: text box in Flash MX's text field Property inspector is retained for backward compatibility, as is the
TextField.variable property. When authoring for Flash Player 6, assign all text fields an instance name and use the

text property to access their content.

By default, Dynamic and Input text fields are selectable by the user. To create a nonselectable text field for display only, set its
selectable property to false:

output_txt.selectable = false;

When a user selects a portion of a dynamic or user-input text field, the indexes of the selected characters are stored in the Selection
object. Using the Selection object, we can check which part of a text field a user has selected; we can even select a part of a text
field programmatically. The Selection object can also give keyboard focus to a particular text field or tell us which text field is
currently selected by the user. See Selection.onSetFocus(), TextField.onKillFocus(), and TextField.onSetFocus().

For author-time text fields, many TextField object properties can be set through the Property inspector interface; any options set at
authoring time are reflected at runtime by the corresponding TextField instance's properties.

We can respond to changes in a text field's scroll position or content via the TextField events onChanged() and onScroller().

To format the appearance of text in a text field, we use either a TextFormat object or HTML display. For details, see the following
TextField entries: embedFonts, getFontList(), getTextFormat(), getNewTextFormat(), html, htmlText, setFontList(),

setTextFormat(), setNewTextFormat(), and textColor(), and see the TextFormat class entry. The border and background color of
a text field's containing rectangle can also be set; see the following TextField entries: border, borderColor,

background, and backgroundColor.

Prior to Flash 6, text fields were not formally accessible as objects. As of Flash 6, the TextField class lets us manipulate text fields
much as we do movie clips, by setting position, size, rotation, etc. In fact, many text field properties are borrowed directly from the
MovieClip class (for example, _x, _y, _width, _height, and _rotation). For the sake of backward compatibility, text

field properties corresponding to movie clip properties that existed prior to Flash 6 are prefixed with an underscore (_). To
conform more closely with other ECMA-262 languages, properties that are completely new in Flash 6 do not use the underscore
convention.

Bugs

In Flash 6, built-in properties set on TextField.prototype are not inherited by text field instances, so custom default

values cannot be assigned for all text fields in a movie:

// This attempt to give all text fields a border by default fails in Flash 6
TextField.prototype.border = true;

See Also

MovieClip.createTextField(), the TextFormat class; Chapter 17

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.addListener() Method Flash 6

registers an object to receive onChanged() and onScroller(
) events

theField.addListener(listener)

Arguments

listener

An object with an onChanged() and/or onScroller() method defined.

Returns

A Boolean indicating whether the listener was added successfully. In practice, addListener() always returns true in Flash Player 6.

However, in future versions it may return false when not enough memory is available to add the listener.

Description

The addListener() method adds listener to the list of objects notified when theField's onScroller() or onChanged() events

fire. The listener argument is an object that defines methods of the name onScroller and onChanged; these are invoked when the

corresponding events occur for theField. To stop a listener object from receiving events, use TextField.removeListener().

Listener events allow a single TextField to trigger functions on multiple objects. When only one function needs to be invoked in response
to a TextField event, a callback handler (which offers simpler syntax) will suffice. Note that a TextField can have callbacks and listeners
for the same event. Callback functions are executed before listener methods. When multiple listeners are registered to a TextField, their
methods are invoked in the order the listeners were added.

For general information on how listeners and callback functions work, see Chapter 10.

Example

The following code creates a TextField, named demo_txt, and assigns it a listener object, txtListener, that responds to the

onChanged() event. For comparison, the equivalent callback function approach is also shown. To see the code work, copy it into a new
movie, export the movie to Test Movie mode, then enter text in the text field.

// Make the text field.
this.createTextField("demo_txt", 1, 10, 10, 200, 20);
// Display some text in the field.
demo_txt.text = "type text here";
// Make the field user-editable.
demo_txt.type = "input";
// Create an anonymous object to act as the listener.
txtListener = new Object();
// Add the onChanged function to the listener. Notice that the function
// is passed the name of the field that triggered the event.
txtListener.onChanged = function (tfObject) {

 trace(tfObject + " changed. Listener invoked.");
}
// Now add the listener to demo_txt.
demo_txt.addListener(txtListener);
// For comparison, here's how we can do the same thing with a callback function.
demo_txt.onChanged = function () {
 trace(this + " changed. Callback invoked.");
}

See Also

TextField.onChanged(), TextField.onScroller(), TextField.removeListener(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._alpha Property Flash 6

opacity percentage: 0 is transparent; 100 is
opaque

read/write

theField._alpha

Description

The floating-point _alpha property specifies the opacity (or, conversely, the transparency) of theField
as a percentage—0 is completely transparent, whereas 100 is completely opaque. The text, background, and
border of theField are all affected. The _alpha property works only when theField's font is

embedded and exported with the movie. A font can be embedded at authoring time with the Property inspector's
Character button or at runtime with the embedFonts property. For important details on font embedding, see

TextField.embedFonts.

Example

Assuming its font has been exported with the movie, the following code makes theField_txt 50%

transparent:

theField_txt.embedFonts = true;
theField_txt._alpha = 50;

See Also

TextField._visible, TextField.embedFonts

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.autoSize Property Flash 6

matches the text field's bounding rectangle size
to its text

read/write

theField.autoSize

Description

The string autoSize property can make a text field's bounding rectangle match the size of the text it contains.

Use autoSize to ensure that a text field is large enough to display its assigned text or to allow a text field to

change size dynamically when its content changes (due to user input or reassignment of the text property). For

example, here we create a TextField, title_txt, that contains the text "Contact Information". We don't know the

size of the text, so we can't set the width of title_txt accurately:

// The width and height of 80 and 20 are just a guess...
this.createTextField("title_txt", 1, 0, 0, 80, 20);
title_txt.text = "Contact Information";
title_txt.border = true;

By setting the autoSize property to "left", we guarantee that the words "Contact Information" will be visible:

title_txt.autoSize = "left";

The autoSize property has four possible values: "none" (the default), "left", "right", and "center". Generally,

these dictate the direction in which theField should expand or contract to fit its text, where "none" means don't

resize, "left" means resize right and bottom, "right" means resize left and bottom, and "center" means resize evenly on
both sides and bottom. When assigned a Boolean value, autoSize interprets false as a synonym for "none"

and true as a synonym for "left". However, autoSize has important interactions with the multiline and

wordWrap properties. Table 18-22 shows the behavior of autoSize in relation to multiline and

wordWrap; read the table left to right to see which settings cause text field edges to resize. Note that the default

values for both multiline and wordWrap are false.

Table 18-22. The autoSize property behavior

autoSize multiline wordWrap
Resize
right?

Resize
left?

Resize bottom?

false or

"none"

true or

false
true or

false
no no no

true or "left" false false yes no no

true or "left" true false yes no yes (only at linefeeds)

true or "left" false true no no yes (only at text overflow)

true or

"left"
true true no no

yes (at text overflow and
linefeeds)

"right" false false no yes no

"right" true false no yes yes (only at linefeeds)

"right" false true no no yes (only at text overflow)

"right" true true no no
yes (at text overflow and
linefeeds)

"center" false false yes yes no

"center" true false yes yes yes (only at linefeeds)

"center" false true no no yes (only at text overflow)

"center" true true no no
yes (at text overflow and
linefeeds)

The autoSize property overrides any absolute sizes specified by createTextField(), _height, or _width.

Example

The following code causes title_txt's bounding rectangle to grow or shrink on both the left and right sides as

text is added to it or removed from it:

this.createTextField("title_txt", 1, 0, 0, 0, 0);
title_txt.text = "Title Goes Here";
title_txt.border = true;
title_txt.autoSize = "center";

The following code gives paragraph_txt a fixed width of 100 and an expandable bottom border:

this.createTextField("paragraph_txt", 1, 0, 0, 100, 0);
paragraph_txt.text = "The following sentence is a pangram.\n\n"
 + "The quick brown fox jumps over a lazy dog.";
paragraph_txt.border = true;
paragraph_txt.multiline = true;
paragraph_txt.wordWrap = true;
paragraph_txt.autoSize = "left";

See Also

TextField._height, TextField.multiline, TextField._width,

TextField.wordWrap

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.background Property Flash 5

Boolean; turns text field background on and
offFlash 6; accessible only via authoring tool in
Flash 4 and

read/write

theField.background

Description

The Boolean background property specifies whether to show a colored rectangle behind a field's text

(true) or to make the bounding rectangle behind the field transparent (false, the default). The rectangle's

color is specified by the backgroundColor property (defaults to white). To change the size of the

rectangle, use the _width and _height properties. To add a border to the rectangle, use the border and

borderColor properties.

To produce a more elaborate background for a text field, set background and border to false and

manually draw a shape behind the text field.

Example

Put a white background on theField_txt:

this.createTextField("theField_txt", 1, 0, 0, 80, 20);
theField_txt.text = "hello world";
theField_txt.background = true;

Now make the white background red:

theField_txt.backgroundColor = 0xFF0000;

See Also

TextField.backgroundColor, TextField.border, TextField.borderColor,

TextField._width, TextField._height

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.backgroundColor Property Flash 6

RGB number specifying the text field's
background color

read/write

theField.backgroundColor

Description

The integer backgroundColor property sets the color of a text field's background. Colors are specified as

a single number, most commonly a six-digit hexadecimal value of the form 0xRRGGBB, where RR, GG, and

BB are two-digit numbers between 00 and FF, representing the Red, Green, and Blue components. For

example, the RGB triplet (R: 51, G: 51, B: 102) is equivalent to the hexadecimal value:

0x333366

The default value is white (0xFFFFFF). For more information on RGB triplet notation, see the Color class.

The backgroundColor property has a visible effect only when the background property is true;

when background is false, no background is shown, even if backgroundColor is set. For

example, the following code tries to set the background color of theField_txt to blue, but the color does

not appear because background is not yet set:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.text = "this text has a blue background";
theField_txt.backgroundColor = 0x0000FF;

To make the blue background appear, we must add the following line:

theField_txt.background = true;

Setting the value of background does not alter the value of backgroundColor.

See Also

TextField.background, TextField.border, TextField.borderColor, the Color

class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.border Property Flash 5

Boolean; turns text field border on and offFlash 6;
accessible only via authoring tool in Flash 4 and

read/write

theField.border

Description

The Boolean border property specifies whether to show an outline around theField's bounding

rectangle (true) or not (false). The outline color is specified by borderColor (defaults to black). To

change the size of the rectangle, use the _width and _height properties. To add a background color to the

rectangle, use the background and backgroundColor properties.

To produce a more elaborate background for a text field, set background and border to false, and

manually draw a shape behind the text field.

Example

Put a black border on theField_txt:

this.createTextField("theField_txt", 1, 0, 0, 80, 20);
theField_txt.border = true;
theField_txt.text = "hello world";

Now make the border blue:

theField_txt.borderColor = 0x0000FF;

See Also

TextField.background, TextField.backgroundColor,

TextField.borderColor, TextField. _height, TextField._width

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.borderColor Property Flash 6

RGB number specifying the text field's border
color

read/write

theField.borderColor

Description

The integer borderColor property sets the color of the outline around a text field's bounding rectangle.

Colors are specified as a single number, most commonly a six-digit hexadecimal value of the form
0xRRGGBB, where RR, GG, and BB are two-digit numbers between 00 and FF, representing the Red, Green,

and Blue components. For example, the RGB triplet (R:51, G:51, B:102) is equivalent to the hexadecimal value:

0x333366

The default value is black (0x000000). For more information on RGB triplet notation, see the Color class.

The borderColor property has a visible effect only when the border property is true; when

border is false, no border is shown, even if borderColor is set. For example, the following code

tries to set the border color of theField_txt to green, but the color does not appear because border is

not yet set:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.text = "this text has a green border";
theField_txt.borderColor = 0x00FF00;

To make the green border appear, we must add the following line:

theField_txt.border = true;

Setting the value of border does not alter the value of borderColor.

See Also

TextField.background, TextField.backgroundColor, TextField.border, the

Color class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.bottomScroll Property Flash 6

the 1-relative index of the text field's lowest visible
line

read-
only

theField.bottomScroll

Description

The integer bottomScrollproperty represents the 1-relative line number of the bottommost line currently displayed

in a text field.

When the text in a text field spans more lines than can be accommodated by the physical viewable region of the field,
extra lines of text are hidden but are still part of the text field. The top line is number 1, and line numbers increase for
every line in the text field, including those that exceed the viewable boundaries of the field. See Figure 18-6 under
TextField.scroll, which shows a sample text field's line index values.

When a text field contains more lines than it can display at once, we can determine the range of lines displayed by using
the scroll and bottomScroll properties. The maxScroll property returns the index of the top visible line

when the field is scrolled as far as possible, but it doesn't tell us the total number of lines in the field. Though there is no
separate property for this, we can determine the index of the last line by temporarily setting scroll to maxScroll
and checking bottomScroll, as follows:

theField_txt.oldScroll = theField_txt.scroll;
theField_txt.scroll = theField_txt.maxscroll;
trace("Number of lines in text field is " + theField_txt.bottomScroll);
theField_txt.scroll = theField_txt.oldScroll;

Reader Exercise: Create a custom property, maxBottomScroll, that stores the number of lines in a field. Write a

getMaxBottomScroll() function to retrieve it.

Example

We can calculate the number of lines currently displayed in a text field (sometimes referred to as the field's page size) by
subtracting scroll - 1 from bottomScroll. The following code adds a getPageSize() method to all TextField

objects; when invoked on a TextField instance, the method returns the number of viewable lines in that field:

TextField.prototype.getPageSize = function () {
 var pageSize = this.bottomScroll - (this.scroll - 1);
 trace("Page size is " + pageSize);
 return pageSize;
}

The page size of a text field can be used to scale a scroll handle proportionately in a corresponding scroll bar. Note that the
number of displayable lines in a field can vary, depending on the font sizes of the currently displayed text.

See Also

TextField.maxscroll, TextField.scroll; the FScrollBar component in Appendix E

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.condenseWhite Property Flash 6 (undocumented)

specifies whether HTML whitespace should be
condensed

read/write

theField.condenseWhite

Description

When set to true, the Boolean condenseWhite property causes a field's HTML text to be condensed,

removing all excess whitespace characters (tab, line break, space, etc.). Hence, the field's HTML rendering
mirrors a typical web browser—multiple spaces behave as a single space between words and the newline
character "\n" no longer serves as a line break; the <P> and
 tags must be used instead. In this mode,

HTML text parsing behaves like Flash's XML parser when the XML.ignoreWhite property is set to

true.

The condenseWhite property allows you to use existing HTML text in Flash without removing excess

whitespace manually. The default value of condenseWhite is false. Even when set to true, it has no

effect unless the field's html property is also true.

The condenseWhite property is an undocumented feature of the TextField object, but you can rely on it

being supported in future versions as well. The overly cautious developer can manually remove whitespace from
the HTML text to make it appear the same in Flash as it does in a web browser.

See Also

TextField.html, TextField.htmlText, XML.ignoreWhite

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.embedFonts Property Flash 6

render text using fonts exported with the movie read/write

theField.embedFonts

Description

The Boolean embedFonts property specifies whether a field's text is rendered using device fonts on the

user's system (false) or fonts embedded in the .swf file (true). When embedFonts is false, text

appears without antialiasing and missing fonts are replaced by the system's default font (usually some variation
of Times New Roman). When embedFonts is true and the field's fonts are exported with the .swf file,

text appears antialiased. When embedFonts is true but one or more of the field's fonts is missing from

the .swf file, text in the missing fonts does not appear at all. Embedding a complete Roman font typically adds
20-30 KB to a movie (Asian fonts can be much larger). Using embedded fonts with sizes smaller than 10-point
is not recommended, because antialiased text becomes unreadable below 10-point in most fonts.

The contents of a text field that is rotated or masked with an author-time mask layer
will not show up on screen unless its font is embedded. However, as of Flash Player
6.0.40.0, MovieClip.setMask() can be used to apply a rectangular mask to a text field
at runtime without embedded fonts. See MovieClip.setMask() for details.

To export (i.e., to embed) a font with a .swf file, we must do one of the following:

Create a new font symbol in the movie's Library.

Manually add a dummy text field at authoring time and set its Character options in the Property inspector.

The font symbol approach always exports an entire font, while the text field approach allows us to export only
part of a font, reducing file size. To export a subset of a font with a font symbol, we must use font-making
software such as Macromedia Fontographer to create a custom font as a subset of the original font.

To export Arial Bold using a font symbol:

Select Window Library.1.
From the pop-up Options menu in the upper-right corner of the panel, select New Font. The Font Symbol
Properties dialog box appears.

2.

Under Font, select Arial.3.
Under Style, select Bold.4.
Under Name, type ArialBold (this is a cosmetic name, used in the Library only).5.

In the Library, select the ArialBold font symbol.6.

From the pop-up Options menu, select Linkage.7.
In the Symbol Linkage Properties dialog box, under Linkage, select Export For ActionScript.8.
In the Identifier box, type ArialBold. This name will be used as the value of a TextFormat object's

font property.

9.

To export any font using a dummy text field:

Select the Text tool.1.
2.
3.

1.
Draw a rectangle on stage.2.
In the Property inspector, choose the desired font. The font's actual name will be used as the value of a
TextFormat object's font property.

3.

In the Property inspector, click the Character button and choose the character outlines to export.4.

Every variation of a font style must be embedded individually. If we use Courier New in bold, italic, and bold
italic in a text field, then we must embed all three font variations or the text will not display correctly. Underline
is not considered a font variation, nor is font size or color.

Setting embedFonts to true does not cause any fonts to download with the

movie; it merely indicates that theField should be rendered with exported fonts if

they are available. The embedFonts property must be set separately for each text

field that uses a particular font, even if multiple text fields use the same font. However,
file size is not affected when multiple text fields embed the same font—only one copy
of the font is downloaded with the movie.

To specify the font for a text field, use a TextFormat object and the TextField.setTextFormat() and
TextField.setNewTextFormat() methods. To retrieve a list of fonts available on the user's system, use
TextField.getFontList().

On operating systems that support Unicode (e.g., Windows XP and Mac OS X), when embedFonts is

false and a character is needed that is not available in the specified font, Flash will automatically search the

system for a font that can represent the character. If a suitable font is found, it will be used until the next missing
character is encountered, at which point Flash will again search for a suitable font.

Bugs

Theoretically, to apply the same embedFonts value to all text fields in a movie, we would use this syntax:

TextField.prototype.embedFonts = true;

However, in Flash 6, built-in properties set on TextField.prototype are not inherited by text field

instances.

Example

Assuming the Verdana font is exported, the following code causes theField_txt to be rendered in

antialiased Verdana:

// Make the text field
this.createTextField("theField_txt", 1, 0, 0, 150, 40);
// Tell the field to use embedded fonts
theField_txt.embedFonts = true;
// Assign some text to the field
theField_txt.text = "How are you?"
// Create and apply a text format with a font of Verdana
defaultFormat = new TextFormat();
defaultFormat.font = "Verdana";
theField_txt.setTextFormat(defaultFormat);

See Also

TextField.getFontList(), TextField.setNewTextFormat(), TextField.setTextFormat(), TextFormat.font

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.getDepth() Method Flash 6

returns the position of the text field in the content stack

theField.getDepth()

Returns

An integer depth level.

Description

Text fields, movie clips, and buttons are all placed in the Player in an order that governs how objects stack
visually. An internal depth property indicates each object's order in the content stack. The getDepth() method
tells us a field's integer depth position. Each depth level can have only one occupant, whether the occupant is a
text field, button, or movie clip. Objects on higher depths appear in front of those with lower depths. For text
fields created at runtime with MovieClip.createTextField(), the return value of getDepth() is the depth assigned
to the method's depth parameter. For example:

// Sets depth to 13
this.createTextField("theField_txt", 13, 0, 0, 150, 20);
trace(theField_txt.getDepth()); // Displays: 13

For text fields created manually at authoring time, getDepth() returns a depth in the range of -16383 to -1
(inclusive). Unlike the MovieClip class, TextField has no swapDepths() method, so each text field's depth is
fixed once it has been assigned.

For much more information about depths, see Section 13.4 in Chapter 13.

See Also

MovieClip.createTextField(), MovieClip.getDepth(), MovieClip.swapDepths(); "Movie and Instance Stacking
Order," in Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.getFontList() Class Method Flash 6

returns an array of fonts on the user's system

TextField.getFontList()

Returns

An array of font names as strings.

Description

The getFontList() class-level method tells us what fonts are installed on the system playing a Flash movie. We can use any of the fonts
listed as a device font for a text field, provided that the field has embedFonts set to false. To assign a font to a text field, use the

font property of a TextFormat object and the TextField.setTextFormat() method.

Only families of fonts are listed by getFontList(), as would appear in the text field Property inspector's font selector. Variations, such as
bold or italic versions of a font, are not listed. To use a bold or italic variation of a font, set the bold or italic property of a

TextFormat object, in addition to the font property, before applying it using TextField.setTextFormat() or

TextField.setNewTextFormat().

Typical uses for getFontList() include selecting a fallback font automatically (see the following Example) and letting the user select a
font.

Usage

Note that getFontList() is called directly as a method of the TextField class, not through an instance of the class:

someTextField_txt.getFontList(); // Wrong way...won't work.
TextField.getFontList() // Right way.

Bugs

In Flash 6, the getFontList() method does not return names of fonts exported with a movie.

Example

The function assignFont() takes an array of font names and returns the first one that is found on the user's system. If none is found,
assignFont() returns null:

this.createTextField("theField_txt", 1, 0, 0, 150, 40);
theField_txt.text = "Flash is fun!";
defaultFormat = new TextFormat();
defaultFormat.font = assignFont(["ZapfChancery", "Verdana", "Arial", "_sans"]);
theField_txt.setTextFormat(defaultFormat);
function assignFont (fontList) {
 var systemFonts = TextField.getFontList();
 for (var i = 0; i < fontList.length; i++) {

 for (var j = 0; j < systemFonts.length; j++) {
 if (fontList[i] = = systemFonts[j]) {
 return fontList[i];
 }
 }
 }
 return null;
}

See Also

TextField.embedFonts, TextField.setTextFormat(), TextFormat.bold, TextFormat.font,

TextFormat.italic, the TextFormat class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.getNewTextFormat() Method Flash 6

retrieves the default TextFormat object for the text field

theField.getNewTextFormat()

Returns

A TextFormat object describing the default format for any characters added to theField.

Description

The getNewTextFormat() method returns a TextFormat object whose properties describe the format applied to
any new characters added to theField. For a detailed description of TextFormat objects, see the

TextFormat class.

Any text added to a field via TextField.text, TextField.replaceSel(), or by the user is formatted

according to the settings of the object returned by getNewTextFormat(). For a new text field, the default
TextFormat object has the property values shown in Table 18-25 under the Description heading for the
TextFormat class entry.

The default values can be changed with setNewTextFormat(). However, setNewTextFormat() does not format
characters already in the field; it merely sets the format for any future characters that are added. To reformat
characters already in a text field, use setTextFormat(). To examine the format of characters already in a text
field, use getTextFormat().

Usage

When the insertion point is placed in a text field by the user or with Selection.setSelection(), the field's new text
format is set to match the character to the insertion point's right (or left, in the case of the last character). The
return value of getNewTextFormat() will reflect the format of that character. See the Example under
TextField.setNewTextFormat() for code that forces the new text format not to adopt the existing text's format.

Example

The following code checks the default font size for a field named numbers_txt and then increases that size

by ten points:

// Create a text field
this.createTextField("numbers_txt", 1, 0, 0, 150, 40);
// Assign the field some text to display
numbers_txt.text = "one two three four";
// Retrieve the new text format object for numbers_txt
var numbersNewTextFormat = numbers_txt.getNewTextFormat();
// Check the default font point size for new text
trace(numbersNewTextFormat.size); // Displays: 12
// Add ten points and apply the new default settings
numbersNewTextFormat.size += 10;

numbers_txt.setNewTextFormat(numbersNewTextFormat);
// Now insert some text to see the change
numbers_txt.text = "five six seven";

See Also

TextField.getTextFormat(), TextField.setNewTextFormat(), TextField.setTextFormat(), the TextFormat class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.getTextFormat() Method Flash 6

retrieves a TextFormat object for specified characters

theField.getTextFormat()
theField.getTextFormat(beginIndex)
theField.getTextFormat(beginIndex, endIndex)

Arguments

beginIndex

The index of the first character whose formatting is described by the returned TextFormat object. It is optional, but it must be a
nonnegative integer if it is included. If it is omitted, the entire field is used.

endIndex

The index following the last character whose formatting is described by the returned TextFormat object. It is optional, but it
must be a nonnegative integer if it is included.

Returns

A TextFormat object describing the formatting of the specified characters.

Description

The getTextFormat() method lets us examine the existing formatting of one or more characters already in a field. It returns a
TextFormat object whose properties describe the formatting of the specified characters. For a detailed description of TextFormat
objects, see the TextFormat class.

When getTextFormat() is invoked with one integer argument, or if endIndex is equal to beginIndex + 1, the returned

TextFormat object reflects the formatting for the single character at beginIndex. For example, here we apply a format to the first

four characters of a text field, and then we check the font of the first character:

// Create the text field
this.createTextField("theField_txt", 1, 0, 0, 150, 40);
// Assign the field some text for display
theField_txt.text = "What time is it?";
// Create a TextFormat object with a font property of "Arial"
sansFormat = new TextFormat("Arial");
// Apply the format to the word 'What', characters 0 to 3 (inclusive)
theField_txt.setTextFormat(0, 4, sansFormat);
// Retrieve a TextFormat object for the first character
firstCharFormat = theField_txt.getTextFormat(0);
// Check the font property
trace(firstCharFormat.font); // Displays: Arial

When getTextFormat() is invoked with two integer arguments, the returned TextFormat object represents the formatting for the span
of characters from beginIndex to endIndex - 1. And when getTextFormat() is invoked with no arguments, the returned

TextFormat object represents the formatting for all the characters in the field.

If a specific format (e.g., font, bold, or italic) is not the same for all characters in a specified span, the corresponding property of the
TextFormat object for that span will be null. Continuing with our example, if we retrieve a TextFormat object for the entire text of

theField_txt, we find that properties shared by all characters return non-null values:

// Retrieve a TextFormat object for all characters in theField_txt
allCharsFormat = theField_txt.getTextFormat();
// Now check whether all the characters are bold
trace(allCharsFormat.bold); // Displays: false

But properties that vary between characters return null:

// Check the font for all characters
trace(allCharsFormat.font); // Displays: null (if font is not uniform)

The first four characters in theField_txt have a different font than the remaining characters, so no single font property value

can accurately describe the entire span and null is returned.

Note that changes to a TextFormat object returned by getTextFormat() do not have any effect on the text of theField until the

object is applied with setTextFormat(). For example, on its own, the following assignment of the font property has no effect on

theField_txt:

allCharsFormat.font = "Courier New";

But when we add a call to setTextFormat(), the change is applied:

theField_txt.setTextFormat(allCharsFormat); // Applies the "Courier New" font
 // to the whole text field

Don't confuse getNewTextFormat() with getTextFormat(); the former retrieves the format used for text that will be added to
theField in the future, while the latter retrieves the format for characters already in theField.

For a detailed description of TextFormat objects, see the TextFormat class entry.

See Also

TextField.getNewTextFormat(), TextField.setNewTextFormat(), TextField.setTextFormat(), the TextFormat class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._height Property Flash 6

height of the text field's bounding box, in pixels read/write

theField._height

Description

Every text field defines a rectangular region, known as its bounding box, inside which text is displayed. The
floating-point _height property is a nonnegative number specifying the height of a field's bounding box, in

pixels. By changing _height, we resize a field's bounding box, allowing it to display more or less text.

Changing a field's _height doesn't change the height of the text it contains; to change text size, set the

TextFormat.size or TextField._yscale properties. To check the height of a field's text, use

textHeight. Note that as of Flash 6, the autoSize property can be used to force a text field's bounding

box to fit its text.

Changes made to a clip's height in the authoring tool or via _yscale are reflected by _height. To apply a

stroke or a fill to a field's bounding box, use the border and background properties.

Example

// Create a 10-pixel-high text field
// (with a border so we can see its bounding box)
this.createTextField("theField_txt", 1, 0, 0, 150, 10);
theField_txt.border = true;
// Assign the field some text for display
theField_txt.text = "Almost time for breakfast.";
// Make theField_txt 20 pixels high
theField_txt._height = 20;
// Add 15 pixels to theField_txt's height
theField_txt._height += 15;

See Also

TextField.autoSize, TextField.textHeight, TextField._width,

TextField._yscale, the TextFormat class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.hscroll Property Flash 6

a text field's horizontal scroll position, in pixels read/write

theField.hscroll

Description

When a field's text is wider or higher than can be accommodated by the physical viewable region of its bounding box, excess text is hidden from
view. To bring the text into view, we can scroll the field horizontally or vertically using the hscroll and scroll properties. The integer

hscroll property specifies the number of pixels a field's text is scrolled to the left. The default, 0, indicates that the text is not scrolled

horizontally (the first character in the field is flush with the left border of the field's bounding box). If a field's text can be fully displayed without
any horizontal cutoff, hscroll remains at 0 and cannot be set. But if a field's text cannot be fully displayed horizontally in the allotted space,

setting hscroll to a positive integer offsets the text by the specified number of pixels to the left, up to the maximum set by maxhscroll.

When more than one line is displayed in a field, all lines are moved simultaneously. Scrolling caused by user input is reflected by hscroll.

Note that hscroll does not scroll text one character at a time; it scrolls the field one pixel at a time. This contrasts with scroll, which

moves text one line at a time, not one pixel at a time.

The hscroll property typically is used to create horizontal scrolling interfaces for a text field, or for "stock ticker" style text display, as

shown in the following Example.

Example

Example 18-5 shows a simple but flexible text ticker that uses the hscroll property to scroll its text horizontally in an endless cycle.

Example 18-5. Text ticker

// Create a text field (with a border so we can see its bounding box)
this.createTextField("ticker_txt", 1, 0, 0, 100, 20);
ticker_txt.border = true;
// Set speed of ticker_txt (pixels per 20 ms)
ticker_txt.speed = 1;
// Assign the field some text for display
ticker_txt.text = "Here is the latest news from moock.org: "
 + "Colin drinks a cup of tea!";
// Assign a buffer of spaces so the text flows in and out of the text field
// First, check the size of a space character in this field's format
ticker_txt.spaceSize = ticker_txt.getNewTextFormat().getTextExtent(" ").width;
// Now calculate how many spaces we need to fill the field
ticker_txt.spacesRequired = Math.ceil(ticker_txt._width / ticker_txt.spaceSize);
// Create a string of spaces
for (var i = 0; i < ticker_txt.spacesRequired; i++) {
 ticker_txt.spacebuffer += " ";
}
// Add the spaces to the front and end of the text
ticker_txt.text = ticker_txt.spacebuffer + ticker_txt.text + ticker_txt.spacebuffer;
// Create a function to scroll the text
ticker_txt.hscrollInterval = function () {

 // If we're at the end of the text...
 if (this.hscroll = = this.maxhscroll) {
 // ...start again
 this.hscroll = 0;
 }
 // Scroll the text by the specified amount
 this.hscroll += this.speed;
}
// Call our text scroller every 20 milliseconds
setInterval(ticker_txt, "hscrollInterval", 20);

See Also

setInterval(), TextField.getNewTextFormat(), TextField.maxhscroll, TextField.scroll, TextField.width,

TextField.wordWrap, TextField._yscale, TextFormat.getTextExtent(); the FScrollBar component in Appendix G

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.html Property Flash 5

Boolean; enables or disables HTML displayFlash
6; accessible via authoring tool only in

read/write

theField.html

Description

The Boolean html property indicates whether a field should render the contents of its htmlText property as

formatted HTML (true) or as plain text (false). It defaults to false. To have an effect, html must be

true before htmlText is assigned. In Flash 5, HTML provided the only means of achieving complex text

formatting in a text field; as of Flash 6, the TextFormat class offers object-oriented formatting control.

For more information, see TextField.htmlText.

Example

The following code creates a text field that displays italicized text:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.html = true;
theField_txt.htmlText = '<I>This will display italicized text.</I>';

The text field displays:

This will display italicized text.

If line 2 were omitted, the text field would display:

<I>This will display italicized text.</I>

See Also

TextField.condenseWhite, TextField.htmlText, TextField.text, the TextFormat

class; Appendix E

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.htmlText Property Flash 6

HTML source code to render in the text field read/write

theField.htmlText

Description

Like the text property, htmlText is used to specify text for on-screen display but with the added feature that if the html property

is true, HTML tags in htmlText are interpreted as formatting instructions. To display formatted HTML in a text field, first set

html to true, and then assign HTML source code to htmlText:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.html = true;
theField_txt.htmlText = 'This will display bold text.';

The set of supported tags is limited, compared to a web browser, but it still provides good basic text control. See Appendix E for details.

Assigning a value to htmlText overwrites the value of text, and vice versa. In most cases, if you are

using HTML text, set the html property to true and access the field's text using the htmlText
property. If you are using non-HTML text, set the html property to false and access the field's text using

the text property.

When html is false, HTML tags in text assigned to htmlText show up as regular text, and htmlText behaves in the same

way as the text property. HTML tags assigned directly to text are never interpreted as HTML; they are always displayed verbatim.

However, when html is true and HTML tags are assigned to htmlText, the value of text will be that of htmlText, but

with all HTML tags stripped out. For example, here we create an HTML-enabled text field and assign some HTML to its htmlText
property for display:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.html = true;
theField_txt.htmlText = '<P ALIGN="LEFT"><FONT FACE="Times New Roman" SIZE="12"'
 + 'COLOR="#000000">This field contains HTML!'
 + '</P>';

After the assignment, htmlText has the value:

<P ALIGN="LEFT">
This field contains HTML!</P>

But text has the value:

This field contains HTML!

Conversely, as long as html is true, Flash automatically adds HTML markup to htmlText if the HTML source assigned to

htmlText does not fully describe the text field's formatting. For example, here we set htmlText without using any <P> or

 tags:

theField_txt.htmlText = "This field contains HTML!";

When we examine the value of theField_txt.htmlText, we find that <P> and tags have been added:

trace(theField_txt.htmlText);
// Displays:
<P ALIGN="LEFT">
This field contains HTML!</P>

Meanwhile, text has the value:

This field contains HTML!

When theField.html is true and theField is formatted with setTextFormat(), htmlText represents the formatting

with HTML tags. For example:

this.createTextField("theField_txt", 1, 0, 0, 200, 30);
theField_txt.html = true;
theField_txt.text = "Stretch often while you work.";
// Create a TextFormat object that specifies bold text.
boldFormat = new TextFormat();
boldFormat.bold = true;
boldFormat.size = 20;
// Apply the format to the word "often", characters 8 to 12 (inclusive).
theField_txt.setTextFormat(8, 13, boldFormat);
// Check the value of htmlText. Note the tags around the word "often".
trace(theField_txt.htmlText);
// Displays:
<P ALIGN="LEFT">
Stretch often while you work.</P>

Note, however, that the new text format for theField (as set by setNewTextFormat()) is not used by htmlText, as demonstrated

in the following code:

this.createTextField("theField_txt", 1, 0, 0, 250, 100);
theField_txt.html = true;
// Set the new text format to be bold, 20 pt.
tformat = theField_txt.getNewTextFormat();
tformat.size = 20;
tformat.bold = true;
theField_txt.setNewTextFormat(tformat);
// This text, assigned to htmlText, does not take the formatting
theField_txt.htmlText = '<P>This text is size 12, not size 20.</P>';
// This text, assigned to text, will be size 20, bold
theField_txt.setNewTextFormat(tformat);
theField_txt.text = 'This text is size 20, bold.';

Table 18-23 shows the effect of setting the htmlText property under different scenarios.

Table 18-23. Display when setting the htmlText property

html
Assigned to

htmlText
htmlText contents text contents

On-screen
display

false
<I>Italicized
text</I>

<I>Italicized text</I>
<I>Italicized
text</I>

<I>Italicized
text</I>

false Plain text Plain text Plain text Plain text

true
<I>Italicized
text</I>

<P ALIGN="LEFT"><FONT FACE="Times New Roman" SIZE="12"
COLOR="#000000"><I>Italicized text</I></P>

Italicized text Italicized text

true Plain text
<P ALIGN="LEFT"><FONT FACE="Times New Roman" SIZE="12"
COLOR="#000000">Plain text</P>

Plain text Plain text

Take heed that successive assignments to htmlText and text overwrite each other. Regardless of the value of

theField.html, assigning a new value to text overwrites the value of htmlText, and vice versa. Successive concatenations

(not reassignments), in contrast, do not overwrite each other:

theField_txt.htmlText = "hello";
theField_txt.text += " world";
// theField_txt.htmlText is now:
// <P ALIGN="LEFT"><FONT FACE="Times New Roman" SIZE="12"
// COLOR="#000000">hello world</P>

But concatenating text to htmlText can cause problems; when we assigned a value to text, Flash removed our tag

assigned to htmlText because assigning a new value to text removes all custom formatting in the field. Further, each concatenation

or assignment to htmlText causes the insertion of a new paragraph tag (<P>). Hence, mixing text and htmlText assignments

generally is not recommended. Each assignment made to htmlText should comprise an entire paragraph; otherwise, any subsequent

concatenation will force an undesired line break.

To include HTML source code in an HTML-enabled text field, convert the characters <, >, &, ", and ' to their equivalent HTML entity
values: <, >, &, ", and ', as discussed at: http://moock.org/asdg/technotes/sourceInHtmlField.

To display HTML tags in a non-HTML text field, simply set html to false and use the text property, as follows:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.html = false;
theField_txt.text = 'This field contains HTML!';

If the embedFonts and html properties are both true, every font face and variation used in htmlText must have a

corresponding font exported with the movie (as described under embedFonts). If we use Arial bold, Arial italic, and Arial bold italic

in htmlText, then we must embed all three font variations. For example, suppose we create a text field called output_txt. In the

Properties inspector for our output_txt text field we select Arial, set to Italic. In the Character Options dialog box, we embed All

Characters of the Arial italic font. Then we set output_txt to display HTML. Finally, we assign the following value to our text field:

output_txt.htmlText = '<P><I>My</I>, what lovely'
 + 'eyes you have!</P>';

When the movie plays, the following text appears in the text field:

My

Everything else we assigned to output is missing! Only the italic text is rendered. The rest of the text requires other variations of the

Arial font that we didn't embed—"what" and "eyes you have" are not italicized, and "lovely" is bolded.

Underlining is not considered a font variation, nor is font size or color. If, however, embedFonts is false, Flash relies entirely on

the user's system for fonts, in which case normal, bold, and italic text will be rendered only if users have the appropriate font variant
installed on their systems.

For further discussion of HTML usage in text fields, see Appendix E.

See Also

getURL(), TextField.embedFonts, TextField.html, TextField.text, the TextFormat class; Appendix E

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.length Property Flash 6

the number of characters in the text fieldFlash 5;
object-oriented version introduced in

read-
only

theField.length

Description

The integer length property returns the number of characters in theField.text (similar to the

String.length property), including whitespace. If theField.htmlText is assigned HTML

source, theField.length still returns the number of characters in theField.text (which is the

same as htmlText, but stripped of HTML tags). The length property of a text field is a character count,

not a width; to access the pixel width of a field, use theField._width. To retrieve the value of a specific

character in theField, use theField.text.charAt(n), where n is the zero-relative character to

retrieve.

Example

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.text = "welcome";
trace(theField_txt.text.length); // Displays: 7

See Also

String.charAt(), String.length, TextField.htmlText, TextField.text,

TextField._width

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.maxChars Property Flash 5

limits the allowed length of user inputFlash 6;
accessible only via authoring tool in

read/write

theField.maxChars

Description

Used with user-input text fields only, the integer maxChars property limits the amount of text a user can

enter into a text field. It defaults to null, which allows an unlimited amount of text to be entered (as does the

value 0). Positive settings allow the specified number of characters to be entered; negative settings disable text

entry completely. The maxChars property does not limit text changes made via ActionScript. The text
and htmlText properties can be set to any value despite maxChars limitations.

The maxChars property is often used with input forms that require a certain format for their data. For

example, we can use it to limit a date entry to a two-digit day, a two-digit month, and a four-digit year. To
further curtail text entry, we can use the TextField.restrict property, which specifies a set of

allowed input characters for a text field.

Example

The following code limits the number of characters that can be entered into userName_txt to 15:

this.createTextField("userName_txt", 1, 0, 0, 200, 20);
userName_txt.type = "input";
userName_txt.text = "your name here";
userName_txt.maxChars = 15;

See Also

TextField.htmlText, TextField.restrict, TextField.text,

TextField._width, String.charAt(), String.length

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.maxhscroll Property Flash 6

the maximum distance text can be scrolled to the
left

read-
only

theField.maxhscroll

Description

The integer maxhscroll property indicates, in pixels, the maximum distance a field's text can be scrolled

horizontally to the left. The maxhscroll property typically is used to detect when text has been moved left

as far as it will go, or to force a text field to scroll its maximum distance.

When theField.type is set to "dynamic", maxhscroll tells us how far theField's longest line

overflows the right border (when hscroll is 0). When theField.type is set to "input",

maxhscroll also includes a small buffer space at the right side of theField, (approximately one-fourth

of the field's width). This buffer allows room for user input. When hscroll is equal to maxhscroll,

theField's longest line of text appears flush with the right border (minus the buffer space if

theField.type is set to "input").

Figure 18-4 depicts maxhscroll for a dynamic text field (one with type set to "dynamic"). Text shown in

gray is not displayed in the Flash Player but is shown for expository purposes.

Figure 18-4. The maxhscroll property for a dynamic text field

Figure 18-5 shows maxhscroll for the same field but with its type property set to "input". Note the

increase in maxhscroll caused by the type change. The field in Table 18-2 has an hscroll of 150 so

that the extra space allotted for user input is clearly visible.

Figure 18-5. The maxhscroll property for an input text field

Example

The following code scrolls title_txt all the way to the right. For a more real-world example of

maxhscroll, see Example 18-7 under TextField.hscroll.

this.createTextField("title_txt", 1, 0, 0, 30, 20);
title_txt.text = "Welcome to my web site.";

title_txt.hscroll = title_txt.maxhscroll;

See Also

TextField.bottomScroll, TextField.hscroll, TextField.maxscroll,

TextField.scroll; the FScrollBar component in Appendix G

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.maxscroll Property Flash 5

the last legal top line of a text fieldFlash 6;
corresponds to the maxscroll property in Flash 4
and

read-
only

theField.maxscroll

Description

The integer maxscroll property tells us the largest allowed scroll value for a text field. It represents the

number of the last line in a text field that can be used as the top line in its viewable region. Note that
maxscroll is not equal to the number of text lines; that value must be obtained manually, as discussed

under TextField.bottomScroll.

See Example 18-7 under TextField.scroll for sample scrolling code.

See Also

TextField.bottomScroll, TextField.hscroll, TextField.maxhscroll,

TextField.scroll; the FScrollBar component in Appendix G

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.multiline Property Flash 5

Boolean; enables or disables multiline user
inputFlash 6; accessible only via authoring tool in

read/write

theField.multiline

Description

The Boolean multiline property dictates whether users can enter line breaks in theField using, say,

the Return or Enter key. It applies to user input only and has no effect on text assigned with ActionScript. The
default setting, false, prevents users from entering more than one line of text in the field, effectively

disabling the Enter key during text entry (much like HTML's <INPUT TYPE="TEXT"> tag). A setting of

true allows users to enter more than one line of text in the text field (much like HTML's <TEXTAREA>
tag).

To turn word-wrapping on for lines that exceed the field's viewable region, use TextField.wordWrap.

To limit the amount of text a user can enter into a text field, use TextField.maxChars.

Example

The following code creates two text fields. The first field, nameInput_txt, allows a single line of input

only; the second field, addressInput_txt, allows multiple lines of input:

// Create the nameInput_txt field
this.createTextField("nameInput_txt", 1, 0, 0, 200, 20);
nameInput_txt.type = "input";
nameInput_txt.border = true;
nameInput_txt.multiline = false;
// Create the addressInput_txt field
this.createTextField("addressInput_txt", 2, 0, 40, 200, 60);
addressInput_txt.type = "input";
addressInput_txt.border = true;
addressInput_txt.multiline = true;

See Also

TextField.maxChars, TextField.restrict, TextField.type,

TextField.wordWrap

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._name Property Flash 6

the instance name of the TextField object read/write

theField._name

Description

The string _name property specifies a field's instance name, which is specified initially via the Property

inspector at authoring time or via the MovieClip.createTextField() method at runtime. Though rarely (if ever)
necessary, setting _name reassigns the instance name for theField; thereafter, references to the old

instance name yield undefined:

// Create a text field with an instance name of address_txt
this.createTextField("address_txt", 1, 0, 0, 200, 60);
// Reassign the instance name
address_txt._name = "location_txt";
// Now access the field through the new instance name
location_txt.text = "Toronto, Canada";

More commonly, the _name property is used to identify a specific text field when processing fields as a group.

For example, the following code processes a hypothetical form. It finds the field email_txt on the current

timeline (this) and then invokes a data-validating function on it:

for (var p in this) {
 if (this[p] instanceof TextField) {
 // Show each field's name
 trace("found " + this[p]._name);
 // Look for email_txt
 if (this[p]._name = = "email_txt") {
 validateAddress(this[p].text);
 }
 }
}

See Also

MovieClip.createTextField(), MovieClip._name; "The for-in Loop," in Chapter 8

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.onChanged() Event Handler and Listener
Event

Flash
6

invoked when user input is detected

theField.onChanged(changedField)
listener.onChanged(changedField)

Arguments

changedField

The TextField object for which input was detected.

Description

The onChanged() event is triggered whenever the user enters or deletes text in theField. Typically,

onChanged() is used to trigger input-validation routines in response to the user's entries while the user is still
typing. Possible uses include an inline spellchecker, an email validator, or an autocomplete feature for a text
field.

Note that onChanged() is not triggered when new text is assigned to theField through ActionScript. For

example, this statement does not trigger onChanged():

theField_txt.text = "Some new text...";

If theField.restrict is true and the user attempts to enter a restricted character, then the keystroke

is ignored and onChanged() is not triggered.

The onChanged() event can be handled with a callback function attached to the text field. The following code
registers a callback function that responds to onChanged():

// Create a text field that accepts user input
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.type = "input";
theField_txt.border = true;
// Assign the onChanged() callback using a function literal
theField_txt.onChanged = function (changedField) {
 trace("The user typed something in " + this);
};

Notice that from the body of the callback we refer to theField_txt using the this keyword; we could

also have used the changedField parameter to obtain a reference to the text field that changed.

The onChanged() event can also be handled by an event listener that has been added using addListener(), as
specified by listener. When using an event listener, we must use the changedField parameter to

determine which text field has changed. The following code registers an event listener that responds to
onChanged():

changedListener = new Object();
changedListener.onChanged = function (changedField) {
 trace("The user typed something in " + changedField);
};
theField_txt.addListener(changedListener);

Using a callback function is simpler, but it allows only a single function to respond to the event. Any number of
listener objects can respond to a single event. To stop a callback from handling the onChanged() event, use the
delete operator, as in:

// Make sure to omit the () operator after the function name!
delete theField_txt.onChanged;

To stop a listener from handling the onChanged() event, use removeListener(), as in:

theField_txt.removeListener(changedListener);

Bugs

When text is entered rapidly into a text field (for example, when many keys are pressed simultaneously), the new
value of theField.text may not yet be set when the onChanged() handler executes. When rapid typing

is expected, use setInterval() to wait until the new text is available.

See Also

TextField.addListener(), TextField.removeListener(), TextField.type; Chapter 10.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.onKillFocus() Event Handler Flash 6

callback invoked when the field loses focus

theField.onKillFocus(newFocus)

Arguments

newFocus

The TextField, MovieClip, or Button object that now has focus, or null if no object received focus.

Description

The onKillFocus() event is triggered when theField loses focus. A text field is said to have focus when it

contains the text insertion point or when characters within it are selected. A field gains focus when:

The user clicks it with the mouse or navigates to it with the Tab key.

Selection.setFocus() assigns focus programmatically.

A field loses focus (and onKillFocus() is executed) when:

The user clicks somewhere outside the field or navigates away from it via the Tab key, at which point
focus may be transferred to whatever was tabbed to (a text field, movie clip, or button). Clicking a button
or movie clip does not give the button or clip focus. If focus was transferred, the newly focused object is
accessible within onKillFocus() via the newFocus parameter; otherwise, newFocus is null.

Selection.setFocus() assigns focus to another object programmatically. The newly focused object is
accessible within onKillFocus() via newFocus.

When a text field's selectable property is false, the field cannot be focused by the user but can be

focused programmatically with Selection.setFocus().

The following code creates a callback function that responds to onKillFocus(). Run it in Test Movie mode and
try clicking on and off the text field. The Output window displays a message when the event is triggered.

// Create a text field that accepts user input
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.type = "input";
theField_txt.border = true;
// Assign the onKillFocus() callback using a function literal
theField_txt.onKillFocus = function (newFocus) {
 trace(this + " lost focus. Focus is now " + newFocus);
};

Notice that from the body of the callback we refer to theField_txt using the this keyword. To stop a

callback from handling the onKillFocus() event, use the delete operator, as in:

// Make sure to omit the () operator after the function name!
delete theField_txt.onKillFocus;

The onKillFocus() event can be used to trigger the validation of text field input when the user has finished
entering text. Or, in combination with onSetFocus(), it can bring attention to a focused text field with color (see
the Example under TextField.onSetFocus()). To capture all focus events centrally, rather than for a single
instance, use Selection.onSetFocus().

See Also

Selection.onSetFocus(), Selection.setFocus(), TextField.onSetFocus(), TextField.selectable,

TextField.tabEnabled, TextField.tabIndex, TextField.type; Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.onScroller() Event Handler and Listener
Event

Flash
6

invoked when any scroll property changes

theField.onScroller(scrolledField)
listener.onScroller(scrolledField)

Arguments

scrolledField

The TextField object that changed scroll position.

Description

The onScroller() event is triggered whenever any of the following text field properties changes: scroll,

maxscroll, hscroll, or maxhscroll. It tells us that theField has been scrolled vertically or

horizontally, or that theField has new content that changes its maximum vertical or horizontal scrolling range.

Typically, onScroller() is used to synch a scrollbar interface with the content of theField. For example, if the

user enters more text than will fit in a single-line text field, the text will scroll horizontally and onScroller() will fire,
allowing code to update the width and position of a horizontal scrollbar.

The onScroller() event can be handled with a callback function attached to the text field. The following code registers
a callback function that responds to onScroller(). Run it in Test Movie mode and enter multiple lines of text into the
field to see it work.

// Create a text field that accepts multiple lines of user input
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.type = "input";
theField_txt.border = true;
theField_txt.multiline = true;
// Assign the onScroller() callback using a function literal
theField_txt.onScroller = function (scrolledField) {
 trace("scroll is " + this.scroll);
 trace("maxscroll is " + this.maxscroll);
 trace("hscroll is " + this.hscroll);
 trace("maxhscroll is " + this.maxhscroll);
};

Notice that from the body of the callback we refer to theField_txt using the this keyword; we could also

have used the scrolledField parameter.

The onScroller() event can also be handled by an event listener that has been added using addListener(), as specified
by listener. When using an event listener we must use the scrolledField parameter to determine which

text field was scrolled. The following code registers an event listener that responds to onScroller():

scrollerListener = new Object();
scrollerListener.onScroller = function (scrolledField) {

 trace("scroll is " + scrolledField.scroll);
 trace("maxscroll is " + scrolledField.maxscroll);
 trace("hscroll is " + scrolledField.hscroll);
 trace("maxhscroll is " + scrolledField.maxhscroll);
};
theField_txt.addListener(scrollerListener);

Using a callback function is simpler, but it allows only a single function to respond to the event. Any number of
listener objects can respond to a single event. To stop a callback from handling the onScroller() event, use the delete
operator, as in:

// Make sure to omit the () operator after the function name!
delete theField_txt.onScroller;

To stop a listener from handling the onScroller() event, use removeListener(), as in:

theField_txt.removeListener(scrollerListener);

Usage

Note that simply clicking in a text field causes onScroller() to fire.

Bugs

In Flash 6, when a text field's scroll or hscroll properties are set on the same frame as the creation of the field,

onScroller() is not triggered. Even when those properties are set on the frame after the creation of the field,
onScroller() may not execute:

// Create a text field.
this.createTextField("theField_txt", 1, 0, 0, 200, 40);
theField_txt.text = "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nn\nm\no\np";
// Assign the onScroller() callback.
theField_txt.onScroller = function (scrolledField) {
 trace("scroll is " + this.scroll);
 trace("maxscroll is " + this.maxscroll);
};
// Scroll the field. onScroller() will not execute.
theField_txt.scroll = 4;

To force the onScroller() event handler to execute, invoke it manually, as in:

theField_txt.onScroller();

Unfortunately, there is no easy way to force all onScroller() listeners to execute manually. (You'd have to keep a list of
all listeners and execute the onScroller() method of each individually.)

Example

The following code detects when theField_txt has been scrolled all the way to the bottom:

theField_txt.onScroller = function (scrolledField) {
 if (this.scroll = = this.maxScroll) {
 trace("End of field reached.");
 }
}

See Also

TextField.addListener(), TextField.hscroll, TextField.maxhscroll,

TextField.maxscroll, TextField.removeListener(), TextField.scroll; Chapter 10; the

FScrollBar component in Appendix G

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.onSetFocus() Event Handler Flash 6

callback invoked when the field gains focus

theField.onSetFocus(oldFocus)

Arguments

oldFocus

The TextField, MovieClip, or Button object that previously had focus, or null if no object was

previously focused.

Description

The onSetFocus() event is triggered when theField gains focus. A text field is said to have focus when it

contains the text insertion point or when characters within it are selected. A field gains focus when:

The user clicks it with the mouse or navigates to it with the Tab key.

Selection.setFocus() assigns focus programmatically.

When a text field's selectable property is false, the field cannot be focused by the user, but it can be

focused programmatically with Selection.setFocus().

The following code registers a callback function that responds to onSetFocus():

// Create a text field that accepts user input
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.type = "input";
theField_txt.border = true;
// Assign the onSetFocus() callback using a function literal
theField_txt.onSetFocus = function (newFocus) {
 trace(this + " now has focus. Old focus was " + newFocus);
};

Notice that from the body of the callback we can refer to theField_txt using the this keyword. To

stop a callback from handling the onSetFocus() event, use the delete operator, as in:

// Make sure to omit the () operator after the function name!
delete theField_txt.onSetFocus;

To capture all focus events centrally, rather than for a single instance, use Selection.onSetFocus().

Example

The following code uses onSetFocus() and onKillFocus() to highlight a field with color when it is focused,
providing a nice interface cue for the user:

this.createTextField("userName_txt", 1, 0, 0, 200, 20);
userName_txt.type = "input";
userName_txt.border = true;
userName_txt.background = true;
userName_txt.backgroundColor = 0xA4660B;
userName_txt.onSetFocus = function (oldFocus) {
 this.backgroundColor = 0xF5BF70;
}
userName_txt.onKillFocus = function (newFocus) {
 this.backgroundColor = 0xA4660B;
}

To apply this effect to all text fields in a movie, use:

TextField.prototype.onSetFocus = function (oldFocus) {
 this.backgroundColor = 0xF5BF70;
}
TextField.prototype.onKillFocus = function (newFocus) {
 this.backgroundColor = 0xA4660B;
}

See Also

Selection.onSetFocus(), Selection.setFocus(), TextField.background,

TextField.backgroundColor, TextField.onKillFocus(), TextField.selectable,

TextField.tabEnabled, TextField.tabIndex, TextField.type; Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._parent
Property

Flash 6read/write (write has no
meaningful effect)

a reference to the movie clip in which the text field resides

theField._parent

Description

The _parent property is an object reference to the movie clip that contains theField. For example, if

we have a text field named title_txt in a clip named mainSection_mc, then

title_txt._parent refers to mainSection_mc. Compared to its cousin,

MovieClip._parent, TextField._parent is rarely used, but it may occasionally be handy

when working with text fields grouped in separate movie clips.

Usage

Though it is possible to reassign the _parent property to another clip (or any other value), doing so has little

purpose—only the reference is changed, not the physical hierarchy of the clip and text field.

See Also

MovieClip._parent, TextField._name

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.password Property Flash 5

obscure characters displayed in the fieldFlash 6;
accessible only via authoring tool in

read/write

theField.password

Description

The Boolean password property specifies whether a field's characters should be displayed normally

(false) or obscured on screen for privacy (true). When true, all characters, including spaces, are

displayed as asterisks (*). For example, the words "hi there" are displayed as "********". This allows users to
enter text without casual onlookers seeing it.

Any text entered while password is true is not altered and can be retrieved as usual through the text
property. The password property does not affect other line display properties such as multiline and

wordWrap; text in a password-enabled field can both wrap and span multiple lines. The Cut and Copy

commands do not function in a password text field.

Fields for which password is true are not secure despite being masked on

screen. Their content is still visible if, say, it is transmitted to a server-side script. For
information on securing a Flash application, see
http://www.macromedia.com/desdev/security and
http://www.macromedia.com/desdev/mx/flash/extreme/extreme003.html.

Example

The following code creates typical username and password text input fields:

this.createTextField("nameInput_txt", 1, 0, 0, 200, 20);
nameInput_txt.type = "input";
nameInput_txt.border = true;
this.createTextField("passInput_txt", 2, 0, 30, 200, 20);
passInput_txt.type = "input";
passInput_txt.border = true;
passInput_txt.password = true;

See Also

TextField.multiline, TextField.text, TextField.type,

TextField.wordWrap

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.removeListener() Method Flash 6

cancels event notices for the specified listener

theField.removeListener(listener)

Arguments

listener

An object that was previously registered as a listener for theField.

Returns

A Boolean: true if listener was found and removed, false if listener was not registered as an

event listener for theField. The return value is useful for debugging code that removes listeners.

Description

The removeListener() method stops listener from receiving notification of onScroller() and onChanged(

) events occurring on theField. It should be used only after listener has been registered as an event

listener via addListener(). The listener object is not deleted, but it can be removed and added repeatedly.

Event listeners normally are removed when the task they perform is no longer required. For example, a listener
that controls a scrollbar could be removed when an application enters a disabled state due to, say, the launching
of a modal dialog box.

Example

// Make a text field that accepts user input.
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.border = true;
theField_txt.type = "input";
// Create a listener.
txtListener = new Object();
// Add the onScroller function to the listener.
txtListener.onScroller = function (tfObject) {
 trace(tfObject + " scroll property changed.");
}
// This adds the listener to theField_txt.
theField_txt.addListener(txtListener);
// This removes the listener from theField_txt.
theField_txt.removeListener(txtListener);
// This also removes the listener from theField_txt, but it
// displays an error message if the listener is not found.
if (!theField_txt.removeListener(txtListener)) {
 trace("ERROR. No such listener on theField_txt.");
}

See Also

TextField.addListener(), TextField.onChanged(), TextField.onScroller(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.removeTextField() Method Flash 6

deletes a runtime-created text field

theField.removeTextField()

Description

When theField is a text field created at runtime with MovieClip.createTextField(), the removeTextField()

method deletes theField and removes its associated visual representation from the screen. Subsequent

references to theField or any of its properties or methods yield undefined. When theField is a

text field created at authoring time with the Text tool, removeTextField() has no effect. To remove an authoring
time text field, place it in a movie clip and remove the entire clip with MovieClip.removeMovieClip().

Example

// Make a text field
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
// Then sometime later...delete the text field
theField_txt.removeTextField();

See Also

MovieClip.createTextField(), MovieClip.removeMovieClip()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.replaceSel() Method Flash 6

replace selected text (without disturbing formatting)

theField.replaceSel(newText)

Arguments

newText

The string of new characters that will replace the current selection.

Description

The replaceSel() method deletes the selected characters in theField and replaces them with newText. If no characters

are selected in theField, replaceSel() simply inserts newText at theField's insertion point, or before the first

character if theField is not focused. The new amalgamated value is reflected by theField.text.

While replaceSel()'s use may seem limited, it is actually one of the most important TextField methods because it provides the
only means of inserting new text into a text field without disturbing existing character formatting. To update a text field's value
using replaceSel(), we must first focus the field, then position the insertion point, and then insert the text, as follows:

// Focus the field
Selection.setFocus("theField_txt");
// Position insertion point after the fourth character
Selection.setSelection(4, 4);
// Insert new text
theField_txt.replaceSel("text to insert");

Obviously, this process is tedious. See Example 18-6 for a custom method that takes care of the selection work.

To apply a new format to text inserted by replaceSel(), we must invoke setNewTextFormat() after the insertion point is set with
Selection.setSelection(). See the Usage heading under TextField.setNewTextFormat() for details.

In some cases, we want to replace a selection made by the user when a button is clicked (for example, when inserting text in a
word processing-style application). This proves to be trickier than expected because the selection is lost when focus changes to
the button during the click. To prevent the selection from being lost, we record it in the button's rollover event handler, as
follows:

replace_btn.onRollover = function () {
 // Record which field was focused
 oldFocus = Selection.getFocus();
 // Record the selection span
 oldBegin = Selection.getBeginIndex();
 oldEnd = Selection.getEndIndex();
}
replace_btn.onRelease = function () {
 // If a text field was the last object focused...
 if (eval(oldFocus) instanceof TextField) {

 // ...focus it
 Selection.setFocus(oldFocus);
 // Then set the selection and insert the new text
 Selection.setSelection(oldBegin, oldEnd);
 eval(oldFocus).replaceSel("text to insert");
 }
}

Example

Example 18-6 adds an appendText() method to all TextField objects. The method inserts new text at the end of the field, using
replaceSel().

Example 18-6. Custom appendText() function using replaceSel()

/*
 * Method: TextField.appendText
 * Desc: A convenient method for appending text to a
 * text field without disturbing its formatting.
 * Params: theText The text to append.
 */
TextField.prototype.appendText = function (theText) {
 // Remember the original scroll because replaceSel() can change scroll.
 var origScroll = this.scroll;
 // Focus the field.
 Selection.setFocus(this);
 // Position insertion point after the last character.
 Selection.setSelection(this.length, this.length);
 // Append the text to the field.
 this.replaceSel(theText);
 // Reset the scroll to where it was before we added any text.
 this.scroll = origScroll;
}

Reader Exercise: Adapt the appendText() handler from Example 18-6, or use the example from this entry's Description, to
create a custom replaceText() function that accepts starting and ending character indexes to specify the character span to be
replaced.

See Also

Selection.setFocus(), Selection.setSelection(), TextField.setNewTextFormat(), TextField.text

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.restrict Property Flash 6

limit text entry to a series of characters read/write

theField.restrict = restrictedChars;

Arguments

restrictedChars

Although not strictly an argument, restrictedChars is a string containing the allowable characters for the

field.

Description

The string restrict property specifies the characters that the user can enter into theField. When restrict contains

null (the default) or undefined, any character can be entered. When restrict contains a nonempty string of

characters, only those characters are allowed as user input; attempts to enter other characters will simply be ignored. The
following example limits text entry to the letters y and n. It also uses maxChars to limit text entry length to a single

character:

this.createTextField("yesnoInput_txt", 1, 0, 0, 200, 20);
yesnoInput_txt.type = "input";
yesnoInput_txt.border = true;
yesnoInput_txt.restrict = "yn";
yesnoInput_txt.maxChars = 1;

Note that restrict operates according to character code points, not keyboard keys, so upper- and lowercase letters, such

as Y and y, must be listed separately, as in:

yesnoInput_txt.restrict = "ynYN";

Interestingly, when only one case is specified, text entry is converted to that case. For example, to force the letters y and n to
be converted to Y and N, use:

yesnoInput_txt.restrict = "YN";

Characters can be specified with string literals, as we have just seen, or with Unicode escape sequences in the form \uxxxx,

where xxxx is the hexadecimal code point of the allowed character. Unicode notation normally is used with international

characters. The following code assigns "ynYN" using escape sequences:

yesnoInput_txt.restrict = "\u0079\u006e\u0059\u004e";

Specifying many characters for inclusion in a text field can be tedious, so restrict also supports special sequences that

represent character ranges and exclusions. These will be familiar to programmers accustomed to regular expressions. The "-"
character marks a character range. For example:

// Limit ageInput_txt to the numbers: 0123456789
ageInput_txt.restrict = "0-9";

Multiple ranges are listed without spaces, as in:

// Limit passInput_txt to letters (upper- and lowercase) and numbers only
passInput_txt.restrict = "a-zA-Z0-9";

Characters included in a range are those between the Unicode code points of the specified first and last characters, inclusive.
For example, the following limits text entry to common punctuation symbols (hex code points 21 to 2F):

theField_txt.restrict = "\u0021-\u002F";

Normally, characters assigned to restrict are those included in the allowable set of input. The ^ character lets us specify

characters to be excluded from allowable input. Any character following the ^ character cannot be entered into theField.

For example:

// Include all characters except the numbers
theField_txt.restrict = "^0-9";
// Include upper- and lowercase letters, but excluding x and X
theField_txt.restrict = "a-zA-Z^xX";

To include the \, ^, or - characters, use \\\\, \\^, and \\-. For example, the following code restricts text entry to the letters a-z and
the characters \, ^, and -:

theField_txt.restrict = "a-z\\^\\-\\\\";

The restrict property does not limit text changes made by a script; it applies to user input only. That is, the text and

htmlText properties can be set to any value, regardless of restrict's limitations. Also, restrict does not dictate

which characters are exported as font outlines with the movie; it merely limits text entry. Font outline export can be set via the
authoring tool only, using the Character button in the text field Property inspector. See TextField.embedFonts for

details on exporting fonts.

Bugs

Setting restrict to the empty string ("") should entirely disable text input; however, in Flash Player 6, it allows any

character to be entered, exactly as if restrict were set to null. To disable input entirely, set the field's type property

to "dynamic" and its selectable property to false.

See Also

TextField.embedFonts, TextField.maxChars, TextField.password,

TextField.selectable, TextField.type; "Unicode-style escape sequences," in Chapter 4; Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._rotation Property Flash 6

rotation, in degrees, of a text field read/write

theField._rotation

Description

The floating-point _rotation property specifies the number of degrees theField is rotated about its parent movie's registration

point. Both author-time and programmatic adjustments are reflected in _rotation. Numbers in the range of 0 to 180.0 rotate

theField clockwise. Numbers in the range of 0 to -180.0 rotate it counterclockwise. See MovieClip._rotation for

details on various positive and negative values for rotation, including out-of-range values.

Usage

In order for a text field to be visible when it is rotated, its font must be embedded! See TextField.embedFonts.

Example

The following code spins a text field in a circle. It assumes that the Arial font is available on the system at export time.

this.createTextField("spinner_txt", 1, 200, 200, 100, 20);
spinner_txt.embedFonts = true;
spinner_txt.text = "moock.org";
spinner_txt.setTextFormat(new TextFormat("Arial"));
spinner.rotInterval = setInterval(function () {spinner_txt._rotation+=10}, 10);

See Also

MovieClip._rotation, TextField.embedFonts

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.scroll Property Flash 5

the current top line displayed in a text fieldFlash
6; corresponds to the scroll property in Flash 4
and

read/write

theField.scroll

Description

The integer scroll property represents the number (index) of the line currently displayed as the first line in a field's viewable

region. When the text in a text field spans more lines than can be accommodated by the physical viewable region of the field, extra
lines of text are hidden but are still part of the text field. The top line is number 1, and line numbers increase for every line in the text
field, including those that exceed the viewable boundaries of the field, as shown in Figure 18-6.

Figure 18-6. Text field line indexes

Setting the value of scroll scrolls the text field, making the supplied line number the top line in the field's viewable region. For

example, if we set the scroll property of the text field shown in Figure 18-6 to 3, the text field displays:

or
thoughts
in

Example

In combination, the scroll and maxscroll properties can be used to create scroll buttons for a text field. This example

scrolls text down one line for each click of a button:

scrollButton.onPress = function () {
 if (theField_txt.scroll < theField_txt.maxscroll) {
 theField_txt.scroll++;
 }
};

And here's how we scroll text up one line with each click:

scrollButton.onPress = function () {
 if (theField_txt.scroll > 1) {

 theField_txt.scroll--;
 }
};

For an example of simple scroll buttons used in a movie, download the sample scrollers posted at the online Code Depot. As of
Flash 6, the FScrollBar Flash UI Component can service most scrolling needs, so custom-developed scrolling widgets rarely are
necessary. However, scroll has other interesting applications, such as autoscrolling, shown in Example 18-7 (also available at

the Code Depot). Example 18-7 adds to the TextField class scrolling methods that scroll up, scroll down, and scroll automatically
according to the specified number of lines and speed. When the autoscroller reaches the top or bottom of the text field, it invokes the
field's custom onTopReached() or onBottomReached() callback, allowing the code to respond by, say, showing the next page in a
slideshow.

Example 18-7. A TextField autoscroller

// Make a text field
this.createTextField("theField_txt", 1, 0, 0, 200, 60);
theField_txt.border = true;
theField_txt.text = "line1\nline2\nline3\nline4\nline5\nline6\nline7\nline8";
// Add a method to scroll any text field down
TextField.prototype.scrollDown = function (numLines) {
 if (this.scroll + numLines < this.maxscroll) {
 this.scroll += numLines;
 } else {
 this.scroll = this.maxscroll;
 this.stopAutoScroll();
 this.onBottomReached();
 }
}
// Add a method to scroll any text up
TextField.prototype.scrollUp = function (numLines) {
 if (this.scroll - numLines > 1) {
 this.scroll -= numLines;
 } else {
 this.scroll = 1;
 this.stopAutoScroll();
 this.onTopReached();
 }
}
// Add a method to autoscroll any text field
// Scrolls every speed milliseconds by numLines lines, either up or down
TextField.prototype.startAutoScroll = function (speed, numLines, dir) {
 if (typeof speed = = "number" && typeof numLines = = "number") {
 if (dir = = "down") {
 this.autoScroller = setInterval(this, "scrollDown", speed, numLines);
 } else if (dir = = "up") {
 this.autoScroller = setInterval(this, "scrollUp", speed, numLines);
 }
 }
}
// Add a method to stop autoscrolling
TextField.prototype.stopAutoScroll = function () {
 clearInterval(this.autoScroller);
}
// When we reach the bottom, start scrolling back up, quickly
theField_txt.onBottomReached = function () {
 this.startAutoScroll(100, 1, "up");
}

// When we reach the top, start scrolling back down
theField_txt.onTopReached = function () {
 this.startAutoScroll(1000, 1, "down");
}
// Scroll by 1 line every second
theField_txt.startAutoScroll(1000, 1, "down");
// To stop scrolling, use:
// theField_txt.stopAutoScroll();

See Also

TextField.bottomScroll, TextField.hscroll, TextField.maxhscroll,

TextField.scroll; the FScrollBar component in Appendix G

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.selectable Property Flash 6

Boolean; enables or disables selection by the
user

read/write

theField.selectable

Description

The Boolean selectable property governs whether the characters in theField can be selected by the

user. By default, all text fields can be selected (selectable is true). To create a nonselectable text field

for display only, set its selectable property to false:

this.createTextField("output_txt", 1, 0, 0, 200, 20);
output_txt.selectable = false;
output_txt.text = "This is output only.";

To create a text field that can receive user input, set its type property to "input" and ensure that

selectable is true:

this.createTextField("input_txt", 1, 0, 0, 200, 20);
input_txt.selectable = true;
input_txt.border = true;
input_txt.type = "input";
input_txt.text = "This field can accept input.";

When selectable is false, a field cannot receive user input, nor can it be focused by the user.

However, a text field can always be focused and selected programmatically with the Selection object, regardless
of the value of its selectable property.

See Also

The Selection object, TextField.maxChars, TextField.onKillFocus(), TextField.onSetFocus(),

TextField.restrict, TextField.type

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.setNewTextFormat() Method Flash 6

sets the default formatting for the text field

theField.setNewTextFormat(textFormatObject)

Arguments

textFormatObject

An instance of the TextFormat class.

Description

The setNewTextFormat() method sets the default formatting for theField. After it is invoked, any text added to theField via

TextField.text or TextField.replaceSel(), or by the user, is formatted according to the property values of textFormatObject.

However, setNewTextFormat() has no effect on characters already in theField. To reformat characters already in theField, use

setTextFormat().

The setNewTextFormat() method is perfect for establishing the default formatting of a text field whose content is likely to change. For
example, suppose we want to display a player's score in blue, 10-point Courier New. Each time the player earns points, the score changes and
we update our score text field. To ensure that the formatting of the text field is retained for each update, we use setNewTextFormat()
immediately after the field is created:

// Create the text field.
this.createTextField("score_txt", 1, 50, 50, 100, 20);
// Assign the default TextFormat. Make sure this comes before any text is assigned!
score_txt.setNewTextFormat(new TextFormat("Courier New", 10, 0x0000FF));
// Set score output.
score_txt.text = "0000";
// Change score output. Formatting is retained.
score_txt.text = "0020";

To examine the existing default format for theField, use getNewTextFormat(). For a detailed description of TextFormat objects, see the

TextFormat class. Note that text can also be formatted with HTML, as described under TextField.html and

TextField.htmlText.

Usage

When the insertion point is placed in a text field by the user or with Selection.setSelection(), the field's default text format is set to match the
character to the insertion point's right (or left, in the case of the last character). To prevent any subsequent user input from picking up the
formatting of existing text, we must manually restore the default text format with an interval, as shown in Example 18-8. The workaround,
however, is not perfect—on slower machines, the interval cannot fire fast enough to intercept every keystroke and the occasional character
takes on the formatting of existing text.

Example 18-8. Resetting new text format after selection

// Create the text field and set it to accept user input

this.createTextField("theField_txt", 1, 0, 0, 150, 40);
theField_txt.type = "input";
// Store the original new text format in a property
theField_txt.newTextFormat = theField_txt.getNewTextFormat();
// Define a callback to handle setFocus events
theField_txt.onSetFocus = function (oldFocus, newFocus) {
 // If the field is focused, start an interval that
 // continuously resets the original newTextFormat
 if (newFocus = = this) {
 this.restoreInterval = setInterval(this, "restoreNewTextFormat", 1);
 } else if (oldFocus = = this) {
 // Stop resetting if the field is unfocused
 clearInterval(this.restoreInterval);
 }
}
// Create the interval function to reset the newTextFormat
theField_txt.restoreNewTextFormat = function () {
 this.setNewTextFormat(this.newTextFormat);
}
// Register the text field to receive setFocus events
Selection.addListener(theField_txt);
// Assign the field some text for display
theField_txt.text = "What time is it?"
// Create a TextFormat object with a font property of "Arial"
sansFormat = new TextFormat("Arial");
// Apply the format to the word 'What', characters 0 to 3 (inclusive)
theField_txt.setTextFormat(0, 4, sansFormat);

When text is inserted with the replaceSel() method, it's easy to force the appropriate new text format—simply invoke setNewTextFormat()
after the call to Selection.setSelection(), as shown in Example 18-9.

Example 18-9. Setting the new text format before replacing a selection

// Focus the field we're going to update
Selection.setFocus(theField_txt);
// Position the insertion point at the first character
Selection.setSelection(1,1);
// *Now* set the newTextFormat
theField_txt.setNewTextFormat(theField_txt.newTextFormat);
// Proceed with replaceSel() call
theField_txt.replaceSel("this is the new text");

See Also

The Selection class, TextField.getTextFormat(), TextField.getNewTextFormat(), TextField.replaceSel(), TextField.setTextFormat(), the
TextFormat class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.setTextFormat() Method Flash 6

sets the formatting for a specified range of characters

theField.setTextFormat(textFormatObject)
theField.setTextFormat(beginIndex, textFormatObject)
theField.setTextFormat(beginIndex, endIndex, textFormatObject)

Arguments

textFormatObject

An instance of the TextFormat class.
beginIndex

The index of the first character whose formatting will be set by textFormatObject. Must be a

nonnegative integer.
endIndex

The index following the last character whose formatting will be set by textFormatObject. Must be a

nonnegative integer.

Description

The setTextFormat() method formats the span of characters from beginIndex to endIndex according to the

properties of textFormatObject. Any null or undefined properties of textFormatObject
have no effect on the target characters. The setTextFormat() method is invoked with one, two, or three arguments.
When setTextFormat() is invoked with two arguments, the format applies to the single character at beginIndex.

For example, here we apply a bold format to the first character of a text field:

// Create the text field
this.createTextField("theField_txt", 1, 0, 0, 150, 40);
// Assign the field some text for display
theField_txt.text = "Products and Services";
// Create a TextFormat object that specifies bold text
boldFormat = new TextFormat();
boldFormat.bold = true;
// Apply the format to the letter 'P', character 0
theField_txt.setTextFormat(0, boldFormat);

When setTextFormat() is invoked with three arguments, the format applies to the span of characters from
beginIndex to endIndex - 1. For example, this code italicizes the word "and":

// Create a TextFormat object that specifies italic text
italicFormat = new TextFormat();
italicFormat.italic = true;
// Apply the format to the word 'and', characters 9 to 11 (inclusive)
theField_txt.setTextFormat(9, 12, italicFormat);

When setTextFormat() is invoked with one argument, the format applies to the all the characters in the field. For
example, the following sets the font for the entire text of theField_txt to Arial:

// Create a TextFormat object that specifies the font "Arial"
arialFormat = new TextFormat();
arialFormat.font = "Arial";
// Apply the format to the entire text
theField_txt.setTextFormat(arialFormat);

Notice that the sequential formatting is not destructive; formatting changes are applied only for properties that are set,
so the letter "P" remains bolded and the word "and" remains italicized.

Setting the value of a field's text property destroys all formatting for the field. For example, if we now add the word

"Overview" to theField_txt.text, all characters are rerendered in the new text format for the field:

// Resets theField_txt's formatting
theField_txt.text += "Overview";

To add content to a text field without affecting its formatting, use the replaceSel() method.

Don't confuse setNewTextFormat() with setTextFormat(); the former sets the format used
for text that will be added to theField in the future, while the latter sets the format for

characters already in theField. Both methods are valid, but the order in which they are

used is crucial. Use setTextFormat() after setting the text property; use

setNewTextFormat() before setting the text property.

Here, using setTextFormat(), we first assign our text and then apply formatting to it:

// Create the text field
this.createTextField("title_txt", 1, 0, 0, 150, 40);
// Assign the field some text for display
title_txt.text = "What's New?";
// Now create and apply our TextFormat object
title_txt.setTextFormat(new TextFormat("Arial", 14, 0xFF0000));

If we mistakenly apply our format before the text is assigned, nothing happens:

// Oops! Wrong order...
title_txt.setTextFormat(new TextFormat("Arial", 14, 0xFF0000));
title_txt.text = "What's New?";

Conversely, when using setNewTextFormat(), we must be sure to apply our format before assigning text to the text
field:

title_txt.setNewTextFormat(new TextFormat("Arial", 14, 0xFF0000));
title_txt.text = "What's New?";

The setNewTextFormat() method is convenient when text is likely to change, because it applies to all future
assignments for the field:

// The text "Latest News" is still red, 14-point Arial.
title_txt.text = "Latest News";

For a detailed description of TextFormat objects, see the TextFormat class. Note that text can also be formatted with
HTML, as described under TextField.html and TextField.htmlText.

Example

The following code adds to all TextField objects a rainbow() method that randomly colors a field's text:

// Here's the method
TextField.prototype.rainbow = function () {
 for (var i = 0; i < this.length; i++) {
 var randColor = Math.floor(Math.random() * 0xFFFFFF);
 this.setTextFormat(i, new TextFormat(null, null, randColor));
 }
}
// Now let's create a text field to try it on
this.createTextField("theField_txt", 1, 50, 50, 160, 20);
// Set some text
theField_txt.text = "Ooh, what pretty colors!";
// Try it out!
theField_txt.rainbow();

See Also

TextField.getNewTextFormat(), TextField.getTextFormat(), TextField.html, TextField.htmlText,

TextField.replaceSel(), TextField.setNewTextFormat(), the TextFormat class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.tabEnabled Property Flash 6

Boolean; includes or excludes the field from the
current tab order

read/write

theField.tabEnabled

Description

The Boolean tabEnabled property governs whether theField is part of the tab order for the text

fields, movie clips, and buttons currently on screen. The tab order is the sequence in which objects are focused
when the Tab key is pressed in a movie. Using the Tab key during text entry, a user can move between text fields
in a form.

However, there are two distinct tab orders in a Flash movie: the automatic tab order and the custom tab order.
The automatic tab order is Flash's default tab order, used when no custom tab order is defined. It includes all
buttons and input text fields currently on screen and orders them from left to right, then top to bottom. Text
fields with type set to "dynamic" are not included. The custom tab order is an ActionScript-defined tab order

including an arbitrary sequence of Button, MovieClip, and TextField objects. To define a custom tab order, we
set the tabIndex property for each button, movie clip, or text field we want included in the order. When at

least one object currently on screen has a tabIndex property defined, the custom tab order is used.

For text fields, the tabEnabled property has two applications:

It can exclude an input text field with a defined tabIndex from the custom tab order.

It can exclude an input text field from the automatic tab order.

Neither scenario is particularly common because input text fields normally should be keyboard-accessible. To
disable an input text field temporarily, we can simply set its type to "dynamic", which also removes it from the

tab order.

Note that the behavior of tabEnabled depends on the value of the tabIndex property. For reference,

Table 18-24 shows the results of the possible tabEnabled and tabIndex combinations for an input text

field.

Table 18-24. Dependencies between tabEnabled and tabIndex for input text fields

tabEnabled tabIndex
TextField included in custom tab

order?
TextField included in automatic tab

order?

true or
undefined

undefined no yes

true or
undefined

positive
integer

yes N/A

false undefined no no

false
positive
integer

no N/A

A movie clip's tabChildren property affects the text fields, clips, and buttons it contains. To disable

tabbing for a group of text fields, put them in a movie clip and set the clip's tabChildren property to

false.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

Example

The following code creates two text fields and excludes the second from the automatic tab order:

// Create the fields
this.createTextField("field1_txt", 1, 40, 70, 100, 20);
field1_txt.border = true;
field1_txt.type = "input";
this.createTextField("field2_txt", 2, 150, 70, 100, 20);
field2_txt.border = true;
field2_txt.type = "input";
field2_txt.tabEnabled = false;

See Also

Button.tabEnabled, MovieClip.tabChildren, MovieClip.tabEnabled,

TextField.tabIndex, TextField.type

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.tabIndex Property Flash 6

specifies the text field's index in the custom tab
order

read/write

theField.tabIndex

Description

The integer tabIndex property specifies theField's position in the custom tab order. When no text

field, clip, or button has a tabIndex property defined, Flash determines tab order automatically and pressing

the Tab key moves focus between buttons and input text fields from right to left, then top to bottom. We use the
tabIndex property to force Tab key navigation to follow our own sequence, overriding the automatic order.

For example, a custom tab order can change a two-column table of input text fields from "row-by-row" to
"column-by-column" navigation. Or, it can completely curtail keyboard access to an input text field, movie clip,
or button.

To create a custom tab order, we assign an integer tabIndex priority to each object that we want tab-

accessible. At each frame rendering, ActionScript creates the tab order dynamically, according to the priorities
set for any objects currently displayed. Flow moves from lowest to highest number, so when the Tab key is
pressed, the object with tabIndex 1 is focused first, followed by tabIndex 2, and so on. Objects with

_visible set to false are not included in the tab order.

Here we create four text fields in a two-by-two grid; then we force the tab order to flow right-to-left up the grid,
one row at a time (this is the reverse of the automatic order):

// Create the fields
this.createTextField("row1col1_txt", 1, 40, 70, 100, 20);
row1col1_txt.border = true;
row1col1_txt.type = "input";
this.createTextField("row1col2_txt", 2, 150, 70, 100, 20);
row1col2_txt.border = true;
row1col2_txt.type = "input";
this.createTextField("row2col1_txt", 3, 40, 100, 100, 20);
row2col1_txt.border = true;
row2col1_txt.type = "input";
this.createTextField("row2col2_txt", 4, 150, 100, 100, 20);
row2col2_txt.border = true;
row2col2_txt.type = "input";
// Assign custom tab order
row2col2_txt.tabIndex = 1;
row2col1_txt.tabIndex = 2;
row1col2_txt.tabIndex = 3;
row1col1_txt.tabIndex = 4;

When at least one object has tabIndex set, any objects without an assigned tabIndex cannot be

accessed via the Tab key. Note that tabIndex affects only text fields with type set to "input". By

default, input text fields are tab-enabled, so the tabEnabled property needs to be set (to false) only to

exclude an instance from the tab order while retaining its tabIndex value.

Usage

The Tab key does not work reliably in Test Movie mode unless Control Disable Keyboard Shortcuts is
enabled. Be sure to test keyboard behavior in the Standalone Player, if applicable, and in the Flash Player for all
targeted web browsers.

See Also

Button.tabIndex, MovieClip.tabIndex, TextField.tabEnabled,

TextField.type

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._target Property Flash 6

the target path of the text field, in slash syntax read-only

theField._target

Description

The _target property represents the path to theField in a Flash 4-style slash notation string. For

example, if name_txt resides on the main movie timeline, name_txt's _target property is

"/name_txt". To convert the slash-style path to an object reference, use eval(). To retrieve a string giving

the path to a text field in dot notation, use the global targetPath() function. Because slash notation is
deprecated, this property is not used commonly and is supported for legacy reasons only.

See Also

Button._target, MovieClip._target, targetPath()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.text Property Flash 6

specifies the characters to be rendered in the
field

read/write

theField.text

Description

The string text property specifies the characters displayed by theField. Assigning a value to the text
property causes characters to display in theField. Retrieving the text property tells us the entire textual

content of theField, including any user input. When text cannot fit in theField's rectangular bounding

box, the excess wraps to the next line or overflows theField, or theField's bounding box is resized,

depending on the settings of autoSize, multiline, and wordWrap. Any text overflow must be

viewed through horizontal or vertical scrolling (see hscroll and scroll).

Text can be formatted via the setTextFormat() and setNewTextFormat() methods. However, reassigning the
text property clears all previous formatting. To add text to a field without disturbing any existing formatting,

use replaceSel().

See TextField.htmlText for a full discussion of assigning HTML-formatted text to a text field. Take

heed that htmlText and text overwrite each other. Regardless of the value of the html property,

assigning a value to text overwrites the value of htmlText, and vice versa.

Usage

In Flash 4 and Flash 5, text fields were represented by simple variables, not complete objects. Hence, it was
common to assign text directly to a text field variable, as follows:

theField_txt = "Welcome to my site.";

As of Flash 6, this practice will erroneously overwrite the TextField instance. The correct syntax in Flash 6 is as
follows:

theField_txt.text = "Welcome to my site.";

See TextField.variable for details.

Example

The text property is our main means of programmatically displaying text on screen. It's Flash's best candidate

for a "hello world" example, as follows:

// Create a text field
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
// Drum roll please...
theField_txt.text = "hello world!";

The following code echoes the value of an input text field to the Output window every 500 milliseconds. Export

it in Test Movie mode and type into the text field.

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.type = "input";
theField_txt.border = true;
setInterval(showInput, 500);
function showInput () {
 trace(theField_txt.text);
}

See Also

The Selection object, TextField.html, TextField.htmlText, TextField.replaceSel(),

TextField.variable

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.textColor Property Flash 6

sets the color for all characters in the text field read/write

theField.textColor

Description

The integer textColor property is a convenience property for quickly setting the color of the text (not the

background color) for an entire text field with minimal fuss. It defaults to black (i.e., hex 0x000000). The

following code makes the title_txt field red:

this.createTextField("title_txt", 1, 0, 0, 200, 20);
title_txt.text = "The Story of Princess Gwendolyn";
title_txt.textColor = 0xFF0000;

To set the background color, use the backgroundColor property. To color and format text on a character-

by-character basis, use setTextFormat() or htmlText instead. Any assignment to textColor overwrites

specific character color information contained in the field's htmlText property or TextFormat objects. Once

textColor is set, all subsequent text appears in the specified color. Functionally, assigning textColor
is identical to creating a TextFormat object with a color property set, then applying that format to the entire

field with setTextFormat() and also applying it to any new text with setNewTextFormat(). The value of
textColor is also reflected in htmlText if the html property is true.

See Also

The Color class, TextField.backgroundColor, TextField.borderColor,

TextField.html, TextField.htmlText, TextField.setNewTextFormat(),

TextField.setTextFormat()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.textHeight Property Flash 6

pixel height of all the text in the text field read-only

theField.textHeight

Description

The integer textHeight property indicates the pixel height of the entire body of text contained by theField. It is not

a measurement of the text currently displayed on screen in theField's bounding box; rather, it is a measurement of every

character in theField.text, including those characters that can be accessed only by vertical scrolling. For each line of

text, the textHeight property adds the height specified by the font metrics of the largest character on the line, including

ascenders and descenders, whether or not the character in question has an ascender or a descender or is in upper- or lowercase.
Note that textHeight is measured in pixels, not the number of lines or the page size (see the page size calculation in the

Example under TextField.bottomScroll).

For example, in 12-point Times New Roman:

The string "an" has a textheight of 15.

The string "angel" also has a textHeight of 15, even though it includes letters with a descender (g) and an ascender

(l).

The string "ANGEL" also has a textHeight of 15, even though it includes uppercase letters.

The string "An \n angel" spans two lines, and has a textHeight of 30 (whether or not the lines are displayed on

screen).

(Note: the font metrics listed here for Times New Roman are for one particular system; they may vary by platform.)

When the autoSize property is true, textHeight is always 4 pixels less than _height, leaving a small gutter

between theField's top and bottom borders and the displayed characters.

To determine the height of a string before assigning it to a text field, use TextFormat.getTextExtent().

Example

The following simplified scrollbar code scales a scrollbar handle in proportion to the amount of overflow in a text field. Every
time the field is scrolled, the code checks the ratio of _height to textHeight to determine the scale of the handle. It

positions the handle based on the scroll and maxscroll properties. To try the code, first make two rectangular movie

clips named scrollbg and scrollhandle.

// Create a multiline text field
this.createTextField("theField_txt", 1, 0, 0, 150, 40);
theField_txt.border = true;
theField_txt.text = "Line one \nLine two \nLine three \nLine four";
// Allow user input on multiple lines
theField_txt.type = "input";
theField_txt.multiline = true;

// Size the scrollbar background
scrollbg._width = 20;
scrollbg._height = theField_txt._height;
// Position the scrollbar background
scrollbg._x = theField_txt._x + theField_txt._width;
scrollbg._y = theField_txt._y;
// Size and position the scrollbar handle whenever the field is scrolled
theField_txt.onScroller = function () {
 // Size the scrollbar handle
 scrollhandle._width = 20;
 scrollhandle._height = theField_txt._height
 * (theField_txt._height / theField_txt.textHeight);
 // Position the scrollbar handle
 scrollhandle._x = theField_txt._x + theField_txt._width;
 var trackSize = scrollbg._height - scrollhandle._height;
 scrollhandle._y = theField_txt._y
 + trackSize * ((this.scroll-1) / (this.maxscroll-1));
}
// Set the initial position of the scrollbar handle
theField_txt.onScroller();

See Also

TextField.autoSize, TextField._height, TextField.maxscroll, TextField.onScroller(),

TextField.scroll, TextField.textWidth, TextField._width, TextFormat.getTextExtent(); the

FScrollBar component in Appendix G

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.textWidth Property Flash 6

pixel width of all the text in the text field read/write

theField.textWidth

Description

The integer textWidth property indicates the pixel width of the longest line of text contained by theField,

including those characters that be accessed only through horizontal scrolling. For each character in the longest line, the
textWidth property adds the width specified by the font metrics for that character. Characters can vary greatly in

width, depending on font size, case, and even the intrinsic width of the character itself. For example, in 12-point Times
New Roman:

The character "a" has a width of 5.

The character "A" has a width of 9.

The character "i" has a width of 3.

The character "w" has a width of 9.

When the autoSize property is true, textWidth is always 4 pixels less than _width, leaving a small gutter

between the field's longest line of text and the right and left borders.

To determine the width of a string before assigning it to a text field, use TextFormat.getTextExtent().

Example

The textWidth property can be used to create horizontal scrolling interfaces or to scale graphic elements to match the

size of a line of text. The following code creates a text field and then draws a line above the field that matches its text's
width. Notice that the gutter is accommodated by the line-width calculation:

// Create the text field
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.text = "Welcome to my web site";
theField_txt.autoSize = true;
// Set the line thickness
this.lineStyle(3);
// Position the start point
this.moveTo(theField_txt._x + 2, theField_txt._y);
// Draw the line to the end point
this.lineTo(theField_txt._x + theField_txt.textWidth, theField_txt._y);

See Also

TextField.autoSize, TextField._height, TextField.scroll,

TextField.maxhscroll, TextField.textHeight, TextField._width,

TextFormat.getTextExtent()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.type Property Flash 6

specifies whether the field can accept user input read/write

theField.type

Description

The string type property determines a field's input and output behavior. It has only two possible values: "input" and "dynamic" (the

default). A dynamic text field is used to display information to the user (output only); an input text field can retrieve information from the
user (input and output).

The Flash 5 Multiline and Password settings for a text field are represented by the multiline and

password properties, not by type.

When type is set to "input", the user can enter text into the field and we can examine the input via its text property (see

TextField.text for a code sample). When type is set to "dynamic", the user cannot type into the field. However, characters can

still be selected unless selectable is set to false explicitly. Unicode text can be entered into input text fields when Unicode is

supported by the operating system.

Because data entered by the user into an input text field is always a string, we should convert it explicitly before using it in a nonstring
context, as demonstrated in this simple calculator example that totals two user-input text fields:

// Suppose myFirstInput is 5, mySecondInput is 10, and we total the fields.
// WRONG: "Adding" the fields together sets myOutput to "Total: 510"
// because the + operator is interpreted as a string concatenator.
myOutput.text = "Total: " + (myFirstInput.text + mySecondInput.text);
// RIGHT: First, convert the fields to numbers in order to get the right result.
myOutput.text = "Total: " + (parseFloat(myFirstInput.text)
 + parseFloat(mySecondInput.text));

Example

The following example creates a title that can neither be selected nor receive input:

this.createTextField("title_txt", 1, 0, 0, 200, 20);
title_txt.selectable = false;
title_txt.type = "dynamic";
title_txt.text = "Tea Brewing Around the World";

The following example creates an input field to allow a user to enter a name. It's customary to add a border to input text fields via the
border property. This adds a visual cue indicating the field is editable:

this.createTextField("firstName_txt", 1, 0, 0, 200, 20);
firstName_txt.type = "input";
firstName_txt.border = true;

See Also

parseFloat(), TextField.border, TextField.multiline, TextField.password,

TextField.restrict, TextField.selectable, TextField.text

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._url Property Flash 6

the network address of the movie clip that
contains the field

read-
only

theField._url

Description

The _url property represents the URL (Uniform Resource Locator) indicating the Internet or local disk

location of theField._parent, as a string. The _url property is always an absolute URL, never a

relative one. See MovieClip._url for details.

See Also

MovieClip._url, TextField._parent

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.variable Property Flash 6

associates a variable with the text property read/write

theField.variable

Description

The string variable property is a backward-compatibility feature that specifies a regular variable whose

value will mirror the value of theField.text. This allows for direct Flash 5-style assignment of a value

to a text field. The following example creates a text field object with an instance name of firstName_txt
and associates it with the variable userName. Subsequent assignments to userName are displayed in

firstName_txt and reflected by its text property.

this.createTextField("firstName_txt", 1, 0, 0, 200, 20);
firstName_txt.variable = "userName";
// Displays "Colin" on screen
userName = "Colin";
// Check the text property
trace(firstName_txt.text); // Displays: Colin

Conversely, assignments to firstName_txt.text are reflected by the variable userName:

firstName_txt.text = "Bruce";
trace(userName); // Displays: Bruce

The variable reference can be constructed with dot notation, allowing variables on objects and other timelines to
be used:

firstName_txt.variable = "_level0.someClip.someVariable";

When exporting to Flash 5 and prior versions, the variable property must be set in the Flash MX authoring

tool, in the Property inspector under "Var:". When coding for Flash 6, the variable property should be

avoided in favor of the text property.

Note that the variable property stores the name of the variable, not its value. It is used only to establish the

link between a regular variable and theField.text:

trace(firstName_txt.variable); // Displays: userName

See Also

TextField.htmlText, TextField.text

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._visible Property Flash 6

whether the text field is shown or hidden read/write

theField._visible

Description

The Boolean _visible property indicates whether theField is currently shown (true) or hidden

(false). We use _visible as a quick means of hiding a text field from view. Hidden fields can still be

controlled via ActionScript and generally operate as normal; they simply are not displayed on screen. However,
a hidden text field can receive neither focus nor user input, so its onChanged(), onKillFocus(), and
onSetFocus() events do not fire. However, the onScroller() event will still fire in response to text field content
changes.

The initial value of the _visible property is true for all text fields, even for text fields that are fully

transparent or completely off stage. The _visible property changes only when it is modified explicitly by a

script; think of it as a way to show and hide text fields programmatically, not as a reflection of all factors, such as
position and transparency, that can affect a field's visibility.

Hiding a text field using the _visible property is preferred to setting it to fully transparent or moving it off

stage because the Flash Player does not attempt to draw text fields with _visible set to false, thus

improving rendering performance.

Example

The following code hides theField_txt:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.text = "You won't see this!";
theField_txt._visible = false;

See Also

TextField._alpha

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._width Property Flash 6

width of the text field's bounding box, in pixels read/write

theField._width

Description

Every text field implicitly defines a rectangular region, known as its bounding box, inside which text is displayed. The
floating-point _width property is a nonnegative number specifying the width of a field's bounding box, in pixels. By

changing _width, we resize the field's bounding box, allowing it to display more or less text. Changing a field's _width
does not also affect the width of the text it contains; to change the text's point size, use a TextFormat object or the
_yscale property. To check the width of a field's text, use textWidth. Note that in Flash 6, the autoSize
property can be used to force a text field's bounding box to fit its text.

Changes made to a text field's width in the authoring tool or via _xscale are reflected by _width. To apply a stroke or a

fill to a field's bounding box, use the border and background properties.

Example

// Set initial width to 200
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.border = true;
theField_txt.text = "Room to grow!";
// Set the bounding box width to twice the width of the text in the field
theField_txt._width = theField_txt.textWidth * 2;

See Also

TextField.autoSize, TextField._height, TextField.textWidth,

TextField.wordWrap, TextField._xscale, the TextFormat class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField.wordWrap Property Flash 6

enable automatic line-breaking for long lines read/write

theField.wordWrap

Description

The Boolean wordWrap property enables (true) or disables (false) automatic line-breaking in theField. It applies to both user

input and text assigned programmatically, and it defaults to false. When word-wrapping is enabled, long lines of text soft wrap—that is,

any line that is wider than theField's bounding box will automatically flow onto the following line. This is a display feature only; no

carriage return or newline character appears in the source text where wrapping occurs. When wrapping is disabled, text on long lines flows
beyond theField's bounding box and part of the line is hidden. If wordWrap is true, changing the field's _width causes long

lines to soft wrap at a different point (i.e., the text reflows). Hard returns can be added to a text field using the \n escape sequence or

newline constant.

Bugs

In Flash 6, the wordWrap property must be set before any text is assigned to the text field; otherwise, wrapping may not be applied. For

example:

// Set word wrap first
theField_txt.wordWrap = true;
// Now assign text
theField_txt.text = "This is a fairly long line so it might wrap when displayed.";

Example

To create a typical multi-paragraph text entry box for user input, set both wordWrap and multiline to true. For example,

this.createTextField("theField_txt", 1, 0, 0, 200, 100);
theField_txt.type = "input";
theField_txt.border = true;
theField_txt.wordWrap = true;
theField_txt.multiline = true;
theField_txt.text = "Type input here.";

See Also

TextField.multiline, TextField._width

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._x Property Flash 6

horizontal location of the text field, in pixels read/write

theField._x

Description

The floating-point _x property indicates the horizontal position of theField's left border. It is measured relative to one

of two possible coordinate spaces:

If theField resides on the main timeline, _x is measured relative to the Stage's left edge. For example, an _x of

20 indicates that theField's left border is 20 pixels to the right of the Stage's left edge; -20 indicates it is 20

pixels to the left.

If theField resides on a movie clip instance's timeline, _x is measured relative to the registration point of that

parent instance. For example, an _x of 20 indicates that theField's left border is 20 pixels to the right of its

parent instance's registration point; -20 indicates 20 pixels to the left.

The _x property (along with all horizontal coordinates in Flash) increases to the right and decreases to the left. Fractional

_x values are approximated in Flash with antialiasing (blurring).

If theField is contained by an instance that is scaled and/or rotated, the coordinate space it inhabits is also scaled

and/or rotated. For example, if theField's parent is scaled by 200% and rotated 90 degrees clockwise, _x increases in

the downward direction, rather than to the right, and a single unit of _x is 2 pixels instead of 1.

Example

The following example uses the _x property to align one field to another (they share the same x-coordinate, so they are

aligned along the same vertical line):

// Make the first field
this.createTextField("firstName_txt", 1, 250, 0, 200, 20);
firstName_txt.border = true;
firstName_txt.type = "input";
// Make the second field
this.createTextField("lastName_txt", 2, 0, 0, 200, 20);
lastName_txt.border = true;
lastName_txt.type = "input";
// Align the second field
lastName_txt._x = firstName_txt._x;
lastName_txt._y = firstName_txt._y + firstName_txt._height + 10;

The following example adds to all text fields a slideTo() method that moves a text field left or right to some destination at a
given speed:

// Method to start the slide interval
TextField.prototype.slideTo = function (xPos, pixelsPerSec) {

 var moveAmount = pixelsPerSec/20;
 if (xPos < 0) {
 moveAmount = -moveAmount;
 }
 this.slideInterval = setInterval(this, "slide", 50, moveAmount, xPos);
}
// Method to move the text field
TextField.prototype.slide = function (moveAmount, xPos) {
 this._x += moveAmount;
 if (Math.abs(this._x - xPos) < 1) {
 clearInterval(this.slideInterval);
 }
 updateAfterEvent();
}
// Make the field
this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.border = true;
theField_txt.text = "Watch me go for a ride!";
// Slide it to 500 at speed 100px/second
theField_txt.slideTo(500, 100);

See Also

MovieClip.globalToLocal(), MovieClip.localToGlobal(), TextField._y

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._xmouse Property Flash 6

horizontal location of mouse pointer, relative to the
text field

read-
only

theField._xmouse

Description

The floating-point _xmouse property indicates the horizontal location of the mouse pointer's hotspot, relative

to the left border of theField. To obtain a consistent _xmouse coordinate that is always measured

relative to the Stage, use _root._xmouse instead.

See Also

MovieClip._xmouse, TextField._ymouse

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._xscale Property Flash 6

width of a text field, as a percentage of original read/write

theField._xscale

Description

The floating-point _xscale property specifies the width of theField's bounding box, relative to its

original width, expressed as a percentage. The original width is either the width of the field at authoring time or
the width most recently specified (via either MovieClip.createTextField() or _width). Text in the field is

scaled only if embedFonts is true; otherwise, it is not affected by _xscale. This contrasts with

_yscale, which always affects theField's text scale. Note that scaling text horizontally but not vertically

stretches it disproportionately. Use a TextFormat object for precise control over text's point size.

When the current width of theField is the same as its original width, _xscale is 100. An _xscale of

200 doubles theField's width relative to its original width. An _xscale of 50 halves theField's

width relative to its original width.

When _xscale is set to a negative value and embedFonts is true, theField is flipped

horizontally, as if across a vertical mirror running along its left edge (i.e., it becomes a mirror image of itself),
after which the negative value is treated as a positive. To flip a text field horizontally without resizing it, set
_xscale to -_xscale (negative _xscale).

Example

this.createTextField("field1_txt", 1, 0, 0, 200, 20);
field1_txt.text = "This is twice as wide.";
field1_txt.border = true;
this.createTextField("field2_txt", 2, 0, 25, 200, 20);
field2_txt.text = "This is backwards!";
field2_txt.border = true;
// Double the width of theField_txt
field1_txt._xscale *= 2;
// Create a mirror image of theField_txt
field2_txt._xscale = -field2_txt_xscale;

See Also

MovieClip._xscale, TextField._width, TextField._yscale, the TextFormat class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._y Property Flash 6

vertical location of the text field, in pixels read/write

theField._y

Description

The floating-point _y property indicates the vertical position of theField's top border. It is measured relative to one of two possible

coordinate spaces:

If theField resides on the main timeline, _y is measured relative to the Stage's top edge. For example, a _y of 20 indicates that

theField's top border is 20 pixels below the Stage's top edge;-20 indicates 20 pixels above.

If theField resides on a movie clip instance's timeline, _y is measured relative to the registration point of that parent instance. For

example, a _y of 20 indicates that theField's top border is 20 pixels below its parent instance's registration point; -20 indicates 20

pixels above.

The _y property (as with all vertical coordinates in Flash) increases downwards and decreases upwards—the opposite of the Cartesian

coordinate system. Fractional _y values are approximated in Flash with antialiasing (blurring).

If theField is contained by an instance that is scaled and/or rotated, the coordinate space it inhabits is also scaled and/or rotated. For

example, if theField's parent is scaled by 200% and rotated 90 degrees clockwise, _y increases toward the left, rather than downward,

and a single unit of _y is 2 pixels instead of 1.

Example

The _y property is often used in conjunction with _height to programmatically space or align text fields stacked vertically, as shown in

the function makeFields():

// Try it out...
makeFields(this, 6, 5, 100, 100, 200, 20);
// Make a series of text fields
function makeFields (clip, numFields, bufferSpace, startX, startY, width, height) {
 // Loop to make the requested fields
 for (var i = 0; i < numFields; i++) {
 // Make the current field
 clip.createTextField("field" + i + "_txt", i+1, startX, startY, width, height);
 // Store a reference to the current field
 var thisField = clip["field" + i + "_txt"];
 // Turn on border and input
 thisField.border = true;
 thisField.type = "input";
 // Position the current field if it's not the first
 if (i > 0) {
 var prevField = clip["field" + (i-1) + "_txt"];
 thisField._y = prevField._y + prevField._height + bufferSpace;
 }

 }
}

See Also

MovieClip.globalToLocal(), MovieClip.localToGlobal(), TextField._x

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._ymouse Property Flash 6

vertical location of mouse pointer, relative to the
text field

read-
only

theField._ymouse

Description

The floating-point _ymouse property indicates the vertical location of the mouse pointer's hotspot, relative to

the top border of theField. To obtain a consistent _ymouse coordinate that is always measured relative

to the Stage, use _root._ymouse instead.

See Also

MovieClip._ymouse, TextField._xmouse

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextField._yscale Property Flash 6

height of a text field, as a percentage read/write

theField._yscale

Description

The floating-point _yscale property specifies the height of theField's bounding box relative to its

original height, expressed as a percentage. The original height is either the height of the field at authoring time
or the height most recently specified via either MovieClip.createTextField() or _height.

When the current height of theField is the same as its original height, _yscale is 100. A _yscale of

200 doubles theField's height relative to its original height. A _yscale of 50 halves theField's

height relative to its original height. Changes to _yscale are reflected by _height.

The size of text in the field is also affected by _yscale, but it is always scaled proportionately (in relatively

equal horizontal and vertical percentages) to prevent distortion. This contrasts with _xscale, which affects

theField's text scale only when embedFonts is true and can scale text disproportionately. Though

_yscale can change the size of text, the change is not reflected by the TextFormat object returned by

getTextFormat(). For precise control over text size, use the TextFormat object's size property instead of

TextField._yscale.

When _yscale is set to a negative value and embedFonts is true, theField is flipped vertically,

as if across a horizontal mirror running through its top border (i.e., it becomes a mirror image of itself), after
which the negative value is treated as a positive. To flip a text field vertically without resizing it, set _yscale
to -_yscale (negative _yscale).

Example

The following code increases theField_txt's height by 500 percent:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.border = true;
theField_txt.text = "This is five times as high.";
theField_txt._yscale = 500;
// To maintain the proportions of the original bounding box,
// we can set _xscale to match _yscale:
theField_txt._xscale = 500;

See Also

MovieClip._yscale, TextField._height, TextField._xscale, the TextFormat

class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat Class Flash 6

retrieve or set a text field's visual formatting

Constructor

new TextFormat()
new TextFormat(font, size, color, bold, italic, underline, url,
 target, align, leftMargin, rightMargin, indent, leading)

Arguments

font

An optional string specifying the font property's initial value.

size

An optional integer specifying the size property's initial value.

color

An optional integer specifying the color property's initial value.

bold

An optional Boolean specifying the bold property's initial value.

italic

An optional Boolean specifying the italic property's initial value.

underline

An optional Boolean specifying the underline property's initial value.

url

An optional string specifying the url property's initial value.

target

An optional string specifying the target property's initial value.

align

An optional string specifying the align property's initial value.

leftMargin

An optional nonnegative integer specifying the leftMargin property's initial value.

righMargin

An optional nonnegative integer specifying the rightMargin property's initial value.

indent

An optional nonnegative integer specifying the indent property's initial value.

leading

An optional nonnegative integer specifying the leading property's initial value.

Properties

align

Specifies horizontal paragraph alignment.
blockIndent

Specifies paragraph indentation.
bold

Boolean; specifies bold character display.
bullet

Specifies whether to add bullets to paragraphs.
color

Specifies character color.
font

Sets the font for specified characters.
indent

Specifies indentation for a paragraph's first line.
italic

Boolean; specifies italicized character display.
leading

Specifies line spacing.
leftMargin

Specifies the margin to the left of a paragraph.
rightMargin

Specifies the margin to the right of a paragraph.
size

Specifies character font size, in points.
tabStops

Specifies horizontal tab stops, in pixels.
target

Specifies the window or frame for a hypertext link.
underline

Boolean; specifies underlined character display.
url

Specifies a hypertext link.

Methods

getTextExtent()

Returns the pixel dimensions of a string rendered according to a given TextFormat object.

Description

Internally, a text field's visual formatting is described by style profiles stored in the Flash Player. Each profile holds format settings
such as font size, font face, bolding, and margins. Every character in a text field is associated with one of these internal profiles. For
example, in the text field:

Please hurry up!

two style profiles are represented: one with bold type and one without bold type. The characters P, l, e, a, s, and e are associated
with the bold profile, while the remaining characters are associated with the nonbold profile. As necessary, Flash adds internal
profiles to keep track of all text displayed in the Player. While ActionScript itself does not provide direct access to the Player's
internal profiles, it can depict the profile for any character as a TextFormat object. A TextFormat object's properties control the
display features associated with a specific character or, alternatively, report the display features common to a series of characters.

To retrieve a TextFormat object for an existing text field, we use the TextField.getTextFormat() method. For example, here we
create a text field and then retrieve a TextFormat object that describes the formatting of the field's first character:

// Create the text field
this.createTextField("theField_txt", 1, 0, 0, 150, 40);
// Assign the field some text for display
theField_txt.text = "Please hurry up!"
// Retrieve a TextFormat object for theField_txt's first character (index 0)
firstCharFormat = theField_txt.getTextFormat(0);
// Check whether the first character is bolded
trace(firstCharFormat.bold); // Displays: "false"

A TextFormat object's usage is intimately tied to a corresponding TextField object. For example, the
TextFormat object of an existing text field is obtained using TextField.getTextFormat(). Throughout
the following discussion, pay careful attention to which properties and methods are part of the
TextFormat class and which are part of the TextField class. To set the formatting of a character or span
of characters in a text field, we must create a TextFormat object, set its properties, and apply the format
using the TextField.setTextFormat() method (this is known colloquially as "applying a text format
object to a text field").

The setTextFormat() method optionally accepts the starting and ending character indexes over which to apply the text format
object. For example:

// Create the TextFormat object
emphasisFormat = new TextFormat();
// Specify bold for the format
emphasisFormat.bold = true;
// Apply the format to the word 'Please', characters 0 to 5 (inclusive)
theField_txt.setTextFormat(0, 6, emphasisFormat);

Alternatively, we can set the TextFormat object's properties when we construct it (using null for properties we do not wish to

set):

emphasisFormat = new TextFormat(null, null, null, true);

When text is added to a field, it is formatted according to the field's default style profile, which is represented in ActionScript by a
distinct TextFormat object called a new text format. We can view a field's default style profile by using
TextField.getNewTextFormat(). We can modify a field's default style profile by creating a TextFormat object, setting its properties,
and passing it to TextField.setNewTextFormat(). For more details on modifying the format of new text, see
TextField.getNewTextFormat() and TextField.setNewTextFormat().

For a description of the paragraph and character formats available, see the property listings for TextFormat. Note that each property
is also available through analogous HTML tags, described under TextField.htmlText and in Appendix E. The default

settings for an existing text field's TextFormat object are listed in Table 18-25.

Table 18-25. Default TextFormat property values

Property Default value Datatype

bullet false boolean

tabStops empty object object

blockIndent 0 number

leading 0 number

indent 0 number

rightMargin 0 number

leftMargin 0 number

align "left" string

underline false boolean

italic false boolean

bold false boolean

target ""(empty string) string

url "" (empty string) string

color 0 number

size 12 number

font "Times New Roman" string

Usage

Writing to the text property of a TextField object destroys any custom formatting associated with the field. Use the

TextField.replaceSel() method to add text to a field while retaining its formatting.

See Also

TextField.getNewTextFormat(), TextField.getTextFormat(), TextField.htmlText, TextField.replaceSel(),

TextField.setNewTextFormat(), TextField.setTextFormat(), the TextField class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.align Property Flash 6

specifies horizontal paragraph alignment read/write

theFormat.align

Description

The string align property specifies whether text is positioned at the "left", "right", or "center" of a text field. It applies to

paragraphs, which are spans of text separated by line break characters specified in code (\n,
, <P>, or newline). To

set the alignment for an entire text field, apply the text format by invoking TextField.setTextFormat() without specifying any
index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 60);
theField_txt.border = true;
theField_txt.text = "This is paragraph one.\nThis is paragraph two."
// Create a TextFormat object
format = new TextFormat();
format.align = "center";
// Center the whole field
theField_txt.setTextFormat(format);

To set the alignment for the first paragraph in a text field, apply the format to the character at index 0:

theField_txt.setTextFormat(0, format);

To set the alignment for any subsequent paragraphs, apply the format to the character immediately following the newline
character:

// Center the second paragraph
theField_txt.setTextFormat(23, format);

To set the alignment for a range of paragraphs, apply the format using start and end index arguments that include the desired
paragraphs:

theField_txt.setTextFormat(0, 24, format);

If any paragraph wraps to the next line, the specified format range must include the subsequent line's first character; otherwise,
the format will not apply to the wrapped line.

If automatic word-wrapping is disabled for a text field and the text of a paragraph exceeds the width of the field, the text will be
left-aligned, regardless of the setting of align.

The default align value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is "left". For a text field without any text, the align value is null. For a completely new TextFormat object, it

is also null, indicating that align will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().align); // Displays: "left"
var format = new TextFormat();
trace(format.align); // Displays: "null"

See Also

TextField.wordWrap, TextFormat.blockIndent, TextFormat.indent,

TextFormat.leftMargin, TextFormat.rightMargin

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.blockIndent Property Flash 6

specifies paragraph indentation read/write

theFormat.blockIndent

Description

The integer blockIndent property specifies the distance a paragraph is indented from the text field's left border, in pixels.

Paragraphs are spans of text separated by line characters specified in code (\n,
, or newline). To set the indentation for an

entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 60);
theField_txt.border = true;
theField_txt.text = "This is paragraph one.\nThis is paragraph two."
// Create a TextFormat object
format = new TextFormat();
format.blockIndent = 30;
// Block-indent the whole field
theField_txt.setTextFormat(format);

To set the indentation for the first paragraph in a text field, apply the format to the character at index 0:

theField_txt.setTextFormat(0, format);

To set the indentation for any subsequent paragraphs, apply the format to the character immediately following the newline character:

// Indent the second paragraph
theField_txt.setTextFormat(23, format);

To set the indentation for a range of paragraphs, apply the format using start and end index arguments that include the desired paragraphs:

theField_txt.setTextFormat(0, 24, format);

If any paragraph wraps to the next line, the specified format range must include the subsequent line's first character; otherwise, the format
will not apply to the wrapped line.

If automatic word-wrapping is disabled for a text field, large values for blockIndent can force text to overflow the text field's right

border. If word-wrapping is enabled, large values for blockIndent cause lines to wrap. The blockIndent and

leftMargin properties are cumulative; for example, if leftMargin is 15 and blockIndent for a paragraph is 10, that

paragraph will be indented a total of 25 pixels. Hence, the leftMargin property can be thought of as a field layout tool, while

blockIndent can be thought of as a paragraph layout tool.

The default blockIndent value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is 0. For a text field without any text, the blockIndent value is null. For a completely new TextFormat object, it is

also null, indicating that blockIndent will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().blockIndent); // Displays: 0
var format = new TextFormat();
trace(format.blockIndent); // Displays: "null"

See Also

TextField.wordWrap, TextFormat.align, TextFormat.indent, TextFormat.leftMargin,

TextFormat.rightMargin

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.bold Property Flash 6

Boolean; specifies bold character display read/write

theFormat.bold

Description

The Boolean bold property specifies whether characters are displayed in a bold typeface (true) or a regular (nonbold)

typeface (false).

To set bolding for an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.border = true;
theField_txt.text = "Press any key."
// Create a TextFormat object
format = new TextFormat();
format.bold = true;
// Bold the whole field
theField_txt.setTextFormat(format);

To set bolding for a single character, apply the format with a single index argument:

theField_txt.setTextFormat(1, format); // Bold the second character ("r")

To set bolding for a range of characters, apply the format using start and end index arguments:

theField_txt.setTextFormat(6, 9, format); // Bold the characters at
 // indexes 6, 7, and 8 ("any")

The default bold value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is false. For a text field without any text, the bold value is null. For a completely new TextFormat object,

it is also null, indicating that bold will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().bold); // Displays: "false"
var format = new TextFormat();
trace(format.bold); // Displays: "null"

See Also

TextFormat.italic

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.bullet Property Flash 6

specifies whether to add bullets to paragraphs read/write

theFormat.bullet

Description

The Boolean bullet property can create a bulleted list (equivalent to HTML's tag) from the paragraphs in a text field.

When bullet is true, the first line of each formatted paragraph (any span of text ending with a line break character) starts

with a small circle icon and is indented. If automatic word-wrapping is enabled for the text field, subsequent lines in the paragraph
are also indented, provided that they fall within the range of the format. The circular bullet symbol cannot be customized. Nested
bulleted lists are not supported.

To convert an entire text field into a bulleted list, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 60);
theField_txt.border = true;
theField_txt.text = "Item one.\nItem two.\nItem three."
// Create a TextFormat object
format = new TextFormat();
format.bullet = true;
// Make the whole field bulleted
theField_txt.setTextFormat(format);

To add a bullet to the first paragraph in a text field, apply the format to the character at index 0:

theField_txt.setTextFormat(0, format);

To add a bullet to any subsequent paragraphs, apply the format to the character immediately following the newline character:

// Make the second paragraph bulleted
theField_txt.setTextFormat(10, format);

To add bullets to a range of paragraphs, apply the format using start and end index arguments that include the desired paragraphs:

// Use bullets with only the second and third paragraphs
theField_txt.setTextFormat(10, 21, format);

If any paragraph wraps to the next line, the specified format range must include the subsequent line's first character; otherwise, the
format will not apply to the wrapped line.

The default bullet value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is false. For a text field without any text, the bullet value is null. For a completely new TextFormat object,

it is also null, indicating that bullet will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().bullet); // Displays: "false"
var format = new TextFormat();
trace(format.bullet); // Displays: "null"

See Also

TextField.wordWrap, TextFormat.blockIndent

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.color Property Flash 6

specifies character color read/write

theFormat.color

Description

The integer color property specifies the color of characters using RGB hexadecimal triplet notation—0xRRGGBB, where RR,

GG, and BB are two-digit hex numbers representing Red, Green, and Blue. For example, the following sets color to red:

theFormat.color = 0xFF0000;

For a complete discussion of RGB triplet notation, see the Color class.

To set the color of an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.border = true;
theField_txt.text = "Play with color."
// Create a TextFormat object
format = new TextFormat();
format.color = 0xFF0000;
// Make the whole field red
theField_txt.setTextFormat(format);

Alternatively, use the convenient TextField.textColor property directly on the field, without a TextFormat object:

theField_txt.textColor = 0xFF0000;

To set the color of a single character, apply the format with a single index argument:

theField_txt.setTextFormat(0, format); // Make the first character red

To set the color of a range of characters, apply the format with start and end index arguments:

theField_txt.setTextFormat(10, 15, format); // Set red for characters 10,
 // 11, 12, 13, and 14 ("color")

The default color value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is 0 (black). For a text field without any text, the color value is null. For a completely new TextFormat object, it

is also null, indicating that color will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().color); // Displays: 0
var format = new TextFormat();
trace(format.color); // Displays: "null"

See Also

The Color class , TextField.textColor

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.font Property Flash 6

sets the font for specified characters read/write

theFormat.font

Description

The string font property specifies the name of the font in which characters should be displayed. For text fields with font-embedding

disabled, font should exactly match the name of a font on the playback system. For example, on Windows, the following code sets

theField_txt's font to Arial:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.embedFonts = false;
theField_txt.text = "This text is in Arial."
format = new TextFormat();
format.font = "Arial";
theField_txt.setTextFormat(format);

For a list fonts installed on the playback system, use TextField.getFontList(). When embedded fonts are enabled for a text field, the font
property must match one of the following:

The linkage identifier of a font symbol exported with the movie

The name of a font exported with an author-time text field

For more information on embedding fonts with a movie see TextField.embedFonts.

To set the font for an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

// Make the whole field Arial
theField_txt.setTextFormat(format);

To set the font for a single character, apply the format with a single index argument:

theField_txt.setTextFormat(0, format); // Make the first character Arial

To set the font for a range of characters, apply the format with start and end index arguments:

theField_txt.setTextFormat(0, 4, format); // Make the word "This" Arial

The default font value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that contains text is

"Times New Roman". For a text field without any text, the font value is null. For a completely new TextFormat object, it is also null,

indicating that font will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().font); // Displays: "Times New Roman"
var format = new TextFormat();
trace(format.font); // Displays: "null"

For text fields with font-embedding disabled, the font property can contain a comma-separated list of fonts. Flash will render the text field

with the first available font in the list. For instance, "Arial,Helvetica,_sans" (no spaces between font names!) causes the Player to search for the
font Arial, then Helvetica (if Arial is not found), then _sans (if neither Arial nor Helvetica is found). This is an undocumented feature of the
Flash Player; however, it mirrors the behavior of HTML text font-rendering in browsers.

See Also

TextField.embedFonts, TextField.getFontList()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.getTextExtent() Method Flash 6

returns the pixel dimensions of a string rendered according
to a given TextFormat object

theFormat.getTextExtent(text)

Arguments

text

The string to be measured in this character format.

Returns

An object with height and width properties.

Description

The getTextExtent() method returns an object whose height and width properties tell us the anticipated size of text, formatted

according to theFormat. It is used not to measure text already assigned to a text field but to determine the dimensions of any

arbitrary string in a particular character format. We make these theoretical measurements when generating dynamic interfaces. For
example, a string that is found to be too large in a certain format can be reformatted to fit available space. The following Example
truncates text with an ellipsis (...) if the text does not fit in a text field.

The getTextExtent() method measures only character formats; it ignores the effect of all paragraph formats (word-wrapping, line breaks,
margins, bullets, indent, block indent, etc). For example, the following code with indentation:

f = new TextFormat();
f.indent = 30; // Add indentation.
trace(f.getTextExtent("test").width);

yields the same result as this code, with no indentation:

f = new TextFormat();
trace(f.getTextExtent("test").width);

Example

The following code adds a new method, called setEllipsisText(), to all text fields. Using getTextExtent(), the method checks the width
of a string before assigning it to a text field. If the string is too wide to fit in the field, the method crops the string and adds an ellipsis
(...):

/*
 * Method: TextField.setEllipsisText()
 * Desc: Truncates text to fit in a text field, and adds
 * an ellipsis if necessary
 * Params: theText Text to assign to the text field
 */

TextField.prototype.setEllipsisText = function (theText) {
 // Retrieve the format for newly added text
 var format = this.getNewTextFormat();
 // Initialize the substring being assigned to the field
 var theSubstring = theText;
 // Check how wide the text display area is. Subtract 8 to account
 // for the gutter between the text and the text field's border.
 var textRegion = this._width - 8;
 // Assume the string is too wide to fit
 var tooWide = true;
 // Check if our assumption is correct
 for (var i = theSubstring.length - 1; tooWide = = true && i > 0; i--) {
 // If the string is too wide to fit in the field...
 if (format.getTextExtent(theSubstring).width > textRegion) {
 // ...remove a character, add an ellipsis, then check again.
 theSubstring = theText.substr(0, i) + "...";
 } else {
 // ...otherwise, the string will fit, so stop checking.
 tooWide = false;
 }
 }
 // Assign the corrected string to the text field
 this.text = theSubstring;
}
// Sample use of setEllipsisText()
this.createTextField("theField_txt", 1, 100, 100, 150, 60);
theField_txt.border = true;
theField_txt.setEllipsisText("If this text is too long it will be truncated.");

See Also

TextField.border, TextField._height, TextField.textHeight, TextField.textWidth,

TextField._width, TextFormat.size

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.indent Property Flash 6

specifies indentation for a paragraph's first line read/write

theFormat.indent

Description

The integer indent property specifies the distance a paragraph's first line is indented from the text field's left border, in pixels.

Paragraphs are spans of text separated by line break characters specified in code (\n,
, or newline). To set the

indentation for all paragraphs in a text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 60);
theField_txt.border = true;
theField_txt.text = "This is paragraph one.\nThis is paragraph two."
// Create a TextFormat object
format = new TextFormat();
format.indent = 15;
// Indent the whole field
theField_txt.setTextFormat(format);

To set the indentation for the first paragraph in a text field, apply the format to the character at index 0:

theField_txt.setTextFormat(0, format);

To set the indentation for any subsequent paragraphs, apply the format to the character immediately following the newline
character:

// Indent the second paragraph:
theField_txt.setTextFormat(23, format);

To set the indentation for a range of paragraphs, apply the format using start and end index arguments that include the desired
paragraphs:

theField_txt.setTextFormat(0, 24, format);

If automatic word-wrapping is disabled for a text field, large values for indent can force text to overflow the text field's right

border. If word-wrapping is enabled, large values for indent cause lines to wrap.

The default indent value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is 0. For a text field without any text, the indent value is null. For a completely new TextFormat object, it is

also null, indicating that indent will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().indent); // Displays: 0
var format = new TextFormat();
trace(format.indent); // Displays: "null"

See Also

TextField.wordWrap, TextFormat.align, TextFormat.blockIndent

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.italic Property Flash 6

Boolean; specifies italicized character display read/write

theFormat.italic

Description

The Boolean italic property specifies whether characters are displayed in an italic typeface (true) or a regular (nonitalic)

typeface (false).

To set italics for an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.border = true;
theField_txt.text = "What a nice hat!"
// Create a TextFormat object
format = new TextFormat();
format.italic = true;
// Italicize the whole field
theField_txt.setTextFormat(format);

To set italics for a single character, apply the format with a single index argument:

theField_txt.setTextFormat(5, format); // Italicize the sixth character ("a").

To set italics for a range of characters, apply the format with start and end index arguments:

theField_txt.setTextFormat(7, 11, format); // Italicize the characters at
 // indexes 7, 8, 9 and 10 ("nice")

The default italic value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is false. For a text field without any text, the italic value is null. For a completely new TextFormat object, it

is also null, indicating that italic will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().italic); // Displays: "false"
var format = new TextFormat();
trace(format.italic); // Displays: "null"

See Also

TextFormat.bold

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.leading Property Flash 6

specifies line spacing read/write

theFormat.leading

Description

The integer leading property specifies the amount of vertical space between lines of text. It applies to paragraphs, which are

spans of text separated by line break characters specified in code (\n,
, or newline). When leading is 0, the font's

metrics determine the line spacing. When leading is any positive integer, it specifies the extra space to add between lines, in

pixels. Negative values for leading cannot be set via ActionScript but can be set during authoring with the Properties inspector

for text.

To set the leading for an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 50, 60);
theField_txt.border = true;
theField_txt.text = "This is paragraph one.\nThis is paragraph two."
theField_txt.wordWrap = true;
// Create a TextFormat object
format = new TextFormat();
format.leading = 5;
// Apply leading to the whole field
theField_txt.setTextFormat(format);

To set the leading for the first paragraph in a text field, apply the format to the character at index 0:

theField_txt.setTextFormat(0, format);

To set the leading for any subsequent paragraphs, apply the format to the character immediately following the newline character:

theField_txt.setTextFormat(23, format);

To set the leading for a range of paragraphs, apply the format using start and end index arguments that include the desired
paragraphs:

theField_txt.setTextFormat(0, 24, format);

If any paragraph wraps to the next line, the specified format range must include the subsequent line's first character; otherwise, the
format will not apply to the wrapped line.

The default leading value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is 0. For a text field without any text, the leading value is null. For a completely new TextFormat object, it is

also null, indicating that leading will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().leading); // Displays: 0
var format = new TextFormat();
trace(format.leading); // Displays: "null"

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.leftMargin Property Flash 6

specifies the margin to the left of a paragraph read/write

theFormat.leftMargin

Description

The integer leftMargin property specifies the horizontal distance between the left border of a text field and the left edge of a

paragraph, in pixels. Negative values for leftMargin are converted to 0 by ActionScript. Note that regardless of the value of

leftMargin, Flash automatically adds a small gutter between text and a text field's border. There is no way to align text perfectly

flush with the border of a text field. The leftMargin and rightMargin properties can be used simultaneously on the same

paragraph.

To set the left margin for an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 40);
theField_txt.border = true;
theField_txt.text = "This is paragraph one.\nThis is paragraph two."
theField_txt.wordWrap = true;
// Create a TextFormat object
format = new TextFormat();
format.leftMargin = 10;
// Apply a 10-pixel left margin to the whole field
theField_txt.setTextFormat(format);

To set the left margin for the first paragraph in a text field, apply the format to the character at index 0:

theField_txt.setTextFormat(0, format);

To set the left margin for any subsequent paragraphs, apply the format to the character immediately following the newline character:

theField_txt.setTextFormat(23, format);

To set the left margin for a range of paragraphs, apply the format using start and end index arguments that include the desired
paragraphs:

theField_txt.setTextFormat(0, 24, format);

If any paragraph wraps to the next line, the specified format range must include the subsequent line's first character; otherwise, the
format will not apply to the wrapped line.

The blockIndent and leftMargin properties are cumulative; for example if leftMargin is 15 and blockIndent
for a paragraph is 10, that paragraph will be indented a total of 25 pixels. Hence, the leftMargin property can be thought of as a

field layout tool, while blockIndent can be thought of as a paragraph layout tool.

The default leftMargin value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is 0. For a text field without any text, the leftMargin value is null. For a completely new TextFormat object, it is

also null, indicating that leftMargin will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().leftMargin); // Displays: 0

var format = new TextFormat();
trace(format.leftMargin); // Displays: "null"

See Also

TextFormat.blockIndent, TextFormat.rightMargin

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.rightMargin Property Flash 6

specifies the margin to the right of a paragraph read/write

theFormat.rightMargin

Description

The integer rightMargin property specifies the minimum horizontal space between the right border of a text field and the right

edge of a paragraph, in pixels. Negative values for rightMargin are converted to 0 by ActionScript. Note that regardless of the value

of rightMargin, Flash automatically adds a small gutter between text and a text field's border. There is no way to align text perfectly

flush with the border of a text field. The rightMargin and leftMargin properties can be used simultaneously on the same

paragraph.

For example usage, see TextFormat.leftMargin.

The default rightMargin value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is 0. For a text field without any text, the rightMargin value is null. For a completely new TextFormat object, it is

also null, indicating that rightMargin will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().rightMargin); // Displays: 0
var format = new TextFormat();
trace(format.rightMargin); // Displays: "null"

See Also

TextFormat.blockIndent, TextFormat.leftMargin

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.size Property Flash 6

specifies character font size, in points read/write

theFormat.size

Description

The integer size property specifies character font size, in points (1/72 inch). By increasing the size property, we increase the size of

on-screen text. Text in a font size that exceeds the dimensions of a text field's bounding box will appear cut off. To size a text field's
bounding box, use the TextField._height, TextField._width, or TextField.autoSize properties.

To set the font size for an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 250, 40);
theField_txt.border = true;
theField_txt.text = "This text is quite large.";
// Create a TextFormat object
format = new TextFormat();
format.size = 26;
// Set the whole field to 26 pt
theField_txt.setTextFormat(format);

To set the font size for a single character, apply the format with a single index argument:

theField_txt.setTextFormat(5, format); // Set the sixth character ("t") to 26 pt

To set the font size for a range of characters, apply the format with start and end index arguments:

theField_txt.setTextFormat(19, 24, format); // Set size for
 // characters 19-23 ("large")

The default size value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that contains text

is 12. For a text field without any text, the size value is null. For a completely new TextFormat object, it is also null, indicating

that size will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().size); // Displays: 12
var format = new TextFormat();
trace(format.size); // Displays: "null"

Note that when font embedding is enabled for a text field, that field's text is always antialiased. Therefore, using embedded fonts with
sizes smaller than 10-point is not recommended because antialiased text becomes unreadable below 10-point in most fonts. To prevent a
font from antialiasing, use device fonts (i.e., system fonts) by setting TextField.embedFonts to false. Device fonts are never

antialiased. Pixel fonts that display clearly at small font sizes are available commercially from sites such as http://www.miniml.com and
http://www.fontsforflash.com.

Usage

Technically, a font's size is measured in pixels, not points. However, because most desktop displays render at 72 pixels per inch, we

normally can use the terms "pixel" and "point" interchangeably. But on devices with non-72 ppi display, Flash does not automatically

perform any coordinate space conversions—a size of 10 always means the font is 10 pixels high, even if the screen renders, say, 200
pixels per inch.

See Also

TextField.embedFonts, TextField._yscale, TextFormat.font, TextFormat.getTextExtent()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.tabStops Property Flash 6

specifies horizontal tab stops, in pixels read/write

theFormat.tabStops

Description

The array tabStops property specifies a list of tab stops for a paragraph, in pixels. As in word processing, a tab stop is the position at

which items separated by the Tab character are aligned (i.e., the column where the insertion point jumps when the Tab key is pressed). In
ActionScript, tab stops are used for tabular data entry and to produce simple tables, as shown in the following Example.

Each element in the tabStops array is measured from the left border of the text field, not from the previous tab stop. For example, a

tabStops value of [50, 120] indicates two tab stops, one at 50 pixels and one at 120 pixels. To add a tab character to a string,

type the Tab key directly, use the escape sequence "\t", or use String.fromCharCode(9). For convenience, we can assign a tab character

to a variable:

var tab = String.fromCharCode(9);

A tab character always causes the insertion point to move ahead to the next available tab stop, even if previous tab stops are skipped. For
example, if tabStops is set to [5, 100] for a text field that contains:

"Colin" + String.fromCharCode(9) + "Moock"

then "Moock" will appear 100 pixels right of the text field's left border. The word "Colin" is wider than 5 pixels, so the first tab stop is
ignored and the next available one is used. Remember, tab stops are set in pixels, not characters. Average characters in a 10-point font are
about 8 pixels wide.

To set the tab stops for an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 250, 40);
theField_txt.border = true;
var tab = String.fromCharCode(9);
theField_txt.text = "One" + tab + "Two" + tab + "Three\n"
 + "Four" + tab + "Five" + tab + "Six";
// Create a TextFormat object
format = new TextFormat();
format.tabStops = [50, 130];
// Apply the tab stops
theField_txt.setTextFormat(format);

To set the tab stops for the first paragraph in a text field, apply the format to the character at index 0:

theField_txt.setTextFormat(0, format);

To set the tab stops for any subsequent paragraphs, apply the format to the character immediately following the newline character:

theField_txt.setTextFormat(14, format);

To set the tab stops for a range of paragraphs, apply the format using start and end index arguments that include the desired paragraphs:

theField_txt.setTextFormat(0, 15, format);

If any paragraph wraps to the next line, the specified format range must include the subsequent line's first character; otherwise, the format
will not apply to the wrapped line.

By default, a text field has tab stops every (4 * average character width) pixels and tabStops is an empty array.

For a text field without any text, tabStops is null. For a completely new TextFormat object, it is also null, indicating that

tabStops will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().tabStops); // Displays: nothing
 // (an empty array)
var format = new TextFormat();
trace(format.tabStops); // Displays: "null"

Example

The following code adds to all TextField objects a method that programmatically places an array of text in a table structure using a the
tabStops property. Take note that it relies on the custom appendText() method listed under TextField.replaceSel(). Both custom

methods are available from the Code Depot.

/*
 * Method: TextField.makeTable
 * Desc: Formats an array of text as a table.
 * Params: tabStops Array containing the positions of the columns,
 * starting with column 2, not column 1. Text in each table
 * cell cannot wrap, so text must not exceed each tab stop.
 * data The array to format.
 */
TextField.prototype.makeTable = function (tabstops, data) {
 // Store the tab character in a variable
 var tab = "\t";
 // Calculate number of columns
 var numCols = tabstops.length;
 // Calculate number of rows
 var numRows = Math.ceil(data.length/numCols);
 // Initialize our text variable that will eventually be assigned to the field
 var newText = "";
 // Add tab characters between each column,
 // and add newline characters after each row.
 // For each row...
 for (var i = 0; i < numRows; i++) {
 // ...cycle through each column.
 for (var j = 0; j < numCols; j++) {
 // Add each item in the array to our text
 newText += data[i*numCols + j];
 // If we're done with all the elements in the array, quit the loop
 if (i*numCols + j = = data.length - 1) {
 break;
 }
 // If we're not on the last column...
 if (j < numCols - 1) {
 // ...add a tab character.
 newText += tab;
 } else {
 // ...otherwise add a newline character.
 newText += "\n"
 }

 }
 }
 // Finally, we have to apply the tab stops using a TextFormat object.
 // Create the TextFormat object, but keep the old tabStops property
 // around so we can put it back when we're done. Hence, future text added
 // will use the field's original tab stops, not our table's tab stops.
 format = this.getNewTextFormat();
 var oldTabStops = format.tabStops;
 format.tabStops = tabstops;
 // Apply the tab stops.
 this.setNewTextFormat(format);
 // Insert our table.
 this.appendText("\n" + newText + "\n");
 // Restore the original tab stops.
 format.tabStops = oldTabStops;
 this.setNewTextFormat(format);
}
// Example use. Create an array that will become a table.
var tableData = ["one", "two", "three", "four", "five", "six", "seven"];
// Create a text field to hold the table.
this.createTextField("theField_txt", 1, 0, 0, 250, 60);
theField_txt.border = true;
// Add some text and the table.
theField_txt.appendText("Here is the table:");
theField_txt.makeTable([50, 125, 200], tableData);
theField_txt.appendText("Isn't it pretty?");

See Also

String.fromCharCode(), TextField.replaceSel(), TextFormat.blockIndent, TextFormat.leftMargin

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.target Property Flash 6

specifies the window or frame for a hypertext link read/write

theFormat.target

Description

The string target property specifies the name of the browser window or frame into which to load the document at

theFormat.url. It can be a custom name or one of the four presets: "_blank", "_parent", "_self", or "_top". If

theFormat.url is not specified, target has no effect. Take special note that url, and hence also target, works

only when TextField.html is set to true for the text field.

The target property must be used in conjunction with the url property. To set the target property for an entire text

field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 250, 40);
theField_txt.border = true;
theField_txt.text = "Visit www.moock.org.";
theField_txt.html = true; // REQUIRED!!
// Create a TextFormat object
format = new TextFormat();
format.url = "http://www.moock.org/";
format.target = "_blank"; // Open link in new window
format.underline = true; // Add underline manually
// Apply the hypertext link
theField_txt.setTextFormat(format);

To add a link to a single character, apply the format with a single index argument:

theField_txt.setTextFormat(0, format); // Link the first character, "V"

To add a link to a range of characters, apply the format with start and end index arguments:

// Link the text: "www.moock.org"
theField_txt.setTextFormat(6, theField_txt.length, format);

The default target value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is the empty string (""). For a text field without any text, the target value is null. For a completely new

TextFormat object, it is also null, indicating that target will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().target); // Displays nothing
var format = new TextFormat();
trace(format.target); // Displays: "null"

See Also

TextField.html, TextFormat.url

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.underline Property Flash 6

Boolean; specifies underlined character display read/write

theFormat.underline

Description

The Boolean underline property specifies whether characters are displayed with a line beneath them (true) or without any

underline (false).

To underline an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 200, 20);
theField_txt.border = true;
theField_txt.text = "Please enter your name."
// Create a TextFormat object
format = new TextFormat();
format.underline = true;
// Underline the whole field
theField_txt.setTextFormat(format);

To underline a single character, apply the format with a single index argument:

theField_txt.setTextFormat(0, format); // Underline the first character ("P")

To underline a range of characters, apply the format with start and end index arguments:

theField_txt.setTextFormat(0, 6, format); // Underline the characters at indexes
 // 0, 1, 2, 3, 4, and 5 ("Please")

The default underline value (as contained in the TextFormat object returned by TextField.getTextFormat()) for an existing text field

is false; however, for a completely new TextFormat object, it is null, indicating that underline will not be set when the format

is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().underline); // Displays: false
var format = new TextFormat();
trace(format.underline); // Displays: "null"

Unlike most web browsers, Flash does not automatically underline hypertext links, so the underline property must be used to indicate

links manually, as shown under TextFormat.url.

See Also

TextField.htmlText, TextFormat.url

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

TextFormat.url Property Flash 6

specifies a hypertext link read/write

theFormat.url

Description

The string url property specifies a hypertext link for a span of text.

The TextFormat.url property has no effect unless TextField.html is set to

true for the text field.

To load a document into a named window or frame, supply the window or frame name as the value of
theFormat.target. Flash does not underline or color hypertext links; these features must be inserted manually with

the underline and color properties. For information on formulating links, see the global getURL() function and

Appendix E.

To create a link for an entire text field, invoke TextField.setTextFormat() without specifying any index arguments:

this.createTextField("theField_txt", 1, 0, 0, 250, 40);
theField_txt.border = true;
theField_txt.text = "Visit www.moock.org.";
theField_txt.html = true; // REQUIRED!!
// Create a TextFormat object
format = new TextFormat();
format.url = "http://www.moock.org/";
format.underline = true; // Add the underline manually
// Apply the hypertext link
theField_txt.setTextFormat(format);

To add a link to a single character, apply the format with a single index argument:

theField_txt.setTextFormat(0, format); // Link the first character, "V"

To add a link to a range of characters, apply the format with start and end index arguments:

// Link the text: "www.moock.org"
theField_txt.setTextFormat(6, theField_txt.length, format);

The default url value (as contained in the TextFormat object returned by TextField.getTextFormat()) for a text field that

contains text is an empty string (no link). For a text field without any text, the url value is null. For a completely new

TextFormat object, it is also null, indicating that url will not be set when the format is applied to a text field:

trace(anyUnformattedField_txt.getTextFormat().url); // Displays nothing
var format = new TextFormat();
trace(format.size); // Displays: "null"

See Also

getURL(), TextField.html, TextFormat.color, TextFormat.target,

TextFormat.underline; Appendix E

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

toggleHighQuality() Global Function Flash 5

change the rendering quality of the PlayerFlash 2;
deprecated in

toggleHighQuality()

Description

The toggleHighQuality() function switches between High quality and Low quality rendering. When set to High,
the Flash Player renders lines with antialiased (smooth) edges. When set to Low, the Flash Player renders lines
with aliased (jagged) edges. The toggleHighQuality() function does not take any arguments; it simply switches
between the two possible settings—"High" and "Low". This is problematic because it doesn't explicitly set the
quality to a known setting, nor does it allow for more than two different possible quality settings.

As of Flash 5, toggleHighQuality() has been deprecated in favor of the global _quality property, which

supports Low, AutoLow, Medium, High, AutoHigh, and Best rendering settings.

See Also

_highquality, _quality

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

trace() Global Function Flash 4

display a value in the Output window

trace(value)

Arguments

value

The expression to be resolved and then displayed in the Output window. If the resolved value of value is not a string,

it is converted to a string before being sent to the Output window, according to the rules described in Table 3-2 in
Chapter 3.

Description

The trace() function is a debugging tool used only within the Test Movie mode of the Flash authoring environment. Though
unassuming in nature, trace() is actually one of the fundamental components of ActionScript programming; it allows us to
check the value of a variable or expression at any point during the playback of a movie. Because the Output window isn't
available when we're testing in a browser or the Standalone Player, use an on-screen text field to display results, as follows:

this.createTextField("debug_txt", 99999, 50, 50, 300, 200);
debug_txt.border = true;
debug_txt.text += "Your message here" + newline;

Alternatively, call a JavaScript alert from the Flash movie, as described at:

http://www.moock.org/asdg/technotes/traceInBrowser

Usage

Multiple trace() statements can slow down movie playback. To view a movie at its genuine speed, turn off tracing under File
 Publish Settings Flash using the Omit Trace Actions option.

Example

trace(firstName); // Output the value of firstName
trace(myClip); // Output the path to myClip
trace(myClip._x) // Output the x coordinate of myClip
trace("hello" + " there"); // Resolve and then output the expression

See Also

Object.watch(); Chapter 17

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

typeof Operator Flash 5

determine the datatype of an expression or identifier

typeof operand;

Operands

operand

The expression or identifier whose datatype will be determined.

Returns

A string indicating the datatype of the evaluated operand as shown in Table 3-4 in Chapter 3.

Description

The typeof operator returns the datatype of operand. For example, it returns "movieclip" when used with a

movie clip identifier.

See Also

instanceof; "The typeof Operator," in Chapter 5; "Determining the Type of an Existing Datum," and Table 3-4 in
Chapter 3

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

unescape() Global Function Flash 5

decode an escaped (URL-encoded) string

unescape(stringExpression)

Arguments

stringExpression

A string (or an expression that resolves to a string) that was previously encoded via escape().

Returns

A new string that is a decoded version of string.

Description

The unescape() function returns a new string based on string. The new string contains equivalent

characters for every occurrence of hexadecimal escape sequences in string, as described under escape().

The escape() and unescape() functions are used to encode and decode strings for safe transfer over a network.
However, manual use of unescape() rarely is necessary, as Flash automatically unescapes URL-encoded text
when it is imported via loadVariables() or the LoadVars class.

Example

var msg = "hello!";
// Set msgCoded to "hello%21"
msgCoded = escape(msg);
// Set msgDecoded to "hello!"
var msgDecoded = unescape(msgCoded);

See Also

escape(); Appendix B

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

unloadMovie() Global Function Flash 4

unload a movie or movie clip from the Player

unloadMovie(target)

Arguments

target

A string or reference indicating the path to the movie clip or document level to unload from the Player
(references are converted to paths when used in a string context).

Description

The unloadMovie() function is used most often to unload movies from document levels in the Player. For
example, if a movie is loaded onto level 1 in the Player, we can unload that movie from the Player as follows:

unloadMovie("_level1");

The unloadMovie() function can also be used to unload movie clip instances, in which case it removes the
content of the instance but not the instance itself. The instance is left on stage as an empty shell; we can load
subsequent .swf or .jpg files into that shell. Hence, a single clip can act as a container for dynamic content that is
managed through successive loadMovie() and unloadMovie() executions. Note that unloadMovie() differs
from removeMovieClip() insofar as the latter removes a clip instance from memory, whereas the former
removes content from a clip instance but leaves the clip instance shell otherwise intact.

Note that unloadMovie() executes asynchronously—the unload operation does not actually begin until after all
scripts on the current frame execute.

Usage

The unloadMovie() function corresponds to the Unload Movie action with a target path in Flash 4.

See Also

loadMovie(), MovieClip.removeMovieClip(), MovieClip.unloadMovie(), removeMovieClip(),
unloadMovieNum(); "Removing Clip Instances and Main Movies," and "Method versus global function overlap
issues," in Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

unloadMovieNum() Global Function Flash 3

remove a movie from a document level

unloadMovieNum(level)

Arguments

level

A nonnegative integer or an expression that yields a nonnegative integer, indicating the document level
to unload.

Description

The unloadMovieNum() function is nearly identical to unloadMovie(), except that it requires the target
level of the load operation to be specified as a number rather than as a string. This means that

unloadMovieNum() can remove movies from document levels only, not from movie clips. Normally, it is used
when we wish to dynamically assign the level of a movie to unload, as in:

var x = 3;
unloadMovieNum(x);

This can also be achieved using string concatenation with the regular unloadMovie() function:

unloadMovie("_level" + x);

Usage

The unloadMovieNum() function corresponds to the Unload Movie action in Flash 3 and Flash 4, which
worked only with numbered levels.

See Also

loadMovieNum(), MovieClip.removeMovieClip(), MovieClip.unloadMovie(), removeMovieClip(),
unloadMovie(); "Removing Clip Instances and Main Movies," in Chapter 13

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

updateAfterEvent() Global Function Flash 5

render the contents of the Stage between frames

updateAfterEvent()

Description

When a function executes between frames in the Flash Player, any visual changes to the screen are not displayed
until the next frame is rendered. However, within the following functions, we can force a screen refresh
manually by invoking updateAfterEvent():

A setInterval() callback

MovieClip.onMouseMove()

MovieClip.onMouseDown()

MovieClip.onMouseUp()

MovieClip.onKeyDown()

MovieClip.onKeyUp()

Note, however, that updateAfterEvent() is not an arbitrary screen-refreshing tool; outside of setInterval() and
the handlers in the previous list, it has no effect. In Flash 6, even the Mouse and Key objects' event handlers do
not support updateAfterEvent(); however, they are expected to support it in future versions of the Player.

Example

The following script causes pointer_mc to follow the mouse pointer. It uses updateAfterEvent() to refresh

the screen every time the pointer moves (which may be more often than the frame rate):

pointer_mc.onMouseMove = function () {
 this._x = _root._xmouse;
 this._y = _root._ymouse;
 updateAfterEvent();
}

See Also

"Refreshing the Screen with updateAfterEvent()," in Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

$version "Global" Property Flash 5

the version of the Flash PlayerFlash 4 Build 11;
deprecated in

read-
only

_root.$version

Description

The $version property contains the same string as the return value of the global getVersion() function and

the System.capabilities.version property (the operating system, followed by Player version

information). See the capabilities.version entry (under "C" in this Language Reference) for

complete details on the format of the version information and version detection from within a browser before the
Flash Player loads.

The $version property was introduced midway through the life cycle of Flash Player 4 and was replaced by

getVersion() in Flash 5, which itself was replaced by System.capabilities.version in Flash 6.

Technically, it is not a global property, but a property of the main movie timeline; from any other movie clip
timeline, it must be accessed as _root.$version.

Usage

Use $version only if you are exporting to Flash 4 format; use getVersion() if you are exporting to Flash 5

format; and use System.capabilities.version if you are exporting to Flash 6 format.

See Also

capabilities.version, getVersion()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML
Class

Flash 5; Flash 6 improves performance and adds
getBytesLoaded() and getBytesTotal() methods

DOM-based support for XML-structured data

Constructor

new XML()
new XML(source)

Arguments

source

An optional string containing well-formed XML data to be parsed into an XML object hierarchy.

Properties

attributes

An object whose properties store element attributes.
childNodes

An array of references to a node's children.
contentType

The MIME content type to be transmitted to servers.
docTypeDecl

The document's DOCTYPE tag.

firstChild

A reference to the first descendant of a node.
ignoreWhite

Determines whether to ignore whitespace nodes during XML parsing.
lastChild

A reference to the last descendant of a node.
loaded

Status of a load() or sendAndLoad() operation.
nextSibling

A reference to the node after this node in the current level of the object hierarchy.
nodeName

The name of the current node.
nodeType

The type of the current node, either 1 (an element node) or 3 (a text node).
nodeValue

The value of the current node.
parentNode

A reference to the immediate ancestor of a node.
previousSibling

A reference to the node before this node in the current level of the object hierarchy.
status

Error code describing the result of parsing XML source into an object hierarchy.
xmlDecl

The document's XML declaration tag.

Methods

appendChild()

Add a new child node to a node.
cloneNode()

Create a copy of a node.
createElement()

Create a new element node.
createTextNode()

Create a new text node.
getBytesLoaded()

The number of downloaded bytes of an external XML file.
getBytesTotal()

The physical disk size of an external XML file, in bytes.
hasChildNodes()

Check if a node has any descendants.
insertBefore()

Add a sibling node before a node.
load()

Import XML source code from an external document.
parseXML()

Parse a string of XML source code.
removeNode()

Delete a node from an object hierarchy.
send()

Send XML source code to an external script or application.
sendAndLoad()

Send XML source code to an external script or application and receive XML source in return.
toString()

Convert an XML object to a string.

Event Handlers

onData()

Handler executed when external XML source finishes loading.
onLoad()

Handler executed when external XML data has been parsed into an object hierarchy.

Description

We use objects of the XML class to manipulate the content of an XML document in an object-oriented manner and to send XML-
formatted data to and from Flash. Using the methods and properties of an XML object, we can build an XML-structured document (or
read an existing one) and efficiently access, change, or remove the information in that document.

The XML class actually is a subclass of the internal XMLnode superclass. See the XMLnode class entry for
important explanations and clarifications regarding the difference between the two. Table 18-28, also under
the XMLnode class entry, details which properties and methods are supported for the XML and XMLnode
classes. If the Synopsis for a property or method shows an instance name of theNode, either an XML or

XMLnode instance is supported. If the instance name is shown as xmlDoc, it must be an instance of the

XML class and not an instance of the XMLnode class. Note that even though the XML class is a subclass of the
XMLnode class, the root node at the top of an XML document hierarchy is an XML instance, not an XMLnode
instance. The subnodes are XMLnode instances. Therefore, properties and methods that pertain to the entire
XML document and not to individual nodes, such as load() and send(), work with instances of the XML
class only. There are two types of nodes, element nodes and text nodes, as described under the
XML.nodeType entry.

The source code of an XML document consists primarily of a series of elements and attributes. For example, in the following XML
fragment, the elements BOOK, TITLE, AUTHOR, and PUBLISHER take the same form as well-known HTML tags, and we see that

the AUTHOR element supports one attribute, SALUTATION:

<BOOK>
 <TITLE>ActionScript for Flash MX: The Definitive Guide</TITLE>
 <AUTHOR SALUTATION="Mr.">Colin Moock</AUTHOR>
 <PUBLISHER>O'Reilly</PUBLISHER>
</BOOK>

From an object-oriented perspective, the content of an XML document can be treated as a hierarchy of objects in which each element and
text block becomes an object node in a flowchart-like structure.

Figure 18-7 shows our simple XML <BOOK> fragment represented conceptually as an XML object hierarchy.

Figure 18-7. A sample XML node hierarchy

Let's consider the structure and semantics of this sample XML object hierarchy from left to right. We start with the main XML object,
shown in Figure 18-7 as DOCUMENT, which is created automatically by the XML constructor and serves as the container for our XML

object hierarchy.

Moving one tier to the right in the hierarchy, we come to BOOK, which is the first element in our XML source code fragment and, in this

case, also the first object node under DOCUMENT. The BOOK node is the root of our XML data structure—every well-formed XML

document must have an all-encompassing root element, such as BOOK, that contains every other element (the root of an XML tree has no

relation to _root, which is a global property signifying the main timeline). Branches of an XML object hierarchy are added to the tree

either by parsing XML source code or by invoking node-addition methods on the objects in the hierarchy.

When a node is contained by another node, the contained node is said to be a child of the containing node, which is known as the parent.
In our example, BOOK is the first child of DOCUMENT, and DOCUMENT is BOOK's parent (an XML parent is unrelated to the

MovieClip. _parent property).

As we move to the right in Figure 18-7, we see that BOOK has seven children, including four text nodes (shown as #text) that do not

seem to be present in our original XML document. By default, each occurrence of whitespace between elements in XML source code is
rendered as an object in an XML object hierarchy. If we look closely, we'll find whitespace—a carriage return and a tab
character—between BOOK and TITLE in the preceding XML fragment. This whitespace is represented by a text node in Figure 18-7,

which also shows similar whitespace nodes after the TITLE, AUTHOR, and PUBLISHER nodes.

BOOK's children are siblings of one another (i.e., they reside on the same level in the hierarchy). For example, we say that AUTHOR's

next sibling is a text node, and AUTHOR's previous sibling is another text node. You can see how the text nodes get in our way when

we're moving from sibling to sibling in a hierarchy. We can deal with these empty whitespace nodes in one of the following ways:

By manually stripping them out of our object hierarchy (see the later examples for whitespace-stripping code)

By detecting and then sidestepping them in our code (see the nextSibling and previousSibling properties for ways

of moving over nodes)

By simply removing the formatting whitespace in our XML source, ensuring whitespace nodes don't appear in the first place

By setting our XML object's ignoreWhite property (available as of Flash 5.0.41.0) to true before parsing our XML source

Finally, we move to the last tier in the hierarchy, where we find that the TITLE, AUTHOR, and PUBLISHER nodes each have a

single child. Each child is a text node, corresponding to the text contained by the elements TITLE, AUTHOR, and PUBLISHER.

Notice that the text contained by an element in XML source code resides in a child node of that element in the corresponding object
hierarchy. To access text contained by an element, we must always refer to that element's child using either
firstChild.nodeValue or childNodes[0].nodeValue, which we'll consider soon.

But what of the element attributes? Where do they appear in our XML object hierarchy? You might expect AUTHOR's SALUTATION
attribute to be depicted as a child node called SALUTATION. But in practice, an attribute is not considered a child of the element that

defines it, but rather a property of that element. To learn how attribute properties are accessed, see the XML.attributes entry.

Let's see how to build an XML document as a hierarchy of node objects. To create a new, blank XML object, we use the XML()
constructor:

myDocument = new XML();

We can then add nodes to our empty XML object by invoking methods such as appendChild(), parseXML(), and load() on the object.
Alternatively, we can create an XML object from existing XML source in our script by invoking the XML constructor with the source
argument:

myDocument = new XML(source);

For example:

myDocument = new XML('<P>hello world!</P>');

When a source argument is supplied to the XML() constructor, source is parsed and converted into a new object hierarchy, which

is then stored in the object returned by the constructor. (In this case, the node P is assigned as myDocument's first child and the text

node with the nodeValue "hello world!" is assigned as P's first child.)

Once an XML hierarchy is created and stored in an object, we can access the information in that hierarchy using the methods and
properties of the XML class. For example, suppose we want to retrieve the text "hello world!" in myDocument. Thinking in object-

oriented terms, we might assume that we can access the text of P as a property of myDocument, as follows: myDocument.P. In

fact, that won't work; instead of referring to nodes by name, we use the XML class's built-in properties, such as firstChild and

childNodes, to access nodes. For example, to access the P node, we can use:

myDocument.firstChild // Accesses P
myDocument.childNodes[0] // Also accesses P

Because firstChild returns a reference to the first child node of the specified node in the hierarchy,

myDocument.firstChild returns a reference to node P. However, we want the text "hello world!" contained by P, not node P
itself. As we saw earlier, the text of an element node is stored within a child of that node. Therefore, we can reference the text node (i.e.,
the first descendant of P), like this:

myDocument.firstChild.firstChild // Accesses the text node under P

To obtain the value of a node, we use the nodeValue property. For example, we can display the value "hello world!" in the Output

window using:

trace(myDocument.firstChild.firstChild.nodeValue);

Or, we can reassign the value of the text node under P using:

myDocument.firstChild.firstChild.nodeValue = "goodbye cruel world";

To perform other node-related operations, such as removing the P node altogether, adding a new node, or moving the text "hello world!"

to another node, we invoke appropriate methods of the XML class. For example:

// Delete P
myDocument.firstChild.removeNode();

// Make a new element named P
newElement = myDocument.createElement("P");

// Add the new element to our document
myDocument.appendChild(newElement);

// Make a new text node to attach to P
newText = myDocument.createTextNode("XML is fun");

// Attach the new text node to P
myDocument.firstChild.appendChild(newText);

As you can see, working with XML-structured data in an object hierarchy is a mediated endeavor. We build, destroy, and manipulate the
data by invoking methods on, and accessing properties of, objects. To learn the various tools available for working with XML data,
explore the properties and methods of the XML class, which are listed after this entry.

In Flash Player 6, XML text should be encoded using the Unicode UTF-8, UTF-16BE, or UTF-16LE formats, which allow for the
inclusion of international characters. When a file is UTF-16 encoded, it is expected to start with a byte order marker (BOM) indicating
whether the encoding is big-endian or little-endian. Most text editors add the BOM automatically. When no BOM is present in a file, the
encoding is assumed to be UTF-8. When in doubt, you should use UTF-8 encoding, where byte order is not an issue. For more
information on UTFs and BOMs, see:

http://www.unicode.org/unicode/faq/utf_bom.html

ActionScript manipulates XML data using the Document Object Model (DOM) standard published by the World Wide Web Consortium
(W3C). For thorough coverage of how the DOM represents XML-structured data as an object hierarchy, consult:

http://www.w3.org/DOM

For details on the language-independent specifications of the core DOM, see:

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html

Pay particular attention to "Interface Node" under 1.2, Fundamental Interfaces.

For details on how the DOM is implemented in ECMA-262, see:

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/ecma-script-binding.html

Usage

Note that all custom subclasses of the XML class that you write must invoke super() from their constructor function. This ensures that the
methods and properties of the XML class are available to instances of the subclass.

For example:

function XMLsub (src) {
 // Required! Pass raw XML source string to XML() constructor.
 super(src);
}

XMLsub.prototype = new XML();

theDoc = new XMLsub();
theDoc.parseXML("<TEST>hello world</TEST>");

Example

We've seen that the whitespace between any two elements in XML source code is represented by a text node in the corresponding XML
object hierarchy. Prior to Flash Player 5.0.41.0, undesired whitespace nodes had to be stripped out of an XML object hierarchy manually.
Stripping a particular kind of node is a common task in XML handling and serves as a good example of tree traversal (moving through

every node in a hierarchy). Let's consider two different techniques for stripping whitespace nodes from a document.

In the first example, we'll use a classic FIFO (First In First Out) stack to add all the nodes in a tree to an array for processing. The
stripWhitespaceTraverse() function seeds an array of node elements with theNode, which it receives as an argument. Then it enters a

loop in which it removes the first node in the array, processes that node, and adds its children (if any) to the array. When the array has no
more elements, all the descendants of theNode have been processed. During processing, any node that has no children is considered

potential whitespace (because text nodes never have children). Each of these nodes is checked to see if:

It is a text node (as determined by its nodeType property).

It contains any characters above ASCII 32, which are not considered whitespace.

Any text nodes containing characters below ASCII 32 only (i.e., only whitespace) are removed:

// Strip Whitespace Using a FIFO Stack
// Function: stripWhitespaceTraverse()
// Version: 1.0.1
// Desc: Strips whitespace nodes from an XML document by traversing the tree
function stripWhitespaceTraverse (theNode) {
 // Create a list of nodes to process.
 var nodeList = new Array();
 // Seed the list with the node passed to the function.
 nodeList[0] = theNode;

 // Create a local variable to track whether we've found an empty node.
 var emptyNode;
 // Local counter variable.
 var i = 0;

 // Process the passed node and its descendents until there are none left.
 while (nodeList.length > 0) {
 // Grab the first node on the list, and remove it from the list.
 currentNode = nodeList.shift();

 // Assume we're dealing with a nonempty node.
 emptyNode = false;

 // If this node has children...
 if (currentNode.childNodes.length > 0) {
 // ...add this node's children to the list of nodes to process.
 nodeList = nodeList.concat(currentNode.childNodes);
 } else {
 // ...otherwise, this node is the end of a branch, so check if it's a
 // text node...
 if (currentNode.nodeType = = 3) {
 // Yup, it's a text node, so check if it contains empty whitespace only.
 // Assume it's only whitespace and try to prove the assumption wrong.
 emptyNode = true;
 for (i = 0; i < currentNode.nodeValue.length; i++) {
 // A useful character is anything over 32 (space,
 // tab, new line, etc. are all below 32).
 if (currentNode.nodeValue.charCodeAt(i) > 32) {
 emptyNode = false;
 break;
 }
 }
 }

 // If no useful characters were found, delete the node
 if (emptyNode) {
 currentNode.removeNode();
 }
 }
 }
}

Traditionally, the technique shown in this example is very efficient. However, in Flash Player 5, the Array.concat() method executes
quite slowly. Hence, in Flash 5 it's quicker to strip whitespace using the technique shown in the following example. Study the comments
carefully:

// Strip Whitespace Using Function Recursion
// Strips whitespace nodes from an XML document
// by passing twice through each level in the tree.
function stripWhitespaceDoublePass (theNode) {
 // Loop through all the children of theNode.
 for (var i = 0; i < theNode.childNodes.length; i++) {
 // If the current node is a text node...
 if (theNode.childNodes[i].nodeType = = 3) {

 // ...check for any useful characters in the node.
 var j = 0;
 var emptyNode = true;
 for (j = 0;j < theNode.childNodes[i].nodeValue.length; j++) {
 // A useful character is anything over 32 (space, tab,
 // new line, etc. are all below 32).
 if (theNode.childNodes[i].nodeValue.charCodeAt(j) > 32) {
 emptyNode = false;
 break;
 }
 }

 // If no useful characters were found, delete the node.
 if (emptyNode) {
 theNode.childNodes[i].removeNode();
 }
 }
 }

 // Now that all the whitespace nodes have been removed from theNode,
 // call stripWhitespaceDoublePass() recursively on its remaining children.
 for (var k = 0; k < theNode.childNodes.length; k++) {
 stripWhitespaceDoublePass(theNode.childNodes[k]);
 }
}

See Also

The XMLnode class, the XMLSocket class; Appendix E

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.appendChild() Method Flash 5

add a new child node to a node, or move an existing node

theNode.appendChild(childNode)

Arguments

childNode

An existing XML node object.

Description

The appendChild() method adds the specified childNode to theNode as theNode's last child, where theNode
can be an XML or XMLnode instance. We can use appendChild() to add a new node to an existing node, to move a node within
a document, or to move a node between documents. In each of these cases, childNode must be a reference to a node object

that already exists.

To add a new child node to an existing node, we must first create the new child node using createElement(), createTextNode(),
or cloneNode() or by parsing XML source code into an XML object. For example, in the following code, we create a new P
node and a new text node. We append the text node to the P node and then append the P node and its text node child to the top

node of a document:

// Create a document
myDoc = new XML('<P>paragraph 1</P>');

// Create a P node and a text node
newP = myDoc.createElement("P");
newText = myDoc.createTextNode("paragraph 2");

// Append the text node to the P node
newP.appendChild(newText);

// Append the P node (including its text child) to myDoc
myDoc.appendChild(newP);

trace(myDoc); // Displays: "<P>paragraph 1</P><P>paragraph 2</P>"

To move a node within a document, specify a childNode that is a reference to an existing node in the document. In this

situation, childNode indicates the old location of the node and theNode indicates the new parent of the node. In the

process of being appended to theNode, childNode is removed from its previous parent node. For example, here we

move the B node from its parent P node to the root of the document:

// Create a new document
myDoc = new XML('<P>paragraph 1bold text</P>');

// Store a reference to the B node

boldText = myDoc.firstChild.childNodes[1];

// Append the B node to the root of the document, while removing it from P
myDoc.appendChild(boldText);

trace(myDoc); // Displays: "<P>paragraph 1</P>bold text"

We also could have skipped the reference-storing step and just moved the node directly:

myDoc.appendChild(myDoc.firstChild.childNodes[1]);

To move a node between documents, childNode should be a reference to a node in the first (source) document and

theNode should be a reference to a node in the second (target) document. For example, here we move the B node from

myDoc to myOtherDoc:

myDoc = new XML('<P>paragraph 1bold text</P>');
myOtherDoc = new XML();

myOtherDoc.appendChild(myDoc.firstChild.childNodes[1]);

trace(myDoc); // Displays: "<P>paragraph 1</P>"
trace(myOtherDoc); // Displays: "bold text"

See Also

XML.cloneNode(), XML.createElement(), XML.createTextNode(), XML.insertBefore(), XML.removeNode()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.attributes Property Flash 5

an object whose properties store element
attributes

read/write

theNode.attributes.attributeIdentifier
theNode.attributes[attributeNameInQuotes]

Description

The attributes property stores the names and values of attributes defined by theNode, where theNode can be an XML

or XMLnode instance. For example, the ALIGN attribute of this P tag:

<P ALIGN="CENTER">this is a paragraph</P>

is accessed using theNode.attributes.ALIGN or theNode.attributes["ALIGN"]. If the P tag is the only

tag in our XML source, we can access the ALIGN attribute as follows:

// Create an XML object hierarchy
myDoc = new XML('<P ALIGN="CENTER">this is a paragraph</P>');

// Access the ALIGN attribute. Displays: "CENTER"
trace(myDoc.firstChild.attributes.ALIGN);

// Set the ALIGN attribute
myDoc.firstChild.attributes.ALIGN = "LEFT";

The attributes property is itself an object. We can add new properties to the attributes object, thereby adding new

attributes to theNode, as follows:

// Add a CLASS attribute to the P tag
myDoc.firstChild.attributes.CLASS = "INTRO";

// firstChild now represents the XML source:
// <P ALIGN="CENTER" CLASS="INTRO">this is a paragraph</P>

Because attributes is not an array, it doesn't contain a length property to indicate the number of properties/attributes it

includes. Instead, we can access all the attributes defined on an element using a for-in loop:

var count = 0;
for (var prop in theNode.attributes) {
 trace("attribute " + prop + " has the value " + theNode.attributes[prop]);
 count++;
}
trace("The node has " + count + " attributes.");

If the XML element represented by theNode has no attributes, attributes is an empty object with no properties, and the

preceding example would indicate zero attributes.

See Also

XML.nodeType

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.childNodes Property Flash 5

an array of references to a node's children read-only

theNode.childNodes[n]

Description

The childNodes property is an array whose elements contain references to the immediate descendants of theNode, where

theNode can be an XML or XMLnode instance. The childNodes property is used to access nodes in an XML hierarchy. For

example, if we create an object hierarchy as follows:

myDoc = new XML('<STUDENT><NAME>Tim</NAME><MAJOR>BIOLOGY</MAJOR></STUDENT>');

we can then access the STUDENT node using:

myDoc.childNodes[0];

We can access the NAME and MAJOR nodes (which are descendants of STUDENT) using:

myDoc.childNodes[0].childNodes[0]; // NAME
myDoc.childNodes[0].childNodes[1]; // MAJOR

If the hierarchy below theNode changes, childNodes is automatically updated to reflect the new structure. For example, if

we delete the MAJOR node, myDoc.childNodes[0].childNodes[1] will return undefined.

We often refer to nodes to manipulate information or rearrange a document's structure. For example, we can change a student's name
or add a new student using:

// Check the name of the student
trace("The student's name is: "
 + myDoc.childNodes[0].childNodes[0].childNodes[0].nodeValue);

// Change the name of the student
myDoc.childNodes[0].childNodes[0].childNodes[0].nodeValue = "James";

// Copy the STUDENT node
newStudent = myDoc.childNodes[0].cloneNode(true);

// Add a new STUDENT node to the document
myDoc.appendChild(newStudent);

Note that, as a convenience, we can also use the firstChild property to refer to childNodes[0]. The following

references are identical:

myDoc.childNodes[0];
myDoc.firstChild;

To iterate through all the children of a node, we can use a for statement, as follows:

for (var i = 0; i < theNode.childNodes.length; i++) {
 trace("child " + i + " is " + theNode.childNodes[i].nodeName);
}

However, our example traverses only the first level of theNode's hierarchy. The examples under the XML.nextSibling
entry show how to access all the nodes below theNode. If theNode has no children,

theNode.childNodes.length is 0.

Usage

Remember that empty text nodes, representing the whitespace used to format XML source code, also show up in a childNode
list. For example, in the following XML source, empty text nodes are created by the whitespace after the BOOK start tag and the

TITLE, AUTHOR, and PUBLISHER end tags:

<BOOK>
 <TITLE>ActionScript for Flash MX: The Definitive Guide</TITLE>
 <AUTHOR SALUTATION="Mr.">Colin Moock</AUTHOR>
 <PUBLISHER>O'Reilly</PUBLISHER>
</BOOK>

Hence, the first child node of BOOK is an empty text node; the second child is TITLE. To remove whitespace, use

XML.ignoreWhite.

Bugs

In Flash Player 5, an XML document with an XML declaration (<?xml version="1.0"?>) has a childNodes[0] of

undefined. The first child of the document is stored erroneously in childNodes[1]. This bug was fixed in Flash Player

6.

See Also

XML.firstChild, XML.hasChildNodes(), XML.lastChild, XML.nextSibling,

XML.previousSibling

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.cloneNode() Method Flash 5

create an independent copy of a node

theNode.cloneNode(deep)

Arguments

deep

A Boolean indicating whether to recursively include theNode's children in the clone operation. If

true, clone the entire hierarchy starting at theNode. If false, clone only theNode itself (and

its attributes, if it is an element node).

Returns

A duplicate of the theNode object, optionally including its subtree.

Description

The cloneNode() method creates and returns a copy of theNode, where theNode can be an XML or

XMLnode instance. If theNode is an element node, the clone includes all of theNode's attributes and

values. If deep is true, the returned copy includes the entire node hierarchy descending from theNode.

We often use cloneNode() to create a new, independent node based on an existing template (which saves us from
generating the new node structure manually). Normally, once we've cloned a node, we customize it and insert it
into an existing XML document using either appendChild() or insertBefore(). The following example clones the
first paragraph of a document to make a sibling paragraph with the same structure:

// Create a new document
myDoc = new XML('<P>paragraph 1</P>');

// Make a clone of the first paragraph
newP = myDoc.firstChild.cloneNode(true);

// Customize the clone
newP.firstChild.nodeValue = "paragraph 2";

// Add the clone into the document
myDoc.appendChild(newP);

trace(myDoc); // Displays: "<P>paragraph 1</P><P>paragraph 2</P>"

Note that the text in an element is stored in a separate child node of that element, so we must set deep to true
to preserve an element's text content in a clone operation. Remember that cloneNode() does not insert the
element it returns into the node's hierarchy—we must do that ourselves using appendChild() or insertBefore().

See Also

XML.appendChild(), XML.createElement(), XML.createTextNode(), XML.insertBefore()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.contentType Property Flash 5.0.41.0

MIME content type for XML data sent via
XML.send() and XML.sendAndLoad()

read/write

xmlDoc.contentTypeAccess

Description

The contentType property is the MIME type that is sent to a server when XML.send() or

XML.sendAndLoad() is invoked. It defaults to "application/x-www-form-urlencoded", but

that MIME type is used only cosmetically to encourage interoperability with server-side applications; the data
sent is not URL-encoded. The specified xmlDoc must be the top-level node in an XML object hierarchy (i.e.,

an instance of the XML class, not the XMLnode class). When set on an individual XML instance, the
contentType property affects only that instance. For example, the following code sets the MIME for doc
only:

doc.contentType = "application/xml";

To affect all XML objects, set the value of XML.prototype.contentType. For example, the

following code sets the MIME of all XML objects in a movie to "application/xml":

XML.prototype.contentType = "application/xml";

The contentType property first appeared in Flash Player 5.0.41.0, before which it was not possible to set

the MIME type. Check contentType's validity in the Player by comparing it to undefined, or use the

getVersion() function to determine the Player version and build.

See Also

XML.send(), XML.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.createElement() Method Flash 5

create a new element node

xmlDoc.createElement(tagName)

Arguments

tagName

A case-sensitive string indicating the name of the element to create. For example, in the tag, <P
ALIGN="RIGHT">, P is the tag name.

Returns

A new element node object, with no parent and no children.

Description

The createElement() method is our primary means of generating new element nodes for inclusion in an XML
document object hierarchy. The specified xmlDoc must be the top-level node in an XML object hierarchy

(i.e., an instance of the XML class, not the XMLnode class). Note that createElement() does not insert the
element it returns into xmlDoc—we must do that ourselves using appendChild() or insertBefore(). For

example, here we create and insert a new P element into a document:

myDoc = new XML();
newP = myDoc.createElement("P");
myDoc.appendChild(newP);

We can combine those steps by using this:

myDoc.appendChild(myDoc.createElement("P"));

The createElement() method cannot be used to create text nodes; use createTextNode() instead.

See Also

XML.appendChild(), XML.cloneNode(), XML.createTextNode(), XML.insertBefore()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.createTextNode() Method Flash 5

create a new text node

xmlDoc.createTextNode(text)

Arguments

text

A string containing the text that is to become the nodeValue of the new node.

Returns

A new text node object, with no parent and no children.

Description

The createTextNode() method is our primary means of generating new text nodes for inclusion in an XML
document object hierarchy. The specified xmlDoc must be the top-level node in an XML object hierarchy

(i.e., an instance of the XML class, not the XMLnode class). Note that createTextNode() does not insert the
element it returns into xmlDoc—we must do that ourselves using appendChild() or insertBefore(). For

example, here we create and insert a new P element into a document, and then we give that P element a text-

node child:

myDoc = new XML();
newP = myDoc.createElement("P");
myDoc.appendChild(newP);

newText = myDoc.createTextNode("This is the first paragraph");
myDoc.firstChild.appendChild(newText);

trace(myDoc); // Displays: "<P>This is the first paragraph</P>"

Normally, text nodes are stored as the children of element nodes, which are created using createElement().

The createTextNode() method converts the characters <, >, &, ', and " according to the rules of entity
conversion discussed under XML.parseXML().

See Also

XML.appendChild(), XML.cloneNode(), XML.createElement(), XML.insertBefore(), XML.parseXML()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.docTypeDecl Property Flash 5

the document's DOCTYPE tag read/write

xmlDoc.docTypeDecl

Description

The docTypeDecl string property specifies the DOCTYPE tag of xmlDoc, if any exists. Otherwise, docTypeDecl
is undefined. The specified xmlDoc must be the top-level node in an XML object hierarchy (i.e., an instance of the

XML class, not the XMLnode class).

An XML document's DOCTYPE specifies the name and location of the document type declaration (DTD) used to validate the

document. ActionScript does not perform validation of XML documents; it merely parses them. We use the DOCTYPE tag to

build XML documents that may be validated externally or to identify the type of a loaded XML document.

Example

var myXML = new XML('<?xml version="1.0"?><!DOCTYPE foo SYSTEM "bar.dtd">'
 + '<P>a short document</P>');

trace(myXML.docTypeDecl); // Displays: "<!DOCTYPE foo SYSTEM "bar.dtd">"

// Set a new DOCTYPE
myXML.docTypeDecl = '<!DOCTYPE baz SYSTEM "bam.dtd">';

See Also

XML.xmlDecl

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.firstChild Property Flash 5

a reference to the first descendant of a node read-only

theNode.firstChild

Description

The firstChild property is synonymous with childNodes[0]. It returns a reference to the first node object that

descends from theNode, where theNode can be an XML or XMLnode instance. If theNode has no children,

firstChild returns null.

In this XML source fragment, the firstChild of the MESSAGE node is the text node with the nodeValue "hey":

<!-- Fragment 1 -->
<MESSAGE>hey</MESSAGE>

Here, the firstChild of the HOTEL node is the ROOM node:

<!-- Fragment 2 -->
<HOTEL><ROOM><SIZE>Double</SIZE></ROOM></HOTEL>

When theNode is the top of the object hierarchy (i.e., when it is an instance of the XML class, which refers to an XML document

object and not an instance of the XMLnode class), firstChild may not always be a reference to the first useful element in the

document. If a document includes an XML declaration (<?xml version="1.0"?>) and perhaps a DOCTYPE tag, normally

there are whitespace nodes before the actual root element of the XML hierarchy (to remove them, use XML.ignoreWhite). If

an XML fragment has no XML declaration, no DOCTYPE, and no whitespace, we can start processing it with the document's

firstChild node, as in:

// Create a new XML fragment
myDoc = new XML('<MESSAGE><USER>gray</USER><CONTENT>hi</CONTENT></MESSAGE>');

// Store the XML fragment's first node in the variable msg
msg = myDoc.firstChild;

// Assign the text contained by the USER tag
// to a text field called userNameOutput
userNameOutput = msg.firstChild.firstChild.nodeValue;

It's good form to use nodeValue to access the text contained by the USER tag. When we use a text-node object in a string

context, the toString() method is automatically invoked on that node, and the text in the node is returned.

See Also

XML.childNodes, XML.lastChild, XML.nextSibling, XML.previousSibling

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.getBytesLoaded() Method Flash 6

the number of downloaded bytes of an external XML file

xmlDoc.getBytesLoaded()

Returns

An integer representing the number of bytes that have finished downloading to the Player. Divide by 1024 to convert bytes to
kilobytes (KB).

Description

The getBytesLoaded() method tells us the number of bytes of an external XML file that have downloaded into the Flash Player
due to an earlier call to load() or sendAndLoad(). The specified xmlDoc must be the top-level node in an XML object

hierarchy (i.e., an instance of the XML class, not of the XMLnode class).

For a new XML object, getBytesLoaded() returns undefined. Immediately after load() or sendAndLoad() is called,

getBytesLoaded() returns 0. As data arrives, getBytesLoaded() returns the number of bytes transferred so far, until the entire
XML file has loaded. From then on, it returns the total number of bytes last transferred, until the next call to load() or
sendAndLoad().

The getBytesLoaded() and getBytesTotal() methods are used together to determine (and, normally, display) the load progress
of a downloading XML file. However, merely detecting the completion of a load operation does not require getBytesLoaded();
the onLoad() event handler is automatically executed when an XML file finishes loading. The success of the load attempt
should be checked from the onLoad() handler.

Example

The following code, available at the online Code Depot, adds two new methods to all XML document objects: preload() and
sendAndPreload(). They function the same as load() and sendAndLoad(), except that they use getBytesLoaded() to report the
progress while the XML file is loading. Any XML object that invokes preload() or sendAndPreload() is expected to define a
custom onBytesLoaded() callback that will be invoked every 200 milliseconds and supplied with load progress information
(bytes loaded, percent complete, etc.). Typically, the code in onBytesLoaded() displays the load progress on screen. The XML
object should also define an onLoad() handler to respond to completion of the load operation. When used with preload() or
sendAndPreload(), the onLoad() function has the added responsibility of canceling any failed preload attempts, as shown in
the following example:

/*
 * Method: XML.checkLoadProgress()
 * Desc: Checks progress of a load() or sendAndLoad() operation.
 * Called only by preload() or sendAndPreload(). Reports progress
 * by invoking a custom XML.onBytesLoaded() handler.
 */
XML.prototype.checkLoadProgress = function () {
 // Check how many KB have loaded.
 var kbLoaded = Math.floor(this.getBytesLoaded()/1024);
 // Check the size of the file loading, in KB.
 var kbTotal = Math.floor(this.getBytesTotal()/1024);

 // Calculate the percent complete.
 var percentDone = isNaN(Math.floor(kbLoaded/kbTotal * 100)) ?
 0 : Math.floor(kbLoaded/kbTotal * 100);
 // Execute onBytesLoaded(), which typically would display load progress.
 this.onBytesLoaded(this.getBytesLoaded(),
 this.getBytesTotal(),
 kbLoaded,
 kbTotal,
 percentDone);
 // If the amount loaded is equal to the total file size,
 // the file is finished loading. However, we must ensure
 // that getBytesLoaded() returns a value greater than 0
 // because both getBytesLoaded() and getBytesTotal()
 // return 0 until the first bit of data arrives.
 if (this.getBytesLoaded() > 5
 && this.getBytesLoaded() = = this.getBytesTotal()) {
 // ...stop calling checkLoadProgress().
 this.clearLoadCheck();
 }
}

/*
 * Method: XML.clearLoadCheck()
 * Desc: Cancels an interval calling checkLoadProgress().
 */
XML.prototype.clearLoadCheck = function () {
 // If there is a load interval for this XML object...
 if (this.loaderID) {
 // ...stop calling it.
 clearInterval(this.loaderID);
 }
}

/*
 * Method: XML.preload()
 * Desc: Begins the download of an XML file and executes
 * checkLoadProgress() every 200 ms until the file has loaded.
 */
XML.prototype.preload = function (url) {
 // Always stop any previous preload before proceeding.
 this.clearLoadCheck();

 // Load the XML file.
 this.load(url);
 // Call checkLoadProgress() every 200 ms.
 this.loaderID = setInterval(this, "checkLoadProgress", 200);
}

/*
 * Method: XML.sendAndPreload()
 * Desc: Sends XML to the server, and downloads the response. Executes
 * checkLoadProgress() every 200 ms until the file has loaded.
 */
XML.prototype.sendAndPreload = function (url, resultXML) {
 // Always stop any previous preload before proceeding.
 this.clearLoadCheck();

 // If the target XML object is valid...
 if (resultXML instanceof XML) {
 // ...send and load the XML file.
 this.sendAndLoad(url, resultXML);
 // Call checkLoadProgress() every 200 ms.
 this.loaderID = setInterval(this, "checkLoadProgress", 200);
 } else {
 // ...otherwise quit without performing the load.
 return false;
 }
}

// Usage:
// Create an XML object.
doc = new XML();
// Assign an onLoad() callback.
doc.onLoad = function (success) {
 // If the load was successful...
 if (success) {
 // ...process the new XML.
 trace("done loading!");
 } else {
 // ...otherwise, perform failure operations and
 // cancel the preload interval (REQUIRED!).
 trace("load failed");
 this.clearLoadCheck();
 }
}
// Assign an onBytesLoaded() callback. This is where each XML document
// can decide what to do with the preload information.
doc.onBytesLoaded = function (bytesLoaded, bytesTotal,
 kbLoaded, kbTotal, percentLoaded) {
 trace("Loading: " + kbLoaded + " of " + kbTotal);
 trace(percentLoaded + " percent complete.");
}
// Preload the XML file.
doc.preload("http://www.yoursite.org/datafiles/someInfo.xml");

See Also

setInterval(), XML.getBytesTotal(), XML.load(), XML.onLoad(), XML.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.getBytesTotal() Method Flash 6

the physical disk size of an external XML file, in bytes

xmlDoc.getBytesTotal()

Returns

An integer representing the size of the XML file, in bytes. Divide by 1024 to convert bytes to kilobytes (KB).

Description

The getBytesTotal() method tells us the byte size of an external file being loaded into xmlDoc via XML.load(

) or XML.sendAndLoad(). The specified xmlDoc must be the top-level node in an XML object hierarchy (i.e.,

an instance of the XML class, not the XMLnode class).

For a new XML object, getBytesTotal() returns undefined. Immediately after load() or sendAndLoad() is

called, getBytesTotal() returns 0 until the size of the XML file being loaded is determined. It then returns the
total byte size of the loading file until the next call to load() or sendAndLoad().

The getBytesTotal() and getBytesLoaded() methods are used together to determine (and, normally, display) the
load progress of a downloading XML file. See getBytesLoaded() for details and example code.

See Also

XML.getBytesLoaded(), XML.onLoad(), XML.load(), XML.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.hasChildNodes() Method Flash 5

check if a node has any descendants

theNode.hasChildNodes()

Returns

A Boolean: true if theNode has any children, false if it does not.

Description

The hasChildNodes() method indicates whether any node hierarchy extends from theNode, where

theNode can be an XML or XMLnode instance. The hasChildNodes() method is synonymous with the

comparison expression:

theNode.childNodes.length > 0

If theNode contains no subnodes, hasChildNodes() returns false.

Example

We can use hasChildNodes() to determine whether to operate on a node during node processing. For example,
here we remove the nodes below the first child of a document until the first child has no more children:

while (myDoc.firstChild.hasChildNodes()) {
 myDoc.firstChild.firstChild.removeNode();
}

See Also

XML.childNodes

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.ignoreWhite Property Flash 5.0.41.0

determines whether to ignore whitespace nodes
during XML parsing

read/write

xmlDoc.ignoreWhite

Description

The Boolean ignoreWhite property dictates whether to discard text nodes containing only whitespace

during the parsing process. The default value is false (don't throw away whitespace nodes). This is an

instance-wide setting that applies to an entire XML document, not just to a specific node. Therefore, the
specified xmlDoc must be the top-level node in an XML object hierarchy (i.e., an instance of the XML class,

not the XMLnode class).

Example

To cause a single XML document to discard whitespace nodes during parsing, use:

myXML.ignoreWhite = true;

To cause all XML documents to discard whitespace nodes during parsing, use:

XML.prototype.ignoreWhite = true;

The ignoreWhite property must be set before XML parsing occurs (typically due to a load() or

sendAndLoad() operation).

See Also

The manual whitespace-stripping code examples under the XML class entry

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.insertBefore() Method Flash 5

insert a new sibling node before an existing node

theNode.insertBefore(newChild, beforeChild)

Arguments

newChild

An existing XML node object.
beforeChild

The child of theNode before which newChild should be inserted.

Description

The insertBefore() method adds newChild to theNode's child list, before beforeChild (theNode can be an XML or

XMLnode instance). The insertBefore() method is similar to appendChild(), but it lets us position a new node precisely in an existing
XML object hierarchy.

Example

// Create a document with a P node
myDoc = new XML('<P>paragraph 2</P>');

// Create another P node and a text node
newP = myDoc.createElement("P");
newText = myDoc.createTextNode("paragraph 1");

// Append the text node to the new P node
newP.appendChild(newText);

// Insert the new P node (including its text child) before the existing P node
myDoc.insertBefore(newP, myDoc.firstChild);

trace(myDoc); // Displays: "<P>paragraph 1</P><P>paragraph 2</P>"

See Also

XML.appendChild() XML.previousSibling, XML.removeNode()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.lastChild Property Flash 5

a reference to the last descendant of a node read-only

theNode.lastChild

Description

The lastChild property is synonymous with childNodes[childNodes.length - 1]. It returns a reference to the

last node object that descends from theNode, where theNode can be an XML or XMLnode instance. If theNode has no

children, lastChild returns null.

In the following XML source fragment, the lastChild of the MESSAGE node is the CONTENT node:

<MESSAGE><USER>gray</USER><CONTENT>hi</CONTENT></MESSAGE>

Example

// Create a new XML document
myDoc = new XML('<MESSAGE><USER>gray</USER><CONTENT>hi</CONTENT></MESSAGE>');

// Sets msg to "hi" because myDoc's firstChild
// is MESSAGE; MESSAGE's lastChild is CONTENT; and CONTENT's firstChild
// is the text node with the value "hi"
msg = myDoc.firstChild.lastChild.firstChild.nodeValue

See Also

XML.childNodes, XML.firstChild, XML.nextSibling, XML.previousSibling

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.load()
Method

Flash 5; security restrictions added in
Flash 6

import XML source code from an external document

xmlDoc.load(url)

Arguments

url

A string specifying the location of the XML document to load.

Description

The load() method imports an external XML document, parses it, converts it into an XML object hierarchy, and
places that hierarchy into xmlDoc. Any previous contents of xmlDoc are replaced by the newly loaded XML

content. The specified xmlDoc must be the top-level node in an XML object hierarchy (i.e., an instance of the

XML class, not the XMLnode class).

Before accessing content imported with load(), we must be sure the load and parsing operations are complete.
To do so, either check the value of the XML document's loaded property, or assign the document an onLoad(

) callback handler to respond to the load completion. See the XML.loaded and XML.onLoad() entries for

details. To determine whether the loaded data was parsed successfully, check the document's status
property. To monitor the progress of the file transfer, use getBytesLoaded() and getBytesTotal().

As of Flash 6, XML.load() is subject to the domain-based security restrictions described under
System.security.allowDomain().

Example

myDoc = new XML();
myDoc.load("myData.xml");

See Also

XML.loaded, XML.onLoad(), XML.sendAndLoad(), XML.status

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.loaded Property Flash 5

status of a load() or sendAndLoad() operation read-only

xmlDoc.loaded

Description

The loaded property returns a Boolean value indicating whether a previously invoked load() or

sendAndLoad() operation on xmlDoc has completed. The specified xmlDoc must be the top-level node in

an XML object hierarchy (i.e., an instance of the XML class, not the XMLnode class).

The loaded property is immediately set to false when an XML load() or sendAndLoad() operation is

initiated. If the load is successful, loaded is set to true; otherwise, it remains false. If no such operation

has ever been executed on xmlDoc, loaded is undefined.

When loaded is false, the download and parsing of XML data is still in progress and attempts to access

the object hierarchy in xmlDoc will fail. When loaded is true, XML data has finished being

downloaded, parsed, and stored in xmlDoc as an object hierarchy. Note, however, that the loaded XML data

may not have been parsed successfully (check the status property to determine if parsing was successful).

Example

The following example shows a basic XML preloader that waits for the XML data to be loaded before
displaying it (XML preloaders can also be built using an XML.onLoad() handler or XML.getBytesLoaded() and
XML.getBytesTotal()):

// CODE ON FRAME 1
// Create a new XML document.
myDoc = new XML();
// Load an external XML file into the document.
myDoc.load("userProfile.xml");

// CODE ON FRAME 5
// If the data has loaded, go to the display frame.
// If not, loop back to frame 4 and then play.
// Loop until the data is done loading...
if (myDoc.loaded) {
 if (myDoc.status = = 0) {
 gotoAndStop("displayData");
 } else {
 gotoAndStop("loadingError");
 }
} else {
 gotoAndPlay(4);
}

See Also

XML.load(), XML.onLoad(), XML.sendAndLoad(), XML.status

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.nextSibling Property Flash 5

a reference to the node after this node read-only

theNode.nextSibling

Description

The nextSibling property returns the node object after theNode in the current level of the XML object hierarchy (theNode
can be an XML or XMLnode instance). If there is no node after theNode, nextSibling returns null. In the following XML

source fragment, the CONTENT node is the nextSibling of the USER node:

<MESSAGE><USER>gray</USER><CONTENT>hi</CONTENT></MESSAGE>

Example

Typically, the nextSibling property is used to traverse (move through or examine) an XML object hierarchy. For example, to view

all the children of theNode in the order they appear, we can use:

for (var child = theNode.firstChild; child != null; child = child.nextSibling) {
 trace("found node: " + child.nodeName);
}

By extending our loop into a function, we can recursively traverse every node in an XML object hierarchy, as follows:

function showNodes (node) {
 trace(node.nodeName + ": " + node.nodeValue);
 for (var child = node.firstChild; child != null; child = child.nextSibling) {
 showNodes(child);
 }
}

// Invoke the function on our node or document
showNodes(myDoc);

Note that in both traversal examples shown, text nodes show up without a name, as described under the nodeName entry.

See Also

XML.childNodes, XML.firstChild, XML.lastChild, XML.nodeName, XML.nodeValue,

XML.previousSibling

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.nodeName Property Flash 5

the name of the current node read/write

theNode.nodeName

Description

The nodeName string property reflects the name of theNode, where theNode can be an XML or

XMLnode instance. Since only two node types are supported by ActionScript (element nodes and text nodes),
nodeName has only two possible values:

If theNode is an element node, nodeName is a string matching the tag name of that element. For

example, if theNode represents the element <BOOK>, then theNode.nodeName is "BOOK".

If theNode is a text node, nodeName is null. Note that this diverges from the DOM specification,

which stipulates that nodeName for a text node should be the string "#text". If you prefer, you can

use the DOM-compliant nodeType property instead.

Example

We can use nodeName to check whether the current node has the element name we're seeking. For example,

here we extract all the content of H1 tags on the first level of an XML document (this example also checks for

tags named h1 with a lowercase h):

myDoc = new XML('<H1>first heading</H1><P>content</P>' +
 '<H1>second heading</H1><P>content</P>');
for (i = 0; i < myDoc.childNodes.length; i++) {
 if (myDoc.childNodes[i].nodeName.toUppercase() = = "H1") {
 trace(myDoc.childNodes[i].firstChild.nodeValue);
 }
}

See Also

XML.nodeType, XML.nodeValue

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.nodeType Property Flash 5

the type of the current node read-only

theNode.nodeType

Description

The nodeType is an integer property that returns theNode's type (theNode can be an XML or XMLnode

instance). Since only two node types are supported by ActionScript—element nodes and text nodes—nodeName
has only two possible values: 1, if the node is an element node; and 3, if the node is a text node. These values may
seem arbitrary, but actually they are the appropriate values as stipulated by the DOM. For reference, the other node
types in the DOM are listed in Table 18-26.

Table 18-26. DOM node types

Node description Node type code

ELEMENT_NODE[12] 1

ATTRIBUTE_NODE 2

TEXT_NODE[12] 3

CDATA_SECTION_NODE 4

ENTITY_REFERENCE_NODE 5

ENTITY_NODE 6

PROCESSING_INSTRUCTION_NODE 7

COMMENT_NODE 8

DOCUMENT_NODE 9

DOCUMENT_TYPE_NODE 10

DOCUMENT_FRAGMENT_NODE 11

NOTATION_NODE 12

[12] Supported by Flash.

Technically, ActionScript implements so-called attribute, document, and document_type nodes in addition to
element and text nodes, but we don't have direct access to them as objects. For example, we can manipulate the
attributes of a node through the attributes property, but we do not have direct access to attribute nodes

themselves. Similarly, we have access to the DOCTYPE tag of a document through the docTypeDecl property,

but we do not have direct access to the document_type node itself.

Element nodes correspond to XML or HTML tags. For example, in the XML fragment <P>what is your
favorite color?</P>, the P tag is represented in an XML object hierarchy as an element node

(nodeType 1). The text contained by a tag in XML source code—for example, the text "what is your favorite

color?"—is represented as a text node (nodeType 3). CDATA section nodes are irreversibly converted to text

nodes when they are parsed, as described under XML.parseXML().

Example

We can operate on a node conditionally, based on its nodeType. For example, here we remove all the empty text

nodes that are children of theNode:

// Loop through all children of theNode
for (var i=0; i < theNode.childNodes.length; i++) {
 // If the current node is a text node...
 if (theNode.childNodes[i].nodeType = = 3) {
 // Check for any useful characters in the node
 var emptyNode = true;
 for (var j=0; j < theNode.childNodes[i].nodeValue.length; j++) {
 // Useful character codes start above ASCII 32
 if (theNode.childNodes[i].nodeValue.charCodeAt(j) > 32) {
 emptyNode = false;
 break;
 }
 }
 if (emptyNode) {
 // No useful characters were found, so delete the node
 theNode.childNodes[i].removeNode();
 }
 }
}

See Also

The XML class, XMLnode.attributes, XML.docTypeDecl, XML.nodeName,

XML.nodeValue

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.nodeValue Property Flash 5

the value of a node, as a string read/write

theNode.nodeValue

Description

The nodeValue property reflects the string value of theNode, where theNode can be an XML or

XMLnode instance. Since only two node types (element nodes and text nodes) are supported by ActionScript,
nodeValue has only two possible values:

If theNode is an element node, nodeValue is null.

If theNode is a text node, nodeValue is the text contained by the node.

To assign new text to an existing text node, we use nodeValue as follows:

// Create a new XML document
myDoc = new XML('<H1>first heading</H1><P>content</P>');

// Change the text contained by the H1 tag
myDoc.firstChild.firstChild.nodeValue = "My Life Story";

To retrieve the text of a text node, we simply read its nodeValue property:

trace(myDoc.firstChild.firstChild.nodeValue);

Note that, in nodeValue, the predefined entities <, >, &, ", and ' are

represented as the literal characters <, >, &, ", and '. To obtain the source code for a node, including
uninterpreted entities, use XML.toString(). For more details, see XML.parseXML().

When a node is used in a string context, Flash uses XML.toString(), not nodeValue, to represent its value:

// Force an implicit datatype conversion. Calls toString().
trace(myDoc.firstChild.firstChild);
// Same as:
trace(myDoc.firstChild.firstChild.toString());

See Also

XML.nodeName, >, XML.parseXML(), XML.toString()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.onData() Event Handler Flash 5

executed when external XML source code finishes loading
but has not yet been parsed

xmlDoc.onData(src);

Arguments

src

A string containing the loaded XML source code.

Description

The onData() handler executes automatically whenever raw XML source has finished loading into xmlDoc
due to an earlier load() or sendAndLoad() invocation. The specified xmlDoc must be the top-level node in an

XML object hierarchy (i.e., an instance of the XML class, not the XMLnode class).

By default, onData() has the following behavior:

If the raw source received is undefined, it calls xmlDoc.onLoad() with the success parameter

set to false.

Otherwise, it parses the source into xmlDoc, sets xmlDoc.loaded to true, and calls

xmlDoc.onLoad() with the success parameter set to true.

The onData() handler can be assigned a custom callback function to intercept raw XML source code before
ActionScript has a chance to parse it. Under certain circumstances, manipulating raw XML source manually may
offer improved performance over ActionScript's built-in parsing, particularly in Flash Player 5. In Flash Player 6,
the native XML parsing usually is faster than custom ActionScript routines.

Example

The following example shows how to display raw loaded XML source while preventing it from being parsed by
ActionScript:

myDoc = new XML();
myDoc.onData = function (src) {
 trace("Here's the source: \n" + src);
};
myDoc.load("book.xml");

The following example intercepts and displays raw loaded XML source, but it also performs onData()'s normal
duties:

myDoc = new XML();
myDoc.onData = function (src) {

 trace("Here's the source: \n" + src);
 if (src = = undefined) {
 this.onLoad(false);
 } else {
 this.parseXML(src);
 this.loaded = true;
 this.onLoad(true);
 }
};
myDoc.onLoad = function (success) {
 trace("Here's the parsed XML: " + this);
 trace("Load succeeded? " + success);
};
myDoc.load("book.xml");

See Also

XML.onLoad(), XML.load()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.onLoad() Event Handler Flash 5

executed when external XML data has been loaded and
parsed

xmlDoc.onLoad(success)

Arguments

success

A Boolean value indicating whether loading was successful (true) or unsuccessful (false).

Description

The onLoad() handler of xmlDoc executes automatically whenever an external XML file is loaded into

xmlDoc via the load() or sendAndLoad() methods. The specified xmlDoc must be the top-level node in an

XML object hierarchy (i.e., an instance of the XML class, not the XMLnode class).

By default, the onLoad() handler of an XML document object is undefined. To use onLoad(), we assign it

a callback handler (i.e., a custom-made function). For example:

myDoc = new XML();
myDoc.onLoad = handleLoad;
function handleLoad (success) {
 // Process XML as desired here...
}

We rely on onLoad() events to tell us when it's safe to process xmlDoc. If onLoad() is triggered, we know

that the loading and parsing of external XML data have completed, so we can safely access that loaded content.
Hence, the onLoad() handle alleviates the need to write preloading code to wait for data to arrive after the
invocation of an XML load() function. For example, in the following code we load an XML document and then
wait for our custom handleLoad() function to execute automatically when loading completes. If loading was
successful, we process our XML content with the displayProduct() function. Otherwise, we show an error
message by executing the displayError() function. (The displayProduct() and displayError() functions are
custom functions that we've written to display information to the user, but they are not shown here.) Here is the
code:

myDoc = new XML();
myDoc.onLoad = handleLoad;
myDoc.load("productInfo.xml");

function handleLoad(success) {
 if (success) {
 output = "Product information received";
 displayProduct(); // Call custom display function
 } else {
 output = "Attempt to load XML data failed";
 displayError(); // Call custom error display function

 }
}

Notice that we assign our onLoad() callback before invoking load(), which guarantees that the handler is
available when the load() operation completes.

The value of the success argument sent to handleLoad() is set automatically by the interpreter to either

true or false, indicating whether loading completed properly. In Flash 6, success is false for File

Not Found (404) conditions and for security violations (see System.security.allowDomain()). However, in Flash
5, the reception of an HTML error page from the server results in the parsing of that page into the target XML
document object. Because the page parses properly, the load attempt is considered "successful" and success
is set to true, even though the actual XML file may not have been found or some other server error may have

been encountered.

In all cases, to be positive that you have the real data you requested, test its structure or content explicitly for
some identifying characteristic, such as the nodeName of a particular child. Check XML.status to

determine whether parsing succeeded. See also the XML.onData() event handler, which can be used to perform
custom parsing.

See Also

XML.load(), XML.onData(), XML.sendAndLoad(), XML.status

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.parentNode Property Flash 5

a reference to the immediate ancestor of a node read-only

theNode.parentNode

Description

The parentNode property returns a reference to the node object from which theNode descends in the

XML object hierarchy, where theNode can be an XML or XMLnode instance. If theNode is the top (root)

node of the current hierarchy, parentNode returns null.

In this XML source fragment, the MESSAGE node is the parentNode of text node "hey":

<MESSAGE>hey</MESSAGE>

Here, the parentNode of the ROOM node is the HOTEL node:

<HOTEL><ROOM><SIZE>Double</SIZE></ROOM></HOTEL>

See Also

XML.childNodes, XML.firstChild, XML.lastChild, XML.previousSibling

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.parseXML() Method Flash 5

parse a string of XML source code

xmlDoc.parseXML(string)

Arguments

string

A string of XML source code.

Description

The parseXML() method reads and parses the XML source contained by string, converts that source into an object hierarchy,

and then places the resulting hierarchy into xmlDoc. Any previous contents of xmlDoc are replaced by the new hierarchy. The

specified xmlDoc must be the top-level node in an XML object hierarchy (i.e., an instance of the XML class, not the XMLnode

class). Once parsing is complete, the success of the operation can be determined via xmlDoc.status.

To include raw HTML or XML source code in a text node without parsing it, use a CDATA section as follows:

<![CDATA[source]]>

For example, the following code creates a MESSAGE element with a single child text node containing the text "Welcome

to my site" (the tag is not interpreted as an XML tag and does not become part of the XML object hierarchy):

myDoc = new XML();
myDoc.parseXML("<MESSAGE><![CDATA[Welcome to my site]]></MESSAGE>");

Note that a CDATA section is interpreted as a node, so the following <P> element actually has three child nodes — a text node, a

CDATA node, and another text node:

<P>The following source: <![CDATA[Welcome to my site]]> adds bold.</P>

However, in ActionScript, only text nodes and element nodes are supported, so this CDATA section is converted to a text node with
a nodeType of 3 (text node), not 4 (CDATA section node). Once the original CDATA source code is parsed, it is not recoverable

from the XML object hierarchy.

Regarding the use of the characters & and < in character data, the W3C XML 1.0 specification states:

"The ampersand character (&) and the left angle bracket (<) may appear in their literal form only when used as markup
delimiters, or within a comment, a processing instruction, or a CDATA section. If they are needed elsewhere, they must be
escaped using either numeric character references or the strings `&' and `<' respectively."[13]

[13] From "2.4 Character Data and Markup,"http://www.w3.org/TR/2000/REC-xml-20001006#syntax

For example, to include the code "<P>We know that (10<11) is true.</P>" in an XML document, we must

use the < entity:

<P>We know that (10<11) is true.</P>

or a CDATA section:

<P>We know that<![CDATA[(10<11)]]>is true.</P>

As of version 5.0.41.0 (5.0.42.0 on Internet Explorer), when Flash parses XML source containing a text node with the characters >,
", ', or &, it automatically converts them to the predefined entities >, ", ', and &. For example, in the

following sample, the ' character becomes ':

// Apostrophe character is automatically converted to an entity
var doc = new XML("<p>don't worry</p>");
// Displays: "don't worry"
trace(doc.firstChild.firstChild.toString());

In contrast, a predefined entity in a text node is not changed during parsing. For example, when & is parsed it stays &
— it is not converted to & or even &amp;. However, when a predefined entity appears in a CDATA section, the initial

ampersand is converted (that is, & does become &amp;). Therefore, literal characters, not entities, should always be

used in CDATA.

The less-than character (<) is converted to < only when it appears in a CDATA section. Elsewhere, it must be written as <
to prevent a parsing error.

When the nodeValue of a text node is read, the predefined entities <, >, ", ', and & are

automatically converted back to their corresponding characters:

var doc = new XML("<p>don't worry</p>");
// Displays: "don't worry"
trace(doc.firstChild.firstChild.nodeValue);

Note the difference: XML.toString() of a text node returns the raw XML source of the node, with entities left in entity form;
XML.nodeValue returns interpreted text suitable for output, with predefined entities converted to literal characters. For

example:

doc = new XML("<P><![CDATA[what a 'nice' day]]></P>");
// Displays: "what a 'nice' day"
trace(doc.firstChild.firstChild.toString());
// Displays: "what a 'nice' day"
trace(doc.firstChild.firstChild.nodeValue);

Usage

Note that in Flash 6, a carriage return in an attribute value causes a parsing error of status -8 (attribute not terminated). For loaded
XML, offending returns can be replaced manually inside the onData() handler.

Example

We can use parseXML() as a means of replacing the current object hierarchy in an XML object with a new hierarchy based on
internally composed XML source code (for example, some user input). In the following example, we create a simple XML message
by combining markup with input from text fields named username_txt and content_txt:

myDoc = new XML();
myXMLsource = "<MESSAGE><USER>" + username_txt + "</USER><CONTENT>"
 + content_txt + "</CONTENT></MESSAGE>";
myDoc.parseXML(myXMLsource);

See Also

XML.ignoreWhite, XML.load(), XML.nodeValue, XML.onData(), XML.status, XML.toString()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.previousSibling Property Flash 5

a reference to the node before this node read-only

theNode.previousSibling

Description

The previousSibling property returns a reference to the node object preceding theNode in the current

level of the XML object hierarchy (theNode can be an XML or XMLnode instance). If there is no node before

theNode in the current level of the hierarchy, it returns null.

In the following XML source fragment, the previousSibling of the CONTENT node is the USER node:

<MESSAGE><USER>gray</USER><CONTENT>hi</CONTENT></MESSAGE>

Example

The previousSibling property can be used to traverse an XML object hierarchy, although

nextSibling is more commonly used for this purpose. To view all the children of theNode in reverse

order, we can use:

for (var i = theNode.lastChild; i != null; i = i.previousSibling) {
 trace("found node: " + i.nodeName);
}

See Also

XML.childNodes, XML.firstChild, XML.lastChild, XML.nextSibling,

XML.nodeName, XML.nodeValue, XML.parentNode

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.removeNode() Method Flash 5

delete a node from an XML object hierarchy

theNode.removeNode()

Description

The removeNode() method deletes theNode from an XML document, where theNode can be an XML or

XMLnode instance. All descendants (children, grandchildren, and so on) of theNode are also deleted. The

childNodes property of theNode's parent is automatically updated to reflect the new structure of the

remaining object hierarchy.

Example

Here we delete the second child node; the third child node takes its place:

myDoc = new XML("<P>one</P><P>two</P><P>three</P>");
myDoc.childNodes[1].removeNode();
trace(myDoc); // Displays: "<P>one</P><P>three</P>"

See Also

XML.appendChild(), XML.insertBefore()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.send() Method Flash 5

send XML source code to an external script or application

xmlDoc.send(url, window)

Arguments

url

A string specifying the location of a script or application to which xmlDoc should be sent.

window

A required string specifying the name of the browser window or frame into which to load the script's response.
It can be a custom name or one of the four presets: "_blank", "_ parent", "_self", or "_top". For

details, see the description of the window settings under the getURL() global function.

Description

The send() method converts xmlDoc into a string of XML source code and sends that code in an HTTP request to

the script or application residing at url. The specified xmlDoc must be the top-level node in an XML object

hierarchy (i.e., an instance of the XML class, not the XMLnode class).

The receiving script or application at url is expected to process the XML in some way and, optionally, return a

response—normally a web page—to the browser, which displays it in window. Note that the response is caught not

by Flash but by the browser; to catch the response within Flash, use sendAndLoad() instead.

When send() is invoked from the Flash Player running in a browser, xmlDoc is sent via the POST method. When

send() is invoked from the Standalone Player on Windows, xmlDoc is sent via the GET method. (See Appendix F

for details on support for GET and POST.) The server application receiving the posted XML string must be able to
access the raw POST data of the HTTP request directly and should not attempt to parse it as normal name/value pairs.
In Perl, the data in a POST request is available from STDIN, and can be extracted and stored in, say, $buffer as

follows:

read(STDIN,$buffer,$ENV{'CONTENT_LENGTH'});

In ASP, raw POST data can be accessed via the Request.BinaryRead method.

In PHP 4.1 and later, the following option in php.ini forces raw POST data to be populated regardless of the MIME
type of the request:

always_populate_raw_post_data = On

With this option enabled, $HTTP_RAW_POST_DATA will be set for every POST request. Some applications (e.g.,

versions of Cold Fusion prior to ColdFusion MX) may not have a direct means of accessing the data in a POST
request. For these situations, it may be necessary to first convert the XML object to a string using XML.toString() and
then pass that string to the server as a variable using loadVariables().

The default MIME content type of the XML text sent to the server is "application/x-www-form-
urlencoded". This type, however, is only cosmetic—the text itself is not URL-encoded. In Flash Player 5.0.41.0

and later, the MIME content type can be modified using the contentType property. For example, to set the

MIME type to "application/xml", we use:

xmlDoc = new XML();
xmlDoc.contentType = "application/xml";

Nevertheless, setting the contentType property explicitly to "application/x-www-urlform-
encoded" still does not cause the text sent to be URL-encoded.

Note that in Flash Player 5.0.41.0, when XML source is parsed and the characters &, ', ", and < appear in a text node,

they are converted to the following entities: &, ', ", and >. Within Flash, the entities are

converted back to their original characters when the nodeValue of an element is accessed; however, the entities

will show up in XML source sent to the server.

Example

theDoc = new XML("<SEARCH_TERM>tutorials</SEARCH_TERM>");
theDoc.send("http://www.domain.com/cgi-bin/lookup.cgi", "remoteWin");

See Also

XML.load(), XML.loaded, XML.onLoad(), XML.sendAndLoad(), XML.status

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.sendAndLoad() Method Flash 5

send XML source code to an external script or application
and receive XML source in return

xmlDoc.sendAndLoad(url, resultXML)

Arguments

url

A string specifying the location of a script or application to which xmlDoc should be sent.

resultXML

A reference to an XML document object that will receive the returned XML source code.

Description

The sendAndLoad() method serializes xmlDoc into a string of XML source code and sends that string to a script or application that

resides at url. The specified xmlDoc must be the top-level node in an XML object hierarchy (i.e., an instance of the XML class, not

the XMLnode class).

The receiving script or application at url is expected to process the XML in some way and send an XML document back as a response.

The response document is caught by Flash, parsed, converted into an XML object hierarchy, and placed in resultXML. Any previous

contents of resultXML are replaced by the newly loaded XML content. See XML.send() for important information about sending

XML to a server. Note that unlike send(), sendAndLoad() sends xmlDoc using a POST request in both the browser and Standalone

versions of Flash Player 6. However, in the Standalone Flash Player 5 on Windows, sendAndLoad() uses the GET method. See Appendix
F for details on support for GET and POST.

Usage

Before accessing content imported with sendAndLoad(), we must be sure that the loading and parsing operations are complete. To do so,
we either check the value of resultXML's loaded property or we assign resultXML an onLoad() event handler to respond to

the load completion. See the XML.loaded and XML.onLoad() entries for details. To determine the result of parsing the loaded data,

we check the document's status property.

XML.sendAndLoad() is subject to the domain-based security restrictions described under System.security.allowDomain().

Example

// Create an XML document.
myDoc = new XML("<P>hello server!</P>");

// Create an empty XML document to receive the server's response.
serverResponse = new XML();

// Send myDoc to the server, and place the response in serverResponse.
myDoc.sendAndLoad("http://www.domain.com/cgi-bin/readData.cgi", serverResponse);

// Add an onLoad() handler to serverResponse that displays the response
// from the server in the text field output.
serverResponse.onLoad = function () {
 output = serverResponse.toString();
}

See Also

XML.load(), XML.loaded, XML.onData(), XML.onLoad(), XML.send(), XML.status

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.status Property Flash 5

indicates whether parsing XML source into an
object hierarchy was successful

read-
only

xmlDoc.status

Description

The status property returns a numeric status code indicating whether any errors were encountered when

parsing XML source code. The specified xmlDoc must be the top-level node in an XML object hierarchy (i.e.,

an instance of the XML class, not the XMLnode class).

Parsing occurs when source XML is:

Provided as an argument to the XML() constructor

Passed to the parseXML() method

Loaded into a new XML object via the load() or sendAndLoad() methods

The status codes are shown in Table 18-27. If no errors were encountered in parsing, success is indicated by

a status of 0. Errors are indicated by negative numbers. Parsing terminates once the first error is

encountered, so other errors may surface even after you address previously reported errors.

Table 18-27. XML parsing status codes

Status Description

0 The document parsed without errors (i.e., success).

-2 A CDATA section was not properly terminated.

-3 The XML declaration was not properly terminated.

-4 The DOCTYPE declaration was not properly terminated.

-5 A comment was not properly terminated.

-6 An XML element was malformed.

-7 Not enough memory to parse the XML source.

-8 An attribute value was not properly terminated.

-9 A start tag had no corresponding end tag.

-10 An end tag had no corresponding start tag.

Normally, we use status to determine whether it's safe to proceed with processing an externally loaded XML

file. Check the loaded property to ensure that a load() or sendAndLoad() command has completed before

checking the status. Note that ActionScript's XML parser does not validate documents against DTDs; it only

verifies well-formedness.

Example

myDoc = new XML("<BOOK>Colin Moock</AUTHOR></BOOK>");
trace(myDoc.status); // Displays: "-10" (missing start tag)

See Also

XML.load(), XML.loaded, XML.onLoad(), XML.parseXML(), XML.sendAndLoad()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.toString() Method Flash 5

the source code of the XML node, as a string

theNode.toString()

Returns

A string representing the source code of the XML object hierarchy starting at theNode.

Description

The toString() method converts an XML node object or an XML document object to its analogous XML source code (theNode can

be an XML or XMLnode instance). If theNode is a top-level XML document object, any DOCTYPE and XML declaration tags are

included in the string. If the document's ignoreWhite property is false, whitespace is preserved and the document source code

appears as it did when it was parsed.

Note that the predefined entities <, >, &, ", and ' are not converted to literal characters by toString(

). To obtain the text value of a node with entities converted to literal characters, use nodeValue. For details, see parseXML().

Normally, it's not necessary to invoke toString() explicitly; toString() is automatically invoked any time theNode is used in a string

context.

Example

var myDoc = new XML('<?xml version="1.0"?><!DOCTYPE foo SYSTEM "bar.dtd"><BOOK>
<TITLE>ActionScript for Flash MX: The Definitive Guide</TITLE>'
 + '<AUTHOR SALUTATION="Mr.">Colin Moock </AUTHOR> '
 + '<PUBLISHER>O\'Reilly & Associates, Inc</PUBLISHER> </BOOK>');

trace(myDoc.toString());
// Displays:
<?xml version="1.0"?><!DOCTYPE foo SYSTEM "bar.dtd">
<BOOK> <TITLE>ActionScript for Flash MX:
 The Definitive Guide</TITLE><AUTHOR SALUTATION="Mr.">Colin
Moock </AUTHOR> <PUBLISHER>O'Reilly & Associates, Inc
</PUBLISHER> </BOOK>

See Also

Object.toString(), XML.nodeValue

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XML.xmlDecl Property Flash 5

the document's XML declaration tag read/write

xmlDoc.xmlDecl

Description

The string xmlDecl property represents the XML declaration tag of xmlDoc, if any exists. Otherwise, xmlDecl is

undefined. The specified xmlDoc must be the top-level node in an XML object hierarchy (i.e., an instance of the

XML class, not the XMLnode class).

The XML declaration tag of an XML document is used to identify the version of XML being used in the document. We use
the XML declaration tag to build well-formed XML documents that can be validated externally.

Example

// A well-formed document (but not validated against a DTD)
myXML = new XML('<?xml version="1.0"?><P>this is a short document</P>');
trace(myXML.xmlDecl); // Displays: "<?xml version="1.0"?>"
// Set a new XML declaration
myXML.xmlDecl = '<?xml version="1.0" standalone="no"?>';

See Also

XML.docTypeDecl

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLnode Class

internal superclass of the XML classFlash 5
(undocumented)

Description

The XMLnode class defines the core properties and methods of nodes in an XML object hierarchy. Though XMLnode is internal to
ActionScript, it can be used by programmers to add to the default functionality of XML objects.

Technically, every XML object hierarchy includes two kinds of object nodes:

One XML node, which serves as the main container for the hierarchy

An arbitrary number of XMLnode nodes, which are the children of the main container node

The main container node is an instance of the XML class. For example, if we create myDoc as follows:

myDoc = new XML();

then myDoc is an instance of the XML class. The XML class inherits from the XMLnode class, so main container nodes have all the

properties and methods defined by XMLnode plus those defined by XML. In contrast, the children of myDoc will actually be instances of

the XMLnode class, not the XML class.

So, if we create myParagraph as follows:

myParagraph = myDoc.createElement("P");

then myParagraph is an instance of the XMLnode class. Most of the time, the internal distinction between node classes does not

affect our use of XML objects. However, if we wish to add an inherited property or method to all XML objects, then we must use the
XMLnode class's prototype, not the XML class's prototype (see the following Example). Any methods or properties attached to

XMLnode.prototype are inherited by all XML nodes in a movie.

For reference, the properties, methods, and event handlers defined by XMLnode and XML are listed in Table 18-28. Note that while all
listed items are accessible through instances of the XML class, items defined by XML are not available through instances of XMLnode. For
example, the load() method can be invoked on an instance of the XML class, but not on an instance of the XMLnode class. For a full
discussion of each item, see the appropriate XML class entry.

Table 18-28. XMLnode and XML properties, methods, and event handlers

XMLnode and XML XML only

appendChild() contentType

attributes createElement()

childNodes createTextNode()

cloneNode() docTypeDecl

firstChild getBytesTotal()

hasChildNodes() getBytesLoaded()

insertBefore() ignoreWhite

lastChild load()

nextSibling loaded

nodeName onData()

nodeType onLoad()

nodeValue parseXML()

parentNode send()

previousSibling sendAndLoad()

removeNode() status

toString() xmlDecl

Example

The following code adds a custom secondChild() method to XMLnode.prototype (the secondChild() method is subsequently

available from any XML node in our movie):

XMLnode.prototype.secondChild = function () {
 return this.childNodes[1];
};

myDoc = new XML("<PRODUCT>Cell Phone</PRODUCT><PRODUCT>Game Console</PRODUCT>");

trace(myDoc.secondChild()); // Displays: "<PRODUCT>Game Console</PRODUCT>"

It's also perfectly legitimate to augment the XML class via XML.prototype, but such additions apply only to main container nodes

(direct instances of the XML class).

See Also

The XML class; "Superclasses and Subclasses," in Chapter 12

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLSocket Class Flash 5

support for a persistent client/server TCP/IP connection

Constructor

new XMLSocket()

Methods

close()

Terminate an open connection to a server application.
connect()

Attempt to establish a new connection to a server application.
send()

Send an XML object hierarchy to a server application as a string.

Event handlers

onClose()

Executes when the server terminates the connection.
onConnect()

Executes when a connection attempt completes.
onData()

Executes when data is received but has not yet been parsed as XML.
onXML()

Executes when data has been received and parsed into an XML object hierarchy.

Description

The majority of connections between Flash and a server have a very short life span. When Flash requests external data via loadMovie(),
LoadVars, or XML, a temporary communication channel is established. Data is sent over that channel, and then the channel is
terminated. This kind of short-term communication has many useful applications, but it is also limited in two important ways:

Once the connection closes, the server has no way of contacting Flash. Flash must always initiate communication with the server.

Each time Flash obtains information from the server, a new connection must be opened. The time and processor load involved in
opening connections repeatedly prevents Flash from engaging in anything near real-time transactions with a server.

As of Flash 5, we can overcome these limitations with the XMLSocket class, which allows us to open a persistent communication link
between a server application and Flash. We use XMLSocket to develop systems that require frequent server updates, such as a chat room
or a networked multiplayer game.

In order to connect to a remote application using XMLSocket, we must first create and store an XMLSocket object, like this:

mySocket = new XMLSocket();

Next, we invoke the connect() method, which asks Flash to establish a communication link with the remote application. For example:

mySocket.connect("http://www.myserver.com", 8000);

Once a connection is established, the XMLSocket object acts as a transmitter/receiver. We send XML-formatted data to the remote
application by invoking the socket's send() method, and we know that we've received XML-formatted data when the socket's onXML()
event is triggered.

A server application used with an XMLSocket object must:

Serve TCP/IP socket connections on a specific port greater than or equal to 1024

Transmit XML-formatted data in segments delimited by a zero byte (i.e., the ASCII null character)

Typically, server applications are created by server-side programmers, not Flash programmers. Some of the available Flash-compatible
socket servers are listed in Table 18-29.

Table 18-29. Flash-compatible socket servers

Name Description License Location

moockComm
A light-weight reference implementation, written in
Java

Free http://www.moock.org/chat/moockComm.zip

aquaServer
A light-weight reference implementation, written in
Java

Free http://www.figleaf.com/development/flash5/aquaserver.zip

Unity A full-featured rooms-based server written in Java Pay http://www.moock.org/unity

Fortress A mature, heavy-duty socket server Pay http://www.xadra.com/products/main.html

ElectroServer A full-featured, real-world tested socket server Pay http://www.electrotank.com/ElectroServer

An XMLSocket connection stays open until one of the following occurs:

The close() method of the XMLSocket object is called.

No more references to the XMLSocket object exist.

The server terminates the connection (this triggers an onClose() event).

The movie is unloaded or the Flash Player exits.

The XMLSocket class also provides four event handlers—onClose(), onConnect(), onData(), and onXML()—that allow us to monitor
the status of an open connection.

If you fail to define callback handlers for the onClose and onConnect properties, you won't be able

to perform any error checking or provide any feedback about a connection attempt. If you fail to define a
callback handler for your onXML property, you won't be notified when the socket receives data from a

server-side application, nor will you be able to retrieve such data.

For extensive information on XMLSocket development, see:

http://www.moock.org/unity
http://hotwired.lycos.com/webmonkey/multimedia/shockwave_flash/tutorials/tutorial9.html

Note that as of Flash 6, real-time communication can also be implemented with Macromedia Flash Communication Server MX (Comm
Server). Comm Server does not use XML; rather, it uses the custom RMTP protocol for seamless remote execution of ActionScript
code. Furthermore, Comm Server supports video and audio streaming. For more information, see:

http://www.macromedia.com/software/flashcom/

Example

Example 18-10 defines an XMLSocket subclass, SocketController, which wraps the use of the XMLSocket class into a series of
convenient methods and event handlers. The class is saved in the file SocketController.as and is available at the online Code Depot.
Example 18-11 shows how to use SocketController to create a very simple chat application.

Example 18-10. The SocketController class

/*
 * SocketController Class. Extends XMLSocket.
 * Version: 1.0.0
 * Desc: Provides services for communicating with a socket server.
 *
 * Methods
 * doConnect() -connect to server
 * setServer() -set server host/port
 * killConnect() -disconnect from server
 * send() -send XML to the server
 *
 * Event Handlers
 * onConnectFailure() -when connect attempt fails
 * onConnectSuccess() -when connect attempt succeeds
 * onServerKillConnect() -when server kills connection
 * onClientKillConnect() -when Flash kills connection
 * onXML() -when new XML arrives
 */

// Set superclass to XMLSocket.
SocketController.prototype = new XMLSocket();

// Class constructor
function SocketController (host, port) {
 // Instance properties
 this.host = null;
 this.port = 0;

 // Initialization: Assign provided values to host and port properties.
 if (arguments.length > 1) {
 this.setServer(host, port);
 }
}

// Instance Methods
/*
 * Attempt to connect to the server.
 */
SocketController.prototype.doConnect = function () {
 // If there's no valid server defined, then fail
 if (this.host = = null || this.port < 1024) {
 trace("Connection attempt aborted: invalid host or port.");

 this.onConnectFailure();
 return false;
 } else {
 // Otherwise, attempt to connect (connect returns true if the
 // initial stage of connection succeeds).
 var connectSuccess = this.connect(this.host, this.port);
 }

 // If the initial connection stage succeeds...
 if (connectSuccess) {
 // ...wait for the onConnect() event to fire.
 trace("Initial connection succeeded. Awaiting server response...");
 } else {
 // ...otherwise, connect() returned false, so we didn't
 // establish a connection.
 trace("Initial connection failed");
 // Invoke the user-defined callback for connect failure.
 this.onConnectFailure();
 }
};

/*
 * Set the host and port of the server.
 */
SocketController.prototype.setServer = function (host, port) {
 // Error handling. Host must be a string,
 // and port must be a number over 1023.
 if (typeof host != "string"
 || typeof port != "number"
 || (typeof port = = "number" && port < 1024)) {
 trace("Server assignment failed: invalid host or port.");
 // Reset host and port.
 this.host = null;
 this.port = 0;
 return false;
 }

 // Host and port are valid, so assign them.
 trace("Server set to: " + host + " " + port);
 this.host = host;
 this.port = port;
};

/*
 * Callback to respond to the completion of a connection attempt.
 */
SocketController.prototype.onConnect = function (success) {
 // If onConnect()'s success argument is true,
 // connection has been established.
 if (success) {
 trace("Connection to: " + this.host + " " + this.port + " established");
 // Invoke the user-defined callback for connection success.
 this.onConnectSuccess();
 } else {
 // success was false, so the connection was not established.
 trace("Connection to: " + this.host + " "

 + this.port + " could not be established");
 // Invoke the user-defined callback for connection failure.
 this.onConnectFailure();
 }
};

/*
 * Callback invoked when server kills the connection.
 */
SocketController.prototype.onClose = function () {
 trace("The server has terminated the connection.");
 // Invoke the user-defined callback for server disconnect
 this.onServerKillConnect();
};

/*
 * Closes the connection to the server manually.
 */
SocketController.prototype.killConnect = function () {
 trace("Closing current connection.");
 this.close();
 // Invoke the user-defined callback for client disconnect
 this.onClientKillConnect();
};

Example 18-11 demonstrates the use of SocketController with a simple chat application.

Example 18-11. A simple SocketController chat app

// A Simple Chat App
// Load SocketController class
#include "SocketController.as"
// Start the show
main();

// The chat application
function main () {
 // Store a portable reference to the current timeline
 _global.chatMain = this;

 // Create sending text field
 chatMain.createTextField("send_txt", 1, 100, 100, 300, 20);
 chatMain.send_txt.border = true;
 chatMain.send_txt.type = "input";

 // Create output text field
 chatMain.createTextField("output_txt", 2, 100, 130, 300, 200);
 chatMain.output_txt.border = true;
 chatMain.output_txt.type = "dynamic";

 // Create the SocketController instance and connect to the server
 chatController = new SocketController();
 chatController.setServer("moock.org", 8050);
 chatController.doConnect();

 // Invoked when a message is received
 chatController.onXML = function (src) {

 trace("Received XML: " + src);
 var message = src.firstChild.firstChild.nodeValue;
 chatMain.output_txt.text += message + "\n";
 };

 // Invoked when a connection attempt fails
 chatController.onConnectFailure = function () {
 chatMain.output_txt.text += "Connection attempt failed." + "\n";
 };

 // Invoked when a connection attempt succeeds
 chatController.onConnectSuccess = function () {
 chatMain.output_txt.text += "Connection established." + "\n";
 };

 // Invoked when the server drops the connection
 chatController.onServerKillConnect = function () {
 chatMain.output_txt.text += "Connection terminated by server." + "\n";
 };

 // Invoked when Flash closes the connection
 chatController.onClientKillConnect = function () {
 chatMain.output_txt.text += "Connection closed." + "\n";
 };

 // Add a listener to capture Enter key presses
 chatController.onKeyDown = function () {
 // If the Enter key is pressed while the cursor is in the send field...
 if (Key.getCode() = = Key.ENTER
 && eval(Selection.getFocus()) = = chatMain.send_txt) {
 // ...send the contents of the send field in a <MESSAGE> tag
 chatController.send("<MESSAGE>" + chatMain.send_txt.text + "</MESSAGE>");

 // Then clear the input field
 chatMain.send_txt.text = "";
 }
 };
 // Register the listener
 Key.addListener(chatController);
}

See Also

loadVariables(), the LoadVars class, the XML class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLSocket.close() Method Flash 5

terminate an open connection to a server application

socket.close()

Description

The close() method severs the communication link between socket and a server application. Once close()

has been executed on socket, subsequent attempts to invoke send() on socket fail. Likewise, the server

application will no longer be able to send data to Flash through socket.

Note that close() has no effect if the socket is already closed or was never connected. Furthermore, close()

does not trigger the onClose() handler of the socket object—onClose() is triggered only by a server-side
connection closure.

See Also

XMLSocket.connect(), XMLSocket.onClose(), XMLSocket.send()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLSocket.connect() Method Flash 5

open a connection to a server application

socket.connect(host, port)

Arguments

host

A string specifying a hostname, such as "www.myserver.com", or a standard IP address (four dot-separated, 8-bit,

decimal integers, such as 111.222.3.123). If null or an empty string is specified, it defaults to the server address from

which the movie was served.
port

An integer specifying a TCP port number greater than or equal to 1024. There is no standard port number reserved (nor is
there a widespread convention) for XMLSocket communications.

Returns

A Boolean indicating the initial success (true) or failure (false) of the connection attempt.

Description

The connect() method attempts to establish a connection from Flash to a server application running on host at port.

If connect() returns true, the initial phase of the connection completed successfully and the socket's onConnect() handler will

be invoked at a later time. From the onConnect() handler, we can evaluate whether the connection was fully established. Note that
connection attempts can take varying amounts of time, particularly when a connection attempt fails. You should indicate to the user
that a connection attempt is in progress when invoking connect().

If connect() returns false, the initial connection phase did not complete successfully. In such a case, socket's onConnect()

handler will not be invoked.

It is important to check both the return value of the connect() method and, if connect() returns true, the value of the success
parameter sent to the onConnect() handler.

Usage

For security reasons, connect() is not permitted to connect to arbitrary Internet hosts. It can connect only to hosts in the domain from
which the movie was downloaded. The cross-domain access rules for connect() are described under System.security.allowDomain().
The connect() method returns false for connection attempts that violate security restrictions. Note that security restrictions do

not apply to the Standalone Player.

Example

// Create a new socket object
mySocket = new XMLSocket();

// Assign a callback handler function to onConnect
mySocket.onConnect = handleConnect;
// Attempt to connect to an application running on myserver.com at port 10000
if (mySocket.connect("myserver.com", 10000) = = false) {
 // Jump to a frame showing some sort of error message
 this.gotoAndStop("failureDialog");
} else {
 // Jump to a frame where we'll wait until onConnect() is triggered
 this.gotoAndPlay("connecting");
}

See Also

XMLSocket.close(), XMLSocket.onConnect()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLSocket.onClose() Event Handler Flash 5

invoked when the server closes the connection

socket.onClose()

Description

The onClose() event handler is executed whenever an open connection to socket is closed by the server (not by

Flash). Server-instigated closures usually result from a server application shutting down or deliberately "kicking off" the
client.

Example

To respond to an onClose() event, we must assign our own function (i.e., our callback handler) to the onClose
property of an XMLSocket object. We use the callback handler to detect an external socket disconnection. The following
code assigns the function handleClose() to mySocket's onClose property. The handleClose() function simply

alerts the user that a closure has occurred by updating the value of the text field status_txt:

mySocket = new XMLSocket();
mySocket.onClose = handleClose;

function handleClose () {
 status_txt.text += ("\nThe server has terminated the connection.\n");
}

See Also

XMLSocket.close(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLSocket.onConnect() Event Handler Flash 5

invoked when a connection attempt is completed,
successfully or otherwise

socket.onConnect(success)

Arguments

success

A Boolean indicating whether the connection attempt succeeded (true) or failed (false).

Description

The onConnect() event handler is executed when a previously invoked connect() operation finishes. The
execution of onConnect() does not necessarily mean a connection has been successfully established—it is
executed whenever the connection attempt finishes, whether or not the attempt was successful. The callback
handler specified by onConnect() is passed a success argument that indicates if the attempt succeeded (i.e.,

a connection has been established). If so, success is set to true. If the attempt failed (i.e., a connection

timed out, was refused, or otherwise could not be established), the success argument is set to false. Note

that ActionScript does not distinguish among network timeout, unknown host, refusal, or other common
connection errors. Therefore, the callback handler may not be executed for up to a minute after the connect()
command is issued, depending on the settings of the server involved in a connection attempt, the connection
speed, network traffic, and so on.

Example

We use onConnect() to detect the success or failure of a connection attempt. In practice, we might use it to set a
flag indicating that transmissions should begin if the connection was successful. We may also use onConnect()
to execute fallback code when the connection fails, such as alerting the user to the problem's nature.

To respond to an onConnect() event, we must assign a custom function (i.e., our callback handler) to the
onConnect property of an XMLSocket object. The following code assigns the function handleConnect() to

mySocket's onConnect property. By updating the value of the text field status_txt,

handleConnect() alerts the user that a connection has either succeeded or failed:

mySocket = new XMLSocket();
mySocket.onConnect = handleConnect;

function handleConnect (succeeded) {
 if (succeeded) {
 status_txt.text += ("Successfully connected.\n");
 } else {
 status_txt.text += ("Connection attempt failed.\n");
 }
}

For code showing the onConnect() handler used in a more complete system, see Example 18-11 under the

XMLSocket class.

See Also

XMLSocket.connect(), XMLSocket.onClose(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLSocket.onData() Event Handler Flash 5

executed when external data is received but has not yet
been parsed as XML

socket.onData(src)

Arguments

src

A string containing loaded data, which is usually XML source code.

Description

The onData() event handler executes whenever a zero byte (ASCII null character) is transmitted to Flash over
socket. By default, onData() simply constructs a new XML object hierarchy from src and passes that

hierarchy to socket.onXML(). However, the onData() handler can be assigned a custom callback function to
intercept src before ActionScript has a chance to parse it as XML. Under certain circumstances (such as

realtime video games), manipulating the raw data in src manually may offer improved performance over

ActionScript's built-in XML parsing.

Example

The following code shows how to assign a custom callback function to onData(). The callback function simply
displays any data received by mySocket and prevents ActionScript from parsing the data as XML:

mySocket = new XMLSocket();

mySocket.onData = function (src) {
 trace("Received data: \n" + src);
};

See Also

XMLSocket.onXML()

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLSocket.onXML() Event Handler Flash 5

invoked when data is received by an XMLSocket object and
has been parsed as XML

socket.onXML(xmlObject)

Arguments

xmlObject

The XML object that will house the incoming XML-formatted data.

Description

The onXML() event handler executes when Flash receives, and has parsed, an incoming transmission. Whenever
socket receives a complete block of data (i.e., a string followed by a null character) from the server, the

callback function specified by socket.onXML is automatically invoked. A server can send data as often as it

pleases, but the callback function is executed only when the trailing null character (i.e., a zero byte) is received

by socket. In Java, a zero byte is specified as '\0'.

When the zero byte is received, it causes ActionScript to parse any data that has been received by socket since

the last zero byte was sent (or since the initial connection, if this is the first zero byte). The parsed data is
converted to an XML object hierarchy, which is passed as the xmlObject argument to the callback function.

If you are a Flash programmer who is responsible for only the client side of a client/server application, simply
note that the callback function specified by onXML receives any new XML data when it arrives. The new XML

data is accessible through xmlObject.

To access the raw data sent over a socket, override the default behavior of the socket's onData() handler (see
XMLSocket.onData()).

Example

To respond to an onXML() event, we must assign our own callback function to the onXML property of an

XMLSocket object. The following code assigns the function handleIncoming() to mySocket's onXML
property. The handleIncoming() function accesses one of the nodes of the XML object hierarchy stored in
messageObj and adds its value to the text field messages_txt:

mySocket = new XMLSocket();
mySocket.onXML = handleIncoming;

function handleIncoming (messageObj) {
 trace("Got some new data!");
 // messageObj will contain the fragment: <MESSAGE>text</MESSAGE>
 var message = messageObj.firstChild.firstChild;
 messages_txt.text += (message.nodeValue + "\n");
}

For code showing the onXML() handler used in a more complete system, see Example 18-11 under the
XMLSocket class.

See Also

XMLSocket.send(), XMLSocket.onData(); Chapter 10

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Chapter 18. ActionScript Language Reference

XMLSocket.send() Method Flash 5

transmit XML-formatted data to a server application

socket.send(xmlObject)

Arguments

xmlObject

An XML object to be converted into a string and sent to the server application or any string containing
XML-formatted text.

Description

The send() method transmits a message from Flash to a server application via socket. The message to send

should be an instance of the XML class but may also be an XML-formatted string. When send() is invoked,
xmlObject is converted to a string and sent to the remote application, followed by a zero byte (ASCII null).

The remote application is not obliged to respond; however, any response sent will trigger socket's onXML()

event handler.

Example

The following code sends a very simple XML-formatted message to a remote application over the socket
mySocket, which is a valid XMLSocket object for which a connection has already been established (note that

message is an XML object, not an XMLSocket object; see Example 18-11 under the XMLSocket class entry

for a full-fledged XMLSocket sample application):

var message = new XML('<MESSAGE>testing...testing...</MESSAGE>');
mySocket.send(message);

It is also legal to send a string containing XML-formatted text without wrapping it in an XML object. For simple
XML messages, this is often sufficient:

mySocket.send('<MESSAGE>testing...testing...</MESSAGE>');

See Also

XMLSocket.onXML(), XML.send(); the XMLSocket class

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix A. Resources

The following are resources of interest. See also the URLs cited in Table P-3 in the Preface.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix A. Resources

A.1 ActionScript Books

Among the hundreds of Flash and ActionScript books on the market, the following books are, for me, the few
that stand above the crowd:

Object-Oriented Programming with ActionScript, Branden Hall and Samuel Wan. New Riders
Publishing, 2002.
Flash MX Application Design and Development, Jessica Speigel. New Riders Publishing, 2002.
Robert Penner's Programming Macromedia Flash MX, Robert Penner. Osborne McGraw-Hill, 2002.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix A. Resources

A.2 ActionScript and Programming Web Sites

ActionScript for Flash MX: The Definitive Guide book site

http://www.moock.org/asdg

The download center for all the samples in this book (the Code Depot), plus dozens of other common
ActionScript examples. Also provides book updates, technotes, sample chapters, errata, and news.
Maintained by the author.

moockmarks

http://www.moock.org/moockmarks

The author's bookmarks. Lists hundreds of sites with technical information and design inspiration for
Flash and web design in general.

Macromedia's Flash Support Center

http://www.macromedia.com/support/flash

A thriving collection of information for ActionScript and Flash. Contains the entire text of Macromedia's
ActionScript Dictionary and a regularly updated database of technotes for Flash developers. Start your
search for answers here. A trial version of the Flash authoring tool can be downloaded from:
http://www.macromedia.com/software/flash/trial.

Macromedia Exchange for Flash

http://www.macromedia.com/exchange/flash

A collection of professional-quality components, .fla project files, and ActionScript samples. Content is
hosted and endorsed by Macromedia but codeveloped by the Flash community. Access to samples
requires use of an installation utility called the Extension Manager, which is also available at the
Exchange.

Flash Kit

http://www.flashkit.com

Internet.com's Flash Kit is the largest third-party source of Flash help. The site has everything under the
Flash sun: sample files, message boards, tutorials, news, feature articles, interviews, chat, gallery, and
much more. Unfortunately, the incredible volume sometimes obscures worthwhile content. Of special
interest to Flash programmers are the ActionScript sample .fla files available for download at
http://www.flashkit.com/movies/Scripting.

Ultrashock

http://www.ultrashock.com

A general portal for Flash developers, Ultrashock maintains a lively collection of ActionScript-centric
.fla files and tutorials, as well as a well-trafficked developer forum.

We're Here

http://www.were-here.com

A large, active group of web-based message boards for discussing Flash and ActionScript. Also features
articles, example .fla files, tutorials, and Flash news.

Flashcoders mailing list

http://chattyfig.figleaf.com

Administered by Branden Hall, this active Flash developer's email list focuses specifically on
intermediate to advanced ActionScript. It is a great place to learn practical techniques and have questions
answered by peers, but it is not for general Flash questions or site checks. Archives are searchable and
posted on a monthly basis. Check the archives for answers before posting questions.

Brandon Williams's and Ethan Kennedy's Flash Experiments

http://www20.brinkster.com/ahab/flash5

A large collection of advanced math-based ActionScript demos. Dozens of sample .fla files are available
for study, covering 3D, fractals, and many visual physics effects. Includes in-depth articles on math-
based programming in Flash.

Flash MX 3D component system

http://www.benchun.net/mx3d

A series of 3D engine components for Flash Player 6. Written by Ben Chun, MIT alumnus and
Macromedia engineer.

Flash API

http://www.yestoall.com/flashAPI

An assortment of libraries for Flash development. Includes visual tools (such as skewing and spinning),
object enhancements (such as sound pan control), and utilities (such as timers, loaders, easing equations,
and distance calculators).

[PROTO]type

http://www.layer51.com/proto

A community-based website for posting extensions to ActionScript's built-in classes (in other words,
new methods and properties for things such as String, Array, and XML). There are hundreds of
submissions, many of which are very useful.

The comp.graphics.algorithms FAQ

http://www.faqs.org/faqs/graphics/algorithms-faq

Describes mathematical solutions to a wide variety of graphics programming problems. Ranges from
simpler topics (such as, "How do I find the distance from a point to a line?") to advanced 3D issues,
normally outside the realm of ActionScript programming.

Archived Macromedia Flash Players

http://www.macromedia.com/support/flash/ts/documents/oldplayers.htm

Download old versions of the Macromedia Flash Player for testing.
General game-programming resources

The following sites offer useful information for designing, planning, and programming games (these are
non-ActionScript-specific sites):

http://www.gamedev.net
http://www.flipcode.com
http://www.javascript-games.org

Flash and Active Server Pages (ASP)

The following articles from ASP 101 provide a good introduction to integrating Flash with ASP to create
a simple Flash form:

http://www.asp101.com/articles/flash
http://www.asp101.com/articles/flash2

Macromedia Flash Communication Server MX (Comm Server)

The Comm Server API (e.g., Remote SharedObject, Camera, Microphone, NetConnection, and
NetStream) is used to create multiuser web applications. Information about Comm Server's real-time
data, video, and audio streaming for Flash can be found at:

http://www.macromedia.com/software/flashcom
http://www.flashcom.info

Macromedia Flash Remoting MX (Flash Remoting)

Flash Remoting allows you to use Flash as a front end to remote web applications and web services,
including those built with ColdFusion MX. For more information on Flash Remoting, see:

http://www.macromedia.com/software/flash/flashremoting

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix A. Resources

A.3 ECMA-262 Resources

Because ActionScript and JavaScript are both based on the ECMA-262 scripting language specification, they
share a common core syntax. Hence, although the following resources do not focus specifically on ActionScript,
they are worthwhile reading for ActionScript programmers:

ECMA-262 Language Specification

http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

The official ECMA-262 language specification from ECMA, the body that maintains the language upon
which ActionScript is based. Netscape's JavaScript and Microsoft's Jscript are two other implementations
of ECMA-262. This is a highly technical document used to create things such as a conforming ECMA
interpreter.

Netscape's Core JavaScript Guide

http://developer.netscape.com/docs/manuals/js/core/jsguide/contents.htm

Netscape provides very readable documentation on JavaScript in this detailed explanation of JavaScript's
core language features.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix A. Resources

A.4 Object-Oriented Programming

Netscape's Details of the Object Model

http://developer.netscape.com/docs/manuals/js/core/jsguide/obj2.htm

An article explaining the prototype-based implementation of OOP, inheritance, and classes in JavaScript.
Concepts are illustrated with numerous code samples. Netscape makes a special effort to explain
JavaScript's OOP in terms that C and Java coders will understand.

Sun's Object-Oriented Programming Concepts (from The Java Tutorial)

http://java.sun.com/docs/books/tutorial/java/concepts

Although intended as a primer for aspiring Java programmers, this site covers the basics of OOP in
generalized terms and makes good background reading for OOP in any language.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix A. Resources

A.5 SWF File Format

Whereas the Flash Player is not open sourced, the .swf file format itself is publicly available (which is one reason
it has garnered a lot of third-party support). For further information, here are some resources:

Macromedia Flash file format (SWF)

http://www.macromedia.com/software/flash/open/licensing/fileformat

Here you can obtain the SWF SDK from Macromedia, "a set of tools for developers to write Macromedia
Flash (SWF) files, documentation of the Macromedia Flash file format (SWF), and code to write SWF
files."

OpenSWF

http://www.openswf.org

A general information center for developers of SWF implementations. Includes tutorials, message
boards, resources, and source code.

Ming

http://ming.sourceforge.net

An open source C library for generating SWF format movies, plus a set of wrappers for using the library
in C++ and popular scripting languages such as PHP, Python, and Ruby. See http://www.opensource.org
for information on open source software.

Perl :: Flash

http://www.2shortplanks.com/flash

A Perl library to allow the "dynamic, programmable generation of Flash/SWF movies." Created by
Simon Wistow.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix A. Resources

A.6 Character Encoding and Unicode

Unicode Character Ranges and the Unicode Fonts that Support Them

http://www.alanwood.net/unicode/fontsbyrange.html

An excellent place to find a font capable of displaying a particular range of Unicode characters.
Unicode and Multilingual Support in HTML, Fonts, Web Browsers and Other Applications

http://www.alanwood.net/unicode

Great information about using Unicode on the Web.
A Brief Introduction to Code Pages and Unicode

http://www-106.ibm.com/developerworks/library/codepages.html

An informative but digestible overview of the evolution of character encoding.
A tutorial on character code issues

http://www.cs.tut.fi/~jkorpela/chars.html

A highly informative collection of articles on the basics of character representation in computers. By
Jukka Korpela.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix B. Latin 1 Character Repertoire and Keycodes

Table B-1 lists the characters in the Latin 1 character repertoire, with Unicode equivalents in the range of
U+0000 to U+00FF (that is, C0 Controls, Basic Latin, C1 Controls, and Latin 1 Supplemental). The table's

first column (labeled Dec), lists each character's code point in decimal (the standard ASCII or Latin 1 value), the
second column provides the Unicode escape sequence for the character, and the third column describes or
shows the character itself. See Chapter 4, for more information on character encoding in Flash. Table B-2 and
Table B-3 list the keycodes used with the Key object. Although there is some overlap, keycodes represent
physical keys on the keyboard and have no direct relation to the Latin 1 characters listed in Table B-1. That said,
you'll notice that the keycodes for letters and numbers, listed in Table B-3, are identical to the Latin 1 code
points (and ASCII values) for the letters A-Z and the numbers 0-9. See Key.getCode() and the Key object in the
ActionScript Language Reference for more information on keycodes.

For supplementary reading on the topic of character encoding, see the following resources:

A tutorial on character code issues

http://www.cs.tut.fi/~jkorpela/chars.html

A highly informative series of articles on character representation in computers. By Jukka Korpela.
Unicode FAQ

http://www.unicode.org/unicode/faq

A good question-and-answer format overview of Unicode, an international standard for character
encoding.

To find the code point for a Unicode character not included in Latin 1, see:
Vendor Mappings

http://www.unicode.org/Public/MAPPINGS/VENDORS

Lists vendor-specific code pages with corresponding Unicode character code points. If you know the
code page used for text entry on your computer, this will help you find the characters you can type.

Where is my character?

http://www.unicode.org/unicode/standard/where

A helpful document that suggests ways to track down a character in the Unicode character set.
Unicode Code Charts

http://www.unicode.org/charts

A collection of .pdf files that describe and visually depict the characters in Unicode.
Unihan Database

http://www.unicode.org/charts/unihan.html

The section of the Unicode Character Database that includes the code points for many Asian characters,
including those in the Shift-JIS character set, Flash 5's supported set of Japanese characters.

Table B-1. ISO 8859-1 (Latin 1) characters and Unicode mappings

Dec Unicode Description Dec Unicode Description

0 \u0000 [null] 19 \u0013 [device control three]

1 \u0001 [start of heading] 20 \u0014 [device control four]

2 \u0002 [start of text] 21 \u0015 [negative acknowledge]

3 \u0003 [end of text] 22 \u0016 [synchronous idle]

4 \u0004 [end of transmission] 23 \u0017 [end of transmission block]

5 \u0005 [enquiry] 24 \u0018 [cancel]

6 \u0006 [acknowledge] 25 \u0019 [end of medium]

7 \u0007 [bell] 26 \u001a [substitute]

8 \u0008 [backspace] 27 \u001b [escape]

9 \u0009 [horizontal tabulation] 28 \u001c [file separator]

10 \u000a [line feed] 29 \u001d [group separator]

11 \u000b [vertical tabulation] 30 \u001e [record separator]

12 \u000c [form feed] 31 \u001f [unit separator]

13 \u000d [carriage feed] 32 \u0020 [space]

14 \u000e [shift out] 33 \u0021 !

15 \u000f [shift in] 34 \u0022 " (straight quotes)

16 \u0010 [data link escape] 35 \u0023 #

17 \u0011 [device control one] 36 \u0024 $

18 \u0012 [device control two] 37 \u0025 %

38 \u0026 & 74 \u004a J

39 \u0027 ' (straight apostrophe) 75 \u004b K

40 \u0028 (76 \u004c L

41 \u0029) 77 \u004d M

42 \u002a * 78 \u004e N

43 \u002b + 79 \u004f O

44 \u002c , (comma) 80 \u0050 P

45 \u002d - (minus) 81 \u0051 Q

46 \u002e . (period) 82 \u0052 R

47 \u002f / 83 \u0053 S

48 \u0030 0 84 \u0054 T

49 \u0031 1 85 \u0055 U

50 \u0032 2 86 \u0056 V

51 \u0033 3 87 \u0057 W

52 \u0034 4 88 \u0058 X

53 \u0035 5 89 \u0059 Y

54 \u0036 6 90 \u005a Z

55 \u0037 7 91 \u005b [

56 \u0038 8 92 \u005c \

57 \u0039 9 93 \u005d]

58 \u003a : 94 \u005e ^

59 \u003b ; 95 \u005f _ (underscore)

60 \u003c < 96 \u0060 ` (accent grave)

61 \u003d = 97 \u0061 a

62 \u003e > 98 \u0062 b

63 \u003f ? 99 \u0063 c

64 \u0040 @ 100 \u0064 d

65 \u0041 A 101 \u0065 e

66 \u0042 B 102 \u0066 f

67 \u0043 C 103 \u0067 g

68 \u0044 D 104 \u0068 h

69 \u0045 E 105 \u0069 i

70 \u0046 F 106 \u006a j

71 \u0047 G 107 \u006b k

72 \u0048 H 108 \u006c l

73 \u0049 I 109 \u006d m

110 \u006e n 146 \u0092 control chr

111 \u006f o 147 \u0093 control chr

112 \u0070 p 148 \u0094 control chr

113 \u0071 q 149 \u0095 control chr

114 \u0072 r 150 \u0096 control chr

115 \u0073 s 151 \u0097 control chr

116 \u0074 t 152 \u0098 control chr

117 \u0075 u 153 \u0099 control chr

118 \u0076 v 154 \u009a control chr

119 \u0077 w 155 \u009b control chr

120 \u0078 x 156 \u009c control chr

121 \u0079 y 157 \u009d control chr

122 \u007a z 158 \u009e control chr

123 \u007b { 159 \u009f control chr

124 \u007c | 160 \u00a0 [no break space]

125 \u007d } 161 \u00a1 ?

126 \u007e ~ 162 \u00a2 ?

127 \u007f [delete] 163 \u00a3 ?

128 \u0080 control chr 164 \u00a4 ¤

129 \u0081 control chr 165 \u00a5 ?

130 \u0082 control chr 166 \u00a6

131 \u0083 control chr 167 \u00a7 §

132 \u0084 control chr 168 \u00a8 ?

133 \u0085 control chr 169 \u00a9 ©

134 \u0086 control chr 170 \u00aa ?

135 \u0087 control chr 171 \u00ab «

136 \u0088 control chr 172 \u00ac ¬

137 \u0089 control chr 173 \u00ad -

138 \u008a control chr 174 \u00ae ®

139 \u008b control chr 175 \u00af ?

140 \u008c control chr 176 \u00b0 °

141 \u008d control chr 177 \u00b1 ±

142 \u008e control chr 178 \u00b2 2

143 \u008f control chr 179 \u00b3 3

144 \u0090 control chr 180 \u00b4 ?

145 \u0091 control chr 181 \u00b5 m

182 \u00b6 ¶ 219 \u00db u

183 \u00b7 220 \u00dc U

184 \u00b8 ? 221 \u00dd Y

185 \u00b9 1 222 \u00de

186 \u00ba ? 223 \u00df ?

187 \u00bb » 224 \u00e0 a

188 \u00bc 1/4 225 \u00e1 a

189 \u00bd 1/2 226 \u00e2 a

190 \u00be 3/4 227 \u00e3 a

191 \u00bf ? 228 \u00e4 a

192 \u00c0 A 229 \u00e5 a

193 \u00c1 A 230 \u00e6 ?

194 \u00c2 ? 231 \u00e7 c

195 \u00c3 A 232 \u00e8 e

196 \u00c4 A 233 \u00e9 e

197 \u00c5 A 234 \u00ea e

198 \u00c6 ? 235 \u00eb e

199 \u00c7 C 236 \u00ec i

200 \u00c8 E 237 \u00ed i

201 \u00c9 E 238 \u00ee i

202 \u00ca E 239 \u00ef i

203 \u00cb E 240 \u00f0

204 \u00cc I 241 \u00f1 n

205 \u00cd I 242 \u00f2 o

206 \u00ce I 243 \u00f3 o

207 \u00cf I 244 \u00f4 o

208 \u00d0 245 \u00f5 o

209 \u00d1 N 246 \u00f6 o

210 \u00d2 O 247 \u00f7 ?

211 \u00d3 O 248 \u00f8

212 \u00d4 O 249 \u00f9 u

213 \u00d5 O 250 \u00fa u

214 \u00d6 O 251 \u00fb U

215 \u00d7 x 252 \u00fc u

216 \u00d8 O 253 \u00fd

217 \u00d9 U 254 \u00fe

218 \u00da U 255 \u00ff y

Table B-2 lists the keycodes for selected special keys on the keyboard. These keycodes are used only with the
Key object. See Table 18-8 (under the Key object in the ActionScript Language Reference) for an alphabetical
listing of the special properties.

Table B-2. Key object special keycodes

Key Keycode Property Key Keycode

Backspace 8 Key.BACKSPACE Num Pad 9 105

Tab 9 Key.TAB Num Pad * 106

Enter 13 Key.ENTER Num Pad + 107

Shift 16 Key.SHIFT Num Pad Enter 13 (not trappable as 108)

Control 17 Key.CONTROL Num Pad - 109

Alt 18 (not trappable) Num Pad . 110

Pause/Break 19 Num Pad / 111

Caps Lock 20 Key.CAPSLOCK F1 112

Escape 27 Key.ESCAPE F2 113

Space 32 Key.SPACE F3 114

Page Up 33 Key.PGUP F4 115

Page Down 34 Key.PGDN F5 116

End 35 Key.END F6 117

Home 36 Key.HOME F7 118

Left arrow 37 Key.LEFT F8 119

Up Arrow 38 Key.UP F9 120

Right Arrow 39 Key.RIGHT F10 121 (not trappable)

Down arrow 40 Key.DOWN F11 122

Print Screen 44 F12 123

Insert 45 Key.INSERT Num Lock 144

Delete 46 Key.DELETEKEY Scroll Lock 145

Num Pad 0 96 ; : 186

Num Pad 1 97 + = 187

Num Pad 2 98 - _ 189

Num Pad 3 99 / ? 191

Num Pad 4 100 ` ~ 192

Num Pad 5 101 [{ 219

Num Pad 6 102 \ | 220

Num Pad 7 103] } 221

Num Pad 8 104 " ' 222

Table B-3 lists the keycodes for the letter and number keys on a keyboard. These keycodes are used only with
the Key object (see Key.getCode() and Key.isDown() in the ActionScript Language Reference).

Table B-3. Key object letter and number keycodes

Key Keycode Key Keycode Key Keycode

A 65 M 77 Y 89

B 66 N 78 Z 90

C 67 O 79 0 48

D 68 P 80 1 49

E 69 Q 81 2 50

F 70 R 82 3 51

G 71 S 83 4 52

H 72 T 84 5 53

I 73 U 85 6 54

J 74 V 86 7 55

K 75 W 87 8 56

L 76 X 88 9 57

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix C. Backward Compatibility and Player Build
Updates

Flash allows you to publish .swf files in formats that are compatible with previous versions of the Player (via File
 Publish Settings Flash Version). By the time you read this, the majority of users will have at

least version 6 of the Flash Player, but you may prefer to author for Flash Player 5 or 4 instead, such as when
deploying to handheld devices that don't yet support Flash Player 6. Even if you are authoring exclusively for
Flash 6, this appendix will help you avoid using deprecated ActionScript and bring you up to speed on the
preferred methods in Flash 6. Furthermore, it will help you understand or upgrade legacy code that you may
encounter.

See capabilities.version, getVersion(), and $version in the

ActionScript Language Reference for details on detecting the version of the Flash
Player at runtime. See http://www.moock.org/webdesign/flash/detection/moockfpi for
a version detection script that runs in the browser.

When authoring for Flash 4 or 5, use the deprecated techniques (i.e., those that are outdated, but supported for
backward compatibility) listed in Table C-1 (under Section C.3 in this appendix). See also "Using Flash MX
ActionScript with older versions of Flash" under "Understanding the ActionScript Language" in the electronic
help files under Help Using Flash. Deprecated features of ActionScript are listed in the Actions panel
Toolbox under the Deprecated folder.

For statistics on the distribution of various Flash Player versions, see:

http://www.macromedia.com/software/flash/survey/whitepaper

To download archived versions of the Flash Player, visit the following pages:

http://www.macromedia.com/support/flash/downloads.html
http://www.macromedia.com/support/flash/ts/documents/oldplayers.htm

See the Capabilities object in the ActionScript Language Reference for information on authoring Flash content
for devices.

To run scripts in Flash Player 4, you must set the Version of your .swf file to Flash 4
under the Flash tab under File Publish Settings. All code is disabled if you
attempt to run a Flash 5 or later .swf file in Flash Player 4. To run scripts in Flash
Player 5, you must set the Version of your .swf file to Flash 5 under the Flash tab under
File Publish Settings. All code is disabled if you attempt to run a Flash 6 or later
.swf file in Flash Player 5.

 About Safari | Terms of Service | Privacy Policy | Contact Us | Help | Submit a Problem

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

1005 Gravenstein Highway North

Sebastopol, CA 95472

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix C. Backward Compatibility and Player Build Updates

C.1 Best Practices in Flash 6 ActionScript

Very little of Flash 5 ActionScript was formally deprecated in Flash 6. The following formal changes to the
language were introduced in Flash 6:

The eval() function cannot be used on the left side of an assignment operation.

Function scope is defined permanently at declaration time instead of at invocation time. See Section 9.7.

The following list presents new features that are preferred over previous Flash 5 alternatives:

Global variables should be defined on _global, not _root or Object.

Superclass constructors should be executed via the super operator, not a manual reference to the
superclass constructor function.

All imported text should be in Unicode, not Latin 1 or Shift-JIS.

Movie clip and button event handlers should be assigned as object properties, not with the
onClipEvent(event) or on(event) syntax. See the ActionScript Language Reference for specific

exceptions for individual events.

Text field content must be accessed via the TextField.text property, not the text field's variable

name.

JPEG files should be loaded directly using loadMovie(), not wrapped in .swf files.

Often, timeline and onEnterFrame() loops can be replaced with setInterval().

A local SharedObject should be used in favor of a JavaScript cookie.

System.capabilities.version is preferred over getVersion() (though getVersion() must

still be used in movies displayed in Flash Player 5).

The Key and Mouse object events—onKeyDown(), onKeyUp(), onMouseDown(), and onMouseUp(
)—should be used in place of analogous MovieClip events, except when updateAfterEvent() is required.

The LoadVars class supercedes the loadVariables() function.

Stage.scaleMode and Stage.showMenu replace fscommand("allowscale") and

fscommand("showmenu").

For more best practices in Flash 6 ActionScript, see:

http://www.macromedia.com/desdev/mx/flash/whitepapers/actionscript_standards.pdf

As a rule, the new objects, classes, statements, and operators introduced in Flash 6 (as listed in the Preface)
cannot be used when exporting to Flash 5 format. Three exceptions are the switch statement and the strict
equality and inequality operators (= = = and !==), which are all available when exporting from the Flash

MX authoring tool to Flash 5 format. When a movie is set to export as version 5, the Flash MX Output window
reports any incompatibility warnings at export time.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix C. Backward Compatibility and Player Build Updates

C.2 Player Build Updates

The following sections describe changes and fixes introduced by minor versions of the Flash Player.

C.2.1 Updates to Flash Player 6, Build 61

As this book was going to press (November 2002), Macromedia released Build 61 of Flash Player 6 (Flash
Player 6.0.61.0). The following list summarizes the main features of the new build:

Windowless mode

Implemented for Netscape for Windows and Mac OS X, in addition to Internet Explorer for Windows.
See the WMODE attribute in Appendix H.

Improved ActionScript performance

Variable registers are now used to speed up variable access, which generally results in faster
ActionScript execution times. The improved performance is particularly noticeable in FUI components.

Customization of HTTP headers

HTTP headers for POST operations can be customized using the new XML.addRequestHeader() and
LoadVars.addRequestHeader() methods.

Dependent runtime shared libraries

Allows runtime shared libraries to use items from other runtime shared libraries.
Dynamic Accessibility properties (Windows, ActiveX only)

Allows properties of accessible objects (previously settable via the Flash MX Accessibility panel at
authoring time only) to be set at runtime using the new Accessibility.updateProperties() method and the
Accessibility._accProps object (whose properties are silent, forceSimple,

name, description, and shortcut).

Linux support

Support for Mozilla 1.1 and the Standalone Player under RedHat Linux 7.3.
Miscellaneous fixes

Fixes were made, especially to Flash Player 6 for Internet Explorer for Windows.

For many more details, see the release notes at:

http://www.macromedia.com/support/flash/releasenotes/player/rn_6.html

C.2.2 Updates to Flash Player 6, Build 47

The following list summarizes the major changes that were made between Build 40 and Build 47 of Flash Player
6 (Flash Player 6.0.47.0), released in August 2002:

When minimized or hidden, Netscape for Windows no longer consumes CPU cycles.

Multiple cursors no longer occasionally appear in text fields.

Fixed security issue — "Macromedia Flash URL Modification Issue." See:

http://www.macromedia.com/v1/handlers/index.cfm?ID=23294

C.2.3 Updates to Flash Player 6, Build 40

The following list summarizes the major changes that were made between Build 29 and Build 40 of Flash Player
6 (Flash Player 6.0.40.0), released in July 2002. Various minor optimizations and bug fixes are discussed at:
http://www.macromedia.com/support/flash/ts/documents/flashplayer_r40.htm

POST method fixed in Netscape (all platforms) and Internet Explorer for Macintosh.

Plugin for Netscape 6.2 and above now supports JavaScript communication and fscommand() via
XPConnect (Netscape's replacement for its LiveConnect technology).

Fixed word-wrap bug that made text appear to quiver.

Sound.start() enabled for stream sounds. See Sound.start() for details.

Device-font masking feature added. See MovieClip.setMask() for details.

MP3 ID3 properties now accessible via Sound objects, as described under Sound.id3 in the

ActionScript Language Reference.

Windows German keyboard input fixes (German keyboards can now type @ and other special characters).

Fixed high-ASCII-to-Unicode character mapping on Macintosh. High-ASCII should now display
correctly on the Macintosh Flash Player.

A new OBJECT/EMBED attribute, allowScriptAccess, can prohibit unwanted cross-domain

scripting of an HTML page. See
http://www.macromedia.com/support/flash/ts/documents/allow_script_access.htm.

C.2.4 Updates to Flash Player 6, Build 29

Build 29 of Flash Player 6 (Flash Player 6.0.29.0), released in May 2002, fixed the following bugs that were
present in the original public version of Flash Player 6 (Flash Player 6.0.25.0, released in March 2002):

Halting the download of loading media (.swf, .jpg, or .mp3 files) now stops the download of the file
properly.

An event sound attached to a Sound object now stops playing when there are no more references to the
Sound object.

Large media (video or MP3 content) no longer causes the Player to lock up.

C.2.5 Updates to Flash Player 5, Build 41 and 42

The following list summarizes the major changes that were made in Build 41 (Netscape) and 42 (Internet
Explorer) of Flash Player 5 (the previous public build was 30, initially released with the Flash 5 authoring tool
in August 2000):

I-beams in text fields take on the color of the text.

Movies in a table cell do not cause Internet Explorer 5.5 to crash.

A text field's scroll position does not reset when field's content is modified.

Text fields with embedded fonts do not leak outside their visual boundary when scrolled.

The XML.contentType property was added.

The XML.ignoreWhite property was added.

When XML source is parsed and the characters &, ', ", <, and > appear in a text node, they are

converted to the following entities: &, ', ", <, and >. This conversion

is transparent in Flash because the entities are converted back to characters when an XML object is
converted to a string; however, the entities will show up in XML source sent to the server.

Math.random() no longer returns the value 1. The maximum return value is 0.999...

General performance is improved, especially on Windows 98.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix C. Backward Compatibility and Player Build Updates

C.3 Flash 4 Versus Flash 5 (and Later)

Table C-1 summarizes key backward-compatibility issues and differences between ActionScript in Flash 4 versus Flash
5 and Flash 6.

Table C-1. Flash 4 backward-compatibility issues

Topic Description

Creating variables Flash 4's set function has been replaced by the var statement.

Variable and timeline
references

The Flash 4-style slash-colon constructions (/square:area) have been superceded by

dot notation (square.area).

String comparison
operators

The Flash 4 string comparison operators—eq, ne, ge, gt, le, lt—have been

superceded by the following operators in Flash 5 and later: = =, !=, >=, >, <=, <.

String concatenation
operator

When creating Flash 4 content in Flash 5 or later, use the add operator instead of Flash 4's &
operator. When authoring for Flash 5 or later, use the + operator for string concatenation.

String length
Flash 4's length() function (e.g., length(myString)) has been superceded by the

String.length property (e.g., myString.length).

Substring extraction

Flash 4's substring() function (e.g., substring(myString, 1, 3)) has been superceded by

the substring(), substr(), and slice() methods. Note that substring() differs in Flash 4 and
Flash 5.

Character code point
functions

Flash 4's chr() and mbchr() functions (used to create a character from a code point) have
been superceded by String.fromCharCode(). Flash 4's ord() and mbord() functions (used
to determine the code point of a character) have been superceded by String.charCodeAt().

Datatype conversion
When importing Flash 4 files, Flash 5 and Flash MX automatically insert the Number()
function around any numeric data that is used as an operand of the following potentially
ambiguous operators: +, = =, !=, <>, <, >, >=, <=.

The ifFrameLoaded
statement

Flash 3's ifFrameLoaded statement is deprecated. Use the _totalframes and

_framesloaded MovieClip properties to create preloading code.

Infinite loops
Flash 4 allowed a maximum of 200,000 loop iterations. Flash 5 and Flash 6 allow 15
seconds for loops, after which they warn users that the movie has stopped responding. See
Section 8.6.3.

Subroutines versus
functions

In Flash 4, a subroutine could be created by attaching a block of code to a frame with a label
and executing it using the call() statement. In Flash 5 and later, functions replace Flash 4
subroutines.

Clip events
Flash 4 supported only button events (i.e., functions starting with on()). For modern event-
handling techniques, see Chapter 10.

Capturing keystrokes
In Flash 4, keyPress was the only means of capturing keystrokes. In Flash 5 and later, the
Key object and the movie clip events onClipEvent(keyDown) and onClipEvent(keyUp) offer
much greater control over keyboard interaction.

Tell Target deprecated
Flash 4's Tell Target action (used to control remote movie clips) is replaced by properties
and methods accessed using dot notation and the with statement. See "Whither Tell Target"
later in this appendix.

Get Property deprecated
Flash 4's Get Property command is no longer required for movie clip property access. Use
the dot operator instead. See Chapter 13.

int deprecated
Flash 4's int() function (used to truncate floats to integers) has been superceded by
Math.floor(), Math.ceil(), and Math.round().

Random number
generation

Flash 4's random() function (used to generate a random number) has been superceded by
Math.random().

Toggle High Quality
deprecated

Flash 4's Toggle High Quality action (used to set the rendering quality of the player) has
been superceded by the global _quality property.

_highquality
deprecated

Flash 4's _highquality property has been superceded by the global _quality
property.

Math object support in
Flash 4

The functions and properties of the Math object (e.g., Math.cos(), Math.PI) are not

natively supported by Flash Player 4. The values, however, are approximated when a movie
is exported in Flash 4 format.

loadMovie versus
loadMovieNum

Flash 3's loadMovie() onto a numbered level is superceded by loadMovieNum() (which
accepts an integer level argument) as of Flash 5. Flash 4's loadMovie() into a target movie
clip is still available as loadMovie() in Flash 5 and later.

Printing
Flash 5 and later support native print functions, which are available in Flash 4.0.20.0 and
later as a modified Get URL action only.

Objects and classes not
supported

Flash 4 does not support any of Flash 5's or Flash 6's built-in objects and classes (with the
exception of Math as noted earlier in this table).

C.3.1 Controlling Movie Clips

In Chapter 13, we discussed how to control clips using Flash 5 (and later) techniques. Here we consider the equivalent
Flash 4 techniques.

Prior to Flash 5, we executed special Movie Clip Actions to control a movie clip. We said, "Tell the clip named eyes
to play," using the following:

Begin Tell Target ("eyes")
 Play
End Tell Target

But as of Flash 5, movie clips can be controlled more directly, through built-in methods. For example:

eyes.play();

Similarly, to access the built-in properties of a movie clip prior to Flash 5, we used explicit property-getting and
property-setting commands, such as:

GetProperty ("ball", _width)
Set Property ("ball", X Scale) = 90

As of Flash 5, we can retrieve and set a movie clip's properties using the dot operator, just as we access the properties
of any object:

ball._width;
ball._xscale = 90;

Prior to Flash 5, to access variables inside a movie clip, we used a colon to separate the clip name from the variable
name:

Set Variable: "x" = myClip:myVariable

As of Flash 5, a variable in a movie clip is simply a property of that clip object, so we use the dot operator to set and
retrieve variable values:

x = myClip.myVariable;

Finally, prior to Flash 5, we accessed nested levels of movie clips using a directory-tree metaphor of slashes and dots:

clipA/clipB/clipC
../../../clipC

Because movie clips are object-like data as of Flash 5, we can access one clip as a property of another clip. We
therefore use the dot operator to access so-called nested clips, and we use a clip's reserved _parent property to

refer to the clip that contains it:

clipA.clipB.clipC;
_parent._parent._parent.clipC;

C.3.2 Flash 4 Versus Flash 5 Variable Access Syntax

The Flash 4-style slash-colon constructions, such as /square:area, have been superceded by dot syntax, a much

more convenient way to refer to variables and timelines, in Flash 5 and later. The old syntax is deprecated and no
longer recommended. Table C-2 shows equivalencies between Flash 4 and Flash 5 and later syntax when addressing
variables. See Table C-1 for other syntactical differences.

Table C-2. Flash 4 versus Flash 5 and later variable addressing syntax

Flash 4 syntax Flash 5 and later syntax Refers to . . .

/ _root Movie's main timeline

/:x _root.x Variable x on movie's main timeline

/clip1:x _root.clip1.x Variable x in instance clip1 on movie's main timeline

/clip1/clip2:x _root.clip1.clip2.x
Variable x in instance clip2, within instance clip1,

within the main movie timeline

../ _parent Timeline upon which the current clip resides (one level up
from current clip timeline[C])

../:x _parent.x
Variable x on timeline upon which the current clip resides

(one level up from current clip timeline)

../../:x _parent._parent.x
Variable x on timeline that contains the clip that contains

the current clip (two levels up from current clip timeline)

clip1:x clip1.x
Variable x in instance clip1, where clip1 resides on

the current timeline

clip1/clip2:x clip1.clip2.x
Variable x in instance clip2, where clip2 resides

within clip1, which in turn resides on current timeline

_level1:x _level1.x
Variable x on the main timeline of a movie loaded onto

level 1

_level2:x _level2.x
Variable x on the main timeline of a movie loaded onto

level 2

[C] The "current clip timeline" is the timeline that contains the code with the variable reference.

C.3.3 Local Variables in Flash 4-Style Subroutines

Although functions are the preferred mechanism for producing portable code modules, Flash 5 and Flash 6 still support
Flash 4-style subroutines. In Flash 4, a subroutine could be created by attaching a block of code to a frame with a label.
Later, the subroutine could be executed remotely via the Call action. But in Flash 4, any variable declared in a
subroutine was nonlocal and persisted for the lifetime of the timeline on which it was defined. In Flash 5 and later, you
can create local variables in subroutines the same way we create them in functions—using the var statement. However,
variables defined with var in a subroutine are created as local variables only when the subroutine is executed via the
Call function. If the script on the subroutine frame is executed as a result of the playhead simply entering the frame, the
var statement declares a normal timeline nonlocal variable. Regardless, the more modern functions and local function
variables should be used instead of subroutines.

C.3.4 Flash 4-to-Flash 5 Datatype Conversion

In Flash 4, the string operators and the numeric operators were completely distinct—one set of operators worked only
with strings, and the other set worked only with numbers. For example, the string concatenation operator in Flash 4
was &, but the mathematical addition operator was +. Similarly, string comparisons were performed with the eq and

ne operators, but numeric comparisons were accomplished via = and <>. Table C-3 lists the Flash 5 and later syntax

for analogous Flash 4 operators.

Table C-3. Flash 4 versus Flash 5 operators

Operation Flash 4 syntax Flash 5 and later syntax

String concatenation & + or add

String equality eq = =

String inequality ne !=

String comparison ge, gt, le, lt >=, >, <=, <

Numeric addition + +

Numeric equality = = =

Numeric inequality <> !=

Numeric comparison >=, >, <=, < >=, >, <=, <

Some Flash 5 and later operators can operate on both strings and numbers. For example, when the + operator is used

with strings, it concatenates its operands to form a new string. But when it is used with numbers, the + operator adds

its two operands mathematically. Similarly, in Flash 5 and later, the equality operator (= =) and inequality operator

(!=) are used to compare strings, numbers, and other datatypes.

Because many Flash 5 and later operators work with multiple datatypes, but Flash 4 operators do not, an ambiguity
arises when a Flash 4 file is imported into Flash 5 or later. Therefore, when importing Flash 4 files, Flash 5 and Flash
MX automatically insert the Number() function around any numeric data that is used as an operand of the following
potentially ambiguous operators (unless the operand is a numeric literal): +, = =, !=, <>, <, >, >=, and <=.

Flash 4 files converted to Flash 5 or Flash MX format will also have the string concatenation operator (&) changed to

the new add operator. Table C-4 contains examples of Flash 4-to-Flash 5 operator translation.

Table C-4. Sample Flash 4-to-Flash 5 operator translations

Flash 4 syntax Flash 5 and later syntax

Loop While (count <= numRecords)
while (Number(count)<=
Number(numRecords))

If (x = 15) if(Number(x) = = 15)

If (y <> 20) if(Number(y) != 20)

Set Variable: "lastName" = "kavanagh" lastName = "kavanagh"

Set Variable: "name" = "molly" & lastName name = "molly" add lastName

C.3.5 Flash 4 Events

Most ActionScript events were first introduced in Flash 5. If you're exporting to Flash 4 format, use the button event
handlers only (only button events were supported in Flash 4), and test your work carefully in Flash Player 4. To
determine whether an event is supported by a particular version of the Flash Player, see the appropriate event entry in
the Language Reference.

C.3.6 Flash 4 Versus Flash 5 String Operators

The Flash 4 string concatenation operator (&) performs a different operation (i.e., bitwise AND) in Flash 5 and later. If

you're exporting a Flash 4 .swf file from a newer version of Flash, you must use the add operator to concatenate strings.
Note that add is supported only for backward compatibility; the + operator is preferred in Flash 5 and later.

If you're exporting a Flash 4 .swf file, you must use the older eq and ne operators for string equality (= =) and

inequality (!=) comparisons. The = = and != operators are preferred in Flash 5 and later.

If you're exporting a Flash 4 .swf file, you must use the older gt, ge, lt, and le string comparison operators. The >,

>=, <, and <= operators are the preferred equivalents in Flash 5 and later.

If you're exporting a Flash 4 .swf file, you must use the older length() function to determine the length of a string. The
length() function is supported for backward compatibility, but the String.length property is preferred in Flash

5 and later. Here we use the Flash 4 length() function to display the number of characters in the word "obsolete":

trace (length("obsolete")); // Displays: 8

In Flash 5, the String.substr() method is the string-extraction function that most closely resembles Flash 4's substring(
) function, which also used a start index and a length to retrieve a substring. Flash 5's String.substring() function uses
start and end indexes.

If you're exporting a Flash 4 .swf file, you must use the older Flash 4 character-creation functions, chr() and mbchr(),
to create characters from numeric codes. In Flash 5 and later, String.fromCharCode() is preferred.

If you're exporting a Flash 4 .swf file, you must use the older Flash 4 code point functions, ord() and mbord() to
determine the code point of a character. In Flash 5 and later, String.charCodeAt() is preferred.

Because all the Flash 5 string operations and functions work with multibyte characters, there's no way in Flash 5 to
force a single-byte operation as there was in Flash 4. For example, the fromCharCode() function is as close as things
get in Flash 5 to chr(). The same is true of mblength() and length, mbsubstring() and substr(), and mbord() and

charCodeAt().

C.3.7 Whither Tell Target?

In Flash 4, Tell Target was our main tool for referring to movie clips. Tell Target, bless its soul, was an unwieldy tool
and is rendered obsolete by the much more elegant object model introduced in Flash 5. The Tell Target function has
been deprecated (i.e., retired from recommended use). Although we can still use the tellTarget() function to code in a
Flash 4 manner, tellTarget() may disappear in the future.

Consider the following code, which uses Tell Target to play an instance named closingSequence:

Begin Tell Target ("closingSequence")
 Play
End Tell Target

As of Flash 5, we simply invoke the much more convenient and readable play() method on the
closingSequence instance:

closingSequence.play();

Tell Target could also perform multiple operations on an instance within a code block, like so:

Begin Tell Target ("ball")
 (Set Property: ("ball", x Scale) = "5")
 Play
End Tell Target

As of Flash 5, the with() statement, described in Chapter 6, is the preferred way to achieve similar results:

with (ball) {
 _xscale = 5;
 play();
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix D. Differences from ECMA-262 and JavaScript

Naturally, this book focuses on the intricacies of ActionScript, but if you own O'Reilly's well-known JavaScript:
The Definitive Guide, you'll notice that the reference section of the two books share many similarities.

Although ActionScript, like JavaScript, is based on the ECMA-262 standard, certain differences were
necessitated by the constraints of Player size and backward compatibility. If you're porting code from JavaScript,
JScript, or another ECMA-262-based language, you'll find Table D-1 valuable. It summarizes the intentional
differences between ECMA-262, JavaScript, and ActionScript (for Flash 5 and later). Likewise, if you're porting
ActionScript to another language, you'll be better able to avoid the pitfalls caused by ActionScript's deviation
from the ECMA-262 standard.

Table D-1 reflects the intentional differences between Flash ActionScript and the ECMA-262 standard. It does
not reflect any bugs that may exist in its attempted implementation of the standard. Furthermore, Table D-1
reflects ActionScript's behavior when the #strict pragma is not being used. (The undocumented,

unsupported #strict pragma was intended to enhance ActionScript's conformance with the ECMA-262

standard. However, the #strict pragma should not be used, because it crashes Internet Explorer for

Windows. See the entry for the #strict pragma in the Language Reference for details.)

Table D-1. Differences between ECMA-262, JavaScript, and ActionScript

Topic Description

Exception handling
ActionScript does not support the exception handling statements
try/catch/finally or throw.

escape() encoding (Flash 6
only)

In Flash 6, for characters between code point 127 and 255 (high ASCII),
ActionScript's escape() function encodes UTF-8 sequences using %xx rather

than the method defined by the ECMA-262 specification. See escape() in the
ActionScript Language Reference.

Statement labels
ActionScript does not support labeled statements, used by the break and
continue statements to control program flow.

String-to-Boolean conversion
In ECMA-262, all nonempty strings convert to true. In ActionScript, only the

strings that can be converted to a valid nonzero number convert to true.

Case sensitivity
The ECMA-262 specification demands complete case sensitivity. In
ActionScript, keywords are case-sensitive but identifiers are not. See Chapter
15, especially Table 15-1.

Function scope (Flash 5 only)

In Flash 5 (but not Flash 6), when a function from one timeline is assigned to a
variable in a different movie clip's timeline, the assigned function's scope chain
changes to that variable's timeline. In ECMA-262 and Flash 6 ActionScript, it's
impossible to modify a function's scope chain through assignment; scope is
determined permanently by the location of the function declaration statement.

Regular expressions
ActionScript does not support regular expressions. However, developer Pavils
Jurjans has made a custom RegExp object available at
http://www.jurjans.lv/flash/RegExp.html.

Event handler properties
(Flash 5 only)

In Flash 5 (but not Flash 6) movie clip event handlers must be defined using
onClipEvent (eventName), and button event handlers must be defined using

on (eventName). In Flash 6, clip and button event handlers can be assigned

as object properties, as in JavaScript. See Section 10.5 in Chapter 10.

Global variables (Flash 5
only)

Flash 5 ActionScript does not support true document-wide global variables.
Global variables can be simulated by attaching properties to
Object.prototype, as described under Section 12.5.3.5. In Flash 6,

global variables are created on the _global object (which itself is not part of

ECMA-262).

The eval() function

ActionScript's eval() function supports a small subset of ECMA-262's intended
functionality; it works only when its argument is an identifier and is used only
to dynamically generate references to identifiers. In Flash 6, it can't be used on
the left side of an assignment statement.

undefined datatype

conversion

In ActionScript, the special undefined value converts to the empty string

("") when used in a string context and converts to the number 0 when used in a
numeric context. In ECMA-262, undefined converts to the string

"undefined" in string contexts and to the numeric value NaN in numeric

contexts.

The Function constructor
ActionScript does not support the Function constructor, which is used in
JavaScript to create functions with the syntax new Function ();.

Date object creation
ActionScript will not accept (i.e., will not parse) a human-readable date string,
such as "January 9, 2001", when creating a new Date object.

switch statement (Flash 5
only)

Flash 5 ActionScript does not support the switch/case/default statements (used
to phrase complex conditionals). The switch statement is supported in Flash 6
and can be used when exporting from the Flash MX authoring tool to a Flash 5
or Flash 4 format .swf file.

Language support (Flash 5
only)

ECMA-262 requires support of the Unicode character-encoding standard, which
Flash 5 ActionScript does not support. Flash 5 uses the Latin 1 and Shift-JIS
character sets and implements a subset of Unicode-style functions and
conventions (such as \u escape sequences). Flash 6 fully supports Unicode.

Object model

Naturally, JavaScript includes built-in classes and objects that relate to web
browsers, whereas Flash includes those that relate to Flash movies. For
JavaScript programmers who are used to working with DHTML, it may be
helpful to think of the main movie of a Flash document as analogous to an
HTML document object and movie clips as analogous to layer objects.

Timed code execution (Flash
5 only)

In Flash 5, the setTimeout() and setInterval() methods of the JavaScript
window object are not available in ActionScript but can be simulated with
timeline and clip event loops, as discussed in Chapter 8. Flash 6 supports
setInterval(), but not setTimeout().

Object constructor

In Flash 5 ActionScript, the constructor for the Object class does not accept any
parameters. In ECMA-262 and Flash 6 ActionScript, Object accepts a value
parameter, which can be a Boolean, string, or number primitive.

Slash and Tell Target notation
ActionScript supports legacy slash notation for composing variable references
and controlling movie clips via Tell Target (e.g., "/ball:speed "). Neither Tell
Target nor slash notation are defined by ECMA-262.

Nonstandard event handlers
on() and onClipEvent()

ActionScript supports a non-EMCA-262 event handler format for buttons (on())
and movie clips (onClipEvent()), used to attach event handlers directly to
objects at authoring time. See Chapter 10.

arguments.caller

The arguments.caller property is supported by ActionScript, but it

was deprecated from JavaScript in version 1.3.

In Netscape 4, JavaScript's arguments.caller property refers to the

Arguments object of the calling function. In ActionScript, the
arguments.caller property is a reference to the calling function itself,

not the caller's Arguments object. See arguments.caller in the

Language Reference for details.

Undeclared variables
In JavaScript, a reference to an undeclared variable causes a runtime error.
ActionScript leniently permits undeclared variable references.

_ _proto_ _ property

ActionScript formally documents the Object._ _proto_ _ property,

which is not exposed by ECMA or JavaScript. See Object._ _proto_
_ in the ActionScript Language Reference.

Invoking undeclared functions
In JavaScript, invoking an undeclared function causes a runtime error. In
ActionScript, it fails silently.

constructor property

In JavaScript (in accordance with ECMA-262), the constructor property

is always read from an object's constructor's prototype property

(someObject._ _proto_ _. constructor). In Flash Player 6

and Flash Player 5, the constructor property is written directly to

someObject. For a complete discussion of this subtle deviation, see

Section 12.7.3.

Object.toString()

ECMA-262 states that, for built-in classes, toString() should return: [object
class], where class is the name of the object's class. In ActionScript,

toString() returns [object Object] unless the class implements custom toString(
) behavior (e.g., the Date object returns a human-readable date).

super "operator"
ActionScript's super "operator" is not an implementation of ECMAScript v4's
super operator. See Section 5.12.8.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix E. HTML Support in Text Fields

This appendix discusses special usage notes for HTML-enabled text fields and lists the HTML tags they
support.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix E. HTML Support in Text Fields

E.1 HTML Tag Support in Text Fields

The set of HTML tags supported by Flash 5 text fields includes: , <I>, <U>, , <P>,
, and <A>. Flash 6

adds support for and <TEXTFORMAT>. Although the <TABLE> tag is not supported, HTML tables can be simulated

with text field tab stops (see TextFormat.tabStops in the ActionScript Language Reference) and Macromedia's

FDataGrid Component available at the Flash Exchange (http://www.macromedia.com/exchange/flash/).

To set HTML-styled text for a TextField object, set its TextField.html property to true and then set its

TextField.htmlText property to the desired HTML-tagged text. The <HTML> and <BODY> tags are neither

supported nor required. Unsupported tags are ignored, although their text content is preserved. Flash requires quotes around the
values assigned to tag attributes. For further details on these and related topics, see Section E.5, Section E.4, and Section E.3 later
in this appendix.

For more details on using HTML in text fields, see TextField.htmlText in the ActionScript Language Reference.

E.1.1 (Bold)

The tag renders text in bold, provided that a boldface style exists for the font in question. For example:

This is bold text.

will be rendered as, This is bold text.

See the discussion of bold font embedding under TextField.embedFonts and TextField.htmlText in the

ActionScript Language Reference.

E.1.2 <I> (Italics)

The <I> tag renders text in italics, provided that an italic style exists for the font in question. For example:

<I>This is italic text.</I>

will be rendered as, This is italic text.

See the discussion of italic font embedding under TextField.embedFonts and TextField.htmlText in the

ActionScript Language Reference.

E.1.3 <U> (Underline)

The <U> tag renders the tagged text with an underline beneath it. For example:

<U>This is underlined text.</U>

will be rendered as, This is underlined text.

Because hyperlinks are not underlined automatically in Flash, you should use the <U> tag to identify hyperlinks. For example:

<U>Click here</U>
 to visit a neat site.

will be rendered as, "Click here to visit a neat site."

E.1.4 (List Item)

The tag creates a bullet in front of the text it encloses. Unlike its HTML counterpart, does not require a tag.

For example:

While you work: StretchDrink waterRest your eyes

will be rendered as:

While you work:

Stretch

Drink water

Rest your eyes

The tag does not support multilevel bullets or the (numbered list) tag. Lines formatted with

TextFormat.bullet are represented with tags in TextField.htmlText.

E.1.5 (Font Control)

The tag supports the following three attributes:

FACE

The FACE attribute specifies the name of the font to use. In Flash 6, a list of multiple font faces can also be used (as in

HTML), though this feature is undocumented. Flash attempts to render the first available font listed in the FACE
attribute. For example, in the code my text, Flash will

render "my text" in Helvetica if Arial is missing but Helvetica is present. See TextFormat.font for details. For a

function that picks an appropriate font from the user's system, see TextField.getFontList().
SIZE

The SIZE attribute specifies the size of the tagged text as a fixed point size (such as) or as a

relative size. Relative point sizes are preceded by a + or - sign and are specified relative to the text size in the text field
Property inspector. For example, if the point size is 14 in the Property inspector, then
displays the tagged text at 12-point. See also TextFormat.size.

COLOR

The COLOR attribute specifies the color of the tagged text, as a hexadecimal number, preceded by the pound sign

(#)—for example, this is red text. Specify the hexadecimal

number as an RGB series of three two-digit numbers from 00 to FF. Note that Flash's implementation of the COLOR
attribute is more strict than HTML allows—the pound sign (#) is required, and color names such as "green" and

"blue" cannot be used as COLOR values. See also the Color class and TextFormat.color.

Here are some examples:

this is Arial
this is 12pt Arial
this is red,
+4pt Lucida Console

E.1.6 <P> (Paragraph Break)

The <P> tag demarcates paragraphs, but in Flash it behaves quite differently than its HTML counterpart. First of all,

unterminated <P> tags do not cause line breaks in Flash as they do in regular HTML. Note the difference between Flash and

web browser output for the following HTML-tagged text:

I hate filling out forms. <P>So sometimes I don't.

Flash output:

I hate filling out forms. So sometimes I don't.

Web browser output:

I hate filling out forms.
So sometimes I don't.

Closing </P> tags are required by Flash in order for line breaks to be added. For example:

<P> I hate filling out forms.</P> So sometimes I don't.

Furthermore, in Flash, <P> causes a single line break, exactly like
, whereas in web browsers, <P> causes a double line

break. Consider the following:

<P>This is line one.</P><P>This is line two.</P>

In Flash, this code is rendered with no gap between the lines, as in:

This is line one.
This is line two.

In a web browser, the code is rendered with a gap between the lines, as in:

This is line one.
This is line two.

Because Flash's <P> tag behavior differs from its behavior in web browsers, we often use the
 tag instead. However, the

ALIGN attribute of the <P> tag is still useful to center, right-justify, or left-justify text, as follows:

<P ALIGN="CENTER">Centered text</P>
<P ALIGN="RIGHT">Right-justified text</P>
<P ALIGN="LEFT">Left-justified text</P>

E.1.7
 (Line Break)

The
 tag causes a line break in a body of text and is functionally equivalent to the \n escape sequence or the newline
keyword. Consider the following:

This is line one.
This is line two.
This is line one. \nThis is line two.

Both are rendered in Flash as:

This is line one.
This is line two.

E.1.8 <A> (Anchor or Hypertext Link)

The <A> tag creates a hypertext link. When the user clicks text tagged with <A>, the document specified in the HREF attribute

of the tag loads into the browser. If the movie is running in the Standalone Player, the default web browser on the system is
launched and the document is loaded into that browser.

The generic syntax of the <A> tag is:

linked text

For example, to link to a good game console, we can use:

nice system

As with HTML, the URL can be absolute or relative to the current page. Because Flash doesn't automatically add underlining or
color to hyperlinks, you might want to augment the link tag like this:

<U>nice console</U>

Normally, links followed from an anchor tag cause the current movie to be replaced with the document specified in the HREF of

the anchor tag. However, an anchor tag may also cause a secondary browser window to launch. Using the TARGET attribute, we

can specify the name of a window into which to load the linked document, as follows:

linked text

If a window named windowName does not already exist, the browser launches a new window and assigns it the name

windowName. To launch a new document in its own, anonymous window, we can use the "_blank" keyword, as in:

linked text

Note that when we launch windows through the TARGET attribute, we have no control over the size or toolbar arrangement of

the new window. To launch specifically sized windows from a link, we must use JavaScript. Techniques for launching
customized secondary windows with JavaScript are described at:

http://www.moock.org/webdesign/flash

For more information on communicating with JavaScript from ActionScript, see the global functions fscommand() and getURL(
) in the ActionScript Language Reference and Section E.6 later in this appendix.

In addition to "_blank", the TARGET attribute can also be "_parent", "_self", or "_top", or the name of a window or

frame. For example, the TARGET attribute can load a document into a frame using:

linked text

Flash anchor tags do not always behave exactly like HTML anchor tags. For example, we cannot use the NAME attribute of the

anchor tag in Flash, so internal links within a body of text are not possible.

In Flash, anchor tags are not added to the tab order of the movie and are therefore not accessible via
the keyboard. If your content must be accessible to keyboards and alternative input devices, you
should use buttons, not anchor tags, for links.

E.1.9 <TEXTFORMAT> (Formatting Support)

The <TEXTFORMAT> tag is a special Flash-only HTML extension used to implement the TextFormat class's paragraph

formatting features in HTML syntax. Its attributes correspond to the TextFormat class's leftMargin, rightMargin,

blockIndent, indent, leading, and tabStops properties, as follows:

LEFTMARGIN

Sets the left margin, in pixels, of the contained text. See TextFormat.leftMargin.

RIGHTMARGIN

Sets the right margin, in pixels, of the contained text. See TextFormat.rightMargin
BLOCKINDENT

Sets the left indentation, in pixels, of the contained text. See TextFormat.blockIndent.

INDENT

Sets the indentation, in pixels, for the first line of each contained paragraph. See TextFormat.indent.

LEADING

Sets the space, in pixels, between lines of the contained text. See TextFormat.leading.

TABSTOPS

Sets the horizontal tab stops for the contained text, as a comma-separated list of nonnegative integers. See
TextFormat.tabStops.

The following code shows how to create a text field whose lines of text are separated vertically by 10 pixels and whose
paragraphs' first lines are indented by 20 pixels:

this.createTextField("output_txt", 1, 0, 0, 100, 200);
output_txt.html = true;
output_txt.border = true;
output_txt.wordWrap = true;
output_txt.type = "input";
output_txt.htmlText = "<TEXTFORMAT LEADING='10' INDENT='20'>"
 + "<P>This is the first paragraph.</P>"
 + "<P>This is the second paragraph.</P>"
 + "<P>And finally, this is the third paragraph.</P>"
 + "</TEXTFORMAT>";

E.1.10 <TAB> (Tab Character)

The <TAB> tag (undocumented) is equivalent to inserting a tab character (ASCII 9) in a string. It is used to advance to the next

tab stop when TextField.condenseWhite is true for the text field (in which case, literal tab characters are

condensed with the rest of the whitespace).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix E. HTML Support in Text Fields

E.2 Entity Support

Flash HTML text fields also support the special character entities listed in Table E-1. Wherever an entity
appears in a text field's TextField.htmlText property, Flash displays the corresponding character on

screen. However, other common entities, such as ©, and numeric entities, such as ™
(trademark symbol), are not supported. To include characters such as the copyright symbol, the trademark
symbol, or the euro, use Unicode-format text files, a Unicode escape sequence, or the String.fromCharCode()
method (see Section 4.5.1). The following example shows how to include a euro symbol in an HTML text field:

this.createTextField("price_txt", 0, 100, 100, 200, 30);
price_txt.html = true;
// The euro is represented by the escape sequence \u20AC
price_txt.htmlText = "FINAL COST: \u20AC 200";

Table E-1. Supported entities

Entity Character Represented

< <

> >

& &

" "

' '

 nonbreaking space

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix E. HTML Support in Text Fields

E.3 Quoting Attribute Values

Outside of Flash, HTML attribute values can be quoted with single quotes, double quotes, or no quotes at all. The
following tags are all valid in most web browsers:

<P ALIGN=RIGHT>
<P ALIGN='RIGHT'>
<P ALIGN="RIGHT">

But in Flash, unquoted attribute values are not allowed. For example, the syntax <P ALIGN=RIGHT> is

illegal in Flash. However, both single and double quotes can be used to delimit attribute values. When composing
text field values that include HTML attributes, we must be careful to quote attributes correctly, using one type of
quote to demarcate the string itself and another to demarcate attribute values. For example:

// These examples are both valid.
myText = "<P ALIGN='RIGHT'>hi there</P>";
myText = '<P ALIGN="RIGHT">hi there</P>';
// This example causes an error because double quotation marks are
// used to demarcate both the string and the attribute.
myText = "<P ALIGN="RIGHT">hi there</P>";

For more information on using quotation marks to form strings, see Section 4.5.2.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix E. HTML Support in Text Fields

E.4 Unrecognized Tags and Attributes

Like web browsers, Flash ignores tags and attributes it does not recognize. For example, if we assign the following value
to an HTML text field in Flash:

<P>Please fill in and print this form</P>
<FORM><INPUT TYPE="TEXT"></FORM>
<P>Thank you!</P>

the output will be:

Please fill in and print this form
Thank you!

The FORM and INPUT elements are not supported by Flash, so both are ignored. Similarly, if we use container

elements such as <TD>, the content is preserved but the markup is ignored. For example:

myTextField = "<TABLE><TR><TD>table cell text</TD></TR></TABLE>";

outputs the following line without table formatting:

table cell text

However, in Flash 5 and Flash 6, if a tag is not terminated, the entire text that follows is considered part of the tag and
will not display on screen. For example, given the following assignment:

theField_txt.htmlText = "We all know that 5 < 20. That's obvious.";

Flash displays:

We all know that 5

To include a < character in an HTML text field, use the entity < as follows:

theField_txt.htmlText = "We all know that 5 < 20. That's obvious.";

Flash displays:

We all know that 5 < 20. That's obvious.

For more information on including HTML source code in an HTML text field, see:

http://moock.org/asdg/technotes/sourceInHtmlField/

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix E. HTML Support in Text Fields

E.5 Using HTML for Input and Output

HTML text entered manually into a text field using the Text tool in the Flash authoring tool will not be rendered as HTML. To display
HTML-formatted text on screen, we must assign HTML text to a TextField object's htmlText property or, in Flash 5, to the variable

associated with the text field. For example:

// Flash 6 syntax
theField_txt.htmlText = "<P>Error! <I>No email address!</I></P>";

// Flash 5 syntax
theField_txt = "<P>Error! <I>No email address!</I></P>";

In Flash 6, the Flash 5 syntax will not only fail to work, it will replace the TextField object with the assigned
string! In Flash 6, use of the htmlText property is mandatory.

In the Flash Player, HTML can also be entered into a movie via an HTML-enabled or regular (non-HTML) user-input text field.

When regular text is entered into an HTML-enabled user-input text field, the field's htmlText property includes markup tags that are

added automatically. For example, the input text "Hi there" is converted to the htmlText property value:

'<P ALIGN="LEFT">Hi there</P>'

When the HTML characters <, >, &, ", and ' are entered into an HTML-enabled user-input text field, the field's htmlText property

represents them with the entities >, <, &, ", and '. For example, the input text "hi there"

is converted to the htmlText property value:

'<P ALIGN="LEFT"><FONT FACE="Arial" SIZE="10"
 COLOR="#000000">hi there</P>'

In both cases, the original (non-marked-up) value is available via the text property.

When regular or HTML text is entered into a normal (non-HTML) user-input text field, no modification of the entered text occurs. Regular
user-input text fields allow raw HTML code to be entered into a movie without distortion. This is useful for showing or receiving HTML
tags verbatim when you don't want them ignored, rendered, or interpreted.

An example showing HTML-enabled and regular user-input text field data entry is available at the online Code Depot.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix E. HTML Support in Text Fields

E.6 Executing JavaScript from HTML Links

In most JavaScript-capable web browsers, it is possible to execute JavaScript statements from an anchor tag using the javascript:

protocol as the value of the HREF attribute. For example:

find the square of 5

In ActionScript, we can also execute JavaScript statements from an <A> tag, like this:

theField_txt.htmlText = "display the number 5";

However, to include string values in JavaScript statements, we must use the HTML entity " for quotation marks, as in:

theField_txt.htmlText = "<A HREF=
 'javascript:alert("hello world");'>"
 + "display hello world";

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix E. HTML Support in Text Fields

E.7 Calling ActionScript Functions from HTML Links

Though arbitrary statements of ActionScript code cannot be executed from a Flash <A> tag, ActionScript functions can.

To invoke an ActionScript function from an anchor tag, we use the following syntax:

invoke the function

The function invocation operator () is not allowed and should not be used when invoking an ActionScript function

from an anchor tag. The function name must immediately follow the keyword asfunction:—if a space character

occurs before the function name, the function will not execute.

In addition to calling an ActionScript function from an anchor tag, we can also pass one parameter to that function using
the syntax:

invoke the function

where myParameter is the value of the parameter to pass. Inside the invoked function, myParameter is always a

string. To pass more than one piece of information to a function from an anchor, we use a delimiter in the
myParameter value and dissect the string ourselves in the function. For example, here's a function invocation that

passes two values, separated by a | character, to the roleCall() function:

invoke the function

And here's the roleCall() function. Notice how it separates the values with the split() method:

function roleCall (name) {
 var bothNames = name.split("|");
 trace("first name: " + bothNames[0]); // Displays: megan
 trace("last name: " + bothNames[1]); // Displays: murray
}

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix F. Support for GET and POST

Table F-1 lists the twelve functions and methods that can transfer content to an HTTP server in an HTTP request
using either the GET or POST method. Due to limitations and bugs discussed in this appendix, for best results,
you should use the HTTP GET method whenever possible, particularly when developing Flash 5-format movies.
For Macromedia's information on POST-specific problems in the Flash Player, see:

http://www.macromedia.com/support/flash/ts/documents/flash_get_post.htm
http://www.macromedia.com/support/flash/ts/documents/flashplayer_r40.htm

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix F. Support for GET and POST

F.1 Browser-Based Support for GET and POST

On both Windows and Macintosh, the browser plugin and ActiveX control versions of Flash Player 6 fully
support the HTTP GET and POST methods. However, despite this support, minor bugs in certain
browser/Player combinations cause intermittent failure for functions using POST (see preceding URLs).
Furthermore, prior to version 6.0.40.0, the Flash Player's POST method caused problems for Java servlets, as
discussed at:

http://www.macromedia.com/support/flash/ts/documents/java_get.htm

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix F. Support for GET and POST

F.2 Standalone Player Support for GET and POST

Table F-1 lists, by function, the official support for HTTP GET and POST on Windows and Macintosh in
Standalone Player 5 and Standalone Player 6. Note the following general rules:

Standalone Player 5 on Windows and Macintosh does not support POST.

Standalone Player 6 on Windows does not support POST for functions that receive results in a web
browser rather than the Player.

Hence, even if POST works on your system, you should use GET wherever possible for the best results on
the most platforms.

Table F-1. Support for GET and POST as HTTP methods in Flash Standalone Player 5 and
Standalone Player 6 for Windows and Macintosh

Function
Win

GET F5
Mac

GET F5
Win

POST F5
Mac

POST F5
Win

GET F6
Mac

GET F6
Win

POST F6
Mac

POST F6

getURL() [1] [2]

loadMovie() [1]

loadMovieNum() [1]

loadVariables() [3] [1] [3]

loadVariablesNum() [3] [1] [3]

LoadVars.send() N/A N/A N/A N/A [2]

LoadVars.sendAndLoad() N/A N/A N/A N/A

MovieClip.getURL() [1]

MovieClip.loadMovie() [1]

MovieClip.loadVariables(
)

[1]

XML.send() [1] [2]

XML.sendAndLoad() [1]

[1] POST requests are converted to GET requests but no variables are sent (i.e., the query string is
missing). In my tests, POST works in Standalone Player 5 on Macintosh, but the consensus from
Macromedia and the developer community is that POST does not work reliably in that Player.

[2] POST requests are converted to GET requests, and data is transferred via the GET request query
string.

[3] The entire loadVariables() method works neither in the Standalone Player nor with executable
Projectors (i.e., movies bundled with the Standalone Player in a single executable file).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix G. Flash UI Component Summary

This appendix lists and briefly describes the methods and properties supported by the Flash User Interface (FUI)
Components that are installed with Flash MX. The FUI Components provide typical user interface elements,
such as radio buttons, checkboxes, and lists. We chose to separate this summary of methods and properties in
this appendix for several reasons:

The ActionScript Language Reference is designed for full, detailed coverage of all the methods and
properties of a class. Here we only summarize the methods and properties rather than documenting them
fully. Full and proper coverage deserves more space (perhaps hundreds of pages) than we can offer within
the constraints of this book.

This book documents the core ActionScript language. The FUI Components are actually extensions to
Flash and ActionScript and are themselves written in ActionScript. They are important examples of an
infinite number of extensions that cannot possibly be covered in one book. For example, see
Macromedia's FDataGrid Component available at the Flash Exchange
(http://www.macromedia.com/exchange/flash/).

This appendix serves as a quick reference for all the FUI Component methods and properties; you can
leave it open while you work so that you won't have to check Flash's online Help or pulldown menus to
see if a method or property exists. We've also organized the components differently (such as in Table G-1
and Table G-2) and provided more complete synopses than Macromedia's online Help provides.

We felt it was important to group all the FUI Components together conceptually, rather than
alphabetically in the Language Reference where they would be interrupted by other items such as the
_focusrect global property and fscommand() function.

For complete Flash UI Component documentation, consult the resources listed under Section 14.7 at the end of
Chapter 14.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix G. Flash UI Component Summary

FCheckBox support for a standard UI checkbox element

Methods

getEnabled()

Boolean indicating whether a checkbox is enabled (i.e., responds to mouse input).
getLabel()

Returns a checkbox's string label.
getValue()

Boolean indicating whether a checkbox is checked (i.e., selected or deselected).
registerSkinElement()

Registers a skin element for changing the appearance of a checkbox.
setChangeHandler()

Specifies the callback function to call when the checkbox's state changes.
setEnabled()

Enables or disables the checkbox (not the same as selecting or deselecting it).
setLabel()

Sets a checkbox's string label.
setLabelPlacement()

Specifies the label location relative to the checkbox ("left" or "right").
setSize()

Sets the width of the checkbox element, in pixels.
setStyleProperty()

Sets a particular style property for the check box (for a list of supported properties, see the FStyleFormat
object).

setValue()

Specifies whether the checkbox is checked (true) or unchecked (false) (i.e., whether it is selected

or deselected).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix G. Flash UI Component Summary

FComboBox and

FListBox

support for standard UI combo boxes (i.e., drop-down

lists) and list boxes

Table G-1 juxtaposes the methods of the FComboBox and FListBox objects. Note how they share the majority of
methods, although FListBox supports selecting multiple line items simultaneously

Table G-1. FComboBox and FListBox methods

Method Description FComboBox FListBox

addItem() Appends an item to the list of items in the box

addItemAt() Adds an item at the specified position in the list

getEnabled()
Boolean indicating whether the element is enabled or
dimmed ("grayed-out")

getItemAt() Returns the list item at the specified position

getLength() Returns the number of items in the list

getRowCount() Returns the number of rows displayed in a scrolling list

getScrollPosition() Returns the line number of the top row displayed

getSelectedIndex() Returns the index of the current list selection

getSelectedIndices() Returns an array of indexes of, potentially, multiple selections

getSelectedItem() Returns the selected list item as an object

getSelectedItems() Returns an array of selected items as objects

getSelectMultiple()
Boolean indicating whether multiple items can be selected in
a list box

getValue() Returns the value of the selected item

registerSkinElement()
Registers a skin element for changing the component
appearance

removeAll() Removes all items from the list

removeItemAt() Removes a specified item in the list

replaceItemAt() Replaces the item at the specified position in the list

setAutoHideScrollBar(
)

Boolean specifying whether to hide the scroll bar when it isn't
needed

setChangeHandler()
Specifies the callback function to call when the list's state
changes

setDataProvider()
Specifies an array of elements or a DataProvider object to
populate the list

setEditable()
Boolean specifying whether the combo box's contents are
editable

setEnabled() Enables or disables (i.e., deactivates) the list box

setItemSymbol()
Specifies the Library symbol ID of a graphics symbol for
displaying list content

setRowCount() Specifies the maximum number of rows displayed in a list

setScrollPosition() Causes the list box to scroll to the specified item

setSelectedIndex() Selects an item in the list by its row index (zero-relative)

setSelectedIndices() Specifies an array of items (by index) to be selected

setSelectMultiple()
Boolean specifying whether multiple items can be selected in
a list box

setSize()
Sets the width of the combo box or list box, in pixels (can
also set height of a list box)

setStyleProperty()
Sets a particular style property for the combo box or list box
(for a list of supported properties, see the FStyleFormat
object)

setValue() Sets the current value for a combo box

setWidth() Sets the list box width, in pixels

sortItemsBy()
Sorts the items in the list by either their labels or the
underlying data

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix G. Flash UI Component Summary

FPushButton support for a standard UI pushbutton element

Methods

getEnabled()

Boolean indicating whether a pushbutton is enabled (i.e., responds to mouse input).
getLabel()

Returns a pushbutton's string label.
registerSkinElement()

Registers a skin element for changing the appearance of a pushbutton.
setClickHandler()

Specifies the callback function to call when the pushbutton is clicked.
setEnabled()

Enables or disables the pushbutton (i.e., specifies whether it is active or dimmed).
setLabel()

Sets a pushbutton's string label.
setSize()

Sets the height and width of the pushbutton, in pixels.
setStyleProperty()

Sets a particular style property for the pushbutton (for a list of supported properties, see the
FStyleFormat object).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix G. Flash UI Component Summary

FRadioButton and

FRadioButtonGroup

support for standard UI radio buttons and

groups

Table G-2 juxtaposes the methods of the FRadioButton and FRadioButtonGroup objects. Note how they share
several methods, although in the case of FRadioButtonGroup objects, the method pertains to the radio button
group as a whole and not an individual button.

Table G-2. FRadioButton and FRadioButtonGroup methods

Method Description FRadioButton FRadioButtonGroup

getData() Returns the data associated with a radio button

getEnabled()
Boolean indicating whether a radio button or
group is enabled (i.e., is active or dimmed)

getGroupName() Returns the radio button group name

getLabel() Returns the label of a radio button

getState()
Returns the state of a radio button—selected
(true) or not selected (false)

getValue() Returns the value of the selected button in a group

registerSkinElement(
)

Registers a skin element for changing the
appearance of a radio button or group

setChangeHandler()
Specifies the callback function to call when the
radio button or group changes state

setData() Associates a datum with a radio button

setEnabled() Enables or disables a radio button or group

setGroupName() Sets the name of a radio button group

setLabel() Sets the string label of a radio button

setLabelPlacement()
Specifies the label location for a radio button or
group ("left" or "right")

setSize() Sets the width of a radio button or group, in pixels

setState()
Boolean specifying the radio button
state—selected (true) or not selected (false)

setStyleProperty()
Sets a particular style property for the radio button
or group (for a list of supported properties, see the
FStyleFormat object)

setValue()
Selects a radio button within a group based on its
data value

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix G. Flash UI Component Summary

FScrollBar
support for a standard UI scrollbar element associated with a text

field using setScrollTarget()

Methods

getEnabled()

Boolean indicating whether a scrollbar is enabled (i.e., responds to mouse input).
getScrollPosition()

Returns the current scroll position as an integer between the minimum and maximum positions.
registerSkinElement()

Registers a skin element for changing the appearance of the scrollbar.
setChangeHandler()

Specifies the callback function to call when the scrollbar is scrolled.
setEnabled()

Enables or disables a scrollbar.
setHorizontal()

Boolean specifying whether the scrollbar should be horizontal (true) or vertical (false).

setLargeScroll()

Specifies the number of units to scroll when the user clicks to either side of the thumb slider (defaults to
pageSize as set with setScrollProperties()).

setScrollPosition()

Sets the current scroll position as an integer between the minimum and maximum positions.
setScrollProperties()

Sets the scrollbar's minimum and maximum positions and page size.
setScrollTarget()

Specifies the text field that the scrollbar causes to scroll (i.e., the text field to which the scrollbar
applies), as a string instance name.

setSize()

Sets the scrollbar length in pixels (its width is fixed).
setSmallScroll()

Specifies the number of units to scroll when the user clicks a scroll arrow (defaults to 1).
setStyleProperty()

Sets a particular style property for the scrollbar (for a list of supported properties, see the FStyleFormat
object).

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix G. Flash UI Component Summary

FScrollPane
support for creating a scrolling view of a movie, movie clip, or JPEG

image

Methods

getPaneHeight()

Returns the height of a scroll pane as set by setSize().
getPaneWidth()

Returns the width of a scroll pane as set by setSize().
getScrollContent()

Returns a reference to the movie clip displayed in the scroll area.
getScrollPosition()

Returns the current scroll position as an object with x an y properties.

loadScrollContent()

Loads a .swf or .jpg file into a scroll pane for display.
refreshPane()

Refreshes the scroll pane (useful if contents change in size).
registerSkinElement()

Registers a skin element for changing the appearance of a scroll pane.
setDragContent()

Boolean specifying whether the user can scroll the content in the pane by dragging.
setHScroll()

Specifies whether a horizontal scroll bar is displayed always (true), never (false), or as needed

("auto").

setScrollContent()

Specifies a Library symbol or move clip instance to display in the scroll pane.
setScrollPosition()

Sets the current scroll position using x and y coordinates.

setSize()

Sets the scroll pane's width and height.
setStyleProperty()

Sets a particular style property for the scroll pane (for a list of supported properties, see the FStyleFormat
object).

setVScroll()

Specifies whether a vertical scroll bar is displayed always (true), never (false), or as needed

("auto").

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix G. Flash UI Component Summary

FStyleFormat support for applying styles to Flash UI Component elements

Methods

addListener()

Adds UI Components to a list of items to be updated when the FStyleFormat changes.
applyChanges()

Applies style changes and notifies (refreshes) all listeners.
removeListener()

Removes a style format listener.

Properties

arrow

Sets the RGB color of arrows used in scroll bars, list boxes, etc.
background

Sets the RGB color of the background of associated UI components.
backgroundDisabled

Sets the background RGB color for disabled UI components.
check

Sets the RGB color for checkmarks in checkboxes.
darkshadow

Sets the dark shadow RGB color used in associated radio buttons, checkboxes, etc.
embedFonts

Specifies whether to embed fonts for text within UI components.
face

Sets the primary RGB color used for associated UI components.
focusRectInner

Sets the RGB color of the inner focus rectangle for UI components.
focusRectOuter

Sets the RGB color of the outer focus rectangle for UI components.
foregroundDisabled

Sets the RGB color for the foreground of disabled UI components.
highlight

Sets the RGB color for highlights on UI components.
highlight3D

Sets the RGB color for 3D highlights on UI components.
radioDot

Sets the RGB color for the dots in radio buttons.
scrollTrack

Sets the RGB color for the background track of a scrollbar.
selection

Sets the RGB color for selections.
selectionDisabled

Sets the RGB color for disabled selections.
selectionUnfocused

Sets the RGB color for unfocused selections.
shadow

Sets the RGB color for shadows.
textAlign

Sets the text alignment ("right", "left", or "center").
textBold

Boolean specifying whether text should be bolded.
textColor

Sets the RGB color of text in the UI component.
textDisabled

Sets the RGB color for disabled text.
textFont

Sets the text font for UI components.
textIndent

Sets the integer indentation, in pixels, for text in UI components.
textItalic

Boolean specifying whether text should be italicized.
textLeftMargin

Sets the left margin, in pixels, for text in UI components.
textRightMargin

Sets the right margin, in pixels, for text in UI components.
textSelected

Sets the RGB color of selected text in UI components.
textSize

Sets the font text size, in points.
textUnderline

Boolean specifying whether text should be underlined.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Part III: Appendixes

Appendix H. Embedding a Flash Movie in a Web Page

To embed a Flash movie in a web page we use the HTML <EMBED> and <OBJECT> tags, much like we use the tag to place a GIF or a JPEG on a page. Recent versions of

Internet Explorer (IE) for Windows (IE5.5 SP2 and later) require the <OBJECT> tag (the <OBJECT> tag is also preferred over the <EMBED> tag even for earlier versions of IE for

Windows, which supported both tags). Internet Explorer for Macintosh and Netscape on both platforms require the <EMBED> tag, as do many minor browsers. Therefore, to support all

browsers, we nest the <EMBED> tag within the <OBJECT> tag as shown in Example H-1, which embeds a movie called main.swf in an HTML page.

Example H-1. <OBJECT> AND <EMBED> tags for embedding a .swf file in an HTML page

<OBJECT
 CLASSID="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 CODEBASE=
"http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0"
 WIDTH="550"
 HEIGHT="400"
 ID="main"
 ALIGN="">
 <PARAM NAME="movie" VALUE="main.swf">
 <PARAM NAME="quality" VALUE="high">
 <PARAM NAME="bgcolor" VALUE="#FFFFFF">

 <EMBED
 SRC="main.swf"
 QUALITY="high"
 BGCOLOR="#FFFFFF"
 WIDTH="550"
 HEIGHT="400"
 NAME="main"
 ALIGN=""
 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

In the Flash authoring tool, you can use the File Publish command to generate <EMBED> and <OBJECT> tags automatically. For instructions, see Help Using Flash

Publishing Publishing Flash documents.

For more information on the <EMBED> and <OBJECT> tags, see Help Using Flash Publishing Editing Flash HTML settings. See also the following technotes:

http://www.macromedia.com/support/flash/ts/documents/tn4150.html
http://www.macromedia.com/support/flash/ts/documents/tag_attributes.htm

Despite the assistance offered by the Flash authoring tool, this appendix is for developers who prefer to hand-code their HTML. This appendix also covers the attributes not supported via
the authoring tool.

Table H-1 lists the minimum recommended attributes of the <EMBED> and <OBJECT> tags, some of which are strictly required. Following the table are detailed descriptions of these

and other attributes.

Table H-1. Recommended attributes of the <OBJECT> and <EMBED> tags

Description <OBJECT> attribute <EMBED> attribute

Identifies
content as
Flash

CLASSID="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" TYPE="application/x-shockwave-flash"

Location of
the Flash
Player
browser
plugin

CODEBASE="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0" PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"

URL of .swf
file

<PARAM NAME="MOVIE" VALUE="url"> SRC="url"

Height of
the movie

HEIGHT="height" HEIGHT="height"

Width of
the movie

WIDTH="width" WIDTH="width"

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix H. Embedding a Flash Movie in a Web Page

H.1 Attributes of the <OBJECT> Tag

To use attributes other than CLASSID, CODEBASE, WIDTH, HEIGHT, ID, and ALIGN with the <OBJECT> tag, construct a <PARAM> tag of

the following format:

<PARAM NAME=ATTR_NAME VALUE=VAL>

where ATTR_NAME is the name of the attribute and VAL is the attribute value (as shown in Example H-1).

The following list of attributes applies exclusively to the <OBJECT> tag:

CLASSID

Identifier for the Flash ActiveX control, which must be "clsid:D27CDB6E-AE6D-11cf-96B8-444553540000", regardless of

the version of the movie or Player.
CODEBASE

Location of the Flash ActiveX control, which must be
"http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0".

It is used by IE for Windows to download the ActiveX version of the Flash Player if it is not installed or if its version is older than the version
specified by #version=w,x,y,z. If #version is omitted, the browser does not attempt to upgrade any existing ActiveX Player on the

user's system, but it will attempt to download the latest Player if no Player is found.
ID

An identification string that can be used by scripts to manipulate the Flash movie. Should match the NAME attribute used for the <EMBED> tag.

See fscommand() in the Language Reference and http://www.moock.org/webdesign/flash/fscommand.
MOVIE

The location of the movie (.swf file) as a relative or absolute URL, such as "mymovie.swf". Should match the SRC attribute used for the

<EMBED> tag.

See Table H-1 and Section H.3 later in this appendix for more information.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix H. Embedding a Flash Movie in a Web Page

H.2 Attributes of the <EMBED> Tag

The following list of attributes applies exclusively to the <EMBED> tag:

NAME

An identification string that can be used by scripts to manipulate the Flash movie. Should match the ID
attribute used for the <OBJECT> tag. See fscommand() in the Language Reference and

http://www.moock.org/webdesign/flash/fscommand.
PLUGINSPAGE

Location of the Flash plugin on Macromedia's web site, used by Netscape to prompt the user to
download the plugin if it is not already installed. Should be
"http://www.macromedia.com/go/getflashplayer".

SRC

The location of the movie (.swf file) as a relative or absolute URL, such as "mymovie.swf".

Should match the MOVIE attribute used for the <OBJECT> tag.

SWLIVECONNECT

When true, the browser loads Java when loading the Flash Player for the first time. Defaults to

false (browser doesn't load Java if it isn't already running). For movies that are controlled by

JavaScript or that use fscommand(), you must set SWLIVECONNECT to true.

TYPE

The MIME content type for Flash. Required by Netscape if the web server does not specify the MIME
type for .swf files. If your HTML page loads the Flash Player in IE for Windows but not in other
browsers, be sure you've set the TYPE properly. Must be "application/x-shockwave-
flash".

See Table H-1 and Section H.3 for more information.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix H. Embedding a Flash Movie in a Web Page

H.3 Common Attributes of the <OBJECT> and <EMBED> Tags

The following list of attributes applies to the both <OBJECT> and <EMBED> tags. See Example H-1 for

sample usage.

ALIGN

Positions the movie in the browser window. When omitted, defaults to center, but there is no explicit
"CENTER" option. Possible values are: "" (no value, indicating centered), "LEFT", "RIGHT",

"TOP", and "BOTTOM".

BASE

The URL to use as the base of all relative URLs used in the movie (e.g., URLs used by getURL(),
loadMovie(), XML.send(), etc.).

BGCOLOR

The background color of the movie, in RGB hexadecimal triplet notation—#RRGGBB, where RR, GG,

and BB are two-digit hex numbers representing Red, Green, and Blue. Overrides any author-time setting

made via Modify Document.
HEIGHT

Height of the movie, either in pixels or as a percentage of the HTML page width in the browser.
LOOP

Causes the Flash animation to loop continuously (if true, the default) or stop (if false) when the

playhead reaches the end of the movie.
MENU

Indicates whether the Flash Player's contextual menu contains a full list of items (true) or a minimal

list of items (false). It defaults to true but is often set to false to prevent users from

manipulating the movie in undesirable ways, such as stopping it, rewinding it, or zooming it. The
contextual menu is accessed using right-click under Windows or Ctrl-click on the Macintosh.

PLAY

When true (the default), the movie plays immediately upon loading. When false, the movie does

not play and must be started via ActionScript using the play() or gotoAndPlay() function.
QUALITY

Sets the antialiasing of text and graphics to control playback quality and performance. Values are:
"BEST", "HIGH", "AUTOHIGH", "MEDIUM", "AUTOLOW", or "LOW".

SALIGN

Dictates the positioning of the movie, relative to the space available to the Flash Player. For possible
values and usage, see Table 18-20 under Stage.align in the Language Reference.

SCALE

Controls scaling. Values are: "EXACTFIT", "NOBORDER", "NOSCALE", or "SHOWALL".

For usage, see Stage.scaleMode in the Language Reference.

WIDTH

Width of the movie, either in pixels or as a percentage of the HTML page width in the browser.
WMODE

Allows Flash movies to be windowless for more seamless integration with non-Flash elements using
HTML layers. Supported values are: "WINDOW" (the default), "OPAQUE", or "TRANSPARENT".

Flash Player 6.0.61.0 adds support for the WMODE attribute under Mac OS X and Netscape for

Windows. Prior versions supported WMODE only when using Internet Explorer for Windows. For

details, see the release notes for Flash Player 6.0.61.0 or Help Using Flash.

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Appendix H. Embedding a Flash Movie in a Web Page

H.4 Runtime Access Affecting HTML Attributes

Table H-2 lists the HTML attributes that relate to, or can be affected by, ActionScript at runtime

Table H-2. The <EMBED> and <OBJECT> tag runtime-related attributes

Runtime access <OBJECT> attribute <EMBED> attribute

To load additional movies into the
Player, use loadMovie().

<PARAM NAME="MOVIE"
VALUE="url">

SRC="url"

Use _root._url to determine the

location from which the movie was
loaded.

BASE="url" BASE="url"

Draw a colored rectangle using a
depth of -16384 using

MovieClip.beginFill(),
Stage.height, and

Stage.width.

<PARAM NAME="bgcolor"
VALUE="#FFFFFF">

BGCOLOR= ="#FFFFFF"

Requires Flash Player 6. See Section
2.6 for details, including alternatives
for supporting Flash Player 5.

<PARAM
NAME="FLASHVARS"
VALUE="AUTHOR=Moock">

FLASHVARS="AUTHOR=Moock"

Use gotoAndPlay() to play the movie
starting at frame 1.

<PARAM NAME="LOOP"
VALUE="TRUE">

LOOP="TRUE"

Stage.showMenu (requires

Flash Player 6) For Flash Player 5, use
fscommand("showmenu", "false") and
fscommand("showmenu", "true").

<PARAM NAME="MENU"
VALUE="TRUE">

MENU="TRUE"

Use stop() to halt the movie at frame
1.

<PARAM NAME="PLAY"
VALUE="TRUE">

PLAY="TRUE"

_quality <PARAM NAME="QUALITY"
VALUE="HIGH">

QUALITY="HIGH"

Stage.align (requires Flash

Player 6)

<PARAM NAME="SALIGN"
VALUE="LT">

SALIGN="LT"

Stage.scaleMode (requires

Flash Player 6) For Flash Player 5, use
fscommand("allowscale").

<PARAM NAME="SCALE"
VALUE="NOSCALE">

SCALE="NOSCALE"

ActionScript for Flash MX: The Definitive Guide, 2nd Edition

By Colin Moock

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of ActionScript for Flash MX: The Definitive Guide, Second Edition, is a siren, a
particular type of salamander found in North American freshwater habitats. Salamanders are amphibians with
tails; they diverged from other amphibian species (including frogs) early in amphibian evolution. All
salamanders have smooth skin that is kept moist by secretions from numerous glands. When their environment
becomes too dry, too hot, or too cold, the cold-blooded salamanders burrow into mud, and their body functions
slow down. Sirens develop cocoons to shelter themselves until conditions improve.

Sirens are considered very primitive salamanders, as they are aquatic (live permanently in water), lack hind legs,
have reduced front legs, gills, and other larval features into maturity, and their offspring are fertilized externally
in the water. They are active at night, coming out and swimming much like eels do, using their dorsal fin in side-
to-side motion to propel them forward. As they do so, they feed by gulping at insects and larvae. They expel
plant matter through their gills.

Like all amphibians, sirens are an important part of a balanced ecosystem. They are small predators who in turn
are preyed upon by fish and birds. Their glandular skin and fragile systems put sirens in the unfortunate position
of being early pollution indicators in their freshwater habitats. Siren intermedia, an unusual siren subspecies that
inhabits a large North American range and is known for its ability to produce vocal clicks and shrills, has nearly
disappeared from Michigan, perhaps due to the presence of Rotenone, a chemical tool used to manage fisheries.

Brian Sawyer was the production editor and copyeditor for ActionScript for Flash MX: The Definitive Guide,
Second Edition. Linley Dolby, Jeff Holcomb, and Claire Cloutier provided quality control. Genevieve
D'Entremont, Judy Hoer, and Andrew Savikas provided production support. Julie Hawks wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image
is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6 by Joe Wizda with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and
XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Sarah Jane Shangraw and Brian
Sawyer.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik
Ray, Benn Salter, John Chodacki, and Jeff Liggett.

