
www.dbeBooks.com - An Ebook Library

www.allitebooks.com

http://www.allitebooks.org

ActionScript 3.0 Design Patterns

www.allitebooks.com

http://www.allitebooks.org

Other resources from O’Reilly

Related titles Essential ActionScript 3.0

Dynamic HTML: The
Definitive Reference

Ajax on Java

Ajax on Rails

Learning JavaScript

Programming Atlas

Head Rush Ajax

Rails Cookbook

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

www.allitebooks.com

http://www.allitebooks.org

ActionScript 3.0 Design Patterns

 William B. Sanders and
Chandima Cumaranatunge

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

ActionScript 3.0 Design Patterns
by William B. Sanders and Chandima Cumaranatunge

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steve Weiss
Developmental Editor: Robyn G. Thomas
Production Editor: Philip Dangler
Copyeditor: Sohaila Abdulali

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

July 20007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. ActionScript 3.0 Design Patterns, the image of a rosy feather starfish, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52846-9

ISBN-13: 978-0-59652846-1

[M]

www.allitebooks.com

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

Bill would like to dedicate this to the new kids on

the block, Ricky and Olivia.

Chandima would like to dedicate this book to his

parents, Gaya and Lakshmie.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Table of Contents

Preface . xi

Part I. Constant Change

1. Object-Oriented Programming, Design Patterns, and ActionScript 3.0 3
The Pleasure of Doing Something Well 3
OOP Basics 10
Abstraction 11
Encapsulation 15
Inheritance 24
Polymorphism 34
Principles of Design Pattern Development 42
Program to Interfaces over Implementations 45
Favor Composition 49
Maintenance and Extensibility Planning 57
Your Application Plan: It Ain’t You Babe 60

Part II. Creational Patterns

2. Factory Method Pattern . 65
What Is the Factory Method Pattern? 65
Abstract Classes in ActionScript 3.0 68
Minimalist Example 69
Hiding the Product Classes 73
Example: Print Shop 74
Extended Example: Color Printing 80
Key OOP Concepts Used in the Factory Method Pattern 84

www.allitebooks.com

http://www.allitebooks.org

viii | Table of Contents

Example: Sprite Factory 84
Example: Vertical Shooter Game 90
Summary 100

3. Singleton Pattern . 101
What Is the Singleton Pattern? 101
Key OOP Concepts Used with the Singleton Pattern 102
Minimalist Abstract Singleton 105
When to Use the Singleton Pattern 112
Summary 125

Part III. Structural Patterns

4. Decorator Pattern . 129
What Is the Decorator Pattern? 129
Key OOP Concepts Used with the Decorator Pattern 132
Minimalist Abstract Decorator 135
Applying a Simple Decorator Pattern in Flash: Paper Doll 141
Decorating with Deadly Sins and Heavenly Virtues 148
Dynamic Selection of Concrete Components and Decorations:
A Hybrid Car Dealership 164
Summary 176

5. Adapter Pattern . 177
What Is the Adapter Pattern? 177
Object and Class Adapters 179
Key OOP Concepts in the Adapter Pattern 185
Example: Car Steering Adapter 185
Extended Example: Steering the Car Using a Mouse 193
Example: List Display Adapter 194
Extended Example: Displaying the O’Reilly New Books List 199
Summary 203

6. Composite Pattern . 204
What Is the Composite Pattern? 204
Minimalist Example of a Composite Pattern 207
Key OOP Concepts in the Composite Pattern 217
Example: Music Playlists 217
Example: Animating Composite Objects Using Inverse Kinematics 222

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | ix

Using Flash’s Built-in Composite Structure: the Display List 233
Summary 243

Part IV. Behavioral Patterns

7. Command Pattern . 247
What Is the Command Pattern? 247
Minimalist Example of a Command Pattern 251
Key OOP Concepts in the Command Pattern 255
Minimalist Example: Macro Commands 255
Example: Number Manipulator 258
Extended Example: Sharing Command Objects 263
Extended Example: Implementing Undo 266
Example: Podcast Radio 270
Extended Example: Dynamic Command Object Assignment 276
Summary 281

8. Observer Pattern . 282
What Is the Observer Pattern? 282
Key OOP Concepts Used with the Observer Pattern 285
Minimalist Abstract Observer 289
Example: Adding States and Identifying Users 294
Dynamically Changing States 302
Example: Working with Different Data Displays 318
Summary 330

9. Template Method Pattern . 331
What Is the Template Method Pattern? 331
Key OOP Concepts Used with the Template Method 335
Minimalist Example: Abstract Template Method 338
Employing Flexibility in the Template Method 341
Selecting and Playing Sound and Video 344
Hooking It Up 351
Summary 356

10. State Pattern . 357
Design Pattern to Create a State Machine 357
Key OOP Concepts Used with the State Pattern 360
Minimalist Abstract State Pattern 361

www.allitebooks.com

http://www.allitebooks.org

x | Table of Contents

Video Player Concrete State Application 367
Expanding the State Design: Adding States 374
Adding More States and Streaming Capabilities 382
Summary 397

11. Strategy Pattern . 398
What Is the Strategy Pattern? 398
Key OOP Concepts Used with the Strategy Pattern 400
Minimalist Abstract State Pattern 402
Adding More Concrete Strategies and Concrete Contexts 406
Working with String Strategies 414
Summary 423

Part V. Multiple Patterns

12. Model-View-Controller Pattern . 427
What Is the Model-View-Controller (MVC) Pattern? 427
Communication Between the MVC Elements 428
Embedded Patterns in the MVC 430
Minimalist Example of an MVC Pattern 431
Key OOP Concepts in the MVC Pattern 443
Example: Weather Maps 443
Extended Example: Infrared Weather Maps 451
Example: Cars 457
Custom Views 463
Adding a Chase Car 466
Summary 468

13. Symmetric Proxy Pattern . 469
Simultaneous Game Moves and Outcomes 469
The Symmetric Proxy Pattern 473
Key OOP Concepts Used with the Symmetric Proxy 475
The Player Interface 477
The Referee 478
Information Shared Over the Internet 483
Player-Proxy Classes 486
Classes and Document Files Support 494
Summary 498

Index . 499

xi

Preface1

As ActionScript has evolved from a few statements in Flash to a full-fledged Internet
programming language in the latest release of Flash and Flex, we have the ability to
implement sophisticated designs developed for languages using object-oriented pro-
gramming (OOP). ActionScript 3.0 heralds a new era in Flash and Flex program-
ming because it implements the ECMAScript standard for Internet languages. Many
features found in languages such as C++ and JavaTM are now available in Action-
Script 3.0.

Along with more sophisticated features in ActionScript 3.0 come more sophisticated
ways of programming and thinking about programming. Most readers of this book
will be familiar with OOP to some degree, and like the step from sequential or proce-
dural programming to OOP, the step to design pattern programming is a step up for
OOP programmers. We felt that because ActionScript 3.0 had arrived at a point
where more complex and challenging programming structures can be developed,
Flash and Flex programmers needed to understand programming techniques to cope
with these structures.

By understanding design pattern programming, you will be able to write better OOP
code, and reuse that code in other programs. The better paying positions in the pro-
gramming field favor those developers who can work with team development, and
the sophisticated structures that design patterns and OOP were developed to han-
dle. At the same time that you gain proficiency in programming more complex appli-
cations, design patterns actually make programming easier. In large and complex
applications, programmers have the most difficulty with poor planning and awk-
ward design structures. Design patterns not only provide solutions for common chal-
lenges, but also focus on maintenance and change. The vocabulary of design patterns
is equally important because with it, you can become part of the developer commu-
nity that communicates clearly in the language of design patterns.

xii | Preface

Who This Book Is For
We wanted to develop a book for intermediate to advanced ActionScript 3.0 users.
Unlike some languages, such as Java, where the readers are likely to have computer
science or computer engineering degrees, most ActionScript 3.0 users are likely to
have learned ActionScript in developmental stages using Flash. As a result, their
backgrounds are far more varied, and the programming base less definite. We’re sure
that a number of ActionScript programmers have computer science or related back-
grounds, and much of the introductory materials in the first chapter will be redun-
dant. Likewise, we’re certain that some readers on the lower end of the intermediate
level are learning object-oriented programming at the same time that they’re trying to
pick up design patterns; they may have little or no formal training in programming.

Given the range of ActionScript programming backgrounds, we’re bound to be too
difficult for some and too simplistic for others. However, this book’s overall goal is
to explain how to use different design patterns. We targeted whom we considered
intermediate level ActionScript developers. We’ve provided everything the intermedi-
ate level developer will need to move to the advanced level. For the advanced user,
we provide explanations and examples of how to use design patterns with Action-
Script 3.0.

How This Book Is Organized
The book’s organization reflects the topic organization found in Design Patterns Ele-
ments of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley, 1995).

The first part contains Chapter 1, which is an introduction to design patterns. We
added an introductory section for readers with minimal object-oriented program-
ming experience. More advanced users may want to skip the review of OOP, but go
over the materials on design patterns.

Part I, Constant Change

Chapter 1, Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Parts II, III and, IV are the three major parts of the book. They examine fundamental
design patterns, and organize the patterns into creational, structural and behavioral
categories. Representative design patterns are included in each part, but we didn’t
include every single design pattern from the book by Gamma and his associates.

Part II, Creational Patterns

Chapter 2, Factory Method Pattern

Chapter 3, Singleton Pattern

Preface | xiii

Part III, Structural Patterns

Chapter 4, Decorator Pattern

Chapter 5, Adapter Pattern

Chapter 6, Composite Pattern

Part IV, Behavioral Patterns

Chapter 7, Command Pattern

Chapter 8, Observer Pattern

Chapter 9, Template Method Pattern

Chapter 10, State Pattern

Chapter 11, Strategy Pattern

Part V contains two chapters on using multiple design patterns in application devel-
opment. The Model-View-Controller and Symmetric Proxy designs incorporate more
than a single design pattern. They’re organized like the other chapters on design pat-
terns as far as explaining how the multiple patterns work. However, the multiple
designs rely more on object diagrams than class diagrams.

Part V, Multiple Patterns

Chapter 12, Model-View-Controller Pattern

Chapter 13, Symmetric Proxy Pattern

Each chapter on design patterns is organized to optimize and clarify understanding
the purpose of a design pattern and how to use it. The following sections, although
not necessarily in this order, can be found in each of the chapters on design patterns:

• What is the pattern?

• Key features of the pattern

• The formal model of the pattern including a class diagram

• Key OOP concepts found in the pattern

• Minimalist abstract example

• Applied examples

We organized the book in this manner to provide a well-rounded picture of each
design pattern. By explaining the pattern and its key features, we focus on the pat-
tern’s function and structure. The formal model and class diagram gives a wider
overview, so you can see the structure and the interconnected classes and interface.
We also included certain key OOP concepts for the different patterns. We did this
for two reasons. First, the intermediate user will be better able to understand the
OOP concept at work, and so understand OOP better. Second, we hoped that
advanced users could see the concepts as shorthand to quickly determine how the
design pattern is structured.

xiv | Preface

What You Need to Use This Book
You will need either Flash CS3 or Flex 2 to work with the program examples in this
book. All the applications were developed in the Flash IDE, so Flex 2 developers will
need to make modifications, especially where certain features were developed using
Flash drawing tools and components.

A few examples use Flash Media Server 2 (FMS2). The examples using FMS2 can be
created using the Developer’s version of FMS2 and can be freely downloaded at http://
www.adobe.com/downloads/. You will need either a Windows or Linux OS to run
Flash Media Server 2. If you have a “MacTel” Macintosh, you can use the Window OS
to run FMS, but if you have an older Macintosh running on the Motorola CPU, you’ll
need to have a LAN or Internet access to a Windows or Linux platform running
FMS2. Alternatively, you can skip the examples with FMS2.

Say It Again, Sam
One thing we can guarantee is redundancy. We know that people have different
styles of learning. Some are conceptual learners, some experiential, and some meta-
phorical or any combinations of those, plus others we haven’t heard about yet. So
you will see that we use several different ways to say the same thing with the idea
that if you don’t get it one way, you’ll get it another.

At the same time, we feel that by discussing the same idea or concept in different
ways and in different contexts, the specific sense of that concept is better shaped. In
looking over reference materials published in books, articles, and online regarding
Design Patterns, we found that some materials were not quite accurate in depicting
some features. We worked very hard not to make mistakes, and so by providing
numerous contexts, we can help filter out what we specifically mean, and, equally
important, what we don’t mean. The ultimate authority is always Design Patterns:
Elements of Reusable Object-Oriented Software, and if you have any questions about
exactly what we mean, you can always check it out at the original source.

Over the years, a number of articles, books, dissertations and other treatises have
appeared offering suggestions for improving the original design patterns. Some of
these documents are quite useful, and even have the endorsement of members of the
Gang of Four (GoF)—Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Others are not too useful, especially for learning design patterns, and tend to
complicate an already complex subject. As a result, we have not strayed from the
path laid down in the original text by GoF.

http://www.adobe.com/downloads/
http://www.adobe.com/downloads/

Preface | xv

User’s Guide
This book, at its core, is an introduction to a relatively advanced topic for writing
reusable OOP code for ActionScript 3.0. Like “jumbo shrimp,” an “elementary intro-
duction to an advanced topic” is an oxymoron. Advanced developers may want less
of the elementary and less senior developers may demand more preparatory
materials.

Because we cannot measure any reader’s level, we urge you to go through the Table of
Contents and flip through the chapters to find what you want. Find your level and
use the book at that level. For some, it will be an exercise of reading from cover to
cover, while for others it will be a reference work for looking up how ActionScript 3.0
works with different features of design patterns. After all, it’s your book, and you
should use it to best suit your needs.

Flex 2 developers

We developed all the examples for this book using Flash CS3. So, if you’re looking to
use these examples for Flex 2, you’ll need to make the appropriate Flex adjustments.
In some cases, examples were developed using user-created movie clip classes in the
Flash CS3 IDE and stored in the Library panel. These cannot be employed directly
using Flex 2. So, if you’re using Flex 2, plan on some workarounds.

Flash Media Server 2 developers

We have a few examples that use Flash Media Server 2 (FMS2). The examples don’t
require anything more than the Developers Version of FMS2. The Developers Ver-
sion can be freely downloaded from the Adobe site at http://www.adobe.com/devnet/
flashmediaserver/. Alternatively, you can skip the examples, or substitute some other
open socket technology.

Companion Tools You’ll Want
In an ideal world, those reading this book would have a solid background in object
oriented programming and ActionScript 3.0. However, ActionScript 3.0 was released
in a non-beta format in Flex 2 only about six months before this book, and in Flash
at about the same time this book was published. So, you may not be familiar with
ActionScript 3.0, and this book is not a tutorial in ActionScript 3.0. At a minimum,
you will want to keep the ActionScript 3.0 Reference Guide handy along with any
other ActionScript 3.0 documentation that comes with Flash CS3.

We strongly urge you to get a copy of Design Patterns: Elements of Reusable Object-
Oriented Software sooner or later. At a minimum, check it out of your library.
Another book we found to be invaluable is the wonderfully fun and enlightening
book, Head First Design Patterns by Eric and Elisabeth Freeman (O’Reilly, 2004). All
the examples are in Java, but even so, you’ll learn a great deal about design patterns

http://www.adobe.com/devnet/flashmediaserver/
http://www.adobe.com/devnet/flashmediaserver/

xvi | Preface

and OOP. (Working out how to convert the Java examples to ActionScript 3.0 will
teach you a lot about ActionScript 3.0 as well—however, before tackling the Java
translations, be sure to go over the design pattern examples in this book.)

If you don’t have a good ActionScript 3.0 book yet, get one. We can recommend
ActionScript 3.0 Cookbook by Joey Lott, Darron Schall, and Keith Peters (O’Reilly,
2006) and Essential ActionScript 3.0 by Colin Moock (O’Reilly, 2007). For a very
brief introduction to ActionScript 3.0, take a look at the Short Cut publication,
ActionScript 3.0 Programming: Overview, Getting Started, and Examples of New Con-
cepts by Bill Sanders (O’Reilly, 2007). Also, you’ll want an ActionScript 3.0 book on
object-oriented programming. We’ve included an introduction to OOP in Chapter 1
that will suffice for now, and both the Moock and Lott books have some great OOP
materials as well. However, a book dedicated to OOP concepts should be part of
your library if you plan to write programs on the level of design patterns.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Bold
Indicates text that should be entered by the user.

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, or the output from
commands.

Constant width bold
Shows commands that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xvii

Using Code Examples
This book will help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for per-
mission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “ActionScript 3.0 Design Patterns, by
Bill Sanders and Chandima Cumaranatunge. Copyright 2007 O’Reilly Media, Inc.,
ISBN 978-0-596-52846-1.”

If you feel your use of code examples falls outside fair use or the permission given,
feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596528461

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596528461
mailto:bookquestions@oreilly.com
http://www.oreilly.com

xviii | Preface

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, it means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

Acknowledgments
Since being introduced to design patterns by aYo Binitie, these programming struc-
tures have been a topic of close interest. Like a lot of ActionScript developers, we are
grateful to Colin Moock for breaching the topic of ActionScript’s use with design
patterns, in Essential ActionScript 2.0. We are also grateful to Eric Freeman and Elis-
abeth Freeman for their fabulous Head First Design Patterns—even struggling
through the Java code, we found it possible to appreciate how design patterns could
be used in ActionScript 3.0. At the root of design patterns, we must acknowledge the
venerable Gang of Four who produced Design Patterns: Elements of Reusable Object-
Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.
We have spent endless hours poring over this tome.

Several people at Adobe were very generous with their time in helping out with the
ActionScript 3.0 and some insights into design patterns. They include Chris Nuuja,
Erica Norton, Geoffrey Williams, Grant Skinner, Jeffrey Mott, Mike Downey, Nivesh
Rajbhandari, Peter DeHaan, Robert Penner, Gary Grossman, Ali Mills, Francis
Cheng, David Mendels, Gordon Smith, Roger Gonzalez, Sho Kuwamoto, Francis
Chen, Emmy Huang, Werner Sharp, Joan Tan, Phil Costa, Mally Gardiner, Asa
Whillock, Chris Hock, Tareq Aljaber, San Khong, and Peter von dem Hagen.

In the Flash community, several Flash developers added further insight to both
design patterns and ActionScript 3.0. They include Peter Hall, Aral Balkan, Robert
Penner, Beau Ambur, Stefan Richter, Joey Lott, Guy Watson, Keith Peters, Will Law,
and Brian Lesser. Jonathan Kaye, who brought state machines to ActionScript, was a
huge help by going over a state design pattern that served as a model for what was
developed for the book.

We’re also very grateful to Margot Maley Hutchison at Waterside Productions for
helping to make the arrangements with O’Reilly Publishers. As always, Margot
smoothed a complex process.

http://www.oreilly.com

Preface | xix

We are grateful to Professor John Gray, chair of the Multimedia Web Design and
Development program at the University of Hartford. His encouragement and sup-
port in all matters pertaining to Internet and Web development, research and learn-
ing provide us with a rich atmosphere and wonderful resources to keep on track with
the ever expanding universe of the technology we use.

Technical Reviewers
The technical reviewers had their job cut out for them. Some of the reviewers were
experts on design patterns with C# and Java backgrounds, but were unfamiliar with
ActionScript. Fortunately, ActionScript 3.0 is looking and acting like other OOP lan-
guages, and so they were able to give us a great deal of help. Chief among this group
was Adrienne Decker who is a Lecturer in the Department of Computer Science and
Engineering at SUNY Buffalo. After sharing a session with Adrienne at the 2006
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA)
Conference in Portland, Oregon, it became clear that Adrienne not only was wise in
the ways of design patterns, she was also very interested in how to best communi-
cate the inner workings of design patterns. She was an immense help. Two other aca-
demics recruited to this project were Dr. James Heilotis and Dr. Axel Schreiner, both
of the Rochester Institute of Technology, Department of Computer Science. Profes-
sor Schreiner had presented a design pattern named the Symmetric Proxy Pattern at
the 2006 OOPSLA conference. Based on a paper, A Pattern for Distributing Turn-
Based Games, by Heilotis and Schreiner, this new pattern seemed to be an excellent
tool for gaming over the Internet using Flash and Flash Media Server 2. We believed
that given the newness and creativity of the Symmetric Proxy Pattern, we would be
well-advised to ask them for a technical review of our implementation and explana-
tion of their pattern. They were very helpful in seeing to it that we were able to com-
municate their ideas, and we are most grateful to them both.

We were most fortunate to get the services of Todd Anderson. Todd is a bright light
in the ActionScript 3.0 and design pattern mix. He helped us immensely and we are
most grateful to Todd’s sharp eye and spot-on comments. Darren Richardson was
our technical reviewer from the outset. He also brought an international perspective
in case we got a bit too ethnocentric.

We also had the unique opportunity of working with The City’s Flash Coders New
York (FCNY) group led by Jean-Charles Carelli. With considerable talent to spare,
members of this group worked on (and over) our manuscript as technical reviewers.
Their comments were quite helpful, and reflected an excellent cross-section of savvy
ActionScript developers. Chief among those who aided in this process were Tyler Lar-
son, Jim Kremens, Dominic Tancredi, Shari Halter, James O’Reilly, Andrew Hunt,
Brian Weisenthal, Oscar Trelles, Seth Hillinger, Lisa Larson, and Edward Skrypa.

www.allitebooks.com

http://www.allitebooks.org

xx | Preface

Editors
Our development editor, Robyn Thomas, had to make sense out of a highly techni-
cal corpus of work in addition to guiding us through The King’s English to insure
what we said was what we meant. She also kept an array of technical editors sup-
plied with chapters, updated where all the pieces were (and where they should be),
and generally made the writing experience one of the nicest possible. Steve Weiss is
an incredibly supportive publisher—getting everything organized and on track. Steve
is also open to new perspectives and all things creative; most likely because he is so
creative himself.

Authors
Bill Sanders, PhD, and Chandima Cumaranatunge, PhD, are both professors in the
Multimedia Web Design and Development (MWD2) program at the University of
Hartford. Bill teaches courses in Flash, ActionScript, Flash Media Server 2, PHP, C#,
SQL, CSS and XHTML among other Internet languages. He has published 44 com-
puter and computer-related books, written software ranging from Basic to Flash
Media Server ActionScript, and served as a consultant for different computer software
companies. Chandima teaches an introduction to the MWDD major, covering Flash
and some ActionScript, a gaming course using Flash and ActionScript, as well as
educational technology courses in the Education, Nursing, and Health Professions
College. Recently he received a grant to teach an experimental course in robotics.

Bill Sanders
Bill would like to thank his co-author Chandima for a great writing experience and
someone to really talk with about design patterns. Bill would also like to thank his
wife Delia for her forbearance while she completed her doctorate and our two offices
sang the song of two fully employed word processors. Our obsessive-compulsive
Greater Swiss Mountain Dog, WillDe, added a measure of reality to both of our
efforts. He always knew what was really important—going for a walk.

Chandima Cumaranatunge
Chandima considers himself very lucky, not only to have Bill as a writing partner,
but as a professional mentor and friend. He is also eternally grateful to his wife Resh-
maal for being totally supportive and putting up with his long writing stints away
from the family. Finally, Chandima’s daughter Sayuri, the two-year-old “little lily” in
“the ocean” (based on the meaning of her name in Japanese and Sinhalese) kept him
sane by reminding him every day about the important things in life.

PART I

I.Constant Change

You must be the change you wish to see in the world.
—Mohandas Gandhi

They must often change, who would be constant in
happiness or wisdom.

—Confucius
Without change, something sleeps inside us, and

seldom awakens. The sleeper must awaken.
—Frank Herbert

Life belongs to the living, and he who lives must be
prepared for changes.

—Johann Wolfgang von Goethe

If we had to summarize design patterns in a single sentence, we’d say that they’re
tools for coping with constant change in software design and development. When you
look at the different design patterns in this book, they’re optimized to allow the pro-
grammer to make changes and reuse most of the software developed. The key con-
cepts are change and flexibility. That same theme will be repeated throughout the
book. This Part I provides a general guide for understanding and using this book.

To work with design patterns, you need to know basic object-oriented programming
(OOP) principles. If you’re not familiar with these concepts, spend some quality time
with Chapter 1. The latter part of Chapter 1 gets into some of the design pattern
principles, and understanding these concepts will help you better understand the
chapters covering the individual design patterns.

If you use and understand the basic OOP concepts such as abstraction, encapsula-
tion, inheritance and polymorphism, you won’t necessarily be a good OOP designer.
As a professional designer and developer, you need to design software that’s easy to
maintain and flexible enough to accept change. In other words, you need to develop
software that reflects the real world. Any tool you use on the Web today must have
the capacity to easily change, be updated, and be reused. Otherwise, the software
lacks the capacity to adapt to real world usage.

Design patterns provide object-oriented designs that can cope with change using dif-
ferent OOP tools. If you think about using OOP designs with an eye to how those
designs can deal with change, how they can be reused, and how to build in flexibil-
ity; then you’re beginning to think like a design pattern programmer.

Chapter 1, Object-Oriented Programming, Design Patterns, and ActionScript 3.0

3

Chapter 1 CHAPTER 1

Object-Oriented Programming, Design
Patterns, and ActionScript 3.01

Let it be your constant method to look into the design
of people’s actions, and see what they would be at, as
often as it is practicable; and to make this custom the

more significant, practice it first upon yourself.
—Marcus Aurelius

The life history of the individual is first and foremost
an accommodation to the patterns and standards

traditionally handed down in his community.
—Ruth Benedict

At the lowest cognitive level, they are processes of
experiencing, or, to speak more generally, processes of

intuiting that grasp the object in the original.
—Edmund Husserl

The Pleasure of Doing Something Well
The idea of design patterns is to take a set of patterns and solve recurrent problems.
At the same time (even in the same breath), the patterns reflect good object-oriented
programming (OOP) practices. So, we cannot separate OOP from design patterns,
nor would we want to do so.

In answering the question of why bother with design patterns, we are really dealing
with the question of why bother with OOP. The standard response to both design
patterns and OOP often points to working with a team of programmers and speak-
ing the same language. Further, it’s easier to deal with the complexities involved with
programming tasks requiring a division of labor for a large project using an object
metaphor and practices.

In addition to coordinating large projects, programmers use both OOP and design
patterns to deal with change. One key, important element, of design patterns is that
they make changing a program much easier. The bigger a program and the more
time you’ve spent developing it, the greater the consequences in making a change to

4 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

that program. Like pulling a string in a sweater that unravels it, changing code in a
program can have the same unraveling consequences. Design patterns and good
OOP ease the task of making changes in complex programs, and reduce the changes
or global problems.

Team coordination and application update and maintenance are reasons enough to
learn design patterns. However, this is not the case if most programs you write are
relatively short, you don’t work with teams, and you don’t worry about change.
Then rewriting the short program is neither time-consuming nor difficult. What pos-
sible reason would you then have for learning design patterns?

Beside the fact that ActionScript 3.0 is based on ECMAScript and is not likely to
have major changes with each new release of Flash or Flex as in the past, you have a
far more personal reason for learning design patterns. Alexander Nakhimovsky and
Tom Myers, in writing about using OOP with JavaScript (Wrox, 1998), point out the
value in the pleasure derived from doing something well. Like any endeavor, whether
it be skateboarding or building a house, people can find pleasure in doing a task well.
By “doing something well,” we do not mean an obsessive perfectionism—especially
since perfectionism often leads to task paralysis. Rather, like any task that one can
see an outcome and experience a process of accomplishment, when it’s done right,
you experience the craftsman’s pleasure of the creative process and results.

Sequential and Procedural Programming
If you’ve never heard of sequential programming, that’s the kind of programming
you’ve most likely been doing. Most amateur programmers just write one statement
after another, and any program that has the correct sequence of statements works
just fine. However, as programs became more complex, programmers ran into an
unruly jumble of code often called spaghetti programs. To remedy the jumble effect
of sequential programming, programmers began organizing programs into a set of
procedures and set of rules, and procedural programming was born. Instead of willy-
nilly GOTO statements jumping all over a program, subroutines modularly defined pro-
gram flow with appropriate GOSUB/RETURN procedures to keep everything tidy.

The RETURN statements back then were different from what they are
today. A RETURN meant to return to the position in a sequence of code
where the GOSUB had originated. In ActionScript, a return statement
means that an operation sends back information generated in the
operation [the method or procedure].

Also, from procedural programming came the concept of scope so that variables in
functions and subroutines could be reused and one procedure would not contami-
nate another.

The Pleasure of Doing Something Well | 5

The great majority of programming languages today are considered procedural in
that they have the concepts and syntax that support it. The different versions of
BASIC are procedural, as are languages like ColdFusion, PHP and Perl. However,
C++ is a procedural language, as is ECMAScript (ActionScript 3.0) and Ada, lan-
guages many consider object-oriented. Languages like Java are considered true OOP
languages. Without going into a lot of detail, the reason Java is considered a true
OOP language and the others are not is because the only kind of procedure in Java is
a class method. Its structure forces procedures to be class methods, and doesn’t
allow other procedures to operate outside the class structure.

You might be surprised at how heated a discussion can get when it
comes to a language being an OOP language or not. Two versions of
OOP criteria exist. One is fairly inclusive and allows any language
with certain features that can generate OOP code to be considered
OOP. (ActionScript 3.0 is among those.) The other version has a
restrictive criterion that includes those languages that only allow meth-
ods as procedures to be admitted to the exclusive club of OOP lan-
guages. Both versions have valid points. However, we will sidestep the
issue by not taking a position, but note that both sides agree that you
can create good OOP code with a procedural language.

To make a long story short, this does not mean that the other languages are unable
to generate true OOP programs. Well before Java was even available, developers
were creating OOP programs. Some languages, especially those with the ability to
use class structures and override methods, such as ActionScript 3.0, are more OOP
friendly than others. As ActionScript has matured from a few statements to a true
ECMAScript language, it has become more OOP friendly.

Transition to OOP
Changing from sequential or procedural programming to OOP programming is more
than picking up a language that gives you little choice in the matter, as is the case
with Java. However, certain changes in a language can make it more amenable to
OOP, even if it’s not considered a true OOP language by some criterion. In the fol-
lowing sections, some new features in Flash CS3 provide a summary of relevant
changes to the way ActionScript is used.

MovieClip and Button scripts

For the ActionScript veterans whose introduction to programming was writing little
sequential scripts or procedures using the on statements associated with MovieClip or
Button objects, you’re probably aware that the latest version of Flash doesn’t allow
script embedded in either.

6 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Built-in State Machines: while most programmers welcomed the
demise of movie clip and button embedded scripts, one astute pro-
grammer observed that Flash used to have built-in state machines.
Jonathan Kaye, PhD, co-author of Flash MX for Interactive Simula-
tion: How to Construct and Use Device Simulations (Delmar Learning,
2002), noted that the button and movie clip scripts often served to cre-
ate state machines. Each button or movie clip could serve as an encap-
sulated, context-sensitive trigger for changing state. (See how design
patterns deal with State Machines in Chapter 10.)

In general, the demise of movie clip and button scripts is seen as a boon to better
programming, especially OOP programming. Keeping track of the isolated button
and movie clip codes could be a headache, even with relatively small applications.
For structuring larger programs, where OOP and Design Patterns are most useful,
having movie clips and buttons floating around with their own code moves the prob-
lem from the realm of headache to nightmare. So, for learning design patterns, be
glad you don’t even have to think about little scripts isolated in movie clips and
buttons.

Timeline scripts

Another kind of scripting you’ll be seeing less of in Flash are those embedded in your
Timeline. For the most part, placing scripts in the Timeline probably left a lot to be
desired in the first place, but worked out to be a convenient location. In Action-
Script 2.0, you were able to place a script in a class and call it from a script embed-
ded in the Timeline, and so all that the Timeline code was really used for was to call
a class that would launch a script in an ActionScript file (.as). That being the case,
the Flash CS3 .fla file has a little window where you can add the name of the class to
call. (See the next section.) So, if all you want to do is to call a program and compile
it into an SWF file, you no longer need to use the Timeline for your code at all.

However, Flash CS3 doesn’t do away with code in the Timeline. You can still use it,
but in this book, we use it selectively only with movie clips that are called from a
class outside the movie clip or button class. (See the section “Movie clip and button
classes.”)

Document class

You won’t be placing much, if any, code in the Timeline using ActionScript 3.0.
Rather than using an object with a Timeline script, you can now compile your .as
files by entering the name of the class name you want to launch your application.
Figure 1-1 shows how to use the Document class window in the Properties panel to
enter the name of the class you want to launch:

You can still use the Timeline, but unless there’s a good reason to do so, there’s no
need. Most of the examples in this book use the Sprite object instead of the

The Pleasure of Doing Something Well | 7

MovieClip class. A Sprite object has no Timeline, but a MovieClip class does. So
using Sprite objects save a bit of extra weight that the Timeline has.

Movie clip and button classes

In Flash CS3, MovieClip and Button objects you create using the Symbol dialog box
and store in the Library can be made available to work with ActionScript 3.0. Unlike
ActionScript 2.0 where MovieClip and Button symbols could be associated with a
class, with Flash CS3, they can be made into classes themselves. The object’s name
entered into the Name window when the symbols are created becomes the class
name for the object. (In past versions, references to a movie clip are made through an
instance name. You can still make those references, but in a different context.)

The advantage of this new procedure is that the symbol objects can be instantiated
just like any other class through the code, as long as the symbols are in the Library.
You don’t have to place them on the stage. They can be dynamically instantiated and
placed into a display array just like a dynamically generated object. Further, objects
contained within the MovieClip or Button can be addressed as a property just like
any other class.

While this book is in no way an introduction to Flash CS3, walking through one
example of this new way of creating a class with movie clips and buttons may be use-
ful to those new to Flash and experienced users alike. The following steps walk you
through this new feature:

1. Open a new Flash document and save it as rocket.fla.

2. Select Insert ➝ New Symbol from the menu bar to open the Create New Symbol
Dialog box. Enter Rocket in the Name window, and Click OK to enter the Sym-
bol Edit Mode.

3. In the Symbol Edit Mode, draw a rocket on the stage with the dimensions
W=89, H=14, as shown in Figure 1-2. Once finished, position the drawing at
X=0, Y=0. Click the Scene 1 icon to exit the Symbol Edit Mode.

Figure 1-1. Document class window

8 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

4. Select Insert ➝ New Symbol from the menu bar to open the Convert to Symbol
Dialog box. Enter FireRocket in the Name window, select Movie clip as Type,
and click the Export for ActionScript checkbox. Once you’ve clicked the check-
box, Figure 1-3 shows what the dialog box looks like. Notice that the Base class
is flash.display.MovieClip. The base class is the reference to the package
required for ActionScript to display a MovieClip object. Click OK to enter the
Symbol Edit Mode.

Figure 1-2. Rocket drawing

Figure 1-3. Setting a MovieClip class

Center point

The Pleasure of Doing Something Well | 9

5. Drag a copy of the Rocket movie clip from the Library to the center of the stage.
Move the center point of the movie clip to the rear of the rocket and position it
at X=0, Y=0.

6. Click on Frame 40 of the Timeline and press F5 to create 40 frames. Click Frame
40 again and press F6 to insert a keyframe. Click on the keyframe in Frame 40
and move the rocket to X=400, Y=0.

7. Click on the first keyframe, and, in the tween drop-down menu in the Properties
inspector, select Motion. You should now see a blue arrow in the Timeline.
Move the playhead from left to right to make sure that the motion tween is
working right. Figure 1-4 shows what you should see.

8. Open the Actions panel. Click on a blank area of the stage to make sure you
don’t have any objects selected, and then click on Frame 1. In the Actions panel,
type in the stop() statement. Save the Rocket.fla file.

9. Open a new ActionScript file and save it as TestRocket.as in the same folder as
the Rocket.fla file. Enter the script in Example 1-1 in the TestRocket.as file, and
save the file once again:

Figure 1-4. Rocket in motion tween

Center point

Current position Ending position

www.allitebooks.com

http://www.allitebooks.org

10 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

10. Finally, open the Rocket.fla file, and in the Document class window in the Prop-
erties panel, type in TestRocket and save the file. Then test the movie by press-
ing Ctrl + Enter (Command + Return on the Mac). You should see the rocket
move from left to right across the screen and then return to its original position.

Using Flash in a more or less traditional manner to create movie clips is still an
important part of using ActionScript, but it has changed. You can no longer attach a
class to a movie clip as was the case in previous versions. However, in creating appli-
cations using design patterns, you can still integrate different aspects created in the
Flash IDE. So while ActionScript 3.0 has made the leap to a true ECMAScript lan-
guage, it has not abandoned its roots in animated graphics.

OOP Basics
If you’re familiar with OOP and have been practicing good OOP for some time now,
you might want to skip this section or just skim over it to see if we’ve added any-
thing new, or if there’s something new as far as ActionScript is concerned. Later in
this chapter, we introduce good practices in OOP on which design patterns are
based. These more advanced concepts depend on understanding these basics. How-
ever, this short discussion is no substitute for a more in-depth understanding of
OOP. If this is your first exposure to OOP, you will definitely want to supplement
your understanding of OOP with an introductory book dedicated to OOP.

Throughout the book, you will find references to how a design pattern employs dif-
ferent basic and design pattern OOP principles. Each chapter includes a section on
key OOP concepts, and so what you read in this introductory chapter is only the first
of many times an OOP concept will be described. This is intentional. By looking at
an OOP concept from different angles, we believe you will have a better

Example 1-1. TestRocket.as

package
{
 import flash.display.Sprite;

 public class TestRocket extends Sprite
 {
 private var fireRocket:FireRocket;
 public function TestRocket()
 {
 fireRocket=new FireRocket();
 fireRocket.x=50;
 fireRocket.y=100;
 addChild(fireRocket);
 fireRocket.gotoAndPlay(2);
 }
 }
}

Abstraction | 11

understanding of OOP’s many nuances. We ourselves were surprised at how differ-
ent design patterns brought out different perspectives on the same OOP concept and
helped further clarify it.

To get started, we’ll review the four basic OOP concepts:

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

Each of these concepts needs reflection, and if you’re new to OOP, don’t worry
about getting it right the first time. We go over these concepts time and again in the
design pattern chapters.

Abstraction
In general, an abstraction is a model or ideal. You don’t have all of the details, but
you have the general parameters that can be filled in with details. Further, an
abstraction is clear enough for you to tell one abstraction from another. Take, for
example, two jobs your company is trying to fill. One’s for a Web designer and the
other’s for a programmer. To advertise for the position, you would not describe the
person as a specific person but instead in terms of the characteristics you want for
the position. You might have the two abstractions representing the two different
positions:

Two Positions Open:

• Programmer

— Experienced with multi-programmer projects

— Experienced with middleware and database programming

— ECMAScript programming background

— OOP and Design Pattern programming skills

• Web designer

— Experienced with creating Web graphics

— Familiar with animation graphics

— Can work with vector graphics

— Client-centered approach

You can tell the difference between the two positions and their general requirements
(properties), but the details are left fairly open. A programmer is unlikely to apply for
the Web designer position and a designer is just as unlikely to apply for the
programmer position. However, a pool of applicants could have a wide range of

12 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

skills that would provide the concrete details for each position. For example, one
programmer may have PHP middleware skills and/or MySQL database skills, while
another may be experienced in using ASP.NET, C# and MS SQL. The abstraction is
in the job description and the details are provided by the applicants’ unique sets of
skills and experience.

In Object-Oriented Design with Applications (Benjamin/Cummings), Grady Booch,
one of the design pattern pioneers, provides the following definition of an abstrac-
tion that is both clear and succinct:

An abstraction denotes the essential characteristics of an object that distinguish it from
all other kinds of object and thus provide crisply defined conceptual boundaries, rela-
tive to the perspective of the viewer.

Booch’s definition pretty well describes the two job descriptions. The descriptions
provide the essential characteristics of the position and they distinguish one from the
other.

Abstractions in ActionScript 3.0
Turning now to abstractions in ActionScript programming, we’ll take a simple video
player for an example. This player will be made of certain elements that we need; so
we start by listing them as abstractions:

• A Net connection

• A video screen

• A stream

• An FLV file to play

If we put these together just right, we’ll be able to play a video. However, instead of
starting with an abstraction, we want to start with something concrete that works for
us right away. Enter the code in Example 1-2 saving the file using the name in the
caption:

Throughout the book, with a few exceptions, caption names repre-
sent the name used for the file.

Example 1-2. PlayVideo.as

package
{
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;
 import flash.display.Sprite;

 public class PlayVideo extends Sprite

Abstraction | 13

You’ll need an FLV file named adp.flv—any FLV file with that name will work. Open
a new Flash document file, enter PlayVideo in the Document class window, and test it.

To change this to an abstract file, take out all specific references to any values with
the exception of the null value in the NetConnection.connect() method. (We could
pass that value as a string, but we’re leaving it to keep things simple.) Example 1-3
shows essentially the same application abstracted to a “description” of what it
requires to work.

 {
 public function PlayVideo()
 {
 var nc:NetConnection=new NetConnection();
 nc.connect(null);
 var ns:NetStream = new NetStream(nc);
 var vid:Video=new Video();
 vid.attachNetStream(ns);
 ns.play("adp.flv");
 addChild(vid);
 vid.x=100;
 vid.y=50;
 }
 }
}

Example 1-3. PlayVideoAbstract.as

package
{
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;
 import flash.display.Sprite;

 public class PlayVideoAbstract extends Sprite
 {
 public function PlayVideoAbstract(nc:NetConnection,
 ns:NetStream,vid:Video,flick:String,xpos:uint,ypos:uint)
 {
 nc=new NetConnection();
 nc.connect(null);
 ns= new NetStream(nc);
 vid=new Video();
 vid.attachNetStream(ns);
 ns.play(flick);
 vid.x=xpos;
 vid.y=ypos;
 addChild(vid);
 }

Example 1-2. PlayVideo.as (continued)

14 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

All the values for the different elements (with the exception of null) have been
abstracted to describe the object. However, like a job description that abstracts
requirements, so too does the PlayVideoAbstract class. All the particulars have been
placed into one long set of parameters:

PlayVideoAbstract(nc:NetConnection,ns:NetStream,vid:Video,flick:String,
 xpos:uint,ypos:uint)

The abstract parameters in the constructor function let us add any concrete ele-
ments we want, including the specific name of a video we want to play. Example 1-4
shows how concrete instances are implemented from an abstract class.

All the entire class does is to create a single instance of the PlayVideoAbstract class
and place it on the stage. Private variables serve to provide most of the concrete val-
ues for the required parameters. Literals provide the data for both the horizontal (x)
and vertical (y) positions of the video. To test it, just change the Document class
name in the Flash document (FLA) file to PlayAbstract.

 }
}

Example 1-4. PlayAbstract.as

package
{
 import flash.display.Sprite
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;

 public class PlayAbstract extends Sprite
 {
 private var conn:NetConnection;
 private var stream:NetStream;
 private var vid:Video;
 private var flick:String="adp.flv";

 public function PlayAbstract()
 {
var playIt:PlayVideoAbstract=new PlayVideoAbstract(conn,stream,vid,
 flick,100,50);
 addChild(playIt);
 }
 }
}

Example 1-3. PlayVideoAbstract.as (continued)

Encapsulation | 15

Why Abstractions Are Important
We can see two key reasons that abstractions are important for both OOP and
Design Patterns. Rather than being dogged by minutiae of the problem, abstraction
helps to focus on what parts, independent of their details, are required to solve the
problem. Does this mean that you ignore the details? Not at all. Rather, the details
are handled by adding them just when they’re needed. For instance, in the example
in the previous section, the exact video file is unimportant. All that’s important is
that some video name (a detail) be provided when we’re ready to play it. We don’t
need to build a theater around a single movie. Likewise, we don’t need to build a
class around a single video file.

The second advantage of abstraction is flexibility. If you’re thinking that in the previ-
ous section the Example 1-2 was easier and took less code and classes, you’re right.
However, suppose you want to place four videos on the stage. Then, all you would
need to do is to create four instances using the abstract class instead of re-writing
three more classes. In other words, the second method using abstraction is more flex-
ible. In addition to adding more videos instances, we can easily change the video file
we choose to play.

Encapsulation
Encapsulation is what makes a code object an object. If you have a tail, four legs, a
cold nose and a bark, you do not have a dog. You just have a collection of parts that
make up a dog. When you bring all of the doggy parts together, you know that each
part is a part but collectively, you do not think of parts but a reality sui generis. That
is, a dog is an object unto itself and not doggy parts that happen to hang together.
Encapsulation has a similar effect on a collection of operations and properties.

Encapsulation has been used synonymously with other terms such as component and
module. In the context of OOP, encapsulation is often called a black box, meaning
you can see it do certain things but you cannot see the inner workings. Actually, a lot
of things we deal with all the time are black boxes, such as our dog. We can see the
dog do a lot of different things, and we can interact with the dog. However, we really
don’t know (or usually care) about how the physiology of the dog works—dogs are
not transparent. They’re black boxes.

The good thing about the concept of a black box is that we don’t have to worry
about the inner workings or parts. We just have to know how we can deal with it,
secure in the knowledge that whatever makes the black box work is fine as long as it
works as we think it should.

16 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Hiding Your Data from Bad Consequences
To see why you might want to encapsulate your data, we’ll take a look at two pro-
grams. One is not encapsulated, leading to unwanted consequences, and the other is
encapsulated, preventing strange results.

If you make a dog object, you may want to include an operation that includes the
way a dog communicates. For purposes of illustration, we’ll include a method called
dogTalk that will let the dog make different sounds. The dog’s communication will
include the following:

• Woof

• Whine

• Howl

• Grrrr

We’ll start off with bad OOP to illustrate how you may end up with something you
don’t want in your dog’s vocabulary. Example 1-5 is not encapsulated and will
potentially embarrass your dog object.

As a black box, you should not be able to change the internal workings of a class, but
this class is wide open, as you will see. You can interact with an encapsulated object
through its interface, but you should not allow an implementation to make any
changes it wants. Example 1-6 breaks into the object and changes it in ways you
don’t want.

Example 1-5. NoEncap.as

package
{
 //This is BAD OOP -- No encapsulation
 import flash.text.TextField;
 import flash.display.Sprite;

 public class NoEncap extends Sprite
 {
 public var dogTalk:String="Woof, woof!";
 public var textFld:TextField=new TextField();

 public function NoEncap()
 {
 addChild(textFld);
 textFld.x=100;
 textFld.y=100;
 }
 function showDogTalk()
 {
 textFld.text=dogTalk;
 }
 }
}

Encapsulation | 17

Open a new Flash document file, and, in the Document class window, type in
TestNoEncap. When you test the file, you’ll see “Meow” appear on the screen. Such a
response from your dog object is all wrong. Dogs don’t meow and cats don’t bark.
However, that’s what can happen when you don’t encapsulate your class. When you
multiply that by every un-encapsulated class you use, you can imagine the mess you
might have. So let’s find a fix for this.

Private variables

The easiest way to insure encapsulation is to use private variables. The private state-
ment in ActionScript 3.0, whether it’s used with variables, constants or methods
(functions) makes sure that only the class that defines or declares it can use it. This
not only shuts out implementations that attempt to assign any value they want, but it
also excludes subclasses. (This is a difference from ActionScript 2.0; so watch out for
it if you’re converting an application from ActionScript 2.0 to ActionScript 3.0.)

To see how the private statement will change how the application works,
Example 1-7 changes the NoEncap class by adding the private statement to the
variables.

Example 1-6. TestNoEncap.as

package
{
 import flash.display.Sprite;

 public class TestNoEncap extends Sprite
 {
 public var noEncap:NoEncap;
 public function TestNoEncap()
 {
 noEncap=new NoEncap();
 noEncap.dogTalk="Meow";
 noEncap.showDogTalk();
 addChild(noEncap);
 }
 }
}

Example 1-7. Encap.as

package
{
 //This is GOOD OOP -- It has encapsulation
 import flash.text.TextField;
 import flash.display.Sprite;

 public class Encap extends Sprite
 {
 private var dogTalk:String="Woof, woof!";
 private var textFld:TextField=new TextField();

18 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Also, minor changes have to be made to the test file. The supertype implemented
must be changed. Example 1-8 shows the new test class, TestEncap , for the Encap
class.

Go ahead and test it by changing the Document class name to TestEncap. This time,
though, you’ll get the following error in the Complier Errors panel:

Line 11: 1178: Attempted access of inaccessible property dogTalk through a reference
with static type Encap.
Source: encap.dogTalk="Meow";

It shows the source of the error to be the line:

encap.dogTalk="Meow";

That error reflects the fact that it attempted to access a private variable outside the
class. To fix the script, comment out the offending line:

//encap.dogTalk="Meow";

 public function Encap()
 {
 addChild(textFld);
 textFld.x=100;
 textFld.y=100;
 }
 function showDogTalk()
 {
 textFld.text=dogTalk;
 }
 }
}

Example 1-8. TestEncap.as

package
{
 import flash.display.Sprite;

 public class TestEncap extends Sprite
 {
 public var encap:Encap
 public function TestEncap()
 {
 encap=new Encap();
 encap.dogTalk="Meow";
 encap.showDogTalk();
 addChild(encap);
 }
 }
}

Example 1-7. Encap.as (continued)

Encapsulation | 19

Try testing it again. This second time, everything works fine, except, you don’t get
the dog object expressing “Meow.” You see “Woof, woof.”

You may be thinking that private variables really limit what you can do. Suppose you
want the dog object to howl, growl or whimper? How do you make the changes
dynamically? Preventing an encapsulated object from doing something wrong is one
thing, but how can an object be set up to accept variables?

The many meanings of interface

In this book, you will find the term interface used in different contexts, and each con-
text gives the term a slightly different meaning. (Thanks a lot!) Up to this point,
you’re probably familiar with terms like UI (user interface) or GUI (graphic user
interface). These terms refer to different tools you use to interact with a program. For
example, a button is a common UI in Flash. When you click a button, something
predictable happens. You may not know how it happens (or care), but you know
that if you press the button, the video will play, a different page will appear, or an
animation will start. So if you understand the basic concept of a UI, you should be
able to understand how an interface works with an object.

With a UI, the black box is the application you’re using, whether it’s shopping at
eBay or using a word processor. If you follow certain rules and use the different UIs
in the appropriate manner, you get what you want. In the same way, an encapsu-
lated object is a black box, and the interface describes the ways you can interact with
it programmatically. It’s the UI for the object.

Design Patterns: Elements of Reusable Object-Oriented Software (page 13) nicely
clarifies object interfaces and their signatures. An object’s signature is its operation
name, parameters, and return datatype. Figure 1-5 graphically shows the makeup of
a typical object’s signature.

All of an object’s signatures defined by its operations is the interface. In this context
then, the interface for the object constitutes the rules for access, list of services, and
controls for it.

Figure 1-5. Object’s signature

public function myMethod (myParam:String):String
{
 opVar=myParam;
 return opVar;
}

Operation name Parameters Return value

Signature

www.allitebooks.com

http://www.allitebooks.org

20 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Wait! There’s more! Later in this chapter you will find an interface
statement as part of ActionScript 3.0’s lexicon, which is a whole differ-
ent use of the term, interface. You will also find the term used synony-
mously with supertype elsewhere in this book. All the different uses of
interface will be explained in time.

Before getting bogged down in contextual definitions, it’s time to move on to see what
an encapsulated object’s interface looks like. The following section does just that.

Getters and setters

The most common way to enforce encapsulation but to give implementations access
to an object is with getter and setter interfaces. The object controls both access to it
and what is allowed. Keeping our example of a dog object, we know that the dog has
a limited vocabulary, and it’s not one that includes “Meow.” So, we’ll just make a
setter that allows only the dog’s limited vocabulary.

A setter method includes parameter variables of some kind, and an algorithm that
allows certain things and excludes others. However, most setters just assign the
parameter value to a private member regardless of its value. The algorithm and every-
thing else in the function that makes up the method is invisible to the implementa-
tion, and if the wrong parameter or wrong datatype is entered, either an error
message appears or the value will not be passed. The following shows the general
structure of a setter:

function setterMethod(parameter)
{
 if(parameter=="OK")
 {
 private variable = parameter;
 }
}

So the trick is to have the implementation pass any data to the object as a parameter,
and if the parameter is acceptable, the private variable is assigned the parameter’s
value. This is a very general overview of the setter, but it shows the essentials of how
it works.

Compared to setters, getter methods are pretty straightforward. In Example 1-7, the
showDogTalk() method is the getter function. The getter method’s job is to provide
data for the implementation. Thus, while the original example doesn’t have a setter
method, it does have a getter. The setter makes sure that the client gets only what it’s
supposed to get.

In Example 1-9, the private variable, dogTalk, is not assigned a default value. How-
ever, the variable is still used in both the setter and getter methods. As you will see
when you test the new class, EncapSet, the implementation has access to the private
variable through the setter’s interface.

Encapsulation | 21

Example 1-9. EncapSet.as

package
{
 //This is BETTER OOP -- It's got encapsulation
 //plus a decent interface for an object

 import flash.text.TextField;
 import flash.display.Sprite;

 public class EncapSet extends Sprite
 {
 private var dogTalk:String;
 private var textFld:TextField=new TextField();

 public function EncapSet()
 {
 addChild(textFld);
 textFld.x=100;
 textFld.y=100;
 }

 //Setter
 function setDogTalk(bowWow:String)
 {
 switch (bowWow)
 {
 case "Woof" :
 dogTalk=bowWow;
 break;

 case "Whine" :
 dogTalk=bowWow;
 break;

 case "Grrrr" :
 dogTalk=bowWow;
 break;

 case "Howl" :
 dogTalk=bowWow;
 break;

 default :
 dogTalk="Not dog talk!";
 }
 }

 //Rendering value
 function showDogTalk()
 {
 textFld.text=dogTalk;
 }
 }
}

22 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

As you can see in Example 1-9, the setter method allows only the four expressions
we had listed for a dog. Anything else (including “Meow”) is not allowed. Next,
Example 1-10 shows how to interface with the encapsulated dog object:

Enter TestEncapSet in the Document class of the FLA file and test it. As you will see,
the string “Howl” is perfectly acceptable. Now, test it again using “Meow.” This
time, you will see that the object rejected the kitty cat sound as “Not dog talk.” This
arrangement represents the best of both worlds; encapsulation and a way to execute
operations within an encapsulated object.

The get and set methods

Another way to maintain encapsulation and hide the information in your objects is
to use the ActionScript 3.0 get and set methods. Some programmers find it awk-
ward to create their own getter and setter methods as we did in the previous section,
preferring the simplicity of the get accessor and set mutator.

Accessors and mutators versus Frankenstein: they sound like some-
thing from a horror flick, but the terms accessor and mutator are used
to describe getters and setters. The accessor (getter) does access or get
information, and that’s perfectly reasonable. But mutators? Well, if we
think about it, a mutation does refer to a change, and when we set
information, we do indeed change it. It too makes perfect sense. So if
you’re happily reading an article on design patterns and you see the
terms accessor or mutator, don’t let it creep you out.

In looking at how get and set are used, a key feature is the absence of parentheses.
Changes (setting) are not accomplished by adding values. Rather, the getters and
setters are treated like properties where values are assigned or retrieved through
assignment.

Example 1-10. TestEncapSet.as

package
{
 import flash.display.Sprite;

 public class TestEncapSet extends Sprite
 {
 private var encapSet:EncapSet
 public function TestEncapSet()
 {
 encapSet=new EncapSet();
 encapSet.setDogTalk("Howl");
 encapSet.showDogTalk();
 addChild(encapSet);
 }
 }
}

Encapsulation | 23

Example 1-11 and Example 1-12 show how you can lock up your encapsulated
objects using getters and setters with the get and set methods.

In Example 1-12, keep in mind that flowers is a method, and not a property. How-
ever, setting and getting values using the flowers() method looks exactly like setting
and getting a property value.

Example 1-11. FlowerShop.as

package
{
 public class FlowerShop
 {
 private var buds:String;

 public function FlowerShop():void {}

 //Getter function
 public function get flowers():String
 {
 return buds;
 }

 //Setter function
 public function set flowers(floral:String):void
 {
 buds=floral;
 }
 }
}

Example 1-12. Send Flowers.as

package
{
 import flash.display.Sprite;

 public class SendFlowers extends Sprite
 {
 public function SendFlowers()
 {
 var trueLove:FlowerShop = new FlowerShop();
 //Set values
 trueLove.flowers="A dozen roses";
 //Get values
 trace(trueLove.flowers);
 //Set different values
 trueLove.flowers="And a dozen more....";
 //Get the changed values
 trace(trueLove.flowers);
 }
 }
}

24 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Using Encapsulation and Design Patterns
This section on encapsulation has been fairly long. The reason for the attention to
encapsulation is because of its importance to good OOP; it’s a crucial element in
design patterns. Of the 24 original design patterns, only 4 have a class scope and the
remaining 20 have an object scope. Rather than relying on inheritance (which is dis-
cussed in the next section), the great majority of design patterns rely on composition.

Later in this chapter, in the section, “Favor Composition,” you will see how design
patterns are made up of several different objects. For the design patterns to work the
way they are intended, object encapsulation is essential.

Inheritance
The third key concept in good OOP is inheritance. Inheritance refers to the way one
class inherits the properties, methods, and events of another class. If Class A has
Methods X, Y, and Z, and Class B is a subclass (extends) Class A; it too will have
Methods X, Y and Z. This saves a lot of time and adds functionality to your program-
ming projects. If you’ve done virtually any programming using ActionScript 3.0,
you’ve probably extended the Sprite class as we’ve done in Example 1-1 through
Example 1-10. Because of inheritance, the new classes (subclasses) derived from the
Sprite class have all the functionality of the Sprite class, in addition to anything you
add to the subclass.

Looking at the Ancestors
The best place to start looking at how inheritance works is with ActionScript 3.0.
Open your online ActionScript 3.0 Language Reference. In the Packages window,
click flash.display. In the main window that opens the Package flash.display
information, click MovieClip in the Classes table. At the very top of the Class
MovieClip page, you will see the Inheritance path:

MovieClip ➝ Sprite ➝ DisplayObjectContainer ➝ InteractiveObject ➝

 DisplayObject ➝ EventDispatcher ➝ Object

That means that the MovieClip class inherited all the characteristics from the root
class, Object, all the way to Sprite object and everything in between.

Scroll down to the Public Properties section. You will see nine properties. Click the
Show Inherited Public Properties link. Now you should see 43 additional proper-
ties! So of the 52 properties in the MovieClip class, you can see that only 9 are
unique to MovieClip class. The rest are all inherited. Likewise, the methods and
properties we added are unique to the class—the rest are inherited from Sprite.

To see the effect of inheritance and the effect of using one class or another, change
the two references to Sprite to MovieClip in Example 1-9. Because the MovieClip

Inheritance | 25

class inherits everything in the Sprite class, the application should still work. As you
will see, it works just fine. The reason that Sprite is used instead of MovieClip is that
we did not want to have any unnecessary baggage—just the minimum we needed. If
you change Sprite to the next class it inherits from, DisplayObjectContainer, you will
see that the application fails. This means that the application requires one of the
Sprite class properties that is not inherited.

One byte over the line: in Example 1-9, if you substitute the MovieClip
for Sprite classes for the parent class, you will find that your SWF file
is larger than when you tested it with Sprite (708 bytes versus 679
bytes). The 29 byte difference probably won’t bloat your program sig-
nificantly, but with added classes in design pattern applications, an
unnecessary byte here and one there might add up. (When you win a
contract because your application was 1 byte less than the competi-
tion’s, you’ll be glad we had this little chat.)

In addition to seeing what is inherited in ActionScript 3.0 in the Language Refer-
ence, you might also want to note what’s in the packages you import. If you import
flash.display.* you can bring in everything in the display package. That’s why
importing just what you need, e.g., flash.display.Sprite or flash.display.Shape, is
far more frugal and less cluttering.

Writing Classes for Inheritance
As can be seen from looking at the inheritance structure of ActionScript 3.0, a well-
planned application benefits greatly from a well-organized plan of inheritance. To
see how inheritance works from the inside, the next example provides a simple
inheritance model for our four-legged friends. Even with this simple example, you
can see what is inherited and what is unique to an application.

Example 1-13 through Example 1-16 make up the application illustrating inherit-
ance. The first class, QuadPets, is the parent or superclass with a constructor that
indicates when an instance of the class is instantiated using a trace statement. Any
class that inherits the QuadPets class gets all of its methods and interfaces.

Example 1-13. QuadPets.as

package
{
 public class QuadPets
 {
 public function QuadPets():void
 {
 trace("QuadPets is instantiated");
 }
 public function makeSound():void
 {

26 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Any class that uses the extends statement to declare a class inherits the class charac-
teristics it extends. The class that’s extended is the superclass (or parent). The class
that extends another class is the subclass. Both the Dog and Cat classes are subclasses
of the QuadPets class. They inherit all the superclass’ functionality. To see how that
happens, we’ll have to first create the two subclasses.

To see how the Dog and Cat classes inherit the operations of the superclass, the
TestPets class simply invokes the single method (makeSound) from the superclass. As
you can see from the Dog and Cat classes, no such method can be seen in their con-
struction, and so you can see that it must have originated in the QuadPets class.

 trace("Superclass:Pet Sound");
 }
 }
}

Example 1-14. Dog.as

package
{
 public class Dog extends QuadPets
 {
 public function Dog():void
 {
 }
 public function bark():void
 {
 trace("Dog class: Bow wow");
 }
 }
}

Example 1-15. Cat.as

package
{
 public class Cat extends QuadPets
 {
 public function Cat():void
 {
 }
 public function meow():void
 {
 trace("Cat class: Meow");
 }
 }
}

Example 1-13. QuadPets.as (continued)

Inheritance | 27

In addition to invoking the makeSound() method, the Dog and Cat instances invoke their
own methods, bark() and meow(). Also, when you test the application, you will see:

QuadPets is instantiated

That output is caused by the line:

trace(“QuadPets is instantiated”);

placed in the constructor function of the QuadPets class. It fires whenever an instance
of the class is invoked. So in addition to having the capacity to use methods from the
superclass, subclasses inherit any actions in the constructor function of the superclass.

Open a Flash document, and type TestPets in the Document class window. When
you test it, you should see the following in the Output window:

QuadPets is instantiated
Superclass:Pet Sound
Dog class: Bow wow
QuadPets is instantiated
Superclass:Pet Sound
Cat class: Meow

Looking at the output, both the dog and cat instances display two superclass mes-
sages (QuadPets is instantiated, Superclass:Pet Sound) and one message unique to
the respective subclasses (Dog class: Bow wow, Cat class: Meow.) These examples
show how inheritance works, but in practical applications, and in design patterns,
inheritance is planned so that they cut down on redundancy and help build a pro-
gram to achieve an overall goal.

Example 1-16. TestPets.as

package
{
 import flash.display.Sprite;

 public class TestPets extends Sprite
 {
 public function TestPets():void
 {
 var dog:Dog=new Dog();
 dog.makeSound();
 dog.bark();
 var cat:Cat=new Cat();
 cat.makeSound();
 cat.meow();
 }
 }
}

28 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Using Interfaces and Abstract Classes in ActionScript 3.0
Inheritance can also be linked to two other structures; interfaces and abstract classes.
However, the connection between the interface structure (a statement in Action-
Script 3.0) or the abstract class and inheritance is a bit different from the one with
the class structure we’ve examined thus far.

Interface constructs

First of all, in this context, interface refers to an ActionScript 3.0 statement and not
the object interface discussed in the “Encapsulation and Design Patterns” section.
While a class can be said to be an abstraction of an object, an interface is an
abstraction of methods. They are widely used in design patterns. Beginning in
Chapter 5 with the adapter pattern, you will see interfaces at work in several of the
other design patterns.

To begin to see what an interface does, a simple example illustrates the use of one.
However, once you start seeing how they’re used in design patterns, you will better
see their utility. Example 1-17 shows how a typical interface is created. The applica-
tion is made up of Example 1-17 to Example 1-20.

The first thing we’ll do is to make our interface. As you can see in Example 1-17, the
single function is quite simple and devoid of content. It does have a name, parame-
ter, and return type, but note that the function is only a single line.

Each implementation of the interface must have exactly the same structure in all of
the methods in the interface, and if anything is not the same, you’ll get an error mes-
sage. As long as the signature for the methods is the same, everything should work
fine. Example 1-18 is the first implementation of the of the BandFace interface.

Example 1-17. BandFace.as

package
{
 //Interface
 public interface BandFace
 {
 function playInstrument(strum:String):void;
 }
}

Example 1-18. Guitar.as

package
{
 public class Guitar implements BandFace
 {
 public function Guitar() {}

Inheritance | 29

Looking at Example 1-19 and the Bongo class, at first you may think that the method
is built incorrectly. It’s wholly different from the Guitar class in its details, but the
method’s signature is identical.

Remember, when working with interfaces, the number of methods in an interface
can be many or few, but as long as each implementation of the interface includes
every method in the interface and maintains the structure, everything works fine.

You may be wondering where the inheritance is. Given the fact that you must build
all the interface’s methods, it looks more like a customization than an inheritance.
However, the BandFace subclasses all inherit its interfaces. So essentially, the sub-
classes inherit the interface but not the implementation.

Finally, to test the application, the MakeSound class, listed in Example 1-20, tests both
classes and their very different constructions of the single method from the BandFace

 public function playInstrument(strum:String):void
 {
 trace("Playing my air "+ strum);
 }
 }
}

Example 1-19. Bongo.as

package
{
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;

 public class Bongo implements BandFace
 {

 public function Bongo(){}

 private var sound:Sound;
 private var playNow:SoundChannel;
 private var doPlay:URLRequest;

 public function playInstrument(strum:String):void
 {
 sound=new Sound();

 doPlay=new URLRequest(strum);
 sound.load(doPlay);
 playNow=sound.play();
 }
 }
}

Example 1-18. Guitar.as (continued)

www.allitebooks.com

http://www.allitebooks.org

30 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

interface. You’ll need an MP3 file named bongo.mp3 (use any handy MP3 file) saved
in the same folder as the MakeSound.as file.

Note that both instances, guitar and bongo, are typed to the supertype, BandFace, and
not to either the Guitar or the Bongo classes. This practice follows the first principle
of reusable object-oriented design: Program to an interface, not an implementation.

The purpose of doing so is to maintain flexibility and reusability. This principle will
be fully explored elsewhere in this chapter and in Chapter 8, but for now, just note
that fact.

A word about the interface and abstract class naming conventions
used in this book: with the focal point of this book on object-oriented
programming and design patterns, we use naming conventions that
best reflect and clarify the structure of the different design patterns. As
a result, we don’t always follow some of the naming conventions. One
convention is to name interfaces beginning with a capital I. So follow-
ing that convention, the BandFace interface would have been named
IBandFace. Where using the I does not interfere with clarifying a
design pattern structure, we use it, but where we have several inter-
faces in a design pattern, often we forego that convention. Another
convention is to name abstract classes using Abstract+ Something. So,
AbstractHorses would be a name for a class you’d otherwise name
Horses. Again, our focus on revealing structure supersedes using these
conventions. We differentiate abstract from concrete classes using
comments in the code. Throughout the book, however, we attempt to
be as clear as possible in naming the different classes. You may want
to adopt some of these more common conventions, once you better
understand them, to aid in keeping your code clear.

Example 1-20. MakeSound.as

package
{
 import flash.display.Sprite;
 public class MakeSound extends Sprite
 {
 private var guitar:BandFace;
 private var bongo:BandFace;

 public function MakeSound():void
 {
 guitar=new Guitar();
 guitar.playInstrument("Gibson");

 bongo=new Bongo();
 bongo.playInstrument("bongo.mp3");
 }
 }
}

Inheritance | 31

Abstract classes and overriding inheritance

As you become familiar with design patterns, you’ll see more and more use of inter-
faces and its close cousin the abstract class. In ActionScript 3.0 the abstract class is a
little problematic because no class can be actually defined as abstract. While you can
use the public statement to make a class public, ActionScript 3.0 (and ECMAScript)
chose not to include abstract classes in the language, as does Java.

However, you can create an abstract class in ActionScript 3.0. All you have to do is
create a regular class and treat it as an abstract class. Like interfaces, abstract classes
can have abstract methods that are not directly implemented. Rather, abstract classes
are subclassed and any abstract methods are overridden and implemented very much
like methods are in using interfaces. However, abstract classes can have implemented
methods as well; so when you need both abstract and implemented methods, abstract
classes are key to such design patterns as the Factory Method (Chapter 2), Decorator
(Chapter 4), and the Composite (Chapter 6), as well as others.

You know from inheritance that when one class subclasses another, the subclass
inherits the methods of the superclass. With an abstract class, you do not implement
the class but instead subclass it, and then implement the subclass and its methods.
Because of the abstract nature of at least some of the methods in the abstract class,
you must override them. Using the override statement, an overridden class main-
tains its signature but can have its own unique details. You must be sure that the
name, number, type of parameters, and the return type are the same. In other words,
when you override a method from an abstract class, you treat the method exactly the
same as an interface method.

Example 1-21 through Example 1-23 make up an application that illustrates how an
abstract class works. The abstract class has two methods; a concrete one and an
abstract one.

The subclass inherits the methods and interface from the abstract class, and it pro-
vides details for the abstract method by overriding it. However, the subclass leaves
the concrete class as is and does not attempt to instantiate the superclass.

Example 1-21. AbstractClass.as

package
{
 //Abstract class
 public class AbstractClass
 {
 function abstractMethod():void {}
 function concreteMethod():void
 {
 trace("I'm a concrete method from an abstract class")
 }
 }
}

32 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

When the application finally implements the methods originating in the abstract
class, it does so by programming to the interface (AbstractClass) but instantiates
through the subclass (Subclass). So the instance, doDemo, is typed as AbstractClass
but instantiated as Subclass.

The following shows what appears in the Output window when you test the program:

This is the overidden abstract method
I'm a concrete method from an abstract class

At this point you may be scratching your head wondering why you should go
through this kind of convolution to do what you could do with a non-abstract class.
Instead of subclassing the abstract class, overriding one of the methods, and then
implementing the subclass, we could have just written both methods the way we
wanted them in the first place and not have to override anything. The next section
attempts to answer that question.

Example 1-22. Subclass.as

package
{
 //Subclass of Abstract class
 public class Subclass extends AbstractClass
 {
 override function abstractMethod():void
 {
 trace("This is the overidden abstract method");
 }
 }
}

Example 1-23. ImplementSub.as

package
{
 //Implement Subclass of Abstract class
 import flash.display.Sprite;

 public class ImplementSub extends Sprite
 {
 private var doDemo:AbstractClass;

 public function ImplementSub()
 {
 doDemo=new Subclass();
 doDemo.abstractMethod();
 doDemo.concreteMethod();
 }
 }
}

Inheritance | 33

Why use interfaces and abstract classes?

To understand why to use interfaces and abstract classes, we need to consider the
whole purpose of design patterns. It’s the ability to reuse object-oriented software.
We’ve been using fairly simple examples to help clarify the concepts. However, typi-
cal software is usually far more complex, and the algorithms more sophisticated. Once
you complete a project, you’re likely to have to make a change. The larger and more
complex the project, the more difficult it is to reuse the assets you’ve developed, main-
tain the interconnections and generally make any kind of change without unraveling
the whole thing or introducing code that may make future change impossible.

To illustrate what this means, consider the application in Examples 1-21 to 1-23 in the
previous section. Multiply the complexity of the class AbstractClass by a factor of 10.
Do the same to the number of subclasses. Now you’re dealing with some serious com-
plexity. Next, consider that you need to maintain the functionality of the class,
Subclass, and yet change the abstract method in the AbstractClass for a new function-
ality. Also, you have to maintain all of the interfaces and connections you’ve built.

Because you used an abstract class, you can create a new subclass that overrides the
abstract function and uses it in a different way. To see how this all works, we’ll make
a new subclass of the AbstractClass and change the abstract method. We’re not
changing anything else in the entire application, so we don’t have to worry about
everything working together because we can separate our new subclass and method
and only implement them where needed. Other subclasses of the AbstractClass are
unaffected. Examples 1-24 and 1-25 show the two new classes created to make the
change.

Note that instead of having a single trace statement, Example 1-24 uses three. This
modification simulates a more complex change. However, Example 1-25, which
implements the application, is identical to Example 1-23.

Example 1-24. SubclassChange.as

package
{
 //A New Subclass of Abstract class with a change
 public class SubclassChange extends AbstractClass
 {
 override function abstractMethod():void
 {
 trace("This is the new abstractMethod!!")
 trace("Made just one little important change.");
 trace("But this still works just fine!");
 }
 }
}

34 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

All the changes are revealed in the line,

doDemo.abstractMethod();

Even though the line is the same as Example 1-23, the output window reveals that a
good deal has changed:

This is the new abstractMethod!!
Made just one little important change.
But this still works just fine!
I'm a concrete method from an abstract class

What’s important is not that it made the changes. The point that you need to con-
sider carefully is the fact that such changes can be made without disrupting the other
elements in your application that you have reused. So without having to rewrite the
entire application, you can keep its functionality while making necessary changes.

Polymorphism
The root of polymorphism is a word that could easily replace it to describe the pro-
cess— metamorphosis. The term is from the Greek metamorphoun, meaning to trans-
form. One definition describes metamorphosis as a magic-like transformation—
something a sorcerer would do. If you like, think of polymorphism as giving the pro-
grammer the power of a sorcerer.

Generating Polymorphism Using an Abstract Class
Another definition of polymorphism is that it allows for many (poly) forms (morph).
In Example 1-21 through Example 1-25, you saw how the abstractMethod had more
than a single form. That’s polymorphism. To see it in a more practical application,
consider people’s taste in music and emerging forms of music. Suppose you create a

Example 1-25. ImplementSubChange.as

package
{
 //ImplementSubChange of Abstract class
 import flash.display.Sprite;

 public class ImplementSubChange extends Sprite
 {
 private var doDemo:AbstractClass;

 public function ImplementSubChange()
 {
 doDemo=new SubclassChange();
 doDemo.abstractMethod();
 doDemo.concreteMethod();
 }
 }
}

Polymorphism | 35

class with a method set up to show a person’s musical tastes, and then build your
application using that method for the different genres. Example 1-26 through
Example 1-31 provide a simple example of such an application. The root abstract
class is named Polymorphism in honor of the concept it illustrates.

Example 1-26. Polymorphism.as

package
{
 //Abstract class
 public class Polymorphism
 {
 public function myMusic():void
 {
 //Reserve details for subclasses
 }
 }
}

Example 1-27. Rock.as

package
{
 public class Rock extends Polymorphism
 {
 override public function myMusic():void
 {
 trace("Play Jimmie");
 }
 }
}

Example 1-28. Classic.as

package
{
 public class Classic extends Polymorphism
 {
 override public function myMusic():void
 {
 trace("Play Mozart");
 }
 }
}

Example 1-29. Country.as

package
{
 public class Country extends Polymorphism
 {
 override public function myMusic():void
 {

36 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

When you test the program, you’ll see the following:

Play Jimmie
Play Mozart
Play Willie
Play Coltrane

As you can see, it’s not rocket science and hardly cloaked in mystery. It’s just poly-
morphism. All instances were typed to the abstract class Polymorphism. Then they were

 trace("Play Willie");
 }
 }
}

Example 1-30. Jazz.as

package
{
 public class Jazz extends Polymorphism
 {
 override public function myMusic():void
 {
 trace("Play Coltrane");
 }
 }
}

Example 1-31. PlayMusic.as

package
{
 import flash.display.Sprite;
 public class PlayMusic extends Sprite
 {
 var rock:Polymorphism;
 var classic:Polymorphism;
 var country:Polymorphism;
 var jazz:Polymorphism;

 public function PlayMusic():void
 {
 rock=new Rock();
 rock.myMusic();
 classic=new Classic();
 classic.myMusic();
 country=new Country();
 country.myMusic();
 jazz=new Jazz();
 jazz.myMusic();
 }
 }
}

Example 1-29. Country.as (continued)

Polymorphism | 37

instantiated using the subclasses, and each launched the same method, myMusic().
However, with each usage, even though all shared the same datatype (or supertype),
Polymorphism, each instance’s use of the method generates a unique outcome.

Looking at the program and your MP3 library, you may be thinking, “That’s not
nearly enough music categories.” What about R&B, Country, Alternative, Hip-Hop,
and Cowboy music? (Cowboy?) We couldn’t agree more. Go ahead and create new
subclasses using polymorphism to add all the categories you want. (This is not one of
those exercises where the answer is at the end of the chapter or the back of the book.
You’re on your own. Programmers don’t get polymorphism right without writing
their own code. See if you’ve got the right stuff.) By the way, notice that you can
make all the changes you want with polymorphism without having to change any of
the other classes. That’s the whole point of polymorphism.

Implementing Polymorphism with Interfaces
The ActionScript 3.0 interface statement and structure is the other powerful tool for
polymorphism in both object-oriented programming and design patterns. Suppose
you’re building an e-business site. You have no idea how many new products the site
will have, but you know the site will have many different products that change regu-
larly. You’re going to need something that will handle a wide variety of products,
and a way of displaying them.

You know that you’ll need the following operations, but you’re not sure about the
details:

• Description

• Price

• Product display

One way to set up an e-business site would be to create a class that has methods for
all three operations. However, suppose you find out that the client wants different
kinds of displays for the different products. She wants dynamically loaded video for
video products (e.g. TV sets), sound for sound products (e.g. MP3 players) and
graphic images for all other products. The operations for both description and price
methods are pretty standard, but the display method is going to have to be very flexi-
ble. That’s where polymorphism comes in. We could use an abstract class, but to
provide ever more flexibility just in case other unanticipated requirements crop up,
we’ll use an interface.

Example 1-32 through Example 1-36 make up the e-business application. The inter-
face, IBiz, contains the primary operations with unique signatures but not any
details. This will allow us to create the unique details we need as long as we keep all
the signatures the same.

38 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Example 1-33 introduces something new. The Plasma class extends one class, Sprite,
and implements another, IBiz. Placing a video on the stage requires a Sprite object,
but we still need the IBiz interface methods; so using both the extends and
implements statements, we’re able to have the best of both worlds.

Example 1-32. IBiz.as

package
{
 public interface IBiz
 {
 function productDescribe():String;
 function productPrice(price:Number):String;
 function productDisplay(product:String):void;
 }
}

Example 1-33. Plasma.as

package
{
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;
 import flash.display.Sprite;

 public class Plasma extends Sprite implements IBiz
 {

 private var ns:NetStream;
 private var vid:Video;
 private var priceNow:Number;

 public function productDescribe():String
 {
 return "42 inch TV with Plasma screen";
 }

 public function productPrice(price:Number):String
 {
 priceNow=price;
 return "$" + priceNow + "\n";
 }

 public function productDisplay(flv:String):void
 {
 var nc:NetConnection=new NetConnection();
 nc.connect(null);
 ns=new NetStream(nc);
 ns.play(flv);
 vid=new Video();
 vid.attachNetStream(ns);
 addChild(vid);

Polymorphism | 39

In comparing Example 1-33 with Example 1-34, both the productDescribe() and
productPrice() methods look pretty much the same other than the literal used in the
return statement in the productDescribe(). In fact, by adding a string parameter to
the productDescribe() method, we could make them identical. However, the point
of this application is to demonstrate polymorphism, and so creating different forms
of the methods is intentional.

You can see the practicality of polymorphism by comparing the productDisplay()
methods in the two examples. Example 1-33 is set up to play a video and
Example 1-34 a sound. However, note that the identical signatures are maintained in
both examples.

 }
 }
}

Example 1-34. MP3Player.as

package
{
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;

 public class MP3Player implements IBiz
 {
 private var sound:Sound;
 private var playChannel:SoundChannel;
 private var doPlay:URLRequest;
 private var MP3Price:Number;

 public function productDescribe():String
 {
 return "MP3Player with 1 Terabyte of Memory";
 }

 public function productPrice(price:Number):String
 {
 MP3Price=price;
 return "$" + MP3Price + "\n";
 }

 public function productDisplay(song:String):void
 {
 sound=new Sound();
 playChannel=new SoundChannel();
 doPlay=new URLRequest(song);
 sound.load(doPlay);
 playChannel=sound.play();
 }
 }
}

Example 1-33. Plasma.as (continued)

www.allitebooks.com

http://www.allitebooks.org

40 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Example 1-35 has further differences in its productDisplay() details. Instead of either
video or sound operations, it contains operations for loading files. Yet, like the other
two, the signature and interfaces are still the same.

Now that all the classes and the interface are complete, all that’s left is a class to test
the application. As you’ve seen, good OOP and preparation for working with design
patterns suggests programming to the interface and not the implementation as we’ve
been doing. However, in looking at Example 1-36, all the typing (setting the
datatype) is to the Plasma, MP3Player, and Computers implementations and not the
IBiz interface. This is because each of the implementations extended the Sprite
class. So we’re dealing with two supertypes, IBiz and Sprite. To test the applica-
tion, the instances are typed as one of the specific implementations instead of the
interface. In the section “Program to Interfaces over Implementations” later in this
chapter, you’ll see how to construct your interface and implementation so that you
can still type to the interface when there’s more than a single type in the

Example 1-35. Computers.as

package
{
 import flash.display.Loader;
 import flash.net.URLRequest;
 import flash.display.Sprite;

 public class Computers extends Sprite implements IBiz
 {
 private var hotz:Number;
 private var loadPix:Loader;
 private var namePix:URLRequest;

 public function productDescribe():String
 {
 return "New 10 gHz processor, 30 gigabyte RAM, includes
 32 inch screen";
 }

 public function productPrice(price:Number):String
 {
 hotz=price;
 return "$" + hotz + "\n";
 }

 public function productDisplay(computer:String):void
 {
 loadPix=new Loader();
 namePix=new URLRequest(computer);
 loadPix.load(namePix);
 addChild(loadPix);
 }
 }
}

Polymorphism | 41

implementation. (In Example 1-20 you can see how an interface structure is pro-
grammed to the interface instead of an implementation.)

You will need an FLV file, an MP3 file, and a GIF file for this application. Name the
FLV file plasma.flv, the MP3 file bongo.mp3, and the GIF file whizbang.gif. The con-
tents are unimportant but the names and file types are important.

Open a new Flash document, save it in the same folder with the rest of the applica-
tion, and type in DoBusiness in the Document class window. When you test it, the
Output window shows the following:

42 inch TV with Plasma screen
$855

MP3Player with 1 Terabyte of Memory
$245

New 10 gHz processor, 30 gigabyte RAM, includes 32 inch flat screen monitor
$1200

Example 1-36. DoBusiness.as

package
{
 import flash.display.Sprite;

 public class DoBusiness extends Sprite
 {
 public function DoBusiness()
 {
 //TV
 var tv:Plasma=new Plasma();
 trace(tv.productDescribe());
 trace(tv.productPrice(855));
 tv.productDisplay("plasma.flv");
 tv.x=160;
 tv.y=110;
 addChild(tv);

 //MP3
 var mp3:MP3Player=new MP3Player();
 trace(mp3.productDescribe());
 trace(mp3.productPrice(245));
 mp3.productDisplay("bongo.mp3");

 //Computers
 var computers:Computers=new Computers();
 trace(computers.productDescribe());
 trace(computers.productPrice(1200));
 computers.productDisplay("whizbang.gif");
 addChild(computers);
 }
 }
}

42 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

In addition to messages in the Output window, you should see something like
Figure 1-6 on the stage.

In addition to the visible graphics, you should also hear the sound played by the
MP3 file. (This multimedia experience has been brought to you by polymorphism
and the letter P.)

Principles of Design Pattern Development
The founding principles of design patterns are laid down in the Gang of Four’s (GoF)
canon, Design Patterns: Elements of Reusable Object-Oriented Software. The two
essential principles are:

• Program to an interface, not an implementation

• Favor object composition over class inheritance

If you skipped the section on the four basic OOP principles because you already
know them, the first principle of Design Pattern OOP was introduced, but only
briefly. Not to worry, we’ll go over it in detail.

Before going further, we need to clarify some basic terms. While these terms are
fairly simple, they can trip you up if you don’t understand how they’re used in

Figure 1-6. Graphic file and video appear on the stage

Principles of Design Pattern Development | 43

context. The subsequent chapters use these terms a good deal, and a misunderstand-
ing at the outset can lead to confusion now and later.

Implementation
For the most part, the term implementation is a noun referring to the details—the
actual code—in a program. So when referring to an implementation, the reference is
to the actual program as it is coded. Implementation is the internal details of a pro-
gram, but is often used to refer to a method or class itself.

You may run into some confusion when the keyword implements refers to contract-
ing with an interface structure. For example, the line:

class MyClass implements IMyInterface

has the effect of passing the interface of IMyInterface to MyClass. To say that MyClass
implements IMyInterface really means that MyClass promises to use all the signatures
of IMyInterface and add the coding details to them. So the phrase MyClass imple-
mented IMyInterface means that MyClass took all the methods in IMyInterface and
added the code necessary to make them do something while preserving their
signatures.

One of the two main principles of design pattern programming is program to an
interface, not an implementation. However, you must remember that implementation
is employed in different contexts, and its specific meaning depends on these con-
texts. Throughout this book, you will see references to implementation used again
and again with different design patterns, and you need to consider the other ele-
ments being discussed where the term is used.

State
The term state is not part of the ActionScript 3.0 lexicon (like implements is), but the
term is used in discussing design patterns. Essentially, state is used to refer to an
object’s current condition. For the most part you will see state used to convey the
value of a key variable. Imagine a class with a single method with a Boolean value set
in the method. The Boolean can either be true or false. So its state is either true or
false—which could represent on/off, allow/disallow, or any number of binary con-
ditions. The exact meaning of true or false depends on the position of the class in
the rest of the design pattern. A more specific example would be an object that plays
and stops an MP3 file. If the MP3 is playing, it’s in a play state, while if it’s not play-
ing, it’s in a stop state.

One use of state is in the context of a state machine and the State design pattern you
will be seeing in Chapter 10. A state engine is a data structure made up of a state net-
work where changes in state affect the entire application. The State design pattern is
centered on an object’s behavior changing when its internal state changes. The term

44 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

state here is a bit more contextually rich because it is the key concept around which
the design pattern has been built.

In general, though, when you see state used, it’s just referring to the current value of
an object’s variables.

Client and Request
In this age of the Internet and Web, the term client is used to differentiate the
requesting source from the server from which a request is being made. We think of
client/server pairs. Moreover, the term request is used to indicate that a Web page
has been called from the server.

In the context of design patterns, instead of a client/server pair, think of a client/
object pair. A request is what the client sends to the object to get it to perform an
operation—launch a method. In this context, a request is the only way to get an object
to execute a method’s operations. The request is the only way to launch an operation
since the object’s internal state cannot be accessed directly because of encapsulation.

Don’t forget Flash Media Server clients and servers! If you work with
Flash Media Server 2, you’re aware of client-side and server-side pro-
grams. You can launch a server-side method with a request from a cli-
ent-side object. However, you can launch a client-side operation with
a client-side request as well and a server-side method with a server-
side request. So if you’re using Flash Media Server 2, you’re just going
to have to keep the concepts separate.

In a nutshell, the client is the source of a request to an object’s method. A quick exam-
ple shows exactly what this looks like. Example 1-37 and Example 1-38 make up an
application that does nothing except show a client making a request to an object.

Example 1-37. MyObject.as

package
{
 public class MyObject
 {
 private var fire:String;

 public function MyObject():void {}
 public function worksForRequest():void
 {
 fire="This was requested by a client";
 trace(fire);
 }
 }
}

Program to Interfaces over Implementations | 45

The MyObject class’s sole method is worksForRequest(). The method is encapsulated,
so it should have only a single way to launch its operations. Fortunately, all we need
to do is create an instance of the class, and add the method to the instance to make it
work, as Example 1-38 shows.

The output tells the whole story:

This was requested by a client

The client in this case is simply an instance of the object whose method it requests.
The client/object relationship is through the request. Often the client adds specific
details through a parameter, but the concept of a request is usually nothing more
than invoking the method with an instance of the object that owns the method.

Program to Interfaces over Implementations
To understand why the authors of design patterns encourage programming to inter-
faces over implementations, you need to first understand the general goal of flexibil-
ity and reusability. Second, you need to appreciate the problem of managing
dependency in large programs.

As we have noted in this chapter, the overall goal of design patterns is to create reus-
able code. In order to meet this overall goal, the code must be flexible. This does not
mean that your application runs better or compiles faster. All it does is help you cre-
ate code that you can reuse in other projects. The more time and effort you spend,
the larger the team engaged in working with the code, the more important this over-
all goal.

Managing Dependency
The need for software flexibility leads to the need to manage dependency. When
your code depends on a specific implementation, and the implementation changes,

Example 1-38. MyClient.as

package
{
 import flash.display.Sprite;

 public class MyClient extends Sprite
 {
 var myClient:MyObject;
 public function MyClient():void
 {
 myClient=new MyObject();
 myClient.worksForRequest();
 }
 }
}

46 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

your client dependency leads to unexpected results or fails to run altogether. By
depending on interfaces, your code is decoupled from the implementation, allowing
variation in the implementation. This does not mean you get rid of dependency, but
instead you just manage it more flexibly. A key element of this approach is to sepa-
rate the design from the implementation. By doing so, you separate the client from
the implementation as well.

As we have seen, you can use the ActionScript 3.0 interface structure or an abstract
class to set up this kind of flexible dependence. However, when you use either, you
must be aware of the way in which to manage the dependency. If you use an
interface structure, any change in the interface will cause failure in all the clients
that use the interface. For example, suppose you have five methods in an interface.
You decide that you need two more. As soon as you add the two new methods to
your interface, your client is broken. So, if you use the interface structure, you must
treat the interface as set in stone. If you want to add new functionality, simply create
a new interface.

The alternative to using the interface structure is to use abstract classes. While the
abstract class structure is not supported in ActionScript 3.0 as interfaces are, you can
easily create a class to do everything an abstract class does. As we saw in several
examples in this chapter beginning with Example 1-3, creating and using an abstract
class is simply adhering to the rules that abstract classes follow anyway. For exam-
ple, abstract classes are never directly implemented.

The advantage of an abstract class over an interface is that you won’t destroy a client
when you add methods to the base class. All the abstract function must be overrid-
den to be used in a unique manner, but if your client has no use for a new method,
by doing nothing, the method is inherited but not employed or changed. On the
other hand, every single method in an interface structure must be implemented.

A further advantage of an abstract class is that you can add default behaviors and
even set up concrete methods inherited by all subclasses. Of course the downside of
default behaviors and concrete methods is that a subclass may not want or need the
default or concrete methods, and a client may end up doing something unwanted
and unexpected if any concrete changes are introduced. Whatever the case, though,
management of dependency is easier with the flexibility offered by interfaces and
abstract classes over concrete classes and methods.

So the decision of whether to use an interface or abstract class depends on what you
want your design to do. If the ability to add more behaviors easily is most important,
then abstract classes are a better choice. Alternatively, if you want independence from
the base class, then choose an interface structure. No matter what you do, though,
you need to think ahead beyond the first version of your application. If your applica-
tion is built with an eye to future versions and possible ways that it can expand or
change, you can better judge what design pattern would best achieve your goals.

Program to Interfaces over Implementations | 47

Using Complex Interfaces
As you saw in Example 1-36, the program typed the instances to the implementation
and not the interfaces as was done in Example 1-20. This was caused by the key
methods being part of classes that implemented an interface and extended a class.
Because of the way in which the different display objects need to be employed, this
dilemma will be a common one in using Flash and ActionScript 3.0. Fortunately, a
solution is at hand. (The solution may be considered a workaround instead of the
correct usage of the different structures in ActionScript 3.0. However, with it, you
can create methods that require some DisplayObject structure and program to the
interface instead of the implementation.)

If the interface includes a method to include a DisplayObject type, it can be an inte-
gral part of the interface. Because Sprite is a subclass of the DisplayObject, its inclu-
sion in the interface lets you type to the interface when the class you instantiate is a
subclass of Sprite (or some other subclass of the DisplayObject, such as MovieClip.)

To see how this works, the application made up of Example 1-39 and Example 1-40
creates a simple video player. The VidPlayer class builds the structural details of the
video playing operations. To do so requires that it subclass the Sprite class. By plac-
ing a getter method with a DisplayObject type in the IVid interface, the application
sets up a way that the client can program to the interface.

The implementation of the IVid interface includes a key element. The
displayObject() function is implemented to the DisplayObject class in building the
VidPlayer class.

Example 1-39. IVid.as

package
{
 import flash.display.DisplayObject;

 public interface IVid
 {
 function playVid(flv:String):void;
 function get displayObject():DisplayObject;
 }
}

Example 1-40. VidPlayer.as

package
{
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;
 import flash.display.Sprite;
 import flash.display.DisplayObject;

48 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Keep in mind that a getter method, using the get keyword, looks like a property, and
is treated like one. Any reference to displayObject is actually a method request. The
trick is to add the instance to the display list, and at the same time call the method
that establishes the instance as a DisplayObject. Example 1-41 does just that.

 public class VidPlayer extends Sprite implements IVid
 {

 private var ns:NetStream;
 private var vid:Video;
 private var nc:NetConnection;

 public function get displayObject():DisplayObject
 {
 return this;
 }

 public function playVid(flv:String):void
 {
 nc=new NetConnection();
 nc.connect(null);
 ns=new NetStream(nc);
 ns.play(flv);
 vid=new Video();
 vid.attachNetStream(ns);
 addChild(vid);
 }
 }
}

Example 1-41. DoVid.as

package
{
 import flash.display.Sprite;

 public class DoVid extends Sprite
 {
 //Type as Interface
 private var showTime:IVid;

 public function DoVid()
 {
 //Play the video
 showTime=new VidPlayer();
 showTime.playVid("iVid.flv");
 //Include DisplayObject instance
 addChild(showTime.displayObject);
 showTime.displayObject.x=100;
 showTime.displayObject.y=50;
 }
 }
}

Example 1-40. VidPlayer.as (continued)

Favor Composition | 49

In reviewing how the process works, first, the showTime instance is typed to the inter-
face, IVid. Next, showTime instantiates the VidPlayer class that has all the details for
playing the video. By doing so, it inherits the Sprite class as well as the IVid inter-
face. Then the showTime client plays the video using the playVid() method. Finally,
when the showTime instance is added to the display list with the addChild statement, it
is added as both the child of the VidPlayer class and the DisplayObject class by using
the displayObject getter. Because the getter, displayObject, is included in the dis-
play list, you will not get the following error:

1067: Implicit coercion of a value of type IVid to an unrelated type
 flash.display:DisplayObject.

IVid appears in the error because the instance was typed to the interface instead of
the implementation. By slipping in the DisplayObject typed getter method, we avoid
the error.

Favor Composition
Throughout this chapter, we have discussed the principle of programming to the
interface instead of the implementation. The second principle of object-oriented
design posited by Gamma, Helm, Johnson and Vlissdes (GoF) is: Favor object com-
position over class inheritance.

To understand this second key principle, we need to understand exactly what com-
position means, and its advantages over inheritance. After all, the principle is essen-
tially stating that your programs will be better using composition than inheritance.

Does this mean to abandon inheritance? After all, inheritance is one key concept in
object-oriented programming. Actually, what GoF discuss is that most programmers
rely too heavily on inheritance, and need to use it more in conjunction with composi-
tion. Most programmers create new objects from old objects using inheritance, and,
through composition, the old and new objects can be used together.

The best way to understand composition is to see it in the context of its use. In this
book, both the State and Strategy patterns are built using composition, and they
depend on delegation. In the State design pattern, an object delegates requests to an
object representing the current state in an application. In the Strategy design pat-
tern, specific requests are delegated to objects representing strategies (algorithms) for
solving problems. The great advantage of both these design patterns is that they are
flexible and not bogged down in inflexible dependencies.

www.allitebooks.com

http://www.allitebooks.org

50 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Doing Composition
To understand composition, we will start with a simple example. In the next sample
application you’ll see that both inheritance and composition are used together. Each
example will show one of the following relationships:

• “Is a” relationship: object inherited

• “Has a” relationship: object composition

• “Uses a” relationship: one object used by another object (instantiated without
inheritance or composition.)

In the next section on delegation, we’ll look at these relationships. For now, though,
each of the classes in the application made up of Examples 1-42 through 1-44 show
each of these relationships. The comments in the examples identify the type of rela-
tionship. First, we establish a base class to be the delegate.

Composition includes a reference to another class in a class definition. Example 1-43
shows how a class is set up to use composition. The line

private var baseClass:BaseClass;

keeps the reference to BaseClass in its class definition. That line is the basis of com-
position. The HasBase class now Has a BaseClass. In this particular implementation,
the HasBase class creates an instance of BaseClass in its constructor. Finally, a public
function, doBase(), delegates the work back to BaseClass.

Example 1-42. BaseClass.as

package
{
 public class BaseClass
 {
 public function homeBase()
 {
 trace("This is from the Base Class");
 }
 }
}

Example 1-43. HasBase .as

package
{
 //Composition
 public class HasBase
 {
 private var baseClass:BaseClass;

 public function HasBase()
 {
 baseClass=new BaseClass();

Favor Composition | 51

Now, in Example 1-44, the HasBase class is used to delegate an operation back to
BaseClass. All this is done without having to inherit any of BaseClass’ properties, but
HasBase does have a BaseClass. However, HasBase is not a BaseClass.

The advantages of using composition over inheritance are difficult to see in such a
small example. Later in the book, when examining the different design patterns, the
advantages will become clearer. However, when composition is used with a large
project, especially with a design pattern, its advantages begin to make even more sense.
You’ll really see why composition is preferred over inheritance when you have to make
changes to a large, complex program working with several other co-developers.

Using Delegation
Delegation is one of the most important concepts in working with design patterns
because by using it, composition can have the same power of reusability as inherit-
ance, with far greater flexibility. Because delegation typically works with inherit-
ance, any examination should not be one where inheritance and delegation are
treated as mutually exclusive. Rather, we need to see how they differ and how they
are used in conjunction with one another—because that’s how they’re typically cast
in a design pattern.

 }
 public function doBase()
 {
 baseClass.homeBase();
 }
 }
}

Example 1-44. DoHasBase.as

package
{
 //Executes the HasBase Composition class
 import flash.display.Sprite

 public class DoHasBase extends Sprite
 {
 private var hasBase:HasBase;
 public function DoHasBase()
 {
 hasBase=new HasBase();
 hasBase.doBase();
 }
 }
}

Example 1-43. HasBase .as (continued)

52 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

The clearest way we’ve seen composition distinguished from inheritance is through
describing the relationship between components in an application. If ClassB is sub-
classed from ClassA, ClassB is described as being a ClassA. However, if ClassB dele-
gates to ClassA through composition, then ClassB can be said to have a ClassA.

You may have a class set up for loading SWF files in a desired configuration. You
want the functionality of loading the SWF files in that configuration, but you also
want to play audio using MP3 files. Using composition, you could simply create a
class that delegates each function to the appropriate classes. Figure 1-7 shows this
relationship:

In this situation, inheritance would not be too helpful. You could subclass one class
but not both. Of course you could instantiate an instance of each class in the third
class, or simply subclass one class and then create an instance of whichever class you
didn’t subclass. That would be a new class with an “is-a” and a “uses-a” different
class for the other functionality. A class is considered a “uses-a” when it creates an
instance of another class but does not hold a reference to it.

To understand and best use composition, you need to understand how delegation
really works, and to explain, you need to see it in a slightly more realistic example of
its use. The application will simulate a media application for playing and recording
media files using Flash and Flash Media Server 2 (FMS2). You can play either FLV or
MP3 files using FMS2. While you can record FLV files using FMS2, you can’t pub-
lish MP3 files by themselves. This application is designed for adding future features
and reducing dependencies at the same time.

If you are pretty sure that both the media server and your application will change,
then you’ll want to minimize dependencies by using composition and delegation. For
example, suppose that a future version of FMS2 changes, and you can record MP3
files directly. You’d only have to change the RecordAudio class so that it would record
audio. By making that change, nothing else in the application would be affected.
Alternatively, suppose you have a holographic player that you want to add to the
mix. You can easily add another class that will play and/or record holographic
images without disturbing the rest of the application.

Figure 1-7. Delegating to different classes

Has a Loads
SWF files

Has a Loads
MP3 files

Loads
SWF files

Plays
MP3 files

delegates

delegates

Favor Composition | 53

Examples 1-45 though 1-54 make up the application. Save all the .as files in the
same folder. It represents a typical use of composition.

Example 1-45. Media.as

package
{
 //Abstract class
 class Media
 {
 //Composition: Reference to two interfaces
 var playMedia:PlayMedia;
 var recordMedia:RecordMedia;

 public function Media() {}

 public function doPlayMedia():void
 {
 //Delegates to PlayMedia
 playMedia.playNow();
 }
 public function doRecordMedia():void
 {
 //Delegates to RecordMedia
 recordMedia.recordNow();
 }
 }
}

Example 1-46. VideoFlash.as

package
{
 //Concrete Media subclass: Video
 class VideoFlash extends Media
 {
 public function VideoFlash()
 {
 //Inherits composition references from superclass
 playMedia = new PlayVideo();
 recordMedia = new RecordVideo();
 }
 }
}

Example 1-47. Mp3.as

package
{
 //Concrete Media subclass: Audio
 public class Mp3 extends Media
 {

54 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

 public function Mp3()
 {
 //Inherits composition references from superclass
 playMedia = new PlayAudio();
 recordMedia = new RecordAudio();
 }
 }
}

Example 1-48. PlayMedia.as

package
{
 //Interface for playing media
 interface PlayMedia
 {
 function playNow():void;
 }
}

Example 1-49. PlayVideo.as

package
{
 //Concrete PlayMedia: Video
 class PlayVideo implements PlayMedia
 {
 public function playNow():void
 {
 trace("Playing my video. Look at that!");
 }
 }
}

Example 1-50. PlayAudio.as

package
{
 //Concrete PlayMedia: Audio
 class PlayAudio implements PlayMedia
 {
 public function playNow():void
 {
 trace("My MP3 is cranking out great music!");
 }
 }
}

Example 1-47. Mp3.as (continued)

Favor Composition | 55

Example 1-51. RecordMedia.as

package
{
 //Interface for recording media
 interface RecordMedia
 {
 function recordNow():void;
 }
}

Example 1-52. RecordVideo.as

package
{
 //Concrete RecordMedia: Video
 class RecordVideo implements RecordMedia
 {
 public function recordNow():void
 {
 trace("I'm recording this tornado live! Holy....crackle, crackle\n");
 }
 }
}

Example 1-53. RecordAudio.as

package
{
 //Concrete RecordMedia: Audio
 class RecordAudio implements RecordMedia
 {
 public function recordNow():void
 {
 trace("Rats! I can't record MP3 by itself.\n");
 }
 }
}

Example 1-54. TestMedia.as

package
{
 import flash.display.Sprite;

 public class TestMedia extends Sprite
 {
 public function TestMedia()
 {
 var delVideo:Media=new VideoFlash();
 delVideo.doPlayMedia();
 delVideo.doRecordMedia();

56 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Create a Flash document, save it in the same folder with the class files, and, in the
Document class window, type in TestMedia. When you test it, the Output window
simulates the behaviors.

Playing my video. Look at that!
I'm recording this tornado live! Holy....crackle, crackle

My MP3 is cranking out great music!
Rats! I can't record MP3 by itself.

The algorithms you’d have in an actual application would be more complex than the
simple trace statements. However, no matter how complex they got, the dependen-
cies are set up so that a change in one would only affect those elements in the appli-
cation that you want to change, and not those you don’t want to change.

Making Composition, Inheritance, and Instantiation Work
Together
We haven’t compared the relative advantages and disadvantages between composi-
tion and inheritance because with composition, both composition and inheritance
operate in the same environment. For that matter, so too does instantiation where
one class simply instantiates an instance of another class. The idea that one would
work with one and exclude the other was never the point made by GoF in their prin-
ciple to favor composition over inheritance. Yes, stated that way, that’s what the prin-
ciple sounds like. However, in explaining the principle, the founders of design
patterns not only explicitly point out that composition and inheritance work
together, their design patterns show it.

The application in Example 1-45 through Example 1-54 was used to illustrate com-
position. It also shows inheritance and instantiation at work. To see this relationship
better, consider Figure 1-8.

In Figure 1-8, you can see that the Media class delegates to the RecordMedia class. It
does this by holding a reference to that class in its definition. (See Example 1-45.)

var recordMedia:RecordMedia;

In the VideoFlash class, you can see that it inherits from the Media class. At the same
time, though, VideoFlash instantiates RecordVideo.

recordMedia = new RecordVideo();

 var delAudio:Media = new Mp3();
 delAudio.doPlayMedia();
 delAudio.doRecordMedia();
 }
 }
}

Example 1-54. TestMedia.as (continued)

Maintenance and Extensibility Planning | 57

In turn, RecordVideo inherits from RecordMedia. At this point, we’re right back to the
class to which the Media class first delegated, RecordMedia.

Using composition without inheritance is difficult to imagine in most practical appli-
cations. Thus, instead of focusing on the relative advantages of each, for now con-
sider composition and inheritance a team. In Chapter 11, we again consider this
issue of favoring composition over inheritance in the context of using composition
with design patterns.

Maintenance and Extensibility Planning
A number of years ago, we built a web site designed for change. At the time, no
thought was given to design patterns, but instead we knew that the site would
change based on experience, and were acutely aware of making sure that the site was
set up for accepting change without having to redo it.

This was a case where the plan worked too well. The site is easy to update and as a
result, we really haven’t bothered to take the time to rework the site to incorporate
new concepts. It’s starting to look a little old-fashioned, and we’d like to upgrade the
version of Flash so that we can optimize video and all the new features in Flash CS3

Figure 1-8. Relationships of composition, inheritance, and instantiation

Mp3.as

{}

Media.as

{}

VideoFlash.as

{}

PlayVideo.as

{}

PlayMedia.as

{}

PlayAudio.as

{}

RecordVideo.as

{}

RecordMedia.as

{}

RecordAudio.as

{}

delegates

Instantiates

Inherits

58 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

and ActionScript 3.0. However, the plan illustrates a basic truth about software in
general and web development in particular. You’re going to spend more time on
maintenance and changing a site than you are building it in the first place. As a
result, you need to plan for maintenance and extensibility, and not just to get things
working right in the first place.

Had the web site that had been planned for change been done with design patterns,
not only would it be able to adapt to change, we wouldn’t have to scrap the current
design and start all over from scratch to extend the site. That is, only part of the
planning process should address change of a static category. You also need to plan
for extending the site to incorporate more than what you originally planned to
change. That is, you may need to add new materials to change.

Planning Only for Maintenance
While the web site described as built for change has persisted, it has not evolved. The
site has been easy to maintain because its main function loads an image, a text file,
and menu items for a given product. By either changing the label on an existing but-
ton or adding a button, changing and adding products is pretty simple as well. So it
has a little extensibility in the sense that its not fixed to a single product.

However, the site really isn’t set up for robust extensibility. For instance, adding a
blog to the site or changing the way that the menus work would take the same
amount of re-structuring as it would to start from scratch. So, while changing prod-
ucts in the site is simple, changing the site is not. Structurally, the site looks some-
thing like Figure 1-9—The Big Function.

It doesn’t matter whether the big function is directly instantiated, gained through
inheritance, or a delegate of composition. It has no flexibility other than the parame-
ter to tell it what to place on the stage. If its algorithm is changed, it could wreck
havoc on its use. You can view it as tough and inflexible because it gets one job done
in one way. Alternatively, the big function can be seen as dainty and fragile because
of its dependency on a single routine, and because it is subject to freeze up when

Figure 1-9. The Big Function

function BigFunction (product)
{
 load image in SWF
 load text from text file
 load menu items into array
 load array into Combo box
}

The Big Function

Maintenance and Extensibility Planning | 59

interacting with new elements in the application. In any case, it doesn’t lend itself to
a flexible site, and we should rethink it.

Adding Extensibility to a Plan with Granularity
The plan using The Big Function, even though it has limited flexibility, is bound to
break down and fail in the long run. To avoid getting stuck with an inalterable appli-
cation, you need to consider some granularity in your design. In this context granu-
larity refers to the amount of functionality each of your classes has. The trade-off
between full functionality and granularity is that the more functionality a class has,
the more it will do all by itself. After all, most classes we create are developed to add
the functionality of several built-in classes. However, sometimes less is better. The
less functionality a class has, the more components in your application its functional-
ity can employ. Figure 1-10 shows how this granularity might work.

The Big Function from the last section has been broken down into three smaller
(more granular) functions. Using composition, the functionality of the Big Function
is duplicated. However, the granularity gives the developer far more options in the
future. In the context of developing a real-world application, your design must look
over the horizon. That is, you need to plan for both possible and unknown changes.

Figure 1-10. Granular functions

Product

Product composer

function LI(p)
{
 load image
}

Loads image

function LT(p)
{
 load text
}

Loads text

function LM(p)
{
 load image
}

Loads menu

function LF(p)
{
 load flv
}

Loads video

Service

Service composer

Stream video

Video composer

X requirements

X composer

60 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

Figure 1-10 shows some possible future extensions to the application (those with
dashed lines). The value of granularity is that the new classes can use some or all of
the more granular functions. That would be impossible with the single Big Function
from the previous section. Likewise, new functions can be added and used with the
old ones.

Your Application Plan: It Ain’t You Babe
Jennifer Tidwell, in talking about interface design, reminds the designer that what-
ever else is true, the designer/developer is not the audience (or the client for that
manner). Before pulling out your program development tools, you really need to get
together with the client and find out what the client wants. The image of the pro-
grammer as the guy in the basement with a ponytail (whom we don’t let talk to our
clients) simply isn’t a workable model, especially when you’re planning for the Web.

Because the Web and Web-related technology are always changing, as clearly evi-
denced by the changes in Flash and ActionScript over recent years, what can and
cannot be accomplished by any software tool is always changing. Because the devel-
oper is responsible for knowing the limits and possibilities of software better than
anyone, she needs to be part of the process. In larger firms, this role is part of a
graphic design, interface design, human computer interaction (HCI) designers, and
information design team. In smaller firms, the developer may have to fill several
roles, but whatever the arrangement, developers need to be part of the process inter-
acting with the client whose business or organization depends on accomplishing a
goal. The better the developer understands what the client wants and the better he
can communicate the opportunities and limitations of the software to accomplish the
goals, the more likely the software produced will accomplish what the client needs
for success.

Using OOP and Design Patterns to Meet Client Goals
The role of object-oriented programming and design patterns is to help the software
developer plan for creating a site that keeps the client’s site healthy. Keeping a site in
good shape depends on the capacity to regularly update it, and to expand it when
needed. Too often developers think of a web site as static, but sites are dynamic, liv-
ing entities—or at least need to be conceived that way. Design patterns constitute a
set of plans—architectural designs if you will—that provide the tools to keep web
sites alive.

Flexibility is inherent in software reusability. Both OOP and design patterns were
developed with the goal of both reusability and flexibility, and if an application is
approached in the most practical manner imaginable, then design patterns make a
great deal of sense. So rather than being a set of strict rules for creating great soft-
ware, design patterns represent flexible tools for creating exactly the kind of site your
client needs.

Your Application Plan: It Ain’t You Babe | 61

Choosing the Right Design Pattern
Choosing the best design pattern for a particular situation is as much an art as it is a
formula. Throughout the book, you’ll see that we’ve included a wide variety of
examples, and you may even see a few similar examples with different design pat-
terns. The reason is that most development challenges can be approached from more
than a single angle. From one angle, a solution seems good and natural, but from a
different angle, another solution seems better. For example, a major project employ-
ing a design pattern involved a video player that would be able to play, record, stop,
and pause a video using Flash Media Server 2. The solution originally seemed to lie
in state machine because of a related project. The “fit” between what needed to be
done and the concepts in a state machine seemed to be perfect. From there it was a
simple step to the State design pattern. It was tested as a solution, and it worked so
well, and had the required flexibility, that it was adopted as the right solution.

As you go through the examples in the book, you’ll see that the patterns have been
organized into three parts: creational, structural, and behavioral. The parts in the
book describe the general categories for the design patterns. The chapters within the
parts explain how to create the designs in ActionScript 3.0, and give examples and
explanations of their actual use.

In addition to organizing the design patterns into the purposes for which the pat-
terns are designed, the Gang of Four also classified the patterns by scope. Scope
refers to whether the pattern applies primarily to object or class. In selecting the
design patterns for this book, we selected representative patterns from each of the
matrices that these class and object classifications represent. Table 1-1 shows the
design patterns chosen for this book organized by purpose and scope.

Achieving Better OOP Through Design Patterns
While this chapter has provided an introduction to key OOP concepts for those who
are relatively new to OOP, learning the design patterns should prove useful in learn-
ing OOP as well. We might even venture to add that if this is your initial

Table 1-1. Design pattern classifications

Purpose

Creational Structural Behavioral

Class Factory Method Adapter (class) Template
Method

Scope

Object Singleton Adapter (object) Command

Composite Observer

Decorator State

Strategy

62 | Chapter 1: Object-Oriented Programming, Design Patterns, and ActionScript 3.0

introduction to OOP, you will find what some consider the correct way to under-
stand OOP. (Others might even contend that it is the only way to understand OOP.)
We spent time on OOP because a sizable portion of ActionScript programmers may
not have gotten around to its use yet. After all, ActionScript itself is relatively new to
OOP structures.

Alternatively, if you’re an old trooper with OOP, either from ActionScript or another
language such as Java or C++, we hope that our discussion of design patterns will
help you better apply OOP concepts in a design pattern.

Whatever your background in OOP, the Gang of Four recommend the following
design patterns for those of you who are relatively inexperienced in object-oriented
programming:

• Adapter (Chapter 5)

• Composite (Chapter 6)

• Decorator (Chapter 4)

• Factory Method (Chapter 2)

• Observer (Chapter 8)

• Strategy (Chapter 11)

• Template Method (Chapter 9)

However, if these patterns seem in any way daunting, do not worry. We don’t know
of anyone who fully grasped design patterns on the first go-around, including the pat-
terns suggested by GoF. We certainly didn’t. However, by using, changing and experi-
menting with the examples we have provided, along with going over the explanation
of OOP and design pattern concepts in the chapters, we believe that you’ll come to see
them in the same light as we do—the best friend a programmer could have.

PART II

II.Creational Patterns

If the Lord Almighty had consulted me before
embarking on creation thus, I should have

recommended something simpler.
—Attributed to Alfonso the Wise (13th century Castilian

king and wise guy)
To exist is to change, to change is to mature, to

mature is to go on creating oneself endlessly.
—Henri Bergson

There is nothing like a dream to create the future.
—Victor Hugo

This first section examines design patterns that abstract the instantiation process.
The creator pattern separates the use of objects from their creation. The separation
process is accomplished by encapsulation. The concrete class uses the encapsulated
information, but has no direct knowledge of that information. At the same time, the
concrete class masks how the instances themselves are created and constructed.

Figure Part II-1 shows a general figure of the two main features of creational
patterns.

The two design patterns we examine as representatives of the creational patterns are
very different. The Factory Method pattern solves the problem of the tight coupling
between the Client and the Product by delegating the object creation to a separate
method called a factory; hence the name Factory Method. The Singleton method is
charged with making sure that a single instance and only a single instance of a class is
created, and so derives its name from the single instance it instantiates. The Single-
ton design pattern is often used in conjunction with other design patterns as a gate-
way when the developer needs to make sure that only one instance of some aspect of
the pattern is instantiated.

Chapter 2, Factory Method Pattern

Chapter 3, Singleton Pattern

Figure Part II-1. Model of creational patterns

Creational Patterns

Conceal creation
process from
instances (objects)

Encapsulate
knowledge used by
objects

Object

Object

Object

Object

65

Chapter 2 CHAPTER 2

Factory Method Pattern2

As experimentation becomes more complex, the need
for the cooperation in it of technical elements from

outside becomes greater and the modern laboratory
tends increasingly to resemble the factory and to

employ in its service increasing numbers of purely
routine workers.

—John Desmond Bernal
The medieval university looked backwards; it

professed to be a storehouse of old knowledge. The
modern university looks forward, and is a factory of

new knowledge.
—Thomas Huxley

One cannot walk through an assembly factory and not
feel that one is in Hell.

—W. H. Auden

What Is the Factory Method Pattern?
One of the most common statements in object-oriented programming (OOP) uses
the new keyword to instantiate objects from concrete classes. ActionScript applica-
tions that have multiple classes can have an abundance of code that looks like the
following:

public class Client
{
 public function doSomething()
 {
 var object:Object = new Product();
 object.manipulate();
 }
}

The Client class creates a new instance of the Product class and assigns it to the
variable object. There’s nothing wrong with this code, but it does create a coupling

66 | Chapter 2: Factory Method Pattern

or dependency between the Client and Product classes. Simply put, the Client class
depends on the Product class to function properly. Any changes to the Product class
in terms of class name changes or change in the number of parameters passed to it
will require changes in the Client class as well. This situation is exacerbated if multi-
ple clients use the Product class, and requires changing code in multiple locations.

The solution to this common problem is to loosen the tight coupling between the cli-
ent and the concrete classes it uses. This is where the factory method pattern offers a
robust solution. It introduces an intermediary between the client and the concrete
class. The intermediary is called a creator class. It allows the client to access objects
without specifying the exact class of object that will be created. This is accomplished
by delegating object creation to a separate method in the creator called a factory. The
primary purpose of the factory method is to instantiate objects and return them.

Model of the Factory Method Pattern
Figure 2-1 shows the high-level model of the factory method pattern. Multiple clients
can use the factory method in a creator to access and use multiple products. The
intermediary nature of the creator is clear in this model, as it forces the creation of
multiple types of objects (different products) through a common point.

This high-level model doesn’t show how clients can use a factory method to access
objects without specifying their concrete classes. Let’s write some code for the cre-
ator class to create and return product objects.

public class Creator
{
 public static function simpleFactory(product:String)
 {
 if (product == "p1")
 {
 return new product1();
 } else if (product == "p2") {
 return new product2();
 }
 }
}

The parameterized method called simpleFactory() instantiates product classes and
returns them. The client would call this method and pass the product identifier,
which in this case is the String value "p1" or "p2". This loosens the coupling between
the client and the product classes. However, it’s a very commonly used code seg-
ment, and doesn’t offer the reusability and flexibility offered by the factory method
pattern. This code segment is commonly known as a simple factory.

Figure 2-1. Logic model of factory method pattern

Client Creator Product* 1uses create *1

What Is the Factory Method Pattern? | 67

To add a new product, we’ll have to modify the simpleFactory() method and add
another IF clause. This goes against the open-closed principle in OOP where code
such as classes and methods should be open for extension, but closed for modifica-
tion. One of the primary advantages of the factory method pattern is indeed the
extensibility it affords to accommodate change. Let’s look at the class diagram of the
classic factory method pattern.

The creator and the product are both defined as interfaces and not concrete classes
(interfaces are indicated by italicized class names in class diagrams). Interfaces define
the type and method signatures for classes. Classes that implement an interface have
to implement the methods declared in the interface. A pure interface does not pro-
vide any implementation for declared methods. However, there is a special kind of
interface called an abstract interface. Abstract interfaces can provide default imple-
mentations for methods. They’re also called abstract classes, and cannot be instanti-
ated, but can be extended by other classes.

The Creator class in Figure 2-2 is an abstract class. It declares a factory method
(called factoryMethod() in this case). This is where most of the action takes place.
The factory method is defined as an abstract method without any implementation.
This puts the onus on subclasses (classes that extend the abstract class such as
ConcreteCreator) to provide the implementation details for the factory method. The
Creator class also defines and implements a public method (called operation() in
this case) that calls the factory method.

operation()
{
 ..
 product = FactoryMethod()
 ..
}

The operation() method calls FactoryMethod() to create product objects.

factoryMethod() {
 ..
 return new ConcreteProduct
}

Figure 2-2. Class diagram of the factory method pattern

Client Creator
operation()
factoryMethod()

operation() {
 ..
 product=factoryMethod()
 ..
}

Product

ConcreteCreator
factoryMethod()

FactoryMethod() {
 ..
 return new ConcreteProduct
}

ConcreteProduct

68 | Chapter 2: Factory Method Pattern

The primary responsibility of the factory method is to instantiate and return product
objects. The interesting issue is that even though factoryMethod() is declared in the
abstract class Creator, it’s implemented in ConcreteCreator. Therefore, it is the
ConcreteCreator class that knows about the product classes, essentially hiding the
product classes from the client.

The reason for using interfaces and abstract classes will be clear when we look at a
real application as it allows the addition of new products and corresponding cre-
ators by extending, as opposed to changing, existing code. This is a big deal in OOP
because it allows a safe way to add new functionality without breaking anything. The
ConcreteCreator class extends the Creator abstract class. The Product interface can
be either a pure interface or abstract class depending on whether there is default
functionality that needs to be implemented for all products.

Clients access the ConcreteProduct classes through the Creator interface. To force cli-
ents to access products through the factory methods, the product classes are gener-
ally hidden from outside access. We can see how this is implemented in ActionScript
by developing a minimalist example.

Abstract Classes in ActionScript 3.0
Before developing an example factory method pattern, we need to tackle the issue of
abstract classes, or more specifically, lack of support for them in ActionScript 3.0.
The factory method pattern defines creators as abstract classes, and there’s no way
around this. In fact, much of the usefulness of the pattern can be attributed to this
abstraction.

Abstract classes cannot be instantiated. They have to be extended by subclasses.
They can contain abstract methods or unimplemented method declarations that sub-
classes need to implement. The methods implemented in an abstract class will in
most cases be default behaviors, and much of the class will be unimplemented.
Before a class derived from an abstract class can be instantiated, it must implement
all unimplemented methods. The advantage of deriving from an abstract class is that
the subclass does not have to implement a method if the default behavior imple-
mented in the abstract class is what it needs.

Defining the creator class as abstract enables us to concentrate on a few concepts that
change, but leave others at their default functionality. This reduces complexity—one
of the key benefits of OOP. For example, from our model, we can use the default
implementation for the operation() method, but override the FactoryMethod().

Unfortunately, ActionScript 3.0 does not support abstract classes. The alternative is
to implement abstract classes as concrete classes in ActionScript without the instanti-
ation and method implementation checks. These checks are conducted at compile
time in languages that support abstract classes. We can add code to concrete classes
in ActionScript 3.0 to do these checks at runtime and throw violation errors. In

Minimalist Example | 69

addition, commenting the classes and methods that should behave as abstract is also
important. It must be emphasized that this puts the burden on the programmer as
opposed to the compiler to check if all methods that should behave as abstract are
implemented.

We will define abstract classes as concrete classes with the knowledge
that they will not be instantiated, but will be extended by subclasses.
Abstract methods will be defined simply as a function declaration that
will throw an IllegalOperationError error if called. Both abstract
classes and methods will be clearly identified using comments.

Minimalist Example
We will develop a minimalist example of a factory method pattern in ActionScript 3.0
using Flash CS3. The Project window shown in Figure 2-3 mirrors the file structure for
the example.

The Factory Method Minimalist.fla is a Flash document whose document class is
defined as Main. The document class is a new feature in Flash CS3 that can be set
from the Properties tab in the Properties panel of a Flash document (.fla file). This
represents the class whose constructor will be automatically run by the Flash Player
when the Flash movie (.swf file) is loaded. The Main class is defined in the Action-
Script file called Main.as. The project also contains a package called example. Pack-
ages allow you to bundle classes together to facilitate code sharing. They also allow
control over the visibility of classes and method names outside the package by using
identifiers. This minimizes naming conflicts that can occur when developing applica-
tions. We will use packages to hide the product classes from direct access by clients
in this example.

Figure 2-3. Project window for the minimalist example

70 | Chapter 2: Factory Method Pattern

The example package contains the Product1 and Product2 classes that implement the
IProduct interface. It also contains the abstract class Creator that is extended by two
subclasses CreatorA and CreatorB. Each class is defined in its own file, as is the con-
vention with ActionScript 3.0. First, let’s take a look at the product classes.

Product Classes
Example 2-1 through Example 2-3 show the product interface and concrete product
classes. All three classes belong to the example package as indicated by the package
declaration. The IProduct interface declares a method called manipulate() that is
implemented by both product classes. True to a minimalist example, the product
classes don’t do much of anything. However, make note of the class attribute.

Example 2-1. IProduct.as

package example
{
 public interface IProduct
 {
 function manipulate():void;
 }
}

Example 2-2. Product1.as

package example
{
 internal class Product1 implements IProduct
 {
 public function manipulate():void
 {
 trace("Doing stuff with Product1");
 }
 }
}

Example 2-3. Product2.as

package example
{
 internal class Product2 implements IProduct
 {
 public function manipulate():void
 {
 trace("Doing stuff with Product2");
 }
 }
}

Minimalist Example | 71

The product classes are defined as internal (the default class attribute in Action-
Script 3.0). This means that they’re not publicly visible. They can only be called from
within the example package. Now, let’s examine the creator classes.

Creator Classes
Example 2-4 through Example 2-6 show the creator classes. As with the product
classes, all creators belong to the package example. The creator classes are defined as
public, which indicates that they are publicly accessible from outside the package.
The creator class, as indicated by the comments, should behave as an abstract class.
It should be subclassed and not be instantiated. It also defines the factory method
that should behave as an abstract method. Note that the two concrete creator classes
CreatorA and CreatorB extend Creator. They also override and implement the
factoryMethod() method, each returning a corresponding product object. In addi-
tion, the factoryMethod() declared in the Creator class has to return null to prevent
a compile-time error. It will also throw an IllegalOperationError if called directly.
This is a runtime check to make sure that this method is overridden.

Example 2-4. Creator.as

package example
{
 import flash.errors.IllegalOperationError;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class Creator
 {
 public function doStuff():void
 {
 var product:IProduct = this.factoryMethod();
 product.manipulate();
 }

 // ABSTRACT Method (must be overridden in a subclass)
 protected function factoryMethod():IProduct
 {
 throw new IllegalOperationError("Abstract method:
 must be overridden in a subclass");
 return null;
 }
 }
}

Example 2-5. CreatorA.as

package example
{
 public class CreatorA extends Creator
 {
 override protected function factoryMethod():IProduct
 {

72 | Chapter 2: Factory Method Pattern

Note that the doStuff() method in the Creator class is declared as public because we
need to allow clients to get to it from outside the package. In contrast, the
factoryMethod() is declared as protected. The protected attribute makes the method
visible only within the same class or derived classes. Finally, we can take a look at the
document class called Main, which is the client described in the class diagram shown
in Figure 2-2 that uses the creator to access products.

Clients
The document class Main does not belong to a named package. Therefore, it must
import the packages that contain the classes it uses. The example package needs to be
imported, as it contains the creator classes. The document class Main is the client
described in the high-level model of the factory method pattern shown in Figure 2-1.
In Example 2-7, the document class calls a static method called run() in the static
Test class to run some tests.

 trace("Creating product 1");
 return new Product1(); // returns concrete product
 }
 }
}

Example 2-6. CreatorB.as

package example
{
 public class CreatorB extends Creator
 {
 override protected function factoryMethod():IProduct
 {
 trace("Creating product 2");
 return new Product2(); // returns concrete product
 }
 }
}

Example 2-7. Main.as

package
{
 import flash.display.Sprite;
 import example.*;

 /**
 * Main Class
 * @ purpose: Document class for movie
 */
 public class Main extends Sprite
 {

Example 2-5. CreatorA.as (continued)

Hiding the Product Classes | 73

We get the following output after running the project.

Creating product 1
Doing stuff with Product1
Creating product 2
Doing stuff with Product2

Let’s step through the code to see how we end up with the output. The client (docu-
ment class Main) does not know anything about the product classes. It only knows
about the creator classes and what they do. Therefore, the client instantiates
CreatorA and CreatorB, and asks them both to doStuff(). The Creator class behav-
ing as an abstract class knows how to doStuff(), but it has allowed subclasses to
determine the product that it does stuff to. The doStuff() method calls
factoryMethod() to return a product object. It then calls the manipulate() method in
the product object.

The primary task of the subclasses CreatorA and CreatorB is to create and return
product objects. They know about the product classes to operate on, and they over-
ride the factory method to instantiate the appropriate products and return them to
the doStuff() method. Knowledge about object creation has been encapsulated
within the concrete creator classes.

The factory method pattern has essentially created a firewall between clients and the
concrete product classes they use. Is the firewall bulletproof? Have we fully accom-
plished what we set out to do? Are the product classes only accessible through the
creators? We will have to check this.

Hiding the Product Classes
Let’s check if the product classes are truly hidden and accessible only through the
creator classes. We can try to instantiate a product by accessing its creator class and
the factory method directly. Add the following statements to the Test class in the
Main.as file (Example 2-7) to try and directly instantiate products:

 public function Main()
 {
 // instantiate concrete creators
 var cA:Creator = new CreatorA();
 var cB:Creator = new CreatorB();

 // creators operate on different products
 // even though they are doing the same operation
 cA.doStuff();
 cB.doStuff();
 }
 }
}

Example 2-7. Main.as (continued)

74 | Chapter 2: Factory Method Pattern

// instantiate concrete products
var p1 = new Product1();
var p2 = CreatorB.factoryMethod();

The following compile-time errors shown in Figure 2-4 are produced when we run
the project.

The errors indicate that the product classes and the factory method aren’t visible to
the client. The product classes are encapsulated within the package, as they were
defined with attribute internal. Internal classes can only be accessed from within the
package. Similarly, the factoryMethod() is not accessible as it a protected class.
Therefore, external access to the product classes is only possible through the
doStuff() public method.

You may wonder why it’s necessary to use this complex design just to prevent cli-
ents from directly instantiating concrete classes. The alternative would be much sim-
pler. The client could have instantiated Product1 and Product2 and fed it to a
doStuff() method. Let’s address this issue after we develop a simple application
using the factory method pattern. It will be easy to see the advantages when there is
real context instead of generic products and creators.

Example: Print Shop
Let’s develop an example application to dispatch print jobs at a hypothetical print
shop (think copy center with printers). Think of the shop as a place where custom-
ers bring what they want to print on portable media. The clerk at the counter will
initiate a print job on the computer for dispatch and billing, based on the type of
print job. We will build the application in Flash and ActionScript 3.0 as a generic
example to illustrate the utility of the factory method pattern.

Our print shop is a small time operation with only two printers. We have a work-
group printer and an inkjet that prints in black and white. In order to streamline
operations, the manager has a bright idea to create separate print centers in the shop.
One print center will handle high-volume jobs that will be sent to the workgroup
printer. The other will handle low-volume jobs that will be dispatched to the inkjet.
We design the print shop application using the factory method pattern, as we had
heard somewhere that it allows for flexibility and expansion. We are hoping to make
a profit and add more printers in the future. Figure 2-5 shows the class structure for
the print shop example.

Figure 2-4. Compile-time errors when directly accessing product classes

Example: Print Shop | 75

The class structure is very similar to the minimalist example shown in Figure 2-3.
The products will be print jobs that will be created and the creators will be the print
centers (see class diagram in Figure 2-6).

Product Classes: Print Jobs
The product classes don’t do anything at this point, but in a real application they will
initiate billing and dispatch print jobs to a print server. The print job classes belong
to the printcenters package. Example 2-8 shows the IPrintjob interface that
declares a parameterized method called start() that takes a file name of a document
to print.

Figure 2-5. Project window for the print shop example

Figure 2-6. Class diagram for the print shop example

Client PrintCenter
print()
createPrintjob()

print() {
 ..
 printjob=createPrintjob()
 ..
}

IPrintjob

LowVoIPrintCenter
factoryMethod()

InkjetPrintjob

WorkgroupPrintjob HighVoIPrintCenter
createPrintjob()

76 | Chapter 2: Factory Method Pattern

Example 2-9 and Example 2-10 show the two concrete print job classes that imple-
ment the IPrintjob interface.

Creator Classes: Print Centers
Example 2-11 shows the class PrintCenter that should behave as an abstract class.
The factory method is called createPrintjob(), and client access to the printer cen-
ters is through the print() method.

Example 2-8. IPrintjob.as

package printcenters
{
 public interface IPrintjob
 {
 function start(fn:String):void;
 }
}

Example 2-9. InkjetPrintjob.as

package printcenters
{
 internal class InkjetPrintjob implements IPrintjob
 {
 public function start(fn:String):void
 {
 trace("Printing '" + fn + "' to inkjet printer");
 }
 }
}

Example 2-10. WorkgroupPrintjob.as

package printcenters
{
 internal class WorkgroupPrintjob implements IPrintjob
 {
 public function start(fn:String):void
 {
 trace("Printing '" + fn + "' to workgroup printer");
 }
 }
}

Example 2-11. PrintCenter.as

package printcenters
{
 import flash.errors.IllegalOperationError;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class PrintCenter

Example: Print Shop | 77

Example 2-12 and Example 2-13 show the LowVolPrintCenter and
HighVolPrintCenter classes that extend the PrintCenter class, and override and
implement the createPrintjob() factory method.

 {
 public function print(fn:String):void
 {
 var printjob:IPrintjob = this.createPrintjob();
 printjob.start(fn);
 }

 // ABSTRACT Method (must be overridden in a subclass)
 protected function createPrintjob():IPrintjob
 {
 throw new IllegalOperationError("Abstract method:
 must be overridden in a subclass");
 return null;
 }
 }
}

Example 2-12. LowVolPrintCenter.as

package printcenters
{
 public class LowVolPrintCenter extends PrintCenter
 {
 override protected function createPrintjob():IPrintjob
 {
 trace("Creating new printjob for the inkjet printer");
 return new InkjetPrintjob();
 }
 }
}

Example 2-13. HighVolPrintCenter.as

package printcenters
{
 public class HighVolPrintCenter extends PrintCenter
 {
 override protected function createPrintjob():IPrintjob
 {
 trace("Creating new printjob for the workgropup printer");
 return new WorkgroupPrintjob();
 }
 }
}

Example 2-11. PrintCenter.as (continued)

78 | Chapter 2: Factory Method Pattern

Clients
Note that the client doesn’t know what specific printers the copy shop has in use.
The client only knows about the type of print job defined by the creator classes.
Based on the volume of the print job brought in by the customer, the application
would instantiate the corresponding concrete print center class (LowVolPrintCenter
or HighVolPrintCenter) and call the print() method passing the filename of the doc-
ument to be printed.

To test our design we run the following code from the client.

var pcHighVol:PrintCenter = new HighVolPrintCenter();
var pcLowhVol:PrintCenter = new LowVolPrintCenter();

pcHighVol.print("LongThesis.doc");
pcLowhVol.print("ShortVita.doc");

As in the minimalist example, we get the following output.

Creating new printjob for the workgropup printer
Printing 'LongThesis.doc' to workgroup printer
Creating new printjob for the inkjet printer
Printing 'ShortVita.doc' to inkjet printer

Looking at the output, it’s clear that the print() method operates on different
objects (WorkgroupPrintjob and InkjetPrintjob objects). This is an elegant solution,
as the client simply chooses the proper print center and requests it to print. The print
center classes take care of instantiating the correct print job. There is a clear separa-
tion between creating an object and using the created object. Object creation is han-
dled by the factoryMethod(), and the created object is used by the print() method.
Object creation is completely hidden from the client.

Print Shop Extension
The real utility of the factory method pattern is evident when extending or adding
more functionality to an application. Because the print shop is doing good business,
the manager decides to add a fancy multi-function printer that has a sorting bin, a
built-in stapler, and double-sided (duplex) printing features. How do we add this
new printer to our existing application? We need a new print center in the print shop
for anyone who needs additional features such as stapling or duplex printing. In
terms of code, we need to create a new subclass of the PrintCenter class to handle
the fancy print jobs. We will call this class FancyPrintCenter (Example 2-15). We
also need to subclass Printjob and develop a new concrete class called
MultifunctionPrintJob (Example 2-14) to dispatch jobs to the new printer. Let’s look
at the code changes needed to do this.

Example: Print Shop | 79

We added two new classes, but didn’t have to modify existing code at all. We added
a new product class by implementing the Printjob interface and a new creator class
by extending the PrintCenter abstract class. This is the big advantage of the factory
method pattern when compared to the simple factory discussed previously. By
declaring both the product and creator classes as interfaces, we were able to extend
the code to add new functionality without changing existing code. To access the new
multifunction printer, clients need to instantiate a FancyPrintCenter class, and call its
print() method.

Parameterized Factory Methods
The examples we’ve seen have used non-parameterized factory methods. Non-
parameterized factory methods don’t take any parameters in their function declara-
tions. Parameterized factory methods take a parameter that specifies a kind of prod-
uct that will be created. For example, in the print shop application, you can pass an
extra parameter to the factory method to indicate a particular kind of print job (like
multiple kinds of high volume print jobs). Parameterized factory methods allow fur-
ther encapsulation and illustrate the ultimate utility of the factory method pattern.
We will further extend the print shop example to incorporate a parameterized fac-
tory method.

Example 2-14. MultifunctionPrintJob.as

package printcenters {

 internal class MultifunctionPrintJob implements IPrintjob {

 public function start(fn:String):void {
 trace("Printing '" + fn + "' to multifunction printer");
 }
 }
}

Example 2-15. FancyPrintCenter.as

package printcenters {

 import printcenters.*;

 // High Volume Print Center (subclass of PrintCenter)
 public class FancyPrintCenter extends PrintCenter {

 override protected function createPrintjob():IPrintjob {
 trace("Creating new printjob for the multifunction printer");
 return new MultifunctionPrintJob();
 }
 }
}

80 | Chapter 2: Factory Method Pattern

Extended Example: Color Printing
The print shop has been going gangbusters! The manager decided to add the single
most requested feature at the shop—color printing. We end up purchasing two new
color printers: a color inkjet printer for low volume jobs, and a color laser printer for
high volume printing. Unfortunately, we didn’t think about color printing when first
designing the application. How do we add this feature to our application? It’s a good
thing that we know about parameterized factory methods.

We still have the two print centers for high and low volume printing. However, we
now have to specify a kind of print job. Customers can request a color or black and
white print job that can be high or low volume. To indicate the kind of print job, we
can pass a parameter to the print() method.

New Product Classes
We add two new product classes for the new printers, called ColorInkjetPrintjob
(Example 2-16) and ColorLaserPrintjob (Example 2-17). Again, we’re not changing
existing code, but extending the application by implementing to the IPrintjob inter-
face show in Example 2-8.

Example 2-16. ColorInkjetPrintjob.as

package printcenters
{
 internal class ColorInkjetPrintjob implements IPrintjob
 {
 public function start(fn:String):void
 {
 trace("Printing '" + fn + "' to color laser printer");
 }
 }
}

Example 2-17. ColorLaserPrintjob.as

package printcenters
{
 internal class ColorLaserPrintjob implements IPrintjob
 {
 public function start(fn:String):void
 {
 trace("Printing '" + fn + "' to color laser printer");
 }
 }
}

Extended Example: Color Printing | 81

New Creator Classes: Integrating a Parameterized Factory Method
As with the product classes, we can add a parameterized factory method to our
application without modifying existing code. We won’t change the original
PrintCenter abstract class and its derived classes, LowVolPrintCenter and
HighVolPrintCenter. By letting these be, we don’t break the functionality of the old
interface, and clients using it will continue to function. We will define a new abstract
interface called NewPrintCenter with a parameterized factory method (Example 2-18).

The factory method createPrintjob() takes a parameter of type uint that represents
a kind of print job (color or black and white). In addition, the print() method also
takes this as an additional parameter.

We next create two concrete classes (Example 2-19 and Example 2-20) that extend
the NewPrintCenter abstract class for low and high volume printing.

Example 2-18. NewPrintCenter.as

package printcenters
{
 import flash.errors.IllegalOperationError;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class NewPrintCenter
 {

 public function print(fn:String, cKind:uint):void
 {
 var printjob:IPrintjob = this.createPrintjob(cKind);
 printjob.start(fn);
 }

 // ABSTRACT Method (must be overridden in a subclass)
 protected function createPrintjob(cKind:uint):IPrintjob
 {
 throw new IllegalOperationError("Abstract method:
 must be overridden in a subclass");
 return null;
 }
 }
}

Example 2-19. NewLowVolPrintCenter.as

package printcenters
{
 public class NewLowVolPrintCenter extends NewPrintCenter
 {
 public static const BW :uint = 0;
 public static const COLOR :uint = 1;

 override protected function createPrintjob(cKind:uint):IPrintjob

82 | Chapter 2: Factory Method Pattern

We have created a new hierarchy of related classes for the new print centers, with
parameterized factory methods. The abstract class is NewPrintCenter, and its derived
subclasses are NewLowVolPrintCenter and NewHighVolPrintCenter. Note the public
static constants to identify the different kinds of print jobs. These constants are pub-
licly accessible and should be used as the parameters passed to the print() method.

 {
 if (cKind == BW)
 {
 trace("Creating new printjob for the b/w inkjet printer");
 return new InkjetPrintjob();
 } else if (cKind == COLOR) {
 trace("Creating new printjob for the color inkjet printer");
 return new ColorInkjetPrintjob();
 } else {
 throw new Error("Invalid low volume print job");
 return null;
 }
 }
 }
}

Example 2-20. NewHighVolPrintCenter.as

package printcenters
{
 public class NewHighVolPrintCenter extends NewPrintCenter
 {
 public static const BW :uint = 0;
 public static const COLOR :uint = 1;

 override protected function createPrintjob(cKind:uint):IPrintjob
 {
 if (cKind == BW)
 {
 trace("Creating new printjob for the b/w workgroup printer");
 return new WorkgroupPrintjob();
 } else if (cKind == COLOR) {
 trace("Creating new printjob for the color laser printer");
 return new ColorLaserPrintjob();
 } else {
 throw new Error("Invalid high volume print job");
 return null;
 }
 }
 }
}

Example 2-19. NewLowVolPrintCenter.as

Extended Example: Color Printing | 83

Clients
Clients need to instantiate the new print center classes to access the color printers.
The print() method takes a parameter that specifies a color or black and white print
job. They operate on different print job objects based on the passed parameters.

var pcNewHighVol:NewPrintCenter = new NewHighVolPrintCenter();
var pcNewLowhVol:NewPrintCenter = new NewLowVolPrintCenter();

pcNewHighVol.print("LongThesis.doc", NewHighVolPrintCenter.BW);
pcNewHighVol.print("SalesReport.pdf", NewHighVolPrintCenter.COLOR);
pcNewLowhVol.print("ShortVita.doc", NewLowVolPrintCenter.BW);
pcNewLowhVol.print("SalesChart.xlc", NewLowVolPrintCenter.COLOR);

The old print center classes, LowVolPrintCenter and HighVolPrintCenter, which
implement a non-parameterized factory method, will continue to work. They’ll con-
tinue to use the WorkgroupPrintjob and InkjetPrintjob print job classes without dis-
ruption. The power of the factory method design pattern to handle changing
requirements is very evident in this example.

Parallel Class Hierarchies
Take a look at the class diagram for the extended print center application
(Figure 2-7). You will see two distinct concrete product class hierarchies. The
WorkgroupPrintjob and ColorLaserPrintjob classes represent the high volume print
jobs. Likewise, the InkjetPrintjob and ColorInkjetPrintjob classes represent the low
volume print jobs. In addition, knowledge about these class hierarchies is encapsu-
lated within their corresponding creator classes. Note that the product classes can-
not be accessed directly. They can only be accessed through the creator classes. The
NewLowVolPrintCenter and NewHighVolPrintCenter know about their corresponding
product class hierarchy. We can think of the factory method pattern as sets of paral-
lel class hierarchies: the concrete creator classes and their corresponding products.
This is a powerful way of encapsulating knowledge and managing dependencies
within software applications.

Figure 2-7. Class diagram for the extended print shop example

Printjob

InkjetPrintjob
ColorInkjetPrintjob

InkjetPrintjob
ColorInkjetPrintjob

NewPrintCenter
print()
createPrintjob()

NewLowVoIPrintCenter
createPrintjob()

NewHighVoIPrintCenter
createPrintjob()

84 | Chapter 2: Factory Method Pattern

Key OOP Concepts Used in the Factory Method Pattern
Incorporating changes that were not anticipated in the original software design can
sometimes require changes to existing code. Modifying existing code that works well
should be avoided if at all possible as it can result in unintended consequences such
as the introduction of new bugs. A slight change in a dependant module can result in
breaking a program in several places if there’s tight coupling between code segments.

Code that handles change well is possible using good OO design. The factory
method pattern is an excellent solution to this recurring requirement. The factory
method pattern is a solution to one of the most common reasons for tight coupling,
which is caused by one class instantiating another class and using the resultant
object. Of course, classes need to be instantiated—there’s no way to write code that
does not instantiate classes. So, what are we talking about?

We’re not going to eliminate coupling caused by instantiating concrete classes. How-
ever, we can manage the dependency between classes by reducing the coupling. To
do this, the factory method pattern lets you separate the creation of objects from
their use.

Here lies the crucial concept. Clients can use objects created from another class, but
the factory method handles the creation of objects by introducing an intermediary
called a creator class between the client and the concrete class that is instantiated.
The client does not have to specify the class name of the object that it wants to use
because the creator class encapsulates that knowledge. This encapsulation allows
managing change by extension, as the print shop example showed.

All in all, the factory method pattern allows the creation of loosely coupled designs
that stand the test of changing requirements.

Example: Sprite Factory
ActionScript 3.0 introduced the Sprite class, which is a lightweight building block for
interactive objects on stage. MovieClips are now derived from the new Sprite class.
The factory method pattern can come in handy when developing applications that
utilize sprites in Flash. Sprites are frequently added, and their behavior and appear-
ance modified, during the course of Flash application development. Therefore, man-
aging the dependencies between sprites and the rest of the application can be
advantageous. We will create a simple example application called Shapes that man-
ages sprite creation by introducing a factory method that enables clients to create
sprites without explicitly specifying their class names.

The application shown in Figure 2-8 will simply draw four different shapes based on
the Sprite class on the Flash stage. The first set of shapes will consist of an unfilled
rectangle and circle. The second set will be a filled rectangle and circle. The example

Example: Sprite Factory | 85

is not a productive application, but it will serve as a springboard to the vertical
shooter game that we’ll develop later in the chapter.

The Project window in Figure 2-9 shows the file structure of the Shapes example.

Product Classes: Shape Widgets
The shapes on the stage (Figure 2-9) are the products in this example. These con-
crete shape widgets extend the ShapeWidget abstract class (Example 2-21). Unlike in
previous examples, we define ShapeWidget as an abstract interface because we want

Figure 2-8. Screenshot of Shapes example stage

Figure 2-9. Shapes example Project window

86 | Chapter 2: Factory Method Pattern

to implement default behavior common to all shape widgets in the definition. In
addition, ShapeWidget also subclasses Sprite. The default behavior is defined in a
method called setLoc() to set the X and Y coordinates of the sprite. ShapeWidget also
defines an abstract method called drawWidget() to draw the sprite.

Each Shape, Sprite, and MovieClip object has a property called graphics that is an
instance of the Graphics class. The Graphics class includes properties and methods
for drawing and manipulating lines and shapes including fills, colors, and patterns.
The concrete classes derived from the ShapeWidget class are listed in Examples 2-22
through 2-25. They draw the corresponding shapes in the constructor using methods
accessed through the graphics property.

Example 2-21. ShapeWidget.as

package shapecreators
{
 import flash.display.Sprite;

 // ABSTRACT Class (should be subclassed and not instantiated)
 internal class ShapeWidget extends Sprite
 {
 // ABSTRACT Method (should be implemented in subclass)
 internal function drawWidget():void {}

 internal function setLoc(xLoc:int, yLoc:int):void {
 this.x = xLoc;
 this.y = yLoc;
 }
 }
}

Example 2-22. SquareWidget.as

package shapecreators {

 internal class SquareWidget extends ShapeWidget {

 override internal function drawWidget():void
 {
 graphics.lineStyle(3, 0xFF00FF);
 graphics.drawRect(-10, -10, 20, 20);
 }
 }
}

Example: Sprite Factory | 87

Creator Classes: Shape Creators
The ShapeCreator class shown in Example 2-26 defines the abstract interface for the
creator classes. The publicly accessible draw() method is the real workhorse of this
class. It calls the createShape() factory method, and operates on the returned
ShapeWidget object. The parameterized factory method createShape() should behave
as an abstract method, and must be overridden by the concrete creator classes.

Example 2-23. CircleWidget.as

package shapecreators {

 internal class CircleWidget extends ShapeWidget {

 override internal function drawWidget():void
 {
 graphics.lineStyle(3, 0xFFFF00);
 graphics.drawCircle(0, 0, 10);
 }
 }
}

Example 2-24. FilledSquareWidget.as

package shapecreators {

 internal class FilledSquareWidget extends ShapeWidget {

 override internal function drawWidget():void
 {
 graphics.beginFill(0xFF00FF);
 graphics.drawRect(-10, -10, 20, 20);
 graphics.endFill();
 }
 }
}

Example 2-25. FilledCircleWidget.as

package shapecreators {

 internal class FilledCircleWidget extends ShapeWidget {

 override internal function drawWidget():void
 {
 graphics.beginFill(0xFFFF00);
 graphics.drawCircle(0, 0, 10);
 graphics.endFill();
 }
 }
}

88 | Chapter 2: Factory Method Pattern

The draw() method takes four parameters: the kind of shape to be created, the stage
object, and the shape’s X and Y location. Even though the shape widget classes draw
the shapes, they’re not visible until added to the display list of the stage via the
addChild() method. Clients will pass an instance of the Stage object as the display
object container to draw shapes on the stage. The concrete creator classes
UnfilledShapeCreator (Example 2-27) and FilledShapeCreator (Example 2-28)
extend the ShapeCreator (Example 2-26) class and implement the createShape fac-
tory method.

Example 2-26. ShapeCreator.as

package shapecreators
{
 import flash.display.DisplayObjectContainer;
 import flash.errors.IllegalOperationError;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class ShapeCreator
 {
 public function draw(cType:uint, target:DisplayObjectContainer,
 xLoc:int, yLoc:int):void {
 var shape = this.createShape(cType);
 shape.drawWidget();
 shape.setLoc(xLoc, yLoc); // set the x and y location
 target.addChild(shape); // add the sprite to the display list
 }

 // ABSTRACT Method (must be overridden in a subclass)
 protected function createShape(cType:uint):ShapeWidget
 {
 throw new IllegalOperationError("Abstract method:
 must be overridden in a subclass");
 return null;
 }
 }
}

Example 2-27. UnfilledShapeCreator.as

package shapecreators
{
 public class UnfilledShapeCreator extends ShapeCreator
 {
 public static const CIRCLE :uint = 0;
 public static const SQUARE :uint = 1;

 override protected function createShape(cType:uint):ShapeWidget
 {
 if (cType == CIRCLE)
 {
 trace("Creating new circle shape");
 return new CircleWidget();
 } else if (cType == SQUARE) {

Example: Sprite Factory | 89

Clients
Note that when a client calls the creator classes, it needs to pass an instance of the
stage to the draw() method as a parameter. If your client is the document class for a
Flash document, it should have access to the stage using the this.stage property. In
ActionScript 3.0, the stage isn’t globally accessible. It can only be accessed by objects
that are already attached to the display list.

// instantiate concrete shape creators
var unfilledShapeCreator:ShapeCreator = new UnfilledShapeCreator();
var filledShapeCreator:ShapeCreator = new FilledShapeCreator();

// draw unfilled shapes
unfilledShapeCreator.draw(UnfilledShapeCreator.CIRCLE, this.stage, 50, 75);
unfilledShapeCreator.draw(UnfilledShapeCreator.SQUARE, this.stage, 150, 75);

 trace("Creating new square shape");
 return new SquareWidget();
 } else {
 throw new Error("Invalid kind of shape specified");
 return null;
 }
 }
 }
}

Example 2-28. FilledShapeCreator.as

package shapecreators
{
 public class FilledShapeCreator extends ShapeCreator
 {
 public static const CIRCLE :uint = 0;
 public static const SQUARE :uint = 1;

 override protected function createShape(cType:uint):ShapeWidget
 {
 if (cType == CIRCLE)
 {
 trace("Creating new filled circle shape");
 return new FilledCircleWidget();
 } else if (cType == SQUARE) {
 trace("Creating new filled square shape");
 return new FilledSquareWidget();
 } else {
 throw new Error("Invalid kind of shape specified");
 return null;
 }
 }
 }
}

Example 2-27. UnfilledShapeCreator.as

90 | Chapter 2: Factory Method Pattern

// draw filled shapes
filledShapeCreator.draw(FilledShapeCreator.CIRCLE, this.stage, 50, 200);
filledShapeCreator.draw(FilledShapeCreator.SQUARE, this.stage, 150, 200);

As in previous examples, you can extend this application to draw different kinds of
sprites with different behaviors without much effort. We will use the sprite factory in
our final example, a vertical shooter game.

Example: Vertical Shooter Game
The next application will demonstrate the usefulness of the factory method pattern
when designing fast-paced action games, as many sprites on the screen are created at
runtime based on user input. When an application doesn’t know which objects to
create until runtime, the factory method design pattern light bulb should go off in
your head. We will develop a portion of a vertical shooter game in the best tradi-
tions of the original Space Invaders. The game will be based on the sprite factory
example, as all interactive objects that appear on the Flash Stage are derived form the
Sprite class. This will not be a complete game, but the parts that show the utility of
the factory method pattern, such as creating different space ships, including the dif-
ferent projectiles that the ships shoot at each other, will be fully developed.

The game will consist of one hero ship located at the bottom of the stage (see
Figure 2-10) that can be moved horizontally using the mouse. Five alien ships are
placed in a row at the top of the stage. The alien ships shoot alien cannon balls
(unfilled circles) and alien mines (unfilled squares that rotate). Clicking the mouse
will make the hero ship shoot hero cannon balls (filled circles). In this example, we
will not implement collision detection (aka hit testing) to figure out if projectiles hit
the ships.

Figure 2-10. Screenshot of Vertical Shooter example showing space ships and projectiles

Example: Vertical Shooter Game | 91

Figure 2-11 shows the Project window for the example. It consists of two packages
that encapsulate space ships and projectiles. The weapons package makes use of the
factory method pattern, and defines creator classes (weapons platforms) that pro-
duce different projectiles. The ships package uses a variation on the factory method
pattern to create different spaceships.

Product Classes
The example consists of two different products: projectiles and space ships. Each
product is visible as a sprite on the Stage.

Projectiles

The Projectile class shown in Example 2-29 defines the abstract interface for the
concrete projectile classes. It should behave as an abstract class and is declared as a
subclass of Sprite. The class defines the nSpeed property to hold the speed of the pro-
jectile in pixels per second. The drawProjectile() method should behave as abstract
and has to be implemented in a subclass. The class also defines several methods with
default implementations. The setLoc() method sets the X and Y coordinates of the
sprite. The arm() method specifies the default speed of the projectile and sets it to 5
pixels per frame. The release() method attaches an EnterFrame event handler called
doMoveProjectile() to move the projectile vertically by nSpeed pixels on each
EnterFrame event. The doMoveProjectile() also performs the important function of

Figure 2-11. Vertical Shooter Project window

92 | Chapter 2: Factory Method Pattern

checking if the projectile has gone beyond the top or bottom boundaries of the stage.
If so, it removes the sprite object as an event listener, and removes it from the dis-
play list of the stage. Because there are no references to the projectile object at this
point, the Flash garbage collector will recover the memory it occupied.

Example 2-29. Projectile.as

package weapons
{
 import flash.display.Sprite;
 import flash.events.*;

 // ABSTRACT Class (should be subclassed and not instantiated)
 internal class Projectile extends Sprite
 {
 internal var nSpeed:Number // holds speed of projectile

 // ABSTRACT Method (must be overridden in a subclass)
 internal function drawProjectile():void {}

 internal function arm():void
 {
 // set the default speed for the projectile (5 pixels / fame)
 nSpeed = 5;
 }

 internal function release():void
 {
 // attach EnterFrame event handler doMoveProjectile()
 this.addEventListener(Event.ENTER_FRAME, this.doMoveProjectile);
 }

 internal function setLoc(xLoc:int, yLoc:int):void
 {
 this.x = xLoc;
 this.y = yLoc;
 }

 // update the projectile sprite
 internal function doMoveProjectile(event:Event):void
 {
 this.y += nSpeed; // move the projectile
 // remove projectile if it extends off the top or bottom of the stage
 if ((this.y < 0) || (this.y > this.stage.stageHeight))
 {
 // remove the event listener
 this.removeEventListener(Event.ENTER_FRAME,
 this.doMoveProjectile);
 this.stage.removeChild(this); // remove sprite from stage
 }
 }
 }
}

Example: Vertical Shooter Game | 93

The default behaviors defined in the Projectile class are suitable for most of the
derived concrete projectile classes (Examples 2-30 through 2-32). So the derived pro-
jectile classes are much simpler. They simply draw the projectile by overriding and
implementing the drawProjectile() method. The arm() method is overridden to set
a different speed. The advantage of using abstract classes should be noted here, as
the code required to add new projectiles is minimal because in most cases, the
desired action will be to inherit default behavior.

Example 2-30. HeroCannonBall.as

package weapons {

 internal class HeroCannonBall extends Projectile {

 override internal function drawProjectile():void
 {
 graphics.beginFill(0xFFFF00);
 graphics.drawCircle(0, 0, 5);
 graphics.endFill();
 }

 override internal function arm():void {
 nSpeed = -10; // set the speed
 }
 }
}

Example 2-31. AlienCannonBall.as

package weapons {

 internal class AlienCannonBall extends Projectile {

 override internal function drawProjectile():void
 {
 graphics.lineStyle(3, 0xFF00FF);
 graphics.drawCircle(0, 0, 5);
 }

 override internal function arm():void {
 nSpeed = 8; // set the speed
 }
 }
}

Example 2-32. AlienMine.as

package weapons {

 import flash.events.*;

 internal class AlienMine extends Projectile {

94 | Chapter 2: Factory Method Pattern

Projectiles are drawn using methods available in the Graphics class accessible via the
graphics property. The projectile speed is set to a negative value for the
HeroCannonBall class as it moves from the bottom to top of the stage (Example 2-30).
In contrast, alien projectiles move from top to bottom (See Figure 2-10 to see the
locations of the space ships). Also note the overridden doMoveProjectile() method
in the AlienMine class. It calls the default behavior in the superclass using the super
property, but adds a statement to make the sprite rotate. So, alien mines spin slowly
as they move.

Space ships

The Ship class shown in Example 2-33 defines the abstract interface for the concrete
space ship classes. The Ship class should behave as an abstract class and is declared
as a subclass of Sprite. It defines a setLoc() method to set the X and Y coordinates
of the sprite. It also defines two methods without implementations that should
behave as abstract methods. The drawShip() method should be overridden and
implemented to draw the ship. Similarly, the initShip() method should be overrid-
den to initialize ship behavior such as attach event handlers.

 override internal function drawProjectile():void
 {
 graphics.lineStyle(3, 0xFF0000);
 graphics.drawRect(-5, -5, 10, 10);
 }

 override internal function arm():void {
 nSpeed = 2; // set the speed
 }

 override internal function doMoveProjectile(event:Event):void {
 super.doMoveProjectile(event);
 this.rotation += 5; // rotate
 }
 }
}

Example 2-33. Ship.as

package ships
{
 import flash.display.Sprite;
 import flash.events.*;

 // ABSTRACT Class (should be subclassed and not instantiated)
 internal class Ship extends Sprite
 {
 internal function setLoc(xLoc:int, yLoc:int):void
 {
 this.x = xLoc;

Example 2-32. AlienMine.as (continued)

Example: Vertical Shooter Game | 95

The AlienShip (Example 2-34) and HeroShip (Example 2-35) classes extend the Ship
(Example 2-33) class.

 this.y = yLoc;
 }

 // ABSTRACT Method (must be overridden in a subclass)
 internal function drawShip():void {}

 // ABSTRACT Method (must be overridden in a subclass)
 internal function initShip():void {}
 }
}

Example 2-34. AlienShip.as

package ships
{
 import flash.display.*;
 import flash.events.*;
 import weapons.AlienWeapon;

 public class AlienShip extends Ship
 {
 private var weapon:AlienWeapon;
 // available projectiles
 private const aProjectiles:Array = [AlienWeapon.CANNON, AlienWeapon.MINE];

 override internal function drawShip():void
 {
 graphics.beginFill(0xFFFFFF); // white color
 graphics.drawRect(-5, -10, 10, 5);
 graphics.drawRect(-20, -5, 40, 10);
 graphics.drawRect(-20, 5, 10, 5);
 graphics.drawRect(10, 5, 10, 5);
 graphics.endFill();
 }

 override internal function initShip():void
 {
 // instantiate the alien projectile creator
 weapon = new AlienWeapon();
 // attach the doFire() method on this object
 // as an ENTER_FRAME handler of the stage
 this.stage.addEventListener(Event.ENTER_FRAME, this.doFire);
 }

 protected function doFire(event:Event):void
 {
 // fire randomly (4% chance of firing on each enterframe)
 if (Math.ceil(Math.random() * 25) == 1)
 {
 // select random projectile

Example 2-33. Ship.as (continued)

96 | Chapter 2: Factory Method Pattern

 var cProjectile:uint =
 aProjectiles[Math.floor(Math.random() * aProjectiles.length)];
 weapon.fire(cProjectile, this.stage, this.x, this.y + 15);
 }
 }
 }
}

Example 2-35. HeroShip.as

package ships
{
 import flash.display.*;
 import weapons.HeroWeapon;
 import flash.events.*;

 internal class HeroShip extends Ship
 {
 private var weapon:HeroWeapon;

 override internal function drawShip():void
 {
 graphics.beginFill(0x00FF00); // green color
 graphics.drawRect(-5, -15, 10, 10);
 graphics.drawRect(-12, -5, 24, 10);
 graphics.drawRect(-20, 5, 40, 10);
 graphics.endFill();
 }

 override internal function initShip():void
 {
 // instantiate the hero projectile creator
 weapon = new HeroWeapon();
 // attach the doMoveShip() and doFire() methods on this object
 // as MOUSE_MOVE and MOUSE_DOWN handlers of the stage
 this.stage.addEventListener(MouseEvent.MOUSE_MOVE, this.doMoveShip);
 this.stage.addEventListener(MouseEvent.MOUSE_DOWN, this.doFire);
 }

 protected function doMoveShip(event:MouseEvent):void
 {
 // set the x coordinate of the sprite to the
 // mouse relative to the stage
 this.x = event.stageX;
 event.updateAfterEvent(); // process this event first
 }

 protected function doFire(event:MouseEvent):void
 {
 weapon.fire(HeroWeapon.CANNON, this.stage, this.x, this.y - 25);
 event.updateAfterEvent(); // process this event first
 }
 }
}

Example 2-34. AlienShip.as

Example: Vertical Shooter Game | 97

Note the initShip() methods in both derived classes attach event handlers to inter-
cept events. The event handlers on the HeroShip class respond to MOUSE_MOVE and
MOUSE_DOWN events sent to the stage. Intercepting these stage events is necessary as the
hero ship should respond to mouse events even when the mouse focus is not on the
sprite. In addition, the initShip() method initializes the corresponding creator class
for creating projectiles. The ENTER_FRAME event handler on the AlienShip class is the
doFire() method. It fires a random projectile from the available projectile list using
the projectile creator class.

Creator Classes
We end up with two sets of creator classes corresponding to the two product types.
One creator class encapsulates the creation of projectiles and the other encapsulates
space ship creation.

Weapon

The Weapon class (Example 2-36) is the abstract interface that encapsulates projectile
creation. The weapon is better described as a weapons platform that can fire differ-
ent kinds of projectiles. The publicly accessible fire() method calls the
createProjectile() factory method.

Example 2-36. Weapon.as

package weapons
{
 import flash.display.Stage;
 import flash.errors.IllegalOperationError;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class Weapon
 {

 public function fire(cWeapon:uint, target:Stage, xLoc:int, yLoc:int):void
 {
 var projectile:Projectile = this.createProjectile(cWeapon);
 trace("Firing " + projectile.toString());
 // draw projectile
 projectile.drawProjectile();
 // set the starting x and y location
 projectile.setLoc(xLoc, yLoc);
 // arm the projectile (override the default speed)
 projectile.arm();
 // add the projectile to the display list
 target.addChild(projectile);
 // make the projectile move by attaching enterframe event handler
 projectile.release();
 }

98 | Chapter 2: Factory Method Pattern

The AlienWeapon (Example 2-37) and HeroWeapon (Example 2-38) classes extend the
Weapon class (Example 2-36) and implement the createProjectile() factory method.

 // ABSTRACT Method (must be overridden in a subclass)
 protected function createProjectile(cWeapon:uint):Projectile
 {
 throw new IllegalOperationError("Abstract method:
 must be overridden in a subclass");
 return null;
 }
 }
}

Example 2-37. AlienWeapon.as

package weapons
{
 public class AlienWeapon extends Weapon
 {
 public static const CANNON :uint = 0;
 public static const MINE :uint = 1;

 override protected function createProjectile(cWeapon:uint):Projectile
 {
 if (cWeapon == CANNON)
 {
 trace("Creating new alien cannonball");
 return new AlienCannonBall();
 } else if (cWeapon == MINE) {
 trace("Creating new alien mine");
 return new AlienMine();
 } else {
 throw new Error("Invalid kind of projectile specified");
 return null;
 }
 }
 }
}

Example 2-38. HeroWeapon.as

package weapons
{
 public class HeroWeapon extends Weapon
 {
 public static const CANNON :uint = 0;

 override protected function createProjectile(cWeapon:uint):Projectile
 {
 if (cWeapon == CANNON)
 {
 trace("Creating new Hero cannonball");

Example 2-36. Weapon.as (continued)

Example: Vertical Shooter Game | 99

ShipCreator

The concrete class ShipCreator (Example 2-39) encapsulates ship creation. We don’t
need to encapsulate knowledge about hero ships and alien ships at this point. After
all, we have only one hero ship and one kind of alien ship.

 return new HeroCannonBall();
 } else {
 throw new Error("Invalid kind of projectile specified");
 return null;
 }
 }
 }
}

Example 2-39. ShipCreator.as

package ships
{
 import flash.display.Stage;

 public class ShipCreator
 {
 public static const HERO :uint = 0;
 public static const ALIEN :uint = 1;

 public function addShip(cShipType:uint, target:Stage, xLoc:int, yLoc:int):void
 {
 var ship:Ship = this.createShip(cShipType);
 ship.drawShip(); // draw ship
 ship.setLoc(xLoc, yLoc); // set the x and y location
 target.addChild(ship); // add the sprite to the stage
 ship.initShip(); // initialize ship
 }

 private function createShip(cShipType:uint):Ship
 {
 if (cShipType == HERO)
 {
 trace("Creating new hero ship");
 return new HeroShip();
 } else if (cShipType == ALIEN) {
 trace("Creating new alien ship");
 return new AlienShip();
 } else {
 throw new Error("Invalid kind of ship specified");
 return null;
 }
 }
 }
}

Example 2-38. HeroWeapon.as (continued)

100 | Chapter 2: Factory Method Pattern

Concrete Creator Classes
Until we encountered the ShipCreator class (Example 2-39), the examples defined
creator classes as abstract. Concrete creator classes implement the factory method as
opposed to leaving the implementation to subclasses. So, adding new products
requires changing the factory method in a concrete class. Changing existing code is
not as elegant a solution as extending an abstract class to accommodate changes.
Concrete creator classes are useful when the design’s only motivation is to decouple
concrete classes from the clients that use them. When you add the possibility of
changing requirements to this equation, in most cases the abstract creator classes are
the more prudent choice.

Clients
We have multiple clients accessing the creator classes. Clients can use the
ShipCreator class (Example 2-39) to place space ships on the stage.

// instantiate ship creator
var shipFactory:ShipCreator = new ShipCreator();

// place hero ship
shipFactory.addShip(ShipCreator.HERO, this.stage,
 this.stage.stageWidth / 2, this.stage.stageHeight - 20);
// place alien ships
for (var i:Number = 0; i < 5; i++)
{
 shipFactory.addShip(ShipCreator.ALIEN, this.stage,
 120 + 80 * i, 100);
}

In addition, the hero and alien spaceships access their corresponding weapons classes
to create and fire projectiles. The spaceships are the clients for the projectile classes.

Summary
Change is inevitable in software design. Requirements change during the course of
application development, and, in some cases, ugly hacks are used to effect changes
that the original design didn’t anticipate. The antidote to this common issue is
robust design that stands up to changes and modifications. The best way to handle
changing requirements is to manage the dependencies between code segments. Con-
sider the example of a Client class creating a new instance of a Product class using
the new keyword, and saving the resulting object in a variable. This is a very common
practice that creates a strong dependency between the two classes. This is also
known as strong or tight coupling. Changes to either class will most likely propagate
to the other class as well. The factory method pattern is an excellent way to manage
these types of dependencies, as it introduces a firewall between classes that depend
on each other. The pattern does not prevent the classes from depending on each
other, but it provides a framework by which this dependency can be managed.

101

Chapter 3 CHAPTER 3

Singleton Pattern3

The aspects of things that are most important to us are
hidden because of their simplicity and familiarity.

—Ludwig Wittgenstein
Above all be of single aim; have a legitimate and

useful purpose, and devote yourself unreservedly to it.
—James Allen

What Is the Singleton Pattern?
The Singleton pattern is used all the time, even if you don’t realize you’re using it.
For example, if you have some kind of class that keeps the total number of points in
a game, you want only a single instance of that total. It doesn’t make any sense to
have two totals where the game records only a single total score, like you find in a
single-player pinball game. Likewise, if you create a music application, you want the
application to play only one tune at a time, and so you want only a single instance of
the class that actually plays the music. In fact, most applications have at least some
feature where you want to make sure that there’s only a single instance, and that’s
where you’ll want to use the Singleton design pattern.

Key Features
In a nutshell, the Singleton has two key features:

1. One and only one instance of the class can be instantiated at any one time.

2. The class must have a single, global access point.

You may be thinking, “How hard can that be? As the developer, I can just instanti-
ate a single instance and use a global variable. Bob’s your uncle, and it’s all done.
Next pattern.”

First of all, as you saw in Chapter 1, OOP and design patterns were devised for teams
of developers, and not just one person working independently. So if you’re involved

102 | Chapter 3: Singleton Pattern

in teamwork, the Singleton can be used to make sure another developer on the team
doesn’t create an instance of the class when you’ve already done so. The Singleton
design pattern tells other developers not to create more than a single instance of the
base class associated with the pattern.

Second, using global variables in no way restricts their usage to a single instance.
They can be instantiated anywhere from a top-level package to within a function
inside a class. Global access must go hand-in-hand with single instantiation.

This is not to say creating a Singleton class is difficult. You can create the class using
a single file, and there’s not a lot of code in the basic class. You can add all the meth-
ods and properties you want, and so a Singleton isn’t restrictive in that sense. The
main issue to wrap your head around is that of making sure only a single instance is
invoked at any one time.

The Singleton Model
Looking at the Singleton structure in the class diagram notation, we see no abstract
classes or interfaces. A key point to note is the use of a static Instance() and the
connection to the implementation pseudocode. As you will see, the pattern uses
static class variables and methods for the global implementation and the uniqueness
of the instantiation of the class. Figure 3-1 shows this simple but powerful structure.

To move from the diagram structure to a working model, we need to get a couple of
OOP issues straightened out using ActionScript 3.0. Primarily, we need to work out
how to get a self-instantiated class set up. With most of the other patterns, the differ-
ent parts work together with one part implementing or extending the other. So we
need to take a look at the basics.

Key OOP Concepts Used with the Singleton Pattern
One of the first issues we need to address is that of using private functions as con-
structors. In the Singleton pattern implemented in ActionScript 2.0 and Java, the
“classic” Singleton is created using a private constructor so that, given the structure
of the constructor, only a single instance can be created. Example 3-1 shows a typi-
cal implementation:

Figure 3-1. Singleton structure

Singleton
static Instance()
SingletonOperation()
GetSingletonData()

static uniqueInstance
singletonData

return uniqueinstance

Key OOP Concepts Used with the Singleton Pattern | 103

That looks pretty simple. However, looking at it carefully, you’ll find a lot going on.
Let’s go over the key points:

Private static instantiation of the instance variable typed as Singleton
The private characteristic of the variable means you can’t access it outside the
class. Being static means you can access it by the method in the class set up to
instantiate a Singleton object.

Private class constructor
Example 3-1 is pretty straightforward in ActionScript 2.0. In ActionScript 3.0,
we are faced with the dilemma that private functions cannot be used as construc-
tors in packages. Classes to be instantiated need to be public and part of a pack-
age. This will be discussed further when creating the equivalent of a private class
constructor.

Public static function for creating a class instance
The getInstance() method is a wonderfully simple function. It checks to see if
an instance has been created, and, if it hasn’t, then it creates one. Otherwise it
simply returns the existing Singleton instance.

The simplicity of the Singleton is clearer after seeing how it actually works in a con-
crete example. However, working with ActionScript 3.0, we’re stuck because we
can’t create a private class constructor. This next section provides a workaround to
this dilemma.

Creating and Using a Private Class Constructor
Rather than showing how your code will fail if you attempt to create a private con-
structor function inside a package, you’re going to see how to effectively make your
very own private class, and use it as a constructor. In fact, you will see how to imple-
ment it in a script.

Example 3-1. Classic Singleton

class Singleton
{
 private static var instance:Singleton;
 private function Singleton()
 {
 }
 public static function getInstance():Singleton
 {
 if (instance == null) {
 Singleton.instance = new Singleton();
 }
 return Singleton.instance;
 }
}

104 | Chapter 3: Singleton Pattern

To create a class, we need a public constructor function within a package. Because
we cannot create a private class within a package, we’ll have to create one outside a
package, and then somehow get it to work inside a package. So, using a single .as
file, the following script first creates a public class, closes the package, and then cre-
ates a private class outside the package. The private class is then called from within
the public class. Example 3-2 shows how this is done.

Save the file as PublicClass.as, and, in an FLA file, type in PublicClass as the Docu-
ment class, and save the FLA file as TestPrivate.fla. When you test the program, you
will see:

This is from a private class

in the Output panel. Notice in Line 8 that the class, PrivateClass, is employed sim-
ply by typing the class name and the method. No constructor statement is used at all.

Creating a Private Class Instance
Keeping in mind the implementation in Example 3-1, we have to work out a way for
the class constructor to act like a private class. If the private class can be part of the
instantiation method (getInstance()), then we’ll be able to have the same effect as a
private class constructor.

Example 3-2. PublicClass.as

1 package
2 {
3 import flash.display.Sprite;
4 public class PublicClass extends Sprite
5 {
6 public function PublicClass()
7 {
8 PrivateClass.alert();
9 }

10 }
11 }
12 //End of Package
13 //**************
14 //Private class
15 class PrivateClass
16 {
17 public function PrivateClass()
18 {
19
20 public static function alert():void
21 {
22 trace("This is from a private class");
23 }
24 }

Minimalist Abstract Singleton | 105

Why aren’t there any private classes in ActionScript 3.0? Private
classes haven’t yet been implemented in ECMAScript, and Action-
Script 3.0 has been following the current ECMAScript standards.
Because of a number of non-trivial issues, it turns out that both
ECMAScript and ActionScript 3.0 will have to wait for private classes.
The alternatives were to hold up releasing ActionScript 3.0 or engi-
neer a hack to create a private class constructor.

Consider Example 3-3:

The real key is that the private class is assigned as a parameter in the constructor.
Then, when a new instance is created with the getInstance() method, the instance
includes the parameter made up of a new instance of the private class.

Minimalist Abstract Singleton
To illustrate the Singleton design pattern as simply as possible, Figure 3-4 uses the
classic Singleton with very little change. The added else statement shows what hap-
pens when more than a single instance is instantiated at the same time. It will be
removed in the remaining discussion of the Singleton. The other trace statements in
the script shown in Example 3-4 help to demonstrate how the script runs through
the code.

Example 3-3. Using a private class in a public class constructor

package
{
 public class PublicClass
 {
 private static var instance:PublicClass;
 public function PublicClass(pvt:PrivateClass) {
 }
 public static function getInstance():PublicClass
 {
 PublicClass.instance=new PublicClass (new PrivateClass());
 }
 return PublicClass.instance;
 }
 }
}
class PrivateClass
{
 public function PrivateClass() {
 trace("Private class is up");
 }
}

106 | Chapter 3: Singleton Pattern

Save the files as Singleton.as. You now have a Singleton to work with. The next step
is actually using it.

Instantiation with a Private Class Parameter
When the Singleton class is instantiated as an object in a program, you cannot suc-
cessfully use the following format:

var mySingleton:Singleton = new Singleton();

This format runs into the ironic problem of needing an argument in the constructor.
Right now, the declaration line has 0 arguments, and you need 1. The argument you
need is a reference to a private class that can be accessed only through the public
class you’re trying to instantiate. (There’s a paradox if there ever was one!) Look at
Example 3-5 for a bad implementation of the Singleton class:

Example 3-4. Singleton.as

package
{
 public class Singleton
 {
 private static var _instance:Singleton;
 public function Singleton(pvt:PrivateClass) {
 }
 public static function getInstance():Singleton
 {
 if(Singleton._instance == null)
 {
 Singleton._instance=new Singleton(new PrivateClass());
 trace("Singleton instantiated");
 }
 else
 {
 trace("Sorry--already have a Singleton instantiated")
 }
 return Singleton._instance;
 }
 }
}
class PrivateClass
{
 public function PrivateClass() {
 trace("Private class is up");
 }
}

Example 3-5. BadImplementation.as

package
{
 import flash.display.Sprite
 public class BadImplementation extends Sprite

Minimalist Abstract Singleton | 107

Save the file as BadImplementation.as in the same folder as the Singleton.as. In a
Flash document, type in BadImplementation in the Document class window, and test
the application. As predicted, you get a compiler error as shown in Figure 3-2.

Immediately you see that the Singleton constructor contains an argument, a
PrivateClass, and so the natural response is to change the code to include a
PrivateClass argument as shown in Example 3-6.

Re-save the BadImplementation.as file and test it again. This time, you get a different
error as shown in Figure 3-3:

 {
 public function BadImplementation()
 {
 var mySingleton=new Singleton();
 }
 }
}

Figure 3-2. Compiler error expecting argument

Example 3-6. Attempt to add private class parameter

package
{
 import flash.display.Sprite
 public class BadImplementation extends Sprite
 {
 public function BadImplementation()
 {
 var mySingleton=new Singleton(new PrivateClass());
 }
 }
}

Example 3-5. BadImplementation.as (continued)

108 | Chapter 3: Singleton Pattern

So what does this mean? Essentially, the compiler does not recognize the class
named PrivateClass, and doesn’t think you remembered to create it, or that you
don’t have an adequate path to it. However, that’s not the problem. The problem is
that it’s a private class, and cannot be accessed except through the class you’re try-
ing to instantiate—the Singleton class.

A Singleton Instantiation Method
In developing the Singleton class, we had to include a special method in the con-
structor to instantiate the class. As you’ve seen, the standard methods used to create
a class instance just don’t work. The getInstance() function solves the instantiation
problem. The following code segment shows this essential part of the program,
which allows access to the private class necessary for the instantiation of the class:

public static function getInstance():Singleton
{
 if(Singleton._instance == null)
 {
 Singleton._instance=new Singleton(new PrivateClass());
 trace("Singleton instantiated");
 }
............
 return Singleton._instance
}

The _instance variable is a private static one that will hold an instance of the Single-
ton class. Because we want only one instance, the code checks to see if there’s an
instance already. Any ActionScript 3.0 user-defined class data type that has not been
assigned a value is null by default. So after making sure that Singleton._instance is
null (no other instance exists), the script creates one. Here we see the instantiation
line we tried outside of the class:

....new Singleton(new PrivateClass());

This is possible because the PrivateClass is referenced from within the Singleton
class.

Figure 3-3. Compiler not finding class

Minimalist Abstract Singleton | 109

Now, we can write a class that instantiates the Singleton class. Open a new Action-
Script file, and enter the code shown in Example 3-7. The script attempts to instanti-
ate two instances of the Singleton class. If the class is set up correctly, it’ll allow you
only one instance.

Save the file as SingletonTest.as, open a new Flash document, and type SingletonTest
in the Document class window. Both files should be saved in the same directory as
the Singleton.as file. Now test the application in the Flash document. Figure 3-4
shows what you should see:

The fact that you can see the message, “Sorry--already have a Singleton instantiated”
means that only one of the two instances was successfully created. That’s exactly
what we were hoping for. Had both instances been created successfully, we’d have to
go back to the drawing board. However, after the first one was created, as indicated
by the messages, “Private class is up” and “Singleton instantiated,” the second one
was blocked.

One Instance and Different References
In reviewing the classic Singleton design pattern application, you may have noticed
that no matter what happens during an attempted instantiation of the class, the pro-
gram always passes through to a statement that returns a Singleton._instance. We
know that if the conditional statement finds that a Singleton._instance exists, it
doesn’t create another one, but still returns whatever instance has been instantiated.

Example 3-7. Instantiating Singleton class

package
{
 import flash.display.Sprite;
 public class SingletonTest extends Sprite {
 public function SingletonTest() {
 var firstSingleton:Singleton = Singleton.getInstance();
 var secondSingleton:Singleton=Singleton.getInstance();
 }
 }
}

Figure 3-4. Single class instance created

110 | Chapter 3: Singleton Pattern

However, does that mean that only a single reference can be associated with the sin-
gle instance? What happens, for example, if I first create one instance with one label,
and then attempt to create another instance with a different label?

To see that a single instance can be associated with more than one reference (name
or label), some changes have to be made to the primary Singleton class. Using a sepa-
rate folder from the Singleton class, in Example 3-4 open a new ActionScript file and
add the script in Example 3-8. Save it as Singleton.as in the newly created folder.

Example 3-8. Singleton.as

package
{

 public class Singleton
 {
 private var _msg:String;
 private static var _instance:Singleton;
 public function Singleton(pvt:PrivateClass)
 {
 }
 public static function getInstance():Singleton
 {

 if(Singleton._instance == null)
 {
 Singleton._instance=new Singleton(new PrivateClass());
 trace("Singleton instantiated");
 }
 return Singleton._instance;
 }

 //Get and set methods

 public function getMsg():String
 {
 return _msg;
 }
 public function setMsg(alert:String):void
 {
 _msg = alert;
 }
 }
}

class PrivateClass
{
 public function PrivateClass() {
 trace("PrivateClass called");
 }
}

Minimalist Abstract Singleton | 111

This second Singleton has getter and setter methods. If we attempt to create two dif-
ferent instances using two different object names and set different string values to the
_msg variable, we should see only one when we ask for the value, if both use the get
method after the second one has set a different value than the first. That is, we can
have as many names associated with one instance as we want, and they’ll all func-
tion. However, they’ll be referencing only one Singleton instance. The following
pseudocode shows the logic:

• Label A instantiates a Singleton (succeeds).

• Label A uses the set method to add “Message A” (succeeds).

• Label B instantiates a Singleton (Returns the currently instantiated instance).

• Label B uses the set method to add “Message B” (succeeds).

• Label A uses the get method to display the most recently set image. (What will
appear?)

To resolve this issue, open a new ActionScript file and add the code shown in
Example 3-9.

Save the file as SingletonTest.as in the same folder as the new Singleton.as file. Open a
new Flash document, type in SingletonText in the Class document window, and save
the FLA file in the same folder as the two ActionScript (.as) files. When you test the
movie, your output window shows that only a single instance exists as in Figure 3-5.

It’s clear from the output that only a single instance was created, which must have
been the first one because of the code structure. However, both the instance labels
(firstSingleton and secondSingleton) typed as Singleton data are returning the value
of the second instance. Both instance labels will always have the same value because
they are merely references to the instance, and not actually instances themselves.

Example 3-9. SingletonTest.as

package
{
 import flash.display.Sprite;
 public class SingletonTest extends Sprite {
 public function SingletonTest() {

 var firstSingleton:Singleton = Singleton.getInstance();
 firstSingleton.setMsg("Singleton instance: firstSingleton");
 var secondSingleton:Singleton = Singleton.getInstance();
 secondSingleton.setMsg("Singleton instance: secondSingleton");

 trace(firstSingleton.getMsg());
 trace(secondSingleton.getMsg());

 }
 }
}

112 | Chapter 3: Singleton Pattern

You may be wondering how this was possible, because the second instance did not
drop into the part of the constructor that actually created the Singleton instance:

Singleton._instance=new Singleton(new PrivateClass());

However, it did not have to because the line,

return Singleton._instance

contains the Singleton instance that had already been created, and simply returned
that instance to the reference name.

While you can guarantee that only one instance of the Singleton class will exist at
any one time, more than a single reference to that instance can exist at the same time
as well. For a shared property used with either increments or decrements, this can be
a very handy way of making sure that only a single source is used by all of the refer-
ences. If, for instance, you’re making a game to save miners trapped in a mineshaft,
you need to keep track of the amount of oxygen available for the miners. So if you
create an Oxygen class as a Singleton, all of the miner characters can create a refer-
ence to it, and each one can access a method in the single instance that decrements
the amount of air. Because the amount of air has to be the same for all, the Singleton
becomes a handy tool for keeping track of the many references to the single instance
of the class.

When to Use the Singleton Pattern
As noted at the beginning of this chapter, the Singleton design pattern is best
employed when you need one and only one instance of a class in an application. A
couple of examples were discussed, but the use of the Singleton is so ubiquitous in
object-oriented programming that it’s sort of like asking when to use a variable.

Moreover, developers often combine the Singleton design pattern with other pat-
terns. Where the developer needs a single, global entry point and a single instance,
you’ll often find a Singleton class. Likewise, multiple Singleton classes can be used in
conjunction when you have several different objects where only a single instance of
each object should be instantiated at any one time.

Figure 3-5. Two instance labels and one instance

When to Use the Singleton Pattern | 113

In order to provide a broad but by no means exhaustive view of how the Singleton
can be employed, we will step through three examples. First, the Alert example is a
simple one that shows how a single message can be placed on the stage. It is meant
to represent those kinds of interfaces where the user gets a message, such as in a dia-
log box or similar feedback mechanism. Only a single instance of the feedback
should be instantiated, to avoid contradictory messages. However, the example also
shows how to connect the class to display objects on the stage. As such, it is instruc-
tive for working with display programming in ActionScript 3.0.

The second example is used for playing an MP3 file. In most situations where you
play media, whether it’s a MP3 file or a video, you want to hear or see only one
media element at a time. Playing Bach and a song by Gnarls Barkley simultaneously
may create a racket that neither Johann Sebastian nor Gnarls would want to hear. A
Singleton class helps to keep the play sequential, with no more than one playing at
the same time.

The third example uses a simple shopping cart to illustrate how a single instance can
be used to keep track of a running total. In situations where your application needs
an absolutely no-questions-about-it single instance for keeping track of financial
accumulations, a Singleton can be crucial. The example also shows how to link a
class to a stage-created movie clip and embedded text field.

A Single Alert Message
Because clear communication is the crux of good site design, mixed messages need
to be kept out of all web applications. By using a Singleton pattern, you can help
assure that you have a single source for messages to the user. This way, you’re less
likely to send two contradictory messages. The following application uses a Single-
ton for that purpose. It’s designed so that no matter where a message originates, it
has only this one instance to deliver it.

To get started, open a new ActionScript file, and type in the script shown in
Example 3-10.

Example 3-10. Alert.as

package
{
 public class Alert
 {
 private var _msg:String;
 private static var _instance:Alert;
 public function Alert(pvt:PrivateClass) {

 }
 public static function getInstance():Alert
 {
 if(Alert._instance == null)

114 | Chapter 3: Singleton Pattern

Save the file as Alert.as. As you can see, this Singleton design pattern doesn’t have to
be saved as “Singleton,” and the only reason that name was used in the previous
examples was to help you better see its structure, and where it belonged in the appli-
cation. In fact, it’s almost identical to the other Singleton.as files used as examples in
this chapter, and even has the same methods as in Example 3-8. However, this exam-
ple includes a property used as a variable in the font color of the text field used here.
Conceivably, your application may need different colored messages to differentiate
categories of advisements your application might employ.

In ActionScript 3.0, you can create a TextField instance in one of two ways. First,
you can create it dynamically in the script, as we will do in this example. Alterna-
tively, you can create a MovieClip object on the stage, embed a TextField in the
movie clip, and then reference the embedded TextField. Unless you have a good rea-
son for doing so, it’s more practical and uses less memory to just write the script for
the TextField. (Further on in this chapter, a movie clip in the shape of a shopping
cart with an embedded text field shows how to create and dynamically use a
TextField object on the stage.)

Open a new ActionScript file and after entering the code in Example 3-11, name the
file AlertText.as and save it in the same folder as Alert.as.

 {
 Alert._instance=new Alert(new PrivateClass());
 trace("Alert instantiated");
 }
 return Alert._instance;
 }
 //Alert Property
 public var colorFont:uint;
 //Alert Methods
 public function getMsg():String
 {
 return _msg;
 }
 public function setMsg(alert:String):void
 {
 _msg = alert;
 }
 }
}

class PrivateClass
{
 public function PrivateClass() {
 trace("PrivateClass called");
 }
}

Example 3-10. Alert.as

When to Use the Singleton Pattern | 115

When using something other than trace() statements in your applications, you need
to import the necessary packages and classes for your application. Also, anything
that you plan to place on the stage needs to be at least a Sprite or MovieClip. Because
our application has no Timeline, we can use a Sprite. Thus, the AlertTest extends
the Sprite class.

We need to mention a couple of concepts here for OOP beginners and those new to
ActionScript 3.0. They include package parsimony and abstraction. As noted in
Chapter 1, abstraction is a pillar of OOP, and you can see it in the Alert class where
parameters and return values are abstract variables. The concept package parsimony
reminds us that when importing packages from the core set, you should import only
what you need, and not the whole package. As you can see in the AlertTest class,
only the necessary classes were imported. While it can be tempting to use the wild-
card asterisk (*) to bring in the whole package and save some typing time, this car-
ries with it a lot of baggage. For example, instead of typing in the three lines,

import flash.text.TextField;
import flash.text.TextFormat;
import flash.text.TextFieldAutoSize;

we could have just typed in,

import flash.text.*;

Example 3-11. AlertText.as

package
{
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.text.TextFieldAutoSize;
 import flash.display.Sprite;
 public class AlertTest extends Sprite
 {
 public function AlertTest()
 {
 var reminder:Alert = Alert.getInstance();
 reminder.setMsg("Remember to use addChild()");
 var announce:TextField=new TextField();
 announce.text=reminder.getMsg();
 announce.autoSize=TextFieldAutoSize.LEFT;
 var format:TextFormat=new TextFormat();
 reminder.colorFont=0x990099;
 format.color=reminder.colorFont;
 format.font="Arial Black";
 announce.setTextFormat(format);
 announce.x=200;
 announce.y=150;
 this.addChild(announce);
 }
 }
}

116 | Chapter 3: Singleton Pattern

However, had we done that, we would have added 15 classes of excess baggage. So
while we would have saved a few strokes typing, we would have burdened the appli-
cation with those unused classes.

You can see a somewhat odd example of abstraction at work in the single property
colorFont included in the Alert Singleton class. The colorFont property is an abstrac-
tion of any unsigned integer (uint). First, the colorFont property is assigned a literal
value, and second, that instance property is assigned to the format.color property.
Obviously, we could have assigned the color value directly to the format.color prop-
erty as a literal, but the purpose of putting the colorFont property in the Singleton is
to insure that only a single instance will be available for coloring the fonts. Thus, the
abstraction of an unsigned integer in the Alert Singleton class insured that no color
mix-up occurs.

To finish up, open a new Flash document, and type AlertTest as the Document class
name. Save the FLA file in the same folder as the Alert and AlertTest files. Figure 3-6
shows what you will see on both the stage and Output window.

In a typical application, you would use dynamic input for the message and color. For
example, you might set up a user feedback system using different error or informa-
tion messages, depending on what action the user takes. However, in the example
you can see the fundamentals of setting up such a system using a Singleton and text
field.

Just One Tune at a Time
Since the advent of MP3 and MP3 players, music has migrated from the CD to MP3
players and devices like Apple’s iPod. Imagine cranking up your iPod to listen to
your favorite tunes, and instead of one at a time, they all start playing simulta-
neously. The software that runs your iPod won’t let that happen, and you shouldn’t

Figure 3-6. Alert message on the stage

When to Use the Singleton Pattern | 117

let it happen to your applications either. Here’s another situation where a Singleton
can come in handy.

To get started, we need to take a look at how we can play an MP3 file in Flash CS3.
We won’t even consider the idea of importing an MP3 file into the main Timeline
and bloating our SWF file. Rather, we need to take a quick look at how ActionScript
3.0 deals with sound and externally accessed MP3 files.

The classes relating to sound can be found in the flash.media package. Of the five
sound-related classes, we’ll need only the Sound and SoundChannel classes. We’re
going to access an external file (the MP3 file), so we’ll need the flash.net.URLRequest
class as well. The necessary minimum sequence can be seen in the following
pseudocode:

var mySound:Sound = new Sound();
var myChannel:SoundChannel = new SoundChannel;
var myTune:URLRequest= new URLRequest(string);
mySound.load(myTune);
myChannel=mySound.play();

Using the following script, we can create the actual method:

public function playMe(song:String):void
{
 _tuneUp=new Sound();
 _tuneIn=new URLRequest(song);
 _tuneUp.load(_tuneIn);
 _goChannel=_tuneUp.play();
}

The function has a single parameter, which is a string variable that will be the name
of the song (MP3 file). You might want to think of the song parameter as a URL,
because that’s actually what it is. However, it makes perfect sense to reference it as a
song because the individual MP3 files are individual tunes. Given the way the func-
tion’s designed, there’s a place for only a single sound. Because the method resides in
a Singleton class, there’s also going to be only a single instance, guaranteeing that
only one tune at a time will be played.

However, before we go further, we need to consider how the SoundChannel class
works. As soon as the Sound.play() method is assigned to the SoundChannel instance,
the song starts playing. If, using the same instance of the Sound and SoundChannel
classes, you load and play another MP3 file, it’s going to start playing as well. As far
as the instances are concerned, there’s no contraction because they’ve done their job
and set the first MP3 file merrily on its way. So they’re finished. Using exactly the
same instance, they’re willing to do it again with another MP3 file even if the first
one’s still playing. The two will overlap, and because that’s one of the things we
want to prevent, the code will have to find whether there’s a SoundChannel instance
with an assigned value around. This is done by testing the SoundChannel instance for
a null value. If a null value is found, the script just goes ahead and activates the code

118 | Chapter 3: Singleton Pattern

for playing the selected tune. If it finds a non-null value, it means it better stop any
current sounds associated with the SoundChannel instance before loading up and
playing a new MP3 file. In that way, you ensure that you won’t have multiple tunes
playing simultaneously. The moral to this particular application is this:

Just because you use a Singleton design pattern does not mean that your application
will work with the single outcome you want. You must design your Singleton to
ensure that the single outcome you want takes place in the way you want.

With the moral in mind, you can now create your Singleton for making sure that
only one MP3 file is allowed to play at once. Enter the script shown in Example 3-12
in an ActionScript file, and save it as Tuner.as.

Example 3-12. Tuner.as

package
{
 import flash.net.URLRequest;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 public class Tuner
 {
 private var _goChannel:SoundChannel;
 private var _tuneUp:Sound;
 private var _tuneIn:URLRequest;
 //Singleton instance
 private static var _instance:Tuner;

 //Singleton constructor
 public function Tuner (pvt:PrivateClass)
 {
 }
 //Singleton constructor method
 public static function getInstance ():Tuner
 {
 if (Tuner._instance == null)
 {
 Tuner._instance=new Tuner(new PrivateClass);
 trace ("Tuner instantiated");
 }
 return Tuner._instance;
 }
 //Start Play
 public function playMe (song:String):void
 {
 if (_goChannel != null)
 {
 _goChannel.stop ();
 }
 _tuneUp=new Sound ;
 _tuneIn=new URLRequest(song);
 _tuneUp.load (_tuneIn);
 _goChannel=_tuneUp.play();

When to Use the Singleton Pattern | 119

The first thing to note about this Singleton script is that it imports packages and
classes. Up to this point, all of the imports were done in the scripts that called the
Singleton class. However, whenever a method or property has a reference, including
abstract ones, to a class in a package, it needs to import that class. Likewise, you’ll
see that the class (DoMusic) that implements the Singleton class (Tuner) requires no
further import of the objects associated with the packages and classes already
imported in the Singleton class.

Because this application simply makes sure that only one MP3 file is played at any
time, the Singleton implementation is very simple. Example 3-13 shows the code for
this class:

Save Example 3-13 as DoMusic.as in the same folder as Tuner.as. Open a Flash docu-
ment file, type DoMusic in the Class document window in the Properties panel, and
save it as Music.fla in the folder with the two ActionScript files. Finally, place any

 }
 //Stop Play
 public function stopMe ():void
 {
 if (_goChannel != null)
 {
 _goChannel.stop ();
 }
 }
 }
}

class PrivateClass
{
 public function PrivateClass ()
 {
 trace ("PrivateClass called");
 }
}

Example 3-13. DoMusic.as

package
{
 import flash.display.Sprite;
 public class DoMusic extends Sprite {
 public function DoMusic() {
 var playOne:Tuner = Tuner.getInstance();
 //Use any MP3 file you have available
 playOne.playMe("blues.mp3");
 }
 }
}

Example 3-12. Tuner.as

120 | Chapter 3: Singleton Pattern

MP3 file in the same folder, and rename it blues.mp3. (You may keep the MP3 file’s
original name and change the reference name in the script from blues.mp3 to the
name of your MP3 file—just make sure that the reference name and the filename are
the same.) When you test your movie, you should hear your MP3 file play.

In a more realistic example, the application is likely to have several sound selections
from which to choose, and the Singleton ensures that only one plays at one time.
Because the method for playing an MP3 file is abstracted in the Singleton class, if
another tune is called through the Singleton, it employs the single instance of the
class to start the new tune. This particular Singleton takes care of the sound “house-
keeping” by making sure that any currently playing SoundChannel instances are
stopped, and so it does more than just ensure that only a single instance of the class
is instantiated. Example 3-14 provides the necessary code. Save the file as
DoMusicBtn.as in the same folder as the Tuner.as file.

EExample 3-14. DoMusicBtn.as

package
{
 import flash.events.MouseEvent;
 import flash.display.Sprite;

 public class DoMusicBtn extends Sprite
 {
 private var _playOne:SongPlay=new SongPlay();
 private var _playTwo:SongPlay=new SongPlay();
 private var _stopSong:SongPlay=new SongPlay();
 private var playTune:Tuner;

 public function DoMusicBtn ()
 {
 playTune = Tuner.getInstance();
 //Set up buttons
 addChild (_playOne);
 _playOne.x=30;
 _playOne.y=50;
 addChild (_playTwo);
 _playTwo.x=30;
 _playTwo.y=150;
 addChild (_stopSong);
 _stopSong.x=130;
 _stopSong.y=100;

 //Set up event listeners
 _playOne.addEventListener (MouseEvent.CLICK,doOne);
 _playTwo.addEventListener (MouseEvent.CLICK,doTwo);
 _stopSong.addEventListener (MouseEvent.CLICK,doStop);
 }
 //Methods
 function doOne (e:MouseEvent):void
 {

When to Use the Singleton Pattern | 121

To test this particular implementation, you will need a slightly more elaborate Flash
document file. The following steps show what you need to do.

1. Open a new Flash document and save it in the same folder as your Tuner.as file.

2. Using the Oval tool, draw an oval with a radius of 15 on the stage. Select the
oval, and then press the F8 button to open the Convert to Symbol dialog box.
Type in SongPlay in the Name window, and select Button for the Type. Click the
Export for ActionScript checkbox in the Linkage group. The class name should
show SongPlay and the base class will show flash.display.SimpleButton. Click
OK. Delete the button from the stage. (It still remains in the Library.)

3. Open the Properties panel, and, in the Document class window, type in
DoMusicBtn. Save the file once more.

4. In the folder where you’ve saved the ActionScript (.as) and Flash document files
(.fla), add two MP3 files using the file names shown in Example 3-14. (You can
change the names in your MP3 files or the names in Example 3-14.)

5. Test the application by pressing Ctrl + Enter (Command + Return on the Mac).

You should see three buttons appear. The two buttons on the left let you select one
of the two MP3 files, and the one on the right will stop whatever is currently play-
ing. If you click either of the buttons on the left while a tune is still playing, it’ll stop
the tune and start play from the beginning of the selected tune.

Using Multiple References in a Shopping Cart
This final example of a Singleton design pattern shows how a Singleton instance can
have multiple references and still maintain accuracy. Like the previous examples, this
one’s also simple, with the focus on both the role of the Singleton design and some
insights into the Singleton structure

The online Shopping Cart is really nothing more than a conceptual image of a digital
accumulator. As each new item is added to the cart, the most current entry is accu-
mulated, and at the time of checkout, this total is computed with applicable tax and

 playTune.playMe ("blues.mp3");
 }
 function doTwo (e:MouseEvent):void
 {
 playTune.playMe ("class1.mp3");
 }
 function doStop (e:MouseEvent):void
 {
 playTune.stopMe ();
 }
 }
}

Example 3-14. DoMusicBtn.as

122 | Chapter 3: Singleton Pattern

shipping costs. It constitutes a good example of how a Singleton should be used,
because you want to be sure there’s only one shopping cart, and no matter where
you add an entry, or take something out, it needs to be from the same instance.

To get started, Example 3-15 shows a Singleton design with a single method for add-
ing to a running total. Open a new folder, copy the code from Example 3-15, and
save the file as ShopCart.as.

Like the previous examples, this one uses a private static variable in a method. The
variable, _crtTotal, is incremented using a compound operator, and then returns the
current amount when the kaChing() method is called.

To see the value of a Singleton structure in this application, the script in
Example 3-16 generates an instance with two reference names. The first reference
name is myCart. Three values are then placed in the “cart” using the kaChing()

Example 3-15. ShopCart.as

package
{
 public class ShopCart
 {
 private static var _cartTotal:Number=0;
 private static var _instance:ShopCart;
 public function ShopCart(secure:PrivateClass) {
 trace("ShopCart instantiated");
 }
 public static function getInstance():ShopCart
 {
 if(ShopCart._instance == null)
 {
 var security:PrivateClass=new PrivateClass();
 ShopCart._instance=new ShopCart(security);
 }
 return ShopCart._instance;
 }
 //Method
 public function kaChing(cart:Number):Number
 {
 _cartTotal+=cart;
 return _cartTotal;
 }
 }
}

class PrivateClass
{
 public function PrivateClass() {
 trace("private class installed");
 }

}

When to Use the Singleton Pattern | 123

method, and the output is placed into a movie clip’s text field. Then, a second cart,
named ghostCart, uses the Output window to add to the sum already placed in the
movie clip shopping cart. As you will see, the second name reference is using the
same instance because all that happens is that the ghostCart instance’s value is added
to the value in the graphic shopping cart, and displayed in the Output window. This
clearly demonstrates the unity of the single instance, and ensures that even with a
second cart reference name, the total will be correct. Enter the script in
Example 3-16, and save it as TestCart.as in the same folder as the ShopCart.as file.

The final task is to create a movie clip and text field on the stage to represent our
shopping cart. While it’s fairly easy to code a text field and place it on the stage, it’s a
little more difficult to draw a shopping cart using code exclusively. Of course, that’s
one of the nice features in Flash. You can create images, and control those images
with code. Because this step involves a little more than just entering a Document
class name, use the following steps to create the shopping cart module:

1. Open a new Flash document, and save it as TestCart.fla in the same folder as
your ShopCart.as file.

2. With the drawing tools, draw a shopping cart. Using static text, label the middle
of the cart, “Total.” Select the completed shopping cart, and press the F8 key to

Example 3-16. TestCart.as

package
{
 import flash.display.Sprite;
 public class TestCart extends Sprite
 {
 private var cartNow:Cart=new Cart();
 public function TestCart ()
 {
 var myCart:ShopCart = ShopCart.getInstance();
 var apples:Number=2.45;
 var oranges:Number=3.50;
 var blackberries:Number=4.11;
 myCart.kaChing (apples);
 myCart.kaChing (oranges);
 myCart.kaChing (blackberries);
 var total:String=String(myCart.kaChing(0));
 cartNow.total_txt.text="$"+total;
 this.addChild (cartNow);
 cartNow.x=(550/2)-(321.6/2);
 cartNow.y=(400/2)-(316.6/2);
 //Attempt to create new instance and introduce new amount
 var ghostCart:ShopCart = ShopCart.getInstance();
 trace ("Ghost cart adds 25.33 for a total of $"+ghostCart.kaChing(25.33));
 }
 }
}

124 | Chapter 3: Singleton Pattern

open the Convert to Symbol dialog box. Type Cart as the Name, and select
Movie clip as the Type. Click the Export for ActionScript checkbox, and click
OK. (See Figure 3-7 for a visual idea of the cart.)

3. Double-click the Shopping Cart movie clip on the stage to open it for editing. Use
the Text tool to add a Dynamic text field. Give it the instance name total_txt in
the Properties panel.

4. Exit the Symbol Editing Mode by clicking on the Scene 1 icon. Delete the movie
clip from the stage. (Don’t worry; it’ll still be in the Library panel.)

5. Test the application by pressing Ctrl + Enter (Command + Return on the Mac.)

When the application runs, it creates a single ShopCart class instance, and, using the
kaChing() method, it adds a total of $10.06 to the text field in the shopping cart
movie clip as shown in Figure 3-7.

Figure 3-7. Correct results with two references to a single instance

Summary | 125

Figure 3-7 also shows the Output window with the ghostCart instance adding
another $25.33 for a total of $35.39. The final total is simply the sum of 25.33 and
10.06. The $10.06 value is the amount in the myCart reference, and, added to the
amount in the ghostCart reference, we arrive at 35.39, just as predicted.

Summary
The Singleton focuses on ensuring that only a single instance of a class is instanti-
ated and having global access to the class of the Singleton’s origin. While certain
aspects of the Singleton appear simple, other features show it to be a subtle and com-
plex design pattern. To be sure, one can find more than one way to design a Single-
ton, and the ones developed for this chapter certainly have no claim to originality.
However, they do represent a very standard implementation of the Singleton, and
one that resolves some of the unique elements of ActionScript 3.0 specifically, and
ECMAScript more generally.

The Singleton, especially the “classic” model on which we based the ones used in
this chapter, has well-reasoned detractors. A short search of design pattern books
and articles, including many excellent ones available online, finds many different
ideas of how to best design a Singleton class or wholly replace it with a different con-
ceptual structure. The fact that the Singleton provokes such thought has merit in its
own right, and we certainly have wrestled with certain limitations ourselves. So if
you’ve got a better Singleton design or better alternative, by all means pursue it.

The most common complaint about the Singleton is its incorrect use, or use in a con-
text where it gets in the way of flexibility and reusability. Another complaint is that
the pattern’s overused. Some of the overuse can be attributed to its simplicity, but
overuse also happens when people don’t fully understand the pattern. One reason
we provided so many different examples of the Singleton is to show that it does have
clear uses. As a rule of thumb—do not use the Singleton where a good deal of change
and reusability are likely. A Singleton’s purpose is clear—limiting one and only one
instantiation, and providing a global entry point. Beyond that, they have limited util-
ity, and while popular as part of more robust design patterns, you must be careful
not to let them get in the way of another pattern’s utility.

However, as we have demonstrated in this chapter, the Singleton has some very prac-
tical uses, and you should never lose sight of that. Like all design patterns, the Single-
ton’s only redeeming purpose is to accomplish certain recurring programming tasks.
The fact that you can’t use it every time these tasks appear to be necessary does not
mean it’s been rendered obsolete. Rather, it means simply that the Singleton isn’t the
best way to do it. These tasks, especially common ones, should either serve to
prompt adaptation of the Singleton, use another design pattern, or develop and
adjust certain aspects of the classical Singleton design.

PART III

III.Structural Patterns

True ornament is not a matter of prettifying externals.
It is organic with the structure it adorns, whether a

person, a building, or a park.
—Frank Lloyd Wright

The importance of certain problems concerning the
facts will be inherent in the structure of the system.

—Talcott Parsons (20th Century Sociologist)
If the structure and the program components were

well chosen, then often many of the constituent
instructions can be adopted unchanged.

—Niklaus Wirth

Structural patterns are strategies that use classes and objects to build larger struc-
tures. In part, the process entails using abstract classes as interfaces, with derivative
classes making up the larger structures. Using both inheritance and composition, the
Structural patterns provide rich flexibility for designing applications. The class pat-
terns tend toward using inheritance in generating larger structures, and object struc-
tures tend to be built using composition. However, both kinds of approaches have
the same general approach. Figure Part III-1 illustrates the overall Structural pattern.

As a mental image, you can think of constructing applications with Structural pat-
terns as pulling parts out of different bins. The bins represent different class exten-
sions and object compositions. The structure itself is built from the parts gathered
from the bins, but it becomes a new phenomenon distinct from the parts used to
build it.

This section examines three different Structural patterns. First, the Decorator pat-
tern adds responsibilities to an object. A single component is wrapped with new
functionalities and properties while remaining fundamentally unchanged as far as its
internal structure is concerned. The Adapter pattern provides a way for two unre-
lated interfaces to work together. When adding a new object to an otherwise incom-
patible structure, the Adapter is an alternative to rebuilding an application from
scratch to accept a new feature. You will find out how to create Adapter applications

using both inheritance and composition. Finally, the Composite pattern composes
objects in a tree-structure. In this way, clients can treat objects and composition (of
objects) in the same way. By structuring objects in this way, the Composite pattern
greatly simplifies creating complex structures.

Chapter 4, Decorator Pattern

Chapter 5, Adapter Pattern

Chapter 6, Composite Pattern

Figure Part III-1. Structural design pattern

Structural Patterns

Class/
Object/
Interface

Class/
Object/
Interface

Class/
Object/
Interface

Class/
Object/
Interface

Larger structures are
created by multiple
inheritence and
composition

129

Chapter 4 CHAPTER 4

Decorator Pattern4

I try to decorate my imagination as much as I can.
—Franz Schubert

Pictures deface walls more often than they decorate
them.

—William Wordsworth (Poet and a guy who really
understood bandwidth)

What Is the Decorator Pattern?
The Decorator pattern wasn’t developed with a web designer or developer in mind,
but it could well have been. A few years back, we developed a web site and were cog-
nizant that periodically we’d have to update it. The design was set up so that substi-
tution of one element for an updated one was fairly simple, and it required no major
change in the code or structure. Because we didn’t have to update it too often, this
wasn’t much of a problem. However, had we needed to update elements or features
on a fairly regular basis, our design would have left a good deal to be desired.

Imagining situations where you need to update or change certain parts of a web site
on a regular basis isn’t difficult. If your client is a retailer with regular advertising
such as weekly specials and new products introduced periodically, you want to have
flexibility in your web design and structure. You may want to use features of your
basic structure that assure change is easily accommodated, but you don’t have to
alter the basic structure itself in any way.

The Decorator pattern addresses the issue of maintaining the structure while having
the ability to make changes by decorating the different components that make up the
application. The decorations are composed of descriptions and/or methods used to
wrap different objects in the application. As you will see, this design pattern allows
you to mix and match all the different components and decorations to optimize flexi-
bility and expandability, while core structure classes remain unaltered.

130 | Chapter 4: Decorator Pattern

Key Features
We can understand the Decorator pattern in terms of two key features. Often, devel-
opers want to add unique responsibilities for an object without adding those same
responsibilities to the whole class. Among other design patterns, the Decorator pat-
tern’s characterized by adding unique responsibilities. The identifying characteristic
of the Decorator pattern is to add responsibilities in a uniquely Decorator fashion.
Wrapping a component in an object that adds a responsibility follows a couple of
guidelines:

• Decorators can appear wherever a component object can.

• At runtime, you can mix and match combinations of decorators as needed.

To understand the Decorator design pattern’s key features, you need to consider
some alternatives to implementing the work the pattern does. Essentially, your
project requires that you add new features and responsibilities to individual objects
rather than the entire class. To do so using inheritance would bloat the class and
change the structure with each new feature. Every single object would inherit all the
features and functionality of every other object, and that’s not what you want.

In this chapter, you will see the term “component” a good deal. The
reference to component here is wholly unrelated to the components in
Flash, used for UIs, Media, Data and other purposes. In the context of
this chapter, a component refers to a concrete instance that is deco-
rated with another concrete instance called a decorator. So, for the
time being, don’t think of components as anything other than some-
thing that gets decorated. (In the last application example of a Decora-
tor design pattern in this chapter, you’ll be using Flash UI
components, but by then you’ll be able to distinguish the different
kind of components.)

Imagine you’re setting up an automobile dealership site. You can choose between
different models of autos and add different features—options. You can set up
options such as an MP3 player, Global Positioning System (GPS), cloth, vinyl or
leather seat covers, and different kinds of alarm systems. If you use inheritance, every
one of those options would have to be in every object. What’s more, you’d need to
have all the models in your main class as well. That’s absurd! Why would anyone
need both cloth and vinyl seats or be both a Ford Escape and a Chevrolet Malibu?
Then, if a new option were introduced, you’d have to bloat the class with yet another
option for every single object. However, if you can just wrap a single responsibility
around a component when and if you need it, you can keep your program slim, trim
and ready to adapt.

The key to understanding the Decorator design pattern is to understand that it uses
inheritance and employs abstract classes; however, as you know from Chapter 2,
ActionScript 3.0 doesn’t support abstract classes. You can create classes that work

What Is the Decorator Pattern? | 131

like abstract classes, simply by not instantiating them directly. In fact, that’s what an
abstract class is to some extent—a class that you do not instantiate but can extend.
They work something like an interface, but while you can implement an interface
and its abstract methods, you cannot extend it. (You were introduced to using inter-
faces in Chapter 1, and in Chapter 5, you will be using a design pattern that employs
interfaces.)

Lack of support of abstract classes is a sore point with some Flash
and Flex developers. Before firing off an impassioned email to
Adobe, though, first take a look at the ECMAScript Rev 4 specs.
These specifications don’t exactly support abstract classes either, at
this point in time.

Why are abstract classes important for the Decorator pattern? Like interfaces, you
can create abstract methods that can be implemented in different ways. At the same
time, you can use them to create subclasses so that core properties can be inherited
in ways not possible with interfaces alone.

The Decorator Model
The Decorator outlined in the class diagram notation shows two key elements: com-
ponent and decorator. The component represents what’s to be decorated, and the
decorator is the abstract class for the concrete decorations. The concrete component
is what’s actually decorated, and the concrete decorations are the actual decora-
tions. All the concrete decorations and the concrete component are subclassed from
the same source. Keeping that in mind, take a look at the class diagram in Figure 4-1.

In the most basic sense, the component is the Christmas tree, and the decorations are
the ornaments. Each concrete decorator wraps the tree and is subclassed from the
same source as the tree. A better way to think about components and decorators is

Figure 4-1. Decorator design pattern

Component

Operation()

Concrete Component

Operation()

Decorator

Operation()

Concrete Decoration Alpha

Operation()

Concrete Decoration Beta

Operation()

addedState

wraps

132 | Chapter 4: Decorator Pattern

more like the nesting dolls from Japan and Russia. The innermost doll is the compo-
nent, and it’s placed into a decorator. Then the component and decorator are placed
into another decorator, and then into the next decorator. Figure 4-2 shows this
model.

Probably the most important thing to remember about the Decorator pattern is that
its purpose is to allow additional elements to be added to a class without altering the
base class. So instead of making changes by changing the class, the class is decorated
with subclasses that don’t interfere with the class from which the decorators were
derived.

Key OOP Concepts Used with the Decorator Pattern
Sometimes when you think about key OOP concepts such as inheritance, you have to
consider its larger consequences. The upside of inheritance is that once a superclass
has been established, all the subclasses inherit its features. However, you may not
want or need all the “stuff” for every subclass from a superclass. If you want to add
functionality to an object, subclassing may not be the way to go, because everything
else subclassed from the same superclass may be unnecessarily burdened by unused
functionality.

Unwanted Inheritance
At the end of this chapter, you will see an example of a car dealership where users
select models of cars with a choice of options for those cars. If all the options were
derived from a superclass, that would mean that every car would have all the
options, whether or not you wanted them. One option in the example is a rear view
camera used with minivans and large SUVs with limited rear vision. Such an option
would be superfluous on a sports car such as a Chevrolet Corvette, Morgan, or Fer-
rari. However, with subclassing, that’s exactly what would happen. Every subclass
gets everything from the superclass. So here’s a case where we’d have to look beyond

Figure 4-2. Component wrapped in series of decorators

#3
Concrete decorator

#3

#2
Concrete decorator

#2

#1
Concrete decorator

#1
Concrete component

Key OOP Concepts Used with the Decorator Pattern | 133

simple inheritance. Depending on how the application’s written, even the compo-
nents would all have the same features. A pickup truck would be subclassed from the
same component as a luxury car—both inheriting features they don’t want and
wouldn’t use.

Wrapping Responsibilities
The Decorator design pattern is also known as the Wrapper pattern. The concept of
“wrapping” is at the heart of the Decorator design pattern. So what does it mean to
“wrap” one object in another? One way to think about wrapping is to imagine wrap-
ping a gift. The wrapper transforms the gift, but the gift does not inherit the character-
istics of the wrapper—it only uses the wrapping. Unlike subclassing, which extends
one class into another, wrapping allows one object to use another’s characteristics
without extending either the wrapped object or the object doing the wrapping.

The wrapping with which most ActionScript programmers are familiar is that used
for transforming data types from one type to another. For example, the Number class
can wrap a string variable, and then that variable has the characteristics of the Number
class. Figure 4-3 illustrates a common wrapper function:

When we look at wrapping one object with another object, we can
think of it as a class intercepting API calls intended for a specific
instance of another class. The example in Figure 4-3 shows that the
Number class is intercepting a call to an instance of the String class. The
result is that the l variable, an unsigned integer, is able to accept the
assignment of the s variable as a number. That’s because the s vari-
able is wrapped in a Number class and treated as a number.

Using the Decorator class, components are wrapped in decorators. The wrapping
class is a concrete instance of a decorator, and the wrapped class is an instance of the
concrete component class. Thus, the concrete component now “contains” the char-

Figure 4-3. Number class wrapping String class

Number class wraps string variable.

Now variable s has Number characteristics.
It acts like a number.

134 | Chapter 4: Decorator Pattern

acteristics of the wrapper, but the characteristics are not inherited. Figure 4-4 shows
an example.

The concrete component that’s wrapped by another class borrows characteristics of
the wrapping class. When those characteristics are not needed, the instance of the
concrete class is simply instantiated without being wrapped.

Flexibility and Adaptability
One good OOP practice is to create your classes so that they can be extended but not
changed. If a class is changed, especially one with subclasses, you can quickly
destroy an application. So the trick is to set up your classes so that it’s easy to extend
them, yet keep them safe from alteration.

The Decorator design pattern allows you to do this. The model is grounded in a sin-
gle class that is the superclass to all others. This core class is an abstract component
class. An abstract decorator class is subclassed from this class, re-implementing the
core methods. (In the context of ActionScript 3.0, the abstract nature of the class is
simulated by using the override statement when re-implementing methods in sub-
classes.) All the other concrete component and decorator classes have the same root
superclass, even though the decorator classes are subclassed from the abstract deco-
rator class, and the component classes are directly from the abstract component
class. So, when the concrete component objects are wrapped in concrete decorator
objects, both objects share the same root superclass. Thus, the decorated objects can
keep the core object unmodified while changing its responsibilities.

In a larger OOP framework, the Decorator pattern can add and subtract
functionality from an object by wrapping selected components with selected
decorators. Second, it can add more than a single functionality to an object by wrap-
ping one wrapper inside another wrapper. As a result, the design pattern can change
functionality without changing structure.

Figure 4-4. Concrete decorator wrapping concrete component

Concrete component wrapped in
concrete decorator.

Minimalist Abstract Decorator | 135

Minimalist Abstract Decorator
To get started with the Decorator design pattern, a minimum implementation needs
the following:

• An abstract component

• An abstract decorator

• A concrete component

• Concrete decorators

For the sake of clarity, two decorators will be devised so that you can better see how
the structure works (and it’s closer to the model shown in Figure 4-1.) Of all the
classes devised in this pattern, by far the most important is the initial abstract class
modeling the component. Every other class is subclassed from this initial class.

Abstract Component Class
To begin the process of creating a Decorator design pattern, create a component.
You might think of a component as an undecorated Christmas tree, or even a person
deciding what to wear. It’s simple because all the added features are handled by dec-
orators. Example 4-1 has only a single string variable that will be used to describe the
component. Save the script as Component.as.

From this point on, all the classes will extend the Component class. Keeping in mind
that the class is an abstract one—or at least is treated as one—its primary function is
to establish a basic structure for the rest of the application. It contains a single vari-
able, information, and a single getter function, getInformation(). These elements set
up both the concrete components and decorations. Both components and decora-
tions need to display information about their characteristics. A concrete Christmas
tree displays information that lets you know that it’s a Christmas tree instead of

Example 4-1. Component.as

package
{
 //Abstract Component in Decorator Design Pattern
 //**************
 //Abstract class
 public class Component
 {
 internal var information:String;

 public function getInformation():String
 {
 return information;
 }
 }
}

136 | Chapter 4: Decorator Pattern

another kind of object that can be decorated, such as a front yard to be decorated
with gnomes and pink plastic flamingoes. Additionally, you want to be able to
retrieve information, and so it has a getter function.

Abstract Decorator Class
Next, the abstract decorator is a subclass class of the Component class that inherits the
information variable, so nothing is needed as far as the information variable is con-
cerned. In fact, nothing’s required for this simple example other than defining the
class as an extension of the Component class. However, the getInformation() method
is re-implemented independently of the Component class, using the override state-
ment—which does what it says on the tin; it overrides parent class methods. This is
done to distinguish the same method being used for the Decorator class from the
method being used for the Component class. All the concrete decorations are sub-
classed from the Decorator class, and all concrete components are subclassed directly
from the Component class. Further on, the concrete components will be wrapped in
concrete decorators, and such distinctions become important in more complex
implementations of the Decorator design pattern. The trace() statement is used to
show you where in the process the abstract Decorator class appears. Save
Example 4-2 as Decorator.as.

Once the two abstract classes, Component and Decorator, have been established, it’s
time to work with the concrete classes. For this example, only a single concrete com-
ponent is created. Cleverly named ConcreteComponent, this class represents whatever
will be decorated in a Decorator design pattern. You can have multiple concrete
components that all use the same set of decorations, or only a single one. Later in
this chapter, you will see an application where multiple concrete classes are deco-
rated by a single set of decorators. The nice thing about the Decorator is that you can
add as many concrete components as you want. Imagine a business web site where
the concrete component represents an e-business site that you’ve worked on for sev-

Example 4-2. Decorator.as

package
{
 //Abstract Decorator in Decorator Design Pattern
 //**************
 //Abstract class
 public class Decorator extends Component
 {
 trace("|*|Decorator|*|");
 override public function getInformation():String
 {
 return information;
 }
 }
}

Minimalist Abstract Decorator | 137

eral months. Using a Decorator design pattern, you’ve developed several useful and
tested elements that are applied using decorators. Shortly after the project is com-
plete, you get a request to develop another site with a different main product and an
overlapping set of elements. Rather than starting from scratch, all you have to do is
to add a different concrete component class and some new decorators that aren’t
available in the original set.

Example 4-3 shows that the concrete component does little more than extend the
Component class and add a constructor. It inherits all of the features of the Component
class, and uses the information variable to place a message in the Output window to
point to the decorators. Save the code in Example 4-3 as ConcreteComponent.as.

In Example 4-3, you see that Unicode is inserted using the format \u
+ character code value. In the example, an arrow character is
formed using Unicode 2794. To search for a character you may want
to use, see http://www.fileformat.info/info/unicode/char/search.htm.
You’ll find several different arrow characters you can use, including
\u0363, \u2192, \u21aa, and \u21d2.

The next step is to build concrete decorator classes. In this abstract example, two
concrete decorators will wrap themselves around the concrete component. So, to get
started, we’ll need a Component instance variable to hold the component we’re
wrapping.

var components:Component;

The variable is named components, with an “s,” because component is a built-in word
in ActionScript 3.0. This variable is referenced in the decorator’s methods. Next, we
need a way to affix the components variable to the object being wrapped. The
following code shows how the component being wrapped is passed to the decora-
tor’s constructor.

Example 4-3. ConcreteComponent.as

package
{
 //Concrete Component
 public class ConcreteComponent extends Component
 {
 public function ConcreteComponent()
 {
 //\u2794 is Unicode for a right-pointing arrow
 information = "Concrete Component is decorated with \u2794";
 }
 }
}

http://www.fileformat.info/info/unicode/char/search.htm

138 | Chapter 4: Decorator Pattern

public function DecConA(components:Component)
{
 this.components=components;
}

Finally, you need a getter function to get the unique information from the concrete
decorator. The public method inherited from the Decorator class must be set up
using the override statement. Here, the method gets both the concrete component’s
information [components.getInformation()], and adds on that of the concrete deco-
ration [+ " Decoration Alpha:"]:

override public function getInformation():String
{
 return components.getInformation() + " Decoration Alpha:";
}

Concrete Decorations
Now, we’re all set to write the concrete decorator classes. Save Examples 4-4 and 4-5
as DecConA.as and DecConB.as, respectively.

In several of the decorator classes, you’ll see:

 this.components = components;

Such code is a non-standard use of the this identifier, but it makes
sense in this context because it differentiates the variable and parame-
ter. Normally, you wouldn’t use the this identifier in this manner. The
variable and parameter names are identical to emphasize the use of the
abstract class in both cases, with one passing the value to the other.

Example 4-4. DecConA.as

package
{
 //Concrete Decorator "Alpha"
 public class DecConA extends Decorator
 {
 private var components:Component;
 public function DecConA(components:Component)
 {
 this.components=components;
 }
 override public function getInformation():String
 {
 return components.getInformation() + " Decoration Alpha:";
 }
 }
}

Minimalist Abstract Decorator | 139

Wrapping Up
To execute the Decorator design pattern, the whole key lies in knowing how to wrap
a component in a concrete decorator. First, you need to instantiate a concrete
component.

var testComponent:Component = new ConcreteComponent();

Then, you wrap the component in one or more decorations using the following
format:

componentInstance=new ConcreteDecorator(testComponent);

So, in our example, with two concrete decorations, we’d write:

testComponent=new DecConA(testComponent);
testComponent=new DecConB(testComponent);

At this point, testComponent is decorated with two decorations. We could duplicate
the above lines adding the same two decorations as often as we wanted. Think of the
decorations as red and green Christmas tree ornaments. The tree could be covered
with nothing but red and green ornaments, rather than just one of each. The Decora-
tor design pattern is employed cumulatively. That is, as you add each decoration, it’s
added to those already wrapping the concrete component.

Finally, to see what havoc we’ve wrought, we use the getter method—
getInformation():

trace(testComponent.getInformation());

To see how all of this works, save Example 4-6 as DecTest.as in an ActionScript file.
Then open a new Flash document file, and type DecTest in the Document class win-
dow in the Properties panel.

Example 4-5. DecConB.as

package
{
 //Concrete Decorator "Beta"
 public class DecConB extends Decorator
 {
 var components:Component;
 public function DecConB(components:Component) {
 this.components=components;
 }
 override public function getInformation():String
 {
 return components.getInformation() + " Decoration Beta:";
 }
 }
}

140 | Chapter 4: Decorator Pattern

Figure 4-5 shows what you should see in your Output window when you test the
movie.

To understand what’s going on in the Decorator pattern, go back and look at
Figure 4-2. The example application first instantiated a ConcreteComponent() object.
That object displays a message pointing to its decorations. Imagine that object
(testComponent) as the smallest can to the far left in Figure 4-2. That can is then
placed into decorator Can #1. At this point, the concrete component object
(testComponent) is decorated with Can #1, but retains its original properties –much
in the same way that a lawn decorated with a family of gnomes still retains its prop-
erty of green grass. Next, Can #1, which now contains the concrete component, is
dropped into Can #2. Now Can #2 has both Can #1 and the Concrete component
Can. Thus, Can #2 has all of the properties of itself plus those of the cans inside.

In a sense, the whole process works like the compound operator, plus-equal (+=).
Each decorator attaches itself to the existing component and its decorator. As each
decorator is added, all the previous ones are retained but not duplicated, unless you
add the same decorator more than once. So, as the output shows, you can add as
many decorations as you want simply by wrapping them in the existing object in one
of the decorators.

Example 4-6. DecTest.as

package
{
 import flash.display.Sprite;
 public class DecTest extends Sprite
 {
 public function DecTest()
 {
 //Instantiate Concrete Component
 var testComponent:Component = new ConcreteComponent();
 //Wrap first decorator around component
 testComponent=new DecConA(testComponent);
 //Wrap second decorator around component
 testComponent=new DecConB(testComponent);
 //Output results
 trace(testComponent.getInformation());
 }
 }
}

Figure 4-5. Decorations on component

Applying a Simple Decorator Pattern in Flash: Paper Doll | 141

Applying a Simple Decorator Pattern in Flash:
Paper Doll
You can move from a conceptual example to a concrete one with a computerized
paper doll game. The paper doll component is the doll being dressed, and the deco-
rations are clothing items selected for the doll. Using ActionScript’s new Loader class,
different GIF files are used to decorate a base GIF image of a Victorian paper doll. As
in the previous abstract example, this example uses a single concrete component and
several decorations.

This concrete example does not have an interface—keeping the focus on the applica-
tion’s use of a Decorator pattern. However, it does have a graphic output so you can
see the pattern’s ultimate output. (Later in this chapter, there’s an example with a
full interface.)

Setting Up the Component Class
The first class is the component class, Model. From this, all other classes are sub-
classes. It’s very simple but key to the success of the application. As you can see, it’s
very close to the previous abstract Decorator. It consists of a method, getDressed(),
and a string variable, whatToWear, as shown in Example 4-7. Save the file as Model.as.

Keep in mind that Example 4-7 should be treated as an abstract class. So the method
getDressed() needs to be created as an override public function for it to work the
way we want. However, the property whatToWear doesn’t need to be changed from its
inherited characteristics.

Decorator Class: Dressing the Dolls
Example 4-8 is the abstract Decorator class, Dresser, which extends the component
class, Model. The major contribution here is simply re-implementing the getDressed()
method with a reference to the inherited whatToWear property.

Example 4-7. Model.as

package
{
 //Abstract class
 public class Model
 {
 protected var whatToWear:String;
 public function getDressed():String
 {
 return whatToWear;
 }
 }
}

142 | Chapter 4: Decorator Pattern

All of the concrete decorators will be subclassed for this class.

The Concrete Classes
Once the two main abstract classes in the Decorator pattern have been established,
you’re all set to create the concrete ones. In the previous minimalist Decorator exam-
ple, you saw the output using the trace() statement. Instead of trace() statements,
both the concrete component and decorators need to be formatted for later parsing,
so a tilde character (~) has been added as a demarcation point. Because all the strings
from both the concrete component and decorators are grouped together into a single
large string, the tilde serves as cutting point.

Concrete component class

The concrete component class is the only concrete class that extends directly from
the abstract concrete class. All the other classes in this application extend from the
abstract decorator class. Using a simple constructor function, Sue(), the class assigns
a value to the whatToWear variable. This is enough to identify the class as an instance
of the main abstract component class, Model, and to establish a unique name. All
decorations use the concrete component as the target for the decorations. Save
Example 4-9 as Sue.as.

Example 4-8. Dresser.as

package
{
 //Abstract class
 public class Dresser extends Model
 {
 override public function getDressed():String
 {
 return whatToWear;
 }
 }
}

Example 4-9. Sue.as

package
{
 public class Sue extends Model
 {
 public function Sue()
 {
 whatToWear="~sue";
 }
 }
}

Applying a Simple Decorator Pattern in Flash: Paper Doll | 143

If you want to create more concrete component classes, all you need to do is create a
similar class with a different name and value for the whatToWear variable. With this
structure, you have no limit to the number of new concrete components you can add.

Concrete decorator classes

Moving from the minimalist example previously shown in this chapter, it’s a little
easier to see how the Decorator pattern works by actually seeing something happen-
ing in a graphic display. When the initial instance of the concrete component is cre-
ated, all references in the concrete decorator class are to that instance. (See example
4-16, where the concrete component is wrapped in the decorators.) In all the con-
crete decorator classes, the reference to the model variable is a reference to the con-
crete component object. In this case, that’s the instance of the Sue() class, but it can
be any instance of any concrete component. That’s why, if you wish to expand the
application to include more concrete components (paper dolls to dress), you don’t
have to make any fundamental changes. Just add another concrete component class.
In Examples 4-10 to 4-15, the captions are the filenames.

Example 4-10. OrangeDress.as

package
{
 public class OrangeDress extends Dresser
 {
 private var model:Model;
 public function OrangeDress(model:Model)
 {
 this.model=model;
 }
 override public function getDressed():String
 {
 return model.getDressed() + "~orangedress";
 }
 }
}

Example 4-11. BlueDress.as

package
{
 public class BlueDress extends Dresser
 {
 private var model:Model;
 public function BlueDress(model:Model)
 {
 this.model=model;
 }
 override public function getDressed():String
 {
 return model.getDressed() + "~bluedress";
 }
 }
}

144 | Chapter 4: Decorator Pattern

Example 4-12. Bow.as

package
{
 public class Bow extends Dresser
 {
 private var model:Model;
 public function Bow(model:Model)
 {
 this.model=model;
 }
 override public function getDressed():String
 {
 return model.getDressed() + "~bow";
 }
 }
}

Example 4-13. Umbrella.as

package
{
 public class Umbrella extends Dresser
 {
 private var model:Model;
 public function Umbrella (model:Model)
 {
 this.model=model;
 }
 override public function getDressed():String
 {
 return model.getDressed() + "~ umbrella ";
 }
 }
}

Example 4-14. Hat.as

package
{
 public class Hat extends Dresser
 {
 private var model:Model;
 public function Hat(model:Model)
 {
 this.model=model;
 }
 override public function getDressed():String
 {
 return model.getDressed() + "~hat";
 }
 }
}

Applying a Simple Decorator Pattern in Flash: Paper Doll | 145

All six decorations can be used in any combination you want with the instance of the
Model class. This next section shows how to implement the Decorator pattern using
the different decorators.

Implementing the Paper Doll Decorator
As noted, no interface was created for implementing this application, and so you can
see clearly how the concrete component is wrapped by the decorators. Then, on the
stage, you can see the effects of the different combinations.

The sequence is:

1. Instantiate a concrete component.

2. Wrap the concrete component in the desired decorator instance using the format:
componentInstance = new DecoratorInstance(componentInstance)

3. Apply the getter method (getDressed()) to the concrete component instance
initiated to get the fully wrapped values. The values will include those of the
concrete component instance and the applied decorations.

Example 4-16 illustrates how to implement the paper doll decorator.

Example 4-15. Muff.as

package
{
 public class Muff extends Dresser
 {
 private var model:Model;
 public function Muff(model:Model)
 {
 this.model=model;
 }
 override public function getDressed():String
 {
 return model.getDressed() + "~muff";
 }
 }
}

Example 4-16. FashionShow.as

package
{
 import flash.display.Loader;
 import flash.net.URLRequest;
 import flash.display.Sprite;
 public class FashionShow extends Sprite
 {
 var ensemble:Array=new Array();
 public function FashionShow()
 {

146 | Chapter 4: Decorator Pattern

Once you’ve got everything ready to go, you’ll need some GIF files. The model (con-
crete component) should be an image of a doll that you will clothe with the Decora-
tor pattern. Each filename needs to be the name of the value assigned to the
whatToWear variable in the concrete component or decorator listing, minus the tilde
(~) character. For example, the concrete component, Sue, whatToWear variable is
assigned the string value “~sue” and so the GIF filename for that component would
be sue.gif. The decorator BlueDress has a whatToWear value of “~bluedress,” and so
the image with the blue dress would be named bluedress.gif. Place all the GIF files,
including the file representing the doll model, in a folder named clothes.

Finally, open up a new Flash document and set the stage dimensions to 300 × 650.
In the Properties panel’s Document class window, type in FashionShow. The size and
shape of your stage will depend on the size of the paper dolls you use.

Figure 4-6 shows two different combinations of decorations on the paper doll. The
image on the left decorates with the hat, bow, orange dress, and muff, while the sec-
ond is the blue dress, the bow and an umbrella. Each appears very different just by
changing the combination of decorations.

 trace("||--Working--||");
 var doll:Model = new Sue();
 doll=new Hat(doll);
 doll=new OrangeDress(doll);
 //doll=new BlueDress(doll);
 //doll=new Umbrella(doll);
 doll=new Bow(doll);
 doll=new Muff(doll);
 var ready2wear:String=doll.getDressed();
 sewingMachine(ready2wear);
 for (x=0; x < ensemble.length; x++)
 {
 clothesOn(ensemble[x]);
 }
 }
 private function sewingMachine(wardrobe:String):Array
 {
 ensemble=wardrobe.split("~");
 ensemble.shift();
 return ensemble;
 }
 private function clothesOn(outfit:String)
 {
 var clothier:Loader=new Loader();
 var item:String="clothes/" + outfit + ".gif";
 var getItem:URLRequest=new URLRequest(item);
 clothier.load(getItem);
 this.addChild(clothier);
 }
 }
}

Example 4-16. FashionShow.as (continued)

Applying a Simple Decorator Pattern in Flash: Paper Doll | 147

Instead of paper dolls, any component could be decorated with any characteristics.
Also, you can include more than a single property or method in a decoration. In the
next section, we’ll take a look at adding additional properties with the Decorator
design pattern.

Figure 4-6. Paper doll with two different decoration sets

148 | Chapter 4: Decorator Pattern

Decorating with Deadly Sins and Heavenly Virtues
Action gaming pits different kinds of heroes and villains against one another, and the
combatants have different weapons and shields. That is, they’re decorated with dif-
ferent characteristics and abilities. In order to see how to add some more functions to
a Decorator pattern, what could be more appropriate than pitting good against evil?

Table 4-1 shows a list of deadly sins and heavenly virtues. (The list is considerably
updated from Dante’s Inferno and Prudentius’ epic poem, Psychomachia, both of
whom I understand were using Commodore-64’s to make their lists.)

Thinking about what has been presented so far in this chapter, the first thing that
comes to mind is a property that describes each of the deadly sins and heavenly vir-
tues. That’s easy enough, because just like the paper doll example, all we have to do
is to assign a property value to each decorator. However, we can do more with the
Decorator design pattern, as you’ll see in the next two sections.

Table 4-1. Decorations of good and evil

Deadly Sin Description Virtue Description

Rage Uncontrolled anger—striking out at
syntax errors

Compassion Caring about others—Helping procedural
programmers transition to OOP

Malice Meanness, malevolence, ill will, cruelty,
and hatred toward others–unkind
remarks about Linux.

Courage Doing the right thing regardless of the
danger—taking on object-oriented pro-
gramming

Obfuscation Hiding the truth— redefining an act,
knowledge by adding confusion—coding
without comments

Hope Belief in eventual success of good over
evil—you really can complete the project on
time

Arrogance Excessive pride, not considering others’
beliefs, feelings, or knowledge—belief
that Microsoft Windows is the only real OS

Justice A fair balance and even chance—using
Windows, Mac OS, and Linux

Prejudice Judging others on the basis of stereotypes
and not their actions—teasing Mac users

Openness Capacity to consider new knowledge, ideas,
and contrary ideas—writing a program on a
Mac

Dogmatisms Narrow, inflexible belief even in light of
evidence to the contrary—continue to
use procedural programming methods

Integrity Maintaining values even when tempted to
abandon them for short term gains—fore-
going hacks even though they’d get the job
done and the client would never know

Indifference Seeing suffering and doing nothing or not
even caring to help—unwilling to offer
help in learning OOP

Diligence Willingness to stick with an especially diffi-
cult task to complete it—learning design
patterns

Decorating with Deadly Sins and Heavenly Virtues | 149

Adding Properties and Methods
Up to now, we’ve used a single string variable with a single getter method for the
basic abstract component class. However, like any other class, this basic structure
can accommodate more than a single variable or function. Example 4-17 shows three
variables and getter functions. Save the script as Component.as.

Like the previous examples, we begin with a string property, soul. (It’s assigned a
string literal, but that’s really not necessary because it’s an abstract class and will
never be seen or used—just a clarification.) Next, two numeric properties are
defined, goodness and vice. These two properties will collect all the accumulated
good and evil in a soul.

Next, three getter functions are supplied to get the values of the string and two
numeric variables. Now the abstract component class is all set to go.

Multiple Concrete Components
We could look at one soul at a time, but what fun is that? More important, in a lot of
applications, having a single component to decorate isn’t too useful either. So
instead of having a single soul to decorate, we’ll add two. For the time being, we’ll
forego any debates about original sin and start our souls with a clean slate. Both
goodness and vice will be set to zero. Just give them different soul values so they can
be differentiated.

Example 4-17. Component.as

package
{
 //Abstract class
 public class Component
 {
 protected var soul:String="All that is inside a spirit";
 protected var goodness:Number;
 protected var vice:Number;

 public function getSoul():String
 {
 return soul;
 }
 public function good():Number
 {
 return goodness;
 }
 public function evil():Number
 {
 return vice;
 }
 }
}

150 | Chapter 4: Decorator Pattern

Examples 4-18 and 4-19 provide the concrete components for Dick and Jane classes.
Each class just needs a string value for soul and numeric values for goodness and
vice—all inherited properties from the Component class. Save Example 4-18 as Dick.as,
and Example 4-19 as Jane.as.

These concrete component classes are exactly like the previous examples we’ve
examined, except we have two instead of one. Furthermore, instead of using a single
string variable, two additional numeric variables are added, along with their assigned
values. Otherwise, they’re just the same.

In these two concrete classes, the properties are inherited directly from the abstract
Component class. No overrides or other special adjustments are needed. This is
because the Dick and Jane classes are components, both to be decorated by the deco-
rator classes. The overrides that generate unique methods and characteristics for the
concrete decorators are accomplished by the decorator classes. Therefore, overrides
by the concrete component classes are unnecessary.

Example 4-18. Dick.as

package
{
 public class Dick extends Component
 {
 public function Dick()
 {
 soul = "Dick's soul\n";
 goodness=0;
 vice=0;
 }
 }
}

Example 4-19. Jane.as

package
{
 public class Jane extends Component
 {
 public function Jane()
 {
 soul = "Jane's soul\n";
 goodness=0;
 vice=0;
 }
 }
}

Decorating with Deadly Sins and Heavenly Virtues | 151

Decorating with Multiple Properties
Multiple properties and methods are not difficult to add to components, and the
same is true for decorator classes. Instead of a single property and method, you do
essentially the same thing using multiple methods and classes. Example 4-20 shows
the abstract Decorator class, subclassed from the Component class. Save the script as
Decorator.as.

As a subclass of the Component class, this Decorator abstract class does nothing more
than re-implement the getter functions—one returning a string, and the other two
returning a number. The properties that are to be returned were originally defined as
properties in the Component class, and as a subclass of Component, the Decorator class
doesn’t have to re-implement them. However, as you’ve seen in previous examples,
the getter functions are re-implemented. The only difference is that there are more of
them. However, the process and logic are the same.

Multiple Method Concrete Decorations
When it comes to the concrete decorations in this example application, we’re going
to see something slightly new. First, take a look at example 4-21. It’s a generic exam-
ple and should not be placed in as actual code. Just look at it. Several actual concrete
elements with working code will replace generic values.

Example 4-20. Decorator.as

package
{
 //Abstract class
 public class Decorator extends Component
 {
 override public function getSoul():String
 {
 return soul;
 }
 override public function good():Number
 {
 return goodness;
 }
 override public function evil():Number
 {
 return vice;
 }
 }
}

152 | Chapter 4: Decorator Pattern

If you break down Example 4-21, the first part looks exactly like the previous exam-
ples. A Component instance, components, is instantiated, and the constructor function
wraps the components object in itself:

var components:Component;
public function GoodEvil(components:Component)
{
 this.components=components;
}

Next, the script re-implements the getter function, getSoul(), to return both the cur-
rent value of the concrete component’s decorations plus its own decoration value.
Again, this is what previous examples have done.

override public function getSoul():String
{
 return components.getSoul() + "|GoodEvil";
}

The next two functions add or subtract numeric values using the good() and evil()
methods. Each good adds to a good and subtracts from an evil, and vice versa for a
vice—adds to evil and subtracts from good. So depending on the concrete decora-
tor, you add or subtract from each of the two return values, and add that to the cur-
rent value of the concrete component.

override public function good():Number
{
 return +/-00 + components.good();

Example 4-21. Generic concrete decoration

package
{
 //Generic—NOT implemented
 public class GoodEvil extends Decorator
 {
 private var components:Component;
 public function GoodEvil(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|GoodEvil";
 }
 override public function good():Number
 {
 return +/-00 + components.good();
 }
 override public function evil():Number
 {
 return +/-00 + components.evil();
 }
 }
}

Decorating with Deadly Sins and Heavenly Virtues | 153

}
override public function evil():Number
{
 return +/-00 + components.evil();
}

Examples 4-22 through 4-35 make up the seven deadly (revised) sins and seven heav-
enly (revised) virtues. However, what they really represent is the flexibility of the
Decorator design pattern. (Also, they illustrate the complex issue of saving souls.)

The Good and Evil Concrete Decorators
Following are 14 concrete decorator classes. They’re all the same except for the
names and values assigned to the numeric properties. It’s a lot easier just to do one,
and then paste it into a new ActionScript file and edit in changes rather than doing
them all from scratch. Once you’ve completed all 14, go ahead and add two
more—good and evil concrete decorators of your own making. In Examples 4-22
through 4-35, the filename is in the caption.

Heavenly virtues

Example 4-22. Integrity.as

package
{
 public class Integrity extends Decorator
 {
 private var components:Component;
 public function Integrity(components:Component) {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Integrity";
 }
 override public function good():Number
 {
 return 14 + components.good();
 }
 override public function evil():Number
 {
 return -6 + components.evil();
 }
 }
}

154 | Chapter 4: Decorator Pattern

Example 4-23. Hope.as

package
{
 public class Hope extends Decorator
 {
 private var components:Component;
 public function Hope(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Hope";
 }
 override public function good():Number
 {
 return 5 + components.good();
 }
 override public function evil():Number
 {
 return -10 + components.evil();
 }
 }
}

Example 4-24. Courage.as

package
{
 public class Courage extends Decorator
 {
 private var components:Component;
 public function Courage(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Courage";
 }
 override public function good():Number
 {
 return 10 + components.good();
 }
 override public function evil():Number
 {
 return -8 + components.evil();
 }
 }
}

Decorating with Deadly Sins and Heavenly Virtues | 155

Example 4-25. Compassion.as

package
{
 public class Compassion extends Decorator
 {
 private var components:Component;
 public function Compassion(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Compassion";
 }
 override public function good():Number
 {
 return 7 + components.good();
 }
 override public function evil():Number
 {
 return -15 + components.evil();
 }
 }
}

Example 4-26. Openness.as

package
{
 public class Openness extends Decorator
 {
 private var components:Component;
 public function Openness(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Openness";
 }
 override public function good():Number
 {
 return 12 + components.good();
 }
 override public function evil():Number
 {
 return -15 + components.evil();
 }
 }
}

156 | Chapter 4: Decorator Pattern

Example 4-27. Diligence.as

package
{
 public class Diligence extends Decorator
 {
 private var components:Component;
 public function Diligence(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Diligence";
 }
 override public function good():Number
 {
 return 10 + components.good();
 }
 override public function evil():Number
 {
 return -5 + components.evil();
 }
 }
}

Example 4-28. Justice.as

package
{
 public class Justice extends Decorator
 {
 private var components:Component;
 public function Justice(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Justice";
 }
 override public function good():Number
 {
 return 9 + components.good();
 }
 override public function evil():Number
 {
 return -9 + components.evil();
 }
 }
}

Decorating with Deadly Sins and Heavenly Virtues | 157

Deadly sins

Example 4-29. Rage.as

package
{
 public class Rage extends Decorator
 {
 private var components:Component;
 public function Rage(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Rage";
 }
 override public function good():Number
 {
 return -9 + components.good();
 }
 override public function evil():Number
 {
 return 8 + components.evil();
 }
 }
}

Example 4-30. Malice.as

package
{
 public class Malice extends Decorator
 {
 private var components:Component;
 public function Malice(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Malice";
 }
 override public function good():Number
 {
 return -14 + components.good();
 }
 override public function evil():Number
 {
 return 12 + components.evil();
 }
 }
}

158 | Chapter 4: Decorator Pattern

Example 4-31. Prejudice.as

package
{
 public class Prejudice extends Decorator
 {
 private var components:Component;
 public function Prejudice(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Prejudice";
 }
 override public function good():Number
 {
 return -10 + components.good();
 }
 override public function evil():Number
 {
 return 15 + components.evil();
 }
 }
}

Example 4-32. Obfuscation.as

package
{
 public class Obsfuscation extends Decorator
 {
 private var components:Component;
 public function Obsfuscation(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Obsfuscation";
 }
 override public function good():Number
 {
 return -12 + components.good();
 }
 override public function evil():Number
 {
 return 7 + components.evil();
 }
 }
}

Decorating with Deadly Sins and Heavenly Virtues | 159

Example 4-33. Dogmatisms.as

package
{
 public class Dogmatisms extends Decorator
 {
 private var components:Component;
 public function Dogmatisms(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Dogmatisms";
 }
 override public function good():Number
 {
 return -12 + components.good();
 }
 override public function evil():Number
 {
 return 15 + components.evil();
 }
 }
}

Example 4-34. Arrogance.as

package
{
 public class Arrogance extends Decorator
 {
 private var components:Component;
 public function Arrogance(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Arrogance";
 }
 override public function good():Number
 {
 return -5 + components.good();
 }
 override public function evil():Number
 {
 return 5 + components.evil();
 }
 }
}

160 | Chapter 4: Decorator Pattern

At this point you can add your own concrete decorators. Use the same format as the
others. You can also add additional concrete components. So instead of just Dick
and Jane, you can add others you’d like to decorate with good and evil.

Implementing the Good and Evil Decorator
Instead of a single implementation, you can try out two different implementations.
The first one dresses up the two different concrete components, and sends the results
to the output window. The second takes the results, uses them to place movie clips
on a “soul graph,” and adds a label to an angel or devil movie clip—depending on
whether good or evil is predominant.

Dual implementation

The first implementation decorates both the Dick and Jane concrete components.
This one is set up to use all 14 deadly sins and heavenly virtues, but you can use any
combination you want. As each concrete component (life and light) is wrapped,
the good and evil properties are incremented or decremented, depending on which
decorator wraps the concrete component. The reference to the components object in
each of the decorators is a reference to the concrete component being wrapped. With
each new decorator, then, the value goes up and down depending on the wrapping
decorator. Save Example 4-36 as MainDual.as in an ActionScript file. Open a new
Flash document file, and save it as a Dual.fla. Type in MainDual in the Document

Example 4-35. Indifference.as

 package
{
 public class Indifference extends Decorator
 {
 private var components:Component;
 public function Indifference(components:Component)
 {
 this.components=components;
 }
 override public function getSoul():String
 {
 return components.getSoul() + "|Indifference";
 }
 override public function good():Number
 {
 return -9 + components.good();
 }
 override public function evil():Number
 {
 return 10 + components.evil();
 }
 }
}

Decorating with Deadly Sins and Heavenly Virtues | 161

class window in the Dual.fla Properties panel, and resave it as MainDual.as. Now
test the movie.

The output for all of the good and evil together is:

||--Judging--||
Dick's soul
|Courage|Openness|Diligence|Prejudice|Dogmatisms|Arrogance
 |Indifference|Rage
Total Virture: -38
Jane's soul
|Hope|Compassion|Justice|Malice|Obsfuscation
Total Virture: 10

Because the trace() statement subtracts the evil() method from the good() method
total value, any positive results indicate an abundance of good characteristics, and a
negative result shows a plethora of negative traits.

You can “multi-wrap” using the same decorator more than once on the same con-
crete component. (Someone who thinks he can get the month-behind project done

Example 4-36. MainDual.as

package
{
 import flash.display.Sprite;
 public class MainDual extends Sprite
 {
 public function MainDual()
 {
 trace("||--Judging--||");
 var life:Component=new Dick();
 var light:Component=new Jane();
 //***Add Good
 life=new Courage(life);
 light=new Hope(light);
 light=new Compassion(light);
 life=new Openness(life);
 life=new Diligence(life);
 light=new Justice(light);
 //***Add Evil
 light=new Malice(light);
 life=new Prejudice(life);
 life=new Dogmatisms(life);
 life=new Arrogance(life);
 life=new Indifference(life);
 life=new Rage(life);
 light=new Obsfuscation(light);
 trace(life.getSoul()+"\nTotal Virture: "+
 (life.good()-life.evil()));
 trace(light.getSoul()+"\nTotal Virture: "+
 (light.good()-light.evil()));
 }
 }
}

162 | Chapter 4: Decorator Pattern

on time by not sleeping for a week is doubly hopeful, has a triple dose of diligence,
and perhaps a double dose of arrogance.)

Charting souls

Like any of the other design patterns, what you do with the output is up to you.
However, because ActionScript 3.0 is part of Flash, this next implementation shows
how to place the output into different formats with graphic elements. The getSoul()
generates a string, and the good() and evil() methods generate numbers. The string
will be placed in a text field embedded in a movie clip, and the vertical position of
the movie clip will be determined by the values generated by the good() and evil()
methods. To get started, save the script in Example 4-37 in an ActionScript file
named Soul.as.

Example 4-37. Soul.as

package
{
 import flash.display.Sprite;
 import flash.display.MovieClip;
 public class Soul extends Sprite
 {
 //Instantiate the two MovieClip objects in
 //the Library
 var devil:Devil=new Devil();
 var angel:Angel=new Angel();
 public function Soul()
 {
 var life:Component=new Jane();
 //***Add Good***
 life=new Courage(life);
 life=new Compassion(life);
 life=new Hope(life);
 //life=new Integrity(life);
 life=new Openness(life);
 life=new Diligence(life);
 life=new Justice(life);
 //***Add Evil***
 life=new Malice(life);
 life=new Prejudice(life);
 //life=new Dogmatisms(life);
 life=new Arrogance(life);
 //life=new Indifference(life);
 //life=new Rage(life);
 //life=new Obsfuscation(life);
 setAngelDevil(life.good(),life.evil(),life.getSoul());
 }
 private function setAngelDevil(right:Number,wrong:Number,
 eternalsoul:String)
 {
 this.addChild(devil);
 this.addChild(angel);
 var booWrong:Number=Number(wrong>0);

Decorating with Deadly Sins and Heavenly Virtues | 163

In looking at the script, all it does is pass the three different values generated by the
getter methods, good(), evil() and getSoul(), to the setAngelDevil() function. The
setAngelDevil() function uses two movie clips from the library and positions them
on the stage. Depending on the outcome, the concrete component’s name appears in
the angel or devil icon. Figure 4-7 shows what the output will look like. Use it as a
guide for setting up your stage.

 var booRight:Number=Number(right>0);
 devil.x=330;
 devil.y=270-((wrong*booWrong)*(270/72));
 angel.x=96;
 angel.y=270-((right*booRight)*(270/60));
 if (booWrong)
 {
 devil.soul_txt.text=eternalsoul;
 } else
 {
 angel.soul_txt.text=eternalsoul;
 }
 }
 }
}

Figure 4-7. Decorator generated values used for placement and labels

Example 4-37. Soul.as (continued)

164 | Chapter 4: Decorator Pattern

The following steps guide you through the process of preparing the two MovieClip
classes in the Flash IDE and setting the stage as a “soul chart.”

1. Open a new Flash document file, type in Soul in the Document class window,
and save the file as SoulChart.fla.

2. Add a layer to the existing layer, and name the top layer, Labels and the bottom
layer “Lines.” (Say that last sentence fast three times!)

3. Select Insert ➝ New Symbol from the menu bar. Type Angel in the Name win-
dow, and click the Export for ActionScript checkbox. Click OK. You are now in
the Symbol Edit Mode. (Be sure to capitalize the “A” in “Angel” because this is a
class name.)

4. In the Symbol Edit window, draw or import an image of an angel.

5. Click the Text icon in the Tools panel, and select Dynamic Text for the type of
text. In the Properties panel, provide the instance name soul_txt for the dynamic
text object.

6. Exit the Symbol Edit Mode by clicking the Scene 1 icon. You should now see a
movie clip icon in the Library named “Angel.”

7. Repeat steps 3 to 6, substituting “Devil” for “Angel.” Once you’re finished, you
should see both Devil and Angel movie clip icons in the Library panel.

8. Click the Lines layer and add 11 horizontal lines and one vertical line as shown
in Figure 4-7. Lock the layer.

9. Click the Labels layer, number the lines from 0 to 100, and place a “Good” and
“Evil” label at the top of the stage as shown in Figure 4-7. Lock the layer and
save the file once again.

By adding and removing the comment lines in the Soul.as file, you can change the
vertical positions of the angel and devil images. You may have to make some adjust-
ments depending on the size of your angel and devil movie clips and/or if you change
the default size of the stage from 550 by 400.

Dynamic Selection of Concrete Components and
Decorations: A Hybrid Car Dealership
Up to this point, the examples have focused on different dimensions of the Decora-
tor design pattern, with the emphasis on how the different elements in the Decora-
tor design pattern can be used with different components and decorations. Both
concrete and abstract output has shown different ways to display information, but
no example has illustrated how to input data dynamically. This Decorator example
uses the case of selecting automobiles and their options to illustrate how to dynami-
cally input data for both decorators and concrete components.

Dynamic Selection of Concrete Components and Decorations: A Hybrid Car Dealership | 165

Imagine that you are responsible for creating and maintaining a web site for a car
dealership. With each year, new models appear, and different options are made
available. You never know what options are going to be added or dropped, or even if
the same car models will be around from one year to the next. You’ve decided to use
the Decorator pattern because you can easily add or drop both concrete components
and concrete decorators. The concrete components will be the different models, and
the options are the different decorations for any model selected. So whenever a new
model appears, you simply update the concrete component to reflect those changes.
Likewise with the options available for any of the models, all you need to change are
the concrete decorations. You can easily add or change decorations without altering
the program’s basic structure.

Setting Up the Hybrid Car Components
This particular dealership has decided to specialize in four hybrid model cars. This
example uses four such cars, the Prius, Mercury Mariner, Ford Escape and Honda
Accord hybrids. So in addition to an abstract Component class, this example
requires four concrete components.

Auto abstract component

To get started, the abstract component is cast as a class named Auto. It needs only a
string for the name of the car and a numeric variable for the car’s price. Two getter
functions for auto type and price make up the rest of the abstract component.
Example 4-38 shows the code saved as Auto.as.

Example 4-38. Auto.as

package
{
 //Abstract class
 public class Auto
 {
 protected var information:String;
 protected var bucks:Number;

 public function getInformation():String
 {
 return information;
 }
 public function price():Number
 {
 return bucks;
 }
 }
}

166 | Chapter 4: Decorator Pattern

As with all Decorator design patterns, all other classes are derived from this abstract
component class. In the next section, you’ll see that all of the concrete component
classes are subclasses of the Auto class.

Hybrid car classes concrete component

The four hybrid autos are placed into separate concrete component classes that are all
subclassed from the Auto class. The constructor function assigns a value to the
information property, and the price() function returns a value representing the car’s
price. In Examples 4-39 to 4-42, the captions are the filenames to use for saving each
class.

Example 4-39. Prius.as

package
{
 public class Prius extends Auto
 {
 public function Prius()
 {
 information = "Toyota Prius Hybrid~\n";
 }
 override public function price():Number
 {
 return 21725.00;
 }
 }
}

Example 4-40. Mariner.as

package
{
 public class Mariner extends Auto
 {
 public function Mariner()
 {
 information = "Mercury Mariner Hybrid~\n";
 }
 override public function price():Number
 {
 return 29225.00;
 }
 }
}

Example 4-41. Accord.as

package
{
 public class Accord extends Auto
 {

Dynamic Selection of Concrete Components and Decorations: A Hybrid Car Dealership | 167

The prices here are based on prices found on the Internet, but they may or may not
reflect prices at a later date. If you want to update prices or even use different autos,
feel free to do so.

The \n escape character and the tilde (~) characters are used for formatting pur-
poses. The \n is a line break, and the tilde (~) helps in separating out all the different
models that become a big string as the decorator merges them altogether. Without
these, the output would be a mess.

Using Auto Options as Decorators
With all the concrete components in place, the next step will be to construct the dec-
orator class and the concrete decorators. Like the components they decorate, they
too will need an identification and price property as well as methods to return them.
The abstract decorator will set that up so that the derived classes have the necessary
properties and methods.

The options abstract decorator

As you have seen with other abstract decorator classes in this chapter, it’s one of the
simplest classes. Because it extends the abstract concrete component class, it inherits
all the class’ properties. However, we need to re-implement the getter function so that

 public function Accord()
 {
 information = "Accord Hybrid~\n";
 }
 override public function price():Number
 {
 return 30990.00;
 }
 }
}

Example 4-42. Escape.as

package
{
 public class Escape extends Auto
 {
 public function Escape()
 {
 information = "Ford Escape Hybrid\n~";
 }
 override public function price():Number
 {
 return 26240.00;
 }
 }
}

Example 4-41. Accord.as (continued)

168 | Chapter 4: Decorator Pattern

we can further reimplement it for the delegations the different concrete decorators use.
Example 4-43 shows the abstract decorator class to be saved as Decorator.as.

Because the information variable is inherited from the Auto class, we need not rede-
fine it here. It represents an abstract string.

The options concrete decorators

The concrete decorators generate the information that adds the information prop-
erty and price value to each option. As a concrete component is wrapped in each, the
string data are added to any other strings that wrap the component. So, when the
getInformation() method launches, it first gets the delegated information from all
other options and the concrete component it wraps. In order not to get a huge string
that we cannot unravel, a tilde (~) on the end of the added string will help separate
all the different decorations. Examples 4-44 through 4-47 are labeled with the filena-
mes used to save the class.

Example 4-43. Decorator.as

package
{
 //Abstract class
 public class Decorator extends Auto
 {
 override public function getInformation():String
 {
 return information;
 }
 }
}

Example 4-44. HeatedSeat.as

package
{
 public class HeatedSeats extends Decorator
 {
 private var auto:Auto;
 public function HeatedSeats(auto:Auto)
 {
 this.auto=auto;
 }
 override public function getInformation():String
 {
 return auto.getInformation() + " Heated Seats~";
 }
 override public function price():Number
 {
 return 350.78 + auto.price();
 }
 }
}

Dynamic Selection of Concrete Components and Decorations: A Hybrid Car Dealership | 169

Example 4-45. GPS.as

package
{
 public class GPS extends Decorator
 {
 private var auto:Auto;
 public function GPS(auto:Auto)
 {
 this.auto=auto;
 }
 override public function getInformation():String
 {
 return auto.getInformation() +
 " Global Positioning System~";
 }
 override public function price():Number
 {
 return 345.88 + auto.price();
 }
 }
}

Example 4-46. RearViewVideo.as

package
{
 public class RearViewVideo extends Decorator
 {
 private var auto:Auto;
 public function RearViewVideo(auto:Auto)
 {
 this.auto=auto;
 }
 override public function getInformation():String
 {
 return auto.getInformation() + " Rear View Video~";
 }
 override public function price():Number
 {
 return 560.75 + auto.price();
 }
 }
}

Example 4-47. MP3.as

package
{
 public class MP3 extends Decorator
 {
 private var auto:Auto;
 public function MP3(auto:Auto)
 {
 this.auto=auto;

170 | Chapter 4: Decorator Pattern

For this particular application, we’re not concerned with separating the individual
costs. In fact, we want each cost to be accumulated with the others, including the
cost of the concrete component we’re decorating. So while the string value needs the
tilde (~) for demarcation purposes, we don’t need it for the numeric value.

Setting Up the User Interface
The largest single class we’re going to use is the one to create the user interface. The
line numbers appear in the Example 4-48 for the purpose of referencing lines in the
code. A lot of the work done by this class, named Deal, is to set up the interface
objects. These include the radio button, checkbox, and button components. Addi-
tionally, a good hunk of code is required for the text field output window and for-
matting for the output. So while the interface to the decorator pattern may look
unwieldy, it’s not decorator pattern’s fault. In fact, only the getCar() (beginning on
line 115) and getOptions() (beginning on line146) private functions are employed to
pull out the information generated by the Decorator pattern.

To get a handle on what the class does, enter the code from Example 4-48 and save it
as Deal.as.

 }
 override public function getInformation():String
 {
 return auto.getInformation() + " MP3 Player~";
 }
 override public function price():Number
 {
 return 267.55 + auto.price();
 }
 }
}

Example 4-48. Deal.as

1 package
2 {
3 import fl.controls.CheckBox;
4 import fl.controls.RadioButton;
5 import fl.controls.Button;
6 import flash.display.Sprite;
7 import flash.display.MovieClip;
8 import flash.events.MouseEvent;
9 import flash.text.TextField;

10 import flash.text.TextFormat;
11
12 public class Deal extends Sprite
13 {
14 internal var checks:Array=[];
15 internal var cars:Array=[];

Example 4-47. MP3.as (continued)

Dynamic Selection of Concrete Components and Decorations: A Hybrid Car Dealership | 171

16 internal var carDeal:Auto;
17 public var dealText:TextField=new TextField();
18
19 //Constructor Function
20 public function Deal ():void
21 {
22 getRadios ();
23 getChecks ();
24 doDealButton ();
25 showDeal ();
26 }
27 //Add button from Library
28 private function doDealButton ():void
29 {
30 var doDeal:Button=new Button();
31 this.addChild (doDeal);
32 doDeal.x=215;
33 doDeal.y=195;
34 doDeal.label="Make Deal";
35 doDeal.addEventListener (MouseEvent.CLICK,getPackage);
36 }
37 //**
38 //Get information from Decorator and display it
39 //**
40 private function getPackage (e:MouseEvent):void
41 {
42 getCar ();
43 getOptions ();
44 if (carDeal == null)
45 {
46 return;
47 }
48 else
49 {
50 var nowDrive:String=carDeal.getInformation()+"\nTotal=$"+carDeal.price();
51 }
52 dealText.text=formatMachine(nowDrive);
53 }
54 //Format Output
55 private function formatMachine (format:String):String
56 {
57 if (format.indexOf("~") != -1)
58 {
59 format=format.split("~").join("\n");
60 }
61 return format;
62 }
63 //Text Field & Format
64 private function showDeal ():void
65 {
66 dealText.width=150;
67 dealText.height=100;

Example 4-48. Deal.as

172 | Chapter 4: Decorator Pattern

68 dealText.wordWrap=true;
69 dealText.multiline=true;
70 dealText.x=165;
71 dealText.y=230;
72 dealText.border=true;
73 dealText.borderColor=0xcc0000;
74 var dealerFormat:TextFormat=new TextFormat();
75 dealerFormat.leftMargin=4;
76 dealerFormat.rightMargin=4;
77 dealText.defaultTextFormat=dealerFormat;
78 this.addChild (dealText);
79 }
80 //Add Check boxes for Options (Concrete Decorators)
81 private function getChecks ():void
82 {
83 var gizmos:Array=new Array("MP3","Heated Seats","GPS", "Rear View Video");
84 var saloon:uint=gizmos.length;
85 var giz:uint;
86 for (giz=0; giz<saloon; giz++)
87 {
88 checks[giz]=new CheckBox();
89 this.addChild (checks[giz]);
90 checks[giz].width=150;
91 checks[giz].x=250;
92 checks[giz].y=80+(giz*30);
93 checks[giz].label=gizmos[giz];
94 }
95 }
96 //Add Radio buttons Auto (Concrete Components)
97 private function getRadios ():void
98 {
99 var car:Array=new Array("Escape","Mariner","Prius","Accord");

100 var saloon:uint=car.length;
101 var ride:uint;
102 for (ride=0; ride<saloon; ride++)
103 {
104 cars[ride]=new RadioButton();
105 cars[ride].groupName="deals";
106 this.addChild (cars[ride]);
107 cars[ride].x=150;
108 cars[ride].y=80+(ride*30);
109 cars[ride].label=car[ride];
110 }
111 }
112 //Select Auto and create Concrete Component
113 private function getCar ():void
114 {
115 var tracker:String;
116 var hybrid:uint;
117 for (hybrid=0; hybrid<cars.length; hybrid++)
118 {
119 if (cars[hybrid].selected)

Example 4-48. Deal.as

Dynamic Selection of Concrete Components and Decorations: A Hybrid Car Dealership | 173

120 {
121 tracker=cars[hybrid].label;
122 switch (tracker)
123 {
124 case "Escape" :
125 carDeal = new Escape();
126 break;
127
128 case "Mariner" :
129 carDeal = new Mariner();
130 break;
131
132 case "Prius" :
133 carDeal = new Prius();
134 break;
135
136 case "Accord" :
137 carDeal = new Accord();
138 break;
139 }
140 }
141 }
142 }
143 //Select options -- wrap Concrete Component in Decorator
144 private function getOptions ():void
145 {
146 var tracker:String;
147 var toy:uint;
148 for (toy=0; toy<checks.length; toy++)
149 {
150 if (checks[toy].selected)
151 {
152 tracker=checks[toy].label;
153 switch (tracker)
154 {
155 case "MP3" :
156 carDeal = new MP3(carDeal);
157 break;
158
159 case "Heated Seats" :
160 carDeal = new HeatedSeats(carDeal);
161 break;
162
163 case "GPS" :
164 carDeal = new GPS(carDeal);
165 break;
166
167 case "Rear View Video" :
168 carDeal = new RearViewVideo(carDeal);
169 }
170 }
171 }

Example 4-48. Deal.as

174 | Chapter 4: Decorator Pattern

Creating the document and setting the stage

Once you’ve saved the Deal.as file, you’ll need to do a little work on a Flash docu-
ment file. The following steps will guide you.

1. Open a new Flash document and save it as AutoDealer.fla in the same folder as
the .as files.

2. In the Document class window, type in Deal, and resave the file.

3. Using Figure 4-8 as a guide, use Static text to add the header “2 Guys From Con-
necticut Hybrid Cars.” Beneath the header, at horizontal position 150, type in
Select Car, and on the same line at horizontal position 250, type in Select
Options.

4. Open the Components and Library panels and drag a copy of the radio button
and the checkbox to the Library.

5. Select Insert ➝ Symbol in the menu bar, and select Button as Type. In the Name
window, type in Button (which is the default name), and click the Import for
ActionScript checkbox. Click OK to enter the Button Symbol editor indicated by
the special four-frame Timeline.

6. In the Button Symbol editor, add a layer, and, selecting the top layer, use the
Rectangle Tool to draw a rectangle with colors to suit your tastes with 8-point
rounded corners located at x=0, y=0. Size it to W=43, H=13. Add keyframes to
all the frames in the top layer. Select the object in the Over frame and swap
(reverse) the stroke and fill colors.

7. Add keyframes to the first three frames in the lower layer. In the Up frame, using
a Static text and narrow sans serif 10-point font type, type “Calculate” centered
below the button. In the Over frame, do the same thing, but type in Total Cost.
Leave the Down frame empty.

8. Check to make sure your Library shows the following: CheckBox, CheckBox-
Skins, Component Assets, Button, RadioButton, RadioButtonSkins. If it does,
you should be all set.

The next step is to test the application. All the buttons and the text field are auto-
matically placed on the stage. Figure 4-8 shows what you can expect to see if every-
thing is working as expected.

172 }
173 }
174 }
175

Example 4-48. Deal.as

Dynamic Selection of Concrete Components and Decorations: A Hybrid Car Dealership | 175

Implementing the concrete components and their decorators

The pattern implementation process requires that certain things are in place so that
the user can choose what she wants as far as both concrete components (car model)
and concrete decorators are concerned. Initially, the script must first find which car
has been selected. So the function getCar() loops through the radio buttons until it
finds which one is selected. When it locates it, it simply assigns an instance of
carDeal with one of the concrete components such as:

carDeal = new Mariner();

The carDeal object has to be instantiated outside a function so that it can be used by
more than a single private function. On line 16 of Example 4-48, the carDeal object
is instantiated as an Auto data type. (The internal statement is added to draw atten-
tion to the fact that the variable is available to any caller in the same package—even
though it is the default state when instantiating variables.)

Once the carDeal object has been created, the script looks at the options selected.
Using the getOptions() function, each of the checkboxes is compared to its selec-
tion state. When a selected option is found, the option, a concrete decorator, wraps
the concrete object carDeal. For example, if one of the selections is heated seats, the
code section in the switch statement looks like the following:

case "Heated Seats":
carDeal = new HeatedSeats(carDeal);
break;

Figure 4-8. Decorator user interface and output

176 | Chapter 4: Decorator Pattern

Because more than one decorator can be selected, as each selected option is located,
the concrete object can be wrapped more than once. Thus, any or all of the options
can be added to the selected auto.

Summary
The Decorator design pattern excels in adding features to core objects without hav-
ing to fundamentally change those objects. Like the ornaments on a Christmas tree,
the ornaments change the appearance of the tree, but the tree itself is not changed at
all. Anything from the appearance of a web site to the contents of an online shop-
ping cart can be structured using a Decorator pattern.

The Decorator should be considered a core design pattern when your project has to
be updated with the addition of new objects and new features for those objects. We
like to think of the Decorator as a “100-year” pattern. Imagining concrete compo-
nents as types of people and decorations as the clothes they wear, it’s not too diffi-
cult to envision a web site being updated with different kinds of people spanning a
century—from a blacksmith at the beginning of the 20th century to a nanotechnolo-
gist at the beginning of the 21st century. Likewise, all kinds of people can be styled
with a range of clothing over the same time span, from a blacksmith’s leather apron
in 1900 to an astronaut’s spacesuit in 2000. However, the programmer who is think-
ing ahead from one century to the next is able to use a Decorator pattern, and
doesn’t have to change the core component at all. He just adds more concrete com-
ponents and decorators as needed.

At the same time that the Decorator pattern is open to adding new features without
changing the structure of the program, both components and decorators can be
deleted when they’re no longer needed. Further, changes to existing components and
decorators are easy to make without altering anything other than their specifics, such
as a string’s label or a number’s value.

The Decorator pattern, though, has certain drawbacks. For example, in this chapter,
some readers may have been thinking that they could have programmed the same
exact functionality for some of the sample applications using a fraction of the code
and far fewer classes. That’s definitely true, and for specific applications, the Decora-
tor design pattern may be like swatting a fly with an elephant gun. However, like all
design patterns, the developer has to be judicious in selecting which, if any pattern,
he wants to employ. That decision needs to be made not just on the current size of
the application, though. When starting any project where the Decorator pattern is
considered, you have to ask yourself: are the concrete components and decorators
going to grow and change or are they going to be fairly static? So, even though your
application may begin as an acorn, you have to envision the oak tree as a possibility
and plan accordingly.

177

Chapter 5 CHAPTER 5

Adapter Pattern5

Adapt or perish, now as ever, is nature’s inexorable
imperative.

—H. G. Wells
The presentations and conceptions of the average man
of the world are formed and dominated, not by the full

and pure desire for knowledge as an end in itself, but
by the struggle to adapt himself favorably to the

conditions of life.
—Ernst Mach

What Is the Adapter Pattern?
The basic motivation for the adapter pattern is to enable wider use of existing
classes. For example, let’s assume that there’s a class that does a particular job, and
does it well. We want to use this class in an application, but it just doesn’t fit all the
current requirements. We may want to expand its features, or combine it with some
other classes to provide additional functionality. The bottom line is that we must
adapt this existing class to fit new requirements. This is what the adapter pattern
does; it allows a client to use an existing class by converting its interface into one that
fits a new context. The key point to remember is that the existing class isn’t modi-
fied, but an adapter class that has the right interface uses it or extends it to provide
the necessary functionality.

A Design Pattern for Potty Training
A good example of an adapter is the toilet seat adapter used by toddlers that fits on
top of a traditional toilet seat. Let’s take a look at the context. We have a legacy
object that is the toilet seat, whose basic design hasn’t changed in years. It functions
well for its original adult users (probably why the design hasn’t changed). Let’s look
at the new context in Figure 5-1. We now need to adapt it for use by a toddler. The
problem is obvious—incompatible interfaces! The legacy toilet seat was designed to

178 | Chapter 5: Adapter Pattern

fit an adult’s bottom, and we now need to convert that interface to fit a toddler’s
smaller bottom. We need an adapter that presents the correct interface to fit the cur-
rent context. The toilet seat adapter was built to do precisely that. We get to use an
existing object whose interface has been converted to one that the client expects.

How is this analogous to an adapter pattern? We have an existing object (toilet seat);
a new interface it needs to conform to (a toddler’s bottom); an adapter that converts
the interface (toilet seat adapter); and a new client (toddler).

Let’s extend this analogy to computer code. The existing object would be analogous
to an existing class that creates objects. The new interface would represent new
requirements for this class. The adapter would be another class that implements the
new interface by using the existing class.

What would be the alternative to using an adapter in this case? We could rewrite or
modify the code in the existing class to fit the new interface. This is analogous to
buying one of those small potties built for toddlers (with no plumbing). I think most
people would rather not have to deal with the additional cost and the disposal issue.
This can be as painful as changing existing code that already works, introducing
bugs, and breaking dependencies. An adapter would be a better option in both cases.

Key Features of the Adapter Pattern
Before considering an adapter pattern for a project, a couple conditions should exist:

• An existing class that meets some of the implementation requirements, but
whose interface is incompatible in the new context of use

• A target interface for the new context

If these conditions exist, then we can develop an adapter class that uses the existing
class to implement the target interface. The new context should be thoroughly ana-
lyzed, and the new requirements defined, before thinking about implementation. In
other words, we should know the desired interface before we look at existing classes

Figure 5-1. Toilet seat adapter

Existing object

Toilet

Adapter

Toilet seat
adapter

New context

Client

Object and Class Adapters | 179

and their functionality to figure out if they’ll fit the bill. We can then develop an
adapter class that implements the target interface. There’s no point to adapting an
existing class if it doesn’t provide some benefit, such as savings in development time
compared to developing a whole new class.

Object and Class Adapters
An adapter can exploit an existing class to implement functionality in two ways. The
adapter can use either composition or inheritance to access an existing class. If the
adapter subclasses the existing class, it will inherit the methods and properties. If the
adapter uses composition to access the existing class, the adapter class will hold a
reference to an instance of the existing class, and use its methods and properties for
implementation. In OOP, composition is generally preferred over inheritance. How-
ever, as we will see in subsequent examples, there are good arguments for both
approaches depending on the context. Either way, the idea is to use the properties
and methods of the existing class to provide most or some of the functionality
required.

Object Adapters
When the adapter uses composition to access the existing class, it’s known as an
object adapter. Object adapters store a reference to an instance of the existing class.
Therefore, an object adapter uses an existing class.

All adapter classes implement an interface. In the class diagram shown in Figure 5-2,
the interface called ITarget declares a single method called request(). The class dia-
gram shows that a reference to an instance of the Adaptee class is stored in the vari-
able adaptee. When implementing the request() method, the adapter references this
instance.

Minimalist example of an object adapter

Example 5-1 through Example 5-4 show the implementation of an object adapter in
ActionScript 3.0. The different files are called: Adaptee.as (existing class), ITarget.as
(required interface), Adapter.as (adapter), and Main.as (client; also the document
class for the Flash document).

Figure 5-2. Class diagram of an object adapter

adpatee->specificRequest()

ITarget
request()

Adaptee
specificRequest()

Adapter
request()

adpatee

180 | Chapter 5: Adapter Pattern

Example 5-1. Adaptee.as

package
{
 public class Adaptee
 {
 public function specificRequest():void
 {
 trace("Called Adaptee:specificRequest()");
 }
 }
}

Example 5-2. ITarget.as

package
{
public interface ITarget
 {
 function request():void
 }
}

Example 5-3. Adapter.as

Package
{
 public class Adapter implements ITarget
 {
 private var adaptee:Adaptee;

 public function Adapter()
 {
 this.adaptee = new Adaptee();
 }

 public function request():void
 {
 adaptee.specificRequest();
 }
 }
}

Example 5-4. Main.as

package
{
 import flash.display.MovieClip;

 /**
 * Main Class
 * @ purpose: Document class for movie
 */
 public class Main extends MovieClip
 {

Object and Class Adapters | 181

The client class Main creates an instance of the adapter class and calls the method
request() defined in the ITarget interface. The client sees only the interface that’s
implemented by the adapter. Object adapters are like traffic cops, as they intercept
method calls and decide what to do with them. Some of the method calls are directed
to the appropriate methods in the Adaptee class. The Adaptor class keeps tight control
of access to the existing class by implementing only the ITarget interface. The client
doesn’t even know that the adapter’s using an existing class. The Adaptee class could
have many public methods and properties that aren’t accessible through the adapter.

Because the Adaptor class creates an instance of the Adaptee class, there’s tight
coupling between them. This doesn’t allow the adapter to use a subclass of Adaptee
or use a totally different existing class without modifying existing Adapter code.

Using a parameterized adapter class

A variation on the previous example of the adapter is to require the client to pass an
instance of the existing class when creating an adapter. You can do this by using a
parameterized constructor in the adapter class. The following changes are needed in
the Adapter class constructor.

public function Adapter(a:Adaptee)
{
 this.adaptee = a;
}

This is desirable in many cases, as it reduces the coupling between the Adapter and
Adaptee classes, providing more flexibility. However, this puts the burden on the cli-
ent to create an instance of Adaptee class and pass it to the adapter.

var adaptee:Adaptee = new Adaptee();
var target:ITarget = new Adapter(adaptee);

The disadvantage of doing it this way is that the existing class is no longer hidden
from the client. The client creates the instance of Adaptee that is passed to the
Adaptor. This could potentially cause disruption if the client inadvertently manipu-
lates the Adaptee instance.

Class Adapters
When the adapter uses inheritance to access an existing class, it’s known as a class
adapter. The adapter class extends the existing class and has an is-a relationship with

 public function Main()
 {
 var target:ITarget = new Adapter();
 target.request();
 }
 }
}

Example 5-4. Main.as (continued)

182 | Chapter 5: Adapter Pattern

it. Extending the existing class allows the adapter to inherit its properties and
methods.

As is evident from the class diagram, implementing a class adapter requires multiple
inheritance. Multiple inheritance is an OOP feature that enables a class to inherit
from more than one superclass. In Figure 5-3, the Adapter class inherits from both
the Target and the Adaptee classes.

According to the classic treatise on design patterns written by the group affection-
ately known as the Gang of Four (GoF), one inheritance branch of a class adapter is
used to inherit the interface, and the other to inherit implementation. They also point
out that in most cases, the class adapter inherits the interface publicly while the
implementation branch is inherited privately. This hides the implementation branch
of the inheritance from public view, resulting in the desirable situation where only
the public interface is left visible to clients. In Figure 5-3, the Adapter class would
inherit publicly from the Target class and privately from the Adaptee class. This
implies that the Adapter would be a subclass of Target, and it would make use of
Adaptee methods and properties to implement required operations.

Implementing multiple inheritance in a programming language is not an easy task,
and ActionScript 3.0 doesn’t support it. Therefore, implementing a classic class
adapter is not possible using ActionScript 3.0. However, an ActionScript 3.0 class
can subclass and implement an interface at the same time. If the required interface is
defined at ITarget, then the class declaration will be:

public class Adapter extends Adaptee implements ITarget

The Adapter class will implement the ITarget interface and inherit from the Adaptee
class at the same time. The big difference is that inheritance of Adaptee will be pub-
lic, exposing its functionality. Although not a pure class adapter, this implementa-
tion does have its uses and can be desirable in certain contexts.

Minimalist example of a class adapter

5-5 through Example 5-8 show the implementation of a class adapter in Action-
Script 3.0. The different files are called: Adaptee.as (existing class), ITarget.as
(required interface), Adapter.as (adapter), and Main.as (client).

Figure 5-3. Class diagram of class adapter

specificRequest()

Target
request()

Adaptee
specificRequest()

Adapter
request()

Object and Class Adapters | 183

Example 5-5. Adaptee.as

package
{
 public class Adaptee
 {
 public function requestA():void
 {
 trace("Called Adaptee:requestA()");
 }

 public function requestB():void
 {
 trace("Called Adaptee:requestB()");
 }

 public function requestC():void
 {
 trace("Called Adaptee:requestC()");
 }
 }
}

Example 5-6. ITarget.as

package
{
 public interface ITarget
 {
 function renamedRequestA():void
 function requestB():void
 function requestC():void
 function requestD():void
 }
}

Example 5-7. Adapter.as

package
{
 public class Adapter extends Adaptee implements ITarget
 {
 public function renamedRequestA():void
 {
 this.requestA();
 }

 override public function requestB():void
 {
 trace("Called Adapter:requestB()");
 }

 public function requestD():void

184 | Chapter 5: Adapter Pattern

The client would generate the following output. These are trace statements that
indicate which class and method produced the output.

Called Adaptee:requestA()
Called Adapter:requestB()
Called Adaptee:requestC()
Called Adapter:requestD()

The method declaration renamedRequestA() is simply a name change to a method
whose implementation is already available in the Adaptee. This conversion is imple-
mented by directing the request to requestA() in the Adaptee.

Method requestB() is available in Adaptee, but the Adapter has overridden and re-
implemented it because the existing functionality wasn’t what was needed.

Method requestC() is available in Adaptee and the method call passes directly to it.
This is the primary advantage of using inheritance: you don’t have to implement a
method if you need the functionality and method signature implemented in the
Adaptee.

Method requestD() is implemented in the Adapter. The Adaptor class isn’t required
to use the Adaptee class to implement everything. The adapter can have custom

 {
 trace("Called Adapter:requestD()");
 }
 }
}

Example 5-8. Main.as

package
{
 import flash.display.MovieClip;

 /**
 * Main Class
 * @ purpose: Document class for movie
 */
 public class Main extends MovieClip
 {
 public function Main()
 {
 var target:ITarget = new Adapter();

 target.renamedRequestA();
 target.requestB();
 target.requestC();
 target.requestD();
 }
 }
}

Example 5-7. Adapter.as (continued)

Example: Car Steering Adapter | 185

methods and properties to accomplish what it needs to do. The ITarget interface
could declare methods that are needed in the new context, but have no relation to
the existing class.

Key OOP Concepts in the Adapter Pattern
Comparing the advantages and disadvantages of object and class adapters enables us
to clearly understand the merits of composition versus inheritance in OO (object-
oriented) design.

Object and Class Adapters Compared
Choosing between object and class adapters depends on the context in which they
are used. Object adapters that use parameterized constructors are flexible because
the Adaptee object is passed to them. This decouples the Adaptor and Adaptee classes,
allowing instances of subclasses of Adaptee class to be passed to the adapter.

For their part, class adapters generally have less code, resulting in quicker implemen-
tation. Because they subclass the Adaptee, they have an is-a relationship with the
Adaptee class. The Adapter class is therefore the same Type as the Adaptee, and easier
to deal with from a client standpoint. Clients need to create only one instance of the
Adapter class (as opposed to both an Adaptee and Adapter instance, in the case of
parameterized object adapters). Class adapters can also be less time-consuming to
implement if the target interface is large, because most methods will be inherited.

The decision to choose either an object or adapter class to implement an adapter
depends on many factors: flexibility required, the size of the interface, ease of imple-
mentation, and match between the required interface and the Adaptee.

As a general rule, composition is better than inheritance because of its flexibility and
loose coupling. However, the adapter pattern shows that there can be instances
where you can save time and gain coding efficiency by using inheritance.

Example: Car Steering Adapter
Adapter patterns are commonly used when there is an existing legacy class that pro-
vides the functionality you require, but whose interface doesn’t conform to what you
need. Let’s assume that we have a legacy class called LegacyCar, which is a car sprite
from an old game. The LegacyCar class was initially developed for use with a steering
wheel input device to provide an authentic driving experience. We will change the
interface to the LegacyCar class so that we can steer the car using different input
devices such as a keyboard and mouse.

186 | Chapter 5: Adapter Pattern

The Existing Class
The LegacyCar class shown in Example 5-9 is a subclass of the Sprite class, and is
saved as LegacyCar.as.

Example 5-9. LegacyCar.as

1 package {
2
3 import flash.display.*;
4 import flash.events.*;
5 import flash.geom.*;
6
7 public class LegacyCar extends Sprite
8 {
9

10 internal var nSpeed:Number; // holds speed of car in pixels/frame
11 internal var nSteeringWheelAngle:Number; // steering rotation in Degrees
12
13 public function LegacyCar(xLoc:int, yLoc:int)
14 {
15 nSpeed = 5;
16 nSteeringWheelAngle = 0;
17 this.drawCar();
18 this.setLoc(xLoc, yLoc);
19 }
20
21 private function drawCar():void
22 {
23 // draw car body
24 graphics.beginFill(0x00FF00); // green color
25 graphics.drawRect(-20, -10, 40, 20);
26 graphics.endFill();
27 // draw tires
28 drawTire(-12, -15);
29 drawTire(12, -15);
30 drawTire(-12, 15);
31 drawTire(12, 15);
32 }
33
34 private function drawTire(xLoc:int, yLoc:int)
35 {
36 graphics.beginFill(0x000000); // black color
37 graphics.drawRect(xLoc - 4, yLoc - 2, 8, 4);
38 graphics.endFill();
39 }
40
41
42 // method to set the x and y location of the sprite
43 private function setLoc(xLoc:int, yLoc:int):void
44 {
45 this.x = xLoc;
46 this.y = yLoc;

Example: Car Steering Adapter | 187

The parameterized constructor (lines 13-19) gets the initial location of the car
through xLoc and yLoc parameters. The constructor sets the property nSpeed to its
default value of 5, and sets nSteeringWheelAngle to zero indicating that the steering
wheel is held straight. It then calls the drawCar() method to draw the car, and the
setLoc() method with the passed x and y coordinates to place the Sprite.

The drawCar() method (lines 21-32) uses the graphics property of the Sprite class to
draw the car from the perspective of looking down on it from above (map view). The
car is a green rectangle with four black wheels (also rectangles) drawn using the

47 }
48
49 // method to attach event handlers and get the car moving
50 public function start():void
51 {
52 if (this.stage)
53 {
54 // attach EnterFrame event handler doMoveCar()
55 this.addEventListener(Event.ENTER_FRAME, this.doMoveCar);
56 } else {
57 throw new Error("Add car to display list first")
58 }
59 }
60
61 // method to set the steering wheel angle (in Degrees)
62 public function setSteeringWheelAngle(nAngle:int):void
63 {
64 nSteeringWheelAngle = nAngle;
65 }
66
67 // move the car
68 private function doMoveCar(event:Event):void
69 {
70 this.rotation += nSteeringWheelAngle * 0.01; // rotate sprite
71 trace(nSteeringWheelAngle);
72 var newLocOffset:Point = Point.polar(nSpeed,
73 this.rotation * Math.PI / 180);
74 this.x += newLocOffset.x; // move by the x offset
75 this.y += newLocOffset.y; // move by the y offset
76 // place Sprite in center of stage if it goes off screen
77 if ((this.y < 0) || (this.y > this.stage.stageHeight) ||
78 ((this.x < 0)) || (this.x > this.stage.stageWidth))
79 {
80 this.setLoc(this.stage.stageWidth * 0.5,
81 this.stage.stageHeight * 0.5);
82 }
83 }
84 }
85 }

Example 5-9. LegacyCar.as

188 | Chapter 5: Adapter Pattern

drawTire() method (lines 34-39). The car is drawn so that its registration point is in
the center of the sprite.

The LegacyCar class has two public methods. The start() method (lines 50-59)
checks whether the sprite has been added to the display list by checking the existence
of the stage object (a sprite can be added to the display list using the addChild()
method). If the stage object exists, it registers the doMoveCar() listener method to
respond to enter frame events (line 55). The doMoveCar() method essentially gets the
car moving forward by nSpeed pixels per frame. The LegacyCar class was not designed
to control the speed of the car or stop it from moving.

The other public method (lines 62-65) is setSteeringWheelAngle(), which takes the
angle of the steering wheel in degrees as a parameter, and sets the
nSteeringWheelAngle property to it. The nSteeringWheelAngle property represents the
rotation angle of the steering wheel in degrees.

The doMoveCar() method (lines 68-83) is the enter frame event handler (it was regis-
tered as the enter fame handler in line 55). An enter fame event is generated each
time the playhead in Flash enters a new frame. The frame rate can be set within the
Flash document. The doMoveCar() method is executed on each enter frame event. It
rotates the car sprite by 1 percent of the rotation angle of the steering wheel (stored
in nSteeringWheelAngle). For example, if the rotation angle of the steering wheel is
negative 200 degrees, the car sprite will rotate 2 degrees anticlockwise each time an
enter frame event is received. It then uses the polar() method in the Point class to
figure out the next location of the car sprite, based on its speed (nSpeed) and current
direction (rotation property of the Sprite class). It then moves the sprite to its new
location. The final task of the doMoveCar() function is to check whether the car sprite
has moved offscreen. If so, it simply moves it back to the center of the stage.

The LegacyCar class is not the most functional car we’ve come across, but it provides
a solid implementation for steering a car using a steering wheel input device. We
hope to make use of this in our new context that requires us to steer the car using
different input devices.

Interface Conversion
The primary function of an adapter pattern is to convert the interface of an existing
class to fit into a new context. First, we need to figure out the original interface, and
then determine the requirements of the new context. After this, we can determine if
converting the interface of the existing class using an adapter is a viable option.

The original interface

The LegacyCar class has two public methods that represent its interface. Public meth-
ods are the primary way by which a client can access and manipulate an object. The
public start() method simply gets the car moving. Therefore, it functions like the

Example: Car Steering Adapter | 189

ignition key of the car (assume that the car is in gear all the time). The
setSteeringWheelAngle() public method takes in the angle of the steering wheel and
rotates the car accordingly. The interface is illustrated in Figure 5-4.

The new context

Let’s assume that the new context requires the car to be driven, not only by a steer-
ing wheel, but by alternative input devices as well. For example, we need to drive the
car using the keyboard or the mouse. Think of the new context as an effort to mod-
ify the car to be driven by someone disabled who can’t use a steering wheel. The
original interface allowed the car to be steered with very fine-grained movements
using the setSteeringWheelAngle() method. You could make the steering wheel turn
half a degree or 900 degrees (2.5 complete rotations of the steering wheel). How-
ever, generating such a wide range of values is not possible with key presses. A key
press essentially has two values, key down and key up. It is evident that we’ll have to
turn the steering wheel in discrete steps. For example, we can assume that every
press of the left-arrow key represents turning the steering wheel by 50 degrees coun-
terclockwise. The right-arrow key will, in turn, represent turning the steering wheel
in the clockwise direction. It will also be helpful to have a way to get the steering
wheel back to its original position. The up arrow key can be used to set the steering
wheel angle to zero. We need to convert the interface to fit this new context.

The new interface

Based on the previous analysis, the new interface needs several methods to meet the
requirements of the new context. The ICar target interface, shown in Example 5-10
and depicted in Figure 5-5, is designed for the new context.

Figure 5-4. The original interface of the LegacyCar class

Ignition key

public function start() :void

Steering wheel

public function setSteeringWheelAngle (nAngle:int) :void

190 | Chapter 5: Adapter Pattern

The Adapter Class
We now have a target interface. The next step is to figure out if an object or class
adapter is the most suitable option. Because the existing class is small with only two
public methods, we won’t get any benefits from using a class adapter. If there were
methods in the existing class that could be directly used by the client in the new con-
text, a class adapter would make sense. Therefore, the CarAdapter shown in
Example 5-11 will be implemented as an object adapter.

Example 5-10. ICar.as

package
{
 public interface ICar
 {
 function start():void
 function turnMoreToTheLeft():void
 function turnMoreToTheRight():void
 function goStraight():void
 }
}

Figure 5-5. The interface showing keyboard input

Example 5-11. CarAdapter.as

package
{
 public class CarAdapter implements ICar
 {

 private var legacyCar:LegacyCar;
 private var nSteeringAngle:Number;

Ignition key

function start() :void

function goStraight() :void

Up arrow key

Left arrow key Right arrow key

function turnMoreToTheRight() :void

function turnMoreToTheLeft() :void

Example: Car Steering Adapter | 191

The CarAdapter class implements the ICar interface and has a parameterized con-
structor that receives a LegacyCar instance. It contains four public methods as speci-
fied in the interface. All four methods use one of the public methods in the LegacyCar
class for implementation. The steering angle is set in discrete steps of 50 degrees, as
discussed previously. Note the nSteeringAngle property that keeps track of the cur-
rent steering angle of the car. Adapter classes can have their own properties and
methods to support implementation.

The Client
All that’s left to accomplish is to develop a client to test the adapter. The client
(Main.as shown in Example 5-12) creates a new instance of LegacyCar and passes
two parameters to the constructor that places it on the center of the stage. Next, it
creates an instance of CarAdapter and passes the previously created LegacyCar
instance to it. The client also has to receive input from the keyboard to steer the car.
To do this, the client attaches the onKeyPress() listener function to respond to key
down events. This listener function calls appropriate methods on the adapter class
based on keyboard input. The onKeyPress() listener function responds to the left,

 public function CarAdapter(car:LegacyCar)
 {
 this.legacyCar = car;
 this.nSteeringAngle = 0;
 this.goStraight();
 }

 public function start():void
 {
 legacyCar.start();
 }

 public function turnMoreToTheLeft():void
 {
 legacyCar.setSteeringWheelAngle(nSteeringAngle -= 50);
 }

 public function turnMoreToTheRight():void
 {
 legacyCar.setSteeringWheelAngle(nSteeringAngle += 50);
 }

 public function goStraight():void
 {
 legacyCar.setSteeringWheelAngle(nSteeringAngle = 0);
 }

 }
}

Example 5-11. CarAdapter.as (continued)

192 | Chapter 5: Adapter Pattern

right, and up arrow key down events, and calls turnMoreToTheLeft(),
turnMoreToTheRight(), and goStraight() methods implemented in the adapter.

Example 5-12. Main.as (document class)

package
{
 import flash.display.MovieClip;
 import flash.text.*;
 import flash.events.*;
 import flash.ui.*;

 public class Main extends MovieClip
 {
 private var carAdapter:ICar; // declare adapter

 public function Main()
 {
 // Create a legacy car instance
 var legacyCar:LegacyCar =
 new LegacyCar(this.stage.stageWidth * 0.5,
 this.stage.stageHeight * 0.75);
 addChild(legacyCar); // add legacy car to stage display list

 // Wrap legacy car with the CarAdapter
 this.carAdapter = new CarAdapter(legacyCar);

 // attach KEY_DOWN event listener onKeyPress() to the stage
 this.stage.addEventListener(KeyboardEvent.KEY_DOWN,
 this.onKeyPress);

 carAdapter.start();
 }

 private function onKeyPress(event:KeyboardEvent):void
 {
 switch (event.keyCode)
 {
 case Keyboard.LEFT :
 this.carAdapter.turnMoreToTheLeft();
 break;
 case Keyboard.RIGHT :
 this.carAdapter.turnMoreToTheRight();
 break;
 case Keyboard.UP :
 this.carAdapter.goStraight();
 break;
 }
 }
 }
}

Extended Example: Steering the Car Using a Mouse | 193

Note that the new interface turns the car in discrete steps (50 degrees on each key
press). Therefore, to make a hard turn right, the right arrow key should be pressed
and held down (to generate multiple key down events). A quick press and release of
the appropriate keys results in small turns.

Extended Example: Steering the Car Using a Mouse
If the target interface is designed with flexibility and future use in mind, the adapter
can be used in multiple contexts. Because steering is accomplished in discrete steps
using the turnMoreToTheLeft(), turnMoreToTheRight(), and goStraight() methods
implemented in the adapter, it can be used with different input devices such as a joy-
stick or mouse. Let’s look at how a client can use mouse input to steer the car. For
example, we can use a mouse click to straighten the steering and make the car go
straight. How can a left and right turn be accomplished using the mouse? One way is
by keeping track of the horizontal movement of the mouse as shown in Figure 5-6. If
the mouse moves to the left, we can call turnMoreToTheLeft(). If the mouse moves to
the right, we can call turnMoreToTheRight().

The basic client is similar to the Main class (Example 5-12) that used keyboard input
to steer the car. The following changes need to be made to the Main class in order to
steer the car using the mouse. We need to add a new property to keep track of the
previous horizontal location of the mouse on the stage, to figure out if the mouse
moved to the left or right. The initial horizontal location will be zero.

private var oldMouseStageX:Number = 0;

An additional change is to attach different listener functions that respond to mouse
events rather than keyboard events. Instead of attaching a listener function to

Figure 5-6. The interface showing mouse input

Ignition key

function start() :void

function goStraight() :void
Mouse moves to

the left
function turnMoreToTheRight() :void

function turnMoreToTheLeft() :void

Mouse click

Mouse moves to
the right

194 | Chapter 5: Adapter Pattern

intercept key down events, we need to attach listeners to intercept mouse down and
mouse move events. Note that the listeners should be attached to the stage rather
than the LegacyCar object. This enables the listener functions to receive mouse clicks
over the broad area of the stage, as opposed to directly over the car object.

this.stage.addEventListener(MouseEvent.MOUSE_MOVE, this.doMouseMove);
this.stage.addEventListener(MouseEvent.MOUSE_DOWN, this.doMouseDown);

All that’s required now is to implement the listener functions that call the appropri-
ate methods in the adapter. The doMouseDown() function listens to mouse down events
and calls the goStraight() method in the adapter.

private function doMouseDown(event:MouseEvent):void
{
 this.carAdapter.goStraight();
}

The doMouseMove() function listens to mouse move events. It checks whether the
mouse has moved to the left or right from its last position. The last mouse position is
saved in the oldMouseStageX property. Based on whether the mouse moved to the left
or right, the adapter methods turnMoreToTheLeft() and turnMoreToTheRight() are
called.

private function doMouseMove(event:MouseEvent):void
{
 // change in horizontal mouse position
 var xDiff = event.stageX - this.oldMouseStageX;
 if (xDiff > 0) {
 this.carAdapter.turnMoreToTheRight();
 } else {
 this.carAdapter.turnMoreToTheLeft();
 }
 event.updateAfterEvent(); // process this event first
 this.oldMouseStageX = event.stageX // save old mouse x position
}

As is evident from this example, that well-thought-out design of adapters can be used
in multiple contexts.

Example: List Display Adapter
Adapter patterns also come in handy to create reusable classes that use existing
classes to implement some of the required functionality. For example, think about
when you would want to display a list of values on the Stage. There may be many
instances when you want to do this: lists of names, lists of high scores in a game, lists
of products in a shopping cart, etc. In Flash you can use a TextField to display a list,
putting each item on a separate line. However, this requires that the display text be
preformatted with a carriage return character ('\r', ASCII 13) separating each list
item before sending it out to the TextField object for display. The following code
snippet will display a list using a TextField object.

Example: List Display Adapter | 195

var listField = new TextField();
listField.x = 20;
listField.y = 20;

var sList:String = "Bread";
sList += "\r" + "Butter";
sList += "\r" + "Cheese";

listField.text = sList;

addChild(listField);

This works, but what if you want to delete an item from the list? You essentially have
to recreate the list again. Thinking more about this, it becomes apparent that hold-
ing the list items in an array and splitting the array to create a string separated by
return characters would be a better option. This would require more code, and our
little code block ceases to become a “snippet” and screams out for a generic solution.

Wouldn’t it be nice to have a reusable ListDisplayField where you can add one list
item at a time? It would function very much like a TextField with built-in list item
functionality. This is a good context in which to develop an adapter because we’ll be
using an existing class and converting its interface to fit a new context.

The Existing Class
The TextField class is used for text display and input in ActionScript 3.0. We will
use it as the existing class. It has a detailed interface with many properties and meth-
ods that allow low-level manipulation of rendered text. The ActionScript 3.0 docu-
mentation (accessible online) describes this class at length.

Interface Conversion
We need to convert the TextField class interface to enable adding and deleting list
items as required in the new context. The deleteItemAt(n:uint) method defines a
return type signifying the success or failure of the operation. The interface also
defines a method to clear the field. The IListDisplay interface in Example 5-13
defines the new target interface.

Example 5-13. IListDisplay.as

package
{
 public interface IListDisplay
 {
 function addItem(s:String):void;
 function deleteItemAt(n:uint):Boolean;
 function clear():void;
 }
}

196 | Chapter 5: Adapter Pattern

The Adapter Class
Before we implement the IListDisplay interface, a decision regarding which type of
adapter, class or object, needs to be made. The existing interface of the TextField
class is quite extensive and contains several methods that would be directly useful in
the new context. For example, the TextField interface defines many properties such
as backgroundColor and border that enable formatting the text field display object. In
addition, it also defines methods such as setTextFormat() that allows formatting the
text in the field using a TextFormat object. If the ListDisplayField adapter is imple-
mented as a class adapter, we can benefit from less code and implementation effi-
ciency. However, if we implement ListDisplayField as a class adapter in
ActionScript 3.0 using inheritance, all the public methods and properties in
TextField will be exposed. We will need to carefully override some of the methods
and properties in the TextField class that allow direct manipulation of text in the
field. The adapter implementation is shown in Example 5-14.

Example 5-14. ListDisplayField.as

1 package
2 {
3 import flash.text.*;
4
5 // Adapter
6 public class ListDisplayField extends TextField implements IListDisplay
7 {
8
9 private var aList:Array;

10
11 public function ListDisplayField()
12 {
13 super(); // Call the TextField constructor
14 this.clear();
15 }
16
17 public function addItem(s:String):void
18 {
19 this.aList.push(s);
20 this.update();
21 }
22
23 public function deleteItemAt(i:uint):Boolean
24 {
25 if ((i > 0) && (i <= aList.length)) {
26 aList.splice(i-1, 1);
27 this.update();
28 return true;
29 } else {
30 return false;
31 }
32 }
33

Example: List Display Adapter | 197

The ListDisplayField adapter extends the TextField class, and implements the
IListDisplay interface. The constructor calls the super() method to invoke the con-
structor in the superclass TextField (line 13). The implementation is straightforward
in that the list of items to display is stored in an array called aList that is a property
of the class. The addItem(s:String) method appends the passed string value to the
end of the aList array. The deleteItemAt(i:uint) method deletes the item at the

34 public function clear():void
35 {
36 aList = [];
37 this.update();
38 }
39
40 internal function update()
41 {
42 var listText:String = "";
43 // split the array to create a string separated by returns
44 for (var i:Number = 0; i < aList.length; i++) {
45 listText += aList[i] + "\r";
46 }
47 super.text = listText;
48 }
49
50 override public function set text(s:String):void
51 {
52 throw new Error("Cannot directly set text property - use

 addItem() method");
53 }
54
55 override public function set htmlText(s:String):void
56 {
57 throw new Error("Cannot directly set htmlText property");
58 }
59
60 override public function appendText(s:String):void
61 {
62 throw new Error("Cannot append text - use addItem() method");
63 }
64
65 override public function replaceSelectedText(s:String):void
66 {
67 throw new Error("Cannot replace selected text");
68 }
69
70 override public function replaceText(beginIndex:int, endIndex:int,

 newText:String):void
71 {
72 throw new Error("Cannot replace text");
73 }
74 }
75 }

Example 5-14. ListDisplayField.as

198 | Chapter 5: Adapter Pattern

requested location in aList (list index starts at 1). This method checks to see if the
delete location is within array bounds, and returns a Boolean value accordingly. Note
the use of the qualifier super to set the text in the update() method (line 47). This
allows the method to access the superclass property, listText, directly. This is neces-
sary as the setter method for the text property is overridden (lines 50–53). In fact,
several public methods in the TextField class that allow direct setting of field con-
tents are overridden to prevent clients from breaking IListDisplay functionality. The
overridden methods are: setter methods to the text and htmlText properties includ-
ing appendText(), replaceSelectedText(), and replaceText().

The Client
Clients would use the ListDisplayField adapter class just as they would a TextField
class. This is the big advantage to implementing class adapters in ActionScript 3.0, as
the public methods and properties of the existing class behave as expected (unless
overridden). The following client, Main.as shown in Example 5-15, uses a TextFormat
object to set the font and font size of the display object. In addition, the border prop-
erty of the text field is set to show the field boundary.

Example 5-15. Main.as (document class)

package
{
 import flash.display.MovieClip;
 import flash.text.*;

 public class Main extends MovieClip
 {
 public function Main()
 {
 // create ListDisplayField
 var shoppingListField:ListDisplayField = new ListDisplayField();

 // develop field formatting
 var format:TextFormat = new TextFormat();
 format.size = 18;
 format.font = "Arial";

 // set field location and format
 shoppingListField.x = 20;
 shoppingListField.y = 20;
 shoppingListField.border = true;
 shoppingListField.defaultTextFormat = format;

 // create list
 shoppingListField.addItem("Bread");
 shoppingListField.addItem("Butter");
 shoppingListField.addItem("Broccoli");
 shoppingListField.addItem("Cheese");
 // changed mind about Broccoli

Extended Example: Displaying the O’Reilly New Books List | 199

This client code will display a text field located at point (20,20) on the stage, show-
ing Bread, Butter, and Cheese in three separate lines in Arial font size 18. Displaying
lists and deleting list items by location is now especially easy for clients. There is no
need to keep items in a list or traverse this list to delete items. All this is imple-
mented by the adapter and encapsulated. Note that additional methods to manipu-
late the list can be easily added to the adapter class. For example, a method to delete
items by content rather than location, or a method to replace or insert a list item can
be implemented by extending the adapter. We have therefore created a generic class
that is reusable in multiple contexts by converting the interface of an existing class.

Extended Example: Displaying the O’Reilly New Books
List
To further illustrate the utility of the ListDisplayField adapter, we’ll use it to dis-
play the list of new books published by O’Reilly Media, Inc. Because this list changes
often, it makes sense to access the list dynamically using network methods, and dis-
play the book titles using the ListDisplayField adapter.

The new books list is published from the O’Reilly web site as a web feed. A web feed
is a data format used to publish content that changes frequently. The content pub-
lisher syndicates a web feed, allowing users to subscribe to it.

The O’Reilly new books web feed, shown in Example 5-16, is published using the
Atom Syndication Format, commonly known as Atom. Another common web feed
format is RSS (the RSS 2.0 acronym stands for Really Simple Syndication). Syndica-
tion formats are specified using XML (Extensible Markup Language), which is a way
to create special-purpose markup languages to describe data.

 shoppingListField.deleteItemAt(3);

 addChild(shoppingListField);
 }
 }
}

Example 5-16. Condensed version of new books web feed from O’Reilly showing two book entries

<?xml version='1.0' encoding='utf-8'?>

<feed xmlns='http://www.w3.org/2005/Atom'
xmlns:itunes='http://www.itunes.com/dtds/podcast-1.0.dtd'
xml:lang='en-US'>

<title>O'Reilly Media, Inc. New Books</title>
<link rel="alternate" type="text/html" href=http://www.oreilly.com/
 hreflang="en" title="O'Reilly Media, Inc. New Books" />

Example 5-15. Main.as (document class) (continued)

http://www.oreilly.com/

200 | Chapter 5: Adapter Pattern

We will subscribe to the web feed, extract the book titles using ECMAScript for
XML (E4X), and display them using the ListDisplayField adapter. ActionScript 3.0
fully supports E4X, making it possible to access and manipulate XML documents in
a form that mimics XML syntax. Example 5-17 shows the implementation.

<rights>Copyright O'Reilly Media, Inc.</rights>
<updated>2006-09-28T22:45:16-08:00</updated>
<link rel="self" type="application/atom+xml" href=
 "http://www.oreillynet.com/pub/feed/29"/>

<entry>
 <title>Designing and Building Enterprise DMZs</title>
 <id>http://www.oreilly.com/catalog/1597491004</id>
 <link rel='alternate' href='http://www.oreilly.com/
 catalog/1597491004'/>
 <summary type='html'>
 <i>Building DMZs for Enterprise Networks</i> covers a
 sorely needed area in critical business infrastructure:
 the Demilitarized Zone. DMZs play a crucial role in any
 network consisting of a Hosted Internet Web Server, internal
 servers which need to be segregated, External to Internal DNS
 Server, and an E-mail SMTP Relay Agent. This book covers what
 an administrator needs to plan out and integrate a DMZ into a
 network for small, medium, and Enterprise networks.
 </summary>
 <author><name>Hal Flynn</name></author>
 <updated>2006-09-28T22:45:16-08:00</updated>
</entry>

<entry>
 <title>Windows PowerShell Quick Reference</title>
 <id>http://www.oreilly.com/catalog/windowspowershell</id>
 <link rel='alternate' href='http://www.oreilly.com/catalog/
 windowspowershell'/>
 <summary type='html'>
 For years, support for scripting and command-line administration
 on the Windows platform has paled in comparison to the
 support offered by the Unix platform. Unix administrators
 enjoyed the immense power and productivity of their command
 shells, while Windows administrators watched in envy.
 Windows PowerShell, Microsoft's next-generation command shell
 and scripting language, changes this landscape completely.
 This Short Cut contains the essential reference material to
 help you get your work done-including the scripting language
 syntax, a regular-expression reference, useful .NET classes,
 and much more.
 </summary>
 <author><name>Lee Holmes</name></author>
 <updated>2006-09-27T22:46:17-08:00</updated>
</entry>
</feed>

Example 5-16. Condensed version of new books web feed from O’Reilly showing two book entries

Extended Example: Displaying the O’Reilly New Books List | 201

Example 5-17. Main.as (document class)

1 package
2 {
3 import flash.display.MovieClip;
4 import flash.text.*;
5 import flash.events.*;
6 import flash.net.*;
7
8 /**
9 * Main Class

10 * @ purpose: Document class for movie
11 */
12 public class Main extends MovieClip
13 {
14 var xml:XML;
15 var xmlLoader:URLLoader;
16 var newBookListField:ListDisplayField;
17
18 public function Main()
19 {
20 // create ListDisplayField (Adapter)
21 newBookListField = new ListDisplayField();
22
23 // develop field formatting
24 var format:TextFormat = new TextFormat();
25 format.size = 14;
26 format.font = "Arial";
27
28 // set field location and format
29 newBookListField.x = 20;
30 newBookListField.y = 20;
31 newBookListField.width = 500;
32 newBookListField.height = 300;
33 newBookListField.border = true;
34 newBookListField.defaultTextFormat = format;
35
36 // create list from O'Reilly New Books Feed (Atom)
37 var newBooksURL = "http://www.oreillynet.com/pub/feed/29";
38 xml = new XML();
39 var xmlURL:URLRequest = new URLRequest(newBooksURL);
40 xmlLoader = new URLLoader(xmlURL);
41 xmlLoader.addEventListener(Event.COMPLETE, xmlLoaded);
42
43 addChild(newBookListField); // add field to display list
44 }
45
46 function xmlLoaded(evtObj:Event)
47 {
48 xml = XML(xmlLoader.data);
49 // set the default XML namespace
50 if (xml.namespace("") != undefined)
51 {
52 default xml namespace = xml.namespace("");

202 | Chapter 5: Adapter Pattern

The feed URL (http://www.oreillynet.com/pub/feed/29) is specified in line 37. The
URLLoader() method (line 40) loads this document over the Internet, and calls the
xmlLoaded() function when loading is complete. The xmlLoaded() method is regis-
tered as a listener function (line 41) because loading data is an asynchronous opera-
tion requiring notification when the process is completed. It is important that the
default namespace be set if a namespace is specified in the XML document (lines 50-
53). This enables E4X to do proper validation while parsing the XML document. The
for each statement accesses each book title (lines 55-58) and adds it to the
ListDisplayField adapter. Figure 5-7 shows the output from the example.

53 }
54 // populate the ListDisplayField with new book titles
55 for each (var bookTitle:XML in xml..entry.title)
56 {
57 newBookListField.addItem(bookTitle.toString());
58 }
59 }
60 }
61 }

Figure 5-7. The O’Reilly new books list displayed using the ListDisplayField adapter

Example 5-17. Main.as (document class)

http://www.oreillynet.com/pub/feed/29

Summary | 203

Summary
The adapter pattern allows existing classes to be used in situations that didn’t exist
or weren’t anticipated when they were developed. For example, an application can
have a lot of legacy code, code that is no longer supported or maintained, but needs
to be used for various reasons. Adaptor classes use or extend existing code to fit new
requirements. The main focus of the adapter pattern is to convert the interface of the
existing class to one that fits a new context.

Adapter patterns are very close in intent and in function to several other patterns
such as the façade, decorator (see Chapter 4), and bridge. The primary distinctions
are that the adapter requires a target interface to which the adapter provides the
implementation, there has to be an existing class that the adapter uses or extends to
provide the implementation, and there is no requirement to simplify the interface.

There are two types of adapters, and choosing between object and class adapters
highlights the advantages and disadvantages of composition versus inheritance in
implementation. They also illustrate the importance of interfaces, and how they
allow the designer to encapsulate implementation details.

204

Chapter 6CHAPTER 6

Composite Pattern 6

What we need to do is learn to work in the system, by
which I mean that everybody, every team, every
platform, every division, every component is there not
for individual competitive profit or recognition, but for
contribution to the system as a whole on a win-win
basis.
—W. Edwards Deming

In a logically perfect language, there will be one word
and no more for every simple object, and everything
that is not simple will be expressed by a combination
of words, by a combination derived, of course, from
the words for the simple things that enter in, one word
for each simple component.
—Bertrand Russell

A complex system that works is invariably found to
have evolved from a simple system that works.
—John Gaule

What Is the Composite Pattern?
The composite pattern provides a robust solution to building complex systems that
are made up of several smaller components. The components that make up the sys-
tem may be individual objects or containers that represent collections of objects.
Think of a car as a complex system that is made up of several smaller components.
The car contains an engine, body, chassis, seats, tires, etc. For the sake of simplicity,
let’s consider a tire as an indivisible or primitive object. A car would be composed of
four tires (in reality a tire contains several smaller components such as hubcap, rim,
tube, etc.). Similarly, a car contains one steering wheel. However, the engine con-
tains several smaller components such as cylinders, compressor, radiator, etc. The
engine is a component of the car, but the engine itself is a collection of components.
We refer to a component that is a collection of other components as a composite
object. The beauty of the composite pattern is that it allows clients to treat primitive

What Is the Composite Pattern? | 205

objects and composite objects the same way. For example, when adding, or remov-
ing a component, the client doesn’t have to bother with figuring out if the object is a
primitive or composite object. The client can just as easily remove the engine or a tire
through a common interface.

A useful way to understand the composite pattern is to think of complex composite
objects as hierarchical trees. We’re talking about upside-down trees as in Figure 6-1,
where the system begins with a root node and cascades down, subdividing into sev-
eral branches.

In Figure 6-1, the nodes that contain other components are composite objects. The
leaf nodes are indivisible or primitive components that cannot have any children.
Each leaf node is a child of a composite node and each composite node can have
multiple children, including other composite nodes. Likewise, the composite node
that’s immediately up the hierarchy from a leaf is called its parent. As shown in the
class diagram in Figure 6-2, the composite pattern provides a common interface to
deal with both composite and leaf nodes.

The common interface for both composite and leaf nodes is the Component class. The
component class is usually defined as an abstract class. Therefore, the Component

Figure 6-1. A hierarchical tree structure showing nodes and leaves

Figure 6-2. Class diagram of a composite pattern

root node (Composite node)

composite nodes

leaf nodes

Client Component
add()
remove(Component)
getChild(int)
operation()

for each child in children
 child.operation()

Composite
add()
remove(Component)
getChild(int)
operation()

Leaf
operation()

children

206 | Chapter 6: Composite Pattern

class can define default implementations for both composite and leaf nodes. At a
minimum, the Component class declares: add(), remove(child:Component), and
getChild(n:int) methods. These methods allow clients to build the composite sys-
tem. The Leaf and Composite classes extend the Component class and override neces-
sary methods. The default implementation defined in the component usually applies
to the concrete Leaf classes. Because adding, removing, and getting child nodes
aren’t relevant to leaf nodes, the default implementation for these methods in the
Component class is to raise an exception (throw an error). However, these methods
should be overridden and implemented in the Composite class. Note how a compos-
ite object can be composed of several children of type component. The children
property in the Composite class aggregates child components.

The real power of the composite pattern is evident in how the operation() method is
implemented both in the Leaf and Composite classes in the diagram in Figure 6-2.
Operations that apply to both leaves and nodes are defined in the Component class. In
most cases, these operations are defined as abstract methods, forcing both the Leaf
and Composite classes to provide implementations. The composite classes need to
provide a recursive implementation for the operation() method. It needs to call the
operation() method in each of its child components referenced by the children
property. When we think of hierarchical trees, the operation() method call will
traverse the tree calling the operation() method in all child components.

To understand how common operations apply to all children recursively, look at the
similarities between the composite pattern and a mobile (Figure 6-3).

The bars represent composite nodes, and the fish and starfish are leaf nodes. The
interesting aspect of the mobile is to visualize what happens when you touch one of

Figure 6-3. A mobile implements a composite pattern

Bars are composite nodes

Leaf nodes touch () operation

Minimalist Example of a Composite Pattern | 207

the components. We can think of touch() as a common operation that applies to all
components in the mobile. Generally, the touch operation makes the mobile compo-
nent rotate. If you touch a composite node, it will rotate not only itself, but all its
children as well. Touching a leaf node such as a fish will rotate only that compo-
nent, as leaf nodes have no children. The fact that the client manipulating the com-
posite structure does not have to worry about whether the operation’s being carried
out on a leaf or a composite node is one of the key features of the composite pattern.

Key Features of the Composite Pattern
The composite pattern streamlines the building and manipulation of complex struc-
tures that are composed of several related pieces.

• Complex structures are built as hierarchical trees.

• The components of the structure can be individual components (primitives or
indivisible objects) or composite components that hold a collection of other
components.

• They allow clients to treat both individual components (leaf nodes) and compos-
ite components (composite nodes) the same way, simplifying the interface.

Minimalist Example of a Composite Pattern
This example implements the composite shown in the class diagram in Figure 6-2.
The Component.as file (Example 6-1) contains the Component abstract class that
defines the interface for both leaf and composite nodes. The Leaf.as file
(Example 6-2) contains the Leaf class, and the Composite.as file (Example 6-3) con-
tains the Composite class. Both Leaf and Composite classes extend the Component class
and provide necessary implementations. The Main.as file (Example 6-4) contains the
client class Main (also known as the document class for the Flash document).

Example 6-1. Component.as

package
{
 import flash.errors.IllegalOperationError;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class Component
 {
 public function add(c:Component):void
 {
 throw new IllegalOperationError
 ("add operation not supported");
 }

 public function remove(c:Component):void
 {

208 | Chapter 6: Composite Pattern

The Component class should behave as an abstract class and should not be instanti-
ated. It also defines the abstract interface for managing child components, and pro-
vides default implementations for the add(c:Component), remove(c:Component) and
getChild(n:int) methods. The default implementations for these methods are
designed for leaf nodes and will raise an exception by throwing an
IllegalOperationError. This should be the case as leaf nodes cannot have children
and should not implement operations that deal with child nodes. In addition, the
operation() method is defined as an abstract method without implementation. It is
left up to the classes that subclass Component to provide an implementation for it.

The Leaf class extends the Component class. It declares a property called sName that
holds the name of the leaf. It also implements a parameterized constructor that takes
a string value that’s then set to the sName property. It implements the operation()

 throw new IllegalOperationError
 ("remove operation not supported");
 }

 public function getChild(n:int):Component
 {
 throw new IllegalOperationError
 ("getChild operation not supported");
 return null;
 }

 // ABSTRACT Method (must be overridden in a subclass)
 public function operation():void {}

 }
}

Example 6-2. Leaf.as

package
{
 public class Leaf extends Component
 {
 private var sName:String;

 public function Leaf(sNodeName:String)
 {
 this.sName = sNodeName;
 }

 override public function operation():void
 {
 trace(this.sName);
 }
 }
}

Example 6-1. Component.as (continued)

Minimalist Example of a Composite Pattern | 209

method by tracing sName. When operation() is called in a leaf node, it will output its
name in the output panel.

The Composite class extends the Component class. It also declares a property called
sName that holds the name of the composite node and sets it to the value passed to it
in the parameterized constructor. A unique feature of the Composite class is that it
needs to define a structure to hold references to child components and implement
the methods that operate on child nodes. The simplest structure to hold references to
child nodes is an array. The array called aChildren is initialized in the constructor.
Whenever a component is added to a composite node via the add(c:Component)
method, it’s added to the aChildren array using the push() method. The operation()
method is also unique in the sense that, it not only implements it by tracing sName,
but calls operation() in all of its children. This ensures that the operation() method
call recursively traverses all child nodes in the tree structure.

Example 6-3. Composite.as

package
{
 public class Composite extends Component
 {
 private var sName:String;
 private var aChildren:Array;

 public function Composite(sNodeName:String)
 {
 this.sName = sNodeName;
 this.aChildren = new Array();
 }

 override public function add(c:Component):void
 {
 aChildren.push(c);
 }

 override public function operation():void
 {
 trace(this.sName);
 for each (var c:Component in aChildren)
 {
 c.operation();
 }
 }
 }
}

210 | Chapter 6: Composite Pattern

The Main class shown in Example 6-4 represents the client. It creates a composite root
node and adds several composite and leaf nodes to it. The resulting composite struc-
ture is shown graphically in Figure 6-4.

The Main class constructor ends with a call to the operation() method on the root
node. This method recursively traces the names of all subsequent components in the
structure. The following is the output from this operation.

Example 6-4. Main.as

package
{
 import flash.display.MovieClip;

 public class Main extends MovieClip
 {
 public function Main()
 {
 var root:Composite = new Composite("root");

 // create a node
 var n1:Composite = new Composite("composite 1");
 n1.add(new Leaf("leaf 1")); // add a child leaf
 n1.add(new Leaf("leaf 2")); // add a child leaf
 root.add(n1); // add node to root as child

 // create another node
 var n2:Composite = new Composite("composite 2");
 n2.add(new Leaf("leaf 3")); // add a child leaf
 n2.add(new Leaf("leaf 4")); // add a child leaf
 n2.add(new Leaf("leaf 5")); // add a child leaf
 root.add(n2); // add node to root as child

 // add a child leaf to the root node
 root.add(new Leaf("leaf 6"));

 root.operation(); // call operation on root node
 }
 }
}

Figure 6-4. Composite tree structure built by the client

root

Composite 1 Composite 2 leaf 6

leaf 2 leaf 4 leaf 5leaf 3leaf 1

Minimalist Example of a Composite Pattern | 211

root
composite 1
leaf 1
leaf 2
composite 2
leaf 3
leaf 4
leaf 5
leaf 6

It is important to note that the client sees only the interface defined by the Component
class. The client doesn’t need to differentiate between composite and leaf nodes, and
isn’t tied to how the operation() method is implemented. It can simply call
operation() on any leaf or composite node and get consistent results.

Accessing Child Nodes
You may have noticed that we didn’t override and implement the getChild(n:int)
method in the Composite class. However, this method’s very important to the compos-
ite pattern, as it allows the client to develop a composite structure by not declaring
variables, as in the previous example. This ensures proper garbage collection when
removing nodes. Garbage collection allows the application to recover memory and
resources allocated to deleted nodes, and will be discussed in more detail later in the
chapter. The getChild() method allows the client to access the children of any com-
posite node. The following getChild() method is implemented in the Composite class.

override public function getChild(n:int):Component
{
 if ((n > 0) && (n <= aChildren.length))
 {
 return aChildren[n-1];
 } else {
 return null;
 }
}

The parameterized getChild() method returns the child object by the position indi-
cated by the parameter n (index starts from 1). After doing a range check, the method
returns the child node or null if no children exist. The client can now leverage the
getChild() method and build the same composite structure more efficiently.

// create root node
var root:Composite = new Composite("root");

// add a node to root
root.add(new Composite("node 1"));
root.getChild(1).add(new Leaf("leaf 1"));
root.getChild(1).add(new Leaf("leaf 2"));

// add another node
root.add(new Composite("node 2"));

212 | Chapter 6: Composite Pattern

root.getChild(2).add(new Leaf("leaf 3"));
root.getChild(2).add(new Leaf("leaf 4"));
root.getChild(2).add(new Leaf("leaf 5"));

// add a child leaf to the root node
root.add(new Leaf("leaf 6"));

root.operation(); // call operation on root node

Removing Nodes
Implementing the remove() method in the Composite class can be a little tricky. The
safe way to remove nodes is to do it from the parent. In order to implement node
removal, we need to create a reference to its parent from each node.

Creating a parent reference

Because all nodes, excluding the root node, will have parent references, it makes
sense to declare the parent reference, and the methods that access it, in the Component
class. The parentNode property can be declared as follows.

protected var parentNode:Composite = null;

Note that the parentNode property is declared as type Composite, and defaults to null.
This does introduce a dependency between the Component and Composite classes.
However, the tradeoff is type safety over class dependency. The parent reference is
also declared as protected to make it accessible only to the current class and its sub-
classes. Two methods to set and get the parent reference should also be imple-
mented in the Component class.

internal function setParent(compositeNode:Composite):void
{
 this.parentNode = compositeNode;
}

public function getParent():Composite
{
 return this.parentNode;
}

Note that the getParent() method is declared as public to make it accessible to cli-
ents. However, the setParent() method is declared as internal to prohibit setting the
parent from outside the package. This is important as the parent link should only be
set in the add() method implementation in the Composite class. The add() method
should be modified as follows to set the parent reference of the child node to the cur-
rent composite node.

override public function add(c:Component):void
{
 aChildren.push(c);
 c.setParent(this);
}

Minimalist Example of a Composite Pattern | 213

Executing the following statements accesses the third child of the second child of the
root node; which is leaf 5. The parent of leaf 5 is the second child of the root node
(see Figure 6-4).

var leaf5:Component = root.getChild(2).getChild(3);
var leaf5Parent:Composite = l5.getParent();

Calling the operation() on the parent of leaf 5 should give the following output.

composite 2
leaf 3
leaf 4
leaf 5

Implementing the remove method

The primary concern with removing nodes has to do with removing all references to
deleted objects so that the garbage collector can recover the memory they used. For
example, before removing a composite node, all its child nodes need to be deleted. If
one of the child nodes is itself a composite, then the remove method should recur-
sively delete its children as well. Therefore, the remove method will work similar to
the operation() method.

From the previous scenario, it is evident that we need to treat leaf nodes and com-
posite nodes differently when deleting them. Therefore, it’s useful to declare a
getComposite() method in the Component class to return the composite object if it is
indeed a composite, and null if not. The default behavior would be to return null.
The following method would be defined with its default implementation in the
Component class.

internal function getComposite():Composite
{
 return null;
}

The Composite class would override this method and return the actual composite
object.

override internal function getComposite():Composite
{
 return this;
}

In addition, the parent references of components should be removed before compo-
nents can be removed. The following method to remove the parent reference should
be defined and implemented in the Component class.

internal function removeParentRef():void
{
 this.parentNode = null;
}

214 | Chapter 6: Composite Pattern

The default remove(c:Component) method declared with its default implementation in
the Component class is overridden and implemented in the Composite class
(Example 6-5).

The remove() method takes one parameter that is an instance of the Component
class. Based on the passed component instance, the remove() method has to deal
with two situations: (a) what to do when the component to delete is the current
object, and (b) what to do if it isn’t. If the passed component is the current object,
then the current object has to recursively remove all child components (lines 6-9),
and then remove references to its parent (line 11) and children (line 10). In the sec-
ond scenario, if the passed component is not the current object, it’s assumed to be
one of its children. In this case, the program loops though all its child nodes (lines
13–20) and checks if one of its children needs to be removed. If so, it removes the
child component (line 17), and deletes the reference to the removed child from the
aChildren array (line 18).

The remove() method uses safeRemove(), shown in Example 6-6, to safely remove
child components. The safeRemove() method first checks if the passed component is
a composite, and if so, calls its remove method. If the passed component is not a
composite (it’s a leaf node), it removes its parent reference.

Example 6-5. The remove() method

1 override public function remove(c:Component):void
2 {
3 if (c === this)
4 {
5 // remove all my children
6 for (var i:int = 0; i < aChildren.length; i++)
7 {
8 safeRemove(aChildren[i]); // remove children
9 }

10 this.aChildren = []; // remove references to children
11 this.removeParentRef(); // remove my parent reference
12 } else {
13 for (var j:int = 0; j < aChildren.length; j++)
14 {
15 if (aChildren[j] == c)
16 {
17 safeRemove(aChildren[j]); // remove child
18 aChildren.splice(j, 1); // remove reference
19 }
20 }
21 }
22 }

Minimalist Example of a Composite Pattern | 215

Following the proper sequence when removing parent and child references is essen-
tial, so that deleted objects are left isolated without incoming or outgoing references.
This is a necessary condition for the garbage collector to dispose of the object and
recycle the memory used by it.

Building and Manipulating a Composite Structure
Let’s test how the remove() method works by building the composite structure
shown in the first column of Figure 6-4 and removing selected leaves and composite
nodes. From the client, execute the statements in Example 6-7.

Example 6-6. The safeRemove() method

private function safeRemove(c:Component)
{
 if (c.getComposite())
 {
 c.remove(c); // composite
 } else {
 c.removeParentRef();
 }
}

Example 6-7. Main.as (client code to remove nodes)

package
{
 import flash.display.MovieClip;

 public class Main extends MovieClip
 {
 public function Main()
 {
 var root:Composite = new Composite("root");

 // create a node
 var n1:Composite = new Composite("composite 1");
 n1.add(new Leaf("leaf 1")); // add a child leaf
 n1.add(new Leaf("leaf 2")); // add a child leaf
 root.add(n1); // add node to root as child

 // create another node
 var n2:Composite = new Composite("composite 2");
 n2.add(new Leaf("leaf 3")); // add a child leaf
 n2.add(new Leaf("leaf 4")); // add a child leaf
 n2.add(new Leaf("leaf 5")); // add a child leaf
 root.add(n2); // add node to root as child

 // add a child leaf to the root node
 root.add(new Leaf("leaf 6"));

 root.operation(); // call operation on root node

216 | Chapter 6: Composite Pattern

Executing the statements in Example 6-7 will generate the following output. The
operation() method traverses the tree structure recursively using a depth-first
approach, and prints the component names accordingly.

display tree
============
root
composite 1
leaf 1
leaf 2
composite 2
leaf 3
leaf 4
leaf 5
leaf 6
remove first child of the second child of root
==
root
composite 1
leaf 1
leaf 2
composite 2
leaf 4
leaf 5
leaf 6
remove the second child of root
===============================
root
composite 1
leaf 1
leaf 2
leaf 6

You can easily visualize what happens to the component tree by looking at what
happens graphically in Figure 6-5.

 trace("display tree");
 trace("============");
 root.operation();

 trace("remove first child of the second child of root");
 trace("==");
 root.getChild(2).remove(root.getChild(2).getChild(1));
 root.operation();

 trace("remove the second child of root");
 trace("===============================");
 root.remove(root.getChild(2));
 root.operation(); }
 }
}

Example 6-7. Main.as (client code to remove nodes) (continued)

Example: Music Playlists | 217

Key OOP Concepts in the Composite Pattern
The key OOP concept embedded in the composite pattern is polymorphism. Poly-
morphism can be broadly defined as the ability of objects instantiated from different
classes to respond to the same method calls in specific ways. This is possible because
the method signature’s the same, even though the objects are instantiated from dif-
ferent classes. In short, the methods in the different classes show a common inter-
face to clients.

Since the composite pattern allows clients to treat both leaf and composite nodes the
same way through a common interface, it’s a good example of polymorphism. This is
due to both leaf and composite classes implementing the same component interface
by subclassing the abstract component class.

Implementations of operations truly exemplify polymorphism. In the minimalist
examples, the operation() method was implemented one way in the leaf nodes and
another way in the composite nodes. The composite nodes have to forward the
operation() call to all its child nodes. The operation() responds differently in both
leaf and composite nodes, but the client doesn’t need to know or care about these
differences. The client doesn’t see the different implementations; it sees only the
interface.

Example: Music Playlists
Have you created music playlists in your favorite digital music jukebox? If so, have
you taken the next step and embedded playlists inside other playlists to create ever
larger playlists? This is a perfect application to implement a composite pattern. A
library of digital music contains songs and playlists. A song is a primitive object,

Figure 6-5. Deleting components from the tree structure

root

Composite 1

Composite 2

leaf 6

leaf 2

leaf 4 leaf 5leaf 3

leaf 2

root

Composite 1

Composite 2

leaf 6

leaf 2

leaf 5leaf 4

leaf 2

root

Composite 1 leaf 6

leaf 2leaf 2

Display tree First child of second
child of ‘root’ removed

Second child of
‘root’ removed

Second child
of root

First child of second
child of root

Second child
of root

218 | Chapter 6: Composite Pattern

while a playlist is a composite object that contains a collection of songs. Let’s first
create the component class for our playlist example application.

The Component.as file (Example 6-8) contains the Component abstract class that
defines the interface for both songs and playlists. The Song.as file (Example 6-10)
contains the Song class, and the Playlist.as file (Example 6-9) contains the Playlist
class. Both Song and Playlist classes extend the Component class and provide neces-
sary implementations.

The Component class defines the abstract interface for both the Song and Playlist
classes. It also defines the abstract method play().

Example 6-8. Component.as

package
{
 import flash.errors.IllegalOperationError;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class Component
 {
 public function add(c:Component):void
 {
 throw new IllegalOperationError
 ("add operation not supported");
 }

 public function remove(c:Component):void
 {
 throw new IllegalOperationError
 ("remove operation not supported");
 }

 public function getChild(n:int):Component
 {
 throw new IllegalOperationError
 ("getChild operation not supported");
 return null;
 }

 // ABSTRACT Method (must be overridden in a subclass)
 public function play():void {}
 }
}

Example 6-9. Playlist.as

package
{
 public class Playlist extends Component
 {

 private var sName:String;

Example: Music Playlists | 219

The Playlist class extends the Component class and is almost identical to the
composite class in the minimalist example.

Queuing Songs to Play in Sequence
Much of the Song class shown in Example 6-10 deals with queuing songs and han-
dling events. Because songs need to be played in sequence and not simultaneously,
several static properties are declared in the class. The soundChannel property is
declared as static to ensure that only one sound channel is used to play music by all
instances of the Song class. This ensures that different song objects don’t open multi-
ple sound channels simultaneously to play music. The Song class also declares a static
property called aSongQueue, which is an array that holds the list of songs queued to
play. Finally, a static property called songPlayingFlag holds a Boolean value that
indicates whether a song’s currently playing.

 private var aChildren:Array;

 public function Playlist(sName:String)
 {
 this.sName = sName;
 this.aChildren = new Array();
 }

 override public function add(c:Component):void
 {
 aChildren.push(c);
 }

 override public function play():void
 {
 trace("Queuing playlist: " + this.sName);
 for each (var c:Component in aChildren)
 {
 c.play();
 }
 }
 }
}

Example 6-10. Song.as

1 package
2 {
3 import flash.events.*;
4 import flash.media.Sound;
5 import flash.media.SoundChannel;
6 import flash.net.URLRequest;
7
8 public class Song extends Component
9 {

Example 6-9. Playlist.as (continued)

220 | Chapter 6: Composite Pattern

10 private var sName:String;
11 private var song:Sound;
12 private static var soundChannel:SoundChannel = new SoundChannel();
13 private static var aSongQueue:Array = [];
14 private static var songPlayingFlag:Boolean = false;
15
16 public function Song(sName:String)
17 {
18 this.sName = sName;
19 }
20
21 override public function play():void
22 {
23 var request:URLRequest = new URLRequest

 ("music/" + sName);
24 song = new Sound();
25 song.addEventListener(Event.COMPLETE, songLoaded);
26 song.addEventListener(IOErrorEvent.IO_ERROR, loadError);
27 song.load(request);
28 }
29
30 private function songLoaded(event:Event):void
31 {
32 aSongQueue.push(song);
33 playIfIdle();
34 }
35
36 private function loadError(event:Event):void
37 {
38 trace("Error loading song " + this.sName);
39 }
40
41 private function playDone(event:Event):void
42 {
43 songPlayingFlag = false;
44 playIfIdle();
45 }
46
47 private function playIfIdle():void
48 {
49 if (!songPlayingFlag)
50 {
51 var s:Sound = aSongQueue.shift();
52 if (s)
53 {
54 songPlayingFlag = true;
55 trace("playing " + s.id3.songName);
56 // from ID3 tag
57 soundChannel = s.play();

Example 6-10. Song.as

Example: Music Playlists | 221

The filename of the song clip is passed to the parameterized constructor and set to the
sName property. The play() method loads the songs from a subfolder called media. The
event handler called songLoaded is registered to listen to the Event.COMPLETE event (line
25). When the song is loaded, the songLoaded() method pushes the song into the
aSongQueue play queue (line 32). It then calls the playIfIdle() method that determines
if a song is playing and if not, gets the song from aSongQueue using the Shift function
(line 51), starts to play the song, and assigns it to the soundChannel sound channel (line
56). The aSongQueue array functions as a song queue (first-in first-out). The event han-
dler called playDone is registered to listen to the Event.SOUND_COMPLETE event (line 57).

When the sound stops playing, the Event.SOUND_COMPLETE event will trigger the
playDone() method that calls the playIfIdle() method again.

We can now create some playlists and listen to some music.

Building Composite Playlists
Let’s develop two playlists and embed them into a larger playlist. The following code
should be executed from the document class of a Flash document.

// create playlist
var drumlicks:Playlist = new Playlist("drum licks");
drumlicks.add(new Song("bongo.mp3"));
drumlicks.add(new Song("tabla.mp3"));
drumlicks.add(new Song("djembe.mp3"));

// create another playlist
var guitariffs:Playlist = new Playlist("guitar riffs");
guitariffs.add(new Song("acousticguitar.mp3"));
guitariffs.add(new Song("electricguitar.mp3"));

// create composite playlist
var eclectic:Playlist = new Playlist("eclectic");
eclectic.add(drumlicks);
eclectic.add(new Song("balladpiano.mp3"));
eclectic.add(guitariffs);
eclectic.play();

The example application will first build the playlist named “drum licks.” It will then
build another playlist called “guitar riffs.” Finally, it will build and play a new

58 soundChannel.addEventListener
 (Event.SOUND_COMPLETE, this.playDone);

59 }
60 }
61 }
62 }
63 }

Example 6-10. Song.as

222 | Chapter 6: Composite Pattern

playlist called “eclectic” that includes both previous playlists and an additional song.
The following text output shows the song play sequence.

Queuing playlist: eclectic
Queuing playlist: drum licks
Queuing playlist: guitar riffs
playing bongo
playing tabla
playing djembe
playing ballad piano
playing acoustic guitar
playing electric guitar

When the “eclectic” playlist is queued for play, it queues and plays the embedded
“drum licks” and “guitar riffs” playlists as well. This is exactly the behavior we
expect from our composite playlist structure. You can easily remove songs and
playlists by implementing the remove() method as shown in the minimalist example.

Example: Animating Composite Objects Using Inverse
Kinematics
There are many examples of excellent Flash games that use ActionScript to animate
characters on stage. Even a simple animated figure can have independently function-
ing body parts such as arms and legs that can be animated to jump, run, and kick.
Can we develop complex animated figures by treating body parts as composite and
component objects? Do we gain an advantage by being able to treat component and
composite parts of an animated figure in the same way? Indeed, the composite pat-
tern brings several advantages to animation, as will be evident by the animated snake
that will be developed in this example. Figure 6-6 shows a screenshot of the snake
that moves by means of inverse kinematics.

Figure 6-6. Snake constructed using a composite pattern

Example: Animating Composite Objects Using Inverse Kinematics | 223

Using Inverse Kinematics
Inverse kinematics is a method by which rigid objects interconnected by joints can
move to form different poses. A good example of this type of object is a marionette: a
puppet controlled by a puppeteer using strings. The hands and legs of the puppet
consist of several parts connected by joints. For example, the upper arm would be
connected to the torso at the shoulder. The upper arm would in turn be connected to
the forearm through the elbow joint. The hand would be connected to the forearm at
the wrist. These interconnected objects form a kinematic chain. Inverse kinematics
allows kinematic chains to move, constrained by the range of motion allowed by the
joints. The simplest form of a kinematic chain has a free end that’s controlled exter-
nally. For example, the hand of a marionette would be a free end since it’s attached
to a puppeteer’s string. Because joints connect them, the hand, forearm, and upper
arm move when the puppeteer pulls this string. Try this yourself: let your left arm go
limp, and pull it up by the hand using your right arm. Notice how the external force
is pulling your left hand, which translates the pulling motion to the forearm, which
in turn pulls the upper arm. The notion of interconnected objects pulling each other
is the primary concept in inverse kinematics. This type of motion is very similar to
the motion of the snake application we will develop.

In the example application, users will control the head of the snake using the key-
board. When the head moves, interconnected body segments will move based on
inverse kinematic principles. The whole snake will be a kinematic chain.

Kinematic chains consist of one or more kinematic pairs. For example, the upper
arm and forearm form a kinematic pair. Adjoining body segments in our snake will
also form kinematic pairs. We will develop the snake as a composite object. The
head of the snake will be the root node, and body segments will be connected to
each other. Each node will be a composite object as they have child objects con-
nected to them. The last segment of the snake, which is the tail (or the rattle for a
rattlesnake), will be a component object.

Creating Component and Composite Nodes for the Snake
All our components will be display objects on the stage. Therefore we can develop the
component class by extending the Sprite class. This allows us to inherit the proper-
ties and methods to manipulate components on the stage to make them move and
respond to events. Example 6-11 shows the Component class that’ll be used to create
animated figures. The only difference in this class when compared to previous com-
ponent classes is that it extends the Sprite class and declares a method called
update().

224 | Chapter 6: Composite Pattern

The Composite class shown in Example 6-12 extends the Component class and over-
rides the update() method.

Example 6-11. Component.as

package
{

 import flash.errors.IllegalOperationError;
 import flash.display.Sprite;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class Component extends Sprite
 {

 protected var parentNode:Composite = null;

 public function add(c:Component):void
 {
 throw new IllegalOperationError(
 "add operation not supported");
 }

 public function remove(c:Component):void
 {
 throw new IllegalOperationError(
 "remove operation not supported");
 }

 public function getChild(n:int):Component
 {
 throw new IllegalOperationError(
 "getChild operation not supported");
 return null;
 }

 // ABSTRACT Method (must be overridden in a subclass)
 public function update():void {}

 internal function setParent(aParent:Composite):void
 {
 parentNode = aParent;
 }

 public function getParent():Composite
 {
 return parentNode;
 }
 }
}

Example: Animating Composite Objects Using Inverse Kinematics | 225

Both the Component and Composite classes should behave as abstract classes; they
need to be subclassed. We will develop the Head and BodySegment classes that sub-
class Composite, and the Tail class that subclasses Component to build the snake.

Building the Snake Head
The head of the snake will be the root node of the snake’s composite structure. Each
component of the snake will consist of a line 20 pixels in length. Example 6-13
shows the Head class, which draws the head of the snake. The constructor receives a
color parameter that represents the color of the snake’s head.

Example 6-12. Composite.as

package
{
 public class Composite extends Component
 {
 protected var aChildren:Array;

 public function Composite()
 {
 this.aChildren = new Array();
 }

 override public function add(c:Component):void
 {
 aChildren.push(c);
 c.setParent(this);
 }

 override public function getChild(n:int):Component
 {
 if ((n > 0) && (n <= aChildren.length))
 {
 return aChildren[n-1];
 } else {
 return null;
 }
 }

 override public function update():void
 {
 for each (var c:Component in aChildren)
 {
 c.update();
 }
 }
 }
}

226 | Chapter 6: Composite Pattern

The snake’s head will be controlled by keyboard events. The next step is to develop
the document class that will build the snake, and register keyboard events to control
the snake.

Controlling the Snake
Example 6-14 shows the Main class that builds the composite snake structure and
registers event handler methods to control the snake. As a first step, only the snake’s
head will be created (lines 18-23). The arrow keys will make the snake head move
forward, backward, rotate left, and right. The snake’s head will be the free end of the
kinematic chain that represents the snake. Just like the puppeteer’s string pulling on
the marionette’s hand, key presses will pull on the snake’s head and rotate it.

Example 6-13. Head.as

package
{
 public class Head extends Composite
 {
 public function Head(color:uint = 0xC0C0C0)
 {
 graphics.lineStyle(20, color);
 graphics.moveTo(0, 0);
 graphics.lineTo(20, 0);
 }
 }
}

Example 6-14. Main.as

1 package
2 {
3 import flash.display.Sprite;
4 import flash.events.*;
5 import flash.geom.*;
6 import flash.ui.Keyboard;
7
8 /**
9 * Main Class

10 * @ purpose: Document class for movie
11 */
12 public class Main extends Sprite
13 {
14 private var snake:Composite;
15
16 public function Main()
17 {
18 // create snake
19 snake = new Head();
20 snake.x = snake.y = 200;
21
22 // add snake to stage

Example: Animating Composite Objects Using Inverse Kinematics | 227

Line 26 in the Main class (Example 6-14) registers the onKeyPress handler method to
respond to Key_DOWN events. The left and right arrow keys make the snake head rotate
counter-clockwise and clockwise by 10 degrees. The up and down arrow keys make
the snake head move forward or back by 5 pixels. The Point.polar method comes in
handy here, as the snake needs to move in the direction that it’s facing (rotation
angle). The Point.polar() method returns a point that is the distance and angle from
the origin (0, 0). Adding the coordinates of this point (x and y properties of the Point
class) to the current location gives us the new location.

Before developing the body segments of the snake, we need to explore how a kine-
matic chain works.

23 addChild(snake);
24
25 // register with the stage to receive key press events
26 stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyPress);
27 }
28
29 private function onKeyPress(event:KeyboardEvent):void
30 {
31 switch (event.keyCode)
32 {
33 case Keyboard.LEFT :
34 snake.rotation -= 10;
35 break;
36 case Keyboard.RIGHT :
37 snake.rotation += 10;
38 break;
39 case Keyboard.UP :
40 var newFWLocOffset:Point = Point.polar(5, snake.rotation * Math.PI / 180);
41 snake.x += newFWLocOffset.x;
42 // move forward by the x offset
43 snake.y += newFWLocOffset.y;
44 // move forward by the y offset
45 break;
46 case Keyboard.DOWN :
47 var newBKLocOffset:Point = Point.polar(5, snake.rotation * Math.PI / 180);
48 snake.x -= newBKLocOffset.x;
49 // move back by the x offset
50 snake.y -= newBKLocOffset.y;
51 // move back by the y offset
52 break;
53 }
54 }
55 }
56 }

Example 6-14. Main.as

228 | Chapter 6: Composite Pattern

Moving a Kinematic Pair
As discussed before, our snake will be a composite object consisting of several con-
nected components that represent a kinematic chain. Kinematic chains are com-
posed of kinematic pairs: two rigid segments connected by a joint. How do
kinematic pairs move and orient themselves? The basic idea is that the parent seg-
ment pulls the child segment. In a simple kinematic pair, the only restriction on
movement is the joint. Because it’s the free end, the parent segment will move and
rotate independent of the child. The child will strive to rotate and orient itself to face
the joint, and move to keep up with its parent.

Figure 6-7 shows a four-step sequence by which a parent segment will pull a child in
a kinematic pair. Even though the parent pulls, the child segment does all the work.

Figure 6-7. Child segment keeping up with parent in a kinematic pair

1

Child

Parent

C1

P1

d

Child

C1

P1

Parent P2

Parent

Child P1

C1

P2

Child

Parent P2

C1

R
C2

2

3 4

Example: Animating Composite Objects Using Inverse Kinematics | 229

The following steps relate to Figure 6-7.

1. Initial condition where the kinematic pair consists of two line segments. The reg-
istration point of the segments is at the beginning of the lines (C1 for the child
and P1 for the parent). The distance between the registration point of the child
C1 and the joint is d.

2. Parent segment moves to position P2 and rotates (independent of the child seg-
ment).

3. Child segment rotates to orient itself to point to the joint.

4. Child segment moves towards point P2 to maintain distance d.

There is some trigonometry involved in this whole process. However, we will use the
built-in Point class methods to accomplish much of the rotation and motion. We can
now build the body segments for the snake.

Building the Body and Tail Segments
We didn’t have to worry about inverse kinematic motion for the snake head as it was
the root node of the composite structure. Head motion was controlled by the key-
board. However, the body segments that’ll be attached to the head have to move as
kinematic pairs. Example 6-15 shows the BodySegment class. It’s a composite object
and extends the Composite class shown in Example 6-12. The constructor draws the
body segment, and the update() method is overridden to implemented inverse kine-
matic motion.

Example 6-15. BodySegment.as

1 package
2 {
3 import flash.geom.Point;
4
5 public class BodySegment extends Composite
6 {
7 private var segLen:Number = 20;
8
9 public function BodySegment(color:uint = 0xC0C0C0)

10 {
11 graphics.lineStyle(10, color); // grey color
12 graphics.moveTo(0, 0);
13 graphics.lineTo(segLen, 0);
14 }
15
16 override public function update():void
17 {
18 var myParent:Composite = this.getParent();
19 var parentLoc:Point = new Point(myParent.x, myParent.y);
20 var myLoc:Point = new Point(this.x, this.y);
21
22 // rotate to orient to parents new location

230 | Chapter 6: Composite Pattern

The update() method implements steps three and four described in Figure 6-7. Lines
18-20 access the current component’s parent and create two points that represent C1
and P2 in step 3 of Figure 6-7.

Lines 22-25 calculate the new angle for the child component, so that it can orient to
the new location of the joint. Subtracting point C1 from P2 in step 3 of Figure 6-7
provides a point whose x and y properties represent the horizontal and vertical dis-
tance between the two points. Thus the new angle of rotation for the child can be
easily calculated by feeding these values to the arctangent function. Note that the
Math.atan2 function returns the angle in radians. This has to be converted to degrees
before assigning to the rotation property.

Lines 27-31 move the now correctly oriented child segment to maintain the joint and
registration point distance (shown as d in step 3 of Figure 6-7). The current distance
between points C1 and P2 is calculated first (line 28). Next, the Point.interpolate
function is used to determine the intermediate point C2 that would maintain the cor-
rect segment length d. The third parameter in the Point.interpolate function is a
ratio value (between 0 and 1) that represents a point between two points.

Finally, the update() method calls itself in the superclass (line 33) to update its child
components.

The tail component, the last segment of the snake, is shown in Example 6-16. The
Tail class subclasses Component (Example 6-11), draws the tail in its constructor, and
implements the update() method. The tail is drawn as a rattle, transforming our
generic snake into a rattlesnake. Unlike the BodySegment class, the update() method
does not call itself in the superclass, as the tail is a component that can’t have any
children.

23 var tempPoint:Point = parentLoc.subtract(myLoc);
24 var angle:Number = Math.atan2(tempPoint.y, tempPoint.x);
25 this.rotation = angle * 180 / Math.PI;
26
27 // move to maintain distance
28 var currentDistance:Number = Point.distance(
29 parentLoc, myLoc);
30 var myNewLoc:Point = Point.interpolate(myLoc, parentLoc,

 segLen / currentDistance);
31 this.x = myNewLoc.x;
32 this.y = myNewLoc.y;
33
34 super.update();
35 }
36 }
37 }

Example 6-15. BodySegment.as

Example: Animating Composite Objects Using Inverse Kinematics | 231

You may be wondering why the update() method was not implemented in the
Component class. We implemented the most basic form of inverse kinematics in this
case. Our snake is a real contortionist and is able to freely rotate around its joints.
The real power of inverse kinematics is realized when limiting angles are introduced.
Limiting angles bring constraints to joint rotation, just like the elbow joint restricts
the angle of motion of the forearm. Introducing different limiting angles will make
the update() method implementations unique for different segments. Therefore,

Example 6-16. Tail.as

package
{
 import flash.geom.Point;

 public class Tail extends Component
 {

 private var segLen:Number = 20;

 public function Tail(color:uint = 0xC0C0C0)
 {
 graphics.lineStyle(10, color);
 graphics.moveTo(0, 0);
 graphics.lineTo(segLen, 0);
 graphics.lineStyle(3, 0x000000);
 for (var i:uint = 1; i < 4; i++)
 {
 graphics.moveTo(i * 5, -5);
 graphics.lineTo(i * 5, 5);
 }
 }

 override public function update():void
 {
 var myParent:Composite = this.getParent();
 var parentLoc:Point = new Point(myParent.x, myParent.y);
 var myLoc:Point = new Point(this.x, this.y);

 // rotate to orient to parents new location
 var tempPoint:Point = parentLoc.subtract(myLoc);
 var angle:Number = Math.atan2(tempPoint.y, tempPoint.x);
 this.rotation = angle * 180 / Math.PI;

 // move to maintain distance
 var currentDistance:Number = Point.distance(
 parentLoc, myLoc);
 var myNewLoc:Point = Point.interpolate(myLoc, parentLoc,
 segLen / currentDistance);
 this.x = myNewLoc.x;
 this.y = myNewLoc.y;
 }
 }
}

232 | Chapter 6: Composite Pattern

declaring it as abstract in the Component class makes sense. We can now draw the
whole snake.

Building the Composite Snake
Example 6-17 shows the updated constructor of the Main class from Example 6-14
that constructs the whole snake. Lines 10- 25 add the body segments to the snake in
black and gray alternating colors. Finally, the tail component is added in lines 26
through 28. The update() method is called once (line 30) to fit and display all com-
ponents on the stage as they’re initially placed offscreen (line 22). The completed
snake should look like Figure 6-6.

Example 6-17. Updated constructor in Main.as

1 public function Main()
2 {
3 // create snake
4 snake = new Head();
5 snake.x = snake.y = 200;
6
7 // add snake to stage
8 addChild(snake);
9

10 // add multiple body segments
11 var parentNode:Composite = snake;
12 var color:uint;
13 for (var i:uint = 0; i < 10; i++)
14 {
15 if (i % 2) {
16 color = 0x000000; // black
17 } else {
18 color = 0xC0C0C0; // grey
19 }
20 var segment:Composite = new BodySegment(color);
21 parentNode.add(segment);
22 segment.x = segment.y = -50; // place it off screen
23 addChild(segment);
24 parentNode = segment;
25 }
26 var tail:Component = new Tail();
27 addChild(tail);
28 parentNode.add(tail); // add rattle
29
30 snake.update(); // to fit the segments together
31
32 // register with the stage to receive key press events
33 stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyPress);
34 }

Using Flash’s Built-in Composite Structure: the Display List | 233

Note how the snake is constructed using the composite pattern, by adding children
to parent nodes. Construction is very straightforward as component and composite
nodes are added the same way. The tail is added by calling the same add() method as
you would a composite body segment. In addition, the update() method cascades
down seamlessly through the structure to animate the snake. Here again, we don’t
need to call separate update methods or differentiate between component and com-
posite objects. Even though our simple snake had only a single kinematic chain, this
application can be extended to incorporate multiple kinematic chains and multiple
children attached to the same parent. The construction of the structure and the
update() call would not get any more complicated than this.

Using Flash’s Built-in Composite Structure:
the Display List
In the previous example, we extended the Sprite class to develop composite struc-
tures that display on stage. We first add the object to the composite structure, and
subsequently add it to the display list using the addChild() method. What’s the dis-
play list in ActionScript 3.0 applications? The display list is a tree structure with the
stage as its root node. It consists of all the visible elements that’ll be displayed on the
stage. The display list consists of two types of objects: (1) display objects and (2) dis-
play object containers. Every element that appears on the stage is a type of display
object. In contrast, display object containers not only have a visual representation on
the stage, they can also have other display objects, and display object containers as
children.

Close examination of the inheritance structure of the Sprite class will show two
classes called DisplayObject and DisplayObjectContainer in its inheritance hierarchy.

The DisplayObject class consists of methods and properties that deal mainly with the
visual presentation of an object such as the x and y properties that represent its posi-
tion. The DisplayObjectContainer class inherits from DisplayObject, defines neces-
sary properties, and implements methods to handle child objects (see the
ActionScript 3.0 documentation for more detail). Some of the child handling meth-
ods implemented by the DisplayObjectContainer class are listed below.

addChild(child:DisplayObject):DisplayObject;
getChildAt(index:int):DisplayObject;
removeChild(child:DisplayObject):DisplayObject;

The display list is indeed a composite structure with the DisplayObject and
DisplayObjectContainer representing the component and composite classes.

Both DisplayObject and DisplayObjectContainer are abstract classes and cannot be
instantiated directly. We have to either extend these classes to define unique compo-
nents or use the classes that inherit from them. The Shape and Bitmap classes extend

234 | Chapter 6: Composite Pattern

the DisplayObject class. The more commonly used Sprite class extends
DisplayObjectContainer, and is the preferred base class for composite objects.

The obvious question then is whether we can leverage the child handling methods in
the DisplayObjectContainer class without having to re-implement them. We can
indeed, and will develop a composite airplane to show how in some cases, it’s better
to use the built-in child-handling methods.

Creating a Composite Airplane
Figure 6-8 shows the composite airplane that will be developed in this example. We
will leverage the display list to build the visual components. The utility of the com-
posite pattern will be demonstrated by automatically calculating the weight of the
total aircraft, by adding up component weights. In addition, the composite pattern
implementation will help keep track of damage to each component, and figure out
the overall damage to the aircraft. You will also see how particular components can
be removed from the structure when damage exceeds a certain amount using the
built-in methods of the DisplayObjectContainer class.

Developing the Component and Composite Classes for the Airplane
Because we will use the built-in methods of the DisplayObjectContainer class to
manipulate child objects, the component and composite classes are simple to imple-
ment. We need only to define the operations for the composite structure. The first
step is to define an interface for the operations supported by the airplane.

Figure 6-8. Twin-engine composite airplane (top-down view)

Using Flash’s Built-in Composite Structure: the Display List | 235

Example 6-18 shows the IPlane interface. It defines two operations, getDamage()and
getWeight(), that return the weight and damage.

Example 6-19 shows the component class for the airplane. It extends the Shape class
and implements the IPlane interface. As explained previously, Shape subclasses the
DisplayObject class. The constructor takes the weight and initial damage parame-
ters, and assigns them to the nWeight and nDamage properties. The implementation for
getWeight() and getDamage() is to simply return the requested property, as compo-
nents do not have children.

It is important to note that the Shape class doesn’t inherit from the InteractiveObject
class. Therefore, airplane component class cannot respond to user input such as
mouse clicks and key presses.

Example 6-18. IPlane.as

package
{
 public interface IPlane
 {
 function getDamage():Number;
 function getWeight():Number;
 }
}

Example 6-19. Component.as

package
{
 import flash.display.Shape;

 public class Component extends Shape implements IPlane
 {
 protected var nDamage:Number;
 protected var nWeight:Number;

 public function Component(weight:Number, damage:Number = 0)
 {
 this.nDamage = damage;
 this.nWeight = weight;
 }

 public function getDamage():Number
 {
 return nDamage;
 }

 public function getWeight():Number
 {
 return nWeight;
 }
 }
}

236 | Chapter 6: Composite Pattern

Example 6-20 shows the composite class for the airplane. It extends the Sprite class
and implements the IPlane interface. The Sprite class extends the
DisplayObjectContainer class that inherits from DisplayObject. Therefore, our imple-
mentation follows the composite pattern framework. The significant difference
between the composite and component classes is the implementation of operations.
In the Composite class, both the getWeight() and getDamage() methods iterate across
all their children, and return the aggregate weight and damage for the composite
branch of the hierarchical tree. We do not have to implement any of the child han-
dling methods, as they are inherited from the DisplayObjectContainer class.

Example 6-20. Composite.as

package
{
 import flash.display.*;

 public class Composite extends Sprite implements IPlane
 {
 protected var nDamage:Number;
 protected var nWeight:Number;

 public function Composite(weight:Number, damage:Number = 0)
 {
 this.nDamage = damage;
 this.nWeight = weight;
 }

 public function getDamage():Number
 {
 var localDamage:Number = nDamage;
 for (var i:uint = 0; i < this.numChildren; i++)
 {
 var child:DisplayObject = this.getChildAt(i);
 localDamage += IPlane(child).getDamage();
 }
 return localDamage;
 }

 public function getWeight():Number
 {
 var localWeight:Number = nWeight;
 for (var i:uint = 0; i < this.numChildren; i++)
 {
 var child:DisplayObject = this.getChildAt(i);
 localWeight += IPlane(child).getWeight();
 }
 return localWeight;
 }
 }
}

Using Flash’s Built-in Composite Structure: the Display List | 237

Unlike the Shape class, Sprite does inherit from InteractiveObject. Therefore, com-
posite components in the airplane can respond to user interface events. We can now
develop the component and composite classes that make up the airplane.

Creating the Fuselage, Wings, and Engines
Now that the Component and Composite classes have been developed, we can create
the nodes that make up the airplane. Example 6-21 through Example 6-24 show the
Fuselage, MainWing, TailWing, and Engine classes. The Fuselage and MainWing classes
represent composite nodes that hold other components and extend the Composite
class (see Example 6-20). The TailWing and Engine classes are leaf nodes and extend
the Component class (see Example 6-19). The implementation of all these subclasses is
very similar to each other. The component is drawn with simple lines, using the
graphics property of the DisplayObject class. The first parameter of the constructor
method is the weight, and the second is the initial damage (defaults to zero). Note
the call to the superclass constructor using the super keyword in the last line of the
constructor. This ensures proper initialization of properties defined in the superclass.

Example 6-21. Fuselage.as

package
{
 import flash.events.*;

 public class Fuselage extends Composite
 {
 public function Fuselage(weight:Number, damage:Number = 0)
 {
 graphics.lineStyle(40, 0xC0C0C0);
 graphics.moveTo(0, 0);
 graphics.lineTo(0, 150);
 super(weight, damage);
 }
 }
}

Example 6-22. MainWing.as

package
{
 public class MainWing extends Composite
 {
 public function MainWing(weight:Number, damage:Number = 0)
 {
 graphics.lineStyle(25, 0x999999);
 graphics.moveTo(0, 0);
 graphics.lineTo(100, 0);
 super(weight, damage);
 }
 }
}

238 | Chapter 6: Composite Pattern

Even though our airplane is a simple line drawing (to reduce complexity), it’s possi-
ble to create the airplane components using high fidelity graphic images loaded from
external files.

Building the Composite Structure
Figure 6-9 shows the hierarchical composite structure of the airplane. The fuselage
and main wings are composite nodes. The fuselage contains two main wings and two
tail wings. Each main wing contains an engine.

Example 6-25 shows the Main class that builds the composite airplane structure. This
should be specified as the document class of the Flash document. The plane is dis-
played in top-down view, as shown in Figure 6-8. The build procedure is very
straightforward. Each component is instantiated and positioned relative to its parent
by assigning values to its x and y parameters. The component is then added to its
parent composite node using the addChild() method. The airPlane variable refer-

Example 6-23. TailWing.as

package
{
 public class TailWing extends Component
 {
 public function TailWing(weight:Number, damage:Number = 0)
 {
 graphics.lineStyle(20, 0x999999);
 graphics.moveTo(0, 0);
 graphics.lineTo(30, 0);
 super(weight, damage);
 }
 }
}

Example 6-24. Engine.as

package
{
 public class Engine extends Component
 {
 public function Engine(weight:Number, damage:Number = 0)
 {
 graphics.lineStyle(20, 0x666666);
 graphics.moveTo(0, 0);
 graphics.lineTo(0, 30);
 graphics.lineStyle(5, 0x000000);
 graphics.moveTo(-20, -12);
 graphics.lineTo(20, -12);
 super(weight, damage);
 }
 }
}

Using Flash’s Built-in Composite Structure: the Display List | 239

ences the root node of the airplane. The whole composite plane structure plane is
then added to the display object container linked to the Main class (line 18). Because
the Main class is the document class of the Flash document, the airplane is added to
the stage, which is the root node of the display list.

Figure 6-9. Hierarchical tree structure of the airplane

Example 6-25. Main.as

1 package
2 {
3 import flash.display.Sprite;
4
5 /**
6 * Main Class
7 * @ purpose: Document class for movie
8 */
9 public class Main extends Sprite

10 {
11 private var airPlane:Composite;
12
13 public function Main()
14 {
15 // create airplane
16 airPlane = new Composite(0.0);
17 airPlane.x = 250; airPlane.y = 100;
18 addChild(airPlane);
19
20 // add fuselage
21 var fuselage:Composite = new Fuselage(1000, 0)
22 airPlane.addChild(fuselage);
23
24 // add main wing on the left (port side)
25 var rightWing:Composite = new MainWing(200, 0);
26 rightWing.x = 20; rightWing.y = 50;
27 fuselage.addChild(rightWing);
28
29 // add main wing on the right (starbord side)
30 var leftWing:Composite = new MainWing(200, 0);

airplane

fuselage

Tail wingTail wingMain wingMain wing

engineengine

240 | Chapter 6: Composite Pattern

Calculating the Total Weight of the Airplane
Line 56 of the Main class shown in Example 6-25 calls the getWeight() method on the
root node of the airplane. The following output is the result of this statement.

Weight of airplane: 2100

The getWeight() method calculates the weight iteratively by adding the weights of all
components in the airplane structure. This is a very powerful way of keeping track of
an overall parameter in a complex composite structure. If this airplane were used in a
game, the weight is essential to craft realistic movement dynamics using motion
physics. The weight of the plane can change dynamically. For example, the plane
could be carrying passengers, bombs, and a fuel tank. Adding passengers will
increase weight; dropping bombs will reduce weight, and flight will progressively
reduce weight by using up fuel. The getWeight() method will work exactly the same
way if we extend the airplane to add and remove other components such as passen-
gers, fuel, etc.

31 leftWing.scaleX = -1; // flip on vertical axis
32 leftWing.x = -20; leftWing.y = 50;
33 fuselage.addChild(leftWing);
34
35 // add engine to right wing
36 var rightEngine:Component = new Engine(300, 0);
37 rightEngine.x = 50; rightEngine.y = -20;
38 rightWing.addChild(rightEngine);
39
40 // add engine to left wing
41 var lefttEngine:Component = new Engine(300, 0);
42 lefttEngine.x = 50; lefttEngine.y = -20;
43 leftWing.addChild(lefttEngine);
44
45 // add tail wing on the right
46 var leftTailWing:Component = new TailWing(50, 0);
47 leftTailWing.scaleX = -1; // flip on vertical axis
48 leftTailWing.x = -20; leftTailWing.y = 150;
49 fuselage.addChild(leftTailWing);
50
51 // add tail wing on the left
52 var rightTailWing:Component = new TailWing(50, 0);
53 rightTailWing.x = 20; rightTailWing.y = 150;
54 fuselage.addChild(rightTailWing);
55
56 trace('Weight of airplane: ' + airPlane.getWeight());
57 //total weight
58 }
59 }
60 }

Example 6-25. Main.as (continued)

Using Flash’s Built-in Composite Structure: the Display List | 241

Modifying Components to Reflect Damage
We will modify the composite components of the airplane to increase their damage
property when clicked by the mouse. In a realistic game scenario, the source of dam-
age will be bullets, missiles and random malfunctions in components. However, in
the interest of keeping things simple, we’ll imagine that a mouse click is a bullet hit.
In Example 6-26 we will modify the Fuselage (Example 6-21) and MainWing
(Example 6-22) classes to respond to mouse clicks.

Line 13, in the modified Fuselage class constructor (Example 6-26), registers the
doDamage() method to receive mouse click events. The doDamage() method simply
increments the nDamage property defined in the superclass by 10. The
stopPropagation() event call in line 22 is important to isolate event responses to
embedded display objects such as this. If not, the event would propagate up the dis-
play list running other registered click event handlers in parent nodes. This state-
ment ensures that the lowermost registered node in the clicked branch of the display
list hierarchy handles the event. The ActionScript 3.0 documentation has more
details on event propagation. In Example 6-27, we will now modify the MainWing
class to exhibit similar behavior.

Example 6-26. Fuselage.as with modifiedFuselage class

1 package
2 {
3 import flash.events.*;
4
5 public class Fuselage extends Composite
6 {
7 public function Fuselage(weight:Number, damage:Number = 0)
8 {
9 graphics.lineStyle(40, 0xC0C0C0);

10 graphics.moveTo(0, 0);
11 graphics.lineTo(0, 150);
12
13 addEventListener(MouseEvent.CLICK, doDamage);
14
15 super(weight, damage);
16 }
17
18 private function doDamage(evt:Event)
19 {
20 this.nDamage += 10;
21 trace('Damage to the fuselage is now ' + this.nDamage);
22 evt.stopPropagation(); // stop event propegation
23 // to subsequent nodes
24 }
25 }
26 }

242 | Chapter 6: Composite Pattern

Example 6-27 shows the modified MainWing class. Note the conditional statement in
lines 22- 26. If the damage exceeds 50, this node removes itself from the display list
(and the airplane composite structure) by calling removeChild in its parent. Before we
can test our modified components, a few changes to the Main class are necessary to
display total damage.

Calculating Total Damage to the Airplane
In the interests of keeping the example simple, we will register a mouse click handler
called showDamage to the stage to display the total damage to the airplane. The follow-
ing statement needs to be added at the end of the constructor in the Main class shown
in Example 6-25.

stage.addEventListener(MouseEvent.CLICK, showDamage);

In addition, the following showDamage event handler method should be added to the
Main class as well.

Example 6-27. MainWing.as with modifiedMainWing class

1 package
2 {
3 import flash.events.*;
4
5 public class MainWing extends Composite
6 {
7 public function MainWing(weight:Number, damage:Number = 0)
8 {
9 graphics.lineStyle(25, 0x999999);

10 graphics.moveTo(0, 0);
11 graphics.lineTo(100, 0);
12
13 addEventListener(MouseEvent.CLICK, doDamage);
14
15 super(weight, damage);
16 }
17
18 private function doDamage(evt:Event)
19 {
20 this.nDamage += 20;
21 trace('Damage to this wing is now ' + this.nDamage);
22 if (this.nDamage > 50)
23 {
24 trace('Wing detached from fuselage - fatal crash!');
25 parent.removeChild(this);
26 }
27 evt.stopPropagation();
28 // stop event propegation to subsequent nodes
29 }
30 }
31 }

Summary | 243

private function showDamage(evt:Event)
{
 trace('Total damage: ' + airPlane.getDamage());
}

Clicking on the stage will display the total damage to the airplane in the output
panel. Likewise, clicking on either the fuselage or main wings will display the cur-
rent damage to each of those components. The following output is a result of several
clicks.

Damage to this wing is now 20 // clicked on right wing
Damage to this wing is now 40 // clicked on right wing
Damage to the fuselage is now 10 // clicked on fuselage
Damage to the fuselage is now 20 // clicked on fuselage
Damage to this wing is now 20 // clicked on left wing
Total damage: 80 // clicked on stage
Damage to this wing is now 60 // clicked on right wing
Wing detached from fuselage - fatal crash!

The right wing was removed from the display list as its damage was more than 50.
Ideally, the wing should not disappear, but drop off. If each component had addi-
tional routines for autonomous motion, then the wing component could have been
removed from the fuselage and then added to the stage as a child, where it would fall
off due to gravity and other simulated physical effects.

Leveraging the display list in ActionScript 3.0 to develop composite structures has
many advantages because of its seamless integration with the Flash document object
model. This method is preferable only when the composite object is rigid—when all
component parts move with the larger whole. The airplane is a rigid body, even
though it consists of several components. Assigning values to the x and y parameters
of the root node will move the whole airplane. However, this method is not suitable
when components move independent of each other as they did with the snake appli-
cation. In the snake, the location of component nodes was not dependent on the
location of the root node, but on their immediate parent. Additional geometric trans-
formation would be required if its composite structure was implemented using the
display list.

Summary
The composite pattern allows you to build complex systems that are made up of sev-
eral smaller components. The components that make up the system may be individ-
ual components or containers that represent collections of components. The primary
advantage of the composite pattern is that it allows clients to treat both individual
components (leaf nodes) and composite components (composite nodes) the same
way through a common interface. This pattern has particular utility in ActionScript,
as the display list already implements the composite pattern, allowing developers to
easily build and manipulate complex display objects.

PART IV

IV.Behavioral Patterns

People’s behavior makes sense if you think about it in
terms of their goals, needs, and motives.

—Thomas Mann
Behavior which appears superficially correct but is
intrinsically corrupt always irritates those who see

below the surface.
—James Bryant Conant (An observation prompted by

forgetting to implement one of an interface’s methods.)
Insofar as international law is observed, it provides us

with stability and order and with a means of
predicting the behavior of those with whom we have

reciprocal legal obligations.
—J. William Fulbright (Explanation of why you probably

should avoid global variables when developing design
patterns.)

There was no difference between the behavior of a god
and the operations of pure chance.

—Thomas Pynchon (Description of an attempt to debug
a program.)

Behavioral patterns focus on the interaction between classes and objects, and the dis-
tribution of responsibility. These patterns describe both the patterns of classes and
objects and the communication between them. More than some of the other pat-
terns, you will find a division of labor for the Behavioral design patterns. Rather than
having a class doing all the work, tasks are more likely to be encapsulated and then
used by the class or between classes. As a result, you’ll find that these patterns tend
to consider algorithms and the assignment of responsibilities between objects.
Figure Part IV-1 illustrates this general idea.

The key to the Behavioral patterns is the allocation of responsibilities through either
inheritance or object composition. First, only the Template design pattern in this sec-
tion actually distributes responsibilities through inheritance. It’s a simple pattern
using an abstract class for the general outline of an algorithm, with the subclasses
taking up the more detailed aspects. Second, and far more common among Behav-
ioral patterns, is the use of object composition to allocate and distribute responsibili-
ties. The Command, Observer, State and Strategy patterns all employ the object
composition for distribution of tasks among the patterns classes and objects.

Chapter 7, Command Pattern

Chapter 8, Observer Pattern

Chapter 9, Template Method Pattern

Chapter 10, State Pattern

Chapter 11, Strategy Pattern

Figure Part IV-1. Behavioral patterns allocate responsibilities

Class

Behavioral Patterns

Class

Responsibility Responsibility Responsibility

Responsibility Responsibility Responsibility

Communication

247

Chapter 7 CHAPTER 7

Command Pattern7

To command is to serve, nothing more and nothing
less.

—Andre Malraux
When you do the common things in life in an

uncommon way, you will command the attention of
the world.

—George Washington Carver
Create like a god, command like a king, work like a

slave.
—Constantin Brancusi

What Is the Command Pattern?
The command pattern allows a client to issue requests to an object without making
any assumptions about the request, or the receiving object. Think of the request as a
command sent to an object to engage in a known behavior. The straightforward way
to do this would be to create an instance of the object, and call the method that
implements the required command (or behavior). For example, let’s assume that
we’re building a house that allows computer control of many of its components such
as lights, doors, heating, etc. Let’s look at the code that would turn on a light bulb.
The Light class implements a method called on() that turns on a light. A client
would execute the following code to turn the light on.

var light = new Light();
light.on();

Let’s look at another command to open a door. In this case, the receiver of the com-
mand is an instance of the Door class, which implements a method called open() that
opens the front door.

var frontdoor = new Door();
frontdoor.open();

248 | Chapter 7: Command Pattern

Notice the tight coupling between the client and the receivers. By coupling, we mean
the degree to which one section of code relies on another section. The client is tightly
bound not only to the receiver classes (Light and Door), but to particular methods
(on() and open()) in those classes as well. This is not a good situation if we want to
have a flexible system that allows future expansion.

What would happen if we replace our ordinary front door with a new sliding door?
What if the new class that controls the door is called SlidingDoor, and the method in
the class that opens the door is called slideOpen()? We have to modify the code in
the client to refer to the new receiver class. Avoid getting into situations that require
modifying existing code. In addition, this new situation can require modifications in
multiple places. For example, if the front door was controlled from two locations, a
wall mounted control panel with buttons assigned to each controlled device and a
handheld remote control (like a TV remote), changing the receiver class for the front
door would require code changes in both control devices. Also, you couldn’t reas-
sign the buttons on the control to a different layout, as the control code is hard-
coded to each button.

To have a flexible and extensible system, commands need to be assigned to buttons
on the controls without explicitly specifying the receiver or the specific method in the
receiver. This would decouple the client from the receiver, but how can we do this? It
seems counterintuitive at first, but we need to encapsulate both the receiver and the
receiving method in a command object. By encapsulation, we mean hiding the
receiver and its method from where they’re called. Let’s look at a non-technical
example to figure out what a command object looks like.

Mom Needs to Issue Some Commands
Parents assign household chores for children to keep them occupied in their younger
years. Getting children to do their fair share of household work is a good thing any-
way. Asking the children to do something is easy to do – just ask them. However,
whether they do the assigned task is a different matter altogether. In our example,
we’re dealing with a model bunch of kids who are really conscientious and do their
assigned tasks without raising a fuss. Let’s assume that mom assigns the tasks for
each person in the household. However, mom has to leave for a day on a business
trip, and won’t be around to assign tasks verbally. Mom needs to formalize a proce-
dure to assign daily tasks for this and future instances when she will be away. This is
a good opportunity to implement a command pattern structure.

Mom has several household chores in mind. She decides to write short notes for each
task and assign them to a child. Dad will be the person who looks at each note and
conveys what needs to be done to each child. Because Dad is notorious for losing
reminders and notes, Mom makes the task notes more official and portable by put-
ting each note into an envelope. This is analogous to a command interface, which is
simply an interface that declares a method (generally called execute) that does some

What Is the Command Pattern? | 249

task. Figure 7-1 shows the household equivalent of a command interface. Mom’s
command interface is a note with the operative word “do,” which will eventually
describe what chore needs to be done, and who will do it.

Mom creates several concrete commands that conform to the command interface for
the household tasks that need to be done while she is away. She puts notes, assigning
each task to a different person, inside four envelopes. When the envelopes are sealed,
it’s not possible to tell which kid’s responsibility it is to do the tasks, or even what
tasks are enclosed in the envelopes. All we know is that the envelope contains a task.
Therefore, the receiver and the task are hidden or encapsulated within the envelope.

Figure 7-2 shows Mom’s concrete commands that implement her command inter-
face declared in Figure 7-1. The four concrete commands: John will load the dish-
washer, Jane will walk the dog, Jack will do the laundry, and Dad will clean the garage
(Dad won’t know what hit him). Mom has assigned each task to the person most
appropriate to carry it out. She knows that Jane is the best person to walk the dog, as
Brutus is on his best behavior when Jane is around. Dad is the best person to clean
the garage, as it is his mess in the first place, and so on and so forth.

Figure 7-1. Mom’s command interface

Figure 7-2. Household equivalent of concrete commands

250 | Chapter 7: Command Pattern

Each envelope encapsulates a particular behavior that’s assigned to a particular
receiver. The envelopes, being very portable objects, can be simply given to someone
(Dad) who will ask the assigned person to execute the indicated task. Mom hands
the sealed envelopes to Dad, who will perform the task of invoker. He will hang on to
each envelope until it’s time to execute the tasks. Dad doesn’t know what tasks the
envelopes contain or who will execute the tasks or how they will do it. All he knows
to do is open the sealed envelop and read the do instructions -"John do load the dish-
washer” and “Jack do the laundry,” etc. We have now decoupled the receiver and the
methods that execute the task in the receiver by encapsulating both within a
command object that is a sealed envelope. The command object is the envelope that
hides both the receiver and the task.

It’s time to do the assigned tasks when Dad brings the kids home from school. He
opens each envelope, calls out the assigned tasks to each child, and then goes on to
do his assigned task (mumbling to himself). Dad has no idea how the kids are doing
their assigned tasks. Jane rides her bike while walking the dog. John asks his friend
Mike to help him load the dishwasher. How each receiver executes its job is not the
concern of the invoker.

Key Features of the Command Pattern
The primary usefulness of the command pattern is the flexibility and extensibility it
affords when defining behavior in applications.

• The command pattern encapsulates behavior in a portable command object.

• The command pattern decouples the classes and which methods in those classes
execute required behavior from the location where the behavior is called.

• The command pattern allows a client to dynamically create new behavior by cre-
ating new command objects and assigning them to invokers at runtime.

• The command pattern allows for straightforward implementation of command
chaining, undo, redo and logging features into an application.

Class Diagram of the Command Pattern
The Command class (Figure 7-3) is an interface that declares, at a minimum, a single
method called execute(). The ConcreteCommand classes implement the Command inter-
face. There can be multiple concrete commands. Concrete commands usually have
parameterized constructors that take an instance of a receiver class to implement the
required behavior. The client instantiates a Receiver object and passes it to the
ConcreteCommand constructor when creating a new concrete command.

The ConcreteCommand references the receiver and delegates to it when implementing
the execute() method.

Minimalist Example of a Command Pattern | 251

The client assigns each ConcreteCommand instance to specific triggers in invokers.
Invokers are where the commands are called from. They hold on to the
ConcreteCommand objects and call their execute() methods when it’s time to execute
the command. You’ll clearly see how this is implemented in ActionScript 3.0 in the
minimalist application.

Minimalist Example of a Command Pattern
This example implements the command pattern class diagram in Figure 7-3. The
command pattern consists of the command interface, concrete commands that imple-
ment the command interface, invokers that call the execute() method in concrete
commands, receivers that implement the behavior required of commands, and clients
that create concrete commands and pass them on to invokers.

Code examples Examples 7-1 through 7-5 show the minimalist implementation of
the command pattern.

The Command Interface
Example 7-1 shows the ICommand class that defines the interface for commands. It
defines a single method called execute().

The Concrete Command
Example 7-2 shows the ConcreteCommand class that implements the ICommand inter-
face. The parameterized constructor takes a Receiver class instance and assigns it to
the receiver property. The execute() command is implemented by delegating to the
receiver instance by calling its action() method. Note that, because the receiver

Figure 7-3. Command pattern class diagram

Example 7-1. ICommand.as

package
{
 public interface ICommand {
 function execute():void;
 }
}

Client

receiverReceiver
action()

ConcreteCommand
execute() receiver->action()

Command
execute()

Invoker

252 | Chapter 7: Command Pattern

instance is passed to the constructor, the ConcreteCommand class and Receiver class
are loosely coupled, allowing a subclass of Receiver to be passed if needed.

The Receiver
Example 7-3 shows the Receiver class. It implements a method called action().
Receiver classes implement required command behavior in the command pattern.
The only elements that know about the receivers in the command pattern are the
concrete commands and the client. Receivers are hidden from invokers.

The Invoker
Example 7-4 shows the Invoker class. It has a method called setCommand() that takes
a concrete command instance, which is saved in the currentCommand property. The
executeCommand() method calls the execute() method in the concrete command
instance. Note that the invoker does not refer to the receiver, and has no idea about
its type.

Example 7-2. ConcreteCommand.as

package
{
 class ConcreteCommand implements ICommand
 {
 var receiver:Receiver;

 public function ConcreteCommand(rec:Receiver):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 receiver.action();
 }
 }
}

Example 7-3. Receiver.as

package
{
 class Receiver
 {
 public function action()
 {
 trace("Receiver: doing action");
 }
 }
}

Minimalist Example of a Command Pattern | 253

The Client
Example 7-5 shows the Main class (also the document class for the Flash document)
that represents the client. The client does several tasks. It first creates an instance of
the receiver (line 9) and passes it as a parameter when creating a ConcreteCommand
instance (line 10). The instance of ConcreteCommand is called a command object. The
client then creates an instance of the Invoker class (line 12) and passes the command
object to it (line 13). Finally, the client executes the command by calling the
execute() method on the command object.

The output from the minimalist application will be the following trace from the
receiver object indicating that its action() method has been called:

Receiver: doing action

Example 7-4. Invoker.as

package
{
 class Invoker
 {
 var currentCommand:ICommand;

 public function setCommand(c:ICommand):void
 {
 this.currentCommand = c;
 }

 public function executeCommand()
 {
 currentCommand.execute();
 }
 }
}

Example 7-5. Main.as

1 package
2 {
3 import flash.display.MovieClip;
4
5 public class Main extends MovieClip
6 {
7 public function Main()
8 {
9 var rec:Receiver = new Receiver();

10 var concCommand:ICommand = new ConcreteCommand(rec);
11
12 var invoker:Invoker = new Invoker();
13 invoker.setCommand(concCommand);
14 concCommand.execute(); // execute command
15 }
16 }
17 }

254 | Chapter 7: Command Pattern

Setting a Trigger to Invoke the Command
In most situations, the client does not call the execute() method in the command
object. You wouldn’t need to have an invoker if this were the case. Invokers hang on
to command objects until it’s time to execute them. There can be many triggers such
as user events, and timers that would do this.

To make our minimalist example reflect the true nature of the invoker, we can imple-
ment a timer event that invokes the command. Example 7-6 shows the TimedInvoker
class that extends the Invoker class (see Example 7-4). It implements the setTimer()
method, which creates a timer that dispatches a timer event every second (1000 ticks
equal 1 second) 5 times (line 10). It then registers the onTimerEvent() listener
method to intercept timer events (line 11) and starts the timer. The onTimerEvent()
method calls the executeCommand() method in the superclass.

Replace lines 12 through 14 in the Main class (see Example 7-5) with the following
statements to use the new timed invoker.

var invoker:TimedInvoker = new TimedInvoker();
invoker.setCommand(concCommand);
invoker.setTimer();

This will cause the command to be executed every second for 5 seconds based on
timer events. This is a more accurate representation of the command pattern where
the invoker executes commands based on different triggers, independent of the client.

Example 7-6. TimedInvoker.as

1 package {
2
3 import flash.events.Event;
4 import flash.events.TimerEvent;
5 import flash.utils.Timer;
6
7 class TimedInvoker extends Invoker {
8
9 public function setTimer() {

10 var timer:Timer = new Timer(1000, 5);
11 timer.addEventListener(TimerEvent.TIMER, this.onTimerEvent);
12 timer.start();
13 }
14
15 public function onTimerEvent(evt:TimerEvent):void {
16 this.executeCommand();
17 }
18 }
19 }

Minimalist Example: Macro Commands | 255

Key OOP Concepts in the Command Pattern
The key concept in the command pattern is encapsulation. Encapsulation is basi-
cally information hiding. You want to hide implementation details of parts of a pro-
gram that are most likely to change from other parts.

Command objects, which are instances of concrete commands, embed behavior.
However, which classes execute that behavior and which methods in those classes
implement that behavior are hidden from where the behavior is called. This informa-
tion is encapsulated within the command object.

We saw in the minimalist example that nowhere in the invoker (Example 7-4) is the
type of the receiver mentioned. The invoker only knows what’s implemented in the
command interface (Example 7-1). It only knows that the command object has a
method called execute(). All the invoker knows is to call that method in the com-
mand object when it’s time to do it.

This decouples the invoker from the receiver. If it becomes necessary to use a differ-
ent receiver to implement a required behavior, we can modify the concrete com-
mand to delegate to a different receiver. The invoker won’t know that anything has
changed; it’ll keep calling the execute() command in the same command object,
oblivious to the fact that its behavior is now implemented using a different receiver.

Minimalist Example: Macro Commands
Macro commands are useful extensions of concrete commands. They allow the cre-
ation of composite commands that run several sub-commands in sequence. Con-
sider what happens when you quit or exit an application. If there are open unsaved
documents the application will ask if you want to save changes. The quit command
is then a macro command that does several housekeeping tasks before quitting.
These tasks are themselves commands, but are referred to as subcommands when
invoked by a macro command.

Macro commands need to implement more functionality than a simple command
does because they need to define interfaces to add and remove subcommands. We
will extend the original command interface to fit the new requirements.

The Macro Command Interface
Example 7-7 shows the IMacroCommand interface. It extends the ICommand interface
(Example 7-1) and declares the add() and remove() methods.

256 | Chapter 7: Command Pattern

Two Concrete Subcommands
To demonstrate a macro command, we will implement two concrete command
classes (ConcreteCommand1 and ConcreteCommand2) that use two receiver classes
(Receiver1 and Receiver2). These are shown in Example 7-8 through Example 7-11.

Example 7-7. IMacroCommand.as

package
{
 public interface IMacroCommand extends ICommand {
 function add(c:ICommand):void;
 function remove(c:ICommand):void;
 }
}

Example 7-8. ConcreteCommand1.as

package {
 class ConcreteCommand1 implements ICommand
 {
 var receiver:Receiver1;

 public function ConcreteCommand1(rec:Receiver1):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 receiver.action1();
 }
 }
}

Example 7-9. ConcreteCommand2.as

package {
 class ConcreteCommand2 implements ICommand
 {
 var receiver:Receiver2;

 public function ConcreteCommand2(rec:Receiver2):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 receiver.action2();
 }
 }
}

Minimalist Example: Macro Commands | 257

The Concrete Macro Command
We will now develop a macro command that implements the IMacroCommand inter-
face. The implementation is straightforward as Example 7-12 shows; it pushes com-
mands into the commandObjectList array in the add() method, and executes them in
sequence in the execute() method.

Example 7-10. Receiver1.as

package {

 class Receiver1 {

 public function action1() {
 trace("Receiver 1: doing action 1");
 }
 }
}

Example 7-11. Receiver2.as

package {

 class Receiver2 {

 public function action2() {
 trace("Receiver 2: doing action 2");
 }
 }
}

Example 7-12. ConcreteMacroCommand.as

package
{
 class ConcreteMacroCommand implements IMacroCommand
 {
 var commandObjectList:Array;

 public function ConcreteMacroCommand()
 {
 this.commandObjectList = new Array();
 }

 public function add(c:ICommand):void
 {
 commandObjectList.push(c);
 }

 public function remove(c:ICommand):void
 {
 for (var i:int = 0; i < commandObjectList.length; i++)
 {

258 | Chapter 7: Command Pattern

A Macro Command Object Created from the Client
The client first creates the two subcommands. It then creates a new macro command
and adds the two subcommands to it. Finally, it creates an invoker and sets it to exe-
cute the macro command. Example 7-13 shows how to create the macro command.

Note that macro commands do not delegate to receivers to implement required
behavior. The primary purpose is to execute sub-commands. Since they implement
the ICommand interface, invokers are indistinguishable from other command objects.

Example: Number Manipulator
The invoker in the previous examples can hold only one command object. However,
in real applications, invokers need to hold multiple commands. For example, take
the File menu of any application. It is a good example of an invoker. The File menu

 if (commandObjectList[i] === c)
 {
 commandObjectList.splice(i, 1);
 break;
 }
 }
 }

 public function execute():void
 {
 for (var i:int = 0; i < commandObjectList.length; i++)
 {
 commandObjectList[i].execute();
 }
 }
 }
}

Example 7-13. Client code to create a macro command

var command1:ICommand = new ConcreteCommand1(new Receiver1());
var command2:ICommand = new ConcreteCommand2(new Receiver2());

// create a macro command and add commands
var macroCommand:IMacroCommand = new ConcreteMacroCommand();
macroCommand.add(command1);
macroCommand.add(command2);

var invoker:TimedInvoker = new TimedInvoker();
// assign macro command to the invoker
invoker.setCommand(macroCommand);
// invoke commands on timer events
invoker.setTimer();

Example 7-12. ConcreteMacroCommand.as (continued)

Example: Number Manipulator | 259

has Open, Save, and Save As menu items. Each of these menu items can be a com-
mand container that calls the execute() method of the embedded command object
when triggered by the user. Toolbars in applications are also invokers. They gener-
ally consist of button icons that execute particular commands to manipulate ele-
ments in an application or document.

In the Number Manipulator application (Figure 7-4), we will create an invoker that
contains buttons onto which command objects can be attached. When the button’s
clicked, the attached command will be executed. The example application will con-
sist of two buttons and a text field. The two buttons will have embedded command
objects that will increment and decrement the numerical value in the text field.

We could have used the built-in Button component in Flash CS3 for
the buttons in our application. However, we will implement our own
button class to illustrate how easily you can create custom buttons
with ActionScript 3.0. Use of components is demonstrated in
Chapter 12, where we build an application that has several user inter-
face elements to illustrate the Model-View-Controller pattern.

A Utility Button Class
First we need to create a button class that can be reused in subsequent examples.
Example 7-14 shows the TextButton class that subclasses the built-in SimpleButton
class in ActionScript 3.0. The TextButton constructor takes one parameter that
defines the text on the button. The TextButton.as file contains an embedded class
called TextButtonState that subclasses Sprite to draw required button states. The
TextButtonState constructor takes two parameters: button state color, and button
text. It creates a new text field with the passed text and draws a filled rounded rect-
angle around it, using the passed color. A new sprite is created and assigned to the
up, down, and over states of TextButton.

Figure 7-4. Number manipulator example

260 | Chapter 7: Command Pattern

Triggering an Invoker by Button Clicks
Now that we have a button, let’s use it to create a multibutton invoker. Example 7-15
shows the InvokerPanel class that contains buttons with commands assigned to them.
Two arrays, commandList and buttonList, are declared to hold the button instances
and corresponding command objects. The public setCommand() method takes two

Example 7-14. TextButton.as

package
{
 import flash.display.*;
 import flash.events.*;

 public class TextButton extends SimpleButton
 {
 public var selected:Boolean = false;

 public function TextButton(txt:String)
 {
 upState = new TextButtonState(0xFFFFFF, txt);
 downState = new TextButtonState(0x999999, txt);
 overState = new TextButtonState(0xCCCCCC, txt);
 hitTestState = upState;
 }
 }
}

import flash.display.*;
import flash.text.TextFormat;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;

class TextButtonState extends Sprite
{
 public function TextButtonState(color:uint, labelText:String)
 {
 var label = new TextField();
 label.autoSize = TextFieldAutoSize.LEFT;
 label.text = labelText;
 label.x = 2;
 var format:TextFormat = new TextFormat("Verdana");
 label.setTextFormat(format);
 var buttonWidth:Number = label.textWidth + 10;
 var background:Shape = new Shape();
 background.graphics.beginFill(color);
 background.graphics.lineStyle(2, 0x000000);
 background.graphics.drawRoundRect(0, 0, buttonWidth, 18, 4);
 addChild(background);
 addChild(label);
 }
}

Example: Number Manipulator | 261

parameters, a slot position and command object (line 17), and assigns the command
to the requested slot position in the commandList array. The setButton() method takes
two parameters, a slot position as before, and button text (line 22). The setButton()
method creates a new TextButton instance, and assigns it to the requested location on
the buttonList array. It then draws the button, assigns an event handler to intercept
mouse clicks, and adds it to the display list. The mouse click is the trigger for the but-
ton and its assigned command object. When there’s a click on the button, the event is
intercepted by the buttonClicked() method, which traverses the buttonList array to
find the button clicked. And when the originating button is found, it executes the cor-
responding command object from the commandList array.

Example 7-15. InvokerPanel.as

1 package
2 {
3 import flash.display.*;
4 import flash.events.*;
5
6 class InvokerPanel extends Sprite
7 {
8 var commandList:Array;
9 var buttonList:Array;

10
11 public function InvokerPanel()
12 {
13 this.commandList = new Array(5);
14 this.buttonList = new Array(5);
15 }
16
17 public function setCommand(nSlot:int, c:ICommand):void
18 {
19 this.commandList[nSlot] = c;
20 }
21
22 public function setButton(nSlot:int, sName:String):void
23 {
24 var btn:TextButton = new TextButton(sName);
25 this.buttonList[nSlot] = btn;
26 btn.x = nSlot * 100;
27 btn.addEventListener(MouseEvent.CLICK, this.buttonClicked);
28 this.addChild(btn);
29 }
30
31 private function buttonClicked(e:Event)
32 {
33 for (var i:int = 0; i < buttonList.length; i++)
34 {
35 if (buttonList[i] === e.target)
36 {
37 this.commandList[i].execute();
38 break;
39 }
40 }

262 | Chapter 7: Command Pattern

The Increment and Decrement Commands
Now that our InvokerPanel is complete, we can develop the command classes to
increment and decrement a value in a text field. Examples 7-16 and 7-17 show the
IncrementCommand and DecrementCommand classes, both of which implement the
ICommand interface (Example 7-1). Note that the receiver is the built-in TextField
class and the text in the field is assigned using its text property. The execute()
method gets the text value from the receiver, casts it to a Number, and assigns the
manipulated value back to the receiver.

41 }
42 }
43 }

Example 7-16. IncrementCommand.as

package {

 import flash.text.TextField;

 class IncrementCommand implements ICommand {

 var receiver:TextField;

 public function IncrementCommand(rec:TextField):void {
 this.receiver = rec;
 }

 public function execute():void {
 receiver.text = String(Number(receiver.text) + 1);
 }
 }
}

Example 7-17. DecrementCommand.as

package {

 import flash.text.TextField;

 class DecrementCommand implements ICommand {

 var receiver:TextField;

 public function DecrementCommand(rec:TextField):void {
 this.receiver = rec;
 }

 public function execute():void {
 receiver.text = String(Number(receiver.text) – 1);

Example 7-15. InvokerPanel.as (continued)

Example: Number Manipulator | 263

The Client
The only remaining task is to develop the client code to create the command objects
and assign them to the buttons on the invoker. Example 7-18 shows how the client
first creates the receiver, which is a built-in text field (line 2), and assigns the num-
ber 100 to it. The receiver is then positioned and added to the display list (line 8).
The client then creates two concrete commands to increment and decrement the
receiver (lines 11-12). Next, the client creates the invoker button panel, and two but-
tons. Finally, the command objects are assigned to the proper button slots (lines 23-
24). Note that the button slots are numbered from 0 through 4.

Running the number manipulator example will produce a text field with the number
100 and two buttons labeled “+1” and “–1” (see Figure 7-4).

 }
 }
}

Example 7-18. Client code for number manipulator

1 // create new receiver
2 var numDisplayField:TextField = new TextField();
3 numDisplayField.autoSize = TextFieldAutoSize.LEFT;
4 numDisplayField.text = '100'; // default value
5 numDisplayField.border = true;
6 numDisplayField.x = 50;
7 numDisplayField.y = 50;
8 this.addChild(numDisplayField);
9

10 // concrete command objects
11 var incCommand:ICommand = new IncrementCommand(numDisplayField);
12 var decCommand:ICommand = new DecrementCommand(numDisplayField);
13
14 // create invoker button panel
15 var panel:InvokerPanel = new InvokerPanel();
16 panel.setButton(0,"+1");
17 panel.setButton(1,"-1");
18 panel.x = 50;v
19 panel.y = 100;
20 this.addChild(panel);
21
22 // add commands to invoker buttons
23 panel.setCommand(0, incCommand);
24 panel.setCommand(1, decCommand);

Example 7-17. DecrementCommand.as (continued)

264 | Chapter 7: Command Pattern

Extended Example: Sharing Command Objects
Portability is a significant advantage of command objects. They’re portable because
they encapsulate everything that’s needed to execute a particular command. They’re
not tightly coupled to either the receiver or the invoker, and conform to a stable
interface. Any code segment can execute a command by just calling the execute()
method on a command object. Why is portability such a good thing?

Let’s go back to our File menu example. We know that a File menu can be an invoker
where the menu items are attached to command objects that can be executed. How
about keyboard shortcuts for the File menu? The keyboard shortcut Ctrl-O on the PC
and Command-O on a Mac will perform the same behavior as selecting the Open
menu item. Ctrl-S on the PC and Command-S on a Mac will save a file exactly the
same way as choosing the Save menu item. So, the keyboard shortcuts are invokers
too, but do we need to create a whole new set of command objects for it? Not at all,
we can create a single command object and share it with multiple invokers.

Triggering an Invoker by Key Presses
Let’s extend our number manipulator example and add keyboard shortcuts to incre-
ment and decrement the number in the text field. The first step is to develop a new
invoker to handle keyboard input. Example 7-19 shows the InvokerKeyboard class.
Structurally, it’s similar to previous multibutton invokers. However, unlike the
InvokerPanel class, InvokerKeyboard does not have to subclass Sprite because it’s not
going to be added to the display list. The Stage instance is passed to InvokerKeyboard
as the onKeyPress listener has to be registered with the stage. This is essential to inter-
cept all key down events.

Two arrays, keyList and commandList, hold the shortcut key code and correspond-
ing command objects. The public setCommand() method takes two parameters, a key
code value and command object, and pushes them in tandem to the keyList and
commandList arrays. If there is a key press and the keyList array contains the keycode
for the key pressed, the corresponding command from the commandList array will be
executed.

Example 7-19. InvokerKeyboard.as

package
{
 import flash.events.*;
 import flash.display.Stage;

 class InvokerKeyboard
 {
 var commandList:Array;
 var keyList:Array;

Extended Example: Sharing Command Objects | 265

Sharing Command Objects from the Client
Now that the keyboard invoker has been implemented, we can add the following at
the end of the client code shown in Example 7-18. This creates a new
InvokerKeyboard instance, and assigns the same command objects to it that were
used for the InvokerPanel.

var kb:InvokerKeyboard = new InvokerKeyboard(this.stage);
// add commands to keyboard shortcut invoker
kb.setCommand(Keyboard.RIGHT, incCommand);
kb.setCommand(Keyboard.LEFT, decCommand);
kb.setCommand(Keyboard.NUMPAD_ADD, incCommand);
kb.setCommand(Keyboard.NUMPAD_SUBTRACT, decCommand);

The keyboard right arrow key and the plus key on the numeric keypad should per-
form the increment command. Conversely, the left arrow key and negative key on
the numeric keypad should perform the decrement command.

Command sharing is a powerful feature of the command pattern and makes extend-
ing applications much easier to manage. For example, if we decide to use a different
receiver, we just need to pass an instance of the new receiver when creating the com-
mand object. Because the same command object is used in multiple invokers, the

 public function InvokerKeyboard(stageTarget:Stage)
 {
 this.commandList = new Array();
 this.keyList = new Array();
 stageTarget.addEventListener(KeyboardEvent.KEY_DOWN,
 this.onKeyPress);
 }

 public function setCommand(keycode:int, c:ICommand):void
 {
 this.keyList.push(keycode);
 this.commandList.push(c);
 }

 private function onKeyPress(event:KeyboardEvent)
 {
 for (var i:int = 0; i < keyList.length; i++)
 {
 if (keyList[i] === event.keyCode)
 {
 this.commandList[i].execute();
 break;
 }
 }
 }
 }
}

Example 7-19. InvokerKeyboard.as (continued)

266 | Chapter 7: Command Pattern

changes are seamlessly spread through the application. If command objects were not
used and receivers were called directly from multiple invokers, code changes in mul-
tiple locations would be necessary.

Extended Example: Implementing Undo
Another powerful feature of the command pattern is the clear-cut means it provides
for implementing undo, redo, queuing, and logging features. We all know how valu-
able the undo feature is in any productivity application, including games. Because
the command object encapsulates execution of commands, it can just as easily
encapsulate an undo() command to reverse itself and go back to its previous state.

We need to expand the command interface to declare an undo() command. How-
ever, before we proceed, let’s stop and think about how to implement this feature.
To implement undo, we need to keep track of executed commands using a com-
mand stack. A stack is a data structure that’s based on the last-in-first-out (LIFO)
principle. Stacks implement push() and pop() operations that store and retrieve
items from it. The pop operation always retrieves the last item pushed. This is
exactly what we need to implement undo, as it simply reverses the last command.
Whenever a command is executed, its command object should be pushed into a
stack. Ideally there should be only one command stack per application. When the
user wants to undo the last command, the stack should be popped, and the undo()
command of the popped command object should be executed.

An Abstract Interface for Commands
Instead of declaring a pure interface, we will declare an abstract interface for com-
mands that support undo. We’ll do this to implement the command stack feature
within the command class. Example 7-20 shows the abstract interface for the
CommandWithUndo class that implements this. Arrays in ActionScript support the push
and pop operations. The command stack is a static array called aCommandHistory
that’ll hold the command objects that have already been executed. The default
implementation for the execute() method is to push the current command object
into the command stack. The undo() method has been declared as an abstract
method requiring implementation by subclasses.

Note that ActionScript 3.0 language does not support abstract classes. It is up to the
programmer to make sure that classes that need to behave as abstract are sub-
classed, and abstract methods implemented.

Example 7-20. CommandWithUndo.as

package
{
 // ABSTRACT Class (should be subclassed and not instantiated)
 public class CommandWithUndo implements ICommand

Extended Example: Implementing Undo | 267

Concrete Commands that Implement Undo
Now we will re-implement the increment and decrement concrete commands to the
abstract interface declared by CommandWithUndo. The two new concrete command
classes are IncrementCommandWithUndo (Example 7-21) and DecrementCommandWithUndo
(Example 7-22). To implement the undo feature, we primarily need to push all exe-
cuted command objects into the command stack. The execute() method does this
by calling the execute() method in the superclass in the last statement (line 17), and
implementing the undo() method. The undo() method simply reverses the effects of
the execute() method (line 20).

 {
 internal static var aCommandHistory:Array = new Array();

 public function execute():void
 {
 aCommandHistory.push(this);
 }

 // ABSTRACT Method (must be overridden in a subclass)
 public function undo():void {}
 }
}

Example 7-21. IncrementCommandWithUndo.as

1 package
2 {
3 import flash.text.TextField;
4
5 class IncrementCommandWithUndo extends CommandWithUndo
6 {
7 var receiver:TextField;
8
9 public function IncrementCommandWithUndo(rec:TextField):void

10 {
11 this.receiver = rec;
12 }
13
14 override public function execute():void
15 {
16 receiver.text = String(Number(receiver.text) + 1);
17 super.execute();
18 }
19
20 override public function undo():void
21 {

Example 7-20. CommandWithUndo.as (continued)

268 | Chapter 7: Command Pattern

The DecrementCommandWithUndo class is similar, and shown in Example 7-22.

We also need a new command object that’ll be attached to an undo button on the
invoker. Example 7-23 shows the UndoLastCommand class that will undo the last opera-
tion. The execute() method first checks if the aCommandHistory array contains any
command objects, and pops the array to get the most recently executed command. It
then proceeds to call the undo() method on the popped command object. Note that
the undo command does not push itself into the command stack. It also throws an
IllegalOperationError exception if its undo() method is called.

22 receiver.text = String(Number(receiver.text) – 1);
23 }
24 }
25 }

Example 7-22. DecrementCommandWithUndo.as

package
{
 import flash.text.TextField;

 class DecrementCommandWithUndo extends CommandWithUndo
 {

 var receiver:TextField;

 public function DecrementCommandWithUndo(rec:TextField):void
 {
 this.receiver = rec;
 }

 override public function execute():void
 {
 receiver.text = String(Number(receiver.text) – 1);
 super.execute();
 }

 override public function undo():void
 {
 receiver.text = String(Number(receiver.text) + 1);
 }
 }
}

Example 7-23. UndoLastCommand.as

package
{
 import flash.errors.IllegalOperationError;

 class UndoLastCommand extends CommandWithUndo

Example 7-21. IncrementCommandWithUndo.as

Extended Example: Implementing Undo | 269

Undoable Commands Assigned from the Client
In Example 7-24, the client can be modified to create command objects using the
concrete commands that support undo (lines 11–13). A new “Undo” button is added
(line 19), and the corresponding command object is attached to it (line 27).

 {
 override public function execute():void
 {
 if (aCommandHistory.length)
 {
 var lastCommand:CommandWithUndo = aCommandHistory.pop();
 lastCommand.undo();
 }
 }

 override public function undo():void
 {
 throw new IllegalOperationError("undo operation not supported
 on this command");
 }
 }
}

Example 7-24. Client code for undoable number manipulator

1 // create new receiver
2 var numDisplayField:TextField = new TextField();
3 numDisplayField.autoSize = TextFieldAutoSize.LEFT;
4 numDisplayField.text = '100'; // default value
5 numDisplayField.border = true;
6 numDisplayField.x = 50;
7 numDisplayField.y = 50;
8 this.addChild(numDisplayField);
9

10 // create concrete commands
11 var incCommand:CommandWithUndo = new IncrementCommandWithUndo(numDisplayField);
12 var decCommand:CommandWithUndo = new DecrementCommandWithUndo(numDisplayField);
13 var undo:CommandWithUndo = new UndoLastCommand();
14
15 // create invoker button panel
16 var panel:InvokerPanel = new InvokerPanel();
17 panel.setButton(0,"+1");
18 panel.setButton(1,"-1");
19 panel.setButton(2,"Undo");
20 panel.x = 50;
21 panel.y = 100;
22 this.addChild(panel);
23
24 // add commands to invoker
25 panel.setCommand(0, incCommand);

Example 7-23. UndoLastCommand.as (continued)

270 | Chapter 7: Command Pattern

The example application will look like Figure 7-4 with an additional “Undo” button.
Command “redo” functionality including logging features can be implemented in
similar ways. Logging features are useful when the commands executed need to be
saved on disk. For example, saving the installation command objects on disk when a
new application is installed will facilitate an uninstall by loading the logged com-
mands and undoing them in reverse order.

Example: Podcast Radio
This example implements a classic car radio with a twist. Instead of programming
the push buttons to tune to a radio station, they will be attached to command objects
that will download and play the latest episode from a podcast. Think of this as a
futuristic car radio when long-range Wi-Fi becomes a reality. You can listen to the
NPR hourly news summary on demand without waiting for the top of the hour.
Figure 7-5 shows the screen layout of the application. It consists of labeled buttons
that indicate the genre of the podcast assigned to each button, and a text field that
displays the title of the podcast item that is currently playing.

What Is a Podcast?
A podcast is a media file that is distributed over the Internet. Podcasts are distrib-
uted using a syndication feed, which is a standard way of distributing content that is
regularly updated. The feed is an XML file just like a syndicated news feed that lists
news stories with the most recent one first. The difference between news feeds and

26 panel.setCommand(1, decCommand);
27 panel.setCommand(2, undo);

Figure 7-5. Screenshot of podcast radio

Example 7-24. Client code for undoable number manipulator

Example: Podcast Radio | 271

podcasts is that in podcasts, the story is not text but a URL to a media file. In an
audio podcast, the linked media file is usually in MP3 format. Example 7-25 shows a
fictitious podcast XML feed in RSS syndication format (with many elements deleted
for clarity).

To play an audio podcast, the podcast XML file has to be loaded and parsed to
access the url attribute of the enclosure element that holds the URL to the audio file.
Thereafter, the audio file has to be loaded from the Web and played.

Creating a Package with Utility Classes
First, we need to create two utility classes to create the button and text fields on the
stage. The first is the same TextButton class shown in Example 7-14 that creates but-
tons on the stage. We also develop a class called TextDisplayField that subclasses
TextField to format and display the title of the currently playing podcast item. We
will add both classes into a package called utils.

The TextDisplayField class is shown in Example 7-26. The class is straightforward,
and its main purpose is to set the initial text in the field, set the font size, and show
the text field border.

Example 7-25. Podcast XML feed

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0">
 <channel>
 <title>10AM ET News Summary</title>
 <item>
 <title>News Summary for Saturday, Nov 18 2006 at 10:00 AM EST</title>
 <pubDate>Sat, 18 Nov 2006 10:16:06 EST</pubDate>
 <enclosure url="http://news.podcasts.org/6507084.mp3">
 </item>
 </channel>
</rss>

Example 7-26. TextDisplayField.as

package utils {

 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 public class TextDisplayField extends TextField {

 public function TextDisplayField(labelText:String = "",
 fontSize:int = 14,
 showborder:Boolean = true) {
 autoSize = TextFieldAutoSize.LEFT;
 text = labelText;
 border = showborder;

272 | Chapter 7: Command Pattern

Now that the utility classes have been created, we can develop the command pattern
elements for the application.

Creating a Command to Play a Podcast
The command interface will be the same ICommand class defined in Example 7-1. The
concrete command will be the PlayPodcastCommand class shown in Example 7-27. The
constructor takes two parameters, the receiver of type Radio, and the URL of the
podcast as type String.

Developing the Radio Receiver
The receiver class shown in Example 7-28 is called Radio and subclasses Sprite. It
uses the TextDisplayField class (see Example 7-26) from the previously developed
utils package to display a text field to show the currently playing podcast item (lines
20-21). The audioDisplay property references the text field. In addition, it declares a
static property called audioChannel of type SoundChannel (line 15). The reason the
sound channel is declared as static is to make sure that only one podcast plays at a

 var format:TextFormat = new TextFormat("Verdana");
 format.size = fontSize;
 setTextFormat(format);
 }
 }
}

Example 7-27. PlayPodcastCommand.as

package
{
 class PlayPodcastCommand implements ICommand
 {
 var receiver:Radio;
 var podCastURL:String;

 public function PlayPodcastCommand(rec:Radio, url:String):void
 {
 this.receiver = rec;
 this.podCastURL = url;
 }

 public function execute():void
 {
 this.receiver.playPodcast(this.podCastURL);
 }
 }
}

Example 7-26. TextDisplayField.as (continued)

Example: Podcast Radio | 273

given moment, even if there are multiple instances of the Radio class in the applica-
tion. The playPodcast() method loads the XML file for the podcast and registers the
xmlLoaded listener method (line 28) to intercept the Event.COMPLETE event. After the
XML file is loaded, it is parsed using the new E4X features in ActionScript 3.0
(ECMAScript for XML) to get the title element (line 42) and the enclosure attribute
(line 44) of the first item element. The audio file is then loaded and played through
the audioChannel sound channel (lines 46-51).

Example 7-28. Radio.as

1 package
2 {
3
4 import flash.display.*;
5 import flash.events.*;
6 import flash.media.Sound;
7 import flash.media.SoundChannel;
8 import flash.net.*;
9 import utils.*;

10
11 class Radio extends Sprite
12 {
13
14 private var audioDisplay:TextDisplayField;
15 private static var audioChannel:SoundChannel = new SoundChannel();
16 var xmlLoader:URLLoader;
17
18 public function Radio()
19 {
20 audioDisplay = new TextDisplayField("click button to play", 14);
21 this.addChild(audioDisplay);
22 }
23
24 public function playPodcast(url:String)
25 {
26 var xmlURL:URLRequest = new URLRequest(url);
27 this.xmlLoader = new URLLoader(xmlURL);
28 xmlLoader.addEventListener(Event.COMPLETE, xmlLoaded);
29 xmlLoader.addEventListener(IOErrorEvent.IO_ERROR, loadError);
30 }
31
32 private function xmlLoaded(evtObj:Event)
33 {
34 var xml:XML = new XML();
35 xml = XML(xmlLoader.data);
36 // set the default XML namespace to the source
37 if (xml.namespace("") != undefined)
38 {
39 default xml namespace = xml.namespace("");
40 }
41 // set the display field to audio stream name
42 this.audioDisplay.text = xml..item[0].title;
43 // get audio url

url:String

274 | Chapter 7: Command Pattern

Push Button Invokers for the Radio
The ControlButtons class shown in Example 7-29 is identical to the InvokerPanel
class (Example 7-15) discussed previously. The only difference is that now the
TextButton class has to be imported from the utils package. Its main function is to
hold push button instances and command objects associated with them, and exe-
cute the corresponding command when a button’s clicked.

44 var url = xml..item[0].enclosure.attribute("url");
45 // load audio and play
46 var request:URLRequest = new URLRequest(url);
47 var audio:Sound = new Sound();
48 audio.addEventListener(IOErrorEvent.IO_ERROR, loadError);
49 audio.load(request);
50 audioChannel.stop(); // stop previous audio
51 audioChannel = audio.play();
52 }
53
54 private function loadError(event:Event):void
55 {
56 trace("Load error " + event);
57 }
58 }
59 }

Example 7-29. ControlButtons.as

package
{
 import flash.display.*;
 import flash.events.*;
 import utils.*;

 class ControlButtons extends Sprite
 {
 var commandList:Array;
 var buttonList:Array;

 public function ControlButtons()
 {
 this.commandList = new Array(5);
 this.buttonList = new Array(5);
 }

 public function setCommand(nSlot:int, c:ICommand):void
 {
 this.commandList[nSlot] = c;
 }

 public function setButton(nSlot:int, sName:String):void
 {

Example 7-28. Radio.as

Example: Podcast Radio | 275

The Client Assigns Podcasts to Push Buttons
In Example 7-30, the client first creates the receiver and adds it to the display list
(lines 1-5). It then creates the push buttons that represent the invoker. The buttons’
labels correspond to the podcast’s genre. Finally, the concrete command objects are
created, and assigned to the corresponding buttons in the invoker (lines 25-29). The
PlayPodcastCommand class constructor takes the podcast URL as a parameter in addi-
tion to the receiver instance. The client code can be run from the document class of
the Flash document.

 var btn:TextButton = new TextButton(sName);
 this.buttonList[nSlot] = btn;
 btn.x = nSlot * 100;
 btn.addEventListener(MouseEvent.CLICK,
 this.buttonClicked);
 this.addChild(btn);
 }

 private function buttonClicked(e:Event)
 {
 for (var i:int = 0; i < buttonList.length; i++)
 {
 if (buttonList[i] === e.target)
 {
 this.commandList[i].execute();
 break;
 }
 }
 }
 }
}

Example 7-30. Client code for the podcast radio

1 // create radio (receiver)
2 var radio:Radio = new Radio();
3 radio.x = 50;
4 radio.y = 50;
5 this.addChild(radio);
6
7 // create control buttons (invoker)
8 var controls:ControlButtons = new ControlButtons();
9 controls.setButton(0,"News");

10 controls.setButton(1,"Music");
11 controls.setButton(2,"Technology");
12 controls.setButton(3,"Business");
13 controls.setButton(4,"Sports");
14 controls.x = 50;
15 controls.y = this.stage.stageHeight - 50;
16 this.addChild(controls);

Example 7-29. ControlButtons.as (continued)

276 | Chapter 7: Command Pattern

Extended Example: Dynamic Command Object
Assignment
Remember the classic car radio with the AM and FM stations? Each push button can
be programmed with an AM and FM station. What’s active depends on the receiver
mode. If you choose AM mode (by pressing the AM button), then the push buttons
will tune the programmed AM stations. Conversely, they will tune to their FM sta-
tions if in FM mode. The buttons are context sensitive. The Properties panel in the
Flash application is a good example of this context sensitive nature of available com-
mands. The available commands on the Properties panel change based on the type of
object selected on the stage. Only the commands that are relevant to the selected
object are active.

Due to the portability of command objects, we can dynamically assign and replace
them at runtime. All the examples we have looked at so far assign commands to
invokers at compile time from the client. When we assigned a command to a button,
it stayed there for the duration and didn’t change. We will extend the podcast radio
example application to dynamically assign command objects to the push buttons.
Figure 7-6 shows the extended application with two podcast genres: Music and
News. It will work very much like the AM and FM mode example described previ-
ously. Command objects will be assigned dynamically to buttons 1 through 3. When
the Music genre button is pressed, station buttons 1 through 3 will play music pod-
casts. Similarly, if the News button is pressed, the station buttons will play news
podcasts.

A Context Sensitive Invoker
To assign commands dynamically in our extended example, the invoker needs to be
mindful of the state of the application. It needs to assign different sets of command

17
18 // attach podcast station commands to invoker buttons
19 var podcastURL_1:String = "http://www.npr.org/rss/podcast.php?id=500005";
20 var podcastURL_2:String = "http://www.npr.org/rss/podcast.php?id=1039";
21 var podcastURL_3:String = "http://www.npr.org/rss/podcast.php?id=1019";
22 var podcastURL_4:String = "http://www.npr.org/rss/podcast.php?id=1095";
23 var podcastURL_5:String = "http://www.npr.org/rss/podcast.php?id=4499275";
24
25 controls.setCommand(0, new PlayPodcastCommand(radio, podcastURL_1));
26 controls.setCommand(1, new PlayPodcastCommand(radio, podcastURL_2));
27 controls.setCommand(2, new PlayPodcastCommand(radio, podcastURL_3));
28 controls.setCommand(3, new PlayPodcastCommand(radio, podcastURL_4));
29 controls.setCommand(4, new PlayPodcastCommand(radio, podcastURL_5));

Example 7-30. Client code for the podcast radio (continued)

Extended Example: Dynamic Command Object Assignment | 277

objects to the podcast radio station buttons based on the state of the application, or,
in this case, the selected podcast genre.

The DynamicControlButtons class, shown in Example 7-31, extends the
ControlButtons class from Example 7-29. It keeps track of the selected genre in the
property currentGenre (line 7). The two podcast genres are defined by the static con-
stants NEWS and MUSIC (lines 5-6). It also declares and initializes two arrays (lines 9-10)
to hold the command objects assigned to the news and music genres for the three
station buttons.

The setGenre() method sets the genre by setting the currentGenre property (lines 18-
27). The setGenreCommand() method (lines 29-38) assigns the passed commands to
the two arrays that hold the news and music command objects. After any changes to
the state of the application, the updateCommandButtons() method is called to dynami-
cally assign the command objects for the chosen genre to the station buttons (posi-
tions 1-3 on the commandList array).

Figure 7-6. Podcast radio with music and news genre buttons

Example 7-31. DynamicControlButtons.as

1 package
2 {
3 class DynamicControlButtons extends ControlButtons
4 {
5 public static const NEWS:uint = 0;
6 public static const MUSIC:uint = 1;
7 var currentGenre:uint = NEWS;
8
9 var newsPodcastCommands:Array;

10 var musicPodcastCommands:Array;
11
12 public function DynamicControlButtons()
13 {
14 this.newsPodcastCommands = new Array(3);

278 | Chapter 7: Command Pattern

Commands to Dynamically Assign Command Objects
To dynamically assign command objects, we need to create two new concrete com-
mands to set the podcast genre to either music or news. This is accomplished by the
SetToMusicGenreCommand (Example 7-32) and SetToNewsGenreCommand (Example 7-33)
classes.

15 this.musicPodcastCommands = new Array(3);
16 }
17
18 public function setGenre(genre:uint)
19 {
20 if (genre == NEWS)
21 {
22 this.currentGenre = NEWS;
23 } else if (genre == MUSIC) {
24 this.currentGenre = MUSIC;
25 }
26 this.updateCommandButtons();
27 }
28
29 public function setGenreCommand(nSlot:int, c:ICommand, genre:uint):void
30 {
31 if (genre == NEWS)
32 {
33 this.newsPodcastCommands[nSlot] = c;
34 } else if (genre == MUSIC) {
35 this.musicPodcastCommands[nSlot] = c;
36 }
37 this.updateCommandButtons();
38 }
39
40 private function updateCommandButtons()
41 {
42 for (var i:int = 0; i < 3; i++)
43 {
44 if (currentGenre == NEWS)
45 {
46 this.commandList[i] = this.newsPodcastCommands[i];
47 } else if (currentGenre == MUSIC) {
48 this.commandList[i] = this.musicPodcastCommands[i];
49 }
50 }
51 }
52 }
53 }

Example 7-32. SetToMusicGenreCommand.as

package
{

Example 7-31. DynamicControlButtons.as

Extended Example: Dynamic Command Object Assignment | 279

Note that the receiver for both these commands is of type DynamicControlButtons,
which is the invoker. Here the invoker is also the receiver for the commands that set
the podcast genre.

Dynamic Command Assignment Setup from the Client
The client has to specify command objects for both the music and news genres to the
station buttons (the first three buttons), and the commands to change the genre (to
the last two buttons). The dynamic assignment of command objects to the station
buttons takes place in the invoker. The client essentially programs the buttons on the

 class SetToMusicGenreCommand implements ICommand
 {
 var receiver:DynamicControlButtons;

 public function SetToMusicGenreCommand(
 rec:ControlButtons):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 this.receiver.setGenre(
 DynamicControlButtons.MUSIC);
 }
 }
}

Example 7-33. SetToNewsGenreCommand.as

package
{
 class SetToNewsGenreCommand implements ICommand
 {
 var receiver:DynamicControlButtons;

 public function SetToNewsGenreCommand(
 rec:ControlButtons):void
 {
 this.receiver = rec;
 }

 public function execute():void
 {
 this.receiver.setGenre(DynamicControlButtons.NEWS);
 }
 }
}

Example 7-32. SetToMusicGenreCommand.as (continued)

280 | Chapter 7: Command Pattern

radio, very much like someone programming actual push buttons on a car radio to
specific stations.

The client first creates the receiver and adds it to the display list. It then creates the
invoker, assigns labels to each of the five buttons, and adds it to the display list. Pod-
cast URLs are then assigned to variables (three URLs for each genre). Next, the cli-
ent does the important job of creating PlayPodcastCommand command objects and
assigning them to them to the station buttons for each genre. Finally, the client cre-
ates and assigns the genre selection command objects to the corresponding buttons
on the invoker. Example 7-34 shows the setup.

Example 7-34. Client code for the extended podcast radio

// create radio (receiver)
var radio:Radio = new Radio();
radio.x = 50;
radio.y = 50;
this.addChild(radio);

// create control buttons (invoker)
var controls:DynamicControlButtons = new DynamicControlButtons();
controls.setButton(0,"1");
controls.setButton(1,"2");
controls.setButton(2,"3");
controls.setButton(3,"News");
controls.setButton(4,"Music");
controls.x = 50;
controls.y = this.stage.stageHeight - 50;
this.addChild(controls);

// podcast URLs
var podcastNewsURL_1:String =
 "http://www.npr.org/rss/podcast.php?id=500005";
var podcastNewsURL_2:String =
 "http://rss.cnn.com/services/podcasting/newscast/rss.xml";
var podcastNewsURL_3:String =
 "http://www.npr.org/rss/podcast.php?id=510053";
var podcastMusicURL_1:String =
 "http://www.npr.org/rss/podcast.php?id=510019";
var podcastMusicURL_2:String =
 "http://www.npr.org/rss/podcast.php?id=510026";
var podcastMusicURL_3:String =
 "http://minnesota.publicradio.org/tools/podcasts/
 new_classical_tracks.xml";

// add station commands to invoker buttons
controls.setGenreCommand(0, new PlayPodcastCommand(radio,
 podcastNewsURL_1), DynamicControlButtons.NEWS);
controls.setGenreCommand(1, new PlayPodcastCommand(radio,
 podcastNewsURL_2), DynamicControlButtons.NEWS);
controls.setGenreCommand(2, new PlayPodcastCommand(radio,
 podcastNewsURL_3), DynamicControlButtons.NEWS);

Summary | 281

Summary
The command pattern is a very powerful example of encapsulation or information
hiding, and shows its utility in many situations common to software design.

In essence, the command pattern embeds behavior in command objects. Commands
are executed by calling the execute() method in the command object. What classes
are delegated to when executing that behavior, and which methods in those classes
implement that behavior, are hidden from where the behavior is called. This essen-
tially decouples the code that invokes the behavior from the code that implements
the behavior.

This decoupling makes command objects extremely portable, and it is this portabil-
ity that supports its wide applicability in many situations. A single command object
can be shared between several invokers. For example, a single instance of a com-
mand object can be used by different code sections in an application. This makes it
easy to extend or change application behavior.

One of the most useful characteristics of command objects is that they can be
assigned to invokers at runtime. This enables behavior to be changed based on state,
a very useful feature in making applications context sensitive.

In addition, the command pattern allows applications to implement some common
features required in many applications, such as: command chaining (macro com-
mands), undo, redo, and logging.

controls.setGenreCommand(0, new PlayPodcastCommand(radio,
 podcastMusicURL_1), DynamicControlButtons.MUSIC);
controls.setGenreCommand(1, new PlayPodcastCommand(radio,
 podcastMusicURL_2), DynamicControlButtons.MUSIC);
controls.setGenreCommand(2, new PlayPodcastCommand(radio,
 podcastMusicURL_3), DynamicControlButtons.MUSIC);

// add genre selection commands to invoker buttons
controls.setCommand(3, new SetToNewsGenreCommand(controls));
controls.setCommand(4, new SetToMusicGenreCommand(controls));

Example 7-34. Client code for the extended podcast radio (continued)

282

Chapter 8CHAPTER 8

Observer Pattern 8

It is the theory that decides what can be observed.
—Albert Einstein

Every man who observes vigilantly and resolves
steadfastly grows unconsciously into genius.
—Edward G. Bulwer-Lytton (Author of the immortal

line, “It was a dark and stormy night,” written while
trying to explain how his Internet connection got
knocked out and he missed a deadline.)

The world is full of obvious things which nobody by
any chance ever observes.
—Sherlock Holmes (Original reference to syntax errors.)

You can observe a lot just by watching.
—Yogi Berra

What Is the Observer Pattern?
Conceptually, the Observer design pattern is easy to understand. A central point
sends information to subscribing instances. This works just like a newspaper or cable
television subscription service. When a person subscribes, the service begins, and
continues until he unsubscribes.

In applications where a single source of information needs to be broadcast to several
different receptors, using a single source in the design makes more sense than having
several different sources getting the same information by repeated calls to the data
source. For example, in using a web service that sends out stock quotes, setting up
your application to receive the information in a single source, and then sending out
that information from that source in your application, is more efficient than having
each instance calling the information separately from the web service. If your appli-
cation takes the incoming stock information and displays the information in tabular
and different chart forms, having multiple subscriptions to each of the different
formatting classes would require separate and repeated calls to the web service.

What Is the Observer Pattern? | 283

However, by using a single call to the web service and then broadcasting to the mul-
tiple instances, you need far fewer service calls.

In addition to being more efficient, a central data source guarantees that every
instance gets the same information. Imagine a change in data from one web service
call to the next where a major change occurs. The first instance calls the service and
formats the data into a table, and the second instance calls the service to format the
data in a bar chat. The data in the chart does not reflect the data in the table, even
though it’s supposed to. Using an Observer pattern, a single call to the web service
always sends data from the same call to all subscribers. So the data sent to the table
formatting instance and that sent to the charts is guaranteed to be from the same set.

In applications where a high rate of data change occurs, the Observer pattern helps
to cut down on the bookkeeping. All data are sent to a central source and then dis-
tributed to subscribing instances. For example, in an action game, the score keeps
changing as many game conditions rapidly update. When an object in an action
game is “destroyed,” it no longer needs the information and should not keep gather-
ing in data. Likewise, objects that come into the game or are “resurrected” need to
start getting data. This can be a programming nightmare without some kind of sys-
tem to take in all data changes and then uniformly distribute those changes to the
different game elements while taking care of all subscription changes. Here the
Observer pattern comes to the rescue by handling all data collection and
distribution.

Key Features
The central feature of the Observer pattern is that state change is gathered in one
place and sent to all subscribing units. This one-to-many relationship allows devel-
opers to create loosely coupled classes and yet maintain information consistency.
Figure 8-1 shows the general relationship between the initial data source, the subject
class, and the observer classes:

Sending information in this manner to different classes is not only efficient, but also
allows for expansion. For example, suppose stock data is subjected to different types
of statistical models, each one encapsulated in a class. As new analytical models are

Figure 8-1. Observer information flow

State change Subject

Observers

284 | Chapter 8: Observer Pattern

introduced, adding a class as part of the application is as easy as creating the class
and subscribing it to the subject.

The following key features characterize the Observer pattern:

• Data consistency between loosely coupled but related and interacting objects.

• Data receptors (observers) can subscribe and unsubscribe to data.

• Single source (subject) sends state change information.

• Any number of subscribing observers can subscribe to subject.

To understand the importance of consistency, consider a speech at the United
Nations. Suppose the representative from China gives a speech on new trade poli-
cies. That information will have to be translated from Chinese to all of the different
languages represented at the UN. A good Observer pattern sends the speech infor-
mation from a single source (subject), to the interpreters (observers), presented in a
language that different language users can understand. If each observer got the
speech from a different source, the chances of inconsistency increase dramatically,
and if inconsistent data were received, the Chinese trade policies could be
misconstrued.

The two central objects in the Observer model are the subject and observer. The sub-
ject notifies the observer of any state changes. This design relies on object composi-
tion instead of inheritance as the primary technique for reuse. In this case, the subject
delegates operations to the observer. This process is expanded and explained in the
section Key OOP Concepts Used with the Observer Pattern, later in this chapter.

The Observer Model
The Observer outlined in the class diagram notation shows two key elements: sub-
ject and observer. The subject interface provides the method for notifying the observ-
ers of state changes. Likewise, the subject holds the methods for subscribing and
unsubscribing. The capacity to subscribe objects leaves the door wide open for new
objects to be added to the list of objects receiving data. The subject set of methods all
delegate to the observer. The observer, by contrast, simply needs a method for
updating states. The concrete subject uses the update method of the observer in the
notification method implemented from the subject interface. Also, the concrete sub-
ject may have both getters and setters for state-related changes. The concrete
observer must implement the updating method. However, it may also have methods
for subscribing or unsubscribing, most likely the former, leaving the unsubscribing
methods up to the concrete object instances or state conditions. Figure 8-2 shows the
Observer class diagram:

We can break down the diagram into its four parts—subject, observer, concrete sub-
ject and concrete observer. The Subject interface sets up the key connections
between itself and the observer by establishing methods that connect and disconnect

Key OOP Concepts Used with the Observer Pattern | 285

the observer from the notification process. In fact, every single Subject method refer-
ences the Observer. Likewise, the Observer interface, with its single update() method,
references the notification process from the subject. The ConcreteSubject provides a
property, stateWork, for holding the state about which the observers are notified. It is
also responsible for notifying the subscribed observers. Finally, through the update()
method, the ConcreteObserver keeps a state value consistent with the subject, and,
through a state property, stores the current state.

Key OOP Concepts Used with the Observer Pattern
One object-oriented design principle put forth in the original design pattern book by
Gamma et al is to favor object composition over class inheritance. That is, when possi-
ble, design your programs using object composition instead of beginning with a
superclass and then accomplishing reuse through inheritance. To understand the rea-
son for this dictum, we need to look at object composition.

To appreciate the advantage of object composition over inheritance, we need to
understand another principle put forth by Gamma, Helm, Johnson and Vlissides:

Program to an interface, not an implementation.

Let’s first look at why programming to an interface is favored over programming to
an implementation.

Choose the Interface
In a nutshell, according to Gamma et al, programming to an interface is better than
programming to an implementation because it reduces implementation dependen-
cies between subsystems. This increases software flexibility. As a result, changes can
be made at runtime.

The idea of programming to an interface does not literally mean an ActionScript 3.0
construct interface as opposed to a class. That is, you can program to the interface

Figure 8-2. Observer pattern class diagram

Subject
‹‹interface››

Subscribe Observer
Unsubscribe Observer
Notify Observer

Observer
‹‹interface››

Update()
observers

ConcreteSubject
Subscribe Observer
Unsubscribe Observer
Notify Observer

ConcreteObserver
Update()subjects

state work

286 | Chapter 8: Observer Pattern

of an abstract class or an interface instead of a class. What does that really mean,
though?

The easiest way to understand this concept is to think of the methods in either an
abstract class or interface as interfaces. An interface is a set of functions an object
implements. Eric and Elisabeth Freeman (Head First Design Patterns) suggest that we
think of the properties in either an abstract class or interface as supertypes. It turns
out that the actual practice of programming to an interface has many different
approaches, but to see the basic concept, consider the following set of scripts,
Example 8-1 through Example 8-6. Example 8-1 through Example 8-4 set up an
interface, and Example 8-5 and Example 8-6 implement it. Be sure to save the files all
in the same folder.

Example 8-1. SpaceWarrior.as

//SpaceWarrior.as
package
{
 interface SpaceWarrior
 {
 function useWeapon():void;
 }
}

Example 8-2. Alien.as

//Alien.as
package
{
 public class Alien implements SpaceWarrior
 {
 function Alien()
 {
 //Constructor
 }
 public function useWeapon():void
 {
 trace("Zaaaapp!!!");
 }
 }
}

Example 8-3. Earthling.as

//Earthling.as
package
{
 public class Earthling implements SpaceWarrior
 {
 function Earthling()
 {
 //Constructor

Key OOP Concepts Used with the Observer Pattern | 287

Open a new Flash document file, and, in the Class Document window, type in Main.
When you test the application, all you’re going to see is:

Zaaaapp!!!
Ka Boom!!!

The first trace() output is what’s returned when an Alien instance calls the
useWeapon() method, and the second for the Earthling doing the same thing. To see
the difference between programming to an implementation instead of an interface,
look at the following lines that are part of the Main.as script:

//Program to implementation
var alien:Alien=new Alien();
alien.useWeapon();

//Program to interface
var spaceWarrior:SpaceWarrior=new Earthling();
spaceWarrior.useWeapon();

The first part programs to an implementation because the alien instance is typed as
the implementation, Alien. (Alien implements SpaceWarrior interface.) In the second
part of the segment, the spaceWarrior instance types as the supertype, SpaceWarrior.
However, it is instantiated using the Earthling() constructor. As you can see, it

 }
 public function useWeapon():void
 {
 trace("Ka Boom!!!");
 }
 }
}

Example 8-4. Main.as

//Main.as
package
{
 import flash.display.Sprite;
 public class Main extends Sprite
 {
 public function Main()
 {
 //Program to implementation
 var alien:Alien=new Alien();
 alien.useWeapon();

 //Program to interface
 var spaceWarrior:SpaceWarrior=new Earthling();
 spaceWarrior.useWeapon();
 }
 }
}

Example 8-3. Earthling.as (continued)

288 | Chapter 8: Observer Pattern

works fine. What’s more, using the spaceWarrior instance, we could redefine it as an
Alien() instance, and it’d still work fine. Change the last part to:

//Program to interface
var spaceWarrior:SpaceWarrior=new Earthling();
spaceWarrior.useWeapon();
spaceWarrior=new Alien();
spaceWarrior.useWeapon();

Now, the output shows:

Zaaaapp!!!
Ka Boom!!!
Zaaaapp!!!

As you can see, by programming to the interface, the instances are far more flexible.
We don’t have to know what’s in the function (interface) or what it’ll do, we just
know that it will do what it’s supposed to, depending on the constructor we use.

Object Composition
To see why object composition is favored over class inheritance, we need to see what
each does. Previous chapters have used both object composition and inheritance,
and so you may have some idea of what each does. Both concepts were introduced in
Chapter 1, but because the Observer design pattern clearly illustrates the use of com-
position, we are reviewing it here again.

Keeping in mind that the comparison between inheritance and object composition
relates to building flexible and reusable software elements, we have a base for com-
parison. So we can restate the principle as:

For improved flexible and reusable software, favor object composition over class
inheritance.

Reusable software developed through inheritance is relatively straightforward. Devel-
opers take an existing class and use it again with the particulars created through sub-
classes. Because the internals of the objects are often visible to the subclasses, the
term white-box reuse is applied to this implementation.

Object composition, by contrast, achieves new functionality by bringing together
existing objects. The composition process can be understood as one class using
another class’s functionality, whereas inheritance depends on the class having the
functionality. So, in composition, one class uses a functionality of another class,
while in inheritance, a sub class is-a class with functionality inherited from another
class. Because object composition hides the internal details, the term black-box reuse
is applied to this kind of development.

Inheritance has some advantages in being simple to create, visible, and relatively sim-
ple for making certain types of changes. For example, if you want a change to be

Minimalist Abstract Observer | 289

applied to all subclasses, a change to the superclass will do the trick. All changes are
inherited by the subclasses.

The biggest disadvantage attributed to inheritance is breaking encapsulation. This
occurs where a subclass is changed because a parent class changes. The change may
break certain functionality of the subclass. (Other actions unrelated to inheritance
can break encapsulation, but they’re not relevant here.) Another disadvantage of
inheritance is the inheritance of unwanted features. Subclasses are stuck with the full
set of features from the parent class, and, as was seen in Chapter 4, overrides are
used to solve this problem. Finally, because inheritance occurs at compile time, you
cannot change the implementations from the parent class at runtime. All of these dis-
advantages reduce flexibility.

One advantage of object composition is the flip side of the main disadvantage of
inheritance—maintaining encapsulation. Object composition focuses on what each
object in the object set does, and its relationship to other objects. By focusing on
clear and limited tasks for each class (object), keeping encapsulation intact is better
and simpler. The focus changes from how something works to the relationship
between objects, and because each object comes to be dependent on others, object
encapsulation and reliability are more important and central.

By having securely encapsulated and focused objects, your number of classes is likely
to be larger, and that fact is a disadvantage of object composition. However, these
small focused classes also mean small hierarchies, and instead of inheriting and being
a feature of the object, composition allows one object to have a feature of another
object.

The Observer design pattern uses object composition instead of inheritance. The two
major interfaces and concrete classes are either subject or observer. Together, these
objects are composed to create the overall model for the software design.

Minimalist Abstract Observer
To launch an Observer application using the minimum essentials, we need only two
interfaces and two classes, reflecting the model in the class diagram (Figure 8-2):

• A subject interface

• An observer interface

• A concrete subject

• A concrete observer

Keeping the overall goal in mind to centrally distribute state information, the con-
structs boil down to a subscribing method, an unsubscribing method, a notification
method for the subject, and an update method for the observer. The key to making

290 | Chapter 8: Observer Pattern

this all work right is the use of an array to hold the subscribing observers, and a dis-
tribution method for broadcasting the current state.

Subject Interface
All we need for the Subject interface are three methods to take care of the subscrip-
tion and notification work. Because all of the functions in an interface construct are
abstract, we don’t have a lot of detail to address. However, we’ve got to be careful to
be sure that all the necessary parts are in place. Example 8-5 shows the script to be
saved as Subject.as:

In the first two functions, you’ll see evidence of composition. The “o” parameter is an
Observer datatype, which is a reference to another interface that’ll be built as part of
the Observer design pattern. If you look at the diagram in Figure 8-2, you’ll see an
arrow from the abstract Subject to the abstract Observer. That reference to the
Observer datatype is part of the process that uses composition rather than
inheritance.

Observer Interface
The Observer interface is deceptively simple. The single update() function is actually
part of the composition between the Observer and Subject structures. However, we
see the composition only when we look at the connection between the concrete
observer and subject through the update() supertype in the Observer interface. Save
the code in Example 8-6 as Observer.as:

Example 8-5. Subject.as

package
{
 //Subject Interface
 public interface Subject
 {
 function subscribeObserver(o:Observer):void;
 function unsubscribeObserver(o:Observer):void;
 function notifyObserver():void;
 }
}

Example 8-6. Observer.as

package
{
 //Observer Interface
 public interface Observer
 {
 function update(light:String):void;
 }
}

Minimalist Abstract Observer | 291

To illustrate the Observer design pattern in its minimal form, we’ve chosen a light
that can have an “on” or “off” state. In the abstract interface, though, we simply
indicate the data type accepted in the parameter as a string. So the value could be the
range of a dimmer. We’ve got flexibility. The goal in this example is clarity, but the
Observer pattern’s update() function can deal with multiple parameters with any
kind of datatype. Later in this chapter, this will be demonstrated.

Concrete Subject
At this stage, we’ve got to put the interfaces to work. The tasks for the
ConcreteSubject class include:

• Establish an array to hold the observers.

• Establish the state property as part of the class—stores the state.

• Set up the details of subscription process tying in the Observer supertype and
observers array.

• Work out a process to remove (unsubscribe) elements of the observer array,
using an Observer supertype in the parameter.

• Establish a notification process tied to the update() method derived from the
Observer interface.

The notification process requires some kind of setter. This is where a setter function
has a reference to data that changes the state to be broadcast to the observers. In
turn, when the state changes (the setter function is called), the notification function
kicks in. Save the script in Example 8-7 as ConcreteSubject.as.

Example 8-7. ConcreteSubject.as

package
{
 public class ConcreteSubject implements Subject
 {
 private var light:String;
 private var observers:Array;
 function ConcreteSubject ()
 {
 trace ("*|*Concrete Subject*|*");
 observers=new Array();
 }
 public function subscribeObserver (obserNow:Observer):void
 {
 observers.push (obserNow);
 }
 public function unsubscribeObserver (obserNow:Observer):void
 {
 for (var ob:int=0; ob<observers.length; ob++)
 {
 if (observers[ob]==obserNow)

292 | Chapter 8: Observer Pattern

In this implementation, you can see that most of the work is done with composition.
The constructor has a single construct: instantiating an array. (The trace() state-
ments are superfluous and only added so that you can better see the internal work-
ings of the observer structure.) Both the subscribe and unsubscribe functions use
composition with an Observer object (supertype) in the parameter. The notify func-
tion references the Observer method, update(). So instead of seeing subclassed ele-
ments making up the class, you see composition at work.

When you test the program, you will be programming to an interface rather than an
implementation. To make this possible, look at the following line:

public function unsubscribeObserver(obserNow:Observer):void

Whatever observer object is placed in the obserNow parameter is typed as a supertype
(Observer), not as an implementation type. (In the section “Working the Observer,”
the programming to an interface process is explored further.)

Concrete Observer
The ConcreteObserver class has a far more focused task than the ConcreteSubject
class. It stores the state to be observed to maintain perfect consistency among the
subscribing observers. Save the script in Example 8-8 as ConcreteObserver.as.

 {
 observers.splice (ob,1);
 break;
 }
 }
 }
 public function notifyObserver ():void
 {
 for (var notify in observers)
 {
 observers[notify].update (light);
 trace ("Observer " + notify + " Light is "+light);
 }
 }
 public function setLight (light:String):void
 {
 this.light=light;
 notifyObserver ();
 }
 }
}

Example 8-8. ConcreteObserver.as

package
{
 //Concrete Observer

Example 8-7. ConcreteSubject.as (continued)

Minimalist Abstract Observer | 293

The update() function is tied into the ConcreteSubject class as a parameter. So all
instances of the ConcreteObserver are welded to the single source of updating done
by the concrete subject’s notification function.

Working the Observer
Now we can examine how all the parts work together. In the script that implements
the program, we need to create instances of both the ConcreteSubject and
ConcreteObserver classes. Then, we will need to subscribe observers to the
ConcreteSubject instances. Also, just to be sure that everything’s working correctly,
we should unsubscribe at least one observer. In order to test the overall functional-
ity, we need to change the state we’re observing using the setLight() method to dif-
ferent values. Only those observer instances subscribed should be able to see the
changes. By first subscribing observers, and then unsubscribing at least one, we
should be able to see if everything’s working as expected. Example 8-9 implements
the Observer design pattern. Save the code as TestSub.as.

 class ConcreteObserver implements Observer
 {
 private var light:String;
 function ConcreteObserver()
 {
 trace("=Concrete Observer=");
 }
 public function update(light:String):void
 {
 this.light=light;
 }
 }
}

Example 8-9. TestSub.as

package
{
 import flash.display.Sprite;
 public class TestSub extends Sprite
 {
 public function TestSub()
 {
 var mySub:ConcreteSubject=new ConcreteSubject();
 var subObserver:Observer=new ConcreteObserver();
 var subObserver2:Observer=new ConcreteObserver();
 var subObserver3:Observer=new ConcreteObserver();
 mySub.subscribeObserver(subObserver);
 //The subObserver is passed as an instance of Observer
 supertype
 mySub.subscribeObserver(subObserver2);
 mySub.subscribeObserver(subObserver3);

Example 8-8. ConcreteObserver.as (continued)

294 | Chapter 8: Observer Pattern

Note that this script programs to the interface to instantiate the different observer
instances, but must program to the ConcreteSubject directly to implement it. How-
ever, we could have typed the observers as ConcreteObserver, and then used the
instances as Observer types in the parameters for subscribing. In either case, we
would have been following the dictum of programming to the interface.

Open a new Flash document, and, in the Document class window, type in TestSub,
and then test the application. Your output should appear as the following:

*|*Concrete Subject*|*
=Concrete Observer=
=Concrete Observer=
=Concrete Observer=
Observer 0 Light is on
Observer 1 Light is on
Observer 2 Light is on
Observer 0 Light is off
Observer 1 Light is off

As you can see, a single instance used the ConcreteSubject constructor and three
used the ConcreteObserver constructor, as indicated by the respective trace() out-
puts. The observer state was first set to “on” and, as expected, the three observer
instances indicated the correct state. Then, a single observer was unsubscribed, and
the state was set to “off.” With two observers now, only two indicated the state.

Example: Adding States and Identifying Users
The minimal Observer design pattern example had only a single state. You might
think that adding additional states may be complicated, but you’ll see that it’s very
easy. One of the key features about design patterns is that they’re flexible, and add-
ing states illustrates this flexibility.

Another issue that can be important in some applications using the Observer pattern
is getting to know the observers. In the minimal example in the previous section, the
observers were identified by their array index, which changes when observers are
removed. However, using a property to identify observers is quite simple as well.

 mySub.setLight("on");
 mySub.unsubscribeObserver(subObserver);
 mySub.setLight("off");
 }
 }
}

Example 8-9. TestSub.as (continued)

Example: Adding States and Identifying Users | 295

Multiple States
To understand multiple states, just imagine a daily newspaper that has several differ-
ent sections. For example, an abbreviated list might include the following topic areas
that regularly need to be changed:

• News

• Sports

• Stocks

• Entertainment

All these areas can be represented as String data, but for the sake of type variety, we
will make Stocks a Number type. In the minimalist example, the initial placement of
the state property is in the update() parameter. To have additional property states,
all we need to do is add more properties. So, in the Observer interface, we’d just
need to change the update() function to the following:

function update(news:String,sports:String,stocks:Number,entertainment:
 String):void;

That was easy. As you can see, different data types are not problematic at all.

Next, the concrete subject needs to store the states, and so each state needs a variable
declaration that can be used for maintaining the current state. The setter function also
needs to deal with each of the four states, and so it too needs to be expanded.

public function setType(news:String,sports:String,stocks:Number,
 entertainment:String)
{
 this.news=news;
 this.sports=sports;
 this.stocks=stocks;
 this.entertainment=entertainment;
 notifyObserver();
}

Note that the setType() function is structurally identical to the setLight() function in
the light example. All that’s changed is the number of parameters and variables stored.

Finally, in the concrete subject, we need to change the number of parameters in the
update() function that sends out the state change information:

this.observers[notify].update(news,sports,stocks,entertainment);

Again, you can see that no structure has changed—just the number of parameters.

Next, in the concrete observer class, all the changes are to the number of variables
and nothing in the structure. So, instead of establishing a single variable, four are
declared. The key update() function is changed to:

public function update(news:String,sports:String,stocks:Number,
 entertainment:String):void
{

296 | Chapter 8: Observer Pattern

 this.news=news;
 this.sports=sports;
 this.stocks=stocks;
 this.entertainment=entertainment;
}

Like the other elements in the Observer design pattern, the structure remains the
same. The single most complex change in the application is going to be format. The
output structure is unchanged, but with four different states, you have to format
your output in such a way that all the different states (information categories) are
separated from one another and spelled out.

Who Are You?
In some applications, you may want to know who’s subscribed to your application.
In fact, you may even want to be sure that the same person doesn’t accidentally
attempt to subscribe more than once, especially where all observers have unique
usernames.

So, to get started, we need to begin with the ConcreteObserver class. Using a string
variable, we’ll add a name to each and every subscriber.

//Subscriber's ID
internal var subName:String;

//Constructor Function
function ConcreteObserver(subName:String):void
{
 trace(subName + " has subscribed");
 this.subName=subName;
}

By adding a username to the constructor function and connecting that name to the
object created, each observer can hold a username. Now, subName is a property of the
ConcreteObserver class, and each element of the observers array can use the prop-
erty to identify itself.

To be sure that no more than a single observer with the same name can subscribe,
the ConcreteSubject class’s subscription function must be changed. By placing a con-
ditional statement that makes sure that no two observer names are alike—or the
same observer doesn’t accidentally subscribe twice to the same subject—we can
automatically reject a subscription with a duplicate name.

//Add variable to check for duplicates
private var duplicate:Boolean;

....(more code)

//Subscribe and Prevent Re-subscription
public function subscribeObserver(obserNow:Observer):void
{

Example: Adding States and Identifying Users | 297

 duplicate=false;
 for(var ob=0;ob<this.observers.length;ob++)
 {
 if(this.observers[ob]==obserNow)
 {
 duplicate=true;
 trace(this.observers[ob].subName+ " already a subscriber.
 \n");
 }
 }
 if(! duplicate)
 {
 this.observers.push(obserNow);
 }
}

In some cases, you may not want to limit single subscriptions with a common name.
To allow multiple subscribers with the same name, just don’t add the above code
that prevents doing so.

Updated Observer
Now the Observer application has far more functionality. Not only can each
observer be identified by a specific name, no more than a single observer with the
same name will be allowed to subscribe. What’s more, four states are now tracked
and sent out if changed. Example 8-10 through Example 8-13 should be saved in the
same folder using the captions for the filenames.

Example 8-10. Subject.as

package
{
 //Subject Interface
 public interface Subject
 {
 function subscribeObserver(o:Observer):void;
 function unsubscribeObserver(o:Observer):void;
 function notifyObserver():void;
 }
}

Example 8-11. Observer.as

package
{
 //Observer Interface
 public interface Observer
 {
 function update(news:String,sports:String,stocks:Number,entertainment:
 String):void;
 }
}

298 | Chapter 8: Observer Pattern

Example 8-12. ConcreteSubject.as

package
{
 //Concrete Subject
 public class ConcreteSubject implements Subject
 {
 private var news:String;
 private var sports:String;
 private var stocks:Number;
 private var entertainment:String;
 private var observers:Array;

 //Add variable to check for duplicates
 private var duplicate:Boolean;

 //Constructor function
 public function ConcreteSubject ():void
 {
 trace ("*|*Concrete Subject*|*");
 observers=new Array();
 }
 //Subscribe and Prevent Re-subscription
 public function subscribeObserver (obserNow:Observer):void
 {
 var duplicate:Boolean = false;
 for (var ob=0; ob<observers.length; ob++)
 {
 if (observers[ob]==obserNow)
 {
 duplicate=true;
 trace (observers[ob].subName+ "
 is already a subscriber.\n");
 }
 }
 if (! duplicate)
 {
 observers.push (obserNow);
 }
 }
 //Unsubscribe and remove from array
 public function unsubscribeObserver (obserNow:Observer):void
 {
 for (var ob=0; ob<observers.length; ob++)
 {
 if (observers[ob]==obserNow)
 {
 observers.splice (ob,1);
 }
 }
 }
 //Set up notification and format output
 public function notifyObserver ():void
 {

Example: Adding States and Identifying Users | 299

 for (var notify in this.observers)
 {
 observers[notify].update (news,sports,
 stocks,entertainment);
 var nowNews:String=" sees that "+
 news + " is interesting,";
 var nowSports:String = " and learns that " + sports;
 var nowStocks:String=".\nWhoaa!,
 the stock market is at " + stocks;
 var nowEntertain:String=" and "+ entertainment +
 " is showing at the Bijou.";
 trace (observers[notify].subName + nowNews +
 nowSports + nowStocks + nowEntertain);
 }
 }
 //Add all necessary states
 public function setType (news:String,sports:String,stocks:Number,
 entertainment:String):void
 {
 this.news=news;
 this.sports=sports;
 this.stocks=stocks;
 this.entertainment=entertainment;
 notifyObserver ();
 }
 }
}

Example 8-13. ConcreteObserver.as

package
{
 //Concrete Observer
 class ConcreteObserver implements Observer
 {
 //Store Additional States
 private var news:String;
 private var sports:String;
 private var stocks:Number;
 private var entertainment:String;

 //Subscriber's ID
 public var subName:String;

 //Constructor Function
 function ConcreteObserver(subName:String):void
 {
 trace(subName + " has subscribed");
 this.subName=subName;
 }

Example 8-12. ConcreteSubject.as (continued)

300 | Chapter 8: Observer Pattern

Feel free to change the text in the various “headlines” for The Daily Bugle.

Playing the Bugle
Now that we’ve set up an Observer design pattern simulating subscription to a news-
paper we’ve called The Daily Bugle, it’s time to test the subscription and news distri-
bution process. Our consumer testing class needs to have only a few elements:

• A concrete subject

• Subscribers (concrete observers)

• Daily news (a change of state)

• Unsubscribe (get off the observer list)

This time around, we’ll need to name all of our subscribers, and we can expect more
information output, but the structure is essentially unchanged. Example 8-14 con-
tains the necessary code that needs to be saved as BugleSubscribe.as.

 //Add states to update parameter
 public function update(news:String,sports:String,stocks:Number,
 entertainment:String):void
 {
 this.news=news;
 this.sports=sports;
 this.stocks=stocks;
 this.entertainment=entertainment;
 }
 }
}

Example 8-14. BugleSubscribe.as

package
{
 //Test Observer Application
 import flash.display.Sprite;
 public class BugleSubscribe extends Sprite
 {
 public function BugleSubscribe()
 {
 var bigNews:ConcreteSubject=new ConcreteSubject();
 var larry:ConcreteObserver=new ConcreteObserver("Larry");
 var mo:ConcreteObserver=new ConcreteObserver("Mo");
 var curly:ConcreteObserver=new ConcreteObserver("Curly");
 var shemp:ConcreteObserver=new ConcreteObserver("Shemp");
 bigNews.subscribeObserver(larry);
 bigNews.subscribeObserver(mo);
 bigNews.subscribeObserver(curly);
 bigNews.subscribeObserver(shemp);

Example 8-13. ConcreteObserver.as (continued)

Example: Adding States and Identifying Users | 301

Be sure to save the BugleSubscribe.as in the same folder as the other files in the class.
Then, create a new Flash document, and type in BugleSubscribe in the Document
class window. When you test the application, you should see the following output:

*|*Concrete Subject*|*
Larry has subscribed
Mo has subscribed
Curly has subscribed
Shemp has subscribed
Larry sees that Faster Computer Invented is interesting, and learns
 that Home Team Wins.
Whoaa!, the stock market is at 3234.54 and The Mad Duck is showing
 at the Bijou.
Mo sees that Faster Computer Invented is interesting, and learns
 that Home Team Wins.
Whoaa!, the stock market is at 3234.54 and The Mad Duck is showing
 at the Bijou.
Curly sees that Faster Computer Invented is interesting, and learns
 that Home Team Wins.
Whoaa!, the stock market is at 3234.54 and The Mad Duck is showing
 at the Bijou.
Shemp sees that Faster Computer Invented is interesting, and learns
 that Home Team Wins.
Whoaa!, the stock market is at 3234.54 and The Mad Duck is showing
 at the Bijou.

** Larry and Shemp have unsubscribed **

Mo is already a subscriber.

Mo sees that Memory Prices Down is interesting, and learns that Game
 Rained Out.

 //Set State #1
 bigNews.setType("Computer Invented","Home Team Wins",
 3234.54," Mad Duck");

 //Unsubscribe 2 Observers and attempt to re-subscribe
 current subscriber
 trace("\n** Larry and Shemp have unsubscribed **\n");
 bigNews.unsubscribeObserver(larry);
 bigNews.unsubscribeObserver(shemp);

 //Attempt re-subscribe
 bigNews.subscribeObserver(mo);

 //Set State #2
 bigNews.setType("Memory Prices Down","Game Rained Out",
 2987.98," Bad Bug");
 }
 }
}

Example 8-14. BugleSubscribe.as (continued)

302 | Chapter 8: Observer Pattern

Whoaa!, the stock market is at 2987.98 and The Bad Bug is showing
 at the Bijou.
Curly sees that Memory Prices Down is interesting, and learns that Game
 Rained Out.
Whoaa!, the stock market is at 2987.98 and The Bad Bug is showing
 at the Bijou.

As each subscription is made, you can see the observer’s name and the fact that he
has subscribed. You can see that all four subscribers see identically formatted data.
The formatting is the same because all the formatting is placed in the
ConcreteSubject class. However, that’s easy enough to change simply by removing all
of the formatting and sending raw data. The Observer design pattern makes sure that
whatever information’s sent to the subscribing observers is identical as far as the
state conditions are concerned, but really doesn’t care about the formatting. The
data can be taken and reformatted for any purpose by the observers. It just has to be
the same data.

Using the unsubscribeObserver method, selected observers are removed from the
subscription list using the line:

bigNews.unsubscribeObserver(ConcreteObserver instance);

As you can see, shemp and larry are unsubscribed between the first and second out-
puts using this method.

Dynamically Changing States
Up to this point, all the Observer patterns’ testing has been done by static assign-
ments of values to the state setters. The purpose was to see how the structure of the
pattern works, but for most practical applications using Flash and ActionScript 3.0,
we should look at something where the state values are rapidly changing, and new
updates have to be sent almost constantly.

To see how rapidly changing data can be sent to a single source, and then dis-
patched to multiple observers, this next application depicts an action game with
three combatants. Two are made up of spaceships with a missile or torpedo and a
space station that shoots a beam at the spaceships. There’s really nothing much you
can do with the game other than fire from the two spaceships and space station, and
watch the two spaceships get destroyed, but it serves to illustrate how all of the hits
are generated by the action on the stage and broadcast to the different combatants.
When a combatant is knocked out of play, he’s no longer subscribed and all that is
visible is the last message before destruction.

Recording a Space Battle
In setting up this particular Observer application, the Subject and Observer inter-
faces contain only Number and String parameters in the observer notification and

Dynamically Changing States | 303

update functions. The subscribe and unsubscribe functions are the same as previous
Observer designs in this chapter. Save the classes in Example 8-15 and Example 8-16
by their caption names.

Giving More Work to the Concrete Classes
The two classes representing concrete subjects and observers are changed little from
previous examples. The ConcreteSubject class still keeps track of who has sub-
scribed and unsubscribed, and sends out notifications of state changes.

The ConcreteObserver class, though, has taken on another responsibility. When a
new ConcreteObserver is created, it makes sense to automatically subscribe her to the
notification process. So instead of making it a two-step process, one to instantiate
and another to subscribe, the ConcreteObserver now automatically subscribes new
instances. To do this, only a single line had to be added to the constructor function:

concreteObserver.subscribeObserver(this);

The parameter references the instance being instantiated. At any time, the instance
can unsubscribe or resubscribe by calling the unsubscribe or subscribe functions.
Example 8-17 and Example 8-18 should be saved using the caption names.

Example 8-15. Subject.as

package
{
 //Subject Interface
 public interface Subject
 {
 function subscribeObserver(o:Observer):void;
 function unsubscribeObserver(o:Observer):void;
 function notifyObserver(score:Number,damage:String):void;
 }
}

Example 8-16. Observer.as

package
{
 //Observer Interface
 public interface Observer
 {
 function update(score:Number,damage:String):void;
 }
}

304 | Chapter 8: Observer Pattern

Example 8-17. ConcreteSubject.as

package
{
 //Concrete Subject
 public class ConcreteSubject implements Subject
 {
 private var score:Number;
 private var damage:String;
 private var duplicate:Boolean;
 private var observers:Array;

 public function ConcreteSubject ()
 {
 observers=new Array();
 }
 //Subscribe observer without duplicates
 public function subscribeObserver (obserNow:Observer):void
 {
 duplicate=false;

 for (var ob=0; ob < observers.length; ob++)
 {
 if (observers[ob] == obserNow)
 {
 duplicate=true;
 trace ("Sorry, " + observers[ob].nomDeGuerre +
 " is already subscribed.");
 }
 }
 if (! duplicate)
 {
 observers.push (obserNow);
 }
 }
 //Unsubscribe observer
 public function unsubscribeObserver (obserNow:Observer):void
 {
 for (var ob=0; ob < this.observers.length; ob++)
 {
 if (observers[ob] == obserNow)
 {
 trace ("\n***" + this.observers[ob].nomDeGuerre +
 " has been removed.***\n");
 observers.splice (ob,1);
 }
 }
 }
 //Notify observers of total score and current damage
 public function notifyObserver (score:Number,damage:String):void
 {
 for (var notify in observers)
 {
 observers[notify].update (score,damage);

Dynamically Changing States | 305

Now that all of the basic programs are built, the real work begins. In the following
section, you will be building several movie clips to represent two spaceships, their
weapons, and a space station with its weapon. Most importantly though, the actions
of the different elements will generate state changes processed by the Observer
design pattern and sent to subscribing combatants.

 }
 }
 //Set the score -- Accumulated score and damage
 public function setScore (score:Number,damage:String):void
 {
 this.score=score;
 this.damage=damage;
 notifyObserver (score,damage);
 }
 }
}

Example 8-18. ConcreteObserver.as

package
{
 //Concrete Observer
 class ConcreteObserver implements Observer
 {
 public var nomDeGuerre:String;
 private var damage:String;
 private var score:Number;
 private var concreteObserver:Subject;

 function ConcreteObserver(concreteObserver:Subject)
 {
 this.concreteObserver=concreteObserver;
 concreteObserver.subscribeObserver(this);
 }

 //Output to observer
 public function passOn():String
 {
 return "Current score: "+score+"\nCurrent damage: "+ damage;
 }

 //Trap changes in state from subject
 public function update(score:Number,damage:String):void
 {
 this.score=score;
 this.damage=damage;
 passOn();
 }
 }
}

Example 8-17. ConcreteSubject.as (continued)

306 | Chapter 8: Observer Pattern

Launching the Space Battle
In Example 8-19, you’ll find a class that handles a battle in space. However, even
before beginning on the ChangleHandler class, you first need to build some movie
clips, and to do so, we need to start with a Flash document file. The following steps
are just the first to set up the stage.

Setting up the Flash document

1. Open a new Flash document.

2. Set the stage size to 650 × 450, and set the background to gray.

3. Add a star field of your own design using yellow stars and shooting stars. Don’t
put in too many—just enough to give it an outer-space look and feel.

4. In the Document class window in the Properties inspector, type in
ChangeHandler.

5. Save the file as AliensAttack.fla in the same folder with the other files for this
application.

Building the spaceships

Once you have your Flash document set up, you need to build the spaceship movie
clips.

1. Select Insert ➝ New Symbol from the menu bar.

When you name a movie clip that you’ll use as a class, be sure to fol-
low the same naming conventions as you would for any class. The first
character should be capitalized and contain no spaces. So be sure to
use Earthling rather than earthling, and don’t put any spaces or other
unacceptable characters in the name.

2. When the New Symbol window opens, type in Earthling in the Name window,
and select Movie clip as the Behavior. If you see a button named Advanced, click
it. It opens up part of the New Symbol window that you need for the next step.

3. Click the Export for ActionScript checkbox in the Linkage group. You should
see the Export in first frame checkbox automatically selected. Also, in the Class
window, you should see Earthling appear and flash.display.MovieClip in the
Base class window. Click OK.

4. You are now in the Symbol edit mode. The center of the movie clip is indicated
by the crosshair in the middle of the stage.

5. Using the drawing tools, draw a simple spaceship with the dimensions W=83,
H=47. Figure 8-3 shows an example enlarged 400 percent. Click the Scene icon,
located at the top left above the stage, when you’re finished, and you should see
your movie clip in the Library.

Dynamically Changing States | 307

6. Repeat Steps 1 through 5 to create a movie clip named Alien. Make a different
ship and point it in the opposite direction as the Earthling movie clip spaceship.
Once you’re finished, you should see both the Alien and Earthling movie clips in
the Library panel.

Building the weapons

Originally, we tried building the spaceship and weapon as a single movie clip, but
after experimentation, it made more sense to make separate movie clips for better
flexibility. The ones provided here are extremely simple, but you can add any kind of
enhancement you want—blast trails, sound, and step-down to fire. The following
steps show simple ones for seeing how the Observer design pattern state change can
be triggered.

1. Select Insert ➝ New Symbol from the menu bar. Name the movie clip bullet,
using all lowercase for the name. Select Movie clip as the Behavior, and click
OK. You are now in the Symbol editing mode.

2. Draw something that you want to look like the projectile shooting at the Alien.
We used a simple oval with a fin on the top for a shark-like missile with the
dimensions, W=23, H=7.3. The height includes the fin; so it’s a pretty small mis-
sile, but proportionate to the Earthling ship. When you’re done, click Scene 1 to
exit the Symbol editing mode.

3. Select Insert ➝ New Symbol from the menu bar When the New Symbol win-
dow opens, type in Missile in the Name window, and select Movie clip as the
Behavior. If you see a button named Advanced, click it. It opens up part of the
New Symbol window that you need for the next step.

4. Click on the Export for ActionScript checkbox in the Linkage group. You should
see the Export in first frame checkbox automatically selected. Also, in the Class
window, you should see Missile appear and flash.display.MovieClip in the
Base class window. Click OK.

Figure 8-3. Earthling spaceship

308 | Chapter 8: Observer Pattern

5. In the Symbol editing mode, drag a copy of the bullet movie clip to the center
position (X=0, Y=0).

6. Click on Frame 20 and press the F5 key to add frames to Frame 20. Now, press
F6 to add a keyframe. Select the keyframe in Frame 20, and move the bullet
movie clip to X=380, Y=0.

7. Click on Frame 1, and in the Properties panel, select Motion in the Tween menu.
You should see an arrow in the Timeline from Frame 1 to Frame 20 with a blue
background. When you test it, the bullet MC should move from left to right.

8. Click on Frame 1, and open the Actions panel (Press F9 or Option + F9 on the
Mac). Type in stop().

9. Repeat steps 1 through 8 for the Alien weapon. Make the Alien slug (bullet) look
different and use the movie clip name projectile. Use the dimensions W=42,
H=11. Instead of the weapon name Missile, use the name Torpedo. The Alien
torpedo has to go in the opposite direction of the Earthling missile. So, from the
initial position of X=0, Y=0 in the first frame, it should be in X=-423 for the last
frame of the tween. Figure 8-4 shows a couple of simple magnified examples of
the weapons.

Building the Android space station and beam

The Android space station represents an automated space station that fires a double
beam at both the Earthling and Alien ships. It’s nothing more than a pentagon-
shaped object. The v-shaped beam weapon sits on the pentagon movie clip.

1. Select Insert ➝ New Symbol from the menu bar.

2. When the New Symbol window opens, type in Android in the Name window,
and select Movie clip as the Behavior. If you see a button named Advanced, click
it. It opens up part of the New Symbol window that you need for the next step.

Figure 8-4. Earthling and Alien weapons

Earthling’s Missle

Alien’s Torpedo

Dynamically Changing States | 309

3. Click on the Export for ActionScript checkbox in the Linkage group. You should
see the Export in first frame checkbox automatically selected. Also, in the Class
window, you should see Android appear and flash.display.MovieClip in the
Base class window. Click OK.

4. You are now in the Symbol edit mode. Using the drawing tools, draw a penta-
gon with the dimension W=57, H=54. Click the Scene icon when you’re fin-
ished, and you should see your space station movie clip in the Library.

5. Select Insert ➝ New Symbol from the menu bar.

6. When the New Symbol window opens, type in Beam in the Name window, and
select Movie clip as the Behavior. If you see a button named Advanced, click it.
It opens up part of the New Symbol window that you need for the next step.

7. Click on the Export for ActionScript checkbox in the Linkage group. You should
see the Export in first frame checkbox automatically selected. Also, in the Class
window, you should see Beam appear and flash.display.MovieClip in the Base
class window. Click OK.

8. You are now in the Symbol edit mode. Add two layers to the existing layer.
Name the top layer “Actions,” the middle layer “Left,” and the bottom layer
“Right.”

9. Click on Frame 20, select the frames for all three layers, and press F5 to add 20
frames to all the layers. Click on the first frame of the Actions layer, and, in the
Actions panel, type in stop();.

10. Click on the first frame of the Left layer. Select the Line tool and set the Stroke
height in the Properties panel to 6. (The Stroke height sets how wide the line will
be.) Select green for the line color. With the base at the X=0, Y=0 position, draw
a line at a -45˚ angle about 12 pixels long. You may have to reposition the base
to the center position mark in the Symbol editor.

11. Click on the first frame of the Right layer and repeat step 10, but angle the line
to +45˚. When finished, you should see a V-shaped drawing with the base of the
V at the X=0, Y=0 position.

12. Select the Left layer, click on Frame 20, and press the F6 key to add a keyframe.
Select the green line and change the color from green to purple. Set the line
dimensions to W=240, H=220 and reposition the base of the line to the center
crosshair.

13. Repeat Step 10 with the line in the Right layer, except that the dimensions
should be set to W=220, H=240. You should see a large purple “V” when you’re
finished.

14. Click on the first frame of the Left and Right layers, and select Shape for the
tween. Press the Enter/Return key to test the movie. You should see a “beam”
shoot out to the left and right, changing from green to purple. Figure 8-5 shows
the beam being “fired” at the two ships.

310 | Chapter 8: Observer Pattern

You have set up all the classes and objects you’ll need for the stage. Check your
Library panel to be sure you have the following movie clips:

• Alien

• Android

• Beam

• bullet

• Earthling

• Missile

• projectile

• Torpedo

Those objects beginning with capital letters are classes and those beginning with
lowercase letters are objects belonging to one of the classes.

Writing a Change Handler

In creating something to change conditions and send messages to the “Earthling,”
“Alien,” and “Android,” you need to use your imagination a bit. If an opponent’s
projectile or the beam from the Android hits either the Alien or Earthling, its hit total

Figure 8-5. Android shooting a beam at the Earthling and Alien ships

Dynamically Changing States | 311

is sent to all subscribers via the Observer design pattern. Each of the windows show-
ing the results represents different languages understood by the combatants. When a
combatant is knocked out, it is automatically unsubscribed and no longer receives
information, even though it can sustain further hits recorded by the surviving com-
batants. (The Android is invulnerable, and so can keep firing and receiving informa-
tion even if all the others are knocked out.)

The ChangeHandler class is divided into several functions. The constructor function
instantiates the concrete subjects and concrete observers. Each of the observers is
given a name (nomDeGuerre) for keeping track of subscribers who are pushed into a
subscriber array (warrior). A second array (battleUpdate) stores the battle names for
each combatant placed in the text fields representing each combatant’s “damage infor-
mation center.” To simulate the different languages receiving the message from the
concrete subject, each combatant has a different font and border color for the text
field representing its information display. The createTextWindow() and getFont()
functions handle the viewing objects.

All the objects in the Library panel are placed on the stage along with firing and dam-
age information in a rather large function, getParts(). These visible objects are coor-
dinated with the instances of the concrete observers.

The setScore() method can be invoked by instances of the ConcreteSubject class.
Whenever, the setScore() method is called, the subscribing observers are notified
via the passOn() method, which returns the current score through the update()
method. The killWarrior() function invokes the unsubscribeObserver() method so
that when a spaceship is knocked out of the game, it no longer receives messages.

Example 8-19 is a fairly large class, and you may want to break it down into smaller
classes or abstract some of the functions. However, it’s designed to show off the
ways in which the Observer design pattern can be used in a context where informa-
tion rapidly changes. Save the script as ChangeHandler.as in the same folder as the
other files.

Example 8-19. ChangeHandler.as

package
{
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.display.Sprite;

 public class ChangeHandler extends Sprite
 {
 private var eKiller:uint;
 private var aKiller:uint;
 private var aFlag:Number;
 private var aeFlag:Number;

312 | Chapter 8: Observer Pattern

 private var eFlag:Number;
 private var lFlag:Number;
 private var outputColor:Number;
 private var battleUpdate:Array=[];
 private var warrior:Array=[];
 private var scoreSetter:ConcreteSubject;
 private var earthling:ConcreteObserver;
 private var alien:ConcreteObserver;
 private var scoreFormat:TextFormat;
 private var missile:Missile;
 private var alienMC:Alien;
 private var torpedo:Torpedo;
 private var androidMC:Android;
 private var beam:Beam;
 private var earthlingMC:Earthling;

 //Main Function
 public function ChangeHandler ()
 {
 scoreSetter=new ConcreteSubject();
 earthling=new ConcreteObserver(scoreSetter);
 warrior.push (earthling);
 earthling.nomDeGuerre="Earth Fighter";

 var android:ConcreteObserver=
 new ConcreteObserver(scoreSetter);
 warrior.push (android);
 android.nomDeGuerre="Android Beam Base";

 alien=new ConcreteObserver(scoreSetter);
 warrior.push (alien);
 alien.nomDeGuerre="Alien Menace";

 var eNm:String=earthling.nomDeGuerre.toLowerCase();
 var anNm:String=android.nomDeGuerre.toLowerCase();
 var alNm:String=alien.nomDeGuerre.toLowerCase();
 battleUpdate=new Array(3);
 scoreSetter.setScore (0,"None");
 createTextWindow ();
 getParts ();
 }
 //Create Output Windows
 private function createTextWindow ():void
 {
 for (var i:int=0; i < battleUpdate.length; i++)
 {
 battleUpdate[i]=new TextField();
 addChild (battleUpdate[i]);
 battleUpdate[i].x=20* 1 + (i * 180);
 battleUpdate[i].y=10;
 battleUpdate[i].width=150;
 battleUpdate[i].height=95;

Example 8-19. ChangeHandler.as (continued)

Dynamically Changing States | 313

 battleUpdate[i].wordWrap=true;
 battleUpdate[i].multiline=true;
 battleUpdate[i].border=true;
 battleUpdate[i].textColor=0xffffee;
 scoreFormat=new TextFormat();
 scoreFormat.leftMargin=7;
 scoreFormat.rightMargin=7;
 getFont (warrior[i].nomDeGuerre);
 battleUpdate[i].borderColor=outputColor;
 battleUpdate[i].defaultTextFormat=scoreFormat;
 battleUpdate[i].text=warrior[i].nomDeGuerre+
 ":\n"+warrior[i].passOn();
 }
 }
 //Get the font
 private function getFont (creature:String):void
 {
 switch (creature)
 {
 case "Earth Fighter" :
 outputColor=0xff0000;
 scoreFormat.font="Verdana";
 break;

 case "Android Beam Base" :
 outputColor=0x00ff00;
 scoreFormat.font="Comic Sans MS";
 break;

 case "Alien Menace" :
 outputColor=0x0000ff;
 scoreFormat.font="Arial Black";
 break;
 }
 }
 //Get the movie clips from the Library
 private function getParts ():void
 {
 //Earthling
 earthlingMC=new Earthling();
 addChild (earthlingMC);
 earthlingMC.x=60,
 earthlingMC.y=120;
 missile=new Missile();
 addChild (missile);
 missile.x=earthlingMC.x+25;
 missile.y=earthlingMC.y+35;
 earthlingMC.addEventListener (MouseEvent.CLICK,fireMissile);
 earthlingMC.addEventListener
 (Event.ENTER_FRAME,earthlingHit);

 //Android

Example 8-19. ChangeHandler.as (continued)

314 | Chapter 8: Observer Pattern

 androidMC=new Android();
 addChild (androidMC);
 androidMC.x=300;
 androidMC.y=380;
 beam=new Beam();
 addChild (beam);
 beam.x=androidMC.x;
 beam.y=androidMC.y;
 androidMC.addEventListener (MouseEvent.CLICK,fireBeam);
 androidMC.addEventListener (Event.ENTER_FRAME,beamHit);

 //Alien
 alienMC=new Alien();
 addChild (alienMC);
 torpedo=new Torpedo();
 addChild (torpedo);
 alienMC.x=420,
 alienMC.y=120;
 torpedo.x=alienMC.x-7;
 torpedo.y=alienMC.y+17;
 alienMC.addEventListener (MouseEvent.CLICK,fireTorpedo);
 alienMC.addEventListener (Event.ENTER_FRAME,alienHit);
 }

 //Earthling fires missle
 private function fireMissile (evt:Event)
 {
 missile.play ();
 eFlag=0;
 }
 //Earthling hits Alien
 private function earthlingHit (evt:Event)
 {
 this.alienMC=alienMC;
 if (missile.hitTestObject(alienMC) && eFlag==0)
 {
 eFlag=1;
 aKiller++;
 scoreSetter.setScore (aKiller,"Alien Hit");
 dataOut ();
 if (aKiller >= 5)
 {
 scoreSetter.setScore (aKiller,"Alien Out");
 alien.nomDeGuerre="Alien Destroyed";
 this.alienMC.rotation=90;
 torpedo.rotation=90;
 killWarrior (alien);
 dataOut ();
 }
 }
 }
 //Android fires beam

Example 8-19. ChangeHandler.as (continued)

Dynamically Changing States | 315

 private function fireBeam (evt:Event)
 {
 beam.play ();
 aFlag=0;
 aeFlag=0;
 }
 //Android beam hits Alien or Earthling
 private function beamHit (evt:Event)
 {
 if (beam.hitTestObject(alienMC) && aFlag==0)
 {
 aFlag=1;
 aKiller++;
 scoreSetter.setScore (aKiller,"BeamHit on Alien");
 dataOut ();
 if (aKiller >= 5)
 {
 scoreSetter.setScore (aKiller,"Alien Out");
 alien.nomDeGuerre="Alien Destroyed";
 this.alienMC.rotation=90;
 torpedo.rotation=90;
 killWarrior (alien);
 dataOut ();
 }
 }
 if (beam.hitTestObject(earthlingMC) && aeFlag==0)
 {
 aeFlag=1;
 eKiller++;
 scoreSetter.setScore (eKiller,"BeamHit on Earthling");
 dataOut ();
 if (eKiller >= 5)
 {
 scoreSetter.setScore (eKiller,"Earthling Out");
 earthling.nomDeGuerre="Earthling Off";
 this.earthlingMC.rotation=90;
 missile.rotation=90;
 killWarrior (earthling);
 dataOut ();
 }
 }
 }
 //Alien Fires torpedo
 private function fireTorpedo (evt:Event)
 {
 torpedo.play ();
 lFlag=0;
 }
 //Alien hits Earthling
 private function alienHit (evt:Event)
 {
 this.earthlingMC=earthlingMC;

Example 8-19. ChangeHandler.as (continued)

316 | Chapter 8: Observer Pattern

When you test the script, you’ll find that when you fire on the Android, only the
Earthling’s hit can be seen as recorded. That’s because both the Alien and Earthling
are hit by the same double-beam, and the Alien’s hit is recorded and broadcast first,
quickly followed by the Earthling’s hit. As a result, you can see only the Earthling’s
beam hit. Figure 8-6 shows the game after the Alien ship has been destroyed, and the
Earthling’s still sustaining hits from the Android beam, but because the Alien stops
receiving messages after it is destroyed, it doesn’t show the additional hits on the
Earthling.

While this example is not a true game, it does illustrate the great possibilities for
sending score information to different subscribers in different formats. Likewise, it
illustrates how the Observer design pattern effortlessly handles rapidly changing data
through a single subject, and then quickly distributing it to different subscribers.

 if (torpedo.hitTestObject(earthlingMC) && lFlag==0)
 {
 lFlag=1;
 eKiller++;
 scoreSetter.setScore (eKiller,"Earthling Hit");
 dataOut ();
 if (eKiller >= 5)
 {
 scoreSetter.setScore (eKiller,"Earthling Out");
 earthling.nomDeGuerre="Earthling Off";
 this.earthlingMC.rotation=90;
 missile.rotation=90;
 killWarrior (earthling);
 dataOut ();
 }
 }
 }

 //Output Data
 private function dataOut ()
 {
 for (var i:int = 0; i < battleUpdate.length; i++)
 {
 battleUpdate[i].text=warrior[i].nomDeGuerre+
 ":\n"+warrior[i].passOn();
 }
 }
 //Kill zone
 public function killWarrior (warship:ConcreteObserver)
 {
 scoreSetter.unsubscribeObserver (warship);
 }
 }
}

Example 8-19. ChangeHandler.as (continued)

Example: Working with Different Data Displays | 317

Example: Working with Different Data Displays
The last example showed how quickly changing data could be sent to a central
object, and then sent out to subscribers. It also illustrated how subscribers could be
dynamically unsubscribed. We showed some minimal output difference in the three
combatants’ window displays, but the differences were minimal. Now, we’ll look at
some seriously different output displays and introduce an additional interface.

The Output Designer
In the original design pattern book, the GoF provided a simple diagram for illustrat-
ing one use of the Observer pattern. A single source of data was sent to different
objects that would display the data in a table, a bar chart, and a pie chart. This
seemed like a good way to demonstrate some of Flash 9’s and ActionScript 3.0’s
components and graphic capabilities using the Observer pattern. For our example,
let’s use a list box component, and then show how to create both a bar chart and line
chart with ActionScript.

Figure 8-6. Destroyed combatant is unsubscribed

318 | Chapter 8: Observer Pattern

To make the task more manageable and reusable, all the display outputs are orga-
nized into separate classes. We decided that the data would represent quarterly
reports, and so the application is set up to accept four numeric values, each repre-
senting quarterly values. Also, to make the whole process of outputting data more
manageable, we have introduced a third interface along with the Subject and
Observer interfaces. This interface is set up so that it returns an array. The array will
contain the four numeric values representing the four quarters. To get started, open
up three ActionScript files, and copy the three files in Example 8-20, Example 8-21,
and Example 8-22 into each of the files. Save the interface files using the caption
names in the same folder.

Other than the new DataOut interface, the other two are similar to those you’ve seen
elsewhere in this chapter. The four quarterly numeric values mentioned can be seen
in the Observer interface.

Example 8-20. Subject.as

package
{
 //Subject Interface
 public interface Subject
 {
 function subscribeObserver(o:Observer):void;
 function unsubscribeObserver(o:Observer):void;
 function notifyObserver():void;
 }
}

Example 8-21. Observer.as

package
{
 //Observer Interface
 public interface Observer
 {
 function update(q1:Number,q2:Number,q3:Number,q4:Number):
 void;
 }
}

Example 8-22. DataOut.as

package
{
 //Data Output Interface
 public interface DataOut
 {
 function outToDesign():Array;
 }
}

Example: Working with Different Data Displays | 319

The Concrete Classes and a Double Implementation
Both the concrete subject and observer classes are little changed from previous exam-
ple. No names are used because the subscribers are data display objects rather than
characters or live clients. So, these are actually a bit simpler than the last two exam-
ples. Open up two additional ActionScript files, and save Example 8-23 and
Example 8-24 using the caption names as filenames.

Example 8-23. ConcreteSubject.as

package
{
 //Concrete Subject
 public class ConcreteSubject implements Subject
 {
 private var q1:Number,q2:Number,q3:Number,q4:Number;
 private var observers:Array;
 function ConcreteSubject():void
 {
 observers=new Array();
 }
 public function subscribeObserver(obserNow:Observer):void
 {
 observers.push(obserNow);
 }
 public function unsubscribeObserver(obserNow:Observer):void
 {
 for (var ob=0; ob<observers.length; ob++)
 {
 if (observers[ob]==obserNow)
 {
 observers.splice(ob,1);
 }
 }
 }
 public function notifyObserver():void
 {
 for (var notify in observers)
 {
 observers[notify].update(q1,q2,q3,q4);
 }
 }
 public function setQuarter(q1:Number,q2:Number,
 q3:Number,q4:Number):void
 {
 this.q1=q1;
 this.q2=q2;
 this.q3=q3;
 this.q4=q4;
 notifyObserver();
 }
 }
}

320 | Chapter 8: Observer Pattern

In the concrete observer file, you may have noticed that two different interfaces were
implemented—Observer and DataOut. The former implements the update() function
that calls the outToDesign() function from the DataOut interface. Also, instead of
void, the outToDesign() function returns an Array. Note that the array data is stored
in the variable dataNow and returned through the outToDesign() method.

The Data Design Classes
The classes invoked for the three different data displays require close attention. Keep
in mind that the array for all three classes is the array that returns the value for the four
quarters. All three classes use the same array name, listArray, to help you remember
that the data are all coming from the same subject. The displays may be different, but
the data coming into each object through subscription as an observer is identical.

UIList component

The UIList component needs a copy placed in the Library of the Flash document file
(FLA file) that you’ll use to launch the application. So, before going on, open a new
Flash document file and save it as DoDesign.fla in the same directory as the rest of
the files for this application. Once you have your document file open and saved, use

Example 8-24. ConcreteObserver.as

package
{
 //Concrete Observer
 class ConcreteObserver implements Observer,DataOut
 {
 private var dataNow:Array;
 private var q1:Number,q2:Number,q3:Number,q4:Number;
 public function ConcreteObserver()
 {
 }
 public function outToDesign():Array
 {
 return dataNow;
 }
 public function update(q1:Number,q2:Number,q3:Number,q4:
 Number):void
 {
 this.q1=q1;
 this.q2=q2;
 this.q3=q3;
 this.q4=q4;
 dataNow=new Array(q1,q2,q3,q4);
 outToDesign();
 }
 }
}

Example: Working with Different Data Displays | 321

the following steps to get it set up for use with some Flash 9 and ActionScript 3.0
components:

1. Open the Components and Library panels from the Window menu, and drag a
List component from the Components panel directly into the Library panel.
When you do so, you’ll see some supporting files and folders appear in the
Library as well.

2. Drag a copy of the Button component to the Library panel. You don’t need it
right away, but you will.

3. In the Properties panel, type DataDesign in the Document class window. This
will be the main class. You won’t need it right away, but once you have all your
classes set up, you will.

4. Save the DoDesign.fla file. You won’t need it for a while but keep it open as a
tab, so you can test your application later.

That’s all you have to do with the document file. Open up an ActionScript file, and
save the class in Example 8-25 using the caption as the filename:

Example 8-25. QuarterList.as

package
{
 //Setup for a List Component to receive array data
 import flash.display.Sprite;
 import fl.controls.List;

 public class QuarterList extends Sprite
 {
 var listArray:Array;

 //Data Displayed in UI List Component
 public function QuarterList(uData:Array)
 {
 listArray=new Array();
 listArray=uData;
 var quarter_list:List=new List();
 quarter_list.addItem({label:"Quarterly Results"});
 for (var quarter in listArray)
 {
 quarter_list.addItem({label:"Q"+(quarter+1)+"=
 "+listArray[quarter],data:listArray[quarter]});
 }
 quarter_list.rowCount=5;
 quarter_list.width=110;
 addChild(quarter_list);
 quarter_list.x=50;
 quarter_list.y=55;
 }
 }
}

322 | Chapter 8: Observer Pattern

In this application, all you’re really going to need are the labels that show up indicat-
ing the quarterly values. However, in some future application, you may need the
actual numeric data, and so the class stores both the label and data. A literal label
goes at the top, and so the first label, Quarterly Results, is unchanged and serves as a
label for the UIList component. Figure 8-7 shows what the list box looks like when it
displays data:

As noted, even though you can’t see the actual data, it’s also stored in the compo-
nent. In some applications, there may be a need to access the data in the list box.

Bar chart display

Bar charts have an issue that list boxes don’t: the relative display of data. A com-
puter screen has a finite number of pixels to display the bars in a bar chart. If your
values are relatively small—say between 1 and 100—you have plenty of room to dis-
play your charts, but as the values become bigger, you run out of vertical and hori-
zontal screen real estate. Because the quarterly values have to be displayed as relative
to one another and not all possible values, the job’s somewhat easier. All you have to
do is to find the largest value in the group of four in the array. That value can then be
treated as a factor representing the largest value in the bar chart. For example, sup-
pose you are using vertical bar charts with a maximum of 200 pixels and you have
the following four values:

• 320

• 432

• 121

• 89

The maximum value is 432. That value must be represented by no more than 200
vertical pixels. Using the formula:

(currentValue ÷ MaxValue) x maxPixels

you can work out what each value should be. As you can see, the highest value
would be 200 pixels, and the lesser values in the group would be proportionately
smaller:

432÷432 = 1 x 200 = 200
121÷432 =.28 x 200 =56

Figure 8-7. Data in list box

Example: Working with Different Data Displays | 323

Then, using that converted data, all that’s left to do is draw rectangles representing
those values. Open a new ActionScript file, and save Example 8-26 using the caption
as the filename in the folder with the other files from this application.

Example 8-26. QuarterBar.as

package
{
 //Bar chart maker
 import flash.display.Graphics;
 import flash.display.Shape;
 import flash.display.Sprite;

 public class QuarterBar extends Sprite
 {
 private var listArray:Array;
 private var maxVal:Number=0;
 private var b1:Number, b2:Number, b3:Number,b4:Number;
 private var position:uint=160;
 private var maxSize:uint=150;

 //Data Displayed in Bar Chart
 function QuarterBar(cData:Array)
 {
 listArray=new Array();
 listArray=cData;

 //Set up relative sizes for bars
 for (var max in listArray)
 {
 if (listArray[max] > maxVal)
 {
 maxVal=listArray[max];
 }
 }
 b1=(listArray[0]/maxVal)*maxSize;
 b2=(listArray[1]/maxVal)*maxSize;
 b3=(listArray[2]/maxVal)*maxSize;
 b4=(listArray[3]/maxVal)*maxSize;

 //Bar Chart
 var bar:Shape=new Shape();
 bar.graphics.clear();
 //Draw Chart
 bar.graphics.beginFill(0xdd0000);
 bar.graphics.lineStyle(1,0x000000);
 bar.graphics.drawRect(285,(position-b1),30,b1);
 bar.graphics.drawRect(315,(position-b2),30,b2);
 bar.graphics.drawRect(345,(position-b3),30,b3);
 bar.graphics.drawRect(375,(position-b4),30,b4);
 bar.graphics.endFill();

324 | Chapter 8: Observer Pattern

Figure 8-8 shows what the bar chart looks like when values have been assigned to it.

Once drawn, a graphic does not automatically clear the stage when a new chart
replaces it. The clear() method simply clears current memory, but not the stage. To
clear the stage, you need to use removeChild(). That requires an added child. So in
the main program, we used a flag to make sure that a graphic element had been
added, and then on the next data set, the flag’s cleared and the first drawing
removed.

The line graph

The line graph has the same issues with having proportionate points for drawing
lines as the bar chart has for making rectangles. Fortunately, they’re solved in the
same way. An added feature in the line graph is some kind of background grid to
give some better sense to the lines showing on the screen. The lines, without some
kind of grid, just look like disembodied lines floating in space. So in addition to pro-
viding a drawing system to draw lines in the right positions, this class includes a
background grid. Following the dictum of information designer Edward Tufte, the
grid employs the minimum effective difference, so we used a thin light gray line. The
line graph uses a wider blue line, so while the grid provides a context for the line
graph, it doesn’t get in the way. Open up a new ActionScript file and enter the code
in Example 8-27, using the caption as the filename.

 addChild(bar);
 }
 }
}

Figure 8-8. Bar chart

Example 8-27. QuarterGraph.as

package
{
 //Line graph maker
 import flash.display.Graphics;
 import flash.display.Shape;

Example 8-26. QuarterBar.as (continued)

Example: Working with Different Data Displays | 325

 import flash.display.Sprite;

 public class QuarterGraph extends Sprite
 {
 private var listArray:Array;
 private var maxVal:Number=0;
 private var ln1:Number, ln2:Number, ln3:Number,ln4:Number;
 private var position:uint=300;
 private var maxSize:uint=100;

 //Set up relative sizes for lines
 function QuarterGraph (lData:Array)
 {
 listArray=new Array();
 listArray=lData;

 //Create relative line sizes
 for (var max in listArray)
 {
 if (listArray[max] > maxVal)
 {
 maxVal=listArray[max];
 }
 }
 ln1=(listArray[0]/maxVal)*maxSize;
 ln2=(listArray[1]/maxVal)*maxSize;
 ln3=(listArray[2]/maxVal)*maxSize;
 ln4=(listArray[3]/maxVal)*maxSize;

 //Data Displayed in Line Graph
 var line:Shape=new Shape();
 //Draw graph outline
 line.graphics.lineStyle (.25,0xcccccc);
 line.graphics.moveTo (50,200);
 line.graphics.lineTo (50,position);
 line.graphics.lineTo (200,position);
 line.graphics.moveTo (100,200);
 line.graphics.lineTo (100,position);
 line.graphics.moveTo (150,200);
 line.graphics.lineTo (150,position);
 line.graphics.moveTo (200,200);
 line.graphics.lineTo (200,position);
 line.graphics.moveTo (50,200);
 line.graphics.lineTo (200,200);
 line.graphics.moveTo (50,250);
 line.graphics.lineTo (200,250);
 line.graphics.moveTo (50,275);
 line.graphics.lineTo (200,275);
 line.graphics.moveTo (50,225);
 line.graphics.lineTo (200,225);

Example 8-27. QuarterGraph.as (continued)

326 | Chapter 8: Observer Pattern

Figure 8-9 shows the line graph superimposed on the background grid.

If you ever need to have superimposed line graphs to show change or for compari-
sons, you can set up the main program not to use the removeChild() function for
redrawing a graph.

Pulling All the Elements Together
With 10 different files, pulling them all together in a main class may seem daunting.
However, as you’ll see, the task is actually simplified. The classes handle most of the
grunt-work, and all you need to do is use them.

The most important feature in the DataDesign class is the data entry in the form of
input text fields. As in the space battle example, the different text fields are placed
into array elements. However, instead of using the text fields for data display, these
text fields are used for data entry. Values entered into the text fields are converted to
numbers, and passed to numeric variables. The numeric variables are sent to a con-
crete subject object, and the setter method establishes them as the current values. In
turn, these values are sent out to the concrete observers in an array that’s used in dis-
playing the data. Open a new ActionScript file, enter the code in Example 8-28, and
save it as the caption name.

 //Draw the graph
 line.graphics.lineStyle (2,0x0000cc);
 line.graphics.moveTo (50,(position-ln1));
 line.graphics.lineTo (100,(position-ln2));
 line.graphics.lineTo (150,(position-ln3));
 line.graphics.lineTo (200,(position-ln4));

 addChild (line);
 }
 }
}

Figure 8-9. Line graph

Example 8-27. QuarterGraph.as (continued)

Example: Working with Different Data Displays | 327

Example 8-28. DataDesign.as

package
{
 //Main program
 import flash.display.Sprite;
 import fl.controls.Button;
 //Text Fields for Labels
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.text.TextFieldType;
 //Events
 import flash.events.MouseEvent;
 import flash.events.Event;

 public class DataDesign extends Sprite
 {
 private var dataEntry:Array=[];
 private var quarterGraph:QuarterGraph;
 private var quarterBar:QuarterBar;
 private var quarterList:QuarterList;
 private var dataSub:ConcreteSubject;
 private var listDisplay:ConcreteObserver;
 private var barChart:ConcreteObserver;
 private var lineGraph:ConcreteObserver;
 private var xpos:uint=250;
 private var ypos:uint=250;
 private var dt1:Number,dt2:Number,dt3:Number,dt4:Number;
 private var dataBtn:Button;
 private var barFlag:Boolean=true;

 public function DataDesign ()
 {
 //Set up concrete subjects and observers
 dataSub=new ConcreteSubject();
 listDisplay=new ConcreteObserver();
 barChart=new ConcreteObserver();
 lineGraph=new ConcreteObserver();
 dataSub.subscribeObserver (listDisplay);
 dataSub.subscribeObserver (barChart);
 dataSub.subscribeObserver (lineGraph);

 doText ();
 doDataEntry ();
 doButton ();
 dataBtn.addEventListener (MouseEvent.CLICK,showData);

 }
 //Data Output to Stage
 function showData (ev:Event):void
 {
 if (barFlag)
 {
 barFlag=false;

328 | Chapter 8: Observer Pattern

 }
 else
 {
 removeChild (quarterBar);
 removeChild (quarterGraph);
 }
 //doObservers();
 dt1=Number(dataEntry[0].text);
 dt2=Number(dataEntry[1].text);
 dt3=Number(dataEntry[2].text);
 dt4=Number(dataEntry[3].text);
 doDisplay (dt1,dt2,dt3,dt4);

 //Data Displayed in List UI Component
 quarterList=new QuarterList(listDisplay.outToDesign());
 addChild (quarterList);

 //Data Displayed in Bar Chart
 quarterBar=new QuarterBar(barChart.outToDesign());
 addChild (quarterBar);

 //Data Displayed in Line Graph
 quarterGraph=new QuarterGraph(lineGraph.outToDesign());
 addChild (quarterGraph);
 }
 //Add Text Labels
 private function doText ():void
 {
 var ui:TextField=new TextField();
 var bar:TextField=new TextField();
 var ln:TextField=new TextField();
 var dt:TextField=new TextField();
 ui.autoSize=TextFieldAutoSize.LEFT;
 bar.autoSize=TextFieldAutoSize.LEFT;
 ln.autoSize=TextFieldAutoSize.LEFT;
 addChild(ui),addChild(bar),addChild(ln);
 addChild (dt);
 ui.x=50, bar.x=285,ln.x=50;
 dt.x=xpos;
 ui.y=165, bar.y=165,ln.y=305;
 dt.y=ypos+15;
 ui.text="List UI Display";
 bar.text="Bar Chart Display";
 ln.text="Line Graph Display";
 dt.text="Enter Data";
 }
 //Data value entry function
 private function doDisplay (n1:Number,n2:Number,
 n3:Number,n4:Number):void
 {
 dataSub.setQuarter (n1,n2,n3,n4);
 }

Example 8-28. DataDesign.as (continued)

Example: Working with Different Data Displays | 329

In discussing the chart and graph classes, we noted that unless you removed a current
graphic, it would stay on the stage unless removeChild() is used to get rid of it. Using
the barFlag variable, the class made sure that the chart and graph had been added
before trying to remove it. Without using some kind of test flag, it would have encoun-
tered an error if it tried to remove before the object was added with addChild().

You can probably think of more classes to use to farm out some of the methods.
However, in order to better see how all the data went through the input process and
was passed to the concrete subject for broadcast out to the different display objects,
we allowed this class to grow a bit.

 //Data Entry
 private function doDataEntry ():void
 {
 for (var de=0; de<4; de++)
 {
 dataEntry[de]=new TextField();
 dataEntry[de].border=true;
 dataEntry[de].borderColor=0x999999;
 dataEntry[de].background=true;
 dataEntry[de].backgroundColor=0xcccccc;
 dataEntry[de].type=TextFieldType.INPUT;
 dataEntry[de].width=32;
 dataEntry[de].height=14;
 this.addChild (dataEntry[de]);
 dataEntry[de].x=xpos+(40*de);
 dataEntry[de].y=ypos;
 }
 }
 //Get the Button component
 private function doButton ():void
 {
 dataBtn=new Button();
 dataBtn.label="Show Data";
 this.addChild (dataBtn);
 dataBtn.x=xpos;
 dataBtn.y=ypos+30;
 }
 }
}

Example 8-28. DataDesign.as (continued)

330 | Chapter 8: Observer Pattern

Summary
The real test for a design pattern is its flexibility. As you saw in the examples in this
chapter, very little was changed in the Subject or Observer classes. When the task of
a design pattern is to distribute state changes to a number of different subscribed
observers, you can see that many different kinds of specific applications can use this
pattern. Because of this feature, its flexibility, and relative simplicity, the Observer
design pattern is seen in many different applications.

Equally important, the Observer shows how to program to an interface and not an
implementation. Example 8-1 and Example 8-11 clearly illustrate this process. Each
concrete observer is typed as the supertype (interface) Observer. However, also note
that in some cases where the Observer pattern is put to work, you can’t type an
implementation to a supertype, as you may have noted in Example 8-19. This
doesn’t mean that the example’s invalid; it simply shows that in some designs using
the Observer, when you attempt to program to the interface, you run into problems
because of the characteristics of the interface and its implementation. As a result,
such cases require you to create instances by typing them as implementations.

When thinking about where you can use the Observer pattern, consider situations
where you have some key states that must be sent to different instances. The most
useful implementation is where the exact same information needs to be sent to differ-
ent data display or interpretations. In this way, the application ensures that the exact
same state information is sent without having to generate separate data sources.

331

Chapter 9 CHAPTER 9

Template Method Pattern9

If you write a post and put it on a blog, that’s a
historical document. If you change your template, then

that entry looks completely different. It’s the same
words, but not the same meaning. This all depends on

what historical questions that people will be asking
and we can’t know what they will want.

—Josh Greenberg
Well, I did all the pre-production and I did full demos

of all the songs and then I took it into the studio and
played it for all the guys and then we kind of took that

as the template and did the album live very quickly.
—David Sanborn

What Is the Template Method Pattern?
You’re going to like this pattern. Essentially the template method is an algorithm
made up of a sequence of operations that accomplishes some goal. Imagine a general
set of steps for getting something done such as going to work. If you take a car, boat,
or airplane to work, you’re going to be doing certain things that are similar and oth-
ers that are different. You’ll be transporting yourself in a vehicle, guiding it to a par-
ticular location, and you always grab a cup of coffee to take with you. So if you make
a general template that covers going by car, boat, or airplane, your outline (algo-
rithm) would look something like the following:

1. Prepare transportation.

2. Navigate vehicle.

3. Drink your cup of coffee.

Preparing a car for transportation usually involves little more than making sure it’s
got enough gas and the tires aren’t flat. With a boat, you might want to check to
make sure you have the necessary charts on board and that all the life preservers are
in good shape. An airplane requires a walk around with a pre-flight checklist of items

332 | Chapter 9: Template Method Pattern

to inspect. So, you’re going to need special instructions for the first item in the out-
line depending on the vehicle.

This chapter contains two different types of references to “template
method.” A reference to the Template Method design pattern will
have the first letter of each word capitalized. The template method is
also a reference to a method (function), and that reference will use
lowercase for both words.

For the second step, navigation in a car requires getting on the road, making all the
correct turns, and using the right streets. This can be tricky at times, and the driver
may want to check on traffic reports to avoid congestion or road repairs. Depending
on the circumstances, a boat trip can be anything from a quick trip across a lake to a
complex navigation through shoals, shallows, and currents. Finally, navigating an
airplane can be a simple straight flight on a clear day to an IFR (Instrument Flight
Rules) flight requiring knowledge of several different navigation instruments in
cloudy weather. Like the first step, this too will require specialized instructions.

Finally, you’ve got the cup of coffee you drink on the way to work. That’s pretty
much the same no matter what kind of transportation you use. You’d use the same
kind of travel container with all three modes of transportation, and you’d have to
take care not to spill coffee in your lap. Unlike the first two sets of instructions that
differ for each mode of transportation, this last one’s going to be the same for all
three vehicles.

Making a template for this set of circumstance requires a loosely crafted method for
the first two items and a concrete one for the last. Using the Template Method
design, each of the three functions would be placed in a method so that the sequence
of the steps would be preserved no matter what. The method containing the ordered
functions is the template method—a method to preserve the sequence. Here’s what it
would look like in a rough pseudocode:

//Within an abstract class

//This the the Template Method
final function templateMethod()
{
 prepareTransportation();
 navigatVehicle();
 drinkCoffee();
}

//Abstract functions
function prepareTransportation():void
{
 //nothing here
}

What Is the Template Method Pattern? | 333

function navigateVehicle(): void
{
 //nothing here
}
//Concrete function
function drinkCoffee()
{
 trace("Drinking coffee on the way to work ");
}
//End of class

The Template Method does not require a concrete function. However, the example
illustrates that if you have one that’s needed in all instantiations of the template
method, it’s handy to have.

Key Features
In general, the Template Method design pattern is a flexible algorithm-maker cen-
tered around the domain class where the algorithm’s defined. The following features
characterize the Template Method design pattern:

• Uses inheritance for behavior distribution between classes

• Allows subclasses to provide details for some operations in general algorithm

• Uses inverted control structure—parent class calls operations of a subclass

• Specifies the steps of an algorithm and locks the order of operations in the
algorithm

• Allows for optional “hook” operations for extensions at specified points

In the Behavior grouping of design patterns, the GoF specifies only two patterns
based on inheritance instead of composition, and the Template Method is one.
Because ActionScript 3.0 doesn’t have true abstract classes, you have to remember
not to implement the main abstract class. However, you can program to the abstract
classes interface (supertype), and not the implementation. This chapter’s examples
show this.

By allowing the subclasses to fill in some operations in the different parts of the algo-
rithm, the design pattern allows for both the advantages of inheritance and the flexi-
bility of composition. Essentially the Template Method uses inheritance to vary parts
of the algorithm. Because the operations allow the subclasses to fill in their details,
think of the operations as placeholders awaiting details from the subclasses. By selec-
tively overriding the algorithm’s (template method’s) operations, each subclass can
get the functionality it needs.

The inverted control structure is sometimes called the Hollywood Principle because
the parent classes in effect declare, “Don’t call us, we’ll call you,” to the child classes
(subclasses). This makes the general domain as defined in the abstract class the epi-
center. The parent class calls the operations of a subclass through the template

334 | Chapter 9: Template Method Pattern

method. The child classes just give the details to the operations within an algorithm
controlled by the parent class.

The template method itself is locked using the final attribute. By adding final to a
function, the function cannot be overridden. At first, this may seem to contradict
everything being said about leaving some of the details to the subclasses by overrid-
ing the operations. However, you don’t lock the abstract functions (operations), only
the template method. Figure 9-1 illustrates this arrangement.

As you can see in Figure 9-2, the operations that make up the template method are
not locked. So the subclasses can override the operations all they need. However,
subclasses cannot change the order of the operations that make up the algorithm in
the template method itself.

Finally, you can add an optional hook operation. On one level, a hook is nothing
more than a method that can be overridden in the context of a Template Method
design. It also can be seen as a back door where an implementation (subclass) can
hook into an algorithm. Because the hook concept is best understood in the context
of an example, further discussion will be deferred to later on in the chapter.

The Template Method Model
Upon first encountering the Template Method, most developers are struck by the
simplicity of the pattern’s design, and then by its utility and clarity. Even though the
design as depicted in the class diagram in Figure 9-2 is very simple, it can be used to
solve a wide range of problems.

Figure 9-1. Locked Template Method

class AbstractClass
{
 final function templateMethod()
 {
 operationA()
 operationB()
 operationC()
 }

 function operationA()
 {}
 function operationB()
 {}
 function operationC()
 {}

 }

Locked up

Unlocked

Key OOP Concepts Used with the Template Method | 335

The Template Method design pattern is simple to understand and apply. However,
as you’ll see, it has a number of features that make it unique. The real trick to using
the Template Method is knowing how to differentiate between the abstract func-
tions that must be overridden, concrete functions used consistently throughout the
algorithms that aren’t overridden, and those operations that act as hooks and are
optionally overridden. Throughout the examples, you’ll see more precisely how to
do this.

Key OOP Concepts Used with the Template Method
As one of only two design patterns that use inheritance instead of composition in the
Behavioral category of design patterns, the Template Method would seem to be a
hard sell when it comes to proposing the design pattern as a paragon of good OOP.
After all, the second principle put forth by GoF is to favor composition over inherit-
ance. Why even bother with a design pattern that seems to favor inheritance over
composition? Further, is the Hollywood Principle unique to the design patterns using
inheritance, or is it a general principle usable in both design patterns using composi-
tion as well?

Why Inheritance and Not Composition?
Whenever a design pattern uses inheritance as a key element instead of composition,
you need to consider the reason. To understand the reason, you need to fully under-
stand the principle of favoring composition over inheritance as a general principle in
good OOP. The principle’s established because of certain advantages of composi-
tion over inheritance, especially the composition advantage of not breaking encapsu-
lation. However, Gamma, Helm, Johnson and Vlissides (GoF) note that inheritance
also has certain advantages. One such advantage is that when using subclasses where
some but not all operations are overridden, modifying the reused implementation is
easier. Because the Template Method design pattern does exactly that—uses some
but not all operations that can be overridden to achieve flexibility—it incorporates a
key advantage of inheritance over composition.

Figure 9-2. Template Method

AbstractClass
TemplateMethod()
PrimitiveOperationA()
PrimitiveOperationB()

ConcreteClass
PrimitiveOperationA()
PrimitiveOperationB()

PrimitiveOperationA()
PrimitiveOperationB()

336 | Chapter 9: Template Method Pattern

Further, discussing favoring composition over inheritance, GoF note that reuse by
inheritance eases the process of making new components that can be composed with
old ones. Hence the dictum that composition should be favored over inheritance
needs to be tempered by the knowledge that inheritance and composition actually
work together. This is not to say that the principle of favoring composition over
inheritance is invalid, but rather you need to understand the principle in the context
of its development.

In the process of learning design patterns and the programming princi-
ples surrounding them, do not learn the principles as mantras. Chant-
ing the principles over and over again may help you remember them,
but not necessarily understand them. All the principles exist in some
context, so be certain to understand the principles’ context to use
them effectively.

Abstract Functions and Override Flexibility
In previous chapters we’ve groused about the fact that ActionScript 3.0 doesn’t have
abstract classes. Well, ActionScript 3.0 doesn’t have abstract functions either. Rather
than rant about that fact, a more important issue is their use. An abstract function is
a way of reducing a function to an idea or concept without content. In actual usage,
all this involves is naming the function and placing it in the order you want for your
main algorithm in the template method, not unlike the functions in an interface. In
languages like Java, you can write:

abstract myAbstractFunction();

and that’s it. In ActionScript 3.0, you can accomplish the same thing using:

function myAbstractFunction() {}

So while you don’t have a function that can be designated abstract, you can effec-
tively create all the abstract functions you want, just as you can develop abstract
classes, with ActionScript 3.0.

Aside from the fact that ActionScript 3.0 can create functions that act like abstract
functions, the more important principle is to understand their use in the context of
the Template Method design pattern. Key to all design patterns is the idea of reus-
ability and flexibility. Abstract functions must be overridden, and therein is their flex-
ibility. Whenever a function is overridden, it’s changed. By setting up abstract
functions in the parent class, the subclasses can use them as needed to fill out the
particular implementation of the template method algorithm. Reuse is fostered by
the fact that as long as the algorithm template is applicable, the developer has flexi-
bility because the abstract functions that make up the template method can be modi-
fied to suit the application.

Key OOP Concepts Used with the Template Method | 337

Consider Variation
When selecting a design pattern, developers are advised to consider what should vary
in a design. Here the emphasis changes from fretting over what causes redesign to
considering what you want to change. In the Template Method design pattern, the
template method encapsulates the different parts that go into the main algorithm. Each
abstract operation in the template method varies in the context of the algorithm.
Because the function’s locked, the sequence of operations doesn’t change, but the
operations themselves do. Hence, the design pattern principle of encapsulating what
varies is nicely illustrated in the Template Method design pattern.

The Hollywood Principle
The casting director tells the actors who have tried out for a part, “We’ll let you
know, but don’t call us. We’ll call you.” The Template Method design pattern mir-
rors this: the template method itself is in the parent class, and the parent class calls
the subclasses. More specifically, the template method can call 1) concrete opera-
tions, 2) concrete operations from the main abstract class (where the template
method is defined), 3) primitive operations, 4) factory method (see Chapter 2), and
5) hooks. However, these lower level objects cannot call the parent classes.

Because the GoF discuss only the Hollywood Principle in their Template Method
chapter, we considered whether this “principle” applies to all design patterns or just
certain ones with inverted control structures. If you go back to Chapter 2 and look at
the Factory Method, and Chapter 8 on the Observer pattern, you will see the princi-
ple at work as well. For example, the inverted control structure in the Observer pat-
tern informs all the relevant state changes to the subscribing objects. The
information flows from the top down to the lower level objects.

So, what’s the purpose of the principle? What does it do for reusable code? Eric and
Elisabeth Freeman summed it up nicely as a way to prevent dependency rot. In other
words, it reduces the dependencies of higher-level components on lower-level com-
ponents and all their related dependencies. That’s a good thing because your system
is clearer to work with and understand. Figure 9-3 illustrates this principle.

338 | Chapter 9: Template Method Pattern

Minimalist Example: Abstract Template Method
Even though it may not make a lot of sense to use a Template Method design pattern
when you have only a single subclass, doing so helps reveal the design pattern’s struc-
ture. So, in this minimalist example, you should be able to easily see the underlying
structure used in the Template Method. We don’t need much, just two main classes:

• Abstract class with the algorithm for the template method

• At least one concrete class as a subclass of the abstract class

Look for the operations that will be detailed by the subclasses, and the one opera-
tion that will be constant throughout the subclasses.

Bare Bones Template Method
Examples 9-1 and 9-2 show the two classes we need to get started with this simple
but useful pattern. Save each class using the caption name as the filename.

Figure 9-3. Hollywood principle

Example 9-1. AbstractClass.as

package
{
 //Abstract Class
 class AbstractClass
 {
 public final function templateMethod():void
 {
 primitiveA();
 primitiveB();

Abstract Class

operationA()
operationB()

template method()

operationA()
operationB()

(locked algorithm)

Responsible for order of
operations in algorithm

Tucked inside of
locked algorithm

Concrete Class

operationA()
operationB()

Concrete Class

operationA()
operationB()

Specification of operations, but not algorithm.
Calls from template method, but not subclass

Minimalist Example: Abstract Template Method | 339

Looking at the AbstractClass you can see that the main algorithm is encapsulated in
the templateMethod() function. The final statement indicates that the method is
locked up and cannot be changed by the subclasses. However, all that really means is
that the order cannot be changed by the subclasses. Both the primitiveA() and
primitiveB() functions, which make up the templateMethod(), are abstract. They
are awaiting the details from the subclasses. So while the templateMethod() is locked,
the operations that go into it don’t have to be, and can be changed by the subclasses.

At the same time, if you want any of the operations that make up the template
method to be locked, you can do that as well. The function fromTemplate() is locked
in the same way as the main template method. As part of the templateMethod() func-
tion, the fromTemplate() operation cannot be changed by an override statement as
the two abstract function can. So you can have the best of both worlds. Those opera-

 fromTemplate();
 }
 protected function primitiveA():void
 {
 //Awaiting instructions
 }
 protected function primitiveB():void
 {
 //Awaiting instructions
 }
 private final function fromTemplate():void
 {
 trace("Hello everybody!");
 }
 };
}

Example 9-2. ConcreteClass.as

package
{
 //Any concrete class
 public class ConcreteClass extends AbstractClass
 {
 trace("Concrete class");
 override protected function primitiveA():void
 {
 trace("Special A");
 }
 override protected function primitiveB():void
 {
 trace("Special B");
 }
 }
}

Example 9-1. AbstractClass.as (continued)

340 | Chapter 9: Template Method Pattern

tions in the main algorithm that you want to be detailed by the subclasses, you leave
abstract, and to those you want to remain constant, you apply the final statement.

In the subclass, ConcreteClass, both abstract methods from the AbstractClass have
been overridden. The subclass gives each a different content. However, the third
operation that was locked up, fromTemplate(), is nowhere to be found. That’s
because it cannot be changed, and because it was inherited from the AbstractClass.
There’s no need to add anything.

Testing Templates
To test the minimalist example, create a single instance of the concrete class, and
then add the template method to the instance. As you saw in the concrete class, the
two abstract operations were given details, but nothing else was done. Save
Example 9-3 in the same folder as the other two files in the minimalist example using
the caption as the filename.

To test the example, open a new Flash document file, and type in TestTemplate in the
Document class window in the Properties panel. When you test the application, you
should see the following in your Output panel:

Concrete class
Special A
Special B
Hello everybody!

The output shows that the special details added by the subclass in addition to the
invariant method are in the order locked into the template method algorithm. Keep-
ing in mind that the example is to expose the structure of the Template Method, you
can see how some of the details are deferred to the subclass (Special A and Special B),
how the algorithm’s order is preserved, and how any constant (locked) operations
are made available.

Example 9-3. TestTemplate.as

package
{
 import flash.display.Sprite;
 public class TestTemplate extends Sprite
 {
 public function TestTemplate()
 {
 var testPlate:AbstractClass=new ConcreteClass();
 testPlate.templateMethod();
 }
 }
}

Employing Flexibility in the Template Method | 341

Employing Flexibility in the Template Method
Now that you have a better idea of how the Template Method design pattern’s struc-
ture works, let’s see how it can be usefully employed. In this next example, you’ll see
an implementation that uses the same template method for two different concrete
classes. Figure 9-4 shows the class diagram:

The main abstract class, ShedMaker, includes three operations in the templateMethod()
function. Two are abstract and will be overridden by the subclasses where the details
will be supplied. The third operation is a final function, not to be overridden, and will
be used in all subclasses.

The example looks at what you may need in creating a shed in general, and what
different types of sheds may need. The example develops an algorithm that does the
following:

• Designs the shed

• Determines which supplies will be required

• Stores tools in the completed shed

All sheds can use these steps, but depending on the kind of shed, the details will vary
in certain aspects. In this case, we’re supposing that one shed will be made of wood
and the other of corrugated steel. Because designing with wood is different than
designing for steel, the design operation (doDesign()) is abstract. Likewise, determin-
ing which supplies you need is different as well, and so the determineSupplies()
function is also abstract. However, no matter what kind of shed is built, storing tools
is the same, and so that function is locked so it won’t be overridden.

To get started, open three new ActionScript files, and enter the code in Examples 9-4
to 9-6. Use the caption names as the filenames, and save all files in the same direc-
tory.

Figure 9-4. Template method with two concrete classes

ShedMaker
templateMethod()
 doDesign()
 determineSupplies()
 storeTools()

doDesign()
determineSupplies()
storeTools()

WoodShed
doDesign()
determineSupplies()

SteelShed
doDesign()
determineSupplies()

342 | Chapter 9: Template Method Pattern

Example 9-4. ShedMaker.as

package
{
 //Abstract Class
 class ShedMaker
 {
 public final function templateMethod():void
 {
 doDesign();
 determineSupplies();
 storeTools();
 }
 protected function doDesign():void
 {
 }
 protected function determineSupplies():void
 {
 }
 private final function storeTools():void
 {
 trace("Now I can put all my tools away.\n");
 }
 }
}

Example 9-5. WoodShed.as

package
{
 class WoodShed extends ShedMaker
 {
 trace("WoodShed");
 override protected function doDesign():void
 {
 trace("Designing Wood Shed");
 }
 override protected function determineSupplies():void
 {
 trace("I'll do it with 1 X 12's for the walls.");
 trace("The rest I'll do with 2 X 4's.");
 }
 }
}

Employing Flexibility in the Template Method | 343

In both concrete classes, a trace() statement indicates which class is instantiated so
that you can see it in the output. More importantly, each of the two concrete classes
adds unique details to the two abstract operations, doDesign() and
determineSupplies(). Neither includes anything regarding the storeTools() func-
tion. Because storeTools() is invariant in all implementations, there’s no reason to
include it. It’s inherited from the ShedMaker class.

To test it, both concrete classes are instantiated in the same testing class, BuildShed.
Example 9-7 shows that the two different instances use the interface data type to
instantiate the wood and steel instances. Save the file using the example caption
name in the same directory as Examples 9-4 to 9-6.

Example 9-6. SteelShed.as

package
{
 class SteelShed extends ShedMaker
 {
 trace("SteelShed");
 override protected function doDesign():void
 {
 trace("Designing Steel Shed");
 }
 override protected function determineSupplies():void
 {
 trace("Ok I'll need some corregated sheet metal.")
 trace("Better get some steel fasteners too.");
 }
 }
}

Example 9-7. BuildShed.as

package
{
 import flash.display.Sprite;
 public class BuildShed extends Sprite
 {
 public function BuildShed()
 {
 //Make a steel shed
 var steel:ShedMaker=new SteelShed();
 steel.templateMethod();

 //Make a wood shed
 var wood:ShedMaker=new WoodShed();
 wood.templateMethod();
 }
 }
}

344 | Chapter 9: Template Method Pattern

Both instances employ the templateMethod() function, but as you will see when you
test the application, the results are very different. Open a new Flash document file,
and in the Document class window, type in BuildShed. When you test the applica-
tion, you’ll see the following in the Output window:

SteelShed
Designing Steel Shed
Ok I'll need some corregated sheet metal.
Better get some steel fasteners too.
Now I can put all my tools away.

WoodShed
Designing Wood Shed
I'll do it with 1 X 12's for the walls.
The rest I'll do with 2 X 4's.
Now I can put all my tools away.

In this output, you can see the Template Method at work. In the first instance, you
can see that it shows the SteelShed concrete class has been invoked. All the output is
uniquely relevant to the steel shed except for the last line before the wood shed out-
put. That last line is the locked up operation from the abstract class, ShedMaker.
Then, the WoodShed instance gets an entirely different set of results when it invokes
the templateMethod(), with the exception of the last line.

From this example, we hope you can better see the conceptual structure of the
Template Method. All the calls are made from the higher-level ShedMaker class to the
lower-level concrete class instances through the templateMethod() function. So even
though the lower level override functions define the specifics of some of the
operations within the template method, the actual call follows the Hollywood Princi-
ple and calls downward through the template method.

Selecting and Playing Sound and Video
Considering how Flash handles sound and video, they both share some actions in
common. For example, both need to have filenames to play, and both have to some-
how have a “play” command. Using the Template Method, we should be able to key
in on those two functions of getting a filename and playing, and placing them into an
algorithm. However, because of the differences between the two media, we’ll leave
the details up to the concrete classes. The locked operation that’ll be in the main
abstract class will be a text header.

Setting Up the Format
The initial abstract class containing an algorithm for a filename selector and play-
command operation is pretty simple, because the operations have no content. A
third operation that adds a text message to the top of the screen will be locked, and
while it’s relatively simple, it requires importing a number of packages. Open a new

Selecting and Playing Sound and Video | 345

ActionScript file, copy the contents of Example 9-8, and save it using the caption
name for the filename.

The template method is named mediaProducer(), and it orders the three operations,
selectMedia(), playNow(), and fromMediaDesign(). In the concrete classes, details are
added to the selection and play operations, but the fromMediaDesign() function is all
set to go, and requires no further details or reference.

Example 9-8. VidAudio.as

package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.text.TextFormat;

 //Abstract Class
 class VidAudio extends Sprite
 {
 private var mText:TextField;

 //Template method
 public final function mediaProducer ():void
 {
 selectMedia ();
 playNow ();
 fromMediaDesign ();
 }
 protected function selectMedia ():void
 {
 //Awaiting instructions
 }
 protected function playNow ():void
 {
 //Awaiting instructions
 }
 private final function fromMediaDesign ():void
 {
 mText=new TextField();
 mText.autoSize=TextFieldAutoSize.CENTER;
 mText.background=false;
 mText.text="Welcome to Template Media!";
 addChild (mText);
 var pos:Number=mText.length;
 mText.x= 200-(pos/2);
 mText.y=10;
 }
 }
}

346 | Chapter 9: Template Method Pattern

Not-So-Concrete Concrete Classes
The next step is to add a couple of concrete classes for selecting between video and
audio. First, both need to have some kind of selection, and rather than adding a real-
istic operation for selecting a video or audio file dynamically, both concrete classes
just add a literal. That’s pretty simple, but it illustrates the concept of adding neces-
sary details to the operations. Feel free to change the operation to accept dynamic
input. The play operations instantiate instances to play whatever names have been
placed in the string for the media file. Open up two more ActionScript files and add
Example 9-9 and Example 9-10 to the same folder as the abstract classes using the
caption names for the filenames.

Example 9-9. Vid.as

package
{
 //A concrete class
 //Vid class
 public class Vid extends VidAudio
 {
 private var vidName:String;
 override protected function selectMedia ():void
 {
 vidName="media";
 }
 override protected function playNow ():void
 {
 var playVideo=new PlayVideo(vidName);
 this.addChild (playVideo);
 }
 }
}

Example 9-10. Audio.as

package
{
 //A concrete class
 //Audio Class
 public class Audio extends VidAudio
 {
 private var tuneName:String;
 override protected function selectMedia ():void
 {
 tuneName="iBlues";
 }
 override protected function playNow ():void
 {
 var playTune:PlayTune=new PlayTune(tuneName);
 }
 }
}

Selecting and Playing Sound and Video | 347

The process of actually playing a video or sound file has been farmed out to classes
that take care of all the details. So the operation that plays the video or audio is
tucked away in another class, and all you need to do in the concrete classes is to
instantiate the respective classes and add the instances to a display list.

At this juncture, you need to be aware of the connection between the two opera-
tions. The order of the algorithm’s operations is still the same; however, both opera-
tions are linked by a common private string variable used to store the name of the
media. Notice that both concrete classes use the selectMedia() and playNow() func-
tions, even though they’re used in different ways.

The Detail Classes
While the Template Method design pattern allows for details to be added to the
operations in the template method itself through the concrete subclasses, both the
video and audio operations are a bit more detailed. So rather than shoehorning them
into concrete classes, each has its own class. Of course, by doing so, you set up
classes that you can very likely use in other applications.

The class built for the video is fairly elaborate, and the one for the sound is quite sim-
ple. Open two new ActionScript files and save the code in Example 9-11 and
Example 9-12 using the caption names as the filenames. Be sure to save them in the
same directory as the others in the application.

Example 9-11. PlayVideo.as

package
{
 import flash.display.Sprite;
 import flash.media.Video;
 import flash.events.NetStatusEvent;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.text.TextField;

 public class PlayVideo extends Sprite
 {
 private var vidNow:Video;
 private var durText:TextField;

 public function PlayVideo(vid:String)
 {
 var nc:NetConnection=new NetConnection();
 nc.connect(null);
 var ns:NetStream=new NetStream(nc);
 vidNow=new Video();
 vidNow.attachNetStream(ns);
 vid+=".flv";
 ns.play(vid);
 vidNow.x=((550/2)-(vidNow.width/2));
 vidNow.y=50;

348 | Chapter 9: Template Method Pattern

 addChild(vidNow);
 ns.addEventListener(NetStatusEvent.NET_STATUS, stopClear);

 //MetaData check
 var dummy:Object=new Object();
 ns.client=dummy;
 dummy.onMetaData=getMeta;
 }

 //Clear the video and duration text when video is over
 function stopClear(event:NetStatusEvent):void
 {
 if (event.info.code=="NetStream.Play.Stop")
 {
 vidNow.clear();
 durText.text="";
 }
 }

 //Show the
 function getMeta(mdata:Object):void
 {
 durText=new TextField();
 this.addChild(durText);
 durText.text="Duration:"+mdata.duration;
 durText.x=((550/2)-(durText.width/2));
 durText.y=300;
 }
 }
}

Example 9-12. PlayTune.as

package
{
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;

 public class PlayTune
 {
 private var channelNow:SoundChannel;

 public function PlayTune(tuneNow:String)
 {
 tuneNow+=".mp3";
 var playMe:URLRequest=new URLRequest(tuneNow);
 var soundMedia:Sound=new Sound();
 soundMedia.load(playMe);
 channelNow=soundMedia.play();
 }
 }
}

Example 9-11. PlayVideo.as (continued)

Selecting and Playing Sound and Video | 349

In setting up the video play, not only did we create a play trigger, we also added
functions for cleaning up after the play was complete, and a way to extract duration
metadata from the video file being played. That makes the class much handier for
use in other applications. In both the video and audio classes, the extension names
were added so that all the user needs is a media name without an extension.

Playing the Media
Finally, the application needs a user interface to choose between playing sounds or
video. It needs functions to call one of two of the concrete template method classes
and some functions to put the interface buttons where they’re needed. Open a new
ActionScript file and enter Example 9-13 code, saving the file using the caption name.
Be sure to save it in the same folder as the other files that make up the application.

Example 9-13. PlayMedia .as

package
{
 import flash.display.Sprite;
 import flash.display.DisplayObject;
 import flash.events.MouseEvent;

 public class PlayMedia extends Sprite
 {
 var videoButton:VideoButton;
 var tuneButton:TuneButton;

 public function PlayMedia ():void
 {
 doButton ();
 }
 //Get the buttons out of the library and put them on display
 private function doButton ():void
 {
 tuneButton=new TuneButton();
 videoButton=new VideoButton();
 addChild (tuneButton);
 addChild (videoButton);
 tuneButton.x=((stage.stageWidth/2)-
 (1.5*tuneButton.width)), tuneButton.y=30;
 videoButton.x=((stage.stageWidth/2)+5), videoButton.y=30;
 tuneButton.addEventListener
 (MouseEvent.CLICK,getTune,false,0,true);
 videoButton.addEventListener
 (MouseEvent.CLICK,getVideo,false,0,true);
 }

 //Invoke the template method (mediaProducer) for the video
 private function getVideo (e:MouseEvent):void
 {
 var vidUp:VidAudio=new Vid();

350 | Chapter 9: Template Method Pattern

Most of the work in this application has been done with ActionScript, but a Flash doc-
ument file will be used to create the buttons for the UI. The following steps show how:

1. Open a new Flash document and save it as PlayMedia.fla in the same folder as
the other files in the application.

2. Select Insert ➝ New Symbol from the menu bar.

3. In the New Symbol dialog box, select Button as the type. Type VideoButton in
the Name window, and click the Export for ActionScript checkbox. Click OK to
enter the Symbol editing mode.

4. Select the Rectangle tool, and set the Rectangle Corner Radius to 8. Draw a rect-
angle with the dimensions W=49 and H=60.

5. Add a second layer while still in the Symbol editing mode. Name the top layer
“Text” and the bottom layer “Shape.” In the Text layer, add the static text label,
“Video.” Click OK.

6. Repeat Steps 2 to 5, substituting TuneButton for the button name, and “Tune” for
the static text label in Step 5.

7. Your Library panel should show two buttons, one named VideoButton and the
other named TuneButton. Each is considered a class, and instances of each are
used in the PlayMedia class.

To work with this application, you’ll need two additional files; an MP3 file and an
FLV file. Rename the MP3 file to iBlues.mp3 and the FLV file to media.flv.
Figure 9-5 shows the application running the video.

As you can see by this example, the “details” changed in the algorithm’s operations
can be extensive. Looking at the two main concrete classes, the methods handling the
video are far more extensive than those handling the audio. Not only does it include a
mechanism for starting the play, it also has a routine for extracting the metadata from
the FLV file, and displaying it on the stage in a text field. In contrast the path taken for
sound does not use the display array to add sound children. That’s because the sound
isn’t displayed on the stage, and so no display elements are required.

 vidUp.mediaProducer ();
 addChild (vidUp);
 }
 //Invoke the template method (mediaProducer) for the audio
 private function getTune (e:MouseEvent):void
 {
 var tuneUp:VidAudio=new Audio();
 tuneUp.mediaProducer ();
 addChild (tuneUp);
 }
 }
}

Example 9-13. PlayMedia .as (continued)

Hooking It Up | 351

Hooking It Up
Controlling subclass extensions is one use for the Template Method. In discussing
applicability, the originators of the design pattern concepts (GoF) include what they
call a “hook” operation. The hook operation is placed into the template method to
allow extensions to the hook in the main algorithm.

For ActionScript 3.0 programmers, hook functions look exactly like the abstract
functions. That’s because ActionScript 3.0 has no real abstract functions, so we have
to keep in mind that the difference between hook operations and abstract ones is
that hook operations can be overridden, while abstraction operations must be over-
ridden. This is where comment lines come in handy, as the following script shows:

//Abstract function
function doAbstract():void {}

//Hook function
function doHook():void {}

Neither the abstract function nor the hook function has to have any content. How-
ever, each is set up differently, and adding content to the hook operation provides a
way of setting up default conditions.

Figure 9-5. Video and tune player application

352 | Chapter 9: Template Method Pattern

When to Hook?
The hook’s useful when only part of your algorithm needs to have detailed adjust-
ments made some of the time by the subclasses. Because the subclasses are expected
to provide detail to a template method’s algorithm, you don’t need the hook as often
as you might expect. A hook is a concrete method, but it can still be overridden just
like any abstract method; so it’s not a matter of being written in concrete. Given that
ActionScript 3.0 doesn’t differentiate between abstract and concrete functions, the
difference is even more blurred.

One way to approach the use of a hook in a template method is to consider excep-
tions in an algorithm. For example, if 9 out of 10 times your subclasses will not over-
ride the hook operation, it’s probably a good idea to use the hook. The less a hook
will be overridden, the more useful it is. This may seem like a contradiction, but con-
sider that hooks are put into the algorithm because they don’t have to be overrid-
den. Most of the time, the subclasses can just implement the template method and
be done with it, using the default value provided by your hook. However, when the
subclass needs to use the hook to provide an exception to a default value, then it
becomes useful.

The Hook as a Lonely Repairman
For years the Maytag Company depicted their repairmen as idle and lonely. The mes-
sage was that Maytag products were so well manufactured that the repairmen’s ser-
vices were unnecessary. We can look at the hook in the template method in the same
light—lonely repairmen who are seldom required.

The hook’s use is an exception; so we need to consider a scenario where conditions
are usually the same but occasionally change, where we need the hook. One of the
great flying areas can be found along the desert border area in Southern California.
The weather is typically clear with almost unlimited visibility, allowing pilots to fly
under Visual Flight Rules (VFR). Flying down to Baja, Mexico is a beautiful trip,
especially along the Sea of Cortez on the eastern side of the Baja peninsula. Consider
a pilot who flies tourists down to Punta Bufeo in Baja to visit the sea lion rookery.
With just a few exceptions, the pilot can file a VFR flight plan and take off every day.
However, every now and then, the weather conditions are less than VFR condi-
tions—cloudy, foggy or extremely hazy. Because the pilot is rated only for VFR con-
ditions, he can’t fly under non-VFR or Instrument Flight Conditions (IFR). Using the
hook, we’ll create a template method to deal with these the situation.

Baja Flight with a Hook
Using our hypothetical Baja pilot, this next application shows how to employ a hook
operation in a Template Method design pattern. We’re assuming that the pilot flies
out of the Calexico airport where the weather’s usually sunny and clear. Open four

Hooking It Up | 353

new ActionScript files, and enter the code for Examples 9-14 to 9-17, saving them as
the caption name.

The hook function, checkWeather(), returns a default value of “Nice and clear.” The
template method algorithm is made up of two operations, checkAirplane() and con-
ditionally, fileVFR(). Both are abstract functions whose details are left to the sub-
classes for specification. The condition for the fileVFR() operation is a string
returned by the checkWeather() hook method. By setting the default to “Nice and
clear,” overriding the checkWeather() method is usually unnecessary.

Example 9-14. BajaFlight.as

package
{
 //Abstract Class
 class BajaFlight
 {
 protected var weatherNow:String;

 public final function templateMethod ():void
 {
 checkAirplane ();
 if (checkWeather()=="Nice and clear")
 {
 fileVFR ();
 }
 }
 protected function fileVFR ():void
 {
 //Awaiting instructions
 }
 protected function checkAirplane ():void
 {
 //Awaiting instructions
 }
 //Hook function
 protected function checkWeather ():String
 {
 weatherNow="Nice and clear";
 return weatherNow;
 }
 }
}

Example 9-15. FlightPlan.as

package
{
 //Any concrete class
 public class FlightPlan extends BajaFlight
 {
 trace("*^* Clear as a Bell *^*");
 override protected function checkAirplane():void

354 | Chapter 9: Template Method Pattern

Because both the checkAirplane() and fileVFR() operations are abstract functions
(in intention, at least), they must be overridden. However, the hook method is being
treated as a concrete method, so we can optionally override it. In Example 9-15, the
hook method checkWeather() is not included in the class. It’s inherited from the
BajaFlight class and is employed without any changes or need to include it in the
class otherwise. However, in Example 9-16, we want to change the value of the
checkWeather() hook method, so it is overridden, and “cloudy” is returned instead of
the default (“Nice and clear”). The template method only launches the fileVFR()
method if the return value of checkWeather() is “Nice and clear.” As a result, the
fileVFR() operation is never launched.

 {
 trace("Doing the walk around...looking good.");
 }

 override protected function fileVFR():void
 {
 trace("I'm off to Baja on a beautiful day!");
 trace("First I'll file a VFR flightplan\n");
 }
 }
}

Example 9-16. Cloudy.as

package
{
 //Any concrete class
 public class Cloudy extends BajaFlight
 {

 trace ("*^* Cloudy *^*");
 override protected function checkAirplane ():void
 {
 trace ("Doing the walk around...looking good");
 }
 override protected function fileVFR ():void
 {
 trace ("I'm off to Baja on a beautiful day!");
 trace ("First I'll file a VFR flightplan\n");
 }

 //Invoking the hook
 override protected function checkWeather ():String
 {
 weatherNow="Cloudy";
 return weatherNow;
 }
 }
}

Example 9-15. FlightPlan.as (continued)

Hooking It Up | 355

In Example 9-16, the fileVFR() function shows code that has been overridden, and
it contains the exact same content as in the FlightPlan class. This was done inten-
tionally to illustrate that it doesn’t matter what code you place in the fileVFR()
method in this class. Because the hook method has changed the return string that
prevents the fileVFR() function from executing, its content is immaterial.

Unlike Java and other languages where you can create actual abstract
functions, in ActionScript 3.0 (following ECMAScript standards) we
have to pretend that certain methods are abstract. As part of that fic-
tion, the fileVFR() method is overridden in Example 9-16. The
method, fileVFR(), could have been completely left out of the Cloudy
class. It is not going to be launched because the hook method pre-
vents it. By changing the hook return value to something other than
“Nice and clear,” the fileVFR() method won’t launch. So the only rea-
son that the fileVFR() method is included in the class at all is to help
understand it as an abstract method that must be overridden by every
class that subclasses the main abstract class, BajaFlight.

By learning design patterns from examples where abstract functions
do exist, you’ll find it easier if you have “abstract” functions of your
own in your ActionScript 3.0 applications. Also, in certain design pat-
terns such as the Template Method, the hook methods are differenti-
ated from the abstract methods because all abstract methods must be
overridden, while hook methods need to be overridden only when
they’re changed by a subclass.

Finally, we’re all set to test the application. Ideally, we would have received data
from a weather service that we could use to indicate whether or not the conditions
were favorable for VFR flight. Instead, the TestFlight class in Example 9-17 simply
creates instances of both the FlightPlan and Cloudy classes.

Example 9-17. TestFlight.as

package
{
 import flash.display.Sprite;
 public class TestFlight extends Sprite
 {
 public function TestFlight()
 {
 var takeOff:BajaFlight=new FlightPlan();
 takeOff.templateMethod();

 var grounded:BajaFlight=new Cloudy();
 grounded.templateMethod();
 }
 }
}

356 | Chapter 9: Template Method Pattern

Open a new Flash document, and type TestFlight into the document class window.
You should see the following results:

^ Clear as a Bell *^*
Doing the walk around...looking good.
I'm off to Baja on a beautiful day!
First I'll file a VFR flightplan

^ Cloudy *^*
Doing the walk around...looking good

In the first part, you can see that both of the algorithm’s operations successfully out-
put the checkAirplane() and fileVFR() method results. However, in the Cloudy
instance, only the checkAirplane() method invokes. This is as expected because in
the Cloudy class, the checkWeather() hook method returned something other than
“Nice and clear,” thereby canceling the fileVFR() operation.

Summary
The Template Method design pattern shows how to distribute behavior among sub-
classes. It leaves much of the detail work to the subclasses, but at the same time it
can control the order of the algorithm making up the template method. It stands as a
good example of controlling dependencies and use of the inverted control structure.

As such, the Template Method has many uses where both control and flexibility are
required while minimizing dependency. It is a widely used pattern, and in many
abstract classes you can find some a template method at work to some degree. It’s
truly a general pattern because it offers both algorithm control and subclass flexibil-
ity in implementing the class methods.

The Template Method in ActionScript 3.0 is quite useful even though the language
lacks abstract functions and classes. By treating the default internal functions with
no content as though they are abstract operations, it’s possible to use template meth-
ods that are virtually identical to languages that feature both abstract classes and
functions.

Finally, hook methods offer further flexibility without really disrupting the main
algorithm’s flow. These methods can act like “back doors” to the main algorithm. All
the operations in the template methods stay in the same order, but they can be
changed in terms of what they do, or if they’re omitted in the invocation of the tem-
plate method. It’s little wonder that the Template Method, with its strong structure
and flexible implementation, is so widely used.

357

Chapter 10 CHAPTER 10

State Pattern10

A State without the means of some change is without
the means of its conservation.

—Edmund Burke
All modern revolutions have ended in a reinforcement

of the power of the State.
—Albert Camus

Design Pattern to Create a State Machine
The State design pattern focuses on the different states in an application, transitions
between states, and the different behaviors within a state. Looking at a simple light
switch application, we can see two states, On and Off. In the Off state, the light is
not illuminated, and in the On state, the light illuminates. Further, the light switch
transitions from the Off state to the On state using a method that changes the appli-
cation’s state—flipping the switch. Likewise, it transitions from On to Off with a dif-
ferent transition and method. An interface holds the transitions, and each state
implements the transitions as methods unique to the state. Each method is imple-
mented differently depending on the context of its use. So, a method,
illuminateLight(), for example, would do one thing in the Off state and something
entirely different in the On state, even though illuminateLight() method is part of
both states.

Key Features
The following key features characterize the State design pattern:

• States exist internally as part of an object.

• Objects change in certain ways when states change. Objects may appear to
change classes, but they’re changing behavior that is part of the class.

• Each state’s behavior depends on the current state of other states in the object.

358 | Chapter 10: State Pattern

One application where the state pattern’s popular is device simulation. Devices that
change an object’s state are subject to change as the states change. The volume knob
on a radio changes the sound’s volume state. More complex simulated devices
include a music sound mixer board where simulated sliders change different states to
affect the overall object (sound mixer) and the resulting sound. A Flash video player
has several states to manage: play, record, append, pause and stop. Each state in the
video player behaves according to the state of the other states as well as its own state.

The State Model
To understand and appreciate the value of the State design pattern, we need to
understand something about State Machines. A State Machine is the general model of
states you would be using in an application with the State design pattern. So if a
video player application is designed around key states, the application would be the
state machine. We can also refer to state engines that run the state machines. (Think
of your automobile’s blueprints as a state machine, and the actual car as the state
engine.) The programming we use to move from one state to another is the state
engine. The state engine data structure defines mechanisms for handling messages
and managing contexts.

Rather than beginning with the usual diagrams associated with design patterns,
we’re going to start with a statechart. At its most basic level, a statechart is an illus-
tration of an application’s states and transitions, and as such is a model for the state
machine and engine. Taking a simple video player application, we can see the Play
and Stop states. When the application first runs, the application enters the Stop state
and can only transition to the Play state. Figure 10-1 shows a statechart depicting
this condition.

The illustration is computer-drawn. The idea when sketching state-
charts is to start with a rough idea, and then refine the idea with
sketches. You’ll find that the process goes quicker using hand sketches
with a pencil and scratch paper instead of a drawing program.

The line going from a black dot to the Stop state shows the Application-Not-Run-
ning state, but we’ll assume that the starting point is with the application running in
the Stop state. This could be illustrated in a hierarchical state with Application

Figure 10-1. Simple statechart showing states

Stop Play

start

stop

Design Pattern to Create a State Machine | 359

Running and Application-Not-Running states, or we could place the whole hierar-
chy into Computer-On and Computer-Off states, but that’s not too useful because
we’re not coding to those states.

Before going on to discuss getting from one state to another, let’s consider what each
state can actually do. In the Stop state, I can only initiate the Play state. That is, in
the Stop state, I can’t stop because I’m already stopped. By the same token, if I’m in
the Play state, the only thing I can do is transition to the Stop state.

Transitions

The transitions in a state machine are the actions to change states. In Figure 10-1, the
line from Stop to Play might be a startPlay() method of some sort. From the Play to
Stop state, it might be a stopPlay() method. As more states are added, you might
find that you can’t transition directly from one state to another, but rather you have
to go through a series of states to get where you want to go. As we’ll see later, if
you’re in the Stop state, you can’t go directly to the Pause state. You first have to go
to the Play state, and then, once in the Play state, go to the Pause state.

Triggers

To initiate a transition, you need some kind of trigger. A trigger is any event that ini-
tiates a transition from one state to another. Usually, we think of some kind of user
action such as a mouse movement or button click, but in simulations certain states
can be triggered by ongoing conditions such as running out of fuel, draining a bat-
tery or a collision with an object. Likewise, triggers are subject to contexts and
should only work in the appropriate contexts to initiate a state. So, while you might
use a Play button to initiate the Play state from the Stop state, it shouldn’t trigger a
Play state from the Play state.

Triggers are often placed along with the transitions on the statecharts. This helps to
identify the trigger events and the transitions they trigger. Figure 10-2 shows the stat-
echart updated to include both the triggers and transitions they initiate.

If you’re interested in more information about using state engines, statecharts, and
the more general aspects of working with Flash and states, see Flash Mx for Interac-

Figure 10-2. Statechart with states, transitions, and triggers

Stop Play

start

stop

Press button

Press button

360 | Chapter 10: State Pattern

tive Simulation by Jonathan Kaye and David Castillo (Thomson, 2003). While going
back a few generations of Flash, the book is timeless in its concepts and shows some
very smooth device simulations.

State design structure

As one of the design patterns described in Design Patterns: Elements of Reusable
Object-Oriented Software by the Gang of Four, the value of the State design was rec-
ognized beyond the boundaries of those who were primarily interested in state
machines. Closely resembling the Strategy pattern, the State pattern is used when an
application’s behavior depends on changing states at runtime, or has complex condi-
tional statements that branch depending on a current state. When the internal states
change, an object alters its behavior when designed using the State pattern.
Figure 10-3 shows the general structure in the class diagram of the State pattern.

Key OOP Concepts Used with the State Pattern
While polymorphism is a fundamental OOP concept, it doesn’t help very much if its
use and purpose are not understood. It’s just one of the many basic concepts in
object-oriented programming that’s used to point to different implementations of
objects in multiple forms. One feature you’ll see in the State design pattern is that the
polymorphism is pretty obvious. This will help you better understand how polymor-
phism can be useful in OO programs.

Looking at the State interface in Example 10-1, you can see the different methods
that become core behaviors for different states. Each state is its own class. However,
as you look at each class, you can see that the behaviors of the same methods take on
different forms—polymorphism hard at work. Just look at each of the state classes,
and there you see all of the same methods but in different forms.

Perhaps most significant is the ability of each state to take care of knowing itself. For
instance, in the following examples, you will see that both the Stop and Play states
(classes) have a startPlay() method. However, each acts differently in its context.
Moving from a Stop state initiates playing the video. If the same method, startPlay(),
is fired while the play is in progress, it does nothing. Doing nothing is important some-
times. Let’s say that someone is looking at a video and, for whatever reason, presses

Figure 10-3. State design pattern

Context

Request

State

Handle()

ConcreteStateA

Handle()

ConcreteState

Handle()

state->Handle()

Minimalist Abstract State Pattern | 361

the Play Button. In a typical video player application, the player will start over again. In
that application, the startPlay() method is as dumb as a box of rocks. However,
because polymorphism allows multiple forms of the same method, it allows us to pro-
vide the application with multiple forms that know what to do in different contexts. So
in the Play state, the method knows it’s already playing, and so it does nothing. A user
can pound on the Play Button all he wants, and the video just keeps on playing. He can
press the Stop Button, and the video will stop, just like it’s supposed to do.

To better appreciate polymorphism, you will see that as more states are added to the
application, there’s more to keep track of. With more methods, we absolutely, posi-
tively do not want to modify the wrong thing. Without polymorphism, we run the risk
of having the same method do something we definitely do not want it to do. Thus, if
you don’t want your application to start playing video all over again every time the
startPlay() method is invoked, using the State design pattern, you can structure the
application to only start at the beginning when the originating state is the Stop state.
Likewise, you can structure the startPlay() to begin playing all over again from the
Play state—you write the code, and so you control how the methods behave.

When you read the next chapter on the Strategy design pattern, you may have a
major case of déjà vu. The juxtaposition of these two chapters is no accident. Once
you complete the example applications in each chapter, you should definitely get a
different feel for each, even though the structures look very similar. The State design
pattern has its focus on the states and well-defined transitions. This is one reason we
use statecharts—they help clarify and simplify the architectural work in focusing on
the different states and how they transition from one to another. The transitions in
the State design can be controlled by the states themselves or by the context class.
Also, because the State design creates a class for each state (behavior environment),
you tend to generate more classes with the State design than with the Strategy
design. Determining which behavior to use is delegated to the State classes, while the
Strategy pattern encapsulates a family of algorithms and allows them to vary inde-
pendent of the client within the structure that uses them.

Minimalist Abstract State Pattern
Using the State design pattern, all the behaviors (methods) for a single state are
placed into single objects (concrete states), and all transition behaviors for the appli-
cation (state machine) are placed into a single interface. Each state object imple-
ments the interface in a fashion appropriate for the state. Because of this structure,
no conditional statements are required to branch differentially depending on the cur-
rent state. Rather than writing complex conditional statements, the individual state
objects define how the methods are to behave for that state.

362 | Chapter 10: State Pattern

For example, with a two-state machine (Play and Stop), the following pseudocode
could direct the state behavior to start playing the video, depending on the state
machine’s current state.

function doPlay():void {
 if(state == Play)
 {
 trace("You're already playing.");
 }
 else if (state == Stop)
 {
 trace("Go to the Play state.");
 }
}

With a couple of states that’s not too difficult. However, as you add states, things get
more complicated and you find a sea of conditional statements that have to all work
in sync. The alternative is to set up “contextual” behavior using a State pattern. For
example, the following code in Example 10-1 has two different objects with different
implementations of behaviors from an interface:

Example 10-1. State.as

//Interface
interface State
{
 function startPlay():void;
 function stopPlay():void;
}
//Play State object
class PlayState implements State
{
 public function startPlay():void
 {
 trace("You're already playing");
 }
 public function stopPlay():void
 {
 trace("Go to the Stop state.");
 }
}
//Stop State object
class StopState implements State
{
 public function startPlay():void
 {
 trace("Go to the Play state.");
 }
 public function stopPlay():void
 {
 trace("You're already stopped");
 }
}

Minimalist Abstract State Pattern | 363

As you can see, the behaviors (methods) have different implementations in the differ-
ent states. When you add more states, all you need to do is add their transitional
behaviors to the interface and create a new concrete state (class) that implements the
behaviors. Each new behavior needs to be added to the existing state classes.

Managing All Those States: Hardworking Context Class
To manage the states and their transitions, you need some kind of management
object—the state engine for your state machine. In Figure 10-3 the box labeled
“Context” is the abstraction of the state engine. The context manages the different
states that make up the state machine and contain the different states. Figure 10-4
shows a more concrete representation of what needs to be transformed:

Creating a context class

Looking at our example of creating a simple video player, we need a context that will
serve to get and set the different states. So, the next phase will be to look at a class
(object) that does just that. This context class should be saved as VideoWorks.as.
First, take a look at the class in Example 10-2, and then we’ll see what’s going on:

Figure 10-4. State Design Pattern applied to video

Example 10-2. VideoWorks.as

1 package
2 {
3 //Context class
4 class VideoWorks
5 {
6 var playState:State;
7 var stopState:State;
8 var state:State;
9 public function VideoWorks()

10 {
11 trace("Video Player is On");
12 playState = new PlayState(this);
13 stopState = new StopState(this);
14 state=stopState;
15 }
16 public function startPlay():void
17 {

VideoWorks

Request

State

startPlay()
stopPlay()

PlayState

startPlay()
stopPlay()

StopState

startPlay()
stopPlay()

state->Handle()

364 | Chapter 10: State Pattern

Initially, in lines 6-8, the script instantiates three State objects—one of each of the
two we designed (PlayState and StopState), and one (state) that acts as a variable to
hold the current state. Because the state machine begins in the Stop state, the state
variable is assigned the Stop state. (This works just like the light switch before you
change it from the off state to the on state.)

Next, the two behaviors from the State interface are specified in terms of the current
state’s context (lines 16-23). We’re going to have to add some code to the two state
classes for it to work with the context class, but for now, think of what will happen
in the two different states when those behaviors are executed. For example, in the
Play state, the startPlay() method doesn’t do anything, but in the Stop state, it
switches to the Play state.

Finally, add the getter and setter methods (lines 24-40). We need a total of six meth-
ods—a set and get function for each of the three state instances. The setters return
nothing and the getters return a State object.

Completing and testing the abstract state machine

To get everything working, we need to revise the state classes to include the refer-
ence to the context—VideoWorks. Save Example 10-3 as StopState.as.

18 state.startPlay();
19 }
20 public function stopPlay():void
21 {
22 state.stopPlay();
23 }
24 public function setState(state:State):void
25 {
26 trace("A new state is set");
27 this.state=state;
28 }
29 public function getState():State
30 {
31 return state;
32 }
33 public function getPlayState():State
34 {
35 return this.playState;
36 }
37 public function getStopState():State
38 {
39 return this.stopState;
40 }
41 }
42 }
43

Example 10-2. VideoWorks.as (continued)

Minimalist Abstract State Pattern | 365

By adding a VideoWorks instance, we have a way to access the getter and setter meth-
ods in each state. Line 15 invokes the VideoWorks instance to change the state to the
Play state.

Next, we’ll do the same thing with the Play state shown in Example 10-4. Save the
following as PlayState.as.

Example 10-3. StopState.as

1 package
2 {
3 //Stop State;
4 class StopState implements State
5 {
6 var videoWorks:VideoWorks;
7 public function StopState(videoWorks:VideoWorks)
8 {
9 trace("--Stop State--");

10 this.videoWorks=videoWorks;
11 }
12 public function startPlay():void
13 {
14 trace("Begin playing");
15 videoWorks.setState(videoWorks.getPlayState());
16 }
17 public function stopPlay():void
18 {
19 trace("You're already stopped");
20 }
21 }
22 }

Example 10-4. PlayState.as

1 package
2 {
3 //Play State
4 class PlayState implements State
5 {
6 var videoWorks:VideoWorks;
7 public function PlayState(videoWorks:VideoWorks)
8 {
9 trace("--Play State--");

10 this.videoWorks=videoWorks;
11 }
12 public function startPlay():void
13 {
14 trace("You're already playing");
15 }
16 public function stopPlay():void
17 {
18 trace("Stop playing.");
19 videoWorks.setState(videoWorks.getStopState());
20 }
21 }
22 }

366 | Chapter 10: State Pattern

To complete the state machine, we need to create the actual interface, and because
the machine has only two states and two behaviors, this is a simple matter. Return-
ing to the original statechart, you can see only two transitions—one to start the play
and one to stop the play. So, all we’ll need are two functions for abstractions of those
two transitions. Save the script in Example 10-5 as State.as:

The transition behaviors are in lines 6 and 7. Later, we’ll be adding more transitional
behaviors as the project grows, but the actual machine is complete. Finally, we need
to create an FLA file with ActionScript that will execute the state machine.

To both test the abstract application and show features of the State design pattern,
the test should invoke the VideoWorks class and the two states of Play and Stop using
the primary transitions (methods)—startPlay() and stopPlay(). In fact, it should
call both states twice. From the Stop state (default initial state), the application
should be transitioned to the Play state. Then, it should do it a second time to make
sure that the state recognizes the new context. The same should be done to transi-
tion back to the Stop state. Save Example 10-6 as TestState.as in the same folder as
the other files:

Example 10-5. State.as

1 package
2 {
3 //State Machine Interface
4 interface State
5 {
6 function startPlay():void;
7 function stopPlay():void;
8 }
9 }

Example 10-6. TestState.as

1 package
2 {
3 //Test states
4 import flash.display.Sprite;
5 public class TestState extends Sprite
6 {
7 public function TestState():void
8 {
9 var test:VideoWorks = new VideoWorks();

10 test.startPlay();
11 test.startPlay();
12 test.stopPlay();
13 test.stopPlay();
14 }
15 }
16 }

Video Player Concrete State Application | 367

Because the application at this stage only provides traces, you will need to use the
Flash Test (Control ➝ Test or Control ➝ Test Project) to see the output. Open a new
Flash document, and, in the Document class window, type in TestState. The follow-
ing should appear in the Output window:

Video Player is On
--Play State--
--Stop State--
Begin playing
A new state is set
You're already playing
Stop playing.
A new state is set
You're already stopped

Both the VideoWorks class and the PlayState and StopState classes include a trace
statement to indicate their instantiation, and appear as soon as you test the script.
Because the initial state is Stop, it changes states to the Play state when the first
startPlay() method is invoked. Also, because you’re changing states, a trace state-
ment from the VideoWorks class indicates a state change. However, when the second
startPlay() method is invoked a second time, the same method in a different con-
text recognizes that it’s already in the Play state and simply indicates that you’re
already playing. When you press the Stop button, you move to the Stop state, set-
ting a new state, but on the second press, the same function in this new context rec-
ognizes that you’re already in the Stop state, and indicates that fact.

Video Player Concrete State Application
All that you’ve seen so far has been the output as trace() statements to help under-
stand how a State design pattern and State machine works. To add something use-
ful, we need to include a reference to both a NetStream object and a string for
referencing an FLV file. However, we need a string reference only for playing the
video, because we can stop it simply by closing the NetStream instance. The follow-
ing four scripts set up the state machine to actually play and stop a video. All of the
trace statements have been left in place.

With the implementation of an application that actually plays a video, we’ll need to
import the necessary parts. Because the NetStream class is used in the interface and
the two states, each of those files will need to import the class. However, while the
VideoWorks class uses both the Play and Stop classes, it does not have to import the
NetStream() class. This is because it’s already imported in the Play and Stop classes.

The following five listings, Example 10-7 through Example 10-11, should be entered
into an ActionScript file and saved with the captions as the filenames. Save all the
files in the same folder.

368 | Chapter 10: State Pattern

In the following StopState class shown in Example 10-8, you will note that the
startPlay() method has been implemented to actually play the selected FLV file.
That transition to the Play state is not to start playing the video, but rather to set the
state where the video is playing.

Note that in the PlayState class shown in Example 10-9, the startPlay() method
wisely does nothing other than issue a statement to remind the user that the video is
already playing. In the test mode, the message appears in the Output window, but
when the user’s working with it, no message is issued. The feedback issues from the
playing video.

Example 10-7. State.as

package
{
 //State Interface #1
 import flash.net.NetStream;
 interface State
 {
 function startPlay(ns:NetStream,flv:String):void;
 function stopPlay(ns:NetStream):void;
 }
}

Example 10-8. StopState.as

package
{
 //Stop State #2
 import flash.net.NetStream;

 class StopState implements State
 {
 private var videoWorks:VideoWorks;
 public function StopState(videoWorks:VideoWorks)
 {
 trace("--Stop State--");
 this.videoWorks=videoWorks;
 }
 public function startPlay(ns:NetStream,flv:String):void
 {
 ns.play(flv);
 trace("Begin playing");
 videoWorks.setState(videoWorks.getPlayState());
 }
 public function stopPlay(ns:NetStream):void
 {
 trace("You're already stopped");
 }
 }
}

Video Player Concrete State Application | 369

Next, the context class shown in Example 10-10 for this design pattern pulls it all
together. Note that there is no import of the NetStream object. However, the listing
clearly shows that the NetSteam object is one of the parameters of both the
startPlay() and stopPlay() function parameters. If you look closely, you’ll see that
both the functions to start and stop play are instances of the PlayState and StopState
classes, which did import the necessary NetStream class.

Example 10-9. PlayState.as

package
{
 //Play State #3
 import flash.net.NetStream;

 class PlayState implements State
 {
 private var videoWorks:VideoWorks;
 public function PlayState(videoWorks:VideoWorks)
 {
 trace("--Play State--");
 this.videoWorks=videoWorks;
 }
 public function startPlay(ns:NetStream,flv:String):void
 {
 trace("You're already playing");
 }
 public function stopPlay(ns:NetStream):void
 {
 ns.close();
 trace("Stop playing.");
 videoWorks.setState(videoWorks.getStopState());
 }
 }
}

Example 10-10. VideoWorks.as

package
{
 import flash.net.NetStream;
 //Context Class #4
 class VideoWorks
 {
 private var playState:State;
 private var stopState:State;
 private var state:State;
 public function VideoWorks()
 {
 trace("Video Player is on");
 playState = new PlayState(this);
 stopState = new StopState(this);
 state=stopState;
 }

370 | Chapter 10: State Pattern

In addition to the classes that make up the State design pattern, you will need a copy
of the NetBtn and BtnState classes shown in Example 10-11 and Example 10-12. In
fact, in all the examples in this chapter, the NetBtn.as and BtnState.as files will be
required in the same folder as the other files. In subsequent listings, we didn’t
include the listing for the class because they’re all identical. (That means once you’ve
entered it, you don’t have to do anything else with it.) So keep the files handy, and
make sure that they’re included in the folders with your other classes.

 public function startPlay(ns:NetStream,flv:String):void
 {
 state.startPlay(ns,flv);
 }
 public function stopPlay(ns:NetStream):void
 {
 state.stopPlay(ns);
 }
 public function setState(state:State):void
 {
 trace("A new state is set");
 this.state=state;
 }
 public function getState():State
 {
 return state;
 }
 public function getPlayState():State
 {
 return this.playState;
 }
 public function getStopState():State
 {
 return this.stopState;
 }
 }
}

Example 10-11. NetBtn.as

package
{
 //Button for transition triggers
 import flash.display.Sprite;
 import flash.display.SimpleButton;
 import flash.display.Shape;
 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 public class NetBtn extends SimpleButton
 {
 public function NetBtn (txt:String)

Example 10-10. VideoWorks.as (continued)

Video Player Concrete State Application | 371

To test the application, you’ll need an FLV file named test.flv. You can convert an
existing video file (e.g. avi, mov) or use any flv file on hand. Place the file in the same
folder as the application. Finally, you’ll need a script to test the application, so open
a new ActionScript file, enter the following listing in Example 10-13, and save it as
TestVid.as:

 {
 upState = new BtnState(0xfab383, 0x9e0039,txt);
 downState = new BtnState(0xffffff,0x9e0039, txt);
 overState= new BtnState (0x9e0039,0xfab383,txt);
 hitTestState=upState;
 }
 }
}

Example 10-12. BtnState.as

package
{
 //States for transition buttons
 import flash.display.Sprite;
 import flash.display.Shape;
 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 class BtnState extends Sprite
 {
 public var btnLabel:TextField;
 public function BtnState (color:uint,color2:uint,btnLabelText:String)
 {
 btnLabel=new TextField ;
 btnLabel.text=btnLabelText;
 btnLabel.x=5;
 btnLabel.autoSize=TextFieldAutoSize.LEFT;
 var format:TextFormat=new TextFormat("Verdana");
 format.size=12;
 btnLabel.setTextFormat (format);
 var btnWidth:Number=btnLabel.textWidth + 10;
 var bkground:Shape=new Shape;
 bkground.graphics.beginFill (color);
 bkground.graphics.lineStyle (2,color2);
 bkground.graphics.drawRect (0,0,btnWidth,18);
 addChild (bkground);
 addChild (btnLabel);
 }
 }
}

Example 10-11. NetBtn.as (continued)

372 | Chapter 10: State Pattern

Example 10-13. TestVid.as

package
{
 //Implement FMS2 App and Test State Machine #7
 import flash.display.Sprite;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.media.Video;
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.events.MouseEvent;
 import flash.events.NetStatusEvent;

 public class TestVid extends Sprite
 {
 private var nc:NetConnection=new NetConnection();
 private var ns:NetStream;
 private var vid:Video=new Video(320,240);
 private var vidTest:VideoWorks;
 private var playBtn:NetBtn;
 private var stopBtn:NetBtn;
 private var flv:String;
 private var flv_txt:TextField;
 private var dummy:Object;

 public function TestVid ()
 {
 nc.connect (null);
 ns=new NetStream(nc);
 addChild (vid);
 vid.x=(stage.stageWidth/2)-(vid.width/2);
 vid.y=(stage.stageHeight/2)-(vid.height/2);

 //Instantiate State Machine
 vidTest=new VideoWorks();

 //Play and Stop Buttons
 playBtn=new NetBtn("Play");
 addChild (playBtn);
 playBtn.x=(stage.stageWidth/2)-50;
 playBtn.y=350;
 stopBtn=new NetBtn("Stop");
 addChild (stopBtn);
 stopBtn.x=(stage.stageWidth/2)+50;
 stopBtn.y=350;

 //Add Event Listeners
 playBtn.addEventListener (MouseEvent.CLICK,doPlay);
 stopBtn.addEventListener (MouseEvent.CLICK,doStop);

 //Add the text field
 flv_txt= new TextField();
 flv_txt.border=true;

Video Player Concrete State Application | 373

 flv_txt.borderColor=0x9e0039;
 flv_txt.background=true;
 flv_txt.backgroundColor=0xfab383;
 flv_txt.type=TextFieldType.INPUT;
 flv_txt.x=(stage.stageWidth/2)-45;
 flv_txt.y=10;
 flv_txt.width=90;
 flv_txt.height=16;
 addChild (flv_txt);

 //This prevents a MetaData error being thrown
 dummy=new Object();
 ns.client=dummy;
 dummy.onMetaData=getMeta;

 //NetStream
 ns.addEventListener (NetStatusEvent.NET_STATUS, flvCheck);
 }
 //MetaData
 private function getMeta (mdata:Object):void
 {
 trace (mdata.duration);
 }
 //Handle flv
 private function flvCheck (event:NetStatusEvent):void
 {
 switch (event.info.code)
 {
 case "NetStream.Play.Stop" :
 vidTest.stopPlay (ns);
 vid.clear ();
 break;
 case "NetStream.Play.StreamNotFound" :
 vidTest.stopPlay (ns);
 flv_txt.text="File not found";
 break;
 }
 }
 //Start play
 private function doPlay (e:MouseEvent):void
 {
 if (flv_txt.text != "" && flv_txt.text !=
 "Provide file name")
 {
 flv_txt.textColor=0x000000;
 flv=flv_txt.text + ".flv";
 vidTest.startPlay (ns,flv);
 vid.attachNetStream (ns);
 }
 else
 {
 flv_txt.textColor=0xcc0000;

Example 10-13. TestVid.as (continued)

374 | Chapter 10: State Pattern

Open a new Flash document file, and in the center of the stage, draw a rectangle
(W=320, H=240) with a 6-point stroke, the color value 9E0039, and the fill color
FAB383. Use the Align panel to make sure that the rectangle is perfectly centered
because it serves as a backdrop for the video that will be placed on top of it. In the
Document class window, type in TestVid, and test the application.

The UI is simple and related to the transitions—Stop and Start (playing video).You
can see the relationship between the video playing and the related trace statement
showing what happens when you press the button. For example, if you press Start
and the video is running, nothing new occurs because in the Play state, the
startPlay() function does nothing other than offering a trace statement to the effect
that you’re already playing.

Expanding the State Design: Adding States
A fundamental feature of virtually all design patterns is their ability to expand and
accept change. The kind of change you’re expecting in an application determines, to
some extent, the type of design pattern you select. In this particular application,
we’re adding states.

Adding the Pause State to the Statechart
The first state to be added to the state machine is a Pause state. This state only exists
inside the Play state, and you cannot get to the Pause state directly from the Stop state.
To get to the Pause state, you must first be in the Play state, and then you can turn the
Pause state on and off. To correctly depict this new state, we need to use a hierarchi-
cal state diagram. Figure 10-5 shows a statechart with the necessary hierarchy.

The hierarchy in Figure 10-5 is a simple one. The first level is the Play and Stop
states, and then, within the Play state are the Pause and No Pause states.

Because the pause function is a toggle between the Play and Pause states, the No
Pause state is exactly the same as the Play state. So, rather than creating Pause Start

 flv_txt.text="Provide file name";
 }
 }
 //Stop play
 private function doStop (e:MouseEvent):void
 {
 vidTest.stopPlay (ns);
 vid.clear ();
 }
 }
}

Example 10-13. TestVid.as (continued)

Expanding the State Design: Adding States | 375

and Pause Stop functions, a “Do Pause” behavior will be established to act differ-
ently in different states. In a Pause state, the Do Pause behavior returns to the default
Play state and in the Play state, it goes to the Pause state.

Adding New Behaviors
The first step is to add a new behavior (method) to the current ones in the State.as
file. This behavior is a state transition from playing to pause and back to playing. To
begin, the first element to add is the pause behavior to the set of states. This is fairly
simple because it too has a NetStream parameter, so changes can be made without
further imports:

function doPause(ns:NetStream):void;

The first step is to change the State.as by adding the new function as shown in
Example 10-14 line 9:

One of the requirements for an interface is that all implementations of the interface
include all the interface methods. The next step will be to add the method to the
Stop and Play states as in Example 10-15:

Figure 10-5. Hierarchical statechart

Example 10-14. State.as

1 package
2 {
3 //State Interface #1
4 import flash.net.NetStream;
5 interface State
6 {
7 function startPlay(ns:NetStream,flv:String):void;
8 function stopPlay(ns:NetStream):void;
9 function doPause(ns:NetStream):void;

10 }
11 }

Example 10-15. StopState.as

1 package
2 {
3 //Stop State #2
4 import flash.net.NetStream;
5

Stop Play Pause

376 | Chapter 10: State Pattern

The doPause() method is added to the StopState.as file as shown in line 24, but it
makes no sense to set the Pause state from the Stop state because then nothing is
playing to pause. So all that’s added is a trace() statement on line 26 that indicates
that such a transition is not possible.

Working with the Play state is an entirely different proposition. Essentially, the Pause
state is a subset of the Play state. In fact, when using a toggle pause, you can think of
the play as “play without pause” and “play with pause.” With ActionScript 3.0,
another option is to use the new NetStream.pause() and NetStream.resume() meth-
ods. Had we done that, two, instead of one, additional states would be required. For
now, though, just change the PlayState.as file as shown in Example 10-16, in lines
24–29:

6 class StopState implements State
7 {
8 private var videoWorks:VideoWorks;
9 public function StopState(videoWorks:VideoWorks)

10 {
11 trace("--Stop State--");
12 this.videoWorks=videoWorks;
13 }
14 public function startPlay(ns:NetStream,flv:String):void
15 {
16 ns.play(flv);
17 trace("Begin playing");
18 videoWorks.setState(videoWorks.getPlayState());
19 }
20 public function stopPlay(ns:NetStream):void
21 {
22 trace("You're already stopped");
23 }
24 public function doPause(ns:NetStream):void
25 {
26 trace("Cannot go to Stop from Pause.");
27 }
28 }
29 }

Example 10-16. PlayState.as

1 package
2 {
3 //Play State #3
4 import flash.net.NetStream;
5
6 class PlayState implements State
7 {
8 private var videoWorks:VideoWorks;
9 public function PlayState(videoWorks:VideoWorks)

10 {

Example 10-15. StopState.as (continued)

Expanding the State Design: Adding States | 377

Next, the new PauseState class implements the State interface. The doPause() func-
tion in the Pause state uses the exact same ns.togglePause() used in the PlayState
class as shown in Example 10-17. However, instead of getting the PauseState, it gets
the PlayState. The interesting feature of a toggle method is that very different func-
tions may use the same class method.

11 trace("--Play State--");
12 this.videoWorks=videoWorks;
13 }
14 public function startPlay(ns:NetStream,flv:String):void
15 {
16 trace("You're already playing");
17 }
18 public function stopPlay(ns:NetStream):void
19 {
20 ns.close();
21 trace("Stop playing.");
22 videoWorks.setState(videoWorks.getStopState());
23 }
24 public function doPause(ns:NetStream):void
25 {
26 ns.togglePause();
27 trace("Begin pause.");
28 videoWorks.setState(videoWorks.getPauseState());
29 }
30 }
31 }

Example 10-17. PauseState.as

1 package
2 {
3 //Pause State #4
4 import flash.net.NetStream;
5
6 class PauseState implements State
7 {
8 var videoWorks:VideoWorks;
9 public function PauseState(videoWorks:VideoWorks)

10 {
11 trace("--Pause State--");
12 this.videoWorks=videoWorks;
13 }
14 public function startPlay(ns:NetStream,flv:String):void
15 {
16 trace("You have to go to unpause");
17 }
18 public function stopPlay(ns:NetStream):void
19 {
20 trace("Don't go to Stop from Pause");
21 }

Example 10-16. PlayState.as (continued)

378 | Chapter 10: State Pattern

As with the individual state classes, you also need to add a PauseState instance to the
VideoWorks class as shown in Example 10-18. Remember that this class contains all
the setters and getters, and you certainly need that to invoke the pause behavior for
the application. This is easy to do because all it takes is a single variable for the
PauseState instance, a doPause() function, and then adding the pause getter.

22 public function doPause(ns:NetStream):void
23 {
24 ns.togglePause();
25 trace("Quit pausing.");
26 videoWorks.setState(videoWorks.getPlayState());
27 }
28 }
29 }

Example 10-18. VideoWorks.as

package
{
 //Context Class #5
 import flash.net.NetStream;

 class VideoWorks
 {
 private var playState:State;
 private var stopState:State;
 private var pauseState:State;
 private var state:State;
 public function VideoWorks()
 {
 trace("Video Player is on");
 playState = new PlayState(this);
 stopState = new StopState(this);
 pauseState = new PauseState(this);
 state=stopState;
 }
 public function startPlay(ns:NetStream,flv:String):void
 {
 state.startPlay(ns,flv);
 }
 public function stopPlay(ns:NetStream):void
 {
 state.stopPlay(ns);
 }
 public function doPause(ns:NetStream):void
 {
 state.doPause(ns);
 }
 public function setState(state:State):void
 {
 trace("A new state is set");

Example 10-17. PauseState.as

Expanding the State Design: Adding States | 379

To test the additional pause class, all you need to do in the test class is add another
button instance. With three buttons, a little more positioning thought has to go into
it, but expanding the State design pattern is very easy. All the changes for adding the
additional button are on lines 45-48 and 53. So just edit the TestVid.as file as shown
in Example 10-19, and save it as TestPause.as.

 this.state=state;
 }
 public function getState():State
 {
 return state;
 }
 public function getPlayState():State
 {
 return this.playState;
 }
 public function getStopState():State
 {
 return this.stopState;
 }
 public function getPauseState():State
 {
 return this.pauseState;
 }
 }
}

Example 10-19. TestPause.as

1 package
2 {
3 //Implement FMS2 App and Test State Machine #6
4 import flash.display.Sprite;
5 import flash.net.NetConnection;
6 import flash.net.NetStream;
7 import flash.media.Video;
8 import flash.text.TextField;
9 import flash.text.TextFieldType;

10 import flash.events.MouseEvent;
11 import flash.events.NetStatusEvent;
12
13 public class TestPause extends Sprite
14 {
15 private var nc:NetConnection=new NetConnection();
16 private var ns:NetStream;
17 private var vid:Video=new Video(320,240);
18 private var vidTest:VideoWorks;
19 private var playBtn:NetBtn;
20 private var stopBtn:NetBtn;
21 private var flv:String;

Example 10-18. VideoWorks.as (continued)

380 | Chapter 10: State Pattern

22 private var flv_txt:TextField;
23 private var dummy:Object;
24
25 public function TestPause ()
26 {
27 nc.connect (null);
28 ns=new NetStream(nc);
29 addChild (vid);
30 vid.x=stage.stageWidth / 2 - vid.width / 2;
31 vid.y=stage.stageHeight / 2 - vid.height / 2;
32
33 //Instantiate State Machine
34 vidTest=new VideoWorks ;
35
36 //Play, Stop and Pause Buttons
37 playBtn=new NetBtn("Play");
38 addChild (playBtn);
39 playBtn.x=stage.stageWidth / 2 - 100 + playBtn.width / 2;
40 playBtn.y=350;
41 stopBtn=new NetBtn("Stop");
42 addChild (stopBtn);
43 stopBtn.x=stage.stageWidth / 2 - stopBtn.width / 2;
44 stopBtn.y=350;
45 var pauseBtn:NetBtn=new NetBtn("Pause");
46 addChild (pauseBtn);
47 pauseBtn.x=(stage.stageWidth / 2 + 100) - pauseBtn.width;
48 pauseBtn.y=350;
49
50 //Add Event Listeners
51 playBtn.addEventListener (MouseEvent.CLICK,doPlay);
52 stopBtn.addEventListener (MouseEvent.CLICK,doStop);
53 pauseBtn.addEventListener (MouseEvent.CLICK,pauseNow);
54
55 //Add the text field
56 flv_txt=new TextField ;
57 flv_txt.border=true;
58 flv_txt.borderColor=0x9e0039;
59 flv_txt.background=true;
60 flv_txt.backgroundColor=0xfab383;
61 flv_txt.type=TextFieldType.INPUT;
62 flv_txt.x=stage.stageWidth / 2 - 45;
63 flv_txt.y=10;
64 flv_txt.width=90;
65 flv_txt.height=16;
66 addChild (flv_txt);
67
68 //This prevents a MetaData error being thrown
69 dummy=new Object ;
70 ns.client=dummy;
71 dummy.onMetaData=getMeta;
72
73 //NetStream
74 ns.addEventListener (NetStatusEvent.NET_STATUS,flvCheck);

Example 10-19. TestPause.as (continued)

Expanding the State Design: Adding States | 381

75 }
76 //MetaData
77 private function getMeta (mdata:Object):void
78 {
79 trace (mdata.duration);
80 }
81 //Handle flv
82 private function flvCheck (event:NetStatusEvent):void
83 {
84 switch (event.info.code)
85 {
86 case "NetStream.Play.Stop" :
87 vidTest.stopPlay (ns);
88 vid.clear ();
89 break;
90 case "NetStream.Play.StreamNotFound" :
91 vidTest.stopPlay (ns);
92 flv_txt.text="File not found";
93 break;
94 }
95 }
96 //Start play
97 private function doPlay (e:MouseEvent):void
98 {
99 if (flv_txt.text != "" && flv_txt.text !=

100 "Provide file name")
101 {
102 flv_txt.textColor=0x000000;
103 flv=flv_txt.text + ".flv";
104 vidTest.startPlay (ns,flv);
105 vid.attachNetStream (ns);
106 }
107 else
108 {
109 flv_txt.textColor=0xcc0000;
110 flv_txt.text="Provide file name";
111 }
112 }
113 //Stop play
114 private function doStop (e:MouseEvent):void
115 {
116 vidTest.stopPlay (ns);
117 vid.clear ();
118 }
119 //Pause play
120 function pauseNow (e:MouseEvent):void
121 {
122 vidTest.doPause (ns);
123 }
124 }
125 }
126

Example 10-19. TestPause.as (continued)

382 | Chapter 10: State Pattern

Figure 10-6 shows what your video player should look like.

Adding More States and Streaming Capabilities
Now that the structure can support a simple FLV playback system, the next step will
be to add two additional states and see if the state machine can be adapted to a Flash
Media Server application. Keeping the focus on the design pattern, only two new
states will be added—Record and Append.

Changing from a Flash application to a Flash Media Server 2 (FMS2) application
requires key changes in the FLA script to include a connection to the server, and add-
ing Camera and Microphone objects. Otherwise, you’ll find that adding the addi-
tional states of Record and Append are relatively simple.

Setting Up Your ActionScript 3.0 Script for FMS2
Adding states is relatively easy, as you’ve seen. However, when you add Flash Media
Server 2, you need to take care of a few matters to make sure that your application
works correctly. Because AS 3.0 and Client-Side ActionScript (CSAS) used in FMS2
are a bit different, you need to import the net.ObjectEncoding class. By doing so,

Figure 10-6. Player with added Pause button

Adding More States and Streaming Capabilities | 383

ActionScript 3.0 and CSAS can work together. The ActionScript 3.0 default Action
Message Format (AMF) is AMF3, but FMS2 needs AMF0. So, you need to change
the ObjectEncoding class to AMF0 using the line,

NetConnection.defaultObjectEncoding=flash.net.ObjectEncoding.AMF0;

This line needs to be in your implementation of the State design pattern, but not in
the classes that make up the pattern. (See Example 10-27)

You will see in the StopState class we made for this application (Example 10-21) we
need to have a key difference in the way that the NetStream.play() method is
employed. By adding a second parameter to the method, it’s effectively changed into
a CSAS method. However, because the flash.net.ObjectEncoding has been
imported, the two different versions of ActionScript can work together.

Flash Media Server 2 is an open socket media server available from
Adobe. You can download the Developer’s Version free from

http://www.adobe.com/products/flashmediaserver/

You will need to set it up in a Windows or Linux server environment,
or just on your own computer with Windows OS. On a Macintosh,
you’ll need to be in the Windows mode to set it up.

Once installed on your system, just add a folder named flvstate in the applications
folder of the Flash Media Server. Once that’s done, you don’t need to do anything
else with the server other than make sure that it’s running when you use the FMS
application. (You’ll need to follow the FMS2 documentation for the setup.)

The Adaptable States
The first task when working with state machine models is to update the model.
Figure 10-7 shows the addition of two new states—Append and Record. The origi-
nal three states are pretty much the same as before. Note that the Stop state is the
central one for all transitions except for the Play-Pause toggle. To change from any
state except Pause, the transition must first go to the Stop state.

As noted at the outset, statecharts make it easy to see required program changes. By
adding two more states, Append and Record, all the other states and contexts need
to be changed as well. However, you don’t have to change a huge number of condi-
tional statements. The testing application also needs changes, but because that code
is more a user of the state machine than an actual part of the state machine, it will be
handled separately. The following scripts, Examples 10-20 through 10-26, add all the
necessary changes for the state machine:

http://www.adobe.com/products/flashmediaserver/

384 | Chapter 10: State Pattern

Note that instead of naming the method for stopping the video play, it’s been
changed to stopAll() in line 10. The reason for this is that in the different states,
stopping means something different. It can mean stop recording and appending in
addition to stop playing the video. So the change focuses on the fact that it’s not just
to do one thing. It’s another instance where polymorphism is coming in handy.

Next, the StopState class has one NetStream method that’s part of an older Action-
Script, Client-Side ActionScript (CSAS) from Flash Media Server 2. In ActionScript 3.
0, the NetStream.play() method expects only a single argument—a string for the
FLV file’s URL. However, in CSAS, you can add a second parameter to specify what
type of stream to play. In order for AS 3.0 to work with classes from prior versions of
ActionScript that serialize objects, the application will have to import the
ObjectEncoding class. However, if that’s done, AS 3.0 can fully integrate these other
objects and their parameters. Line 20 shows this second argument added to the
NetStream.play() method.

Figure 10-7. Statechart with five states

Example 10-20. State.as

1 package
2 {
3 //State Interface #1
4 import flash.net.NetStream;
5 interface State
6 {
7 function startPlay(ns:NetStream, flv:String):void;
8 function startRecord(ns:NetStream, flv:String):void;
9 function startAppend(ns:NetStream, flv:String):void;

10 function stopAll(ns:NetStream):void;
11 function doPause(ns:NetStream):void;
12 }
13 }

Stop

Play Pause

Record

Append

Adding More States and Streaming Capabilities | 385

It may seem ironic that the state with the most active implementations of the video is
called “stop.” However, only from the StopState should transitions be made to
Append and Record states. The PlayState shown in Example 10-22 can be transi-
tioned to from both the Stop state and the Pause state.

Example 10-21. StopState.as

1 package
2 {
3 //Stop State #2
4 import flash.net.NetStream;
5
6 class StopState implements State
7 {
8 var videoWorks:VideoWorks;
9 public function StopState(videoWorks:VideoWorks)

10 {
11 trace("--Stop State--");
12 this.videoWorks=videoWorks;
13 }
14 public function startPlay(ns:NetStream,flv:String):void
15 {
16 //Note: the second paramater - 0 - specifies an FLV file
17 //the NetStream method is from Client-Side
18 //ActionScript but works with AS 3.0
19 //because ObjectEncoding is imported.
20 ns.play(flv,0);
21 trace("Begin playing");
22 videoWorks.setState(videoWorks.getPlayState());
23 }
24 public function startRecord(ns:NetStream,flv:String):void
25 {
26 ns.publish(flv,"record");
27 trace("Begin recording");
28 videoWorks.setState(videoWorks.getRecordState());
29 }
30 public function startAppend(ns:NetStream,flv:String):void
31 {
32 ns.publish(flv,"append");
33 trace("Begin appending");
34 videoWorks.setState(videoWorks.getAppendState());
35 }
36 public function stopAll(ns:NetStream):void
37 {
38 trace("You're already stopped");
39 }
40 public function doPause(ns:NetStream):void
41 {
42 trace("Must be playing to pause.");
43 }
44 }
45 }
46

386 | Chapter 10: State Pattern

The Play state is little changed from previous versions. While playing a video, the
structure won’t allow direct transitioning to either recording or appending a video. It
would be possible to do so, but you’d run the risk over overwriting a video you’re
watching with one you want to record. So, from the Play state, the only possible
transitions are to the Stop and Pause states. The Pause state is shown in
Example 10-23.

Example 10-22. PlayState.as

1 package
2 {
3 //Play State #3
4 import flash.net.NetStream;
5
6 class PlayState implements State
7 {
8 var videoWorks:VideoWorks;
9 public function PlayState(videoWorks:VideoWorks)

10 {
11 trace("--Play State--");
12 this.videoWorks=videoWorks;
13 }
14 public function startPlay(ns:NetStream,flv:String):void
15 {
16 trace("You're already playing");
17 }
18 public function stopAll(ns:NetStream):void
19 {
20 ns.close();
21 trace("Stop playing.");
22 videoWorks.setState(videoWorks.getStopState());
23 }
24 public function startRecord(ns:NetStream,flv:String):void
25 {
26 trace("You have to stop first.");
27 }
28 public function startAppend(ns:NetStream,flv:String):void
29 {
30 trace("You have to stop first.");
31 }
32 public function doPause(ns:NetStream):void
33 {
34 ns.togglePause();
35 trace("Start pausing.");
36 videoWorks.setState(videoWorks.getPauseState());
37 }
38 }
39 }
40

Adding More States and Streaming Capabilities | 387

Like the Play state, little is changed with the Pause state shown in Example 10-23,
because it only toggles between playing and not playing, and can’t pause a recording.

The RecordState class is a whole new state. If you look closely, it’s very close to the
PlayState class, with the exception that it can’t transition to the Pause state. Remem-
ber that while in the Record state, the only option is to stop recording, and that is
how the stopAll() method is implemented in the RecordState class in
Example 10-24. Save the new state with the caption name as the filename. Be sure to
save it in the same folder as the other files.

Example 10-23. PauseState.as

1 package
2 {
3 //Pause State #4
4 import flash.net.NetStream;
5
6 class PauseState implements State
7 {
8 var videoWorks:VideoWorks;
9 public function PauseState(videoWorks:VideoWorks)

10 {
11 trace("--Pause State--");
12 this.videoWorks=videoWorks;
13 }
14 public function startPlay(ns:NetStream,flv:String):void
15 {
16 trace("You have to go to unpause");
17 }
18 public function stopAll(ns:NetStream):void
19 {
20 trace("Don't go to Stop from Pause");
21 }
22 public function startRecord(ns:NetStream,flv:String):void
23 {
24 trace("You have to stop first.");
25 }
26 public function startAppend(ns:NetStream,flv:String):void
27 {
28 trace("You have to stop first.");
29 }
30 public function doPause(ns:NetStream):void
31 {
32 ns.togglePause();
33 trace("Quit pausing.");
34 videoWorks.setState(videoWorks.getPlayState());
35 }
36 }
37
38 }

388 | Chapter 10: State Pattern

The AppendState shown in Example 10-25 is the other new class. It’s virtually identi-
cal to the RecordState class in its makeup. However, because the processes of record-
ing and appending are very similar, this should come as no surprise. Save this class in
the same folder as the others for this application with the caption as the filename.

Example 10-24. RecordState.as

1 package
2 {
3 //Record State #5
4 import flash.net.NetStream;
5
6 class RecordState implements State
7 {
8 var videoWorks:VideoWorks;
9 public function RecordState(videoWorks:VideoWorks)

10 {
11 trace("--Record State--");
12 this.videoWorks=videoWorks;
13 }
14 public function startPlay(ns:NetStream,flv:String):void
15 {
16 trace("You have to stop first.");
17 }
18 public function stopAll(ns:NetStream):void
19 {
20 ns.close();
21 trace("Stop recording.");
22 videoWorks.setState(videoWorks.getStopState());
23 }
24 public function startRecord(ns:NetStream,flv:String):void
25 {
26 trace("You're already recording");
27 }
28 public function startAppend(ns:NetStream,flv:String):void
29 {
30 trace("You have to stop first.");
31 }
32 public function doPause(ns:NetStream):void
33 {
34 trace("Must be playing to pause.");
35 }
36 }
37 }

Example 10-25. AppendState.as

1 package
2 {
3 //Append State #6
4 import flash.net.NetStream;
5
6
7 class AppendState implements State

Adding More States and Streaming Capabilities | 389

Other than adding instances of the new states, nothing is too different from the pre-
vious versions in the VideoWorks class shown in Example 10-26. This is a case where
little change shows the strength of the State design structure. Not only has the appli-
cation been expanded to include two additional classes for record and append, it’s
also changed from a simple Flash Player using progressive download to play a video
to a Flash Media Server 2 streaming media application.

8 {
9 var videoWorks:VideoWorks;

10 public function AppendState(videoWorks:VideoWorks)
11 {
12 trace("--Append State--");
13 this.videoWorks=videoWorks;
14 }
15 public function startPlay(ns:NetStream,flv:String):void
16 {
17 trace("You have to stop first.");
18 }
19 public function stopAll(ns:NetStream):void
20 {
21 ns.close();
22 trace("Stop appending.");
23 videoWorks.setState(videoWorks.getStopState());
24 }
25 public function startRecord(ns:NetStream,flv:String):void
26 {
27 trace("You have to stop first.");
28 }
29 public function startAppend(ns:NetStream,flv:String):void
30 {
31 trace("You're already appending");
32 }
33 public function doPause(ns:NetStream):void
34 {
35 trace("Must be playing to pause.");
36 }
37 }
38 }

Example 10-26. VideoWorks.as

1 package
2 {
3 //Context Class #7
4 import flash.net.NetStream;
5 public class VideoWorks
6 {
7 var playState:State;
8 var stopState:State;
9 var recordState:State;

10 var appendState:State;

Example 10-25. AppendState.as (continued)

390 | Chapter 10: State Pattern

11 var pauseState:State;
12 var state:State;
13 public function VideoWorks ()
14 {
15 trace ("Video Player is on");
16 playState = new PlayState(this);
17 stopState = new StopState(this);
18 recordState = new RecordState(this);
19 appendState = new AppendState(this);
20 pauseState=new PauseState(this);
21 state=stopState;
22 }
23 public function startPlay (ns:NetStream,flv:String):void
24 {
25 state.startPlay (ns,flv);
26 }
27 public function startRecord (ns:NetStream,flv:String):void
28 {
29 state.startRecord (ns,flv);
30 }
31 public function startAppend (ns:NetStream,flv:String):void
32 {
33 state.startAppend (ns,flv);
34 }
35 public function stopAll (ns:NetStream):void
36 {
37 state.stopAll (ns);
38 }
39 public function doPause (ns:NetStream):void
40 {
41 state.doPause (ns);
42 }
43 public function setState (state:State):void
44 {
45 trace ("A new state is set");
46 this.state=state;
47 }
48 public function getState ():State
49 {
50 return state;
51 }
52 public function getPlayState ():State
53 {
54 return this.playState;
55 }
56 public function getRecordState ():State
57 {
58 return this.recordState;
59 }
60 public function getAppendState ():State
61 {
62 return this.appendState;

Example 10-26. VideoWorks.as (continued)

Adding More States and Streaming Capabilities | 391

The test module, Example 10-27, that follows in the TestFMS.as class is a bit more
robust than the previous testing classes used. (In fact it would have probably been a
good idea to break it down into its own class set, but we’re focusing on using it to
demonstrate the State design pattern, and so a humbler test class emerged.) Be sure
to place a copy of the NetBtn.as and BtnState.as files in the folder where you’re sav-
ing the rest of your files for this application.

63 }
64 public function getPauseState ():State
65 {
66 return this.pauseState;
67 }
68 public function getStopState ():State
69 {
70 return this.stopState;
71 }
72 }
73 }

Example 10-27. TestFMS.as

1 package
2 {
3 //Test Module #8
4 import flash.display.Sprite;
5 import flash.net.NetConnection;
6 import flash.net.NetStream;
7 import flash.net.ObjectEncoding;
8 import flash.media.Video;
9 import flash.media.Camera;

10 import flash.media.Microphone;
11 import flash.text.TextField;
12 import flash.text.TextFieldType;
13 import flash.events.MouseEvent;
14 import flash.events.NetStatusEvent;
15
16 public class TestVidFMS extends Sprite
17 {
18 private var nc:NetConnection;
19 private var ns:NetStream;
20 private var dummy:Object;
21 private var flv_txt:TextField;
22 private var cam:Camera;
23 private var mic:Microphone;
24 private var stateVid:VideoWorks;
25 private var playCheck:Boolean;
26 private var pauseCheck:Boolean;
27 private var playBtn:NetBtn;
28 private var stopBtn:NetBtn;
29 private var pauseBtn:NetBtn;
30 private var recordBtn:NetBtn;

Example 10-26. VideoWorks.as (continued)

392 | Chapter 10: State Pattern

31 private var appendBtn:NetBtn;
32
33 public function TestVidFMS ()
34 {
35 //************
36 //Add the text field
37 //************
38 flv_txt= new TextField();
39 flv_txt.border=true;
40 flv_txt.background=true;
41 flv_txt.backgroundColor=0xfab383;
42 flv_txt.type=TextFieldType.INPUT;
43 flv_txt.x=(550/2)-45;
44 flv_txt.y=15;
45 flv_txt.width=90;
46 flv_txt.height=18;
47 addChild (flv_txt);
48 //FMS State Machine
49 NetConnection.defaultObjectEncoding = flash.net.ObjectEncoding.AMF0;
50 nc = new NetConnection();
51 nc.objectEncoding = flash.net.ObjectEncoding.AMF0;
52 nc.addEventListener (NetStatusEvent.NET_STATUS,checkHookupStatus);
53 //Use your own domain/IP address on RTMP
54 nc.connect ("rtmp://192.168.0.11/flvstate/flv");
55 //OR set up a local connection
56 //nc.connect("rtmp:/flvstate/flv");
57 //nc.connect(null);
58
59 //Camera & Microphone Settings
60 cam = Camera.getCamera();
61 cam.setMode (320,240,15);
62 cam.setKeyFrameInterval (30);
63 cam.setQuality (0,80);
64 mic = Microphone.getMicrophone();
65 mic.rate=11;
66
67 //Add video object
68 vid=new Video(320,240);
69
70 addChild (vid);
71 vid.x=(550/2)-(320/2);
72 vid.y=40;
73 setLocal ();
74
75 //Instantiate State Machine
76 stateVid=new VideoWorks;
77
78 //Play, Stop, Record, Append and Pause Buttons
79 playBtn=new NetBtn("Play");
80 addChild (playBtn);
81 playBtn.x=(550/2)-(320/2);
82 playBtn.y=300;

Example 10-27. TestFMS.as (continued)

Adding More States and Streaming Capabilities | 393

83 var playCheck:Boolean=false;
84
85 recordBtn=new NetBtn("Record");
86 addChild (recordBtn);
87 recordBtn.x=(550/2)+((320/2)-60);
88 recordBtn.y=300;
89
90 appendBtn=new NetBtn("Append");
91 addChild (appendBtn);
92 appendBtn.x=(550/2)+((320/2)-60);
93 appendBtn.y=330;
94
95 stopBtn=new NetBtn("Stop");
96 addChild (stopBtn);
97 stopBtn.x=(550/2)-25;
98 stopBtn.y=300;
99

100 pauseBtn=new NetBtn("Pause");
101 addChild (pauseBtn);
102 pauseBtn.x=(550/2)-(320/2);
103 pauseBtn.y=330;
104 pauseCheck=true;
105
106 //Add Event Listeners
107 playBtn.addEventListener (MouseEvent.CLICK,doPlay);
108 stopBtn.addEventListener (MouseEvent.CLICK,doStop);
109 recordBtn.addEventListener (MouseEvent.CLICK,doRecord);
110 appendBtn.addEventListener (MouseEvent.CLICK,doAppend);
111 pauseBtn.addEventListener (MouseEvent.CLICK,doPause);
112
113 }
114 //Add Control Functions
115 function setNet ()
116 {
117 vid.attachNetStream (ns);
118 }
119 function setLocal ()
120 {
121 vid.attachCamera (cam);
122 }
123 var flv:String;
124 function doPlay (e:MouseEvent):void
125 {
126 if (flv_txt.text != "" && flv_txt.text != "Provide file name")
127 {
128 setNet ();
129 flv_txt.textColor=0x000000;
130 flv=flv_txt.text;
131 stateVid.startPlay (ns,flv);
132 if (! playCheck)
133 {
134 playCheck=true;

Example 10-27. TestFMS.as (continued)

394 | Chapter 10: State Pattern

135 }
136 }
137 else
138 {
139 flv_txt.textColor=0xcc0000;
140 flv_txt.text="Provide file name";
141 }
142 }
143 function doRecord (e:MouseEvent):void
144 {
145 if (flv_txt.text != "" && flv_txt.text != "Provide file name")
146
147 {
148 ns.attachAudio (mic);
149 ns.attachCamera (cam);
150 flv_txt.textColor=0x000000;
151 flv=flv_txt.text;
152 stateVid.startRecord (ns,flv);
153 if (! playCheck)
154 {
155 playCheck=true;
156 }
157 }
158 else
159 {
160 flv_txt.textColor=0xcc0000;
161 flv_txt.text="Provide file name";
162 }
163 }
164 function doAppend (e:MouseEvent):void
165 {
166 if (flv_txt.text != "" && flv_txt.text != "Provide file name")
167 {
168 ns.attachAudio (mic);
169 ns.attachCamera (cam);
170 flv_txt.textColor=0x000000;
171 flv=flv_txt.text;
172 stateVid.startAppend (ns,flv);
173 if (! playCheck)
174 {
175 playCheck=true;
176 }
177 }
178 else
179 {
180 flv_txt.textColor=0xcc0000;
181 flv_txt.text="Provide file name";
182 }
183 }
184 function doPause (e:MouseEvent):void
185 {
186 if (pauseCheck)

Example 10-27. TestFMS.as (continued)

Adding More States and Streaming Capabilities | 395

187 {
188 pauseCheck=false;
189 if (playCheck)
190 {
191 stopBtn.visible=false;
192 }
193 stateVid.doPause (ns);
194 }
195 else
196 {
197 pauseCheck=true;
198 stopBtn.visible=true;
199 stateVid.doPause (ns);
200
201 }
202 }
203 function doStop (e:MouseEvent):void
204 {
205 playCheck=false;
206 stateVid.stopAll (ns);
207 vid.clear ();
208 setLocal ();
209 }
210 //Check connection, instantiate stream,
211 //and set up metadata event handler
212 function checkHookupStatus (event:NetStatusEvent):void
213 {
214 if (event.info.code == "NetConnection.Connect.Success")
215 {
216 ns = new NetStream(nc);
217 dummy=new Object();
218 ns.client=dummy;
219 dummy.onMetaData=getMeta;
220 ns.addEventListener (NetStatusEvent.NET_STATUS,flvCheck);
221 }
222 }
223 //MetaData
224 function getMeta (mdata:Object):void
225 {
226 trace (mdata.duration);
227 }
228 //Handle flv
229 private function flvCheck (event:NetStatusEvent):void
230 {
231 switch (event.info.code)
232 {
233 case "NetStream.Play.Stop" :
234 stateVid.stopAll(ns);
235 setLocal();
236 break;
237 case "NetStream.Play.StreamNotFound" :
238 stateVid.stopAll(ns);

Example 10-27. TestFMS.as (continued)

396 | Chapter 10: State Pattern

The most important setup in testing this application is making sure you have the
right Real-Time Messaging Protocol (RTMP) configuration. If you’re testing the
application on your system using it as a Flash Media Server platform, you can just
comment out line 54 and remove the comment slashes from line 56. That will work
where your application is on the same server as your SWF file. Otherwise, adjust line
38 to point to your FMS location.

Figure 10-8 shows what your application will look like once it’s running correctly. As
you can see, it’s not much different on the outside because all you see are two addi-
tional buttons. However, its functionality has increased significantly with the ability
to record and append video.

239 flv_txt.text="File not found";
240 setLocal();
241 break;
242 }
243 }
244 }
245 }

Figure 10-8. Recording video

Example 10-27. TestFMS.as (continued)

Summary | 397

Summary
We’re used to thinking in noun-verb pairs, and so designs using the verb element of
a pair may take a bit of getting used to. You can think of a state as a “state of action”
such as a video playing or recording. However, you can also think of a state as a
“state of rest” or “inactivity.” Likewise, transitions between states have a verb-cen-
tric character to them.

The focus of the State design pattern has always been on what is done rather than the
characteristics of the objects. Additionally, statecharts are an incredibly easy and
effective way to design applications. It begins with the part that is often left to the
end of a project—making all of the connections between the different elements.
Once the statecharts are complete, casting the project in State design patterns terms
is equally easy because the structure of the class is so simply organized. Each state
will have its own class, and the classes are made up of the different transitions
defined in the state interface. All that’s left is the context class to pull it all together.
So if your project involves different actions that need to be organized and coordi-
nated, consider a state machine using the State design pattern.

398

Chapter 11CHAPTER 11

Strategy Pattern 11

Enact strategy broadly, correctly and openly. Then
you will come to think of things in a wide sense and,
taking the void as the Way, you will see the Way as
void.
—Miyamoto Musashi (16th-17th Century Japanese

developer of Sword Method Design Pattern [Kenjutsu]
and guy who reminds us that in ActionScript 3.0, the
void statement is all lowercase.)

All men can see these tactics whereby I conquer, but
what none can see is the strategy out of which victory
is evolved.
—Sun Tzu

However beautiful the strategy, you should
occasionally look at the results.
—Winston Churchill (Remark made after finishing up a

“Hello world” application using the Strategy pattern.)

What is the Strategy Pattern?
The Strategy design pattern is sometimes used to illustrate good OOP practices
rather than offered as a design pattern that has focused applications. In one article
[Agerbo and Cornils, 98], the authors set up a number of guidelines for judging
design patterns. One guideline posits that a design pattern should not be an inherent
object-oriented way of thinking. Then they proceed to reject the Strategy design pat-
tern because it seems to be nothing but a collection of fundamental OOP principles!

Whether the Strategy pattern is a true design pattern or just a template for how to go
about OOP programming, it has lots to offer. Because the class model looks identi-
cal to the State design pattern, we need to spend some time distinguishing the Strat-
egy from the State pattern to show not only how each is unique, but to suggest focal
applications each may have.

What is the Strategy Pattern? | 399

Key Features
When looking at the key features of the Strategy pattern, you’ll benefit from compar-
ing them with the key features of the State pattern in the previous chapter
(Chapter 10). The comparison will not only help you understand the difference
between the State and Strategy patterns, it’ll also help you better understand each
pattern in its own right.

The following key features are used in concert to create the Strategy design pattern,
but you will find the same elements when looking at good practices for just about
any object-oriented programming:

• Define and encapsulate a family of algorithms.

• Make encapsulated algorithms interchangeable.

• Allow algorithms to change independently from the clients that use it.

Before going back to Chapter 10 and looking at the list of features in the State pat-
tern, take a look at the next section, “The Strategy Model.” Then make the compari-
son. Right off the bat you’ll see that the key features of the State and Strategy differ,
but by comparing the models as well, you’ll see the differences more clearly.

Because the features of the Strategy pattern are so fundamental to good OOP, we’re
going to save a more detailed discussion of them for the section, “Key OOP Con-
cepts used with the Strategy Pattern.” As you’ll see, all the features are discussed as
applicable to the more general principles of programming with OO languages such
as ActionScript 3.0.

The Strategy Model
When you look at the class diagram for the Strategy design pattern, you may be
struck by a sense of déjà vu. In Figure 10-3 in Chapter 10, the labels look different,
but the State design looks very similar. Fear not. They’re very different in intent and
implementation. So in looking at Figure 11-1, keep the Strategy design pattern key
features in mind.

Looking at the Context class in the Strategy class diagram, you can see that the Strat-
egy interface is an aggregate of the Context class. Because of this aggregation, we can

Figure 11-1. Strategy design pattern class diagram

Context

ContextInterface()

Strategy

AlgorithmInterface()

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface() AlgorithmInterface()

ConcreteStrategyB ConcreteStrategyB

400 | Chapter 11: Strategy Pattern

say that the Context class (aggregator) owns the Strategy interface (aggregate), just as
in the State design pattern. (See Figure 10-3 in Chapter 10.) As you will see in the
examples, the Context class aggregates the Strategy operations. Because aggregation
is so fundamental to many of the design patterns and an integral part of OOP, look
for its actual use in the examples. The Strategy design pattern is one of the best
sources of clear examples showing aggregation at work.

Key OOP Concepts Used with the Strategy Pattern
David Geary (JavaWorld.com, 04/26/02) points out that the Strategy pattern embod-
ies several of the OOP principles put forth by Gamma, Helm, Johnson and Vlissides.
One of those principles is:

Encapsulate the concept that varies

Eric and Elisabeth Freeman (Head First Design Patterns, O’Reilly 2004) make the
same point in discussing the Strategy pattern, and we’re not ones to break tradition
and miss an important connection between a design pattern and an OOP concept.

Encapsulating Variation
In Chapter 10, you saw that with the State design pattern, the states varied in the
video player, and so the State object encapsulated the state-dependent behavior, such
as playing and stopping the video. With the Strategy pattern, the Strategy object
encapsulates algorithms. What both these design patterns have in common is that
the elements that change are encapsulated. (As a hint of what is encapsulated, look
at the name of the class. In both the State and Strategy classes, the encapsulating
object is the name of the class—check the class diagrams.)

More important is why GoF suggests encapsulating those concepts that vary. Essen-
tially, if you encapsulate those parts that vary, then, when you change the applica-
tion, you’ll have fewer surprises. Encapsulated concepts allow the objects in object-
oriented programming to act like objects. Rather than being sticky-glued to and
dependent on other elements in a single program, encapsulated objects can act in
concert with any new element added to the application, because they can vary inde-
pendent of other objects.

To better see what it means to encapsulate what varies, consider a script from an
example in this chapter with and without encapsulation. This involves clowns and
what they do in clown venues.

Unencapsulated version (pseudocode)

class Clown {
 function juggle() {
 //juggle code
 }

Key OOP Concepts Used with the Strategy Pattern | 401

 function balloonAnimals() {
 //balloon animal code
 }
}

class Bojo extends Clown {
 //Bojo unique
}

class Koka extends Clown {
 //Koka unique
}

All the algorithms for juggling and making balloon animals are placed in the Clown
class. They’re passed on to the specific subclasses via inheritance. That works fine as
long as all the clowns can perform all the tricks. But what happens if one of the
clowns doesn’t know how to make balloon animals or juggle? Or what about a new
act being added? What will happen then?

So now, let’s encapsulate the algorithms in a Strategy object.

Encapsulated algorithms (pseudocode)

interface ClownTricks {
 function someTrick(): void;
}
class Juggle implements ClownTricks {
 function someTrick(): void {
 //Juggling algorithm
 }
}
class BalloonAnimals implements ClownTricks {
 function someTrick(): void {
 //Making balloon animal algorithm
 }
}

Now, using the Clown class as an aggregator, the program can delegate requests for
the different algorithms to the concrete Clown subclasses. If new tricks are intro-
duced, just implement them from the ClownTricks interface and use them as dele-
gates to the Clown subclasses that want to use them. (The actual application using
these concepts begins with Example 11-6.)

The encapsulated algorithms aren’t going to be very useful unless some object can
employ them. This is where delegation comes in, as you’ll see in the next section.

Using Delegation and Delegates
The Strategy design pattern is a perfect example of delegation. In delegation, two
objects are involved in handling a single request. One of the objects receives the
request and then delegates operations to a delegate. This is exactly what transpires

402 | Chapter 11: Strategy Pattern

between the context classes and the strategy classes. The context classes are made up
of a class and its subclasses. The context classes delegate actions to the strategy
classes, made up of strategy interfaces and implementations of those interfaces. So
the context classes delegate to the strategy classes.

The delegation process begins in the main context class. It includes reference vari-
ables to the strategy interfaces. Methods in the context class do the actual delega-
tion. The concrete context classes inherit the instance variables from the context
class, and use those variables to specify which behaviors they want from the con-
crete strategies. Figure 11-2 shows a visual depiction of delegation.

If an instance of a class, which has a reference to a delegate that is called, is called,
the delegate invokes the called method containing the encapsulated algorithm. So
instead of inheriting the operation, the object can be said to have a method that han-
dles a call.

Minimalist Abstract State Pattern
This first example cuts to the bare bones of a Strategy design pattern to reveal the
structure of the design pattern. Each part is analyzed in terms of what it does for the
overall pattern. This example should help make the structure clearer.

You need to see the Strategy design pattern in a context where several different
objects delegate behaviors to different delegates. (The second example provides this
richer applicability.) In this minimalist example, you need to look at the points of
delegation and how it all works. In Figure 11-3, following the listing, you will be able
to see what looks like a web of intrigue. Not to worry; the illustration just shows the
delegation work going on between the objects in the application.

Figure 11-2. Delegation

Request goes to Object Z, but Object Z farms
it out (delegates it) to Delegate Beta

Aggregator

Object Y Object Z

Delegate

Delegate
Beta

Delegate
Gamma

Delegate
Alpha

Minimalist Abstract State Pattern | 403

Using Delegation with the Context
The Context class shown in Example 11-1 is an aggregator—it owns the Strategy
object. So in every Context class where Strategy patterns are found, you will find a ref-
erence to the strategy class—in this example a variable taking the lowercase name of
the Strategy interface. (Example 11-1 to Example 11-5 make up the first application.)

The Context class is pretty simple. One reason is that all the methods it needs are del-
egates implemented from the Strategy interface. Let’s now look at such an interface.

Adding a Strategy
In a Strategy design pattern, you’re likely to see more than one interface, depending
on the different types of methods required. Example 11-2 shows a single method in
the interface.

This represents the first step in encapsulating a behavior. The subsequent concrete
Strategy implementations add detail.

Details of the Strategy
Next, in Example 11-3, a concrete strategy adds a method, think(), which does
something. In this case, it just sends out a trace message.

Example 11-1. Context.as

package
{
 class Context
 {
 protected var strategy:Strategy;

 public function doStrategy():void
 {
 strategy.think();
 }
 }
}

Example 11-2. Strategy.as

package
{
 interface Strategy
 {
 function think():void;
 }
}

404 | Chapter 11: Strategy Pattern

More Delegation in a Concrete Context
In a concrete context class as in Example 11-4, you can see that the work is dele-
gated to a concrete strategy class.

Pulling All the Parts Together
Finally, to test the Strategy design pattern, Example 11-5’s script creates an instance
of the concrete context, but types the instance as a Context data type—an example of
programming to the interface and not the implementation.

Example 11-3. ConcreteStrategy.as

package
{
 class ConcreteStrategy implements Strategy
 {
 public function think():void
 {
 trace("Great thoughts now...");
 }
 }
}

Example 11-4. ConcreteContext.as

package
{
 class ConcreteContext extends Context
 {
 public function ConcreteContext()
 {
 strategy = new ConcreteStrategy();
 }
 }
}

Example 11-5. TestStrategy.as

package
{
 import flash.display.Sprite;

 public class TestStrategy extends Sprite
 {
 public function TestStrategy()
 {
 var thinker:Context= new ConcreteContext();
 thinker.doStrategy();
 }
 }
}

Minimalist Abstract State Pattern | 405

Now that you have an abstract Strategy design pattern where you can see the arrange-
ment of the different parts, an illustration where you can see all of the connections,
delegation and interactions in a single view will give you an overview of the process.
Figure 11-3 shows the connections between the different parts, all in one view.

In Figure 11-3, note how the call:

thinker.doStrategy();

is delegated. The thinker instance in the TestStrategy class is typed as a Context type
and instantiated as a ConcreteContext object. The doStrategy() method is created in
the Context class, and so that would be the first place to look, as the arrow from
doStrategy() in the TestStrategy class to the doStrategy() in the Context class
shows.

However, in the Context class the doStrategy() method has delegated the details to
the think() method, so we need to look elsewhere. In the ConcreteStrategy class, you
can see the details of the think() method. Because the ConcreteContext strategy is
instantiated in the thinker instance, it actually did the work, but since ConcreteContext
is a subclass of Context, the delegation is structured in the Context class.

Finally, we can trace the delegation framework back to the Strategy interface.
Because the origin of the think() method is in the Strategy class, we can see how it
is a delegate of the Context class.

Figure 11-3. Delegation connections

406 | Chapter 11: Strategy Pattern

Adding More Concrete Strategies and Concrete Contexts
The purpose of the minimalist example is to expose a design pattern’s structure.
However, with the Strategy pattern, a more robust example may actually do a better
job of showing the pattern’s features, because it places the pattern in a more practi-
cal context in the bare bones example.

In this next example, we envision a Strategy pattern used with a clown employment
agency. The agency has a number of clowns it represents. Clients call for different
clown venues—circuses, birthday parties, political conventions. They want either a
particular clown or particular clown acts (skits) or tricks they can perform. To create
a flexible program for the clown agency, each of the skits and tricks has been created
in separate algorithms. The algorithms are encapsulated, and the clown characters
delegate their performance skills to the encapsulated algorithms—strategies.

The Clowns
The first step is to create a context class and concrete contexts that will use the dif-
ferent tricks and skits. Example 11-6 is the main context class establishing the refer-
ences to the strategy methods. The trick and skit operations are delegated to the
strategy classes. Then Examples 11-7 and 11-8 create two concrete clowns. Each is
assigned a different trick and skit that are delegated to concrete strategy instances.
To get started, open three ActionScript files and enter the code in Examples 11-6 to
11-8, saving each with the caption name provided. (Examples 11-6 through 11-16
make up the entire application.)

Example 11-6. Clown.as

package
{

 class Clown
 {
 protected var tricks:Tricks;
 protected var skits:Skits;

 public function doTrick():void
 {
 tricks.trick();
 }

 public function doSkit():void
 {

Adding More Concrete Strategies and Concrete Contexts | 407

Notice that each clown can perform only a single trick and a single skit. We’ll have
to reconsider how to set up our strategies, or see if we can find a way to dynamically
add features later. For now, though, the clowns can choose only a single trick or skit.

The Trick Interface and Implementations
All the algorithms for doing tricks are encapsulated in the concrete strategy sub-
classes. The Tricks interface (Example 11-9) provides the abstract method, and the
subclasses add detail to the operations. A total of three trick algorithms (Examples
11-10, 11-11, and 11-12) are implemented.

 skits.skit();
 }
 }
}

Example 11-7. Koka.as

package
{
 class Koka extends Clown
 {
 public function Koka()
 {
 tricks = new Disappear();
 skits = new Chase();
 }
 }
}

Example 11-8. Bojo.as

package
{
 class Bojo extends Clown
 {
 public function Bojo()
 {
 tricks = new BaloonAnimals();
 skits = new FallDown();
 }
 }
}

Example 11-9. Tricks.as

package
{

Example 11-6. Clown.as (continued)

408 | Chapter 11: Strategy Pattern

By using a general concept like “tricks,” we’re limiting the range of what the clowns
can do. The way the Strategy pattern’s set up, each clown can have only a single
trick. We could implement an “All Tricks” class, but that’s too broad at the oppo-

 interface Tricks
 {
 function trick():void;
 }
}

Example 11-10. BalloonAnimals.as

package
{
 //Make Balloon Animals
 public class BalloonAnimals implements Tricks
 {
 public function trick():void
 {
 trace("See! It's a doggy! No, it's not an elephant!!\n")
 }
 }
}

Example 11-11. Disappear.as

package
{
 //Make Something Disappear
 public class Disappear implements Tricks
 {
 public function trick():void
 {
 trace("Now you see it! Presto! It's gone!\n")
 }
 }
}

Example 11-12. Juggle.as

package
{
 //Juggle Balls
 public class Juggle implements Tricks
 {

 public function trick():void
 {
 trace("Look at me juggle! Whoops!\n")
 }
 }
}

Example 11-9. Tricks.as (continued)

Adding More Concrete Strategies and Concrete Contexts | 409

site extreme in that it would require a clown to do everything, even if he could only
do two of the tricks.

The Skits Interface and Implementations
The Skits interface (Example 11-13) and its implemented classes (Examples 11-14
and 11-15) are set up exactly the same as the Tricks class and its implementations. It
also has the same limitations.

Example 11-13. Skits.as

package
{
 //Skits Interface
 interface Skits
 {
 function skit():void;
 }
}

Example 11-14. FallDown.as

package
{
 //Falls down a ladder
 public class FallDown implements Skits
 {
 public function skit():void
 {
 trace("I'm climbing up this ladder!")
 trace("Where's my banana peel?")
 trace("Whoaaaa! I'm falling!!")
 trace("Thanks for finding my banana peel!\n")
 }
 }
}

Example 11-15. Chase.as

package
{
 //Clowns chase each other
 public class Chase implements Skits
 {
 public function skit():void
 {
 trace("Here I come! I'm going to get you!")
 trace("Nah! Nah! Can't catch me!\n")
 }
 }
}

410 | Chapter 11: Strategy Pattern

Even though we’ve discussed some possible shortcomings in this design, it still
shows how the strategies are built in the implementations of the Tricks and Skits
classes. The final step is to see how to launch the program.

Here Come the Clowns!
For this example, the ClownCollege class (Example 11-16) instantiates two different
clowns. Both clowns are typed as Clown types following the dictum of programming
to the interface instead of the implementations; however, each instantiates through a
Clown subclass. Each is given a trick and skit, and it’s ready to run. Save
Example 11-16 using the caption name as the filename.

Once you’re finished saving Examples 11-6 through 11-16, open a new Flash docu-
ment and save it as ClownCollege.fla. In the Document class window, type in
ClownCollege and test the application. You should see the following in the Output
window:

* =>Koka<= *
Now you see it! Presto! It's gone!

Here I come! I'm going to get you!
Nah! Nah! Can't catch me!

* =>Bojo<= *
See! It's a doggy! No, it's not that!!

I'm climbing up this ladder!
Where's my banana peel?
Whoaaaa! I'm falling!!
Thanks for finding my banana peel!

Example 11-16. ClownCollege.as

package
{
 import flash.display.Sprite;

 public class ClownCollege extends Sprite
 {
 public function ClownCollege()
 {
 var joker:Clown=new Koka();
 joker.doTrick();
 joker.doSkit();

 var gagGrrrl:Clown=new Bojo();
 gagGrrrl.doTrick();
 gagGrrrl.doSkit();
 }
 }
}

Adding More Concrete Strategies and Concrete Contexts | 411

The output represents the algorithms set up in the strategy classes. All are delegated
from the Clown context class and implemented in the concrete clown classes.

Additional Clown Functionality
As noted in the initial clown application using the Strategy design pattern, the struc-
ture allowed very little flexibility and no way to dynamically change a concrete con-
text to accept another strategy. So what happens if we add another clown who can
do more than one trick but not all the tricks?

Fortunately, we have a simple solution. By adding setters to the context class, Clown,
it will be possible to dynamically add strategies to the concrete context classes—the
clowns. Example 11-17 revises the original Clown class by adding the setters (shown
in bold).

Adding a new clown

The application is already structured to easily accept a new concrete context class. So
all we have to do is to add a subclass, and include the concrete strategies to be dele-
gated. Example 11-18 does just that. Save the file using the caption as the filename.

Example 11-17. Clown.as

package
{
 class Clown
 {
 protected var tricks:Tricks;
 protected var skits:Skits;

 public function doTrick():void
 {
 tricks.trick();
 }

 public function doSkit():void
 {
 skits.skit();
 }

 public function setTrick(addTrick:Tricks):void
 {
 tricks=addTrick;
 }

 public function setSkit(addSkit:Tricks):void
 {
 tricks=addSkit;
 }
 }
}

412 | Chapter 11: Strategy Pattern

Adding a new trick

Just as adding a new concrete context class in a Strategy pattern is easy, so too is
adding a new concrete strategy. Save Example 11-19 using the caption name as the
filename. The new script is indistinguishable from any of the other concrete strate-
gies except for the name of the class and the content in the trick method.

Revising clown college

To see both how easy it is to add new elements to the application and to dynami-
cally add new strategies to a concrete context class, the ClownCollege class is revised
(bold text). First, the new concrete clown class, Bubbles, is instantiated and the two
existing delegation methods launch the operations to display the skit and tricks.
Then, the clown instance uses the new setTrick() method to add the new trick to its
repertoire. Finally, the doTrick() method is launched a second time to display the
new trick. Save Example 11-20 using the caption name for the filename.

Example 11-18. Bubbles.as

package
{
 class Bubbles extends Clown
 {
 trace("* =>Bubbles<= *");
 public function Bubbles()
 {
 tricks=new Juggle();
 skits = new FallDown();
 }
 }
}

Example 11-19. BubblePants.as

package
{
 class BubblePants implements Tricks
 {
 public function trick():void
 {
 trace("Woo woo woo! Bubbles are coming out of my pants!\n");
 }
 }
}

Example 11-20. ClownCollege.as

package
{
 import flash.display.Sprite;

 public class ClownCollege extends Sprite

Adding More Concrete Strategies and Concrete Contexts | 413

Nothing will change for the first two clowns. However, the new clown instance
should do something different, but what? In looking at the code, the initial skit and
trick involve falling off the ladder and juggling. That is unchanged, and so the new
clown’s initial displays should be no different than anything you’ve seen so far.

However, after the doTrick() method is invoked, the instance, gurgle, is given a new
trick. Then, when the doTrick() launches a second time for the gurgle instance, a
different trick display is shown. The bold output in the following output shows the
results of the added materials:

* =>Koka<= *
Now you see it! Presto! It's gone!

Here I come! I'm going to get you!
Nah! Nah! Can't catch me!

* =>Bojo<= *
See! It's a doggy! No, it's not that!!

I'm climbing up this ladder!
Where's my banana peel?
Whoaaaa! I'm falling!!
Thanks for finding my banana peel!

* =>Bubbles<= *
I'm climbing up this ladder!
Where's my banana peel?
Whoaaaa! I'm falling!!
Thanks for finding my banana peel!

Look at me juggle! Whoops!

Woo woo woo! Bubbles are coming out of my pants!

 {
 public function ClownCollege()
 {
 var joker:Clown=new Koka();
 joker.doTrick();
 joker.doSkit();

 var gagGrrrl:Clown=new Bojo();
 gagGrrrl.doTrick();
 gagGrrrl.doSkit();

 var gurgle:Clown=new Bubbles();
 gurgle.doSkit();
 gurgle.doTrick();
 gurgle.setTrick(new BubblePants());
 gurgle.doTrick();
 }
 }
}

Example 11-20. ClownCollege.as (continued)

414 | Chapter 11: Strategy Pattern

Simply by adding setters to the context class, the application has been given a
dynamic way to change which strategy the concrete context class delegates.

Tricks and Skits Reorganization: Clown Planning
Before going on to the next example, we need to consider how the strategy sub-
classes were organized for the task at hand. Keep in mind that no matter how sophis-
ticated or cool your application is, good planning will make it better.

The more components in your system, the more granularity your application is said
to have. Granularity affords more flexibility, and that’s a good thing. However,
greater granularity also leads to a greater number of classes, often adding housekeep-
ing headaches.

To optimize your application, especially one using the Strategy design pattern where
you can have a large number of both concrete contexts and strategies, you need to
plan. Taking a closer look at the clown example, we can see where our planning was
incomplete.

Starting with the trick strategies, the structure allows for only a single trick per
clown. So, we might want to reorganize the strategies from what we have to some-
thing like that shown in Table 11-1.

Now, instead of a single trick interface, it has three. Additionally, a general algo-
rithm covering any tricks in the category is covered as well (any object, any shapes
and any magic). To cover contingencies, the context class retains its ability to
dynamically add a strategy to an instance of a concrete context object. The skit strat-
egies can be reorganized as well, and new strategies can be added as the application
grows and changes.

Working with String Strategies
The best aspect of the Strategy design pattern is its ability to allow change and adap-
tation. The design pattern is a virtual poster child for composition, where change
and flexibility are handled with aplomb. Also, it’s a great tool for working with algo-
rithms large and small.

Table 11-1. Strategies

Juggle Tricks Balloon Tricks Magic Tricks

Balls Animal shapes Card tricks

Rings Human shapes Escape tricks

Flaming Torches Politicians Disappearing children

Any objects Any shapes Any magic

Working with String Strategies | 415

With any application, you’re likely to encounter recurring algorithms. For this appli-
cation, we decided to include some little algorithms that we use with different appli-
cations that have to be rebuilt every time we create an application that uses them.
However, we don’t want to make them into classes where the main objective is to
inherit the functionality. Rather, we want to use them in composition so that we
have more flexibility, and use their functionality only where we need them.

For our example, we’ve taken two simple types of string and sorting issues that seem
to come up in a lot of different applications. First, we built some simple strategies for
checking strings. The first strategy is designed to see if the @ symbol is placed in an
email address, and if it’s not in the first or last position in a string. The second strat-
egy is a password-checking algorithm that knocks all entries to lowercase, and then
sees if they match the correct password.

Our second strategy interface is for demonstrating different sorting possibilities using
the Array class and sort() method. By changing the sort parameters, you will be able
to see which constants to use with different types of sorts and see the outcomes.
Figure 11-4 shows all of the connections between the classes.

The code in Examples 11-21 through 11-33 makes up the ActionScript files that con-
stitute this next application. The application also requires a single Flash document
file with the Document class name TestStringStrategy.

Figure 11-4. Applying the Strategy pattern

StringChecker

stringWork StringWork
sortWork SortWork

workStrings()
workSorts()
setString()
sortSet()

StringChecker

stringWork EmailCheck()
sortWork SimpleSort

Passwork

stringWork PasswordVerify()
sortWork SortAll()

StringWork

stringer()

EmailCheck

stringer() {
//implements
checking for
@ sign in email
}

PasswordVerify

stringer() {
//implements
check password
match
}

‹‹interface››

SortWork

sorter()

SimpleSort

sorter() {
//implements
basic array
sort
}

SortAll

sorter() {
//implements
sort ignoring
case
}

‹‹interface››

SortBack

sorter() {
//implements
descending
sort ignoring
case
}

416 | Chapter 11: Strategy Pattern

Contexts for String Strategies
You can think of the context classes as the clients for the strategies. They use the dif-
ferent strategies. Often, you will hear that a client has-a behavior. Whenever a client
class delegates to a delegate class, such as the strategy classes in Figure 11-4, it has-a
behavior generated by the strategy class. In this application, the context classes rep-
resent the client classes for the strategy classes.

Like all context classes, the StringChecker class in Example 11-21 sets a reference to
the two strategy interfaces, StringWork and SortWork. In addition, it has functions,
workStrings() and workSorts() that constitute the methods used to delegate work to
the strategies.

In addition to having reference properties and methods, the context class includes
setter operations, setString() and setSort(), to dynamically set strategies to
instances of the context classes.

Next, in Examples 11-22 and 11-23, two concrete context classes extend the pri-
mary context class. Note that they inherit the references to the strategies,

Example 11-21. StringChecker.as

package
{
 //Context class
 class StringChecker
 {
 protected var stringWork:StringWork;
 protected var sortWork:SortWork;
 public function StringChecker():void
 {
 }

 public function workStrings(s:String):String
 {
 return stringWork.stringer(s);
 }
 public function workSorts(a:Array):Array
 {
 return sortWork.sorter(a);
 }
 public function setString(sw:StringWork):void
 {
 stringWork=sw;
 }
 public function setSort(sow:SortWork):void
 {
 sortWork=sow;
 }
 }
}

Working with String Strategies | 417

stringWork() and sortWork(). These references are then used to specify exactly
which of the concrete strategies each will be using.

Keep in mind that both of these classes inherit the methods of the main context
class, StringChecker, and when you test instances of these classes, you will be using
the workStrings() and workSorts() methods.

String Strategies
The classes associated with the strategies are quite simple by comparison to the cli-
ent classes in the Strategy design pattern. The interfaces specify the methods, and
then each of the concrete strategy classes implements them, supplying the details in
the form of algorithms. However, in this example (Examples 11-24 and 11-25), both
methods in the interfaces require parameters and expect returns.

Example 11-22. Checker.as

package
{
 //Concrete Context
 class Checker extends StringChecker
 {
 public function Checker()
 {
 stringWork = new EmailCheck();
 sortWork = new SimpleSort();
 }
 }
}

Example 11-23. Passwork.as

package
{
 //Concrete Context
 class Passwork extends StringChecker
 {
 public function Passwork()
 {
 stringWork = new PasswordVerify();
 sortWork = new SortAll();
 }
 }
}

418 | Chapter 11: Strategy Pattern

Even with the added parameter and the return datatype, the interfaces are very sim-
ple. They get more interesting in their implementation.

Checking strategies

The first two concrete strategies (Examples 11-26 and 11-27) create algorithms using
String methods. Each adds an algorithm requiring work with strings. Neither is
especially sophisticated, but both are handy for certain applications that require
checking strings.

Example 11-24. StringWork.as

package
{
 //Strategy
 interface StringWork
 {
 function stringer(s:String):String;
 }
}

Example 11-25. SortWork.as

package
{
 //Strategy
 interface SortWork
 {
 function sorter(a:Array):Array;
 }
}

Example 11-26. EmailCheck.as

package
{
 //Concrete Strategy
 class EmailCheck implements StringWork
 {
 public function stringer(s:String):String
 {
 var atPlace:int=s.indexOf("@");
 if (atPlace != -1 && atPlace !=0 && atPlace != (s.length-1))
 {
 return "Email address verified";
 } else
 {
 return "Email does not verify.\nMissing or
 misplaced @ sign";
 }
 }
 }
}

Working with String Strategies | 419

Instead of using simple string comparisons, you could use regular expressions. Far
more sophisticated substring searches and comparisons are possible using RegExp
data types and algorithms.

Sort strategies

The algorithms used for the sorting strategies (Examples 11-28, 11-29, and 11-30)
are much simpler than the simple string algorithms used in the two StringWork
implantations. All three of the algorithms use a single Array method—sort(). How-
ever, by changing the parameters, you actually have three different kinds of sorts.

Example 11-27. PasswordVerify.as

package
{
 //Concrete Strategy
 class PasswordVerify implements StringWork
 {
 public function stringer(s:String):String
 {
 var pwv:String=s;
 pwv=pwv.toLocaleLowerCase();
 if (pwv == "sandlight")
 {
 return "Welcome to Sandlight";
 } else
 {
 return "Your password is incorrect.
 Please enter again.";
 }
 }
 }
}

Example 11-28. SimpleSort.as

package
{
 //Concrete Strategy
 class SimpleSort implements SortWork
 {
 public function sorter(a:Array):Array
 {
 a.sort();
 return a;

 }
 }
}

420 | Chapter 11: Strategy Pattern

As you can see, you can do quite a bit with a single method. To add more options to
sorting, add some implementations using the Array.sortOn() method and multi-
dimension arrays.

Support Classes
Two support classes help keep the main test application clear, and make good use of
the whole idea of a class structural arrangement. The ShowText class (Example 11-31)
organizes a dynamic text field, and TextShow (Example 11-32) provides the format.

Example 11-29. SortAll.as

package
{
 //Concrete Strategy
 class SortAll implements SortWork
 {
 public function sorter(a:Array):Array
 {
 a.sort(Array.CASEINSENSITIVE);
 return a;

 }
 }
}

Example 11-30. SortBack.as

package
{
 //Concrete Strategy
 class SortBack implements SortWork
 {
 public function sorter(a:Array):Array
 {
 a.sort(Array.CASEINSENSITIVE | Array.DESCENDING);
 return a;

 }
 }
}

Example 11-31. ShowText.as

package
{
 import flash.text.TextField;
 import flash.text.TextFieldType;

 class ShowText extends TextField
 {
 public function ShowText():void

Working with String Strategies | 421

Feel free to change any of the support classes’ features to meet your own tastes.

String Strategy Test
The test of the applied Strategy design pattern uses two objects (Example 11-33).
The first object instantiates the concrete context class, Checker, and the second uses
Passwork.

 {
 this.type=TextFieldType.DYNAMIC;
 this.multiline=true;
 this.wordWrap=true;
 this.border=true;
 this.borderColor=0xcccccc;
 }
 }
}

Example 11-32. TextShow.as

package
{
 import flash.text.TextFormat;

 class TextShow extends TextFormat
 {
 function TextShow():void
 {
 this.font="Verdana";
 this.color=0xcc0000;
 this.size=11;
 this.leading=3;
 this.leftMargin=11;
 this.rightMargin=6;
 }
 }
}

Example 11-33. TestStringStrategy.as

package
{
 import flash.display.Sprite;

 public class TestStringStrategy extends Sprite
 {
 private var showText:ShowText;
 private var showText2:ShowText;
 private var textShow:TextShow;

 public function TestStringStrategy():void

Example 11-31. ShowText.as (continued)

422 | Chapter 11: Strategy Pattern

Keep in mind that the call to the concrete class methods, workStrings and workSorts,
are calls that are delegated to the strategy classes. After opening a new Flash docu-
ment file and placing TextStringStrate in the Document class window, test the
application. Figure 11-5 shows what you can expect to see.

Also, note that after the dynamic changes were reset using setString() and
setSort(), the output changes. Even though adding the setter is optional for a true
Strategy design pattern, setters add a whole other level of flexibility and should not
be overlooked.

 {
 doText();

 //Stringer -- Uses Checker concrete context
 var stringer:StringChecker= new Checker();
 showText.text="Stringer\n\n"+stringer.workStrings
 ("Bill@office.net");
 var friends:Array=new Array("John","Carl","aYo","Delia");
 showText.appendText("\n"+stringer.workSorts(friends));
 stringer.setString(new PasswordVerify());
 showText.appendText("\n"+stringer.workStrings("Sandlight"));

 //Passer -- Uses Passwork concrete context
 var passer:StringChecker= new Passwork();
 showText2.text="Passer\n\n"+passer.workStrings("Rumple");
 showText2.appendText("\n"+passer.workSorts(friends));
 passer.setSort(new SortBack());
 showText2.appendText("\n"+passer.workSorts(friends));
 passer.setString(new EmailCheck);
 showText2.appendText
 ("\n"+passer.workStrings("@passGuy.com"));
 }
 private function doText():void
 {
 showText=new ShowText();
 showText2=new ShowText();
 textShow=new TextShow();
 showText.defaultTextFormat = textShow;
 showText2.defaultTextFormat = textShow;
 addChild(showText),addChild(showText2);
 showText.x=50, showText2.x=270;
 showText.y=100, showText2.y=100;
 showText.width=200,showText2.width=200;
 showText.height=150,showText2.height=150;
 }
 }
}

Example 11-33. TestStringStrategy.as (continued)

Summary | 423

Summary
After examining some applications using the Strategy design pattern, you can see the
scope of possibilities for it as a design pattern. It’s certainly a showcase for good
OOP practices. Perhaps most obvious is how it uses composition instead of inherit-
ance to develop and use the algorithms. However, it still uses the basic OOP feature
of inheritance in its concrete context classes.

Furthermore, you can clearly see polymorphism in the variety of ways the different
strategies are implemented. Each of the interfaces demonstrates abstraction along
with the main context class. All the strategies encapsulate an algorithm, and each
serves as a delegate to another class. So there you have it, the four basic elements of
good OOP:

• Inheritance

• Polymorphism

• Abstraction

• Encapsulation

As we saw in this chapter in the section on the key OOP practices, the Strategy
design pattern demonstrates several other good OOP practices in addition to the
basics.

So, while we believe that the Strategy design pattern certainly demonstrates funda-
mental OOP practices, it’s still a distinct design pattern. Ironically, this fact is most
obvious when you compare it to the State design pattern—the pattern it’s often
accused of duplicating. The State pattern encapsulates states and state contexts, and
the Strategy pattern encapsulates algorithms. Both have different intents but these
intentions are masked by the almost identical class diagrams. Only when you under-
stand and use each one do the differences manifest themselves. As these differences
become clear, you can see the actual use of the State and Strategy patterns as solu-
tions to different kinds of problems. Since the definition of design patterns is that of
design solution to recurring problems, we can see that the Strategy design pattern
clearly meets this fundamental criterion.

Figure 11-5. Output from TestStringStrategy

PART V

V.Multiple Patterns

A multiple personality is in a certain sense normal.
—George Herbert Mead (Describing what is normal for

programmers who attempt to use multiple design
patterns.)

Language can be abstracted, language can be used as
a very beautiful code in poetry, the nuances and the

multiple meanings of things, it has a music to it. It has
so many things in it. It is also reduced from prose and

therefore can be both mathematical, or very, very
abstract.

—Jim Jarmusch
For every disciplined effort there is a multiple reward.

—Jim Rohn
One is sorry one could not have taken both branches
of the road. But we were not allotted multiple selves.

—Gore Vidal (Describing the process in mutually
exclusive radio buttons.)

Using More Than One Pattern
The two chapters in this last part present two designs that implement more than a
single design pattern. First, we examine the Model View Controller (MVC). The
MVC uses the Observer pattern (Chapter 8) in the Model to hold the data, the View
entity uses the Composite pattern (Chapter 6) for representation of the model state,
and the Controller makes use of the Strategy pattern (Chapter 11) for the user inter-
action. Our implementation of the MVC in ActionScript 3.0 reflects the design pat-
terns suggested by the Gang of Four. Other options are possible in the MVC, such as
including Factory and Decorator design patterns.

The second multiple design pattern is an implementation of the Symmetric Proxy
pattern. The Symmetric Proxy uses a Template Method pattern (Chapter 9) and the
Proxy pattern, a pattern not covered in the book. We used Flash Media Server 2 for
delivering the moves into a proxy method residing in a player class instead of a sepa-
rate class for the proxy and real player. However, the Symmetric Proxy, like all good
designs, is resilient enough to accept these changes without losing its own basic
structure or function.

Chapter 12, Model-View-Controller Pattern

Chapter 13, Symmetric Proxy Pattern

427

Chapter 12 CHAPTER 12

Model-View-Controller Pattern12

According to the standard model billions of years ago
some little quantum fluctuation, perhaps a slightly
lower density of matter, maybe right where we’re

sitting right now, caused our galaxy to start collapsing
around here.

—Seth Lloyd
We view things not only from different sides, but with

different eyes; we have no wish to find them alike.
—Blaise Pascal

The primary symptom of a controller is denial, that is
I can’t see its symptoms in myself.

—Keith Miller

What Is the Model-View-Controller (MVC) Pattern?
The Model-View-Controller (MVC) is a compound pattern, or multiple patterns
working together to create complex applications. The MVC pattern is most com-
monly used to create interfaces for software applications, and, as the name implies,
consists of three elements.

Model
Contains the application data and logic to manage the state of the application

View
Presents the user interface and the state of the application onscreen

Controller
Handles user input to change the state of the application

The power of the MVC pattern can be directly attributed to the separation of the
three elements without overlap in each of their responsibilities. Let’s look at each ele-
ment’s responsibilities.

428 | Chapter 12: Model-View-Controller Pattern

Model
The model is responsible for managing the state of the application. The application
logic in the model performs two important tasks: it responds to requests for informa-
tion about the state of the application, and takes action on requests to change the state.

View
A view is the external face of the application. Users interact with the application
through the view. An application can contain multiple views that can be both inputs
and outputs. For example, in the case of a portable digital music player such as an
iPod, the screen is a view. In addition, the buttons that control song playback are
views as well. The screen shows the name of the current song, song duration, album
art, and so on, that communicate the current state of the device. Views don’t neces-
sarily have to be visual. In the case of a digital music player, the sound that comes
through the headphones represents a view as well. For example, clicking a button
may provide some auditory feedback in the form of the click sound. Changing the
volume is reflected in the audio output as well. The auditory feedback corresponds
to the state of the application.

Controller
Although the term controller implies an interface that controls an application, in an
MVC pattern, the controller does not contain any user interface elements. As pointed
out previously, user interface elements that provide input belong to the view compo-
nent. The controller determines how views respond to user input.

For example, our digital music player has volume up and volume down buttons in a
view. The sound volume of the device is a state variable. The model will hold this
variable with the necessary application logic to change it. If the sound volume range
is 0 to 10, the controller determines how much the volume should go up or down
with a single click on the volume up and down buttons. The controller can tell the
model to raise the volume by 0.5 or 1.0, or any value, programmatically. In this
sense, controllers are specific implementations that determine how the application
responds to user input.

Although each element in the MVC triad has separate and unique responsibilities,
they don’t function in isolation. In fact, in order to be an MVC pattern, each element
needs to communicate with one or more elements. That is what we’ll look at next.

Communication Between the MVC Elements
Each element in the MVC pattern communicates with each other in very specific
ways. Communication is necessitated by a sequence of events that are generally

Communication Between the MVC Elements | 429

triggered by a user interacting with the application. The sequence of events is repre-
sented as follows:

1. User interacts with a user interface element (e.g. clicks on a button in a view).

2. The view sends the click event to the controller to decide how to handle it.

3. The controller changes the model based on how it decides to handle the button
click.

4. The model informs the view that the state of the model has now changed.

5. The view reads state information from the model and updates itself.

Figure 12-1 shows the graphical representation of the channels of communication
between MVC elements. The arrows’ directions show the direction of communication.

This is a very simple model of how MVC elements communicate. In some cases the
controller can directly tell the view to make changes as well. This is the case only
when the changes in the view necessitated by user action don’t require a change in
the model itself, but simply a change in visuals. For example, think about the pro-
cess whereby a user selects a song to play in our portable digital music player. The
user selects songs from a list using buttons that scroll the list. The view would tell the
controller that the scroll up or scroll down button has been clicked, but the control-
ler won’t inform the model of this. It’ll directly tell the view to scroll the list of songs
in the appropriate direction. This user action doesn’t represent a change in the
model. However, when the user actually selects a song from the list to play, the con-
troller will change the model to reflect this change in the currently selected song.

Furthermore, changes in the model are not always initiated by user interaction. The
model can update itself based on certain events. For example, think of a stock ticker
application. The model would hold the current prices of certain stocks. However,
stock prices change, and the model could set a timer to periodically update the stock

Figure 12-1. Direction of communication between MVC elements

Model

View Controller

View reads state
information from

model and updates
itself

5

4 Model tells view
to update itself

3
Controller changes

model state

2
View tells the controller

to handle user input

1
User interacts with

application through a
view (e.g. clicks button)

430 | Chapter 12: Model-View-Controller Pattern

prices from a web service. Then, whenever the model updated its stock prices, it
would inform the view that its state has changed.

Another feature of the MVC is that each model can have more than one view associ-
ated with it. For example, in our portable music player, the volume setting of the
device can be viewed on the display screen using a level indicator. In addition, sound
level is represented in the level of the sound output from the headphones as well.
Both the display and auditory feedback from the headphones represent views of the
device state.

Take a look at Figure 12-1 and make note of the arrows’ directions. This shows
who initiates communication between elements. In order for an MVC element to
communicate with another element, it needs to know about and hold a reference to
that element.

Think of the model, view, and controller as three separate classes. Let’s look at
which classes need to have references to which other classes.

Model
Needs to have a reference to views

View
Needs references to both the model and controller

Controller
Needs a reference to the model

We started off by saying that the MVC is a compound pattern that consists of sev-
eral patterns. You may be wondering where the embedded patterns are. It is pre-
cisely at this point that they can be introduced. The primary advantage of using the
MVC pattern is the loose coupling it allows us to implement between the three ele-
ments. It lets us bind multiple views to the same model, and swap out models and
controllers without breaking other elements. But some element in the MVC triad
needs to hold references to other elements, and there’s a whole lot of talking going
on between them. How can we call this loose coupling? This is where the observer,
strategy, and composite patterns help us out.

Embedded Patterns in the MVC
We pointed out that a model can be associated with several views. In the MVC, the
model needs to inform all associated views that a change has taken place. It also
needs to do this without knowing specific details about the views, or how many
views need to be changed. This is a recurring problem best solved by implementing
an observer pattern (see Chapter 8).

Each model can have multiple views associated with it. Views can also be complex,
with multiple windows or panels that contain other user interface elements. For
example, user interface elements such as buttons, text fields, lists, sliders, etc. can be

Minimalist Example of an MVC Pattern | 431

grouped together in a tabbed panel that in turn will be part of a window with other
tabbed panels. Each button or group of buttons can be a view. So can a collection of
text fields. It would be very useful to treat a panel or window that contains collec-
tions of simple views the same way as we would treat any other view. This is where
the composite pattern will save us a lot of effort (see Chapter 6). Why would a com-
posite pattern implementation be useful in this context? If views can be nested, as
they would be if they were implemented in a composite pattern, the update process
would be simpler. Update events would automatically cascade down to child views.
Creating complex views would be easier without having to worry about sending
update events to each nested view.

Views confine themselves solely to the external representation of the model state.
They delegate user interface events to a controller. Therefore, the controller is essen-
tially an algorithm of how to handle user input in a particular view. This delegation
encapsulates the implementation of how a particular user interface element behaves
in terms of modifying the model. We can easily substitute a different controller for
the same view to get different behavior. This is a perfect context to implement a
strategy pattern.

We will look at how each of these patterns is implemented in an MVC by develop-
ing a minimalist example.

Minimalist Example of an MVC Pattern
This simple example keeps track of the last key pressed. When a new key is pressed, it
changes the model and informs the view to update itself. The view uses the Flash
output panel to print the character code of the key that’s pressed. The character code is
the numeric value of that key in the current character set. This example is meant to
clarify how the observer, strategy, and composite patterns are integrated within the
MVC.

Model as a Concrete Subject in an Observer Pattern
The relationship between the model and view is that of subject and observer (see
Chapter 8). The model has to implement the subject interface that’s part of the
observer pattern. Fortuitously, ActionScript 3.0 has built in classes that do this
already, using the ActionScript event model to notify observers of changes.

The EventDispatcher class in ActionScript 3.0

The EventDispatcher class implements the IEventDispatcher interface. Among other
methods, the IEventDispatcher interface defines the following methods required of
the subject in an observer pattern. (See AS3 documentation for a detailed explana-
tion of all method parameters.)

432 | Chapter 12: Model-View-Controller Pattern

addEventListener(type:String,
 listener:Function,
 useCapture:Boolean = false,
 priority:int = 0,
 useWeakReference:Boolean = false):void

removeEventListener(type:String,
 listener:Function,
 useCapture:Boolean = false):void

dispatchEvent(event:Event):Boolean

For the model to serve as a concrete subject in an observer pattern, it needs to imple-
ment the IEventDispatcher interface. However, the easiest way for a user-defined
class to gain event dispatching capabilities is to extend the EventDispatcher class.

Observers register listener methods to receive event notifications from
EventDispatcher objects through the addEventListener() method.

The model

Our model holds the character code of the last key pressed in a property. It needs to
implement setter and getter methods to enable the view and controller to access and
modify it. Let’s first define an interface for our model (Example 12-1).

The IModel interface shown in Example 12-1 extends the IEventDispatcher interface
and defines two methods to get and set the character code of the last key pressed.
Because the IModel interface extends IEventDispatcher, any class implementing it has
to implement all the methods defined in both interfaces. The Model class shown in
Example 12-2 implements the IModel interface.

Example 12-1. IModel.as

package
{
 import flash.events.*;

 public interface IModel extends IEventDispatcher
 {
 function setKey(key:uint):void
 function getKey():uint
 }
}

Example 12-2. Model.as

package
{
 import flash.events.*;

 public class Model extends EventDispatcher implements IModel
 {

Minimalist Example of an MVC Pattern | 433

The Model class extends the EventDispatcher class that already implements the
IEventDispatcher interface. Note the dispatchEvent() function call within the
setKey() method. This sends a CHANGE event to all registered observers when the
value of lastKeyPressed is changed within the setKey() method.

Controller as a Concrete Strategy in a Strategy Pattern
The relationship between the controller and view is that of strategy and context in a
strategy pattern. Each controller will be a concrete strategy implementing a required
behavior defined in a strategy interface.

The controller

For our minimalist example, the behavior required of the controller is to handle a
key press event. IKeyboardInputHandler is the strategy interface (Example 12-3), and
defines a single method called keyPressHandler().

The concrete controller is the Controller class (Example 12-4) that implements the
IKeyboardInputHandler interface.

 private var lastKeyPressed:uint = 0;

 public function setKey(key:uint):void
 {
 this.lastKeyPressed = key;
 dispatchEvent(new Event(Event.CHANGE)); // dispatch event
 }

 public function getKey():uint
 {
 return lastKeyPressed;
 }
 }
}

Example 12-3. IKeyboardInputHandler.as

package
{
 import flash.events.*;

 public interface IKeyboardInputHandler
 {
 function keyPressHandler(event:KeyboardEvent):void
 }
}

Example 12-2. Model.as (continued)

434 | Chapter 12: Model-View-Controller Pattern

Note that the controller has a constructor that takes an instance of the model as a
parameter. This is necessary as the controller initiates communication with the
model as shown in Figure 12-1. Therefore, it needs to hold a reference to the model.

The keyPressHandler() method takes the user interface event (a KeyboardEvent in this
case) as a parameter and decides how to handle it. In this example, it simply sets the
last key pressed in the model to the character code of the key pressed.

View as a Concrete Observer in an Observer Pattern and Context in
a Strategy Pattern
The view is arguably the most complex element in the MVC pattern. It plays an inte-
gral part in both the observer and strategy pattern implementations that form the
basis of its relationship with the model and controller. The View class shown in
Example 12-5 implements the view for the minimalist example.

Example 12-4. Controller.as

package
{
 import flash.events.*;

 public class Controller implements IKeyboardInputHandler
 {
 private var model:IModel;

 public function Controller(aModel:IModel)
 {
 this.model = aModel;
 }

 public function keyPressHandler(event:KeyboardEvent):void
 {
 model.setKey(event.charCode); // change model
 }
 }
}

Example 12-5. View.as

1 package
2 {
3 import flash.events.*;
4 import flash.display.*;
5
6 public class View
7 {
8 private var model:IModel;
9 private var controller:IKeyboardInputHandler;

10

Minimalist Example of an MVC Pattern | 435

The view needs to hold references to both the model and controller as it initiates
communication with them as shown in Figure 12-1. Both the model and controller
instances are passed to the view in its constructor. Also, the view in our example
needs a reference to the stage to register itself to receive key press events.

In addition to drawing the user interface, the View class does a couple of important
tasks. It registers with the model to receive update events, and delegates to the con-
troller to handle user input. In our example, the view does not have an external
visual representation on the stage, but displays the model state in the output panel. It
needs to receive key press events, and registers the method called onKeyPress() to
receive KEY_DOWN events from the stage (line 20). The second task is to register a lis-
tener method called update() to receive a CHANGE event from the model (line 16). On
notification of a change, the update() method reads the character code for the last
key pressed from the model and prints it to the output panel using the trace function.

Building the MVC Triad
We have looked at the individual implementations of the three elements that make
up the MVC pattern. However, there has to be a client that initializes each element
and builds the MVC model. There’s no real building involved – all that needs to be

11 public function View(aModel:IModel, oController:
 IKeyboardInputHandler,target:Stage)

12 {
13 this.model = aModel;
14 this.controller = oController;
15
16 // register to receive notifications from the model
17 model.addEventListener(Event.CHANGE, this.update);
18
19 // register to receive key press notifications from the stage
20 target.addEventListener(KeyboardEvent.KEY_DOWN,
21
22 }
23
24 private function update(event:Event):void
25 {
26 // get data from model and update view
27 trace(model.getKey());
28 }
29
30 private function onKeyPress(event:KeyboardEvent):void
31 {
32 // delegate to the controller (strategy) to handle it
33 controller.keyPressHandler(event);
34 }
35 }
36 }

Example 12-5. View.as (continued)

436 | Chapter 12: Model-View-Controller Pattern

done is to instantiate the model, view, and controller classes. Example 12-6 shows
the Flash document class that instantiates the MVC elements.

After the model, controller, and view are instantiated, they’ll communicate with each
other and work. Clicking a key on the keyboard will result in the key code for that
key being printed in the output panel.

You have to disable keyboard shortcuts to test for key presses. Other-
wise the Flash user interface intercepts certain key press events that
match keyboard shortcuts. To disable keyboard shortcuts select Dis-
able Keyboard Shortcuts from the Control menu when your Flash
movie is playing.

Note that the model instance is passed to the controller. Similarly, the model and
controller instances are passed to the view as well. We can easily substitute different
models and controllers on the condition that they implement the IModel and
IKeyboardInputHandler interfaces. Additional view elements can also be added with-
out disruption due to the subject-observer relationship between the model and view.
The model doesn’t know about views as it’s the responsibility of the view to register
itself to receive update notifications from the model. This is the beauty of the MVC
pattern; the model, view, and controller are separate, loosely coupled elements that
allow for flexibility in their use.

Nested Views as Leaves and Nodes of a Composite Pattern
You may remember that the view is arguably the most complex element in the MVC
triad because it participates in both the observer and strategy pattern

Example 12-6. Main.as (document class for minimalist example)

package
{
 import flash.display.*;
 import flash.events.*;

 /**
 * Main Class
 * @ purpose: Document class for movie
 */
 public class Main extends Sprite
 {
 public function Main()
 {
 var model:IModel = new Model();
 var controller:IKeyboardInputHandler = new Controller(model);
 var view:View = new View(model, controller, this.stage);
 }
 }
}

Minimalist Example of an MVC Pattern | 437

implementations in the MVC. Our view elements are going to get more complex as
they can implement a third pattern, the composite (see Chapter 6 for examples of the
composite pattern). Implementing views as elements of a composite pattern only
makes sense for complex nested user interfaces that contain multiple views. Nested
views bring several advantages to updating the user interface, as updates can cascade
down the composite view tree structure. Also, composite views can create and
remove child views based on application state and user mode. A good example of a
complex user interface is the Properties inspector panel in the Flash authoring envi-
ronment. The Properties inspector is context sensitive, and adds or removes user
interface elements based on the object selected on the stage.

Component and composite views

The first step is to create the component and composite classes for the view. These
classes should behave as abstract classes and should be subclassed and not instanti-
ated, as shown in Example 12-7.

Example 12-7. ComponentView.as

package
{
 import flash.errors.IllegalOperationError;
 import flash.events.Event;
 import flash.display.Sprite;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class ComponentView extends Sprite {
 {
 protected var model:Object;
 protected var controller:Object;

 public function ComponentView(aModel:Object, aController:Object = null)

 {
 this.model = aModel;
 this.controller = aController;
 }

 public function add(c:ComponentView):void
 {
 throw new IllegalOperationError("add operation not supported");
 }

 public function remove(c:ComponentView):void
 {
 throw new IllegalOperationError("remove operation not supported");

 }

 public function getChild(n:int):ComponentView
 {
 throw new IllegalOperationError("getChild operation not supported");

438 | Chapter 12: Model-View-Controller Pattern

The ComponentView class shown in Example 12-7 defines the abstract interface for
component views. This is similar to the classic component class introduced in
Chapter 6, with a few key differences. The ComponentView class keeps references to
the model and view, and includes a constructor. Not all views handle user input, and
a component view can be constructed by just passing a model instance. Therefore,
the aController parameter has a default value of null in the constructor. Also note
that the ComponentView class extends the Sprite class. This makes sense as most views
draw a user interface on the stage. We can use the properties and methods imple-
mented in the built-in Sprite class to draw and add objects to the display list.

The update() method should behave as an abstract method. Leaf views that subclass
ComponentView must override and implement the update() method to update their
user interface. This method is the listener function that intercepts update notifica-
tions from the model. For this reason, a parameter of type Event is passed to it. This
parameter also has a default value of null, allowing update() to be called without
passing an event parameter. This is useful when initially drawing the user interface in
its default state, and our subsequent examples illustrate it.

The CompositeView class extends ComponentView and overrides the methods that deal
with handing child views. In Example 12-8, we will implement only the add()
method for simplicity.

 return null;
 }

 // ABSTRACT Method (must be overridden in a subclass)
 public function update(event:Event = null):void {}
 }
}

Example 12-8. CompositeView.as

package {

 import flash.events.Event;

 // ABSTRACT Class (should be subclassed and not instantiated)
 public class CompositeView extends ComponentView
 {
 private var aChildren:Array;

 public function CompositeView(aModel:Object,aController:Object = null)
 {
 super(aModel, aController);
 this.aChildren = new Array();
 }

 override public function add(c:ComponentView):void
 {

Example 12-7. ComponentView.as (continued)

Minimalist Example of an MVC Pattern | 439

Note the overridden update() function in the CompositeView class shown in
Example 12-8. It calls the update method in all its children. Therefore, calling the
update() function in the root node of the composite view structure will cascade
down and traverse the component tree updating all views. Let’s subclass
CompositeView and ComponentView classes and create a nested view structure to see
how this works.

Creating nested views

To illustrate nested views, we will create a composite view node and two child com-
ponent views as shown in Figure 12-2.

We will first create a composite view called RootNodeView. This composite view will
receive keyboard input events from the stage. This view will also register to receive

 aChildren.push(c);
 }

 override public function update(event:Event = null):void
 {
 for each (var c:ComponentView in aChildren)
 {
 c.update(event);
 }
 }
 }
}

Figure 12-2. Nested view structure in minimalist example

Example 12-8. CompositeView.as (continued)

Model

Root node
registers to receive

update notices

RootNodeView

Update events
cascade down from

parent to child views

CharCodeLeafView ACIICharLeafView

Receives update
events from model

Nested views

Displays the
character code of
the key pressed

Displays the ASCII
character code of
the key pressed

440 | Chapter 12: Model-View-Controller Pattern

update notices from the model. The RootNodeView composite view will have two child
component views called CharCodeLeafView and AsciiCharLeafView. The
CharCodeLeafView will trace the character code for the last key pressed. Similarly, the
AsciiCharLeafView will trace the ASCII character corresponding to the character
code. Let’s create the composite view first, as shown in Example 12-9.

The RootNodeView class shown in Example 12-9 subclasses the CompositeView class
(Example 12-8). It does not draw a user interface; it simply listens for key press
events and delegates to the controller to handle them. Note the super statement in
the constructor. This is required to call the constructor in the superclass. We can
now create the two component views (Examples 12-10 and 12-11).

Example 12-9. RootNodeView.as

package
{
 import flash.events.*;
 import flash.display.*;

 public class RootNodeView extends CompositeView
 {
 public function RootNodeView (aModel:IModel,

 {
 super(aModel, aController);

 // register to receive key press notifications form the stage
 target.addEventListener(KeyboardEvent.KEY_DOWN,

 }

 private function onKeyPress(event:KeyboardEvent):void
 {
 // delegate to the controller (strategy) to handle it
 (controller as IKeyboardInputHandler).keyPressHandler(event);
 }
 }
}

Example 12-10. CharCodeLeafView.as

package
{
 import flash.events.Event;

 public class CharCodeLeafView extends ComponentView
 {
 public function CharCodeLeafView(aModel:IModel, aController:Object = null)
 {
 super(aModel, aController);
 }

Minimalist Example of an MVC Pattern | 441

Both component view classes CharCodeLeafView (Example 12-10) and
AsciiCharLeafView (Example 12-11) subclass the ComponentView class (Example 12-8).
Note that they don’t receive any input from the user interface. These two views can
therefore be instantiated without passing a controller object to the constructor. The
controller will default to null in this case.

Now all that’s left to do is build the MVC triad with the nested view. We’ll allow the
client to build the nested view and register the root node with the model to receive
update events.

Building the Nested View Structure
Building nested view structures is identical to developing composite structures using
the composite pattern. We have to visualize the view as a tree (an upside-down tree)
and use the add() method in the composite view to add child views.

var model:IModel = new Model();
var controller:IKeyboardInputHandler = new Controller(model);

 override public function update(event:Event = null):void
 {
 // get data from model and update view
 trace(model.getKey());
 }
 }
}

Example 12-11. AsciiCharLeafView.as

package
{
 import flash.events.Event;

 public class AsciiCharLeafView extends ComponentView
 {
 public function AsciiCharLeafView(aModel:IModel,aController:Object = null)
 {
 super(aModel, aController);
 }

 override public function update(event:Event = null):void
 {
 // get data from model and update view
 trace(String.fromCharCode(model.getKey()));
 }
 }
}

Example 12-10. CharCodeLeafView.as (continued)

442 | Chapter 12: Model-View-Controller Pattern

// composite view
var rootView:CompositeView = new RootNodeView(model,controller, this.stage);

// add child leaf views
rootView.add(new CharCodeLeafView(model));
rootView.add(new AsciiCharLeafView(model));

// register view to receive notifications from the model
model.addEventListener(Event.CHANGE, rootView.update);

Note that only the root view registers with the model to receive update events.
Because the root view is a composite view, the event cascades down to each of its
child nodes. Now whenever a key is pressed, one child node will trace the character
code and the other will trace the ASCII character of the corresponding key. Even
though the nested view structure in our minimalist example was simple, this struc-
ture can work well for nested views with many components.

In our minimalist example, the client built the nested view structure. However, the
build statements for the nested view could have been embedded in the RootNodeView
class, further encapsulating implementation. Now the root view can dynamically add
and remove child views based on application state and user mode. This allows the
user interface element of an application to gain some very powerful capabilities.

Key Features of the MVC Pattern
The primary usefulness of the MVC pattern is the flexibility it affords when creating
applications that have user interfaces. The pattern separates the model, view, and
controller elements and leverages the observer, strategy, and composite patterns to
decouple them.

• MVC consists of three elements called the model, view, and controller that sepa-
rate the responsibilities of an application with a graphical user interface.

• The relationship between models and views is that of a concrete subject and a
concrete observer in an observer pattern.

• The relationship between views and controllers is that of a context and concrete
strategy in a strategy pattern.

• Multiple views can register with the model.

• Views can be nested using the composite pattern to create complex user inter-
faces that streamline the update process.

Example: Weather Maps | 443

Key OOP Concepts in the MVC Pattern
The key concept in the MVC pattern is loose coupling. Loose coupling reduces the
dependencies between the separate elements in the MVC pattern. For example, the
subject-observer relationship between the model and view enables the model to func-
tion independently of how its state is displayed in the user interface. It’s the responsi-
bility of the view to register for updates and update the user interface elements. The
model can function independently, blissfully unaware of the number and type of
views. Similarly, nested views can be added without disruption. Update events will
trickle down to all nested views as long as the root node is registered with the model
to receive updates. This makes the MVC pattern highly extensible.

In addition, each element in the MVC adheres to the single responsibility principle.
Each element has a well-defined role. The model manages state, the view represents
state, and the controller handles user input. This allows each element to be swapped
out without affecting other elements. If we need a different behavior for a particular
user interface element in a view, we simply substitute a different controller for it.
This makes the MVC pattern very customizable, allowing reuse.

Example: Weather Maps
The National Oceanic and Atmospheric Administration (NOAA), a division of the
U.S. Department of Commerce, runs a Geostationary Satellite Server on the Web
(http://www.goes.noaa.gov). The site publishes satellite images of the United States,
including Puerto Rico, Alaska, and Hawaii. We will use these images (they’re in the
public domain and free to use) to develop a simple weather map application leverag-
ing the MVC pattern. For this example we will use the built-in user interface compo-
nents provided in Flash CS3 to develop view elements.

For the first iteration of our application shown in Figure 12-3, we’ll allow the user to
choose the map region (East Coast, West Coast, Puerto Rico, Alaska, and Hawaii)
using a combo box (a drop-down list that displays the currently chosen item). The
application will then load the latest visible satellite image of the corresponding region.

This example illustrates the use of built-in components in Flash CS3 to implement
the user interface elements in each view. It also shows the usefulness of nested views
for screen layout and automatic view updates. Let’s create the model element of our
example application.

The Model
The model element of the MVC pattern contains the application data and state
including the logic to manage data and state. The application state is the region the
user has chosen to display. The region can be one of five, corresponding to the

http://www.goes.noaa.gov

444 | Chapter 12: Model-View-Controller Pattern

regional maps available from the web site. The data is the URLs of the satellite
images corresponding to each region.

The application logic should allow users to manage the state of the application.
Users should be able to set the current region. The view element that draws the
combo box needs to get the list of available regions and the currently selected region.
In addition, the view that displays the satellite image needs to access the URL of the
currently selected region. Let’s develop a model interface (Example 12-12) based on
these requirements.

Figure 12-3. Weather map example application showing a visible map of the East Coast

Example: Weather Maps | 445

The next step is to implement the IModel interface and develop the model
(Example 12-13).

Example 12-12. IModel.as (Model interface for the weather map example)

package
{
 import flash.events.*;

 public interface IModel extends IEventDispatcher
 {
 function getRegionList():Array
 function getRegion():uint
 function setRegion(index:uint):void
 function getMapURL():String
 }
}

Example 12-13. Model.as (Model for the weather map example)

package {

 import flash.events.*;

 public class Model extends EventDispatcher implements IModel
 {

 protected var aRegions:Array;
 protected var chosenRegion:uint;

 protected var aImageURLs:Array;

 public function Model()
 {
 this.aRegions = new Array(
 "East Coast",
 "West Coast",
 "Puerto Rico",
 "Alaska",
 "Hawaii");
 this.aImageURLs = new Array(
 "http://www.goes.noaa.gov/GIFS/ECVS.JPG",
 "http://www.goes.noaa.gov/GIFS/WCVS.JPG",
 "http://www.goes.noaa.gov/GIFS/PRVS.JPG",
 "http://www.goes.noaa.gov/GIFS/ALVS.JPG",
 "http://www.goes.noaa.gov/GIFS/HAVS.JPG");
 this.chosenRegion = 0;
 }

 public function getRegionList():Array
 {
 return aRegions;
 }

446 | Chapter 12: Model-View-Controller Pattern

Note the update() method in the Model class shown in Example 12-13. It dispatches
a CHANGE event to registered observers. The update() method is called whenever the
application state changes.

As a developer, you may be tempted to store the region list in the view for simplic-
ity. However, this greatly reduces flexibility and reuse. Adding another region, for
example, would require changes to both the view and the model. It’s always a good
practice to adhere to the delineated responsibilities of the three MVC elements.
Application data should be accessible only through the model.

The Controller
The combo box view is the only interface element in the application that users can
control. The interface for the corresponding controller is shown in Example 12-14.

The implementation is show in Example 12-15.

 public function getRegion():uint
 {
 return this.chosenRegion;
 }

 public function setRegion(index:uint):void
 {
 this.chosenRegion = index;
 this.update();
 }

 public function getMapURL():String
 {
 return this.aImageURLs[chosenRegion];
 }

 protected function update():void
 {
 dispatchEvent(new Event(Event.CHANGE)); // dispatch event
 }
 }
}

Example 12-14. ICompInputHandler.as

package
{
 public interface ICompInputHandler
 {
 function compChangeHandler(index:uint):void
 }
}

Example 12-13. Model.as (Model for the weather map example) (continued)

Example: Weather Maps | 447

The Views
The weather map application consists of two views. The first is a user interface ele-
ment that contains a combo box to select a region to display. The second view dis-
plays the corresponding regional satellite image.

We will use the built-in ComboBox and UILoader components in Flash CS3 to imple-
ment the user interface elements in each view. Components are movie clips with
parameters that allow you to modify their appearance and behavior. They allow
developers to build Flash applications with consistent behavior and appearance with-
out creating custom user interface elements such as buttons and sliders. For the
weather map application, we need to drag the ComboBox and UILoader components
from the Components panel to the Library panel in our Flash document. The Compo-
nents and Library panels can be accessed from the Windows menu in Flash CS3.
Note that we don’t want to place the component on the stage. We’ll add the compo-
nents to the stage at runtime using ActionScript. The ComboBox component uses sev-
eral additional assets as well. Your library panel will look like Figure 12-4 after the
ComboBox and UILoader components are dragged into it.

We can now develop the combo box and map views for the application. The combo
box view will be a composite view containing the map view as one of its children.

Example 12-15. Controller.as (Controller for the weather map example)

package
{
 public class Controller implements ICompInputHandler
 {

 private var model:Object;

 public function Controller(aModel:IModel)
 {
 this.model = aModel;
 }

 public function compChangeHandler(index:uint):void {
 (model as IModel).setRegion(index); // update model
 }
 }
}

448 | Chapter 12: Model-View-Controller Pattern

Combo box view

The CBView class (Example 12-16) subclasses CompositeView (Example 12-8) and
draws the ComboBox component.

Figure 12-4. Library panel with ComboBox and UILoader components

Example 12-16. CBView.as

1 package
2 {
3 import flash.events.Event;
4 import fl.controls.ComboBox;
5
6 public class CBView extends CompositeView
7 {
8
9 private var cb:ComboBox;

10
11 public function CBView(aModel:IModel,aController:ICompInputHandler= null)
12 {
13 super(aModel, aController);
14
15 // get region names from model
16 var aRegions:Array = (model as IModel).getRegionList();
17
18 // draw combo box using region names
19 cb = new ComboBox();
20 for (var i:uint = 0; i < aRegions.length; i++)
21 {
22 cb.addItem({ label: aRegions[i], data:i });
23 }

Example: Weather Maps | 449

The CBView class (Example 12-16) gets the list of region names from the model (line
16) and adds them to the component. Line 24 calls the update() method without any
parameters. The update() method reads the currently selected region from the model
and updates the combo box. It then adds the combo box to the display list (line 25)
and registers the changeHandler() function to receive change events from the combo
box component (line 28). Note that because this is a composite view, the overridden
update() function needs to call its superclass (line 35) to ensure that updates trickle
down to its children as well.

Map view

The MapView class (Example 12-17) subclasses ComponentView (Example 12-7) and
draws the UILoader component.

24 update();
25 addChild(cb);
26
27 // register to recieve changes to combo box
28 cb.addEventListener(Event.CHANGE, this.changeHandler);
29 }
30
31 override public function update(event:Event = null):void
32 {
33 // get data from model and update view
34 cb.selectedIndex = (model as IModel).getRegion();
35 super.update(event);
36 }
37
38 private function changeHandler(event:Event):void
39 {
40 // delegate to the controller (strategy) to handle
41
42 (controller as ICompInputHandler).compChangeHandler

 (ComboBox(event.target).selectedItem.data);
43 }
44 }
45 }

Example 12-17. MapView.as

1 package
2 {
3 import flash.events.Event;
4 import fl.containers.UILoader;
5
6 public class MapView extends ComponentView
7 {
8 private var uiLoader:UILoader;
9

10 public function MapView(aModel:IModel, aController:Object = null)

Example 12-16. CBView.as

450 | Chapter 12: Model-View-Controller Pattern

The MapView class (Example 12-17) loads and displays the satellite image, and doesn’t
otherwise interact with the user. As in the combo box view, the update() method is
called without any parameters from the constructor (line 16) to load the image for
the default region. Assigning a URL of an image to the source parameter in the
UILoader component loads the corresponding image. Unlike the combo box, map
view is a component view that cannot have any children. Therefore, the overridden
update() method does not have to call its superclass method.

Building the MVC Triad
The last task is to instantiate the model and controller, and construct the composite
view structure by adding the map view as a child of the combo box view. The follow-
ing statements should be executed from the document class of the Flash document.

var model:IModel = new Model();
var controller:ICompInputHandler= new Controller(model);

// composite view
var view:CompositeView = new CBView(model, controller);
view.x = view.y = 10;
addChild(view);

// adding a child view
var map:ComponentView = new MapView(model);
view.add(map);
map.x = 0
map.y = 40;
addChild(map);

// register to view to recieve notifications from the model
model.addEventListener(Event.CHANGE, view.update);

11 {
12 super(aModel, aController);
13
14 uiLoader = new UILoader();
15 uiLoader.scaleContent = false;
16 update();
17 addChild(uiLoader);
18 }
19
20 override public function update(event:Event = null):void
21 {
22 // get data from model and update view
23 uiLoader.source = (model as IModel).getMapURL();
24 }
25 }
26 }

Example 12-17. MapView.as

Extended Example: Infrared Weather Maps | 451

Note that only the combo box view that’s at the root of the composite view struc-
ture has registered with the model to receive update events. These will trickle down
from the combo box view to its child map view.

The views extend the Sprite class. Therefore, the client has the flexibility to place
them on the stage that fits the required application layout.

Setting the Model to Self-Update
Changes in the model are not always initiated by user interaction. You may have
noticed a time stamp on the satellite images (in GMT). The time stamp tells us that
the satellite images are updated about every 15 minutes. We can easily add a self-
update timer to our model to dispatch an event every 15 minutes that tells the map
view to reload the updated image. We should add the following statements to the
end of the Model class constructor in Example 12-13 (make sure to import the
flash.utils.Timer class first).

var updateTimer:Timer = new Timer(1000 * 60 * 15);
updateTimer.addEventListener("timer", timerHandler);
updateTimer.start();

The following listener method should be added to the Model class in Example 12-13.
The listener method timerHandler() is set to listen for a new TimerEvent to be dis-
patched every 15 minutes. The timerHandler() calls the update() method to dis-
patch an update event to registered observers.

public function timerHandler(event:TimerEvent):void {
 this.update();
}

Extended Example: Infrared Weather Maps
To illustrate how the MVC pattern allows for flexible expansion and reuse of its
model, view, and controller elements, we will extend our weather maps example.
You may have noticed that there are three types of satellite image maps on the Geo-
stationary Satellite Server web site (http://www.goes.noaa.gov). What if we want to
give the user the option of choosing whether to view a visible or infrared image?
What changes would be required to extend our weather maps application to view
infrared satellite images?

To begin with, we’ll need to add another view such as a radio button group to
choose the type of satellite image (visible or infrared as shown in Figure 12-5).

We will need to create a new controller to handle the user input to the new view ele-
ment. Our model will also need to hold more data, as we need to integrate five addi-
tional image URLs, one for each region as an infrared image. The application logic in
the model will also need to be updated to handle the new data. Can we add all these
new features without changing existing code? Can we leverage the flexibility and
reuse of the MVC pattern without breaking anything?

http://www.goes.noaa.gov

452 | Chapter 12: Model-View-Controller Pattern

Let’s look at the changes needed to update the model.

Adding a New Model
Instead of modifying the current weather maps model (Example 12-13), we will
extend it to incorporate the new data and additional state information. We need to
add another property to indicate the chosen map type, either a visible map or an
infrared one. In addition, we need to update the application logic to work with the
new data. Example 12-18 shows a new interface for the model that defines the meth-
ods required for the new features.

Figure 12-5. Extended example showing an infrared map of the West Coast

Example 12-18. INewModel.as

package
{
 import flash.events.*;

 public interface INewModel extends IModel

Extended Example: Infrared Weather Maps | 453

Interface INewModel extends the IModel interface (Example 12-12) and defines the
methods required to get the list of image types as an array, including get and set
methods for the currently selected map type (visible or infrared). Example 12-19
shows the NewModel class that extends the previous Model class to implement the new
INewModel interface.

 {
 function getMapTypeList():Array
 function getMapType():uint
 function setMapType(index:uint):void
 }
}

Example 12-19. NewModel.as

package {

 public class NewModel extends Model implements INewModel {

 protected var aMapTypes:Array;
 protected var chosenMapType:uint;

 protected var aIRImageURLs:Array;

 public function NewModel() {
 this.aIRImageURLs = new Array(
 "http://www.goes.noaa.gov/GIFS/ECIR.JPG",
 "http://www.goes.noaa.gov/GIFS/WCIR.JPG",
 "http://www.goes.noaa.gov/GIFS/PRIR.JPG",
 "http://www.goes.noaa.gov/GIFS/ALIR.JPG",
 "http://www.goes.noaa.gov/GIFS/HAIR.JPG");
 this.aMapTypes = new Array(
 "Visible",
 "Infrared");
 this.chosenMapType = 0;
 }

 public function getMapTypeList():Array {
 return aMapTypes;
 }

 public function getMapType():uint {
 return this.chosenMapType;
 }

 public function setMapType(index:uint):void {
 this.chosenMapType = index;
 this.update();
 }

Example 12-18. INewModel.as (continued)

454 | Chapter 12: Model-View-Controller Pattern

The getMapURL() method was overridden, as the returned image URL now depends on
the currently chosen map type. Note that we didn’t modify any existing code, but
extended the existing model class Model to implement the new interface requirements.

Adding a New Controller
A new controller (Example 12-20) is necessary to handle the input to the map type
selector view. We can implement the same ICompInputHandler interface
(Example 12-14) for the new controller.

Adding a New View
We will add a new view (Example 12-21) that consists of two grouped radio buttons
that allow the user to select from either visible or infrared map images. The view will
use the built-in RadioButtton component in Flash CS3. Make sure the radio button
component is dragged from the Components panel into the Library panel in the
Flash document.

 override public function getMapURL():String {
 switch(chosenMapType) {
 case 1:
 return this.aIRImageURLs[chosenRegion];
 break;
 default:
 return this.aImageURLs[chosenRegion];
 break;
 }
 }
 }
}

Example 12-20. MapTypeController.as

package
{
 public class MapTypeController implements ICompInputHandler {

 private var model:Object;

 public function MapTypeController(oModel:INewModel)
 {
 this.model = oModel;
 }

 public function compChangeHandler(index:uint):void
 {
 (model as INewModel).setMapType(index); // update model
 }
 }
}

Example 12-19. NewModel.as (continued)

Extended Example: Infrared Weather Maps | 455

The RBView class (Example 12-21) subclasses ComponentView (Example 12-7) and draws
the radio buttons. The RadioButtton component must be used in a group of at least
two RadioButtton instances. Only one member of the group can be selected at any

Example 12-21. RBView.as

package
{
 import flash.events.*;
 import fl.controls.RadioButton;
 import fl.controls.RadioButtonGroup;

 public class RBView extends ComponentView
 {
 private var rbList:Array = new Array();
 private var rbGrp:RadioButtonGroup;

 public function RBView(aModel:INewModel,aController:ICompInputHandler)
 {
 super(aModel, aController);
 // get region names from model
 var aMapTypes:Array = model.getMapTypeList();
 // develop radio buttons using map type names
 rbGrp = new RadioButtonGroup("Map Type");
 for (var i:uint = 0; i < aMapTypes.length; i++)
 {
 var rb:RadioButton = new RadioButton();
 rb.label = aMapTypes[i];
 rb.value = i;
 rb.group = rbGrp;
 rb.x = i * 75;
 addChild(rb);
 rbList.push(rb);
 }
 update(); // select default buttton
 // register to recieve changes to radio button group
 rbGrp.addEventListener(MouseEvent.CLICK, this.changeHandler);
 }

 override public function update(event:Event = null):void
 {
 // get data from model and update view
 var index:uint = (model as INewModel).getMapType();
 rbList[index].selected = true;
 super.update(event);
 }

 private function changeHandler(event:Event):void
 {
 // delegate to the controller (strategy) to handle map type change
 controller.compChangeHandler(event.target.selection.value);
 }
 }
}

456 | Chapter 12: Model-View-Controller Pattern

given time. As in previous view implementations, the update() method is called with-
out parameters from the constructor immediately after drawing the components. This
ensures that the UI component displays the default selection specified in the model.
We can now instantiate the MVC elements and develop the composite view.

Building the MVC Triad
The nested view structure of our extended weather map application is shown in
Figure 12-6.

The following statements should be executed from the document class of the Flash
document. Only the root node CBView object (see Figure 12-6) will register with the
model to receive update events. Update events will trickle down to the child nodes
because of the composite pattern implementation.

var model:INewModel = new NewModel(); // new model
var controller:ICompInputHandler = new Controller(model);

// region select combo box view
var view:CompositeView = new CBView(model, controller);
view.x = view.y = 10;
addChild(view);

// add map view as child
var map:ComponentView = new MapView(model);
view.add(map);
map.x = 0
map.y = 40;
addChild(map);

// controller to handle map type input
var mapTypeController:ICompInputHandler = new MapTypeController(model);

Figure 12-6. Nested view structure for extended weather map example

CBView

Composite view
displays the combo box

to select map region

MapView RBView

Nested views

Component view
displays the map image

Component view displays
he radio buttons

to choose map type

Example: Cars | 457

// add map type select radio button group view as child
var mapTypeView:ComponentView = new RBView(model, mapTypeController);
view.add(mapTypeView);
mapTypeView.x = 150;
mapTypeView.y = 10;
addChild(mapTypeView);

// register root view to recieve notifications from the model
model.addEventListener(Event.CHANGE, view.update);

To extend our original weather map application, we added a new view, a new con-
troller and a new model. However, at no point did we modify or change existing
code. What the pundits say about the MVC pattern is indeed borne out in this
extended example. All the elements in the MVC are loosely coupled, allowing us to
add or swap out any element without changing existing elements. In addition, imple-
menting nested views using the composite pattern allows us to reconfigure the screen
layout and the view update process from the client without making changes to indi-
vidual views.

Example: Cars
In this example, we will develop a simple car using the MVC pattern that can be con-
trolled from the keyboard. The emphasis will be on developing custom views using
ActionScript as opposed to using built-in components. We will also see how simply
changing the controller can turn a car that responds to keyboard input into one that
chases another car. Casual game developers will find this example useful for game
design. Figure 12-7 shows the final iteration of the example application.

Figure 12-7. Car example showing views and chase car

458 | Chapter 12: Model-View-Controller Pattern

The Model
Let’s first develop the interface for our car model. We should be able to set its loca-
tion on the stage and steer it by simply changing its rotation angle. We will also
declare methods to set its color. Example 12-22 shows the ICar interface.

The CarModel class shown in Example 12-23 implements the ICar interface. The car
will move at a constant speed in the forward direction. Note that the model updates
the car position using a timer.

Example 12-22. ICar.as

package
{
 import flash.geom.Point;
 import flash.events.IEventDispatcher;

 public interface ICar extends IEventDispatcher {
 {
 function setLoc(pt:Point):void;
 function getLoc():Point;
 function setColor(color:uint):void;
 function getColor():uint;
 function addToRotationAngle(nAngle:int):void;
 function getRotation():int;
 }
}

Example 12-23. CarModel.as

package
{
 import flash.events.*;
 import flash.geom.*;
 import flash.utils.Timer;

 public class CarModel extends EventDispatcher implements ICar
 {
 protected var nSpeed:Number; // holds speed of car in pixels/frame
 protected var nRotation:Number; // car rotation in Degrees
 protected var ptLoc:Point; // current location
 protected var carColor:uint; // car color

 public function CarModel()
 {
 nSpeed = 3;
 nRotation = 0;
 ptLoc = new Point(0, 0); // default loc is 0,0
 carColor = 0x000000; // default color is black

 // set timer to update car position every 1/20 second
 var carMoveTimer:Timer = new Timer(1000 / 20);
 carMoveTimer.addEventListener("timer", doMoveCar);

Example: Cars | 459

 carMoveTimer.start();
 }

 public function setLoc(pt:Point):void
 {
 ptLoc = pt;
 }

 public function getLoc():Point
 {
 return ptLoc;
 }

 public function setColor(color:uint):void
 {
 this.carColor = color;
 }

 public function getColor():uint
 {
 return carColor;
 }

 public function getRotation():int
 {
 return nRotation;
 }

 // Add this to car rotation angle (in Degrees)
 public function addToRotationAngle(nAngle:int):void
 {
 nRotation += nAngle;
 }

 // move the car
 private function doMoveCar(event:TimerEvent):void
 {
 var newLocOffset:Point = Point.polar(nSpeed, nRotation * Math.PI / 180);
 ptLoc.x += newLocOffset.x; // move by the x offset
 ptLoc.y += newLocOffset.y; // move by the y offset
 this.update();
 }

 protected function update():void
 {
 dispatchEvent(new Event(Event.CHANGE)); // dispatch event
 }
 }
}

Example 12-23. CarModel.as (continued)

460 | Chapter 12: Model-View-Controller Pattern

The Controller
The controller responds to keyboard input, and updates the model to turn the car by
rotating it. Example 12-24 shows the IKeyboardInputHandler interface for the
controller.

The RHController class shown in Example 12-25 implements the
IKeyboardInputHandler interface. It responds to keyboard events and decides how
much the car should turn, based on left or right arrow key presses. This is a good
example of a controller deciding in what ways and by how much it responds to user
input. In this example, each left or right arrow press rotates the car 8 degrees clock-
wise or counterclockwise.

Example 12-24. IKeyboardInputHandler.as

package
{
 import flash.events.*;

 public interface IKeyboardInputHandler
 {
 function keyPressHandler(event:KeyboardEvent):void
 }
}

Example 12-25. RHController.as

package
{
 import flash.events.*;
 import flash.ui.*;

 public class RHController implements IKeyboardInputHandler
 {
 private var model:ICar;

 public function RHController(aModel:ICar)
 {
 this.model = aModel;
 }

 public function keyPressHandler(event:KeyboardEvent):void
 {
 switch (event.keyCode)
 {
 case Keyboard.LEFT :
 model.addToRotationAngle(-8);
 break;
 case Keyboard.RIGHT :
 model.addToRotationAngle(8);
 break;

Example: Cars | 461

The Views
We will implement two nested views: one for keyboard input and another that will
draw and update the car on stage. The KeyboardInputView class shown in
Example 12-26 is a composite view. It registers with the stage to receive key press
events, and delegates to the controller to handle them.

The CarView class shown in Example 12-27 is a component view. It draws the car
using its assigned color. In the update() method, it reads the current state of the car
from the model and sets its location and rotation. The interesting aspect of this view
is that its position changes. Views don’t necessarily have to be classic user interface
elements like buttons, image placeholders, etc. They can be any customized repre-
sentation of model state.

 }
 }
 }
}

Example 12-26. KeyboardInputView.as

package
{
 import flash.events.*;
 import flash.display.*;

 public class KeyboardInputView extends CompositeView
 {
 public function KeyboardInputView(aModel:ICar,
 aController:IKeyboardInputHandler, target:Stage)
 {
 super(aModel, aController);
 target.addEventListener(KeyboardEvent.KEY_DOWN, onKeyPress);
 }

 protected function onKeyPress(event:KeyboardEvent):void
 {
 (controller as IKeyboardInputHandler).keyPressHandler(event);
 }
 }
}

Example 12-27. CarView.as

package {

 import flash.geom.*;
 import flash.events.*;

 public class CarView extends ComponentView {

Example 12-25. RHController.as (continued)

462 | Chapter 12: Model-View-Controller Pattern

Building the Car
As in our previous examples, building the MVC triad is straightforward. We develop
a nested view for the car with the KeyboardInputView class object as the root node,
with a CarView object added as a child. The client code shown in Example 12-28 will
instantiate the MVC components and develop the nested view structure.

 public function CarView(aModel:ICar, aController:Object = null) {

 super(aModel, aController);

 // draw car body
 graphics.beginFill(model.getColor());
 graphics.drawRect(-20, -10, 40, 20);
 graphics.endFill();
 // draw tires
 drawTire(-12, -15);
 drawTire(12, -15);
 drawTire(-12, 15);
 drawTire(12, 15);

 // update car
 this.update();
 }

 private function drawTire(xLoc:int, yLoc:int) {
 graphics.beginFill(0x000000); // black color
 graphics.drawRect(xLoc - 4, yLoc - 2, 8, 4);
 graphics.endFill();
 }

 override public function update(event:Event = null):void {
 // get data from model and update view
 var ptLoc:Point = (model as ICar).getLoc();
 this.x = ptLoc.x;
 this.y = ptLoc.y;
 this.rotation = (model as ICar).getRotation();
 }
 }
}

Example 12-28. Main.as (document class for car example)

1 package {
2
3 import flash.display.*;
4 import flash.events.*;
5 import flash.geom.*;
6
7 /**
8 * Main Class

Example 12-27. CarView.as (continued)

Custom Views | 463

The car should now move on the stage and turn based on left- and right-arrow key
presses. Note that there are no boundary checks for the car, and it can keep going
right off the stage. We will now add some custom views to the car that show its
direction and location on the stage.

Custom Views
To illustrate the ease by which custom views can be created and added to an MVC
model, we will create two additional views. The first will be a circular gauge with a
hand showing the current direction of motion for the car. The other view will show
the position of the car relative to stage boundaries, somewhat like the display screen
of a global positioning system (GPS).

9 * @ purpose: Document class for movie
10 */
11 public class Main extends Sprite {
12
13 public function Main() {
14
15 var carModel:ICar = new CarModel();
16 carModel.setLoc(new Point(200,200));
17 carModel.setColor(0x0000FF); // blue
18
19 var carController:IKeyboardInputHandler = new RHController(carModel);
20
21 // keyboard input view (composite)
22 var kbInputView:CompositeView = new KeyboardInputView
23
24
25 // car view (component)
26 var car:ComponentView = new CarView(carModel);
27 kbInputView.add(car); // add car view to keyboard input
28
29 addChild(car);
30
31 // register keyboard input view to recieve
32
33 carModel.addEventListener(Event.CHANGE, kbInputView.update);
34
35 }
36 }
37 }

Example 12-28. Main.as (document class for car example) (continued)

464 | Chapter 12: Model-View-Controller Pattern

Direction Gauge View
Example 12-29 shows the DirectionGaugeView class. This is a component view that
shows the direction of motion of the car using a circular gauge with a hand like a clock.
The gauge hand is a sprite whose rotation is set to the same value as the car rotation.

GPS View
The GPSView class shown in Example 12-30 draws a rectangle in proportion to the
stage, and displays the location of the car relative to stage boundaries.

Example 12-29. DirectionGaugeView.as

package
{
 import flash.geom.*;
 import flash.events.*;
 import flash.display.*;

 public class DirectionGaugeView extends ComponentView
 {

 private var guageHand:Sprite;

 public function DirectionGaugeView(aModel:Object, aController:Object = null)
 {
 super(aModel, aController);

 // draw circle for guage
 graphics.lineStyle(2, (model as ICar).getColor());
 graphics.drawCircle(10, 10, 20);

 // draw guage hand as sprite
 guageHand = new Sprite();
 guageHand.graphics.lineStyle(2, 0x000000);
 guageHand.graphics.moveTo(0,0);
 guageHand.graphics.lineTo(15,0);
 guageHand.x = guageHand.y = 10;
 this.addChild(guageHand);
 }

 override public function update(event:Event = null):void
 {
 this.guageHand.rotation = (model as ICar).getRotation();
 }
 }
}

Custom Views | 465

Adding the Custom Views
Adding the custom views to the nested view structure is easy, without worrying
about registering for update events. We can simply add the two composite views as
child nodes to the root node of the view structure. The following code inserted at
line 23 to Example 12-28 will accomplish this.

// direction gaugue view (component)
var dash:ComponentView = new DirectionGaugeView(carModel);
kbInputView.add(dash); // add car view to keyboard input
 // view as child component
dash.x = dash.y = 20;
addChild(dash);

// GPS view (component)
var gps:ComponentView = new GPSView(carModel, this.stage);

Example 12-30. GPSView.as

package
{
 import flash.geom.*;
 import flash.events.*;
 import flash.display.*;

 public class GPSView extends ComponentView
 {
 private var carPos:Sprite;
 private static const SF:Number = 0.15; // scale factor

 public function GPSView(aModel:ICar, target:Stage)
 {
 super(aModel);

 // draw rectangle in proportion to stage
 graphics.lineStyle(2, (model as ICar).getColor());
 graphics.drawRect(0, 0, target.stageWidth * SF, target.stageHeight * SF);

 // draw guage hand as sprite
 carPos = new Sprite();
 carPos.graphics.beginFill(0x000000); // black color
 carPos.graphics.drawRect(-2, -2, 5, 5);
 carPos.graphics.endFill();
 this.addChild(carPos);
 }

 override public function update(event:Event = null):void
 {
 var pt:Point = (model as ICar).getLoc();
 this.carPos.x = pt.x * SF;
 this.carPos.y = pt.y * SF;
 }
 }
}

466 | Chapter 12: Model-View-Controller Pattern

kbInputView.add(gps); // add gps view to keyboard input
 // view as child component
gps.x = 10;
gps.y = 75;
addChild(gps);

Adding a Chase Car
How difficult would it be to add a chase car that chases the car controlled by the key-
board? The chase car will need to automatically steer itself to catch up with the user
controlled car. We will use a simple chase algorithm for the chase car. If the lead car
is to the left of the chaser, the chase car will turn slightly to the left. If the lead car is
to the right, then the chase car will turn to the right.

The only additional element we need is a new controller. Example 12-31 shows the
IChaseHandler interface that defines a chase algorithm based on timer events. It also
declares a method to set the chase target, which is of type ICar.

The ChaseController class shown in Example 12-32 implements the IChaseHandler
interface. It sets a timer to call the chaseHander() listener method every 1/20 of a sec-
ond to tell the model how much to change the rotation angle of the chase car. It’s a
good idea to set the timer to the same frequency as the movie frame rate. Another
issue of note is the turn radius of the chase controller. It is half that of the user con-
trolled car (see Example 12-25). The chase car can only turn 4 degrees at a time com-
pared to 8 degrees for the user-controlled car. Therefore the user-controlled car
should be able to evade the chaser by making some tight turns.

Example 12-31. IChaseHandler.as

package
{
 import flash.events.*;

 public interface IChaseHandler
 {
 function chaseHandler(event:TimerEvent):void
 function setChaseTarget(car:ICar):void
 }
}

Example 12-32. ChaseController.as

package
{
 import flash.events.*;
 import flash.geom.*;
 import flash.utils.Timer;

 public class ChaseController implements IChaseHandler
 {

Adding a Chase Car | 467

The controller sets the chase algorithm; the utility of using the strategy pattern here
should be clear. We can simply substitute another controller with a more sophisti-
cated chase algorithm without requiring any changes to the other elements of the
MVC pattern. The following code will add the chase car to the example.

// ** chase car **
var chaseCarModel:ICar = new CarModel();
chaseCarModel.setLoc(new Point(100,100));
chaseCarModel.setColor(0xFF0000); // red

var chaseCarController:IChaseHandler = new ChaseController(chaseCarModel);
chaseCarController.setChaseTarget(ICar(carModel));

// chase car view (component)
var chaseCarView:ComponentView = new

addChild(chaseCarView);

 private var model:ICar;
 private var target:ICar;

 public function ChaseController(aModel:ICar)
 {
 this.model = aModel;

 // set timer to call chase controller every 1/20 second
 var timer:Timer = new Timer(1000 / 20);
 timer.addEventListener("timer", chaseHandler);
 timer.start();
 }

 public function chaseHandler(event:TimerEvent):void
 {
 var myLoc:Point = model.getLoc();
 var targetLoc:Point = target.getLoc();
 var myRotationAngle:Number = model.getRotation();
 var angleToTarget:Number = Math.atan2(targetLoc.y - myLoc.y,
 targetLoc.x - myLoc.x) * 180 / Math.PI;

 if ((myRotationAngle % 360) < angleToTarget)
 {
 model.addToRotationAngle(4);
 } else {
 model.addToRotationAngle(-4);
 }
 }

 public function setChaseTarget(car:ICar):void
 {
 target = car;
 }
 }
}

Example 12-32. ChaseController.as (continued)

468 | Chapter 12: Model-View-Controller Pattern

// register chase car to receive notifications from the model
chaseCarModel.addEventListener(Event.CHANGE, chaseCarView.update);

Note that the chase car consists of a new MVC triad separate from the lead car. It has
its own model, views, and controllers. We reuse the same CarModel and CarView
classes, but change the behavior of the chase car by swapping out the controller.
Combining new or subclassed model, view, and controller components makes appli-
cations designed using the MVC pattern infinitely extensible.

Summary
The Model-View-Controller (MVC) pattern is commonly used to create software appli-
cations that contain user interfaces. The power of the MVC pattern can be attributed
to the separation of responsibilities among the three elements that make up the pat-
tern. The Model contains the application data and logic to manage the state of the
application. The View presents the user interface and the state of the application
onscreen. The Controller handles user input to change the state of the application.

The MVC pattern can integrate the observer, strategy, and composite patterns to
manage the dependencies both within and between its elements. The relationship
between the model and view is that of concrete subject and concrete observer in an
observer pattern. The relationship between the view and controller is that of context
and concrete strategy in a strategy pattern. Views in an MVC pattern can have multi-
ple nested views. The relationship between nested views can be in the form of com-
ponents and composite nodes in a composite pattern.

Most importantly, the MVC pattern provides a clear framework for design. The separa-
tion of responsibilities among the model, view, and controller elements allows easy
substitution of elements without disruptions to the overall application. This lets us eas-
ily expand applications based on the MVC pattern to meet changing requirements.

469

Chapter 13 CHAPTER 13

Symmetric Proxy Pattern13

Now an allegory is but a translation of abstract
notions into a picture-language, which is itself nothing

but an abstraction from objects of the senses; the
principal being more worthless even than its phantom

proxy, both alike unsubstantial, and the former
shapeless to boot. On the other hand, a symbol is

characterized by a translucence of the special in the
individual, or of the general in the special, or of the

universal in the general; above all though the
translucence of the eternal through and in the

temporal. It always partakes of the reality which it
renders intelligible; and while it enunciates the whole,
abides itself as a living part in that unity of which it is

the representative.
—Samuel Taylor Coleridge

There is no country in the world where machinery is
so lovely as in America. It was not until I had seen the
water-works at Chicago that I realised the wonders of

machinery; the rise and fall of the steel rods, the
Symmetric motion of the great wheels is the most

beautiful rhythmic thing I have ever seen.
—Oscar Wilde

Computers that are commercially available are
symmetric or non-handed but it is possible that some

existing software and algorithms are left- or right-
handed.

—Philip Emeagwali

Simultaneous Game Moves and Outcomes
One of the more interesting problems for programmers is dealing with interaction
over the Internet. This is especially true in the case of games where the developer
must work out how two or more players can interact in the context of a set of rules

470 | Chapter 13: Symmetric Proxy Pattern

that describe the game. This process gets more challenging when the players are
making simultaneous (parallel) moves, and both players won’t know the outcome of
a turn until both have completed their moves.

One such game is Rock, Paper, Scissors (RPS). In this game, two players simulta-
neously throw hand signals for a rock (fist), paper (a flat hand) or scissors (a horizon-
tal V-sign with the index and middle fingers). Rock defeats scissors, scissors defeat
paper, and paper defeats rock. (See http://www.worldrps.com for details). With such
clear, simple, and universal rules, the game is an ideal way to discover design pat-
terns that accommodate the role of parallel Internet interaction.

As a point of reference, the concept of the Symmetric Proxy design pattern grew out
of a paper, a Pattern for Distributing Turn-Based Games, by James Heliotis and Axel
Schreiner, both of Rochester Institute of Technology, and a presentation based on
that paper at the 2006 OOPSLA conference in Portland, Oregon by Axel Schreiner.

Just about any background work in design patterns will sooner or later
lead you to OOPSLA. The acronym stands for Object-Oriented Pro-
gramming, Systems, Languages & Applications. It’s an annual confer-
ence that focuses on different OOP topics, mixing in both academic
and practical materials. In 1991, the first part of the Design Pattern
catalog was presented at an OOPSLA conference, and ever since,
design patterns have played a role at OOPSLA conferences. The Euro-
pean sister conference is ECOOP (European Conference on Object-
Oriented Programming).

What we developed for this book is based on both the paper and conference presen-
tation, but the example for this book took on a life of its own, and we in no way hold
Drs. Heliotis or Schreiner responsible for what has been developed here. In part, this
is because we’re using ActionScript 3.0 and Flash Media Server 2, and in part
because we deviated from the specifics. Nevertheless, we’ve strived to keep the origi-
nal concepts and reasoning intact. They deserve credit for what we did right, but we
take responsibility for anything gone wrong.

The Player
At the very base of the idea of a symmetric proxy is the concept of a player interface
containing methods for playing a game, any game, not just RPS, that can be con-
ducted over the Internet. Our list is slightly different from that presented by Heliotis
and Schreiner, but the core concepts are borrowed from their work.

• Make a move (makeMove). Each player needs a method for translating user
input through a user interface (UI).

• Indicate that a local player has made a move (localMove). Once a move has
been made, a game requires that the state (local player has moved) be
recorded. It also prevents the same user from making another move until the
next turn.

http://www.worldrps.com

Simultaneous Game Moves and Outcomes | 471

• Indicate that a remote player has made a move (onProxyMove). Records the
move of the remote player, and prevents a further move by the remote player
until the next turn.

• Send the local player move to the remote player (doMove). The move will be
picked up by the opponent’s onProxyMove method.

• Conclude the turn after both players have moved (takeTurn). Once both
players have moved, the moves are turned over to the Referee to determine
who’s won and reset the values for the next turn.

• Prevents play until both players are connected (numConnect). This method
has the dual function of letting players know of each other’s presence, and
prevents a move if only one player’s present.

By first working out the basics of a move and a turn, we’ve laid the basis for turn-
based games. The next step is putting the moves into a game context.

The Referee
In order to keep everything fair and fun, we need a referee. The class diagram for the
referee in relationship to the player can be seen in Figure 13-1:

Essentially, the referee will be a class containing the rules of the game encased in a
template method. As a design pattern, the methods need to be fairly general, in case
we want to reuse the same Referee class for another game. Using a template method,
we can order the operations in the methods to launch in sequence, but we want flexi-
bility for other games. So, we begin with a list of operations for the referee that
applies to all games:

• Evaluate the moves and determine who won. All games need a set of win-
ning conditions and the ability to determine which player won, which lost or
whether they tied.

• Display the results of the game. Once the results have been calculated, they
must be communicated to all players.

Figure 13-1. Referee and Player class diagram

Player Interface

PlayerReferee

472 | Chapter 13: Symmetric Proxy Pattern

• Reset the game variables to the beginning conditions. Because the players
have been keeping track of who has moved, which moves were selected, and
which player was declared the winner, all the variables keeping track of
these different states have to be cleared.

Each operation will be cast as a method and then arranged into an order that consti-
tutes the template method. Following the Hollywood Principle (see Chapter 9), the
Referee instance will make calls on the Player objects.

Now that we have a referee, we need to look at the relationship between the players
and the referee. Figure 13-2 is an object diagram for a two-player game with a referee:

Just like a non-virtual game, the single referee makes decisions about the game out-
come for two or more players. At this point, the game is immaterial—it could be any
game. Looking at the object diagram, it’s not difficult to imagine two or more play-
ers interacting on a single host (computer). In fact, if the goal were to create a game
where one of the players is the computer and the other’s a user interacting through a
UI, our job would be done. In a game of Rock, Paper, Scissors, a random move gener-
ator could easily be one of the two players. However, because we want to play the
game over the Internet, we have a few more steps.

The Internet, Proxies, and Players
As soon as we introduce remote players over the Internet, everything changes. Each
player makes a move, that move is sent over the Internet, and the referee decides the
outcome, displays it, and then cleans everything up. With serial turn taking, the
problem may not be as daunting because after each move, both players can see the
other’s move. The referee can wait until the first win condition is met and then send
messages to all players. However, this can get messy because you have to decide
where the referee’s going to reside. The referee could be placed on the host with the
first player to start. The second player would be referenced through a proxy.

Another solution would be to place the referee on its own server, and, while work-
able, this requires that the moves travel over the Internet twice. Also, depending on
the server, the basic game design may have to be changed to accommodate what the
referee looks like.

Figure 13-2. Referee and players

Referee

Player 1 Player 2

The Symmetric Proxy Pattern | 473

Even though both of the solutions are workable, they may lack the flexibility and
reusability desired in good design patterns. We need to look further.

The Symmetric Proxy Pattern
The Symmetric Proxy pattern is as much a discovery as an invention. Heliotis and
Schreiner found that they could establish instances of two player objects arranged as
peers over the Internet. Each side has both a proxy and a “real” player. Likewise, the
referees on each side have the same information. Whatever move a player makes is
treated the same by each of the referees. The referee object has no idea where a move
comes from—it’s clueless, as Heliotis and Schreiner note. All that the referee has to
do is to call the players when the game is over and let them know the outcome. The
referees are perfectly synchronized because they’re reacting to the same state infor-
mation, without caring whether the information is local or from a proxy; as a result,
when the game-over conditions are met, both inform the players in exactly the same
way, resetting all variables, and preparing for the next game.

Figure 13-3 shows the object diagram of the Symmetric Proxy Pattern:

Keeping in mind that Figure 13-3 is an object diagram and not a class diagram, we
can clearly see that the Symmetric Proxy pattern has each player’s proxy in the oppo-
sition’s camp, so to speak. The referees are treating each side of the Symmetric Proxy
as a complete game. The referee simply takes the moves, evaluates them as being
from one side or the other, and makes game decisions as though only a single host is
in use. In other words, the proxies are treated as the computer playing the live
player, or two live players taking turns on the same keyboard.

Figure 13-3. Symmetric Proxy object diagram

Referee 1

Player 1 Proxy 2

Internet

Referee 2

Proxy 1 Player 2

474 | Chapter 13: Symmetric Proxy Pattern

Key Features
Most of the key features of the Symmetric Proxy pattern have been described, but
there are a few more. In this section we’ll summarize:

• A player interface that includes move-taking, move display, and outcome methods

• A referee class based on a Template Method for determining game outcome

• Synchronizing cell between the UI and player

• Mirrored referee, proxy and player objects

Having discussed the player interface and referee concepts, we are left with two key
elements to discuss before going on to look at key OOP concepts in this design pat-
tern. First, we need to take a closer look at the synchronizing cell, and where the cell
goes in the overall scheme of things. Second, we need to look more closely at the
concept of a proxy object.

The cell

Heliotis and Schreiner refer to the cell in their design as a monitored single-element
queue placed between the player object and the graphical elements. In most cases,
the graphical elements would be the UI. In looking at the sequence diagram for par-
allel turn taking, the cells are placed between the proxy players, one for each player.
For simultaneous turns, two cells are used; one for each player making a move at the
same time.

Looking at the code used by Heliotis and Schreiner, an alternative implementation
came to mind in the form of a remote shared object available through Flash Media
Server 2 (FMS2). The shared object could act as the synchronizing mechanism, ensur-
ing that both sides had the same information at the same time. As soon as either
player entered a move, it would immediately be available to the proxy object as a
move. The “cell” itself would be in the player in a function waiting for both sides to
move. In effect, the synchronizing role of the cell has been taken over by the shared
object. Setting the move in a shared object would fall to a FMS2 server-side script.

The proxy

Because using FMS2 takes care of the synchronizing problems and is immediately
available to connected clients through a client-side method, we end up with a situa-
tion where we have to ask whether we really need a separate object for the proxies.
Instead of creating four player objects, would it be possible to create two? Each
player object, based on a common interface, would contain both the real player and
the proxy player. This is an androgynous variation of the Symmetric Proxy design
pattern, but conceptually, it’s virtually identical. Figure 13-4 shows an object dia-
gram of this variation.

Key OOP Concepts Used with the Symmetric Proxy | 475

The only real difference between Figure 13-4 and Figure 13-3 is that the proxy and
players are placed into single objects and the details of the Internet are spelled out a
bit more in the latter. The same model could be used another way to send the
proxy’s move such as PHP, ColdFusion, or any other mechanism for sending infor-
mation over the Internet. (Axel Schreiner commented that you could use smoke sig-
nals—the method of sending information over the network is immaterial.)

The one thing we don’t particularly like about the androgynous variation on the
Symmetric Proxy is the loss of granularity in the model. By placing the proxy move
method in the same object as the real player, we collapse the real and proxy in a way
that may not be easily adaptable to other games. At this point, though, no clear dis-
advantage is apparent. Both players are perfectly symmetrical, and the variation
maintains the role of the referee.

Key OOP Concepts Used with the Symmetric Proxy
For a compound design, all the OOP concepts we have discussed for the different
design patterns collected in a single compound design apply. So, to avoid repeating
the same key concepts discussed in the chapters where the compounding elements

Figure 13-4. Androgynous variation of Symmetric Proxy

Player1 Proxy2

Referee 1

Internet

Shared object

Internet

Proxy1 Player2

Referee 2

476 | Chapter 13: Symmetric Proxy Pattern

were reviewed, we’d like to focus on a more general key OOP concept for the Sym-
metric Proxy design pattern—flexibility.

Because the Symmetric Proxy design focuses on interaction over the Internet, we
need to look at two different kinds of flexibility. First, we need to look at communi-
cation flexibility. That is, can the model be used with different communication tech-
nologies over the Internet? Second, we must consider game flexibility. To what
extent can different games be employed with the design?

Communication Flexibility
The first question to address is whether or not any trans-Internet communication can
work with the Symmetric Proxy pattern. Because of its ease of use and built-in fea-
tures like remote shared objects, using an application such as Flash Media Server 2
has a built-in disadvantage as a communication testing and development platform
for a general communication design pattern. The server-side script automatically
informs all players of the current game state in the form of one or both players hav-
ing moved. Once both players have moved, the referee determines who has won and
resets the game for another round.

In the original model of the Symmetric Proxy and the Androgynous variation, as long
as the proxy player makes the same move as the original player, whether FMS,
another open socket technology, or middleware such as PHP, C#, Perl, ColdFusion,
or VB.NET, is not important. The move for the proxy is the only state that really
needs to be sent over the Internet. The proxy plays the move, and the referee takes
care of deciding whether the proxy or its player opponent wins, displaying the out-
come and resetting the variables for a new game. So any communication system that
can send the player’s state to its proxy is acceptable, meeting the criteria of commu-
nication flexibility.

Game Flexibility
In the implementation you will see in this chapter, the referee’s not quite as active as
the one envisioned by Heliotis and Schreiner. The primary difference is that the ref-
eree only inspects the moves after both moves have been made in a game. Because
each round in a game of RPS is a complete game, each game is over as soon as both
players have moved. At this point, the referee kicks in with its template method,
decides who won, displays the outcome, and resets the values to the start states.

One way of reducing the referee’s work is in the UI. Players can only enter one of
three different moves displayed on the buttons. The real player blocks any attempt to
make any other move, such as one where the player has not made a move selection.
In a more complex game with a wider selection of moves, either more responsibili-
ties would be delegated to the referee or the UI would take care of allowing a wider
but still limited move set.

The Player Interface | 477

With a single template method, and three methods that make up the template
method within an abstract class, the Referee class has both flexibility and utility. In
the example application in this chapter, the implementation of the Referee class sub-
classes RPS. The RPS class provides the specific details for the RPS game. The mea-
sure of flexibility is whether a different game could be subclassed from the Referee
class to create a whole different game.

Of the three functions that make up the template method, flexibility is most impor-
tant in the function that determines who won or if the play results in a tie. The fol-
lowing shows that function in the Referee class:

function doWinner(p1Move:String,p2Move:String):String
{
 return winner;
}

Because the method resides in an abstract class, we can expect it to be overridden for
different games. It takes the move of players 1 and 2, having no idea whether the
move is by the proxy or not, and returns a string with the winner or a tie result.
Because it is abstract in a literal sense, it simply waits until one of the two moves
results in a win or tie condition. With the RPS game, this is relatively easy because
each round of moves is a complete game.

However, what about games like Tic Tac Toe? It’s a game of several different rounds
and a wider range of outcomes. Because the doWinner method includes parameters
for both players, all moves can be calculated. Each move can be described in terms of
the 3-by-3 matrix as C1R1 to C3R3 (Column#/Row#). Once either player has met
the win conditions or the play has reached a point where neither can win (a draw),
the entire template method can launch.

Alternatively, each move can be delegated to a Referee class, including a Referee sub-
class. This alternative is the original intention of Heliotis and Schreiner, and the flexi-
bility of the Symmetric Proxy design allows either alternative. In games with more
than two players, teams, or some other combination of individual players or teams,
only a few changes in the doWinner method parameters could set it up for more com-
plex alternatives.

The key to game flexibility in the Symmetric Proxy class lies in the ability to override
the methods in the original template method in the Referee class. Creating multi-
player games beyond two players is quite easy as long as each has a “home” referee,
immediately sends all moves to all players and/or referees, but does not have to make
adjustments to the basic design pattern.

The Player Interface
The player interface is the starting point for creating a Symmetric Proxy design pat-
tern. The player interface contains six methods. As with all interfaces, it contains the
abstract methods and their parameters. Example 13-1 shows the ISymPlayer interface.

478 | Chapter 13: Symmetric Proxy Pattern

At this point, we’ll provide a quick overview of what each method does. In order to
get a mental image of what occurs, the functions are placed in the approximate order
of their launch, except for the last one, which is part of the housekeeping chore of
making sure that two players are connected to FMS prior to any move by either side.

1. First, the numConnect() method checks to see how many clients are connected,
and, if two are connected, it allows moves to be made by both players.

2. The players select a move by pressing one of the three possible move buttons
(Rock, Paper, or Scissors). Once a player selects a move, he presses a move but-
ton that fires the makeMove() method.

3. The makeMove() function fires both the doMove() and localMove() methods.

4. The doMove() operation calls the server to pass on the move to its proxy.

5. The localMove() method first stores the move in a variable, and then sets a Bool-
ean indicating the fact that the player has moved.

6. Next, the onProxyMove() function responds to the server call of a shared object
and acts like the localMove() method, except it’s on the player’s proxy.

7. When either the localMove() or onProxyMove() indicates that both players have
moved, the takeTurn() method acts to force a call from the Referee to deter-
mine the winner and reset the values for a new game.

Some variation in the implementation of these methods determines whether moves
can be taken simultaneously or serially.

The Referee
Because the Referee class is abstract, it’s relatively small. The methods are fairly gen-
eral with the idea that they can be overridden; however, they must be purposely
developed. Further, because they’ll be placed in a template method, they have to be

Example 13-1. ISymPlayer.as

package
{
 //Symetrical Proxy Interface
 import flash.events.Event;

 interface ISymPlayer
 {
 function numConnect(cl:uint):void;
 function makeMove(event:Event):void;
 function doMove(s:String):void;
 function localMove(locMove:String):void;
 function onProxyMove(proxMove:String):void;
 function takeTurn():void;
 }
}

The Referee | 479

developed with an eye to the order in which they’ll be placed. We’ll begin with a
look at the Referee class to get an overview and then look at the methods for the
class. Example 13-2 shows the Referee class.

The comment at the top of the class indicating that the class is an abstract one is sim-
ply a comment. It stands as a reminder that ActionScript 3.0 has no real abstract
classes, and we need to remind ourselves to use overrides where needed. Likewise,

Example 13-2. Referee.as

package
{
 //Abstract Class
 public class Referee
 {
 //Move
 private var p1Move:String;//Player 1's move
 private var p2Move:String;//Player 2's move
 private var winner:String;//Value for winner
 private var outcome:String;//Describe winnder
 private var displayWindow:DynamicText;
 private var movecheck:Array;//Array to keep track of moves

 //Template Method
 final function moveComplete(p1Move:String,p2Move:String,
 displayWindow:DynamicText,movecheck:Array):void
 {
 outcome=doWinner(p1Move,p2Move);
 displayResults(displayWindow,outcome);
 resetGame(movecheck);
 }

 //Abstract methods

 protected function doWinner(p1Move:String,p2Move:String):String
 {
 return winner;
 }
 function displayResults(displayWindow:DynamicText,
 outcome:String):void
 {
 displayWindow.setMove(outcome);
 }
 protected function resetGame(movecheck:Array):void
 {
 for (var r:uint =0; r< movecheck.length; r++)
 {
 movecheck[r]=false;
 }
 }
 }
}

480 | Chapter 13: Symmetric Proxy Pattern

the comment line (//Abstract methods) indicating abstract methods is a similar
reminder that the abstract methods are not real abstract methods, because they’re
not supported in ActionScript 3.0.

Methods
Of the three methods in the Referee class, the first needs to be very flexible because it
will return the winner of the game. The real implementation of the method will lie in
any subclass that describes a game. The doWinner method is most likely to be part of
a subclass specifying the rules of the game.

function doWinner(p1Move:String,p2Move:String):String
{
 return winner;
}

It includes parameters for moves by both players. In the context of RPS, where the
game has only a single move by each player, the moves represent the endgame condi-
tions. In other games, though, the Referee may need to call for moves every round to
accumulate information about win conditions.

The next method is designed to display outcomes, requesting both a reference to a
text field and a string.

function displayResults(displayWindow:DynamicText,outcome:String):void
{
 displayWindow.setMove(outcome);
}

In the context of RPS and most games, this method has two different roles. On one
hand, as part of the template method, it displays who has won. However, it can also
be used to display information independent of the template method. Keeping in
mind that moves in RPS are simultaneous, neither player can see the other player’s
move until both have made their moves. So this method can also be used to display
other information such as the opponent’s move any time it’s appropriate to do so.

The third method in the Referee class is to reset all of the values to the start condi-
tions—setting up the chess pieces in their original positions, so to speak. This
method has a housekeeping character, but it’s essential if you’re going to play the
game more than once without reloading it.

function resetGame(movecheck:Array):void
{
 for (var r:uint =0; r< movecheck.length; r++)
 {
 movecheck[r]=false;
 }
}

By keeping track of the moves in an array, resetting a game is made both easier and
more flexible. With only two moves, the function could be written to reset two

The Referee | 481

Boolean variables to false. (The false state means that the move has not been made.)
Because the method uses an array, it doesn’t care how many moves have to be reset.
It’s far more flexible and reusable than using non-array variables.

Template Method
The final method is constructed from the three methods that currently exist in the
Referee class. As a template method, it is locked using the final statement. As a
reminder, the final statement disallows any overrides of the method; however, the
methods that make up the template method can be overridden, and we generally
expect that at least some methods in the template method will be.

final function moveComplete(p1Move,p2Move,displayWindow,movecheck):void
{
 outcome=doWinner(p1Move,p2Move);
 displayResults(displayWindow,outcome);
 resetGame(movecheck);
}

In this particular template method, the first method passes the game outcome, a
String variable. This variable is then used as a parameter in the second method to
display the outcome to a specified output object. Finally, the template method resets
the game to the start state. Simplified, the template does the following:

1. Determines who won or if it’s a tie, and places that information in a variable.

2. Displays the game outcome.

3. Resets the game to play again.

By invoking the Referee, all the information is neatly packaged and ready to resolve
the game outcome, display the results, and reset the game.

RPS Subclass
The Referee class is set up to be subclassed and its methods overridden so that devel-
opers can reuse the design pattern for more than a single type of game. Example 13-3
shows the Referee subclass, RPS, designed to determine the outcome of a Rock,
Paper, Scissors game.

Example 13-3. RPS.as

package
{
 //Rock, Paper, Scissors
 public class RPS extends Referee
 {
 private var winner:uint;
 private var gameOver:Array;
 private var winNow:String;
 //

482 | Chapter 13: Symmetric Proxy Pattern

 override protected function doWinner(p1Move:String,
 p2Move:String):String
 {
 if (p1Move=="rock")
 {
 switch (p2Move)
 {
 case "rock" :
 winner=2;
 break;

 case "paper" :
 winner=1;
 break;

 default :
 winner=0;
 }
 }
 else if (p1Move=="paper")
 {
 switch (p2Move)
 {
 case "rock" :
 winner=0;
 break;

 case "paper" :
 winner=2;
 break;

 default :
 winner=1;
 }
 }
 else
 {
 switch (p2Move)
 {
 case "rock" :
 winner=1;
 break;

 case "paper" :
 winner=0;
 break;

 default :
 winner=2;
 }
 }

Example 13-3. RPS.as (continued)

Information Shared Over the Internet | 483

The RPS class overrides the doWinner method developed in the Referee class. The
other two methods in the Referee class are usable without any changes. A single
algorithm determines which side has won or if a tie occurred, and then transfers the
information into an array element that is then stored in a String variable and
returned.

If you’re wondering whether it would be easier simply to make the
winner variable a string and return it, you’re absolutely right. How-
ever, we liked the idea of being able to have a single array in one place
where you could add your own “smack” or “trash talk” to be dis-
played. So instead of simply displaying, “p1 Wins!” you could have
something like, “The Mighty Player 1 Conquers All!” Of course you
can be more creative than that.

When employing the RPS class, we will observe the dictum to program to the inter-
face and not the implementation. So, in typing any instance where we would use the
RPS class, we will type it as Referee and instantiate it as RPS. (Look for this instantia-
tion of the RPS class in the SymPlayer1 and SymPlayer2 classes.)

Information Shared Over the Internet
At this point we need to take a little detour to discuss the techniques we used to send
data over the Internet for proxy work. As noted earlier in this chapter, we have chosen
to use Flash Media Server 2 to pass the move information from a player to its proxy
over the Internet. In order to see the relationships involved, we will show the purely
FMS2 server-side script and those portions of the player/proxy class that use it.

To begin, Example 13-4 shows the proxygame.asc file (all lowercase). It is written in
ActionScript 1.0 because, at the time of this writing, all the code written for the
server-side could only be written in Server Side Communication ActionScript
(SSCA). The client-side counterpart is all ActionScript 3.0. This file sits in the server-
side location of the FMS2 host server. Generally, the host for the SWF files contain-
ing the compiled application and the server-side .asc file are on the same host, but
not always. The connection to the server is through an RTMP protocol that’s part of
the client-side script.

 gameOver=new Array("p1 Wins!","p2 Wins!","Tie!");
 winNow=gameOver[winner];
 return winNow;
 }
 }
}

Example 13-3. RPS.as (continued)

484 | Chapter 13: Symmetric Proxy Pattern

Example 13-4. proxygame.asc

application.onAppStart=function()
{
 trace(this.name + " is reloaded");
 this.ss_so = SharedObject.get("proxmove",false);
 this.dup1=false;
 this.dup2=false;
};
//------------------------
application.onConnect=function(currentClient,username)
{

 currentClient.name=username;
 if(currentClient.moveNow==null)
 {
 currentClient.moveNow="ready";
 }

 var cl=application.clients.length;

 //Check username and see if there are no
 duplications or more than two players
 if(((username == "player1" && !this.dup1) || (
 username == "player2" && !this.dup2)) && cl<=1)
 {
 this.acceptConnection(currentClient);
 this.ss_so.setProperty(currentClient.name,username);
 if(username=="player1")
 {
 this.dup1=true;
 }
 else
 {
 this.dup2=true;
 }

 }
 else
 {
 this.rejectConnection(currentClient);
 trace("Connection rejected");
 }

 currentClient.makeMove=function(moveit)
 {
 application.ss_so.setProperty(currentClient.moveNow,moveit)
 someMove=application.ss_so.getProperty(currentClient.moveNow);
 playerNow=application.ss_so.getProperty(currentClient.name);
 someMove+="~"+playerNow;
 application.ss_so.send("onProxyMove",someMove);
 };

 currentClient.checkPlayNum=function()

Information Shared Over the Internet | 485

The program is broken down into three main parts. The first part launches only
when the application first starts (application.onAppStart). Either player can initially
launch the server-side script, and, once launched, it won’t launch again until both
players have quit the application, and it’s not launched again until about 20 minutes
after the last player has quit.

You may be wondering if the comment about ActionScript being ver-
sion 1.0 when everything else in this book is written in ActionScript 3.0
is a typographical error. No, there’s no typo. The subset of Action-
Script build for FMS2 changed little from the original Server Side Com-
munication ActionScript (SSCA) released with Flash Communication
Server (FCS). When FMS2 was released, ActionScript 2.0 was part of
the Flash package, but couldn’t be used for server-side coding. So,
while SSCA is slightly different from standard ActionScript in any for-
mat, it’s also a different version.

The second part of the script launches during the time the application is being used
by either player beginning with the attempt to connect to the application
(application.onConnect). It generates a default value (“ready”) for the moveNow
variable, and checks to see if the correct names are used, and the number of players
connected. The function to assign a move to the shared object (currentClient.
makeMove) serves to record both the move and which player made the move. A string
separated by a tilde (~) character is then sent to all players (application.ss_so.
send). The tilde is used to identify the line of demarcation between the player and the

 {
 var c2=application.clients.length;
 application.ss_so.send("numConnect",c2);
 }
};

//------------------------
application.onDisconnect = function(currentClient)
{
 dupeName=currentClient.name;
 if(dupeName=="player1")
 {
 this.dup1=false;
 }
 else
 {
 this.dup2=false;
 }
 trace("disconnect: "+currentClient.name);
 this.ss_so.setProperty(currentClient.name,null);
 c2=application.clients.length;
 application.ss_so.send("numConnect",c2);
};

Example 13-4. proxygame.asc (continued)

486 | Chapter 13: Symmetric Proxy Pattern

player’s move. The client-side script checks which player is making the move and
assigns the move to the proxy player. The rest of the connection function deals with
housekeeping.

The third part (application.onDisconnect) takes care of further housekeeping by
resetting the Boolean variables. It also lets the player know the number of players
currently connected. When working with applications over the Internet, letting
remotely connected players know whether anyone’s connected is an essential
ingredient.

Player-Proxy Classes
The main implementation of the ISymPlayer is in two classes, each representing one
of two players. The classes are virtually identical except for identifying themselves as
either “player1” or “player2” to the media server. Also, each contains a proxy for its
opponent, giving it the androgynous character described previously in this chapter.

Example 13-5 shows the script for the entire class. It can be broken down into six
parts:

1. Imports the necessary name spaces and classes.

2. Establishes variables required for the different methods.

3. Contains the Constructor function. This includes all the necessary connection
statements, calls to the text field and button functions, and event listeners for the
four buttons.

4. Implements the six methods from the interface in the order in which they appear
in the interface. This is the core of the class.

5. Checks to see if connection has been made and if so, turns on the connection light
and sets up the client-side shared object. Also, this function establishes the shared
object and connects the shared object through the NetConnection instance (nc).
Finally, it calls the server-side script function checkPlayNum(). This call is a
“bounce” in that it triggers the server-side function that sends the number of con-
nected users right back to the client-side function numConnect().

6. Sets up the text fields and buttons.

By placing Example 13-4 and Example 13-5 side by side, you can better see the interac-
tion between the client-side class and the server-side application. (The .asc files are not
actually classes, but they have much in common with a class.) Wherever you see nc.
call("functionName",p1,p2) in the SymPlayer1 class, it’s a reference to a function in
the server-side script. Likewise, in the server-side script, any application.ss_so.
send(“functionName”,p1) is a reference to a function in the SymPlayer1 or SymPlayer2
classes.

Player-Proxy Classes | 487

Example 13-5. SymPlayer1.as

package
{
 //Symmetric Player 1/Proxy 2

 import flash.net.NetConnection;
 import flash.net.ObjectEncoding;
 import flash.display.Sprite;
 import flash.display.MovieClip;
 import flash.events.Event;
 import flash.events.NetStatusEvent;
 import flash.net.SharedObject;
 import flash.events.MouseEvent;

 public class SymPlayer1 extends Sprite implements ISymPlayer
 {
 private var nc:NetConnection;
 private var rtmpNow:String;
 private var playerNow:String;
 private var cs_so:SharedObject;
 private var playerText:DynamicText;
 private var showText:DynamicText;
 private var oppText:DynamicText;
 private var moveText:DynamicText;
 private var rockBtn:MoveButton;
 private var paperBtn:MoveButton;
 private var scissorsBtn:MoveButton;
 private var moveBtn:MoveButton;
 private var connect:Connect;
 private var moveVal:String;
 private var p1move:String="ready";
 private var p2move:String="ready";
 private var rps:Referee;
 private var winner:uint;
 private var monitor:Array=new Array(false,false,false);
 private var cl:uint;
 private var mcheck:Boolean=false;
 private var connected:String;

 public function SymPlayer1()
 {
 NetConnection.defaultObjectEncoding =
 flash.net.ObjectEncoding.AMF0;
 SharedObject.defaultObjectEncoding =
 flash.net.ObjectEncoding.AMF0;
 setDynamic();
 setButton();
 rockBtn.addEventListener(MouseEvent.CLICK, makeMove);
 paperBtn.addEventListener(MouseEvent.CLICK, makeMove);
 scissorsBtn.addEventListener(MouseEvent.CLICK, makeMove);
 moveBtn.addEventListener(MouseEvent.CLICK, makeMove);
 //rtmpNow="rtmp://192.168.0.11/proxygame/";
 rtmpNow="rtmp://mojo.iit.hartford.edu/proxygame/";

488 | Chapter 13: Symmetric Proxy Pattern

 //rtmpNow="rtmp:/proxygame/";
 nc = new NetConnection();
 nc.connect(rtmpNow,"player1");
 nc.addEventListener(NetStatusEvent.NET_STATUS,
 checkHookupStatus);
 }
 //
 //makeMove Make Move
 //
 public function makeMove(event:Event):void
 {
 moveVal=event.currentTarget.name;
 if (!monitor[0] && mcheck)
 {
 switch (moveVal)
 {
 case "scissors" :
 showText.setMove("scissors");
 moveText.setMove("scissors");
 break;

 case "rock" :
 showText.setMove("rock");
 moveText.setMove("rock");
 break;

 case "paper" :
 showText.setMove("paper");
 moveText.setMove("paper");
 break;

 case "move" :
 var m:String=showText.getMove();
 if (m != "ready" && m != "Error!")
 {
 //Proxy 1 move
 doMove(m);
 //Player 1 move
 localMove(m);
 }
 else
 {
 showText.setMove("Error!");
 }
 }
 }
 }
 //
 //localMove Player Move
 //
 public function localMove(locMove:String):void
 {

Example 13-5. SymPlayer1.as (continued)

Player-Proxy Classes | 489

 playerText.setMove("player1");
 if (!monitor[0])
 {
 p1move=locMove;
 monitor[0]=true;
 }
 //Check to see if both have moved
 monitor[2]=(monitor[0] && monitor[1]);
 if (monitor[2])
 {
 takeTurn();
 }
 }
 //
 //onProxyMove: Info from server
 //
 public function onProxyMove(proxMove:String):void
 {
 playerNow=proxMove.substring(proxMove.indexOf("~")+1);
 proxMove=proxMove.substring(0, proxMove.indexOf("~"));
 if (playerNow=="player2" && !monitor[1])
 {
 playerText.setMove(playerNow);
 p2move=proxMove;
 monitor[1]=true;
 }
 //Check to see if both have moved
 monitor[2]=(monitor[0] && monitor[1]);
 if (monitor[2])
 {
 takeTurn();
 }
 }
 //
 //doMove: Call server
 //
 public function doMove(m:String):void
 {
 nc.call("makeMove",null,m);
 }
 //
 //takeTurn Complete the turn
 //
 public function takeTurn():void
 {
 rps=new RPS();
 rps.moveComplete(p1move,p2move,playerText,monitor);
 rps.displayResults(oppText,p2move);
 showText.setMove("ready");
 }
 //Get number connected
 public function numConnect(cl:uint):void

Example 13-5. SymPlayer1.as (continued)

490 | Chapter 13: Symmetric Proxy Pattern

 {
 if (cl==2)
 {
 mcheck=true;
 }
 else
 {
 mcheck=false;
 }
 connected=String(cl+ " connected");
 playerText.setMove(connected);
 }
 //
 //Connect Check and Set Up Shared Objects
 //
 public function checkHookupStatus(event:NetStatusEvent):void
 {
 if (event.info.code == "NetConnection.Connect.Success")
 {
 connect.gotoAndStop(2);
 cs_so=SharedObject.getRemote("proxmove",nc.uri,false);
 cs_so.client=this;
 cs_so.connect(nc);
 nc.call("checkPlayNum",null,null);
 }
 }
 //Text
 public function setDynamic():void
 {
 playerText=new DynamicText();
 addChild(playerText);
 playerText.x=180;
 playerText.y=50;

 showText=new DynamicText();
 addChild(showText);
 showText.x=260;
 showText.y=50;
 showText.setMove("ready");

 moveText=new DynamicText();
 addChild(moveText);
 moveText.x=180;
 moveText.y=140;

 oppText=new DynamicText();
 addChild(oppText);
 oppText.x=100;
 oppText.y=140;
 oppText.setMove("opponent");
 }
 //Button

Example 13-5. SymPlayer1.as (continued)

Player-Proxy Classes | 491

All the text fields and buttons are user classes and they need to be built prior to test-
ing the class. In the section “Supporting Classes and Document Files” later in the
chapter, you will find the necessary classes for including the buttons and dynamic
text fields.

Move Making
While the player class may seem fairly long and unwieldy, its key elements are quite
simple. Everything is focused on making one of three moves—rock, paper, or scis-
sors. Each move is nothing more than a string.

Event to move

The first step is encapsulated in the makeMove() function that’s launched by a button
event. Using the name of the button (not the label), an algorithm finds which of the

 public function setButton():void
 {
 moveBtn=new MoveButton("Make Move",0xcccccc);
 moveBtn.name="move";
 addChild(moveBtn);
 moveBtn.x=100;
 moveBtn.y=50;

 rockBtn=new MoveButton("Rock",0xcccccc);
 rockBtn.name="rock";
 addChild(rockBtn);
 rockBtn.x=100;
 rockBtn.y=80;

 paperBtn=new MoveButton("Paper",0xcccccc);
 paperBtn.name="paper";
 addChild(paperBtn);
 paperBtn.x=150;
 paperBtn.y=80;

 scissorsBtn=new MoveButton("Scissors",0xcccccc);
 scissorsBtn.name="scissors";
 addChild(scissorsBtn);
 scissorsBtn.x=200;
 scissorsBtn.y=80;

 connect=new Connect();
 addChild(connect);
 connect.x=175;
 connect.y=250;
 }
 }
}

Example 13-5. SymPlayer1.as (continued)

492 | Chapter 13: Symmetric Proxy Pattern

three moves has been selected, or if the Move button is clicked. To simplify matters,
all name properties are lowercase while the label properties begin with an uppercase
letter. (e.g., Rock=label, rock=name). The Move button is included to let the user
change her mind after selecting one of the three moves. By clicking the Move but-
ton, the player commits to the selected move by launching two methods, doMove()
and localMove().

Dual moves

The function to actually make a move once its been selected by clicking the Move
button sends the move to the proxy using doMove(), and stores it locally in a vari-
able with localMove(). This is the heart of the Symmetric Proxy. The symmetry lies
in the fact that all moves are sent to both the local and proxy players.

The local move checks to be sure that the local player has not moved yet, and then
checks to see if the other side has moved. If the other side has moved, then the infor-
mation about the moves is turned over to the Referee to determine and display the
outcome.

Now the doMove() is really nothing more than a call to the server-side script. It passes
the move to the server and does no more.

Proxy move

The onProxyMove() method is the mirror image of the localMove(). Because the
method is fired no matter which player moves, the algorithm in the method first filters
out the local move by splitting the string returned from the server into a move and a
player name. It looks at the player name, and if it’s the local’s name, it ignores it and
the move associated with it. (The move is handled by the localMove() method.)
However, once the filtering has been completed, the algorithm is essentially the same
as the local move operation. It does display the fact that the opponent has moved by
displaying the name of the player but not the move. In this way, the application main-
tains the simultaneous nature of the play.

Referee object

The end game conditions are delegated to the Referee object. In this case, the Referee
object is the RPS subclass contained within the takeTurn() method. By passing the
moves, output text field, and name of the array used to keep track of who took a turn
to the RPS object’s moveComplete() template method, everything can be neatly
wrapped up. The single line,

rps.moveComplete(p1move,p2move,playerText,monitor);

takes advantage of the template method in the Referee class and launches the opera-
tions that make up the template method—doWinner(), displayResults(), and
resetGame().

Player-Proxy Classes | 493

In addition to using the Referee to show the winner and tidy ready the game for a
new round, one of the methods, displayResults(), is used to show each player the
other’s move. So, in addition to the using the template method, it uses one of the
methods that make up the template method separately.

Player 2 Changes
The second player class also implements the ISymPlayer interface, but it’s slightly dif-
ferent, and a few parameter values have changed. All you need to do is make a few
changes in SymPlayer1. Begin by saving the SymPlayer1.as file as SymPlayer2.as, and
then make the changes in bold in the following segments:

 public class SymPlayer2 extends Sprite implements ISymPlayer
....
 public function SymPlayer2()
....
 //
 //makeMove: Make Move
 //
 public function makeMove(event:Event):void

 moveVal=event.currentTarget.name;
 if (!monitor[1] && mcheck)

 var m:String=showText.getMove();
 if (m != "ready" && m != "Error!")
 {
 //Proxy 2 move
 doMove(m);
 //Player 2 move
 localMove(m);
 }

 //
 //localMove Player Move
 //
 public function localMove(locMove:String):void
 {
 playerText.setMove("player2");
 if (!monitor[1])
 {
 p2move=locMove;
 monitor[1]=true;
 }
....
 //
 //onProxyMove: Info from server
 //
 public function onProxyMove(proxMove:String):void
 {
 playerNow=proxMove.substring(proxMove.indexOf("~")+1);

494 | Chapter 13: Symmetric Proxy Pattern

 proxMove=proxMove.substring(0, proxMove.indexOf("~"));
 if (playerNow=="player1" && !monitor[0])
 {
 playerText.setMove(playerNow);
 p1move=proxMove;
 monitor[0]=true;
....
public function takeTurn():void
 {
 rps=new RPS();
 rps.moveComplete(p1move,p2move,playerText,monitor);
 rps.displayResults(oppText,p2move);
 showText.setMove("ready");
 }
....

Simply change a few 1s to 2s and some 0s to 1s in the key methods in the SymPlayer1
class, and you’re good to go.

Classes and Document Files Support
As big as the two player class implementations are, they would be much bigger if not
for the work done by the supporting classes that create the buttons and dynamic text
fields.

Dynamic Output Text Fields
Because all the data input is done with button entries, the text fields for displaying
data is all typed as DYNAMIC. Example 13-6 shows the class for the text fields.

Example 13-6. DynamicText.as

package
{
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.text.TextFormat;
 import flash.display.Sprite;

 public class DynamicText extends Sprite
 {
 private var gameInfo:TextField;
 private var gameFormat:TextFormat;

 public function DynamicText():void
 {
 gameInfo=new TextField();
 addChild(gameInfo);
 gameInfo.border=false;
 gameInfo.background=true;
 gameInfo.type=TextFieldType.DYNAMIC;

Classes and Document Files Support | 495

The getter/setter functions make it far easier to access and display the available
moves. At the same time, the text fields act as temporary storage of values that can
be placed into variables or parameters.

Button Controls
The class for buttons is made up of Sprite, TextField and TextFieldType classes.
Example 13-7 shows the script for the class.

 gameInfo.width=70;
 gameInfo.height=20;
 gameFormat=new TextFormat();
 gameFormat.color=0xcc0000;
 gameFormat.font="Verdana";
 gameFormat.size=10;
 gameInfo.defaultTextFormat=gameFormat;
 }
 public function setMove(pMove:String)
 {
 gameInfo.text=pMove;
 }
 public function getMove():String
 {
 return gameInfo.text;
 }
 }
}

Example 13-7. MoveButton.as

package
{
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.display.Sprite;

 public class MoveButton extends Sprite
 {
 private var mvBtn:Sprite;
 private var id:String;

 public function MoveButton(mover:String,btncolor:int)
 {
 mvBtn=new Sprite();
 this.id=id;
 addChild(mvBtn);
 mvBtn.buttonMode=true;
 mvBtn.useHandCursor=true;
 mvBtn.graphics.beginFill(btncolor);
 mvBtn.graphics.drawRoundRect(0,0,(mover.length*8),20,5,5);
 var mvLbl:TextField=new TextField();

Example 13-6. DynamicText.as (continued)

496 | Chapter 13: Symmetric Proxy Pattern

The combined sprite and text provide a bit more information than just using a
SimpleButton class would. Because we wanted the information in the text to be the
information sent as moves, and the interactive aspects to be displayed in the dynamic
text field rather than changes in the button’s appearance, the choice was not a difficult
one. Also, we experimented with different colors for the buttons, decided to let the
designer pass his own color scheme, and so included a color parameter (btncolor).

The Flash File and Connection Movie Clip
The final aspects of the application include static text placed directly on the stage
and a movie clip created to serve as a connection light. Figure 13-5 shows the static
text placement in the right portion on the stage, and what the application looks like
when running on the left.

The following steps show how to create the last part of the application:

1. Open a new Flash File (ActionScript 3.0). Add a layer. Name the top layer “Con-
nect” and the bottom layer “Text.”

2. In the Document class window, type in SymPlayer1. Then save the file as
SymPlayer1.fla.

 mvBtn.addChild(mvLbl);
 mvLbl.text=mover;
 mvLbl.selectable=false;
 }
 }
}

Figure 13-5. Stage and SWF file views

Example 13-7. MoveButton.as (continued)

Static text

Static text

Movie clip stored in the Library panel

Classes and Document Files Support | 497

3. Click the Text layer to select it. Using the Text Tool, select Static Text, and set
the font to Arial Black, size to18 points and color #666666. Type in Player 1
and position it at X=158, Y=1.

4. Still using the Text Tool, change the size to 11, and first type in Proxy 2 and
position it at X=100, Y=120. Then type in Your Move and position it at X=180,
Y=120. Lock the Text layer.

5. Click on the Connect layer to select it. Using the Oval Tool, select a red fill color
and black stroke color. Set the stroke width to .25. Draw a W=10, H=10 circle.

6. Select the circle and press the F8 key to open the Convert to Symbol dialog box.
In the Name window, type in Connect, and select Movie clip as the Type. If you
see the Advanced button, click it to open the Linkage and Source views. Click
the Export for ActionScript Linkage checkbox. You should now see “Connect”
in the Class window and flash.display.MovieClip in the Base class window.
Click OK.

7. Click in Frame 1 and open the Actions panel (Press F9 Windows, Option + F9
Macintosh). Type in stop() in the Actions panel. Close the Actions panel.

8. Click Frame 2 and press F6 to add a second keyframe. Change the fill color in
the second frame from red to green. Click the Scene1 icon to exit the Symbol
edit mode.

9. You should see the movie clip on the stage. Delete it from the stage. Open your
Library panel (Window ➝ Library from the menu bar or Ctrl+L Windows or
Command+L Macintosh). You should see the movie clip with the name Connect
in the Library. Be sure that it’s spelled exactly that way, with an uppercase “C.”
This is the class name you use in your SymPlayer1 and SymPlayer2 classes.

10. Select File ➝ Publish to generate SWF and HTML files.

This application is designed to have two different players accessed from two differ-
ent Flash files. To create the second file, use the following steps.

1. Open SymPlayer1.fla, and, using File ➝ Save As, save the file as SymPlayer2.fla.

2. Change the Document class to SymPlayer2.

3. Change the static text from “Player 1” to “Player 2,” and “Proxy 2” to “Proxy 1.”
Save the file.

4. Select File ➝ Publish to generate SWF and HTML files.

That’s it. Place both HTML and SWF files on a web server, one player selects Player 1
and the other Player 2, and you’re good to go. You might want to set up a little HTML
file that allows the user to choose either Player 1 or Player 2, and then links to the
players through the HTML file. If one is in use, indicated by a red connect button,
then the user can just switch back and use the other.

498 | Chapter 13: Symmetric Proxy Pattern

Summary
The Symmetrical Proxy design pattern represents the kinds of experiments with
design patterns envisioned by Gamma and his associates when they wrote Design
Patterns: Elements of Reusable Object-Oriented Software. James Heliotis and Axel
Schreiner’s key insight is that two sides of a game over the Internet can be played on
a client using symmetrical referees and each side pitting a local player against the
proxy of an opponent. This is not an isolated solution to any single game, but rather
any games played over a network.

Our particular implementation of the design pattern used Flash Media Server 2 to
send the moves of each side to the other, and it’s doubtful whether Heliotis or
Schreiner had a clue about FMS2. Therein lies the strength of the design pattern.
Design patterns should represent general solutions to problems and not specific
implementations of a solution. Because of the flexibility of the Symmetrical Proxy
pattern, we were able to apply it using the Internet communication program of our
choosing, rather than one specified by the original designers.

By building in a proxy method into the interface and its implementations in the two
players, we were able to make changes to the general design that did not violate its
flexibility. This “androgynous” feature may have reduced the granularity of the
design and slightly enlarged the size of the main classes, but it remained within both
the structure and the spirit of the design pattern. Design patterns are general solu-
tions, and as long as the patterns meet the key criteria of flexibility and reusability
while maintaining good OOP practices, they can be implemented in an unlimited
number of ways.

499

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
abstract classes, 28, 31, 68, 130

interfaces, versus, 46
naming conventions, 30
purpose, 33

Abstract Component class, 135
abstract decorator class, 136
abstract functions, 336, 355
abstract interfaces, 67
abstract methods, 67
AbstractClass.as, 31, 338
abstraction, 11–15

ActionScript 3.0, 12
advantages of, 15

Accord.as, 166
ActionScript 1.0 and SSCA, 483
ActionScript 3.0

abstract classes and, 31, 68
abstract functions and, 355
abstractions in, 12
AMF (Action Message Format), 383
embedded scripts and, 5
implementation, 43
inheritance, 24

Adaptee.as, 180, 183
adapter class, 177
Adapter pattern, 127, 177–185

car steering adapter, 185–193
adapter class, 190
client, 191
existing class, 186
interface conversion, 188–190

car steering with a mouse, 193

class adapters, 181
interfaces and, 177
key features, 178
list display adapter, 194–199

adapter class, 196
clients, 198
existing class, 195
interface conversion, 195

O’Reilly new books list, 199–202
object adapters, 179

minimal example, 179
OOP concepts in, 185

object and class adapters,
comparison, 185

summary, 203
Adapter.as, 180, 183
add() method, 255
Alert.as, 113
AlertText.as, 115
AlienCannonBall.as, 93
AlienMine.as, 93
AlienShip.as, 95
AlienWeapon.as, 98
ancestors, 24
Append state, 383
AppendState class, 388
AppendState.as, 388
Arrogance.as, 159
.as files, 6
AsciiCharLeafView.as, 441
Audio.as, 346
Auto.as, 165

500 | Index

B
BadImplementation.as, 106
BajaFlight.as, 353
BalloonAnimals.as, 408
BandFace.as, 28
BaseClass.as, 50
Behavioral design patterns, 245
Biz.as, 38
black boxes, 15
black-box reuse, 288
BlueDress.as, 143
BodySegment.as, 229
Bojo.as, 407
Bongo.as, 29
bongo.mp3, 41
Booch, Grady, 12
Bow.as, 144
BtnState.as, 371
BubblePants.as, 412
Bubbles.as, 412
BuildShed.as, 343
Button class, 7
Button scripts, 5

C
Car.as, 190
CarAdapter.as, 190
CarModel.as, 458
CarView.as, 461
Cat.as, 26
CBView.as, 448
CharCodeLeafView.as, 440
Chase.as, 409
ChaseController.as, 466
Checker.as, 417
children, 205
CircleWidget.as, 87
class adapters, 181

inheritance of interfaces and
implementations, 182

class inheritance versus object
composition, 49

classes
concrete creator classes, 100
creator classes, 66
internal classes, 71, 74
product classes, 66
protected classes, 74
public classes, 71
tight coupling, 181
writing for inheritance, 25

Classic.as, 35
clients, 44, 66
Client-Side ActionScript (CSAS), 382
closed for modification, 67
Cloudy.as, 354
Clown.as, 406, 411
ClownCollege.as, 410, 412
code examples, xvii
code reuse, 33
ColorInkjetPrintjob.as, 80
Command class, 250
Command pattern, 246, 247–255

class diagram, 250
command interfaces, 248
command objects, 248–250

portability, 263
sharing, 263–265

command objects, sharing
invoker, triggering by key presses, 264

command stacks, 266
concrete commands, 249
dynamic command object

assignment, 276–280
commands for, 278
context sensitive invoker, 276
setup from the client, 279

encapsulation, 248, 249
implementing undo, 266–270

abstract interface for, 266
concrete commands for, 267–269
undoable commands, client

assigned, 269
invokers, 250
key features, 250
minimal example, 251–254

clients, 253
command interface, 251
concrete commands, 251
invokers, 252
receivers, 252
triggers, setting for command

invocation, 254
minimal example, macro

commands, 255–258
client, macro command object created

from, 258
command interface, 255
concrete macro command, 257
two concrete subcommands, 256

number manipulator, 258–263
client, 263

Index | 501

increment and decrement
commands, 262

invoker, triggering by button
clickes, 260

utility button class, 259
OOP concepts in, 255
podcast radio, 270–??

client assignment of podcasts to push
buttons, 275

command to play podcasts, 272
package with utility classes,

creating, 271
pushbutton invokers, 274
radio receiver, developing, 272

summary, 281
Command.as, 251
CommandWithUndo.as, 266
Compassion.as, 155
complex interfaces, 47
Component class, 205
Component.as, 135, 149, 207, 218, 224
components, 15
ComponentView.as, 437
Composite class, 206, 209
Composite pattern, 128, 204–217

animation with inverse kinematics, 222
child nodes, accessing, 211
composite airplane, creating, 234–243

airplane damage, calculating, 242
airplane weight, calculating, 240
component and composite

classes, 234–237
components, modifying to show

damage, 241
composite structure

building, 238–240
fuselage, wings, and engines, 237–238

composite structures, building and
manipulating, 215

display list, 233
Flash’s built in composite structure, 233
key features, 207
minimal example, 207–216
music playlist, 217–222

composite playlists, building, 221
queuing song sequence, 219–221

nodes, removing, 212
parent reference, creating, 212
remove method, implementing, 213

OOP concepts in, 217
snake animation, 222–233

body and tail, building, 229–232

component and composite nodes,
creating, 223–225

composite snake, building, 232
controlling movement, 226
inverse kinematics, 223
moving a kinematic pair, 228
snake head, building, 225

summary, 243
Composite.as, 209, 225
CompositeView.as, 438
composition, 49–51

inheritance, versus, 185
object adapters and, 179

Computers.as, 40
concrete classes, 69
concrete commands, 249
concrete creator classes, 100
ConcreteCommand classes, 250
ConcreteCommand.as, 252
ConcreteCommand1.as and

ConcreteCommand2.as, 256
ConcreteComponent.as, 137
ConcreteContext.as, 404
ConcreteMacroCommand.as, 257
ConcreteObserver class, 296
ConcreteStrategy.as, 404
Context.as, 403
ControlButtons.as, 274
Controller.as, 434, 447
controllers, 430
Country.as, 35
coupling, 65, 248
Courage.as, 154
creational design patterns, 63
creator classes, 66
Creator.as, CreatorA.as, and CreatorB.as, 71
CSAS (Client-Side ActionScript), 382

D
data design classes, 321–326

bar chart display, 323–324
line graph, 325–326
UIList component, 321–323

deadly sins, 157–160
Deal.as, 170
DecConA.as and DecConB.as, 138
Decorator class, 133
Decorator pattern, 127, 129–132

deadly sins and heavenly virtues
game, 148–164

decorating with multiple
properties, 151

502 | Index

Decorator pattern
deadly sins and heavenly virtues game

(continued)
good and evil decorators, 153–160
good and evil decorators,

implementing, 160–164
multiple concrete components, 149
multiple method concrete

decorations, 151
properties and methods, adding, 149

Decorator model, 131
drawbacks of, 176
Flash paper doll, 141–147

component class, 141
concrete classes, 142–145
Decorator class for dressing dolls, 141
implementing the paper doll

decorator, 145–147
hybrid car dealership, 164–176

auto options as decorators, 167–170
hybrid car components, 165
user interface, 170–176

key features, 130
minimal abstract Decorator, 135–140

Abstract Component class, 135
abstract Decorator class, 136–138
concrete decorator classes, 138
wrapping components in concrete

decorators, 139–140
OOP concepts used with, 132–134

flexibility and adaptability, 134
unwanted inheritance, 132
wrapping, 133

summary, 176
Decorator.as, 136, 151, 168
DecrementCommand class, 262
DecrementCommand.as, 262
DecrementCommandWithUndo.as, 268
DecTest.as, 140
delegation, 51–56

and delegates, 401
dependencies, 66

dependency rot, 337
managing, 45

design patterns, 1, 3, 42–57
Adapter pattern (see Adapter pattern)
behavioral patterns, 245
choosing a pattern, 61
client and request, 44
Command pattern (see Command

pattern)
complex interfaces, 47

Composite pattern (see Composite
pattern)

composition, 49–51
composition, inheritance, and

instantiation together, 56
creational patterns, 63
Decorator pattern (see Decorator pattern)
delegation, 51–56
dependency, managing, 45
design pattern classifications, 61
essential principles, 42
Factory Method pattern (see Factory

Method pattern)
implementations, 43
improving OOP with, 61
interfaces versus implementations, 45
meeting client goals with, 60
Model-View-Controller pattern (see MVC

pattern)
multiple design patterns, 425
Observer pattern (see Observer pattern)
Singleton pattern (see Singleton pattern)
state, 43
State pattern (see State pattern)
Strategy pattern (see Strategy pattern)
Structural patterns, 127
Symmetric Proxy pattern (see Symmetric

Proxy pattern)
Template Method pattern (see Template

Method pattern)
Design Patterns: Elements of Reusable

Object-Oriented Software, xii, xviii
Dick.as, 150
Diligence.as, 156
DirectionGaugeView.as, 464
Disappear.as, 408
display lists, 233
display object containers, 233
display objects, 223, 233
displayObject() function, 47
DoBusiness.as, 41
Document class, 6
document class, 69, 207
Dog.as, 26
Dogmatisms.as, 159
DoHasBase.as, 51
doMoveCar() method, 188
DoMusic.as, 119
DoMusicBtn.as, 120
DoVid.as, 48
Dresser.as, 142
DynamicControlButtons.as, 277
DynamicText.as, 494

Index | 503

E
ECOOP, 470
EmailCheck.as, 418
encapsulate what varies, 337
encapsulated algorithms, 401
encapsulating variation, 400
encapsulation, 15–24, 248

purpose, 16
enter frame event handler, 188
Escape.as, 167
execute() method, 250, 251
extensiblilty planning, 57–60

F
factories, 66
Factory Method Minimalist.fla, 69
Factory Method pattern, 63, 65–68

color printing example, 80–83
clients, 83
new creator classes, 81
new product classes, 80
parallel class hierarchies, 83

concrete creator classes, 100
creator classes, 66
key OOP concepts, 84
minimal example, 69–74

clients, 72
creator classes, 71
product classes, 70
product classes, hiding, 73

object creation and reduction of
coupling, 84

parameterized factory methods, 79
integrating, 81

print shop example, 74–79
clients, 78
creator classes (print centers), 76
extension, 78
product classes (print jobs), 75

product classes, 66
Sprite factory, 84–90

clients, 89
creator classes (shape creators), 87
product classes (shape widgets), 85

summary, 100
vertical shooter game, 90–100

clients, 100
creator classes, 97–99
product classes, 91–97

factory methods, 67
FallDown.as, 409

FancyPrintCenter.as, 79
FashionShow.as, 145
favor object composition over class

inheritance, 49–51, 56, 285, 288
FilledCircleWidget.as, 87
FilledShapeCreator.as, 89
FilledSquareWidget.as, 87
Flash CS3, xiv

document class, 69
MovieClip and Button objects, making

classes from, 7
Flash Media Server 2 (see FMS2)
Flash paper doll, 141–147

component class, 141
concrete classes, 142

concrete component class, 142
concrete decorator classes, 143

Decorator class for dressing dolls, 141
implementing the paper doll

decorator, 145–147
Flex 2, xiv, xv
FlightPlan.as, 353
FMS2 (Flash Media Server 2), xiv, xv

State pattern and, 383

G
Gamma, Erich, xii
Gang of Four (GoF), xiv
generic concrete decoration, 152
Geostationary Satellite Server, 443
getInstance() function, 108
GoF (Gang of Four), xiv
GPS.as, 169
GPSView.as, 465
granularity, 59, 414
Guitar.as, 28

H
HasBase .as, 50
Hat.as, 144
Head.as, 226
HeatedSeat.as, 168
heavenly virtues, 153–156
Heliotis, James, 470
Helm, Richard, xii
HeroCannonBall.as, 93
HeroShip.as, 96
HeroWeapon.as, 98
HighVolPrintCenter.as, 77
Hollywood Principle, 333, 337

504 | Index

hook operation, 334, 351–356
Baja flight example, 352–356
uses for, 352

Hope.as, 154
hybrid car dealership, 164–176

auto options as decorators, 167–170
hybrid car components, 165

Auto abstract components, 165
hybrid car classes concrete

components, 166
user interface, 170–176

Flash document creation, 174
implementing concrete components

and decorators, 175

I
ICar.as, 458
IChaseHandler.as, 466
ICompInputHandler.as, 446
IKeyboardInputHandler.as, 433, 460
IMacroCommand.as, 256
IModel.as, 445
implementations, 43

interfaces, versus, 30, 45
ImplementSub.as, 32
ImplementSubChange.as, 34
IncrementCommand class, 262
IncrementCommand.as, 262
IncrementCommandWithUndo.as, 267
Indifference.as, 160
INewModel.as, 452
inheritance, 24–34

abstract classes and, 31
advantages and disadvantages, 288
class adapters and, 181
classes, writing for, 25
composition, versus, 185
multiple inheritance, 182

InkjetPrintjob.as, 76
instance names, 7
Integrity.as, 153
interfaces, 28, 67

abstract classes, versus, 46
Adapter pattern and, 177
Adapter pattern, conversions by, 188–190
complex interfaces, 47
implementations, versus, 30, 45
implementing polymorphism, 37
naming conventions, 30
purpose, 33

internal classes, 71, 74
inverse kinematics, 223

Invoker.as, 253
InvokerKeyboard.as, 264
InvokerPanel.as, 261
invokers, 250
ITarget.as, 183
IVid.as, 47

J
Jane.as, 150
Jazz.as, 36
Johnson, Ralph, xii
Juggle.as, 408
Justice.as, 156

K
KeyboardInputView.as, 461
Koka.as, 407

L
Leaf.as, 208
legacy object, 177
LegacyCar.as, 186
ListDisplay.as, 195
ListDisplayField.as, 196
loosely coupled designs, 84, 248, 251, 430,

443
LowVolPrintCenter.as, 77

M
macro commands, 255–258

client, macro command object created
from, 258

command interface, 255
concrete macro command, 257
two concrete subcommands, 256

Main class, 69, 72
Main.as

Command pattern example, 253
Main.as (Adapter pattern), 180, 184, 192
Main.as (Composite pattern), 210, 215, 226,

239
updated constructor in, 232

Main.as (document class), 198, 201
Main.as (Factory Method pattern), 72
Main.as (MVC pattern), 436, 462
MainDual.as, 161
maintenance, 57–60

extensiblility, adding, 59
MakeSound.as, 30
Malice.as, 157

Index | 505

MapTypeController.as, 454
MapView.as, 449
Mariner.as, 166
Media.as, 53
metamorphosis, 34
methods, public versus protected

attributes, 72
Model.as, 141, 432, 445
models, 430
Model-View-Controller pattern (see MVC

pattern)
modules, 15
MoveButton.as, 495
MovieClip class, 7
MovieClip scripts, 5
MP3.as, 169
Mp3.as, 53
MP3Player.as, 39
Muff.as, 145
MultifunctionPrintJob.as, 79
multiple design patterns, 425
multiple inheritance, 182
MVC (Model-View-Controller) pattern, 425,

427–431
cars, 457–466

building the car, 462
chase car, adding, 466–468
controller, 460
custom views, 463–466
direction guage view, 464
GPS view, 464
model, 458–459
views, 461

communication between elements, 428
embedded patterns in, 430
infrared weather maps, 451–457

controllers, adding, 454
models, adding, 452
MVC triad, building, 456
views, adding, 454

integration of Observer, strategy, and
Composite patterns, 468

key features, 442
minimal example, 431–442

controller, concrete strategy in a
Strategy pattern, 433

model, concrete subject in Observer
pattern, 431–433

MVC triad, building, 435
nested views, 436–441

view as concrete observer in Observer
pattern and context in Strategy
pattern, 434

OOP concepts in, 443
summary, 468
weather maps, 443–451

controller, 446
model element, 444
model, setting to self-update, 451
MVC triad, building, 450
views, 447

MyClient.as, 45
Myers, Tom, 4
MyObject.as, 44

N
Nakhimovsky, Alexander, 4
nested views, 436–442

and Composite pattern,, 436
building the structure, 441

net.ObjectEncoding class, 382
NetBtn.as, 370
new keyword, 65
NewHighVolPrintCenter.as, 82
NewLowVolPrintCenter.as, 81
NewModel.as, 453
NewPrintCenter.as, 81

O
Obfuscation.as, 158
object adapters, 179

minimal example, 179
object composition, 285

class inheritance, versus, 49
object-oriented programming (see OOP)
Observer pattern, 246, 282–289

adding states and identifying
users, 294–302

ConcreteObserver class, 296
multiple states, 295
newspaper subscription, 300–302
updated Observer, 297–300

different data displays, working
with, 318–330

concrete classes, 319
data design classes, 321–326
main class, pulling elements together

in, 327–330
output designer, 318

dynamically changing states, 302
key features, 283

506 | Index

minimal abstract Observer, 289–294
space battle game, 302–317

battles, recording, 303
concrete classes, 303–306
launching a battle, 306–317

summary, 330
OOP (object-oriented programming), 3,

10–42
abstraction, 11–15

advantages of, 15
Adapter pattern, key OOP concepts

in, 185
code reuse, 33
Command pattern, OOP concepts in, 255
Composite pattern, OOP concepts

in, 217
composition versus inheritance, 185
Decorator pattern, OOP concepts used

with, 132–134
design patterns, improving with, 61
encapsulation, 15–24
Factory Method pattern, concepts used

in, 84
four basic concepts, 11
inheritance, 24–34
meeting client goals with, 60
multiple inheritance, 182
MVC pattern, OOP concepts in, 443
open-closed principle, 67
polymorphism, 34–42
procedural programming languages,

versus, 5
Singleton pattern, concepts used

in, 102–105
State pattern, OOP concepts used

with, 360
Strategy pattern, OOP concepts used

with, 400–402
delegation and delegates, 401
encapsulating variation, 400

Symmetric Proxy pattern, OOP concepts
used with, 475

communication flexibility, 476
game flexibility, 476

Template Method pattern, concepts used
in, 335

abstract functions and override
flexibility, 336

Hollywood Principle, 337
inheritance versus composition, 335
variation, 337

OOPSLA, 470
open for extension, 67
Openness.as, 155
operation() method, 209
OrangeDress.as, 143
override statement, 31, 134, 138

P
packages, 69
parallel class hierarchies, 83
parameterized adapter classes, 181
parameterized factory methods, 79

integrating, 81
parameters, 66
parents, 205
PasswordVerify.as, 419
Passwork.as, 417
PauseState.as, 377, 387
Plasma.as, 38
plasma.flv, 41
PlayAbstract.as, 14
PlayAudio.as, 54
Playlist.as, 218
PlayMedia .as, 349
PlayMusic.as, 36
PlayPodcastCommand.as, 272
PlayState.as, 365, 369, 376, 386
PlayTune.as, 348
PlayVideo.as, 12, 54, 347
PlayVideoAbstract class, 14
PlayVideoAbstract.as, 13
Podcast XML feed, 271
podcasts, 270
polymorphism, 34–42, 217, 360

interfaces, implementing with, 37
Polymorphism.as, 35
Prejudice.as, 158
PrintCenter.as, 76
Printjob.as, 76
Prius.as, 166
procedural programming, 4
product classes, 66
Product.as, Product1.as, and Product2.as, 70
program to interfaces over

implementations, 45, 285
Projectile.as, 92
protected classes, 74
proxygame.asc, 484
public classes, 71
public statement, 31
PublicClass.as, 104

Index | 507

Q
QuadPets.as, 25

R
Radio.as, 273
Rage.as, 157
RBView.as, 455
RearViewVideo.as, 169
receiver class, 272
Receiver.as, 252
Receiver1.as and Receiver2.as, 257
Record state, 383
RecordAudio.as, 55
RecordMedia.as, 55
RecordState class, 387
RecordState.as, 388
RecordVideo.as, 55
Referee.as, 479
remove() method, 214, 255
request, 44
return statement, 4
RHController.as, 460
Rock, Paper, Scissors, 470
Rock.as, 35
rocket.fla, 7
RootNodeView.as, 440
RPS.as, 481

S
Schreiner, Axel, 470
scope, 4
sequential programming, 4
Server Side Communication ActionScript (see

SSCA)
SetToMusicGenreCommand.as, 278
ShapeCreator.as, 88
ShapeWidget class, 85
ShapeWidget.as, 86
ShedMaker.as, 342
Ship.as, 94
ShipCreator.as, 99
ShopCart.as, 122
ShowText.as, 420
simpleFactory() method, 66
SimpleSort.as, 419
single responsibility principle, 443
Singleton pattern, 63, 101–105

classic singleton, 103
key features, 101
minimal abstract singleton, 105–112

instantiation method, 108

one instance, different
references, 109–112

private class parameter, instantiation
with, 106–108

model, 102
one instance, multiple references, 112
OOP concepts used in, 102–105

private class constructors, creating and
using, 103

private classe instances, creating, 104
private class constructors, 103
private statci instantiation of an

instance, 103
public static functions for creating class

instances, 103
summary, 125
usage, 112–125

alert message, 113–116
music playback, 116–121
shopping cart, multiple

references, 121–125
Singleton.as, 106, 110
SingletonTest.as, 111
Skits.as, 409
Song.as, 219
SortAll.as, 420
SortBack.as, 420
SortWork.as, 418
Soul.as, 162
space battle game, 302–317

battles, recording, 303
concrete classes, 303–306
launching a battle, 306–317

building android space station and
beam, 309

building spaceships, 306
building weapons, 307
change handler, writing, 311–317
Flash document setup, 306

spaghetti programs, 4
Sprite class, 84

DisplayObject and
DisplayObjectContainer
classes, 233

Sprite factory, 84–90
cleints, 89
shape creators, 87
shape widgets, 85

Sprite objects, 6
SquareWidget.as, 86
SSCA (Server Side Communication

ActionScript), 483, 485

508 | Index

state, 43
state engine, 43
state machines, 6, 358
State pattern, 246, 357–361

adding states, 374–382
adding behaviors, 375–382
Pause state, 374

adding states and streaming
capabilities, 382–396

ActionScript 3.0, preparing for
FMS2, 382

adaptable states, 383
FMS2, special concerns regarding, 383
key features, 357
minimal abstract pattern, 361–367

abstract state machine,
testing, 364–367

context class, 363
OOP concepts used with, 360
State model, 358

design structure, 360
transitions, 359
triggers, 359

summary, 397
video player application, 367–374

State.as, 362, 366, 368, 375, 384
statecharts, 358
static Instance() method, 102
SteelShed.as, 343
Stop state, 383
StopState.as, 365, 368, 375, 385
Strategy pattern, 246, 398–402

clown employment agency, 406–414
adding functionality, 411–414
context class and concrete

contexts, 406
Skits interface and

implementations, 409
subclass organization, 414
testing, 410
Tricks interface and

implementations, 407
key features, 399
minmal abstract pattern, 402–405

adding a strategy, 403
completion and testing, 404
delegation to ConcreteContext

class, 404
delegation, using with the Context

class, 403
strategy details, 403

OOP concepts used with, 400–402

delegation and delegates, 401
encapsulating variation, 400

strategy model, 399
string strategies, 414–422

checking strategies, 418
context classes, 416
sort strategies, 419
strategy classes, 417
support classes, 420
testing, 421

summary, 423
Strategy.as, 403
StringChecker.as, 416
StringWork.as, 418
Structural design patterns, 127
Subclass.as, 32
SubclassChange.as, 33
subclasses, 26

abstract classes, extension of, 68
Sue.as, 142
superclasses, 26
Symmetric Proxy pattern, 426, 469–475

button controls, 495
classes and document files support, 494
description, 473
dynamic output text fields, 494
Flash file and connection Movie Clip, 496
Internet, information shared over, 483
Internet, proxies, and players, 472
key features, 474

cell, 474
proxy, 474

methods, 480
move making, 491

dual moves, 492
event to move, 491
proxy moves, 492
referee object, 492

OOP concepts used with, 475
communication flexibility, 476
game flexibility, 476

player interface, 477
player-proxy classes, 486–491
players, 470
Referee class, 478
referees, 471
RPS subclass, 481
second player class, 493
summary, 498
template methods, 481

SymPlayer.as, 478
SymPlayer1.as, 487

Index | 509

T
Tail.as, 231
Target.as, 180
Template design pattern, 246
template method, 332
template method algorithm, 331
Template Method pattern, 331–337

employing flexibility, 341–344
hook operation, 351–356

Baja flight example, 352–356
uses for, 352

key features, 333
minimal abstract template

method, 338–340
bare bones template method, 338
testing, 340

OOP concepts used in, 335
abstract functions and override

flexibility, 336
Hollywood Principle, 337
inheritance versus composition, 335
variation, 337

pattern model, 334
sound and video, selecting and

playing, 344–350
concrete classes, 346
detail classes, 347
format, setting up, 344
user interface, 349

summary, 356
TestCart.as, 123
TestFMS.as, 391
TestMedia.as, 55
TestPause.as, 379
TestPets.as, 27
TestRocket.as, 9
TestState.as, 366
TestStrategy.as, 404
TestStringStrategy.as, 421
TestTemplate.as, 340
TestVid.as (State pattern), 372
TextButton.as, Command pattern, 260
TextDisplayField.as, 271

TextShow.as, 421
Tidwell, Jennifer, 60
tight coupling, 181
TimedInvoker.as, 254
Timeline scripts, 6
Tricks.as, 407
Tuner.as, 118

U
Umbrella.as, 144
undo() command, 266
UndoLastCommand.as, 268
unencapsulated algorithms, 400
UnfilledShapeCreator.as, 88
utility button class, 259

V
vertical shooter game, 90–100

clients, 100
creator classes, 97–99

ShipCreator class, 99
Weapon class, 97

product classes, 91–97
projectiles, 91–94
space ships, 94–97

Vid.as, 346
VidAudio.as, 345
VideoFlash.as, 53
VideoWorks.as, 363, 369, 378, 389
VidPlayer.as, 47
View.as, 434
views, 430
Vlissides,John, xii

W
Weapon.as, 97
whizbang.gif, 41
WoodShed.as, 342
WorkgroupPrintjob.as, 76
Wrapper pattern, 133
wrapping, 133, 139

About the Authors
Dr. William B. Sanders is a Professor of Multimedia Web Design and Development
at the University of Hartford. He teaches courses in Flash, ActionScript, Flash Media
Server, PHP, C#, SQL, and XHTML, among other Internet languages. He has
published 44 computer and computer-related books, written software ranging from
Basic to Flash Media Server ActionScript and served as a consultant for different
computer software companies.

Dr. Chadima Cumaranatunge is an Assistant Professor of Multimedia Web Design
and Development at the University of Hartford. He teaches an introduction to the
IIT major, covering Flash and some ActionScript, a gaming course using Flash and
ActionScript, as well as educational technology courses in the Education, Nursing,
and Health Professions Colleges. He recently received a grant to teach an
experimental course in robotics.

Colophon
The animal on the cover of ActionScript Design Patterns 3.0 is a rosy feather starfish
(Antedon bifida). This unique sea creature grips the ocean floor with strong claw-like
protuberances and uses five pairs of feathery arms to move around and trap food.
They vary in color and can be red, pink, orange or yellow, and are sometimes
mottled or banded. They are found at all depths, and often congregate in large
numbers.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	ActionScript 3.0 Design Patterns
	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	What You Need to Use This Book
	Say It Again, Sam
	User’s Guide
	Flex 2 developers
	Flash Media Server 2 developers

	Companion Tools You’ll Want
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Enabled
	Acknowledgments
	Technical Reviewers
	Editors
	Authors
	Bill Sanders
	Chandima Cumaranatunge

	Part I
	Object-Oriented Programming, Design Patterns, and ActionScript 3.0
	The Pleasure of Doing Something Well
	Sequential and Procedural Programming
	Transition to OOP
	MovieClip and Button scripts
	Timeline scripts
	Document class
	Movie clip and button classes

	OOP Basics
	Abstraction
	Abstractions in ActionScript 3.0
	Why Abstractions Are Important

	Encapsulation
	Hiding Your Data from Bad Consequences
	Private variables
	The many meanings of interface
	Getters and setters
	The get and set methods

	Using Encapsulation and Design Patterns

	Inheritance
	Looking at the Ancestors
	Writing Classes for Inheritance
	Using Interfaces and Abstract Classes in ActionScript 3.0
	Interface constructs
	Abstract classes and overriding inheritance
	Why use interfaces and abstract classes?

	Polymorphism
	Generating Polymorphism Using an Abstract Class
	Implementing Polymorphism with Interfaces

	Principles of Design Pattern Development
	Implementation
	State
	Client and Request

	Program to Interfaces over Implementations
	Managing Dependency
	Using Complex Interfaces

	Favor Composition
	Doing Composition
	Using Delegation
	Making Composition, Inheritance, and Instantiation Work Together

	Maintenance and Extensibility Planning
	Planning Only for Maintenance
	Adding Extensibility to a Plan with Granularity

	Your Application Plan: It Ain’t You Babe
	Using OOP and Design Patterns to Meet Client Goals
	Choosing the Right Design Pattern
	Achieving Better OOP Through Design Patterns

	Part II
	Factory Method Pattern
	What Is the Factory Method Pattern?
	Model of the Factory Method Pattern

	Abstract Classes in ActionScript 3.0
	Minimalist Example
	Product Classes
	Creator Classes
	Clients

	Hiding the Product Classes
	Example: Print Shop
	Product Classes: Print Jobs
	Creator Classes: Print Centers
	Clients
	Print Shop Extension
	Parameterized Factory Methods

	Extended Example: Color Printing
	New Product Classes
	New Creator Classes: Integrating a Parameterized Factory Method
	Clients
	Parallel Class Hierarchies

	Key OOP Concepts Used in the Factory Method Pattern
	Example: Sprite Factory
	Product Classes: Shape Widgets
	Creator Classes: Shape Creators
	Clients

	Example: Vertical Shooter Game
	Product Classes
	Projectiles
	Space ships

	Creator Classes
	Weapon
	ShipCreator

	Concrete Creator Classes
	Clients

	Summary

	Singleton Pattern
	What Is the Singleton Pattern?
	Key Features
	The Singleton Model

	Key OOP Concepts Used with the Singleton Pattern
	Creating and Using a Private Class Constructor
	Creating a Private Class Instance

	Minimalist Abstract Singleton
	Instantiation with a Private Class Parameter
	A Singleton Instantiation Method
	One Instance and Different References

	When to Use the Singleton Pattern
	A Single Alert Message
	Just One Tune at a Time
	Using Multiple References in a Shopping Cart

	Summary

	Part III
	Decorator Pattern
	What Is the Decorator Pattern?
	Key Features
	The Decorator Model

	Key OOP Concepts Used with the Decorator Pattern
	Unwanted Inheritance
	Wrapping Responsibilities
	Flexibility and Adaptability

	Minimalist Abstract Decorator
	Abstract Component Class
	Abstract Decorator Class
	Concrete Decorations
	Wrapping Up

	Applying a Simple Decorator Pattern in Flash: Paper�Doll
	Setting Up the Component Class
	Decorator Class: Dressing the Dolls
	The Concrete Classes
	Concrete component class
	Concrete decorator classes

	Implementing the Paper Doll Decorator

	Decorating with Deadly Sins and Heavenly Virtues
	Adding Properties and Methods
	Multiple Concrete Components
	Decorating with Multiple Properties
	Multiple Method Concrete Decorations
	The Good and Evil Concrete Decorators
	Heavenly virtues
	Deadly sins

	Implementing the Good and Evil Decorator
	Dual implementation
	Charting souls

	Dynamic Selection of Concrete Components and Decorations: A Hybrid Car Dealership
	Setting Up the Hybrid Car Components
	Auto abstract component
	Hybrid car classes concrete component

	Using Auto Options as Decorators
	The options abstract decorator
	The options concrete decorators

	Setting Up the User Interface
	Creating the document and setting the stage
	Implementing the concrete components and their decorators

	Summary

	Adapter Pattern
	What Is the Adapter Pattern?
	A Design Pattern for Potty Training
	Key Features of the Adapter Pattern

	Object and Class Adapters
	Object Adapters
	Minimalist example of an object adapter
	Using a parameterized adapter class

	Class Adapters
	Minimalist example of a class adapter

	Key OOP Concepts in the Adapter Pattern
	Object and Class Adapters Compared

	Example: Car Steering Adapter
	The Existing Class
	Interface Conversion
	The original interface
	The new context
	The new interface

	The Adapter Class
	The Client

	Extended Example: Steering the Car Using a Mouse
	Example: List Display Adapter
	The Existing Class
	Interface Conversion
	The Adapter Class
	The Client

	Extended Example: Displaying the O’Reilly New Books List
	Summary

	Composite Pattern
	What Is the Composite Pattern?
	Key Features of the Composite Pattern

	Minimalist Example of a Composite Pattern
	Accessing Child Nodes
	Removing Nodes
	Creating a parent reference
	Implementing the remove method

	Building and Manipulating a Composite Structure

	Key OOP Concepts in the Composite Pattern
	Example: Music Playlists
	Queuing Songs to Play in Sequence
	Building Composite Playlists

	Example: Animating Composite Objects Using Inverse Kinematics
	Using Inverse Kinematics
	Creating Component and Composite Nodes for the Snake
	Building the Snake Head
	Controlling the Snake
	Moving a Kinematic Pair
	Building the Body and Tail Segments
	Building the Composite Snake

	Using Flash’s Built-in Composite Structure: the�Display�List
	Creating a Composite Airplane
	Developing the Component and Composite Classes for the Airplane
	Creating the Fuselage, Wings, and Engines
	Building the Composite Structure
	Calculating the Total Weight of the Airplane
	Modifying Components to Reflect Damage
	Calculating Total Damage to the Airplane

	Summary

	Part IV
	Command Pattern
	What Is the Command Pattern?
	Mom Needs to Issue Some Commands
	Key Features of the Command Pattern
	Class Diagram of the Command Pattern

	Minimalist Example of a Command Pattern
	The Command Interface
	The Concrete Command
	The Receiver
	The Invoker
	The Client
	Setting a Trigger to Invoke the Command

	Key OOP Concepts in the Command Pattern
	Minimalist Example: Macro Commands
	The Macro Command Interface
	Two Concrete Subcommands
	The Concrete Macro Command
	A Macro Command Object Created from the Client

	Example: Number Manipulator
	A Utility Button Class
	Triggering an Invoker by Button Clicks
	The Increment and Decrement Commands
	The Client

	Extended Example: Sharing Command Objects
	Triggering an Invoker by Key Presses
	Sharing Command Objects from the Client

	Extended Example: Implementing Undo
	An Abstract Interface for Commands
	Concrete Commands that Implement Undo
	Undoable Commands Assigned from the Client

	Example: Podcast Radio
	What Is a Podcast?
	Creating a Package with Utility Classes
	Creating a Command to Play a Podcast
	Developing the Radio Receiver
	Push Button Invokers for the Radio
	The Client Assigns Podcasts to Push Buttons

	Extended Example: Dynamic Command Object Assignment
	A Context Sensitive Invoker
	Commands to Dynamically Assign Command Objects
	Dynamic Command Assignment Setup from the Client

	Summary

	Observer Pattern
	What Is the Observer Pattern?
	Key Features
	The Observer Model

	Key OOP Concepts Used with the Observer Pattern
	Choose the Interface
	Object Composition

	Minimalist Abstract Observer
	Subject Interface
	Observer Interface
	Concrete Subject
	Concrete Observer
	Working the Observer

	Example: Adding States and Identifying Users
	Multiple States
	Who Are You?
	Updated Observer
	Playing the Bugle

	Dynamically Changing States
	Recording a Space Battle
	Giving More Work to the Concrete Classes
	Launching the Space Battle
	Setting up the Flash document
	Building the spaceships
	Building the weapons
	Building the Android space station and beam
	Writing a Change Handler

	Example: Working with Different Data Displays
	The Output Designer
	The Concrete Classes and a Double Implementation
	The Data Design Classes
	UIList component
	Bar chart display
	The line graph

	Pulling All the Elements Together

	Summary

	Template Method Pattern
	What Is the Template Method Pattern?
	Key Features
	The Template Method Model

	Key OOP Concepts Used with the Template Method
	Why Inheritance and Not Composition?
	Abstract Functions and Override Flexibility
	Consider Variation
	The Hollywood Principle

	Minimalist Example: Abstract Template Method
	Bare Bones Template Method
	Testing Templates

	Employing Flexibility in the Template Method
	Selecting and Playing Sound and Video
	Setting Up the Format
	Not-So-Concrete Concrete Classes
	The Detail Classes
	Playing the Media

	Hooking It Up
	When to Hook?
	The Hook as a Lonely Repairman
	Baja Flight with a Hook

	Summary

	State Pattern
	Design Pattern to Create a State Machine
	Key Features
	The State Model
	Transitions
	Triggers
	State design structure

	Key OOP Concepts Used with the State Pattern
	Minimalist Abstract State Pattern
	Managing All Those States: Hardworking Context Class
	Creating a context class
	Completing and testing the abstract state machine

	Video Player Concrete State Application
	Expanding the State Design: Adding States
	Adding the Pause State to the Statechart
	Adding New Behaviors

	Adding More States and Streaming Capabilities
	Setting Up Your ActionScript 3.0 Script for FMS2
	The Adaptable States

	Summary

	Strategy Pattern
	What is the Strategy Pattern?
	Key Features
	The Strategy Model

	Key OOP Concepts Used with the Strategy Pattern
	Encapsulating Variation
	Unencapsulated version (pseudocode)
	Encapsulated algorithms (pseudocode)

	Using Delegation and Delegates

	Minimalist Abstract State Pattern
	Using Delegation with the Context
	Adding a Strategy
	Details of the Strategy
	More Delegation in a Concrete Context
	Pulling All the Parts Together

	Adding More Concrete Strategies and Concrete Contexts
	The Clowns
	The Trick Interface and Implementations
	The Skits Interface and Implementations
	Here Come the Clowns!
	Additional Clown Functionality
	Adding a new clown
	Adding a new trick
	Revising clown college

	Tricks and Skits Reorganization: Clown Planning

	Working with String Strategies
	Contexts for String Strategies
	String Strategies
	Checking strategies
	Sort strategies

	Support Classes
	String Strategy Test

	Summary

	Part V
	Model-View-Controller Pattern
	What Is the Model-View-Controller (MVC) Pattern?
	Model
	View
	Controller

	Communication Between the MVC Elements
	Embedded Patterns in the MVC
	Minimalist Example of an MVC Pattern
	Model as a Concrete Subject in an Observer Pattern
	The EventDispatcher class in ActionScript 3.0
	The model

	Controller as a Concrete Strategy in a Strategy Pattern
	The controller

	View as a Concrete Observer in an Observer Pattern and Context in a Strategy Pattern
	Building the MVC Triad
	Nested Views as Leaves and Nodes of a Composite Pattern
	Component and composite views
	Creating nested views

	Building the Nested View Structure
	Key Features of the MVC Pattern

	Key OOP Concepts in the MVC Pattern
	Example: Weather Maps
	The Model
	The Controller
	The Views
	Combo box view
	Map view

	Building the MVC Triad
	Setting the Model to Self-Update

	Extended Example: Infrared Weather Maps
	Adding a New Model
	Adding a New Controller
	Adding a New View
	Building the MVC Triad

	Example: Cars
	The Model
	The Controller
	The Views
	Building the Car

	Custom Views
	Direction Gauge View
	GPS View
	Adding the Custom Views

	Adding a Chase Car
	Summary

	Symmetric Proxy Pattern
	Simultaneous Game Moves and Outcomes
	The Player
	The Referee
	The Internet, Proxies, and Players

	The Symmetric Proxy Pattern
	Key Features
	The cell
	The proxy

	Key OOP Concepts Used with the Symmetric Proxy
	Communication Flexibility
	Game Flexibility

	The Player Interface
	The Referee
	Methods
	Template Method
	RPS Subclass

	Information Shared Over the Internet
	Player-Proxy Classes
	Move Making
	Event to move
	Dual moves
	Proxy move
	Referee object

	Player 2 Changes

	Classes and Document Files Support
	Dynamic Output Text Fields
	Button Controls
	The Flash File and Connection Movie Clip

	Summary

	Index

