
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ActionScript 3.0 Bible

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ActionScript 3.0 Bible
Second Edition

Roger Braunstein

Wiley Publishing, Inc.

www.allitebooks.com

http://www.allitebooks.org

ActionScript 3.0 Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-52523-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher,
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other
professional services. If professional assistance is required, the services of a competent professional person should be
sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organi-
zation or Web site is referred to in this work as a citation and/or a potential source of further information does not
mean that the author or the publisher endorses the information the organization or Web site may provide or rec-
ommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic books.

Library of Congress Control Number: 2009943640

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. ActionScript
is a registered trademark of Adobe Systems Incorporated. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.allitebooks.org

About the Author
Roger Braunstein is a multidisciplinary programmer and the Chief Roger Officer of partlyhuman inc.,
an independent development and design shop in Brooklyn, NY. Roger is an author of the first edition
of ActionScript 3.0 Bible, and a short e-book, Introduction to Flex 2. Roger builds games, mobile apps,
interactive art, tools, web apps, and websites using any technology he can wrap his head around. In
just the past two years he’s built stuff for LEGO, MoMA, Tim Burton, Antony and the Johnsons, AOL,
HBO, Puma, General Mills, Sport Chalet, Pepsi, Coke, OMGPOP, the French Culinary Institute, and
more. Additionally, he keeps busy with a series of independent projects. When not in front of a com-
puter, Roger enjoys normal human activities such as biking, cooking, reading, traveling, taking photos,
roller-skating, and dancing to music made on GameBoys. He is perpetually too preoccupied to put
anything interesting on his site http://partlyhuman.com/, but you can use it to get in touch
with him.

www.allitebooks.com

http://partlyhuman.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Credits

Acquisitions Editor
Scott Meyers

Project Editor
Brian MacDonald

Technical Editor
Caleb Johnston

Production Editor
Daniel Scribner

Copy Editor
Karen Gill

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Marketing Manager
David Mayhew

Production Manager
Tim Tate

Vice President and Executive

Group Publisher
Richard Swadley

Vice President and Executive

Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Nancy Bell

Indexer
Robert Swanson

Cover Image
Joyce Haughey

Cover Designer
Michael E. Trent

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

T
his book, like all gargantuan projects, was a team effort. Its pages were touched by many
hands, at Wiley and elsewhere. Losing even a single pair of these hands would mean you
wouldn’t have this book in yours right now, so I want to thank each and every person on

my team, whether I sent you 20 e-mails a day or never met you.

My most heartfelt thanks go to my project editor Brian MacDonald, and my acquisitions editor
Scott Meyers, who were nothing short of bodacious to work with. When I think of how many times I
pushed for some new, unconventional feature or change to the established Bible series, and then look
at this book and see all of my ideas in print, I know it’s Brian and Scott who have somehow done
their magic, convinced the right people, and made it happen. Thank you.

Perhaps every author forms a good relationship with his project editor just because he’s the person
who’s there from the first day of writing through the last, exhausted round of edits. But I think Brian
MacDonald is exceptional. I’ve never worked with an editor half as good. He had the right solution
for every problem. He was behind me and my ideas through thick and thin. His edits were always
spot-on. He was always available, always funny, and he even got my nerdy jokes. Trust me, if you’re
writing a programming book, bribe whoever you need to hire Brian.

I can’t talk about my team without mentioning the exhaustive copy editing done by Karen Gill. She
kept tabs on all my writing, cut down my useless tiresome redundant logorrhea, and made this book
less of a slog to get through. Trust me, you owe her one. I have the feeling her job is a little thankless,
but I do thank her.

Caleb Johnston, besides being a good friend, was a terrific technical editor. Somehow, with a full
course load for his master’s degree, he managed to find the time to review this entire book by him-
self. (The previous edition, although smaller, had three technical editors!) More than just scrutinizing
it, he made detailed and thoughtful criticisms, with as much ruthlessness as I demanded of him. He
found some quirky errors, and because he found them, you won’t have to.

Special thanks go out to my friend Corey Lucier at Adobe, who was kind enough to answer a few
questions about the internal workings of Flash Player or forward them on to Flash Player engineers.
Their additions helped me be even more accurate in this book, and Corey’s help was invaluable.

Special thanks also go to Whitney Gardner, who made two sublime illustrations for this book when I
was at my wit’s end.

Thanks to the U.S. economy for making my day job so unprofitable it made sense to sit in my
room and write for nine months. Thanks to coffee: you complete me. Thanks to my crazy SafeType
keyboard, which saved me from crippling arm pain. Thanks to my friends for, I dunno, whatever,
I like you.

Last but not least, thanks and lotsa lotsa love to my parents.

ix

Introduction ..xli

Part I: ActionScript 3.0 Language Basics . 1
Chapter 1: Introducing ActionScript 3.0 ...3
Chapter 2: ActionScript 3.0 Language Basics ..15
Chapter 3: Functions and Methods ...39
Chapter 4: Object Oriented Programming ..51
Chapter 5: Validating Your Program ...103

Part II: Core ActionScript 3.0 Data Types 111
Chapter 6: Text, Strings, and Characters ..113
Chapter 7: Numbers, Math, and Dates ...125
Chapter 8: Arrays ...145
Chapter 9: Vectors ...167
Chapter 10: Objects and Dictionaries ...181
Chapter 11: XML and E4X ..191
Chapter 12: Regular Expressions ...225
Chapter 13: Binary Data and ByteArrays ..257

Part III: The Display List . 271
Chapter 14: Visual Programming with the Display List ...273
Chapter 15: Working in Three Dimensions ..301
Chapter 16: Working with DisplayObjects in Flash Professional ..321
Chapter 17: Text, Styles, and Fonts ..329
Chapter 18: Advanced Text Layout ...367
Chapter 19: Printing ..399

Part IV: Event-Driven Programming . 407
Chapter 20: Events and the Event Flow ...409
Chapter 21: Interactivity with the Mouse and Keyboard ...429
Chapter 22: Timers and Time-Driven Programming ..461
Chapter 23: Multitouch and Accelerometer Input ..473

Part V: Error Handling .489
Chapter 24: Errors and Exceptions ...491
Chapter 25: Using the AVM2 Debugger ...505
Chapter 26: Making Your Application Fault-Tolerant ..523

Part VI: External Data . 531
Chapter 27: Networking Basics and Flash Player Security ...533
Chapter 28: Communicating with Remote Services ...561

xi

Contents at a Glance

Chapter 29: Storing and Sending Data with SharedObject ..571
Chapter 30: File Access ...589

Part VII: Sound and Video . 603
Chapter 31: Playing and Generating Sound ... 605
Chapter 32: Playing Video ...625
Chapter 33: Capturing Sound and Video ...643

Part VIII: Graphics Programming and Animation655
Chapter 34: Geometric and Color Transformations ...657
Chapter 35: Programming Vector Graphics ..687
Chapter 36: Programming Bitmap Graphics ...733
Chapter 37: Applying Filters ...769
Chapter 38: Writing Shaders with Pixel Bender ...803
Chapter 39: Scripting Animation ...835
Chapter 40: Advanced 3D ...855

Part IX: Flash in Context .877
Chapter 41: Globalization, Accessibility, and Color Correction ..879
Chapter 42: Deploying Flash on the Web ..897
Chapter 43: Interfacing with JavaScript ..905
Chapter 44: Local Connections between Flash Applications ...911

Index ...921

xii

Introduction . xli

Part I: ActionScript 3.0 Language Basics 1

Chapter 1: Introducing ActionScript 3.0 . 3
What Is ActionScript 3.0? ...3
Exploring the Flash Platform ..4

A Programmer’s Perspective ... 5

Language ...5

API ...6

Libraries ..7

Compilers, Tools, and IDEs ...7

SWFs ...8

Flex ...9

In Short ...9
A User’s Perspective ..9

Runtimes ...9

Platforms and Platform Independence ..10

The Flash Player Zoo ...10

In Short ...11
From ActionScript 2.0 to ActionScript 3.0 ...11

Display List ..11
Runtime Errors ..12
Runtime Data Types ..12
Method Closures ...12
Intrinsic Event Model ...12
Regular Expressions ..12
E4X ..12

Summary ..13

Chapter 2: ActionScript 3.0 Language Basics . 15
The Bare Essentials ..15
Using Variables ..17

Anatomy of a Variable Declaration ...17
Constants in This Changing World ...18
Taking It Literally ...18

xiii

Contents

Commenting Your Code ..20
Types of Comments ..20

Single-Line Comment ...20

Block Comments ..20

XML Comments ...20

Javadoc Comments ...21
When to Use Comments ..21
Self-Commenting Code ...21

Introducing Scope ... 22
Introducing the Data Types ..23

Declaring Types ...23
Using Untyped Variables ..23

Connecting You to an Operator ..23
Unary vs. Binary Operators ..24
Order of Operations ... 24
Some Commonly Used Operators ..24

Assignment (=) ..24

Arithmetic (+, –, *, /) ...24

Modulo (%) ..25

Increment (++) and Decrement (– –) ..25

Compound Assignment Operators (+ =, − =, *=, /=, and % =)25

Comma Operator (,) ..26
Making Logical Choices with Conditionals ..26

if Statements ..26
Equality (==) ...27
Testing Other Comparisons ..27

Greater Than (>) and Less Than (<) ...28

Not Equal to (!=) ...28

And (&&) and Or (||) Operators ..28

Checking for Null Values ...29
if..else ...30
switch ..30
The Conditional Operator ..31

Repeating Actions Using Loops ...33
Using for Loops ...33
Using for..in and for each..in ...34

for..in .. 34

for each..in ..34
Using while and do..while ..35

while ...35

do..while ...36
Battle of the Loop Structures: for vs. while ...37
Avoiding Infinite Loops ..37
Using break and continue ..37

continue ..37

break ...37
Summary ..38

xiv

Contents

Chapter 3: Functions and Methods . 39
Calling Functions ...39
Creating Custom Functions ..40

Defining a Function ..40
Passing Arguments to Your Function ...41

Passing by Reference or by Value ..41

Setting Default Values ..43

Using the Rest Parameter (...) ..43
Returning Results ...44

Returning a Value Using a return Statement ...45

Defining a Return Type for Your Function ...46

Returning Void ...46
Anonymous Functions ...46
Functions as Objects ...47
Recursive Functions ...48
Summary ..50

Chapter 4: Object Oriented Programming . 51
Understanding Classes ...51

Classes Can Model the Real World ..51
Classes Contain Data and Operations ..52
Classes Separate Responsibilities ..52
Classes Are Types ..52
Classes Contain Your Program ...53

Object Oriented Terminology ...53
Object ..53
Class ..54
Instance ...54
Type ...54

Encapsulation: Classes Are Like, So Selfish ..55
The Black Box Principle ... 55
Encapsulation and Polymorphism ..56

Packages: Classes, Functions, and Packing Peanuts ...56
Class Uniqueness and Namespaces ..56
Hierarchy ...57
Controlling Visibility ...58
Code Allowed in Packages ..58
Using Code from Packages ...59

Using Inheritance ...61
Structuring Code with Inheritance ...64
Inheritance, Types, Polymorphism, and You ...66
Inheritance vs. Composition ...67
Preventing Inheritance ..69

Access Control Attributes ..70
Public and Private ...71
Protected ..73
Internal ..74
Custom Access Control with Namespaces ...75

Methods and Constructors ..77

xv

Contents

Properties ...78
Accessors ...79
Avoid Side Effects ...81
Self-Referential Code ...82

Using Static Methods and Properties ..83
Static Variables ..84
Static Constants ...85
Enumerations ..87
Static Methods ...87

Overriding Behavior ..89
Accessing the Superclass ...90

Designing Interfaces ...92
Manipulating Types ...96

Type Compatibility and Coercion ..97
Explicit Type Conversion ...98
Determining Types ..100

Creating Dynamic Classes ...100
Summary ..101

Chapter 5: Validating Your Program . 103
Introducing Errors ...103

Compile-Time Errors vs. Runtime Errors ..104

Compile-Time Errors ...104

Runtime Errors ...104
Warnings ...104
Getting Feedback from Flash Professional and Flash Builder ...104

Debugging in Flash Professional ..104

Debugging in Flash Builder ...106
Fixing Errors ..108
Summary ..110

Part II: Core ActionScript 3.0 Data Types 111

Chapter 6: Text, Strings, and Characters . 113
Working with String Literals ...113

Using Escaped Characters ...114
Converting to and from Strings ..115

Using toString() ...115
Casting and Converting to Strings ...116
Converting Strings into Other Types ...116

Converting Strings to Numbers ...116

Converting Strings to Arrays ..117
Combining Strings ...118
Converting the Case of a String ..118
Using the Individual Characters in a String ...119

Getting the Number of Characters in a String ..119
Getting a Particular Character ..120
Converting a Character to a Character Code ...120

Searching within a String ..120

xvi

Contents

Searching by Substring ...120
Searching with Regular Expressions ...121

String Dissection ..122
String Encoding and International Text ...123
Summary ..123

Chapter 7: Numbers, Math, and Dates . 125

Understanding Numeric Types ...125
Sets of Numbers ..125
Representing Numbers ..126
Digital Representations of Numbers ...126

Unsigned Integers ...126

Signed Integers ...127

Floating-Point Numbers ...127
Using Numbers in ActionScript ..128

Number ...128
int ..129
uint ..129
Literals ...130
Edge Cases ..130

Not a Number ..131

Infinity ..131

Minimum and Maximum Values ...131
Manipulating Numbers ..132

Numeric Conversions ...132
String Conversions ..132

Performing Arithmetic ...133
Performing Trigonometric Calculations ..135
Generating Randomness ..137
Manipulating Dates and Times ...138

Creating a Date ...138
Epoch Time ...139
Time zones ..140
Accessing and Modifying a Date ..141
Date Arithmetic ...142
Execution Time ...142
Formatting a Date ...143

Summary ..144

Chapter 8: Arrays . 145

Array Basics ..145
Using the Array Constructor ..145
Creating an Array by Using an Array Literal ...147
Referencing Values in an Array ..147
Finding the Number of Items in an Array ...148

Converting Arrays to Strings ...148
Adding and Removing Items from an Array ..149

Appending Values to the End of Your Array with concat() ..149
Applying Stack Operations push() and pop() ...150
Applying Queue Operations shift() and unshift() ...151

xvii

Contents

Slicing, Splicing, and Dicing ...152
Inserting and Removing Values with splice() ..152
Working with a Subset of your Array with slice() ..152

Iterating through the Items in an Array ...153
Using a for Loop ...153
Using for each..in ..154
Using the forEach() Method ...154

Searching for Elements ..155
Reordering Your Array ..155

Using Sorting Functions ...156
Flipping the Order of Your Array Using Reverse() ...159

Applying Actions to All Elements of an Array ...159
Conditional Processing with every(), some(), and filter() ...159
Getting Results with the map() Method ..162

Alternatives to Arrays ..162
Associative Arrays ...162
Multidimensional Arrays ...163

Amazing Properties of Arrays ..165
Summary ..165

Chapter 9: Vectors . 167
Vector Basics ..167

Why Do We Need Another Datatype? ...168
Array: More Functionality Than You Require ...169
Vectors: Arrays with Benefits ..170
Fixed-Size Vectors ...172

Generics and Parameterized Types ...173
Vector as a Generic ...173
No Generics for You ...174

Generic Methods of Vector ...176
Creating and Converting Vectors ..178

Vector literals ..179
Converting Types of Vectors ..179
Converting a Vector into an Array ...180

Summary ..180

Chapter 10: Objects and Dictionaries . 181
Working with Objects ...181

Dynamic Classes ...181
Creating Objects ... 182
Accessing Object Properties ..182
toString() ...183

Using Objects and Dictionaries as Associative Arrays ..183
Comparing Arrays, Objects, and Dictionaries ..184
Testing for Existence ...186
Removing Properties ...187
Iterating ...188

xviii

www.allitebooks.com

http://www.allitebooks.org

Contents

Using Objects for Named Arguments ...188
Using Objects as Nested Data ...189

XML as Objects ... 189
JSON ..190

Summary ..190

Chapter 11: XML and E4X . 191
Getting Started with XML in ActionScript ...191

XML References ...191
E4X References ..192
XML Literals ...192

A Brief Introduction to E4X Operators and Syntax ..194
Legacy XML Handling ..195

Querying XML ...196
The Child Axis ..196
The Wildcard Operator ..197
Indexed Elements ..197
The Attribute Axis ...198
The Text Axis ..199
The Descendant Axis ..200
The Parent Axis ...201
Custom Filter Axes ...201
Quick Reference ..203

Modifying XML ..203
Inserting Nodes ...203

Inserting with E4X Operators ..204

Inserting with E4X Methods ..206
Removing Nodes and Attributes .. 207
Duplicating XML ...208
Replacing Nodes ...209

Converting to and from Strings ..209
Converting Strings to XML ...210
Converting XML to Strings ...210

Printing Pretty ..211

Setting the Number of Spaces per Indentation ...211

Normalizing Text Nodes ..212
Loading XML Data from External Sources ...212
Gathering Meta-Information about XML Nodes ...213

Finding Node Types ...213
Determining the Type of Content in a Node ..214

Using Namespaces ...215
Creating XML Namespaces in ActionScript ...216

Using the Namespace Class ...216

Using the Namespace Keyword ...217

Making Namespaces Available ...217

xix

Contents

Querying Namespaced XML Nodes ...217

Opening Namespaces ...218

Using the Scope Resolution Operator ...219

Setting the Default XML Namespace ...220
Querying XML for Namespaces ... 221
Additional Namespace Operations ...222

Setting XML Options ...223
Summary ..223

Chapter 12: Regular Expressions . 225
Introducing Regular Expressions ..225
Writing a Regular Expression ...226
Applying Regular Expressions ...226

String Methods and RegExp Methods ..226
Testing ...227
Locating ...228
Identifying ...229
Extracting ..231
Replacing ...233
Splitting ...235

Constructing Expressions ..235
Normal Characters ..236
Dot Character ..236
Escaped Characters ...236
Metacharacters and Metasequences Demystified ...237
Character Classes ..238
Quantifiers ...239
Anchors and Boundaries ...240
Alternation ...242
Groups ...242

Regular Expression Flags ...243
Global ..243
Ignore Case ...244
Multiline ..244
Dotall ...245
Extended ...246

Constructing Advanced Expressions ...246
Greedy and Lazy Matching ...247
Backreferences ...248
Lookahead and Noncapturing Groups ...249

Noncapturing Groups ..249

Positive Lookahead Groups ...249

Negative Lookahead Groups ..250
Named Groups ..250
International Concerns ...252

Using the RegExp Class ...252
Building Dynamic Expressions with String Operations .. 252
RegExp Public Properties ..253

Summary ..253

xx

Contents

Chapter 13: Binary Data and ByteArrays . 257
Binary Concepts ...257
Bit Math and Operators ...260

Basic Arithmetic ..260
Bit Shifting .. 260
Bitwise Logic ...262

Binary Types in ActionScript ..263
Using ByteArray ...265

Creating a ByteArray ...265
Writing Data ..265
Reading Data ...265
Compressing and Decompressing ..266

Common Uses of ByteArrays .. 266
Loading Images ...266
Copying Objects ... 267

Summary ..268

Part III: The Display List 271

Chapter 14: Visual Programming with the Display List 273
Introducing Display Lists and Display Objects ..273

Structure of the Display List ...274
Coordinate Spaces ...274
Manipulating the Display List ..276

Creating a New Display Object ...276

Adding an Object to a Display List ...277

Removing an Object from a Display List ..278

Re-sorting Depths ...278

Reparenting Display Objects ..279

Examining Display Lists ...279
Display Object Classes .. 280

DisplayObject ..280
InteractiveObject ...283
DisplayObjectContainer ..283
Shape ...284
Bitmap ...284
Video ...284
AVM1Movie ...284

SimpleButton ...284
TextField ...285
Sprite ...285
MovieClip ..285
Loader ..286
Stage ..286

Resizing ...286

Changing SWF Properties ..286

Going Full-Screen ...287

xxi

Contents

Device Orientation ...288

Event Source and Focus Manager ...289

Color Correction ..289
Geometry Classes ...289

Point ..289
Rectangle ...290

Putting the Display List to Use ...292
Drag-and-Drop, Hit Testing ...292
Nesting and Cumulative Transformations ...294
Full-Screen and Stage Resizing ...295

Rendering and Performance ..297
Stage Size and Dirty Rectangles ..297
Number of Display Objects ..297
Alpha, Blend Modes, Masking, and Filters ..297
Text ... 298
Bitmaps, Vectors, and Bitmap Caching ..298
More on Rendering ...299

Summary ..299

Chapter 15: Working in Three Dimensions . 301
Introducing 3D in ActionScript 3.0 ..301

The 3D Coordinate System ..303
3D in Flash Professional ...304
Limitations of 3D Display Objects ...304

Display Objects are Flat ...305

A Viewport Isn’t a Camera ...305

Depths Are Managed by the DisplayObjectContainer ..305

Other Missing Stuff ..305
DisplayObject Revisited ...306
Geometry Revisited ..309
Mouse and Point Translation in 3D ...311

Translating Points in Code ...312
Modifying the Projection ...314
Software 3D Libraries ..318
Summary ..319

Chapter 16: Working with DisplayObjects in Flash Professional 321
The Stage, Symbols, and the Library ..321

Creating Symbols ..322
Named Instances ...323
Nested Instances ...324
Associating Symbols to Classes ..324
Writing an Associated Class ...326
Nongraphic Symbol Types ...326

Exporting and Using Assets ..327
Using Assets from a SWC ...327
Using Assets from a SWF ...327

Summary ..328

xxii

Contents

Chapter 17: Text, Styles, and Fonts . 329
Introducing TextFields ..329

Creating a New TextField ...330
Adding and Replacing Text ..330
Setting a TextField’s Size ..330
Setting a TextField’s Scaling and Rotation ...332
Wrapping Text ..332
Preventing User Selection ...333
Displaying Multilingual Text and Symbols ..334

Text with HTML and CSS ...334
HTML Support in TextField ...334

Adding Images or SWF Files to a TextField with ...335
Supported CSS Properties ...336
The StyleSheet Object and CSS Parsing ...337

Background and Border Treatments ...339
Styling Text with TextFormats ..339

align ...341
blockIndent ...341
bold ...341
bullet ...341
color ..341
font ..342
indent ..342
italic ...342
leading ...342
letterSpacing ..342
leftMargin ..342
rightMargin ..343
size ...343
tabStops ...343
target ..343
underline ...343
url ..344

Input TextFields ..344
The Three Kinds of Text Fields ...344
Making a TextField an Input Field ..345
Restricting User Input ...345
Tab-Accessible Input Text Fields ...347
Password Text Fields ..347

Interaction with TextField Events ...347
focusIn and focusOut Events ...347
Text Input Events ...349
Link Events ...352
Scroll Events ..354

Interactive Typography ..354
Text by Lines and Paragraphs ..354
Finding Text by Location ...356

xxiii

Contents

Locating and Measuring Text ...356
Scrolling Text ..358

Fonts ..360
Device Fonts and Embedded Fonts ...360
Managing Active Fonts and the Font Object ...362
Embedding Fonts ..362

Flash Builder, Flex Builder, Flex SDK, mxmlc ...362

Flash Professional ...363
Loading Fonts Dynamically ..364
Using Embedded Fonts ..364
Anti-aliasing .. 365

Fitting Edges to a Grid ..366

Sharpness and Thickness ...366
Summary ..366

Chapter 18: Advanced Text Layout . 367

Understanding Advanced Text Controls ...367
Advanced Text Controls in Development Tools ..369
Why There Are Two Engines ...369
Where to Go from Here ...369

The Flash Text Engine ..370
The Text Layout Framework ...372

Storing Content and Formatting with Models ...373
Laying Out Text with Controllers ..375

Simple Composition with TextLine Factories ...375

Linked Container Composition with ContainerControllers and
FlowComposers ...378

Text Layout Markup ...381

Setting Up TLF Markup ...382

TLF Tags ...383

Importing and Exporting Markup ...384
Available Formatting Options ...386
Editing Features ..386
Undo and Redo History ..388
Programmatic Editing ...389

Clipboard ..389

Events ...393
Flow and Container Configuration ..394
A TextField Adapter Class ..394

Fonts Revisited ...394
Embedding CFF Fonts ..395

Using Flash Professional ..395

Using the Embed Tag .. 396
Font Lookup ...397

Summary ..397

Chapter 19: Printing . 399

Why Print from Flash? ..399
Controlling Printer Output from Flash ...400

xxiv

Contents

Introducing the PrintJob Class ...400
Starting a Print Request ..400
Determining the Print Target and Its Formatting Options ...401

Printing Targets as Vectors ..402

Printing Targets as Bitmaps ...402

Scaling Screen Dimensions to Print Dimensions ..403
Potential Issues with the Flash-Printed Output ...403

Adding Print Functionality to Applications ..403
Summary ..406

Part IV: Event-Driven Programming 407

Chapter 20: Events and the Event Flow . 409
Introducing Events ..409

Saturday Morning Events ...410
Event Terminology ..411

Event ...411

Type ..411

Target ..412

Dispatcher ...412

Listener ...412

Handler ...412

Flow ..412

Phase ...412
The EventDispatcher Class ..413

Using EventDispatcher ..413
Using EventDispatcher by Composition ..417

Working with Event Objects ...418
Adding and Removing Event Listeners ...419
The Event Flow ...421

The Phases of Event Flow ..422

Capture Phase ...423

Target Phase ...423

Bubble Phase ..423
Event Flow in Action ..424

Preventing Default Behaviors ..426
Summary ..427

Chapter 21: Interactivity with the Mouse and Keyboard 429
Mouse and Keyboard Event Handling ..429

Finding the Target ..430
Bubbling and Nested Clips ...431
Listening for All Events ..432

Mouse Interactions ..432
Clicking ...433
Button Mode and the Hand Cursor ...434

xxv

Contents

Complex Clicking ...435

Keyboard Modifiers ..436

Double-Clicking ...436
Rollovers ..437
Dragging ..440
Position Tracking and Cursors ...442
Blocking all Mouse Input ...445
Mouse Wheel ..447

Keyboard Interactions ..447
Interpreting Keypresses ...447
Modifier Keys ..450
Related Events ...450
IMEs ...450

Focus ..451
Finding or Setting the Current Focus ..451
Focus Events ...453
Tabbing ...454
Focus Rectangle .. 455

Context Menus .. 455
Creating and Setting a Context Menu ..455
Customizing Default Items ...456
Adding Custom Items ...456

Summary ..459

Chapter 22: Timers and Time-Driven Programming 461

Timer Basics ...461
Creating a Timer ...462
Listening for Timer Events ...462
Starting, Stopping, and Resetting the Timer ..463

Handling Timer Events ...464
Delaying the Execution of a Function ..466
Creating a World Clock ..467
Enterframe Events ..469
Other Time-Related Functions ..469

getTimer() ..469
setTimeout() ..470
setInterval() ...470
clearInterval() ..470

Aside: Threads ...470
Summary ..471

Chapter 23: Multitouch and Accelerometer Input 473

Planning for Your Audience ..473
Using Multitouch ...474

Touch Mode ..476

Event Object Properties Shared by MouseEvent ...477

Event Object Properties Unique to TouchEvent ...477

Putting It Together ...478
Gesture Mode ..480

Special Properties of PressAndTapGestureEvent ...480

xxvi

Contents

Special Properties of TransformGestureEvent ...482

Putting It Together ...482
Touch-Related Methods ..484

Using the Accelerometer ...485
Other Sensors ..486
Summary ..486

Part V: Error Handling 489

Chapter 24: Errors and Exceptions . 491
Comparing Ways to Fail ...491
Understanding Exceptions ...492

Throwing Exceptions ..492
Catching Exceptions with Try and Catch ..493
The Exception Flow ..494
Uncaught Exceptions ..497
The Finally Clause ..497
Rethrowing Exceptions ...498

Errors Generated by Flash Player ...499
Custom Exceptions ..501
Handling Asynchronous Errors ...502
Capturing Unhandled Events ..503
Summary ..504

Chapter 25: Using the AVM2 Debugger . 505
Introducing Debugging ... 505
Launching the Debugger ...506

Starting and Stopping the Flash Professional Debugger ..506
Starting and Stopping the Flash Builder Debugger ...508
Debuggers Compared ...509

Taking Control of Execution ...510
Stopping at an Uncaught Exception ..510
Stopping at a Breakpoint ..511
Stopping on Demand ..513

Pulling Back the Curtain ...513
Interpreting the Variables Panel ...513
Flash Builder Variables Panel and Watches ...515

Navigating through Code ..515
Continue ..515
The Call Stack ...516
Step Into ..517
Step Over ..518
Step Out ..518

Debugging a Simple Example ...518
Using the Debugger Effectively ...520
Summary ..521

Chapter 26: Making Your Application Fault-Tolerant 523
Developing a Strategy ..523
Determining What Errors to Handle ..524

xxvii

Contents

Categorizing Failures ...525
Logging Errors ...526
Messaging the User ..527
Degrading Styles: An Example ..528
Summary ..530

Part VI: External Data 531

Chapter 27: Networking Basics and Flash Player Security 533
HTTP in Brief ...533

Introducing URLRequest ...536
Navigating to a Web Page ...536
Loader ..537

Graphics File Formats ...538
Accessing Information about the Loading Process ..538

LoaderInfo versus ContentLoaderInfo ...539

Loading Events ...540

The LoaderInfo Class ...540
Getting Loaded Content ...543
Loading External SWFs ..545

Instantiating Classes from External SWFs ...545

Interacting with Loaded SWFs ..548

Loading AVM1 SWFs ...548
Using Loader to Interpret Files in Memory ...549

URLLoader ..549
Loading a File ...550
Loading and Canceling ...550
Tracking Load Progress ..550
Loading Different Formats ..551

Loading XML ..551

Loading CSS ...552

Loading a Binary File ...553

Loading URL-Encoded Variables ...553
Sending Variables with URLRequest ...555

Request and Response with URLLoader ..556
Request Only with sendToUrl() ...557

Understanding Flash Player Security ..557
Summary ..559

Chapter 28: Communicating with Remote Services 561
Web Services Using HTTP ..562

REST ...563
SOAP ..563
XML- RPC ..565

xxviii

www.allitebooks.com

http://www.allitebooks.org

Contents

Socket Services ...565
XML Socket Services ..567

Flash Remoting ..568
NetConnection ..569
Responder ..570

Summary ..570

Chapter 29: Storing and Sending Data with SharedObject 571
Comparing Approaches to Persistent Storage ...571

Storing Information in a Local Shared Object ...571
Storing Information in Local Files ...572
Storing Information on a Server ...572
Storing Information in the Browser ...572

Identifying Useful Situations for Shared Objects ...573
Shared Objects and Remoting ...574
Using SharedObjects ... 574

Retrieving a SharedObject ..574
Reading from and Writing to a SharedObject ...575
Deleting Information from a SharedObject ..576
Saving Information ..576

Sharing Information between SWFs ...576
Requiring a Secure Connection ..578
Sharing with ActionScript 1.0 and 2.0 SWFs ..579

Working with Size Constraints ...579
User Settings ...579
User Requests ..580
Asking for Space before It’s Too Late ..581
Asking for Space Up front ..581
Using flush() ...582
Viewing Used Space ..583

Storing Custom Classes ...583
Storing Custom Classes without Modification ...583
Creating Self-Serializing Classes ...585

Summary ..587

Chapter 30: File Access . 589
Abilities of the File API ...589
Introducing FileReference ... 589

Choosing a File ...590
Determining When a File Is Selected ...591
Retrieving File Properties ..592

Uploading a File ..593
Adding Upload Handling to a Server ...593
Downloading a File to Disk ..596
Loading a File into Memory ..598
Saving Data to Disk ...599
Summary ..602

xxix

Contents

Part VII: Sound and Video 603

Chapter 31: Playing and Generating Sound . 605
An Overview of the Sound System ...605
Prepping and Playing Sound Objects ...607

Loading a Sound from an External File or URL ..607
Buffering a Streaming Sound ..608
Embedding Sounds in a SWF ..608

Embedding Sound with Flash Professional ...609

Embedding Sound with Flash Builder ..610

Accessing Embedded Sounds ...611
Controlling Sound Playback ..611

Playing and Stopping ..611
Seeking and Looping ..613
Fast-Forwarding, Rewinding, Pausing, and Restarting

a Sound ..613
Applying Sound Transformations ...615
Working with a Sound’s Metadata ..616

Checking Load Progress ...616
Getting a Song’s ID3 Data ..616

Sampling Audio ...617
Extracting Audio ..621
Synthesizing Audio ..621
Detecting Audio Capabilities ...623
Summary ..623

Chapter 32: Playing Video . 625
Video and the Flash Platform ...625

Video Sources ..625

Embedded ...626

Video Files and Streams ...626

Webcam ..626
Codecs and Container Formats ..626
Metainformation ..628

Metadata ...628

Cue Points ..628

Subtitles and Closed Captioning ...628
Delivery Methods ..628

Local, Progressive Download ...629

Streaming ..629

Delivery Networks ..630
Encoding ...631

Adobe Media Encoder ..631

Exporting from Applications ..632

Video Encoding Services ..632
Playback ..632

xxx

Contents

Video Acceleration ... 632

Video Players ..632

Open Source Media Framework ..633
Implementing a Video Player ..634

Video ...634
NetConnection ..634
NetStream ..635
Putting It All Together ..638

Summary ..641

Chapter 33: Capturing Sound and Video . 643

Video Input Using a Camera .. 643
Retrieving a Camera Object ..643
Viewing Video from a Camera ...644
Tweaking Camera Settings ... 646
Detecting Camera Activity ..647
Capturing and Analyzing Camera Data ..647

Sound Input Using a Microphone ..648
Retrieving a Microphone Object ..648
Playing Back Microphone Input ...648
Tweaking Microphone Settings ..648

Sound Recording Settings ..649

Sound Compression Settings ...650
Detecting Microphone Activity ...651

Overall Activity ...651

Voice Activity ...652
Capturing and Analyzing Microphone Data ..652

Flash Media Servers ...653
Summary ..654

Part VIII: Graphics Programming and Animation 655

Chapter 34: Geometric and Color Transformations 657

DisplayObject and the Transform Object ...657
2D Affine Transformations ..658

Matrices and Coordinates ...659
Kinds of Affine Transform and Their Matrices ..661

The Identity Matrix ..661

Translation ..661

Scale ..661

Rotation ..661

Skew ...662
The Matrix Class ...663

Transform Methods ..663

Utility Methods ...664

xxxi

Contents

Order of Application ...664
Applying Transformation Matrices ...665

Color Transforms ...666
Color Fills ..666
Color Transformation Math ..667
Resetting and Combining Color Transforms ...668
Applying Color Transformations ..668

3D Transformations ...670
Basic 3D Concepts Review ...670

Coordinate System ...670

Points ..671

Vectors ..672

Matrices .. 673

Orientation ...674
3D Affine Transformations ...674
Projection Transformations ...675
3D Transformations in ActionScript ..677

Vector3D ...678

Matrix3D ...681
Summary ..686

Chapter 35: Programming Vector Graphics . 687

Overview ..687
Drawing Basics ...689

Moving the Pen ...689
Straight Line Segments ...690
Curved Line Segments ..694
Filling a Path ...698
Clearing Graphics ...700

Setting Drawing Styles ...700
Solid Colors ...700
Gradients ...706
Bitmaps ..710
Shaders ..712

Drawing Primitives ..714
Rectangles and Squares ...714
Circles and Ellipses ...715
Rounded Rectangles ..715

Example: A Drawing Application ..716
Batched Drawing ... 721

Drawing a Path ...721

Finally, the Method ..723

Winding ..723

Example: Drawing a Glyph ..724
Storing a Path in a Command ..726
Batching Generic Drawing Commands ..728
Copying and Pasting Drawings ..730

3D Drawing ...731
Summary ..731

xxxii

Contents

Chapter 36: Programming Bitmap Graphics . 733

Bitmaps and Their Applications ..733
Creating and Displaying Bitmaps ..735

Creating Empty BitmapData Instances ...735
Creating Instances of Embedded Assets ...736
Displaying Bitmaps ...736
Displaying Bitmaps ...736
Bitmap Quality ..737
Disposing Bitmap Data ...737

Capturing and Copying Bitmaps ...737
Copying from Display Objects ...737
Copying from BitmapData Objects ..740

Drawing from Another Bitmap ..740

Cloning a BitmapData Object ..741

Copying Pixels ..742

Copying Channels ..743

Merging BitmapData Images ..745
Pixel-Level Access ..746

Accessing Single Pixels ...747
Accessing Bitmap Data in Memory ..748

Using ByteArray ..749

Using Vector ...750
Working with Colors ...751

Replacing a Color with a Flood Fill ...751
Color Transforms ..752
Retrieving a Histogram ...753
Replacing Colors with Threshold ...755
Remapping Colors with Palette Mapping .. 757
Detecting Areas of a Solid Color ..759

Bitmap Effects ..761
Applying Filters ...761
Scrolling a Bitmap ...762
Using Pixel Dissolves ..762
Making Noise ..762

Random Noise ..762

Perlin Noise ..764
Summary ..766

Chapter 37: Applying Filters . 769

Introducing Filters ...769
Applying Filters to Display Objects ...770
Multiple Filters ..771

Blurs ...771
Drop Shadows ...773
Bevels ...775
Gradient Bevels ..777
Glows ...779
Gradient Glows ..783
Color Effects ..784

xxxiii

Contents

Brightness ..785
Tint ..786
Negative ...788
Contrast ...789
Convert to Grayscale ...790
Saturation ..792

Convolution Filters ..793
Displacement Maps ..797
Shaders ...801
Summary ..802

Chapter 38: Writing Shaders with Pixel Bender 803
Introducing Pixel Bender ...803

The Case for Pixel Shaders ...804
Thinking Like a Pixel Shader ...805
Integrating Pixel Bender and Flash

Player ... 807
Pixel Bender Kernel Language ...808

Syntax ..808
Structure of a Kernel .. 809

Required Metadata ... 810

Member Declarations ...810
Basic Control Structures ...811
Types ...811

Vector Types ...812

Matrix Types ...813

Image Types ...814

Stuff You Don’t Get ..814
Functions ...814

Interfacing with Pixel Bender Kernels .. 817
Loading the Bytecode ... 817
Running a Kernel in ActionScript ..818
Manipulating a Kernel ..819
A Basic Shader in ActionScript ...820
An Effect Shader in ActionScript ..821

Bending Other Data ...826
Preparing Data for Pixel Bender ...826

BitmapData ...827

Vector ... 827

ByteArray ..828
Accessing Data in the Kernel ..828
Executing and Monitoring ShaderJobs ...828
The Double-Shader Experiment ...829

Summary ..834

Chapter 39: Scripting Animation . 835
Understanding Flash Player and Animation ...835

Frame rate ...835
Flash Player operation ..836

xxxiv

Contents

Animating with Code ..837
Animating by Time ...837
Animating by Frames ..839
Animation and Speed ...839

Animating Using Flash Professional ..841
Review: Tweens, Keyframes, and Easing ... 842
Introducing Motion XML ... 842

The Motion Object ...844

The Source Object ..845

The Keyframe Object ...846

The Color Object ...847

Filter Objects ..848

The ITween Objects ...848
Using the Flash Motion Package ..850

Animating Using Flex ..852
Choosing a Third-Party Animation Toolkit ..852
Summary ..853

Chapter 40: Advanced 3D . 855
Game Plan ..856
Projecting Batches of Points ..856
Triangle Strips ..861
Backface Culling ..864
Texture Mapping ...865
Z-Sorting, Shading, and Further Topics ...870

Polygon Z-Sorting ...871
Shading and Lighting Introduced .. 873

Normal Maps ..874

Shading with a Normal Map ...874
Summary ..875

Part IX: Flash in Context 877

Chapter 41: Globalization, Accessibility, and Color Correction 879
Globalization and Localization ..879

Identifying Locale ..880

Using the Default that the Operating System Provides ..881

Based on Location ..881

Based on the Browser ...881

Based on the Browser’s Configuration ...882

Just Ask ...883

An Example ..883

Getting the Closest Match ..885
Formatting Numbers ...885
Formatting Dates ...886
Formatting Currency .. 888

xxxv

Contents

Localized String Comparison ..889
Localized Capitalization ..891
Error Handling ..892

Accessibility ..892
Color Correction ..893
Summary ..895

Chapter 42: Deploying Flash on the Web . 897
Embedding Flash in a Page ...897
Embedding Flash Using SWFObject .. 898
Enabling Flash Player Options ..900

Transparent Flash ...900
Hardware Acceleration ..901
Full-Screen Flash .. 901

Passing Variables to a SWF ...902
Automatically Upgrading Flash Player ..903
Summary ..904

Chapter 43: Interfacing with JavaScript . 905
Using ExternalInterface ...905

Calling JavaScript Functions from Flash ..906
Calling ActionScript Functions from JavaScript ..907
JavaScript Interaction and Flash Player Security ...908

Making a Hybrid Application with ExternalInterface ..908
Summary ..910

Chapter 44: Local Connections between Flash Applications 911
Local Connections and Their Uses ...911
Implementing a Local Connection ..912

The Sending Application ..912

Sending Methods to a Receiving Application ..912

Listening for the Status of Local Method Invocations ..913
The Receiving Application ..914

Assigning a Delegate .. 914

Listening to a Named Channel ..915

Closing the Connection ...915
Local Connections and the Security Policy ..915

Specifying the Domain in the Sender ..916
Removing the Domain from the Channel Name ...916
Allowing Cross-Domain Local Connections from the Receiving Application 916

Example: Following the Mouse ...917
Summary ..919

Index . 921

xxxvi

Top Level

flash.display

flash.events

6String

12RegExp

11XML

11XMLList

10Object

7Number

7int

7uint

7Date

7Math

8Array2Boolean

3Function

4Class

9Vector

24Error

DisplayObject

InteractiveObject

DisplayObjectContainer

35Shape

35Graphics

36BitmapData

38Shader

38ShaderJob

38ShaderInput

38ShaderParameter

27LoaderInfo

14SimpleButton

14Sprite

14MovieClip

14Stage 27Loader

27AVM1Movie36Bitmap

20Event

20ErrorEvent

20EventDispatcher

21MouseEvent

21FocusEvent

21ContextMenuEvent

27IOErrorEvent 27SecurityErrorEvent 24UncaughtErrorEvent

22TimerEvent

14FullScreenEvent

23TouchEvent

23GestureEvent

23AccelerometerEvent

33ActivityEvent

27ProgressEvent

32NetStatusEvent

21KeyboardEvent

DIAGRAM OF CLASSES
The Flash Player 10.1 API by Chapter Number

www.allitebooks.com

http://www.allitebooks.org

flash.utils

flash.geom

flash.text

flash.net

flash.media

flash.ui

flash.printing

flash.external

flash.filters flash.globalization

flash.text.engine flash.textLayout

13ByteArray 10Dictionary 22Timer

14Point

14Rectangle

34Matrix

34Vector3D

34Matrix3D

15
PerspectiveProjection

40Utils3D

34Transform

34ColorTransform

TextField

TextFormat

Font

StyleSheet

17

TextLine

ContentElement

FontDescription

TextBlock

18

TextFlow

ContainerController

FlowElement

StandardFlowController

18

27URLRequest

27URLLoader

27URLVariables 32
NetConnection

32
NetStream

28
Socket

28
XMLSocket

44LocalConnection

30FileReference

30FileReferenceList

30FileFilter

29SharedObject

31Sound

32Video 33Camera 33Microphone

31SoundChannel 31SoundMixer

21Keyboard 21Mouse 23Multitouch

BitmapFilter

BlurFilter

DropShadowFilter

DisplacementMapFilter

37

PrintJob

19

ExternalInterface

43

DateTimeFormatter

CurrencyFormatter

Collator

StringTools

41

H
ello! Welcome to the Second Edition of ActionScript 3.0 Bible. This book aims to be a compre-
hensive resource on all things ActionScript 3.0. You can use it as an instructional textbook,
as a reference book, or both. The Bible introduces concepts used in ActionScript 3.0 with

both background information and real-world examples to enrich your understanding. Armed with
the knowledge contained herein, you will be able to bring your ideas to life with ActionScript 3.0,
whether they are applications, mobile apps, web sites, presentations, games, toys, art, or experiments.

ActionScript 3.0 is the language used in a range of tools developed by Adobe, including Flash Profes-
sional, the Flex framework, Flash Builder (formerly Flex Builder), AIR, and Flash Lite 4. This book’s
coverage remains agnostic of the tool you choose to use. In general, it will not cover topics specific to
a single tool, but it will cover the commonality they all share: ActionScript 3.0. When something is
handled differently between different tools, I let you know how. Accordingly, this is the right book for
you to learn how to program with any of these tools.

What’s New in This Edition
This book, the second edition of ActionScript 3.0 Bible, is the result of countless hours of revising, writ-
ing, drawing, editing, and yes, programming. I’ve exhaustively and repeatedly gone over the first edi-
tion, as well as feedback from readers, to make what I hope is the most comprehensive, easy-to-use,
and up-to-date ActionScript 3.0 programming book out there.

Most importantly, this book covers the latest improvements and additions to ActionScript 3.0 up
through Flash Player 10.1. I’ve added seven new chapters and updated every other chapter for these
new features. The list of new technology and new possibilities that have opened up since the first edi-
tion was published is huge, but I’m most excited about Flash Player’s native 3D API, Pixel Bender
shaders, the new Text Layout Framework, multitouch capability, hardware accelerated graphics, and
the Vector class.

Since the first edition, ActionScript 3.0 has exploded onto embedded devices (like televisions and
set-top boxes) and mobile phones. Additions to ActionScript like hardware-accelerated graphics, mul-
titouch, accelerometer support, and geolocation services make these applications possible and really
exciting. Flash Player 10.1 content can or soon will be able to run on mobile phones running Palm
WebOS, Android, Windows Mobile, and Blackberry OS. You can compile your apps for the iPhone
using Flash Professional CS5. Other non-smartphone mobiles can run Flash Lite 4, which also uses
ActionScript 3.0. As a developer myself, I’m practically frothing at the mouth to develop for these
systems, and in this edition, I share the tools to do so.

I put a big emphasis on examples in this edition. I’ve torn apart almost all the old code from the
previous edition and added around 250 new examples. And I’ve made it easier than ever to run
and play with example code in this edition. Just type in the URL included with each example (like
http://actionscriptbible.com/ch40/ex6), and you can see the code with a screenshot, run
the example, or download the code, all with a single click! Better yet, you can ‘‘fork’’ the example to

xli

Introduction

play with the code, all with zero setup and zero software required! The section ‘‘Running Example
Code’’ in this Preface shows you how. I think you’ll be amazed at how easy and fun it is to use
examples in this edition.

ActionScript 3.0 was introduced in 2006. Because it’s not so hot-off-the-grill anymore, I’ve retooled
this second edition slightly. It’s no longer an upgrade guide from ActionScript 2.0, although I do pro-
vide a few notes for those readers in Chapter 1, ‘‘Introducing ActionScript 3.0.’’

Last but not least, this is a real second edition. I haven’t just added to the ActionScript 3.0 Bible, I’ve
rewritten it ruthlessly and repeatedly to make it easier to read, more informative, and accurate. I’ve
made thousands of changes throughout the book, and I think this edition is really the best, most com-
prehensive, and easiest to read book out there on ActionScript 3.0 and the Flash Platform.

Make Sure You Buy the Right Book
ActionScript 3.0 is the third major incarnation of the ActionScript language. Previously, ActionScript
was used primarily to develop Flash content. Now ActionScript is being applied in an increasing vari-
ety of contexts, and it is a mature technology in its own right. The ActionScript 3.0 Bible was written
with this in mind, while additional offerings from Wiley provide focused training for the tools that use
ActionScript 3.0.

The Flash Bible series continues with the Flash CS4 Professional Bible by Robert Reinhardt and Snow
Dowd. Rely on the Flash CS4 Professional Bible to learn the ins and outs of the latest version of Flash
such as using the timeline, the library, and drawing tools. The Flash Bible series can get you started
with ActionScript, but it is not a comprehensive reference for programming topics in Flash. If you
plan on using Flash Professional to develop your ActionScript projects, I recommend using the Flash
CS4 Professional Bible as a complement to this book.

If you are using ActionScript 3.0 with Flex, I recommend complementing this book with the Flex 3
Bible by David Gassner or, for a more approachable introduction, Adobe Flex 3.0 For Dummies by Doug
McCune and Deepa Subramaniam. Flex is based on ActionScript 3.0, so this book will get you well
on your way to being a skilled Flex programmer. The best Flex programmers can dive into the Flex
framework code, which is all AS3.

If you are developing desktop applications using Adobe AIR, this book will give you an excellent foun-
dation. Everything in this book applies to AIR as well, but you’ll need a definitive guide like the Adobe
AIR Bible (by Benjamin Gorton, Ryan Taylor, and Jeff Yamada) to cover AIR-specific features I leave
out of this book.

How This Book Is Organized
The name ActionScript 3.0, as commonly used, refers to both a programming language and the Flash
Player API, or Application Programming Interface. Mastering ActionScript 3.0 the language will let you
write programs, but it’s the Flash Player API — an enormous library of classes and functions — that
will let you create programs that you can see, that move, that react to the keyboard and mouse,
that play video and sound, that connect to the internet, and more. All the subject matter of the
ActionScript 3.0 language, the Flash Player API, and related topics such as debugging and embedding
are organized logically into parts of this book. The parts are further divided into chapters, each of
which focuses on a single topic. Of course, the Table of Contents and Diagram of Classes, as well as
the index, will help you find what you’re looking for.

xlii

Introduction

If you’re new to ActionScript 3.0, this book works well from front to back. However, after learning
the language in Part I, ‘‘ActionScript 3.0 Language Basics,’’ and for readers with some AS3 experience,
you can jump around as you desire to the topic that you’d like to learn about. Topics may require
knowledge of preceding chapters, but these are cross-referenced for your benefit.

Part I: ActionScript 3.0 Language Basics
Part I of this book is designed to get all readers up to the same level. This part introduces all the dif-
ferent parts of the Flash Platform and how they connect, and it demystifies the differences between
Flash Professional and Flash Player, ActionScript 3.0 and the API, and the compiler and the debugger.
It teaches you what ActionScript 3.0 is all about and how to use the language. By the end of this part
you should be able to write programs in ActionScript 3.0.

If ActionScript 3.0 is the first programming language you have used, make sure you read all of Part I.
Everyone but experienced Flash Platform developers should read Chapter 1, ‘‘Introducing ActionScript
3.0.’’ If you have experience with object-oriented programming languages other than ActionScript, you
should at least skim Part I to get a feel for the syntax and features of the language.

After Part I and a bit of practice, readers new to ActionScript and readers with prior experience should
be equally prepared to tackle the rest of the book.

Part II: Core ActionScript 3.0 Data Types
This part covers the data structures in ActionScript 3.0 that you will use most commonly, how they
are implemented in ActionScript, and what you can do with them. It’s an essential read. Experienced
programmers can benefit from Chapter 9, ‘‘Vectors,’’ on this new data type for Flash Player 10.

Part III: The Display List
This part covers the ground you’ll need to start making programs that have a visual aspect. The fun-
damentals introduced here are used frequently in other parts. Experienced programmers will enjoy the
addition of Chapter 15, ‘‘Working in Three Dimensions,’’ and Chapter 18, ‘‘Advanced Text Layout.’’

Part IV: Event-Driven Programming
This part provides the fundamentals for writing interactive software by introducing events. This is a
key topic that will be used in every following part. This edition adds Chapter 23, ‘‘Multitouch and
Accelerometer Input.’’

Part V: Error Handling
This part gives you the tools you need to write rock-solid programs in ActionScript 3.0, including
error handling and debugging.

Part VI: External Data
In this part, you’ll learn about using information from the internet; communicating with servers; and
sending, receiving, and saving files.

xliii

Introduction

Part VII: Sound and Video
This part explains how to add multimedia capabilities to your program. You’ll learn how to load,
stream, play, capture, and control both audio and video. You’ll also get to synthesize sound with code.

Part VIII: Graphics Programming and Animation
In this part, you’ll learn how to use ActionScript 3.0 to generate visuals and make them move. This
part is expansive and genuinely fun. You’ll build all kinds of effects, games, and even a 3D engine.
Experienced programmers will sink their teeth into Chapter 38, ‘‘Writing Shaders with Pixel Bender,’’
and Chapter 40, ‘‘Advanced 3D.’’

Part IX: Flash in Context
This final part discusses real-world concerns that intersect with Flash Player, such as embedding and
deploying your code, interfacing with code in other instances of Flash Player and in the host browser,
and making your application usable by everyone. Experienced programmers should read Chapter 41,
‘‘Globalization, Accessibility, and Color Correction.’’

Conventions and Features
There are many different organizational and typographical features throughout this book designed to
help you get the most from the information.

Icons
Throughout this book you will see sections called out from the main text. I use these special notes to
bring important information to your attention or to add context and optional additions to the main
discussion.

Caution
Cautions let you know about common trip-ups and things to think about — not always related to
ActionScript — while writing your code. �

Tip
Tips are used to provide information that can make your life easier. �

Note
Notes provide ancillary information that is useful but that you won’t suffer from skipping. They sometimes refer
you to further reading. �

Version
These callouts bring to your attention any code or features that may depend on the version of the runtime or
the compiler. If you use them in incompatible versions, they either won’t compile or won’t run properly.

xliv

Introduction

Many new features are covered in this edition that have been added since Flash Player 9. The version callout
lets you know where they can be used. These version callouts are only used when the requirement is greater
than Flash Player 9.0. �

Product Conventions
There are a bunch of products out there that work with ActionScript 3.0, and a bunch of versions
thereof. I refer to these by consistent and generic names:

� Flash Builder — I’ve written this edition using Adobe Flash Builder 4 Premium Beta. When I
use the term ‘‘Flash Builder,’’ it applies generically to Adobe Flash Builder 4, as well as Adobe
Flex Builder 3.

� Flash Professional — While writing I used prerelease versions of Adobe Flash Professional CS5.
The term ‘‘Flash Professional’’ applies to Adobe Flash Professional CS5, Adobe Flash CS4 Pro-
fessional, and Adobe Flash CS3 Professional. Many of the latest features covered in this book
require CS4 or CS5. You can only use a given feature if your copy of Flash Professional can
publish SWFs for the Flash Player version noted in the text.

When there are even more recent versions of these tools out, what I’ve said about them will probably
apply to the new version, but obviously there are no guarantees.

Official Documentation
Although this edition of ActionScript 3.0 Bible is terrifically deep and detailed, the official Adobe docu-
mentation is still an indispensible resource for any ActionScript programmer. It’s organized for faster
access to methods and classes, so it’s not a bad idea to keep it open while you program along with
this book.

In some cases, I refer to the documentation, calling it the AS3LR. This is for the ‘‘ActionScript 3.0 Lan-
guage Reference,’’ although your copy may be called the ‘‘ActionScript 3.0 Language and Components
Reference’’ or the ‘‘ActionScript 3.0 Reference for the Adobe Flash Platform.’’ You may have a local
copy of this reference that was included with Flash Professional or Flash Builder. You can also access
the latest version online, at http://bit.ly/as3lr.

In its latest incarnation, you can select the products and runtimes that are shown in the documenta-
tion. This book covers the Flash Player 10.1 runtime and none of the extra products. Configure the
filters to match these settings and you’ll see all the classes covered in this book.

Code Formatting and Conventions
ActionScript code is used heavily throughout this book. Text that appears in code or is for use in
code is written in a monospace font, like Object. In addition, example code is included in two ways:
examples and snippets.

Examples, while concise, are self-contained, complete programs. They are provided to illustrate a
complete task achieved with code. Although the task is usually very small, it should illustrate the util-
ity of the topic and demonstrate what you’re learning in the text surrounding the example. Because
examples include all required setup and infrastructure, you can run them without intervention. The
section ‘‘Running Example Code’’ shows you how.

Examples always have at least one full class. The class exists in the default package and corresponds to
the number of the example. The first example in the sixth chapter is called Example 6-1, and its class

xlv

Introduction

name is ch6ex1. You can always find it online at http://actionscriptbible.com/ch6/ex1.
Examples look like this:

EXAMPLE 6-1 http://actionscriptbible.com/ch6/ex1

Escaping Strings

package {
import com.actionscriptbible.Example;
public class ch6ex1 extends Example {
public function ch6ex1() {
var porky:String = ‘Porky says "That\’s all folks!"’;
trace(porky);

}
}

}

Snippets are short blocks of code — even as small as a single line — that are prevalent throughout the
book. Snippets don’t have the necessary structural code to be launched and compiled by themselves.
They are to the point, including only the important content and leaving out the context. They can
also be conversational, where one snippet follows a preceding one, either revising it or adding to it.
The text around snippets lets you know what they are meant to accomplish.

Some snippets can be taken literally, whereas others are merely illustrative. Where multiple snippets
continue through a chapter, they may be collected into one example heading and found online at
one URL.

As you read the book, I recommend that you read the snippets but interact with the larger examples:
modify them to do different things, play with them to see if they break, add onto them to make them
yours. Getting hands-on with code is the best way to really learn it.

Running Example Code
This section will explain, step by step, how to get examples from this book running so you can experi-
ment with them. You can run example code online or on your computer using the IDE of your choice.
In this section I’ll demonstrate running the code online, with Flash Builder 4, and with Flash Profes-
sional CS5. Of all these, running the code online is the easiest.

It’s so important that you know how to run and use example code that I’ve distilled this infor-
mation into screencasts for those of you who prefer to learn visually. Find these screencasts at
http://actionscriptbible.com/runningcode/.

First, let’s take a look at how to run a complete example. You can recognize examples because
they are full classes with a name like ch0ex1 that extend either flash.display.Sprite or
com.actionscriptbible.Example.

The Example class is used only when necessary, mostly for the benefit of the online examples.
It simply redirects trace() output to the screen so that you can see it no matter your setup.

xlvi

Introduction

Whenever you see this class, you can safely replace it with Sprite. Alternatively, visit the web site at
http://actionscriptbible.com/ to get the source for Example.

Let’s look at how to run Example 0-1.

EXAMPLE 0-1 http://actionscriptbible.com/ch0/ex1

An Example Example

package {
import com.actionscriptbible.Example;
public class ch0ex1 extends Example {
public function ch0ex1() {
trace("Congratulations! You just ran Example 0-1!");

}
}

}

Online Examples
The online example system is Kayac’s awesome and free wonderfl service. I want to give a special
thanks to Masakazu Ootsuka for building and maintaining wonderfl and for working with me to pro-
vide online examples.

See a screencast version of this tutorial at http://actionscriptbible.com/runningcode/
online/.

System Requirements

To run examples online, all you need is a reasonably modern browser and the Flash Player plug-in.
I suggest you use the debugger version of the latest version of Flash Player you can get your hands on.
You can get the latest public release at http://get.adobe.com/flashplayer/, but I strongly
recommend you get a debugger version of the player at http://www.adobe.com/support/
flashplayer/downloads.html. To run everything in the book, you’re going to need Flash
Player 10.1 or later.

Running Code

Running code online couldn’t be simpler.

1. Use your browser to navigate to the link provided. Here it is:
http://actionscriptbible.com/ch0/ex1.

2. On the left, you’ll see the code of the example. On the right, you’ll see a screenshot. To run the
code, click the ‘‘Play’’ button that appears over the screenshot.

Your screen will look like Figure I-1.

Downloading Code

Just click the Download button below the code on the example page to get a copy of the source code
to play with locally. Additionally, all example code is available on
http://actionscriptbible.com/downloads/.

xlvii

Introduction

FIGURE I-1

Running an example online

Community Features

Wonderfl lets you participate with other readers across the world. You can build on the examples I’ve
provided, ask questions, and favorite the code. To use these features, you’ll first need to sign in at
http://wonderfl.net/login. It’s free and uses OpenID, so you don’t need to remember yet
another password. Nice!

To edit an example, click the Fork button below its source code. Then use the editor that
appears in your browser to interactively write ActionScript code. Your creation will appear below
my original example on the example page so that everyone else can benefit from your work!
Make sure to title your work something descriptive and comment so that people know what
you did.

Likewise, below each example code, you may see many forked versions that other readers created. Try
looking at these to enhance your understanding of the topic. Of course, you can even fork code that’s
been forked from my original example. Keep the fire burning!

Under the Talk box on the example page, you can discuss the example. Keep it civil, folks. And I’m
pretty busy, so don’t expect me to personally reply to feedback here. Sorry!

xlviii

www.allitebooks.com

http://www.allitebooks.org

Introduction

Flash Builder
You can build examples from this book using Flash Builder (or Flex Builder; see ‘‘Product Conven-
tions’’ earlier in this Preface). At the time of writing, Flash Builder 4 was not public yet, but I’ll wager
you can get a free 30-day trial version at http://adobe.com/products/flex/.

See a screencast version of this tutorial at http://actionscriptbible.com/runningcode
/flashbuilder/.

System Requirements

Flash Builder 4 will be available for Linux, Windows, and Mac OS X. You can find the full system
requirements at http://adobe.com/products/flex/systemreqs/.

Running Code

Running and editing code in Flash Builder can be a little tricky if you’ve never done it before, but in
time it’ll get to be second nature.

1. Launch Flash Builder.

2. Create a new ActionScript project using File ➪ New ➪ ActionScript Project. Give the project a
name, and to make sure you can run all the code in the book, use the latest Flex SDK version
possible (Flex 4.0 for code in this book). Place it in a convenient location. I’ll name the project
as3b and place it in C:\Users\Roger\Documents\as3b\.

3. Add the example file to the source directory. By default this is src\ inside the project folder.

a. To copy the file from the book, use File ➪ New ➪ ActionScript Class. In the dialog box,
give it the name ch0ex1, and make it extend flash.display.Sprite. Keep the pack-
age blank. In the editor that appears, type in the example code as listed in the book.

b. To download the code, get the example from http://actionscriptbible.com
/downloads/, and place the file ch0ex1.as into the source directory. For me,
that’s C:\Users\Roger\Documents\as3b\src\. It should appear in the Package
Explorer panel.

c. Alternatively, you can download the code from the example page at
http://actionscriptbible.com/ch0/ex1. Click the Download button on
wonderfl, and move the file into the source directory. You’ll also have to rename it to
ch0ex1.as.

4. Once you have the file in your project, locate it in the Package Explorer. It should appear
under your project, in the source directory. For me, it’s as3b\src\(default package)
\ch01ex1.as. Right-click the file, and choose Set as Default Application.

5. Click the Run or Debug buttons in the toolbar, or choose Run ➪ Run as3b or Run ➪ Debug
as3b from the menu.

Note that you only need to follow Step 2 once. Once you have a project set up for your examples, you
can keep adding examples to them. To get them to run, you will need to add the files to the source
directory and add them as applications as in Steps 3–5. You don’t need to remove older examples.

You can choose to change the com.actionscriptbible.Example class to flash.display
.Sprite before running. Then trace output will appear in the Console panel, but not in
Flash Player. Otherwise, you’ll need the Example class in your source directory under
com\actionscriptbible. For me, the full path would be C:\Users\Roger\Documents
\as3b\src\com\actionscriptbible\Example.as.

xlix

Introduction

Your screen should look like Figure I-2.

FIGURE I-2

Running an example in Flash Builder 4

By default, Flash Builder will launch the example in your web browser. To debug this, you must have
the debugging version of Flash Player installed in the browser it uses. However, you also have the
option of running the application in Flash Player without the browser, which I prefer. (For Part IX,
‘‘Flash in Context,’’ you’ll need to use the browser.) Open the project’s properties by right-clicking it
or choosing Project ➪ Properties in the menu. Choose the ActionScript Compiler section, uncheck the
Generate HTML wrapper file, and click OK. After performing these steps, Flash Builder should run
your application in the standalone Flash Player.

Flash Professional
You can also use Flash Professional to run example code from the book. To run every
example, you’ll need Flash Professional CS5 or later. At the time of writing, this was
not available to the public, but I’ll wager you can get the standard 30-day trial for free at
http://www.adobe.com/products/flash/.

l

Introduction

See a screencast version of this tutorial at http://actionscriptbible.com/runningcode/
flash/.

System Requirements

Flash Professional CS5 will be available for Windows and Mac OS X. You can find the full system
requirements at http://www.adobe.com/products/flash/systemreqs/.

Running Code

Running example code in Flash Professional isn’t too hard. You’ll need to follow a few steps.

1. Launch Flash Professional.

2. Create a new Flash file for ActionScript 3.0 by choosing File ➪ New ➪ Action-
Script 3.0. Save this file into a directory somewhere. I’ll create a new directory called
C:\Users\Roger\Documents\as3b\. I’ll call the file example.fla. These names are
completely arbitrary and up to you.

3. Ensure that the Flash file is set to publish for the latest Flash Player version. If you did Step 1,
this should already be set correctly, but to make sure, use File ➪ Publish Settings, select the
Flash tab, and ensure that Player is set to Flash Player 10. Click OK.

4. Add the example file, ch0ex1.as, to the same directory as example.fla.

a. To copy the file from the book, use File ➪ New ➪ ActionScript 3.0 Class. In the dialog box,
give it the name ch0ex1. In the editor that appears, type in the example code as listed in
the book. Save the file as ch0ex1.as in the same directory as example.fla.

b. To download the code, get the example from http://actionscriptbible.com
/downloads/, and place the file ch0ex1.as into the same directory as example.fla.

c. Alternatively, you can download the code from the example page at
http://actionscriptbible.com/ch0/ex1. Press the Download button on
wonderfl, and move the file into the same directory as example.fla. You’ll also have to
rename it to ch0ex1.as.

5. Set the Document Class of example.fla to ch0ex1. Find the Class entry box in the Proper-
ties panel under Publish, and type ch0ex1 into it. Don’t include the .as part.

6. Test the file with Control ➪ Test Movie. You should see the output in the Output panel.

Note that you only need to follow Steps 2 and 3 once. Once you have a Flash file set up for your
examples, you can keep adding example files to the directory and changing the Document Class of
example.fla. For each new example, follow Steps 4–6.

You can choose to change the com.actionscriptbible.Example class to flash.display
.Sprite before running. Then trace output will appear in the Output panel, but not in Flash Player.
Otherwise, you’ll need the Example class in your directory under com\actionscriptbible. For
me, the full path would be C:\Users\Roger\Documents\as3b\com\actionscriptbible
\Example.as.

li

Introduction

Your screen should look like Figure I-3.

FIGURE I-3

Running an example in Flash Professional CS5

Other Tools
You can use plenty of other tools to run example code, as explained in Chapter 1, ‘‘Introducing
ActionScript 3.0,’’ including the free, open-source version of the Flex SDK. I won’t cover them here,
but most other tools use a similar technique to Flash Builder’s. If you’re having trouble running
example code, see the documentation for your product. This may also be a good time to reiterate that
the easiest way to run example code is on the online version.

On the Web Site
This book has a companion web site at http://actionscriptbible.com/. The site provides
resources for this book as well as bonus material:

� Downloads for all example code

� An index of examples

� An ActionScript 3.0 cheat sheet

lii

Introduction

� Most common ActionScript 3.0 mistakes

� Links to popular programming forums to find an answer for any ActionScript 3.0 question

� Links to give your feedback about this book

� More information about the handsome and stylish author

Where to Go from Here
Armed with the knowledge herein, you should be equipped to program in ActionScript 3.0. Countless
doors open when you can implement your ideas in code, and there’s no way I could tell you what
your newfound knowledge could help you do. That’s up to you. I strongly encourage you to work on
projects aligned with your interests. You learn best by doing, and you do more when you do what you
enjoy. So dream up an application, an animation, a simulation, a game, or an installation, and make it
happen. Find some freelance jobs that sound enticing and bid for them. Challenge yourself, and keep
the ActionScript 3.0 Bible by your side for reference.

Once you are comfortable programming in ActionScript 3.0, give the book to a new AS3 disciple and
move on with your own learning! The field of programming is wonderfully wide. You can dive deeper:
learn about algorithms, data structures, object-oriented design, design patterns, architecture, or soft-
ware development practices. You can supplement your ActionScript 3.0 skills by learning Flex or AIR.
You can make things realistic: learn computer graphics techniques, physics, animation, or algorithmic
art. You can learn more about programming by learning a different kind of language. You can focus
on server communication. Hey, you can even write a big fat programming book. Whatever you do,
get to the chopper!

liii

Part I

ActionScript 3.0
Language Basics

IN THIS PART

Chapter 1
Introducing ActionScript 3.0

Chapter 2
ActionScript 3.0 Language
Basics

Chapter 3
Functions and Methods

Chapter 4
Object-Oriented Programming

Chapter 5
Validating Your Program

Introducing
ActionScript 3.0

I
n this chapter you’ll look at what ActionScript is, where you can use it, and
what you can do with it. You’ll learn where ActionScript fits in the grand
scheme of the Flash Platform, and you’ll take a complete tour of the tools

and technologies involved therein.

What Is ActionScript 3.0?

You may well already know the answer to this question, because you had enough
interest in it to buy this book! ActionScript 3.0 is the language used to program
interactive Flash content. Where this content goes and how you can build it is
the subject of the following section.

ActionScript 3.0 is a well-organized, mature language that shares much of its
syntax and methodologies with other object oriented, strongly typed languages,
so an experienced programmer can readily pick it up. Don’t fear, though, for this
book introduces ActionScript from the bottom up and starts gently.

If you’ve used Flash before but never ActionScript, you might know that you can
build content for Flash Player without ActionScript — but without ActionScript,
Flash is just an animation tool (though, admittedly, a good one). ActionScript is
necessary when you want to create Flash content that is highly dynamic, respon-
sive, reusable, and customizable. Here’s just a short list of the many things you
can accomplish using ActionScript:

� Loading images

� Playing audio and video

� Drawing programmatically

� Loading data such as XML files

� Responding to user events such as mouse clicks

3

Part I: ActionScript 3.0 Language Basics

To get the most out of the Flash Platform, you’re gonna need ActionScript 3.0. And as you learn what
it can do, you’ll be amazed at its power. But let’s look at how ActionScript fits into the Flash universe.

Exploring the Flash Platform
The wild world of Flash is by no means small, and wrapping your head around ActionScript and all
the technologies related to it is challenging. Even if you don’t know all the latest technologies in the
peripheries, it’s essential that you know major parts of the Flash Platform and how they work together.
Defining that term and what it encompasses will be the goal of this section.

You’ll examine the different parts of the Flash Platform from the perspectives of you building content
and the user getting and running content. I’ll define and discuss the tools, languages, platforms, and
runtimes involved in the process. Figure 1-1 shows a bird’s-eye view of the Flash Platform.

FIGURE 1-1

A high-level overview of the Flash Platform

ActionScript

API

Compiler

Runtime

Platform

Library
package {
 class Smiley {
 }
}

Flash
Player

Box2D

mxmlc

SWF

SWF

Flash Player 10, plugin

Windows Vista

internet

Intel x86

use

use

Delivery & Execution

Development

Sprite

Timer

CircleShape

You, the programmer, write in a computer programming language, ActionScript 3.0. You use tools, like
Flash Builder, and specifically a compiler, to convert your code into an executable, in this case a SWF.

4

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Introducing ActionScript 3.0

The SWF is delivered to the end user on her platform and executes inside a runtime, usually Flash
Player, of which there are many versions. Let’s break this down.

A Programmer’s Perspective
For all the ways that the Flash Platform is unique, it shares the same basic steps as most programming
environments. You write code in a language using some kind of editor, tool, or integrated develop-
ment environment, and you use a compiler to convert that code into a file that can be run on the
target environment.

Language

A computer programming language defines the grammar and lexicon that you’ll be working in to cre-
ate beautiful code. ActionScript 3.0, Python, Java, Lua, and C# are different languages. They all look
different and have different rules for what you type where, what words are reserved, how to loop and
how to write comments, and even where you can and can’t put spaces. ActionScript 3.0 is not the
same language as ActionScript 2.0, and neither is ActionScript 1.0.

ActionScript 3.0 has some features in common with modern JavaScript, because both are designed to
adhere to specifications of a family of languages called ECMAScript. At the time of writing, this fact is
little more than a curiosity, because most JavaScript in use is written to a baseline standard far behind
the kind of JavaScript that starts to look like ActionScript 3.0. Furthermore, adherence to ECMAScript
standards has provided little visible benefit, and progress marches on. In general, ActionScript 3.0
looks most like Java or C#. Coming to ActionScript 3.0 from either of these languages, or Action-
Script 2.0, should be a fairly smooth ride. In this second edition, I’ve removed any emphasis put on
transitioning from ActionScript 2.0 to ActionScript 3.0.

I’ll describe some features of the language here. This might help some of you who have several lan-
guages under your belts already and can benefit from a description of ActionScript 3.0. If you don’t
understand any of these terms, please don’t fret! The rest of this Part exists to investigate these quali-
ties of the language in depth.

ActionScript 3.0 can use both dynamic and strong typing, but the compiler, the language, this book,
and most of the world want you to use it with strong typing. If you want to live in a dynamic world,
you can do so by turning off strict mode in your compiler or development environment. Action-
Script 3.0 is an object oriented language that makes heavy use of namespaces. It has facilities for
reflection. It embodies some elements of functional programming.

Maybe it goes without saying, but ActionScript 3.0 is the primary language used in the Flash universe.
However, it’s not the only one.

Depending on the platform and runtime you’re targeting — that is to say, where, on what device, and
on what software you want your content to run — you might use another language that this book is
not about. I’ll get into this more once you look at the platforms and runtimes that exist in the Flash
universe. But rest assured that ActionScript 3.0 is the way to go for the Flash Platform right now. Most
other options are for older technology.

There’s another language that’s a big part of the Flash Platform, and that’s MXML. MXML is a declar-
ative XML language used to program Flex. The interesting thing is that MXML compiles into Action-
Script 3.0 during building. It’s also used interchangeably with ActionScript 3.0. I won’t discuss MXML
or Flex in this book, but because Flex is a superset of Flash, this book provides an excellent, maybe
prerequisite, background for any Flex developer.

Mixed into ActionScript 3.0 are several microlanguages, tailor-made for solving specific kinds of prob-
lems more efficiently than the grammar of ActionScript 3.0 would allow. Technically, these are part of

5

Part I: ActionScript 3.0 Language Basics

the ActionScript 3.0 language specification, but when you use them you can tell instantly that another
dialect is being spoken. These are E4X, a language for manipulating XML; regular expressions, a lan-
guage for searching for and manipulating patterns of text; and XML itself, a way to store hierarchical
information. Furthermore, there are closely associated languages, like Pixel Bender language, used to
write Pixel Bender shaders. Although this language can’t be written directly into ActionScript 3.0 code
like E4X, it is necessary to use some of Flash Player’s features. All of these languages are important
parts of Flash Platform development and cannot be ignored by an ActionScript 3.0 developer.

There are two major points of confusion when speaking about the ActionScript 3.0 language. First is
the fact that ActionScript 3.0 can change, and has changed, without changes to that little ‘‘3.0’’ num-
ber sitting in its title. It’s a living language, and it’s being developed even as you read this book. (Hello
readers from the future! Have we learned how to speak to dolphins yet or what?) So how can Action-
Script 3.0 change? Well, there are two ends that have to agree: the compiler has to make something
out of your code, and the runtime has to be able to run what the compiler makes. But the fact is,
all it takes is for the compiler to change to support a change in the language. Both can be modified
at the same time, or the compiler only could change, to allow for alterations in the language. The
compiler is the most important because it’s the only part of the entire Flash Platform that sees actual
ActionScript 3.0 source. This kind of change has already happened. The compiler shipped in Flash
CS4, Flash Builder, and in newer builds of the Flex SDK supports syntax for parameterized types that
you’ll see in Chapter 9, ‘‘Vectors.’’ This syntax, TypeA.<TypeB>, looks like utter rubbish to an older
ActionScript 3.0 compiler like that in Flash CS3, yet it is (now) part of ActionScript 3.0. We sim-
ply have to be careful. The second point of confusion when speaking about ActionScript 3.0 is the
difference between ActionScript 3.0 and the Flash Player API.

API

Where a language determines keywords (like for, class, and is), syntax (like where to put curly
braces), and grammar (like how subexpressions are evaluated and what can and can’t go on the left
side of an assignment), it’s really the Application Programming Interface, or API, that gets most of the
work done. It’s easy to confuse these two, so let’s untangle them once and for all.

The language by itself can’t do much of anything. Without an API it’s little more than a glorified
calculator. You can do operations like creating variables, assigning values, summing up things, and
concatenating strings; you can even create classes and functions. That said, there’s a whole lot to
learn about the language itself, and you could in theory make it through the end of Part II, ‘‘Core
ActionScript 3.0 Data Types,’’ before using any of the Flash Player API, if you keep your eyes closed
strategically. It’s the runtime (Flash Player or AIR) that provides most of the exciting stuff the Flash
Platform has to offer: graphics, sound, animation, networking, video, and so on. None of this is built
into the language.

You can draw an analogy between programming languages and spoken or written languages. It’s nec-
essary to understand the grammar and pronunciation of a language, but that alone is not sufficient for
communication. You need a rich vocabulary, and that’s what the API provides.

If you don’t mind skipping ahead to some topics discussed in Chapter 4, ‘‘Object Oriented Program-
ming,’’ an easy way to determine what’s part of the core language and what’s part of the API is to look
at how it’s namespaced. Any classes and functions in the default package are part of the language, like
Error, XML, int, and Number. Anything in the flash.* package and its subpackages is part of the
Flash Player API, like flash.display.Sprite and flash.geom.Matrix3D. The Flash Player
API is a library of classes and functions that get real stuff done.

Each runtime you target when building a program has its own API associated with it. In this book,
I’ll only cover the Flash Player runtime (specifically only versions 9 and up) and the Flash Player API.

6

Chapter 1: Introducing ActionScript 3.0

There is one more runtime I could potentially target: the AIR runtime. The good thing about the AIR
API is that it’s a superset of the Flash Player API. In other words, if you want to build AIR apps, every-
thing you learn in this book will be applicable, and much will be necessary.

The runtime and the API it supports are fundamentally linked. Adobe engineers add new features
into new versions of the Flash Player (the runtime) and simultaneously expose those features to pro-
grammers through additions to the Flash Player API. Changes to the API are far more frequent than
changes to the language. That’s why, in this book, I note when topics I discussed are particular to a
certain version of the API.

Libraries

The Flash Player API is a staggeringly large collection of classes and methods that help you make
interesting things happen on the screen, as the weight of this book attests to. But the brilliant thing
about code is its extensibility. For every ability that the Flash Player API enables, there are dozens of
ways that people have taken advantage of it to build something more complicated or make some task
easier. And many of these people have been so kind as to share their hard-written code with the world
(although a few do expect compensation).

When you build applications for the Flash platform, in addition to using the Flash Player API — a
given — you can use any number of other libraries, leveraging their capabilities to pull off some
impressive feats without breaking a sweat yourself. My favorite libraries include tweening libraries
that let you animate things about the screen with a single line of code; physics engines that let you
simulate collisions, friction, gravity, and other forces; 3D engines that let you present 3D objects and
scenes; loading libraries that let you streamline the slightly annoying process of getting several types
of assets loaded into a larger application; and data structure libraries that provide optimized storage
for specific purposes.

A library is simply a collection of code that you can use. Sometimes you have the actual Action-
Script 3.0 code that makes it up, and sometimes you use a precompiled binary (a SWC). In either
case, you use libraries like you use the API. You create and access classes that they contain to get the
job done. Libraries extend your programming toolbox with new, usually job-specific tools. In fact,
the API is itself a library; what makes it special is that it’s built into the runtime.

Because there are as many libraries as there are stars in the sky, I only mention them when there’s a
specific task that developers overwhelmingly use a library to accomplish, and in this case I’ll just give
a quick description of the library and let you know where you can find more information.

Compilers, Tools, and IDEs

There’s one critical piece in this puzzle I haven’t covered yet. ActionScript 3.0 code is text. You write
it down in plaintext files. But to get from plaintext files to something you can actually run — in
this case a SWF — you have to compile it. To put it simply, compiling translates the text of a
program — the source code — into a simpler language that the runtime can run directly. We speak
and understand human languages like English and French. Your computer speaks a certain instruction
set that depends on what processor is inside it. It would be quite painful to program directly in
the computer’s language. (Some people come close by programming in assembly languages.) And
it would be quite difficult and imprecise to have the computer interpret meanings from a regular,
spoken language. So we have computer languages to bridge this gap — and compilers to translate.
Unlike translating spoken languages, there can be no ambiguity in the compiler’s translation.
If the compiler doesn’t understand the code you’ve written or believes it’s incorrect, it fails to
compile. You’ll learn to recognize and deal with compiler errors in Chapter 5, ‘‘Validating Your
Program.’’

7

Part I: ActionScript 3.0 Language Basics

So how do you use these compilers, and where do you obtain them? This all depends on the develop-
ment environment you set up for yourself. In the Flash universe, most of the available versions of the
ActionScript 3.0 compiler are integrated tightly with some tool.

The tools and Integrated Development Environments, or IDEs, you’re likely to come across are

� Adobe Flash Builder

� Adobe Flash Professional

� FlashDevelop

� FDT

In addition, there are free and open-source versions of the Flex SDK available for download from
Adobe. These toolchains are not IDEs, but they contain a compiler. All the tools in the previous list
are either integrated with their own compiler or integrate tightly with a copy of the Flex SDK that you
provide or that comes bundled with it. Because of the tight integration between these tools and the
compiler, you may not even be aware of the compiler. For example, when you choose Publish or Test
Movie in Flash, you invoke Flash’s ActionScript compiler. With the default settings in Flash Builder,
the compiler is invoked every time you save a file!

For every tool in this list but Flash, the compilers used are part of Adobe’s Flex SDK, which comes
in both free and open-source flavors. You can get the latest and greatest versions of these at no cost
at http://opensource.adobe.com/. Specifically, these come with five major compilers: mxmlc
to compile MXML and ActionScript 3.0; asc to compile ActionScript 3.0; fsch, a shell for repeated
compilation; compc to compile SWCs instead of SWFs; and adl to compile and package AIR
applications.

Source code is just text, so you can write it with any text editor you like. But because it’s structured
code, you can use tools to help you write this code faster and with fewer errors. IDEs, like Flash
Builder, give you intelligent tools for writing ActionScript 3.0 code; searching it; discovering rela-
tionships between parts of the code; auto-completing your typing; exploring files; searching through
projects; renaming classes, methods, and variables; and more. Possibly the most powerful feature of
a good IDE, however, is its integration of an interactive debugger, which you can see how to use
in Chapter 25, ‘‘Using the AVM2 Debugger and Profiler.’’ Using an IDE makes a programmer’s life
much better, but you can always fall back on using a text editor to write ActionScript 3.0 source
code and running mxmlc yourself. It’s entirely up to you to decide what tools to use in your devel-
opment environment. Personally, I recommend that you use Flash Builder if you’re going to follow
along with the book. I recommend against using Flash Professional for any serious ActionScript 3.0
programming.

Once you’ve compiled your ActionScript 3.0 program, you’ll end up with a SWF file.

SWFs

A SWF file, or simply ‘‘a SWF,’’ is an efficient, compressed binary file that can contain graphics, ani-
mation, text, bitmaps, sounds, video, and even arbitrary data. Most importantly for us, it also contains
compiled ActionScript. The main purpose of a SWF is to get the stuff into the world (possibly across
the great expanses of the internet, and onto the screens of your users) that we, as programmers, create.
The end consumer of a SWF file is the Flash Player runtime.

I mentioned one other runtime: the AIR runtime. When compiling AIR apps, an .air file is gener-
ated, but even this is a package that contains SWFs for its executable ActionScript code.

8

Chapter 1: Introducing ActionScript 3.0

Flex

I’ve tiptoed around Flex up until this point. Many newcomers to the Flash Platform are confused by
Flex versus Flash, often with respect to the naming of certain products. Let’s clear the air here.

Flex is two things. Primarily, it’s a big, well-designed library for developing Rich Internet Applications,
or RIAs. RIA is something of a vague buzzword encompassing programs that live on the internet and
have some of the features once reserved for desktop applications: widgets like scrollbars to scroll, but-
tons and tabs to click, flippers to flip, and so on; multiple screens and transitions; display of tables
and data. The Flex framework is a library that contains all these widgets, the ability to skin them, lots
of code for easily connecting to web services, and more. As a library, it adds on to the capabilities of
the Flash Player API, not replaces them. Furthermore, the end product of a program that uses Flex is a
SWF, just like any other SWF, and it runs in Flash Player just like any other SWF. The only difference
is that when you use the Flex framework, that SWF either contains or references the Flex framework
library.

The second major component of Flex is a declarative XML language called MXML. This is a sepa-
rate language from ActionScript 3.0, although when you compile a project with a Flex compiler, it is
converted into ActionScript 3.0 code — and it coexists happily with ActionScript 3.0 code.

I won’t cover either the Flex API or MXML in this book. However, it’s important to know that Flex is
still based in ActionScript and can be built targeting the same Flash Player runtimes. Because the Flex
framework is a library built on top of ActionScript 3.0 and the Flash Player API, what you will learn
in this book is indispensable for Flex development.

Note
A word about the use of the word ‘‘Flex’’ in product names: Flash Builder 4 is the successor to Flex Builder
3. Both of these tools can be equally well used to build either Flash or Flex applications, which the change of
name is meant to emphasize. You’ll also see the term ‘‘Flex’’ in the Flex SDK. The truth is that the Flex SDK
bundles all you’ll need to compile and package Flash, Flex, and AIR applications. �

In Short

Let’s quickly put back together the programmer’s experience with the Flash Platform, in a typical
example. You open your IDE, Flash Builder. You start writing code in the ActionScript 3.0 lan-
guage and use classes from the Flash Player API. You choose Run from the menu, and Flash Builder
builds and runs your program, compiling all your ActionScript 3.0 code into a SWF and opening that
SWF in Flash Player.

A User’s Perspective
One of the biggest benefits of programming for the Flash Platform is that your content can be easily
run in so many places for so many users. The two runtimes, Flash Player and AIR, are widely sup-
ported on multiple platforms.

Runtimes

A runtime is an environment in which a program executes. The runtime provides all the services nec-
essary to do the things that the API promised were available. In the Flash Player API, you can create
an instance of Camera to gain access to a connected webcam; the Flash Player runtime has to deal
with the potentially complex task of finding the connected hardware and pulling a video stream from

9

Part I: ActionScript 3.0 Language Basics

it. In ActionScript 3.0 and the Flash Player API, you can programmatically draw graphics; it’s up to
the Flash Player runtime to render those graphics and work with the operating system to display them
on-screen.

I’ve mentioned two runtimes: AIR and Flash Player. AIR, because it’s a runtime made for desktop
applications, contains additional capabilities, such as rendering web pages and spawning new win-
dows in the user’s operating system. Another runtime in the Flash universe, Flash Lite, is a somewhat
dated environment for mobile and embedded devices. It doesn’t support ActionScript 3.0, so I won’t
waste time on it. I’ll only cover the Flash Player runtime here.

Platforms and Platform Independence

A platform is considered a combination of the hardware and operating system in use. More specif-
ically, it is the instruction set of the CPU that matters to the platform, although these are mostly
standardized. Users who want to run Flash content (stuff made with ActionScript 3.0 and the Flash
Player API) must be able to run Flash Player on their platform.

At the time of writing, Flash Player 10 is supported on PCs with x86 processors running Windows
98 and up; Macs with PowerPC (G3, G4) or Intel processors running OS X 10.4 and up; PCs with
x86 processors running several flavors of Linux including Red Hat, SUSE, and Ubuntu; and systems
with x86 or SPARC processors running Solaris 10. Notably, at the time of writing, 64-bit processors
are not supported, but commercially used 64-bit processors have no problem running in 32-bit mode,
so I can still use Flash Player on my desktop’s screaming Core i7 processor (which may be stone age
by the time you read this). Also, at the time of writing, Flash Player 10.1 is planned to roll out on
multiple mobile devices, including the latest Android OS and Palm webOS. In addition, there are
other exotic Flash Player runtimes for platforms. For example, a PlayStation 3 with updated firmware
has a Flash Player runtime on par with Flash Player 9.

In any case, that whole paragraph just means this: almost everyone can get access to the Flash Player
runtime. One of the great things about the Flash Platform is that it’s platform independent. It doesn’t
matter what kind of computer you use to compile your program: the resulting SWF file is completely
indifferent to where it was born and where it’s going. It’s simply a binary file, and anyone who knows
how to read and interpret it may do so, just like, say, a JPG image file. The other component of plat-
form independence is that it doesn’t matter what platform your user is on; users on different platforms
are able to run the same SWF and see the same outcome.

This model of platform independence is just the same as Java’s. Once Java code is compiled, it can be
sent anywhere and run on any platform — that is, any platform where a Java Runtime Environment is
available. Contrast this with traditional software development or game development, where a product
is made for one platform and must be significantly reprogrammed or, at minimum, recompiled to be
available on another platform. And considering that Flash content is widely distributed on the internet,
the benefit of platform independence is clear. As the programmer, you don’t want to have to make one
SWF for every platform, and the users don’t want to have to choose their platform every time they
view a web page with Flash content.

The Flash Player Zoo

You’ve already seen that the Flash Player is available on different platforms. It also comes in several
flavors and a plethora of versions.

There is a standalone Flash Player used to run SWF files from a user’s computer. This can be bundled
with a SWF to generate an executable that launches Flash Player and the bundled content at the same
time. This is a Flash Player projector. Most common, there are the plug-in Flash Players that operate
inside your browser to host Flash content in a web page. (On PCs these come in both ActiveX plug-in
and Netscape plug-in varieties.)

10

Chapter 1: Introducing ActionScript 3.0

Furthermore, all these flavors of Flash Player are available in debugger versions. You can learn more
about the debugger versions in Chapter 24, ‘‘Errors and Exceptions.’’

Finally, there are lots of versions of Flash Player in existence. The major version of Flash Player is
most important (for example, Flash Player 9 or Flash Player 10). The minor versions and revision
numbers appear after the major version number, such as in Flash Player 10.0.22.87. In general, major
versions introduce suites of new features, and minor revisions are mostly bug fixes and performance
enhancements, although some feature changes creep in.

When you compile ActionScript 3.0 code, you can target a specific major version of Flash Player,
because as I mentioned earlier, every version of Flash Player is tied to the Flash Player API for that
version. All ActionScript 3.0 code is compiled to target Flash Player 9 at a minimum.

The good news is that you don’t need to worry about the differences between all the flavors of Flash
Player. The same SWF will work in Flash Player of the same version of every platform, no matter if
it’s the standalone version or the plug-in version, and no matter what browser the plug-in version is
being hosted by.

In Short

Here you see a typical user’s interaction with the Flash Platform. The user downloads or upgrades to
Flash Player 10. She opens Firefox on her Mac and navigates to a page with Flash content. Behind the
scenes, her browser downloads the SWF file from the internet and runs the plug-in version of Flash
Player 10, and the Flash Player runs the content of the SWF. End result: she sees the Flash content
hosted in the web page.

From ActionScript 2.0 to ActionScript 3.0
If you’ve programmed in ActionScript 2.0 before, ActionScript 3.0 has a whole lot of new features
for you to explore. Here is an overview of the key new features. You may skip this section if you are
coming to ActionScript 3.0 from a different language.

Display List
In ActionScript 2.0, there were three basic types of objects that could be displayed: movie clips,
buttons, and text fields. These types didn’t inherit from a common source, meaning polymorphism
didn’t work for these display types. Furthermore, instances of these display types always had a fixed,
parent-child relationship with other instances. For example, to create a movie clip, you had to create
that movie clip as a child of an existing movie clip. It was not possible to move a movie clip from one
parent to another.

In ActionScript 3.0 there are many new display types. In addition to the familiar types such as movie
clips, buttons, and text fields, you’ll now find new types such as shapes, sprites, loaders, bitmaps, and
more. All display types in ActionScript 3.0 inherit from flash.display.DisplayObject, allow-
ing you to use them interchangeably in many cases. Furthermore, display objects in ActionScript 3.0
can be constructed independent of any other display object, and these objects can be associated as
children of other display objects and even moved from one parent container to another. In other
words, you can create a text field in ActionScript 3.0 simply by calling the constructor, and that text
field will exist independent of any parent container object.

var text:TextField = new TextField();

11

Part I: ActionScript 3.0 Language Basics

You can then add the text field to a parent container at any time. The following example illustrates
this with a display object called container, which could be a sprite or any other display object con-
tainer type:

container.addChild(text);

Note
In the preceding example, container is used as a generic variable name that would presumably refer to an
object created elsewhere in the code. �

The hierarchy of parent containers and their children is known as the display list in ActionScript 3.0.

Runtime Errors
ActionScript 3.0 provides many new runtime errors. This is an important new feature because it allows
you to diagnose problems much more quickly. In ActionScript 2.0, when an error occurred at run-
time, it would frequently occur silently, and it would be difficult for you as the developer to determine
what the problem was. With improved runtime errors and error reporting in the debug player, it is
now much easier to debug ActionScript 3.0 applications than it was with ActionScript 2.0.

Runtime Data Types
Strict typing in ActionScript 2.0 was only used by the compiler, not at runtime. At runtime, all Action-
Script 2.0 types are dynamic. However, in ActionScript 3.0, strict typing is preserved at runtime as
well. The advantage is that now runtime data mismatches are reported as errors, and application per-
formance and memory management are improved as a result of preserved typing at runtime.

Method Closures
In ActionScript 3.0 all methods have proper method closures, which means that a reference to
a method always includes the object from which the method was originally referenced. This is
important for event handling, and it stands in stark contrast to method closures in ActionScript 2.0.
In ActionScript 2.0, when you reference a method, the object from which the method is referenced
does not persist. This causes problems, most notably when adding event listeners. In ActionScript 2.0,
a delegate is often used as a solution. However, in ActionScript 3.0, delegates are not necessary.

Intrinsic Event Model
In ActionScript 3.0, the event model is built into the core language. Many native ActionScript classes,
including all the display object types, inherit from the flash.events.EventDispatcher class.
This means that there is one standard way to dispatch and handle events in ActionScript 3.0.

Regular Expressions
Regular expressions are a powerful way to find substrings that match patterns. ActionScript 3.0
includes an intrinsic RegExp class, which allows you to run regular expressions natively in
Flash Player.

E4X
E4X is short for ECMAScript for XML, and it is a new way to work with XML data in ActionScript.
Although you can still work with XML as you did in ActionScript 2.0 by traversing the DOM, E4X
allows you to work with XML in a much more speedy and intuitive manner.

12

Chapter 1: Introducing ActionScript 3.0

Summary

� AS3 is used to program interactive content for the Flash Platform.

� AS3 is object oriented and usually strongly typed, and it supports dynamic types.

� The Flash Platform encompasses languages, APIs, tools and IDEs, compilers, and the Flash
Player and AIR runtimes.

� AS3 is the principal language used for Flash; MXML turns into AS3.

� Without the Flash Player API, you can’t do much with AS3.

� The API is tightly tied to the runtime. This book is about ActionScript 3.0 and the Flash
Player API.

� There are many tools for building Flash content. Most rely on the ActionScript compilers in the
Flex SDK.

� You compile your ActionScript code to produce a SWF.

� SWFs are portable, compressed, and platform independent. They contain compiled code and
other resources.

� SWFs are consumed by Flash Player.

� Flash Player comes on many platforms in many different flavors.

� All a user needs to run your Flash content is a compatible version of Flash Player.

13

www.allitebooks.com

http://www.allitebooks.org

ActionScript 3.0
Language Basics

S
o you want to be an ActionScript coder? Great! This chapter will get
you started with the basic syntax and structure of the language. If you
have worked with other programming languages, some of the topics

covered will be familiar territory for you. ActionScript’s syntax is descended from
JavaScript, Java, and C. One could call it ‘‘C-like,’’ so if you’ve had experience
with another C-like language, the syntax won’t be difficult to pick up. Regardless
of whether you know a similar language, you should read through this chapter
closely so that you don’t miss any of the nitty-gritty details.

The Bare Essentials

At its most basic, the grammar of ActionScript 3.0 is a series of statements and
organizational structures. You write code in a plaintext file, optionally using
spaces, tabs, and newlines as desired to improve readability.

ActionScript code is kept in ActionScript files, generally called class files because
they generally contain one public class. These are plaintext files that you edit
in your text editor or IDE, as discussed in Chapter 1, ‘‘Introducing ActionScript
3.0.’’ The naming and organization of these files depend on their package struc-
ture, which you’ll learn about in Chapter 4, ‘‘Object Oriented Programming.’’

Note
When using ActionScript 3.0 within Flash Professional, in addition to using class
files, you can add code to a timeline. This is a separate way to edit code that
doesn’t require external files. I won’t cover this technique here. �

Usually, you’ll write ActionScript code one line at a time. Each line is a single
statement, and it’s like a sentence in written or spoken language. After every sen-
tence in written English, you use a period. After every statement in ActionScript,

15

Part I: ActionScript 3.0 Language Basics

you use a semicolon. In some cases, the compiler is lenient and can figure out that you’re starting a
new statement without the use of a semicolon, but it’s good practice to always end your statements
with a semicolon and a newline. Here’s an example of three statements:

startTime = new Date();
var msElapsed:Number = endTime.time - startTime.time;
var hoursElapsed:Number = msElapsed / 1000 / 60 / 60;

Every statement here is like a sentence. You don’t have to be able to understand this code just yet,
but check out how each line does one thing, goes on its own line, and ends with a semicolon. The
first line creates a new Date object. The second line calculates the number of milliseconds difference
between this date and another date. The third line calculates the same figure in hours.

Expressions are a big part of most statements. All three lines in the example contain expressions. An
expression is a piece of code that can be evaluated. For example, a simple expression is 1+1. It has
multiple parts, but it can be turned into one value — 2, of course — through a simple evaluation.
Expressions can contain combinations of operators (introduced in the section ‘‘Connecting You to
an Operator’’), assignments, and function calls (introduced in Chapter 3, ‘‘Methods and Functions’’).
To be evaluated, the operators are applied to their operands, the values are assigned, and the func-
tions are executed. The results of these actions are substituted over and over until the expression is a
single value.

In ActionScript 3.0, code is also organized into blocks. A block of code is one or more statements
enclosed in curly braces. Following is a useless block of code:

{
1 + 1;
"I am " + "a banana!";
var x:Number = Math.round(Math.PI);

}

Blocks group together related code and create local scopes for the creation of variables. The bodies of
functions, classes, and packages are all contained in blocks. Usually you don’t just create blocks by
themselves as in the previous example (although you can), but the block is a natural part of another
construct like a function or a loop.

The term whitespace refers to any spacing put in your code. This can take the form of spaces, tabs, or
newlines. Extra whitespace is utterly ignored by the compiler, and only a bare minimum is required
for the compiler to figure out what you mean, so you can include as little or as much whitespace as
you like. Style conventions tell you how you should space out your code, though no one set of con-
ventions is ‘‘correct.’’ You can follow the conventions I use in examples, a different conventional style,
or even make up your own style. What’s most important is that you stay consistent. The following two
statements are equivalent:

phoneBook.callFriends(["Alice","Bob","Charlie"]);

phoneBook . callFriends(
[

"Alice",
"Bob",
"Charlie"

]
);

16

Chapter 2: ActionScript 3.0 Language Basics

You won’t be able to see what a typical class file looks like in its entirety until you’ve learned about
packages and classes in Chapter 4, but now you know that all ActionScript code is constructed of
statements, expressions, and blocks of code. Let’s learn how to make these useful.

Using Variables
Not to scare you away from programming if you happen to hate math, but programming is just like
algebra: its power and generality are drawn from using variables to represent numbers. A formula

like
√

(x2 − x1)2 + (y2 − y1)2 that computes the Euclidean distance between two points (x1, y1) and
(x2, y2) is powerful because it applies to any two points you can think of. To calculate it, you simply
substitute your coordinates in the proper place and do the arithmetic. ActionScript 3.0 is built entirely
around the use of variables just like the x and y variables in an algebraic equation.

A variable is a representation of a number, string of characters, or some other data that can change
values the way the x variable in algebra represents a number that may have any value. You might
think of variables as containers used to hold pieces of information. In ActionScript, variables con-
tain chunks of information known as objects for the time your program is running. They allow your
program to hold on to that information and operate on it. Variables are used in every aspect of pro-
gramming. You may also hear variables referred to as properties or fields when they are part of a class.

Anatomy of a Variable Declaration
Defining your own variables is easy. Let’s take a look at a typical variable declaration and step through
its different parts in the list that follows:

var food:String;
food = "pizza";

� var — All variables are defined by using the var keyword followed by the name of the
variable. This is different from previous versions of ActionScript where the var keyword was
optional.

� food — This is the name of the variable. It can be any word or string of letters and numbers
beginning with a letter or an underscore. It can’t have any spaces in it, and it can’t be
a reserved word. By convention, I recommend naming your variables using descriptive
words in camel case and starting with a lowercase letter. For example, pizzaToppings,
selfDestructCancelTime, and licksToTheCenter. Go ahead and be specific; other
users of your code will thank you. You might even thank yourself later!

� :String — This defines the data type or the type of information that the variable can hold.
The word String could be replaced with any class or interface name. I’ll talk more about data
types in the later section ‘‘Introducing the Data Types.’’

� food = "pizza"; — This statement sets the value of food to the word "pizza" using
the assignment operator (=). The quotes around the word pizza signify that this is text. (They
signify a string literal, which you’ll learn about in Chapter 6, ‘‘Text, Strings, and Characters.’’)

The first line is called a declaration. The name and type of the variable are declared. The second line
shows assignment, where a value is assigned to the newly created variable. You can also declare and
assign variables a value in a single line:

var drink:String = "Root beer";

17

Part I: ActionScript 3.0 Language Basics

You can even declare several variables on a single line, separated by commas:

var breakfast:String, lunch:String, dinner:String;

Or you can declare and assign multiple variables at once:

var breakfastTime:Number = 8, secondBreakfastTime:Number = 10,
elevensesTime:Number = 11, luncheonTime:Number = 12.5,
afternoonTeaTime:Number = 3, dinnertime:Number = 5,
supperTime:Number = 7;

After you’ve defined a variable, you can use it in an appropriate context. Its value will be substituted
when the code is actually executed. For example:

trace("My favorite food is " + food);
// displays "My favorite food is pizza"

Here you typed food, but what came out is pizza. That’s because food is a variable name, and at
runtime its current value "pizza" was substituted.

Note
You’ll see the trace() function used continually throughout the book. This simply prints out what you tell it
to. How it prints out depends on how you run the code. In Flash Builder or Flex Builder, you should see this
output in the console when you debug the project. In Flash Professional, you should see it in the Output win-
dow when you test the movie. When running the examples from their provided URLs, the output should appear
on-screen. However it prints out, trace() is used in examples to illustrate what is going on. In most examples,
I’ve put what should be the output next to the trace() statement in a comment. This way, you can read along
without running the code. Read on for more information about functions and comments. �

Constants in This Changing World
ActionScript 3.0 has a special kind of variable called a constant. Constants define values that don’t
change during the course of your program. This is great for values that either never change by nature
or that you want to protect from change. For example, if you wanted to store the boiling point of
water in Fahrenheit, and you assume that nobody’s going to take your program to high altitudes, you
could write the following:

const BOILING_POINT:int = 212;

As you can see, this looks a lot like a variable declaration but with the var keyword replaced by
const. Constant statements can be defined only at the beginning of a class with the other proper-
ties or in the constructor for a class. Attempting to assign a new value to a constant anywhere else will
result in an error.

Constants are used extensively in the Flash Player API, especially in the flash.errors and
flash.events packages. By convention, constant names are written in all caps with words
separated by underscores.

Taking It Literally
Aside from variables and values returned from functions, you will use literals in your code. The term
literal refers to any value that is explicitly included in the code at the time it’s compiled. It offers a

18

Chapter 2: ActionScript 3.0 Language Basics

convenience when dealing with complex data types. Following are the different types of literals you
can include directly in your code:

� Numeric values like 98.6, -100, 0xff, and 6.02e23

� Boolean values true and false

� Strings written with single or double quotes, like "Lorem ipsum"

� The empty value null, the undefined value undefined, and the non-number NaN

� Array literals that use square brackets, such as ["Monday", "Wednesday", "Friday"]

� Generic objects defined using the curly bracket syntax such as {name:"Lovefoxx",
likesToDance:true}

� Regular expressions enclosed in forward slashes, as in /href="(.+?)"/

� Elements written in XML such as <menu><item id="bacon" label="Press to
Receive Bacon"/></menu>

You can find much more about these literals in the chapters on their respective data types.

Tip
I recommend that you avoid using literals frequently in your code, because they can be difficult to track and
change. If you use the same literal a few times, define a variable or constant with the literal value and use that
instead!
If you wanted to change this program from Fahrenheit to Celsius, you’d have to change 212 in multiple
places:

if (temp > 212) {
flame.level = 0;
temp = 212;

} else {
flame.level = 10;
while (temp < 212) {
temp = temp + 1;

}
flame.level = 2;

}

However, use a constant, and you only have to change one value:

const BOILING_POINT = 100;
if (temp > BOILING_POINT) {
flame.level = 0;
temp = BOILING_POINT;

} else {
flame.level = 10;
while (temp < BOILING_POINT) {
temp = temp + 1;

}
flame.level = 2;

}

As a side effect, your code becomes more self-explanatory. You could even use FLAME_MAX instead of 10 and
FLAME_OFF instead of 0. �

19

Part I: ActionScript 3.0 Language Basics

Commenting Your Code
Comments are sections of text that appear in your code but aren’t part of the program. They are usually
plaintext and not ActionScript, and the compiler ignores their existence entirely — passing right over
them. Comments are used to add notes to yourself or others who may work on your code. Although
some programmers shy away from using comments because it seems tedious or frivolous, leaving com-
ments is a good habit to get into. Comments can provide a quick explanation for what your code
is doing, saving you the time and confusion of trying to interpret the code, which of course makes
them most valuable for the most complicated parts of your code. When you are working with others,
comments become a helpful tool for describing your intention to other programmers. Or they can be
useful for your own benefit if you haven’t looked at a piece of code in a long time. Some specific uses
for comments are presented later in this section.

Types of Comments
There are two types of comments in ActionScript 3.0: single line and block comments. Because com-
ments are purely for your benefit, they are utterly interchangeable. Use whichever suits the task at
hand. Typically, single-line comments are used for shorter comments, and block comments are used
for longer chunks of text.

Single-Line Comment

You start a single-line comment by typing two forward slashes (//). Everything following the slashes
on the line is treated as a comment, which is to say, totally ignored by the compiler. Single-line com-
ments are useful for adding a note to a line of code:

var duration:Number = 400; //measured in milliseconds
var n:Number = (2*Math.random() – 1) * 100 //between -100 and 100

Block Comments

Block comments include all text between a starting and an ending marker. Use /* to start your com-
ment block and */ to end it. The compiler will ignore all text between the two markers.

/*
This is an example
of a multi-line
block comment.

*/

XML Comments

A third type of comment you might encounter is an XML comment. This is a block comment that is
used exclusively within XML code (including MXML). XML comments start with <!-- and end with
-->. The characters -- must not be included anywhere between the start and end markers.

public var xml:XML = <colors>
<color name="chartreuse" hex="0xDFFF00"/>
<color name="mauve" hex="0xE0B0FF"/>
<color name="cerulean" hex="0x007BA7"/>
<color name="Parcheesi" hex="0xF4A460"/> <!-- not sure this is a color -->

</colors>;

20

Chapter 2: ActionScript 3.0 Language Basics

Javadoc Comments

Javadoc (or ASdoc) comments are specially formatted comments that are ignored by the compiler but
heeded by a special tool that creates documentation. You’ll know you’re seeing javadoc comments
because of the delimiters, a /** start tag and a */ end tag. Also, certain directives inside the com-
ment, like @param, @return, @deprecated, and so on, are included in the syntax to help create
documentation. Typically, you’ll see javadoc comments before method signatures and at the top of
classes.

/**
* Calculates time until birthdays.
* @param your birthday
* @return the number of days until your birthday, rounded up
*/
public function daysUntilBirthday(bday:Date):int {...

See the documentation for your autodoc tool for more information about javadoc-style comments.
More information is available at http://bit.ly/asdoc-help.

When to Use Comments
As you’re starting out, it’s not a bad idea to add comments anywhere that your code might not be
completely self-explanatory, especially with algorithms that may be unfamiliar to you or other people.
Comments can be great for adding notes to remind yourself of something. A lot of people tag their
comments with keywords like TODO or XXX or FIXME, as in:

// Calculates the area of a square.
// TODO add a separate height and width to support rectangles.
public function calculateArea(width:Number):Number {

return width * width;
}

Comments can also be used to comment out a line of code, which allows you to keep a line of code in
the file but ignore it, so that you can put it back later if taking it out turns out to be a mistake. The
following code:

trace("hello world");

will display hello world, whereas the following will do nothing:

//trace("hello world");

Tip
As a matter of style, don’t let your code get too cluttered with ancient commented-out lines. Purge them when
you’re sure you don’t need them anymore. If you use version control software like SVN, you can always go
back in time to see code even after it’s been deleted from the source files. �

Self-Commenting Code
Some developers, myself included, would argue that the best kind of comments is no comments;
writing code so descriptive and obvious that comments are rarely if ever needed. This is called
self-commenting code. Write self-commenting code by using descriptive words for all variable names

21

Part I: ActionScript 3.0 Language Basics

and method names, using strongly typed and well-defined variables, and encapsulating complex func-
tionality into easy-to-describe functions. This leads to less reliance on commenting. Self-commented
code should ideally be understandable even by a non-programmer.

Introducing Scope
All variables and functions defined in ActionScript exist in a certain scope. This scope is defined as
the zone in which the object can be accessed. A variable or function is in scope when you’re writing
code that can access it; if you type a variable or function name that’s out of scope, ActionScript won’t
recognize it.

In the United States, the national government deals with issues affecting the entire country, such as
tax law; local governments deal with local issues, such as funding for a certain town’s school. National
governments aren’t equipped to handle local issues and vice versa. In most cases the national laws are
used except when overridden by a local law.

Scope works in much the same way. Variables operate in a particular scope depending on how and
where they are defined. Generally speaking, the more broadly defined variables are used except when
replaced by local versions. Let’s look at the different types of scope that you’ll be dealing with.

Scope can be either global or local. Objects in the global scope can be accessed from anywhere in the
code, whereas objects in local scopes can be accessed only through the object where they are defined.
In all code in this book, scope is controlled by class structures, their access control modifiers, and
namespaces. This level of control over scope is more fully described in Chapter 4.

ActionScript 3.0 doesn’t truly have a global scope that you can access. Everything is neatly organized
into packages and smaller structures. However, many classes and functions are placed in the default
package, which is always in scope.

Local scope is a bit more complicated. There are several layers of localized access depending on how
the object is defined. In general, the levels of scope are associated with the nested blocks of code.
If you are writing code inside a block (remember these are groups of statements inside curly braces)
and you reference a variable, ActionScript 3.0 looks for that variable declared inside the block, then
(if it’s not found) in the block enclosing that, and so on. This general principle is modified by access
control modifiers. I’ll cover packages, classes, and methods in Chapter 4, so I’ll revisit scope in more
detail then.

Caution
In reality, this guiding principle is not implemented precisely. ActionScript 3.0 doesn’t have true block-level
scope. But it does have levels of scope associated with the package block, class block, method block, and func-
tion blocks. Other blocks, like loop bodies, don’t actually have their own scope. You can declare variables in
them, but when they are compiled, the code acts as if all variables in a function, including these, were declared
at the top of the function. This is known as variable hoisting. �

I introduce scope here to explain the fact that when you declare a variable, it has a certain sphere of
influence. As you build functions, classes, and bigger structures, this will become more important.

22

Chapter 2: ActionScript 3.0 Language Basics

Introducing the Data Types
ActionScript 3.0 is a typed language. That means that every object (variable) is assigned a data type,
which determines what kind of variable it is and what data it stores. A variable’s type tells the com-
piler and Flash Player what type of value to expect. You use types both when declaring variables and
when passing them around your program, as you’ll see with functions.

Declaring Types
To declare the data type of a variable, follow the name of the variable with a colon and its type. You
can think of this like the convention of written English like ‘‘Roger Braunstein: Purveyor of Pugilism.’’
Once you declare the type of a variable, the compiler works to ensure that only proper types of data
are stored in the variable.

var x:Number;
var name:String = "Roger";

x = 42; // No problem
x = -13; // No problem
x = 3.141; // No problem
x = "foo"; // Throws compile time error!
x = name; // Throws compile time error!

Because x is defined as a Number, it can’t be assigned a String value like "foo". The compiler
checks all the incoming data types to make sure they’re compatible. If a problem is encountered, the
compiler produces an error.

Errors sound bad, but compiler errors are your friends. Imagine what would have happened if there
were no error. The value of x would suddenly be a String. Then the next time you tried to use it as
a Number, the results wouldn’t make sense ("foo" * 8.5 = ???). Keeping data types intact helps
your code to be predictable and stable.

Using Untyped Variables
Occasionally, you may need to store a value in a variable without knowing what type of data it
will hold. For this, AS3 allows the use of a wildcard (*) data type. The * denotes that a data
type is unknown until runtime (dynamic) or will accept more than one type of data (for example,
both strings and numbers). The wildcard is useful when creating functions that behave differently
depending on the data type of its parameters.

You should exercise caution when using these types because type checking at both compile time and
runtime will not be available for these variables, and your results may be unpredictable.

Connecting You to an Operator
Operators are built-in, often symbolic entities that perform a specific task on one or more values. Big
subsets of these operators are logical and arithmetical, so you will probably recognize and intuitively
understand many of them. Some of the operators are symbols (such as +), and some are words (such
as return). Operators can come before, between, or after their operands. (These are called prefix,
infix, and postfix operators, if you want to get technical.)

23

Part I: ActionScript 3.0 Language Basics

Unary vs. Binary Operators
Some operations are applied to a single argument, such as the increment operator (++); these are
unary operators. Others operate on two operands, such as the plus operator (+); these are called
binary operators. There is also a ternary operator, which takes three arguments. It’s important to
provide the correct number of arguments when using operators, which isn’t difficult because they’re
fairly self-explanatory. (You can’t add only one value.)

var counter:int = 0; //counter is 0
counter++; //now it’s 1. ++ takes one argument, counter
counter = counter + 5; //now 6. + takes two arguments, counter and 5

Order of Operations
Operators follow a certain order of operations. That is, operators with a higher precedence are pro-
cessed before ones of lower precedence. For one, this order of operations preserves the order of opera-
tions in written arithmetic. In general, more complex operations are executed first, followed by simpler
operations.

ActionScript executes operations in more or less the following order:

1. Expressions contained within parentheses are executed starting with the most deeply nested,
and working outward.

2. The results of functions are evaluated, assuming all their arguments are evaluated.

3. The multiplication, division, and modulus operators (*, /, %) are applied from left to right.

4. The addition and subtraction operators (+, -) are applied from left to right.

As rule 1 implies, you can use parentheses to group expressions into subexpressions that will be eval-
uated before moving on to other operations. For example:

trace(3 + 4 * 5); // Displays : 23
trace((3 + 4) * 5); // Displays: 35

Use parentheses to create your own order of operations.

Some Commonly Used Operators
Here are some operators that you’re likely to see. This is just a small sample of the operators available
to you in ActionScript 3.0. Some other operators are more specific to certain types and are covered in
their appropriate chapters.

Assignment (=)

Undoubtedly the most important operator, the assignment operator sets the value of the variable on
the left side to the expression on the right side. The left side must be a single valid variable or prop-
erty; you can’t have expressions on the left side to dynamically choose what variable is being assigned
to. The right side can be any expression that ActionScript 3.0 can evaluate.

Arithmetic (+, –, *, /)

These should need no explanation, perhaps except that multiplication is written as a * instead of ×,
and division is written as / instead of ÷. Trust me — this way is much easier to type.

24

Chapter 2: ActionScript 3.0 Language Basics

Modulo (%)

The modulo operator returns the remainder after a division operation. It divides the first number by
the second and returns the leftover portion only.

0 % 3 // 0
1 % 3 // 1
2 % 3 // 2
3 % 3 // 0
4 % 3 // 1
5 % 3 // 2
6 % 3 // 0
...

Increment (++) and Decrement (– –)

These operators add or subtract 1 from the number they’re used on. These are unary operators, so
they require only one argument:

var x:Number = 5; //x=5
x++; //x=6
x--; //x=5
++x; //x=6

When the increment or decrement operator is placed before the operand, ActionScript processes the
operation with a higher precedence.

var x:Number = 5;
trace(x++); //prints 5, then increments x to 6
trace(++x); //increments x to 7, then prints 7

Compound Assignment Operators (+=, -=, *=, /=, and %=)

The compound assignment operators provide a shorthand solution to performing arithmetic on a vari-
able and storing the result in the same variable. For instance, += adds the left-hand variable to the
right-hand expression, storing the result in the left-hand variable.

x += 1;

is the same as writing

x = x + 1;

The following code shows more examples of these compound operators.

var x:Number = 0;

x += 5; // x = 5
x -= 3; // x = 2
x *= 3; // x = 6
x /= 2; // x = 3
x %= 3; // x = 0

25

Part I: ActionScript 3.0 Language Basics

Comma Operator (,)

The comma operator joins several subexpressions. The whole expression takes the value of the last
subexpression in the ‘‘list.’’ You don’t see this one used frequently, but it can be helpful.

var a:Number = 50;
var b:Number = (a *= 2, 50 + 50);
trace(a, b); //100 100

This is a tricky one. The snippet demonstrates that even though only the last expression separated
by commas is returned, all of them are evaluated. The variable b is assigned 100 after evaluating the
second subexpression 50+50, but you can tell by the fact that a becomes 100 that a*=2 was evalu-
ated, too.

I’ll introduce more of the operators in subsequent parts of this chapter. A comprehensive chart of all
operators and their uses can be found in your trusty AS3LR.

Note
As mentioned in the Introduction, the ActionScript 3.0 Language Reference (AS3LR) or ActionScript 3.0 Lan-
guage and Component Reference (AS3LCR) is the definitive source of information on all parts of the Action-
Script 3.0 language. This document is available free online and is bundled with all of Adobe’s ActionScript 3.0
development tools. If you’d like to see a full list of all the operators, refer to the ‘‘Language Elements’’ section
of AS3LR. Find it at http://bit.ly/as3lr. �

Making Logical Choices with Conditionals
What good would it be if your programs and functions executed the same way every time you ran
them? Essentially, the element of choice over how to act under different circumstances would be lost.
That’s where conditionals, or decision-making points in your code, come into play. Conditionals, such
as the if statement, enable you to evaluate the truth of a logical expression and react differently in
different scenarios.

All conditional statements deal with Boolean values. Booleans are simple logical values that can only be
one of the values true or false. Any logical expression can be evaluated down to either true or
false and used with conditional operators.

if Statements
The most commonly used conditional is the if statement. An if statement allows you to execute a
piece of code only if a certain condition is met: if this is true, then do that.

if (logical expression) {
// code to execute if the expression is true

}

An if statement is a whole statement, but unlike other statements, you usually don’t end it with
a semicolon after the block closes. In general, you don’t use a semicolon after the end of a block
(although adding one won’t do any harm).

26

Chapter 2: ActionScript 3.0 Language Basics

Here’s an example of an if statement. It checks to see if the value of weather is equal to the string
"rain" and if so it calls the function bringUmbrella(), a hypothetical function that brings
along your umbrella. Don’t worry about the function syntax: you’ll learn about functions in detail in
Chapter 3.

if (weather == "rain") {
bringUmbrella();

}

Note
{} are optional for the body of an if statement that is only one line, but I recommend that you always use
brackets for the sake of consistency and readability. In examples, you may catch me omitting brackets if I can
fit the block on the same line as the if statement. I’m just trying to save you some pages. �

Equality (==)
In the preceding example, the if keyword is followed by the logical expression to evaluate in paren-
theses. Notice that there are two equal signs and not just one. This double equal sign is known as
the equality operator (==). It checks to see whether the value on the left is equal to the value on the
right. This is quite different from the assignment operator (=), which sets the variable on the left to
the value on the right. The double equal sign is a logical comparison operator, which means it evalu-
ates to a single Boolean result: either true or false. In this case, you’re checking to see if the value
of the variable weather is equal to the string "rain".

Caution
Using the single equal sign instead of a double equal sign in a comparison statement can cause confusing and
unexpected results. This typo happens to even the most experienced developers when they’ve been program-
ming too late into the night (or next day). The compiler can sometimes identify when you’re accidentally using
= instead of ==, giving you a warning. Some developers get into the habit of putting the literal on the left when
comparing to a value, as shown. Because it’s not legal to assign a value to a literal, if you are in this habit and
accidentally use = when you mean ==, the compiler will catch it as an invalid assignment.

if (0 == counter) //putting the literal on the left
if (0 = counter) //accidentally typing this yields an error
if (counter = 0) //this is perfectly legal though wrong

After the logical expression, you have the block of code that will be executed if the expression is
found to be true. In this case, you’re calling a function called bringUmbrella(). If weather is rainy,
this block of code will be run. If the value of weather is anything else, the comparison evaluates to
false (‘‘no, weather does not equal rainy’’) and the body of the if block will not be run. Execution
of code will continue after the if block.

Testing Other Comparisons
Logical expressions can evaluate more than just equality. ActionScript includes many other types of
comparison operators and logical operators, which you can use alone or combine into more complex
types of comparisons.

27

Part I: ActionScript 3.0 Language Basics

Greater Than (>) and Less Than (<)

Besides checking for equality, you can compare whether a value is less than or greater than another
number by using the corresponding operators, < and >. The following code says ‘‘If the rainfall is
more than 0, the weather is rainy.’’

if (rainfall > 0) { weather = "rain"; }

You can also use less than or equal to (<=) and greater than or equal to (>=), as follows:

var x:int = 0;

var a:int = -1;
var b:int = 0;
var c:int = 1;

trace(x <= a); // Displays: false
trace(x >= a); // Displays: true
trace(x <= b); // Displays: true
trace(x >= b); // Displays: true
trace(x <= c); // Displays: true
trace(x >= c); // Displays: false

Not Equal to (!=)

Adding an exclamation point before a bit of logic will evaluate the opposite of the expression. This
is known as the not operator (!). Similarly, ActionScript includes a not equal to operator (!=)
which, as you might imagine, checks to see if the value on the left is not equal to the value on the
right:

if (weather != "sun") { bringUmbrella(); }

This statement brings an umbrella if it is not sunny outside. Another way of writing this would be to
use the not operator to negate an equality:

if (!(weather == "sun")) { bringUmbrella(); }

This line of code functions identically to the one earlier. Because the not operator binds very tightly
(it has a high precedence in the order of operations), you have to use parentheses. Otherwise, the
expression !weather == "sun" evaluates whether not-weather is equal to ‘‘sun.’’

And (&&) and Or (||) Operators

If you want to act on a combination of conditions, you might try nesting or duplicating your if state-
ments together like this:

if (weather == "rain") { bringUmbrella(); }
if (weather == "sleet") { bringUmbrella(); }
if (weather == "snow") { bringUmbrella(); }

28

Chapter 2: ActionScript 3.0 Language Basics

if (weather != "rain") {
if (weather != "sleet") {

if (weather != "snow") {
leaveUmbrella(); }

}
}

As you can see, this takes a lot of effort to write. Luckily, ActionScript uses two logical operators that
allow you to combine multiple conditions into a single if statement. They are and (&&) and or (||).
Using the and operator, both operands must be true for the expression to be true. You might say ‘‘If
a and b are true, then do something.’’

Caution
With these operators, like the equality operator, you have to make sure to use two of the characters. The & and
| operators exist for bit math, covered in Chapter 13, ‘‘Binary Data and ByteArrays.’’ Remember to use &&
and || for logical combinations. �

Using the or operator, the expression is true when either (or both) of the operands are true. It basi-
cally says, ‘‘If a or b is true, do something.’’

Let’s rewrite the preceding examples using and and or.

if (weather == "rain" || weather == "sleet" || weather == "snow") {
bringUmbrella();

}

if (weather != "rain" && weather != "sleet" && weather != "snow") {
leaveUmbrella();

}

Checking for Null Values

In ActionScript 3.0, null is a special value (non-value, really) that signifies nothing; it’s sometimes
used for empty variables that haven’t been assigned anything yet, values that can’t be represented and
values that can’t be determined. When you’re working with objects that could be null, it’s important
to check whether the value is null before attempting to access methods or properties of the object.
Failure to do so can result in a runtime error. Checking for null is simple:

if (weather != null) { checkWeather(); }

If the weather is not null, the checkWeather() function is called. You can also use the following
code to achieve the same result.

if (weather) { checkWeather(); }

The value for weather will be converted into its Boolean equivalent before being evaluated. There
are special rules for coercing types into other types implicitly. With objects in general, any non-null
value is coerced to true, whereas null or undefined values are coerced to false. This way of
checking is easier to write but is less reliable because it can cause different results depending on the
data type of the object you’re checking. Strings and Numbers have special rules. Because weather
is presumably a String, it goes by String coercion rules, in which the empty string "" is also
considered to be false.

29

Part I: ActionScript 3.0 Language Basics

if..else
With the else keyword, you can add an additional block of code to an if statement that will be exe-
cuted if the condition is not met. Naturally, with its addition the conditional is called an if..else
statement. The example that follows could be read as, ‘‘If it’s raining, bring an umbrella; otherwise,
leave the umbrella behind.’’

if (weather == "rain") {
bringUmbrella();

} else {
leaveUmbrella();

}

Furthermore, right after else you can add another if statement that will be checked only if the first
if statement is false. The statement that follows says, ‘‘If it’s raining, bring an umbrella; otherwise, if
it’s snowing, bring a coat; otherwise, if it’s sunny out, bring sunscreen.’’

if (weather == "rain") {
bringUmbrella();

} else if (weather == "snow"){
bringCoat();

} else if (weather == "sun") {
bringSunscreen();

}

Only one of these branches will ever be run. Once any of the if clauses evaluates to true, the
code in the associated block is run, and control of the program passes to whatever follows the whole
if..else structure. You can keep chaining on else ifs to your heart’s desire. And you can end
the whole shebang with one final else, which executes if none of the previous if branches was
chosen.

Note
The else if construct is not a special kind of statement. It’s simply putting another if statement inside the
else block of the previous if statement. Omitting the braces in this case keeps things tidy and lets you read
the code as ‘‘else if...,’’ even if it’s really ‘‘else: if....’’ �

switch
If you need to test the condition of something against several possible outcomes, as in the last example
when you were testing for rain, snow, and sun, it might be best to use a switch statement. A switch
is just like a giant if..else if chain where each if tests the same expression (in this example,
the weather). You can check for any number of different cases or possible outcomes for the expression
you’re evaluating and even define a default behavior in case none of the cases match.

Notice that break statements are used after each case. The break statement tells the conditional
statement or loop to cancel the rest of its operation without going any further. Unlike the if state-
ment, which executes code in a block enclosed with curly braces ({}), when working with switches,
you must include break after each case to prevent the code from continuing to the next case.

30

Chapter 2: ActionScript 3.0 Language Basics

switch (weather) {
case "rain":
bringUmbrella();
break;

case "snow":
bringCoat();
break;

case "sun:
bringSunscreen();
break;

default:
stayInside();

}

This is equivalent to writing:

if (weather == "rain") {
bringUmbrella();

} else if (weather == "snow") {
bringCoat();

} else if (weather == "sun") {
bringSunscreen();

} else {
stayInside();

}

It’s not required, but you can use a default block to define a case that executes if none of the other
cases in the switch statement match.

Tip
You can intentionally omit the break statement after a case. This allows the subsequent cases to run in addi-
tion to the current one, if they also match the condition. For example, you could replace

} else if (weather == "thunder" || weather == "lightning") {
stayInside();
}

with

case "thunder":
case "lightning":
stayInside();
break;

The Conditional Operator
The final method that you can use to branch depending on a Boolean expression is the conditional
operator, sometimes called the ternary operator because it is the only operator to take three operands
(?:). The conditional operator behaves similarly to the basic if statement.

(logical expression)? value if true : value if false

31

Part I: ActionScript 3.0 Language Basics

The conditional operator takes three expressions as operands. The first is a logical expression to eval-
uate for truth, much like the expression passed into an if statement. This can be a comparison, a
variable, a function call, or any expression that can evaluate to a Boolean value. It may be required to
couch the expression in parentheses to ensure it’s interpreted in the correct order; you may choose as
a matter of style to always enclose the expression in parentheses.

The logical expression is followed by a question mark. Immediately after the question mark is the
expression that will be evaluated and returned if the logical statement is found to be true. This is fol-
lowed with a colon, and finally, the expression to be returned if the first value was found to be false.

Here’s a practical example. This time, you check for hail:

(weather == "hail")? bringMotorcycleHelmet() : bringStrawHat();

This is basically the same as writing:

if (weather == "hail") {
bringMotorcycleHelmet();

} else {
bringStrawHat();

}

The thing that makes the conditional operator unique is that the entire thing evaluates to the result
of the correct branch, rather than simply executing it like an if..then..else statement. So if it’s
hailing, not only will bringMotorcycleHelmet() run, but the entire conditional expression will
be replaced with whatever value bringMotorcycleHelmet() returns. So you can use conditional
expressions within other expressions. The following:

hatType = (weather == "hail")? "helmet" : "straw";

sets hatType to helmet or straw depending on the value of weather.

One common usage of this operator is to set a default value for values that may or may not be
defined:

weather = weather? weather : "partly cloudy";

The preceding code might look a bit confusing, but what it’s doing is simple. It’s checking to see if
weather is defined and, if not, assigning the value of "partly cloudy". Because most objects in
ActionScript evaluate to true if they have a value and false if they are null or undefined, the
expression weather? will evaluate to true if there is a definition and false otherwise. One of the
two following expressions will be returned and assigned to the variable resulting in either:

weather = weather

which causes no changes, or assigning the default value of "partly cloudy":

weather = "partly cloudy"

32

Chapter 2: ActionScript 3.0 Language Basics

Caution
Although conditional statements are much more compact to write, they can be more difficult to read and
understand quickly than if statements, especially when the conditional expression is complex. Use them when
you need to switch between values within an expression. �

Repeating Actions Using Loops
Loops are control structures that allow you to repeat a block of code multiple times, often while pro-
gressing through some set of data. Just as conditional statements make your programs interesting by
providing points of variation, loops make your programs interesting by allowing you to perform oper-
ations that you wouldn’t be able to do by hand. After all, isn’t the computer supposed to be doing
the work?

The uses for loops are endless. For example, you might want to read a list of 100 items, apply a cal-
culation to every graphic on the screen, search through an array for a particular value, initialize every
object in a list, or just write every letter from A to Z.

Using for Loops
There are a few different types of looping structures in ActionScript 3.0. Let’s start with the classic,
the original, the for loop. If you’ve used any C-like language, you are probably familiar with this
structure.

A common for loop looks something like this:

for (var i:int = 1; i <= 100; i++) {
// do some action

}

If you’re not familiar with loops, however, that code might look a little bit scary, but really, it’s not so
bad. You can read this as follows. ‘‘Start i at 1. Keep going as long as i is 100 or less. Count up i
1 at a time.’’ Or, ‘‘For every integer i from 1 up to and including 100, do some action.’’ Or, ‘‘Repeat
some action 100 times.’’

Let’s break it into sections:

� for — All for loops start with this keyword.

� var i:int = 1; — The loop initializer that runs once as the loop begins. You’re creating
a new integer called i and setting it to 1. This variable, i, will be the number that counts up
during each loop. Loop variables are frequently named i, sometimes proceeding to j, k, and so
on, when there are multiple nested loops. The letter i stands for iteration or index. The type of
the loop variable can also be a uint or a Number.

� i <= 100; — The conditional. Defines the condition under which the loop may continue
running. This is like an if statement that asks, ‘‘If i is less than or equal to 100, keep on going.’’
The number 100 is arbitrary and should be replaced with whatever your upper limit is.

� i++ — The counter. Tells the for loop what to do after each iteration of the loop. Usually
counts up or down on the loop variable. Remember that the ++ operator adds one to the
argument.

33

Part I: ActionScript 3.0 Language Basics

� // do some action — The loop body. All code inside this block gets executed during each
iteration. You typically use the changing value of the loop variable inside this code so that the
loop does something different every iteration, such as looking in every successive index of an
array.

For an example of a for loop, I’ll calculate the factorial of four. The factorial of x is obtained by mul-
tiplying every integer between 1 and the argument x, so the factorial of four is 4*3*2*1=24.

var x:int = 4;
trace("the factorial of", x, "is:");
for (var factorial:int = 1; x > 0; x--) {
factorial *= x;

}
trace(factorial); //24

In this example, you multiply every number between 1 and 4 using a loop to count between these
numbers. In the loop, x decreases in increments of one (x--) as long as it’s positive (x > 0). Every
time, the current value of x is multiplied with factorial, a running total that starts at 1.

Using for..in and for each..in
for loops can be useful for repeating an action multiple times, especially when the number of repe-
titions is known. However, once you master data structures such as Array, Object, and XMLList,
you’ll find yourself using loops to iterate through collections of data all the time. Depending on the
circumstance, this can be greatly aided by several for loop variants in ActionScript 3.0. I’ll introduce
these loops here, but you’ll return to them when you learn about Array and Object.

for..in

The for..in loop uses the properties of an Object to iterate. So, for every object stored within
another object, the loop body executes once. This loop will be revisited in Chapter 10, ‘‘Objects and
Dictionaries,’’ after an in-depth look into Objects.

A typical for..in loop is depicted here:

for (var propertyName:String in targetObject) {
//do some action

}

In this case, you could read this as, ‘‘For every property of the object called targetObject, do some
action,’’ or ‘‘Act upon every property of the target object.’’ targetObject is the object whose proper-
ties you’re looping through. The propertyName variable is the loop variable, which stores the name
of the current property contained in targetObject as the loop proceeds through them.

for each..in

There is another variation of the for loop in ActionScript 3.0 that is perfect for iterating through
certain data types that support it, notably Array, Vector, Object, and XMLList. This is the
for each..in loop, depicted here:

for each (var element:Object in targetObject) {
// do some action

}

34

Chapter 2: ActionScript 3.0 Language Basics

This is slightly different from the standard for..in loop because with for each..in, you deal in
the data itself rather than an index or a property name that can be used to look up the data in the
data structure. This looping structure eliminates the need for code inside the loop body to look up
the associated data in the structure, making things just that much more concise. The element is the
property rather than just the name of the property. You’ll see this loop structure again in Chapter 8,
‘‘Arrays.’’

Using while and do..while
The final type of loop that I’ll look at is the while loop. while is a much more basic type of loop
than for. You can use while loops when you need to say, ‘‘As long as a certain condition is met,
keep looping.’’

while

This is the basic structure of a while loop:

while (condition) {
// do some action

}

That’s it. Inside the parentheses, put whatever conditional statement you want to test for. As long as
the condition is true, the loop body will execute again.

The following two loops are virtually identical:

for (var i:int = 0; i < 100; i++) {
// Do some action

}

var i:int = 0;
while (i < 100) {

// do some action
i++;

}

while loops can be useful when you need to loop without knowing ahead of time when you’ll need
to stop. For example, this loop adds random numbers together until the result surpasses 100:

var sum:Number = 0;
while (sum < 100) {

trace(sum + " - not there yet.");
var random:Number = Math.ceil(Math.random() * 10);
//create a random number between 0 and 10
sum += random;

}
trace(sum + " - surpassed 100. END");

35

Part I: ActionScript 3.0 Language Basics

When I ran this, I got the following output. Yours will be different because random numbers are
being used.

0 - not there yet.
3 - not there yet.
12 - not there yet.
21 - not there yet.
27 - not there yet.
32 - not there yet.
39 - not there yet.
49 - not there yet.
55 - not there yet.
64 - not there yet.
70 - not there yet.
80 - not there yet.
90 - not there yet.
92 - not there yet.
95 - not there yet.
104 - surpassed 100. END

Inside a while loop is another perfect place to utilize a break statement. Recall from the case
statements that break will exit out of a block of code. It can be used to prematurely (or maturely?)
terminate a loop. If you really have no way to write a succinct expression that determines the termi-
nal conditions for a loop, you can have the loop continue indefinitely, but interrupted at the proper
moment by a well-timed break.

while (true) {
//do some stuff
var userInput:String = getUserInput();
if (userInput == "exit") break;
//do some more stuff with the user input

}

The preceding code will execute forever as far as the while loop is concerned, because I’ve used
true as the loop condition, which will always be true, clearly. It’s only when the user input matches
‘‘exit’’ that the loop terminates, and it terminates in place, before any of the rest of the loop body is
executed. Be careful with this technique. You might want to put in a failsafe that only lets the loop
execute a certain maximum number of times, just to be sure. You’ll see the scary possibilities of an
infinite loop next.

do..while

The standard while loop comes in one additional exciting flavor — the do..while loop. The only
difference here is that the check for the condition happens after the loop is complete instead of before.
Consequentially, the loop body always runs at least once — just like the postman. Or something.

var sum:Number = 10;
do {
sum += 40;

} while (sum < 5);
trace(sum + " - surpassed 5"); // Displays: 50 - surpassed 5

Even though the loop condition for the previous loop starts out false, you’ll never know. It’s not even
tested until sum is way up to 50.

36

Chapter 2: ActionScript 3.0 Language Basics

Battle of the Loop Structures: for vs. while
Most developers choose for loops over while loops for most situations. You should certainly know
about both and choose the one that makes the most sense for each situation. If you’re not sure, just
stick with for loops. Either can be used for most situations. for statements express a lot more infor-
mation about the loop in a single line, and are less likely to result in an infinite loop because they
tend to count toward a well-defined upper (or lower) limit. Furthermore, although I’ve shown a basic
for loop that increments a single loop variable up to its limit, lots of interesting variations are possi-
ble. The three loop control expressions can really be anything. If you want to get tricky, you can use
a comma operator in the loop initialization expression or the loop counter expression to initialize and
operate on multiple loop variables at once.

Avoiding Infinite Loops
If any loop is allowed to continue running unchecked, you are likely to encounter an infinite loop. An
infinite loop can occur when the loop variables fail to change or when the loop termination condition
is poorly designed so that it never occurs. Infinite loops should always be avoided as they cause the
Flash Player to hang. The following is a simple example of an infinite loop.

Caution
Only run this code if you’re ready and willing to forcefully terminate Flash Player.

while (true) {
trace("desu");

}

Infinite loops don’t have to be as obvious as while(true) either. Any loop structure can be infinite if there’s
a mistake in its logic, for example:

for (var i:Number = 100; i > 0; i++) {
trace("desu");

}

Using break and continue
In some situations you may find that your loop is no longer useful or you’ve found the result you
were looking for. In these cases you can use continue and break, respectively.

continue

continue ceases to execute the current iteration of the loop body and skips ahead to the next iter-
ation. Use it when the loop body is long or intensive and you can rule out early the need to perform
the remainder of the loop body.

break

break stops the current iteration of the loop body and terminates the loop outright. Use it when the
loop has fulfilled its purpose before the loop condition fails. break is especially useful in loops that
search for something.

37

Part I: ActionScript 3.0 Language Basics

Say you want to search through a bunch of haystacks to find "needle". Since I haven’t intro-
duced data structures yet, I’ll use some made-up methods to look for the needle. Inside every loop
iteration, if you dig up only "hay", you can use continue to skip to the next iteration until you’ve
identified the needle, and then break the loop so that unnecessary repetitions are halted.

var stuff:String, needle:String;
for (var i:int = 0; i < numberOfHaystacks; i++) {
stuff = lookInHaystack(i);
if (stuff == "needle") {

needle = stuff;
break;

}
}
if (needle) {
trace("I found the needle!");

} else {
trace("I couldn’t find the needle.");

}

Summary

� ActionScript code is plaintext contained in an ActionScript file, usually a class file.

� ActionScript code consists of statements and expressions gathered into blocks of code.

� Whitespace and comments are ignored by the compiler, so you can use them to improve the
readability of your code and ease its comprehension.

� ActionScript gets its power from the use of variables, which are essentially containers for hold-
ing data for the duration of your program.

� Each variable has a type that defines the data that can be stored inside it.

� Operators are atomic functions used for common applications such as doing basic math and
comparing values.

� You can add decision-making logic to your program through the use of if statements and other
conditionals.

� Repeating the same code multiple times is simplified by using for and while loops and their
variants.

38

Functions
and Methods

N
ow that you know all about creating variables, you probably want to
start actually doing something with them. This is where functions and
methods come in. Functions are reusable blocks of code, also called

methods when they are part of a class. Functions allow you to organize your code
into independent pieces of functionality. They can be used to return various
results based on input you provide. Perhaps most important, functions can
encapsulate behaviors within a class and provide a public interface to those
behaviors — an organized way for other code to access those behaviors. This
chapter covers ways to use functions and create your own from scratch.

If there’s one thing to remember about ActionScript, it’s that every variable and
part of a class is an object. Functions are no exception. While it might be strange
to imagine, functions are instances of the Function class and contain their own
methods and properties. In the section ‘‘Functions as Objects,’’ you’ll learn more
about this.

Calling Functions

At the most basic level, a function is a well-defined piece of code, a sequence
of statements in a block that has a beginning and an end. A function wraps
up these sequences, and you run them at will. Every program you’ll write will
depend heavily on functions.

Executing the code within a function is known as calling or invoking the func-
tion. Functions in ActionScript are called by using the function’s name followed
by a pair of parentheses (). Officially, these parentheses are known as the call
operator.

Additional information can be passed on to your functions by adding arguments
or parameters inside the parentheses and separating them by commas. Some
functions have optional or required arguments. The number and type of val-
ues passed in must match the function definition, also called a method signature.
Other functions require no arguments and are called by using an empty pair of
parentheses.

39

Part I: ActionScript 3.0 Language Basics

These are both valid function calls:

trace("Hello world!");
addChild(mySprite);

Tip
Be careful not to forget the parentheses operator when calling a function. Doing so is not an error, and the
compiler won’t always catch it! An expression with the function name and no call operator will evaluate the
function as a variable (an object of type Function) rather than executing the code within the function, pro-
ducing unexpected results. You will see later in the chapter how and when to use functions without the paren-
theses operator. �

You’ll learn more about how methods and functions differ in Chapter 4, ‘‘Object Oriented Program-
ming.’’ I’ll just say here that you’ll hear the terms method and function tossed about without much care,
but they are distinct. A method is a function that’s part of a class.

Note
Some ActionScript operators, such as new and delete, are not technically functions even though they appear
to behave the same way. As such, you do not need to add parentheses around the arguments for these com-
mands and won’t be able to access Function methods and properties for these reserved words. Consequently,
these operators, unlike most functions, exist globally and will be available anywhere in your code. �

Creating Custom Functions
To create your own functions, you add function declarations to your ActionScript source code. This is
called defining or declaring a function. Let’s look at how this is done.

Defining a Function
Function declarations share this basic structure:

function doSomething(arg1:TypeA, arg2:TypeB):ReturnType {
//the executed code goes here.

}

Let’s break it down one word at a time.

� function — First is the function keyword. This is always required when defining a func-
tion, just as var is always required when defining a variable.

� doSomething — Immediately after the function keyword is the name of your function.
This is the command you will call when you want to run the function.

Tip
The best function names are descriptive, describe an action, and can be read easily as though you were reading a
sentence. A good rule of thumb is that your function name will start with a verb. For example, button() is not as
useful as drawButton(). Likewise, the best variable names are usually nouns. Together, you can combine verb
and noun to create a short sentence such as snakeHandler.feed(python, mouse). �

40

Chapter 3: Functions and Methods

� (arg1:TypeA, arg2:TypeB) — Following the function name is the comma-separated list
of arguments inside a pair of parentheses. Each argument should be followed by a colon and the
data type for the argument. You’ll investigate the argument list in more detail shortly.

� :ReturnType — After the parentheses are another colon and the data type of the value the
function returns when it is done executing.

� {...} — The block of code that’s executed when the function is called is contained within the
two curly braces {}. This is known as the function body.

All functions require the function keyword, the function name, the parentheses, and the function
body. The rest of the parts are not required, but that doesn’t mean you shouldn’t use them.

Passing Arguments to Your Function
Functions become much more interesting and much more useful when you provide them with some
external input. Functions are like machines that follow a well-defined set of steps. A machine is
far more useful when you can give it different kinds of raw materials to operate with. This can be
achieved by adding arguments, also known as parameters, to your function definition. To do this,
simply list one or more arguments within the parentheses of a function statement. The names you
define here will be available in the function body as locally scoped variables that you can use to
execute your code.

Not all functions will require parameters. Those functions will be invoked with nothing between the
parentheses.

This function calculates the circumference of a circle:

function getCircumference(diameter:Number):Number {
return Math.PI * diameter;

}

The parameter names — diameter in this case — exist in the local scope for the function. Here you
see that the variable diameter is used in the line inside the function body without being declared
with var. The argument list serves to declare these variables, their names, and types.

Passing by Reference or by Value

ActionScript 3.0 handles primitive data types and complex data types differently when it comes to
passing values into a function. Primitive data types are passed by value — that is, their value is copied
into the function, leaving the original value intact and unchanged despite what may happen within the
function. Complex data types pass values by reference, which uses the actual object passed in instead
of a duplicate. Incidentally, these rules apply to variable assignments, too.

If you use a computer, you’re likely to be aware of the difference between copying files and creating
shortcuts (or aliases). As shown in Figure 3-1, passing by value is a lot like duplicating a file because
the original file remains where it is, unchanged. Passing by reference is more like creating a shortcut
to the original value. If you create a shortcut to a text file, open the shortcut, and edit it, your changes
are saved in the original file that you linked to.

The following is an example of passing by value. Notice that the original value doesn’t change:

function limitPercentage(percentage:Number):Number {
//ensure the percentage is less than 100
percentage = Math.min(percentage, 100);

41

Part I: ActionScript 3.0 Language Basics

//ensure the percentage is greater than 0
percentage = Math.max(percentage, 0);
return percentage;

}

var effort:Number = 110;
var trimmedPercentage:Number = limitPercentage(effort);

trace(effort, "%"); // Displays: 110%
trace(trimmedPercentage, "%"); // Displays: 100%

FIGURE 3-1

Copying a file is like passing a parameter by value, whereas creating a shortcut is like passing a
parameter by reference.

Passing by Value

Passing by Reference

The original value for effort hasn’t changed even though the percentage argument variable was
reassigned during the course of the function.

The opposite is true for complex values. They are passed in by reference, meaning that the argument
acts like a shortcut or link to the original value. Changes to the argument are reflected as changes
directly on the value that was passed in. Most data types pass references to variable assignments. The
following shows how employee is directly linked to the object passed in as a parameter.

function capitalizeEmployeeName(employee:Object):void {
if (employee.name != null) {

employee.name = employee.name.toUpperCase();
}

}

var person:Object = {name:"Peter Gibbons"};
capitalizeEmployeeName(person);
trace(person.name); //PETER GIBBONS

As you can see in this example, the name capitalization is happening directly on employee. That’s
because the employee value refers to the original copy of person — hence, the person’s name is
linked as well.

42

Chapter 3: Functions and Methods

The following ‘‘primitive’’ data types are passed by value:

String
Number
int
uint
Boolean

All other data types are passed by reference.

Setting Default Values

You can set default values for a method’s arguments. Adding a default value for a parameter allows
you to omit the parameter when calling the function — and when omitted, the parameter takes on
the default value. To do this, simply add an equal sign (=) and the default value after an argument
name, as follows:

function showGreeting(name:String = "stranger"):void {
trace("Hello," + name + ", nice to meet you.");

}
showGreeting("Mr. Whimsy"); //Hello, Mr. Whimsy, nice to meet you.
showGreeting(); //Hello, stranger, nice to meet you.

As you can see, in the second call, the name parameter is omitted when calling the function, and the
function uses the default value of "stranger".

There is one other rule to keep in mind when using default values. Because all values with a default
are optional, they must be placed last in the order of arguments, and you can’t follow an omitted argu-
ment with an included argument. Because arguments are positional, it’s not clear when or where one’s
been omitted unless you omit every argument after a certain point. The following code

function storeAddress(name:String, zip:String = null, email:String)

is not valid because email is a required parameter and it appears after zip, which is optional. The
correct order would be

function storeAddress(name:String, email:String, zip:String = null)

Using the Rest Parameter (...)

The rest parameter (...) is a keyword that accepts a variable number of additional arguments. You
follow this keyword with an argument list name, which will be used inside the function body to
access the additional arguments — they will be stored as an Array. Adding a rest parameter
to your function allows you to make calls with as many arguments as you like. For example, if you
want a function that adds any quantity of numbers, you might use the rest parameter:

function sum(... numbers):Number {
var result:Number = 0;
for each (var num:Number in numbers) {
result += num;

}
return result;

}

trace(sum(1,2,3,4,5)); //15

43

Part I: ActionScript 3.0 Language Basics

The values passed in to the function are contained within the argument list called numbers. When
you loop through the array, you can access each value.

Cross-Reference
To make the rest parameter useful, you’ll need to understand Arrays. You’ll find all you need in Chapter 8,
‘‘Arrays.’’ �

The rest parameter can also be used with other required arguments. The required parameters will
have their own names as usual and will exist independently of the variable argument list. Any addi-
tional parameters after the required ones will be stored in the argument list. Let’s modify the previous
example so that it requires at least one argument:

function sum(base:Number, ... numbers):Number {
var result:Number = base;
for each (var num:Number in numbers) {

result += num;
}
return result;

}

trace(sum()); //Error!
trace(sum(1,2,3,4,5)); //15

Returning Results
Functions can do much more than simply run predefined code — that’s only half of their purpose.
Like mathematical functions, functions in ActionScript can calculate values based on variable input.
This ability is extremely useful.

You can think of a function as being a factory that can convert raw materials into a finished prod-
uct, as illustrated in Figure 3-2. In this case, the raw materials are the arguments that you pass into a
function call, and the finished product is the value that the function returns.

FIGURE 3-2

Functions, like factories, convert raw materials into a finished product.

Raw Materials
(arguments)

Factory
(function)

Product
(return value)

44

Chapter 3: Functions and Methods

Returning a Value Using a return Statement
In its simplest form, a return statement is the keyword return followed by the value that you want
to return. This value can be a literal, a variable, the result of another function, or any other type of
expression.

return someValue;

Notice that no parentheses are used in conjunction with the return statement. This is because it is
an operator, not a function. You may see parentheses used sometimes, as in return (someValue),
but they are not required. In this case the purpose of the parentheses is not to invoke a function but
to group an expression, as in (1+2)*3.

In most situations, you’ll want to manipulate the arguments within your function somehow and then
return a new calculated value. This example calculates the circumference of a circle by taking a sin-
gle variable, diameter, multiplying it by the mathematical constant π , and returning the result as a
number:

function getCircumference (diameter:Number):Number {
var circumference:Number = diameter * Math.PI;
return circumference;

}
trace(getCircumference(25)); //78.53981633974483

As you can see, the getCircumference() method call can be used in a trace statement as if it
were a variable. Results from a function with a return type can also be saved to a variable by putting
the variable on the left side of the equal sign.

Whenever a return statement is executed in a function, the function ends and the rest of the code
is not processed. Because of this, only a single value may be returned for each function. A return
statement can also be used to end a function prematurely.

function getColor():String {
var color:String = "Red";
return color;
color = "Blue";
return color;

}

var color:String = getColor();
trace(color); // Displays: Red

This method always returns "Red" because the function code stops executing abruptly after the first
return statement.

Tip
To return several values from a function, you may want to create an object or a composite data type to hold
all your answers in a single variable. You’ll learn about how Object can assist with functions in Chapter 10,
‘‘Objects and Dictionaries.’’

return {color:"Blue", arms:8};

45

Part I: ActionScript 3.0 Language Basics

Defining a Return Type for Your Function

When you define a data type for a variable, constant, or argument with the colon (:) after the object
name, it indicates to the compiler what kind of information should be stored in the object. Functions
are the same way.

All functions that define a return type must honor it by returning a value with a return statement
that matches the data type. Likewise, all functions that use a return statement should have a return
type. A return type, like the type attached to each argument, tells the compiler what kind of data to
expect when the function returns a value.

Tip
Constructors are a special case. You might be tempted to use the class name as the return type for your
constructor, but ActionScript dictates that you should leave the return type for all constructors blank — for
example, public function MyClass() {...}. For more information on constructors, refer to
Chapter 4. �

Returning void

If you don’t need your function to return anything, simply use a return type of void. No return
statement is necessary for functions that return void.

function doNothing():void {
//Okay, I won’t do anything.

}

Even though this example ‘‘does nothing,’’ functions that don’t return values are common. Just because
a function doesn’t return a value doesn’t mean it can’t execute useful code. In fact, a great number of
functions in your code are likely to have no return statement. These are sometimes called procedures
or subroutines — small, reusable blocks of code that serve to encapsulate frequently used tasks.

Anonymous Functions
So far, you’ve looked at defining functions using a function statement. There is an alternative way
to define functions; ActionScript also supports anonymous functions or function expressions. Anonymous
functions are so called because they have no name. They can be passed around, stored in variables,
and run by other code. Anonymous functions are particularly useful when using a programming style
called functional programming; you won’t see much of them until Chapter 8, ‘‘Arrays,’’ and only infre-
quently thereafter.

To create and store an anonymous function, write a function statement, leaving out the name, and
then assign it to a variable of your choosing with a type of Function, as shown:

var doSomething:Function = function (arg:Object):void {
// function code goes here.

}

Anonymous functions behave slightly differently from function declarations. Most importantly, they
are an expression rather than a declaration. They define — and evaluate to — an object of type
Function.

46

Chapter 3: Functions and Methods

Table 3-1 compares some of the key differences.

TABLE 3-1

Differences between Declared and Anonymous Functions

Declared function Anonymous function

Can be called at any point in the code
regardless of where in the code the function
is defined.

Like a variable declaration, is available only in
the scope the function is defined.

Can be called as a method by using dot
syntax; acts as part of the object’s interface.

Cannot be used as a method.

Belongs to the object it’s defined on. Exists in scope it’s defined in.

Cannot be rewritten or deleted. Anonymous functions stored in variables can be
reassigned a new value or deleted.

For most situations, I recommend that you use function declarations rather than anonymous functions
in your code. Their consistency and ease of use make them the superior choice. However, sometimes
using a function expression can provide flexibility and usefulness that a function statement cannot.
These may include the following:

� Functions that need to be used only once

� Functions useful only within another function

� Changing the functionality of a method at runtime

� Passing a function

� Using functional programming paradigms like Array.map()

Functions as Objects
Almost everything in ActionScript is an object. Functions are no exception. Every function in Action-
Script 3.0 is an instance of Function, with properties and methods just like any other object. In this
section you’ll look at how this relationship can be exploited for your benefit.

The word ‘‘function,’’ written in lowercase, is the generic term that I’ve been using so far in this
chapter to describe an executable block of code. Function, written capitalized, is the Function
class that all functions are instances of. Normally when you create a new instance of a class you use
the new keyword followed by the class name. However, because functions are such an integral and
frequently used part of ActionScript, there are commands (like the function keyword) that are used
instead of the new Function() statement.

Note
Technically, you can use new Function(), but it doesn’t do much except create an undefined function. �

47

Part I: ActionScript 3.0 Language Basics

You are most likely to encounter the Function class by name when working with methods that
require functions as input or when creating functions by expression. For example, the method
addEventListener() takes a function as a parameter. If you’re not familiar with events, don’t
worry about it. I’m going to cover them in great detail in Part IV of this book, ‘‘Event-Driven
Programming.’’ For now, let’s look at what arguments it’s expecting.

addEventListener(type:String, listener:Function):void

All told, addEventListener() accepts five arguments. I’ve included only the two required ones for
the sake of simplicity.

As you can see, the second parameter expected by addEventListener() is a listener function. This
is the function that executes when the event is detected. If you want to pass a function into another
function as an argument, simply use the passed-in function name but leave off the parentheses (call
operator).

function onClick(event:MouseEvent):void {
//Handle click.

}
addEventListener(MouseEvent.CLICK, onClick);

Tip
Be careful here to omit the parentheses. If you had written

addEventListener(MouseEvent.CLICK, onClick());

the onClick() would have executed and returned void, which would be passed as your parameter (and
void, of course, is not a function). �

Recursive Functions
By now I’ve covered all the essential parts of a function. But I haven’t talked much about how to craft
a function. Part of this is because there’s really no single formula. Each function should try to do just
one thing, and of course its name should reflect that thing. Your functions should do whatever is nec-
essary to carry out their mandate, taking whatever arguments they need to do their job and returning
a value when necessary.

However, one particular form of function bears mentioning here. Sometimes a function needs to be
self-referential, in which the result of the function actually depends on the application of the same
function to a smaller part of the input. This somewhat tricky form of function design is known as
recursion.

Here are some instances in which you would use a recursive function:

� When stepping through deep data structures like trees or connected graphs

� When calculating mathematical functions that are fractal or recursive in their own structure

48

Chapter 3: Functions and Methods

� Functions that require back-stepping to previous iterations or that step through a complicated
set of possible outcomes, such as a maze-solving algorithm

� When you can solve a problem by reducing the data down to a trivial state and then applying
the results back up to the original data

Let’s take a look at a sample recursive function — the factorial. The factorial, usually written as a pos-
itive integer followed by an exclamation point (4!), is a function that calculates the product of all the
positive integers less than or equal to an integer. In other words, 3! = 3 * 2 * 1 = 6. You could write
this using a recursive function, as follows:

function factorial(i:int):int {
if (i == 0) {
return 1;

} else {
return (i * factorial(i - 1));

}
}

trace(factorial(3)); //6

What happens when you run this function? The original value 3 is passed in. The value 3 is greater
than 0, so you skip over the first condition to the else statement. This returns i times the factorial
of i-1 (2). But before returning the value, the factorial statement kicks off for a second time, using 2
as the parameter. Then the whole process repeats. factorial(2) returns i * factorial(i-1)
(or 2 * the factorial of 1). This repeats until all the integers are processed and the recursion ends,
finally sending all the returned values to be multiplied together by the function.

When creating a recursive function like this, be sure to ask yourself: can I do the same thing with a
loop? If you can replace recursion with looping without adding too much to the algorithm, you should
do so. Looping is generally more efficient and easier to debug than recursion. In the factorial example,
you could use a variable to accumulate the running product, eliminating the need for a recursive call.
Take a look at how the recursive call operates for a hint. If there is only one recursive call, you should
be able to easily convert the function to a loop structure.

function factorial(i:int):int {
for (var product:int = 1; i > 0; i--) {
product *= i;

}
return product;

}

trace(factorial(3)); //6

While working with recursive functions, you might encounter a stack overflow issue. This problem
occurs when a recursive function has no mechanism that stops it from calling itself forever. Flash
Player has a built-in mechanism that limits how many active function calls it can remember. If your
recursive function needs to recurse too many times, you may get an error such as this one.

Error: Error #1502: A script has executed for longer than the default
timeout period of 15 seconds.

49

Part I: ActionScript 3.0 Language Basics

Summary

� Methods and functions are repeatable actions that execute blocks of code based on the input
parameters that are passed.

� Using the return operator, you can calculate and return values based on variable input with
your functions.

� Like most other things in ActionScript 3.0, methods are objects. They belong to the Function
class.

� Functions can be constructed using function statements or by assigning a value to an object
of type Function using function expressions.

� The ... (rest) parameter can be used to access all the arguments of a function if the number of
arguments is unknown or variable.

� A subclass can use the super and override keywords to add on to the functionality of a
superclass’s methods.

� Recursive functions allow you to loop an action and build on the results that were generated
from the previous call.

50

Object Oriented
Programming

P
rogramming using classes is essential to take advantage of the full power
of ActionScript 3.0. By using classes, you participate in object oriented pro-
gramming, a versatile way to think about and structure code. Objects are

high-level building blocks, and classes are the constructs that define them. In this
chapter you learn what constitutes a class, how classes relate to objects and other
language constructs, and how to write a class in ActionScript 3.0.

Understanding Classes

To program using classes, you must understand what classes are. Classes perform
multiple roles in object oriented programming, and there are many ways to think
about them. This section introduces these fundamental ideas.

Classes Can Model the Real World
Classes often work best and are easiest to think about when they represent
objects in the real world. You can, for example, create a class to represent a
bicycle. That bicycle can have a color, a size, and two tires. You can pedal it,
brake it, switch gears, and ring the bell. The bicycle has relationships with other
real-world objects: your feet, the road surface, and occasionally a bike pump.
If you model the bicycle as a class, you can represent all of these and carefully
design it to interact with the other objects in the right ways. Let’s call this class
Bicycle. I will come back to the Bicycle class to describe concepts in class
design throughout this chapter.

You can use classes throughout your program to model tangible objects within
the world of your program, if you are modeling actual phenomena. However,
classes do equally well representing abstract concepts and nonphysical objects.
You might consider, for example, a table in a database as a class. Although
nobody has actually seen a database table with their eyes, or knows what
it sounds like or tastes like, you can form a complete representation of it.

51

Part I: ActionScript 3.0 Language Basics

You know everything that a table must do in its own world and all the properties that define it. There-
fore, you can easily model it as a class.

When you become comfortable associating real-world objects with classes in your program, you will
have the basics of object oriented programming under your belt. You’ll be modeling Toast, Guitar,
LaserGrenade, and FuzzyLobster classes with aplomb.

Classes Contain Data and Operations
The textbook definition of a class is a structure that contains both data and operations. Classical orga-
nization in object oriented programming differs from procedural programming, in which data and oper-
ations (variables and functions) mingle without supervision. Imagine placing the color of a bicycle
next to the action of popping a water balloon next to the number of licks in a lollipop. You could
make sense of procedural programs only if you were strict about imposing your own organization.
Classes group the activities and properties associated with the same subject together, and impose order
naturally. The color and speed of a bicycle, the actions of braking and pedaling appear together in a
Bicycle class, and the flavor, color, and duration of a lollipop appear together in a Lollipop class.

Note
Frame scripts and ActionScript 1.0 are examples of procedural programming. In procedural programming, code
executes from top to bottom and can go into functions or procedures. �

Binding the behaviors of an object with its properties results in a self-contained, fully functional, orga-
nized unit. In the same breath, you can talk about rotating the pedals of a bicycle and the color of
that bicycle. It’s all the same bicycle.

Classes Separate Responsibilities
Classes can perform work. You use them when designing a program to determine how to split
up the program’s responsibilities. Say you are required to build a program that makes deliveries
throughout the city. You have to handle the responsibilities of picking up an item, finding out its
destination, determining the best route to that destination, handing off the package, and collecting
a fee. The Bicycle class, then, is just one class in your program. When thinking about how to do
a program with object oriented design, you create classes to perform certain responsibilities. Here, a
Dispatcher would be a natural choice for determining optimal routes, and a Messenger would be
needed to control the Bicycle and to handle the Package. By carefully analyzing the actions that
your program needs to perform, you can determine what classes are appropriate to use. With just a
little more thought, the relationships between these classes become obvious as well.

Classes work well when they are small, specific units. If you end up with a class that takes care of
many different responsibilities, it’s usually possible and desirable to split it into multiple classes. If you
write a Level class that draws a centipede, player, and obstacles and keeps track of the score, you’ve
created the same kind of jumble as exists in a procedural program. Look instead at the nouns used in
that description for your clues to what the classes could be: a Centipede, a Player, a Stage, and
a Score.

Classes Are Types
ActionScript 3.0 uses classes as types. All Bicycle classes are of a type Bicycle. This isn’t because
of any confusing self-reference but simply the nature of names. Bicycle is both a definition of a thing
(has two wheels, gears, and so on) and the word you use to refer to that thing (‘‘bicycle’’). When you

52

Chapter 4: Object Oriented Programming

write out a class, you declare its name, and then you define it. When you use that class in the rest of
your program, you only have to refer to it by name.

In ActionScript 3.0, the inverse is also true: all types are classes (okay, except for interfaces, which
you’ll learn later in this chapter). In some languages, simple types like numbers are not represented by
classes. These are called base types. In a language like this, 12 would have a type, say, integer, but
no class associated with it. The type of 12 has a name but no definition. There’s nothing more you
can learn about 12; there’s no data contained in it or operations it can perform. However, in Action-
Script 3.0, even numbers like 42 and Boolean values like true are represented by classes. They have
data — at minimum, their own value — and operations. For example, you can ask a number like 12
to represent itself as a string by calling its toString() operation. In ActionScript 3.0, every value is
described by a class.

Classes Contain Your Program
With the new generation of tools that support ActionScript 3.0, you are encouraged to write all your
code in classes. There is no functionality that can’t be performed with the right objects acting together,
and creating a set of classes that divide up all the responsibilities of your program is what object ori-
ented design is all about.

This means that scripts attached to frames or symbols using Flash Professional can be, and should be,
written in appropriate classes rather than on the timeline. Even the initialization of your program can
move out of frame scripts by associating a Document class to your Flash project. All runnable example
code in this book is contained in a class, even if that class simply runs a few lines of ActionScript.

In ActionScript, classes are stored in .as files. Most of the time, each class file contains a single class
(although this is not a requirement, as you will see later). ActionScript class files end in the file exten-
sion .as; for example, Bicycle.as might contain the code for the Bicycle class.

Note
The .as extension is used for ActionScript 1.0, 2.0, and 3.0. Accordingly, simply examining the filename will
not tell you what language is contained in the file. ActionScript 3.0 files can be distinguished by the package
block that surrounds the class definition. �

Object Oriented Terminology
Although classes are the cornerstone of object oriented programming, there are other essential, related
concepts. I’ve already touched on some, and I’ve tiptoed around others, for it’s impossible to discuss
object oriented programming without this vocabulary.

Object
Object can have slightly different meanings in different contexts. An object is the basic unit of object
oriented programming. It is a self-contained thing that contains data and operations. Every object is
defined by a class. For example, a bicycle object would be defined by the class Bicycle.

An object is concrete. A real bicycle has two wheels that make it a bicycle — a bicycle object has traits
that make it a Bicycle. Any instance of Bicycle is a bicycle.

Typically, you use the word object to refer to an arbitrary object — one whose details you are not
interested in. When the object has a specific type, sometimes you use the word instance instead, as in
‘‘this is an instance of the Bicycle class.’’

53

Part I: ActionScript 3.0 Language Basics

Objects are constructs that exist at runtime, while the program is running. You can write code to
manipulate objects, but the objects don’t actually exist until the code you wrote executes and creates
them.

The word object can also refer to the class Object, which is the base class of all classes and the root
of all type hierarchies. You can find more about this later in this chapter and in Chapter 10, ‘‘Objects
and Dictionaries.’’

Class
A class is a blueprint for an object. It defines the object in full: the data and operations of that object.
You write classes before you run your program, and when your program is running, the classes are
set in stone. An exception to this is dynamic classes, which are discussed later in this chapter. Other-
wise, the only thing that a running program uses classes for is to create new objects and to manipulate
types.

Classes contain the code you write. When your program runs, it’s an orchestrated production of
objects, and that production is directed by the code in the classes.

Instance
An instance is a specific object created from a specific class. It may be used by itself or with the
name of the class to specify the type of the instance, as in ‘‘an instance of the FuzzyLobster class.’’
Instances are unique. When you point to a particular shiny red road bike screaming down the road,
you can refer to an instance of Bicycle. Although there are other bicycles, and although there are
other shiny red road bikes, that instance is one individual bike.

The word instance is related to the word instantiate. When you create a new instance of a Bicycle,
perhaps with the code new Bicycle(), you are also instantiating a class.

Often, instance and object are used interchangeably. All instances are objects. Usually, you deal with
objects (like a particular bicycle) that are instances of a certain class. In most cases, the terms object
and instance are equally valid.

Type
The type of an object tells you what the object is. An object of type Bicycle is a bicycle. ActionScript
3.0 allows you to create variables with and without types. In other words, you can create both stati-
cally typed and dynamically typed variables. Except where the situation requires it, all code in this book
will use statically typed variables.

In statically typed code, types help to ensure that you only perform actions on the right kind of
things. For example, if you want to do a wheelie on a bicycle, you might make sure that something
is a bicycle before you try to pop a wheelie with it. Imagine the embarrassment you would have to
endure if you were caught popping a wheelie on a strawberry, or the hospital bill you’d incur by
popping a wheelie on a unicycle. When you write statically typed programs, the code can enforce
these checks; your code will be incorrect if it uses incompatible types, and the compiler won’t let you
run the program. The assurance that types are correct is known as type safety.

Because ActionScript is object oriented, the actual type of every object will be a class, and it is impos-
sible to create an object with a type whose type is not a class. (You can use objects as if they were
compatible types and interfaces, as you will read later in the section ‘‘Manipulating Types,’’ but their
actual type will remain the class they were instantiated from.) From Strings to ints, objects’ types
are classes.

54

Chapter 4: Object Oriented Programming

Encapsulation: Classes Are Like, So Selfish
By containing and controlling access to the data that represents it, an object can hide its implemen-
tation from the outside world. Outside that class, no other part of the program can see how it works
internally. This principle is known as encapsulation.

Encapsulation is also described as information hiding. Classes should keep certain information pertain-
ing to their implementation hidden from the outside. This practice is at work constantly in the real
world. You don’t need to know how a bicycle works to ride it, understand the principles of electro-
magnetic wave propagation to use a microwave, or comprehend how the telephone system is struc-
tured to make a phone call. If you had to deal with the information that is hidden by the systems you
use every day, you’d probably go completely insane. Encapsulation allows other objects in the program
to be users of an object in the simplest way possible.

You also depend on the interfaces of systems to be able to use them. While there are some weird bikes
out there, let’s agree that bicycles have two pedals that you can apply force to, a handlebar to change
direction, some manner of controls to change the gears, an indicator that shows what gear you’re in,
levers to squeeze and apply the brakes, and a lever which rings the bell. This is the interface of the
bicycle: everything about it that you can affect and inspect. It is all you need to know about to use a
bicycle. Similarly, telephones expose an interface of 12 keys, and microwaves have several functions
you can use to cook and reheat your food.

The Black Box Principle
In the real world, you may be able to see the gears of a bicycle, see how the brakes work, and
touch and modify parts of the bike you didn’t mention in its interface. But in programming, you
deal with abstractions of reality. The goal is to hide anything about an object that the user of that
object does not have an explicit need to know or use. In the real world, hiding the brakes and the
derailleur of a bike might cost more money or make it harder to repair, but when you’re designing
a program, you use encapsulation with the primary user of the object — in this case, the bike
rider — in mind.

Hiding an object’s implementation and only providing access to an interface you carefully design is
known as the black box principle, illustrated in Figure 4-1. If the user wants to make some toast, you
can provide her with a sealed black box with inputs and outputs. You put in a slice of bread, and you
get toast. You don’t need to know or care how the bread is transformed into toast. If some new, more
efficient way of toasting arrives, you can get a new black box, and it will still toast your bread; you
won’t care.

FIGURE 4-1

A toaster. How does it work? Who cares?!

Toaster

55

Part I: ActionScript 3.0 Language Basics

Encapsulation and Polymorphism
The prior example touches on another principle of object oriented programming. If your goal
is to get toast, you can be equally happy using a HeatedResistorToaster object or an
AcetyleneFlameToaster object, as long as they both have a slot that accepts bread and they
produce acceptable toast. Similarly, provided you know how to ride one kind of bike, you can quickly
start riding your friend’s bike, even if it’s a mountain bike and your bike is a road bike. The principle
being hinted at by this real-world equivalent is polymorphism, or the ability of related classes to be
substituted for each other.

More specifically, class instances may always be referred to by a type more general than their actual
type. This means that both a RoadBike and a MountainBike may both be referred to as Bicycle,
and the parts of their interfaces that belong to the more general Bicycle may be used on an instance
of either. You can ride both RoadBikes and MountainBikes if you treat them as Bicycles and
use the common Bicycle interface on them.

The ActionScript 3.0 language gives you tools to create objects that act as black boxes, hide their
implementations, and provide sensible interfaces. But it doesn’t require that you use the tools cor-
rectly: you can violate all these principles while writing legal code. As the programmer, you shoulder
the responsibility for upholding these principles in classes you write. Keep the principles of encapsu-
lation in mind, and this chapter will show you how to embody them in code.

Packages: Classes, Functions, and Packing

Peanuts
Simply separating your code into classes isn’t always enough to keep the code your program requires
in order. Large software projects can contain lots of classes — hundreds or even thousands of
them — that beg to be organized further into related groups. The functionality of Flash Player is
exposed in dozens of classes, which are also grouped by function. For example, flash.net contains
classes related to network access, and flash.geom contains classes that help with geometry.

flash.net and flash.geom are examples of packages. Packages are structures that group classes
together, define the full name for the classes they contain, and add a level of access control. Packages
can be nested arbitrarily deeply using dot notation, as these examples are.

When you refer to classes by their class name, for example, Rectangle, you may not be giving their
full name. Because you find the Rectangle class in the flash.geom package, the class has what
is known as a fully qualified name: flash.geom.Rectangle. In a conversation, once you establish
that Roger means Roger Eliot Braunstein, and there’s only one Roger in your story, you can simply
use the name Roger, unless another character appears with the same first name. The same principle
applies to writing code.

Class Uniqueness and Namespaces
Without packages to organize classes, you would find yourself with the problem of uniqueness.
Say your next project is a drawing tool written in ActionScript, and one of the shapes you have
to allow users to draw is a rectangle. It would only be natural to start writing a Rectangle
class to handle the display of Rectangle objects, but — imagining packages don’t exist — there
is already a Rectangle class in the Flash Player API, and it doesn’t do what you need it to.

56

Chapter 4: Object Oriented Programming

(The flash.geom.Rectangle class stores the position and size of a rectangle. It does not draw
anything.) You would be left with no option but to name your class something else, so you might
grumble to yourself, name it DrawingRectangle, and move on. But after hundreds of such
decisions, you might start running out of names.

Indulge one more hypothetical and imagine that, after much hard work on the drawing application,
you decide to use a third-party ActionScript library to display dialog boxes. To your dismay, you
realize that the authors of the library have their own class called DrawingRectangle for drawing
buttons on the dialog box. Without packages, you have to find this and all the other name collisions
between your code and theirs and resolve them, as well as rewriting any code that references a class
whose name you changed.

An entire set of unique names is known as a namespace. Packages make it possible to create new
namespaces. Packages give your classes rational names and enable you to share code with others with-
out worrying about name collisions. As usual, this language feature doesn’t bestow its benefits auto-
matically. You have to be careful to use packages and to name them well. Putting all your classes in a
package named classes, for example, is not likely to guarantee that they will be unique. (Except for
the fact that, hopefully, nobody else will make that mistake!)

The typical technique for guaranteeing a package’s uniqueness is to piggyback on the uniqueness of
domain names: you are likely to own a domain, or the work you’re doing is likely going to end up
hosted on one. If you were creating your drawing application for http://www.example.com, your
Rectangle class might reside in the package com.example.shapes, so that its fully qualified
class name is com.example.shapes.Rectangle. Core classes that are built into Flash Player,
and the Flex framework classes, are special cases, reserving the package names flash and mx. For
example, the MovieClip class in AS3 is located in flash.display, so that its fully qualified class
name is flash.display.MovieClip. This is the exception, not the rule. Even for throw-away
code, placing your code in packages starting with your domain name in reverse is a good practice to
get into.

Note
If you don’t have a domain name and your work won’t be hosted on one, you don’t have to use the reverse
domain name convention. The idea is simply to create something that is unique to you. You could use your full
name, a made-up domain name that isn’t likely to be used, or anything else likely to be unique. �

Hierarchy
Packages serve to organize classes into related groups. In the example class com.example.shapes
.Rectangle, I have created a package for shape classes. I anticipate having to write other shapes,
like com.example.shapes.Circle, so this package will keep them grouped together. If I
were to support both two- and three-dimensional shapes, I could further group these with an
intermediary package, keeping com.example.shapes.twodimensional.Triangle and
com.example.shapes.threedimensional.Cone separate. Exercise the same heuristics you
might apply when organizing files in your hard drive into directories to section off your code into
cohesive groups.

Because packages serve to both guarantee uniqueness and provide organization, packages for both of
these purposes are combined into a single package structure. As in the examples you’ve read already,
place the organizational packages inside the package path you used to guarantee uniqueness. So
you would interpret com.example.shapes.twodimensional.Triangle as a triangle that’s a
two-dimensional shape (organization) from the domain example.com (uniqueness).

57

Part I: ActionScript 3.0 Language Basics

This hierarchy is visible not just inside your code but on your file system. ActionScript classes
must be located in nested folders whose names match the package they are contained in:
com.example.shapes.Rectangle must be defined in the file com/example/shapes/
Rectangle.as in your source directory. In Flash Professional, the default source directory is the
same directory that your FLA resides in, though you can add other directories to your classpath in
File ➪ Publish Settings ➪ Flash ➪ ActionScript 3.0 Settings ➪ Source path. In Flash Builder and Flex
Builder, the source directory can be set in your project’s Properties ➪ ActionScript Build Path ➪ Main
source folder.

Controlling Visibility
Packages in ActionScript 3.0 impact the visibility of the items they contain. The listing that follows
might be found in the file com/example/shapes/Rectangle.as.

package com.example.shapes {
public class Rectangle {

// define Rectangle here.
}

}
class SecretClass {
// define SecretClass here.

}

The first line declares the package com.example.shapes. Notice how two classes are declared in
this file: one inside the package block that matches the name of the file, and one outside the package
block.

In any file, a maximum of one class may be made accessible to the world outside that file. This
class must be contained in a package block, and it must be declared public. It is rare to write
code outside a package block, but this example illustrates the technique with the SecretClass.
This technique may be used to simulate the effects of nested class definitions, which are available
in Java but not ActionScript. SecretClass will only be accessible to other code inside the file
Rectangle.as. Often, the out-of-package classes are helper classes for the public class in the
file that the outside world never needs to know about. Even so, most of the time your class files will
have a package block containing a single public class.

Note
Runnable examples from this book place all their classes in a single file and use classes outside the package
block. This is for ease of distribution and organization of example files and because the online code compiler
requires it. �

For code inside the package block, like Rectangle, access modifiers — public in this
example — can determine where the code is usable from. You’ll learn all about access modifiers later
in the chapter.

Code Allowed in Packages
By far the most common configuration of an ActionScript 3.0 file is one public class contained in a
package block. The class is named the same as the file, and the file’s path corresponds to its pack-
age. While the single-class-per-file setup accounts for a majority of situations, variables, functions, and
namespace declarations can also be contained inside packages.

58

Chapter 4: Object Oriented Programming

All the same rules apply for files containing variables or functions in package blocks. There can only
be one item per file visible to the outside world, whether that item is a class, variable, function, or
namespace. The name of the file must match the name of the externally visible item. For example,
you can write a file com/example/shapes/DEFAULT_SIZE.as:

package com.example.shapes {
public const DEFAULT_SIZE:int = 256;

}

This file declares a package-level constant that you can use in any other code, without tying the con-
stant to a specific class.

An example package-level function might be written in com/example/shapes/testShapes.as:

package com.example.shape {
public function testShapes():void {
trace("test the shapes here...");

}
}

An example of a package-level function found in the Flash Player API is flash.net
.navigateToURL().

Using Code from Packages
To use code from a package, you must import the code using an import statement. By importing the
classes (and variables and functions) that you use from other packages, you tell the compiler to fetch
the class definitions, and by virtue of the file path mirroring the package, you tell the compiler where
to find those definitions. Without importing the code you need from other packages, the compiler will
have no idea what you mean when you refer to Rectangle.

When you refer to other classes in the same package, there is no need to import them. If you
referred to the Circle class inside the Rectangle class, provided these were both located in the
com.example.shapes package, you could do so without importing Circle, and vice versa.

import statements always appear inside the package block but before the class declaration in Action-
Script 3.0 files. The following example is a class that demonstrates your ability to import and use code
from the package you just created.

package {
import com.example.shapes.Rectangle;
import com.example.shapes.DEFAULT_SIZE;
import com.example.shapes.testShapes;

public class PackagesTest {
public function PackagesTest() {
var r:Rectangle = new Rectangle();
10 + DEFAULT_SIZE;
testShapes();

}
}

}

59

Part I: ActionScript 3.0 Language Basics

In the example, you use three import statements, line after line, to import the class, constant, and
function from the com.example.shapes package you have been working with. The import state-
ments come inside the package block but outside the class block. Each import gives the fully
qualified name of the item to import, whether it is a class, function, or constant.

In this example, there is nothing between the package keyword and the open brace, where the pack-
age name usually goes. That’s because this code defines a class in the default package. The fully qual-
ified name of the class in the example is PackagesTest. Rather than think of this as no package,
think of it as the root, or top-level, package. Adding classes to the default package is not recom-
mended, as they lose the benefits of uniqueness, and the top level is already populated by core types
of ActionScript 3.0. Nonetheless, it is important to note that even in files in the default package, the
package block is required.

One exception exists for the default package rule. In Flash Builder and Flex Builder, the application
class must be placed in the default package. The application class is the class that is instantiated when
you run an application, starting the application. All runnable example classes in this book are in the
default package because they are application classes.

Additionally, you can ask the compiler to import all the classes in a particular package by using the
wildcard operator (*) trailing the package name:

package {
import com.example.shapes.*;

public class PackagesTest {
public function PackagesTest() {
var r:Rectangle = new Rectangle();
10 + DEFAULT_SIZE;
testShapes();

}
}

}

Note
Importing a class does not automatically include that class in your compiled SWF. You can import a class but
never reference it, and it will not be added to your compiled project. For a class to be compiled and included,
you must actually use it in executable code. �

After classes have been imported using their fully qualified class names, they can be referred to by
their class names alone. Using an import statement is analogous to explaining that when you say
Roger in subsequent conversation, you mean Roger Eliot Braunstein. This applies equally to all types
of imported code, as the previous example shows. The exception to this rule is when two classes with
the same name have been imported from different packages. Their unique packages guarantee you can
still use both, but when both are imported, you must always disambiguate references to the classes by
using their full name. If you had also used the Rectangle class from flash.geom, your example
would change:

package {
import com.example.shapes.Rectangle;
import flash.geom.Rectangle;

public class PackagesTest {
public function PackagesTest() {

60

Chapter 4: Object Oriented Programming

var a:com.example.shapes.Rectangle = new com.example.shapes.Rectangle();
var b:flash.geom.Rectangle = new flash.geom.Rectangle();

}
}

}

In this case, you lose the benefit of using just "Rectangle" to refer to a class. That reference would
always be ambiguous between the two Rectangle classes imported. Similarly, if there were two
Rogers at a party, you would have to use their full names when talking about them to keep them
straight.

Using Inheritance
Inheritance is one of the most powerful tools in the object oriented toolbox, and in fact it’s a primary
motivation for the existence of OOP. It is a core feature of ActionScript 3.0 and other object oriented
languages.

Simply put, inheritance is a relationship between classes where one class builds on another. Think, for
a moment, of Darwinian evolution. When an organism reproduces, its children inherit the essential
attributes of its parents. A seagull will impart to its children two wings, two eyes, feathers, and a beak:
all the things that make it a seagull. However, a random mutation or a chance chromosomal configu-
ration can result in the child having a new or modified attribute, like an extra-strong beak or a louder
call, or even a third leg, as shown in Figure 4-2. Although the interesting part about Darwin’s theory
lies in the success of these children, the mechanics of passing on traits suffice to explain inheritance.

FIGURE 4-2

A child inherits traits from its parents, mutations and all.

Seagull Seagull

ThreeLeggedSeagull

61

Part I: ActionScript 3.0 Language Basics

Inheritance in OOP is also a parent-child relationship. A child class, or subclass, inherits the attributes
of its parent class, or superclass. Without any additional work, you can create a class that functions
exactly like another class. Because of this, inheritance is a primary way to achieve code reuse. But
there’s no reason to create an identical copy of a class. Remember, a class is a template, and you can
create many instances of it. Inheritance is useful when you use it to extend the abilities of an existing
class.

Say you have a working Seagull class, which is about 2 lbs, able to squawk, fly, and eat sand crabs.
For a while it’s fun to watch your Seagulls go along their business, flying about carelessly. But soon
you want a seagull that can do something more, a seagull that can be your friend. You want a seagull
that can play soccer! Instead of creating a new class that includes all the Seagull code all over again,
you can start by declaring a SoccerSeagull that inherits from Seagull. This creates a parent-child
relationship and makes SoccerSeagull exactly like Seagull. The SoccerSeagull inherits both
the attributes (being 2 lbs) and the operations — squawking, flying, and so on — of its superclass,
Seagull, without rewriting a line of code. Now you can add new functionality, like playing soccer,
to the class.

In the file ch4ex1.as:

package {
import com.actionscriptbible.ch4.Seagull;
import com.actionscriptbible.ch4.SoccerSeagull;
import flash.display.Sprite;

public class ch4ex1 extends Sprite {
public function ch4ex1() {
var normalGull:Seagull = new Seagull();
normalGull.fly();
normalGull.squawk();

var crazyGull:SoccerSeagull = new SoccerSeagull();
crazyGull.fly();
crazyGull.squawk();
crazyGull.playSoccer();

}
}

}

In the file com/actionscriptbible/ch4/Seagull.as:

package com.actionscriptbible.ch4 {
public class Seagull {

public var weight:Number = 2;
public function Seagull():void {
trace("A new seagull appears.");

}
public function squawk():void {
trace("The seagull says ‘SQUAAA!’");

}
public function fly():void {
trace("The seagull flies in a lazy circle");

}

62

Chapter 4: Object Oriented Programming

public function eat():void {
trace("The seagull digs its beak into the sand, pulls up a tiny, \

struggling crab, and swallows it in one gulp.");
weight += 0.5;

}
}

}

In the file com/actionscriptbible/ch4/SoccerSeagull.as:

package com.actionscriptbible.ch4 {
public class SoccerSeagull extends Seagull {
public function playSoccer():void {
trace("Incredibly, the seagull produces a miniature soccer ball and \

deftly kicks it into a goal.");
}

}
}

This code provides the classes for the Seagull class and the SoccerSeagull classes. Note that
you use the extends keyword to declare the parent class that the class will inherit from, because a
child class can extend the abilities of its superclass. The example also shows that no code is required
for the SoccerSeagull subclass to inherit the functions squawk(), fly(), and eat() from its
superclass.

Additionally, you can use inheritance to override some behavior of the parent. For example, if your
seagulls are creating a lot of noise, you might want to modify their squawking behavior. If you create
a QuietSeagull that inherits from Seagull, the QuietSeagull will do everything a Seagull
does, including squawk. But you can specify attributes of the superclass that you want to modify and
provide new attributes in their place. So you could create a squawking behavior in QuietSeagull
that squawks more quietly or even modify it to make no noise!

Through all this, the original Seagull is untouched. You can still have original, classic Seagulls
running about among their bizarre offspring. Inheriting a class does not in any way alter the class;
rather uses the parent class as a starting point for a child class. Moreover, subclasses are still
considered their superclass: a SoccerSeagull is still a Seagull. It doesn’t stop being a Seagull
just because it can play soccer, and it can still do all the things a Seagull always could. The
example shows crazyGull, the SoccerSeagull instance, flying and eating just like a normal
Seagull does.

Inheritance is a concept applicable to classes, not objects. So a SoccerSeagull subclass can inherit
from the Seagull class, but a Seagull object, once created, can’t change its class. In the same
way, the properties of an object that are defined or changed at runtime won’t be part of the subclass’s
instances. Put another way, if a seagull injured its foot, it might be affected for the rest of its life, but
its children will not inherit that trait or any other trait the parents acquired in the course of life. In the
following example, the parent gains some weight, but you see that the new object inherits the default
weight provided by the Seagull template rather than the runtime value of its parent.

package {
import com.actionscriptbible.Example;
import com.actionscriptbible.ch4.Seagull;
import com.actionscriptbible.ch4.SoccerSeagull;

63

Part I: ActionScript 3.0 Language Basics

public class ch4ex2 extends Example {
public function ch4ex2() {
var gull:Seagull = new Seagull();
gull.eat();
gull.eat();
gull.eat();
gull.eat();
trace("The parent seagull’s weight is", gull.weight); //4

var childGull:SoccerSeagull = new SoccerSeagull();
trace("The child seagull’s weight is", childGull.weight); //2

}
}

}

Living things use a variety of reproductive practices, transferring their traits to their children in dif-
ferent ways. Humans have two parents and inherit their characteristics from a combination of both
parents’ traits. More simple organisms like viruses make a direct copy of their DNA or RNA so that
their children inherit from only one parent. Inheritance in ActionScript 3.0 is this latter kind, called
single inheritance. A class can inherit from only one class. In fact, if you don’t specify a class to inherit
from, your class extends the Object class, so all classes extend exactly one class (except Object
itself). With single inheritance, you can draw a simple tree of classes, and you can trace any class
back to Object with a simple list of classes. Things would get a lot more confusing if one class could
inherit from multiple classes.

The whole list of classes that takes a class back to the root class, as shown in Figure 4-3, is called a
class’s inheritance chain.

FIGURE 4-3

Inheritance chain of the MovieClip class

Object

MovieClip

extends

Sprite DisplayObjectContainer InteractiveObject

DisplayObject EventDispatcher

Structuring Code with Inheritance
The MovieClip class is a truly complex class, with several sets of duties and almost 100 properties
and methods. Important classes like these would quickly become a mess if it weren’t for inheritance.
Remember: one purpose of classes is isolating responsibility. With inheritance, you can ensure that
those responsibilities are limited to the most specific possible interpretation of the class. All the more
general responsibilities can be defined in a more general superclass.

Take the Seagull class, for example. Nowhere in its code did you have to define that it can lay an
egg, that it has a beak and feathers, that it has two feet. These things are all true, of course, but they
are really properties of birds. The Seagull class concerns itself with the specific responsibilities of a
seagull: the way in which it flies, the kinds of food it eats, and its call. If you were to complete this
example, you might have Seagull extend Bird, Bird extend Vertebrate, and Vertebrate

64

Chapter 4: Object Oriented Programming

extend Animal. Each class would be responsible for only its own specific set of traits. Your inheri-
tance chain might look something like Figure 4-4.

FIGURE 4-4

Inheritance chain of a Seagull class

Seagull Bird Vertebrate Animal

Does this idea sound familiar? You already have an inheritance-based system for classifying the living
things around you, in which the most specific traits are described in a species, and the most generic
traits are described in a kingdom. The real scientific classification for the herring gull I have been
describing looks like Figure 4-5, just in Latin instead of monospace.

FIGURE 4-5

Scientific classification of a herring gull (Larus argentatus)

Argentatus

Larus

Species

Genus

Family

Order

Class

Phylum

Kingdom

Laridae

Charadriiformes

Aves

Chordata

Animalia

The most specific classification is the species, and the most generic is the kingdom. Usually the
scientific classification is written from general to specific, but here it is diagrammed to be like an
inheritance chain, with the class or animal in question appearing first, and revealing its more generic
classifications.

A goal of your object oriented designs should be to limit each class to one responsibility: managing
itself. This sounds like circular reasoning, but really it’s just an object-centric viewpoint. If you can
create just the kinds of objects that are needed, they should be able to accomplish everything you
desire. You can use inheritance to accomplish this. A MovieClip, as you will see in Chapter 14,
‘‘Visual Programming with the Display List,’’ is a Sprite with a timeline added; a Sprite is just
a DisplayObjectContainer that can contain multimedia content, be drawn upon and dragged,
and so on. Using inheritance to create a family of classes that build on each other, you can make your
code more modular, easier to modify, and simpler. One class, one responsibility.

65

Part I: ActionScript 3.0 Language Basics

Inheritance, Types, Polymorphism, and You
Inheritance gives rise to another important technique in the object oriented toolbox: polymorphism.
This technique is used to write decoupled code — code which minimizes its dependence on other
code — enabling you to add functionality to your programs without the heartbreaking process of tear-
ing apart code that’s already written, tested, and tuned. The name polymorphism makes this property
sound terribly complex, but armed with an understanding of inheritance, it is easily understood.

Polymorphism is the practice of treating subclasses as the classes they inherit from. You know that a
SoccerSeagull is still a Seagull and that an AcetyleneFlameToaster is still a Toaster.
Both of these subclasses are able to do everything that their parents can, a fact guaranteed by the
mechanism of inheritance.

A typical usage of polymorphism is when you have a family of related objects that behave slightly
differently and some functionality that doesn’t care how they differ. This happens all the time. You
don’t need to know much about objects to store them, keep track of them, and arrange them.
You don’t need to know if a seagull plays soccer or not to see it fly. If all you want is toast, you
probably don’t care about how the toaster does its job. In all of these cases, you could manipulate the
objects as if they were more general types than they really might be.

The following example shows a seagull circus in action. This function, which could be part of a seagull
trainer’s repertoire, doesn’t really care what kind of seagull is performing, since the trainer knows that
all seagulls can fly and squawk.

package {
import flash.display.Sprite;
import com.actionscriptbible.ch4.*;

public class ch4ex3 extends Sprite {
public function ch4ex3() {
var normalGullBob:Seagull = new Seagull();
var normalGullJoe:Seagull = new Seagull();
var sportyGullFrank:Seagull = new SoccerSeagull();
var strangeGullNed:Seagull = new ThreeLeggedSeagull();

seagullShow(normalGullJoe, strangeGullNed, sportyGullFrank);
}
private function seagullShow(gull1:Seagull,

gull2:Seagull,
gull3:Seagull):void {

gull1.fly();
gull2.squawk();
gull3.fly();

gull1.squawk();
gull2.fly();
gull3.squawk();

//get a treat for performing
gull1.eat();
gull2.eat();
gull3.eat();

}
}

}

66

Chapter 4: Object Oriented Programming

The act can go on with any of the performers you created, since they are all seagulls. By creating the
method seagullShow() so that its parameters are typed as instances of Seagull, you gain the
ability to add all kinds of new Seagulls which can still participate in this sideshow code without
any modification. In fact, the example goes further here by putting the specialized seagulls into vari-
ables that hold the general type.

You will learn more about polymorphism when you look at interfaces later in this chapter, and you
learn how to get specific types out of generic variables when I discuss type manipulation.

Inheritance vs. Composition
Inheritance is not the only technique you can use to augment classes with new abilities. Let’s say you
have a Kitchen class that does all the good things a kitchen does, like letting you fry, sauté, broil,
parboil, and bake things, and wash and store dishes and cutlery. If your goal is to give people a place
to live, you’re going to need a lot more than that. So you can extend the Kitchen to add some sofas,
beds, bathtubs, tables, mirrors, sinks, parking, and maybe a fireplace. Now you have a specialized
kind of Kitchen, say, a CrowdedKitchen, that people can live in. You can see immediately what’s
wrong with this example. A house isn’t a special kind of kitchen; it’s a structure with many kinds of
rooms, including a kitchen. If you start adding these things to the Kitchen class, it really stops being
what you might think of as a Kitchen.

Instead, let’s build a House class that contains a Kitchen. When you have this House, you can con-
tinue to have all the convenience of a Kitchen just by accessing the Kitchen object inside it. You
can continue to build out the House with lots of other rooms, adding in a Bedroom, Bathroom,
LivingRoom, and Garage. Now you’ve created a composite class, a class that provides all the con-
venience of a Kitchen by composition instead of by inheritance. Furthermore, this way of structuring
the house follows the object oriented design principle of ‘‘one class, one responsibility.’’ Following is a
House class with a kitchen, living room, and any number of bedrooms:

package {
public class House {
public var kitchen:Kitchen;
public var livingroom:LivingRoom;
public var bedrooms:Array;

public function House(numberOfBeds:int) {
kitchen = new Kitchen();
livingroom = new LivingRoom();
bedrooms = new Array();
for (var i:int = 0; i < numberOfBeds; i++) {
bedrooms[i] = new Bedroom();

}
}

}
}

There’s another way you can use composition to build up additional functionality. When the presi-
dent of a company asks a manager to get something done, the manager tells her subordinates to do
whatever parts of that task are necessary, and then she presents the final result. The Manager needs
to coordinate these actions with Employees that she oversees, and as far as the outside world is con-
cerned, the Manager indeed provides the result of the work of her Employees. But in the house
example, the House simply provides access to the other classes it composed. If you want to cook
something in the House, you get access to the Kitchen directly and use methods of Kitchen.
Contrast this with the Manager, which delegates the activities to its constituent Employee objects.

67

Part I: ActionScript 3.0 Language Basics

This method also provides better encapsulation, as the president of the company should not have to
deal with the employees directly.

package {
import com.actionscriptbible.Example;

public class ch4ex5 extends Example {
public function ch4ex5() {
runCompany();

}
protected function runCompany():void {
//The manager has ten employees.
var manager:Manager = new Manager(10);
//When you ask the manager to do work,
var completedWork:int = manager.delegateWork();
//You get the work of ten people.
trace(completedWork); //10

}
}

}

class Employee {
public function doWork():int {

//Each employee does one unit of work.
return 1;

}
}

class Manager {
protected var employees:Array;

public function Manager(numberOfEmployees:int) {
employees = new Array();
for (var i:int = 0; i < numberOfEmployees; i++) {
employees[i] = new Employee();

}
}
public function delegateWork():int {

var totalWork:int = 0;
for each (var employee:Employee in employees) {
totalWork += employee.doWork();

}
return totalWork;

}
}

In the example, even though the Manager has Employee objects, you ask the Manager instance to
do the work, not the Employees. The Manager utilizes its Employees to do the work without your
needing to know how or even needing to know that they are. This is a good example of composition,
as well as encapsulation.

Whether a class delegates responsibilities like a Manager or simply aggregates objects like a House,
the class uses composition to add functionality instead of inheritance. The typical rule of thumb is
this: inheritance is an is-a relationship, and composition is a has-a relationship. An extra-loud seagull
is a seagull, and a house has a kitchen.

68

Chapter 4: Object Oriented Programming

This distinction is usually fairly clear, unmistakably so in these simple examples. But now and then
there are ambiguous situations. The classic example is when you are creating a visual object. You can
see your IceCreamCone class, but does that mean that your class should inherit from Sprite,
or should it merely contain a Sprite? (A Sprite is a visual object in ActionScript 3.0. You can
learn more about it in Chapter 14.) In Flash Professional, the recommended way to get your movie
up and running is to assign a class to the root document. This class, when you define it, extends the
DisplayObject of your choice. (For more information on DisplayObjects, please see
Chapter 14.)

Similarly, in the Flex framework, your application starts with a class that must extend Application,
also a view class. So there’s some official sanction, if you need it, to create view classes that extend
display classes rather than composing them. However, you should still apply the test to your own
code. Does your IceCreamCone have a visual component, or is it a visual component? If this class,
in addition to looking like an ice cream cone, has other functionality, like storing a flavor, accepting
toppings, and melting by degrees, it really isn’t a display object but has one. Following closely to the
guideline, you might create IceCreamCone without extending DisplayObject but compose the
visual object — the view — along with it.

Preventing Inheritance
In rare cases, you may want to ensure that the class you create is never extended. The class might
contain functionality that would be dangerous to modify. Another class might subclass yours, modify
the behavior of one or more methods, and pass itself off as your class, since a subclass is also the type
of its superclass. Of course, as the programmer, you ultimately have control over all the code going
into your program, but when precompiled libraries are involved and projects become large, things can
get out of control.

Even if malicious code is not your concern, you can use this ability to signify that the class just should
not be extended, that the class performs its sole duty, and there is no possible extra duty it can
conceivably take on. It can be your signal that the class works best with composition instead of
inheritance.

For whatever reason you choose, you can make sure that nobody inherits your class by declaring it
final. To declare a final class, simply add the final keyword to the class declaration.

Note
The final keyword can come either before or after the access control attribute (in this case public). By
convention, it is placed after. �

package {
public final class Encrypter {
public function encrypt(sourceText:String, key:String):String {
//secure encryption algorithm goes here

}
}

}

Now if someone passes you an Encrypter, you can be sure that it’s actually this Encrypter, and
not a subclass like this impostor:

package {
public class MaliciousEncrypter extends Encrypter {
override public function encrypt(sourceText:String, key:String):String {

69

Part I: ActionScript 3.0 Language Basics

return sourceText; //mwa ha ha!
}

}
}

The MaliciousEncrypter class can pass itself off as an Encrypter because it is a subclass of
Encrypter. However, it overrides the encryption algorithm to do nothing, defeating the security
of an encryption class. However, as long as the Encrypter class is marked final, adding the
MaliciousEncrypter class to your project will result in a compiler error. Extending Encrypter
is forbidden as soon as you declare it final.

Extension is also prohibited on several classes that are built into the Flash Player API because their
functionality is set in stone. For example, flash.system.Security works the way it is designed
to work, and you should not be able to create your own implementation of the security system in
Flash Player. Thus, Security is final.

Access Control Attributes
Access control attributes, or visibility modifiers, are keywords that are used with a piece of code to
define who can access it. Most of the time, you use these with properties and methods of classes. In
fact, all the examples in this chapter thus far have already used them.

By having granular control over the visibility of different parts of your classes, you can determine your
own level of encapsulation, giving you control over how classes look to the outside world. At the same
time, you can use functions and achieve good code reuse, while making sure those functions are only
used when you say they are. The available access control attributes are listed in Table 4-1.

TABLE 4-1

Access Control Attributes

Attribute Meaning

public Available to all code

private Available only within the same class

protected Available within the same class and subclasses

internal Available to code within the same package

A custom namespace Available where the custom namespace is opened or when the identifier is
prefixed with the namespace

You’ve already seen the public attribute used before all your class definitions. By making a class
inside a package public, you enable the rest of the code in your program to use that class. In almost
every case, you are writing a class so that everyone can use it, so putting public before class can
become second nature.

70

Chapter 4: Object Oriented Programming

Note
Runnable examples in this book make extensive use of classes outside the package block to keep the examples
in one file; these class definitions aren’t declared public (because only one publicly accessible item can be
put in any file). This is abnormal. In code you write for projects, you will almost always use multiple files each
with one public class. �

Public and Private
The public and private attributes are used to modify methods and properties of classes. Private
variables and methods typically allow a class to do internal work necessary to carry out the public
requests made of it. Public variables and methods define what the class does. When you’re designing a
class, you should think carefully about what your class should be able to do and make those responsi-
bilities public methods. For example, a toaster class should be able to take in some bread and change
the bread into toast.

package com.actionscriptbible.ch4 {
public class HeatedResistorToaster extends Toaster {
public function HeatedResistorToaster() {
// initialize the toaster

}

public function toast(pieceOfBread:Bread):Bread {
//do whatever we need to toast the bread
return pieceOfBread;

}
}

}

The toast() method should be public because this is the core responsibility of a
HeatedResistorToaster. Other code in your program should be able to use a toaster to
toast bread. But you still need to add in the steps necessary that are going to toast that bread. The
private variables and methods constitute the internal mechanics of the toaster that users of the toaster
should not have to deal with.

package com.actionscriptbible.ch4 {
public class HeatedResistorToaster extends Toaster {
private var remainingToastSec:Number;
private var insertedBread:Bread;
private var resistor:Resistor;

public function HeatedResistorToaster() {
resistor = new Resistor();
remainingToastSec = 0;

}

public function toast(pieceOfBread:Bread):Bread {
insertedBread = pieceOfBread;
startTimer(10);
startCurrent(0.5);

71

Part I: ActionScript 3.0 Language Basics

while (remainingToastSec > 0) {
tick();
remainingToastSec--;

}
stopTimer();
stopCurrent();
insertedBread = null;
return pieceOfBread;

}

private function startTimer(toastDuration:Number):void {
remainingToastSec = toastDuration;

}

private function startCurrent(currentAmps:Number):void {
resistor.current = currentAmps;

}

private function tick():void {
resistor.tick();
insertedBread.toastiness += resistor.heat * 0.55667;

}

private function stopTimer():void {
trace("The toaster sounds off a DING!");

}

private function stopCurrent():void {
resistor.current = 0;

}
}

}

Now you’ve added a full algorithm to toast the bread. All these private functions and variables make
up the way that heated resistor toasters make toast. First look at the properties you added.

The remainingToastSec variable represents the toaster’s timer. When you put the bread in and
start toasting, you shouldn’t be able to fiddle with the time left, so remainingToastSec is private.
The insertedBread variable keeps track of the bread inside the toaster to operate on. You can’t
mess with the bread inside the toaster after you plunge it in, so this is private. The resistor is the
wires or coils running inside the toaster that heat up and toast the bread. Messing with those could
be dangerous! All these variables are private because they represent either the state of the Toaster
object or internal parts that are used in its business.

You also added several private methods to the class. These embody the steps that the machinery of the
toaster follows to make bread into toast. If you were able to call startCurrent() from the outside,
for example, you could force this toaster to unexpectedly become very hot, or if you were able to call
startTimer() from the outside, you could interrupt the toasting process.

The public properties and methods of a class make up its public interface. All nonpublic parts of
the class are involved with its implementation. This is how access control enables you to practice
encapsulation. The public interface of a HeatedResistorToaster is just a toast() method, but
internally you see that it has a state and operations that help it do the toasting.

72

Chapter 4: Object Oriented Programming

Protected
A drawback of private items is that they are not inherited by subclasses. So if the Toaster class had
a private property finish that described its paint job, the HeatedResistorToaster would not
be able to share it. You would have to add it again to the HeatedResistorToaster definition and
to any other class that derives from Toaster.

In the file com/actionscriptbible/ch4/Toaster.as:

package com.actionscriptbible.ch4 {
public class Toaster {
private var finish:String = "Reflective Silver";

}
}

In the file com/actionscriptbible/ch4/HeatedResistorToaster.as:

package com.actionscriptbible.ch4 {
public class HeatedResistorToaster extends Toaster {
public function HeatedResistorToaster() {
trace(finish); //Compiler error! We don’t have a finish.

}
}

}

When you use inheritance to extend classes and you want items in the superclass to be available to the
subclass but not to the outside world, use the protected attribute. A property or method declared
as protected in a class will be available to any class that inherits from it.

To get the finish property to be available to Toaster’s subclasses, you change its definition to
protected. In the file com/actionscriptbible/ch4/Toaster.as:

package com.actionscriptbible.ch4 {
public class Toaster {
protected var finish:String = "Reflective Silver";

}
}

In the file com/actionscriptbible/ch4/HeatedResistorToaster.as:

package com.actionscriptbible.ch4 {
public class HeatedResistorToaster extends Toaster {
public function HeatedResistorToaster() {
trace(finish); //Reflective Silver

}
}

}

It’s almost always a good idea to keep your classes open for extension. If, after you wrap up
and deliver your toasting program, you find that you need more toasting power, you might
decide to create a toaster class with multiple resistors. A quick way to do this is to extend the
HeatedResistorToaster class and add a second resistor, modifying the startCurrent() and
stopCurrent() methods to support two resistors. To do this, you need to go back and make those
methods protected instead of private. Whether private or protected, those methods are not available to

73

Part I: ActionScript 3.0 Language Basics

classes outside the Toaster class hierarchy, so you haven’t lost anything, but you needed to modify
a class that you should have just been able to extend.

Unless you have a reason to hide a property or method from every class in the class hierarchy or
you’re sure the class will never be extended, you should use protected over private. Using pro-
tected variables makes code easy to extend, even if you don’t foresee a reason to right now. Use
protected to encourage extension and final to prohibit it.

Tip
The idea that you should be able to add on to your program without changing anything that’s already written
is a principle of object oriented design called the Open-Closed Principle. According to the principle, code you
write should be open for extension but closed for modification. This recognizes that code that’s done means
code that’s been thought about, written, and tested. A lot of work has gone into it. It also recognizes that you
should be able to add functionality to programs after you consider them ‘‘done,’’ because even if you hate doing
it, you always need to. Composition and inheritance are ways to add more functionality without touching code
that already exists; you should favor this to modifying completed, tested code. �

Internal
The internal attribute is tied to the concept of packages. Frequently you have classes that need to
work closely together and sometimes have privileged access to each other: access that should not gen-
erally be open but is acceptable within a certain group of classes. For example, in the toaster example,
you had to modify the toastiness of the bread directly. But why would you need a toaster at all if
that attribute were publicly available? If toastiness were public, a Bicycle or a Seagull could
go about toasting bread as if it were its business. This is definitely not desirable, but you have to have
some way to change the properties of the bread. In this case, it might be a good idea to keep all the
kitchenware classes in a kitchen package, including the Bread class, and to make toastiness an
internal property. Now only kitchenware is allowed to modify the toastiness of bread.

In the file com/actionscriptbible/ch4/kitchen/Bread.as:

package com.actionscriptbible.ch4.kitchen {
public class Bread {

internal var toastiness:Number = 0;
}

}

Now you attempt to toast the bed from a nonkitchenware object. In the file
com/actionscriptbible/ch4/bedroom/Pillow.as:

package com.actionscriptbible.ch4.bedroom {
import com.actionscriptbible.ch4.kitchen.Bread;

public class Pillow {
public function Pillow() {
var b:Bread = new Bread();
b.toastiness = 20; //Compiler error! You can’t do this!

}
}

}

74

Chapter 4: Object Oriented Programming

Structuring packages in terms of modules or subsystems can help you add another level of organi-
zation above classes. When the internal attribute is used, you can hide implementation details of
subsystems from other subsystems, creating a kind of package-level encapsulation.

Custom Access Control with Namespaces
When you want even more control over who can access items, you can create a namespace. A
namespace is a context in which names are unique, so you create namespaces every time you write a
new package. In this context, namespaces collect arbitrary sets of functions, variables, and constants
into one context regardless of where they are defined. Figure 4-6 shows a regular, controlled
structure created by packages like kitchen and bedroom, and classes like Pillow, Blender,
and HeatedResistorToaster. However, a namespace can contain whatever items you want. It
lets you break out of the order imposed by packages and classes and overrule limitations of public,
private, and protected access. In Figure 4-6, regardless of their natural grouping, seemingly unrelated
methods like Blender.puree() and Pillow.stuff() can be grouped by creating a custom
namespace like foo.

Cross-Reference
This type of namespace relates to which other classes can access a particular property or method. You may also
use namespaces for XML. For more information about XML namespaces, see Chapter 11, ‘‘XML and E4X.’’ �

FIGURE 4-6

A namespace collecting items in the same context regardless of their surrounding organization

Blender

blend()
puree()
shred()
frappe()
spinUp()
spinDown()

HeatedResistorToaster

remainingToastSec
insertedBread
resistor
toast()
startTimer()
startCurrent()
tick()
stopTimer()
stopCurrent()

kitchen

namespace foo

Pillow

bedroom

fluff()
flip()
stuff()
pillowFight()

density

There are three steps to gaining and sharing special access to items with namespaces. First, declare
a new namespace. Second, determine what items belong in that namespace. For those items, use the
namespace’s name as a visibility modifier instead of public, private, protected, or internal.
Third, in code that needs special access to the namespaced item, open the namespace that you created.

75

Part I: ActionScript 3.0 Language Basics

Creating your own namespace and using it as a visibility modifier for an item allows anyone who
opens the namespace to access the item. It’s like locking the item in a cupboard but leaving the key
taped to it: it conveys the information that the item you are qualifying is meant only for certain uses,
and it requires you to be explicit that you are using it but doesn’t make it impossible to use.

The Flex framework is an excellent example of the use of namespaces. Collaborating classes use many
of the properties and methods of classes in the framework to help arrange them. However, these
low-level functions should not be exposed to end users of the Flex components, so they are specified
in the mx_internal namespace. When writing code that needs low-level control over components,
you can dig deeper into the component classes simply by opening the mx_internal namespace and
gaining access to the properties and methods.

You can create a new namespace with the namespace keyword. The namespace item, too, must be
able to be located from code that wishes to either put itself in the namespace or use code from the
namespace. However, the namespace is usually used to allow communication between packages, so
you would have to make the namespace itself public so that both packages can add their items to it.

package com.actionscriptbible.ch4 {
public namespace myns = "http://actionscriptbible.com/myns";

}

In this example, you define a namespace, myns, in its own file, com/actionscriptbible/ch4/
myns.as. Now all code in this project should be able to use this namespace after importing it. The
URL assigned to the namespace is optional. It allows the compiler to make sure that the namespace
is truly unique by checking it against a presumably unique URL. Like package names, this is just a
convention, and the URL is never fetched, nor does it have to really exist or contain anything. Note
that this is a namespace, not a variable. You don’t include a type declaration, and you can’t assign a
value to it or access it like a variable in your code, though when you declare it you use the assignment
operator (=) to associate it with a URL.

To add items to this namespace, you simply use the namespace identifier as the access control
attribute. First you have to import the namespace from its location in another package. When it is in
the same package or the default package, this step is unnecessary.

package com.actionscriptbible.ch4.package1 {
import com.actionscriptbible.ch4.myns;

public class Class1 {
myns function sayHi():void {
trace("Hi!");

}
}

}

Note
The custom namespace is an alternative to the public, private, protected, or internal namespaces. The name-
spaces cannot be used together.

Code in custom namespaces may also be unavailable to the rest of the class it is defined in, if that class does
not open the namespace. For example, other methods in Class1 would not be able to call sayHi(). �

The following set of classes shows two ways to use methods defined in a namespace. In the file
com/actionscriptbible/ch4/package2/Class2.as:

76

Chapter 4: Object Oriented Programming

package com.actionscriptbible.ch4.package2 {
import com.actionscriptbible.ch4.myns;
import com.actionscriptbible.ch4.package1.Class1;

public class Class2 {
use namespace myns;

public function Class2() {
var class1:Class1 = new Class1();
class1.sayHi(); //Hi!

}
}

}

This class from package2 is able to call the sayHi() method from a class in package1. The
use namespace directive is like an import statement for namespaces. After opening the namespace
with use namespace, all code in the class will be able to use items from that namespace.

package com.actionscriptbible.ch4.package3 {
import com.actionscriptbible.ch4.myns;
import com.actionscriptbible.ch4.package1.Class1;

public class Class3 {
public function Class3() {
var class1:Class1 = new Class1();
class1.myns::sayHi(); //Hi!
class1.sayHi(); //Compiler error

}
}

}

This class from package3 is also able to use the sayHi() method from Class1 without open-
ing the namespace. To use items from a namespace on a per-case basis, qualify the item you want
to access with a namespace followed by the name qualifier operator (::). You still have to import
the namespace to be able to use it. Since the second attempted call to sayHi() doesn’t qualify the
namespace and the namespace isn’t open, the compiler will keep you from accessing it.

Despite the detail given here, custom namespaces are infrequently needed. Like the Flex framework,
namespaces might be best used for whole systems that have implementation details that should be
hidden from most users when they are redistributed.

Methods and Constructors
Through the examples in this chapter, you have already been exposed to dozens of methods, so let’s
formalize what you’ve already learned.

A method is a function that belongs to an object. (You learned about functions in Chapter 3, ‘‘Methods
and Functions.’’) Methods are used to carry out the responsibilities of the class they are declared in.
They can take parameters and return values. Methods can be accessible to different sets of code based
on the access modifier applied to them, and if none is specified, the default, internal, is used.

77

Part I: ActionScript 3.0 Language Basics

There is a special kind of method that you have seen in many of the examples in this chapter. A con-
structor is a special method that executes when you create a new instance of the class with the new
keyword. Its purpose is to initialize all the values of the object, create or retrieve collaborating objects
where necessary, and put the object in a state where any of its public methods can be called without
further ado.

Constructors are declared mostly like normal methods, except that

� Constructors have the same name as the class they construct.

� There can be only one constructor per class. Omitting it is possible, in which case, the class will
use an empty constructor.

� Constructors must use the public access control attribute.

� Constructors don’t return anything and don’t specify a return type. However, you can think of
constructors as returning the newly created instance if it makes more sense that way, since the
expression new MyClass() evaluates to the newly created instance of MyClass.

Caution
In ActionScript 3.0, the constructor must always be public. �

Take a look at the constructor from the HeatedResistorToaster class, from an earlier example:

public function HeatedResistorToaster() {
resistor = new Resistor();
remainingToastSec = 0;

}

Note the lack of return type or return statement. The constructor sets the initial values for some of
the state variables and creates an object (resistor) that the class uses to do the toasting. If any pub-
lic methods were called on the HeatedResistorToaster before this executed, they would generate
runtime errors. That’s because all of them rely on the resistor, and the constructor would not have
created it yet. Thankfully, you know that the constructor of a class runs as the class is instantiated,
before you have the chance to call any methods on it. For any instance of any class, the constructor
always runs first.

Constructors are allowed to take parameters like any other method, and those parameters are passed
inside the parentheses in the new statement:

new SomeClass(12, "Helvetica", true);

There isn’t much stylistic choice when it comes to constructors since they inherit the name from their
class. However, constructors should be the first method in a class listing. Usually when you write
classes, the properties are grouped at the top, followed by the constructor, followed by public methods
and finally nonpublic methods.

Properties
Properties, or instance variables, are variables that are part of an object. They can be used to store
attributes of an object or other objects it owns or is keeping track of. They can be defined like any
other variable, and they have the same access control attributes as methods. Constants are special

78

Chapter 4: Object Oriented Programming

properties that don’t change values and are declared with the const keyword instead of var. Both
constants and properties default to internal when no access control attribute is specified.
Figure 4-7 illustrates the declaration of an instance variable.

FIGURE 4-7

A vivisected instance variable.

internal var toastiness:Number = 0;

initial
value

access
control
attribute

var or
const

identifier type

The access control modifier, type, and initial assignment in a declaration like that in Figure 4-7 are
optional. Like methods, properties default to internal when another access control modifier is not
specified.

Just like variables, properties are nouns and adjectives and should be named as such. They can be sin-
gular or plural. They should have descriptive names and be typed in camel case. Properties should be
declared at the top of a class definition, before the constructor.

The choice to use initial values or not can be one of personal style. Any assignment that can be made
at the declaration time of the property may also be made inside the constructor of the class with no ill
effect. If initial values are used at all, they are typically used for Boolean properties, constant numbers
and strings, and other simple values.

Accessors
When the class is a simple data type, there is no shame in using public properties. For example, a
Point3D class that just collects three values is a good use of public properties:

package {
public class Point3D {
public var x:Number;
public var y:Number;
public var z:Number;

}
}

In general, however, public properties should be avoided in favor of accessors. Changing the property
of an object by assigning directly to the property doesn’t allow that object the opportunity to react to
the change, and it shifts the burden of updating the object to every other method that might need
to know if the value has changed. It doesn’t give the object an opportunity to ensure the value
assigned to its property is valid, so invalid input or code can easily trip up a perfectly working object.

Accessors fix this problem by allowing you to execute code when assignments are made to and when
values are retrieved from an object. You can use two kinds of accessors in ActionScript 3.0: explicit
and implicit.

Explicit accessors are normal functions that can retrieve and modify a property. There are no rules to
explicit accessors, and they are not a special part of the language. They are typically implemented
like this:

79

Part I: ActionScript 3.0 Language Basics

package com.actionscriptbible.ch4.accessors {
public class BuildingExplicit {

//the height of the building in feet
private var _height:Number = 0;

public function setHeight(newHeight:Number):void {
if (!isNaN(newHeight) && newHeight >= 0 && isFinite(newHeight)) {
_height = newHeight;
updateFloors();

} else {
throw new RangeError("Height must be finite and positive");

}
}

public function getHeight():Number {
return _height;

}

private function updateFloors():void {
//Make sure the number of floors
//jives with the height of the building

}
}

}

The real, internal property is made to be private. One convention for handling properties with both
a private version and public accessors is to name the private version of the property with a preceding
underscore. Two normal methods are added to set and retrieve the property. These should be named
setFoo() and getFoo() for the property named foo, and they are appropriately called the setter
and the getter.

In this example, the setter ensures that the attempted assignment is valid and only proceeds if it is. If
an invalid assignment is attempted, the class throws a runtime error. For more on error handling, see
Chapter 24, ‘‘Errors and Exceptions.’’ The setter also takes the opportunity to update the building’s
floors based on the new height. Otherwise, you always have to be on your feet, checking that the two
are in sync. By handling that at the only point it might happen, you can eliminate the problem.

Another thing you can do with accessors is to work with derived properties: values that aren’t stored
but are calculated on demand, masquerading as normal properties. For example, you could add to the
Building class an accessor for the height of the building in inches:

public function getHeightInches():Number {
return getHeight() * 12;

}

When using explicit accessors, you must use method calls to manipulate the public properties of the
class.

var b:BuildingExplicit = new BuildingExplicit();
b.setHeight(100);
trace("The building is", b.getHeight(), "feet tall");

The second way to use accessors enables you to use dot notation as if the properties were public, but
still intercept the assignment to do whatever you require. Implicit accessors are a special language fea-
ture and use the keywords get and set before the property names to define accessor functions. In
other words, just add a space between set and height in the example:

80

Chapter 4: Object Oriented Programming

package com.actionscriptbible.ch4.accessors {
public class BuildingImplicit {
//the height of the building in feet
private var _height:Number = 0;

public function set height(newHeight:Number):void {
if (!isNaN(newHeight) && newHeight >= 0 && isFinite(newHeight)) {

_height = newHeight;
updateFloors();

} else {
throw new RangeError("Height must be finite and positive");

}
}

public function get height():Number {
return _height;

}

private function updateFloors():void {
//Make sure the number of floors
//jives with the height of the building

}

public function get heightInches():Number {
return height * 12;

}
}

}

To access the properties, you can use dot notation and still reap the benefits of the range checking
code:

var b:BuildingImplicit = new BuildingImplicit();
b.height = 1000;
b.height = -12; //Runtime Error: Height must be finite and positive

You can also use implicit accessors to make a property read-only. Include a public implicit getter but
omit the setter. The compiler catches any attempts at setting the property from outside the class. In
the Building example, the property heightInInches is, in addition to being derived, read-only.

Avoid Side Effects
I just showed how to execute arbitrary code when a property assignment is made, but it’s important
that I issue a warning here. It’s a good idea to use accessors to control access to properties and to
ensure that a modified property has an immediate effect on anything that depends on it. However,
when you call on an object to perform some task and in addition it performs something unrelated,
this is known as a side effect, and although it is often convenient, you should generally avoid it. You
should design your classes, methods, and properties so that they do what their names imply, and no
more.

For example, say you wanted to repaint your building a new color to match its height, or create new
elevator banks, every time the height is changed. These would be nice, but they make changes to the
Building that should probably be calculated and made explicit. In fact, one could even argue that

81

Part I: ActionScript 3.0 Language Basics

adding floors is a side effect. Only change or update parts of the class that are absolutely dependent
on the property that’s changing. Methods as well as accessors can have side effects, so remember that
setting values and performing actions should remain separate. It can be useful to use implicit accessors
to beef up handling of values, but don’t use it to confuse adjectives with verbs.

Self-Referential Code
In Chapter 2, ‘‘ActionScript 3.0 Language Basics,’’ you learned about scope. Local scopes are created
by blocks — code enclosed within curly braces — within which identifiers and names are unique.
When you’re writing methods in classes, several scopes are open at the same time, because the pack-
age, class, and method all have their own code blocks:

package com.actionscriptbible.ch4 {
public class Camera {

private var aperture:Number;
private var shutterSpeed:Number;
private var focalLength:Number;
private var currentFrame:Number;
public function takePhoto() {
var image:Image = new Image();
openShutter();
accumulateImage(image, shutterSpeed);
closeShutter();
currentFrame++;

}
}

}

The open blocks are made more obvious by the fact that each one indents its contents further. Code
inside the takePhoto() method can access variables defined in the method block like image,
instance variables defined in the class like shutterSpeed, as well as any other items defined in the
package, if there were any. This is because of the way ActionScript code searches up the scope chain
from the most local open scope to the most global.

Because each block defines a namespace, you can easily have local variables inside a method with the
same name as instance variables defined on the class level. Inside the method, the local variables take
precedence, since the method block is the most local. Outside of the method, those variables don’t
even exist.

package com.actionscriptbible.ch4 {
import com.actionscriptbible.Example;
public class ScopeTest extends Example {

private var a:String = "apricot";
public function ScopeTest() {
testA(); testB();

}
private function testA():void {
var a:String = "acid";
trace(a); //acid;
trace(b); //ERROR: Access of undefined property b
trace(this.a); //apricot

}

82

Chapter 4: Object Oriented Programming

private function testB():void {
var b:String = "banana pancakes";
trace(a); //apricot
trace(b); //banana pancakes
this.finish();

}
private function finish():void {
trace("done!");

}
}

}

In testA() here, the local definition of a shadows the instance variable a. Any mentions of a eval-
uate to the local variable a. In testB(), there is no local variable a, so a evaluates to the instance
variable a.

Inside a class, you can always reference the instance of the class itself by using this. Therefore, the
this keyword can be used to specifically target instance variables that have been shadowed, as in the
last line of testA(). In fact, any item defined at the class level can be referenced using this, whether
it is shadowed or not. For instance, in testB() you call this.finish(), a method which is per-
fectly visible otherwise.

Some developers use this frequently in constructors that initialize instance variables:

package com.actionscriptbible.ch4 {
public class Camera {
private var aperture:Number;
private var shutterSpeed:Number;
private var focalLength:Number;
private var currentFrame:Number;
public function Camera(aperture:Number = 3.5,

shutterSpeed:Number = 1/400,
focalLength:Number = Number.POSITIVE_INFINITY) {

this.aperture = aperture;
this.shutterSpeed = shutterSpeed;
this.focalLength = focalLength;
this.currentFrame = 1;

}
}

}

Using Static Methods and Properties
To recap, instance methods and instance properties are items that are defined in an object’s class and
exist in the object. A Bicycle class might have a property for the number of gears in the bike.

package com.actionscriptbible.ch4 {
public class Bicycle {
private var _gears:Number;

public function Bicycle(numberOfGears:Number) {
this._gears = numberOfGears;

}

83

Part I: ActionScript 3.0 Language Basics

public function get gears():Number {
return _gears;

}
}

}

This example uses accessors to good effect, enabling you to create a new Bicycle with any num-
ber of gears but never allowing you to change the number of gears once it is created. It does this by
assigning the number of gears in the constructor and providing no setter for the property.

The concept here is that an instance variable, like gears, belongs to the particular instance. Each
instance of Bicycle can have its own number of gears.

var eighteenSpeed:Bicycle = new Bicycle(18);
var singleSpeed:Bicycle = new Bicycle(1);

trace(eighteenSpeed.gears); //18
trace(singleSpeed.gears); //1

There are other properties of a bicycle you might think of to make into instance variables, like the
color of the bike, the size of the bike, or the kind of tires on the bike. Some properties, however, are
part of the definition of a bicycle. All bicycles, by definition, have two wheels. These properties can be
modeled by static variables.

Static Variables
ActionScript 3.0 enables you to define methods and properties that belong to the class, rather than
their instances. Since the number of wheels is part of the definition of a bicycle rather than a property
of the bicycle itself, you can add this property to the class rather than the instance. This is called a
class variable, or a static variable.

package com.actionscriptbible.ch4 {
public class Bicycle {

public static var wheels:Number = 2;
private var _gears:Number;

public function Bicycle(numberOfGears:Number) {
this._gears = numberOfGears;

}
public function get gears():Number {
return _gears;

}
}

}

Note
The static keyword can be written before or after the access control attribute. The convention is to write it
after the visibility modifier, as shown here. �

By adding the static keyword, you are defining the variable wheels as part of the class instead of
the instance. All Bicycle objects will now share the same wheels variable. Even if you create a fleet
of a thousand bikes, all will share this class variable, and any changes to it will immediately affect all
the objects.

84

Chapter 4: Object Oriented Programming

Now that wheels is a static variable, you use it differently. It belongs to the class Bicycle, so you
use dot notation to access it from the class, not the instance.

var singleSpeed:Bicycle = new Bicycle(1);
trace(singleSpeed.wheels); //Wrong! Compiler error.
trace(Bicycle.wheels); //Right! 2

All the normal access rules still apply, so you can only write Bicycle.wheels because wheels was
defined as public. Remember that you can see the Bicycle class by virtue of the fact that it, too, is
public.

Code that goes inside the class can access the wheels variable without writing out Bicycle
.wheels. Since it is in the same class that the static variable is defined in, the variable is in scope.
However, many people think that it’s good style to always reference static variables with their class
names. This way, every time you reference a static variable it’s quite clear that it’s static and not an
instance variable. Following, you add code to the constructor of your Bicycle that uses the static
variable.

package com.actionscriptbible.ch4 {
public class Bicycle {
static public var wheels:Number = 2;
private var _gears:Number;

public function Bicycle(numberOfGears:Number) {
this._gears = numberOfGears;
for (var i:int = 0; i < Bicycle.wheels; i++){
//Prepare a wheel.

}
}
public function get gears():Number {
return _gears;

}
}

}

Static Constants
When you think about it, since the number of wheels is part of the definition of a bicycle, the
wheels variable should not only belong to the Bicycle class, it should be a constant. You can
easily have static constants — constants that belong to the class instead of the instance.

package com.actionscriptbible.ch4 {
public class Bicycle {
static public const WHEELS:Number = 2;
//and so on...

In fact, it turns out that most values that must remain fixed must also remain fixed across all instances
of a class. This is not a rule, but a common case. Things like terminal velocity, the melting point of
lead, and the number of letters in the alphabet are constants, but also constants that can remain
constant across instances and which you would write as static. When a constant doesn’t change
between instances of a class, and when you need to be able to access a constant without constructing
an instance of the class that owns it, use static constants.

85

Part I: ActionScript 3.0 Language Basics

Static constants also allow for some useful techniques that are worth mentioning here.

String comparisons and string parameters can be messy. Consider the following function that you
might place in the Bicycle class:

package com.actionscriptbible.ch4 {
public class Bicycle {

public function performTrick(trickName:String):void {
switch (trickName) {
case "wheelie":
//code goes here to wheelie
break;

case "bunnyhop":
//code goes here to bunny hop
break;

case "stoppie":
//code goes here to stoppie
break;

}
}

}
}

This performs the right kind of trick based on the name of the trick you pass it. The problem here is
that if you misspell the trick accidentally, nothing happens, which is disappointing. You might end up
scratching your head, wondering where your error is, without realizing that there’s no error except the
spelling of the trick.

var stuntBike:Bicycle = new Bicycle();
stuntBike.performTrick("wheely"); //nothing happens

However, if you replace all the strings with constants

package com.actionscriptbible.ch4 {
public class Bicycle {

public static const WHEELIE:String = "wheelie";
public static const BUNNYHOP:String = "bunnyhop";
public static const STOPPIE:String = "stoppie";

public function performTrick(trickName:String):void {
switch (trickName) {

case Bicycle.WHEELIE:
//code goes here to wheelie
break;

case Bicycle.BUNNYHOP:
//code goes here to bunny hop
break;

case Bicycle.STOPPIE:
//code goes here to stoppie
break;

}
}

}
}

86

Chapter 4: Object Oriented Programming

the compiler catches that spelling mistake, since there is no WHEELY constant.

var stuntBike:Bicycle = new Bicycle();
stuntBike.performTrick(Bicycle.WHEELY); //compiler error

Tip
If you use a development environment with code hinting such as Flash Builder, you can use the auto-completion
features to help you find the valid trick name interactively. �

This practice is used heavily in the flash.events package but can be used any time you need
to compare against a special string. You can do even more with this case, however. Really, you’d
like a trick to be its own type, which can have the values of wheelie, bunnyhop, or stoppie.
Right now it’s a String with special values defined in the Bicycle class, where arguably they don’t
belong.

Enumerations
A custom type you create that can only have certain discrete values is called an enumeration. Action-
Script 3.0 does not have built-in support for enumerations, but they’re easy enough to build. You can
create a Trick class that enumerates the kinds of tricks the bike supports:

package com.actionscriptbible.ch4 {
public final class Trick {
public static const WHEELIE:Trick = new Trick();
public static const BUNNYHOP:Trick = new Trick();
public static const STOPPIE:Trick = new Trick();

}
}

This might seem odd at first, but WHEELIE is not only a static property of the Trick class, but
an instance of Trick. By making the tricks instances of Trick and not just strings stored by
Trick, you can type variables as Tricks. Now you can make sure that the parameter passed to the
performTrick() function is a real Trick, not just some bogus string that may or may not be
valid. All you have to do is change the signature of the function to accept a Trick parameter instead
of a String parameter.

Enumeration classes are also ideal final classes. Because you’re probably writing code based on the
assumption that the enumeration contains only certain values, creating a subclass that adds values will
prove a messy mistake. This is one of those cases in which modifying your original code is better than
creating a subclass.

Static Methods
Variables and constants aren’t the only code that can belong to a class. There can also be methods that
operate independently of any instance. These static methods must not access any instance variables
since they will be run by the class itself, possibly before the class is ever instantiated.

Static methods can be used when you want to run some code without actually creating the object.
In the following example, you replace a normal constructor with a static method. You can use this
method to create new instances of the object.

87

Part I: ActionScript 3.0 Language Basics

package com.actionscriptbible.ch4 {
public class LimitedEdition {

private static var editionsMade:int = 0;
private static const MAX_EDITIONS:int = 20;

private var serialNumber:int;

public function LimitedEdition(serialNumber:int) {
this.serialNumber = serialNumber;

}

public static function getOne():LimitedEdition {
if (editionsMade++ < MAX_EDITIONS) {
return new LimitedEdition(editionsMade);

}
return null;

}

public function toString():String {
return "Limited Edition Object #" + serialNumber;

}
}

}

This object is a limited edition. Only 20 may be created, and they are indelibly branded with their
serial number when they are created. A class variable and class constant keep track of the number of
instances made already and the total number of instances that can be made. Because the number
of instances created is kept inside the class, it is intransient, able to exist inside LimitedEdition
regardless of whether there are any LimitedEdition objects in existence. After the target number
of editions has been created, the static creation method refuses to return a new one.

Just like a class variable, you call class methods by using dot notation on the class name. The
getOne() static method is a function you call on the class to return an instance and keep track of
how many LimitedEdition instances have been created. In contrast, the toString() instance
method is called on an instance to determine what your object will look like represented as a string:

for (var i:int = 0; i < 50; i++)
{

var obj:LimitedEdition = LimitedEdition.getOne();
trace(obj.toString());

}
/*
prints out:
Limited Edition Object #1
Limited Edition Object #2
Limited Edition Object #3
Limited Edition Object #4
Limited Edition Object #5
...
Limited Edition Object #19
Limited Edition Object #20
null
null
null

88

Chapter 4: Object Oriented Programming

null
...
null
*/

This approach still has a weakness, though. Remember that one of the requirements of a constructor is
that it’s public. Therefore, you can’t prevent the ability to create new instances by bypassing your static
creator method and calling the constructor. This can be overcome by throwing an exception in the
constructor. (You’ll learn about exceptions in Chapter 24.) The important thing about this example is
that static methods can be used when there is no instance of the class to speak of, and these methods
can work with other static variables and methods.

Another way that static methods are frequently used is to create utility classes. Utility classes are
classes that aren’t meant to be instantiated; they exist to group some related functions, all of which
are declared statically. Because of this, utility classes aren’t really object oriented, and if you rely on
them too much you might end up programming procedurally instead of object oriented.

A poster child for utility classes is the Math class, which you will explore in Chapter 7, ‘‘Numbers,
Math, and Dates.’’ Math provides a bunch of really useful mathematical functions all in one place, so
it’s a great utility. You would never create a new Math object, but you would definitely call its static
method Math.pow(2, 10) to raise 2 to the 10th power or access the Math.PI static constant for
the value of π .

You can create static implicit and explicit accessors as well. Simply use the static keyword with
your method names, and you can create static properties that are derived or read-only. Keep in mind,
however, that static methods — accessors included — can’t call nonstatic methods of the class.

Overriding Behavior
Now that you’ve seen methods and access modifiers in action, allow me to return to inheritance for a
moment. When using inheritance, sometimes you want to make the child class do something that the
parent class does, but differently. For example, you might want to make a QuietSeagull, which
makes a much softer sound when it squawks. The superclass, or base class, of Seagull already has a
squawk() behavior, and by extending that class, your new subclass inherits that behavior.

Plain vanilla inheritance provides the new subclass with a starting point, which is all the public, inter-
nal, and protected properties and methods of the base class. But sometimes adding onto this starting
point is not enough. Sometimes you have to change it.

You can override methods of a base class by using the override keyword. You can put this keyword
before or after the access control attribute. Because you don’t have access to them, you can’t override
any private methods from the superclass.

The QuietSeagull class might look something like this:

package com.actionscriptbible.ch4 {
public class QuietSeagull extends Seagull {
override public function squawk():void {
//A very polite seagull does not squawk,
//despite what its parents may do.
trace("...");

}
}

}

89

Part I: ActionScript 3.0 Language Basics

Now if you create several different kinds of seagull and ask them all to squawk, you’ll find that the
original Seagull, and all classes that extend it without overriding squawk(), act the same. But the
QuietSeagull marches to the beat of his own, quiet drum:

var normalGull:Seagull = new Seagull();
var sportyGull:Seagull = new SoccerSeagull();
var quietGull:Seagull = new QuietSeagull();
normalGull.squawk(); //The seagull says ‘SQUAAA!’
sportyGull.squawk(); //The seagull says ‘SQUAAA!’
quietGull.squawk(); //...

You can only override methods of a class. You can’t override properties, like the seagull’s weight.
However, by using accessors you can get around this. Because accessors are just methods, you can
override them — even implicit accessors — to return a different value in the subclass. For example,
you can convert the Seagull base class to expose its weight as an accessor rather than a public
property, and override that. The side benefit is that the seagull’s weight can become read-only so that
you can control the weight internally in response to eating and other behaviors but disallow external
modification of weight.

In the file com/actionscriptbible/ch4/Seagull.as:

package com.actionscriptbible.ch4 {
public class Seagull {

public function get weight():Number {
return 2;

}

public function squawk():void {
trace("The seagull says ‘SQUAAA!’");

}
}

}

In the file com/actionscriptbible/ch4/HungrySeagull.as:

package com.actionscriptbible.ch4 {
public class HungrySeagull extends Seagull {

override public function get weight():Number {
return 1.5;

}
}

}

Note
Overriding methods is different from overloading methods. Overloading allows two methods to have the same
name if they have different argument lists. You can’t do this in ActionScript 3.0. Overridden methods have to
have the same signature as the original method. In ActionScript 3.0, you can only override methods. �

Accessing the Superclass
When you override a function, you don’t have to throw out everything that the base class did for you.
You still have access to the nonprivate members and properties of the superclass, through the super

90

Chapter 4: Object Oriented Programming

object. Use super to add on to an existing method or call functionality in the superclass that has
been overridden by other overrides.

You can create a polite seagull that does everything a normal seagull does but also apologizes
afterward. To make this work, you need to modify the main methods of a Seagull, but also use the
way they already work. Rather than copy that code, you depend on the superclass’s implementation.
This also means that changes in the implementation of methods on the base class are reflected
immediately in the subclasses.

package com.actionscriptbible.ch4 {
public class PoliteSeagull extends Seagull {
public function PoliteSeagull() {
super();
trace("It seems very polite.");

}
override public function squawk():void {
super.squawk();
trace("The shy gull covers his mouth in shame.");

}

override public function fly():void {
super.fly();
trace("The gull lands and apologizes for blocking out the sun.");

}

override public function eat():void {
trace("The gull apologizes to the animal it’s about to eat.");
super.eat();

}
}

}

The polite seagull example shows that you can call the base class’s methods, whether you call them
before, after, or in the middle of the code you add.

var politeGull:Seagull = new PoliteSeagull();
//A new seagull appears
//It seems very polite.
politeGull.eat();
/*The gull apologizes to the animal it’s about to eat.
The seagull digs its beak into the sand, pulls up a tiny struggling crab,
and swallows it in one gulp.*/

Constructors in subclasses are a bit special. Each constructor function, like each class, is unique. You
don’t actually override the superclass’s constructor. However, it is always called. When accessing the
superclass’s constructor, instead of using the super object to call a superclass’s method, you use the
super() method. This method calls the superclass’s constructor, no matter what the superclass is
named. You must put this call somewhere in your constructor, because you don’t really extend from
your superclass unless you’ve given the superclass a chance to initialize itself. If you omit a call to
super(), it is called at the beginning of the constructor. If you omit the constructor entirely, the
default constructor runs, calling the superclass’s constructor.

91

Part I: ActionScript 3.0 Language Basics

Designing Interfaces
When you extend a base class, you have the opportunity to override any of its methods and pro-
vide new behavior. You also can’t help but inherit all the existing methods and variables that aren’t
declared private. Inheritance is useful for augmenting existing classes with new functionality, but it
has its drawbacks.

Being forced to start off with all the methods and properties of the superclass can be a drawback. If
you want a family of classes to perform the same kind task in radically different ways, it can be stifling
to have to work around existing code.

You can work around this by having a relatively empty base class that your family of classes extend.
But then you are presented with another problem: this base class is a perfectly valid, although entirely
ineffectual, class. So the empty base class could be instantiated and used in your program, achieving
nothing where something was undoubtedly expected.

You are also presented with the problem of multiple inheritance. Classes can only extend one other
class. This enables you to create a class hierarchy in the shape of a tree and not an acid-induced spider
web. Single inheritance makes sense when you’re modeling your classes after whole, fully thought-out
objects: An object can’t be both a house and a hamburger, but an object can perform two different
kinds of tasks. A tree belongs to both a class of objects that provides shelter and a class of objects that
can yield food. It would be nice to be able to use the tree as a provider of food when you need food
and use it as a provider of shelter when you need shelter.

What you’re working toward is a completely abstract item that classes can implement in different ways
and that you can combine more than one of in one class. An interface fulfills these requirements.
Interfaces are representations of a certain ability that don’t say anything about how the ability will
be carried out but describe the ability. Interfaces are not classes, and they can’t be instantiated. They
contain no code. Put another way, interfaces are contracts. When you choose to implement an inter-
face, it’s entirely up to you how to do it, but you must meet its specifications and fulfill its contract. If
inheritance is an ‘‘is a’’ relationship and composition is a ‘‘has a’’ relationship, implementing an inter-
face is a ‘‘can do’’ relationship.

This can be best explained in an example. This interface would be stored in a file called
com/actionscriptbible/ch4/IPowerable.as:

package com.actionscriptbible.ch4 {
public interface IPowerable {

function turnOn(volts:Number):void;
function turnOff():void;
function getPowerUse():Number;

}
}

Note
In ActionScript 3.0, type annotations — additions to the name of an item to indicate its usage or type — are
not required, and they are not typically used. However, it remains customary to prefix interfaces with the letter
I as in IPowerable. �

No access control attribute is required on methods defined in an interface, because interfaces define
the public interface to an object. The methods must by definition be public. Interfaces may not specify
properties, but they may specify explicit or implicit accessor functions.

92

Chapter 4: Object Oriented Programming

The interface IPowerable creates a promise of some kind of behavior. It specifies how things that
can be powered will work with the outside world. The interface specifies a contract that the compiler
guarantees will be followed in classes that choose to be IPowerable.

Classes that implement this interface can do much, much more than these three methods, but they are
required to implement these three methods.

Clearly, the set of objects that can draw power can have diverse behaviors. A lamp, for example, draws
electricity and produces light:

package com.actionscriptbible.ch4 {
public class Lamp implements IPowerable {
private var watts:Number;
private var isOn:Boolean;

public function Lamp(wattage:Number) {
watts = wattage;
isOn = false;

}

public function turnOn(volts:Number):void {
isOn = true;
trace("it gets brighter!");

}

public function turnOff():void {
isOn = false;
trace("it gets darker.");

}

public function getPowerUse():Number {
return (isOn)? watts : 0;

}
}

}

The Lamp class fulfills the contract set out by the IPowerable interface by declaring the three meth-
ods in the interface with identical method signatures. The names of the parameters don’t matter for
a method’s signature, but the types, order, and number of those parameters do. The implements
keyword is used to make the class adhere to the interfaces that are specified. A class can both extend
another class and implement an interface at once, but the extends section must come before the
implements section.

You can create objects that implement the interface in different ways. The toaster, for example, doesn’t
actually start drawing current until you put in a piece of toast and start toasting. However, as far as
IPowerable is concerned, as long as it can do turnOn(), turnOff(), and getPowerUse(), the
object is an IPowerable.

package com.actionscriptbible.ch4 {
public class Toaster implements IPowerable {
private var isOn:Boolean;
private var isToasting:Boolean;

93

Part I: ActionScript 3.0 Language Basics

public function turnOff():void {
isOn = false;
isToasting = false;

}

public function getPowerUse():Number {
if (isToasting) {
return 100;

} else {
return 0;

}
}

public function turnOn(volts:Number):void {
isOn = true;

}

public function toast(pieceOfBread:Bread):Bread {
if (!isOn) {
trace("nothing happens");
return pieceOfBread;

}
trace("your bread gets toasty");
isToasting = true;
pieceOfBread.toastiness += 10;
return pieceOfBread;

}
}

}

To use the Lamp and Toaster classes, you create and manipulate them like you normally would. But
certain other classes just don’t care what kind of appliance an object is, as long as it implements the
IPowerable interface. Just like an interface is an agreement about how to use objects that implement
it, the electrical system, too, is an interface. It says (in the United States) that as long as you insert a
plug shaped like two prongs, you’ll get 120 volts of current alternating at 60 Hz, and if the plug has
a rounded pin below the prongs, you’ll get a grounded connection. This is an agreement that would
definitely fry everything you own if either appliance makers or electric companies decided to deviate
from it. But because this interface is in place, you can take any electrical appliance you can think of
and get electricity as easily and safely as sliding in a plug. Little agreements like this really do make
the world go around, like the hundreds of protocols in use on the internet today, our expectations
about how to push buttons and tap keys, and the common way you expect to use all kinds of vehi-
cles. Interfaces allow systems to work together based on certain expectations of each other and not on
their actual implementation.

Given this, you should be able to build a power strip that can power all your appliances at once.
The power strip doesn’t care what you plug into it as long as what you plug into it is IPowerable.
Lamps and Toasters may come from completely different families of classes, but with interfaces, you
can treat any object in terms of what it agrees to do, rather than what it is.

package com.actionscriptbible.ch4 {
public class PowerStrip implements IPowerable {

private var appliances:Array;

94

Chapter 4: Object Oriented Programming

public function PowerStrip() {
appliances = new Array();

}

public function addAppliance(appliance:IPowerable):void {
appliances.push(appliance);

}

public function turnOn(volts:Number):void {
for each (var appliance:IPowerable in appliances) {
appliance.turnOn(volts);

}
}

public function turnOff():void {
for each (var appliance:IPowerable in appliances) {
appliance.turnOff();

}
}

public function getPowerUse():Number {
var powerDraw:Number = 0;
for each (var appliance:IPowerable in appliances) {
powerDraw += appliance.getPowerUse();

}
return powerDraw;

}
}

}

Furthermore, this power strip should be powerable itself, so you can encapsulate all the appliances
in one object. As far as the electrical system is concerned, the appliances in your house are one big
appliance. This is great object oriented stuff: you can aggregate many objects into one and utilize that
single object, abstracting away the details of its constituents. Isn’t it more convenient in real life to
turn off a power strip than to individually turn off all the things plugged into it?

Notice that in all the for..each loops and in the addAppliance() function, you use
IPowerable as a type. As long as you can agree that the object implements IPowerable and limit
yourself to the abilities that IPowerable specifically guarantees, there can’t be any problem. This is
what I mean by programming in terms of abilities instead of classes.

Now create a bunch of appliances and then test the power strip.

var powerStrip:PowerStrip = new PowerStrip();
var heater:Heater = new Heater(10);
var toaster:Toaster = new Toaster();
var readingLamp:Lamp = new Lamp(25);
var overheadLamp:Lamp = new Lamp(60);
powerStrip.addAppliance(heater);
powerStrip.addAppliance(toaster);
powerStrip.addAppliance(readingLamp);
powerStrip.addAppliance(overheadLamp);
toaster.toast(new Bread()); //nothing happens
powerStrip.turnOn(120);

95

Part I: ActionScript 3.0 Language Basics

//it gets warmer! it gets brighter! it gets brighter!
trace(powerStrip.getPowerUse()); //1285
toaster.toast(new Bread()); //your bread gets toasty
trace(powerStrip.getPowerUse()); //1385
powerStrip.turnOff();
//it gets cold. it gets darker. it gets darker.

Note that although it does adhere to the IPowerable interface, the toaster variable still holds a
Toaster reference, and it can still use methods specific to Toaster like toast(). You don’t lose
anything by implementing the interface.

A class can implement multiple interfaces, like the earlier tree example. To implement multiple inter-
faces, just separate the interface names with commas, so the tree example might look like this:

public class Tree extends Plant implements IShelterProvider, IFoodProvider

Note
Interface names often end in -able since they describe an ability. However, sticking to this nomenclature can
often end in awkward interface names, and I recommend that you drop it when it doesn’t make sense. �

Interfaces can also extend other interfaces. For example, you might use this to create a category of
objects that can be subscribed to as an event source in addition to the categorical ability. You can
achieve this by extending the built-in IEventDispatcher interface. See more about event sources
in Part IV, ‘‘Event-Driven Programming.’’

The use of interfaces is encouraged by object oriented designers because it keeps down dependencies
between concrete classes. The more dependencies you create, the less opportunity you leave for your-
self to change your program without impacting existing code, and the less maintainable your code
becomes as the web of interdependencies becomes exponentially thicker. As I’ve mentioned, interfaces
allow you to address objects not in terms of what they are but in terms of the minimum you need
them to do, and this can give you micro control of how you deal with objects. Because objects can
implement many interfaces, they can be one thing to one class and another thing to another class, as
necessity dictates.

A principal rule of object oriented design is ‘‘program to an interface, not an implementation.’’ The
usage of ‘‘interface’’ here does not necessarily mean interface; it can also mean a superclass or
whatever is the most generic type that gives you the abilities you need at that time. Implementations
change, but interfaces should not: we have laptops now that people wouldn’t believe 10 years ago, but
a time-traveler could take them back in time and demonstrate them perfectly, because the interface for
drawing power has not changed, nor has the idea of typing on a keyboard and watching a display.

Manipulating Types
The type system enables you to refer to an object by its own class, by any of its superclasses, by any
interface it implements, or by a combination of these. All these potential types for an object are valid
because, by being more specific, it must implement a superset of all the more general types’ function-
ality. A Square is still a Rectangle because it is a specific kind of Rectangle, and it is a Shape
because it is a specific kind of Shape. It might also be an IPointCollection if it can provide a
set of points that comprise its vertices. The point is that these aren’t conversions: the class really is all
the things that it extends.

96

Chapter 4: Object Oriented Programming

Because you can refer to a class by many names, you need ways to get between these types. You
should be able to test at runtime if an object is an instance of a given class or implements a partic-
ular interface. You should be able to convert a specific type to a general type, and you should be able
to attempt to convert general types to specific types. You should even be allowed to attempt to convert
types to unrelated types.

Type Compatibility and Coercion
Some types can be converted without explicit action. Since an instance of a class is also an instance of
its superclass, you can convert it to the more general type without writing any explicit code.

var square:Rectangle = new Square();

Again, this isn’t really a conversion at all, but semantics. These types are compatible. A Square is a
Rectangle.

In addition, ActionScript 3.0 knows how to make certain unrelated type conversions for you and will
do so without asking. This is called coercion, or implicit type conversion. ActionScript 3.0 knows how to
convert anything to a Boolean, for example, making the following kind of code tricks possible:

var array:Array = ["hello", "world"];
var obj:Object;
//Pull a value off the front of the array, set obj to that value,
//and check if obj converts to true or false. Stop the loop when
//the value converts to false. Null is returned by shift() when
//there are no more values in the array. Null converts to false.
while (obj = array.shift()) {

trace(obj);
}
//hello
//world

var str:String = "";
//Set a default string if the string doesn’t exist or is empty.
//Both empty strings and null values convert to false.
//Negating false gives you true so the conditional runs if
//the string is empty, giving it a default value instead.
if (!str) str = "Default";
trace(str); //Default

for (var i:int = 1; i < 4; i++)
{

//Trace out the number (i) and whether it is odd or even.
//i % 2 is the remainder when you divide it by 2, always
//a whole number. Any number converts to true except 0,
//which converts to false. So when the remainder after
//dividing by 2 is 0, the conditional is false.
trace(i, (i % 2)? "odd" : "even");

}
//1 odd
//2 even
//3 odd

97

Part I: ActionScript 3.0 Language Basics

The first trick shows that any object is true but null is false. The second trick shows that an
empty string is false. The third shows that an integer is false if it’s 0 and true otherwise.

Similarly, ActionScript 3.0 uses an object’s toString() method to automatically convert any object
to a String, using the Object class’s toString() method if no other class up the hierarchy
defines it.

Other implicit type conversions are available to ActionScript 3.0 base types, but these are discussed in
the chapters having to do with their types. For example, XML can convert to a String automatically
when used in a string context.

Explicit Type Conversion
You can also induce type conversion. ActionScript 3.0 provides two kinds of checked cast that enable
you to attempt to convert from one type to another. A cast attempts to fit a type into another type. If
they are compatible, the conversion will continue, and the expression will result in the new type. The
types of cast differ in how they act when the conversion fails.

Another bit of terminology is the direction of a cast. An upcast is a type conversion up the inheritance
chain, toward the more general. This kind of cast is always successful, and, as you have seen, can
be achieved implicitly, without a cast operation. A downcast is a type conversion down the inheri-
tance chain, toward the more specific. Since you can’t be guaranteed that a particular Rectangle is
a Square, if you try to cast it without looking, the cast might fail. Figure 4-8 shows how this works.

FIGURE 4-8

Upcasting and downcasting

Square

Rectangle

Shape

Upcast Downcast

I will demonstrate these casts with a downcast since it is likely to be unsuccessful, and you can see
how the types of cast differ when the casts fail. The first kind of cast you can perform is safer and

98

Chapter 4: Object Oriented Programming

preferable in most cases. To cast a variable to a type, surround the name of the instance with paren-
theses and put the type name before it, as if you were calling its constructor but without the new
operator:

var someShape:Shape = getRandomShape(); //get some unknown shape
Square(someShape); //treat it as a Square

In this example, presume for the sake of argument that you have obtained a shape, but you don’t
know what kind of shape it is. This can happen when a method returns a general class rather than
a specific one. This is represented with the method call getRandomShape().

If the conversion is not successful — in this case, if someShape was actually a Rectangle with a
different width and height — this cast will throw a TypeError. To learn more about how to handle
these errors and why they are your friend, see Chapter 24.

To capture the result of this cast, you probably want to store the result of the cast in a variable of the
type you cast it to:

var mySquare:Square = Square(someShape);

The second kind of cast does not throw an error if the cast fails; rather, the cast evaluates to null.
An error is usually better, because as you test your program, you are immediately stopped where the
cast fails, and not later, when this unexpected null causes some other error elsewhere and becomes
a mysterious bug. That said, this kind of cast is achieved with the as operator, which treats the object
on the left of the operator as if it were the class on the right.

var mySquare:Square = someShape as Square;

One common application of casting is when retrieving objects from a collection. Other than Vector,
collections such as Array store their objects untyped. When you retrieve values from these collec-
tions, they are returned as Objects, since ActionScript can make no guarantees as to the contents of
the array. So whenever you must iterate over items from a collection, you can cast these items into the
class you know they originally were. Because they come out as Object, this is always going to be a
downcast unless you were storing Object instances.

Another benefit of the constructor-style cast is that it takes advantage of several intelligent conversion
functions, which are cleverly disguised as cast operators. The top level of ActionScript 3.0 includes,
among other top-level functions like trace() and isNaN(), several functions that, when applied,
have the same syntax as a cast. These functions behave just like a cast, too, but instead of failing to
convert unrelated types, they perform an intelligent conversion. For example, the function XML()
looks just like a cast to XML but converts XML text in a String into an actual XML object, whereas
a cast would fail.

var myXml:XML = XML("<root><party><time>Now</time>\
<location>Here</location></party></root>");
trace(myXml.party[0].time); //Now

Because these top-level functions act just like a cast (with more intelligence) and masquerade
as cast operators, now that you know they exist you can blissfully ignore them. Keep using the
constructor-style cast, and you will benefit automatically from a few conversion functions.

99

Part I: ActionScript 3.0 Language Basics

Determining Types
To determine if an object is compatible with a class, you can use the is operator. This is a binary
operator, not a function, so the syntax for using it is:

//get a shape from somewhere in the program
var someShape:Shape = getRandomShape();
if (someShape is Circle) {

(someShape as Circle).circumference;
}

Here, only circles have circumferences, so if you can determine that the shape is a Circle, you can
safely retrieve its circumference. Because the circumference property is only defined on instances
of Circle, even though you know the someShape instance is in reality a Circle, you must con-
vert its type to Circle before accessing Circle properties.

Also note that because you checked that the instance was a Circle type, there was no danger in
performing the downcast, as you just checked its type compatibility in the line above it.

It is important to note that is determines the compatibility of a type, not the exact type of the
instance.

var s:Shape = new Square();
trace(s is Square); //true
trace(s is Rectangle); //true

There is actually a great deal more you can do with the type of objects, including determining the
exact type of instances and retrieving class references from the name of a class alone, but these topics,
generally called reflection, are advanced techniques not covered in this chapter. You’ll see the latter
kind of reflection when you retrieve class definitions from an externally loaded SWF in Chapter 27,
‘‘Networking Basics and Flash Player Security.’’

Creating Dynamic Classes
The last kind of class is saved for the end because it should be used rarely and with care. Dynamic
classes are classes whose properties and methods can be changed, added, and removed at runtime.
This works against the type system and many object oriented principles, but it can be convenient for
some needs.

You can create a dynamic class by adding the keyword dynamic to the class definition.

public dynamic class ShapeShifter

For a discussion of the benefits and properties of dynamic classes, see Chapter 10, covering Object,
everyone’s favorite dynamic class. For most cases in which you need a dynamic class, you might be
satisfied with using an Object instance instead of an instance of a custom dynamic class.

100

Chapter 4: Object Oriented Programming

Summary

� Classes are the templates for objects, the building blocks of your program.

� Objects have both data and operations.

� Classes should encapsulate their implementations and provide a simple interface.

� Classes are placed in packages, which structure and allow unique names for classes.

� Objects have a type, which is the class they are an instance of.

� All variables are objects — even numbers and Booleans.

� Objects have methods and properties, and classes can have static methods and static variables.

� You can use public, private, protected, internal, and custom namespaces to encap-
sulate and allow access to your objects.

� Classes can inherit from other classes, automatically inheriting public and protected properties
and methods.

� Classes can only inherit from one other class, so all the classes can be drawn in a tree, and each
class can have an inheritance chain up to the top of the tree.

� Classes should be closed for modification and open for extension.

� The public interface of a class is all of its public methods and properties and is how the class
appears to the outside world.

� Interfaces define a contract that classes can choose to follow to provide some ability.

� You can use interfaces as types so that you can decouple your code from implementations.

� Types can be inspected, automatically coerced, or explicitly cast.

101

Validating Your
Program

N
o matter how careful you are when writing code, you will almost cer-
tainly run into one or two errors. Don’t worry; it happens to everyone,
including myself every day. Being able to see error messages is a real

blessing. Errors are your friends, in a way. Your goal should always be to strive
for error-free code, but error messages are the best way to tell when there’s some-
thing wrong that you may not have noticed. Think of it like a spell-checker.
Compiling and running your code and checking for errors frequently is the best
way to catch problems before they multiply.

Flash Player has not only a robust system for handling errors but support for
interactive debuggers, both of while I’ll cover in detail in Part V, ‘‘Error Han-
dling.’’ However, since you should be starting to play with the example code that
you’ll see more and more of, it’s a good time to stop and talk about some of the
kinds of bugs you’re likely to run into and what to do about them.

Introducing Errors

Errors are messages generated by the compiler or runtime that let you know
something has gone wrong.

Tip
A feature in the AS3 compiler allows you to set whether you want the compiler
to interpret your code using Strict mode or not. Strict mode, the default setting,
allows you to compile your code using more rigorous compile-time type check-
ing. It checks to see that all classes, methods, and properties are valid before
allowing the program to compile — hence, it’s more strict. This makes debugging
much easier; however, it also prevents you from dynamically accessing members
of nondynamic objects. Non-Strict mode is much more like previous versions of
ActionScript, which did not have strict compile-time type checking.

All examples in this book should be compiled with Strict mode enabled unless
otherwise noted. �

103

Part I: ActionScript 3.0 Language Basics

Compile-Time Errors vs. Runtime Errors
You’ll deal with two basic types of errors when writing programs in ActionScript 3.0: compile-time
errors and runtime errors.

Compile-Time Errors

Compile-time errors or compilation errors occur when you attempt to compile your SWF file. These
types of errors usually indicate a syntactic mistake, a missing import statement, or a reference to
an item that does not exist. You must fix all compilation errors before the compiler can create an
executable SWF. If you run a SWF before fixing compilation errors, you’ll be running either an incom-
plete SWF or a version that was generated before you introduced the error. Either situation is sure to
be confusing, so don’t ignore compilation errors!

Runtime Errors

A runtime error is one that occurs during the execution of your SWF file — while the program is
running. These usually arise from a problem that occurs after your program begins, such as a reference
to an object that has been removed. Runtime errors can cause unpredictable results in your program.
Some may cause the program to crash; others may go unnoticed. Either way, it’s important to address
any errors you have in your program.

Tip
To see runtime errors from your web browser, you need to install the Debug version of the Flash Player.
This is installed along with all Adobe-packaged development environments by default; it is always available at
http://www.adobe.com/support/flashplayer/downloads.html. �

Warnings
Sometimes the compiler issues a warning. Warnings concern problems that won’t prevent your code
from compiling but should be fixed for the sake of clean, readable, consistent code. A common
example is when you forget to add a data type to a variable or function return. It’s a good idea to
heed any warnings generated and fix them as though they were errors.

Getting Feedback from Flash Professional and Flash Builder
Flash Professional and Flash Builder differ slightly when identifying errors. This should get you started
with whichever software you use.

Note
Both Flash Professional and Flash Builder have Debugging modes that offer more advanced troubleshooting
tools. These are covered in Chapter 25, ‘‘Using the AVM2 Debugger and Profiler.’’ �

Debugging in Flash Professional

In Flash Professional, the output panel (for trace statements and runtime errors) is brought up
automatically when you test your movie. If there are compile errors, a Compiler Errors panel also
comes up.

104

Chapter 5: Validating Your Program

I’ll use this code snippet to test the Compiler Errors panel. There’s an obvious problem with this call
to trace():

trase("im a gud spellar");

Compiling shows the Compiler Errors panel with one error reported, as shown in Figure 5-1. The
panel shows the location of the error either in an AS file or in a scene, layer, and frame in an FLA
file along with the line number. If you highlight the error and click the Go to Source button in the
bottom right, the cursor jumps to that location in the code. There’s also a Description column with
the error code and description of the error, and a Source column showing the offending line of code.

FIGURE 5-1

Flash Professional’s Compiler Errors panel shows that there is no method called ‘‘trase.’’

In addition to the Compiler Errors panel is the Output panel. This shows trace and logging statements
as well as errors that occur at runtime. Running this code

var foo:Array = null;
foo.length;

produces the result shown in Figure 5-2. Again, this output shows the call stack that was executing at
the time of the error. Code that executes from the timeline will show the frame number as a function
in the call stack.

105

Part I: ActionScript 3.0 Language Basics

FIGURE 5-2

Flash Professional’s Output panel

Debugging in Flash Builder

One major advantage of using Flash Builder is its ability to notify you of problems in your code as
they are written. Whenever you build your source code, markers appear next to line numbers that
contain compile-time errors. Hovering over these markers or opening the Problems view shows you
more detailed information about the problem, as shown in Figure 5-3. You can click on the red ref-
erence markers next to the scroll bar on the right of your code or double-click on an item in the
Problems view to jump to the line of code with the error.

Warnings are reported in a similar way, but they use a yellow icon instead of red.

Tip
If Flash Builder is set to automatically build, you will see errors and warnings every time you save a file, as long
as that file is an active application or is used by an active application. You can toggle this feature under the
Project ➪ Build Automatically menu item. �

Similar to Flash Professional’s Output panel, Flash Builder also has a Console view, shown in
Figure 5-4, that shows traces, logs, and errors when debugging.

106

Chapter 5: Validating Your Program

FIGURE 5-3

Flash Builder showing the error line marker and its counterpart, the Problems view

FIGURE 5-4

Flash Builder showing a runtime error in the Console view

107

Part I: ActionScript 3.0 Language Basics

Fixing Errors
When a compile-time error is reported in a particular section of the code, a line number and filename
are given for reference. This is the best place to start when trying to fix the problems in your pro-
gram. Go back to the line number where the error was found and look for typos or other mistakes
that could have caused the error.

Runtime errors encountered in a debug version of Flash Player trace out the current call stack, a list
of all the functions that are in the process of being executed at the time of the failure. Studying the
call stack allows you to track back to the original function or functions that caused the problem. For
example, consider the following code snippet, which causes a TypeError because nullSprite has
no value:

package {
import flash.display.Sprite;
public class ch5ex1 extends Sprite {

public function ch5ex1() {
var nullSprite:Sprite = null;
updateLayout(nullSprite);

}
public function updateLayout(sprite:Sprite):void {
moveSprite(sprite);

}
public function moveSprite(sprite:Sprite):void {
sprite.x = 100;

}
}

}

This code produces the following error:

TypeError: Error #1009: Cannot access a property or method of a null
object reference.
at ch5ex1/moveSprite()
at ch5ex1/updateLayout()
at ch5ex1()

As you can see, both ch5ex1() and updateLayout() make calls to other functions within their
function block. As such, they appear in the preceding call stack. This can help tremendously to find
the original source of the problem. (In this case, the null assignment in the constructor was the
issue.)

Tip
You may see several compiler errors at once; sometimes one error can be the cause for another. Don’t jump
around when fixing errors. Generally speaking, it’s best to start from the first error on the list, fix it, save your
files, and recompile. Many times, this resolves more than one problem down the line. �

Table 5-1 is a list of the more common errors that you are likely to encounter — especially if you’re
just starting out with ActionScript 3.0 programming.

108

Chapter 5: Validating Your Program

TABLE 5-1

A List of Commonly Found Errors and Their Remedies

Error Description Possible Causes Possible Solutions

TypeError: Error #1009:
Cannot access a property
or method of a null
object reference.

Caused when an attempt is
made to access properties or
methods to an object that
was never assigned a value
or has been deliberately
set to null. This may be a
shock to pre-3.0
ActionScript developers
because previous versions
did not treat this as an error.

Ensure that you properly define any
objects whose methods or properties
you need to access. Or you can add a
check to your code to validate the
object before calling methods on it.
For example:
if (myArray) myArray.pop();

C1100: Assignment
within conditional. Did
you mean == instead
of =?

This warning appears when
an assignment (for example,
a=b) is made within a
conditional statement such
as if.

This is a common typo for new
developers. Because the assignment
(=) and equality (==) operators are so
similar, they are often confused. Make
sure you’re using the right one for
the job.
a = b means ‘‘Set a to equal b’’
a == b means ‘‘Is a equal to b?’’

T1180: Call to a possibly
undefined method _____.
Or
1119: Access of possibly
undefined property _____
through a reference with
static type _____.
Or
1120: Access of
undefined property
_____.

These errors can appear
when you attempt to call a
function, get or set a
variable, or access an object
that does not exist. For
example:
var myArray:Array =
new Array();
myArray.washMyCar();

Typos are a common cause of these
errors. Check through your code to
make sure everything is spelled
correctly. Remember that AS3 is
case-sensitive, so foo, Foo, and FOO
are three different things.
Make sure your variables are properly
declared using a var statement before
you attempt to use them. In AS2, the
var was optional, but it’s required
in AS3.
Finally, make sure you’re not trying to
access a member of a class that does
not exist. If necessary, check the
documentation for the offending class
to see if the property or method is
valid.

continued

109

Part I: ActionScript 3.0 Language Basics

TABLE 5-1 (continued)

Error Description Possible Causes Possible Solutions

1046: Type was not
found or was not a
compile-time constant:
_____.

The class or interface you’re
trying to use couldn’t be
found. It might have been
referenced incorrectly or
might not exist at all.

This error is similar to the three I just
mentioned. Check your code for typos
around class names. Also, make sure
you include import statements for
any classes that aren’t automatically
imported. In AS3, even some of the
built-in classes such as flash
.display.Sprite need to be
imported. Finally, check to make sure
the filename and the name of the
class are the same.

1067: Implicit coercion
of a value of type _____
to an unrelated type
_____.
Or
1136: Incorrect number
of arguments. Expected
_____.

A call to a method was
attempted with the wrong
number of arguments
(parameters) or with the
wrong data type for one of
the arguments.

If a function defines required
arguments, the arguments passed to
the function when it is called must
match the function signature. That is,
you must provide the correct number
of arguments each with the data type
that the function is expecting. This is
a stricter rule than in previous
versions of ActionScript.
If you’re not sure what arguments to
use, check the documentation for the
function you’re trying to call.

Summary

� Errors happen all the time even for advanced programmers. Errors reported by Flash Player and
the compiler are your best tool in making your code work better.

� Fix reported errors starting with the first one in the list and working your way down. Usually,
fixing the first error makes it easier to fix the rest.

� Use the line numbers and the call stack provided with the errors to help identify the area of your
code that is causing the problem.

� As you gain experience, you will become more familiar with common programming errors and
will be able to catch them before they occur.

� For more info on errors and debugging, check out Part V of this book.

110

Part II

Core ActionScript 3.0
Data Types

IN THIS PART

Chapter 6
Text, Strings, and Characters

Chapter 7
Numbers, Math, and Dates

Chapter 8
Arrays

Chapter 9
Vectors

Chapter 10
Objects and Dictionaries

Chapter 11
XML and E4X

Chapter 12
Regular Expressions

Chapter 13
Binary Data and ByteArrays

Text, Strings, and
Characters

FEATURED CLASS

String

T
ext in ActionScript is represented as a string, as in ‘‘the book consisted
entirely of a long string of incomprehensible characters.’’ A string can be
any piece of textual data from a single letter to a word to the entirety of

Wikipedia. Strings don’t have to contain legible prose: they might also contain
or be exclusively made of numbers or symbols. Strings can also handle multi-
ple languages. Strings are an essential building block of virtually all programs,
so ActionScript 3.0 provides several methods for working with, manipulating,
searching, and converting strings.

Working with String Literals

Of course, because they’re so indispensable, you’ve already been exposed to
strings before this chapter. Most of what you’ve seen so far has been string
literals — pieces of text surrounded by quotation marks added directly into
the code. But as you learned in Chapter 2, ‘‘ActionScript 3.0 Language Basics,’’
everything in ActionScript 3.0 is an object, including strings. When you type
a string like "Hello, world!" you’re actually creating an instance of the
String class. The String class offers a load of extra functionality beyond the
capability to store text.

Tip
Although technically there is a difference between a string created with a new
String() statement and a string created using a string literal, the compiler
converts string literals into string objects automatically. Therefore, the following
code is perfectly valid:

"banana".length; // 6

113

Part II: Core ActionScript 3.0 Data Types

Using Escaped Characters
String literals use quotes to tell the compiler that the text contained within them should be inter-
preted as a string. Both single and double quotes are used, and in some cases they can be used
interchangeably. In other cases, you’ll need to know their special properties to choose the right
combination of quotes. Let’s look at how they behave differently. Say you want to store a piece of text
that contains quotes:

var porky:String = ‘Porky says "That’s all folks!"’;

The compiler expects you to enclose string literals in matching types of quotes. In other words,
whichever type of quote mark you use to begin the literal will be the type that the compiler looks
for to denote the end of that literal. You can take advantage of this fact to put quotes inside literals:
if you need to use single quotes in the string, you can delineate the literal with double quotes. If you
need to use double quotes, you can sneak those in between single quotes.

In this example, I’ve started and ended with a single quote, and that lets me get away with double
quotes inside the string. However, there’s still a problem with it. The compiler will find an error in
this code because the string is interpreted as ‘Porky says "That’. Once the compiler sees the
single quote after That, it decides: End of string. Time to move on and keep reading code. But then,
confronted with s all folks!"’, it has no idea what to do. In cases like this, you need to use
escaped characters.

Escaped characters are special pseudo-characters that the compiler replaces with real characters that
may be difficult to type or would be illegal to type in code. Escape characters are preceded by a back-
slash. The escape characters for double and single quotes are \" and \’ respectively. The other escape
sequences you can use are shown in Table 6-1. Here’s an example:

var bugs:String = ‘Bugs says \"What\’s up, doc?\"’;
trace(bugs); //Bugs says "What’s up, doc?"

When you use the escaped version of characters, they are immune to being treated as string delimiters.

Several escape characters are available to you. Another of the most useful ones is the newline charac-
ter, \n, which starts a new line as if by pressing the Enter key. The following code in Example 6-1:

EXAMPLE 6-1 http://actionscriptbible.com/ch6/ex1/

The Newline Character

var ok:String = "In an interstellar burst,\nI am back to save the universe."
trace(ok);

Will display the following:

In an interstellar burst,
I am back to save the universe.

114

Chapter 6: Text, Strings, and Characters

Note
Different platforms use different characters for newlines. In most cases, you’re safe sticking to \n. But in some
cases, you may need to use \r\n for Windows platforms or \r for legacy Mac platforms. �

TABLE 6-1

Available Escape Sequences

Escape Sequence Resulting String

\b Backspace character.

\f Form feed character. This character advances one page and is rarely used.

\n Newline character. Also known as line feed.

\r Carriage return character.

\t Tab character.

\unnnn Inserts a character with the four-digit hexadecimal Unicode code you
specify; for example, \u0416 is the Cyrillic character ‘zhe’ ().

\xnn Inserts a character with the two-digit hexadecimal ASCII code you specify;
for example, \x9D is the yen sign character (¥).

\’ Single quote (’) character.

\" Double quote (") character.

\\ Backslash (\) character.

Converting to and from Strings
Because strings are human-readable, they are the preferred method for displaying information about
other objects in Flash. For this reason, every object in ActionScript 3.0 inherits the toString()
method to represent itself as a String. You can read more about toString() in Chapter 10,
‘‘Objects and Dictionaries.’’

Using toString()
Say you want to display the current date using an instance of the Date class:

var now:Date = new Date();
trace("Today’s date is " + now.toString());
//Today’s date is Mon Jun 15 14:10:20 GMT-0400 2009

115

Part II: Core ActionScript 3.0 Data Types

As you can see, the date is printed in the output as if it were a string. In fact, the toString()
method is called in many situations automatically. This is a form of implicit conversion, or type
coercion, that’s built into ActionScript. If you leave out the toString() method, as in the following
example, the trace() method automatically calls it on each parameter passed in.

trace(new Date()); //Mon Jun 15 14:10:20 GMT-0400 2009

Many classes, including ones you create, do not display much useful information by default when
they are converted to strings using toString(). The default for most objects is to display the word
‘‘object’’ followed by their class name. For example:

trace(new Sprite()); //[object Sprite]

Fortunately, you can override this behavior in the classes you create to display whatever useful infor-
mation you desire. Simply add a custom toString() method in your class definition that returns a
string. See Chapter 10, ‘‘Objects and Dictionaries’’ for examples.

Casting and Converting to Strings
Now try something else — setting a string to today’s date:

var now:Date = new Date();
var nowString:String = now; // Causes a compiler error.

What happened? Why doesn’t this work? Shouldn’t now be converted to a string implicitly? What’s
happening is that nowString is an object of type String; therefore, it is expecting a string object
as its value. In cases like this one, the compiler is stricter about what’s a String and what’s not, and
you must convert the object to a String manually.

var nowString:String = String(now);

This converts the Date object to type String and returns now’s string equivalent to be assigned to
nowString. If you need to brush up, check out type conversions and casting in Chapter 4, ‘‘Object
Oriented Programming.’’

You could have also used the toString() method here:

var nowString:String = now.toString();

Converting Strings into Other Types
The String class can also be converted into some other types fairly painlessly.

Converting Strings to Numbers

Converting a string containing only numerical data is as easy as casting it as a Number object:

var shoeSize:String = "12";
var iq:Number = Number(shoeSize);

116

Chapter 6: Text, Strings, and Characters

Be careful, however, to include numerical characters only. Trying to cast any other value results in a
nasty NaN (Not a Number) value being assigned instead:

var dialASong:Number = Number("(718) 387-6962");
trace(dialASong); //NaN

Note
Although this looks like casting, it’s actually calling a global function called Number, which shadows the
Number cast operation. Read more about Number conversion in Chapter 7, ‘‘Numbers, Math, and Dates.’’ �

Adding strings and numbers can be confusing, too, because the compiler converts the numbers to
strings rather than the other way around.

var a:Number = 2 + "2";
trace(a); //22

Assuming that the compiler will do things implicitly for you, even if you’re right, is usually a bad idea.
Keep your code readable and error free by being explicit about conversions.

var a:Number = 2 + parseFloat("2");
trace(a); //4

Converting Strings to Arrays

Converting a string to an Array can be useful, especially when processing responses that come from a
server that can send only strings. For this, the String class has the split() method. The split()
method takes two arguments. The first is the delimiter. This is the character, string, or regular expres-
sion that divides the different elements in the array. The second argument is optional and is the max-
imum number of elements in the new array. It is rarely used. Example 6-2 shows three examples of
the split() method in action.

EXAMPLE 6-2 http://actionscriptbible.com/ch6/ex2

The split() method

var keywords:String = "people,new york,friends,picnic";
var tags:Array = keywords.split(",");
// tags == ["people", "new york", "friends", "picnic"]

var sentence:String = "The quick brown fox jumped over the lazy dog";
var words:Array = sentence.split(" ", 4); // limit to 4 elements.
// words == ["The", "quick", "brown", "fox"]

var state:String = "Mississippi";
var foo:Array = state.split("ss");
// foo == ["Mi", "i", "ippi"]

117

Part II: Core ActionScript 3.0 Data Types

Combining Strings
To join strings, the String class provides the concat method, shown in Example 6-3, which takes
any number of arguments (converting them to strings if necessary) and returns a new string with all
the arguments tacked onto the end of it.

EXAMPLE 6-3 http://actionscriptbible.com/ch6/ex3

Collected Snippets: The + operator

var greeting:String = "Good day.";
var name:String = "Roger";
var s:String = greeting.concat(" My name is ", name, ". How are you?");
trace(s); //Good day. My name is Roger. How are you?

However, ActionScript also supports the addition (+) operator for text concatenation, which, you will
likely find, is a much more practical way to join strings, as shown in Example 6-3.

var s2:String = greeting + " My name is " + name + ". The + operator ROCKS!";
trace(s2); //Good day. My name is Roger. The + operator ROCKS!

I’ve been using the trace statement since the beginning of the book, and it’s pretty clear how it works
by now. But stop and realize for a moment: you’ve been doing string manipulation this whole time!
Not only have you been converting objects to strings and writing string literals, you’ve been construct-
ing complex strings out of multiple substrings — all within the parentheses of trace().

In this book, you’ll usually see the arguments to trace() combined with the + operator as just
described. However, you can also pass as many string arguments as you like to trace(), and it will
concatenate them automatically, separated by spaces.

var a:String = "Ground control";
var b:String = "Major Tom";
trace(a, "to", b); //Ground control to Major Tom

Converting the Case of a String
To convert a string to the same text in capital letters, simply call the toUpperCase() method. As
shown in the following example, this returns a new string object with the same letters switched to
uppercase. The other nonletter characters are not affected.

var cleanser:String = "Ajax";
var webTechnology:String = cleanser.toUpperCase();
trace(webTechnology); //AJAX

118

Chapter 6: Text, Strings, and Characters

To switch to all lowercase, use toLowerCase() instead:

var loudText:String = "CAN YOU HEAR ME?"
var quietText:String = loudText.toLowerCase();
trace(quietText); //can you hear me?

Note
Calling these methods does not change the case of the string but returns a new string with the case change. The
original string stays the same. If you want to change the original, you have to set its value to the result of the
function. For example:

var alert:String = "error";
alert = alert.toUpperCase(); // alert == ERROR

Using toUpperCase() or toLowerCase() can be helpful when you need to make sure that two
strings are compared without regard to case, as when checking a password:

var inputPW:String = "HaXoR"
var storedPW:String = "haxor";
if (storedPW.toLowerCase() == inputPW.toLowerCase()) {
trace("Login successful");

} else {
trace("Login error");

}
//Login successful

Using the Individual Characters in a String
When you work with strings, you may need to access a specific character in the string or know the
total number of characters in the string. You might find it helpful to think of a string as an array of
single characters. (C strings are exactly this.) Although a string in ActionScript is not an array, it has
some array-like properties. A string has indices starting with 0 and counting up, each containing a sin-
gle character. You can learn more about arrays in Chapter 8, ‘‘Arrays.’’ The following section describes
ways to access the specific characters within a string.

Note
ActionScript 3.0 has no special class or type for single characters, like in some other languages. Although I may
refer to characters, these are always stored in String instances of length 1. �

Getting the Number of Characters in a String
To determine the number of characters a string object contains, you can check its length property.
This property works just like an array’s length property.

var bigWord:String = "PNEUMONOULTRAMICROSCOPICSILICOVOLCANOCONIOSIS";
trace("Number of letters: ", bigWord.length); //45

length is a read-only property, which means that you cannot change its value explicitly unless you
add more characters to your string.

119

Part II: Core ActionScript 3.0 Data Types

Getting a Particular Character
Unlike an array, you cannot access characters in a string using square bracket syntax:

var firstName:String = "Adair";
trace(firstName[1]);

This produces an error.

To access the individual characters, use the charAt() method instead, which returns the character
located at the specified index. Character indices, like array indices, are zero-based, so that the charac-
ter at index 0 in firstName is A.

trace(firstName.charAt(1)); //d

Converting a Character to a Character Code
Similarly, you can convert a character at a specified location into its ASCII character code by using
charCodeAt(). This may be helpful when you need to work with a character’s numerical equiv-
alent instead of the character itself, such as when invoking a Key listener (discussed in Chapter 21,
‘‘Interactivity with Mouse and Keyboard Events’’).

var band:String = "Mötley Crüe";
trace(band.charCodeAt(1)); //246 (the character code for ö)

This code can be converted back into a letter by calling the static method
String.fromCharCode(), which returns the converted character as a new String object.

var buttonPressed:Number = 88;
trace("User pressed ", String.fromCharCode(buttonPressed), " button.");
// Displays: User pressed X button.

For a list of ASCII character codes, check out the Wikipedia page http://en.wikipedia.org/
wiki/ASCII.

ASCII is just one method of encoding textual data. Its major benefit is that every character is exactly
1 byte, which can be a convenient invariant. The tremendous drawback is that it only really works for
the most vanilla subset of roman characters; it happens to work perfectly well for English, but almost
every other language is out of the question. That’s not very friendly, so thankfully you can use another
encoding with strings. Read more in the later section ‘‘String Encoding and International Text.’’

Searching within a String
You may need to search within a string for a particular piece of text. For this, the String class pro-
vides several methods.

Searching by Substring
A substring is any smaller portion of text within a string. For example, ‘‘def’’ is a substring of
‘‘abcdefghi’’. By using the indexOf() and lastIndexOf() methods, you can search for the first

120

Chapter 6: Text, Strings, and Characters

index of a substring — in other words, the first location of that substring within the text. They
operate the same way except that lastIndexOf() starts from the end and works backward, whereas
indexOf() works from the beginning forward. Both methods return the index where the substring
begins, or -1 if the substring is not found. (Remember that string indices are zero based.) Example
6-4 checks the positions of some of the names in a list.

EXAMPLE 6-4 http://actionscriptbible.com/ch6/ex4

Collected Snippets: Searching by Substring

var names:String = "Jenene, Jake, Jason, Joey, Jaya";
trace(names.indexOf("Jake")); //8
trace(names.lastIndexOf("J")); //27
trace(names.indexOf("Robert")); //-1

The methods take two parameters each. The first is the substring to search for. The second is an
optional parameter specifying the first index to start searching. The second parameter can be useful if
you want to find every instance of the substring. The next part of Example 6-4 searches for the letter
‘‘a’’ in the story until it has found all instances.

var story:String = "It was a dark and stormy night...";
var pattern:String = "a";
var count:int = 0;
var startIndex:int = 0;
while (story.indexOf(pattern, startIndex) != -1) {
count++;
startIndex = story.indexOf(pattern, startIndex) + 1;

}
trace(story);
trace("found " + count + " ‘a’s"); //Found 4 ‘a’s

Searching with Regular Expressions
For even more power, String provides methods for searching its text with regular expressions. They
include the following:

� search(pattern:*):int— Functions similarly to indexOf in that it searches the string
for any instances of the search criterion. The difference here is that you would use a RegExp as
an argument; however, search() allows you to search for strings or other objects (which are
first converted to strings). If nothing is found, it returns –1; otherwise, it returns the index of
the first match.

� match(pattern:*):Array— To return all matches of a particular pattern as an array, use
the match() method. This also accepts strings or other objects as arguments.

� replace(pattern:*, replacement:Object):String— Searches the string for the
pattern (usually a RegExp) and creates a new string that replaces each match with the replace-
ment object (usually a String).

121

Part II: Core ActionScript 3.0 Data Types

This is only an overview of these methods. Because there is a lot to talk about when it comes to reg-
ular expressions, I’ve given them their own chapter. They are covered in greater detail in Chapter 12,
‘‘Regular Expressions.’’

String Dissection
Sometimes you may need to pull a smaller string out of a larger one. For example, you might want to
find the first eight characters of a string, or maybe you only care about the part of a line after a colon.
ActionScript offers three methods for doing this: slice(), substr(), and substring(). All these
methods are similar in intent. They vary only in the way they handle their two optional parameters.

slice(startIndex:Number, endIndex:Number):String

and:

substring(startIndex:Number, endIndex:Number):String

are nearly identical. They both return all the characters between the indexes supplied by the
startIndex and endIndex parameters. The only difference between them is that slice() can
take negative values as parameters, but substring() cannot. Negative values (such as -3) count
from the end of the string backward.

For both commands, if the end parameter is left out, the end of the string is used by default. If the
start is left out, the beginning of the string is used by default.

Example 6-5 searches the string for a space character and uses its index to return the first word.

EXAMPLE 6-5 http://actionscriptbible.com/ch6/ex5

Slicing Strings Apart

var address:String = "Fourscore and seven years ago...";
var firstSpace:int = address.indexOf(" ");
var firstWord:String = address.slice(0, firstSpace);
trace(firstWord); //Fourscore
var ellipsis:String = address.slice(-3); //takes the last 3 characters.
trace(ellipsis); //...

The substr() method is slightly different from slice() and substring(). Instead of taking
an end index, this method uses a length parameter. It starts at the supplied start index and returns
a string that is as many characters long as the number specified for the length parameter. For
example:

trace(address.substr(4, 5)); //score

Because all these methods behave similarly in most situations, you should use whichever one makes
the most sense to you. Everything else being equal, I recommend that you use slice() rather than
substring() because it does more and is not as easy to confuse with substr().

122

Chapter 6: Text, Strings, and Characters

String Encoding and International Text
Although it is easy to take for granted, ActionScript’s support for multilingual text is actually one of
its most compelling features. If you’ve ever struggled with juggling different text encodings in other
languages, you will know exactly what I mean. Because ActionScript’s support is thorough, you can
use strings in any language without thinking about it. (Displaying them properly can be quite another
issue, but more on that in Chapters 17, ‘‘Text, Styles, and Fonts,’’ and 18, ‘‘Advanced Text Layout.’’)

The standard that ActionScript 3.0 supports is Unicode. Unicode is a body of standards that’s kind
of like the UN for computer representations of text. It defines and maintains one character set to rule
them all: the ultimate character set for all written languages used on Earth, and some no longer in
use, for good measure. It also defines several encodings, or ways to encode these characters on binary
systems like computers. The worldwide agreement on Unicode is good, and the most common encod-
ing that has emerged is UTF-8. In UTF-8, some characters take more than one byte to represent, but
the great thing about it is that the encoding of a given ASCII string is precisely the same in UTF-8
because the mapping of those characters is the same in UTF-8 as in ASCII. Also, those characters are
set to take up only one byte in UTF-8 to match ASCII. By the way, this is all extra credit. The impor-
tant thing to know is this: Flash Player stores strings in UTF-8. It also compiles code in UTF-8, reads
files off the internet in UTF-8, writes to disk in UTF-8, and lets you slice and dice strings, as you just
learned, in UTF-8. It’s a UTF-8 world. The great thing about this is that it just works! So your code
can contain Unicode characters, your string literals can, and you can operate on them correctly, as
shown in Example 6-6.

EXAMPLE 6-6 http://actionscriptbible.com/ch6/ex6

Unicode Characters

var jp:String = " ";
var he:String = " ";
var ar:String = " ";

You can have Unicode characters in comments as well. However, stick to ASCII for your actual code,
even if your native written language isn’t English or in the Roman alphabet.

You have to be careful of encodings when dealing with technologies that don’t support UTF-8, or for
those that do but must be told specifically to expect it. Most network services fall under one of these
categories. For truly deep control over encodings, you can write strings into and read strings out of
binary data using ByteArray, optionally converting to one of the dozens of supported encodings
along the way. Read more about binary data in Chapter 13, ‘‘Binary Data and Byte Arrays.’’

Summary

� A string can be any piece of text. Quotation marks identify strings from code that should be
executed.

� The String class provides loads of additional functionality. All strings are instances of the
String class even if they are string literals.

123

Part II: Core ActionScript 3.0 Data Types

� Creating a custom toString() method in your classes can help you understand the data con-
tained within them when logging or using traces.

� Strings can be cut up and combined, and they have individual characters accessed much like
arrays.

� Strings in ActionScript are case sensitive, but converting cases is easy using the
toUpperCase() and toLowerCase() methods.

� You can search within strings with simple methods like indexOf(), or you can use regular
expressions to match complex criteria.

� Strings are stored in UTF-8, and any international text and symbols defined in Unicode may
be used.

124

Numbers, Math,
and Dates

FEATURED CLASSES

Number

int

uint

Math

Date

W
ithout good support for numbers, there’s not much you can pro-
gram. It should be no surprise, then, that ActionScript 3.0 enables
all kinds of numeric activity, from basic arithmetic to date and time

handling. With the information in this chapter, you can start making useful,
interactive, and aesthetic computations.

Understanding Numeric Types

Using ActionScript, you can create numbers of different types. To understand
how to use these, however, you must take a step back and look at the sets of
numbers themselves and what they represent. Later, you will review how differ-
ent kinds of numbers are represented on modern computers. Knowing the impli-
cations of these implementation details can help the wary programmer under-
stand which data types are appropriate in which situations, the limitations of the
language, and common problems that might arise. If you’re familiar with numeric
types in other languages, you might want to skip ahead to ‘‘Using Numbers in
ActionScript.’’

Sets of Numbers
A number is a number is a number, right? Not so; there are several types of
numbers. These types of numbers are defined by the set of values that they can
represent.

Most familiar might be the set of natural numbers, or N. This set contains whole
numbers starting with zero: {0, 1, 2, 3, . . .}. These are the numbers you use to
count discrete objects: ‘‘I have two parents.’’ ‘‘There are four emergency exits on
this aircraft.’’ ‘‘This piano has 88 keys.’’

A superset of the natural numbers is the set of integers, represented by Z. This
set contains whole numbers both negative and positive: { . . . , –2, –1, 0, 1,
2, . . . }.

125

Part II: Core ActionScript 3.0 Data Types

An even larger set is the set of real numbers, represented by R. Real numbers include both rational
numbers and irrational numbers — that is, numbers that can be represented by a fraction and those
that can’t. It’s impossible to exhaustively list any subset of them because between any two real num-
bers lie an infinite number of other real numbers. Some examples, however, are –10, 6 1

2
, 3.14159265

. . . , and 4.4. (Of these examples, the number π , approximated by 3.14159265. . ., is irrational. π ,
read ‘‘pi,’’ can’t be accurately represented with a fraction or decimal expansion.) Any number you can
write with a fraction or a decimal is a real number. You can measure things such as distances, angles,
pH, and pounds of cookies with real numbers.

Representing Numbers
When you write down numbers, you are representing their values with digits. For instance, the con-
cept of one hundred is a one followed by two zeros. But you could also express this as one hundred
tick marks, 1 * 102, the Roman numeral C, or with ten rows of ten ones. With some imagination, you
could come up with lots of different ways to represent a single number.

The common way we write numbers is in base 10, also known as decimal. In our system of writing,
there are ten basic digits, 0 through 9, and every place for a digit represents a factor of ten more than
the place to its right. Thus, 342 is three hundreds plus four tens plus two ones.

When programming applications, you may find yourself using other bases, most likely base 16, also
known as hexadecimal. Base 16 has 16 basic digits, 0 through 9, followed by A, B, C, D, E, and F.
A digit in each place represents 16 times the value of the digit to its right. The number written 12
in hexadecimal is one sixteen plus two ones: eighteen. But because the 0–9 digits look the same in
both systems, there’s no way to know whether a number written 12 is meant to be in hexadecimal,
where it means sixteen, or decimal, where it represents twelve. To differentiate between hexadecimal
and decimal notations, we typically precede hexadecimal numbers with 0x. The number 0x2A is two
sixteens plus A (ten) ones, or 42 in decimal.

Why use hexadecimal? If you have tried talking to a computer, you know that computers don’t under-
stand decimal numbers. They understand only base 2, or binary, where the only digits are 0 and 1,
and each place represents twice the value of the digit to the right of it. However, it takes a lot more
space and effort to write in binary — for humans like us, that is. For example, 2009 is expressed in
binary as 11111011001. Hexadecimal is both compact and nicely compatible with binary. Each digit
in base 16 is represented by four digits in base 2, because 16 is 24. So 2009 becomes 0x7D9, which is
much more compact despite the space taken up by 0x. Hexadecimal is used in ActionScript 3.0 most
frequently to write 32-bit color values, as you’ll see later in the chapter.

Digital Representations of Numbers
Representing a number in a computer presents a unique set of challenges. First, computers represent
everything as binary. Second, the way your CPU works sets limits on the number of binary digits that
can be stored as a single value.

Unsigned Integers

The simplest kind of number to represent digitally is a natural number. Natural numbers (positive
whole numbers) are represented by unsigned integers on a computer.

The integer type in ActionScript 3.0 is 32 bits. This means that there are 32 places for binary digits.
To understand the limit this imposes, consider a comparison to decimal numbers. The highest num-
ber you can write in base 10 with 3 digits is 999, which is one less than 1,000 or 103. So the largest
number you can write in base 2 with 32 digits is

1111 1111 1111 1111 1111 1111 1111 1111

126

Chapter 7: Numbers, Math, and Dates

which is one less than

1 0000 0000 0000 0000 0000 0000 0000 0000

or 232. This means that the biggest number you can represent with a 32-bit unsigned integer is
232 – 1, which works out to 4,294,967,295 in base 10.

Four billion is a large number, to be sure, but it’s not hard to imagine needing a bigger number,
like the population of the world, or the number of hits some web sites get in a year. It is impor-
tant to remember that numbers represented on your computer are limited. As I’ve just demonstrated,
the maximum value of unsigned integers is limited directly by the size of the unsigned integer in
memory — in ActionScript 3.0, it’s 32 bits.

Signed Integers

Integer numbers (whole numbers that might be either positive or negative) are represented by signed
integers on a computer. The term ‘‘signed’’ refers to the fact that these numbers carry information
about their sign — that is, whether they are positive or negative. Unsigned numbers, in contrast, do
not carry information about their sign. They do not say whether they are positive or negative. It is
only through convention that we associate them with positive numbers, just as we expect maps to
represent north as up.

But if all you have at your disposal to represent both positive and negative numbers are 32 binary
digits, how do you represent both positive and negative numbers? The solution is both simple and
clever. There are two signs: positive and negative. There are two possible values for one binary digit,
0 and 1. So if you just reserve one of the 32 bits you have at your disposal for the sign, you can have
31 bits left to store the value of the number.

This trade-off affects the maximum absolute value that can be stored. If we reserve 1 bit for the sign,
a signed integer will have 31 bits left to represent its absolute value. A binary number with 31 digits
can only go up to 231 – 1, or about 2 billion. By taking one binary digit away, you halve the max-
imum value. But wait! By adding a sign, you double the number of values that can be represented!
Every number that was once an unsigned value (except zero) can now be two values: positive or neg-
ative. Signed integers, instead of going as high as unsigned integers, go half as high . . . but equally as
low. The minimum value of a 32-bit unsigned integer is 0, but the minimum value of a 32-bit signed
integer is –2,147,483,648.

The sign bit is stored as the most significant bit of the 32. But in addition to this, conventional lan-
guages such as ActionScript 3.0 use a trick to let the CPU add two numbers the same way regardless
of their sign. This trick is called two’s complement, and it involves counting backward in binary for
the nonsign digits of negative numbers. For instance, a 4-bit signed integer for –1 would be 1111,
–2 would be 1110, and so on. Then, adding a positive and a negative number is a normal binary
addition, with the overflow ignored. I mention this because overflows in integer arithmetic are
ignored, so if you are not careful with boundary cases, you can attain deceptively incorrect results
as a result of an overflow. You must also be aware of this when using bit math with signed
integers.

Floating-Point Numbers

Real numbers are represented by floating-point numbers on a computer. Just as scientific notation can
represent a huge range of numbers concisely in the form a * 10b, floating-point numbers have an
incredible range, and their accuracy is proportionate to the scale of the value itself. For example, 5.12
* 10–5 is an incredibly small and precise number, 0.0000512, and 5.12 * 109 is a very large but

127

Part II: Core ActionScript 3.0 Data Types

imprecise number, 5,120,000,000. However, both express sufficient precision for their own scale. You
don’t care about an error of a thousandth of a gram when measuring the weight of a planet, but
you need that accuracy when measuring chemical compositions.

Floating-point numbers break up the available bits to store a sign, a significand, and an exponent. The
significand in a floating-point number is its fractional part — the part that encodes the number to be
scaled up or down, or a in the expression a * 2b. The exponent is the scale of the number, or b in
the expression a * 2b. ActionScript 3.0 uses a standardized implementation of floating-point numbers
defined by the IEEE Standard for Binary Floating-Point Arithmetic, or IEEE 754. In this implementa-
tion, both a and b are binary, and the base itself is 2.

The floating-point type in AS3, introduced in the material that follows, is a 64-bit double-precision
IEEE 754 floating-point number. It reserves 52 bits for the fractional part and 11 bits for the expo-
nent, with 1 bit left over for the sign. This size structure can represent incredibly small (in absolute
value) and large numbers with great accuracy. It’s impossible to represent all real numbers with per-
fect accuracy in a computer, so floating-point numbers often approximate rather than represent values,
but the accuracy afforded by double-precision floating-point numbers should be sufficient for almost
any task. Use floating-point numbers to represent real numbers and extremely large positive or nega-
tive numbers. The maximum value AS3 can represent with a double-precision floating-point number is
about 1.8 * 10308. It’s incredibly difficult to give a number that big any perspective. For one measure,
it’s roughly 1,000,
000,
000,
000,000,000,000,000,000,000,000,000,000 times as many atoms as exist in the visible universe.

Using Numbers in ActionScript
ActionScript 3.0 includes three base types for numbers, which reflect the three ways I covered to rep-
resent numbers digitally, allowing the programmer to choose the best number type for the task at
hand. The number types include special values to keep your program from breaking in certain edge
cases. Additionally, the language allows you to type numbers directly into code.

Number
The Number type is an IEEE 754 double-precision 64-bit floating-point number and, as such, it
can represent positive and negative numbers, both whole and fractional. Numbers are applicable for
almost any kind of measurement and are one of the principal workhorses of ActionScript 3.0.

The default value for an unassigned variable of type Number is NaN, which is defined in the section
‘‘Edge Cases’’ later in this chapter. Usually Numbers are assigned by setting them equal to a numeric
literal, but the Number class also has a constructor, which attempts to convert the object passed in to
a number and assigns it to the new Number. Typical usage of a Number is as follows:

var n:Number;
trace(n); // NaN
n = 12;
trace(n); // 12

128

Chapter 7: Numbers, Math, and Dates

Tip
Assignment is the typical way to associate a value with a variable; it is rare to see a numeric type’s constructor
in use. �

Use Numbers for any kind of measurement, for values that might contain fractional parts, and for
extremely large and small values.

int
The int type is a signed 32-bit integer. Despite its lowercase name, it is, like all types, a class. Like
Number, int has a constructor that is rarely used. You can create a new int by merely typing a
number literal. If you try to assign an int variable a nonwhole number, the fractional part is dropped
(rather than rounded). The default value for an unassigned int value is 0.

Integer values in Flash Player take up less memory than floating-point numbers, so you can use inte-
ger number types for sections of code that need to be maximally optimized, and where fractional parts
do not matter. The int type is perfect for counters and is frequently found in for loops:

for (var i:int = 0; i < 1000; i++)

uint
Another new numeric type found in ActionScript 3.0, uint is an unsigned 32-bit integer. It, too, is
a class and has a rarely used constructor. Like int, its default value is 0. In fact, uint is identical to
int except in its range of values.

The uint type is used for bit math because its value is always a simple binary translation of the value,
without special encoding or rules like counting backward in two’s complement. It provides unfettered
access to all 32 bits of the value in memory. A good example of this is color values, illustrated in
Figure 7-1, which pack information for transparency and amounts of red, green, and blue into a single
32-bit field.

FIGURE 7-1

A color value represented in a single uint

A 0A 0A 0F F0 x

Alpha Red Green Blue

The value in Figure 7-1 represents a solid gray. Because it uses all 32 bits, it can’t be stored in a
signed integer, which uses 1 bit for sign and leaves 31 bits for use. You’ll see much more of uint
in Chapter 13, ‘‘Binary Data and ByteArrays.’’

129

Part II: Core ActionScript 3.0 Data Types

Caution
You should not use the uint type for integer numbers or counters because it is unable to represent nega-
tive numbers. Even if you know the integer you want to represent won’t go under zero, it’s a good idea to
leave it signed. Otherwise, it’s easy to make some simple errors. Use uints for bit math and ints for all other
integers.

Furthermore, it’s good to remember that integers behave badly when they overrun their limits, wrapping over
into the opposite sign for signed integers and between zero and the maximum value for unsigned integers,
whereas Numbers simply become less accurate as they increase radically. Don’t use ints or uints for val-
ues that have even a remote chance of exceeding their limits, or be sure to check these values. In general, use
Number for all numeric types, because it is the most flexible. �

Literals
Using number literals is simple. The easiest way to enter a number directly in code is to write it in
normal decimal notation. Valid decimal literals include

1337;
-4;
.8;
0.333;
-1.414;

As I briefly mentioned, you denote hexadecimal numbers by preceding them with 0x. To interpret a
number as hexadecimal in ActionScript code, you do the same thing:

var foo:uint = 0x12AB;

Note
When typing A–F hexadecimal characters, case is ignored. 0xA is equivalent to 0xa. �

You can also use exponential notation to declare numbers. Exponential notation expresses a number as
a real number times a power of ten. Typically this is seen in scientific notation, where the real number
part is always between 1 and 10. This kind of representation lets you focus on the relative sizes of
numbers without expressing them in a lengthy string of digits, especially for very small or very large
numbers, such as 6.02 * 1023. When writing exponential notation in code, you use the character e to
represent the base and to indicate that the value following it is the exponent. This same number, then,
would be written as 6.02e23. The following are all valid exponential literals:

2.007e3; // 2007
1414e-3; // 1.414
1.9e+17; // 190,000,000,000,000,000

Caution
In earlier versions of ActionScript, you could also enter literal numbers in base eight, or octal, by preceding
them with an unnecessary 0. This feature is likely to have caused more inadvertent errors than triumphs for
octal notation, and it has been removed from ActionScript 3.0. �

Edge Cases
Each ActionScript type includes special values that are included in its possible range. These are indis-
pensable for preventing your program from producing errors when certain edge cases occur.

130

Chapter 7: Numbers, Math, and Dates

Not a Number

The constant NaN represents ‘‘not a number,’’ a nonnumeric value included in the Number type. NaN
is found in instances of Number that have not been assigned a value, as the result of failed conver-
sions. Mathematical operations with nonreal or undefined results also yield NaN, such as the square
root of –1 or 0 divided by 0.

Comparisons with NaN always return false, and most mathematical operations on NaN result in
NaN. To check whether a number is defined, don’t try to compare its value to NaN. Instead, use the
top-level function isNaN(), as follows:

var n:Number;
trace(n); //NaN
trace(isNaN(n)); //true
trace(n == NaN); //false! That’s why you use isNaN()
n = Number("this won’t convert into a number");
trace(isNaN(n)); //true
n = 10;
trace(isNaN(n)); //false

In ActionScript 3.0, Number instances can be only NaN or a real number — never undefined or
void.

Infinity

The Number type also has special constant values for positive and negative infinity: Number
.POSITIVE_INFINITY and Number.NEGATIVE_INFINITY. If you end up with an infinite value,
for instance by dividing a Number by zero, instead of an overflow or runtime error, the Number
takes on one of the special infinite values. You can check infinite conditions through comparison, and
the comparisons work as you might expect. Any noninfinite number is less than positive infinity and
greater than negative infinity, although infinity equals itself.

var n:Number = 10 / 0;
trace(n); //Infinity
trace(n == Number.POSITIVE_INFINITY); //true
trace(isFinite(n)); //false

Minimum and Maximum Values

Not counting infinity, physical limits are imposed on the size of numbers based on their implementa-
tion in the ActionScript Virtual Machine. For instance, you learned that 32-bit unsigned integers can
go up to only 231 – 1. These real limits are documented by the MAX_VALUE and MIN_VALUE static
constants of all three number classes. The constants refer to the overall maximum and minimum pos-
sible values for int and uint. For Number, they refer to the largest positive finite number that can
be represented and the smallest nonzero, nonnegative number that can be represented:

trace(uint.MIN_VALUE); //0
trace(uint.MAX_VALUE); //4294967295
trace(int.MIN_VALUE); //-2147483648
trace(int.MAX_VALUE); //2147483647
trace(Number.MIN_VALUE); //4.9406564584124654e-324
trace(Number.MAX_VALUE); //1.79769313486231e+308

NaN and Infinity are concepts that apply to the Number type only. Integers, signed and unsigned,
don’t have these fail-safes.

131

Part II: Core ActionScript 3.0 Data Types

Manipulating Numbers
Numbers of all kinds in ActionScript 3.0 are flexible and can serve whatever purpose you need them
to. If this includes some type-bending, all the better. Casting and conversion are easy in AS3.

Numeric Conversions
If you want to multiply two values, a floating-point number and an integer, when what you really
need is an integer, don’t sweat it. ActionScript 3.0 automatically performs necessary conversions
between floating-point and integer numbers in expressions based on the left side of the expression:
what type it will be assigned to or returned as. If it’s not declared which type the expression should
be evaluated as, expressions are upgraded to floating-point when any part of them results in a
floating-point component:

var i:int = 3 * 2.04; //adding an int and a float, assigning to an int
trace(i); //6 (it’s an int!)

var n:Number = i + 0.1; //adding an int and a float, assigning to a float
trace(n); //6.1 (it’s a float!)

var x = 2 / 3;
//dividing an int and an int, upgraded to float since the result is
//not a whole number, and the left side doesn’t specify a type
trace(x); //0.6666666666666666 (it’s a float!)

String Conversions
Probably the most useful kind of conversions for numbers is to and from Strings. You can include
numbers in messages, format them, and read them in from user input. Thankfully, this process is as
simple as a cast, and in many cases it can be handled automatically.

To convert a number to a string, you have a few options:

� Call the number’s toString() method. This is the preferred way.

� Explicitly cast the number to a String. This actually calls the top-level String() conversion
function, which interprets the number as a string.

� Include the number variable in a string expression. This implicitly coerces the number to a
String.

for (var i:int = 99; i > 0; i--) {
trace(i + " bottles of beer on the wall");

}

� Call one of the special formatting methods on the number variable to print it to a string with
more control. All three number types have methods toExponential(), toFixed(), and
toPrecision(), for formatting the number in exponential and fixed-point notation and lim-
iting the number of decimal places printed out.

Getting a number back from a string value is as easy as explicitly casting the string to a number type.
To parse a number out of a string that might have other text in it, ignoring the other text, you can use
the top-level parseInt() and parseFloat() functions to return integer and real number inter-
pretations of the numeric content of a string. Also, parseInt() and parseFloat() allow you to

132

Chapter 7: Numbers, Math, and Dates

interpret the text as a number in an arbitrary base. The following snippet compares approaches to
converting strings to numbers:

trace(parseInt("3.14")); // 3
trace(int("3.14")); // 3
trace(parseFloat("3.14")); // 3.14
trace(Number("3.14")); // 3.14
trace(parseFloat("3.14 has a posse")); // 3.14
trace(Number("3.14 has a posse")); // NaN
trace(parseFloat("What’s up 3.14?")); // NaN

The last line doesn’t work because parseInt() and parseFloat() require the number to be the
first thing in the string, which makes these functions a lot less useful.

Of these two approaches, I recommend using the explicit cast method. Because you really are chang-
ing types, a cast in your code looks better than calling a global function like parseInt().

Cross-Reference
You can use regular expressions to easily parse out numbers from complex strings and do a much better job
than the parseInt() and parseFloat() functions. See Chapter 12, ‘‘Regular Expressions,’’ to learn about
applying regular expressions. �

Performing Arithmetic
ActionScript 3.0 supports all the basic arithmetic you’d find on any calculator, and expressions are
written out as you might write them on paper. AS3 follows the correct order of operations, so

1 + 2 * 3

returns 7 as it should, instead of 9 if it simply operated left to right. Arithmetic and order of oper-
ations were introduced in Chapter 2, ‘‘ActionScript 3.0 Language Basics.’’ Table 7-1 summarizes the
basic operators for arithmetic in AS3.

TABLE 7-1

Basic Arithmetic Operators

Operator Meaning

a + b The sum of a and b.

a * b The product of a and b.

a - b a minus b.

a / b a divided by b.

a % b a modulo b (the remainder of a/b).

-a The negative of a (–1 times a).

continued

133

Part II: Core ActionScript 3.0 Data Types

TABLE 7-1 (continued)

Operator Meaning

(a + b) Evaluate subexpressions in parentheses first.

a++ Add 1 to a after evaluating the expression.

++a Add 1 to a before evaluating the rest of the expression.

a-- Subtract 1 from a after evaluating the expression.

--a Subtract 1 from a before evaluating the rest of the expression.

Combining operators with assignment uses the left side of the expression as the first operand. For
example,

a = a + 10;

can be more concisely written as

a += 10;

Beyond these simple operators, there are static methods in the Math utility class, as shown in
Table 7-2, that enable you to perform more arithmetic.

TABLE 7-2

Math Class Arithmetic

Method Call Returns

Math.pow(a, b) a raised to the b power (ab)

Math.exp(a) e raised to the a power (ea)

Math.floor(a) a rounded down

Math.ceil(a) a rounded up

Math.round(a) a rounded to the nearest digit

Math.max(a, b, c...) Maximum of the set a, b, c . . .

Math.min(a, b, c...) Minimum of the set a, b, c . . .

Math.sqrt(a) Square root of a

Math.abs(a) Absolute value of a

Math.log(a) Logarithm (base 10) of a

Math.ln(a) Natural logarithm (base e) of a

Between built-in operators and the methods of the Math class, ActionScript 3.0 gives you a solid basis
with which to make computations.

134

Chapter 7: Numbers, Math, and Dates

Performing Trigonometric Calculations
Also built into ActionScript 3.0 are trigonometric functions. Flash is so often employed to create inter-
active graphics, and these can rarely be done without a helping of trigonometry. Therefore, the Math
utility class also includes the methods shown in Table 7-3.

TABLE 7-3

Math Class Trigonometry

Method Call Returns

Math.sin(a) Sine of an angle measuring a radians

Math.cos(a) Cosine of an angle measuring a radians

Math.tan(a) Tangent of an angle measuring a radians

Math.asin(a) Angle in radians whose sine is a (arcsine of a)

Math.acos(a) Angle in radians whose cosine is a (arccosine of a)

Math.atan(a) Angle in radians whose tangent is a (arctangent of a)

Math.atan2(y, x) Angle which, drawn from the origin, intersects the point (x, y)
(arctangent of y/x)

In addition, the Math class includes the constant Math.PI for the number pi, ratio of a circle’s cir-
cumference to its diameter.

Tip
All trig functions operate on radians, an angular unit in which 2π radians measure a full revolution. All display
objects’ rotations are measured in degrees, in which 360 degrees measures a full revolution. You can use the
equality π radians = 180 degrees to translate between them easily:

valInRadians = valInDegrees / 180 * Math.PI;
valInDegrees = valInRadians / Math.PI * 180;

In Example 7-1, you’ll create a game-like scenario where a turret points toward the crosshairs that
track your mouse movements. This is made possible by the arctangent function, which finds the angle
of a corner of a right triangle given the ratio of the lengths of the edges that form the angle. In a game
like this, when you want some object A to orient itself toward another object B, the position of object
B relative to A defines the hypotenuse of the triangle. This is shown in Figure 7-2.

EXAMPLE 7-1 http://actionscriptbible.com/ch7/ex1

Trigonometric Functions

package {
import flash.display.*;
import flash.events.Event;

continued

135

Part II: Core ActionScript 3.0 Data Types

EXAMPLE 7-1 (continued)

import flash.ui.Mouse;

public class ch7ex1 extends Sprite {
protected var compass:Sprite;
protected var crosshairs:Sprite;
public function ch7ex1() {
drawCompass();
drawCrosshairs();
addEventListener(Event.ENTER_FRAME, tick);

}
protected function tick(event:Event):void {
Mouse.hide();
crosshairs.x = stage.mouseX;
crosshairs.y = stage.mouseY;
compass.rotation = Math.atan2(
stage.mouseY - compass.y,
stage.mouseX - compass.x)
* 180 / Math.PI;

}
protected function drawCompass():void {
var RADIUS:Number = 30;
compass = new Sprite();
var g:Graphics = compass.graphics;
g.lineStyle(4, 0xe03030);
g.beginFill(0xd0d0d0);
g.drawCircle(0, 0, RADIUS);
g.endFill();
g.moveTo(0, 0);
g.lineTo(RADIUS, 0);
addChild(compass);
compass.x = stage.stageWidth / 2;
compass.y = stage.stageHeight / 2;

}
protected function drawCrosshairs():void {
var SIZE:Number = 10;
crosshairs = new Sprite();
var g:Graphics = crosshairs.graphics;
g.lineStyle(8, 0x4040f0, 1, false, LineScaleMode.NONE, CapsStyle.SQUARE);
g.moveTo(0, SIZE);
g.lineTo(0, -SIZE);
g.moveTo(SIZE, 0);
g.lineTo(-SIZE, 0);
crosshairs.blendMode = BlendMode.MULTIPLY;
addChild(crosshairs);

}
}

}

136

Chapter 7: Numbers, Math, and Dates

FIGURE 7-2

Output of Example 7-2. Using trigonometry to implement a turret aiming system.

y

x

tan θ = y/x
θ = arctan (y/x)

θ

Generating Randomness
Incorporating elements of randomness into your program is an excellent way to simulate lifelike,
unpredictable behavior. This can be applied to animate graphics for living creatures or to create gen-
erative art, often producing real beauty from a chance arrangement. Subtly altering the appearance of
your program with randomness is a common technique for evoking an organic, always-new feeling.
You can apply randomness to any quantifiable property, and in whatever degree you desire.

Given the many applications of chaos, generating some in ActionScript 3.0 is trivial.

Math.random();

This method generates a pseudorandom number between 0 and 1. It could potentially be 0, but it will
never get as high as exactly 1 (0 ≤ n < 1). In other languages, you may be required to set the seed
value for the random number generator, but in ActionScript 3.0 this is not available or necessary.

Note
Pseudorandom numbers are determined by a series of repeatable steps that a computer can execute. This means
that they are not truly random. However, they have a random distribution and for almost every application are
sufficient. For cryptographic applications you should consider writing your own random number routines and
incorporating more chaotic variables into them, such as sampling mouse movement or background noise from a
microphone. �

The Math.random() method generates unit-scale random numbers only. More than likely, you need
the values to lie in a different range than 0 to 1. Remember that the Math.random() function does
not take arguments; you should scale the numbers to the desired range yourself. A simple formula for
producing a random number between two values is presented here:

function randomInRange(min:Number, max:Number):Number {
var scale:Number = max - min;
return Math.random() * scale + min;

}

The fact that Math.random() returns a number between 0 and 1 makes it easy to manipulate. Here,
you simply multiply it by the size of the range and shift it up by the minimum value.

137

Part II: Core ActionScript 3.0 Data Types

Manipulating Dates and Times
When you create applications that interface with the world at large, timing becomes a huge concern.
As individuals, we want to mark off the years since we were born, be on time for flights, plan a party
for a specific time and day, know important events in our past and our history, and mark the passage
of time. Time is a linear variable; we all experience it at the same rate forever. (Actually, we don’t, but
I’ll save that for Physics Bible.) Therefore, we can represent time as a single dimension, measuring it
with ever-increasing numbers. I could say, ‘‘I let my tea brew for 180 seconds,’’ and you would under-
stand that measurement of time. So, too, could any computer or simple pocket calculator because a
number is just a number.

However, things get really complicated when you try to manipulate and communicate dates. Most
of us use a complex and fairly hacked-up system to break up time into cycles that roughly sync up
with earth’s travel around the sun, its rotation, the location of the moon, the seasons, and all kinds
of events. This mess of rules and exceptions is called the Gregorian calendar. Times during the day
have problems, too, as everyone on the globe wants noon to be about when the sun is in the middle
of the sky; we’re left with the same instant being represented as different times across the world: time
zones. All of these we have become somewhat adept at manipulating mentally. I could tell you what
month it was 50 days ago, but without a lot of thought, I couldn’t tell you what day of the week it
was. For both humans and computers, calculating dates requires knowledge of how our systems of
measurement work.

ActionScript 3.0 knows all these rules and lets you manipulate times and dates in their common units,
rather than simply as a raw number. There is one class in ActionScript 3.0 that represents a single
moment in time, including both time and date information. This is the Date class.

Creating a Date
Let’s start using Dates by creating one that represents ‘‘right now,’’ or more precisely, ‘‘the instant in
which the Date object was created.’’ The default use of the Date constructor will do just this.

var now:Date = new Date();

The Date constructor is one of the more versatile constructors in ActionScript 3.0. With it, you can
construct not just Dates for right now, but Dates representing any point in time you pass in.

You can send the Date constructor a series of values for the year, month, day of the month,
hour, minute, second, and millisecond to represent. You must include at minimum two of these
parameters — at least the year and month — and all others will default to zero (the stroke of
midnight the first day of the month), as shown in Example 7-2.

EXAMPLE 7-2 http://actionscriptbible.com/ch7/ex2

Collected Snippets: Using Date

var bday:Date = new Date(1981, 4, 12); // May 12, 1981
var timeOfWriting:Date = new Date(2009, 5, 29, 22, 25);
// Mon Jun 29 22:25:00 GMT-0400 2009

138

Chapter 7: Numbers, Math, and Dates

Hours are measured in 24-hour/military time, so they can range from 0 (12 a.m.) to 23 (11 p.m.).

You might notice that there’s something fishy with the dates as entered in the preceding code. Cer-
tain units in the Date class are zero-indexed, and certain units are one-indexed. Although January
is the first month, the Date class calls it zero. Properties are zero-indexed when they refer to named
units, such as months (January, February, and so on) or days of the week (Monday, Tuesday, and so
on). This way, you can use an array of month names to generate human-readable dates, as shown in
Example 7-2.

var daysOfWeek:Array = ["domingo", "lunes", "martes", "miércoles",
"jueves", "viernes", "sábado"]

trace(daysOfWeek[timeOfWriting.day]); //lunes

By representing these named parts of time as numbers, they remain language independent.

Months and days of the week are indexed from zero. Days of the month are indexed from one.
Hours, minutes, seconds, and milliseconds are measured from zero. Years are measured from zero
(AD 0/CE 0).

A third way to create a Date object is by passing it a string representing a time. The string must
contain at minimum a year, month, and day of the month, but it can contain more. If the Date
constructor can’t figure out how to get a date out of your string, it creates a new Date with an
Invalid Date value, the equivalent of a NaN. All of the following lines create valid dates:

new Date("1/28/2007"); // United States style MM/DD/YYYY
new Date("Sun Jan 28 2007");
new Date("28 Jan 2007");
new Date("Sun Jan 28 2007 3:16:12 PM");

The parsing function is only somewhat lenient; it is better suited for interpreting specifically
computer-formatted dates than free-form human input. It’s always a good idea to check a date’s
validity after constructing it from a string. You can check a date’s validity by checking whether its
epoch time is a number.

var invalid:Date = new Date("Yesterday");
trace(invalid); // Invalid Date
trace(isNaN(invalid.valueOf())); // true

So what is this so-called epoch time? I don’t know. Hmm . . . maybe somewhere in this big book
there is a section called . . .

Epoch Time
In simpler times, people didn’t have Date classes or fancy laptops or terabyte hard drives full of 30
Rock episodes in HD. Folks then, they had a big ol’ heap of memory and some simple types that
stored some simple values. When they needed a time value — and people always needed a time
value — they relied on their old friend int. Remember that old tale about time just being a number?
Well, it sure can be, if you can just decide what time was 0. So those folks did just that. They stored
a time as a number of seconds since another time, and they put that number right in an int.

What was the time those folks measured against? It was the Epoch: midnight, January 1, 1970. But
why that day? The epoch of what? This is the way time has always been represented in Unix, and

139

Part II: Core ActionScript 3.0 Data Types

that day was the birthday of Unix (or so they say). In fact, this kind of time measurement is usually
referred to as Unix time, but because it is applied so widely now, I feel it’s more diplomatic to call it
epoch time.

Of course, by putting that number in a signed int, they created a problem. Can you guess what it
is? A 32-bit signed integer can represent only a time up to 231 seconds before or after the epoch. That
means dates before December 1901 and dates after January 2038 are out of the range of epoch time
when stored in an int. In those simpler times, 2038 must have looked like a long way away.

Thankfully, ActionScript 3.0 uses a Number type to represent epoch time. This means that you’d have
to be out of your mind to come up with a date it can’t represent (remember Number.MAX_VALUE?) ,
and it also gives you the precision to measure epoch time as milliseconds since the epoch.

Caution
Epoch time in ActionScript 3.0 is represented in milliseconds since January 1, 1970, not seconds. �

In the present, epoch time is still a useful tool. Because it’s just a number, you can play with it freely,
using arithmetic instead of Date methods when it’s more convenient. To selectively use epoch time,
you have to be able to convert a Date object to an epoch time and back; methods covered in the fol-
lowing section, ‘‘Accessing and Modifying a Date,’’ show how to do that. In addition to those methods
that fit in with other means of modifying a Date, you can pass epoch time to the Date constructor
to create a new Date instance from an epoch time, as shown in Example 7-3.

EXAMPLE 7-3 http://actionscriptbible.com/ch7/ex3

Creating a Date from an Epoch Time

var d:Date = new Date(0);
trace(d); // Wed Dec 31 16:00:00 GMT-0800 1969

In addition, if you want nothing to do with Date objects and just want to use epoch time, you can
parse strings into dates without creating a new Date object by using the Date class’s static parse()
method:

trace(Date.parse("1/1/1970")); // 28800000

Did you notice something wrong with these examples? Get a different value when you executed them?
Shouldn’t the first one return January 1, 1970 and the second one 0? They would, if you lived on the
Greenwich meridian.

Time zones
As you know, one of the complications of our way of measuring time is the separation of our globe
into time zones, where the same instant is a different time at different longitudes. The Date class also
takes this into account.

When you create a new Date object, ActionScript assumes you want it in your local time zone unless
you specify a time zone, as in new Date("Jan 28 19:46:00 GMT-0500 2007"). Once you
have a Date object, you can operate on it and reference it in either your local time zone or UTC.

140

Chapter 7: Numbers, Math, and Dates

UTC, or Coordinated Universal Time, is the same thing as GMT, Greenwich Mean Time, and is the
‘‘neutral’’ time zone. So if you want two people on different parts of the globe to agree on what to call
a certain time, they can both reference it by the same time zone to call it the same time. That time
zone is UTC or GMT, the time zone over the Greenwich meridian in Great Britain. So by referencing
times with respect to UTC, you can avoid geographical implications.

Because epoch time is measured relative to a specific instant, you need that reference point to be fixed.
The epoch is not just January 1, 1970 at midnight; it’s January 1, 1970, midnight at UTC. There-
fore, if I am in Los Angeles using Pacific Time, GMT-0800, the local time of the epoch is at plus eight
hours, or 28,800,000 milliseconds like the example showed.

In the first part of the example, you created a new Date object at the actual epoch time, but you
printed it in our local time. For Californians, that’s December 31, 1969 at 4 p.m. When it’s midnight
in UTC, it’s 4 p.m. the previous day in Pacific time. Your results may vary as you run the example
from your local time zone. Even my results completely changed, as I revised this chapter in Brooklyn
during Daylight Savings Time (GMT-0400).

In the second part of the example, you created a new Date to represent January 1, 1970 in our local
time. Epoch time is measured from January 1, 1970 UTC, so again in California the difference is eight
hours, or 1,000 ms/sec * 60 sec/min * 60 min/hr * 8 hr = 28,800,000 ms. Try running the example
yourself and verifying your own time zone.

Accessing and Modifying a Date
Once you have a date stored in a Date variable, you can work with it in the natural units of time
thanks to accessor methods and functions of the Date class. You can set or read any unit of time, in
either UTC or in the local time zone. It’s your choice whether to use the explicit accessors (methods)
or implicit accessors (properties) to read and write these values.

For each property of a date and time listed in Table 7-4, the accessors are named as follows:

� get[Property]() — Read the property from the Date object in local time.

� getUTC[Property]() — Read the property from the Date object in UTC.

� set[Property]() — Set the property in local time.

� setUTC[Property]() — Set the property in UTC.

� [property] — Read or write the property in local time.

� [property]UTC — Read or write the property in UTC.

So, for example, you can access the hour of a date with any of the following:

date.hours;
date.hoursUTC;
date.hoursUTC = 20;
date.getHours();
date.setHours(5);
date.getUTCHours();
date.setUTCHours(20);

141

Part II: Core ActionScript 3.0 Data Types

Date Arithmetic
To shift time, convert the Date object to an epoch time and use normal arithmetic to manipulate
it in milliseconds. When you’re done, you can write the new value into the existing Date with
setTime().

TABLE 7-4

Retrieving and Modifying Units of Time

Property Use Restrictions

milliseconds Thousandths of a second (0–999)

seconds Seconds past the minute (0–59)

minutes Minutes past the hour (0–59)

hours Hour of the day (0–23)

date Day of the month (1–31)

day Day of the week (0–6) Read-only (no setDay() or
setUTCDay(), implicit accessors are
read-only)

month Month (0–11)

fullYear Unabridged year (1999 instead of 99)

time Milliseconds since January 1, 1970 UTC No UTC version of accessors (this
property is always relative to UTC)

This approach is recommended over directly setting units of the date as in the following:

date.setDate(date.getDate() + 1); // add one day(?)

In some cases, if you use arithmetic with time units, you may be responsible for checking all kinds of
boundary conditions such as leap years and different numbers of days in a month. This naı̈ve example
looks like it might break when it tries to assign 32 to the day of the month. Thankfully, ActionScript
is smart and does the right thing.

However, when the amount of time to be added is measured in a unit of time that might depend on
special Gregorian rules, you should let the Date object do its magic. For example, you should add
years by incrementing fullYear instead of by adding 365 days to your Date. This value for days a
year is not entirely as accurate as using the fullYear setter would be, because it doesn’t account for
leap years.

Execution Time
The function flash.utils.getTimer() returns the number of milliseconds since Flash Player
was initialized. When it’s not necessary to use a Date object, you can use getTimer(), typically to
measure elapsed time while a program is executing.

142

Chapter 7: Numbers, Math, and Dates

This can be applied to either measure performance of your own application or the network, or to mea-
sure time as interactions take place with the user. Call getTimer() once before the event you wish
to measure, and once after, and then take the difference to find the duration of the event.

Formatting a Date
We are accustomed to seeing dates written in lots of different ways. When generating text that
includes dates, you want control over how the dates will appear so that you can present date
information in the most appropriate way.

You can format dates out-of-the-box with a single method call in a few ways. Date objects include
a toString() method like every object, as well as several additional formatting methods, as shown
in Table 7-5.

TABLE 7-5

Date Formatting Methods

Method Includes Example

toDateString() Month, day, and year Sun Jan 28 2007

toDateLocaleString() Same as toDateString() Sun Jan 28 2007

toString() All information, 24h Sun Jan 28 23:00:00 GMT-0800 2007

toLocaleString() All information except time
zone, 12h

Sun Jan 28 2007 11:00:00 PM

toTimeString() Hours, minutes, seconds,
time zone, 24h

23:00:00 GMT-0800

toLocaleTimeString() Hours, minutes, seconds,
12h

11:00:00 PM

toUTCString() All information relative to
UTC, 24h

Mon Jan 29 07:00:00 2007 UTC

Although these methods are useful to quickly print date information, you can completely control the
format of your dates with just a little bit more work by gluing together the units you can access from
the Date object itself, and whatever incidental formatting you need.

The following example uses custom formatting to display any date as MM/DD/YYYY:

function dateToMMDDYYYY(aDate:Date):String {
var SEPARATOR:String = "/";

var mm:String = (aDate.month + 1).toString();
if (mm.length < 2) mm = "0" + mm;

var dd:String = aDate.date.toString();
if (dd.length < 2) dd = "0" + dd;

143

Part II: Core ActionScript 3.0 Data Types

var yyyy:String = aDate.fullYear.toString();
return mm + SEPARATOR + dd + SEPARATOR + yyyy;

}

The example pads the month and date with leading zeros where necessary, and it shifts up the month
field, which is otherwise zero-indexed, by one.

Summary

� There are three number types in ActionScript 3.0, each with different strengths.

� The value NaN represents invalid and unassigned numbers; a Number can be neither
undefined nor void.

� Edge cases are handled by special constants in the number classes.

� You can operate on numbers with supported operators.

� Numbers can be typed directly in code in multiple notations.

� Numbers can be converted between numeric types, parsed from strings, and printed into
strings.

� The Math utility class contains static methods for arithmetic and trigonometry.

� Math.random() generates pseudorandom numbers between 0 and 1.

� The Date class stores an instant in time.

� Epoch time stores an instant in time as a number.

� You can access and alter a Date instance using many units of time.

144

Arrays

FEATURED CLASS

Array

I
n this chapter, you’ll look at arrays. Arrays contain indexed data, like a
numbered list of items. By using an array, you can store multiple pieces
of data in a single variable, which allows you to group values that should

go together. An array also provides methods and properties that let you edit it,
search through it, sort it, and operate on its contents. Arrays are key tools in any
programmer’s toolbox.

Arrays are the first complex data type that you study in Part II, ‘‘Core Action-
Script 3.0 Data Types.’’ Strings, numbers, Booleans, and the like are all primitive
data types — the core building blocks of information that usually contain a sin-
gle piece of data of a specific type. Complex data types, on the other hand, are
composites of the various primitive types.

Array Basics

Arrays are a lot like a numbered list of items. Each item, or element, in an array
has a location, or index. Unlike most numbered lists, indices in an array start at
0 instead of 1. These indices are used to look up elements in the array, as shown
in Figure 8-1.

Using the Array Constructor
Let’s create the first array and fill it with information. For this, you’re
going to use the Array constructor.

var myArray:Array = new Array();

Tip
Remember that a constructor is a function that creates an instance of a class. A
constructor is always named after the class it constructs. To use a constructor,
use the new keyword followed by the constructor name — for example, new
Array(). �

145

Part II: Core ActionScript 3.0 Data Types

FIGURE 8-1

To visualize an array, think of a set of numbered cubbyholes, each containing a single item.

The previous code creates an empty array — an array that contains no items. Calling the Array()
constructor with no arguments is the simplest way to make a new array. But ActionScript provides
two additional ways to use the constructor. If you want to create an array and assign values to it at
the same time, just pass those values to the constructor:

var myThings:Array = new Array("coffee filters", "stapler", "Spin Doctors CD");

Here, you create an array of your things and simultaneously fill it with some random stuff you might
find in one of your desk drawers. I’m filling this array with strings, but arrays in ActionScript can
contain any type of object or even disparate types. Sometimes these are called mixed arrays.

var time:Date = new Date();
var currentTemp:Number = 56;
var currentConditions:String = "Light Showers";
var weatherReport:Array = new Array(time, currentTemp, currentConditions);
trace(weatherReport);
//Sun Dec 3 17:02:16 GMT-0500 2006,56,Light Showers

In the previous example, you used the trace() statement to print the contents of the array. This is
by far the easiest method for finding out what values are stored in an array. This is covered in more
detail in the later section, ‘‘Converting Arrays to Strings.’’

The third form of the Array constructor allows you to specify the new array’s initial length. To do
so, call the constructor passing a single integer value signifying the length of the array. A new array is
created with as many unassigned indices as you ask for:

var topTen:Array = new Array(10);
// creates an array with 10 spaces.

In practice, this ability is not terribly useful. An array’s length is dynamic and changes to fit your
needs for it.

146

Chapter 8: Arrays

Caution
If you pass a number to the Array() constructor with the intent to add that number to the array, you may
be disappointed. A single numeric parameter always creates an empty array with a capacity specified by the
argument. Because this is mighty confusing, I only use the empty, no-parameter Array() constructor, or array
literals. �

Creating an Array by Using an Array Literal
In ActionScript you can write arrays directly into your code using array literals. As discussed in
Chapter 2, a literal is a value written directly — immediately — into the code, without a constructor
or any kind of initialization, like the number 12.

To write an array literal, list the contents of the array separated by commas and surround the whole
thing in a set of square brackets ([]). For example:

[1,2,3]

The previous code is equivalent to this:

new Array(1, 2, 3);

As you can see, the literal form is more compact. Also, you might notice that commas are the way we
naturally list things in English. A shopping list might have bananas, coffee, chocolate, and milk. Code
imitates life again.

Simply creating an array isn’t very exciting unless you plan to do something with it. Let’s assign an
array literal to a variable:

var fibonacci:Array = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

Likewise, you can create a new empty array by using an empty array literal:

var a:Array = [];

Literals are a quick and convenient way to create arrays when you know their contents.

Note
Thankfully, ActionScript isn’t picky about how you space or terminate your array literals. If you leave a trailing
comma in a literal like [1, 2, 3,] it will be ignored. Likewise, feel free to put as much or as little whitespace
between delimiters as you’d like. �

Referencing Values in an Array
Now that you’ve created some arrays, let’s look at how you can access the values they contain. An
array’s values are stored in slots, or indices. Each index is numbered starting from 0 and counting up
to one less than the length of the array. (Try it: if you have four pencils, you would count them: 0, 1,
2, 3. Because the first index of an array is always 0, the last index is always length − 1). To look up
a value in an array, you’ll use the array variable followed by the array access operator ([]) containing
the index you want. The array access operator tells the array to return a specific element at the index
you provide:

147

Part II: Core ActionScript 3.0 Data Types

var animals:Array = ["newt", "vole", "cobra", "tortoise"];
trace(animals[2]); //cobra

By writing animals[2], you’re asking for the item stored at index 2 in the array. An indexed posi-
tion in an array is no different from a variable with a name: you can assign values to it when it’s
written on the left side of an assignment:

animals[0] = "salamander";
trace(animals); //salamander,vole,cobra,tortoise

Finding the Number of Items in an Array
To find out how many elements are contained within an array, you can check the length property
of the array, as shown in Example 8-1. length is a read-only property. You can only set the length
of an array by changing its contents, or specifying the length in the Array() constructor.

EXAMPLE 8-1 http://actionscriptbible.com/ch8/ex1

Array Length

var veggies:Array = new Array();
trace(veggies.length); //0
veggies = ["corn", "bok choy", "kale", "beet"];
trace(veggies.length); //4

Remember that indices count up from 0, so the length is always one more than the last index in
the array. In other words, veggies[3] is the last element in the list, whereas veggies[4] is
undefined.

Converting Arrays to Strings
When working with arrays, it’s often helpful to look at a snapshot of the contents. By this point,
you’re probably familiar with the toString() method. This is implicitly called when you use an
array where a string is expected. You have already been using this with trace(), which prints out
its arguments. Array’s toString() method renders it as a comma-separated list of values.

var names:Array = ["Jenene", "Josh", "Jac"];
trace(names); //Jenene,Josh,Jac

The Array class provides another way to display its values as a string. By using the join() method,
you can provide your own delimiter to separate the array’s contents:

var menu:Array = ["eggplant parmesan", "chocolate", "fish tacos"];
trace("For dinner we’re having " + menu.join(" and ") + ". Yum!");

148

Chapter 8: Arrays

//For dinner we’re having eggplant parmesan and chocolate and fish
//tacos. Yum!

Here the commas are replaced by the word ‘‘and,’’ making the sentence read a little more naturally.

Tip
To create a string with no spaces or other characters between the array values, use the empty string:
join(""). �

Adding and Removing Items from an Array
Adding elements to an array one index at a time is nice, but as the length increases, it can be tricky
to keep track of all those indices. Luckily, you won’t have to! The Array class provides methods for
adding items to and removing items from your array without regard for their index numbers. This
enables you to collect objects in a list without a care and to use your array as a stack or a queue.

Appending Values to the End of Your Array with concat()
You’ve learned how to create individual arrays, so let’s look at how you might combine the contents
of one array with another array. You might try to do this by adding the two arrays together:

var a:Array = [1,2,3];
var b:Array = [4,5,6];
var c:Array = a + b;

Running this code results in the following runtime error:

TypeError: Error #1034: Type Coercion failed: cannot convert "1,2,34,5,6"
to Array.

What’s happening here? Well, the two arrays are complex data types, so they’re not appropriate values
to use with the + operator. Instead, the compiler thinks you want to add two Strings, because the
+ operator works on two strings. It uses toString() to coerce the Arrays into Strings "1,2,3"
and "4,5,6". Then it concatenates the strings, resulting in "1,2,34,5,6", and tries to assign that
back to c, which is expecting an Array. Only here do you actually get an error, because Flash Player
won’t convert that String into an Array. Regardless, this is not what you wanted to do at all.

Tip
A Type Coercion Error usually means that there has been an attempt to assign a value to a variable expecting a
different type — for example, trying to assign a Date object to a variable of type Array. �

Instead of adding the two arrays together using the plus sign, use the concat() method, short for
concatenate. This method creates a new array starting with its own contents and followed by any num-
ber of objects you specify as parameters. If you pass another array as a parameter, the contents of the

149

Part II: Core ActionScript 3.0 Data Types

array, rather than the array object itself, are added. Example 8-2 adds a to b and throws on a couple
of extra values for fun.

EXAMPLE 8-2 http://actionscriptbible.com/ch8/ex2

Concatenating Arrays

var a:Array = [1,2,3];
var b:Array = [4,5,6];
var c:Array = a.concat(b, 7, "eight");

trace(a); //1,2,3
trace(b); //4,5,6
trace(c); //1,2,3,4,5,6,7,eight

Notice that the original arrays, a and b, remain unchanged during this operation. The concat()
method is nondestructive: it returns a new array that is based on the original but doesn’t affect the
original array.

Applying Stack Operations push() and pop()
ActionScript’s Array has methods that let it act as one of several data structures, or sets of data orga-
nized in an efficient way. One such data structure is a stack. A stack is a list of data that is maintained
in a first in, last out (FILO) manner. In other words, the first thing that goes in is the last thing that
comes out.

It might be easiest to think of a stack as a Pez dispenser. Candy loaded in the top gets pushed down
onto the stack. When you lift the top of the dispenser, the piece of candy that was most recently
loaded pops off the top. The Array class provides methods that do the same thing with its elements.

As with the Pez dispenser, values can be pushed onto the end of an array using push() and popped
off the end using pop(). If you think of your arrays as horizontal (left to right) and your stacks
as vertical, imagine tipping over the Pez dispenser/stack to the right. You push the pieces of candy
‘‘down’’ to the left, and you pop them off the top at the right. The end of the array is the top of the
stack. The push() and pop() methods, rather than creating a new array, modify their own contents.
Let’s look at this in action:

var pez:Array = new Array();
pez.push("cherry");
pez.push("orange");
pez.push("lemon");
pez.push("grape");
trace(pez); //cherry,orange,lemon,grape

var candy:String = pez.pop();
trace(candy); //grape
trace(pez); //cherry,orange,lemon

150

Chapter 8: Arrays

Stacks are useful when your program needs to deal with new information as it comes in but retain the
older information to refer to it later. Imagine an alert system that displays a current threat level as a
color. When the alert level rises, it might go from green to yellow and return to green when the threat
has passed.

The push() method takes one or more objects as parameters and adds them all in order to the end
of the array. That is, the objects are added to the last index of the array, making these two statements
identical:

myArray.push(myValue);
myArray[myArray.length] = myValue;

Whether you choose to use a formal stack structure or not, the push() method is a quick and useful
way to add elements to the end of your array without being bothered to keep track of indices.

The pop() method, conversely, takes no arguments. It removes and returns the last element of the
array.

Applying Queue Operations shift() and unshift()
Similar to stacks are another type of data structure called queues. Queues are lists that work in a first
in, first out (FIFO) fashion. This could be related to a line of people waiting for tickets at the movie
theater. The first person in line is the first person to get a ticket. The next person in line is the next
to buy, and so on. Each time a person buys a ticket, he leaves the line and the rest of the line shifts
forward one to fill his space.

Arrays can also ‘‘push’’ elements to the end and then ‘‘shift’’ them off the front using, you guessed it,
the shift() method. Example 8-3 creates the movie queue example using this technique.

EXAMPLE 8-3 http://actionscriptbible.com/ch8/ex3

Shifting and Unshifting Queues

var queue:Array = new Array();
queue.push("Anja");
queue.push("James");
queue.push("Will");
trace(queue); //Anja,James,Will

var person:String = String(queue.shift());
trace(person); //Anja
trace(queue); //James,Will

As you can see, the first person added to the list was the first person shifted off. The shift()
method returns the value removed from the array.

If shifting is taking elements off the front of the array, unshifting must be adding elements to the front
of the array. Keep in mind this is cutting in line, though! Arrays can also call unshift() to add any
number of elements to the front of the array just like push() adds elements to the end of an array.

151

Part II: Core ActionScript 3.0 Data Types

queue.unshift("Cheater");
trace(queue); //Cheater,James,Will

Queues can be useful when you have data that needs to be processed in a first-come, first-served man-
ner, such as if you want to load several images from a server, one at a time. You’ll want the first image
to load before moving on to the next, shifting each one until all the images are done loading in the
exact order you specified.

Note
Stack and queue operations are not mutually exclusive. They can be used alone or together in any array. �

Slicing, Splicing, and Dicing
In the previous section, you looked at adding to the front or back of your array. You will probably
use these techniques extensively, but every now and then you need the power to edit whole ranges of
values at once.

Inserting and Removing Values with splice()
‘‘Splice’’ usually means to join two things by interweaving them, such as pieces of film or rope. With
an array, you can splice together two sets of elements using the splice() method. When you splice
together film, you always have to destroy a single frame to get a clean transition. With an array, you
also have the option of deleting elements when you splice in new ones.

The splice() method takes two required parameters: the starting index, which is where the inser-
tion or deletion will begin, and the delete count, which is the number of elements you want to delete
from the array (0 if you want to insert only). You may also add any number of optional parameters,
which are elements that will be added to the array at the start index. If any elements are removed
from the array, they’re returned by the splice() method.

Let’s look at splice() in action:

var nobleGasses:Array = ["helium", "neon", "argon", "pentagon", "xenon",
"radon"];
var shapes:Array = nobleGasses.splice(3, 1, "krypton");
//delete 1 element at index 3, and replace it with "krypton".
trace(nobleGasses); //helium,neon,argon,krypton,xenon,radon
trace(shapes); //pentagon

Working with a Subset of your Array with slice()
To extract a subset of your array to work on independently of the original array, you can use the
slice() method. You may recall the slice() method for the String class. Slicing works pretty
much the same way for the Array class. Just specify the start and end index (not inclusive) of the
slice you want to create. Example 8-4 shows how this works.

152

Chapter 8: Arrays

EXAMPLE 8-4 http://actionscriptbible.com/ch8/ex4

Collected Snippets: Slicing an Array

var metals:Array = ["iron", "copper", "gold", "silver", "platinum", "tin",
"chrome"];
var preciousMetals:Array = metals.slice(2,5);
trace(preciousMetals); //gold,silver,platinum

The slice()method also accepts negative numbers, which count from the end of the array rather
than the beginning.

var metals:Array = ["iron", "copper", "gold", "silver", "platinum", "tin",
"chrome"];
var canMakingMetal:Array = metals.slice(-2,-1);
trace(canMakingMetal); //tin

Iterating through the Items in an Array
When working with arrays, you’ll often want to perform an action using every element in the array.
So far, you’ve looked at ways to create, add, and remove elements in an array; now let’s look at how
you can work with all of them.

Using a for Loop
The most old-school way to access all the items in an array is the venerable for loop. I covered
repeating loops in Chapter 2; now you get a chance to put them into action.

When working with arrays, you’re likely to see a for construct with this form:

for (var i:int = 0; i < menuItems.length; i++) {
makeMenuItem(menuItems[i]);

}

Let’s look at what’s going on here:

� for — The for keyword specifies a for loop.

� var i:int = 0 — Create a new integer and set the initial value to zero. Frequently named
i for ‘‘iteration’’ or ‘‘index,’’ the loop variable represents the current index in the array.

� i < menuItems.length — This specifies that the loop should be repeated while the index
is less than the length of the array.

� i++ — After each loop, the loop variable used the increment operator to count up by one.

� makeMenuItem(menuItems[i]) — By using the value for i as it changes with the array
accessor, you can do something with the value of every element in the array.

153

Part II: Core ActionScript 3.0 Data Types

This is not the only way to loop through an array. Any looping structure can walk over an array.
However, now that you’ve done it the hard way, let’s check out how easy visiting items in an array
is with for each..in.

Using for each..in
This loop was made for arrays! When using a for each..in loop, you don’t have to keep track of
any loop variables, or even access the values of the array by index.

for each (var menuItem:String in menuItems) {
makeMenuItem(menuItem);

}

This loop is cleaner and less prone to errors. If you don’t care about indices, for example if you’re
using your array as a list, this method of looping is desirable.

Note
You can put the loop variable’s definition inside the parentheses of the loop if you want to. �

Using the forEach() Method
You just saw how to use a for each loop over an array, stepping through the values of an array and
executing a block of code for each one. Now see if you can turn this situation inside out in your head.
Before, you were acting directly on the array. What if, instead, you ask the array to operate on itself?
You could pass the array a function rather than executing code inside the loop. This slight change of
perspectives is embodied by the idea of functional programming. You’ll see more of Array’s support
for functional programming in the filter() and map() methods later.

You use the forEach() method to make the array apply a function to each of its items:

menuItems.forEach(makeMenuItem);

The function used for a forEach() call takes three parameters. The first is the value of the element
in the array, the second is the index of the element, and the third is the array itself. It should match
the following function signature:

function functionName(element:*, index:int, array:Array):void

Let’s contrast all these methods of looping through an array in Example 8-5. As always, feel free to
modify the code and play with it.

EXAMPLE 8-5 http://actionscriptbible.com/ch8/ex5

The forEach() Method

package {
import com.actionscriptbible.Example;
public class ch8ex5 extends Example {
public function ch8ex5() {

154

Chapter 8: Arrays

//here’s an extra little hack you might find useful
var menuItems:Array = "About Blog Discography Videos".split(" ");

trace("---- for loop");
for (var i:int = 0; i < menuItems.length; i++) {
makeMenuItem(menuItems[i]);

}

trace("---- for each loop");
for each (var menuItem:String in menuItems) {
makeMenuItem(menuItem);

}

trace("---- Array.forEach()");
menuItems.forEach(makeMenuItem);

}

protected function makeMenuItem(element:String, ...rest):void {
//just pretend
trace("making menu item " + element);

}
}

}

Note here that because you don’t use the parameters index and array for anything, I’ve made
them optional by replacing the arguments with ...rest. That way, you can call makeMenuItem()
with only one parameter or with the three that forEach() uses. Review the ...rest parameter in
Chapter 3, ‘‘Functions and Methods.’’

Searching for Elements
ActionScript 3.0 allows you to search an array for any value using the indexOf() and
lastIndexOf() methods. You may already be familiar with these functions if you’ve worked
with the String class, because the methods for the Array class work the same way. The methods
return the index in the array that contains the specified element. The following code shows how to
get the indexes of the elements stored in an array. Notice that ‘‘Ocelot’’ doesn’t exist and therefore
returns a –1 for its index, indicating that the element could not be found.

var cats:Array = ["Cheetah", "Puma", "Jaguar", "Panther", "Tiger", "Leopard"];
trace(cats.indexOf("Leopard")); //5
trace(cats.indexOf("Ocelot")); //-1

Reordering Your Array
Arrays represent ordered sets of data. Frequently, the order is based on the order that you add your
data, and in this case you might not even care about the ordering of the contents. Other times, you
may want to order data based on factors such as alphabetical name, number of calories in a Food

155

Part II: Core ActionScript 3.0 Data Types

object, fill color of a drawing, or number of points your player has in a video game. Fortunately,
ActionScript provides an open-ended solution for sorting the values in an array into whatever order
you desire.

Using Sorting Functions
The Array class has two methods for sorting contents: sort() and sortOn(). Using these meth-
ods, you can sort structured and unstructured data in simple ways or by providing your own logic.
You can achieve the same results with both methods, but sortOn() is built for sorting structured
data by a specific field.

For both of these methods, you need some data to sort. In Example 8-6, you’re going to start with a
custom Book class that contains the title, author, and publication date of a book. I’ve created a book-
shelf with some books I’ve enjoyed reading recently. Feel free to substitute your own.

EXAMPLE 8-6 http://actionscriptbible.com/ch8/ex6

Sorting Arrays

package {
import com.actionscriptbible.Example;
public class ch8ex6 extends Example {
protected var bookshelf:Array;

public function ch8ex6() {
bookshelf = new Array();
bookshelf.push(new Book("Jonathan Strange & Mr Norrell",
"Susanna Clarke", 2006));

bookshelf.push(new Book("Anathem", "Neal Stephenson", 2008));
bookshelf.push(new Book("VALIS", "Philip K. Dick", 1991));
bookshelf.push(new Book("The Crystal World", "J.G. Ballard", 1966));

traceBookshelf();
}

protected function traceBookshelf():void {
trace(bookshelf.join("\n"));

}
}

}
class Book {
public var title:String;
public var author:String;
public var year:int;

public function Book (title:String, author:String, year:int) {
this.title = title;
this.author = author;

156

Chapter 8: Arrays

this.year = year;
}

public function toString():String {
return ‘"’ + title + ‘", ‘ + author + ‘ (’ + year + ‘)’;

}
}

You’ll add onto this example in the method ch8ex6(), after the data has been created. So far you
should simply see the bookshelf in the order you created it:

"Jonathan Strange & Mr Norrell", Susanna Clarke (2006)
"Anathem", Neal Stephenson (2008)
"VALIS", Philip K. Dick (1991)
"The Crystal World", J.G. Ballard (1966)

Now armed with a set of data, you can explore the sorting functions, starting with the sort()
method. Using sort() with no additional parameters sorts the items in the default manner:
alphabetically based on the object’s string value. Because you’ve defined the toString() method
for the Book class to print the book title, then author, then date, you should see the list sorted
alphabetically by title. This isn’t because the code is sorting by the title per se, but merely because
those letters come first in the string representation of the book. The following code:

bookshelf.sort();

reorders the array to produce this order:

"Anathem", Neal Stephenson (2008)
"Jonathan Strange & Mr Norrell", Susanna Clarke (2006)
"The Crystal World", J.G. Ballard (1966)
"VALIS", Philip K. Dick (1991)

Notice that the sort() method is destructive: it makes changes to the array directly.

Now let’s try creating a custom sorting function for this data. To specify your own ordering, you sim-
ply have to give the sort() method a function. This function compares any two items and tells
the sort algorithm which should go first of the two. The comparison functions that you write for the
sort() method should follow this signature:

function sortFunction(valueA:*, valueB:*):Number

where valueA and valueB are two arbitrary values from the array. You’ll want to set up your func-
tion to return a numeric result based on a comparison between the two values. Use the following rules
to determine the results your function should generate:

� If valueA should come before valueB, return –1.

� If valueB should come before valueA, return 1.

� If valueA and valueB are equal, return 0.

157

Part II: Core ActionScript 3.0 Data Types

You can use this system to sort the items based on any criteria you like. Let’s try sorting the books by
their date:

var byDate:Function = function(a:Book, b:Book):Number {
if (a.year == b.year) return 0;
else if (a.year < b.year) return -1;
else return 1;

}
bookshelf.sort(byDate);

Note
You’ve stored an anonymous function and passed it as an argument to sort(). You can also easily pass a
method in the current scope or even use an inline function directly within the argument list. �

The preceding function compares the year property of each Book object to see which one comes
first, thus sorting the list from oldest to newest:

"The Crystal World", J.G. Ballard (1966)
"VALIS", Philip K. Dick (1991)
"Jonathan Strange & Mr Norrell", Susanna Clarke (2006)
"Anathem", Neal Stephenson (2008)

You can affect the sort behavior by adding optional sort flags. These are stored as static constants in
the Array class. To add these options, pass them in separated by bitwise OR (|) operators after your
sort function. To learn why you do this, check out Chapter 13, ‘‘Binary Data and Byte Arrays.’’ The
following code sorts the elements in the array numerically (rather than using the string equivalent of
the date, which is the default) and descending from the highest to lowest year.

bookshelf.sort(byDate, Array.NUMERIC | Array.DESCENDING);

produces the following result:

"Anathem", Neal Stephenson (2008)
"Jonathan Strange & Mr Norrell", Susanna Clarke (2006)
"VALIS", Philip K. Dick (1991)
"The Crystal World", J.G. Ballard (1966)

You can pass five such optional flags to either sort() or sortOn():

� CASEINSENSITIVE — Normally, sorting is case-sensitive. Using this flag makes the search
ignore the case of letters. You probably want this for most string sorting.

� DESCENDING — Using this causes the array to be sorted from highest to lowest.

� NUMERIC — If you’re sorting only numbers, use this flag. Otherwise, numbers are converted
to their string equivalent before sorting occurs. This can be really tricky! For instance, as strings,
‘‘2009’’ is greater than ‘‘1000000’’ because the ‘‘2’’ character is higher than the ‘‘1’’ character.
Make sure to enable numeric comparisons to avoid these errors! In this case, writing your own
comparison function that explicitly compares years prevents this pitfall.

� RETURNINDEXEDARRAY — This flag causes the sort function to return a sorted array with-
out affecting the contents of the original array on which the sort method was called. Moreover,
this array contains the indices of which elements should go where, rather than the elements
themselves.

158

Chapter 8: Arrays

� UNIQUESORT — When this flag is set, the sorting method aborts and returns 0 if any two
elements are found to be equal.

You looked at using sort() to compare elements using a function; now let’s look at the sortOn()
method, which allows you to automatically compare similar properties of two composite data types.
Rather than taking a sorting function as an argument, the sortOn() method takes an array with
one or more properties to use as sorting criteria. If a single property is passed in, the elements are
sorted by that criterion. If more than one property is passed in, the elements are sorted primarily by
the first property and then secondarily by the second property, and so on. Omitting the first param-
eter sorts the list alphabetically, just like the sort() method. Also, the optional parameters can be
applied in the same manner as they are with the sort() method.

bookshelf.sortOn(["year"], Array.NUMERIC);
bookshelf.sortOn(["author"], Array.CASEINSENSITIVE);

The first line sorts by year and is identical to the preceding byDate() example. The next, as you
guessed, sorts by author. Try it yourself.

Flipping the Order of Your Array Using Reverse()
One of the quickest ways to reorder your array is to reverse it — that is, flip the order so that the last
is first and vice versa. To do this, use the reverse() method on your array:

var myArray:Array = [12,6,17,4,39];
myArray.reverse();
trace(myArray); //39,4,17,6,12

This reorders the contents within the array on which it is called without creating a new array.

Applying Actions to All Elements of an Array
You were briefly introduced to functional programming in ‘‘Iterating through the Items in an Array’’
earlier. In this section you see other ways that you can treat an array as a collection of values that
you apply functions to. You can replicate all these operations with looping code, but directly applying
functions, tests, transformations, and filters to whole lists of data is a powerful, dare I say beautiful,
technique.

All these methods take functions as parameters with the same signature as the forEach() method
shown earlier. There is one subtle difference: the every(), some(), and filter() methods require
functions that return a Boolean rather than void.

function functionName(element:*, index:int, array:Array):Boolean

Conditional Processing with every(), some(), and filter()
The first methods you’ll learn about are designed to allow you to see what values of an array fulfill
a certain condition. The every() method iterates over every element, applying the function passed
into it until one of the elements causes the function to fail, returning false. The some() method

159

Part II: Core ActionScript 3.0 Data Types

works the same way but, in its case, it stops when a value of true is reached. If the ‘‘stopper’’ value
is reached, either method returns the last value processed. If the end of the array is reached without
interruption, every() returns true (every value met the test) and some() returns false (none of the
values met the test).

Let’s check out an example. Consider the array and filtering functions shown in Example 8-7.

EXAMPLE 8-7 http://actionscriptbible.com/ch8/ex7

Array Filtering Functions

package {
import com.actionscriptbible.Example;
public class ch8ex7 extends Example {
public function ch8ex7() {
var myArray:Array = [1,2,3,4,5];

trace("---- is every value less than three?");
trace(myArray.every(lessThanThree));

trace("---- are some of the values less than three?");
trace(myArray.some(lessThanThree));

trace("---- are all values less than ten?");
trace(myArray.every(lessThanTen));

trace("---- are some values more than ten?");
trace(myArray.some(moreThanTen));

trace("---- which numbers are less than three?");
trace(myArray.filter(lessThanThree));

}
private function lessThanThree(elem:*, i:int, a:Array):Boolean {
trace(elem);
return (elem < 3);

}
private function lessThanTen(elem:*, i:int, a:Array):Boolean {
trace(elem);
return (elem < 10);

}
private function moreThanTen(elem:*, i:int, a:Array):Boolean {
trace(elem);
return (elem > 10);

}
}

}

You have an array with a few integers in it. Each of these functions simply traces the element that it’s
evaluating and then returns whether the element is ‘‘less than three,’’ ‘‘less than ten,’’ or ‘‘more than

160

Chapter 8: Arrays

ten,’’ respectively. Now let’s see what happens when you apply some of these methods, starting with
every(lessThanThree):

trace(myArray.every(lessThanThree));
1
2
3
false

Checking every() evaluates each item through three and then fails and returns false because
3 < 3 is false. Now let’s try the some() method.

trace(myArray.some(lessThanThree));
1
true

The some() call doesn’t even get as far as three. It stops after the first true value (1 < 3). If it’s
true for at least one value, that makes it true for some of the values, right? Now let’s try some
examples where the functions run through every item:

trace(myArray.every(lessThanTen));
1
2
3
4
5
true

Every item in the list is less than 10, so they’re all evaluated as true. You have to try each one to
make sure there’s not a really big number at the end. Let’s try again with the some() method with
moreThanTen.

trace(myArray.some(moreThanTen));
1
2
3
4
5
false

Conversely, all the values are not more than 10, so the some() function executes all the way to
the end.

The filter() method acts similarly to the previous two methods but adds a twist. Instead of search-
ing for a Boolean stopper value, this method processes the entire array and then returns a new array
containing all the elements that resulted in a true:

var smallNumbers:Array = myArray.filter(lessThanThree);
trace(smallNumbers); //1,2

161

Part II: Core ActionScript 3.0 Data Types

Getting Results with the map() Method
The map() method takes a slightly different approach than every(), some(), and filter().
You use this method to transform, or map, one list to another. Whereas forEach() just executes
a method on every element without returning anything, map() creates a new list from the results of
its function applied to every element. Mapping takes in an input list, applies a function, and outputs a
new list. The following code demonstrates a map that returns the square of every element.

var myArray:Array = [1,2,3,4,5];

function square(elem:*, i:int, a:Array):Number {
if (isNaN(elem)) {

return -1;
} else {

return elem * elem;
}

}

var squaredArray:Array = myArray.map(square);
trace(myArray); //1,2,3,4,5
trace(squaredArray); //1,4,9,16,25

You use an if statement to check whether the element is not a number using isNaN() because, of
course, you cannot multiply a nonnumber. If the element is a nonnumber, the function returns a –1;
otherwise, it returns the number raised to the power of 2. The original array, myArray, is untouched
and the new array, squaredArray, contains the results of the getSquare() function when it’s
applied to each element of myArray. This can be useful when you need to gather results based on a
large set of data.

Alternatives to Arrays
As you’ve seen, Arrays are incredibly versatile. But there are even more ways to use an Array that
you haven’t explored yet, and you can do similar things with a few other classes.

Associative Arrays
All types of dynamic objects in ActionScript, of which Array is one, allow you to create new variables
stored within the object on-the-fly. You can then access these variables using the array accessor and
passing a string rather than an index as a reference. These types of objects are known as associative
arrays. The following code demonstrates an associative array.

var lotto:Array = new Array(12, 30, 42, 6, 29, 75);
lotto.description = "This week’s lotto picks.";
trace(lotto[3]); //6
trace(lotto["description"]); //This week’s lotto picks.

Although these types of arrays are possible to create and may have been used frequently in previous
versions of ActionScript, I suggest that you use an instance of the Object class, a dictionary, or ide-
ally, a custom class, rather than an array for such applications. Here are some reasons why.

162

Chapter 8: Arrays

� Objects are designed for this type of use and offer the object initializer syntax.

� They have less overhead than arrays because they do not contain methods for array
manipulation.

� Values stored by name may not appear when iterating through all values in an array using a for
loop.

� Values stored by name are not kept in any particular order, making the concept of an array as
an ordered set of data untrue.

� Storing data dynamically in this way is not good object-oriented practice and makes debugging
and type checking more difficult.

That’s not to say there’s anything wrong with associative arrays. But I recommend that you use
Object or Dictionary rather than Array for associative arrays. Learn more about these classes in
Chapter 10, ‘‘Objects and Dictionaries.’’

Multidimensional Arrays
All the arrays you’ve looked at so far are single-dimensional arrays. That is, they have one index and
represent a linear list of data — hence, one-dimensional. With a multidimensional array, however,
you can store values using two or more nested indices, which allow you to create data sets within
data sets. Creating a multidimensional array doesn’t require new classes or techniques; simply create
an array as one of the elements of another array:

var grid:Array = new Array(new Array(1,2), new Array(3,4));
//or var grid:Array = [[1, 2], [3, 4]];
trace(grid[0][0]); //1
trace(grid[0][1]); //2
trace(grid[1][0]); //3
trace(grid[1][1]); //4

An expression like grid[0][1] has two implicit steps. grid[0] retrieves the first index in the outer
array. You find that this, too, is an array and [1] retrieves the second item in the inner array.

Suppose you want to store information in two dimensions — such as the locations of the pieces on a
chessboard. Well, a chessboard is 8 squares wide by 8 squares high, so it’s 8 × 8. To store all the val-
ues for this board, you would need 8 arrays, each with a length of 8. Using a two-dimensional array,
you could store this 2D grid-like data in one array. Example 8-8 sets up a new chessboard by creating
several arrays within one array.

EXAMPLE 8-8 http://actionscriptbible.com/ch8/ex8

A Chessboard as a Two-Dimensional Array

package {
import com.actionscriptbible.Example;

public class ch8ex8 extends Example {
private const k:String = "King";
private const q:String = "Queen";
private const b:String = "Bishop";

163

Part II: Core ActionScript 3.0 Data Types

private const n:String = "Knight";
private const r:String = "Rook";
private const p:String = "Pawn";
private const _:String = "empty";

public function ch8ex8() {

var chessBoard:Array = [
[r,n,b,q,k,b,n,r],
[p,p,p,p,p,p,p,p],
[_,_,_,_,_,_,_,_],
[_,_,_,_,_,_,_,_],
[_,_,_,_,_,_,_,_],
[_,_,_,_,_,_,_,_],
[p,p,p,p,p,p,p,p],
[r,n,b,q,k,b,n,r]

];

trace("Piece at (0,2) :", chessBoard[0][2]);
trace("Piece at (7,4) :", chessBoard[7][4]);
trace("Piece at (4,3) :", chessBoard[4][3]);
trace("Piece at (7,7) :", chessBoard[7][7]);

}
}

}

The example will display:

Piece at (0,2) : Bishop
Piece at (7,4) : King
Piece at (4,3) : empty
Piece at (7,7) : Rook

What you’ve done here is to create an 8 × 8 grid of data representing each space on a chessboard.
Using constants to represent each piece and the array literal shorthand, you’ve added all the pieces to
the board. It bears repeating that this is simply an array of rows, each of which is an array of columns.
But it works out such that you can think of the indices as y and x coordinates. When you say
chessboard[7][4], what you’re really doing is saying get the value at the eighth index of
the chessboard array, which in this case is another array, a row. Then you’re selecting the fifth
index of the array that is returned.

You can use arrays like this one, or create even more complex 3- or 4- or 17-dimensional arrays
whenever you need to deal with a complex geometric or cross-referential set of data.

Another name for a multidimensional array is a matrix. Matrices are used so frequently in graphics
programming that several matrix classes are included in ActionScript 3.0, but these are special-purpose
matrices of fixed sizes. You can’t use these for generic multidimensional data.

164

Chapter 8: Arrays

Amazing Properties of Arrays
Before we say farewell to Array, let’s recap a few of its fantastic properties and make some quick
observations on how ActionScript 3.0 arrays compare to similar data types in other languages. Arrays
are possibly the most versatile tool in ActionScript.

� Arrays are dynamically sized. You never have to do anything to allocate more memory for them
or free memory they’re not using.

� Arrays are always mutable. You can always create, remove, update, and delete values from them.

� Arrays support list operations like push() and pop(), and functional programming like
filter() and map().

� Arrays are mixed. You can put multiple types into an array, even if they’re not the same type.

� Arrays can be sparse, meaning that you can have a gap in the indices of an array. This can be
really helpful or really dangerous. Use with caution.

var arr:Array = ["zero", "one", "two"];
arr[5] = "five";
trace(arr); //zero,one,two,,,five

� Arrays can be associative, but you should probably leave that up to Objects, as mentioned
earlier.

In C++ and Java, dynamic arrays that can resize and implement list operations like this are called
vectors. In ActionScript 3.0, arrays do all this stuff, and a vector means something slightly different.
See Chapter 9, ‘‘Vectors,’’ to find out more.

Summary

� Arrays are ordered lists of data that use index numbers to look up values called elements.

� You can create new arrays by using the Array constructor or array literals [].

� Create strings from array values using the toString() and join() methods.

� Access values within your array by using the array accessor operator ([]).

� Searching for a value within your array is easy with the new indexOf() method.

� Perform actions on every element in your array using forEach(), map(), filter(),
every(), or some().

� Insert values into your array or remove smaller chunks with slice() and splice().

165

Vectors

FEATURED CLASS

Vector

V
ectors are a new addition to ActionScript 3.0 for Flash Player 10 and
later. They can help you write fast, efficient, and concise code where you
would otherwise use an array.

Vector Basics

A Vector is an optimized kind of Array that is made to store and retrieve
instances of the same class. It behaves almost identically to an Array, but
the key difference is that it stores only one type of object, as you can see in
Figure 9-1.

In the original Array, you can store all kinds of objects together. In a
Vector, you store only one kind. In the preceding example, the Vector only
stores instances of Shoe. In this chapter, you’ll see when and why this can be
useful. I’ll also cover the other minor differences between the two data types.

Version
FP10. Vector is available when compiling SWFs for Flash Player 10 and above. �

Vectors are only available on Flash Player 10 and up. If you’re reading this book
sequentially, this is the first time you will have seen a whole class that is only
available in certain versions of Flash Player.

167

Part II: Core ActionScript 3.0 Data Types

FIGURE 9-1

An Array and a Vector compared

Array

Vector.<Shoe>

Before I examine the when, why, and how of using Vectors, I’ll take a moment to answer the next
question:

Why Do We Need Another Datatype?
In many ways, ActionScript has been evolving backward, from a ‘‘modern’’ dynamically typed,
high-level, object-oriented language toward a statically typed language with lower-level constructs.
Classes are now sealed, where in ActionScript 1.0 and 2.0 they were dynamic and modifiable at
runtime. ActionScript 3.0 added direct access to binary data with the ByteArray class and efficient
integer storage with int and uint. It’s as if you give your daughter a set of Legos that are bright and
easy to use, and then the next year you give her a vintage Erector Set. The Erector Set is decidedly
less friendly and a bit dated, but perhaps in some ways it’s a bit lighter and capable of making
entirely different kinds of structures. There are a few reasons behind this evolution.

One is that some tools are better for some jobs, and it makes sense to give developers more power
so that they can build things not otherwise possible. For example, without ByteArray and binary
sockets, added in ActionScript 3.0, you couldn’t write a POP/SMTP mail client in ActionScript, a VNC
client, a JPEG encoder, or a million other things.

Another reason for this odd evolution is the unquenchable desire for more performance. As develop-
ers do more with Flash Player, demands on it grow, and as its speed boosts, developers can do more
with it. Everyone wins. This explains the funny direction of evolution. Dynamic typing and high-level
objects are built on lots of code and require lots of extra support in Flash Player — in other words,
overhead, taxing both memory and processor. Of course, primary types don’t require overhead, so
they’re faster. There’s always some kind of trade-off between functionality and performance. It’s that
old ‘‘no such thing as a free lunch’’ rule. So what better way to feed the power-lust of developers than
by letting them use simpler objects when they don’t need the extra functionality?

168

Chapter 9: Vectors

For example, when you keep a class sealed, by omitting the dynamic keyword on the class defini-
tion or by default (see Chapter 4, ‘‘Object Oriented Programming,’’) Flash Player knows you won’t be
adding random fields to the class at runtime. It is guaranteed a complete picture of the layout of a
class’s variables, and with this guarantee, it can optimize the layout of the class instances in memory.
You lose the ability to muck with class definitions at runtime, but you gain a big performance boost.

Tip
The more you use dynamic types, the less performance you’ll see overall. That’s why examples always use static
types. �

Array: More Functionality Than You Require
In ActionScript 3.0, the Array class provides a lot of really cool possibilities. To review them, check
out the end of Chapter 8, ‘‘Arrays.’’ But, you guessed it, there are a few of those amazing properties
of Arrays that maybe we could do without — properties that make an Array a pretty complicated
object. Throw away some of these properties, and you can make a simple, fast, efficient data type
instead: a Vector.

Note
Oddly, in languages that have both an Array and a Vector, it is usually the Vector that has more
functionality — usually the ability to change its size at runtime. However, in ActionScript, Vector is more
limited. �

The essential property of an Array that a Vector does away with is its ability to store mixed types.
Nine times out of ten, you use Arrays as lists to accumulate objects of the same type, such as when
iterating over DisplayObjects on the stage, accumulating XML nodes in a document, or creating a
buffer of ints. In all these cases, you know exactly what type is going to go into the array, and you
have no need to store other types. However, as long as it’s an Array, Flash Player doesn’t really know
what type any of the elements are until it looks. Any time you assign an untyped object into a typed
variable, Flash Player must either match the types or coerce the object into the desired type — and
every element of an Array is stored untyped. So any time you use an element from an Array in a
typed context, Flash Player has to figure out these types — a simple operation, but when repeated
hundreds or thousands of times while processing large arrays, one that can have a cumulative effect.

Note
If you care to dig deeper, knowing the inner workings of the ActionScript Virtual Machine (AVM) can help you
better understand how code behaves, and it can even help you write more efficient code. An excellent introduc-
tion to the guts of AVM2 is a presentation by Gary Grossman titled ‘‘ActionScript 3.0 and AVM2: Performance
Tuning.’’ You can find the slides at http://bit.ly/grossman-avm2-presentation . �

The other Array property you benefit from simplifying away is its sparseness — the ability to add
items at any index at any time, allowing gaps. In a Vector, you can only mess with indices up to
the length of the Vector, preventing gaps from forming. So what does this simplification gain you?
If you know the size of an object in memory (which you do, since you know its type), and you know
that you will sequentially store n of them without gaps, this makes finding and organizing the objects
painfully simple: just line them up in memory! Need to retrieve the int at index i from a Vector
of ints? All Flash Player has to do is look ahead 4i bytes, because an int is 4 bytes wide and the
Vector is packed tight with them. Again, this is exactly the same kind of old-school simplicity from

169

Part II: Core ActionScript 3.0 Data Types

back in the day: C arrays are just blocks of memory chopped up into chunks the size of the type being
stored. This simplification makes Vectors not only faster on the whole, but more efficient users of
memory.

Note
You are still allowed to store null instances in a Vector, so although it’s not completely identical, this is a per-
fectly legal way to have gaps. �

Vectors: Arrays with Benefits
There you have it. Vector is a super-efficient alternative to Array for when you don’t need mixed
content. Although we got from Array to Vector by taking away features of the data type, don’t
think of Vector as less powerful. Besides making it faster and smaller, the stricter definition of
Vector helps the compiler and runtime environment check your code, and it can even help you
write less code!

The first trade-off that you saw with static types is that they can be faster. But they can also be safer,
for the same reasons that using typed variables is safer than using untyped variables. The type system
can check that you don’t assign incompatible types, either at compile time or at runtime.

var ourguy:Person = new Person("Roger");
ourguy = "Xander"; //error!

var classroom:Vector.<Person> = new Vector.<Person>();
classroom[0] = new Person("Betty");
classroom[1] = "Cesar"; //error!

In the previous example, you can’t assign a String to a variable of type Person. In the same way,
you can’t assign a String to a Vector of Persons. When you use vectors, the type system can
ensure the type safety of your Vector during assignment, retrieval, and insertion. Say you have both
an Array and a Vector of Person instances:

var peopleArray:Array = new Array();
var peopleVector:Vector.<Person> = new Vector.<Person>();
var person:Person;
var nonPerson:DisplayObject;

//assignment
peopleVector[0] = person; //OK
peopleVector[0] = nonPerson; //Compiler error (good!)
peopleArray[0] = nonPerson; //No error but not what we want (bad!)

//retrieval
person = peopleVector[0]; //OK
nonPerson = peopleVector[0]; //Compiler error (good!)
nonPerson = peopleArray[0]; //Runtime error (not as good.)

//retrieval: range checking
person = peopleVector[0]; //OK
person = peopleVector[34000]; //Runtime error (not bad)
person = peopleArray[34000]; //No error, just sets it to null (bad)

170

Chapter 9: Vectors

//insertion
peopleVector.push(person); //OK
peopleVector[peopleVector.length] = nonPerson; //Compiler error (good)
peopleVector.push(nonPerson); //Runtime error (not bad)

It’s quite intuitive how this works: the Vector knows the type of element that it is meant to contain,
so it can check against this type when you try to assign and insert elements into it, and it can return
elements of the correct type when you retrieve from it, as shown in Example 9-1.

EXAMPLE 9-1 http://actionscriptbible.com/ch9/ex1

Working with Vectors

package {
import com.actionscriptbible.Example;
public class ch9ex1 extends Example {
protected var peopleVector:Vector.<Person>;
protected const roger:Person = new Person("Roger");
protected const sabrina:Person = new Person("Sabrina");
protected const tawnie:Person = new Person("Tawnie");
protected const usman:Person = new Person("Usman");
protected const victoria:Person = new Person("Victoria");

public function ch9ex1() {
peopleVector = new Vector.<Person>();
peopleVector.push(roger, sabrina, tawnie, usman, victoria);
for each (var person:Person in peopleVector) {
roger.addFriendSymmetric(person);

}
sabrina.addFriendSymmetric(tawnie);
var tawniesFriend:Person = new Person("Mary Alice");
tawnie.addFriendSymmetric(tawniesFriend);
var nixon:Person = new Person("Richard Nixon");

trace("is Mary Alice connected to Victoria?");
trace(tawniesFriend.isConnectedTo(victoria)); //true
//Mary Alice -> Tawnie -> Roger -> Victoria
trace("is Roger connected to Richard Nixon?");
trace(roger.isConnectedTo(nixon)); //false

}
}

}

import flash.utils.Dictionary;
class Person {
public var name:String;
private var friends:Vector.<Person>;

public function Person(name:String) {
this.name = name;
friends = new Vector.<Person>();

}

continued

171

Part II: Core ActionScript 3.0 Data Types

EXAMPLE 9-1 (continued)

public function addFriend(newFriend:Person):void {
friends.push(newFriend);

}
public function addFriendSymmetric(newFriend:Person):void {
addFriend(newFriend);
newFriend.addFriend(this);

}
public function isFriendsWith(person:Person):Boolean {
return (friends.indexOf(person) != -1);

}
public function isConnectedTo(toFind:Person, met:Dictionary = null):Boolean {
var ret:Boolean = false;
if (met == null) met = new Dictionary(true);
for each (var contact:Person in friends) {
if (!(contact in met)) {
met[contact] = true;
if (contact == toFind) {
return true; //found them!

} else {
ret ||= contact.isConnectedTo(toFind, met);

}
}

}
return ret;

}
}

In this example you can use a Vector to store friends, friends of friends, and so on, using a recursive
search to determine if any two people are connected. You can use code like this to implement a social
network. Note that all the methods so far are exactly like their Array counterparts.

Fixed-Size Vectors
There is just one more feature of Vectors that can make them slightly faster. You can set a vector
to be, or create a vector as, a fixed size. Fixed-size Vectors don’t allow operations that modify their
length. Methods that nondestructively modify Vectors by returning a modified copy are fine, as long
as the fixed-size instance itself is not changed in length. When used on fixed-sized Vectors, methods
that modify a Vector’s length, like push() and pop(), generate a RangeError at runtime.

You can make a Vector fixed-size by passing true to the fixed parameter of its constructor (at the
same time, specifying the size the Vector should be) or by setting its fixed property to true at
any time.

var v1:Vector.<Object> = new Vector.<Object>(10, true);
//creates a fixed-size vector of size 10
var v2:Vector.<String> = new Vector.<String>();
v2.push("a", "b", "c", "d");

172

Chapter 9: Vectors

v2.fixed = true;
trace(v2.length);
v2.push("e"); //RangeError: v2 is fixed-size now.

Fixed-length Vectors are useful when you know the ultimate number of elements you’ll need.
Because Vectors are stored in memory as a solid, unbroken block of data, as they grow they may
occasionally need to do a relatively costly reallocation of memory. In extremely performance-sensitive
applications, you may want to preallocate Vectors to the correct size to prevent this.

Generics and Parameterized Types
The ability you just saw of Vectors to access elements as the type the Vector is meant to hold is an
example of generic programming. Generic programming adds a layer to the type system of ActionScript,
and at the same time a little bit of new syntax to keep things interesting. Generic programming allows
you to generalize algorithms and data structures so that they are independent of the type of objects
they operate on; they also allow you to make carbon copies of these templates when you swap in a
type for them to use.

Vector as a Generic
Vector is a generic because you always use it with another type. Vector doesn’t care whether it’s
used to store uints, Persons, or even other Vectors. Neither does an Array, but the difference is
that when you create a vector with a specific type, it actually changes the return types and parameter
types of its methods to match that type.

For example, if you wrote a Rolodex structure to manage Person contacts, you might one day
realize that it would be perfect to also manage Company contacts. Rather than having to write a sub-
class or copy of the Rolodex class that works for Company objects, wouldn’t it be great if you could
abstract out the code that sorts and organizes the contacts so that it would work with any type? Then
you could use one Rolodex just for people, and one just for companies. Each one would know
through the whole interface that it’s made to deal with its one specific type. You could use them
like so:

var personalDeck:Rolodex.<Person> = new Rolodex.<Person>();
var randomPerson:Person = personalDeck.getRandomEntry();
personalDeck.placeCall(randomPerson);
var corporateDeck:Rolodex.<Company> = new Rolodex.<Company>();
var randomCompany:Company = corporateDeck.getRandomEntry();
corporateDeck.placeCall(randomCompany);

You would do this by parameterizing the types in Rolodex. Where originally it would have had these
methods:

class Rolodex {
public function getRandomEntry():Person {}
public function placeCall(a:Person):void {}

}

after replacing Person with a type parameter, it would have these methods:

class Rolodex.<T> {
public function getRandomEntry():T {}
public function placeCall(a:T):void {}

}

173

Part II: Core ActionScript 3.0 Data Types

You’ve taken the type Person, abstracted it out, and replaced it with the type parameter called T. This
type parameter is almost like a variable name, but it actually holds a type instead of a value. Now
any type can take the place of Person. You can create separate invocations of Rolodex that use com-
pletely different types. When you create a Rolodex.<Company>, you effectively replace all instances
of T in the interface with Company. Now getRandomEntry() returns a Company, and place-
Call() takes a Company. You’ve replaced the type parameter with an actual type.

This is why the type checks shown in the previous section work. When you create a Vector
.<Person>, it uses Person instead of T in the signatures of all its methods. When you look at the
documentation for Vector (and let me remind you that owning this book is no excuse to ignore the
documentation!), you’ll see that the methods of Vector.<T> are almost identical to those of Array,
except that where Array methods receive and return elements as *, or no type, Vector.<T>
methods receive and return elements as T. So when you create a Vector.<Person>, you’re using
an invocation of Vector that replaces the type parameter T with the actual type Person in the
entire interface of Vector.

One more thing you should know about the type system and generics: when you specify a type for the
template to use, you create a new type that’s the combination of the types. A Rolodex of Persons is
one type. A Rolodex of Companys is another type entirely, and it’s not compatible, even if Company
and Person are related through inheritance. You use the full expression wherever you need to write
the type into the code. For example, if you needed to call all companies in a Rolodex, you might
create a function:

function callAllCompaniesIn(r:Rolodex.<Company>):void {}

The type this function accepts is Rolodex.<Company>. It won’t accept Rolodexes containing any
other thing — those types are not compatible. When you’re referring to a particular invocation of a
generic type like this, the type iscalled a parameterized type.

There are some interesting and tricky side effects of the way some Vector methods are written to
become generic, so for both reference and caution’s sake I’ll examine them in the next section.

No Generics for You
Here comes the funny part. In the Rolodex thought experiment, I asked, ‘‘Wouldn’t it be great if
[you could just make this Rolodex class a generic]?’’ Remember? Because one answer is ‘‘Maybe, but
we’ll never know, because you can’t.’’

Up through Flash Player 10.1 at least, Vector holds a prized position as the one and only generic in
all of ActionScript 3.0. You can’t take a sweet data type you created and parameterize the type it uses.
Sadly, you will see no parameterized Tree.<T>s or Heap.<T>s. For now at least, it’s a special case
that exists for performance tuning.

Although you can build your own data types that use Vector internally for performance, you won’t
be able to parameterize them and take advantage of the no-cast no-cost element access that you get
with a generic.

The thing is, you don’t really need generics. Judicious use of interfaces makes a lot more sense than
a type parameter in most cases. For example, when you think of it, the Rolodex example is really
terrible. How would a Rolodex work that stores emotions? Cupcakes don’t have phone numbers . . .

how would you implement placeCall() when T is Cupcake? In reality, you almost always need
certain guarantees about the objects you’re dealing with, even if it’s something as simple as the abil-
ity to compare two of them. Nowhere does Flash Player give you a sort function that works on all

174

Chapter 9: Vectors

objects. In other words, your ability to do interesting things generically is limited by the things that
you’re guaranteed you can do with any arbitrary object. In Flash Player, any arbitrary object means
‘‘subclasses of Object,’’ and Object is not endowed with many powers.

In this case, you really don’t want to be able to give Rolodex any type in the world. You want it to
operate on objects that have phone numbers to call and a name to sort. Hey, you have a mechanism
for that:

interface IContact {
function get phoneNumber():Number;
function get fullName():String;
function get lastName():String;

}

The Rolodex example is far from generic. It should be implemented to only operate on objects that
have certain properties. The perfect device for holding objects to a certain contract is an interface. So
Rolodex should not be generic. Its interface should be written around an IContact interface that
allows it to do the interesting things a Rolodex does. Internally, you’re more than welcome to use a
Vector.<IContact> to make Rolodex fast and efficient! (See Example 9-2.)

You should use an interface or a common superclass in lieu of generics to keep your classes abstract.
The only drawback you’ll see is that you may have to do some potentially dangerous upcasts.

EXAMPLE 9-2 http://actionscriptbible.com/ch9/ex2

The Rolodex Class

package {
import com.actionscriptbible.Example;
public class ch9ex2 extends Example {
public function ch9ex2() {
var rolodex:Rolodex = new Rolodex();
rolodex.addEntry(new Person("Roger", "Braunstein", 7185555555));
rolodex.addEntry(new Person("Simon", "Bolivar"));
rolodex.addEntry(new Person("Shimon", "Peres"));
trace("B entries:", rolodex.getEntriesUnderLetter("B"));
var firstB:Person = Person(rolodex.getEntriesUnderLetter("B")[0]);
//note that we still have to upcast because this returns an IContact.

}
}

}

class Rolodex {
protected var entries:Vector.<IContact>;
public function Rolodex() {
entries = new Vector.<IContact>();

}
public function addEntry(contact:IContact):void {
entries.push(contact);
entries = entries.sort(function(a:IContact, b:IContact):Number {
return (a.lastName.toLowerCase() < b.lastName.toLowerCase())? -1 : 1;

});
}

continued

175

Part II: Core ActionScript 3.0 Data Types

EXAMPLE 9-2 (continued)

public function getEntriesUnderLetter(ltr:String):Vector.<IContact> {
ltr = ltr.toLowerCase();
return entries.filter(function(entry:IContact,...rest):Boolean {
return (entry.lastName.charAt(0).toLowerCase() == ltr);

});
}
public function getRandomEntry():IContact {
return entries[Math.floor(Math.random() * entries.length)];

}
public function placeCall(contact:IContact):void {
trace("calling", contact.phoneNumber);

}
}

interface IContact {
function get phoneNumber():Number;
function get fullName():String;
function get lastName():String;

}

class Person implements IContact {
private var _phoneNumber:Number;
private var _lastName:String;
private var _firstName:String;
public function Person(first:String, last:String = "", number:Number = 0) {
_firstName = first;
_lastName = last;
_phoneNumber = number;

}
public function get phoneNumber():Number {return _phoneNumber;}
public function get fullName():String {return _lastName + ", " + _firstName;}
public function get lastName():String {return _lastName;}
public function toString():String {return "[Person " + fullName + "]";}

}

Even though I’ve designed Rolodex to operate on IContacts, and it uses a Vector for storage
internally, you don’t have the leisure of returning contacts as type Person or Company; you still have
to upcast.

Generics are best suited for optimized storage data types, which don’t depend in any way on the con-
tents or structure of the data. While you can’t create your own, Vector, just like Array, is incredibly
useful and flexible.

Generic Methods of Vector
Vector methods correspond almost exactly to Array methods, substituting the type parameter (T)
wherever elements are concerned — where Array would use *. This makes it easy to switch over
code that uses Arrays. Without covering every method, let’s look at those that are a bit tricky.

176

Chapter 9: Vectors

concat(... args):Vector.<T>
push(... args):uint

Because these methods can take a list of elements to add to the Vector all at once, they use a
variable argument list instead of type T. As you saw earlier, this means that the arguments are not
type-checked at compile time. They are still checked against the type parameter T at runtime.

every(callback:Function, thisObject:Object = null):Boolean
some(callback:Function, thisObject:Object = null):Boolean
filter(callback:Function, thisObject:Object = null):Vector.<T>

All these methods act the same as their Array counterparts, except that now you can expect to iterate
over objects of type T, so the signature of the callback function must be:

function callback(item:T, index:int, vector:Vector.<T>):Boolean

forEach(callback:Function, thisObject:Object = null):void

This method, too, can expect to iterate over objects of type T, and the callback takes the form:

function callback(item:T, index:int, vector:Vector.<T>):void

map(callback:Function, thisObject:Object = null):Vector.<T>

The map() method is identical in that the callback signature must be modified to take a T and
return a T:

function callback(item:T, index:int, vector:Vector.<T>):T

Oddly, this prevents map() from being very useful, as the idea of map() is to process one type of
information into another. If you are limited to converting type T to type T, you can no longer do very
interesting mappings.

sort(compareFunction:Function):Vector.<T>

First, Vector has no sortOn() method. Second, this sort function, too, can operate on type T:

function compareFunction(x:T, y:T):Number

Finally, every method that nondestructively modifies a Vector by returning a new one returns a
non-fixed-size Vector, even if the input Vector was fixed-size.

As you have seen in the examples, fast iteration — for..in and for each..in loops — works for
Vectors just like it works for Arrays. Example 9-3 uses fast iteration and several of the methods of
Vector to create a menu.

EXAMPLE 9-3 http://actionscriptbible.com/ch9/ex3

Vector Methods and Fast Iteration

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.text.TextField;

continued

177

Part II: Core ActionScript 3.0 Data Types

EXAMPLE 9-3 (continued)

import flash.text.TextFieldAutoSize;
import flash.text.TextFormat;

public class ch9ex3 extends Sprite {
protected var labels:Vector.<TextField>;

protected const DEFAULT_FORMAT:TextFormat
= new TextFormat("_sans", 12, 0x000000, true);

protected const SELECTED_FORMAT:TextFormat
= new TextFormat("_sans", 12, 0x00ffff, true);

protected const MARGIN:Number = 20;

public function ch9ex3() {
labels = new Vector.<TextField>;
makeMenuItem("home");
makeMenuItem("about");
makeMenuItem("blog");
makeMenuItem("contact");

}

protected function makeMenuItem(label:String):void {
var tf:TextField = new TextField();
tf.selectable = false;
tf.defaultTextFormat = DEFAULT_FORMAT;
tf.text = label;
tf.width = tf.height = 0;
tf.autoSize = TextFieldAutoSize.LEFT;
if (labels.length > 0) {
var lastTF:TextField = labels[labels.length-1];
tf.x = lastTF.x + lastTF.textWidth + MARGIN;

}
addChild(tf);
labels.push(tf);
tf.addEventListener(MouseEvent.CLICK, onItemClick);

}

protected function onItemClick(event:MouseEvent):void {
for each (var tf:TextField in labels) {
tf.setTextFormat((tf == event.target)? SELECTED_FORMAT:DEFAULT_FORMAT);

}
}

}
}

Creating and Converting Vectors
To create a Vector, just use the Vector() constructor. The constructor takes two parameters: an
initial length (which defaults to 0) and a determination of whether the Vector should be fixed-size
(which defaults to false). Its signature is:

Vector(length:uint = 0, fixed:Boolean = false)

178

Chapter 9: Vectors

Vector literals
You can type Vector literals into your code just like Array literals. Simply use the Vector literal
syntax:

var v:Vector.<int> = new <int>[1, 2, 3, 4, 5];

The literal syntax ends in the same way you’d write an Array directly into code, but it begins with
the new keyword and the actual type used in the Vector instance. If this results in a compiler error,
you may need to use a more recent compiler. Using push() with as many elements as you would like
accomplishes the same thing with only a little more code, so you use push() to instantiate Vectors
in the examples in this chapter for the sake of compatibility.

Version
FP10, compiler-dependent. Literals will compile in Flash Builder 4 and Flash Professional CS5 and above. Will
not work in older builds of the Flex 4 SDK or Flash Professional CS4. �

Converting Types of Vectors
Remember that parameterized types are not compatible with each other, even if their actual types are
related by inheritance. Consider the code:

var stringVector:Vector.<String> = new Vector.<String>();
var objectVector:Vector.<Object> = stringVector;
//if they were compatible, we could do this assignment
objectVector[0] = new Object();
var s:String = stringVector[0]; //uh oh, this isn’t a String

By allowing Vectors to be compatible like their type parameters, you introduce a bidirectional equiv-
alence that really only works one way. So parameterized types are always thought to be independent
and incompatible.

However, ActionScript 3.0 does let you convert a Vector of one actual type to that of another actual
type (see Example 9-4). By calling the top-level Vector() function (looks like casting), you can con-
vert one Vector to another. All the elements will be converted to the destination type, and if this
isn’t possible, a runtime type error will be raised.

EXAMPLE 9-4 http://actionscriptbible.com/ch9/ex4

Collected Snippets: Converting Vectors

var numVector:Vector.<Number> = new Vector.<Number>;
numVector.push(1.414, 2.718, 3.142);
trace(numVector); //1.414,2.718,3.142
var intVector:Vector.<int>;
intVector = Vector.<int>(numVector);
trace(intVector); //1,2,3

179

Part II: Core ActionScript 3.0 Data Types

This way, you can easily convert Vectors when their actual types are compatible. Particularly, this is
helpful to run toString() on the contents of a Vector without using map() which, as you may
recall, doesn’t allow you to map to a different type.

Converting a Vector into an Array
The ease of converting Vector types might leave you optimistically trying the top-level Array()
function to convert a Vector into an Array, perhaps so you can use it with some code written for
an earlier version of Flash Player.

var array:Array = Array(intVector);
trace(array); //1,2,3 (looks good)
trace(array.length); //1 (wait a minute)
trace(getQualifiedClassName(array[0])); //_AS3_.vec::Vector.<int>

Alas, although it looks good at first glance, the Array() function actually inserts the Vector as
the first index of the Array, rather than converting the elements of the Vector into elements of an
Array. You actually have to do it by hand.

array = new Array();
for (var i:int = 0; i < intVector.length; i++) {
array[i] = intVector[i];

}
trace(array); //1,2,3
trace(getQualifiedClassName(array[0])); //int

Similarly, you must convert Arrays to Vectors by hand.

Summary

� Vector is an optimized version of Array.

� Vectors only store one type of element.

� Vectors have no gaps.

� Vectors can be fixed-size.

� When inserting, updating, and accessing elements, Vectors use the correct type rather than *.

� A Vector is a generic, or a type that can be used with any other type.

� When using an invocation of a generic, all the fields and methods in its interface have their type
parameters (usually T) replaced by the actual type used.

� You can’t create custom generics, but for most cases you should just use good object oriented
programming to be abstract.

� Parameterized types are never compatible but may be converted manually if their types are
compatible.

180

Objects and
Dictionaries

FEATURED CLASSES

Object

Dictionary

A
ll classes extend Object — it is the root of the ActionScript class hier-
archy. Despite their inauspicious roots, Objects can be truly useful as
a data structure. In Chapter 8, ‘‘Arrays,’’ I showed how to use arrays

to store associative data. In this chapter you will see how to use the Object
and Dictionary data types to store and retrieve this kind of information and
explore other situations where Objects are useful.

Working with Objects

The class Object is found at the root of the type hierarchy of all classes. Simple
classes like Number and String extend Object directly; classes like Sprite
descend from Object. In other words, every object in the ActionScript 3.0
world is an Object. The Object class by itself doesn’t do much and would
hardly merit its own chapter but for the interesting property that the Object
class is one of the few classes that is dynamic.

Dynamic Classes
Dynamic classes can be extended at runtime with new properties and methods.
This means you can take the data and operations that define an object and
rename them, rewire them, or add to them while the program is running.
Programming with dynamic classes is usually a poor choice. If you were pro-
gramming a dinner set as a dynamic class, some code you don’t control could
overwrite your saltShaker property to dispense habanero peppers, ruining a
perfectly good meal. A chaotic world like that is no world to live in, so every
class I write in this book is going to be sealed, or closed for modification,
at runtime. Without this guarantee, you can’t follow the principles of object
oriented design.

181

Part II: Core ActionScript 3.0 Data Types

Note
Classes are sealed by default, but you can create your own dynamic (unsealed) class by using the keyword
dynamic in front of your class definition:

public dynamic class UnsealedClass

On the other hand, combining this infinite expandability with an inherently empty class yields a per-
fect method of storage. This is how you come by Object as a data type. Why is Object ‘‘empty’’?
Because you need its subclasses to be able to do almost anything, Object itself does almost nothing.

You can think of Object as the clay from which everything else in the ActionScript world is crafted.
When you write classes, you can sculpt a form in this clay and fire it, make it immutable, and ensure
that all instances of the class have the same form. Or, you can choose to use the clay in its raw
form, creating what you need for one time only, without writing a class. You can use Object for
single-serving, throw-away structures.

Creating Objects
You can create a new Object with its constructor. The Object() constructor takes no parameters
and makes an empty Object:

var o:Object = new Object();

Object, like Number and String, also has a literal form. You can create an Object from scratch
with preset values simply by typing it as a literal. The literal form for Objects is a comma-separated
list of name-colon-value pairs contained in curly braces:

var o:Object = {name: "Roger", hair: 0xff0000, hobbies: myHobbies};

The names of the properties don’t need to be in quotes, and the values can be of any type. Values can
also be references to other objects. In this example, you set the hobbies property of the Object to
the myHobbies variable. Values can even be functions.

The names of a property in an object can be any string, including strings that aren’t necessarily valid
identifiers. This means you can store a property such as 99bottles in an object, but you can’t make
a variable named 99bottles because identifiers aren’t allowed to start with a number.

Accessing Object Properties
Like properties of any class instance, you can access the properties of an object using either dot nota-
tion or bracket notation. The difference, besides syntax, is that you can use dot notation only with
property names that are also valid identifiers. You can use these methods to both read from and write
to objects, as shown in Example 10-1.

EXAMPLE 10-1 http://actionscriptbible.com/ch10/ex1

Reading from and Writing to Objects

var shape:Object = new Object();
shape.name = "hexagon";
shape.sides = 6;
shape["color"] = 0x00ff00;

182

Chapter 10: Objects and Dictionaries

shape["stroke weight"] = 2;
shape["describe"] = function():String {return "A " + this.name;};
trace(shape.describe() + " has " + shape.sides + " sides.");
// Displays: A hexagon has 6 sides.

This example demonstrates that function objects, like any other type of data, can be stored in an
object instance. This is not a special case, but just another kind of object stored away. Typing
shape.describe or shape["describe"] refers to the function object stored as describe, and
typing the parentheses invokes that function.

You might notice that the bracket notation looks just like array access, and you can employ this ‘‘syn-
tactic sugar’’ to use Objects as associative arrays.

toString()
There is one method defined on Object that you will find yourself using not just on Objects but
on their subclasses. The toString() method is defined on Object, so it is available to all classes. It
is used to generate a string representation of the instance. You can override this method in your own
classes to provide a description of the instance and its contents for debugging and logging.

Note that when you use an object in a String context, Flash Player calls the toString() method
on the object to convert it to a String. You can see toString() in action in Example 10-2 later in
this chapter.

Using Objects and Dictionaries

as Associative Arrays
An associative array is a data structure that stores items by index. It functions like a filing cabinet in
that if you know the name of what you’re looking for, you can find it by looking it up. The name,
or the thing printed on the edge of the folders in the analogy, is called a key, and the item itself, or
the folder you find, is called a value. Associative arrays, like a filing cabinet, let you add a new folder,
find a folder by its name, remove a folder from the cabinet, look to see if a folder by a certain name
exists, and flip through all the folders in the cabinet. The essential operation, however, is the lookup:
retrieving values by name is what makes an associative array.

Associative arrays maintain a many-to-one relationship between keys and values. A key refers to
the same value every time, an essential rule. However, you could easily have one value that is filed
under multiple keys. For example, you might want to create a long, thin Noodle object and store
it under ‘‘Angel Hair,’’ but also under ‘‘Cappellini.’’ Both names refer to the same kind of pasta, and
both keys can refer to the same value: the instance of Noodle.

You might also hear associative arrays referred to as hashes, hashtables, maps, or dictionaries. These
are all names for the same kind of data type. The terms ‘‘hashtable,’’ ‘‘hash,’’ and ‘‘map’’ all refer to
a particular way to implement this data structure, in which a hash function is applied to the keys
to evenly distribute the values in memory and to later look them up. All this is handled inside the
ActionScript Virtual Machine; all you need to know is that an Object can be used as an associa-
tive array.

183

Part II: Core ActionScript 3.0 Data Types

This kind of associative data is incredibly useful and is found all around us, in common programming
situations, exposed to plain view on the internet, and in metaphors for the real world you can use to
structure code. Most search engines, for example, expose associative data to you right in the address.
Consider the URL www.google.com/search?q=hashtable&safe=active. After the question
mark (?) is an associative array of keys and values. The query is stored as the key q, and its value
is hashtable because you’re searching for information on hashtables. The parameter for the search
engine’s content filtering feature is named safe, and its value is active because you don’t want
inappropriate results. Who knows what kind of lewd examples students in computer science courses
might be posting right now? This example uses key-value pairs to represent parameters, as with any
form on the internet that uses HTTP GET. It’s one key organizational technique to refer to complex
data by reference, which is just what associative arrays do.

In the example from the previous section, I demonstrated most of the necessary properties of an asso-
ciative array using an Object. You stored and retrieved properties, or values, with dot and bracket
notation. In this section, you see how to check for the existence of values, iterate through values, and
remove values.

Comparing Arrays, Objects, and Dictionaries
Chapter 8 explained how to use an array to store associative arrays. I recommend that you use arrays
only for numerically indexed data. Using an Array object creates the impression that the data can
be accessed by numeric index and that useful Array methods such as indexOf() and splice()
can be used. However, none of these methods apply to properties that are stored by key rather than
index. You could create even more confusion by storing values in an Array instance both by index
and by associative key. Or consider the capability to store values with keys such as 12. Using an array
to access a property like that could confuse your code beyond use. Use Objects to store values by a
textual key, and use Arrays to store values by numeric index.

Objects are ideal for storing key-value pairs. Using bracket notation with an Object instance looks
just like looking up an array index by number, so you can think of it like an Array.

Dictionaries (or, I should say, Dictionarys) can also be used to store key-value pairs. They have an
important enhancement, however.

Objects use strings as keys. This is sufficient for most purposes, but say you need a quick-and-dirty
way to annotate class instances with certain additional information. Strings may not always be suffi-
cient for this purpose. For example, you might be meeting a bunch of new people at a party.

var guy1:Person = new Person("Bob");
var guy2:Person = new Person("Charlie");
var girl1:Person = new Person("Alice");

You’re trying to remember stuff about each person, so you use an Object to store information by the
person’s name.

var notes:Object = new Object();
notes["Bob"] = "Likes games";
notes["Charlie"] = "Super organized";
notes["Alice"] = "Enjoys drawing";

This works, until you meet a second person named Alice! Suddenly, there’s no way to keep track of
both Alices independently. Or heaven forbid, you might forget some of their names, but without a
name you can’t find anything.

var girl2:Person = new Person("Alice");

184

Chapter 10: Objects and Dictionaries

This would be a perfect opportunity to use a Dictionary object, shown in Example 10-2.
Dictionary objects can use the objects themselves as keys. Instead of looking up a name, you can
look up the entire person to get the data associated with that person.

EXAMPLE 10-2 http://actionscriptbible.com/ch10/ex2

Dictionary Objects

package {
import com.actionscriptbible.Example;
import flash.utils.Dictionary;
public class ch10ex2 extends Example {
public function ch10ex2() {
var guy1:Person = new Person("Bob");
var guy2:Person = new Person("Charlie");
var girl1:Person = new Person("Alice");
var girl2:Person = new Person("Alice");

var notes:Dictionary = new Dictionary();
notes[guy1] = "Likes games";
notes[guy2] = "Super organized";
notes[girl1] = "Enjoys drawing";
notes[girl2] = "Plays piano";

trace(girl1, notes[girl1]);
trace(girl2, notes[girl2]);

}
}

}

class Person {
public var name:String;
public function Person(name:String) {
this.name = name;

}
public function toString():String {
return name;

}
}

By using objects as keys, you can easily associate them with other data. I like to think of this like
attaching sticky notes to something. Your Dictionary is a stack of sticky notes. When you attach a
sticky note to your stapler, you don’t actually modify the stapler, but you can always find that infor-
mation if you have access to the original object — the stapler.

If you want to ensure that the objects you use as keys aren’t kept around unnecessarily by a
Dictionary object, you can pass true as the weakKeys parameter in the Dictionary
constructor:

new Dictionary(true);

185

Part II: Core ActionScript 3.0 Data Types

The value defaults to false. For more information, see the discussion on weak references in relation
to event handling in Chapter 20, ‘‘Events and the Event Flow.’’

Dictionarys follow the same syntax for all the operations (inserting, deleting, setting, and retriev-
ing) as an Object, so the techniques you learn in this chapter for using Objects also work with
Dictionary instances.

Testing for Existence
You can test for the existence of a key in an associative array either by performing a lookup or using
the in operator.

The in operator allows you to check on the existence of properties, methods, or values of an instance,
as long as they are accessible. The operator returns a Boolean value. You can use the in operator to
see if a key is associated with any value in an associative array:

var notes:Object = {Roger: "hereiam"};
"Roger" in notes; // Returns true
"Bailey" in notes; // Returns false

You can use this operator to investigate instances of classes for methods and public properties, which
they support, as well, as shown in Example 10-3.

EXAMPLE 10-3 http://actionscriptbible.com/ch10/ex3

The in Operator

package {
import com.actionscriptbible.Example;
import flash.display.Sprite;
public class ch10ex3 extends Example {
public function ch10ex3() {
var sprite:Sprite = new Sprite();
sprite.alpha = 1;
trace("alpha" in sprite); //true, that’s a property
sprite.getChildByName("subclip");
trace("getChildByName" in sprite); //true, that’s a method

var person:Person = new Person("Ben");
trace("name" in person); //true, Person has a name
trace("SSN" in person); //false, because it’s private!
trace("unicorn" in person); //false, that’s just silly

}
}

}
class Person {
public var name:String;
private var SSN:Number;

186

Chapter 10: Objects and Dictionaries

public function Person(name:String) {
this.name = name;

}
}

This example illustrates finding methods and properties in both built-in and custom classes. It also
shows that in respects the visibility of properties.

The old-school method of checking for existence by seeing if a lookup fails still works:

trace(notes["Josh"]); // Displays undefined
if (notes["Josh"]) {
trace(notes["Josh"]);

} else {
trace("I haven’t met Josh yet.");

}
// Displays: I haven’t met Josh yet.

Note
This method can be a little dangerous because several values can be coerced to false. If you say that Josh is a
zero (notes["Josh"] = 0), for example, the else branch executes. Either compare your lookups directly to
null or use the in operator to be safe. �

All Objects (meaning instances of all classes, since all classes inherit from Object) can provide this
information with the hasOwnProperty() method, which returns true if the key you pass it is found
as an instance variable, constant, method, or dynamically added property.

Removing Properties
You can use the delete operator to remove key-value pairs from an associative array. Apply the
delete operator before the value (expressed the same way as you would look it up), and both
the key and its associated value will be removed from the associative array:

var pastas:Object = {tortellini: 2, gemelli: 14, spaghetti: 9};
trace(pastas["spaghetti"]); //9
delete pastas["spaghetti"];
trace(pastas["spaghetti"]); //undefined

The delete operator also works on dynamically added properties and methods of instances of
dynamic classes.

Note
The delete operator returns true if deletion succeeds. When using delete on a numerically indexed item
in an Array, the length property is not updated. You cannot delete instance properties that are not dynamic,
or local variables. To release objects, you can remove all references to them, such as by setting variables to
null. �

187

Part II: Core ActionScript 3.0 Data Types

Iterating
You can iterate through the key-value pairs of an associative array — whether it be an Array,
Object, or Dictionary — with the for..in and for each..in loops introduced in Chapter 2,
‘‘ActionScript 3.0 Language Basics.’’ Use the for..in loop when you need access to the keys, and
use the for each..in loop when you are interested in the values only, as shown in Example 10-4.

EXAMPLE 10-4 http://actionscriptbible.com/ch10/ex4

Iterating Associative Arrays

package
{
import com.actionscriptbible.Example;
public class ch10ex4 extends Example {
public function ch10ex4() {
var characters:Object = {Roger: "The Author", Kumo: "The Cat"};

trace("Roger" in characters); //true
trace("Bailey" in characters); //false

//iterate through the values
for each (var value:String in characters) {
trace("I see", value);

}

//iterate through the keys
for (var key:String in characters) {
trace(key, "is", characters[key]);

}
}

}
}

Using Objects for Named Arguments
As you learned in Chapter 3, ‘‘Methods and Functions,’’ ActionScript 3.0 gives you added flexibility
when passing parameters to functions. You can leave out arguments with default values, and you can
accept variable-length argument lists with the ...rest parameter. Every so often it might be neces-
sary for a function to accept more than a handful of possible arguments, in which case identifying the
argument’s intention from its position in the argument list alone can be a memory exercise.

For example, the following code sets a particular line style in preparation to draw some strokes on a
Sprite:

var sprite:Sprite = new Sprite();
var g:Graphics = sprite.graphics;

188

Chapter 10: Objects and Dictionaries

g.lineStyle(1, 0xff0000, 1, true, "none", "round", "round", 20);
g.lineStyle(1, 0xff0000, 1, true, LineScaleMode.NONE, CapsStyle.ROUND,
JointStyle.ROUND, 20);

The last two lines do the same thing. The function call is almost incomprehensible when you use plain
strings for the three parameters near the end. When you use the static constants for these variables,
the readability improves some.

In these cases, when the number of parameters to the function is not the result of a design flaw, you
might wish you could use named arguments. Well, tough cookies, ActionScript 3.0 doesn’t use named
arguments, but you could accept an Object argument that stores multiple values which would other-
wise be arguments. These values are accessible by named keys, almost like named arguments! Because
you can’t check the passed Object at compile time for correctness, it’s best to only use an Object
for named arguments that have defaults, so that if someone passes an Object in with a missing or
invalid property, which isn’t checked by the compiler, you can assign it the appropriate default value
for that parameter.

Let’s go back to the example and pretend instead that you rewrote the lineStyle() function to take
an Object parameter. The call might look very different:

g.lineStyle({
thickness: 1,
color: 0xff0000,
alpha: 1,
pixelHinting: true,
scaleMode: LineScaleMode.NONE,
caps: CapsStyle.ROUND,
joints: JointStyle.ROUND,
miterLimit: 20

});

This use of a one-time, or anonymous, object to name parameters can increase readability of your
code, but at the cost of compile-time argument checking. I recommend that you use this approach
sparingly.

Using Objects as Nested Data
By inserting Objects inside Objects, you can create nested tree-like structures. By using dot nota-
tion, it is easy to traverse deeply nested trees of Objects.

plants.veggies.underground.carrot;

XML as Objects
In ActionScript 1.0 and ActionScript 2.0, it was not uncommon to convert XML structures into
Object trees for convenience because traversing XML could be somewhat unwieldy. With E4X,
however, traversing XML is just as easy. Also, E4X lets you handle structured data with much
more elegance and sophistication than nested Objects. I recommend using XML for nested data.
Chapter 11, ‘‘XML and E4X,’’ shows how to work with XML in depth.

189

Part II: Core ActionScript 3.0 Data Types

JSON
The syntax used to declare Object literals is simple and efficient enough for most uses that it has
been adopted by many web programmers as a lightweight alternative to XML. For example, consider
the following JavaScript Object:

var book =
{"title": "ActionScript 3.0 Bible 2nd Ed.",
"ISBN": "978-0-470-52523-4",
"author": "Roger Braunstein",
"chapters": [
{"title": "Objects and Dictionaries",
"classes": ["Object", "Dictionary", "Array"]

},
{"title": "XML and E4X",
"classes": ["XML"]

}
],
"rating": "awesome"

}
book.chapters[0].title; //"Objects and Dictionaries"
book.rating; //"awesome"

The Object assigned to book is a deeply nested data structure using only Objects and Arrays.
Dot and bracket notation can be used to traverse it. Surround that object with quotes instead and it
becomes a string. JavaScript interpreters simply have to eval() the string to turn the string into the
object it represents. That is, in a nutshell, JSON.

Unfortunately, this trick doesn’t work in ActionScript 3.0, because Flash Player does not compile or
run ActionScript code at runtime, and eval() will throw an error if you ever call it. So E4X and lack
of eval() interpretation are two good reasons to prefer XML for nested data.

If you must use JSON, however, Adobe provides a JSON parser in the corelib library available at
http://code.google.com/p/as3corelib/.

Summary

� All classes extend Object.

� Object is an empty class that is dynamic.

� You can create and modify properties and methods of dynamic classes at runtime.

� Both Object and Dictionary implement associative arrays.

� Associative arrays store key-value pairs. In Objects, the keys must be strings. In
Dictionarys, they can be any object.

� Anonymous objects can be used to pass named arguments.

190

XML and E4X

FEATURED CLASSES

XML

XMLList

QName

Namespace

A
ctionScript 3.0 includes thorough, language-level support for XML. Not
only can you create, load, and parse XML, you can write XML literals
directly into ActionScript 3.0 code. A robust XML manipulation and

query language, E4X, provides you with the tools to quickly and easily get the
information you need. E4X, too, is implemented at the language level to make
XML manipulation succinct.

Getting Started with XML in

ActionScript

XML — the eXtensible Markup Language — is a format for storing any kind of
hierarchical data. It has universal adoption and countless uses. XML is designed
to be minimal; as the name extensible implies, you can design your own language
that uses XML for its general structure but adds on more specific grammar.

XML References
This chapter assumes a basic knowledge of XML’s structure and syntax. If you
are unfamiliar with XML, you may want to check out the W3C Schools XML
Tutorial (http://www.w3schools.com/xml/), the Wikipedia entry on XML
(http://en.wikipedia.org/wiki/XML), or one of the many books avail-
able on XML. Let’s agree on some terminology:

<?xml version="1.0" encoding="UTF-8"?>
<parentNode>
<childNode attributeName="Attribute Value">

Node Content
</childNode>

191

Part II: Core ActionScript 3.0 Data Types

<childlessChildNode/>
<!-- comment -->

</parentNode>

The XML document begins with the document declaration and contains exactly one root
node — parentNode here. Data is represented by nodes, or elements — parentNode and
childNode — enclosed within start and end tags. Nodes can contain other nodes — like
parentNode — or they can be empty — like childlessChildNode. Some elements contain
attributes as name-value pairs within their start tags, which store additional information without
nesting. Node names and attributes may be namespaced if the namespace is defined in the root
node (not shown). Some nodes may contain text nodes — such as Node Content here — that are
plaintext. Sometimes these text nodes use character data, or CDATA, sections to avoid escaping XML
control characters in the text. XML may also contain namespace declarations, comments, or processing
instruction nodes. An element is a node with a start and end tag — there are only three elements in
this example — whereas the term node is more general and applies to text nodes, comments, and
processing instructions like the document declaration.

E4X References
I can’t talk about XML in ActionScript without talking about E4X. E4X is part of ActionScript’s lan-
guage specification. Besides defining the XML and XMLList classes that I’ll soon cover, E4X provides
operators and syntax you can use to write complex queries in a compact way and even defines how
XML can be written in code. E4X is simply a blanket term for the pieces of ActionScript 3.0 that let
you use XML data natively.

E4X, like much of the core ActionScript 3.0 language, is a standard. In fact, its name is shorthand for
‘‘ECMAScript for XML,’’ defined in document ECMA-357. It’s the same XML access standard that’s
used in JavaScript version 2.0.

You can read the official E4X spec at ECMA’s site (http://bit.ly/e4xspec). Addition-
ally, much of the information in this chapter is distilled in the article ‘‘AS3 E4X Rundown’’
(http://dispatchevent.org/roger/as3-e4x-rundown/).

XML Literals
XML literals, like Number and String literals, allow you to add XML directly into source code
without having to load or parse it. Here’s an example of an XML literal being assigned to a variable
of type XML:

var employeeList:XML =
<employeeList>

<employee>
<name first="Conan" last="O’Brien" />
<title>Host</title>

</employee>
<employee>
<name first="Andy" last="Richter" />
<title>Sidekick</title>

</employee>

192

Chapter 11: XML and E4X

<employee>
<name first="Max" last="Weinberg" />
<title>Band Leader</title>

</employee>
</employeeList>;

The preceding example shows XML data being assigned to a variable called employeeList. You can
put the XML straight into your ActionScript file, as long as it’s valid XML. Don’t include the document
declaration, but you can include XML comments, CDATA sections, and namespaces to your heart’s
content.

Note
AS3 lets you load XML from external sources. However, for simplicity’s sake I use literals for examples in this
chapter. To learn more about loading data from external sources, check out Chapter 27, ‘‘Networking Basics
and Flash Player Security.’’ �

You can use ActionScript expressions in XML literals by enclosing the expression in curly braces {}.
The expression will be evaluated and its value substituted where the braces were. Now you can fill a
data set with dynamically generated values, like so:

var squareLength:Number = 10;
var circleRadius:Number = 5;
var shapeData:XML =
<shapeList>
<shape type="square" size={squareLength} />
<shape type="circle" size={circleRadius} />

</shapeList>;
trace(shapeData.toXMLString());

The XML method toXMLString() returns its data as a string, but it retains the XML syntax and
formatting. It won’t necessarily respect the exact formatting of its input, because the method re-creates
the String representation from the XML object data in memory. When run, this snippet prints the
contents of shapeData as an XML string:

<shapeList>
<shape type="square" area="10" />
<shape type="circle" area="5" />

</shapeList>

As you can see, the two bracketed expressions from the XML literal were evaluated, and their values
were placed directly into the XML. In addition to using inline expressions for XML attributes, you can
use them for node names and text nodes, as Example 11-1 shows.

EXAMPLE 11-1 http://actionscriptbible.com/ch11/ex1

Inline Expressions in XML

package {
import com.actionscriptbible.Example;
public class ch11ex1 extends Example {

continued

193

Part II: Core ActionScript 3.0 Data Types

EXAMPLE 11-1 (continued)

override public function ch11ex1() {
trace(makeNode("div", "i am a banana").toXMLString());
//<div>i am a banana</div>

}
protected function makeNode(nodeName:String, contents:String = ""):XML {
return <{nodeName}>{contents}</{nodeName}>

}
}

}

Note
I haven’t properly covered XMLList objects yet, but you can create an XMLList literal by wrapping the nodes
in an element with an empty node name. This is invalid XML, so it’s used as a cue to E4X.

var colors:XMLList = <><red/><green/><blue/></>;
trace(colors.length()); //3

A Brief Introduction to E4X Operators and Syntax
An E4X expression usually combines methods of the XML and XMLList classes with operators. Many
of the E4X operators are actually shortcuts for methods these classes define, which help keep complex
searches readable. An E4X expression might look like this:

employeeList.employee[0].name.@first

These expressions, like others that use the dot operator, are evaluated from left to right. Every
subexpression operates on the cumulative results thus far; in this example, every subexpression steps
deeper into the XML structure to target a specific attribute of a specific node (Conan, from the earlier
example). Drilling down is a common pattern for E4X expressions, but steps in your operation can
also filter results or move up the XML tree.

You can think of the expression as ‘‘moving’’ through XML data, although it’s more accurate to say
that it generates intermediate data sets based on each subexpression. In this case, you start out with a
whole XML data set, stored in the variable employeeList. You then retrieve all child nodes called
employee, pick the first one, retrieve all its child nodes called name, and pick the attribute called
first out of them.

In an expression like this one, some subexpressions can result in a single node, and some can result in
multiple nodes. You can also write expressions to return special kinds of nodes like text nodes. E4X
uses four classes to represent different kinds of XML data:

� XML — One piece of simple XML data; a single node. This is typically an element, but it
can also store a text node, comment, or processing instruction. Defining all these seemingly
different nodes as XML objects allows you to use the same methods and operations on all kinds
of XML data.

194

Chapter 11: XML and E4X

� XMLList — A list of zero or more nodes. It may contain all elements, a single text node, or
any number of nodes in any combination of node types. Each node in the list is an XML object.
XMLLists support the same methods as XML objects, so they can be used interchangeably and
transparently in E4X expressions. XMLLists are a bit different from XML objects in that they
can contain multiple nodes, and these nodes can be from disparate places in an XML structure.
Because of this, although they can be further filtered and queried, they cannot always be mod-
ified by adding or removing nodes. They are a set of possibly unrelated nodes, so Flash Player
has no way of knowing where to apply your modifications. You can think of them as ‘‘result
sets’’ and as read-only. XMLLists are indexed numerically like arrays, and they support fast
enumeration with the for each..in loop.

� Namespace — Used not only to represent XML namespaces, but also ActionScript name-
spaces. Although you may use namespaced XML, you can do so without ever get-
ting a handle on an actual Namespace instance. It’s often easier to use the name-
space and use namespace operators.

� QName — Represents a fully qualified name for an XML node or attribute. This includes
both the name of the node or attribute and its namespace. E4X lets you write qualified names
directly into code or with Strings, so it’s rare that you’ll end up using an actual QName
instance.

All these classes are top-level: they exist in the default package, and there is no need to import them.
Of the classes, you’ll use XML and XMLList almost exclusively, especially if you work with simple
XML that doesn’t use namespaces.

In the space of one E4X expression, you can go back and forth between XML and XMLList seam-
lessly. For example, in the expression

employeeList.employee[0].name.@first

the subexpression .employee finds all child nodes named employee and returns a set, or
XMLList. Then the subexpression [0] returns the first item in the set, always a single XML object
(or null). As you learn about the different E4X operators and methods and see more examples of
complex expressions, you’ll get used to moving back and forth between XML and XMLList and see
how they interact in more detail.

Note
Interestingly, neither of the XML or XMLList classes inherits from the other. However, they have most of the
same methods and support the same E4X operations. It’s a rare case when two classes are meant to be inter-
changeable but don’t have some kind of formal type relationship. �

Legacy XML Handling
In AS3, the top-level classes that I just enumerated handle XML using E4X; however, the older
XML classes from previous versions of ActionScript are included for legacy support. The
XMLDocument class, located in the flash.xml package, supports legacy XML handling. I won’t
cover legacy XML in this chapter. For more information, you can reference the flash.xml package
in the AS3LR or reference any book or article on XML in ActionScript 2.0.

195

Part II: Core ActionScript 3.0 Data Types

Querying XML
E4X makes it simple to query XML, extracting the information and structure you need from deep
within an XML document. You can often query an XML node or set with either a method from
XML/XMLList or a shorthand operator. I’ll cover both the methods and their shortcuts, if applicable,
simultaneously.

Many E4X operations can be said to correspond to certain axes. I’ve borrowed this term from other
XML query languages such as XPath. If you think about a complex expression moving through
an XML tree, each subexpression can move through the structure in a certain way. Each way of
moving through the data is an axis. For example, the parent axis moves ‘‘up’’ to a node’s immediate
parents; the descendant axis includes all nodes ‘‘below’’ the node; and the text axis includes all text
nodes contained by the node. The axis terminology is not used in much E4X literature I have seen,
yet it’s a good way to think and communicate about the different kinds of operations you can perform
with a single E4X subexpression.

The Child Axis
The dot operator is the simplest tool in your E4X arsenal. It separates subexpressions, and, when used
with a node name, moves down the child axis.

Example 11-2 defines the XML for a list of movies. I’ll use this XML for the next several examples:

EXAMPLE 11-2 http://actionscriptbible.com/ch11/ex2

Collected Snippets: Querying XML

var movieList:XML =
<list>
<listName>My favorite movies</listName>
<movie id="123">
<title>Titus</title>
<year>1999</year>
<director>Julie Taymor</director>

</movie>
<movie id="456">
<title>Rushmore</title>
<year>1998</year>
<director>Wes Anderson</director>

</movie>
<movie id="789">
<title>Annie Hall</title>
<year>1977</year>
<director>Woody Allen</director>

</movie>
</list>;

Using the dot operator, you can access any of the movieList’s children. Simply write the node name
of the child you want to access, as if it were a property of the movieList object. Notice here that
you omit the root element, <list>, from the path:

trace(movieList.listName); //My favorite movies

196

Chapter 11: XML and E4X

The dot operator returns a set of nodes, matching all the children of the node or node set whose
node name matches its argument. In other words, it converts an XML or XMLList into an XMLList
because more than one child with the same node name may be present. If no matching nodes are
found, it returns null.

Caution
There are some side effects to using the dot operator followed by a node name. You cannot use reserved words
such as class, var, or function in subexpressions with the dot operator, even though these node names
are perfectly legal XML. To access these nodes in the child axis, use the longhand child() method instead,
which is not subject to these limitations because its argument is a String. On the other hand, interpreting
the operand of the dot operator as a node name means that you can’t access properties of XML instances.
The property name would instead be read as a child’s node name. So attributes of XML objects are made
available as explicit accessors — methods — instead. The length of an XMLList named xl is accessed with
xl.length(), not xl.length. Be wary of this; it’s a common mistake. �

The corresponding methods for accessing the child axis are child() and children(). You’ll see
why there are two methods when we revisit children() in the next section. The child() method
of XML/XMLList does the same thing as the dot operator: returns the node or node set’s children
that match its argument. You can pass the method a String or QName to specify the name of the
child node(s) you’re looking for, or an int if you are simply looking for the nth child node by index.
Another way to get the example list’s name is this:

trace(movieList.child("listName")); //My favorite movies

The Wildcard Operator
The wildcard operator (*) is used in several places in E4X to indicate that any value is acceptable
for the corresponding argument. It is used where the argument is expected in both shorthand opera-
tors and method parameters. Although you can retrieve all the child nodes named movie by putting
movie after the dot operator

trace(movieList.movie.length()); //3

you can get every child node by using a wildcard as the node name:

trace(movieList.*.length()); //4, includes <listName> node

Some axes have two associated methods: one that takes no parameters and returns all the XML objects
in that axis, and one that returns only those that match the argument. This, too, is a convenience that
allows the code to read a little better and lets you omit the argument:

trace(movieList.child("*").length()); //4
trace(movieList.children().length()); //4

Indexed Elements
For nodes with more than one of the same kind of child node, such as movieList.movie, and
anywhere an expression results in an XMLList, you can get at individual XML elements in the set,
determine how many elements there are, and determine if an element exists in the set.

The bracket operators ([]) let you access elements within an XMLList by index, just like an array.
Remember that the first element will be at index 0.

197

Part II: Core ActionScript 3.0 Data Types

trace(movieList.movie[1].title); //Rushmore

You can also use this syntax to write new values to the XML, just as you can append items to an array
by assigning them to the next empty index.

movieList.movie[3] = <movie id="012"><title>Spaceballs</title></movie>;

Not that you needed another way to access children by name, but brackets also let you access child
nodes by name, just like accessing named properties of Objects. This is another way to get at
child nodes that have names illegal in or reserved by ActionScript. Steer clear of this and use the
child() method instead.

Finding all elements in an axis and returning the nth result is equivalent to finding the nth element
in that axis. Because you can pass an int to child() to find a child node by its order, these are
equivalent:

trace(movieList.children()[0]); //My favorite movies
trace(movieList.child(0)); //My favorite movies

Right now, you might be getting the notion that there sure are a lot of different ways to do things in
E4X. You’re right. Just use whichever form makes the most sense to you.

The length() method of XML/XMLList returns the number of elements it contains. You’ve already
used this one in a few examples. Yes, XML has a length() method; it returns 1, because all valid
XML has a single root node.

The childIndex() method of XML returns the node’s order in its parent node. You can use this to
traverse around a node’s siblings (an axis that has no E4X operation). So, to get to the next sibling of
a node, you can look at the node whose index is one greater than its own:

var movie:XML = movieList.movie[0]; //get Titus node
movie = (movie.parent()).children()[movie.childIndex() + 1];
//get whatever’s next
trace(movie.title); //Rushmore

This expression goes up (using the parent axis that I’ll cover shortly) and then back down, using the
index of the original node as a waypoint.

Finally, you can check whether a node is in a node set with the contains() method of
XML/XMLList. (For an XML object, this compares the argument against the XML object.)

The Attribute Axis
To access attributes of a node or node set, you can use the attribute identifier operator (@). Use the
operator followed by the attribute name that you want to find:

trace(movieList.movie[0].@id); // Displays: 123

In addition to reading attribute values, you can set them with this method:

movieList.movie[0].@id = 8675309;

198

Chapter 11: XML and E4X

If you want to access all the attributes for a tag, you can use the wildcard operator:

var movie:XML =
<movie id="000" rating="*****">
<title>The Big Lebowski</title>
<year>1998</year>
<director>The Coen Brothers</director>

</movie>;
trace(movie.@*.toXMLString());
//000
//*****

Remember that any kind of XML element can be contained in an XML object; the result of querying
the attribute axis is zero or more text nodes in an XMLList. When converted directly to a String,
these run together like 000*****. When you use toXMLString(), each text node gets its own line
in the output.

Similarly, when called on an XMLList, the attribute axis searches for the specified attributes on any
node in the set.

trace(movieList.movie.@id); //123456789012

The attributes() and attribute() methods are provided to access all attributes, and
attribute(s) by name, respectively.

movieList.movie[1].attribute("id"); // 456
movieList.movie[2].attributes(); // 789

The preceding code is functionally identical to the following code:

movieList.movie[1].@id; // 456
movieList.movie[2].@*; // 789

These attribute-axis methods are useful when you aren’t sure if the node has an attribute with that
value, or when an attribute name is reserved or illegal in ActionScript.

Tip
Other ways you can get to the attribute axis include these:

movieList.movie[1]["@id"]; //456
movieList.movie[1].@["id"]; //456

But just because you can doesn’t mean you should. The more ways you use a single syntax, the less easily your
code can be read. Use the @ symbol for attributes and the [] brackets for indexed children. �

The Text Axis
If an element contains only a text node, toString() returns that text value automatically. Because
the toString() method is called automatically when the expression is used in a String context,
this provides a quick way to display the value of the text node.

199

Part II: Core ActionScript 3.0 Data Types

However, some elements contain text as well as other child nodes, such as the following:

<div id="speech">
Hear ye, hear ye!
<hr/>
All thine base doth belong to us!

</div >

To explicitly access the text node of an element, you can use the text() method, which returns an
XMLList of text nodes:

trace(movieList.movie[1].title.text()); //Rushmore

There is no shorthand operator for the text axis.

The Descendant Axis
One powerful feature of E4X is the ability to directly access descendant nodes. A descendant is any
node contained within a node, in any of that node’s children, the children of those nodes, and so on.
In other words, the descendant axis contains a node’s children, grandchildren, great-grandchildren,
great-great-grandchildren, and so on.

By using the descendant accessor operator, which is written as a double dot (..), you can make a deep
dive to the data you want without worrying about what the path to that data might be. This works
with elements but also with attributes and other types of XML objects. In the following example, you
get all the movie title tags in one fell swoop:

trace(movieList..director);

This displays the following:

<director>Julie Taymor</director>
<director>Wes Anderson</director>
<director>Woody Allen</director>

See how simple that was? The descendant axis is even more valuable when it comes to larger XML
trees. Let’s try another example and pull every attribute from every node in the entire XML document:

trace(movieList..*.@*); //123456789012

The method descendants() is longhand for the descendant axis. Unlike other axes you’ve seen
with two methods, one that accepts an argument and one that does not, this method does both,
presumably because whether you choose all the descendants or just some, the result is less directly
related to the original node than children. The parameter to descendants() is optional, so omitting
it has the same effect as passing in a wildcard.

trace(movieList.descendants("year").text()); //199919981977

One thing you’ll want to be aware of when using descendants is that all matches will be returned even
if there are tags with the same name on different levels of the tree. The following example has a
tag, which is a descendant of another tag:

200

Chapter 11: XML and E4X

var foo:XML = <a>

<c>
foo

</c>

;
trace(foo..b.toXMLString());

This displays the following:

<c>

foo
</c>

foo

The descendant accessor can be a convenient shortcut, but be sure to structure your queries so that it
won’t pick up any unwanted extra nodes along the way.

The Parent Axis
If a descendant is a node or attribute contained within a particular element, an ancestor must be an
element that contains the subject. Although there is no ancestor axis, there is a parent axis that con-
tains the parent of the node when called on an XML instance, and the common parent of all the nodes
in the set when called on an XMLList. If the nodes in the set have no parent, aren’t normal elements,
are the root element already, or don’t have the same parent, undefined is returned. Because an ele-
ment has only one parent (except the root element, which has none), this axis returns an XML object
instead of an XMLList like most others do. The axis is accessed by the parent() method, which
takes no arguments.

var title:XMLList = movieList.movie[1].title;
var director:XMLList = title.parent().director;
trace(title + " directed by " + director);
//Rushmore directed by Wes Anderson

There is no operator shorthand for the parent axis.

Custom Filter Axes
E4X facilitates powerful queries by allowing you to apply arbitrary tests to node sets within an expres-
sion. Elements that pass the test are returned. And, of course, you can continue processing these
results further by chaining on additional E4X subexpressions.

To create your own filter axes, you simply write the test as a Boolean expression, using E4X with your
ActionScript code as necessary. When placed in parentheses in an E4X expression, the expression is
used as a filter. This may sound complicated when explained, but fortunately it looks natural in code:

var rushmore:XML = movieList.movie.(title.text() == "Rushmore")[0];
trace(rushmore.title + " directed by " + rushmore.director);
//Rushmore directed by Wes Anderson

201

Part II: Core ActionScript 3.0 Data Types

Put in English, the E4X expression on the first line reads like this: ‘‘The first item, in the movie nodes
of the list, whose title node has a text node containing ‘Rushmore.’’’

Let’s look at a few more examples. The first filters by the movie’s year node, and the second filters
by the id attribute:

delete movieList.movie.(title == "Spaceballs")[0];
//get rid of this node for now since it doesn’t contain a year or id.
var classics:XMLList = movieList.movie.(parseFloat(year) < 1990).title;
trace(classics); //Annie Hall
var idSort:XMLList = movieList.movie.(parseInt(@id) > 400).title;
trace(idSort);
//<title>Rushmore</title>
//<title>Annie Hall</title>

Before you filter on id and year, if it’s still there you have to remove the ‘‘Spaceballs’’ movie you
added in an earlier example. It’s incomplete, and its lack of year node and id attribute will cause
runtime errors if you use the shorthand E4X operators. However, if you use the corresponding meth-
ods instead of operators, you can avoid these errors.

Caution
When using filter axes with shorthand operators, all nodes that will be subjected to the test you write must
have attributes and nodes that you reference in shorthand defined. To avoid this, use preceding expressions to
narrow the input set to one that meets this requirement, or use E4X methods in your test expression, knowing
that they may return undefined. �

Another thing you have to keep in mind when using XML is that it’s text based. All bits of XML, from
node names to attribute values, are text data. An @id is a String even if it contains only numeric
characters. Flash Player doesn’t try to guess what type of data is being represented in an XML node.
You have to tell it. This can be confusing, because comparison operators like < and > behave differ-
ently on strings and numbers. This can be a dastardly bug:

trace("9" > "10"); //true
trace(9 > 10); //false

The results of these tests are so because the first character of the string ‘‘9’’ is greater alphabetically
than the character ‘‘1’’, so the string is considered to have a higher value. This is why in the
previous example I’ve used parseInt() and parseFloat() to ensure that the data is interpreted
as, and compared as, the correct numeric types. Although you can take plenty of shortcuts in
E4X — like using year, which is automatically converted into a String, instead of the more
accurate year.text().toString() — a little explicitness goes a long way.

Caution
All XML elements are handled as text data. Ensure that you convert data to the proper types when necessary. �

You can filter by any variety of criteria as long as you keep in mind that the filter terms are evaluated
in the scope of the input node or node set. In this case, all the examples are searching for matches
within the node set up to that point in the expression (movieList.movie). Here’s an example that
uses a string search on the director name:

202

Chapter 11: XML and E4X

var julies:XMLList = movieList.movie.(director.indexOf("Julie") != -1).title;
trace(julies); //Titus

Even though you look down into the director node within the expression, it’s filtering on the
movie nodes, and its output is a subset of movie nodes. This is why you can, after the filter expres-
sion, move down into the title child node.

Quick Reference
Let’s review the different ways to query XML data in a chart. You can refer to this as a quick reference.
The ‘‘node kind’’ axis is a special axis that gets information about its nodes. Learn more about it in the
later section ‘‘Gathering Meta-Information about XML Nodes.

TABLE 11-1

E4X Query Operations

Axis Description Operator Method(s)

child children of the node .nodename child(nodeNameOrIndex)
children()

descendant children, grandchildren,
etc.

..nodename descendants(optionalName)

parent node that contains this
node

parent()

attributes attributes of the node @attributeName attribute(attributeName)
attributes()

filter a custom filter (test expression)

node kind child nodes that are a
specific kind of node

elements()
text()
comments()
processingInstructions()

Modifying XML
Of course, you are not limited to defining XML literals and querying them. E4X also defines operators
and methods for modifying existing data by adding, removing, and updating values.

Inserting Nodes
For the following examples, let’s update the movie list by adding the data for another movie.

203

Part II: Core ActionScript 3.0 Data Types

var anotherMovie:XML =
<movie id="222">

<title>Tron</title>
<year>1982</year>
<director>Steven Lisberger</director>

</movie>;

You’ll look at some different ways to insert the XML you defined in the variable anotherMovie into
the movieList XML structure at the correct place. In the real world, you’ll need to update XML
structures when you’re collecting data on the fly, such as if you are maintaining a partial copy in
memory of a large data structure, adding on nodes as they are retrieved from a data source.

It should be no surprise by now that E4X gives you different ways to insert XML data. The two main
approaches are, as usual, by using operators and by using methods of XML and XMLList.

Inserting with E4X Operators

E4X provides two operators for concatenating XML data. These are the XML concatenation operator
(+) and the XML concatenation assignment operator (+=). These two operators are just like those that
are provided in String contexts for concatenating String data, and indeed they work in much the
same way.

The simplest way to combine XML data is by using the + operator. This takes two operands, either of
type XML or XMLList, and places them in order in an XMLList. Using this operator is quite natural:

var fruits:XMLList = <plum/> + <peach/> + <strawberry/>;
trace(fruits.toXMLString()); /*<plum/>
<peach/>
<strawberry/> */

Here I added three XML nodes to create an XMLList of length three.

The += operator adds the XML node or nodes on the right to the XMLList on the left and assigns
that value back to the variable on the left. Again, because the result is multiple nodes, it must be an
XMLList, so the left operand must be an XMLList variable.

var movies:XMLList = movieList.movie;
movies += anotherMovie;
trace(movies.title.text()); //TitusRushmoreAnnie HallTron

Here, I create a list of the movie nodes and add Tron to the list. Tracing out the titles of the movies in
the list verifies that I’ve modified the variable movies. What I haven’t done, however, is modify the
original XML structure stored in movieList:

trace(movies.title.text()); //TitusRushmoreAnnie HallTron
//the XMLList has the new movie...
trace(movieList.movie.title.text()); //TitusRushmoreAnnie Hall
//but the original XML is unmodified

When I used the += operator, I assigned the new value to the XMLList called movies, which was a
list of all the <movie/> nodes. The moment I created the movies variable, I lost the context of the
query; movies doesn’t know or care where its nodes came from. It’s not a copy, however. The nodes
themselves are references. Let’s prove this:

204

Chapter 11: XML and E4X

movies[0].@newAttribute = "testing"; //modify a node in the list
trace(movieList.movie[0]); //<movie id="123" newAttribute="testing">...
//it changes the original node

Notice that I modified an attribute of the node from movies, but the changes also appear in
movieList because both variables reference the same node.

If you use an E4X query expression on the left side of an XML assignment, Flash Player uses it as the
context for the assignment, rather than modifying an intermediate node set. If you do this instead of
using the intermediate variable movies, you can actually modify a targeted section of the overall XML
with a single operator:

movieList.movie += anotherMovie;
//providing the context in the LHS of the assignment...
trace(movieList.movie.title.text()); //TitusRushmoreAnnie HallTron
//adds the node to the correct context, not just a temporary XMLList variable

By using the E4X expression movieList.movie as the recipient of the assignment, I’ve instructed
Flash Player to append the new movie as a sibling of the <movie/> elements inside the original XML
tree.

You can use XML assignment to add text nodes and attributes as well as elements:

var annieHall:XML = movieList.movie.(title.text() == "Annie Hall")[0];
annieHall.* += <genre/>;
annieHall.genre += "Comedy";
trace(annieHall);
//<movie id="789">
// <title>Annie Hall</title>
// <year>1977</year>
// <director>Woody Allen</director>
// <genre>Comedy</genre>
//</movie>

Above, I append a new <genre/> element to annieHall’s children and append a text node to it
by concatenating a String. Note that when you use objects other than XML or XMLList instances
as operands to XML assignment and concatenation, they are converted to Strings and treated as text
nodes. This can be convenient when inserting data.

Remember that you can create new nodes and attributes by assigning them to not-yet-existing
locations:

annieHall.actor += <actor>Diane Keaton</actor>;
annieHall.actor.@role = "Annie Hall";

205

Part II: Core ActionScript 3.0 Data Types

Caution
When using E4X query expressions on the left side of an XML assignment, you need to stick to E4X operators.
If you use XML/XMLList methods, Flash Player evaluates the left side first, rather than using it for context.
Because the expression evaluates down to a literal constant, this is like assigning something to a number or
string. Try to simplify your expressions, and use only E4X operators.

movieList.children() += <test/>; //X the LHS evaluates to a list
12 += 4; //X it’s just like this, assigning to a constant
movieList.* += <test/>; //O using operators prevents evaluation

If necessary, you can use an intermediate XML variable. Sure, the intermediate variable doesn’t have context,
but if you add children to it, you’ve modified it for everyone:

annieHall.actor += <actor>Diane Keaton</actor>;
annieHall.actor.@role = "Annie Hall";
//we’ve modified an intermediate XML variable
trace(movieList.movie[2]);
//but this is the original Annie Hall node
//and changes to it are global:
//<movie id="789">
// <title>Annie Hall</title>
// <year>1977</year>
// <director>Woody Allen</director>
// <genre>Comedy</genre>
// <actor role="Annie Hall">Diane Keaton</actor>
//</movie>

Inserting with E4X Methods

If you need more control over exactly where you want your values to be added to an XML object, or
if you prefer to avoid E4X syntax that approaches the mystical, you can use methods of XML to insert
nodes. These methods include

� appendChild(child:Object):XML— Appends the child node to the target node’s chil-
dren (making it the first child, if necessary). The following lines are identical:

a.appendChild(b);
a.* += b;

� prependChild(child:Object):XML— Prepends the child node to the target node’s
children. Note that the += operator always appends, so use this method if you need the child
node to come first.

� insertChildBefore(anchor:Object, toInsert:Object):* — Inserts the
toInsert node immediately before the anchor node, which is expected to be a child
(immediate descendant) of the target node. You can specify the anchor node using E4X or
by passing in a reference to an XML node. Returns undefined if the target node is not an
element or the anchor is not found.

� insertChildAfter(anchor:Object, toInsert:Object):* — Inserts the
toInsert node immediately after the anchor node. See insertChildBefore().

var textList:XML = <string/>;
textList.appendChild("hello");
textList.appendChild(" world");

206

Chapter 11: XML and E4X

trace(textList); //hello world
textList.insertChildAfter(textList.child(0), " there");
trace(textList); //hello there world
textList.insertChildBefore(textList.child(2), " beautiful");
trace(textList); //hello there beautiful world
trace(typeof textList.insertChildAfter("hello", "HEY!")); //undefined

None of these methods applies to XMLList. All the methods modify their targets and return the mod-
ified target, as long as no errors are encountered.

As you can see, these methods give you precise control over where you’re inserting nodes in an XML
structure.

Removing Nodes and Attributes
Unlike inserting XML, there are no methods for deleting XML nodes. Instead, you simply use the
delete operator. This removes a specified node from the tree. Let’s say (hypothetically, of course)
that I’ve grown tired of Woody Allen’s neurotic musings and want him taken off my list. Running the
following code

delete movieList.movie[2];
trace(movieList.movie);

displays

<movie id="123">
<title>Titus</title>
<year>1999</year>
<director>Julie Taymor</director>

</movie>
<movie id="456">
<title>Rushmore</title>
<year>1998</year>
<director>Wes Anderson</director>

</movie>

You can use the delete operator with E4X expressions to delete combinations of nodes at once. You
can simplify the structure of the movie by removing all information but the title:

delete movieList.movie.director;
delete movieList.movie.year;
trace(movieList);
//<list>
// <listName>My favorite movies</listName>
// <movie id="123">
// <title>Titus</title>
// </movie>
// <movie id="456">
// <title>Rushmore</title>
// </movie>
// <movie id="789">
// <title>Annie Hall</title>

207

Part II: Core ActionScript 3.0 Data Types

// </movie>
//</list>

The delete operator works for attributes as well as nodes. In the following example, I remove all
attributes from the movie Tron.

delete anotherMovie.@*;
trace(anotherMovie); //<movie>... the id is gone.
anotherMovie.@id = 222; //let’s add the id attribute back.

Duplicating XML
As I discussed in previous chapters, only base types are passed by value, and all complex objects in
ActionScript are passed by reference. XML is no exception to this rule. Setting a variable to another
XML object creates a reference to the original object, and any changes made to either variable are
reflected across both variables. I’ve relied on this fact in many prior examples. But sometimes you
actually want a copy:

var template:XML = <person><name><first /><last /></name></person>;
var me:XML = template;
me.name.first = "Roger";
me.name.last = "Braunstein";
var someoneElse:XML = template;
trace(someoneElse); //oops, we’ve modified the template instead:
//<person>
// <name>
// <first>Roger</first>
// <last>Braunstein</last>
// </name>
//</person>

You can clone XML data effortlessly by using the copy() method:

var template:XML = <person><name><first /><last /></name></person>;
var me:XML = template.copy();
me.name.first = "Roger";
me.name.last = "Braunstein";
var mario:XML = template.copy();
mario.name.first = "Mario";
mario.name.last = "Bros";
trace(template); //all good, keep the copies coming!
//<person>
// <name>
// <first/>
// <last/>
// </name>
//</person>

208

Chapter 11: XML and E4X

Replacing Nodes
The child nodes of an XML object can be replaced all at once by using the setChildren() method.
This replaces all the child nodes with the XML that you provide. In the following example, you change
the movie Tron (which has the ID 222) first to an empty element, and then to The Science of Sleep:

movieList.movie.(@id == 222).setChildren(null);
trace(movieList.movie.(@id == 222).toXMLString());
// Displays: <movie id="222">null</movie>
movieList.movie.(@id == 222).setChildren
(<title>The Science of Sleep</title> +

<year>2006</year> +
<director>Michel Gondry

</director> +
<genre>Romance</genre>);

trace(movieList.movie.(@id == 222).toXMLString());
// Displays: <movie id="222">
// <title>The Science of Sleep</title>
// <year>2006</year>
// <director>Michel Gondry</director>
// <genre>Romance</genre>
// </movie>

A similar method, called replace(), allows you to replace a single node with a new XML object.
The new XML object can be anything and doesn’t need to use the same tag name as the element being
replaced:

movieList.movie.(@id == 222).replace("genre",
<category>Independent</category>);
trace(movieList.movie.(@id == 222).toXMLString());
// Displays: <movie id="222">
// <title>The Science of Sleep</title>
// <year>2006</year>
// <director>Michel Gondry</director>
// <category>Independent</category>
// </movie>

For more information on the setChildren() and replace() methods, check the AS3LR.

Converting to and from Strings
XML objects are essentially text data. When interpreted as XML, they inherit the tree structure
you’re familiar with. Thankfully, it’s easy to move back and forth between XML and strings. Besides
the familiar toString() method, there are a few more options specifically for XML and XMLList
objects.

209

Part II: Core ActionScript 3.0 Data Types

Converting Strings to XML
You may find it necessary to convert string values to XML when working with data from a string-
based source or an external text file. To do this, you can simply use the cast-like conversion function
XML(). This looks just like casting the argument to XML. You should be careful to use only well-
formed XML text when casting. Failure to do so will result in a runtime error.

var dialog:String = "Lorem ipsum dolor sit amet";
var xmlString:String = "<dialog>" + dialog + "</dialog>";
var xml:XML = XML(xmlString);
trace(xml.text()); //Lorem ipsum dolor sit amet

The XML() constructor also accepts any object that can be converted into XML, so you can accom-
plish the same conversion with this:

xml = new XML(xmlString);

Converting XML to Strings
As you’ve seen so far throughout the chapter, you can use the traditional toString() method with
XML objects to display their contents as text. Flash Player decides how to convert the XML depend-
ing on the node type and contents. However, XML/XMLList also provides toXMLString(), which
always represents the node or nodes with proper XML structure. This method is guaranteed to pro-
duce valid XML fragments. You can expect the output to be structurally and functionally equivalent
to its input, but because it’s re-created from the XML structure in memory, it’s not always character-
for-character identical. For instance, toXMLString() uses its own formatting rules to generate the
proper whitespace; no spaces are included at the end of childless tags like <spaces />; nicknames
for namespaces may be lost. Let’s demonstrate different string conversion methods in the following
example:

var meal:XML =
<meal>

<name>Dinner</name>
<course number="1">

<item>Salad</item>
</course>
<course number="2">

<item>Potatoes</item>
<item temperature="Medium Rare">Steak</item>

</course>
</meal>;

trace(meal.name); //Dinner
trace(meal.course[0]); //<course number="1">

// <item>Salad</item>
//</course>

trace(meal.course[1].item[0].toXMLString()); //<item>Potatoes</items>
trace(meal.course[1].item[1].toString()); //Steak
trace(meal.course[1].item[1].@temperature.toXMLString());//Medium Rare
trace(meal..item.toString());
//<item>Salad</item>
//<item>Potatoes</item>
//<item temperature="Medium Rare">Steak</item>

210

Chapter 11: XML and E4X

Printing Pretty

There are a few options when it comes to formatting XML strings created by toString() and
toXMLString(). The first of these is the prettyPrinting flag. Setting and retrieving XML option
flags is covered more fully in the later section ‘‘Setting XML Options,’’ but I’ll introduce a few of them
now. For now, I’ll set XML options through their static properties on the XML class.

When the prettyPrinting flag is set, XML strings are produced with line breaks and indenta-
tion in the canonical manner, as you’ve used throughout the chapter. Setting this flag affects all XML
objects; it is set to true by default.

var example:XML = <stooges>
<moe /><curly><larry>

</larry>
</curly>

</stooges>;
XML.prettyPrinting = false;
trace(example);
//<stooges><moe/><curly><larry/></curly></stooges>

XML.prettyPrinting = true;
trace(example);
//<stooges>
// <moe/>
// <curly>
// <larry/>
// </curly>
//</stooges>

Notice how some cleanup occurs automatically, removing most of the whitespace. This is actually an
effect of another flag, ignoreWhitespace.

Setting the Number of Spaces Per Indentation

When you use the prettyPrinting feature, your text is automatically indented. The amount of
indentation is specified by the XML option prettyIndent. This value holds the number of spaces
used for each level of indentation as an int. The default value is 2, and it is ignored when the
prettyPrinting flag is set to false. The following code

XML.prettyIndent = 0;
trace(example);
XML.prettyIndent = 8;
trace(example);

displays the text with 0 spaces per tab:

<stooges>
<moe/>
<curly>
<larry/>
</curly>
</stooges>

and then with 8 spaces per tab:

211

Part II: Core ActionScript 3.0 Data Types

<stooges>
<moe/>
<curly>

<larry/>
</curly>

</stooges>

Normalizing Text Nodes

XML objects support multiple adjacent text nodes per element although, most times, only one text
node is used per element. In the rare case that you might have more than one text node in a given ele-
ment, you can use the normalize() method to clean up whitespace and combine these text nodes
into a single, contiguous node. In the following example, you add a fourth Stooge to the list using a
series of appendChild() calls.

//add "shemp" using 3 appendChild() calls
example.appendChild("sh");
example.appendChild("");
example.appendChild("emp");
trace(example.text().length()); //3
trace(example.text().toXMLString());
//sh
//
//emp

Notice that the length of the text() XMLList is 3, and three lines are printed when displaying this
text. Normalizing will merge these three text nodes into one.

example.normalize();
trace(example.text().length()); //1
trace(example.text().toXMLString()); //shemp

Typically, nodes are normalized during parsing and many E4X operations. Only when multiple text
nodes are intentionally added, as in the preceding example, will the normalize() method be used.

Loading XML Data from External Sources
The subject of loading data from servers is more involved than can be covered in a chapter on XML.
I give loading remote data its due in Part VI, ‘‘External Data,’’ but here’s a teaser that should get you
loading and parsing XML files from a web server in short order.

Loading XML in ActionScript 3.0 is just like loading any text, as shown in Example 11-3. You use
a URLLoader with a URLRequest to fetch the text, and when it’s loaded, you convert the text to
XML, as described in the earlier section ‘‘Converting XML to strings.’’

212

Chapter 11: XML and E4X

EXAMPLE 11-3 http://actionscriptbible.com/ch11/ex3

Loading XML

package {
import com.actionscriptbible.Example;
import flash.events.Event;
import flash.net.URLLoader;
import flash.net.URLRequest;

public class ch11ex3 extends Example {
public function ch11ex3() {
var url:String = "http://actionscriptbible.com/files/hand.xml";
var loader:URLLoader = new URLLoader(new URLRequest(url));
loader.addEventListener(Event.COMPLETE, onLoadComplete);

}

protected function onLoadComplete(event:Event):void {
var loader:URLLoader = URLLoader(event.target);
var loadedXML:XML = XML(loader.data);
trace(loadedXML.toXMLString());

}
}

}

You can replace the URL in this example with the location of your data. When the loader is done
loading, the onLoadComplete() method is called, which converts the data loaded by the loader
into XML. From this point, you can use loadedXML the same way you’ve used any other XML data
in this chapter.

Gathering Meta-Information about XML Nodes
XML instances let you inspect meta-information about the XML data they contain. This can be useful
when automating the processing of XML objects. You can use methods to find the type of node and
the type of content a node contains: either simple or complex.

Finding Node Types
To determine the type of node that you’re working with, you can use the nodeKind() method on
the node that you want to inspect. The function returns a String that describes the type of node.
The string returned will be one of the following:

� element

� attribute

213

Part II: Core ActionScript 3.0 Data Types

� text

� comment

� processing-instruction

Tip
To work with comments and processing instructions, you must disable the ignoreComments and
ignoreProcessingInstructions flags, respectively, as they both default to true. See the later section
titled ‘‘Setting XML Options.’’ �

The following example queries meta-information from several nodes from an XHTML document with
inline PHP source:

XML.ignoreComments = false;
XML.ignoreProcessingInstructions = false;
var xhtml:XML =
<html>

<head />
<body id="main">
Welcome!
<!-- Start PHP -->
<?php echo("hello world") ?>
<!-- End PHP -->

</body>
</html>;

var node:XML;
trace(xhtml.body.nodeKind()); //element
trace(xhtml.body.@id.nodeKind()); //attribute

node = xhtml.body.text()[0];
trace(node.nodeKind(), node.toXMLString()); //text Welcome!

node = xhtml.body.comments()[0];
trace(node.nodeKind(), node.toXMLString()); //comment <!-- Start PHP -->

node = xhtml.body.processingInstructions()[0]
trace(node.nodeKind(), node.toXMLString());
//processing-instruction <?php echo("hello world") ?>

Determining the Type of Content in a Node
Nodes that contain only a single text node or no content at all are said to have simple content. Nodes
that contain children are said to have complex content. To determine whether a node contains simple
or complex content, you can use either hasComplexContent() or hasSimpleContent(). Either
will do — just use whichever one makes more sense to you.

var contentTest:XML =
<test>

<a />
Lorem Ipsum
<c>

214

Chapter 11: XML and E4X

<d />
</c>

</test>;
trace(contentTest.a.hasSimpleContent()); //true
trace(contentTest.b.hasSimpleContent()); //true
trace(contentTest.c.hasSimpleContent()); //false
trace(contentTest.d.hasComplexContent()); //false

Using Namespaces
Namespaces are used in XML to group XML elements and attributes into cohesive units, in the same
way that you use packages and custom namespaces to group classes into sets that work together. In
XML, namespaces are defined and named on the root node. XML namespaces are identified uniquely
by their URI (as opposed to ActionScript namespaces, for which a URI is optional). You can define a
default namespace by declaring a namespace with no name.

<?xml version="1.0" encoding="UTF-8"?>
<rootNode
xmlns:asb="http://actionscriptbible.com/ns/example"
xmlns="http://actionscriptbible.com/ns/default">

</rootNode>

In the previous example, two namespaces are declared: a default namespace and asb.

Note
The URI for an XML namespace doesn’t actually require anything to be located there; its purpose is to provide
a unique string. Generally, URIs are thought to be one-of-a-kind, but so is the phrase ‘‘Grund staggle ipp brid
hunf,’’ which would work just as well as far as ActionScript is concerned. �

To specify an element or attribute as a member of a particular namespace, use the namespace name
followed by a colon and then the node name or attribute name as usual:

<?xml version="1.0" encoding="UTF-8"?>
<rootNode xmlns:asb="http://actionscriptbible.com/ns/example">

<asb:chapter>Working with XML</asb:chapter>
</rootNode>

When a default namespace is used, nodes and attributes are scoped to the default namespace when no
namespace is specified:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Test</title>

</head>
<body>Hello namespaces!</body>

</html>

In the previous example, every element belongs in the XHTML namespace with URI
http://www.w3.org/1999/xhtml.

215

Part II: Core ActionScript 3.0 Data Types

Caution
Properly structured XHTML documents have a default namespace, as in the previous example. When using
XHTML and other XML with default namespaces, it’s easy to forget that every node is namespaced. If your E4X
queries keep returning null, you may have forgotten to open or use the proper namespace. You can find more
on this common error at http://dispatchevent.org/roger/using-e4x-with-xhtml-watch-your-
namespaces. �

I just covered the absolute basics of XML namespaces. If you want to know more, I rec-
ommend you read the W3C spec on namespaces or the concise and useful tutorial at
http://www.w3schools.com/xml/xml namespaces.asp.

Creating XML Namespaces in ActionScript
There are several ways to declare and use XML namespaces with E4X. For this section, let’s consider
parsing an MXML file for a Flex 4 application, which declares several namespaces. Flex uses name-
spaces to identify different libraries within the framework; this one simple example uses three Flex
namespaces.

<?xml version="1.0" encoding="utf-8"?>
<s:Application

xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo">
<s:Button label="Test" id="myButton"/>
<mx:Slider direction="horizontal" id="mySlider"/>
<fx:Script><![CDATA[

protected const AUTHOR:String = "roger";
]]></fx:Script>

</s:Application>

Using the Namespace Class

First let’s look at the Namespace class. Instances of Namespace represent namespaces, which can
be used for scoping XML as well as ActionScript. These contain just one datum, the namespace URI.
This is all it takes to identify a namespace in XML: the prefix you define in the root node is merely
a handle for the namespace, just as the name of a Namespace variable is the handle to the actual
namespace. In fact, your Namespace instance name and the prefix used in the XML don’t need to
match, although it certainly helps to avoid confusion.

If you want to access the button called myButton in E4X, you have to create a namespace handle for
the Spark namespace in which it’s contained, library://ns.adobe.com/flex/spark. One way
you can do this is with a Namespace variable. You can pass the Namespace constructor a URI, or a
prefix and a URI. (It’s a bit of an odd constructor in this way.) The prefix is optional.

var s:Namespace = new Namespace("library://ns.adobe.com/flex/spark");
var s:Namespace = new Namespace("s", "library://ns.adobe.com/flex/
spark");

Both of these declarations are fine. Additionally, the prefix and URI of a Namespace instance can be
read and written at any time using its prefix and uri properties. Namespace objects return their
URI value by default when the toString() method is used.

216

Chapter 11: XML and E4X

Using the Namespace Keyword

Alternatively, you can use ActionScript’s namespace keyword to declare namespaces. Namespaces
declared with the namespace keyword are no different from those created with Namespace
instances.

namespace s = "library://ns.adobe.com/flex/spark";

Think of classes in ActionScript. You declare them with the class keyword, but you can get ref-
erences to classes as instances of Class. Likewise, you can get references to namespaces declared
with the namespace keyword — such as by using getDefinitionByName(), which returns a
Namespace instance when you pass it the name of a namespace.

The advantage of the namespace keyword is that it can be used with the use namespace key-
word, which is covered in the later section ‘‘Querying namespaced XML nodes.’’ Overall, the two
methods differ only slightly. The Namespace class is more useful for throw-away namespaces you’ll
use infrequently. The namespace keyword is better for reusable namespaces. It can also be used for
ActionScript namespaces.

Making Namespaces Available

As you learned in Chapter 4, ‘‘Object Oriented Programming,’’ namespaces — like variables, constants,
classes, and functions — have a visibility determined by where you place them and what visibility
modifiers you use on them. If you are going to reuse a namespace across multiple classes, which is
certainly the use case for ActionScript namespaces and may be useful for XML namespaces, you might
want to make it public to any code that chooses to import it.

Say you want to reuse the namespaces s and mx. You can do so using either approach, as long as the
namespace is the only public item in the package block. So let’s create two files. Try the namespace
keyword by including this text in the file com/actionscriptbible/xmlns/s.as:

package com.actionscriptbible.xmlns {
public namespace s = "library://ns.adobe.com/flex/spark";

}

Try using a Namespace instance by including this text in the file com/actionscriptbible/
xmlns/mx.as:

package com.actionscriptbible.xmlns {
public const mx:Namespace = new Namespace("library://ns.adobe.com/
flex/halo");
}

Either approach works for making an XML namespace reusable.

Querying Namespaced XML Nodes
Once you have a namespace with the same URI as a namespace in your XML document, you can use
it to query namespaced nodes in XML. Whether the namespace is declared with the namespace key-
word or the Namespace class, whether it is declared in the same block or imported from another
package, as long as it’s in scope, you can use it with E4X.

The rules for using XML namespaces are really no different from those for using ActionScript name-
spaces. I’ll review these and cover one additional operator that is specific to XML namespaces.

217

Part II: Core ActionScript 3.0 Data Types

Opening Namespaces

When you query for a node or attribute in E4X, it will be returned if it can be found in the name-
spaces that are currently open. However, no namespaces are open by default, so E4X queries only
match nodes and attributes not in a namespace. You can add to the list of currently open namespaces
with the use namespace keyword with the name of the namespace, as Example 11-4 shows. This
statement, when placed inside a package block, opens the namespace for all code inside the block.

EXAMPLE 11-4 http://actionscriptbible.com/ch11/ex4

XML Namespaces in ActionScript

package {
import com.actionscriptbible.Example;
import com.actionscriptbible.xmlns.mx;
import com.actionscriptbible.xmlns.s;

use namespace s;
use namespace mx;

public class ch11ex4 extends Example {
private const MXML:XML =
<s:Application

xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo">
<s:Button label="Test" id="myButton"/>
<mx:Slider direction="horizontal" id="mySlider"/>
<fx:Script><![CDATA[

protected const AUTHOR:String = "roger";
]]></fx:Script>

</s:Application>

public function ch11ex4() {
trace(MXML.Slider.toXMLString()); //(no output)
trace(MXML.Button.toXMLString()); //<s:Button...

}
}

}

In this example, you attempt to open the mx and s namespaces. However, only opening the s name-
space works correctly, as it was declared as a namespace rather than a Namespace instance. Note
that you still have to import the namespaces to reference them in the use namespace statement.

When a namespace is open, you can access nodes in that namespace without specifically referencing
it. This is the same procedure for accessing items (functions, classes, methods, and so on) from an
ActionScript namespace without specifying the namespace.

218

Chapter 11: XML and E4X

Opening a namespace is especially useful when you need to repeatedly access nodes and attributes
declared in the namespace. Once opened, you can query nodes in the namespace to your heart’s desire
without ever resolving the namespace.

Using the Scope Resolution Operator

To explicitly specify in which namespace a node or attribute is, you can use the scope resolution oper-
ator (::). This operator has an identical use in ActionScript for specifying the namespace a class or
method exists in. This operator can be used with namespaces declared with the namespace keyword
as well as by creating Namespace instances.

package {
import com.actionscriptbible.Example;
import com.actionscriptbible.xmlns.mx;
import com.actionscriptbible.xmlns.s;

public class ch11ex4 extends Example {
private const MXML:XML =
<s:Application

xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo">
<s:Button label="Test" id="myButton"/>
<mx:Slider direction="horizontal" id="mySlider"/>
<fx:Script><![CDATA[

protected const AUTHOR:String = "roger";
]]></fx:Script>

</s:Application>

public function ch11ex4() {
trace(MXML.mx::Slider.toXMLString()); //<mx:Slider...
trace(MXML.s::Button.toXMLString()); //<s::Button...
var fx:Namespace = new Namespace("http://ns.adobe.com/mxml/2009");
trace(MXML.fx::*.toXMLString()); //<fx:Script...
trace(MXML.*::Button.toXMLString()); //<mx::Button...

}
}

}

In this example, you use the scope resolution operator to specifically look for Slider nodes declared
in the s namespace and Button nodes declared in the mx namespace. You also create a local
Namespace instance fx and look for any child nodes in that namespace. Finally, you can even use
a wildcard with the scope resolution operator. Here you use it to look for a node named Button in
any namespace. Because this doesn’t require you to declare a matching namespace, you can use it for
quick-and-dirty operations with namespaced XML.

The scope resolution operator also works for namespaced attributes, as shown in Example 11-5. As
before, simply specify the namespace before the attribute name. The @ operator still comes first.

219

Part II: Core ActionScript 3.0 Data Types

EXAMPLE 11-5 http://actionscriptbible.com/ch11/ex5

Scope Resolution Operator

package {
import com.actionscriptbible.Example;
public class ch11ex5 extends Example {
public function ch11ex5() {
var xml:XML = <root xmlns:myns="http://example.com/some/namespace">
<node id="1" myns:color="red"/>

</root>;

var myns:Namespace = new Namespace("http://example.com/some/namespace");
trace(xml.node.@id);
trace(xml.node.@myns::color); //right
trace(xml.node.@*::color); //right
trace(xml.node.attribute("myns::color")); //wrong
trace(xml.node.attribute(new QName(myns, "color"))); //right

}
}

}

Earlier you created a node with one namespaced attribute and accessed it through various methods.
Again, the wildcard operator may be used to specify any namespace. If you’re using E4X methods
with namespaced nodes and attributes, you’ll need to look to the QName class, which simply bundles
an identifier with a namespace.

Setting the Default XML Namespace

Opening a namespace is one way to quickly be able to access multiple nodes in the same namespace
without using :: to specify the namespace for every node. However, there are still some drawbacks. If
there are two nodes with the same name from different namespaces, you’ll still need to specify which
one you mean. More importantly, you’ll still need to declare the namespace on any nodes you create.

If you’re using only one namespace and this is the default one, or if you are going to be creating lots
of nodes in the same namespace, you might want to set the default XML namespace. This is done
with a unique E4X statement, default xml namespace. When you assign a value to this special
variable, all code in the same scope (using the same scoping rules as ActionScript variables) uses the
namespace as the default namespace. This has several effects, as shown in Example 11-6.

EXAMPLE 11-6 http://actionscriptbible.com/ch11/ex6

Default XML Namespace

package {
import com.actionscriptbible.Example;
public class ch11ex6 extends Example {
private const MXML:XML =

220

Chapter 11: XML and E4X

<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo">
<s:Button label="Test" id="myButton"/>
<mx:Slider direction="horizontal" id="mySlider"/>
<fx:Script><![CDATA[

protected const AUTHOR:String = "roger";
]]></fx:Script>

</s:Application>

public function ch11ex6() {
var s:Namespace = new Namespace("library://ns.adobe.com/flex/spark");
default xml namespace = s;

var newXML:XML = <Application><Button label="new button"/></Application>;
trace(newXML.toXMLString());
//<Application xmlns="library://ns.adobe.com/flex/spark"...
//any new XML you create uses this as the default namespace

trace(MXML.Button.toXMLString());
//the s namespace is open as the default namespace, so no need to scope

MXML.appendChild(<VGroup/>);
MXML.VGroup.appendChild(<CheckBox label="new control!"/>);
trace(MXML.toXMLString());
//these new nodes get assigned to the s namespace too.
//...<s:VGroup>
// <s:CheckBox label="new control!"/>
// </s:VGroup>

}
}

}

In this example, the default namespace is applied to new nodes you create in existing documents, new
XML fragments, and any queries in which you don’t otherwise specify the namespace.

Use a default XML namespace when you’re querying or creating XML documents, which are primarily
in a single namespace, such as an XHTML document.

Querying XML for Namespaces
One E4X axis we haven’t talked about yet is the namespace axis. This, and its associated E4X method
namespace(), retrieves XML namespaces from nodes. You can use this method in two ways. When
passed no argument, it reports the namespace of the subject node:

var buttonNS:Namespace = MXML.*::Button.namespace();
trace(buttonNS.prefix, buttonNS.uri); //s library://ns.adobe.com/flex/spark
trace(MXML.buttonNS::Button.toXMLString()); //<s:Button...

221

Part II: Core ActionScript 3.0 Data Types

In this example, we cleverly utilize namespace() to retrieve the namespace of a node whose name
we know but namespace we don’t. Once we have the namespace reference, we can reuse it on other
nodes that we know belong to the same namespace, or we can use it to get back to the original node.

The second way you can use namespace() is by passing it a namespace prefix. If a namespace with
that prefix is open for that node, the Namespace reference will be returned:

var somenode:XML = MXML.*::Slider[0]; //get the Slider node
var sNS:Namespace = somenode.namespace("s");
trace(sNS.prefix, sNS.uri); //s library://ns.adobe.com/flex/spark

Here, we get the s namespace out of the Slider node. This node is actually defined in the mx
namespace, but it still has access to the s namespace as well as fx. Every node in the document has
the same namespaces in scope because they are all declared on the document’s root node. In other
words, we can retrieve any namespace declared in the document on any node from the document.

Perhaps a better way to get declared namespaces out of XML is to retrieve them all at once with the
namespaceDeclarations() method. This method takes no arguments and returns an Array of
all XML namespaces open for the node. This is particularly useful because you don’t need to know
the prefix of a namespace to grab it:

for each (var ns:Namespace in MXML.namespaceDeclarations()) {
trace(ns.prefix, ns.uri);

}
//fx http://ns.adobe.com/mxml/2009
//s library://ns.adobe.com/flex/spark
//mx library://ns.adobe.com/flex/halo

As you’ve seen, there are multiple ways to create, use, and retrieve namespaces. Which one you use
will be determined by the kind of XML data you’re using, how you use it, and your own personal
coding style.

Additional Namespace Operations
E4X provides a few more namespace-related methods. Once you get the hang of creating namespaced
XML, these should be straightforward additions to your E4X arsenal.

� addNamespace() and removeNamespace() — Allow you to add namespaces to your
objects when dynamically constructing XML.

� setNamespace() — Sets the namespace of an XML object to the one you provide.

� localName() — Like the name() method, returns the node name for an element but in
this case, the namespace prefix is omitted and only the local name is returned. For example,
<foo:bar/>.localName() would return only ‘‘bar’’.

� setLocalName() — Likewise, sets the local name for an element with a namespace attached.

For further documentation on these methods, as always, consult the AS3LR.

222

Chapter 11: XML and E4X

Setting XML Options
We’ve already looked at the various XML parsing options made available through static properties of
the XML class. These are:

� ignoreWhitespace

� ignoreComments

� ignoreProcessingInstructions

� prettyPrinting

� prettyIndent

In addition, these settings can be accessed as a bundle with XML’s static settings(), which returns
an associative-array Object with properties of the same names:

trace(XML.settings().ignoreProcessingInstructions); // Displays: true
XML.ignoreProcessingInstructions = false;
trace(XML.settings().ignoreProcessingInstructions); // Displays: false

You can also get a list of all the default values for these properties by using the
defaultSettings() static method. There is also a setSettings() static method that allows you
to change the settings object to a new Object. Although this allows you to change all values
for the various settings, we recommend setting the individual properties to change these values.
The one exception is if you choose to use the setSettings() method in conjunction with the
defaultSettings() method to reset all the settings to their defaults.

In the following example, we use the defaultSettings() object to reset an individual flag,
ignoreWhitespace, and then reset all the settings to their defaults using setSettings().

XML.ignoreWhitespace = XML.defaultSettings().ignoreWhitespace;
trace(XML.ignoreWhitespace); // Displays: true
XML.setSettings(XML.defaultSettings());
// All setting are returned to default

Note
Keep in mind that these settings are, for the most part, static properties and methods of the XML class and
affect all XML objects. �

Summary

� E4X is the preferred, and standards-compliant, method of using XML in ActionScript. It encom-
passes both methods and special operators and statements recognized within ActionScript code.

� You can declare XML data directly in your code with XML literals, including using inline
expressions.

� The XML class can represent an element, text node (including an attribute value), processing
instruction, or comment. The XMLList class contains zero or more XML instances.

� Use the operators ., .., and @ to create concise XML queries. Values can be inserted as well
as modified with E4X expressions. Nearly all the operators have method equivalents. These are
summarized in Table 11-1.

223

Part II: Core ActionScript 3.0 Data Types

� Filter XML data for items that match a particular set of criteria using a Boolean statement
enclosed in the () E4X operator.

� By using appendChild(), prependChild(), insertChildAfter(), and so on, you can
insert XML nodes into existing structures.

� Converting to and from strings can be achieved with the XML() constructor and the
toString() and toXMLString() methods.

� Work with namespaces by using the Namespace class and the namespace keyword. Use the
:: operator to access an element in a specific namespace. Open namespaces with use
namespace, and set the default namespace with default xml namespace.

� Gather meta-information about an XML node or document using the nodeKind() and
hasComplexContent() methods.

� Global settings such as ignoreComments can be set using class properties or by accessing the
settings() object of the XML class.

224

Regular Expressions

FEATURED CLASS

RegExp

A
lot of the work a program does is in getting and processing informa-
tion from an outside source, no matter whether the source is a file, a
web site, a service, a stored object, or user input. You have to extract or

manipulate the information that the input contains, so ActionScript 3.0 gives you
specialized tools for working with certain kinds of data. In Chapter 11, ‘‘XML
and E4X,’’ you saw that ActionScript 3.0 has a special syntax for dealing with
XML data, so when you get XML from an external source, you can count your-
self lucky and use E4X to interpret and manipulate it easily. A lot of the time you
aren’t so lucky, and the input you have to deal with uses a format ActionScript
3.0 doesn’t support, or it’s free-form. To help you deal with any kind of textual
data, ActionScript 3.0 includes native support for regular expressions.

Introducing Regular Expressions

Regular expressions are fantastically cool. They are little programs inside your
own program, written in their own concise language. You can store them and
use them over and over. You can use them to search through text, extract just
the parts you want from a bigger piece of text, or replace parts of text.

With regular expressions, you can handle any kind of text with a regular
grammar, from HTML to LaTeX, Markdown to DTDs. You can use these
expressions to create lexers, programs that break down a blob of text into
discrete elements, like breaking an English sentence into words and punc-
tuation. You can also use regular expressions to create parsers, programs
that extract the meaning from text. As you’ve seen, ActionScript 3.0 con-
tains built-in parsers for numbers, URL-encoded variables, CSS, and XML,
enabling you to convert the string "3.14" to a Number type and the string
"<root><foo>bar</foo></root>" to an XML type.

Most (application layer) protocols on the internet use text to communicate.
For example, your mail client probably talks to the server using POP, SMTP,
or IMAP, using simple commands and responses such as "LIST", "RETR",
and "OK". Even your web browser uses simple textual commands such as

225

Part II: Core ActionScript 3.0 Data Types

"GET /index.html". With sockets (introduced in Chapter 28, ‘‘Communicating with Remote Ser-
vices’’), you can use regular expressions to help you talk to a variety of services on the internet.

Quite a few languages have support for regular expressions, so you may have some experience with
them. Regular expressions use the same syntax with little variation between languages that use them,
so they are a skill you can apply and reapply.

Because regular expressions have been around for a long time without changing much, there
is also an abundance of literature on them, if you wish to continue your studies beyond this
chapter. An excellent resource is Mastering Regular Expressions, Third Edition by Jeffrey Friedl
(O’Reilly, 2006).

Writing a Regular Expression
Regular expressions in ActionScript 3.0 are instances of the RegExp top-level class. This means you
don’t have to import anything to use RegExp objects. Just like Numbers and XML, regular expres-
sions can also be written as literals. Sometimes you will want to use the constructor and sometimes
the literal form. Let’s get started and look at the general form of a regular expression:

var re1:RegExp = /sunken treasure/g;
var re2:RegExp = new RegExp("sunken treasure", "g");

The preceding two lines create identical regular expressions, first as a literal, and then using the
RegExp constructor. Both re1 and re2 are of type RegExp. The literal form of regular expressions
is also consistent between ActionScript and other languages: the pattern is written between forward
slashes, followed by an optional combination of flags. In some languages the literal form executes the
expression, whereas in ActionScript it only declares the expression. I’m starting out with a simple
regular expression, one that searches for the text ‘‘sunken treasure’’ in every place that it might
appear.

RegExp objects are built from the regular expression itself, in this case sunken treasure, and zero
or more flags indicating how to apply the expression, in this case g, which applies the expression
globally. You’ll learn more about how to construct expressions and what the flags mean in the course
of this chapter.

Applying Regular Expressions
Before you start building complex expressions, let’s find out how you can apply regular expressions.
Once you know how regular expressions can be used, you’ll expand your repertoire of regular expres-
sion techniques to achieve specific goals. With an understanding of how they are applied, your knowl-
edge of building them will have more meaning.

Earlier, I said that regular expressions can be used to lex and parse textual grammars. That’s a
high-level application. First you have to ask, what can you do with one regular expression?

226

Chapter 12: Regular Expressions

String Methods and RegExp Methods
In these applications, you’ll see that there are sometimes two ways to conduct the same kind of opera-
tion. The String class provides many functions that work with regular expressions, and the RegExp
class provides functions that work with strings. Your decision on which to use might be based on
functionality that only one of the functions provides, or it might be based on the structure of your
code and what you want to achieve.

For example, if you were searching a thousand strings for a specific substring, you might create one
RegExp object to find the substring and call RegExp methods on it, feeding it different Strings
in a loop. If you were searching one string for a thousand different substrings, you might create one
String object and call String functions on it, feeding it different RegExp objects.

As you see sets of functions that do similar things, think about these different cases, and it will
become clear which one to use in which case. Rather than list these methods in an arbitrary order,
I’ll take some time with each kind of task you can achieve with an expression. In some cases, one
method can be used for multiple purposes, so I’ll show how to use some methods more than once
(but in different ways).

Note
Because these methods exist in two different classes, and I’m mixing them up, I sometimes use the scope reso-
lution operator (::) to clarify which class a method is associated with. For example,

Array::pop()

is the pop() method of an Array instance, whereas if it were written

Array.pop()

this would imply that pop() is a static method of the Array class. I’ve used this notation sparingly, but you
should know what it means. �

Testing
You can use regular expressions to test if some text matches a certain pattern. Particular regular
expressions are often called ‘‘patterns’’ because they represent certain patterns of text. In the first
example, this pattern was a simple phrase (‘‘sunken treasure’’), but the pattern can be quite complex,
to the point that you can’t describe it easily in English and the regular expression that describes it is
preferable.

Testing can also be achieved by paying attention to the result of a find or match operation. By way of
analogy, if I asked you how many raisins were in your cereal, your answer would clearly indicate to
me whether your cereal even contained raisins. Sneaky, right?

RegExp::test(str:String):Boolean

The RegExp method test(), when called on a regular expression, will run that expression on the
passed string and return whether the string matches the pattern, as shown in Example 12-1.

227

Part II: Core ActionScript 3.0 Data Types

EXAMPLE 12-1 http://actionscriptbible.com/ch12/ex1

Matching a Pattern

var phoneNumberPattern:RegExp = /\d\d\d-\d\d\d-\d\d\d\d/;
trace(phoneNumberPattern.test("347-555-5555")); //true
trace(phoneNumberPattern.test("Call 800-123-4567 now!")); //true
trace(phoneNumberPattern.test("Call now!")); //false

Example 12-1 creates an expression for numbers formatted as XXX-XXX-XXXX. It shows that regu-
lar expressions can match patterns of text, more than just looking for substrings. When you run this
expression, it looks inside all the text for a match, so the second call to test() still finds the phone
number, even though other characters are in the string.

Testing for the existence of a pattern finds out only if that pattern exists. You don’t know from this
example what the phone number is or where it appears in the text.

Locating
You can find a certain pattern inside a string and use its location for other string operations, such as
splitting up the string or inserting new text — although you’ll see that you can often perform these
operations in the same step. You can locate the first instance of the pattern or everywhere the pattern
appears.

String::search(pattern:*):int

Call search() on a String to find the first occurrence of the pattern you pass in, as shown in
Example 12-2. You can pass it either a String or a regular expression, which is why the pattern
argument is left untyped. This method searches from the beginning of the String to the end, starting
at the beginning. If there are no matches, search() returns –1, making this an alternate way to test
for existence of a pattern.

EXAMPLE 12-2 http://actionscriptbible.com/ch12/ex2

Collected Snippets: Locating a Pattern

var themTharHills:String = "hillshillshillsGOLDhills";
trace(themTharHills.search(/gold/i)); //15

This snippet sees if there is gold in them thar hills. Indeed, there is, starting at the fifteenth character:
after three ‘‘hills,’’ which have five characters each. If you were just searching for the lowercase string
‘‘gold,’’ that would be too boring; after all, you learned how to search for substrings in Chapter 6,

228

Chapter 12: Regular Expressions

‘‘Text, Strings, and Characters.’’ Instead, you passed it a regular expression that matches any pattern
of the letters g, o, l, and d in either case, using the flag for case insensitivity, i. This matched the
uppercase ‘‘GOLD.’’ Not very well hidden, that gold. It would have also matched ‘‘gOLd,’’ ‘‘GOLd,’’
and the other 13 permutations of capitalizations.

RegExp::exec(str:String):Object

The exec() method of RegExp is a useful one, as Example 12-2 shows. You can use it to locate and
identify patterns, and it plays nicely with loops. First let’s use it to locate a pattern:

var searchForGold:RegExp = /gold/gi;
var themTharHills:String = "hillsgoldhillshillsGOLDhills";

var result:Object = searchForGold.exec(themTharHills);
//TEST if there’s gold in the hills
if (result) trace("There’s gold in them thar hills!");
//LOCATE the gold
trace(result.index); //5

//look a second time
result = searchForGold.exec(themTharHills);
//output the second location
trace(result.index); //19

You can see you’re already getting more intricate. Here you have created a regular expression that
finds the word ‘‘gold’’ in any combination of uppercase and lowercase in the string you pass it. It is
also configured to match all instances of the pattern.

In the second paragraph, you execute the regular expression once. The expression goes through
the string from beginning to end and stops when it finds the first match, the lowercase ‘‘gold’’
after the first ‘‘hill.’’ The exec() method returns null if there are no (more) matches of the
pattern; otherwise it returns an object with lots of useful data. The return type of exec(), and
the variable result it is assigned to, is Object. First, you use this Object in a Boolean
context to see if there are any matches of the pattern. Remember that by finding out where
the gold is, you discover whether there is gold at all. Also recall that when coercing types to
Booleans, objects are coerced to true when they contain any value, that is, when they are
not null.

Next you use the index property of the object exec() returned. As you might guess, this property
contains the location in the string of the current match. It tells you where the first instance of the
‘‘gold’’ pattern appears in the text. Note that I said ‘‘current’’ match. RegExp objects maintain one bit
of state information; they remember the last position they matched so that you can repeatedly apply
them to the same text.

In the third paragraph of the snippet, you run the expression again on the same string. It starts from
the position of the first match and finds a second match: ‘‘GOLD.’’ Running exec() with the same
parameters gave you two different results, which means that exec() is a stateful method; it depends
on the state of the RegExp you call it on.

229

Part II: Core ActionScript 3.0 Data Types

Identifying
When you are looking for ‘‘gold,’’ you know exactly what you’re looking for and you’re interested in
where to find it. Many times you don’t know precisely what you are looking for, only that it fits a cer-
tain pattern, and the contents of the matching text is of equal or greater importance than its position
in the source text.

RegExp::exec(str:String):Object

You just saw how to use RegExp’s exec() method to locate patterns in a string, so let’s use it to
identify them. When the exec() method finds a match, the Object it returns also includes the text
that matched it. Let’s use the phone number pattern from before to find the phone numbers in a big
chunk of text, in Example 12-3.

EXAMPLE 12-3 http://actionscriptbible.com/ch12/ex3

Collected Snippets: Identifying a Match

var contactNumbers:String =
"Call us at one of these numbers.\n" +
"Los Angeles: 310-555-2910\n" +
"New York: 212-555-2499\n" +
"Boston: 617-555-7141";

var phoneNumber:RegExp = /\d{3}-\d{3}-\d{4}/g;

var result:Object;

while(result = phoneNumber.exec(contactNumbers)) {
trace(result[0]); //prints out the phone numbers one by one

}

The snippet uses the same trick I just showed to loop through all the matches progressively. When
there are no more matches, exec() returns null, so the expression that is the loop condition
will be null, which is coerced to false, ending the loop. Inside the loop, you trace out the
matched text itself. The example will trace out the three phone numbers from the source text
in order.

The result object returned by exec() contains indexed properties as well as named properties, and
the first index, result[0], contains the text that matched the pattern. This is how you use exec()
to identify the match.

String::match(pattern:*):Array

The match() method of a String will return strings that match the pattern passed to it, as Example
12-3 shows. If the pattern is set to search globally, it returns all the matches; otherwise, it returns the
first one. It, too, returns null when there are no matches.

230

Chapter 12: Regular Expressions

The differences between this method and RegExp::exec() are that this method is called on the text
and not the pattern, that it returns only the matched text, and that it runs all at once, rather than in
a loop.

var contactNumbers:String =
"Call us at one of these numbers.\n" +
"Los Angeles: 310-555-2910\n" +
"New York: 212-555-2499\n" +
"Boston: 617-555-7141";

var matches:Array = contactNumbers.match(/\d{3}-\d{3}-\d{4}/g);
if (matches) {

trace(matches.length); //3
trace(matches[0]); //310-555-2910

}

Example 12-3 checks to see whether there are matches, and if there are, it traces out the number
of matches and the contents of the first matching string. As you know, there are plenty of ways to
manipulate array data, so it can be more convenient to get all the matches as an Array and then
post-process it as necessary.

Extracting
Often, you need to find information from source text that appears in a certain context. You can add
this context to a regular expression and indicate that certain parts of the pattern are to be captured
for later use. Just as you can express the pattern you are looking for as extremely specific (the
word ‘‘gold’’) or generic (‘‘three numbers, a dash, three numbers, a dash, four numbers’’), you can
include any kind of context as well as any kind of pattern to capture out of the context, as shown in
Example 12-4.

EXAMPLE 12-4 http://actionscriptbible.com/ch12/ex4

Collected Snippets: Extracting Matching Text

var contactNumbers:String =
"Call us at one of these numbers.\n" +
"Los Angeles: 310-555-2910\n" +
"New York: 212-555-2499\n" +
"Boston: 617-555-7141";

var nyPhone:RegExp = /New York: (\d{3}-\d{3}-\d{4})/;
var matches:Array = contactNumbers.match(nyPhone);
trace(matches[1]); //212-555-2499

This snippet creates an expression for text that follows the pattern of New York: XXX-XXX-XXXX.
By including ‘‘New York:’’ in the expression, you know it’s only going to match the New York phone
number, and only if it is followed by a phone number in that format.

231

Part II: Core ActionScript 3.0 Data Types

However, in the snippet you are concerned only with the actual number that you should call to
get the New York office. You don’t want ‘‘New York:’’ to come back, only the number itself; on the
other hand, you need to include context in the expression so that it matches only the New York
number. You achieve this by surrounding the number part of the expression in parentheses. This
creates a capturing group. Any parts of the expression in parentheses like this will be specifically
extracted for every match of the full expression. I’ll cover capturing groups in detail later in
the chapter.

Capturing groups are part of the expression, but you still need to run the regular expression to access
these captures in a match.

String::match(pattern:*):Array

In the preceding snippet, you used match() to extract the captured group. However, the behavior of
match() can be tricky here.

When the expression passed to match() has the global flag set, match() returns an array of all the
substrings that match the pattern. It does not give you any of the captures. You’ll read more on the
global flag in the section ‘‘Regular Expression Flags.’’

When you use match() with an expression that does not have the global flag set, it returns an
array containing the first matching substring, followed by all the capture groups in the expres-
sion for that match. This is the case in the preceding snippet. The expression does not have the
global flag set, and match() returns an array where the first entry is the matching substring
"New York: 212-555-2499". The second entry (matches[1]) is the part of the expression that
was captured, "212-555-2499".

Because of this tricky difference, if you need to use capture groups, you might do well to stick to the
by-now familiar function I revisit in the following section.

RegExp::exec(str:String):Object

Let’s modify this program using RegExp’s exec() method so that you can get both the names and
the numbers for every office in the list in one fell swoop. You’ll add them to an associative array so
you can look up numbers such as contacts["New York"].

In Example 12-4, you’re parsing arbitrary text with a specific format into a data structure that you can
conveniently use in other code. That’s pretty useful!

var contacts:Object = new Object();

var contactText:String =
"Call us at one of these numbers.\n" +
"Los Angeles: 310-555-2910\n" +
"New York: 212-555-2499\n" +
"Boston: 617-555-7141";

232

Chapter 12: Regular Expressions

var officeAndPhone:RegExp = /^([\w\s]+): (\d{3}-\d{3}-\d{4})/gm;
var result:Object;
while (result = officeAndPhone.exec(contactText)) {

contacts[result[1]] = result[2];
}
trace(contacts["New York"]); //212-555-2499
trace(contacts["Boston"]); //617-555-7141

The expression got a little more complex in this example, but don’t worry about the specifics of
the pattern. The expression matches the start of a line, a series of letters and spaces (which is
captured), a colon and a space, and then a sequence of 3-3-4 digits (which is captured). It is set
to match globally (meaning you couldn’t use match() if you wanted to see the captured groups),
and it is treated as a multiline string. I’ll get into the details of how to build expressions like
this shortly.

You use the RegExp exec() method again, and its multipurpose return object. The object contains
the matched expression in the first indexed property, followed by all the captures for that match. So
you use the first capture (the name of the office) as the key and the second capture (the phone num-
ber) as the value, adding them into the associative array contacts as you go. When the expression
runs out of matches, the loop terminates, and you can successfully look up phone numbers in the
contacts object by name.

Replacing
Once you have the ability to match patterns in text, replacing those patterns with desired text is a
simple enough leap.

String::replace(pattern:*, repl:Object):String

You might recognize this function, as well, from Chapter 6. You can use this method with a string
pattern and a string replacement object to perform a basic substitution. Why did I write this book
anyhow? See Example 12-5.

EXAMPLE 12-5 http://actionscriptbible.com/ch12/ex5

Collected Snippets: Replacing Matching Text

var quote:String = "I did it for the money and the ladies.";
quote = quote.replace("money", "learning experience");
quote = quote.replace("ladies", "sleep deprivation");
trace(quote);
//I did it for the learning experience and the sleep deprivation.

233

Part II: Core ActionScript 3.0 Data Types

Now that’s closer to the truth! Remember that the replace() method returns the modified String,
rather than modifying it in place, so you assign the result back to quote to immediately apply the
replacements.

Now let’s try replacing a pattern with a string.

var document:String = "My name is John Doe, SSN 123-45-6789," +
"I live at 120 Birch St...";

var ssn:RegExp = /\d{3}-\d{2}-\d{4}/g;
document = document.replace(ssn, "<SSN REMOVED>");
trace(document);
//My name is John Doe, SSN <SSN REMOVED>, I live at 120 Birch St...

The example here searches for all patterns that look like a social security number (SSN) and sanitizes
the document so that it contains no SSNs but indicates that they have been removed.

If you have capture groups inside your expression, when replacing text you can use the captured text
as a variable inside the replacement string. For example, let’s change all instances of ‘‘my name is X’’
to ‘‘X is my name.’’

var introduction:String =
"My name is Roger; but I’ll have you know MY name is Henry!";
trace(introduction.replace(/my name is (\w+)/gi, "$1 is my name"));
//Roger is my name; but I’ll have you know Henry is my name!

You have to search for the whole pattern ‘‘my name is’’ because you’ll be modifying that phrase. How-
ever, of particular interest is the name itself, so you capture that. By using variables named $1, $2,
and so on up to $99 in the replacement string, the first, second, and ninety-ninth captured groups
are resubstituted into the text that replaces the match.

To make replacing text even sweeter, you can pass replace() a replacement function instead of a
replacement string. The function is passed the matching text, all the captured groups for that match,
and the full string in context, and you can make whatever kind of replacement you want. For instance,
you could make sure that my friends’ names always appear capitalized properly.

var friends:RegExp = /aashoo|betty|cesar|deepa|eve|frej|gina|hilary|isabell/gi;
var fixCaps:Function = function fixCaps(...args):String {

var match:String = String(args[0]);
return match.charAt(0).toUpperCase() + match.substr(1).toLowerCase();

}

var txt:String = "DEEPA is in SF cESaR is in Bogota and isaBELL is in Berlin.";
trace(txt.replace(friends, fixCaps));
//Deepa is in SF Cesar is in Bogota and Isabell is in Berlin.

You can do all kinds of things with custom substitutions, such as encoding particularly secret bits of
information in an otherwise innocuous stream of text.

234

Chapter 12: Regular Expressions

Splitting
You can use regular expressions to break up text. This is useful when you are trying to interpret text
that uses a delimiter to denote breaks between data.

String::split(delimiter:*, limit:Number = 0x7fffffff):Array

This method was used with String delimiters in Chapter 6 to split text into its constituents. The
delimiter parameter, however, may also be a regular expression. You can use this to allow for more
flexibility in the delimiter. In this example, a haiku is split into phrases with slashes. However, you
can’t be entirely sure if the author will include spaces around the slashes, so you allow for whitespace
on either side by splitting on a regular expression, as shown in Example 12-6.

EXAMPLE 12-6 http://actionscriptbible.com/ch12/ex6

Splitting Text

var haiku:String =
"Oh ActionScript three/ you make coding delightful / I think you are neat.";

var lineDelimiter:RegExp = /\s*\/\s*/;
var lines:Array = haiku.split(lineDelimiter);

for (var i:int = 0; i < lines.length; i++) {
trace(i, lines[i]);

}
//0 Oh ActionScript three
//1 you make coding delightful
//2 I think you are neat.

The first and second delimiters in the example have different formats, but the regular expression
catches them both. Additionally, by interpreting the whitespace (represented by \s, as you’ll learn in
the next section, ‘‘Constructing Expressions’’) as part of the delimiter, it is not included in the split-up
substrings. As you can see, all three lines print out without extra whitespace in the beginning.

Constructing Expressions
By now, you’ve seen many examples of what regular expressions can be used for. Along the way
you’ve also seen some pretty complex regular expressions. This section covers the building blocks of
regular expressions and the flags they can be used with.

235

Part II: Core ActionScript 3.0 Data Types

Each expression is actually a mini-program that can be run on a string input. In general, it steps
through the string from start to end, trying to match the current part of the expression with the cur-
rent part of the string, as you can see in Figure 12-1.

FIGURE 12-1

Stepping through a regular expression.

l does not match p
start looking at the next letter in the input

h matches h, potential match

e matches e, potential match

l matches l, potential match

nor this, etc. ...

this isn't the beginning of "hello" either

/hello/

/hello/

/hello/

/hello/

/hello/

/hello/

"help!"

"help!"

"help!"

"help!"

"help!"

"help!"

Normal Characters
When you type letters in an expression, they match those letters in the same sequence, as shown
in examples throughout this chapter. You can type any letter or number, and some punctuation, as
shown in Example 12-7.

EXAMPLE 12-7 http://actionscriptbible.com/ch12/ex7

Collected Snippets: Constructing Regular Expressions

trace("are you thinking what I’m thinking?".match(/think/g));
//think,think
trace("rub a dub dub, three men in a tub".match(/ub/g));
//ub,ub,ub,ub

Dot Character
The period (.) has an important meaning in regular expressions. It matches any character, with one
exception: the newline character. (A certain flag changes this behavior, covered in the section ‘‘Regular
Expression Flags.’’)

Escaped Characters
There are two reasons to escape certain characters. First, in the language of regular expressions, many
punctuation characters have special meanings. Second, escaped characters let you include characters
that may be difficult to type or see in an expression.

236

Chapter 12: Regular Expressions

I introduced character escaping in Chapter 6. To escape a character, simply preface it with a back-
slash (\). This goes for the backslash character as well. To type a backslash, you must prefix it with a
backslash:

trace("c:\\windows\\"); //c:\windows\

You can’t go wrong by escaping any character you type in a regular expression that is not an alphanu-
meric character (a–z, A–Z, and 0–9). It’s not always necessary, but it’s harmless:

var re:RegExp = /I have a \$5 bill \& his\/her ID card\./;

At a minimum, you must escape the following characters to ensure that they will be interpreted
literally:

^ $ \ . * + ? () [] { } |

The forward slash is added to this list, of course, if you are declaring a regular expression literally,
because the forward slash marks the beginning and end of the expression.

There are also several escape characters that are written with a sequence but represent a different char-
acter than the character after the slash. These were covered in Chapter 6 and are summarized here in
Table 12-1.

TABLE 12-1

Escape Sequences

Type This Get This

\b Backspace

\f Form feed. This ejected the page currently in the printer back in the day.

\n Newline, aka ‘‘LF.’’ The line separator on UNIX machines and Mac OS
X is \n

\r Carriage return, aka ‘‘CR.’’ The line separator in Windows is \r\n and on
old Mac OS is \r.

\t Tab.

\unnnn The Unicode character with character code nnnn in hexadecimal. For
example, \u20ac is character U+20AC, the Euro sign ().

\xnn The ASCII character with the character code nn in hexadecimal. For
example, \xa3 is ASCII character 0xA3, the pound sign (£).

Dealing with newlines on text that might come from different systems can be incredibly frustrating.
Please keep the different possible line endings, as well as the encoding of the input text, in mind.
See more on international regular expressions later in the chapter in the section ‘‘International
Concerns.’’

237

Part II: Core ActionScript 3.0 Data Types

Metacharacters and Metasequences Demystified
You may see the words ‘‘metacharacter’’ and ‘‘metasequence’’ when reading about regular expressions.
These terms sound fairly impressive, but they have a simple meaning.

Both of these terms refer to any part of the pattern that has a special meaning in regular-expression-
speak. A metacharacter is one single character that is not interpreted literally, such as *, whereas a
metasequence is a sequence of characters that is not interpreted literally, such as \s or [a-z]. The
asterisk does not mean ‘‘match an asterisk,’’ and \n does not mean ‘‘match a backslash followed by
the letter n.’’ Escaped characters, therefore, are one kind of metasequence.

Character Classes
Regular expressions allow you to conveniently match a whole set of possible characters with a single
metasequence. Several sequences look like escaped characters but actually represent a whole range of
characters.

You already used a character class to match a phone number. Let’s look at this expression in a little
more detail:

var phoneNumberPattern:RegExp = /\d\d\d-\d\d\d-\d\d\d\d/;

Each instance of \d matches any single digit, meaning that except for the dashes, every character in
the match must be a 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. You can easily remember this sequence because ‘‘d’’
is for ‘‘digit.’’

If you want to find any character that’s not a digit, you can use the inverse of that character class, \D.
The lowercase version matches digits; the uppercase matches nondigits.

There are three helpful shorthand character classes: \d for digits, \w for alphanumeric word characters,
and \s for whitespace. Each of these has a capitalized version for its inverse: \D for nondigits, \W for
nonword characters, and \S for nonwhitespace. The details of these are summarized in Table 12-2.

You can also create your own groups of character classes. Simply place the letters that you want to
match inside square brackets:

trace("the cat sat on the mat".match(/[msc]at/g)); //cat,sat,mat

You don’t need to separate the letters with anything, and their order doesn’t matter. Keep in mind
that even though the metasequence for the character class ([msc]) is longer than one character, it
matches one character. It says ‘‘look for a character that is in this group.’’ You can also specify ranges
of characters with the dash character (-), and you can have multiple ranges in one character class.
Furthermore, you can combine ranges with single characters:

trace("abcdefghijklmnopqrstuvwxyz".match(/[a-cmx-z]/g));
//a,b,c,m,x,y,z

Finally, you can invert a character class by using a caret (^) immediately after the open bracket ([).
The whole sequence, then, matches a character that is not in the specified set:

trace("roger dodger".match(/[^oge\s]/g)); //r,r,d,d,r

238

Chapter 12: Regular Expressions

In the preceding snippet, you find any letter that is not an o, g, e, or any kind of whitespace. Notice
that you used a shorthand character class inside a character class. This, too, is possible.

When typing character sets, some characters must be escaped. Because the characters [, -, and] have
special meaning in character classes, if you want to include these in a set, you must escape them. The
caret may be included literally without escaping as long as it does not appear first.

TABLE 12-2

Character Classes

Character Meaning

[...] A character in the set (...).

[^...] A character not in the set (...).

[x-y] Any character that lies between x and y, inclusive.

\w Word characters. Equivalent to [a-zA-Z0-9_].

\W Nonword characters. Equivalent to [^a-zA-Z0-9_].

\s Whitespace characters: tab, space, newline, carriage return. Equivalent to
[\t\n\r\] (note the space before the right bracket).

\S Nonwhitespace characters. Equivalent to [^\t\n\r\].

\d Decimal digit characters. Equivalent to [0-9].

\D Nondigit characters. Equivalent to [^0-9].

. Any character.

Quantifiers
Regular expressions allow you to specify not just kinds of characters that match, but how many of
them to match. Matching a specific number of characters is a useful ability, as is the ability to discard
arbitrary amounts of noise between two items you are interested in matching.

trace(/\w+:\s*\$\d+/.test("soup: $40")); //true

The preceding snippet makes good use of the plus quantifier (+). It is placed after the part
of the pattern it is to quantify, and like all quantifiers, it changes the number of that subpat-
tern that may appear in the text to qualify as a match. The plus symbol means ‘‘one or more,’’
so the preceding pattern reads ‘‘one or more letters (\w+), a colon (:), some or no whites-
pace (\s*), a dollar sign (\$), and one or more digits (\d+),’’ which the test string indeed
matches.

To match an optional character or sequence, use the question mark quantifier (?). The expression will
then match text that has the subpattern zero or one time:

239

Part II: Core ActionScript 3.0 Data Types

var betterPhoneNumber:RegExp = /\(?\d{3}\)?-?\d{3}-?\d{4}/;
trace(betterPhoneNumber.test("(703)555-1234")); //true
trace(betterPhoneNumber.test("310-555-1515")); //true
trace(betterPhoneNumber.test("7245559090")); //true

Here, you upgrade the phone number regular expression to make all the dashes optional and to allow
parentheses around the area code. Remember that you must escape the parentheses in this expression
to interpret them literally.

To match any number of a character or sequence, including none at all, you can use the star (*) quan-
tifier. This modifies the preceding part of the pattern to match zero or more times:

trace("a thousand thousandss!".match(/thousands*/g)); //thousand,thousandss

In this snippet, the ‘‘s’’ character can either not appear or appear any number of times. No matter how
many s’s are put at the end of ‘‘thousands,’’ it will continue to match.

You can also specify an exact quantity for the subpattern to appear in. In the phone number regu-
lar expressions in Examples 12-3 and 12-4, you matched the exact number of digits. You can write
expressions to match an exact number, a minimum number, or a specific range of acceptable num-
bers. These options are summarized with the quantifier characters in Table 12-3.

TABLE 12-3

Quantifiers

Quantifier Meaning

* Zero or more; any number

? Zero or one; optional

+ One or more; required

{n} Exactly n times

{n,} At least n times; n or more times

{n,m} Between n and m times, inclusive

Without quantifiers, an expression expects to match exactly one instance of each character.

Anchors and Boundaries
A few regular expression symbols help you anchor parts of the expression to interesting parts of the
input text. These are different from the kinds of metacharacters and metasequences you’ve seen so far
in that they match a position rather than a character.

240

Chapter 12: Regular Expressions

You can specify where the beginning and end of a string or line is supposed to appear within a pattern
by using the ^ and $ anchors, respectively. When the multiline flag m, covered in the next section,
‘‘Regular Expression Flags,’’ is set, these anchors match the beginning and end of a line; without the
flag, they match the beginning and end of the entire string.

Let’s revisit the contact parsing expression from the previous section:

var contactText:String =
"Call us at one of these numbers.\n" +
"Los Angeles: 310-555-2910\n" +
"New York: 212-555-2499\n" +
"Boston: 617-555-7141";

var officeAndPhone:RegExp = /^([\w\s]+): (\d{3}-\d{3}-\d{4})/gm;

By setting the multiline flag on this expression and anchoring to the beginning of the line, you ensure
that the ‘‘name: phone number’’ pairs are found on every new line. In this case, if you had two sets of
name/phone pairs on one line, only the first one would match because the pattern matches only when
it appears at the beginning of a line. You could disqualify that kind of line entirely by insisting that
the line end right after the phone number:

var officeAndPhone:RegExp = /^([\w\s]+): (\d{3}-\d{3}-\d{4})$/;
trace(officeAndPhone.test(">>>New York: 212-555-2499")); //false
trace(officeAndPhone.test("New York: 212-555-2499 (fax)")); //false

These two test cases fail to match the pattern because they both contain garbage before and after the
pattern, where the pattern specifies that it fills up the entire string. Anchoring your pattern to both the
beginning and end of a string/line is common.

Because these symbols match positions rather than characters, they are zero-width: when the
regular expression is moving through the pattern and one of these anchors matches, it doesn’t
move to the next character in the string. When the ‘‘h’’ in /hello/ matched the ‘‘h’’ in "help!"
in Figure 12-1, you moved on to the next character in the string and the pattern. When you
match the beginning of a string with ^, for example, you don’t move to the next character in the
string.

Additionally, you can use a metasequence that represents a word boundary. The anchor \b
matches a position between word characters and nonword characters (as defined by \w and \W).
This matches both the beginning and the end of words. The benefit to this character is that it is
zero-width.

var usingBoundary:RegExp = /\bzarflax\b/i;
var noBoundary:RegExp = /zarflax/i;

var garbage:String = "asndzarflaxhtewio";
trace(usingBoundary.test(garbage)); //false
trace(noBoundary.test(garbage)); //true

var dialogue:String = "Nice try, Zarflax!";
trace(usingBoundary.test(dialogue)); //true
trace(noBoundary.test(dialogue)); //true

241

Part II: Core ActionScript 3.0 Data Types

var fakingBoundary:RegExp = /\Wzarflax\W/i;
trace(garbage.match(fakingBoundary)); //null
trace(dialogue.match(fakingBoundary)); // Zarflax!

In the second paragraph of this snippet, you see that not using word boundaries matches the
word ‘‘zarflax’’ even when it is contained within garbage, which in this case is a false positive.
Adding word boundaries to the pattern causes the garbage string not to match. In the third
paragraph, you test against the intended usage. Both with and without boundaries, the word
is found.

In the final paragraph of the snippet, you can see why using a zero-width word anchor is
different from including the surrounding nonword characters in the pattern. Doing so causes
the garbage string not to match because there is no instance of ‘‘zarflax’’ that has nonword
characters before and after it in the garbage string. So far so good — you’ve eliminated the
false positive. But when you attempt to match the pattern in the dialogue string, you end up
picking up the nonword characters you required ‘‘zarflax’’ to be surrounded in as part of the
pattern. The benefit of \b here is that it matches a word boundary without consuming it into the
pattern.

Table 12-4 summarizes the anchors available to regular expressions in ActionScript 3.0.

TABLE 12-4

Anchors and Boundaries

Anchor Meaning

^ Beginning of string, or beginning of line when multiline flag is set

$ End of string, or end of line when multiline flag is set

\b Word boundary; after nonword character and before word character

\B Not word boundary; between two word characters or between two nonword
characters

Alternation
Using a pipe (|) character in a regular expression allows you to match multiple alternatives. You saw
this at play earlier in the expression:

var friends:RegExp = /leigh|mariko|neal|oskar|paula/gi;

You can use one pipe to allow two options, or multiple pipes to allow many options. This example
matches the name of any of these friends. Alternation can be even more useful when you can specify
parts in which alternates are allowed instead of alternating the entire expression. You do this with
groups.

242

Chapter 12: Regular Expressions

Groups
Grouping can be used for several purposes. You’ve already seen that it can capture information out of
a specific context, using the pattern at large to match the entire format and the group to make the text
you’re really interested in available after the match.

Use parentheses around part of the pattern to make a group out of it. This kind of group is a capturing
group because it is captured for later use.

Caution
If you want to include parentheses in your expression, to match actual parentheses in the input text, you must
escape the parentheses. Use \(to match an open parenthesis and \) to match a close parenthesis. �

You can also use groups as the container for alternates or repetition:

var rhymes:RegExp = /\b(tr|r|sp|b)a(c|s)e\b/gi;
var str:String = "trace() the race to the orbiting base in outerspace";
trace(str.match(rhymes)); //trace,race,base

This example goes further than a character class could. The (c|s) alternate could be replaced by
[cs], but the beginning of a rhyming word can be one or two letters when you use alternates like
this. In fact, an alternate can be any pattern, not just these simple letter sequences.

The two groups in this expression act as a scope for the alternates. If any of the alternates in the first
group are fulfilled, the string and regular expression both advance to the next character. So you can
look at the group as a subpattern, a single special kind of match that is self-contained.

Using groups for scoping purposes also allows you to apply quantifiers to subpatterns, as in the fol-
lowing example:

trace("the cat goes mew meow mewmew meow!".match(/(meo?w\s*)+/));
//mew meow mewmew meow,meow

This pattern tries to match a complete line of cat talk, crafting a subpattern to match a single cat
word and then requiring one or more instances of that whole subpattern. The second argument
in the returned array ‘‘meow’’ is included because, as you might recall, when calling match()
without the global flag, it also returns the captured groups. In this case there is only one capturing
group, but it is repeated, so when the matching is finished, that capture includes the last instance of
the subpattern to be captured. The first argument is still the matching text in its entirety. You can see
that the expression has successfully extracted all cat language from the string.

243

Part II: Core ActionScript 3.0 Data Types

Regular Expression Flags
Flags modify the interpretation of a regular expression. You’ve already used flags extensively in the
examples in this chapter. This section covers these flags and their effects in detail. The default is for
all these flags to be off — that is, an expression with no flags set has all the flags off; you turn them
on by adding them to the expression.

To recap, flags can be specified when the expression is created, either after the final slash in a literal
RegExp or as the second parameter of the RegExp() constructor. The following snippet activates all
five available flags, first using a literal and then the constructor:

/foo/gimsx;
new RegExp("foo", "gimsx");

These two expressions are equivalent. The flags in a regular expression may appear in any order and
combination.

Global
The global flag g allows the expression to be used repeatedly on the source text until there are no
more matches. When it is not set, the expression returns the first match.

This flag applies to String::match(), String::replace(), RegExp::test(), and
RegExp::exec(). In String::match(), the global flag determines whether the method returns
an array of the first match and captured groups (when it is not set) or an array of all matches (when it
is set). In String::replace(), the flag determines whether the first match is replaced
(when it is not set) or all matches are replaced (when it is set). In RegExp::test() and
RegExp::exec(), if the global flag is set, the expression continues to match from the nth
character in the source text, where n is the expression’s lastIndex property. This prop-
erty is set after every match so that you can use a loop to progressively step through all
matches with RegExp::test() or RegExp::exec() when the global flag is set. If the
global flag is not set, these methods match the first occurrence by starting matching at the first
character.

The global flag does not need to be set to run String::split(). This method uses the limit
passed in the second parameter to determine how many times the delimiter pattern may match. By
default (when no limit parameter is passed), the string is split as many times as necessary, up to an
implausibly large number.

Ignore Case
The ignore case flag, i, matches characters regardless of their case. This means that /a/i matches A
or a. This flag affects all the methods I have covered.

You saw this flag used in the example where you fixed words with incorrect capitals:

244

Chapter 12: Regular Expressions

var friends:RegExp = /aashoo|betty|cesar|deepa|eve|frej|gina|hilary|isabell/gi;

This way, the expression matched ‘‘cESaR’’ as well as ‘‘DEEPA.’’

Caution
Turning on the ignore case flag can make your expressions much more tolerant. This can be dangerous or help-
ful depending on your intent. When parsing a natural language like English text, the meaning of the words is
usually more important than the capitalization. When dealing with URLs or file paths, servers and operating
systems are frequently case sensitive, and it’s important to preserve case. �

Multiline
The multiline flag, m, changes the behavior of the ^ and $ anchors in the expression. When the mul-
tiline flag is off, these metacharacters anchor to the first and last character of the entire text. When
the flag is set, they match at the beginning and end of every line. This flag affects the behavior of the
expression regardless of the method using it.

This flag can be useful when parsing strings that contain multiple lines (no surprise there). The same
effects can generally be reached by splitting the input text into an array of lines and then processing
each line independently, as shown in Example 12-8.

EXAMPLE 12-8 http://actionscriptbible.com/ch12/ex8

Collected Snippets: Regular Expression Flags

var contacts:Object = new Object();
var contactText:String =

"Call us at one of these numbers.\n" +
"Los Angeles: 310-555-2910\n" +
"New York: 212-555-2499\n" +
"Boston: 617-555-7141";

var officeAndPhone:RegExp = /^([\w\s]+): (\d{3}-\d{3}-\d{4})/;

var lines:Array = contactText.split(/\n/);
var line:String;
for each (line in lines) {

var result:Array = line.match(officeAndPhone);
if (result) {

contacts[result[1]] = result[2];
}

}

245

Part II: Core ActionScript 3.0 Data Types

You can simplify this code by using the multiline flag:

var contacts:Object = new Object();
var contactText:String =

"Call us at one of these numbers.\n" +
"Los Angeles: 310-555-2910\n" +
"New York: 212-555-2499\n" +
"Boston: 617-555-7141";

var officeAndPhone:RegExp = /^([\w\s]+): (\d{3}-\d{3}-\d{4})/gm;

var result:Object;
while (result = officeAndPhone.exec(contactText)) {

contacts[result[1]] = result[2];
}

By using the multiline and global flags, the same expression can match multiple times, even though
the source text spans across several lines.

Dotall
The dotall flag, s, changes the behavior of the dot metacharacter. When the flag is not set, the dot
(.) matches any character but a newline character. When the flag is set, the dot (.) matches every
possible character including newlines.

You can think of this mode as single-line mode because that evokes s much better than dotall and
because it can be used to treat a string with multiple lines as one long string that happens to have
\n characters in it. With the s flag on and the m flag off, the regular expression no longer maintains
the illusion that the input string is partitioned into lines. You can see the dotall flag’s effect in the
following snippet:

var lines:String = "hello,\n cruel world!";
trace(lines.match(/hello.*world/)); //null
trace(lines.match(/hello.*world/s)); //hello,

// cruel world

The first match() in this snippet operates on the assumption that you don’t want your pattern to
match across line breaks unless you explicitly include a line break character. The second match()
allows anything to be in the .* subpattern, even newlines.

Caution
Be careful with .*. This pattern is greedy and can eat more of the input text than you desire. With s on, it
can eat its way across lines and to the end. You can be more cautious with a lazy pattern. The next section,
‘‘Constructing Advanced Expressions,’’ explains lazy and greedy patterns. �

Extended
The extended flag, x, is included in an attempt to mitigate the general illegibility of regular expres-
sions. Making dense, amazingly complex regular expressions that do the same work as dozens of

246

Chapter 12: Regular Expressions

lines of code is, I can vouch, rewarding, but when it comes time to explain your code to someone
else or even to remember what you wrote six months ago, you might see the other edge of this
sword.

The extended flag lets you mitigate regex clutter by adding whitespace anywhere in the expression,
which will not be literally interpreted unless it is escaped. When the flag is off, a space in a reg-
ular expression means ‘‘match a space in the source text in this position’’: The whitespace is taken
literally.

Unfortunately, adding whitespace can do only so much for the understandability of your expressions.
It’s a good idea to briefly say what an expression does in a comment adjacent to it when the expres-
sion is complicated:

//find these complete words that rhyme with base: space, trace, race.
var rhymes:RegExp = /\b (tr|r|sp|b) a (c|s) e \b/gix;

Retrofitting the rhyme example with whitespace makes it a tad more legible. A comment helps more.

Table 12-5 recaps the regular expression flags that ActionScript 3.0 supports.

TABLE 12-5

Regular Expression Flags

Flag Character RegExp Property Behavior When Flag Is Set

g global Don’t stop after first match.

i ignoreCase All alphabetical comparisons are case insensitive.

m multiline ^ and $ anchors match beginning and end of lines.

s dotall . matches newline.

x extended Whitespace in expression is ignored unless escaped.

Constructing Advanced Expressions
In this chapter, I introduced a lot of information in a short space. The regular expression tech-
niques discussed thus far should serve for a majority of your text manipulation challenges. I did,
however, leave out a few points about regular expressions, which build on the foundations I laid
earlier.

If you are learning regular expressions for the first time, it might be helpful to return to this section
after you’ve implemented a few regular expressions of your own and become comfortable with the way
they work.

247

Part II: Core ActionScript 3.0 Data Types

Greedy and Lazy Matching
The + and * quantifiers can be difficult to tame. You might have run into this before if you attempted
to parse HTML, as the expression in Example 12-9 is intended to. (If the HTML is valid XHTML, you
should use E4X for this and spare yourself the headache.)

EXAMPLE 12-9 http://actionscriptbible.com/ch12/ex9

Collected Snippets: Advanced Regular Expressions

//match <, (the tag name), any other stuff till >, >, (the inner text),
//then </, (a tag name), and >.
var getTag:RegExp = /< (\w+) \s* [^>]* > (.*) <\/ (\w+) >/x;
var parts:Array;

var htmlFragment1:String = ‘item 1’;
parts = htmlFragment1.match(getTag);
trace("nodeName:", parts[1]); //nodeName: li
trace("innerHtml:", parts[2]); //innerHtml: item 1

var htmlFragment2:String = ‘item 1item 2’;
parts = htmlFragment2.match(getTag);
trace("nodeName:", parts[1]); //nodeName: li
trace("innerHtml:", parts[2]); //innerHtml: item1item 2

The getTag expression works fine for a single tag. You want to be able to apply the expres-
sion over and over to pull out several tags in a row, but there’s a problem. The .* in the
middle of the expression keeps eating up everything until the last close tag. When the regular
expression program sees the first closed tag that matches the last part of the expression, the
.* remains in control. Its meaning, ‘‘any characters,’’ certainly applies to as well, so the
.* in the pattern matches everything possible without preventing the rest of the expression
from matching. The subexpression lets go before the last so that the full expression can
still match.

This behavior is called greedy matching because the subexpression, which has one of these
quantifiers, greedily matches as far as it can into the string. By default, all regular expres-
sion quantifiers are greedy. If you could make the .* in the middle of the expression
less greedy, the end of the regular expression might be able to match the first
instead of the last one, so that the whole expression matches only one li tag, the intended
behavior.

Thankfully, there are more polite versions of these quantifiers. By adding a question mark to the quan-
tifiers, you can make them match lazily instead of greedily. Lazily matching subexpressions stops

248

Chapter 12: Regular Expressions

matching at the first opportunity to match the rest of the expression rather than the last. With the
addition of this character, you can fix the regular expression:

//match <, (the tag name), any other stuff till >, >, (the inner text),
//then </, (a tag name), and >.
var getTag:RegExp = /< (\w+) \s* [^>]* > (.*?) <\/ (\w+) >/gx;
var htmlFragment:String = ‘item 1item 2’;
var parts:Array;
while(parts = getTag.exec(htmlFragment))
{

trace("nodeName:", parts[1]);
trace("innerHtml:", parts[2]);

}
//nodeName: li
//innerHtml: item 1
//nodeName: li
//innerHtml: item 2

Notice that the only difference in the regular expression (besides applying it globally) is the change
from .* to .*?, which does the trick to match only until the first end tag.

You can use these lazy quantifiers any time you want to match a general pattern between two spe-
cific patterns, without accidentally including the ending pattern in the middle. Useful lazy quantifiers
include *? and +?, although you can make any quantifier lazy.

Backreferences
Throughout this chapter, you have seen how to use capturing groups to store particular subexpres-
sions and use them in code. Regular expressions also allow you to use the captured groups inside the
same expression they are captured with.

You use a backreference, as it is called, by referring to the ordinal number of the matching group,
like using $1 through $99 in String::replace(), except backreferences use backslashes
instead of dollar signs: \1 through \99. The text that matches the captured group is used as the
subexpression where the backreference appears instead of the literal characters \1. This snippet
demonstrates:

var re:RegExp = /\b (\w{3}) \b .*? \b \1 \b /ix;
var testString:String = "far, farther fetched free fun fetched fun free";
trace(testString.match(re)); //fun fetched fun,fun

The preceding regular expression finds the first three-letter word that appears at least one more time
anywhere in the text. It uses a group to capture a three-letter word, .*?, to keep matching through
the rest of the string, and finally a backreference to assert that the word is repeated later in the string.

249

Part II: Core ActionScript 3.0 Data Types

Because it uses the word boundary anchor \b, it also ensures that the second time the captured three
letters appear, they are in a single word. This disqualifies the word ‘‘far,’’ which appears as part of the
word ‘‘farther.’’ If the expression matches at all, the first repeated three-letter word is stored in the first
captured group.

Lookahead and Noncapturing Groups
These different kinds of groups can be used for interesting purposes.

Noncapturing Groups

When you want to use a group for alternation or a quantifier, but the actual contents of the group
are not as important to your expression, you can reduce the amount of unnecessarily captured groups
by making a group that does not capture: a noncapturing group. This is achieved with the following
syntax:

(?:...)

where your grouped subexpression takes the place of the ellipsis. For example:

var re:RegExp = /(?:i|you|he|she|it|we|they) likes? to (\w+)/i;
var match:Object = re.exec("We like to party.");
trace(match[1]); //party

This expression finds what it is that someone likes to do. It uses a group to allow for several subjects.
However, the first group is noncapturing, so it does not interfere with the verb, which is captured in
the first position.

Note
When using a noncapturing group, the contents of the group are still available to backreferences. �

Positive Lookahead Groups

Beyond noncapturing groups, there are also zero-width groups: groups that try to match the source
string without moving ahead in the pattern. ActionScript 3.0 regular expressions have a positive looka-
head group, or a zero-width positive lookahead assertion. When you use the syntax

(?=...)

you ensure that the pattern represented by the ellipsis would match, if you tried to. However, it
doesn’t perform the match, so that after the lookahead group, you’re still talking about the same
location in the source text as before it. This is unlike most metasequences you’ve seen so far, which
match and then continue through the source text. Recall that anchors such as ^ and \b are also
zero-width.

var re:RegExp = /\b (?:\w{3}) \b (?= .*? \b \1 \b) \s* (\w+) /x;
var testString:String = "far, farther fetched free fun fetched fun free";
trace(testString.match(re)); //fun fetched,fetched

250

Chapter 12: Regular Expressions

Here you modified a prior snippet to find the word after the first three-letter word that repeats. The
large lookahead in the middle looks ahead to see if there is, after a sequence of characters, another
instance of the three-letter word matched. If this lookahead fails (if there is no duplication of the
three-letter word just found), the potential match immediately fails and the next bit of source text
is considered. When the lookahead succeeds, as it does with ‘‘fun,’’ it must have examined the source
text through the second instance of the word ‘‘fun.’’ But when the lookahead group matches positively,
the regular expression restores the current position in the source text to the position that was already
being considered when the expression encountered the lookahead group: after the word boundary
after the first ‘‘fun.’’ Then the remainder of the expression is considered. After a lookahead group
matches, the pointer in the expression is at the end of the lookahead group in the expression, but the
pointer in the source text hasn’t moved. It’s zero-width. Thus, when the match continues at \s*, the
source continues after the first ‘‘fun’’ and achieves the goal of getting the word after the first repeated
three- letter word.

Incidentally, the snippet also uses a noncapturing group to find the three-letter word because the goal
of the search is no longer the word, but the word immediately following. This way, the only captured
group is ‘‘fetched,’’ the solution to the puzzle. You can also see that the entire match ‘‘fun fetched’’
does not include text up to the second instance of ‘‘fun,’’ even though that source text was examined
by the lookahead.

Negative Lookahead Groups

In addition, you have negative lookahead groups which, like their brethren, do not advance the por-
tion of the string being considered and do not capture. The difference, of course, is that they assert
that the pattern inside them would not be matched at the current position. To write a negative look-
ahead group, use the syntax

(?!...)

with your subexpression in place of the ellipsis.

Named Groups
Another way to mitigate the jumble that can arise from complex applications of regular expressions is
to assign names to capturing groups, rather than referring to them by their ordinal. Names are more
descriptive than numbers, and as you can name variables descriptively in ActionScript 3.0, so can you
assign names to capturing groups to clarify code dealing with regular expressions.

To create a named group, use the format

(?P<name>...)

where name is the name you to refer to the group if it is captured, and the expression to be captured
replaces the ellipsis.

251

Part II: Core ActionScript 3.0 Data Types

Named groups are applicable only to methods that would otherwise return the matched groups in an
array: RegExp::exec() and String::match(). The names cannot be used in metasequences,
either as backreferences or in String::replace(). When named groups are used, the captured
groups are returned from these methods both in their ordinal position and by their named property.

Let’s say that you want to create a method to convert From: e-mail headers into a more readable
format. Sometimes these headers come with both the sender’s real name and e-mail address, in the
format ‘‘Roger Braunstein <roger@actionscriptbible.com>’’. If this is the case, you want to present
the field as the sender’s name, hyperlinked to send e-mail to the correct address when clicked (see
Example 12-10).

EXAMPLE 12-10 http://actionscriptbible.com/ch12/ex10

Using Named Groups

package {
import com.actionscriptbible.Example;
public class ch12ex10 extends Example {
public function ch12ex10() {
var testLink:String = ‘"Roger Braunstein" <roger@actionscriptbible.com>’;
trace(headerToLink((testLink)));
//Roger Braunstein

}
protected function headerToLink(fromField:String):String {
//a from address with a name takes the format:
//(some stuff, perhaps in quotes, which is the name),
//perhaps some whitespace, <,
//(some stuff with an @, which is the address), >
var findHeader:RegExp = /"? (?P<name>.+?) "? \s* < (?P<email>.+@.+) >/x;
var match:Object = fromField.match(findHeader);
if (match) {
return ‘’ + match.name + ‘’;

}
//if this is not the format of the header, don’t mess with it
return fromField;

}
}

}

The class uses named capturing groups to refer to match.name instead of match[1], making the
code more self-explanatory. Table 12-6 summarizes the kinds of groups you’ve learned about in this
section.

252

Chapter 12: Regular Expressions

TABLE 12-6

Regular Expression Groups

Metasequence Meaning

(foo) Match ‘‘foo’’ and capture it.

(?:foo) Match ‘‘foo.’’

(?=foo) Continue only if ‘‘foo’’ would match here.

(?!foo) Continue only if ‘‘foo’’ would fail to match here.

(?P<bar>foo) Find ‘‘foo’’ and capture it with the name bar.

International Concerns
When you use regular expressions to deal with accented and non-English text, keep these tips in
mind:

� Regular expressions, like strings, may contain UTF-8 encoded characters in the code. They
match corresponding characters in the input text.

� Although there is a metasequence for Unicode characters, you may also include them literally in
the expression.

� The shorthand character classes include only the English alphabet. For example, \w includes
only a through z. No accented characters are included.

� When using the ignore case flag (i), only the characters a through z are case insensitive. For
example, é does not match É, even with the ignore case flag set.

Using the RegExp Class
In the examples in this chapter, you have seen regular expressions written as literals. However, using
regular expressions as RegExp objects enables you to apply some useful techniques and gain impor-
tant insight.

Building Dynamic Expressions with String Operations
Keep in mind that if you use the RegExp constructor to create expressions, you can pass in an arbi-
trary String for the source of the pattern. This means that you can, using String manipulation,
programmatically craft a pattern to fit the situation at hand, as shown in Example 12-11.

253

Part II: Core ActionScript 3.0 Data Types

EXAMPLE 12-11 http://actionscriptbible.com/ch12/ex11

Using the RegExp Class

package {
import com.actionscriptbible.Example;
public class ch12ex11 extends Example {
public function ch12ex11() {
trace(removeLetters("catch", "cathy catnaps in cathay")); //y nps in y
trace(removeLetters("bol", "Bob Loblaw Law Blog")); // aw aw g

}
public function removeLetters(inWord:String, fromWord:String):String {
return fromWord.replace(new RegExp("[" + inWord + "]", "gi"), "");

}
}

}

The preceding example removes all letters found in a word from another bit of text. It does so by
turning your blacklisted-letters string into a character class, dynamically generating the regular expres-
sion to remove all offensive letters.

RegExp Public Properties
Whether a RegExp object is created with the RegExp constructor or a literal, you can access the pub-
lic properties that RegExp defines to recall information about the expression.

Keep in mind that all these properties but one are read-only. They are defined during construction
and are not modified subsequently:

� source:String — The expression’s source text.

� dotall:Boolean — Whether the dotall (s) flag is set.

� extended:Boolean — Whether the extended (x) flag is set.

� global:Boolean — Whether the global (g) flag is set.

� ignoreCase:Boolean — Whether the ignore case (i) flag is set.

� multiline:Boolean — Whether the multiline (m) flag is set.

� lastIndex:Number — The index of the character in the input text where the pattern should
next begin matching. This property is read-write. This state variable affects only exec() and
test() and is set by these methods when (progressively) matching a pattern with the global
flag set.

254

Chapter 12: Regular Expressions

Summary

� Regular expressions can be used to parse regular grammars and loose human input.

� Regular expressions are used to test, locate, identify, extract, replace, and split text.

� Regular expressions are a compact language defined by normal text, metacharacters, and
metasequences.

� Flags change the behavior of regular expressions.

� Often you have to choose between a String method and a RegExp method to achieve the
same goal.

� You can match characters, alternates, classes of characters, and groups, in whatever quantity
you specify.

� Quantifiers are greedy unless you make them lazy.

� Anchors can match a position rather than text.

� Groups can be made to not capture, to be zero-width, and to have names.

� Case insensitivity and word characters work only as advertised with English letters from a to z.

255

Binary Data and
ByteArrays

FEATURED CLASSES

flash.utils.ByteArray

flash.utils.IDataInput

flash.utils.IDataOutput

I
n ActionScript and other programming languages, you use a variety of data
types to intelligently organize data. Breaking out of the walled garden of
your own program and accessing data from the outside world can force you

to change representations of the data, since not every system uses the same data
types or encodes them in the same way. These conversions can be automatic and
effortless, or they can require painful acrobatics and careful handling of edge
cases. The ultimate common denominator in representations of data, of course,
is binary: the long digital sequences of 0s and 1s that are sent about your com-
puter hardware, and across wires and radio signals that connect your computer
to the internet.

By supporting high-level data types like Vector and Dictionary, Flash Player
gives you the opportunity to create algorithms that tackle problems with the
appropriate tools or to build those tools when they aren’t included (like an AVL
tree, a doubly linked list, or a directed graph, for example). But by supporting
raw binary data, Flash Player opens up the entire universe of data. Without byte-
level access, you can interpret data only if it comes in a format that Flash Player
understands. With byte-level access, you can interface with any computer or
interpret any digitized data if you can write an interpreter for it in ActionScript.

It’s the inclusion of binary types such as ByteArray that allows Flash Player to
capture video data and track a fiducial marker from your camera to display a 3D
object in augmented reality. It’s binary math that permits Flash Player to synthe-
size dynamic audio. And it’s binary types that allow Flash Player to save out a
PNG or generate a PDF. Binary access grants Flash Player the kind of universal
reach that is typically reserved for desktop applications.

Binary Concepts

You probably have some idea of what binary is and how to work in it. I’ll present
a brief review here. If you have a good grip on binary and just want to see how
to deal with it in ActionScript 3.0, skip ahead to the section ‘‘Binary Types in
ActionScript.’’

257

Part II: Core ActionScript 3.0 Data Types

You probably already know that binary means base two. There are two digits in base two: 0 and 1.
Each place for a digit in binary is a power of 2 greater than the place to its right. So 1000 in base
10 is 103, and 1000 in base 2 is 23, or 8. To store whole positive numbers — uints — just convert
the number from decimal to binary. For example, 19 in decimal is 10011 (16 + 2 + 1) in binary, and
that’s how the computer stores it. Chapter 7, ‘‘Numbers, Math, and Dates,’’ investigated the binary
representations of numbers.

We represent not just numbers but all data on a computer in binary. For example, we represent text
in binary as a series of characters. There are various encodings of characters, with the simplest being
ASCII, in which every letter in the English alphabet is assigned a number between 1 and 255. The
number 0 is reserved to indicate the end of a string. For example, 72 is H and 73 is I, so you say
‘‘HI’’ with the series of numbers 72, 73, and 0, or 0x484900. This is Western-centric, so ActionScript
3.0 uses UTF-8 for characters. UTF-8 can use between 1 and 4 bytes for a single character, instead of
always using 1. And it can encode practically every written language ever used on Earth. Also, 1-byte
sequences in UTF-8 are identical to ASCII, giving it lots of compatibility. Chapter 6, ‘‘Text, Strings,
and Characters,’’ illustrates how UTF-8 encoding is used in Strings. Besides these two, however,
there are many more character encodings in use.

A single binary number is called a bit. Instead of dealing with bits, however, you usually deal in
bytes. A byte is a set of 8 bits, or a number between 00000000 and 11111111 in binary. There’s not
much you can do with a single bit, except maybe store a Boolean — because it can only be true
or false, which you could assign the values 1 and 0. But these tiny sizes of information are too
small to bother with for the computer’s memory management, so you’ll never see an object smaller
than a byte. The truth is that a Boolean variable takes up 4 bytes (that’s 32 bits) in Flash Player. By
the way, a byte can also be called an octet, which is a pretty logical name if you think about it.

Of course, you’re familiar with other sizes of data.

� byte — 8 bits

� kilobyte (KB) — 1024 bytes

� megabyte (MB) — 1024 kilobytes, or 220 bytes

� gigabyte (GB) — 1024 megabytes, or 230 bytes

� kilobit (Kbit) — 1024 bits, or 128 bytes

� megabit (Mbit) — 1024 kilobits, or 128 kilobytes

And so on. However, there is ongoing confusion about whether to use binary (210, or 1024) or dec-
imal (1010, or 1000) powers for the prefixes kilo-, mega-, giga-, and so on. Different measurements
are used in different contexts, which makes the whole thing a complicated mess. For example, a hard
drive manufacturer would benefit by calling a gigabyte 1000 megabytes, because then she could report
a higher capacity for the same hardware than if she had called a gigabyte 1024 megabytes. Confus-
ingly, data rates such as transfer speed are often measured in kilobits or megabits, while you’re used
to measuring things in kilobytes or megabytes. It’s funny, but although digital data has been around
for a long time, people are still figuring out how to consistently communicate sizes.

Because it’s painfully long to write 1s and 0s — the ASCII character R is 01010010 in binary, and
that’s just a single byte — you typically use hex notation when writing binary figures. The hex is short
for hexadecimal, which means base 16. Oh boy, yet another base! (Once you’re used to working in
binary, you’ll flip back and forth between hex and binary in your head; converting to decimal is the
awkward one.) Recall that in base 2 you have two digits: 0 and 1. In base 10 you have the familiar

258

Chapter 13: Binary Data and ByteArrays

digits 0 through 9, but you’re not really prepared to write 16 digits. Hex notation borrows the letters
A through F for the numbers after 9 that you don’t have any digits for: A being 10 and F being 15.
Of course, 16 is 10 in hexadecimal. In code, you write a 0x preceding the number to indicate that it’s
hexadecimal, and you’ll use it here to prevent confusion. Now that every place is a factor of 16, 0x1 is
1, 0x10 is 16, and 0x100 is 256. This means that you can write a whole byte in just two characters.
Eight bits gets you from 0 up to 255, which can be written in hex from 0x00 to 0xFF. That’s why,
when you wrote ‘‘HI’’ it was 0x484900 instead of 10010000100100100000000. You can quickly look
at a hexadecimal number and determine how many bytes it represents: each two hex digits is 1 byte.
So you can quickly tell that this number is 3 bytes, because it has three sets of two numbers. Mentally,
you break this number into 0x 48 49 00, and you can tell that the last byte is a null byte — all the
bits are 0 — and it’s probably a string terminator.

Tip
You can convert numbers to hex in ActionScript by using the numeric types’ toString() methods, which take
a base as an argument. You can even convert to binary this way.

var n:int = 0x48;
trace(n); //72
trace(n.toString(16)); //48
trace(n.toString(2)); //1001000

As if things weren’t complicated enough, bytes can be ordered in memory differently on different
platforms. Hopefully, you won’t have to deal with this often — the operating system or the language
should handle it. But when you’re writing custom code to interpret raw data, well, who knows.
The ordering of bytes can be called either byte order (makes sense) or endianness. That word sounds
awkward until you realize that the options are big endian and small endian, as in ‘‘which end is the big
end?’’ When you write something as 0x484900, you assume that the bytes are laid out left to right, so
you’re spelling ‘‘HI<NUL>’’ and not ‘‘<NUL>IH. You can make this assumption with confidence, but if
you run into a weird problem that looks like the bytes are backward, now you know what the cause
may be.

Binary is also the lingua franca of images. A simplistic way to store an image is to write the value of
each pixel in succession, from left to right and top to bottom. The concept called color depth tells
you how much space to use to describe each pixel’s color. Of course, taking more space yields more
possible colors and allows you to render more subtle shades. In ActionScript 3.0, you usually take 4
bytes to describe a color — in other words, 32 bits per pixel (32bpp). The way you encode each byte
is also an arbitrary decision; the typical solution is ARGB or RGBA, which means that you take
1 byte each for red, green, blue, and alpha (the amount of transparency) and put them in these orders.
BitmapData uses ARGB. This is how you end up with colors like 0xFFFF00FF, or totally opaque
purple. The alpha value is 255, as are the red and blue values. Red and blue mix additively to
form purple. Blend modes and filters use these values as inputs to equations, which are sometimes
astoundingly simple. For example, the additive blend mode adds the color values for the two
overlapping pixels, no differently than you’d add any two integers. Bitmap graphics are discussed in
depth in Chapter 36, ‘‘Programming Bitmap Graphics.’’

Just now, when considering how to store an image, you conceptualized memory as a long, long string
of binary, and you thought creatively about how to store something more complicated and structured
in this flat space. That’s the essence of binary thinking!

259

Part II: Core ActionScript 3.0 Data Types

Bit Math and Operators
ActionScript 3.0 provides the standard operators for performing bit math. These are identical in many
other languages, but I’ll review them here. Bit math can be useful for encoding and decoding, for
generating random numbers, for optimizing computations, in cryptography, or just to store a set of
options as bit flags.

When using bit math, be sure to use the unsigned integer type uint.

Basic Arithmetic
Addition and subtraction are the same in binary as they are in decimal, so when you add two uints,
the binary numbers add up just as well. It wouldn’t be a very good system if two numbers in binary
added up to a different sum than they did in decimal.

var a:uint = 0xf;
var b:uint = 0x2;
var c:uint = a + b;
trace("0x" + c.toString(16)); //0x11
trace(a.toString(2) + " + " + b.toString(2) + " = " + c.toString(2));
//1111 + 10 = 10001

Bit Shifting
Bit shifting is the process of shifting all the digits in a binary string up or down. This is like when you
multiply or divide by factors of 10 in decimal and move the decimal place, adding 0s where necessary.
Of course, in binary, shifting the digits multiplies and divides the original value by factors of 2.

To shift, use the binary (as in ‘‘having two arguments’’) operators << and >>. These shift the digits to
the left and right, or multiply and divide by factors of 2. The operand on the right determines how
many places to shift. You can also use the shift-and-assign operators <<= and >>=, which shift the
value and assign it back to the same variable. Example 13-1 shows how this works.

EXAMPLE 13-1 http://actionscriptbible.com/ch13/ex1

Bit Shift Operators

package {
import com.actionscriptbible.Example;
public class ch13ex1 extends Example {
public function ch13ex1() {
var a:uint = 0x4;
trace2(a); // 100
trace2(a >> 1); // 10
trace2(a << 1); // 1000
trace16(a << 8); //0x400

var b:uint = 0xb;
trace2(b); // 1011
b >>= 2;
trace2(b); // 10

260

Chapter 13: Binary Data and ByteArrays

b <<= 2;
trace2(b); // 1000

}
public function trace2(n:uint):void {
trace(n.toString(2));

}
public function trace16(n:uint):void {
trace("0x" + n.toString(16));

}
}

}

Notice that there’s no decimal place to shift past when you’re dealing with integers in binary. So values
shifted to the right, like b here, lose whatever digits are truncated forever.

Bit shifting is useful to create one long binary string out of several bytes. You can shift the digits to the
left or right, and then add them, to get them to fit together. This is how, if you know the red, green,
and blue components of a color, you can reassemble them into one RGB pixel value. Just adding them
up isn’t right; the blue value is supposed to occupy the last byte, so this would just fill up the blue
bucket with all three values. No, you have to align them to bytes, as shown in Example 13-2.

EXAMPLE 13-2 http://actionscriptbible.com/ch13/ex2

Bit-Shifting to Create RGB Values

package {
import com.actionscriptbible.Example;
public class ch13ex2 extends Example {
public function ch13ex2() {

//a nice raspberry color, 0xD41153
var r:uint = 0xD4;
var g:uint = 0x11;
var b:uint = 0x53;
//of course, you could just type in 0xD40253 to your code,
//but what if the user input these values? You have to reassemble it.
trace16(r << 16); //0xd40000
trace16(g << 8); //0x001100
trace16(b); //0x000053
var rgb:uint = (r << 16) + (g << 8) + b;
trace16(rgb); //0xd41153

}
public function trace16(n:uint):void {

trace("0x" + n.toString(16));
}

}
}

261

Part II: Core ActionScript 3.0 Data Types

Bitwise Logic
You can operate on the bits of an expression using bitwise logical operators. These go through two
binary strings and compare each bit using simple rules. ActionScript includes binary AND, OR, XOR,
and the unary NOT. These rules for these operators are listed in Table 13-1.

TABLE 13-1

Bitwise Operators

Operator name Operator Rule Example

AND & Produces 1 only if both bits are 1. 1100 & 0110 == 0100

OR | Produces 1 if either bit is 1. 1100 | 0110 == 1110

XOR ^ Produces 1 if exactly one of the bits is 1. 1100 ^ 0110 == 1010

NOT ! Inverts every bit. ! 0110 == 1001

Make sure that you don’t mix up the binary and logical operators like & and &&. You should also
know that all bitwise operations are commutative: the two operands can be in either order.

Bitwise logic can be used in combination with bit masks, sequences of bits crafted to zero in on the
bits that you want. To do this, you take advantage of the ways that the bitwise rules interact with 0
and 1. For example, AND a sequence with all 1s, and you get the same sequence back.

//if the original bit is 1
1 & 1 == 1
//if the original bit is 0
1 & 0 == 0
//so a whole series AND 1s is the same
101100 & 111111 == 101100

Likewise, AND a sequence with 0s, and you get 0s back, because both bits must be 1 to output a 1,
and you know that one of them is 0.

0 & 1 == 0
0 & 0 == 0
101100 & 000000 == 000000

You can keep the bits you want and zero out the rest by applying a bit mask.

//say you want the first three bits
101100 & 111000 == 101000
//everything else was set to 0

262

Chapter 13: Binary Data and ByteArrays

Example 13-3 uses a bit mask to pull just the green value out of an ARGB pixel.

EXAMPLE 13-3 http://actionscriptbible.com/ch13/ex3

Isolating Values with Bit Masks

package {
import com.actionscriptbible.Example;
public class ch13ex3 extends Example {
public function ch13ex3() {
var rgb:uint = 0xd41153;
var g:uint = rgb & 0x00ff00; //remember, f is 15 is 1111.
g >>= 8; //you still have to move the bits down
trace16(g); //0x11

}
public function trace16(n:uint):void {
trace("0x" + n.toString(16));

}
}

}

Binary Types in ActionScript
Besides the int and uint classes, which are limited to 4 bytes, ActionScript 3.0 provides several
classes that support binary operations. These classes have the added benefit of being designed for
binary operations, so they are much more convenient to work with than an int. The most important
of these classes is ByteArray, which encapsulates a variable-sized binary string. You can think of
this as a chunk of memory to which you have access at the byte level. In addition, there are a number
of related classes: URLStream and Socket. These give low-level binary access to an HTTP request in
progress, or a socket connection to a server (Chapter 28, ‘‘Communicating with Remote Services’’).

Regardless of the destination of the bytes, however, you can understand how to read and write
them — thus, to use all these classes — by understanding the common binary stream interfaces
IDataInput and IDataOutput. All the concrete classes mentioned — ByteArray, URLStream,
and Socket — implement both of these interfaces. A read-only stream, like a URLStream, would
only implement IDataInput. A read-write stream, like Socket, implements both. Quite simply,
any time you access binary data, you do so in the same way.

The IDataInput and IDataOutput interfaces declare methods that let you read and write objects
to a binary stream. With these methods, you can let Flash Player do the work of encoding and decod-
ing various types of data to binary, rather than writing each bit yourself. These methods come in sets,
shown in Table 13-2.

263

Part II: Core ActionScript 3.0 Data Types

TABLE 13-2

Methods of IDataInput and IDataOutput

IDataInput IDataOutput Notes

readBoolean() writeBoolean() Read or write a single byte; 0x00 is
false and any other value is true.

readByte() writeByte() Read or write a single byte as an int.

readUnsignedByte() writeUnsignedByte() Read or write a single byte as a uint.

readShort() writeShort() Read or write a short integer (16 bits) as
an int.

readUnsignedShort() writeUnsignedShort() Read or write a short integer (16 bits) as
a uint.

readInt() writeInt() Read or write an integer (32 bits) as an
int.

readUnsignedInt() writeUnsignedInt() Read or write an unsigned integer (32
bits) as a uint.

readFloat() writeFloat() Read or write a single-precision floating
point number (32 bits) as a Number.

readDouble() writeDouble() Read or write a double precision float-
ing point number (64 bits) as a Number.

readUTF() writeUTF() Read or write a UTF-8 encoded string
prefixed by the length of the string as
an unsigned short integer so that no
delimiters are needed.

readUTFBytes() writeUTFBytes() Read or write a UTF-8 encoded string
with no prefix. readUTFBytes() takes
a length parameter specifying the length
of the string to read.

readMultiByte() writeMultiByte() Read or write a string in any string
encoding, passed as a parameter, such
as us-ascii or iso-8859-1. The full
list of supported character sets can be
found in the AS3LR.

readBytes() writeBytes() Read or write raw binary as a
ByteArray.

readObject() writeObject() Read or write an ActionScript object
using AMF encoding. Specify AMF0
or AMF3 using the objectEncoding
parameter.

264

Chapter 13: Binary Data and ByteArrays

As you can see, classes that implement these interfaces can encode and decode binary data for you in
a variety of formats, giving you flexibility when composing and decomposing tightly packed data.

Using ByteArray
Because a ByteArray is a straightforward implementation of the IDataInput and IDataOutput
interfaces, what you learn about ByteArray applies to the other stream classes as well.

Creating a ByteArray
There are several ways to get a ByteArray. The most obvious is to create a new blank one using the
constructor. The constructor takes no arguments.

var bytes:ByteArray = new ByteArray();

Additionally, throughout the Flash Player API, any method that returns binary data does so as a
ByteArray object. For example, the BitmapData class has a getPixels() method, which
returns a ByteArray.

Writing Data
You can write data to a byte array in two basic ways: use array-access notation ([]) to write to a spe-
cific index, and use the methods of IDataOutput described in Table 13-1. Array-access notation
works exactly like writing to a standard array.

var bytes:ByteArray = new ByteArray();
bytes[0] = 0xff;

Of course, each index in a byte array can store only 1 byte: a value between 0 and 255.

When using IDataOutput methods, a variable number of bytes are written depending on the data
and its type.

bytes.writeInt(1500000050);
trace(bytes[0], bytes[1], bytes[2], bytes[3]); //89 104 47 50

Writing to and reading from a ByteArray occurs at a specific position at the stream, exposed by the
property position. After every write using an IDataOutput method, this position is moved up
automatically to the end of the write. In this manner, without any manual change to position, the
ByteArray appends data to the end transparently.

In Flash Player 10 and later, you can clear out a ByteArray with the clear() method.

Reading Data
You can read from a ByteArray in the same ways you write to it: either using array access nota-
tion 1 byte at a time, or using the IDataOutput methods. When reading from a ByteArray, the

265

Part II: Core ActionScript 3.0 Data Types

position determines where objects will be read starting from, and read operations will automatically
advance the position to the end of the last read object.

Two properties let you know where you can read from in the array. length reports, in bytes, the
total size of the ByteArray. Similarly, bytesAvailable reports the number of bytes left from
position to the end of the ByteArray.

Compressing and Decompressing
In Flash Player 10 and later, you can use the built-in deflate algorithm to compress and decompress
binary data. Just fill up the ByteArray with the data to compress and call deflate(), or fill it
with compressed data and call inflate(). Note that this isn’t sufficient to deal with an archive file
like a .zip: even if you use a file that has been compressed with the deflate algorithm, it may have
metadata and other nondata sections. deflate() works only on the compressed data.

Version
FP10. Compression is available in Flash Player 10 and later. �

Common Uses of ByteArrays
ByteArray and other binary stream classes are used throughout Flash Player for various purposes.
Any place you need to use binary data, keep your ByteArray close at hand. This section covers
a few interesting or utilitarian applications. Look throughout the book for plenty of other places
ByteArrays are used.

Loading Images
The Loader class, introduced in Chapter 27, ‘‘Networking Basics and Flash Player Security,’’ loads
images from the internet, but it also can decode and display image files as ByteArray using its
loadBytes() method. This is useful when you are loading an image from a socket as a byte stream,
for example, as shown in Example 13-4.

EXAMPLE 13-4 http://actionscriptbible.com/ch13/ex4

Loading Images with ByteArray

package {
import flash.display.Loader;
import flash.display.Sprite;
import flash.events.Event;
import flash.net.*;
import flash.utils.ByteArray;
public class ch13ex4 extends Sprite {
protected var urlLoader:URLLoader;
public function ch13ex4() {
urlLoader = new URLLoader();
urlLoader.dataFormat = URLLoaderDataFormat.BINARY;

266

Chapter 13: Binary Data and ByteArrays

urlLoader.load(new URLRequest(
"http://actionscriptbible.com/files/caviar.jpg"));

urlLoader.addEventListener(Event.COMPLETE, onComplete);
}
private function onComplete(event:Event):void {
var loader:Loader = new Loader();
var bytes:ByteArray = urlLoader.data;
loader.loadBytes(bytes);
addChild(loader);

}
}

}

Copying Objects
When copying objects, you must consider several issues. One of the most common programming
errors is assuming that an assignment statement will create a new copy of an object. Consider the
following example:

var arrayA:Array = new Array("a", "b", "c", "d");
var arrayB:Array = arrayA;

This might appear to make a copy of arrayA, but all it really does is create a new reference to the
same object. To see the implications of this, look at the following:

arrayB.push("e", "f", "g", "h");
trace(arrayA.length); //8

In the preceding example, you add four more items to arrayB, but this actually affects arrayA as
well. This is because both arrayA and arrayB point to the same object. If you want to create a copy
of the array, you can create a new array and use a for statement to copy each item from arrayA to
arrayB, as follows:

var arrayA:Array = new Array("a", "b", "c", "d");
var arrayB:Array = new Array();
for (var i:int = 0; i < arrayA.length; i++) {
arrayB[i] = arrayA[i];

}
arrayB.push("e", "f", "g", "h");
trace(arrayA.length); // Outputs 4
trace(arrayB.length); // Outputs 8

This technique for copying the arrays works, although it is somewhat tedious. However, it gets
unmanageable when you have nested objects. For example, consider copying an array of arrays, or an
array of arrays of arrays.

267

Part II: Core ActionScript 3.0 Data Types

You can use a ByteArray to sidestep this problem and clone objects neatly. Simply create a
new ByteArray, write the object to it, reset the position, and read an object out, as shown in
Example 13-5. If the object is serialized correctly, you should have an exact duplicate of the original
object, not merely another reference.

EXAMPLE 13-5 http://actionscriptbible.com/ch13/ex5

Copying an Array with ByteArray

package {
import com.actionscriptbible.Example;
import flash.utils.ByteArray;
public class ch13ex5 extends Example {
public function ch13ex5() {
var arrayA:Array = new Array("a", "b", "c", "d");
var byteArray:ByteArray = new ByteArray();
byteArray.writeObject(arrayA);
byteArray.position = 0;
var arrayB:Array = byteArray.readObject();
arrayB.push("e", "f", "g", "h");
trace(arrayA.join(" ")); //a b c d
trace(arrayB.join(" ")); //a b c d e f g h

}
}

}

Although this may not appear to be a great savings in lines of code initially, consider that the code to
copy an object does not get more complex even as the object you are copying gets more complex.

There is one important consideration when you are copying objects of custom types. Byte arrays write
data using AMF, which natively supports standard ActionScript data types, but not custom classes.
(AMF is the Action Message Format, a binary protocol discussed in greater depth in Chapter 29, ‘‘Stor-
ing and Sending Data With SharedObject.’’) That means that, by default, if you write an object of a
custom type, it is written to the byte array correctly, but it is stored as a generic object. Therefore,
when you retrieve it from a byte array you cannot cast it back to the correct type. You can fix this by
using the registerClassAlias() function. The function requires two parameters specifying the
identifier you want to use to register the class as well as a reference to the class. See this technique
used in Chapter 29, in the section ‘‘Storing Custom Classes.’’

Summary

� Binary is the lowest common denominator for storing and retrieving data on a computer; access
to binary data allows unlimited interoperability with files and services.

� Binary data is stored in bits, which are grouped into bytes.

� Hex notation is used to concisely write binary strings.

268

Chapter 13: Binary Data and ByteArrays

� Binary strings may be operated on by arithmetical and logical operators.

� Use bitwise AND with a bit mask and bit shifting to select a subset of bits.

� Binary streams are enabled by the IDataInput and IDataOutput interfaces.

� ByteArray is a sequence of bytes in memory, URLStream gives low-level binary access to
an HTTP response, and Socket is a binary socket. All three implement IDataInput and
IDataOutput.

� Use either array access to access binary data 1 byte at a time, or the read[xxx]() and
write[xxx]() methods declared by IDataInput and IDataOutput to read and write
larger chunks of data.

269

Part III

The Display List

IN THIS PART

Chapter 14
Visual Programming with the
Display List

Chapter 15
Working in Three Dimensions

Chapter 16
Working with DisplayObjects
in Flash Professional

Chapter 17
Text, Styles, and Fonts

Chapter 18
Advanced Text Layout

Chapter 19
Printing

Visual Programming
with the Display List

FEATURED CLASSES

flash.display
.DisplayObject

flash.display
.DisplayObjectContainer

flash.display
.InteractiveObject

flash.display.Shape

flash.display.Sprite

flash.display.MovieClip

flash.display.Stage

flash.display.*

flash.geom.Point

flash.geom.Rectangle

T
he display list is the system Flash Player uses to create and manipulate
graphics. Flash is and always has been a visual tool, so the display list is
at the heart of Flash Player. You’ve come a long way in the first two parts

and gained a good handle on ActionScript 3.0, but once you get your hands
on the display list, you have the power to create anything you can imagine
on-screen.

In this chapter, you’ll learn what the display list is, how it’s structured, what
classes it contains, and how to use it to create and manipulate graphics. You’ll
use this knowledge throughout the remainder of the book and often come back
to topics in more depth that are touched on here. So don’t worry if you see
a topic mentioned briefly here, and feel free to jump ahead if it strikes your
fancy. For example, vector graphics and the Shape object are mentioned briefly
here, but they’re covered in their entirety in Chapter 35, ‘‘Programming Vector
Graphics.’’

The display list is one area of Flash Player that has been completely redone for
ActionScript 3.0. It doesn’t bear much resemblance to the way things were done
in ActionScript 2.0 and Flash Player 8 and earlier. If you’re new to AS3, this is a
vital chapter to understand.

Introducing Display Lists and Display

Objects

The system to display graphics in Flash Player is generically called the ‘‘display
list.’’ In reality, the entire on-screen state is represented not in a single list but in
a tree. And the branches and leaves of this tree are made up of display objects, a
class of objects that derive from the base class DisplayObject. Of course, all
display objects can be displayed on-screen, but they have many more interesting
properties. This section examines the structure of the display list and the things
all display objects can do.

273

Part III: The Display List

Structure of the Display List
In simpler display paradigms, all things that the computer needs to draw are assigned a depth. Then,
using the painter’s algorithm, the computer draws them in order from the farthest to the closest.
When you’re painting with a quick-drying paint or ink, you do the same thing. First you paint
the sun, the clouds, the sky. Once that’s dried, you can paint the grassy knoll, overlapping the sky
without worry. Then you can paint the forest in the distance, and finally the school yard on top
of that. By drawing everything in the right order, you can overlap these individual layers rather
than trying to perfect the edge between them, a tricky problem for you and even for a computer
algorithm.

Flash Player has this kind of depth sorting, but additionally it has the concept of nesting. If you’ve
ever used Flash Professional and created a clip inside another clip, you know what nesting is.
Nesting gives the display list its hierarchy. If you want to paint a giant robot on top of the school
grounds, you might use a display object that is nested. Consider the robot a group with a head, torso,
and four jointed robotic limbs. By moving these child display objects, you can animate the robot,
while the robot as a whole remains a single display object (one composed of several other display
objects). When you move the robot, its limbs and head move along with it. How about a more
practical example? A dialog box might consist of a background, a prompt, and some buttons (which
themselves may consist of a background, text, and so on). The entire dialog box is one display object,
but it has many children. When you move the dialog box around the screen, its contents move in
lockstep.

Combine nesting and depth, and you have Flash Player’s display list model. If a display object has
children, all its children have depths. The background of a dialog should appear below its text, or
you won’t be able to read it. Each display object that has children has a list of those children in order
of their depth; this is where display list comes from. Take a look at the hierarchy and explicit depth
ordering in Figure 14-1.

At the root of the display list in Flash Player is the stage. This is the stage upon which your scene is
set, the canvas upon which everything is drawn. There is only one stage, and your whole application
must share it. The stage is represented by an instance of the Stage class.

Note
The AIR runtime can have multiple stages because every top-level window has its own display list. �

The terms root and document class also relate to objects at the top of the display list, but for now
you’ll limit yourself to the stage. You can develop applications without explicitly using either of these.

Coordinate Spaces
Every display object owns a coordinate space, a frame of reference against which the contents of the
display object are measured. Positions, rotations, and distances in ActionScript are expressed in pure
numbers. Of course, these naked numbers are meaningless without units like pixels (distance) or
degrees (rotation), but they are also meaningless without a coordinate space to exist in. The coordi-
nate space tells you what the x and y axes are, where those axes meet to form the origin (0, 0), and
how far one unit is.

Even though it’s easy to forget about it, all measurements are relative to some frame of reference
or other. When you measure the height of a building, it’s understood that you’re speaking about
the height directly up starting at the ground — you could just as easily measure the height of the
building from sea level instead and get a much different result. When I tell you to go north in
Manhattan, I’m actually asking you to travel along the avenues’ north-south axis, which is nowhere

274

Chapter 14: Visual Programming with the Display List

near true north — 29 degrees to the east, in fact — and yet perfectly describes the street grid,
making it a much more useful frame of reference. Or simply think of it like this: the salt shaker to
my right is on your left when you sit across from me. Measurements are always relative to a frame of
reference.

FIGURE 14-1

A robot rampages the scenic school yard and its display list

Stage

sky
ground
forest

robot

school

leg
leg
arm
arm
torso
head

The coordinate system of each display object is its local coordinate system. If you’ve created a movie
clip in Flash Professional and edited its contents by opening the symbol in the library, you’ve worked
in the symbol’s local coordinate system. Suddenly, whatever rotations, translations, scaling, and shear-
ing (collectively known as transformations) you’ve applied to any given instance of the symbol doesn’t
matter, and you’re presented with the clip in its own context. It has an origin — the registration
point — from which the x and y axes emanate to the right and down. In the local coordinate space,
one unit is one pixel, and y coordinates increase as they go down, unlike the canonical Cartesian coor-
dinate space with y increasing ‘‘up.’’ In short, the local coordinate system is the natural space of a
display object.

275

Part III: The Display List

Note
Although the pixel is the basic unit of measurement in Flash, space is continuous, and any measurement can be
subdivided. Any display object can be placed at any fraction of a pixel. The rendering engine in Flash Player
decides how to rasterize fractional pixels depending on certain quality settings. It’s not a bad idea to ensure
nonrotated bitmaps exist on whole pixels if you want them to remain crisp. �

Once you place this display object inside another, its space is subject to whatever transformations you
apply to it. Perhaps you have a clip called tri, which has a triangle with its top-left corner at (2, 2).
This tri clip is shown in Figure 14-2. Maybe you add this clip to the stage. Move the clip 5 pixels
to the right, for instance, and what once appeared at (2, 2) is at (5, 2), relative to the stage’s coordi-
nate system. In tri’s local coordinate system, nothing has moved or changed, nor will it without your
direct intervention. Try to think of these as two independent spaces: tri’s coordinate system, and the
stage’s coordinate system.

Now, the coordinate system that the stage defines is not as flexible. If you forget for a moment the
stage scale modes and alignment that you can do when resizing the Flash Player embed or window,
the stage is really fixed. You always have this ultimate frame of reference, the global coordinate
system.

So when you’re thinking about where something is on-screen, remember to ask ‘‘in relationship to
what?’’ In most cases, it means in relation to the parent coordinate system. In Figure 14-2, you’d say
that the triangle inside the display object tri is at (2, 2), and the display object tri is at (5, 0).
You’ll see more about moving between frames of reference when you look at the geometry classes
later in this chapter. And Chapter 34, ‘‘Geometric and Color Transformations,’’ goes deeper into how
coordinate spaces may be transformed.

Manipulating the Display List
The display list is mutable — it can be changed. In ActionScript 3.0, you have full access to every
object on the display list. Not only can you add in display objects, you can rearrange them, and of
course remove them.

Now’s a good time to look at some code and see how simple these operations are in ActionScript.

Creating a New Display Object

Creating and instantiating display objects is identical to any other class: use new.

var carrot:Sprite = new Sprite();

This and the following examples use the Sprite display object. You’ll spend plenty of time on
Sprite soon, but for now just know that it’s a kind of display object that can have children.

The carrot sprite now exists, but you can’t see it. To appear on-screen, a display object must belong
to a display list that is on the stage. In other words, you must be able to trace up the tree of display
objects all the way to the stage. Conversely, removing a display object from the display list is a simple
way to make it invisible, but more on that later.

276

Chapter 14: Visual Programming with the Display List

FIGURE 14-2

A display object, its outline and registration point, its full coordinate system, and its position when
added to the stage and translated

(5, 0)

(0, 0)

+x

+x

+y

+y

Adding an Object to a Display List

You can add a display object to any other display object that can have children. You can pick a depth
that this display object will have at the time you add it:

stage.addChildAt(carrot, 4); //assuming there are at least 3 children already

Or you can simply let it occupy the next available depth:

stage.addChild(carrot);

277

Part III: The Display List

Because carrot is a Sprite and it can have children, you can even add children to carrot:

var sprouts:Sprite = new Sprite();
carrot.addChild(sprouts);

Removing an Object from a Display List

Removing a child is just as easy as adding one.

stage.removeChild(carrot);

Just as you have to call addChild() on the parent of the object to add (you added carrot to
stage), you must call removeChild() on the parent of the object to remove.

The display list is just the visual system in Flash Player. Removing a display object from the dis-
play list stops it from being drawn but doesn’t actually destroy the object or free that memory. The
carrot variable is still accessible wherever it is normally in scope.

Re-sorting Depths

Depths in the display list have the following properties:

� Depths are indexed — The depth of a display object in a display list is an integer value.

� Depths are unique — Each display object in a display list has a unique depth. No two display
objects can coexist at the same depth with the same parent.

� Depths are gapless — It’s not possible to leave empty depths in a display list. All contiguous
depth values must be occupied.

� Depths increase from the bottom to the top — The ‘‘lowest’’ depth is always zero. A display
object at depth zero appears at the bottom, below all overlapping sibling display objects.

Because of these rules, some shuffling of depths already happens when you use addChildAt() to
insert a display object at a specific depth. When you add a child at an occupied depth, the previous
occupant of that depth, and all its higher-depth siblings, are shifted up one to make room for the
inserted display object.

It’s simple to manually move around sibling display objects within a display list. You can do this by
setting the display object’s depth directly:

var carrot:Sprite = new Sprite();
stage.addChild(carrot);
var apple:Sprite = new Sprite();
stage.addChild(apple); //now you have two children to swap around
stage.setChildIndex(apple, 0); //moves the apple below the carrot
stage.setChildIndex(carrot, 0); //moves the carrot below the apple

To follow the depth rules, this method also shifts depths of existing children up to make room for a
display object you’re moving into an occupied spot. Also following the depth rules, if you try to assign
a display object an invalid depth, such as a negative number, or a number higher than the first avail-
able depth (which would leave a gap), Flash Player emits a runtime error. Likewise, the first argument
to setChildIndex() must be a child of the target (here, stage), or an error is thrown.

278

Chapter 14: Visual Programming with the Display List

You can also swap two sibling display objects, leaving the rest of the depths intact. There are two
ways to accomplish this: swap two specific display objects, or swap whatever display objects happen
to occupy the two depths you provide.

stage.setChildIndex(apple, 0);
stage.setChildIndex(carrot, 1);
//now carrot is definitively on top of apple
stage.swapChildren(apple, carrot); //now apple is on top
stage.swapChildren(apple, carrot); //now carrot is back on top
//note that swapping again puts things the way they were
stage.swapChildrenAt(0, 1);
//I don’t know what was on top before, but now it’s on the bottom

It should be no surprise that here, too, the inputs must be valid children of the target, and all depths
must be valid.

Reparenting Display Objects

You can remove a child from one display object and add it to another. You’ve already learned all that’s
necessary to do so. Here you’ll find out how an apple looks with carrot sprouts:

carrot.removeChild(sprouts);
apple.addChild(sprouts);

Examining Display Lists

You can investigate the contents and organization of a display list. You can test whether one display
object contains another:

carrot.addChild(sprouts);
trace(carrot.contains(sprouts)); //true

You can find the depth of a display object:

trace(carrot.getChildIndex(sprouts)); //0

And you can retrieve child display objects by their depth or name:

carrot.name = "Beta Carrotine";
trace(stage.getChildByName("Beta Carrotine")); //[object Sprite]
trace(carrot.getChildAt(0) == sprouts); //true

Any display object can have a name, stored in the name property. Most developers only give dis-
play objects names when there is a specific reason to, instead manipulating the objects through their
references. Named display objects can be useful, though, when displaying graphics created in Flash
Professional.

279

Part III: The Display List

Display Object Classes
There are multiple kinds of display objects, suited for different tasks, all deriving from
DisplayObject. This section looks at the purpose and specific abilities of these classes and
how they relate to each other. Figure 14-3 provides a class diagram of the display objects.

FIGURE 14-3

The display object classes

DisplayObject

EventDispatcher

InteractiveObject

DisplayObjectContainer

VideoBitmap

AVM1MovieShape

SimpleButton

TextField

Loader

StageMovieClip

Sprite

DisplayObject
The base class for all display objects, DisplayObject, provides the properties, methods, and events
that are common to all visual objects.

� Position and orientation — Through the properties x, y, and rotation. The coordinate sys-
tem of Flash Player puts the point (0, 0) at the top-left of the stage, with the positive x-axis
pointing to the right, and the positive y-axis pointing down. Rotation is measured clockwise in
degrees, and the rotation property accepts positive and negative numbers in any range. Each
display object has its own coordinate system, and position and orientation are always defined
relative to the parent coordinate system. More on this later in this chapter and in Chapter 34.

� Scale — Through the properties scaleX and scaleY. Scaling lets you stretch an object in one
or both directions. Scale is defined in terms of coefficients of the natural size of the object: 0
makes the object invisibly small, 1 is the natural size, 0.5 is half size, 2.0 is double size, and so
on. This, like all transformations, is relative to the parent’s coordinate system.

� Dimensions — The height and width properties define the display object’s dimensions in
pixels. You can resize the object by changing these values; changes here affect the scale as well.
There are more precise ways of getting information about a display object’s position and size,
especially in relation to other coordinate spaces than its parent’s.

� 3D properties — In Flash Player 10 and later, display objects may exist in 3D space. In this
case, the z and scaleZ properties are added; and rotationX, rotationY, and rotationZ
properties are used instead of a single rotation. Chapter 15, ‘‘Working in Three Dimensions,’’
dives deep into 3D.

280

Chapter 14: Visual Programming with the Display List

� Opacity — Controlled by the alpha property. Values are in the range 0 through 1, where 0 is
completely transparent and 1 is totally opaque. Has a cumulative effect on child display objects.

� Visibility — Through the Boolean visible property. If set to true, the display object (and all
its children) is visible.

� Name — As mentioned, display objects may be named with the name property.

� Blend mode — Flash Player draws a display object on top of the object it’s overlapping follow-
ing rules set out by the blend mode, set by a display object’s blendMode property, a string that
can be set to any of the static properties in the BlendMode class. Flash Player looks at every
pixel on the display object and chooses an output color based on the color of that pixel of the
display object and the color of the pixel underneath it (which may itself have been created by
several other display objects blending together). For example, BlendMode.ADD outputs the
sum of the color of the display object and everything behind it. This replicates additive colors
like light; adding many layers quickly brightens the cumulative color to pure white. These blend
modes might be familiar from Photoshop or other image-editing programs. A figure would
illustrate this concept well, but not in a black-and-white book. See the AS3LR for a list of avail-
able blend modes and examples of them in use. Of special note are BlendMode.ALPHA and
BlendMode.ERASE, which use the alpha channel of the display object to mask or reveal the
objects below. These act slightly different from a mask and may in some cases be an easier alter-
native to what would be a complex mask.

� Masking — Every display object may be masked by another object. The best way to understand
this is to look at an example (see Figure 14-4). The visible areas of the mask define which parts
of the display object appear; the mask ‘‘cuts out’’ the display object. Set a mask by assigning it
to the display object’s mask property (the mask itself is not visible while it is being used as a
mask). Stop masking by setting mask to null.

FIGURE 14-4

Masking a display object

Shape

Mask

� Filters — Any number of filters may be applied to any display object. These are defined by the
filters property, an Array of filter objects. The filters are applied in the order found in the
array. Filters are covered in depth in Chapter 37, ‘‘Applying Filters.’’

� Scale-9 — Display objects that have vector shapes can be configured to scale like a frame
around a picture: the center scales normally, the top and bottom of the frame scale only
horizontally, the left and right sides of the frame scale only vertically, and the corners of the
frame stay the same size. This lets you design custom edges that distort predictably as the
display object is scaled, for example, to retain nicely shaped corners of a button. You can set

281

Part III: The Display List

this up by assigning a Rectangle describing the center cut to the scale9Grid property of a
DisplayObject. Learn more about Rectangle in the section ‘‘Geometry Classes.’’

� References — DisplayObject defines references to the display object’s stage, parent, and
root. These are all read-only and may be undefined if the display object is not in the display
list of these associated objects.

� Mouse position — The mouseX and mouseY read-only properties give access to the position
of the mouse cursor in relation to the display object, regardless of whether this display object is
interactive or has mouse listeners attached.

� Intersection testing — You can see if two objects overlap by passing the second object to the
first object’s hitTestObject()method. Or you can test whether a point falls within a display
object with the hitTestPoint() method.

� Coordinate space conversion — The display object’s transformation matrix is available through
the transform property. You can transform points from the display object’s own coordi-
nate space to the global (stage) coordinate space and back with the globalToLocal() and
localToGlobal() methods and their 3D counterparts. Examine how the display object
appears in other coordinate spaces by projecting it with the getBounds() and getRect()
methods.

� Added and removed events — All display objects broadcast Event.ADDED_TO_STAGE and
Event.REMOVED_FROM_STAGE events when added and removed to the stage or any display
list on the stage.

� Timing — All display objects broadcast Event.ENTER_FRAME events before every frame is
drawn, making them ideal timing beacons for animation. See more about time-based events in
Chapter 22, ‘‘Timers and Time-Driven Programming.’’

� Drawable — DisplayObject implements IBitmapDrawable, which means that the con-
tents of any display object may be captured as a bitmap, to be manipulated however you wish.
See how to do this in Chapter 36, ‘‘Programming Bitmap Graphics.’’

Phew! This is a huge list of capabilities. What that means for you as a developer is that all display
objects are quite capable, which gives you the freedom to create interesting visual expressions. The
fact that many of these capabilities are not reserved for specific kinds of display object but are avail-
able to all enables some of Flash’s most interesting features. For example, text may be drawn in 3D,
videos may be filtered, and vector animations may blend with their backgrounds using special blend
modes, and other such abominations are possible. Hey, you might even be able to do something
pretty, as well.

Now that I’ve gone to the trouble of describing it, I have to tell you that DisplayObject is an
abstract class. You can’t instantiate it. Although every display object you work with will be derived
from DisplayObject, not a single one will actually be a DisplayObject! Not to worry — they
will be even more talented. DisplayObject is important because it defines the behaviors that every
single display object shares. And in the object oriented world of ActionScript 3.0, having a single base
class for all display objects lets the API — and code you write — use display objects polymorphically.
Many methods that use display objects accept parameters of type DisplayObject, although you will
always pass in a subclass of DisplayObject instead. This way, any display class is an acceptable
parameter.

Instead of DisplayObject, use a concrete subclass like Bitmap, Shape, or Video.

282

Chapter 14: Visual Programming with the Display List

InteractiveObject
Classes that derive from DisplayObject progressively add on related groups of functionality. The
first of these descendants is InteractiveObject. An InteractiveObject is a display object
that reacts to user input from the mouse and keyboard. It adds to DisplayObject events and prop-
erties useful for an interactive object:

� mouseEnabled, tabEnabled, doubleClickEnabled — Boolean properties that allow
certain kinds of interactions on this display object.

� tabIndex, focusRect — Properties defining tab order and the keyboard focus style, for
keyboard-enabled interaction.

� contextMenu — Allows you to define a custom context menu for the display object when it is
right-clicked.

� MouseEvent.CLICK, MouseEvent.DOUBLE_CLICK, MouseEvent.MOUSE_MOVE,
MouseEvent.MOUSE_OVER, MouseEvent.MOUSE_OUT, MouseEvent.MOUSE_DOWN,
MouseEvent.MOUSE_UP, MouseEvent.MOUSE_WHEEL— Mouse events.

� KeyboardEvent.KEY_DOWN, KeyboardEvent.KEY_UP — Keyboard events.

� FocusEvent.FOCUS_OUT, FocusEvent.FOCUS_IN,
FocusEvent.MOUSE_FOCUS_CHANGE, FocusEvent.KEY_FOCUS_CHANGE— Focus
events.

� Event.CUT, Event.COPY, Event.PASTE, Event.SELECT_ALL, Event.CLEAR —
Interactive text context menu events, available in Flash Player 10 and later.

� TextEvent.TEXT_INPUT — When text is input.

These properties and events are covered in Chapter 21, ‘‘Interactivity with Mouse and Key-
board Events.’’ Needless to say, when combined they make it possible to interact with the user.
InteractiveObject is also an abstract class. Instead of using it, you would use a concrete subclass
like SimpleButton or TextField.

DisplayObjectContainer
DisplayObjectContainer extends InteractiveObject. A basic DisplayObject can’t con-
tain nested display objects. DisplayObjectContainer adds this capability. It adds the methods
used in ‘‘Introducing Display Lists and Display Objects’’ to add, remove, reorder, and find children,
including:

� addChild(), addChildAt() — Adding child display objects.

� removeChild(), removeChildAt() — Removing child display objects.

� contains — Testing for parentship.

� getChildAt(), getChildByName() — Retrieving child display objects by depth or name.

� setChildIndex(), getChildIndex(), swapChildren(), swapChildrenAt() —
Manipulating child depths.

� numChildren — Property (read-only) reporting the total number of child display objects.

� mouseChildren, tabChildren — Allows or denies certain interactive events to pass
through to children. Covered in Chapter 21.

� getObjectsUnderPoint()— Retrieves display objects that intersect a given point. Useful
for hit detection.

283

Part III: The Display List

Only use DisplayObjectContainer classes when you need the ability to nest child display
objects. DisplayObjectContainer is also an abstract class. Use its concrete subclasses like
Sprite, Loader, or TextLine instead.

Shape
Perhaps the most lightweight display class, Shape is a class used for drawing vector shapes. It extends
DisplayObject, so it is not interactive and cannot nest children. It provides a Graphics object to
draw programmatically into. Shape is covered in Chapter 35.

Bitmap
Bitmap is a lightweight class that displays bitmap data, like data loaded from an image file, captured
from an IBitmapDrawable source, or generated programmatically in a BitmapData instance. Most
of the interesting bitmap manipulation is done by the BitmapData class instead. Bitmap holds
a reference to a BitpmapData object, providing it a means to be displayed in the display list. It
extends DisplayObject, so it is not interactive and cannot nest children. Bitmap is covered in
Chapter 36.

Video
The Video class provides video content a pathway to the display list. Like Bitmap acts as a container
for BitmapData, Video is mostly a container to which you attach a NetConnection or a Camera.
It extends DisplayObject, so it is not interactive and cannot nest children. Video is covered in
Chapter 32, ‘‘Playing Video.’’

AVM1Movie
The AVM1Movie class wraps SWFs that were compiled for the AVM1, using ActionScript 1.0 or 2.0,
or targeting Flash Player versions 8 and lower. You can place AVM1 SWFs inside your ActionScript
3.0, AVM2 content, and they will display however and wherever you place the AVM1Movie display
object. The AVM1Movie class can’t be instantiated by user code; one is automatically created by a
Loader when an AVM1 SWF is loaded. Although they remain interactive in the same ways that
the original SWF was interactive, you can’t interface with their code or movie clips; AVM1Movie
extends DisplayObject, so as far as ActionScript 3.0 is concerned, it has no children and can’t
interact.

SimpleButton
SimpleButton is, unsurprisingly, Flash Player’s simple button class. As an InteractiveObject
subclass, it supports interactive events, but it can’t contain children. However, it can use up to four
DisplayObjects as the different graphical states of a button. These states are identical to the states
you define on the timeline in Flash Professional for a Button symbol.

� upState, downState, overState, hitTestState — The four DisplayObjects used
as button states. The SimpleButton switches between them seamlessly as the mouse inter-
acts with it, showing the upState normally, the overState while the mouse is hovered over
the button, and the downState while the mouse button is depressed over the button. The

284

Chapter 14: Visual Programming with the Display List

hitTestState is a display object that defines the active area of the button. It won’t be shown,
but wherever it is filled, the mouse triggers the button. If omitted, the shape of the current state
is used instead, which usually suffices.

If you want a button that reacts with the hand cursor, you can use a SimpleButton, or alternatively,
use a Sprite with buttonMode set to true. This is shown in Chapter 21.

TextField
The core class for putting text on the screen — without using the Flash Text Engine — is
TextField. It is a subclass of InteractiveObject, so it can’t contain children. It defines a host
of properties and methods for displaying text, which are covered in Chapter 17, ‘‘Text, Styles, and
Fonts.’’

Sprite
One of the true workhorses of the display list, Sprite objects are used ceaselessly in examples in this
book. Sprite is the concrete implementation of DisplayObjectContainer; it is interactive and
can contain children. Furthermore, it adds these capabilities:

� graphics — A Graphics object, allowing you to draw vectors into a Sprite just like a
Shape. Shown in Chapter 34.

� startDrag(), stopDrag(), dropTarget — Allowing you to easily create drag-and-drop
behavior.

� buttonMode, useHandCursor, hitArea — Properties that make the Sprite act more like
a button.

The one thing that Sprite doesn’t do is contain multiple frames, for timeline animations produced
in Flash Professional. For that, there exists another class.

MovieClip
The concrete display class MovieClip actually extends Sprite, so it inherits not just interactive and
nesting behavior, but the abilities of a Sprite, listed earlier. It adds to this a timeline and timeline
controls:

� currentFrame, framesLoaded, totalFrames — Read-only properties that give you
information about the frames.

� currentLabel, currentLabels, currentFrameLabel — Read-only properties that
provide information about the frame labels in the MovieClip.

� play(), stop() — Methods that control the playhead.

� nextFrame(), prevFrame(), gotoAndPlay(), gotoAndStop() — Methods that con-
trol the playhead by frames or frame labels.

� scenes, currentScene, nextScene(), prevScene() — Properties and methods that
access and control the scenes of the animation.

Use a MovieClip when you need to have access to timeline animations. Otherwise, stick with
a Sprite. You can, in fact, create library items in Flash Professional that are Sprites instead
of MovieClips. Chapter 16, ‘‘Working with DisplayObjects in Flash Professional,’’ shows
you how.

285

Part III: The Display List

Loader
Covered in Chapter 27, ‘‘Networking Basics and Flash Player Security,’’ Loader is a display object
that can go off on its own and retrieve images and SWFs from the web, displaying them when they are
finished loading. It extends DisplayObjectContainer, but typically you use only its one child,
content.

Stage
Possibly the most important concrete display class, every Flash application has an instance of the
Stage class. Stage extends DisplayObjectContainer, because of course it needs to be able
to host children. Adding a display object to the stage is the only way to get it to appear.

Although Stage is a concrete class, you can’t create your own instances of it. You must access
it through the stage property of any DisplayObject attached to the stage. Furthermore,
Stage is special in that many of the properties inherited from DisplayObjectContainer,
InteractiveObject, and DisplayObject are not applicable or not mutable, and although they
are still defined, they raise an error if you try to set a value to them, such as x, y, and rotation,
because the stage is the original coordinate system (all coordinates are relative to the stage, and you’re
not allowed to change the global frame of reference). For a full list of the inapplicable properties, see
the AS3LR.

The stage is special in lots of other ways. The capabilities of Stage are too important to gloss over,
so I’ll cover them in depth below.

Resizing

The size of the stage can determine how to draw the interface of your application. For web sites, it’s a
common technique to embed a SWF to fill up the browser, leaving the resize logic up to ActionScript
to handle browser windows of different sizes. Some elements might stay near the top, some might
center vertically, and others may hide or show or scale depending on the available room. The size of
the stage is an important property.

Although Stage exposes width and height properties like any DisplayObject, these measure
the size of the content that appears on stage, not the available size of the stage. This can be a common
slipup. Instead, the stageWidth and stageHeight properties report the size available to Flash
Player. If the size of the stage changes, it broadcasts an Event.RESIZE event. Learn about events in
Chapter 20, ‘‘Events and the Event Flow.’’

If you want to take control of how your interface resizes, make sure that the stage’s scale mode is set
not to scale. You can set this through embed properties — see Chapter 42, ‘‘Deploying Flash on the
Web’’ — or using a property of Stage described next.

Changing SWF Properties

Many of the properties set during SWF publishing, or by embed properties, may be set or overridden
by the Stage object.

� frameRate — View or change the application’s frame rate (how rapidly the screen attempts to
redraw). Yes, you can change the frame rate at runtime!

� quality — The quality at which Flash Player renders graphics. This affects anti-aliasing of
fonts and vector graphics, smoothing of scaled bitmaps, and video. It also affects CPU utilization
and potentially the effective frame rate if the CPU can’t render frames at the requested quality

286

Chapter 14: Visual Programming with the Display List

and requested rate. Changes in Flash Player over time affect render quality as well, for example,
Flash Player 9.0.115 and later use mipmapping (see http://bit.ly/using-mipmapping)
to scale down bitmaps with high quality even at lower quality settings. Flash Player 10 and
later use a new text engine that anti-aliases device fonts. Set quality to a constant defined
by StageQuality, like LOW, MEDIUM, HIGH, or BEST. See the AS3LR for details on how
these impact rendering. You should aim for good performance while the quality is set to
StageQuality.HIGH, and only resort to dropping quality temporarily when it will be
noticed less, like during a fast transition. Of course, you can also use StageQuality.LOW as
a stylistic choice (see http://wefail.com/, Flash remakes of retro games).

� scaleMode — How the stage scales as Flash Player resizes. Set to a constant defined by
StageScaleMode. Set to StageScaleMode.NO_SCALE to handle resizing manually in
ActionScript. Other values automatically scale the entire stage and all its contents, which rarely
produces a good effect.

� align — How the stage is anchored as it grows if Flash Player is resized. Important if
the scaleMode is StageScaleMode.NO_SCALE. You can anchor the stage to any
of the four corners, or the middle of any of the four sides, using constants defined by
StageAlign. If you’re handling resizes in ActionScript, it’s typical to align the stage to
StageAlign.TOP_LEFT, because that ensures that the origin (0, 0) is always at the top left of
Flash Player.

� wmodeGPU — In Flash Player 10.0.32 and later, this read-only Boolean flag indicates whether
the GPU is performing compositing. This property will be true only if GPU compositing is
actively in use: if you’ve indicated that the GPU wmode should be used in your embed param-
eters or at SWF publish time, and if it is supported by the hardware Flash Player is running
on. When this is true, you may be able to crank up the graphics without dropping frame rate.
If you have this graphics-intensive of an application, you would do well to keep track of other
performance metrics while you adjust.

Going Full-Screen

The Stage object is used to bring Flash Player into full-screen mode. In this mode, all or part of
the stage is used to fill the entire screen (or one of the screens on a multiscreen device). The embed-
ding parameter allowFullScreen must be set to allow the Flash Player plug-in to go full screen.
Full-screen mode can only be activated by user input, for example, as a reaction to a click or key
press.

Version
FP9. Full-screen display is supported in Flash Player 9.0.28 and later, except on Linux. Full-screen display in
Linux is supported in Flash Player 9.0.115 and later.

In Flash Player 9, no keyboard input is accepted in full-screen mode. In Flash Player 10, tab, spacebar, and the
arrow keys are accepted. �

Once in full-screen mode, Flash Player displays a nonconfigurable prompt that tells the user how to
exit full-screen mode with the Escape key. Keyboard access is limited or prohibited (see Note). Graph-
ics hardware may be used to scale up the stage.

To switch to and from full-screen mode, set the displayState parameter of Stage. Acceptable
values are StageDisplayState.FULL_SCREEN and StageDisplayState.NORMAL. When the
display state changes, Stage dispatches a FullScreenEvent.FULL_SCREEN event that you can
use to redraw the interface for full-screen mode.

287

Part III: The Display List

Version
FP9. Hardware scaling of a portion of the stage, and reporting of the screen dimensions, is available in Flash
Player 9.0.115 and later. �

By default, when going full screen, the stage is resized to the entire size of the target screen. In Flash
Player 9.0.115 and later, the fullScreenHeight and fullScreenWidth properties can give you
this value before full-screen mode is engaged; otherwise, you can see what the stageWidth and
stageHeight are resized to.

In Flash Player 9.0.115 and later, you can also choose to only scale up a portion of the stage. This
can result in drastic performance gains, because modern screens can be very large — often larger than
your application needs (think 2560×1600 pixels) — and redrawing the stage at full resolution at that
size can put a lot of stress on the CPU. Instead, you can choose the dimensions of the active area,
and they will be scaled up in hardware to fit the screen. The scaling may be evident, but the smooth
frame rate you get back is worth the trade-off. Set the area of the stage to be displayed by setting its
fullScreenSourceRect to the active area of your stage.

Device Orientation

When used on supported devices with accelerometers, such as mobile phones, Flash Player lets you
know how the device is oriented, and gives you control over the screen’s orientation. You can use
this to write an app that can rotate to suit the user’s preferred format, or to force the user into the
orientation that works best for your application (for instance, if the device is taller than it is wide, you
might want to go into a rotated orientation to play a widescreen movie). Orientation can be changed
at any time, so you’re not locked into a single orientation, and you can even support upside-down
orientations.

Version
FP10.1. Orientation support is available in Flash Player 10.1 and higher, and is only available on some devices,
primarily smartphones. �

Possible orientations are denoted by string constants of the StageOrientation class:

� StageOrientation.DEFAULT

� StageOrientation.ROTATED_RIGHT

� StageOrientation.ROTATED_LEFT

� StageOrientation.UPSIDE_DOWN

� StageOrientation.UNDEFINED

The orientation is UNDEFINED when the device can’t or hasn’t yet reported its orientation.

You can get (but not set) the current orientation of the device and the stage with these Stage instance
properties:

� orientation — The current orientation of the screen.

� deviceOrientation — The current orientation of the physical device.

Because the screen’s rotation can be set independently of the device’s, these two don’t need to be the
same. However, if your intent is to always match the device’s orientation, you can easily do so by
setting autoOrients to true.

288

Chapter 14: Visual Programming with the Display List

You can find out whenever the user rotates the device by subscribing to the Stage’s
StageOrientationEvent.ORIENTATION_CHANGING event. The event object contains properties
beforeOrientation and afterOrientation which tell you how the orientation is changing.
Learn more about event handling in Chapter 20.

Set the screen’s orientation — whether in response to the user rotating the device or manually — by
calling setOrientation() on the Stage, passing in the new desired orientation.

Event Source and Focus Manager

Interactive events are covered in Chapter 21, where you will see that most interactive events find their
way to the stage. So you can use Stage to capture all keyboard and mouse events.

The stage is also used to control the focused object, that is, the object that receives untargeted user
input like keystrokes. I’ll cover how to set and retrieve focus in Chapter 21.

Color Correction

The stage can be used to control whether color correction is applied in Flash Player, ensuring accu-
rate reproduction of colors. I’ll cover color correction in Chapter 41, ‘‘Globalization, Accessibility, and
Color Correction.’’

Geometry Classes
When working with the display list, you will necessarily encounter a lot of geometry. The Flash Player
API provides some geometry classes. The two most common are covered here, and their 3D equiva-
lents and the Transform class are covered in Chapter 33.

Point
A Point represents a position in 2D space. It has x and y properties of type Number. Flash Player’s
display list API sometimes uses x and y parameters and sometimes uses Points, but fortunately both
representations of a point are simple. When you use Point, however, you can take advantage of its
built-in geometry operations.

Creating, modifying, and viewing a Point are simple, as Example 14-1 shows.

EXAMPLE 14-1 http://actionscriptbible.com/ch14/ex1

Working with Points

package {
import com.actionscriptbible.Example;
import flash.geom.Point;
public class ch14ex1 extends Example {
public function ch14ex1() {

var p1:Point = new Point();
trace(p1); //(x=0, y=0)

continued

289

Part III: The Display List

EXAMPLE 14-1 (continued)

p1.x = 1;
p1.y = 1;
trace(p1); //(x=1, y=1);
var p2:Point = new Point(4, 3);
trace(p2); //(x=4, y=3)
trace(p2.length); //5 (the hypotenuse of a right triangle with edges 3,4)
var p3:Point = p1.add(p2);
trace(p3); //(x=5, y=4)

}
}

}

As you can see, Point’stoString() method is more useful than most. The example also demon-
strates the length accessor, which returns the distance between (0, 0) and the point — or the length
of the Point as a vector, but you’ll read about Points as vectors in Chapter 33.

Point defines some basic methods to manipulate points:

� add(p2:Point), subtract(p2:Point) — Add or subtract two points by adding their x
and y values, returning a third Point.

� offset(dx:Number, dy:Number) — Shifts the Point by a specified amount without
returning a modified value.

� equals(p2:Point) — Tests if two points are equal.

Point also includes a few static methods for manipulating Point instances:

� distance(p1:Point, p2:Point) — Returns the distance between the points p1 and p2.

� interpolate(p1:Point, p2:Point, t:Number) — Generates a point between the
points, faded between p1 and p2 by the t argument. Returns p1 when t is 0, p2 when t is 1,
their exact midpoint when t is 0.5, and so on.

There are additional Point methods that can prove useful when manipulating positions.

Rectangle
When defining areas, the Rectangle class is indispensable. It defines a rectangle by its width, height,
and the position of its top-left corner. However, you can access and modify the rectangle by whichever
attributes are most useful at the given moment:

� left, x — The x-coordinate of the left edge of the rectangle

� top, y — The y-coordinate of the top edge of the rectangle

� bottom — The y-coordinate of the bottom edge of the rectangle

� right — The x-coordinate of the right edge of the rectangle

� topLeft, bottomRight — Points that define the top-left and bottom-right corners
of the rectangle

290

Chapter 14: Visual Programming with the Display List

� width, height — The width and height of the rectangle

� size — A Point that gives the width and height of the rectangle as (width, height)

Rectangles are used frequently for bounding boxes, the smallest axis-aligned rectangle that contains a
display object. This representation greatly simplifies what might be a complex shape into something
much more flexible, at the cost of accuracy. For example, testing whether two complex shapes overlap
mathematically can be difficult, but testing whether their bounding boxes overlap is incredibly simple.
Figure 14-5 shows some examples of bounding boxes.

FIGURE 14-5

Complex display objects and their bounding boxes

These methods of Rectangle provide useful intersection and containment tests:

� contains(x:Number, y:Number), containsPoint(point:Point)— Whether the
Rectangle contains the point specified

� containsRect(rect:Rectangle)— Whether the Rectangle fully encloses rect

� intersects(rect:Rectangle)— Whether the Rectangle overlaps rect

� equals(rect:Rectangle)— Whether this Rectangle has the same location and dimen-
sions as rect

Rectangle also supports Boolean geometric operations union and intersection. To look at the
bounding box of a set of objects, you might union() their bounding boxes. Or to estimate the
area that two objects intersect, you might intersection() their bounding boxes. These methods
return a new Rectangle that is the union or intersection of the subject Rectangle and the passed
Rectangle.

Finally, you can shift and inflate the Rectangle incrementally. These methods modify the
Rectangle instance in place and return nothing.

� offset(dx:Number, dy:Number), offsetPoint(point:Point)— Shifts the
Rectangle’s position (without modifying its size) by the specified amount.

� inflate(dx:Number, dy:Number), inflatePoint(point:Point)— Increases the
size of the Rectangle by the specified amount. Keeps the rectangle centered. Its center point
does not change, but its position does. Its position is measured from the top-left corner, which
moves away from the center, as does the bottom-right corner.

291

Part III: The Display List

To get the bounding box of a DisplayObject, call its getBounds() method, passing in the dis-
play object you’d like the bounding box to be relative to. Typically, you’ll find the bounding box
relative to the DisplayObject’s parent, because this is how its position, width, height, and rotation
are already defined.

var carrotBounds:Rectangle = carrot.getBounds(carrot.parent);

Or, if the code is running in the context of the DisplayObjectContainer that contains the dis-
play object you’re measuring, you can just pass this as the coordinate space:

var carrotBounds:Rectangle = carrot.getBounds(this);

Sometimes you’ll want to see how a deeply nested display object appears relative to the stage in the
global coordinate system:

var sproutsRect:Rectangle = sprouts.getBounds(stage);
if (sproutsRect.contains(stage.mouseX, stage.mouseY)) {
trace("you found the sprouts");

}

Know that there are better ways to determine if the mouse is over a display object. This merely
demonstrates how to use a bounding box. You’ll notice that the code compares the mouse position
relative to the stage with the sprouts’ bounding box relative to the stage. For a point comparison to
be meaningful, you have to be talking about two points in the same coordinate system.

Putting the Display List to Use
This chapter has dedicated a lot of space to providing a clear overview of the display list and display
objects. But it hasn’t been too hands-on with code yet. There’s just so much you can do with the dis-
play list that an exhaustive set of examples would be impossible. Instead, this chapter focuses on a
few common tasks with the display list. In writing interesting examples, I’ve had to use topics not yet
covered, like vector drawing and events, but the focus will be on use of the display list.

Drag-and-Drop, Hit Testing
Let’s combine drag-and-drop behavior with hit testing. In Example 14-2, you’ll drag visual ‘‘files’’ into
a ‘‘delete bin,’’ which will remove them from the display list.

EXAMPLE 14-2 http://actionscriptbible.com/ch14/ex2

Dragging and Dropping with DisplayList

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.filters.DropShadowFilter;

292

Chapter 14: Visual Programming with the Display List

public class ch14ex2 extends Sprite {
protected const NUM_FILES:int = 10;
protected var deleteBin:Sprite;
public function ch14ex2() {
deleteBin = makeDeleteBin();
//the delete bin should stay at the bottom
addChildAt(deleteBin, 0);
deleteBin.x = 15;
deleteBin.y = 15;

for (var i:int = 0; i < NUM_FILES; i++) {
var file:Sprite = makeFile();
addChild(file);
//randomize position by looking at available stage size
file.x = Math.random() * (stage.stageWidth - file.width);
file.y = Math.random() * (stage.stageHeight - file.height);
//Sprites are InteractiveObjects
file.addEventListener(MouseEvent.MOUSE_DOWN, onFileMouseDown);
file.addEventListener(MouseEvent.MOUSE_UP, onFileMouseUp);

}
}
protected function onFileMouseDown(event:MouseEvent):void {
var file:Sprite = Sprite(event.target);
file.startDrag(); //Sprites have simple drag methods
//moving is relative change in position
file.x -= 2;
file.y -= 2;
//all DisplayObjects support filters
file.filters = [new DropShadowFilter(2, 45, 0, 0.2)];
setChildIndex(file, numChildren-1); //set child depth to the top

}
protected function onFileMouseUp(event:MouseEvent):void {
var file:Sprite = Sprite(event.target);
file.stopDrag(); //Sprites have simple drag methods
file.x += 2;
file.y += 2;
file.filters = [];
//see if it’s over the delete bin
if (deleteBin.hitTestObject(file)) {
//and if so, remove from display list
removeChild(file);

}
}
protected function makeDeleteBin():Sprite {
var s:Sprite = new Sprite();
//Sprites support vector drawing
s.graphics.beginFill(0xff0000);
s.graphics.drawRoundRect(0, 0, 55, 70, 16);
s.graphics.endFill();
return s;

}
continued

293

Part III: The Display List

EXAMPLE 14-2 (continued)

protected function makeFile():Sprite {
var s:Sprite = new Sprite();
//Sprites support vector drawing
s.graphics.beginFill(0xc0c0c0);
s.graphics.lineStyle(0, 0x808080);
s.graphics.drawRect(0, 0, 8.5, 11);
s.graphics.endFill();
s.scaleX = s.scaleY = 3; //DisplayObjects support scaling
s.buttonMode = true; //Sprites can act like buttons
return s;

}
}

}

This example shows not only drag-and-drop and hit testing, but vector drawing, interactive events,
filters, and display list adding, removal, and sorting.

Nesting and Cumulative Transformations
In Example 14-3, you’ll create a heavily nested display list, in which each link in a chain is the child
of the link to its left. When you apply a rotation to only the first link, the chain swivels but remains
straight. However, when you apply the same rotation to every link, the chain progressively bends into
a circle. This is because each display object is affected by the transformations of its parent.

EXAMPLE 14-3 http://actionscriptbible.com/ch14/ex3

Transforms with Nested DisplayLists

package {
import flash.display.CapsStyle;
import flash.display.Sprite;
import flash.events.MouseEvent;

public class ch14ex3 extends Sprite {
protected const NUM_SEGMENTS:int = 10;
protected var segmentRotation:Number = 0;
protected var allSegments:Array;
public function ch14ex3() {
allSegments = new Array();
var segmentLength:Number = stage.stageWidth / NUM_SEGMENTS;
var segment:Sprite = this;
segment.y = stage.stageHeight/2;
for (var i:int = 0; i < NUM_SEGMENTS; i++) {
var childSegment:Sprite = makeSegment(segmentLength);
segment.addChild(childSegment);
childSegment.x = segmentLength;

294

Chapter 14: Visual Programming with the Display List

allSegments.push(childSegment);
//every segment gets added as a child of the last one
segment = childSegment;

}
stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

}
protected function onMouseMove(event:MouseEvent):void {
var segmentRotation:Number =
360/NUM_SEGMENTS * 2*((stage.mouseY / stage.stageHeight) - 0.5);

for each (var segment:Sprite in allSegments) {
//all rotation values are set to the same number,
//yet the line curls inward progressively!
//this is because every rotation affects all its children.
segment.rotation = segmentRotation;

}
}
protected function makeSegment(length:Number):Sprite {
var s:Sprite = new Sprite();
s.graphics.lineStyle(16, 0x4F7302, 1, false, null, CapsStyle.NONE);
s.graphics.lineTo(length, 0);
return s;

}
}

}

Full-Screen and Stage Resizing
Example 14-4 shows how to resize the interface when the stage size changes. For a drastic change in
stage size, the application will go full screen. Remember that the allowFullScreen embed parame-
ter must be set to enable full-screen mode on a SWF running in a browser.

EXAMPLE 14-4 http://actionscriptbible.com/ch14/ex4

Full-Screen Stage

package {
import flash.display.*;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.geom.Rectangle;
import flash.text.TextField;

public class ch14ex4 extends Sprite {
protected const KEEP_LAST_N:int = 15;
protected var fullScreenButton:TextField;
public function ch14ex4() {

stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

continued

295

Part III: The Display List

EXAMPLE 14-4 (continued)

fullScreenButton = new TextField();
fullScreenButton.text = "full screen";
fullScreenButton.selectable = false;
fullScreenButton.background = true;
fullScreenButton.backgroundColor = 0xc0c0c0;
fullScreenButton.border = true;
fullScreenButton.borderColor = 0;
fullScreenButton.width = 55;
fullScreenButton.height = 18;
fullScreenButton.x = fullScreenButton.y = 25;
addChild(fullScreenButton);
fullScreenButton.addEventListener(MouseEvent.CLICK, onFullScreenClick);

stage.addEventListener(Event.RESIZE, onStageResize);
onStageResize(null);

}
protected function onStageResize(event:Event):void {
var stageSize:Rectangle =
new Rectangle(0, 0, stage.stageWidth, stage.stageHeight);

//create a margin so you can see the indicator
stageSize.inflate(-10, -10);

//add an indicator for the screen size
var stageSizeIndicator:Sprite = new Sprite();
stageSizeIndicator.graphics.lineStyle(0, Math.random() * 0xffffff);
stageSizeIndicator.graphics.drawRect(
stageSize.x, stageSize.y, stageSize.width, stageSize.height);

var label:TextField = new TextField();
label.x = stageSize.right - 65;
label.y = stageSize.bottom - 15;
label.text = stageSize.width + " x " + stageSize.height;
stageSizeIndicator.addChild(label);
addChildAt(stageSizeIndicator, 0);

if (numChildren > KEEP_LAST_N) {
removeChildAt(numChildren - 2); //numChildren - 1 is the button.

}
}
protected function onFullScreenClick(event:MouseEvent):void {
if (stage.displayState == StageDisplayState.NORMAL) {
stage.displayState = StageDisplayState.FULL_SCREEN;

} else {
stage.displayState = StageDisplayState.NORMAL;

}
}

}
}

This example also shows simple nesting, addition to and removal from the display list, and text fields.

296

Chapter 14: Visual Programming with the Display List

Rendering and Performance
A great deal of the time spent running your program in Flash Player is used to draw the stage on-
screen. Depending on your hardware, version of Flash Player, and embedding parameters, some of
the work may be offloaded to a graphics coprocessor, but even so much of the preparation must take
place on the CPU. Just some knowledge of Flash Player’s rendering pipeline can have a big impact on
how fast your Flash application runs, so some basic guidelines are presented here.

Stage Size and Dirty Rectangles
One of the simplest and most obvious rules is that the more area that Flash Player has to redraw, the
more time it will take to do so. You should watch out for this especially if you allow your application
to be drawn full screen without a fullScreenSourceRect.

Flash Player’s renderer uses dirty rectangles to optimize performance. Flash Player attempts to redraw
only portions of the screen that have changed since the last frame. (These are marked as dirty.) So a
change that affects the whole screen takes much longer to render than a comparable change to a lim-
ited area of the screen. For this reason, it’s important to remove display objects from the display list
when they are not visible. If you fade something out, be sure to set its visible property to false,
or better yet, remove it from the display list entirely. A display object animating while hidden, espe-
cially when it is large, needlessly eats up CPU time. You can view the dirty rectangles in debugging
builds of Flash Player by choosing Show Redraw Regions in the context menu.

Number of Display Objects
Another simple rule of thumb is that the more display objects you have on stage, the longer a frame
takes to render. In reality, the complexity of these display objects determines performance more than
their numbers. In particle systems and other applications with high DisplayObject counts, culling
particles as soon as they become invisible or leave the screen can keep the effects in check. First and
foremost, though, make sure the display objects are as simple as possible.

Alpha, Blend Modes, Masking, and Filters
Leaving large areas of a display object filled but transparent forces Flash Player to composite pixels
that don’t actually appear. Sometimes it can’t be avoided, but where it can, you should minimize
transparent areas. Also, fully opaque display objects render faster than those with partial transparency
using the alpha property.

Blend modes should perform comparably overall, except for Pixel Bender blend modes, and the
BlendMode.LAYER mode, which is discussed later in the section.

Vector masks must be rasterized, so keep them simple. If a mask must be made large to achieve an
effect, consider the BlendMode.REVEAL blend mode instead.

Filters are computationally expensive and sensitive to the size of the display object being filtered.
Thankfully, you can control the quality of most BitmapFilters. Make sure you strike a balance
between the desired quality and the rendering speed, and when possible, avoid applying filters to large
objects. See Chapter 36 for more about filters.

297

Part III: The Display List

Text
The anti-aliasing type used on dynamic text fields, covered in Chapter 17, has a huge impact on how
fast they render. In Flash Player 10 and later, bitmap text is rendered by the host OS and might alle-
viate some of the load on Flash Player’s rendering pipeline, but using bitmap text is not always an
option. Be aware that a display object might be costly to render not just if it is text, but if it contains
text nested inside it.

Bitmaps, Vectors, and Bitmap Caching
Much of Flash Player’s early success is attributable to its ability to render vector graphics well. Vector
graphics have the advantage of being highly compressible and retaining quality when they are scaled
up. This quality, however, comes at a high cost to the CPU, because you must rasterize them, or turn
them into pixels, to draw them on the screen. If you compare drawing a bitmap and a vector graphic
at their native size and orientation, the bitmap will win in speed, excepting perhaps simple shapes.

The computational expense incurred by rasterizing vector graphics doesn’t invalidate their other
advantages, however. Flash Player attempts to give you the best of both worlds with an optimization.
When you flag a display object to use bitmap caching — by setting its cacheAsBitmap property
to true — Flash Player rasterizes it, including any vectors it may contain, and saves the rasterized
bitmap in memory for the next time it needs to draw the display object. The next time, instead of
rasterizing the whole thing again, Flash Player can use the cached version, skipping the rasterization.
Now, this sounds good and dandy, but there are a number of caveats that boil down to the fact that
bitmap caching is only desirable in certain cases, so for the love of all that is good, don’t go turning
on cacheAsBitmap on every DisplayObject you see. To wit,

� The cached bitmap must be rasterized afresh any time the display object changes. If this is every
frame, bitmap caching actually hurts you.

� The cached bitmap must be rasterized afresh any time the display object is scaled or rotated.
Simply scaling or rotating the bitmap won’t always produce an image comparable in quality to
the vectors rasterized at the new scale and rotation, so Flash Player chooses quality and invali-
dates the cached bitmap. Simply moving the display object is fine.

� The cached bitmap must live in memory, so using it increases your memory requirements. Keep
an eye on this.

Flash Player’s bitmap caching only helps if you have large or complex vectors that don’t change
internally, scale, or rotate. In other cases, using a bitmap representation may still speed up perfor-
mance a terrific amount, but you have to provide your own bitmap caching method rather than use
cacheAsBitmap.

A number of operations automatically generate intermediate bitmaps of your display objects. All filters
operate on bitmaps. 3D operations in Flash Player 10 and later use a rasterized version of the display
object as a 2D texture. And the BlendMode.LAYER blend mode flattens the entire display object into
a bitmap before compositing it. Use this blend mode when, for example, fading out an entire tree of
display objects at once. Instead of applying the inherited alpha value down the display lists, it renders
the display object down to a bitmap and applies the alpha value to that instead.

One last word on vectors: gradient fills are slow, and imported artwork may be more complex than
necessary. Try optimizing the shapes in Flash Professional or a vector art package.

298

Chapter 14: Visual Programming with the Display List

More on Rendering
While you’re just getting started with the display list, don’t waste time thinking about how to optimize
your graphics. Save that for your first high-performance web site or game. Once you’re ready to do
serious graphics coding, you’ll find a lot of useful information in Part VIII, ‘‘Graphics Programming
and Animation.’’

Summary

� The display list is Flash Player’s API for compositing graphics.

� Display lists are trees of display objects, with the stage at the root.

� Besides adding display objects to and removing them from a display list, you can change their
depth and reparent them.

� Various display classes provide different sets of functionality for different purposes.

� The base display class is DisplayObject.

� InteractiveObject adds interactivity, and DisplayObjectContainer adds the ability
to nest children.

� In your own code you must use concrete display classes that extend these base classes, like
Shape, Sprite, and MovieClip.

� Flash Player provides geometry classes to simplify geometric programming.

299

Working in Three
Dimensions

FEATURED CLASSES

flash.display
.DisplayObject

flash.display.Stage

flash.geom.Vector3D

flash.geom
.PerspectiveProjection

F
lash Player 10 brings DisplayObject into the third dimension,
letting you make 3D compositions with just a few lines. Between Flash
Player 10’s native 3D capabilities and several good software 3D libraries

available, 3D has become a fixture of the Flash platform.

In this chapter, you’ll learn about Flash Player 10’s 3D capabilities and its
limitations. You’ll also learn the basic way to add 3D effects. There are additional
3D capabilities that support lower-level code and require more math; these
will be covered in Chapter 34, ‘‘Geometric and Color Transformations,’’ and in
Chapter 40, ‘‘Advanced 3D.’’ On the other hand, this chapter introduces 3D
concepts without too much of the mathematics and theory behind them. You
can get plenty of impressive 3D effects with the intuitive API covered here.

I’ll also introduce a few widely used ActionScript 3D libraries and compare their
features so that you can determine which approach is best for your project, and
know where to go for more information.

Version
FP10. This chapter covers features found in Flash Player 10 and later, with the
exception of any discussion of ActionScript 3D libraries, which may run in Flash
Player 9. �

Introducing 3D in ActionScript 3.0

Up to this point, you’ve seen the display list and Flash Player’s coordinate space
as flat; two-dimensional. Display objects can have a position, scale, rotation, and
even a stacking order, but they can’t escape the fact that they all exist on a flat
plane. Of course, when you think of it, your screen is a flat plane, and what you
think of as a 3D scene is really just a flat image rendered with the simulation of
depth. This trick of rendering is not new, having been incorporated by artists in
the 15th century; the trick is called perspective. Regardless of its age, Flash Player
only adopted this trick in version 10.0. And believe it or not, drawing ‘‘in three
dimensions’’ does come down to this one trick.

301

Part III: The Display List

As an interesting aside, there is one transformation of a display object that I didn’t mention earlier:
skew. Skew doesn’t have its own DisplayObject property like the ones I listed, but it can be added
in all versions of Flash Player using the display object’s transformation matrix (see Chapter 34), or
visually in Flash Professional. Given that you can create the illusion of 3D by drawing a scene in a
certain way (with a certain projection), there’s actually another way to draw 3D that relies on skewing.
This kind of drawing is a parallel projection. You may be familiar with parallel projections if you’ve
seen schematic drawings — blueprints — or played three-quarter, top-down games like SimCity, Final
Fantasy Tactics, Diablo, and so on. The problem with parallel projections is that parallel lines never
appear to converge.

Parallel projections like these are mathematically pleasing, but you see in perspective where parallel
lines eventually converge. (Imagine train tracks going off into the distance. At the horizon, they will
have merged into a single point.) Perspective transforms just can’t be done with a skew, because as
you can see in Figure 15-1, skewing preserves parallel lines. So all it really takes to create the illu-
sion of depth is a perspective transformation. Figure 15-1 shows two rectangles — one skewed, and
one with a perspective transform — and the kinds of scenes that can be drawn with those different
transformations.

FIGURE 15-1

Skew and perspective transformations; parallel and perspective projections

Skew Perspective

PerspectiveIsometric

What all this boils down to is that you need a perspective transformation to convincingly fake three
dimensions, and this kind of transformation is only available in Flash Player 10 and later. Now that
you know what the trick is, take three giant steps back, because you’re not going to have to apply it
directly (in this chapter). When you use the third dimension in Flash Player’s display list, it applies a
perspective projection automatically. You just focus on positioning objects in three-dimensional space;
Flash Player draws the convincing 2D perspective projection on-screen for you.

Note
While Flash Player 9 can’t do a perspective projection natively, of course, you can write code that approxi-
mates one. This four-point distortion is exactly how ActionScript 3D libraries work, in versions before Flash
Player 10. �

302

Chapter 15: Working in Three Dimensions

This is a critical point: when using 3D in the display list, all you have to do is position and orient
display objects in three dimensions. There are really no extra classes or steps required. You’ll use
DisplayObject and all its subclasses in the same way, except with a dimension added. Figure 15-2
is simply a block of TLF text (it could as easily be a TextField, Shape, or Video) rotated about
the x-axis and positioned in 3D space, nothing more.

FIGURE 15-2

A DisplayObject rotated in 3D space

The 3D Coordinate System
In Chapter 14, ‘‘Visual Programming and the Display List,’’ you saw that the coordinate space that
Flash Player uses is a Cartesian space with the origin at the top-left corner of the stage. The x-axis
increases to the right and the y-axis increases down. Because of this, points in any quadrant but the
bottom-right don’t appear on-stage.

When you’re using the 3D coordinate system, none of this changes. A third, z-axis, is added. The
origin stays at the top-left corner, and the z-axis protrudes perpendicular to the stage, into and out
of your display, with positive z being farther away from you, and negative z being closer to you. By
default, the perspective is set up so that the vanishing point is in the center of the stage, infinitely
far off in positive z. You can change this, but for now, it places your eye squarely in front of the xy
plane — the traditional 2D stage — looking into it. Figure 15-3 shows the 2D and 3D coordinate
systems of the display list.

You can think of the stage as existing at z=0. Because z increases ‘‘into’’ the screen, objects with posi-
tive z values appear smaller than their natural size — as if they have been scaled down — and objects
with negative z values appear larger than their natural size — as if they have been scaled up. In actu-
ality, there is only one stage, and display objects in 2D and 3D must coexist in peace on it. So, those
2D display objects are essentially at z=0.

Display objects can not only be positioned in 3D space, they can be rotated and scaled in three dimen-
sions as well. The text in Figure 15-2 is rotated around the x-axis. Figure 15-4 shows rotations around
each of the three axes. You’ll notice that because the z-axis points in and out of the screen, rotating
around the z-axis is the same as traditional 2D rotation. There are plenty of ways to represent a rota-
tion in 3D space — it’s not nearly as simple as rotation in 2D — but the display list represents any
orientation as a combination of these three axis rotations (an Euler angle). Although the figure shows
an object rotated around a single axis, combining three rotations, one around each axis, can produce
any orientation imaginable.

303

Part III: The Display List

FIGURE 15-3

The 2D and 3D coordinate systems, axes, and origins; direction of +z ‘‘into’’ the screen

+y

+x(0,0)

2D

Stage

+y

+z

−z

+z

+z

+z

+z

−z

+x(0,0,0)

3D Vanishing point

Stage

Stage (z = 0)

FIGURE 15-4

Display objects can be rotated in all three dimensions. Rotating around the z-axis is the same as 2D
rotation.

x

y

z

3D in Flash Professional
Setting up a scene in three dimensions may be much easier when you can see exactly what goes
where. Flash Professional starting in CS4 contains tools to manipulate objects in three dimensions,
which may be much easier than trying to guess at the orientation and positions of objects in 3D
space. Alternatively, you can lay out a scene in a 3D package and copy down the positions from the
tool into code. I won’t show how to use those tools here, but know that it can help you visualize
things that are difficult to picture from numbers alone.

Limitations of 3D Display Objects
Although it’s perfect for simple effects, the 3D capabilities of the display list in Flash Player 10 are far
from what you’d expect in a 3D game or modeling tool. Nor should they be comparable. You should
know what the display list is capable of so that you know where and when to deploy it.

304

Chapter 15: Working in Three Dimensions

Display Objects Are Flat

First and foremost, using 3D in the display list is not what most consider a 3D engine, but rather
‘‘2.5D’’ or a ‘‘billboard’’ engine. It only goes as far as projecting DisplayObjects in perspective. But
all these objects are flat, like the face in Figure 15-4 and the text in Figure 15-2. In Chapter 14 you
reviewed all the types of display object. Can you think of a single one that has any thickness? There
are none. Display objects are like pieces of paper or billboards. You can view them in perspective, but
if you want to show an object with more volume, it’s not like you can load in a 3D model and display
it in the display list. You could, potentially, construct one like papercraft by creating a display object
for each face.

This means that 3D using the display list is well suited to some applications. It could power a game
with flat sprites. Before the advent of really good 3D engines and hardware 3D acceleration, games lay-
ered flat art in 3D space, and people still had a good time playing games like Wolfenstein 3D, DOOM,
and Duke Nukem 3D. All of these games placed flat sprites in a perspective 3D space. You could use
it to create a multilayered UI; oddly, most user interfaces are still flat, but 2D elements like windows
and panels presented in 3D can be a distinctive experience. Think of iTunes’ Cover Flow, the signa-
ture ‘‘flip’’ seen in the iPhone OS, or the Xbox 360 Dashboard.

A Viewport Isn’t a Camera

In a proper 3D package, you’d hopefully think in terms of scenes, containing models, some lights,
and at least one camera. You learned how the display list is organized in Chapter 14, so you’ll remem-
ber that it’s not at all like that. When Flash Player goes through the display list to render a scene, it
uses a projection matrix to render the 3D space defined with the origin at the corner of the stage. On
the other hand, a camera (like the first-person view in any FPS game) is mobile: it moves around the
scene pointing in every direction. Making a 3D application with display list 3D where the camera is
anything but fixed is not impossible but would require some feats of abstract thinking. (So you may
want to take that DOOM clone that I just told you was possible and put it on rails.)

Depths Are Managed by the DisplayObjectContainer

Another implication of the fact that the display list is a display list, not a 3D engine, is the lack of
z-sorting. Z-sorting automatically draws stuff that’s closer to you (its position has a greater z value) on
top of stuff that’s farther away. If you’re watching a giant robot crushing a schoolyard right in front of
you, you’ll see the robot overlapping the mountain range in the distance, not the other way around.
But the display list, in 2D or 3D, obeys the depths of its children to determine layering order. This
is a fatal omission for any 3D engine, because things look horrendously wrong when placed out of
order.

You can easily write a simple z-sorting algorithm that looks at the position of each DisplayObject
to set its depth. An algorithm that works for multiple objects is contributed by Drew Cummins at
http://bit.ly/cummins-z-sort. This works well, but it can’t patch one flaw: display objects
have area; they aren’t single infinitesimal points. If you only look at the position of the center of an
object — especially a long one — you can make incorrect assumptions about its layering.

Other Missing Stuff

Lighting and shading, distance fog, backface culling — you could make a huge list with everything
display list 3D doesn’t do. And it would contain everything 3D engine does do, with the exception of
perspective projection. So you get it. It’s cool to put billboards in 3D space, but don’t expect much.
Let’s find out how, already.

305

Part III: The Display List

DisplayObject Revisited
All it takes to make a DisplayObject 3D is to move it or orient it in 3D space. The existing prop-
erties that control position, rotation, and scale in two dimensions are simply augmented with a third
dimension. These properties are listed in Table 15-1.

This table and the properties within shouldn’t need much further explanation at this point, save a few
notes.

TABLE 15-1

2D and 3D Properties of DisplayObject

2D property 3D property

x x

y y

z

rotationX

rotationY

rotation rotationZ

scaleX scaleX

scaleY scaleY

scaleZ

width width

height height

Because DisplayObjects have no depth, scaleZ does nothing. You’ll also note that there’s no
depth added to width and height. So why have scaleZ? Perhaps because the math requires it.
It can actually take on any value, which isn’t surprising when you realize that the natural depth of any
DisplayObject is 0, which no scale value will ever change.

The three rotation values are measured in degrees, just like the 2D rotation property. Because
rotationZ is the same kind of rotation in 3D that rotation is in 2D, you can still use the
rotation property in 3D, which sets both rotation and rotationZ. However, you shouldn’t.
Use rotationZ in 3D and rotation in 2D.

All you have to do is set any one of the 3D-only properties, and the object will be rendered in
3D, although geometrically, there’s no special distinction between 2D and 3D DisplayObjects.
2D DisplayObjects simply lie on the plane of the stage. However, to Flash Player, there’s a big
difference.

To draw a display object in 3D, Flash Player first renders it down to a bitmap at its natural size. This
has an effect similar to turning on cacheAsBitmap. It also means that objects that display larger
than their natural size — ones that are closer to you than the stage, or have negative z coordinates,

306

Chapter 15: Working in Three Dimensions

that is — may appear blocky or smudgy, like a scaled-up bitmap. You can see this bitmap scaling if
you look closely at Figure 15-2.

You’ll remember from Chapter 14 that every DisplayObjectContainer defines its own coordinate
space. This way, you can nest clips and create parent-child relationships. Move the parent, and the
child moves along with it, its position relative to the parent unchanged. The same applies to display
objects in 3D. In Example 15-1, you’ll create a Cube display object that contains six faces. Each face
will have its own position and rotation that places it in the shape of a cube. Then you’ll experiment
with placing the entire cube in 3D space. As you’d expect, all the faces of the cube keep their relative
positions, and you can move around the whole thing like any DisplayObject.

EXAMPLE 15-1 http://actionscriptbible.com/ch15/ex1

Creating a 3D Display Object

package {
import flash.display.Sprite;
public class ch15ex1 extends Sprite {
public function ch15ex1() {
var boringCube:Cube = new Cube(100);
boringCube.x = stage.stageWidth * 0.5;
boringCube.y = stage.stageHeight * 0.5;
addChild(boringCube);

var cube:Cube = new Cube(100);
cube.rotationX = -40;
cube.rotationY = 20;
cube.rotationZ = 12;
cube.x = stage.stageWidth * 0.2;
cube.y = stage.stageHeight * 0.6;
cube.z = 150;
addChild(cube);

cube = new Cube(100);
cube.rotationX = 95;
cube.rotationY = -30;
cube.rotationZ = 12;
cube.x = stage.stageWidth * 0.7;
cube.y = stage.stageHeight * 0.4;
cube.z = -150;
addChild(cube);

}
}

}
import flash.display.*;
class Cube extends Sprite {
public function Cube(size:Number = 50) {
for (var side:int = 0; side < 6; side++) {
var face:Sprite = new Sprite();
face.blendMode = BlendMode.MULTIPLY;

continued

307

Part III: The Display List

EXAMPLE 15-1 (continued)

var brightness:int = 0x80 + 0x80 * Math.random();
var color:int = brightness << 16 | brightness << 8 | brightness;
face.graphics.beginFill(color, 0.8);
face.graphics.drawRect(-size/2, -size/2, size, size);
face.graphics.endFill();
addChild(face);

}
getChildAt(0).rotationY = 90; //left
getChildAt(0).x = -size/2;
getChildAt(1).rotationY = -90; //right
getChildAt(1).x = size/2;
getChildAt(2).z = -size/2; //front
getChildAt(3).rotationY = 180; //back
getChildAt(3).z = size/2;
getChildAt(4).rotationX = 90; //bottom
getChildAt(4).y = size/2;
getChildAt(5).rotationX = -90; //top
getChildAt(5).y = -size/2;

}
}

The three cubes are shown in Figure 15-5. The boringCube doesn’t have a transformation of its
own (except repositioning it so that it’s visible), to contrast it from the Cubes, which have more com-
plicated transformations. All three Cube instances hold together because their children are positioned
in the parent Cube coordinate system, and the parent is what’s being rotated and moved. All trans-
formations are also relative to the origin of the coordinate system, which you were careful to place in
the center of the cube. This makes the cube rotate around the center, which is far more predictable
and easier to program. For more proof, you can easily modify the example by drawing a point at the
origin of each Cube’s coordinate system, or better yet, add three Shapes to show its own three axes.

FIGURE 15-5

Three cubes, each with their own identical children and coordinate system. The parent coordinate
systems are transformed in different ways. Displayed when you run Example 15-1.

308

Chapter 15: Working in Three Dimensions

Another observation you can draw from this example is that the depth sorting is completely
dependent on the display list’s ordering, not on the object’s position in 3D space. I’ve intentionally
used translucent cubes so that you can’t tell the incorrect ordering with a glance. Just turn the blend
mode back to normal and make the faces opaque, and you’ll see that the display list ordering is in
effect, including the fact that all faces in one cube are either above or below all faces in another cube,
because they’re separate DisplayObjectContainers with their own child layering.

Geometry Revisited
There are new geometry classes in Flash Player 10 for 3D geometry, Vector3D and Matrix3D,
found in the flash.geom package. (In the next section, you’ll also touch on the
PerspectiveProjection class in this package.) You’ll find both of these thoroughly explained in
Chapter 34, but I’ll quickly introduce Vector3D here.

The Vector3D class represents a point in three dimensions, much like Point represents one in two
dimensions. It contains x, y, and z properties. It also contains a fourth coordinate, w, to be ignored
for now. Now, there’s nothing that’s forcing you to use this class only for coordinates. You can also
use it to represent a vector in 3D. This vector has absolutely nothing to do with the Vector class in
Chapter 9, ‘‘Vectors.’’ A vector in the geometric sense is a direction and a length — you can think of it
as an arrow pointing from the origin to (x, y, z), as Figure 15-6 demonstrates. The difference between
a vector and a point is subtle. Say you’re driving to New York City. A coordinate tells you where it is.
A vector points you there. They both have the same values.

FIGURE 15-6

A vector and a point in 2D

(5,15)

Point

〈5,15〉

Vector

For instance, you’d use a vector to encode a distance, a velocity, an acceleration, an Euler rotation, or
in Example 15-2, an angular velocity.

EXAMPLE 15-2 http://actionscriptbible.com/ch15/ex2

Using Vectors in 3D

package {
import flash.display.*;
import flash.events.MouseEvent;
import flash.geom.*;

continued

309

Part III: The Display List

EXAMPLE 15-2 (continued)

public class ch15ex2 extends Sprite {
public function ch15ex2() {
stage.quality = StageQuality.LOW;
stage.addEventListener(MouseEvent.CLICK, onClick);

}
protected function onClick(event:MouseEvent):void {
var cube:Cube = new Cube(20);
cube.x = event.localX;
cube.y = event.localY;
addChild(cube);
var normalizedMousePosition2D:Point = new Point(
stage.mouseX / stage.stageWidth * 2 - 1,
stage.mouseY / stage.stageHeight * 2 - 1);

cube.angularVelocity.x = Math.pow(normalizedMousePosition2D.y, 3) * 10;
cube.angularVelocity.y = Math.pow(normalizedMousePosition2D.x, 3) * 10;

}
}

}
import flash.display.*;
import flash.events.Event;
import flash.geom.Vector3D;
class Cube extends Sprite {
public var angularVelocity:Vector3D;
public function Cube(size:Number = 50, ang:Vector3D = null) {
for (var side:int = 0; side < 6; side++) {
var face:Sprite = new Sprite();
face.blendMode = BlendMode.MULTIPLY;
var brightness:int = 0x80 + 0x80 * Math.random();
var color:int = brightness << 16 | brightness << 8 | brightness;
face.graphics.beginFill(color, 0.8);
face.graphics.drawRect(-size/2, -size/2, size, size);
face.graphics.endFill();
addChild(face);

}
getChildAt(0).rotationY = 90; getChildAt(0).x = -size/2;
getChildAt(1).rotationY = -90; getChildAt(1).x = size/2;
getChildAt(2).z = -size/2;
getChildAt(3).rotationY = 180; getChildAt(3).z = size/2;
getChildAt(4).rotationX = 90; getChildAt(4).y = size/2;
getChildAt(5).rotationX = -90; getChildAt(5).y = -size/2;
this.angularVelocity = (ang)? ang : new Vector3D(0, 0, 0);
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
this.rotationX += angularVelocity.x;
this.rotationY += angularVelocity.y;
this.rotationZ += angularVelocity.z;

}
}

310

Chapter 15: Working in Three Dimensions

In Example 15-2, you use the x, y, and z properties of a Vector3D to represent the rotation to be
added to each axis in each frame. Just like a Point, these properties can be set when calling the con-
structor. Don’t worry about the event handling and animation here.

Vector3D has a wonderful set of methods that do vector math; you may find simple ones like
add(), subtract(), scaleBy(), and distance() useful here. Once you start delving into
projections and matrix multiplication, you’d be better off heading to Chapter 34 to learn about 3D
transformation matrices.

Mouse and Point Translation in 3D
The good news is that mouse position is mapped automatically and correctly onto 3D objects. A but-
ton in 3D can register a click no matter its angle. The mouse’s position is always a 2D point in the
display object’s coordinate space, and Flash Player projects the mouse position onto a 3D display
object without intervention from you.

Although Example 15-3 uses the drawing API and mouse events, which are covered in later chapters,
it does offer convincing proof that mouse positions are projected correctly in 3D space.

EXAMPLE 15-3 http://actionscriptbible.com/ch15/ex3

Clicking 3D Objects

package {
import flash.display.Sprite;
import flash.events.Event;
public class ch15ex3 extends Sprite {
protected var canvas:Canvas;
public function ch15ex3() {

canvas = new Canvas(400, 300);
addChild(canvas);
canvas.x = stage.stageWidth/2;
canvas.y = stage.stageHeight/2;
canvas.rotationY = 25;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {

canvas.rotationY += 0.2;
canvas.rotationX += 0.04;

}
}

}
import flash.display.Shape;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.geom.Rectangle;
class Canvas extends Sprite {
protected var fg:Shape, bg:Shape;

continued

311

Part III: The Display List

EXAMPLE 15-3 (continued)

protected var ink:int = 0;
public function Canvas(w:Number, h:Number) {
bg = new Shape();
bg.graphics.beginFill(0xe0e0e0, 1);
bg.graphics.drawRect(0, 0, w, h);
bg.x = -w/2; bg.y = -h/2;
addChild(bg);
fg = new Shape();
fg.x = -w/2; fg.y = -h/2;
addChild(fg);
fg.scrollRect = new Rectangle(-w/2, -h/2, w, h);
addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

}
protected function onMouseMove(event:MouseEvent):void {
if (event.buttonDown) {
ink++;
fg.graphics.lineTo(event.localX, event.localY);

} else {
if (ink > 500) {
fg.graphics.clear();
ink = 0;

}
fg.graphics.lineStyle(32, 0xffffff * Math.random(), 0.4);
fg.graphics.moveTo(event.localX, event.localY);

}
}

}

Run the example, and you’ll see a canvas in 3D that you can paint on as it rotates. Now, I wrote the
Canvas code with no specific concessions for 3D, but it works in 2D or 3D equally well. You’ll notice
that wherever you place your virtual pen in 3D, it’s put on the canvas right below the mouse cursor
as if your pen were an infinite line parallel to the z-axis.

Translating Points in Code
In many cases, ActionScript handles local, 2D coordinates and global, 3D coordinates by itself, as in
Example 15-3. If need be, though, you can convert between two and three dimensions in ActionScript
easily, using these methods of DisplayObject:

� globalToLocal3D() — Takes a 2D global Point — a point on the stage — and finds out
where that point is in 3D space relative to the DisplayObject. In other words, it finds what
Vector3D points from the origin of the DisplayObject to the point on stage.

� local3DToGlobal() — Takes a 3D Vector3D point in the local coordinate system and
finds out where that point is drawn on stage in 2D.

312

Chapter 15: Working in Three Dimensions

Example 15-4 will clarify these point projections. You’ll track vertices on a rotating cube, using
local3DToGlobal() to convert the vertex’s position to its position on-screen. Then you’ll draw
on-screen where the vertex is. In this manner, you’ll have some of the corners trace out a path as the
cube rotates.

EXAMPLE 15-4 http://actionscriptbible.com/ch15/ex4

Translating 3D Points to 2D

package {
import flash.display.*;
import flash.events.*;
import flash.geom.*;
public class ch15ex4 extends Sprite {
protected var cube:Cube;
protected var angularVelocity:Vector3D;
protected var layers:Vector.<Shape> = new Vector.<Shape>();
protected var colors:Vector.<uint> = new <uint>[0xD97C2B,0x496B73];
protected var firstFrame:Boolean = true;
public function ch15ex4() {
cube = new Cube(200);
cube.x = stage.stageWidth/2; cube.y = stage.stageHeight/2;
addChild(cube);
for (var i:int = 0; i < colors.length; i++) {
layers[i] = new Shape();
addChild(layers[i]);

}
stage.addEventListener(MouseEvent.CLICK, onClick);
addEventListener(Event.ENTER_FRAME, onEnterFrame);
onClick(null);

}
protected function onClick(event:MouseEvent):void {
var r:Function = function():Number {return Math.random() * 8 - 4};
angularVelocity = new Vector3D(r(), r(), r());
firstFrame = true;
for (var i:int = 0; i < layers.length; i++) {
layers[i].graphics.clear();
layers[i].graphics.lineStyle(0, colors[i], 1);

}
}
protected function onEnterFrame(event:Event):void {
cube.rotationX += angularVelocity.x;
cube.rotationY += angularVelocity.y;
cube.rotationZ += angularVelocity.z;
for (var i:int = 0; i < layers.length; i++) {
var p:Point = cube.local3DToGlobal(cube.vertices[i]);
if (firstFrame) {
layers[i].graphics.moveTo(p.x, p.y);

} else {

continued

313

Part III: The Display List

EXAMPLE 15-4 (continued)

layers[i].graphics.lineTo(p.x, p.y);
}

}
firstFrame = false;

}
}

}
import flash.display.*;
import flash.geom.Vector3D;
class Cube extends Sprite {
public var vertices:Vector.<Vector3D>;
public function Cube(size:Number = 50) {
var S2:Number = size/2;
for (var side:int = 0; side < 6; side++) {
var face:Sprite = new Sprite();
face.graphics.lineStyle(8, 0, 0.1, false, LineScaleMode.NORMAL);
face.graphics.drawRect(-S2, -S2, size, size);
addChild(face);

}
vertices = new Vector.<Vector3D>();
vertices.push(new Vector3D(-S2, -S2, -S2));
vertices.push(new Vector3D(S2, S2, S2));
getChildAt(0).rotationY = 90; getChildAt(0).x = -S2;
getChildAt(1).rotationY = -90; getChildAt(1).x = S2;
getChildAt(2).z = -S2;
getChildAt(3).rotationY = 180; getChildAt(3).z = S2;
getChildAt(4).rotationX = 90; getChildAt(4).y = S2;
getChildAt(5).rotationX = -90; getChildAt(5).y = -S2;

}
}

You can see the code in action in Figure 15-7. The corners being traced are indicated by arrows.

Modifying the Projection
So far, you’ve used the default projection, which you’ll recall has a vanishing point at the center of the
stage. You can customize parameters of the projection to get a different feel for the scene. The stage
has a perspective projection matrix that it applies to every 3D DisplayObject, projecting the 3D
shapes onto the 2D image plane when each frame is rendered. This is like the lens of a camera, which

314

Chapter 15: Working in Three Dimensions

compresses the scene around it, projecting it onto the film or sensor. And, like a manual lens, you can
change some of its properties.

FIGURE 15-7

3D points on a cube trace their 2D paths across the screen. Output by Example 15-4.

The projection properties are stored in a PerspectiveProjection instance, which is found in the
stage’s Transform object (covered in Chapter 34). Access it with this expression:

stage.transform.perspectiveProjection

The perspective projection is set on only one display object — the stage — because all 3D objects
should be transformed with the same projection — otherwise it’s like looking at a scene through mis-
matched pairs of eyes.

Remember that the viewport is not a camera. It can’t be picked up and moved, or rotated. There are
two properties that you can change, and one derived property:

� projectionCenter — A Point representing the vanishing point, in global coordinates.

� fieldOfView — The field of view in degrees, as a Number between 0 and 180. The field of
view controls the impression of depth created by a projection. With a narrow field of view, near
0, depths are flattened, as in a telephoto lens. With a wide field of view, near 180, depths are
exaggerated, as in a wide-angle lens.

� focalLength — The focal length in pixels, calculated dynamically from the aspect ratio of
the stage and the field of view. Set the fieldOfView instead.

In Example 15-5, you’ll re-create the scene from Example 15-1, but you’ll use the mouse and key-
board to control the projection in real time.

315

Part III: The Display List

EXAMPLE 15-5 http://actionscriptbible.com/ch15/ex5

Changing the Projection

package {
import flash.display.Sprite;
import flash.events.*;
import flash.geom.*;
import flash.text.*;
import flash.ui.Keyboard;
public class ch15ex5 extends Sprite {
protected var tf:TextField;
public function ch15ex5() {
var cube:Cube = new Cube(100); addChild(cube);
cube.x = stage.stageWidth * 0.5; cube.y = stage.stageHeight * 0.5;
cube = new Cube(100); addChild(cube);
cube.rotationX = -40; cube.rotationY = 20; cube.rotationZ = 12;
cube.x = stage.stageWidth * 0.2; cube.y = stage.stageHeight * 0.6;
cube.z = 250;
cube = new Cube(100); addChild(cube);
cube.rotationX = 95; cube.rotationY = -30; cube.rotationZ = 12;
cube.x = stage.stageWidth * 0.7; cube.y = stage.stageHeight * 0.4;
cube.z = -250;
tf = new TextField(); tf.height = 14; tf.x = tf.y = 5;
tf.autoSize = TextFieldAutoSize.LEFT;
tf.backgroundColor = 0; tf.background = true;
tf.defaultTextFormat = new TextFormat("_typewriter", 10, 0xffffff);
addChild(tf);
stage.addEventListener(MouseEvent.MOUSE_WHEEL, onMouseWheel);
stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);

}
protected function onMouseMove(event:MouseEvent):void {
var pp:PerspectiveProjection = root.transform.perspectiveProjection;
pp.projectionCenter = new Point(event.stageX, event.stageY);
update(pp);

}
protected function onMouseWheel(event:MouseEvent):void {
adjustFov(event.delta / 2);

}
protected function onKeyDown(event:KeyboardEvent):void {
switch (event.keyCode) {
case Keyboard.UP: case Keyboard.PAGE_UP: adjustFov(4); break;
case Keyboard.DOWN: case Keyboard.PAGE_DOWN: adjustFov(-4); break;

}
}
protected function adjustFov(delta:Number): void {
var pp:PerspectiveProjection = root.transform.perspectiveProjection;
var fov:Number = pp.fieldOfView + delta;

316

Chapter 15: Working in Three Dimensions

fov = Math.min(Math.max(1, fov), 179);
pp.fieldOfView = fov;
update(pp);

}
protected function update(pp:PerspectiveProjection):void {
//set the projection
stage.transform.perspectiveProjection = pp;

var ctr:Point = pp.projectionCenter;
var BR:Point = new Point(stage.stageWidth, stage.stageHeight);
graphics.clear();
graphics.lineStyle(0, 0, 0.2);
graphics.moveTo(0, 0); graphics.lineTo(ctr.x, ctr.y);
graphics.moveTo(BR.x, 0); graphics.lineTo(ctr.x, ctr.y);
graphics.moveTo(0, BR.y); graphics.lineTo(ctr.x, ctr.y);
graphics.moveTo(BR.x, BR.y); graphics.lineTo(ctr.x, ctr.y);
tf.text = "vanish (" + ctr.x.toFixed() + ", " + ctr.y.toFixed() + ") " +
"FOV=" + pp.fieldOfView.toFixed(1) + "◦";

}
}

}
import flash.display.*;
class Cube extends Sprite {
public function Cube(size:Number = 50) {
for (var side:int = 0; side < 6; side++) {
var face:Sprite = new Sprite();
face.blendMode = BlendMode.MULTIPLY;
var brightness:int = 0x80 + 0x80 * Math.random();
var color:int = brightness << 16 | brightness << 8 | brightness;
face.graphics.beginFill(color, 0.8);
face.graphics.drawRect(-size/2, -size/2, size, size);
face.graphics.endFill();
addChild(face);

}
var S2:Number = size/2;
getChildAt(0).rotationY = 90; getChildAt(0).x = -S2;
getChildAt(1).rotationY = -90; getChildAt(1).x = S2;
getChildAt(2).z = -S2;
getChildAt(3).rotationY = 180; getChildAt(3).z = S2;
getChildAt(4).rotationX = 90; getChildAt(4).y = S2;
getChildAt(5).rotationX = -90; getChildAt(5).y = -S2;

}
}

After playing with this example, you should be able to intuitively grasp how the perspective may be
modified. Figure 15-8 shows the field of view near its two extremes, with the same vanishing point.
In the wider field of view, it’s quite apparent that lines converge toward the vanishing point, along

317

Part III: The Display List

the guides that connect the corners of the viewport with the projection’s center. It’s also evident that a
small difference in z has a big impact with a wide field of view, and almost no impact with a narrow
field of view.

FIGURE 15-8

Extreme field of view differences. Output by Example 15-5.

While playing with the example, you may get the impression that moving the vanishing point is anal-
ogous to moving and rotating a camera, but it’s not so. Moving the vanishing point is odd because it’s
not something you can do with most fixed cameras (though you could with a tilt-shift lens). That said,
you can use it along with a global transformation to be more camera-like.

Software 3D Libraries
There are a few excellent, easy-to-use 3D engines written in pure ActionScript 3.0, all of which can
be used with Flash Player 9. Moreover, some of them incorporate the new 3D interfaces in the Flash
Player 10 API, offloading some of their work onto Flash Player for greater speed.

Table 15-2 lists the popular 3D engines under active development. The most popular engines (in my
subjective opinion) are presented first.

All these engines are incredibly capable and have a ton of impressive features. They have so many
features, in fact, that listing them all would be rather dull. Suffice to say, these engines unlock the
potential to do amazing, full-on 3D, including meshes, scene import and export, texture mapping,
lighting and materials, camera controls, and more. Papervision3D and Away3D, particularly, are under
heavy continuing development by a group of very talented coders, and there is a plethora of informa-
tion on the internet about using both engines.

In addition, there are some special-purpose engines available, such as Five3D for 3D vector graphics,
and FFilmation and as3isolib for isometric 3D.

318

Chapter 15: Working in Three Dimensions

TABLE 15-2

ActionScript 3.0 3D Engines

Engine

Name

Site License Uses FP10 3D?

Papervision3D http://blog.papervision3d.org/ MIT License FP10 branch in
development

Away3D http://away3d.com/ Apache License 2.0 FP10 and FP9
versions

Alternativa3D http://alternativaplatform.com/en/
alternativa3d/

Commercial FP10 and FP9
versions

Sandy http://flashsandy.org/ Mozilla Public License FP9

Yogurt3D http://yogurt3d.com/ Not Yet Public

It’s worth mentioning that the kinds of 2.5D that Flash Player 10 enables may also be achieved with
any of the tools in Table 15-1. You may want to use one of these engines to draw in 2.5D not only
for Flash Player 9 compatibility, but for their APIs, which are more geared toward 3D from the get-go.
The size of the library and speed may also play into your decision of which tool to use.

Summary

� The display list supports 3D perspective transformations in Flash Player 10 and later.

� More 3D math and transformations are covered in Chapter 34 and Chapter 40.

� The display list still acts like a display list, with layers and nesting and all the same classes.

� Display objects don’t have depth; some would call this 2.5D or billboards.

� DisplayObject has properties that let you position, orient, and scale display objects in 3D
just like you do in 2D.

� Vector3D represents a point or vector in three dimensions. It has x, y, and z properties.

� Points may be translated from local to global coordinate spaces, from 2D to 3D and back.

� The perspective projection may be modified to change its vanishing point and field of view. Set
it on the root display object only.

� Software 3D libraries let you do much more with 3D.

319

Working with
DisplayObjects in Flash
Professional

D
espite ActionScript 3.0’s formidable display list and drawing capabilities,
drawing all your application’s graphics from scratch using code is far too
tedious to be practical. Likewise, loading graphics from many external

files can be difficult to manage and may be more trouble than it’s worth. In fact,
in most production work, developers use Flash Professional’s layout, composit-
ing, animation, and drawing tools to prepare assets for use with ActionScript.

In this chapter, you’ll learn how Flash Professional works with
DisplayObjects and how to effectively use embedded and dynamically
loaded assets produced in Flash Professional.

The Stage, Symbols, and the Library

Although it may have some extra features, Flash Professional uses the same dis-
play list model that you learned about in Chapter 14, ‘‘Visual Programming with
the Display List.’’ The stage that you see in Flash Professional is the same stage
in Flash Player. Anything you can put on the stage in Flash Professional is a
DisplayObject, and when you run the program, it appears on stage. Simply,
Flash Professional acts as a visual editor for the display list.

If you’ve used Flash Professional, you should be comfortable with symbols, which
are reusable piece of graphics, sound, or animation. You can repeat the same
symbol multiple times. Think of symbols as classes. The symbol’s definition in
Flash’s Library is the class, and symbol instances on stage are instances. Placing a
symbol on the stage in Flash has the same effect as instantiating a display object
and adding it to the stage at runtime.

The Library in Flash Professional is used to store and organize all the symbols in
a given Flash file, whether they are on stage or not. The organization and naming
of symbols in the Library has little effect on ActionScript, but as the keeper of all
symbols, the Library is of utmost importance.

321

Part III: The Display List

Creating Symbols
Any asset that you create or import using Flash Professional should be made into a symbol. This
makes it much easier to play with in ActionScript.

In Figure 16-1, a cat fishing is drawn on the stage. To convert this image into a symbol, first select
the drawing and then click Modify ➪ Convert to Symbol. This opens the Convert to Symbol dialog
box. Choose a symbol name (I used FishingCat) and the Movie Clip symbol type. It’s important to
choose this type. The symbol name is unimportant to ActionScript.

FIGURE 16-1

A vector drawing in Flash Professional

Now that the cat has been converted into a symbol, it should appear in the Library with all symbols.
On stage, the Properties panel shows that it is a symbol, specifically a movie clip, and that it is an
instance of FishingCat.

322

Chapter 16: Working with DisplayObjects in Flash Professional

Named Instances
The first thing you can do to make this symbol accessible to ActionScript is to give it an instance
name. Simply type the desired name into the Properties panel, as shown in Figure 16-2.

FIGURE 16-2

Naming a symbol instance

All things on stage in Flash Professional are display objects, so you can always access them using dis-
play object methods like getChildAt(). But naming an instance makes it much more accessible.
The instance name is used to set the name property on the DisplayObject. I’ve used the instance
name cat, so now I can access the cat’s display object with getChildByName().

trace(getChildByName("cat")); //[object MovieClip]

323

Part III: The Display List

Nested Instances
Perhaps you’re making a fishing game with this cat character; you’re going to need him to flick the
fishing pole back when you press a key. So you go into the cat symbol and convert his fishing rod
into its own symbol, naming its instance fishingRod. Now you have nested display objects. You’ll
flick the fishing rod by setting its rotation:

getChildByName("cat").getChildByName("fishingRod").rotation = -45;

There’s a problem with this, however. Not every DisplayObject can have children — only
those that extend DisplayObjectContainer. Even though you know full well that the cat
instance has children, getChildByName() returns a DisplayObject, which doesn’t have a
getChildByName() method. You can solve this problem by casting:

var catClip:MovieClip = MovieClip(getChildByName("cat"));
catClip.getChildByName("fishingRod").rotation = -45;

This will do the trick, but it gets really tedious when you have to dig down into more complicated
nested clips. I like to live life on the wild side and use untyped variables for my display objects some-
times. This stops the compiler from type checking the variable, letting me call any method or access
any property it may or may not have.

var comp:* = this;
comp.getChildByName("cat").getChildByName("fishingRod").
rotation = -45;

Flash Professional can set up an even more convenient way to access instances on the display list.
Make sure that Automatically Declare Stage Instances is checked in the ActionScript Settings dialog
box, and all named instances will be promoted to properties at compile time. This means that the
FishingCat symbol will come with a property called fishingRod, which is set to the display
object named fishingRod. Now fishing is as easy as

cat.fishingRod.rotation = -45;

If you use this option, be aware that these properties can’t conflict with existing properties on the
associated class. For instance, you shouldn’t name an instance alpha.

Associating Symbols to Classes
Remember that symbols are like classes. In fact, during compilation, they become subclasses of the
appropriate base class for their symbol type. Font symbols become subclasses of Font, sound symbols
become subclasses of Sound, and movie clip symbols become subclasses of MovieClip. Associating
a symbol with a class is one of the most powerful ways to use it in ActionScript.

You can associate a symbol with a class in the Symbol Properties dialog box. You bring up this dia-
log box when you’re creating the symbol for the first time or at any other time by choosing Properties
from the symbol’s menu in the Library. You may need to twirl down the Advanced section of the dia-
log box to see the appropriate items. Check the Export for ActionScript check box, and the Class and
Base Class fields will activate, as shown in Figure 16-3.

324

Chapter 16: Working with DisplayObjects in Flash Professional

FIGURE 16-3

Linking the symbol to an ActionScript class

The Class field lets you set the package and name of the class that the symbol will be associated with.
I’ve chosen assets.FishingCat. The Base Class field lets you specify which class the symbol will
extend. This must be appropriate for the type of the symbol you create. Choose something nonsen-
sical, like Number, and Flash Professional will ignore your input. That said, for movie clip symbols,
you can use either MovieClip or Sprite as the base class. Use a Sprite if the symbol has only
one frame on the timeline.

Now that the symbol is linked to a class, you can create new instances of it just by using its
constructor.

import assets.FishingCat;
addChild(new FishingCat());

Also, any instances of the cat symbol on the stage will be of the FishingCat type, although you can
still call them by Sprite or DisplayObject, because FishingCat extends both of these.

325

Part III: The Display List

Writing an Associated Class
If you want, you can write code for that FishingCat class. If you compile this class when building
the SWF in Flash Professional, the class definition applies to all symbol instances on stage or created
at runtime. It’s okay to associate the symbol with a class that you don’t have code for; the class is gen-
erated automatically. The class will be just the same as its base class (Sprite) but with the contents
of the symbol instead of empty. The same goes for bitmap symbols, sounds, and so on.

If you create a new class called assets.FishingCat and store it in assets/FishingCat.as
relative to the Flash file, Flash Professional uses that definition instead. Don’t forget to extend the base
class in your definition. Here you make the cat go fishing on a timer.

package assets {
import flash.display.Sprite;
import flash.utils.setInterval;
import flash.utils.setTimeout;
public class FishingCat extends Sprite {

public function FishingCat() {
setInterval(rodUp, 1000);

}
protected function rodUp():void {
fishingRod.rotation = -45;
setTimeout(rodBack, 250);

}
protected function rodBack():void {
fishingRod.rotation = 0;

}
}

}

Notice that even though I took all that time to define the class, I didn’t need to add a definition for
the fishingRod property. Flash Professional adds this during compilation.

I prefer to keep assets and functionality separate, so I never write code in a symbol class. Instead, I
write code that uses the symbol, for example, a code-only class that instantiates and manages its own
FishingCat instance.

Nongraphic Symbol Types
You’ve seen how to embed vector graphics using Convert to Symbol and Movie Clip symbols. You can
use the Library in Flash Professional to embed all kinds of data:

� Font symbols — Extend flash.text.Font

� Video symbols — Extend flash.media.Video

� Sound symbols — Extend flash.media.Sound

� Bitmap symbols — Extend flash.display.BitmapData

� Button symbols — Extend flash.display.SimpleButton

326

Chapter 16: Working with DisplayObjects in Flash Professional

Use File ➪ Import to Library in Flash Professional to get these other kinds of data into the Library.
For a font, use New Font in the Library menu.

Many of these symbol types provide additional compression options in the symbol’s Properties
dialog box.

Exporting and Using Assets
Once you have a library full of symbols with linkages, publishing the file generates a SWF or SWC
with these symbols. Symbols without linkages aren’t included in the export unless they appear on
stage or inside a symbol with a linkage.

To export to a SWC instead of a SWF, check the Export SWC option in the Publish Settings dialog
box in Flash Professional. Whether you export to a SWF or a SWC impacts how you use the assets in
external code.

Using Assets from a SWC
SWCs are linked in at compile time. If you link the SWC statically, its contents (the ones you use,
anyway) are included in the end product SWF; link it externally, and it must be loaded along with
the end product SWF that depends on it. When you’re writing code, an IDE is aware of any classes in
linked SWCs, so you can get code completion against these classes.

You can set up Flash Builder to use classes in a SWC by adding the SWC to the ActionScript Build
Path of the project’s properties. Click the Library path tab and then the Add SWC button.

Use a class defined in a SWC as if it were defined locally.

import assets.FishingCat;
addChild(new FishingCat())

Using Assets from a SWF
When you use an external asset SWF, your code has no dependencies on the assets, and the asset
SWF doesn’t have to be available when compiling. You can place the asset SWF anywhere and load it
at any time that works for you. This is a great technique for content-heavy web sites; the main SWF
can contain the code for the whole site, and you can perform whatever actions you need as you load
the required asset SWFs at runtime, like drawing a preloader or going ahead with the parts of the site
that can be shown sans assets.

This increased flexibility comes at a cost. To use classes defined in an external SWF, you have to load
the SWF and get class references dynamically. You can’t use the external classes for typing, because
they aren’t available at compile time.

You’ll learn more about loading files in Chapter 27, ‘‘Networking Basics and Flash Player Security.’’
For now, you’ll load without explanation. In Example 16-1, you instantiate the FishingCat symbol
from its asset SWF after loading in said SWF.

327

Part III: The Display List

EXAMPLE 16-1 http://actionscriptbible.com/ch16/ex1

Loading a SWF and Instantiating a Symbol

package {
import com.actionscriptbible.Example;
import flash.display.DisplayObject;
import flash.display.Loader;
import flash.events.Event;
import flash.net.URLRequest;
import flash.system.ApplicationDomain;
public class ch16ex1 extends Example {
protected var loader:Loader;
public function ch16ex1() {
trace("Loading assets...");
loader = new Loader();
loader.load(new URLRequest(
"http://actionscriptbible.com/files/ch16assets.swf"));

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
}
protected function onLoad(event:Event):void {
try {
var assetsDomain:ApplicationDomain =
loader.contentLoaderInfo.applicationDomain;

var FishingCatClass:Class =
Class(assetsDomain.getDefinition("assets.FishingCat"));

var cat:DisplayObject = new FishingCatClass();
cat.y = 100;
addChild(cat);
trace("added fishing cat!");

} catch (error:Error) {
trace(error);

}
}

}
}

Now you can use not just classes defined in the SWF, but the contents of its stage, if you wish. This
is as simple as loading the SWF and adding it to your own stage.

Summary

� ActionScript 3.0 stores graphics in class objects. Creating new graphics is as easy as instantiating
the class.

� Movie clip symbols bind graphics to a class. This can be a customized class or one that’s auto-
matically generated when the SWF is compiled.

328

Text, Styles,
and Fonts

FEATURED CLASSES

flash.text.TextField

flash.text.TextFormat

flash.text.StyleSheet

flash.text
.TextLineMetrics

flash.text.Font

flash.text.*

T
ext is an indispensable aspect of any application, and TextField is the
base object for dealing with text anywhere in Flash Player. TextField
handles both labels that display text and interactive text fields that a user

can type into, like a form.

To display TextField objects, you’ll add and remove them from the stage or
parent object like any other DisplayObject. Because TextField extends
InteractiveObject, it has methods to deal with mouse interaction, and
many events it can throw, as well as many of the events I cover in Chapter 21,
‘‘Interactivity with the Mouse and Keyboard.’’ Sizing, scaling, moving, and
reparenting a TextField are all handled in the same way as any other
DisplayObject.

Unique to TextField are methods and properties to control the appearance of
text it contains. The formatting can be controlled by TextFormat objects, CSS
styles, or a subset of HTML. Using the TextFormat class, you can set properties
for the entire TextField or just for certain spans of characters. You’ll also look
at how to embed fonts and how to control the way those fonts appear using text
smoothing properties.

With TextFields, you have a lot of control over the display of text in Flash
Player. You can get even more control by using the Flash Text Engine and the
Text Layout Framework, covered in the next chapter. In this chapter I’ll constrain
the discussion to classes in the flash.text package.

Introducing TextFields

TextField is used everywhere you need text displayed. Let’s dive right in and
start putting text on-screen with TextFields.

329

Part III: The Display List

Creating a New TextField
To create a TextField, simply call its constructor, which takes no arguments. The TextField()
constructor creates a default TextField that’s 100 × 100 pixels in size. You will almost certainly
want to customize the properties of the field later. When you’re ready to add the TextField to the
display list, use addChild() to add it to any class that extends DisplayObjectContainer.

var txt:TextField = new TextField();
addChild(txt);

The preceding code snippet assumes that the TextField is being created within an object that
extends DisplayObjectContainer and therefore has a definition for addChild().

Adding and Replacing Text
You add text to a TextField by assigning a String to its text property. After you have some text
in the TextField, you can add more by appending an additional string to the text property, or
using the appendText() method, as shown in Example 17-1.

EXAMPLE 17-1 http://actionscriptbible.com/ch17/ex1

Appending Text

package {
import flash.display.Sprite;
import flash.text.TextField;

public class ch17ex1 extends Sprite {
public function ch17ex1() {
var txt:TextField = new TextField();
txt.text = "Hello World.\n";
addChild(txt);
txt.text += "Hello again.\n";
txt.appendText("Last hello, I promise.\n");

}
}

}

The appendText() method generally runs faster than += and is preferred, as the compiler will
remind you.

You can use the replaceText() and replaceSelectedText() methods to replace text.
replaceText() needs to be told the range of characters to replace, and
replaceSelectedText() simply uses the current selection.

Setting a TextField’s Size
When you set the height or width of the TextField, it displays text only within those boundaries.
To change the size of a TextField, simply set new values for its width and height properties, as
shown in Example 17-2. Remember that these properties exist on all DisplayObjects.

330

Chapter 17: Text, Styles, and Fonts

EXAMPLE 17-2 http://actionscriptbible.com/ch17/ex2

Resizing Text

package {
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;

public class ch17ex2 extends Sprite {
protected const TEXT:String = "Gaius Marius (157 BCE-January 13, 86 BCE)\

was a Roman general and politician";

public function ch17ex2() {
//A - manually sized, small
var smalltf:TextField = new TextField();
smalltf.border = true; //we’ll turn on the border to see the size
smalltf.width = 100;
smalltf.height = 30;
smalltf.text = TEXT;
smalltf.y = 0; //appears on top
addChild(smalltf); //not all text will fit

//B - manually sized, big
var bigtf:TextField = new TextField();
bigtf.border = true;
bigtf.width = 800;
bigtf.height = 30;
bigtf.text = TEXT;
bigtf.y = 50; //appears in the middle
addChild(bigtf); //all the text fits, with extra space

//C - autosizing
var autotf:TextField = new TextField();
autotf.border = true;
autotf.width = autotf.height = 0; //let autosize grow the size from 0
autotf.autoSize = TextFieldAutoSize.LEFT;
autotf.text = TEXT;
autotf.y = 100; //appears on bottom
addChild(autotf); //all text fits perfectly

}
}

}

You have another option that you can use to control sizing: autoSize. The autoSize property of
a TextField allows it to change size automatically to fit its contents, depending on how the text is
aligned and whether the text wraps. You can set autoSize to the following values:

� TextFieldAutoSize.NONE— The default value. Does not allow the TextField to resize
automatically.

331

Part III: The Display List

� TextFieldAutoSize.LEFT — For use with left-aligned text, will expand the TextField
toward the right when lines are too long and toward the bottom when there are too many lines
to display.

� TextFieldAutoSize.CENTER— For use with center-aligned text, will expand the
TextField equally toward the left and right to make room for lines too long to display and
toward the bottom when there are too many lines to display.

� TextFieldAutoSize.RIGHT— For use with right-aligned text, will expand the
TextField toward the left when lines are too long and toward the bottom when there are too
many lines to display.

If the TextField is set to wrap long lines, the behavior is overridden such that only the bottom is
extended when an autoSize mode is set. I’ll touch on line wrapping shortly.

Sometimes you want your text fields to grow with their contents, like in a tool tip or a caption,
but sometimes you want the fields to stay at a fixed size, like in a form field. Using a mixture of
autoSize and fixed-width TextFields lets you do whatever you need.

Setting a TextField’s Scaling and Rotation
Both scaling and rotation are behaviors inherited from DisplayObject. But both behave in unex-
pected ways when used with TextFields that contain device fonts. You’ll learn about device fonts
and embedded fonts — and how they behave when rotated — in the section ‘‘Fonts.’’ Otherwise, sim-
ply use the rotation, scaleX, and scaleY properties inherited from DisplayObject that you
learned about in Chapter 14, ‘‘Visual Programming with the Display List.’’

Wrapping Text
In Example 17-2, you saw text that spilled over to a second line. With the TextField class, you can
make sure your text stays all on one line or allow it to use multiple lines, as shown in Example 17-3.
Furthermore, you can choose whether those lines should wrap automatically or whether new lines
only appear in response to newline characters in the text. These two properties are controlled with the
logically named multiline and wordWrap properties.

EXAMPLE 17-3 http://actionscriptbible.com/ch17/ex3

Text on Multiple Lines

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
public class ch17ex3 extends Sprite {
protected const TEXT:String = "Ernest Rutherford, (1871– 1937) was a \

New Zealand-born chemist and physicist who fathered nuclear physics.";

public function ch17ex3() {
var singlelinetf:TextField = newTF();
singlelinetf.multiline = false;

332

Chapter 17: Text, Styles, and Fonts

var multilinetf:TextField = newTF();
multilinetf.multiline = true;
multilinetf.wordWrap = false;

var wraptf:TextField = newTF();
wraptf.multiline = true;
wraptf.wordWrap = true;

}
protected function newTF():TextField {
var tf:TextField = new TextField();
tf.border = true;
tf.width = 300;
tf.height = 40;
tf.text = TEXT;
tf.y = 60 * numChildren;
tf.addEventListener(MouseEvent.CLICK, onClick);
addChild(tf);
return tf;

}
protected function onClick(event:MouseEvent):void {
var tf:TextField = TextField(event.target);
tf.autoSize = TextFieldAutoSize.LEFT;

}
}

}

This example shows that only with multiline and wordWrap both set to true do lines of text
wrap automatically. You can click the TextFields to turn on auto sizing, which demonstrates that
when text wrapping is on, the TextField grows in height and wraps instead of simply growing as
wide as necessary to accommodate the line.

Caution
Note that if you have newline characters in the text, they display new lines regardless of the multiline set-
ting. The multiline setting is more useful for input text fields, where it stops the user from adding new lines
with the Enter or Return key. �

Preventing User Selection
I don’t know about you, but one of my pet peeves is when I’m able to select the text of things like
menus and preloaders that I would otherwise be normally or habitually clicking without any desire
to copy that text — those clicks would be interpreted as selection events and select the menu item
or preloader copy instead. On the other hand, another pet peeve of mine is that in so many uses of
Flash, I can’t copy text that I want to, like the address or phone number of a restaurant (infuriating!)
or a quote from a conversation or article.

Well, you can avoid the unbridled wrath of myself and your other users by controlling whether your
text can be selected on each TextField. Simply use the selectable property, which accepts true
or false. Easy!

333

Part III: The Display List

Displaying Multilingual Text and Symbols
Remember from Chapter 6, ‘‘Text, Strings, and Characters,’’ that Flash Player is delightfully
Unicode-compliant. You can include any Unicode text in your TextFields in the same way that you
add any text to a TextField, as long as it’s encoded with UTF-8. If you want to avoid non-ASCII
text in your source files or the interface you’re loading your text from, you can use an escape
sequence with the Unicode code for the non-ASCII characters. You can find a list of all Unicode
escape sequences at http://bit.ly/unicode-chart.

You can find other references by searching for ‘‘Unicode characters list.’’ If you want to use the Greek
letter delta, simply type this:

txt.text = "The greek letter delta looks like so: \u0395";

Caution
Don’t forget that Flash Player has to draw the text you request in the font it’s set to use, so if you’re using a
device font, the user’s system must have an acceptable system font that includes that glyph, or if you’re using an
embedded font, that glyph must be embedded. These days, most system fonts include a large subset of Unicode,
so using device fonts is a pretty good bet. �

Text with HTML and CSS
Good news: you can use HTML and CSS in your TextFields. Bad news: only limited subsets of
HTML and CSS are supported, and those parts that are supported do not always behave correctly. By
no means should you feed a TextField HTML designed for web browsers and expect it to render
correctly! That said, if you use the capabilities provided with their limitations in mind, it can be quite
helpful.

When you use HTML in a TextField, all you have to do is set the field’s htmlText property
instead of its text property. That’s it! Interestingly, you can still use the text property even when
you have HTML displayed inside the TextField. This simply returns the text sans tags, which can
be useful.

HTML Support in TextField
Following is a list of HTML tags supported by Flash Player. I won’t bore you with what these tags
do, but if there’s something specific about how Flash Player handles them, I’ll mention it. If you’d
like a refresher on HTML, try w3schools (http://w3schools.com/), whose tutorials cut right to
the chase.

� <a> — Does not automatically underline links, but that can be done with CSS.

� — A bold typeface must be available for the font used.

�
 — The text field must be multiline.

� — Supports the attributes face, size, and color.

� — Embeds JPEG, PNG, and even SWF files. Covered in depth in the next section.

� <i> — An italic typeface must be available for the font used.

� — Because Flash Player does not recognize ordered and unordered list tags (and
), all lists are unordered and drawn with bullets.

334

Chapter 17: Text, Styles, and Fonts

� <p> — The text field must be multiline. Flash Player can be stubborn with newlines, <p> tags,
and
 tags, so be careful.

� — Only the class attribute is supported, not style.

� <textformat> — Much like , applies TextFormat formatting instead of CSS for-
matting to the contained text. Supports a subset of TextFormat attributes; others are con-
trolled by other HTML tags like . I cover this in greater detail later in the chapter.

� <u> — Works as expected.

Although no other tags are supported, unsupported tags will be ignored, so you can still use them if
you’re trying to repurpose HTML text for both the browser and Flash Player. Furthermore, as in older
browsers, XHTML tags will be interpreted like their HTML equivalents, so you can use those too.

Flash Player supports only a subset of named HTML entities. Example 17-4 illustrates all of them.

EXAMPLE 17-4 http://actionscriptbible.com/ch17/ex4

HTML Entities

var tf:TextField = new TextField();
tf.htmlText = "< > & " '";
trace(tf.text); //< > & " ‘

Finally, note that when you retrieve HTML text from a TextField, it’s not always the same as the
HTML you put in. As Flash Player goes through the TextField and figures out how to display
all the text, it changes your HTML to its own representation, which you will get back. Mostly you’ll
notice that your styles are inlined and converted into TextFormats and font tags.

Adding Images or SWF Files to a TextField with

The tag that you may know from HTML can embed images or SWF files in Flash Player. If
you’re going to embed SWF files, you can use a few additional properties. Let’s walk through the
attributes of the tag.

� src — Specifies the URL to an image or SWF file, or the linkage identifier for a movie clip
symbol in the library. This attribute is required; all other attributes are optional. External files
(JPEG, GIF, PNG, and SWF files) do not show until they are downloaded completely.

� width — The width of the image, SWF file, or movie clip being inserted, in pixels.

� height — The height of the image, SWF file, or movie clip being inserted, in pixels.

� align — Specifies the horizontal alignment of the embedded image within the text field. Valid
values are left and right. The default value is left.

� hspace — Specifies the amount of horizontal space that surrounds the image where no text
appears. By default this is 8 pixels.

� vspace — Specifies the amount of vertical space that surrounds the image where no text
appears. By default this is 8 pixels.

335

Part III: The Display List

� id — Specifies the name for the movie clip instance (created by Flash Player) that contains the
embedded image file, SWF file, or movie clip. This is useful if you want to control the embed-
ded content with ActionScript.

� checkPolicyFile — Controls whether Flash Player will check for a cross-domain policy file
on the server associated with the image’s domain (as covered in Chapter 27, ‘‘Networking Basics
and Flash Player Security’’).

Once you have an image embedded in your TextField, if you’ve set its id property, you can
retrieve a reference to it using TextField’s getImageReference() method. This method takes in
the ID of an embedded image and, if it can find a matching image, returns it as a DisplayObject.
If the image is externally loaded, this will be a Loader — the contents may or may not be ready by
the time you query it, but the Loader reference will exist.

Supported CSS Properties
Flash Player only supports a small subset of CSS1. Although you shouldn’t expect too much from
it, you can get a surprising amount done with just a few simple properties. Using CSS, you can
group the text styles used in your application and change them all at once, or even load the styles
at runtime so that users of the software can modify the styles without recompiling. I won’t go over
the meaning of all the CSS properties; numerous resources are available online and offline for these.
That said, here are all the properties supported in Flash Player, along with any particulars you need
to know:

� color — Must be in hexadecimal, such as #ff0000 (red). Does not support shorthand such
as #f00 or red.

� display — Must be inline, block, or none.

� font-family — Comma-separated list of font names; these fonts must be available to the
currently running code. (See the ‘‘Fonts’’ section later in this chapter for more detail.) The three
device fonts have CSS-compatible monikers: mono is an alias for the Flash Player device font
_typewriter, sans-serif for _sans, and serif for _serif.

� font-size — All font size measurements in Flash Player are in pixels; any unit measure-
ment applied after the numeric value will be ignored and pixels used (so 12px and 12 are both
acceptable).

� font-style — Only normal and italic are supported. Remember that an italic version of
the font must be available to use italic.

� font-weight — Only normal and bold are supported. Remember that a bold version of
the font must be available to use bold.

� kerning — A property not found in CSS1, set this to true to enable font-based kerning.
Kerning improves readability of type by nudging certain pairs of letters closer or farther apart.
This data is included in the kern table of most nonmonospaced fonts.

� leading — Another nonstandard CSS property, it behaves slightly differently from the similar
but unsupported line-height CSS property. Setting leading determines the leading, or
space added between each line in multiline text. As with all measurements, units are assumed
to be in pixels.

� letter-spacing — Units are assumed to be in pixels.

� margin-left, margin-right — Units are assumed to be in pixels.

� text-align — Can be left, center, right, or justify.

336

Chapter 17: Text, Styles, and Fonts

� text-decoration — Only none and underline are supported. Links are not underlined
by default; adding the rule restores this behavior.

a {text-decoration: underline}

� text-indent — Units are assumed to be in pixels.

In CSS, you may apply styles to all text that matches the rule. You do this by specifying a selector for
each rule. In Flash Player, only three CSS selectors are supported.

� Type selectors — These selectors apply to every instance of a particular tag. To set the size of all
first-level headers, use h1 {font-size: 30}.

� Class selectors — Use these to set the styling for tags that have a particular CSS class set. This
lets you apply styling arbitrarily. For example, for the tag:

<p class="intro">Once upon a time...</p>

all of the following CSS rules would apply:

p {} /*applies to all p tags*/
.intro {} /*applies to all tags with class intro*/
p.intro {} /*applies to p tags with class intro*/

� Dynamic pseudo-class selectors — For <a> tags, the :hover and :active pseudo-classes are
supported, which let a link have different styles when the mouse is over it and the mouse button
is pressing down on it, respectively.

You can also group selectors by separating them with commas. In this way, you can apply a rule to
multiple selectors without rewriting the rule. Any more complex selectors, such as those for descen-
dants or children, are not supported.

You can also create styles for tags that are not otherwise recognized by Flash Player. For instance,
there is no built-in support for <h1> or <h2> tags, but you can easily implement them by creating a
CSS rule for them that makes them appear the way you want them to. You can even do this for tags
that don’t exist in HTML, like <chevre>, although you’re probably better off in general sticking to
CSS classes (<div class="chevre">) rather than making up tags.

You’re probably anxious to see some CSS in action, so let’s look at how you can apply CSS to text in
ActionScript.

The StyleSheet Object and CSS Parsing
Style sheets in ActionScript 3.0 are implemented by instances of the flash.text.StyleSheet
class. This class is somewhat of a glorified dictionary: it simply stores CSS rules by their selectors.
You can create a new StyleSheet with its argument-less constructor, add style rules by calling
setStyle() and retrieve them with getStyle(), or clear out existing styles with clear(). Each
style rule is stored as an associative array Object. So the rule:

h1 {color: #333333; font-size: 20; font-family: serif}

can be added with the code:

var css:StyleSheet = new StyleSheet();
css.addStyle("h1", {color: "#333333", fontSize: 20, fontFamily: "serif"});

337

Part III: The Display List

You’ll note that when CSS properties are converted into ActionScript, camelCase takes the place of any
hyphens.

Anyway, this is a frustrating way to have to add styles, so thankfully you can simply parse a
well-formed CSS file with StyleSheet’s parseCSS() method. Just pass this method the contents
of the file as a string.

Finally, apply the CSS to a TextField by assigning the StyleSheet object into the TextField
instance’s styleSheet property. Now you have all the pieces and can put them together into
Example 17-5.

EXAMPLE 17-5 http://actionscriptbible.com/ch17/ex5

Style Sheets

package {
import flash.display.Sprite;
import flash.text.StyleSheet;
import flash.text.TextField;
public class ch17ex5 extends Sprite {
protected const TEXT:String =

"<h1>Quiet Girl</h1>" +
’<h2>by ’ +
"Langston Hughes</h2>\n" +
"<p>I would liken you
To a night without stars
" +
"Were it not for your eyes.
I would liken you
" +
"To a sleep without dreams
Were it not for your songs.";

protected const CSSRULES:String =
"h1 {font-family: sans-serif; font-size: 14; color: #202020}" +
"h2 {font-family: sans-serif; font-size: 12; color: #303030}" +
"a {font-style: italic; text-decoration: underline}" +
"a:hover {font-style: italic; text-decoration: underline; color: #303080}" +
"p {font-family: serif; text-align: center; font-size: 20; leading: 8}";

public function ch17ex5() {
var styleSheet:StyleSheet = new StyleSheet();
styleSheet.parseCSS(CSSRULES);
var tf:TextField = new TextField();
tf.styleSheet = styleSheet;

tf.width = stage.stageWidth;
tf.height = stage.stageHeight;
tf.multiline = true;
addChild(tf);

tf.htmlText = TEXT;
}

}
}

338

Chapter 17: Text, Styles, and Fonts

Note that you set the styleSheet property individually for each TextField. On one hand, this
lets you apply whole different style sheets depending on the situation. On the other hand, if you
don’t need this, and because a TextField needs so many lines of initialization, you may also want
to abstract your TextField generation into its own method or class if you need to create many
TextFields that have the same styles.

You can also load the CSS string at runtime from an external file, parse it into a StyleSheet object,
and then apply it to a TextField. The great advantage of this is that it allows you to change the
appearance of one or multiple TextFields without recompiling the SWF file.

Note
Internally, Flash Player converts CSS into TextFormats. This is why you won’t see your CSS styles when
reading out the htmlText of a TextField. You can create new and exciting style parsing if you want, by
extending StyleSheet and overriding the transform() method, which converts CSS associative arrays into
TextFormats. Finally, if you want to be really tricky and you prefer CSS syntax to XML syntax, you can hijack
parseCSS() as a file parser, using it to convert text into structured objects. �

Background and Border Treatments
TextField objects have Shape objects in their background that can be set using the
backgroundColor and hasBackground properties. By default, the background of
the TextField has an alpha of 0. To change that, you need to set two properties: the
background Boolean property that, if true, means the TextField has a background, and
the backgroundColor, which should be a hexadecimal value in the format of 0xRRGGBB:

var txt:TextField = new TextField();
txt.backgroundColor = 0x0000FF; //use a blue background
txt.background = true;

You can also create a border for the TextField by simply setting border and customizing the
borderColor, which accepts a uint, so use hexadecimal colors. Here you’ll set the border of the
TextField to a dark blue.

txt.borderColor = 0x000099;
txt.border = true;

Of course, you can always create more complex borders and backgrounds for your TextFields by
simply placing them underneath the TextField using normal display list operations.

Styling Text with TextFormats
The TextFormat object is another way to give text in your TextField a specific look. If you’re
using HTML, you may find it easier to use the StyleSheet object. If you’re formatting arbitrary
ranges of text — for example, a line, or the first 100 characters — the TextFormat object might
make more sense to use. TextFormat is an object whose properties control formatting of the text it
is applied to.

To use TextFormat, create a new TextFormat object and set any of its instance properties you’d
like to apply to the text. To apply the TextFormat object to the TextField, either set it to the

339

Part III: The Display List

TextField’s defaultTextFormat property to apply the styles to any new text added, as shown
in Example 17-6.

EXAMPLE 17-6 http://actionscriptbible.com/ch17/ex6

Collected Snippets on Applying TextFormats

var tf:TextField = new TextField();
tf.autoSize = TextFieldAutoSize.LEFT;
addChild(tf);

var fmt:TextFormat = new TextFormat();
fmt.font = "_sans";
fmt.bold = true;
fmt.size = 24;
tf.defaultTextFormat = fmt;
//note that you have to set the default format BEFORE setting the text
//it applies to all NEW text added.
tf.text = "be bold.";

You can also apply the TextFormat to specific characters in the TextField, using setText
Format() and passing in integers to mark the first and last characters that you want to receive the
formatting. If you don’t specify the last index, the format is applied to all succeeding characters.

tf = new TextField();
tf.autoSize = TextFieldAutoSize.LEFT;
tf.y = 50;
tf.text = "RED GREEN BLUE";
addChild(tf);

var redFmt:TextFormat = new TextFormat("_sans", 20, 0xff0000);
var greenFmt:TextFormat = new TextFormat("_sans", 20, 0x00ff00);
var blueFmt:TextFormat = new TextFormat("_sans", 20, 0x0000ff);
var t:String = tf.text;
tf.setTextFormat(redFmt, t.indexOf("RED"), t.indexOf("RED")+3);
tf.setTextFormat(greenFmt, t.indexOf("GREEN"), t.indexOf("GREEN")+5);
tf.setTextFormat(blueFmt, t.indexOf("BLUE"), t.indexOf("BLUE")+4);

One thing to notice in this example is that you can set all of a TextFormat’s properties right from
the constructor, which can save you lines of code if, say, you don’t want an ActionScript book you’re
writing to weigh more than a compact car.

Additionally, setTextFormat(), when only sent a TextFormat and no start or end parameters,
applies that format to the entire TextField. You can see this in action in Chapter 9, ‘‘Vectors,’’
Example 9-3 (http://actionscriptbible.com/ch9/ex3).

The TextFormat class has a slew of properties that you can use to apply various formatting to
text. The following sections detail each of these properties.

340

Chapter 17: Text, Styles, and Fonts

align
You can use the align property to place the text relative to the right and left edges of the
TextField object’s bounding box. The property can have one of the values left, right, center,
or justify. These properties only make sense when applied to a range of text that spans at least
one full line, preferably a whole paragraph.

blockIndent
The blockIndent property has an effect on text only when the text is aligned left. In that case,
the blockIndent property indents the entire block of text inward relative to the left margin. The
value should be a number indicating how many pixels you want to indent the text by. See also the
leftMargin and rightMargin properties.

bold
The bold property applies bold formatting to the targeted text. To turn bold formatting on, use a
Boolean value of true. To turn bold off, use a Boolean value of false. By default, this property is
defined with a null value, which produces the same effect as false.

bullet
The bullet property adds a bullet character (•) in front of the text if the property’s value is set to
true. You can turn off bullet formatting by assigning a false value to the property. By default,
this property has a value of null. The font face used for the bullet character is the same as that
defined for other text in the TextFormat object (via the font property, discussed in this section
under ‘‘font’’). The bullet points are placed a super-arbitrary 19 pixels from the left margin of the field,
affected only by the left margin settings. (Properties such as blockIndent don’t have an effect when
bullet points are used.) The bulleted text is spaced 15 pixels to the right of the bullet point.

The following code displays a list of bulleted text:

var tf:TextField = new TextField();
tf.multiline = true;
tf.border = true;
tf.wordWrap = true;
tf.text = "a\nb\nc\nd";
var fmt:TextFormat = new TextFormat();
fmt.bullet = true;
tf.setTextFormat(fmt);
addChild(tf);

color
This property controls the font color of the targeted text. The value for this property should be hex-
adecimal RGB. (Note that you can set the font color throughout the entire TextField by using the
TextField property textColor.) The following code displays red text:

var tf:TextField = new TextField();
tf.text = "red text";
var format:TextFormat = new TextFormat();

341

Part III: The Display List

format.color = 0xFF0000;
tf.setTextFormat(format);
addChild(tf);

font
The font property controls the font face used for the text. This property uses a string value, indicat-
ing the name of the font. The name that you use can depend on how you are working with the font
in Flash. By default, the font property has a value of null, which results in the default font being
used. The font face can be applied only if the user has the font installed on his system or if the font
has been embedded or shared with the Flash application.

I discuss fonts in depth in the section ‘‘Fonts.’’

indent
The indent property controls the spacing applied from the left margin to the first line of text within
a paragraph. A paragraph is defined as any text that precedes a newline. This property uses pixel units.
The default value is null.

italic
The italic property controls whether the targeted text is displayed in italic. If the property is set to
true, the text appears italic. If the property is set to false, the text appears normal. By default, this
property has a value of null, which achieves the same effect as a value of false. Keep in mind that
an italic version of the font must be available.

leading
The leading property controls the spacing inserted between each line of text. The values for this
property are pixel-based. By default, the value of this property is null. You can compress lines as
well by using negative leading.

letterSpacing
The letterSpacing property controls the tracking, or amount of space between every character
in a run of text. A value of 0, or the default, displays the text in the desired font as you would see it
in any program or on the page. Tweaking this value artificially condenses (when negative) and extends
(when positive) text. This is usually used to fit more or less body copy on a line, but it can be used
stylistically as well. Fractional numbers may be used for this property.

leftMargin
The leftMargin property determines the spacing (in pixels) inserted between the text and the left
border of the TextField object. By default, the value of this property is null, which achieves the
same effect as a value of 0.

The blockIndent and leftMargin properties are added together to determine a given line’s
indentation.

342

Chapter 17: Text, Styles, and Fonts

rightMargin
The rightMargin property controls the spacing (in pixels) inserted between the text and the right
border of the TextField object. By default, the value of this property is null, adding no space.

size
The size property determines the font size (in pixels) of the text.

tabStops
The tabStops property defines a custom array specifying the values used by tabs within the
text. The first element of the array specifies the spacing (in pixels) to use for the first tab character in
succession. The second element specifies the spacing to use for the second tab character in succession,
and so on. The value of the last element in the array is used for all subsequent tab characters. The
default value for tabStops is null. When the property has a value of null, the default value of
four pixels is used between each successive tab character. However, using the tabStops property,
you can specify how ordered tabs are spaced within text.

For example, you can create a TextFormat object that uses a tab spacing of 10 pixels for the first
tab, a tab spacing of 50 pixels for the second tab (in succession), and a tab spacing of 150 pixels for
the third tab. The following code does just that:

var tf:TextField = new TextField();
tf.width = 200;
tf.multiline = true;
tf.border = true;
tf.text = "\ta\n";
tf.text += "\t\tb\n";
tf.text += "\t\t\tc";
var format:TextFormat = new TextFormat();
format.tabStops = [10, 50, 150];
format.align = "left";
tf.setTextFormat(format);
addChild(tf);

target
The target property works in conjunction with the url property. You can specify a string
value for the target property that indicates the name of the browser window (or frame) where
the URL specified in the url property should appear. You can use the predefined target val-
ues of "_blank" (new empty browser window), "_self" (the current frame or window),
"_parent" (the parent frame or window), or "_top" (the outermost frame or window), or you
can use a custom browser window or frame name (as assigned in the HTML document or JavaScript).
If you use the url property without specifying a value for the target property, the URL loads into
the current frame or window ("_self").

underline
The underline property can add an underline to text. When this property is set to true, an under-
line appears with the text. When it is set to false, any underlines are removed. By default, the value
of this property is null, which has the same effect as a value of false.

343

Part III: The Display List

url
The url property allows you to add a hyperlink to text. Flash Player does not provide an immediate
indication that the url property is in use for a given range of text — you may want to change the
color and add an underline to the affected text to make the link more apparent to the user. However,
the mouse pointer automatically changes to the hand icon when the mouse rolls over the linked text.

The following code applies a hyperlink to a portion of the text:

var tf:TextField = new TextField();
tf.multiline = true;
tf.border = true;
tf.wordWrap = true;
tf.text = "Visit the Web site";
var format:TextFormat = new TextFormat();
format.url = "http://actionscriptbible.com/";
format.target = "_blank";
format.underline = true;
tf.setTextFormat(format, 10, 18);
addChild(tf);

Input TextFields
When you want to accept text input from a user, there’s just one way to go, and that’s an input
TextField. Input TextFields are also TextField instances. They can do all the things you’ve
seen, but the end user can only type into an input TextField.

The Three Kinds of Text Fields
Flash Player has three basic kinds of text fields. In the next chapter, you’ll see that there are other text
layout and display facilities when using the Flash Text Engine. For now, let’s quickly review the three
basic types.

The kind of text field you’ve seen so far has been a dynamic TextField. Dynamic TextFields can
be controlled by ActionScript code. You can read and set their contents, display them with embedded
or device fonts, and manipulate and interact with them in all the ways seen here.

Input TextFields are used for user input. They are also instances of flash.text.TextField.
They add the ability to accept keyboard input.

The third kind I haven’t discussed here are static text fields. These are text fields that ActionScript
does not control. They can only be created by SWF authoring tools like Flash Professional. If
your SWF is built with Flash or you’ve loaded an external SWF, using ActionScript, you can find
these static text fields on the display list. They are instances of flash.text.StaticText, not
TextField, so none of the properties and methods I’ve discussed here apply to them. Because they
extend DisplayObject, you can move, scale, rotate, and reparent them; furthermore, you can get
their text with the read-only text property, but that’s all.

You differentiate between the two kinds of TextField instances using the type property.

344

Chapter 17: Text, Styles, and Fonts

Making a TextField an Input Field
To change a new or existing dynamic text field to an input text field, simply set its type property to
the constant TextFieldType.INPUT. Once you’ve done that, you’ve got an input TextField. Any
text that you specify will appear at the beginning of the field and will be editable by the user. To set
the type to a dynamic text field, use the constant TextFieldType.DYNAMIC. This is the default for
all new TextField instances.

var tf:TextField = new TextField();
tf.type = TextFieldType.INPUT;
tf.text = "Enter your name here";
tf.border = true;
addChild(tf);

As soon as the user begins typing in your input TextField, he adds onto the original text. As you
learn more capabilities of input text fields, we’ll build up a more complicated example that is just what
you’d use in a form.

Restricting User Input
What if you want to control the characters that a user can put into a TextField? If you were to have
a TextField in which your users enter their phone numbers, you would want to prevent them from
entering letters. You can do this using the restrict property of the TextField. When you set the
restrict characters property, it restricts keyboard input only; ActionScript code may still put any text
into the text field.

The restrict property is set to a string that enumerates the characters that may be typed into the
TextField. For example:

var textField:TextField = new TextField();
textField.type = TextFieldType.INPUT;
textField.restrict = "abc";
addChild(textField);

This code only allows the letters a, b, or c to be typed into the field, although the user can type them
in any combination, frequency, or order. Allow a range of characters by using a hyphen:

textField.restrict = "0-9";

The preceding code allows all numbers and nothing else. The next snippet of code allows all numbers
and uppercase letters from A to F, which would be handy if you were trying to keep your text field to
valid hexadecimal colors.

textField.restrict = "0-9A-F";

If you’d rather specify the illegal characters than the legal ones, use the caret (^), which marks any-
thing succeeding it as disallowed and anything preceding it as acceptable:

textField.restrict = "^4";

345

Part III: The Display List

This allows any character except the number 4, which can be bad luck. So far so good, but what if
you want to allow the hyphen because you want users to be able to enter their phone number? You
can’t just throw a hyphen in there because it has a special meaning. You can escape it by prefacing
it with two backslashes (\\). You need two because you need to use the actual backslash character,
which itself needs to be escaped in the String. Awful, I know.

textField.restrict = "0-9\\-";

Now users can enter numbers and dashes and nothing else.

The other control that you have over the user’s input into the input TextField is the maxChars
property. This allows you to set the maximum number of characters that a TextField can con-
tain. You may recall the phone number example from earlier in the chapter. In that instance, if you
were accepting U.S. numbers of the format xxx-xxx-xxxx, you would limit your TextField to 12
characters, so you would use the following:

textField.maxChars = 12;

Let’s put all this together into Example 17-7. You’ll create a form and then later use TextField
events to make it more user-friendly.

EXAMPLE 17-7 http://actionscriptbible.com/ch17/ex7

User Input

package {
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFieldType;
import flash.text.TextFormat;

public class ch17ex7 extends Sprite {
protected const INFMT:TextFormat = new TextFormat("_sans", 12, 0x505050);
protected var nameTF:TextField;
protected var phoneTF:TextField;
protected var emailTF:TextField;

public function ch17ex7() {
nameTF = makeInputTextField();
nameTF.text = "Your name";
nameTF.maxChars = 40;

phoneTF = makeInputTextField();
phoneTF.text = "Your phone number";
phoneTF.maxChars = 20;
phoneTF.restrict = "0-9()\\-";

emailTF = makeInputTextField();
emailTF.text = "Your email address";
emailTF.maxChars = 40;
emailTF.restrict = "a-zA-Z0-9_\\-+=∼!@#$%\\^.";

}

346

Chapter 17: Text, Styles, and Fonts

protected function makeInputTextField():TextField {
var tf:TextField = new TextField();
tf.type = TextFieldType.INPUT;
tf.border = true;
tf.defaultTextFormat = INFMT;
tf.width = 300;
tf.height = 18;
tf.y = numChildren * 26;
addChild(tf);
return tf;

}
}

}

Tab-Accessible Input Text Fields
One of the things to keep in mind when designing a user interface, no matter how simple, is what
the user is accustomed to doing. Many people are used to being able to tab through a group of
TextFields to change focus from one TextField to another. If you’re on the TextField at the
top of the page, you tab to get the next lowest. If you’re in the TextField at the bottom of the
page, you tab to go to the Submit button. Because some users are accustomed to it, they might be
pleasantly surprised to find that they can tab through the TextField object, although more likely
than not they won’t notice. Because they assume that your app is tab-enabled, they’ll notice only if it
isn’t. Such is the lot of a UI designer.

Input text fields should be tab-enabled by default. As you can see in the previous example, the
tab key works fine to tab through the fields. In Chapter 21, you’ll see how to enable tabbing to an
InteractiveObject by setting its tabEnabled property to true. Then, if necessary, you can
manually change the tab ordering by assigning ordered integers to the InteractiveObject’s
tabIndex properties. It’s much preferable to add InteractiveObjects to the display list in the
correct order and use the automatic tab ordering than to have to design your own, but it’s sometimes
necessary.

Password Text Fields
You can create password input fields that obscure the characters being typed simply by setting the
TextField’s displayAsPassword parameter to true.

Interaction with TextField Events
In addition to events inherited from InteractiveObject and DisplayObject, TextField dis-
patches four kinds of event. With these events, you can make your TextFields much more reactive.

focusIn and focusOut Events
The FocusEvent.FOCUS_IN and FocusEvent.FOCUS_OUT events are inherited from
InteractiveObject but are particularly relevant to input text fields. These events are broadcast
any time that the TextField receives or loses focus from the user, respectively. You can use this to

347

Part III: The Display List

update the form you started building in Example 17-7, taking the user-friendly prompts and clearing

them out when the user focuses the field, as shown in Example 17-8.

EXAMPLE 17-8 http://actionscriptbible.com/ch17/ex8

User Input with Focus

package {
import flash.display.Sprite;
import flash.events.FocusEvent;
import flash.text.TextField;
import flash.text.TextFieldType;
import flash.text.TextFormat;
import flash.utils.Dictionary;

public class ch17ex8 extends Sprite {
protected const INFMT:TextFormat = new TextFormat("_sans", 12, 0, true);
protected const OUTFMT:TextFormat =
new TextFormat("_sans", 12, 0x808080, false);

protected var prompts:Dictionary;
protected var nameTF:TextField;
protected var phoneTF:TextField;
protected var emailTF:TextField;

public function ch17ex8() {
prompts = new Dictionary();

nameTF = makeInputTextField();
nameTF.text = "Your name";
nameTF.setTextFormat(OUTFMT);
nameTF.maxChars = 40;
prompts[nameTF] = nameTF.text;

phoneTF = makeInputTextField();
phoneTF.text = "Your phone number";
phoneTF.setTextFormat(OUTFMT);
phoneTF.maxChars = 20;
phoneTF.restrict = "0-9()\\-";
prompts[phoneTF] = phoneTF.text;

emailTF = makeInputTextField();
emailTF.text = "Your email address";
emailTF.setTextFormat(OUTFMT);
emailTF.maxChars = 40;
emailTF.restrict = "a-zA-Z0-9_\\-+=∼!@#$%\\^.";
prompts[emailTF] = emailTF.text;

}

protected function onFocusIn(event:FocusEvent):void {
var tf:TextField = TextField(event.target);
if (tf.text == prompts[tf]) {
tf.text = "";

348

Chapter 17: Text, Styles, and Fonts

}
tf.setTextFormat(INFMT);
tf.defaultTextFormat = INFMT;

}

protected function onFocusOut(event:FocusEvent):void {
var tf:TextField = TextField(event.target);
if (tf.text == "") {
tf.text = prompts[tf];
tf.setTextFormat(OUTFMT);

}
}

protected function makeInputTextField():TextField {
var tf:TextField = new TextField();
tf.type = TextFieldType.INPUT;
tf.border = true;
tf.width = 300;
tf.height = 18;
tf.y = numChildren * 26;
tf.addEventListener(FocusEvent.FOCUS_IN, onFocusIn);
tf.addEventListener(FocusEvent.FOCUS_OUT, onFocusOut);
addChild(tf);
return tf;

}
}

}

The form fields take away the prompts as soon as you tab or click into them; likewise, they restore
the prompts if you leave the field empty. Furthermore, the example uses a different TextFormat
for the prompts to better differentiate prompt text and input text.

Text Input Events
Two different kinds of events are fired when the user modifies the contents of an input TextField,
Event.CHANGE and TextEvent.TEXT_INPUT. There are three main differences between these
events.

First, the TextEvent.TEXT_INPUT event is fired when the user types text in the field, whether that
changes the contents of the field or not. For example, typing illegal characters inside a restricted input
field doesn’t change the text because these characters are ignored. However, the TEXT_INPUT event
is fired. This also means that when the user deletes text with the backspace key or the clipboard, the
TEXT_INPUT event is not fired. The Event.CHANGE event, on the other hand, is dispatched only
when the actual contents have changed, and it doesn’t care if that’s from typing, deleting, cutting, or
pasting.

Second, the TEXT_INPUT event is fired before the contents of the field change, whereas the
CHANGE event is fired after the contents have changed. So when you look at the text property of a
TextField while it dispatches a TEXT_INPUT event, it contains the text in that field immediately
prior to the event occurring. During a CHANGE event, the text property is already up-to-date.

349

Part III: The Display List

Finally, the TEXT_INPUT event tells you what text is about to be added. You can find this in the
text property of the TextEvent. Because it happens before the text is actually added, and it tells
you what text is about to be added, you can cancel the event with preventDefault() to prevent
the user’s text addition from taking place. In other words, by listening to the TEXT_INPUT event,
you can gain much finer or context-sensitive control over what goes into a TextField when a user
types into it. This could be used to automatically add dashes to license keys or automatically capitalize
letters as you type them.

If you just want to know when the contents of the TextField have changed, however,
Event.CHANGE is a much simpler event to listen to. You can use this to do on-the-fly validation of
form fields. Example 17-9 adds a Submit button to the form you built in Examples 17-7 and 17-8
and only lets the user click this button when all the fields are correct.

EXAMPLE 17-9 http://actionscriptbible.com/ch17/ex9

Change Events

package {
import flash.display.Sprite;
import flash.events.Event;
import flash.events.FocusEvent;
import flash.text.*;
import flash.utils.Dictionary;

public class ch17ex9 extends Sprite {
protected const INFMT:TextFormat = new TextFormat("_sans", 12, 0, true);
protected const OUTFMT:TextFormat = new TextFormat(
"_sans", 12, 0x808080, false);

protected var prompts:Dictionary;
protected var nameTF:TextField;
protected var phoneTF:TextField;
protected var emailTF:TextField;
protected var okButton:Sprite;

public function ch17ex9() {
prompts = new Dictionary();

nameTF = makeInputTextField();
nameTF.text = "Your name";
nameTF.setTextFormat(OUTFMT);
nameTF.maxChars = 40;
prompts[nameTF] = nameTF.text;

phoneTF = makeInputTextField();
phoneTF.text = "Your phone number";
phoneTF.setTextFormat(OUTFMT);
phoneTF.maxChars = 12;
phoneTF.restrict = "0-9\\-";
prompts[phoneTF] = phoneTF.text;

emailTF = makeInputTextField();
emailTF.text = "Your email address";

350

Chapter 17: Text, Styles, and Fonts

emailTF.setTextFormat(OUTFMT);
emailTF.maxChars = 40;
emailTF.restrict = "a-zA-Z0-9_\\-+=∼!@#$%\\^.";
prompts[emailTF] = emailTF.text;

okButton = makeOkButton();
validate();

}
protected function onFocusIn(event:FocusEvent):void {
var tf:TextField = TextField(event.target);
if (tf.text == prompts[tf]) {
tf.text = "";

}
tf.setTextFormat(INFMT);
tf.defaultTextFormat = INFMT;

}
protected function onFocusOut(event:FocusEvent):void {
var tf:TextField = TextField(event.target);
if (tf.text == "") {
tf.text = prompts[tf];
tf.setTextFormat(OUTFMT);

}
}
protected function onChange(event:Event):void {
validate();

}
protected function validate():void {
if (isValid) {
okButton.alpha = 1;
okButton.mouseEnabled = true;

} else {
okButton.alpha = 0.2;
okButton.mouseEnabled = false;

}
}
protected function get isValid():Boolean {
if (isEmpty(nameTF)) return false;
if (isEmpty(phoneTF)
|| phoneTF.text.match(/^\d{3}-\d{3}-\d{4}$/) == null) return false;

if (isEmpty(emailTF)
|| emailTF.text.match(/^\w+@\w+\.[a-z]{2,6}$/) == null) return false;

//warning, this regex is not industry grade!
return true;

}
protected function isEmpty(tf:TextField):Boolean {
return (tf.text.replace(/\s*/, "").length == 0
|| tf.text == prompts[tf]);

}
protected function makeInputTextField():TextField {
var tf:TextField = new TextField();
tf.type = TextFieldType.INPUT;
tf.border = true;
tf.width = 300;

continued

351

Part III: The Display List

EXAMPLE 17-9 (continued)

tf.height = 18;
tf.y = numChildren * 26;
tf.addEventListener(FocusEvent.FOCUS_IN, onFocusIn);
tf.addEventListener(FocusEvent.FOCUS_OUT, onFocusOut);
tf.addEventListener(Event.CHANGE, onChange);
addChild(tf);
return tf;

}
protected function makeOkButton():Sprite {
var w:Number = 100, h:Number = 20;
var btn:Sprite = new Sprite();
var label:TextField = new TextField();
label.width = w;
label.height = h;
label.defaultTextFormat = new TextFormat("_typewriter", 14, 0, true,
null, null, null, null, TextFormatAlign.CENTER);

label.text = "Submit";
btn.buttonMode = true;
btn.mouseChildren = false;
btn.addChild(label);
btn.graphics.lineStyle(1, 0x202030);
btn.graphics.beginFill(0xb0b0b0, 1);
btn.graphics.drawRect(0, 0, w, h);
btn.graphics.endFill();
btn.y = this.height + 20;
addChild(btn);
return btn;

}
}

}

This is the most complete incarnation of the form yet, with real-time validation. You used the change
event to revalidate every time the TextFields changed. You also made extensive use of regular
expressions, which you learned about in Chapter 12, ‘‘Regular Expressions.’’

Link Events
By listening for the TextEvent.LINK event, you can be notified when the user clicks a link in
a TextField. If you design the targets of the links in a particular way, you can get data out of
each link rather than having them navigate a web browser to a URL. This means you can trigger
ActionScript events not just from clicks on TextFields but from clicks on specific words in a
TextField. For example, you could write a simple menu using TextField to lay out all the labels
as hyperlinked text, rather than manually adding multiple TextFields with their own individual
event listeners.

To route a click on an <a> tag through the event flow, set the link to any URI with the event:
scheme. This is a virtual scheme used to notify Flash Player that the link should dispatch an event.

352

Chapter 17: Text, Styles, and Fonts

Any parts of the URI after event: are stored in the event object’s text property, so you can
determine for yourself how to communicate through links. For example, you could decide to send
a method name and arguments in the link by simply separating them by commas, as shown in
Example 17-10.

EXAMPLE 17-10 http://actionscriptbible.com/ch17/ex10

Using Link Events

package {
import flash.display.Sprite;
import flash.events.TextEvent;
import flash.text.*;
public class ch17ex10 extends Sprite {
protected var tf:TextField;
public function ch17ex10() {
tf = new TextField();
tf.selectable = false;
tf.defaultTextFormat = new TextFormat("_sans", 14);
tf.multiline = tf.wordWrap = true;
tf.width = 200;
tf.htmlText = "This text controls itself. You could turn it" +

’ <u>red</u> or’ +
’ <u>green</u>. Or you could’ +
’ <u>move it right</u> or’ +
’ <u>move it down</u>.’;

tf.addEventListener(TextEvent.LINK, onLink);
addChild(tf);

}
protected function onLink(event:TextEvent):void {
var args:Array = event.text.split(",");
if (args.length < 1) return;
switch (args.shift()) {
case "color": colorText.apply(this, args); break;
case "move": moveText.apply(this, args); break;

}
}
protected function colorText(colorStr:String):void {
tf.setTextFormat(new TextFormat(null, null, parseInt(colorStr, 16)));

}
protected function moveText(xStr:String, yStr:String):void {
tf.x += parseFloat(xStr);
tf.y += parseFloat(yStr);

}
}

}

You could use the LINK event to do even crazier things, like store serialized objects
(http://bit.ly/store-objects-in-links).

353

Part III: The Display List

Scroll Events
The Event.SCROLL event is dispatched after a TextField scrolls. I’ll cover this along with more
about TextField scrolling in the later section ‘‘Scrolling text.’’ If you’ve created a scrollbar, and the
user used the scroll wheel to scroll the TextField, the scrollbar needs to be notified so that it can
update to reflect the new scroll position. You would accomplish that using this event, which you’ll see
in Example 17-13.

Interactive Typography
Believe it or not, TextField still has plenty of tricks left up its sleeve. In this section I’ll cover func-
tionality you need to map back and forth between the graphical domain, dominated by pixels and
DisplayObjects, and the text domain, made only of letters. By doing so, you can create graphics
that are aware of text and text that is aware of graphics.

Text by Lines and Paragraphs
When using TextField’s text wrapping facilities, Flash Player decides what word should go where.
After all is said and done, you can easily see on your screen where a particular word went on the
screen, but how can you tell in code?

Flash Player lets you query multiline TextFields for a variety of information on the lines of text
they contain. The available methods and properties include these:

� numLines — The total lines of text.

� getLineIndexOfChar(charIndex:int):int— Given a character position in the source
text, determines which line that character ended up on. If you want to find out what line a word
is on, you can use this function with the character index of its first letter.

� getLineLength(lineIndex:int):int— Returns how many characters ended up fitting
on a specific line.

� getLineOffset(lineIndex:int):int— Given a line number, returns the index in the
source text of the character that begins that line. In other words, from where in the text does
this line start?

� getLineText(lineIndex:int):String— Given a line number, returns what text
ended up on that line.

� getFirstCharInParagraph(charIndex:int):int— Given a position in the source
text, returns the position of the paragraph that contains that character. In other words, rewinds
backward from any character to the beginning of its paragraph.

� getParagraphLength(charIndex:int):int— Given a position in the source text, tal-
lies up the characters in the containing paragraph.

These methods are most useful when you’re using plaintext; HTML contains characters that are not
rendered, so character indices in HTML text are misleading.

In Example 17-11, suppose you want to set the characters in the line underneath the user’s mouse to
red. You’ll use several text-by-lines methods to determine where to apply the formatting.

354

Chapter 17: Text, Styles, and Fonts

EXAMPLE 17-11 http://actionscriptbible.com/ch17/ex11

Line Formatting

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.text.*;
public class ch17ex11 extends Sprite {
protected var tf:TextField;
protected const RED:TextFormat = new TextFormat("_serif", 28, 0xff0000);
protected const BLACK:TextFormat = new TextFormat("_serif", 28, 0);

public function ch17ex11()
{
tf = new TextField();
tf.multiline = true;
tf.wordWrap = true;
tf.width = 450;
tf.autoSize = TextFieldAutoSize.LEFT;
tf.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);
tf.addEventListener(MouseEvent.MOUSE_OUT, onMouseOut);
tf.defaultTextFormat = BLACK;
tf.text = "Alice was beginning to get very tired of sitting by her \

sister on the bank, and of having nothing to do: once or twice she had peeped \
into the book her sister was reading, but it had no pictures or conversations \
in it, ‘and what is the use of a book,’ thought Alice, ‘without pictures or \
conversation?’";

addChild(tf);
}
protected function onMouseMove(mouseEvent:MouseEvent):void {
var charInText:int = tf.getCharIndexAtPoint(10, tf.mouseY);
if (charInText == -1) return;
var lineIndex:int = tf.getLineIndexOfChar(charInText);
var firstCharIndex:int = tf.getLineOffset(lineIndex);
var lastCharIndex:int = firstCharIndex + tf.getLineLength(lineIndex);

//we want to set all the TextField to black except
//the text underneath the mouse
tf.setTextFormat(BLACK);
tf.setTextFormat(RED, firstCharIndex, lastCharIndex);

}
protected function onMouseOut(mouseEvent:MouseEvent):void {
tf.setTextFormat(BLACK);

}
}

}

First you use getCharIndexAtPoint() to convert a location on the screen to a location in the
source text. I’ll cover this next. Once you have an index into the text, you expand it to the whole line

355

Part III: The Display List

by figuring out what line that character lies in, finding out the first character in that line, and finding
the length of the line, from which you can easily derive the last character in the line. After you know
where the line starts and ends in terms of character indices, you know enough to apply the formatting
to the line.

Finding Text by Location
To map from on-screen positions to text indices, you can query a TextField by locations relative to
its origin. Two methods are available:

� getCharIndexAtPoint(x:Number, y:Number):int

� getLineIndexAtPoint(x:Number, y:Number):int

The difference should be clear. Example 17-11 shows getCharIndexAtPoint() in use. Note that
it uses the y position of the mouse relative to the TextField. Because the TextField is at the
origin in this example, it’s all the same, but remember that all locations are calculated with respect to
the origin of the TextField.

Locating and Measuring Text
You can get a lot of information about how specific lines of text are rendered in a TextField with
the getLineMetrics() method. Given a line number, this method returns a
flash.text.TextLineMetrics object populated with all kinds of information about the
line of text (these measurements are illustrated in Figure 17-1):

� x — The left position of the first character in pixels

� width — The width of the text of the selected lines (not necessarily the complete text) in pixels

FIGURE 17-1

How text metrics measure a character and font

Mpn

Mpn

Text Line w idth

Text width Margin2-pixel gutter

Text Field
height

Text height

Text Line
x-position

Baseline

Line height

Origin
Text Field

Ascent

Descent

Leading

356

Chapter 17: Text, Styles, and Fonts

� height — The height of the text of the selected lines (not necessarily the complete text) in
pixels

� ascent — The length from the baseline to the top of the line height in pixels

� descent — The length from the baseline to the bottom depth of the line in pixels

� leading — The measurement of the vertical distance between the lines of text

You can also convert text locations to on-screen locations for any given character with the
TextField method getCharBoundaries(). Given a character’s index in the source text, it will
find its position and dimensions on the screen (relative to the origin of the TextField instance).
This more direct mapping makes sense for some applications.

One great application of text measurement is to break up TextFields into separate fields for every
word or letter, as Example 17-12 shows. This way, you can animate the words or letters separately to
make text art.

EXAMPLE 17-12 http://actionscriptbible.com/ch17/ex12

Separating Text

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.geom.Rectangle;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.utils.setTimeout;
public class ch17ex12 extends Sprite {
protected var letters:Vector.<LetterField> = new Vector.<LetterField>();

public function ch17ex12() {
var text:String = "Are you watching closely?";
var sourceTF:TextField = newTF();
sourceTF.text = text;
sourceTF.border = true;
sourceTF.width = sourceTF.textWidth;
addChild(sourceTF);

//break it up into letters
for (var i:int = 0; i < text.length; i++) {
var lf:LetterField = new LetterField(newTF());
var letterBounds:Rectangle = sourceTF.getCharBoundaries(i);
lf.x = letterBounds.x;
lf.y = letterBounds.y;
lf.letter = text.charAt(i);
addChild(lf);
letters.push(lf);

}

//remove original
removeChild(sourceTF);
stage.addEventListener(MouseEvent.CLICK, startAnimation);

continued

357

Part III: The Display List

EXAMPLE 17-12 (continued)

}
protected function startAnimation(event:MouseEvent):void {
for (var i:int = 0; i < letters.length; i++) {
setTimeout(letters[i].startAnimation, i * 30);

}
}
protected function newTF():TextField {
var tf:TextField = new TextField();
tf.defaultTextFormat = new TextFormat("_serif", 38, 0, false, false);
tf.selectable = false;
tf.width = tf.height = 50;
return tf;

}
}

}
import flash.text.TextField;
import flash.display.Sprite;
import flash.events.Event;
class LetterField extends Sprite {
protected var tf:TextField;
protected const factor:Number = 1 - 0.08;
public function LetterField(tf:TextField) {
this.tf = tf;
addChild(tf);

}
public function set letter(ltr:String):void {
tf.text = ltr;
tf.x = -tf.textWidth / 2;
this.x -= tf.x;

}
public function startAnimation():void {
addEventListener(Event.ENTER_FRAME, tick);

}
protected function tick(event:Event):void {
this.alpha *= factor;
this.rotationY = 180 * (1-alpha);

}
}

The main measurement code happens in the highlighted for loop. The bounding box for each letter
is retrieved and used to position a new TextField that contains only that specific letter. After you
have this framework for chopping up text, the possibilities are endless.

One interesting application of text metrics is getting text to flow around arbitrary outlines. You can see
an ActionScript solution to this problem I wrote in 2007 (http://dispatchevent.org/roger/
dynamic-text-wrapping-in-actionscript-3/). You’ll see how it works in Example 36-13
after an introduction to bitmap programming.

358

Chapter 17: Text, Styles, and Fonts

Scrolling Text
Plain TextFields are capable of scrolling their content. If you put more text than fits in the size
of the TextField, it acts as a window into the full size of the text. You can always write code to pan
the TextField instance behind a mask or use its scrollRect property, but you can also use the
built-in scroll properties. The difference is that TextFields scroll one row and column at a time, so
you won’t have ‘‘smooth’’ scrolling.

The user can scroll selectable and input TextFields by dragging a selection below the visible con-
tents of the TextField or by cursoring out of the visible area. You can also enable scrolling via the
mouse wheel by setting the mouseWheelEnabled property to true.

You can control the scrolling of a TextField with these properties:

� scrollV — The current vertical scroll position measured in lines of text (1-based) from the
top. In other words, the index of the topmost visible line.

� bottomScrollV — The line index of the bottommost line visible in the TextField. You can
determine how many rows are visible by subtracting scrollV from this. Read-only.

� scrollH — The current horizontal scroll position measured in pixels from the left. In other
words, how many pixels left the content is being shifted.

� maxScrollH, maxScrollV — The maximum possible values for scrollH and scrollV.
Read-only.

Because the scrollH and scrollV properties are read-write, you can scroll the TextField by
setting these. In Example 17-13, you create a document reader that scrolls automatically as the mouse
nears the top or bottom of the stage. A dim progress bar shows how far you are into the document.

EXAMPLE 17-13 http://actionscriptbible.com/ch17/ex13

Scrolling

package
{
import flash.display.Sprite;
import flash.events.Event;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.text.TextField;
import flash.text.TextFormat;
public class ch17ex13 extends Sprite {
protected var tf:TextField;
protected var progressBar:Sprite;

public function ch17ex13() {
tf = new TextField();
var fmt:TextFormat = new TextFormat("_serif", 24, 0x303030);
fmt.leading = 10;
fmt.leftMargin = fmt.rightMargin = 10;
fmt.indent = 20;
tf.defaultTextFormat = fmt;

continued

359

Part III: The Display List

EXAMPLE 17-13 (continued)

tf.multiline = tf.wordWrap = true;
tf.mouseWheelEnabled = true;
tf.height = stage.stageHeight;
tf.width = stage.stageWidth;
tf.text = "Loading...";
addChild(tf);

progressBar = new Sprite();
progressBar.graphics.beginFill(0, 0.1);
progressBar.graphics.drawRect(0, 0, stage.stageWidth, 60);
progressBar.graphics.endFill();
addChildAt(progressBar, 0);

var loader:URLLoader = new URLLoader(new URLRequest(
"http://actionscriptbible.com/files/alice-ch1.txt"));

loader.addEventListener(Event.COMPLETE, onLoadComplete);
}
protected function onLoadComplete(event:Event):void {
tf.text = URLLoader(event.target).data;
tf.addEventListener(Event.ENTER_FRAME, scrollTextField);
stage.frameRate = 15;

}
protected function scrollTextField(event:Event):void {
var margin:Number = 50;
if (stage.mouseY < margin) tf.scrollV--;
if (stage.mouseY > stage.stageHeight - margin) tf.scrollV++;
progressBar.y = (stage.stageHeight - progressBar.height)
* (tf.scrollV / tf.maxScrollV);

}
}

}

Fonts
Of course, Flash Player would be no good at displaying type if it weren’t able to use decent fonts. In
this section you’ll learn about the different kinds of fonts, ways to embed fonts, and even load fonts at
runtime.

Device Fonts and Embedded Fonts
Thus far, all the code in this chapter has been using device fonts: fonts installed on the end-user’s sys-
tem. Flash Player actually uses the operating system it’s running on to find and render these fonts,
so it has less control over their appearance. You’ve been using the three generic font aliases: _sans,
_serif, and _typewriter. When you use these three special aliases, Flash Player finds a generic
sans-serif, serif, or monospaced device font on the system to use. You can’t be sure that text rendered
with these aliases will look the same across computers, but you can be sure that it will render.

360

Chapter 17: Text, Styles, and Fonts

Note
Japanese systems have three more generic aliases: , , and , for gothic (rounded and read-
able), minchou (Ming-style, more calligraphic), and touhaba (monospaced) fonts. �

What I haven’t mentioned yet is that, using device fonts, you can render text in any font installed
on the user’s system. You can even use the Font class (coming right up) to find out what fonts are
available and pick from them at runtime. In Example 17-14, if you can find Comic Sans or a similar
font on your computer, you display it; if not, you act disappointed.

EXAMPLE 17-14 http://actionscriptbible.com/ch17/ex14

Locating and Using a Font

package {
import flash.display.Sprite;
import flash.text.Font;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
import flash.text.TextFormat;

public class ch17ex14 extends Sprite {
public function ch17ex14() {
var tf:TextField = new TextField();
tf.autoSize = TextFieldAutoSize.LEFT;
addChild(tf);

var fonts:Array = Font.enumerateFonts(true);
var found:Boolean = false;
for each (var font:Font in fonts) {
if (font.fontName.match(/^comic\b/i) != null) {
tf.defaultTextFormat = new TextFormat(font.fontName, 14);
tf.text = "Don’t you love this font, " + font.fontName + "?!";
found = true;
break;

}
}
if (!found) {
tf.defaultTextFormat = new TextFormat("_typewriter");
tf.text = "Lucky you, no Comic Sans!";

}
}

}
}

The second kind of font is an embedded font. The outlines of all (or a subset of) the glyphs in the
font is available to Flash Player because the font has been embedded in the SWF at compile time, or
it’s been loaded at runtime. Either way, Flash Player can use its own text engine to render text in the
font exactly as intended. There are lots of benefits to using embedded fonts. Most importantly, you

361

Part III: The Display List

can be sure that text renders as you want in that font, on every computer. Beyond that, you may also
enable anti-aliasing and subpixel anti-aliasing for embedded fonts (see more about anti-aliasing in the
later section ‘‘Anti-aliasing’’), giving you lots of control over the smoothness of text using these fonts.
Finally, there are some quirky limitations on what you can do with device fonts. A few of these were
mentioned in ‘‘Introducing TextFields’’ earlier in the chapter.

Version
These limitations are also dependent on Flash Player version. In Flash Player 9, device text could not be rotated,
scaled non-uniformly, or faded with alpha. It could be masked if it were cached into a bitmap first. Using
Flash Player 10, device fonts are rendered with OS-provided anti-aliasing, and can be faded with alpha. As of
Flash Player 10.1, device text still cannot be rotated with rotation, however it may be rotated with rotationZ,
since this caches the text to a bitmap before transformation. However, using the new Flash Text Engine, covered
in Chapter 18, ‘‘Advanced Text Layout,’’ device text can be rotated. The takeaway is this: if you need to animate
a TextField, its fonts should be embedded. �

The main drawback of embedded fonts is their size. Embedding the outlines of a whole font adds
some weight to your compiled SWF size. Thankfully, the world is becoming so broadband that few
people will complain over 50kb of fonts being added to the download size, so this is only an issue
in special cases like banners, where you really have to watch filesize carefully. Also thankfully, all the
font embedding methods allow you to choose subsets of the font to embed, saving some space.

Beginning in Flash Player 10, embedded fonts come in two flavors. The old format, and the Compact
Font Format or CFF. CFF fonts are designed for use in the Flash Text Engine; they won’t work in a
TextField. So, I’ll shelve them until next chapter when I get really deep with text rendering.

Managing Active Fonts and the Font Object
Fonts in Flash Player are represented by flash.text.Font objects. Furthermore, the Font class is
used to manage these fonts.

In the previous example, you saw how to retrieve all available fonts using the static method Font
.enumerateFonts(). Pass it true to include all device fonts; omit this parameter or use false to
include only embedded fonts. This method returns an array of Font instances.

Each Font instance has three essential properties.

� fontName — The name of the font. This is the string you will use in CSS rules, tags,
and the font property of TextFormats.

� fontStyle — The style of this font. Bold, italic, and bold+italic versions of the font must be
embedded independently if you are to use any text in that font and style. All these embedded
fonts will be instances of Font with the same fontName but different fontStyles.
This property is one of the constants FontStyle.REGULAR, FontStyle.BOLD,
FontStyle.ITALIC, or FontStyle.BOLD_ITALIC.

� fontType — Whether the font is a device font, an embedded font, or a embedded CFF font.
These values are defined as constants in FontType.

But the most important duty of Font is to register new fonts. If you load a SWF with an embedded
font, you’ll need to do this step before you can use the font in TextFields. Once the embedded
font is registered with Font, it can be referenced by font name by TextFormats and the like. Use
the static method Font.registerFont() to enable a font for use by passing its Class reference.

Embedding Fonts
The method to embed fonts in a SWF depends on the tool you use to compile, but the general idea is
the same. You need to create a class for each embedded font.

362

Chapter 17: Text, Styles, and Fonts

Flash Builder, Flex Builder, Flex SDK, mxmlc

In all these tools, whether you’re building Flex or just ActionScript content, you can use the Embed
metadata tag to embed a font. You can embed fonts from the system you’re compiling on by font
name, or you can point the compiler to an OpenType or TrueType font on your system. See the Flex
documentation at http://bit.ly/flex-using-embed for details on the [Embed] tag.

In Example 17-15, you embed a system font and then use it in a TextField.

EXAMPLE 17-15 http://actionscriptbible.com/ch17/ex15

Embedding a System Font

package {
import flash.display.Sprite;
import flash.text.*;
import flash.utils.describeType;

public class ch17ex15 extends Sprite {
[Embed(systemFont="sansserif", fontName="mySans",

mimeType="application/x-font", advancedAntiAliasing="true")]
protected var fontClass:Class;

public function ch17ex15() {
var tf:TextField = new TextField();
addChild(tf);
tf.width = stage.stageWidth;
tf.autoSize = TextFieldAutoSize.LEFT;
tf.wordWrap = true;
tf.antiAliasType = AntiAliasType.ADVANCED;
tf.defaultTextFormat = new TextFormat("mySans", 12);
tf.embedFonts = true;
var fontInstance:* = new fontClass();
tf.text = describeType(fontInstance);

}
}

}

I wanted to verify that the class you get from the [Embed] tag extends Font, so that instantiating
the class will get you a Font instance, so I made an instance of the embedded class and used its
description as the contents of the TextField. If you try out this example, you’ll see that it does
indeed extend Font.

However, you don’t need to register this font manually; when you embed fonts into the SWF, they
come preregistered. You can enumerate the fonts to verify this, or simply see that the font in this
example is working splendidly without the extra step.

Flash Professional

When you’re using Flash Professional to embed fonts, you can simply put a dynamic TextField
on stage or in the library with the correct font embedded. This makes the font available by the same
name that it reads in the TextField (the name reported by Flash).

363

Part III: The Display List

You can also add a Font symbol to the library, check Export for ActionScript (make sure to press the
Advanced button if this is not visible), and set a class name, making sure that it extends Font. In this
case, you can give the font your own name.

There are some advantages to using Flash to embed your fonts. First, unlike Flash Builder, it can
embed PostScript and Type 1 fonts, so if you’re stuck with a font only in those formats, I suggest
embedding it in a SWF using Flash, even if you don’t use Flash to compile your project. You can load
the font dynamically using pure ActionScript, and if you just embed once in Flash, you’ll never have
to worry about sharing the actual font between different computers, where bad things can happen
(Mac and PC versions of the font embedding slightly differently, different versions of a common font
by different foundries, different OSs naming the font differently. . .). Second, it’s much easier to set
ranges of characters to embed using Flash’s interface than by staring at a Unicode chart. Personally,
I use Flash Professional to embed all my fonts, sounds, and graphics, but Flash Builder to do all the
programming and compiling, so these kinds of hybrid workflows, taking advantage of the strengths of
each tool, are possible.

Loading Fonts Dynamically
This is one of those things that, if you mention it to someone who used ActionScript before
ActionScript 3.0, they’ll curl up into the fetal position and ignore you until you go away. Thankfully,
with the Font class, all it takes is one simple method. Getting the Class reference to pass to
Font.registerFont() is the hard part.

First, use a Loader to load the SWF that contains the font or fonts you want to embed. Once the
SWF is done loading, you can pull class definitions out of it by the names of the classes.

var domain:ApplicationDomain = loader.contentLoaderInfo.applicationDomain;
var fontClass:Class = domain.getDefinition("assets.MyFontName") as Class;
Font.registerFont(fontClass);

Again, if you happened to instantiate the fontClass, you’d get a Font subclass.

Using Embedded Fonts
After you’ve got them registered, using embedded fonts is as easy as using the name of the font (as
specified while exporting) in a TextFormat, CSS rule, tag, or so on. Keep in mind that you
have to have a separate copy of a font for each style: regular, bold, italic, and bold italic. You should
also turn on the embedFonts property of any TextFields you’ll be using embedded fonts in.

In Example 17-16, you’ll load and use a font I’ve embedded using Flash Professional using the name
‘‘Inconsolata’’ and the class linkage com.actionscriptbible.assets.Inconsolata.

EXAMPLE 17-16 http://actionscriptbible.com/ch17/ex16

Dynamic Font Loading

package {
import flash.display.*;
import flash.events.Event;
import flash.net.URLRequest;
import flash.system.*;
import flash.text.*;
public class ch17ex16 extends Sprite {
protected const URL:String =
"http://actionscriptbible.com/files/inconsolata.swf";

364

Chapter 17: Text, Styles, and Fonts

protected const CLASS_NAME:String =
"com.actionscriptbible.assets.Inconsolata";

protected var loader:Loader;

public function ch17ex16() {
loader = new Loader();
loader.load(new URLRequest(URL), new LoaderContext(
true, null, SecurityDomain.currentDomain));

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoadComplete);
}
protected function onLoadComplete(event:Event):void {
var domain:ApplicationDomain = loader.contentLoaderInfo.applicationDomain;
var fontClass:Class = domain.getDefinition(CLASS_NAME) as Class;
Font.registerFont(fontClass);

var tf:TextField = new TextField();
addChild(tf);
tf.defaultTextFormat = new TextFormat("Inconsolata", 64);
tf.antiAliasType = AntiAliasType.ADVANCED
tf.width = stage.stageWidth; tf.height = stage.stageHeight;
tf.multiline = tf.wordWrap = true;
tf.embedFonts = true;
tf.text = "Hello world";

}
}

}

The LoaderContext and its SecurityDomain settings are necessary for the online version of the
example to load the font across domains.

Anti-aliasing
Anti-aliasing smoothes out rough edges of graphics by sampling the graphics at a higher resolution
than your screen, averaging the results to turn some pixels neither fully on nor fully off, as shown in
Figure 17-2. Starting in Flash Player 10, device fonts can use the host OS’s text anti-aliasing technique
when drawn on-screen. Otherwise, Flash Player’s text rendering engine can draw embedded fonts with
two major anti-aliasing modes, which can be further customized.

FIGURE 17-2

Comparing anti-aliased and bitmap fonts

Aliased (Bitmap)

Anti-aliased

365

Part III: The Display List

Flash Player’s text anti-aliasing comes in two varieties: normal and advanced. Advanced anti-aliasing
uses subpixel anti-aliasing on your LCD monitor (you won’t see the benefit with a CRT display) to get
even smoother text at the expense of some slight color cast. It is slower overall, and it’s more effec-
tive on smaller type sizes. Normal anti-aliasing uses only full pixels and ends up looking a bit heavier
and softer, although these may be tweaked. It is speedier and looks smoother when animated, so it is
recommended for animation.

Set the type of anti-aliasing to apply to text in the TextField’s antiAliasType property. Accept-
able values include AntiAliasType.NORMAL and AntiAliasType.ADVANCED.

You can tweak some of the anti-aliasing settings, as well, if you select advanced anti-aliasing.

Fitting Edges to a Grid

The type of grid fitting used determines whether Flash Player forces strong horizontal and vertical
lines to fit to a pixel or subpixel grid, or not at all. When you snap edges to pixel boundaries, you
get increased sharpness at lower sizes at the expense of faithful reproduction. You can change the grid
fitting algorithm by applying these values to the gridFitType property of a TextField:

� GridFitType.NONE — Doesn’t attempt to fit the font to a grid. Good for larger sizes and
faithful reproduction of glyphs.

� GridFitType.PIXEL — Strong horizontal and vertical lines are fit to a pixel grid. Gives
sharp edges. This setting works only for left-aligned text fields.

� GridFitType.SUBPIXEL — Fits vertical edges to subpixel edges. Each pixel of your LCD
is actually three subpixels jammed close together; fitting to this grid is a good balance between
sharp edges using grid fitting and accurate reproduction.

Sharpness and Thickness

Using advanced anti-aliasing, you can also change the overall sharpness and thickness of the glyphs in
a TextField by using the sharpness and thickness properties. Sharpness may be adjusted in a
–400 to 400 range, and thickness in a –200 to 200 range. For both, 0 is the default.

Summary

� Use a TextField wherever you need to display text.

� The TextField is either dynamic or input.

� The TextField contains properties to control text wrapping and automatic sizing.

� TextField extends the InteractiveObject and DisplayObject classes and has all the
properties, methods, and events inherited from them.

� TextField objects that are multiline have scroll properties that allow you to scroll up and
down through the lines in the TextField.

� You can use a TextFormat object to control the appearance of text in the TextField.

� If the TextField has htmlText, you can use a StyleSheet object to apply CSS classes
to HTML.

� TextField objects dispatch distinct TextEvents to indicate when the user has entered text
if the TextField is an input field, or a link event if the TextField has htmlText with links
within it.

366

Advanced Text Layout

FEATURED CLASSES

flash.text.engine.*

flashx.textLayout.*

flashx.undo.*

T
he TextField object explored in Chapter 17, ‘‘Text, Styles, and Fonts,’’
allows you to place text in your Flash applications. Some applications
that deal extensively in text call for a deeper control over text than

TextFields can provide. Supplementing, but not replacing TextField, Flash
Player 10 adds a whole new text engine, called the Flash Text Engine. This
engine provides comprehensive low-level control over the presentation of text. In
addition, an open source framework built on this engine is provided: the Text
Layout Framework. This framework lets you easily include print-quality text and
layout tools in your application.

The new text engine provides functionality for letting text flow through con-
nected text blocks like a prepress publishing tool, including columns and pages.
It allows for the insertion of graphical elements into text, including text-wrapping
options. It gives you the ability to lay out text vertically and include horizontal
text within vertical text. It also provides higher levels of typographical control,
over ligatures, digit case, kerning, hyphens, and so on. In this chapter you’ll see
all the specific applications of this toolkit, which are too numerous to list here.

Version
FP10. The Flash Text Engine is available only in Flash Player 10 and later, as
is the Text Layout Framework. I cover these technologies here, so this entire
chapter is specific to Flash Player 10 and later. �

Understanding Advanced Text

Controls

The organization and use of the advanced text layout APIs is different from much
of what’s been covered in this book, so it merits a short overview. Up until this
point, I’ve been covering functionality provided by classes and groups of classes
in the Flash Player API. For example, to use text with a TextField, all that is

367

Part III: The Display List

required is that you import and use the TextField class. The advanced text controls covered in this
chapter, however, have been split into two parts.

The Flash Text Engine, or FTE, is an addition to Flash Player 10. Like you’ve seen throughout the
book, the capabilities of Flash Player are made available to programmers through classes and func-
tions in the Flash Player API. The Flash Text Engine is available to programmers through the classes
in the flash.text.engine package. Using these classes, you can take advantage of all the new
capabilities of the text engine.

If you spent a long time writing ActionScript code, you could build a nice text layout library using the
new Flash Text Engine that makes it easy to control the flow, layout, and presentation of text. For-
tunately, Adobe has written an ActionScript library that does just this, the Text Layout Framework,
and provided it for your use. Like any library, you can use this library by either including its source
in your project or linking in precompiled SWC files. When using the Text Layout Framework, or
TLF, you will use its API, housed in the flashx.textLayout package instead of the Flash Player’s
TFE API.

In summary, you have a choice. You can use an ActionScript library that gives you a higher-level and
simpler interface (the Text Layout Framework), or you can use the core functionality that Flash Player
gives you (the Flash Text Engine) directly to get more control. Or you can use a combination of both.
Oh, and there’s nothing that keeps you from mixing in the ‘‘legacy’’ text control, TextField. The
Text Layout Framework is similar to the Flex framework: it uses ActionScript code to build on Flash
Player and give you, the user of the library, powerful and customizable tools that would take time to
build yourself. And, just like Flex, because the TLF is built on ActionScript code that is freely pro-
vided, you can extend it or override some of its behavior by interacting with its classes. Figure 18-1
shows the ways you can add dynamic text to your Flash application.

FIGURE 18-1

Three text APIs and where they are found. At bottom, the three options: you can’t use TLF
without FTE.

flashx.textLayout.*
a.k.a.

Text Layout Framework

SWC

flash.text.engine.*
a.k.a.

Flash Text Engine

FP10

flash.text.*
a.k.a.

TextField API

FP9

TF FTEor or
TLF

FTE

368

Chapter 18: Advanced Text Layout

Advanced Text Controls in Development Tools
If you use Flash Professional, you can create TLF-powered text interactively. In Flash Professional CS5,
the Text tool can create TLF text fields; the Properties panel lets you choose which text engine to use
(‘‘TLF Text’’ versus ‘‘Classic Text’’) and gives you access to the wide array of formatting options that
the Flash Text Engine enables. If you use Flash Professional CS4, you can download the Text Layout
Component from Adobe Labs, although it is deprecated and likely won’t be maintained. The extension
adds a TextLayout component to the Components panel — drag this to the stage to create a new text
view — and a Text Layout panel, found in Other Panels, to edit the text content with all the options
that FTE enables.

The new Spark text components in the Flex 4 framework are also built on FTE and TLF and sup-
port their advanced text features. These include Label, RichText, and RichEditableText. For
Flex-specific information, see the Flex Language Reference or a Flex 4 text.

Why There Are Two Engines
It’s true — the options for dealing with text can be daunting. The TextField API evolved over
generations of Flash Players, gaining a whole lot of functionality organically from successive enhance-
ments. I like to think of Flash Player 9 as the first version of the API because it is the first runtime for
ActionScript 3.0. You can safely ignore anything that happened in Flash Player 8 and earlier, because
those features are utterly incompatible with ActionScript 3.0. But the truth is, the TextField API
covered in Chapter 17 is not much different from the ActionScript 2.0 TextField. It carries a lot of
baggage, and its abilities were already stretched to the limit.

The Flash Player team put in a whole new text engine that’s geared for the future. It has more
power, more control, more structure, and more extensibility. If the developers had done this before
releasing Flash Player 9, they could have removed TextField entirely, and you’d only need the
Flash Text Engine. You’d never know what’s missing, and books like this one wouldn’t bother
covering TextField because it would be an ‘‘ActionScript 2.0 thing,’’ completely irrelevant to
ActionScript 3.0.

But because Flash Player engineers added the Flash Text Engine after the tabula rasa of Flash Player
9, you will forever (until ActionScript 4.0?) have two text engines at your disposal. Pithily, because
TextField is here, it’s here to stay. Removing it would break all programs built for Flash Player 9
that use text.

The Flash Text Engine is the way of the future. Adobe is likely to make enhancements to FTE and
TLF in future Flash Players, not TextField. It has integrated FTE into the new generation of Flex
components. That said, at this moment, TextField is still fast and does a respectable job despite its
idiosyncrasies. There’s no shame in using it.

Where to Go from Here
I’ve just introduced a low-level Flash Player API (FTE) and a high-level ActionScript 3.0 library (TLF).
The subject of this book is the Flash Player API, but its objective is to be useful. I’ll spend a majority
of this chapter on the Text Layout Framework, because it’s the more powerful tool that you’ll use in
real projects. This higher-level framework gives you all the control you’ll need over text in all but the
rarest cases, and it does so with less coding effort required.

369

Part III: The Display List

The Flash Text Engine
Even though I’ll be focusing on the more convenient Text Layout Framework, I’ll quickly get you
acquainted with the new text engine it’s based on. This will help you understand how the TLF works,
and you may find occasion to use the FTE on its own.

The ultimate purpose of the FTE is to properly format and display a set of lines of text. Whereas
the operation of TextField is opaque to ActionScript — you give it text and a format or CSS that
entirely determine its appearance — the FTE exposes its inner workings down to the line level, and
then it can give you some more information about individual letters or ‘‘atoms’’ if you request it. Its
workings are open to you because, rather than a single class, the FTE consists of a set of classes that
work together. Rather than simply assign content and formatting to a TextField, you break down
your content into groups of ContentElements such as TextElement and GraphicElement, give
each one of these an ElementFormat, and provide the ContentElements to a TextBlock, which
is more or less a paragraph. Then you call the createTextLine() method of your TextBlock
repeatedly, and the TextBlock figures out how the text should flow and look line by line, generating
a display object, TextLine, as the result of each call. This hands-on process gives the opportunity to
exercise detailed control, or at minimum to see what’s happening. See the classes involved in the FTE
in Figure 18-2.

FIGURE 18-2

Flash Text Engine architecture

GraphicElement

ElementFormat

TextElement

R

TextElement

TextLine R

TextLine

TextLine

TextLine

TextBlock

content

createTextLine()

add to stage

R AaBbCc14

7

R

GroupElement

370

Chapter 18: Advanced Text Layout

Why is the end product of this hands-on process a line of text? Why not a character, or the entire
paragraph? The engine, like a print layout program, has to make some tough decisions to figure out
what can go into a line. It must consider the sizes of the content it has to lay out, what content it
has already laid out, the available dimensions for a line, the justification of the text, the natural places
text can break, the rotation of the content, and so on. The font and formatting properties like kerning
and tracking do most of the work to determine how letters are laid out within the line. In general, a
line of text is the level of detail that’s going to be most useful to applications looking to compose any
moderate quantity of text on the screen. Specifically, the TLF benefits from line-level control as this
allows it to easily flow text from one text container (a column, for instance) to another — if the last
line fills up the container, the next line should go in the next container. Rarely do you make layout
decisions based on a single character.

This hands-on interface roughly follows a model-view-controller architecture. There is only one
view in the FTE — only one class that extends DisplayObject — and that’s TextLine, which
contains a single line of text. It extends DisplayObjectContainer, so it dispatches the normal
InteractiveObject events. It can provide measurements about the text that it displays. However,
a TextLine doesn’t operate in a vacuum: it’s created by, owned by, and managed by a TextBlock.
You can’t even create a TextLine in ActionScript except by using TextBlock: the TextLine()
constructor throws an error.

The TextBlock class is your controller for a given set of content. You can consider it your handle to
the FTE. It owns the content, the formatting, and the views for a given block of text. You can think of
this as the workhorse of the FTE. Once you provide it with the content and formatting, it can figure
out how that content is broken into TextLines. Furthermore, it owns all created TextLines and
even revises them as necessary. If you change the content those lines are displaying, the TextBlock
controller marks them invalid and reflows the text as necessary.

Note
I sometimes use the word ‘‘content’’ instead of ‘‘text’’ because the FTE can lay out both graphics and text. �

While the controller and view are solitary, the FTE has many model classes, which specify both
the content to be displayed and the formatting to be applied, including the properties of the
font used. The kinds of content are modeled by ContentElement subclasses: GroupElement,
GraphicElement, and TextElement. Using the GroupElement class, you can sequence and nest
runs of text and inline graphics. This is especially important considering that each TextElement has
a single format model that applies to the entire run of text. By using a GroupElement, you can string
together runs of text with separate formats. The FTE uses another model class for specifying these for-
mats: ElementFormat. This class specifies all the properties of a given content element, like its font,
color, font size, kerning, tracking, typographic case, relative rotation, and disposition toward using lig-
atures and breaking onto a new line. It uses a further model class, FontDescription, to detail how
the intended font family, weight, and posture should be located and rendered. These models work
together to fully describe the content before it’s broken into discrete lines and rasterized. The models
by themselves do nothing, just like the view by itself does nothing. Everything hinges on how you
use the TextBlock controller to convert content and formatting models into display objects
containing the content.

Let’s see how the models, view, and controller collaborate to layout and display text using the Flash
Text Engine, in Example 18-1.

371

Part III: The Display List

EXAMPLE 18-1 http://actionscriptbible.com/ch18/ex1

Using the Flash Text Engine

package {
import flash.display.Sprite;
import flash.text.engine.*;
public class ch18ex1 extends Sprite {
private const LEADING:Number = 4;
private const FONT_SIZE:Number = 14;
private const FONT_COLOR:Number = 0x303070;
public function ch18ex1() {
//create the content and formatting models, and associate them.
var content:TextElement = new TextElement("Lorem ipsum dolor sit amet, \

consectetur adipiscing elit. Nulla massa magna, lobortis non viverra a, \
hendrerit ut est. Nullam eget mauris ac nisl iaculis scelerisque. \
In sodales orci posuere sem gravida luctus.\n\n\
Did I mention Hello World in there?");

var fontDescription:FontDescription = new FontDescription("_typewriter");
content.elementFormat =
new ElementFormat(fontDescription, FONT_SIZE, FONT_COLOR);

//create the controller, and give it the model.
var block:TextBlock = new TextBlock();
block.content = content;

//use the controller to generate views, and add them to stage.
var line:TextLine = null;
var textY:Number = 0;
while (line = block.createTextLine(line, stage.stageWidth)) {
textY += line.textHeight + LEADING;
line.y = textY;
addChild(line);

}
}

}
}

Clearly, creating a simple block of text directly with the FTE requires a lot of set-up code. But this
is the price you pay for lower-level access to the text facilities. You could investigate further the
text applications possible with just the FTE, but instead let’s see what’s possible with the higher-level
Text Layout Framework. As you see what the TLF can do for you, it will become clear how the TLF
leverages the abilities of the FTE that you’ve become acquainted with here.

The Text Layout Framework
The Text Layout Framework enables you to easily display print-quality text, with the features you’d
expect from a prepress layout tool, all at runtime inside Flash Player 10 and later. As you’ve learned,
it’s an open source library written in ActionScript 3.0 and leveraging the FTE; if you like, you

372

Chapter 18: Advanced Text Layout

can open, view, and even edit the source. Include the TLF in your Flash application by adding its
precompiled SWCs to your project. The TLF is included with the Flex 4 framework (included in
Flash Builder 4 and later) and with Flash Professional CS5 and later. Otherwise, you can find source
and SWCs at http://bit.ly/text-layout-framework. Classes that make up the TLF are
found in the package flashx.textLayout. The flashx package will presumably be used for
other noncore (external to the Flash Player API) Adobe extensions that do not require Flex.

Note
SWCs are linked in by the compiler. Flash Professional, Flash Builder, and the Flex SDK compilers use separate
methods to link SWCs when compiling. Flash Professional puts these options in the File ➪ Publish Settings ➪

Flash ➪ ActionScript Settings ➪ Library Path dialog box. Flash Builder lets you configure linking in the Project
➪ Properties ➪ ActionScript Build Path ➪ Library Path dialog box. The mxmlc command-line compiler uses the
-include-libraries or -runtime-shared-library switches to link in Runtime Shared Libraries (RSLs).

The TLF SWC is a signed Adobe framework, and as such, it can be cached by Flash Player when you choose to
link in the SWC as an RSL. I recommend that you take advantage of framework caching when using the TLF.
Read more about framework caching at http://bit.ly/framework-rsl �

So what does using the TLF get you? Besides the advanced capabilities that the FTE provides —
ligatures, typographic case, digit case and width, DefineFont4 font embedding, right-to-left and verti-
cal languages, tate-chu-yoko text, tab setting, inline graphics, and so on — the TLF adds new features
while making the FTE’s features much easier to use. The major features fall into three categories:

� Text Containers — Although the FTE’s ultimate goal is to produce lines of text, it leaves laying
them out to us. The TLF takes care of the layout, giving you flexible ways to flow text between
text containers, around graphics, into columns, and so on. Rather than being used to lay out
a single paragraph like TextBlock, the FTE lays out any length of content in any number of
paragraphs or pages.

� Content Markup — Creating the proper ContentElement and ElementFormat objects,
and associating them, is a painful chore to do by hand. The TLF defines a markup language,
which maps to richer Element objects that it defines. It also provides facilities to import
and export formatted content to markup, plaintext, or the kind of simplified HTML that
TextField supports.

� Editability and Events — TLF adds support for text selection, including naturally selecting text
across multiple container boundaries; cut, copy, paste, and clipboard control; and link events.

I’ll cover these new features and dive into code after explaining the organization of the framework.

Storing Content and Formatting with Models
The Text Layout Framework is also based on the model-view-controller design pattern. Whereas the
core function of TFE is to produce lines of text, the purpose of the TLF is to flow a longer body of
text, generically called a story. The naming and organization of the classes that participate in each
technology reflect their purpose.

You can also break up TLF models into content and formatting models. The content models, found in
the package flashx.textLayout.elements, extend from the abstract FlowElement class and
are organized hierarchically into groups, much like the structure of FTE content elements. However,
TLF content is far more structured and organized. The different kinds of TLF content elements, per-
haps inspired by HTML elements, help you organize sections of text and inherit formatting efficiently.
(Recall that all ContentElements in the TFE require their own ElementFormat, and there is no
inheritance of styles.)

373

Part III: The Display List

This more complex hierarchy can be drawn in a tree, in which the root node is a TextFlow, interior
nodes are subclasses of FlowGroupElement, and leaf nodes are subclasses of FlowLeafElement.
Figure 18-3 shows such a structure, which also introduces all the kinds of elements that you can use
in a story. The root node is always a TextFlow element. This can contain DivElements, which
group paragraphs with the same style. ParagraphElements are single paragraphs, which are in
turn composed of spans of text (SpanElement), inline images (InlineGraphicElement), links
(LinkElement), and tate-chu-yoko text (TCYElement). Note that divs can be nested, but para-
graphs cannot. You can think of this hierarchy as similar to the HTML tags:

<body>
<div>

<p>

<a>

</p>
</div>

</body>

Note
Japanese text can be written horizontally, left-to-right, or vertically, top-to-bottom and right-to-left. When ver-
tical Japanese text includes a short bit of non-Japanese text, like a number or acronym, it may be rotated to
appear horizontally, making the horizontal text legible in its natural orientation, without breaking the overall
vertical flow of text. This is tate-chu-yoko, or ‘‘horizontal within vertical’’ text. Now you know. �

FIGURE 18-3

A hierarchy of FlowElements, using all possible concrete FlowElement types

TextFlow
 DivElement
 ParagraphElement
 SpanElement
 SpanElement
 TCYElement
 SpanElement
 ParagraphElement
 SpanElement
 InlineGraphicElement
 SpanElement
 LinkElement
 SpanElement
 DivElement
 ParagraphElement
 SpanElement

It should be no surprise that this tree structure is easily written using XML. In Text Layout markup,
which I’ll cover in detail shortly, tags map to element classes, and attributes map to properties of the
class. This mapping is familiar from Flex’s MXML and other languages that serialize runtime objects to
XML (in the vein of the Inversion of Control/Dependency Injection design pattern). It also looks a bit
like HTML, but you’ll see that it’s very different.

374

Chapter 18: Advanced Text Layout

Formatting inherits from parent elements up the tree, and each FlowElement can override individual
formatting properties of its parents, much like cascading styles. This is far more complex than the
simple each-element-has-a-format-object method of the FTE, but it’s still a still far cry from the rich
selectors language that CSS provides. In fact, setting and inheriting styles are a principal motivation
for separating your content into divs and spans.

Conveniently, FlowElements can specify a given formatting property directly on the object
rather than accessing a format object. All the text formatting properties are defined by the
ITextLayoutFormat interface, which FlowElement, the base class for all content nodes,
implements. Interestingly, there is also a TextLayoutFormat object that implements this interface.
This confusing fact provides parallel ways to set formatting on a given flow element: simply set the
appropriate property on the element object itself, or assign it to a TextLayoutFormat.

var textFlowElement:TextFlow = new TextFlow();

//assign format by setting property
textFlowElement.color = 0xff0000;

//assign format by setting TextLayoutFormat object
//note that all property names e.g. "color" are identical
var newFormat:TextLayoutFormat = new TextLayoutFormat();
newFormat.color = 0xff0000;
textFlowElement.format = newFormat;

Overriding a single formatting property might be achieved better through the ITextLayoutFormat
property of a FlowElement — for instance, adding italic to a foreign phrase — whereas setting an
overall, reusable style is better accomplished by saving the format as a TextLayoutFormat and
assigning it to the format property of any FlowElement that you want to appear that way — such
as reusing a block quote style for several quotes scattered through a story. You’ll see both methods
reflected in TLF markup shortly.

Laying Out Text with Controllers
Okay, so you can write and format text, but this is pointless until you can put it on-screen. Ultimately,
the TLF generates TextLines just as the FTE does. But the TLF can do more — namely, flowing text
across connected containers. Again, the controller classes do this work, consuming the models and
producing views. In the Text Layout Framework, you have the option of using a simple controller that
merely generates lines, or one that composes the lines within and through multiple containers.

Simple Composition with TextLine Factories

One kind of controller for TLF text is the TextLine factory. There are two of these, both of which
inherit from TextLineFactoryBase, found in the flashx.textLayout.factory package.
TextLine factories produce and arrange TextLines within a simple rectangular area, although they
stop just short of adding them to the display list for you. This is already more than the FTE did for
you; recall that in Example 18-1 you had to write your own loop to generate the lines, and then you
arranged them yourself vertically. The TextLine factories take into account the writing direction and
styles like leading when laying out these lines.

In Example 18-2, you’ll take a model — remember, the root element of all content must be a
TextFlow — and use the factory to generate lines out of it.

375

Part III: The Display List

EXAMPLE 18-2 http://actionscriptbible.com/ch18/ex2

Using the TextLine Factory

package {
import flash.display.*;
import flash.geom.Rectangle;
import flash.text.engine.LigatureLevel;
import flashx.textLayout.elements.*;
import flashx.textLayout.factory.TextFlowTextLineFactory;
import flashx.textLayout.formats.TextLayoutFormat;
public class ch18ex2 extends Sprite {
public function ch18ex2() {
//create the content models TextFlow > Paragraph > Span > text
var content:TextFlow = new TextFlow();
var p:ParagraphElement = new ParagraphElement();
var span:SpanElement = new SpanElement();
content.addChild(p);
p.addChild(span);

span.text = "Some say the world will end in fire,\n\
Some say in ice.\n\
From what I’ve tasted of desire\n\
I hold with those who favour fire.\n\
But if it had to perish twice,\n\
I think I know enough of hate\n\
To say that for destruction ice\n\
Is also great\n\
And would suffice.\n\n\
\u2014Robert Frost"; //unicode for em dash used in this line.

//create the format model. use ligatures and leading
var format:TextLayoutFormat = new TextLayoutFormat();
format.fontFamily = "Caslon, Garamond, _serif";
format.ligatureLevel = LigatureLevel.COMMON;
format.fontSize = 17;
format.lineHeight = 28;
format.color = 0x303030;
content.format = format;

//create a factory, set its bounds, and let it generate lines
var controller:TextFlowTextLineFactory = new TextFlowTextLineFactory();
var fullW:Number = stage.stageWidth;
var fullH:Number = stage.stageHeight;
controller.compositionBounds = new Rectangle(fullW/4, 20, fullW/2, fullH);
controller.createTextLines(onLineCreated, content);

}

376

Chapter 18: Advanced Text Layout

//called by the TextFlowTextLineFactory every time a line is created
private function onLineCreated(line:DisplayObject):void {
//it’s still our job to add these to the display list
addChild(line);

}
}

}

First you created the controller with its empty constructor. You defined the area that text
will be added to by setting the factory’s compositionBounds property. Finally, you called
createTextLines(), passing it a callback and a TextFlow, which makes up the story’s content.
The factory lets you do what you please with the lines it creates, but they’re already positioned and
ready to go, if you want to just add them to the stage as you’ve done here. For a shortcut, try using a
Function reference to addChild() as the callback function.

controller.createTextLines(addChild, content);

Now you can remove the custom callback function onLineCreated().

There’s an even simpler TextLine factory in the TLF that uses a flat string as content instead of
a proper TextFlow object. Because Example 18-2 used a single format for a single span of text, it
could easily be rewritten to use the StringTextLineFactory. Try modifying the example to use
this, the simplest of the TLF controllers. How many lines of code did you save?

Besides the fact that TextLine factories lay out FTE text in a simple manner, they are also lim-
ited to static text. They don’t support editing, real-time updates, or activities like selection, cut, or
copy. That’s not to say they’re useless, though. The content and formatting objects can specify intri-
cate details of the text, complex alignment, and even columns. Because columns are one of the big
reasons you might use flowed containers, it’s convenient that columns are built-in. Take a look at
Example 18-3.

EXAMPLE 18-3 http://actionscriptbible.com/ch18/ex3

Using TextLine Factories with Column Layouts

package {
import flash.display.Sprite;
import flash.events.Event;
import flash.geom.Rectangle;
import flash.net.*;
import flashx.textLayout.factory.StringTextLineFactory;
import flashx.textLayout.formats.TextLayoutFormat;
public class ch18ex3 extends Sprite {

continued

377

Part III: The Display List

EXAMPLE 18-3 (continued)

public function ch18ex3() {
var loader:URLLoader = new URLLoader(new URLRequest(
"http://actionscriptbible.com/files/alice-ch1.txt"));

loader.addEventListener(Event.COMPLETE, onLoadComplete);
}
protected function onLoadComplete(event:Event):void {
var controller:StringTextLineFactory = new StringTextLineFactory();
controller.text = URLLoader(event.target).data;
controller.compositionBounds =
new Rectangle(5, 5, stage.stageWidth-10, stage.stageHeight-10);

var format:TextLayoutFormat = new TextLayoutFormat();
format.fontFamily = "Book Antiqua, Garamond, _serif";
format.fontSize = 13;
format.columnCount = 3;
format.columnGap = 15;
controller.textFlowFormat = format;
controller.createTextLines(addChild);

}
}

}

Example 18-3 shows the StringTextLineFactory used with a three-column layout. You can
see that it’s as simple as setting a few properties on a format object. Because the text is loaded as a
String, it’s a single block that you can apply only one style to. That’s fine for your purposes here.
You also used the addChild callback trick. All in all, it’s quite a compact way to use the TLF.

Linked Container Composition with ContainerControllers and FlowComposers

When you use linked text containers (or even a single container) for text, you can get a lot more out
of the TLF, including re-flowing text, editable text, text selection, scrolling, focus, and clipboard con-
trol. Once you’ve defined your content with a TextFlow, follow these general steps:

� Create a Sprite for each container. This will hold all the TextLines and other necessary
DisplayObjects like inline graphics, background colors, and interactive feedback (highlight-
ing a selection, for instance).

� Create a ContainerController for each container, associating it with the container
Sprite. The controller is responsible for the contents of its own container. Essentially, it
breathes life into the empty Sprite, endowing it with the various TextField-like abilities
you take for granted.

� Create an IFlowComposer class and associate it with the model by assigning it to the
TextFlow’s flowComposer property. The TLF comes with StandardFlowComposer,
which implements this interface but leaves you the option of rolling your own. The flow
composer manages all the connected containers, orchestrating their activity so that they act like
a single continuous layout.

� Add the container controllers to the flow composer in the same order that text will flow through
them. IFlowComposer defines a set of methods for managing its ContainerControllers

378

Chapter 18: Advanced Text Layout

that recall the display list API, starting with addController(), addControllerAt(), and
removeController(). (Consult the AS3LR for the full battery of methods.)

� Finally, when you want to render the story into its text containers, tell the IFlowComposer to
updateAllControllers().

The setup required here is nontrivial, but it makes sense. All the players in this game have to know
about each other. The flow composer owns all the container controllers, each of which manage their
own container sprites. The model knows who’s composing the text so that when it changes, it can
notify the flow composer that it needs to redraw. You can see how the classes interact in Figure 18-4.

FIGURE 18-4

Classes used in flowed text layout

TextFlow

model controllers views

flowComposer updateAllControllers()

formatselements
ContainerController Sprite

StandardFlowComposer

AaBbCc

R
14

7

These classes also act together to keep tabs on which parts of the text need to be redrawn. This way,
the expensive process of figuring out what lines go where is minimized as well as localized. The TLF
exposes access to these invalid or damaged zones if you need to flag them manually or check if they
are damaged.

Because you already know how to use text in columns without flowed containers, I’ll demonstrate
flowed text with a more complex application in Example 18-4.

EXAMPLE 18-4 http://actionscriptbible.com/ch18/ex4

Flowed Containers

package {
import flash.display.Sprite;
import flash.geom.Point;
import flash.text.FontStyle;
import flashx.textLayout.compose.StandardFlowComposer;
import flashx.textLayout.container.ContainerController;
import flashx.textLayout.edit.SelectionManager;
import flashx.textLayout.elements.*;
import flashx.textLayout.formats.TextAlign;

continued

379

Part III: The Display List

EXAMPLE 18-4 (continued)

public class ch18ex4 extends Sprite {
public function ch18ex4() {
var textFlow:TextFlow = new TextFlow();
var p:ParagraphElement = new ParagraphElement();
var span:SpanElement = new SpanElement();
span.text = "Shall I compare thee to a summer’s day?\n\

Thou art more lovely and more temperate.\n\
Rough winds do shake the darling buds of May,\n\
And summer’s lease hath all too short a date.\n\
Sometime too hot the eye of heaven shines,\n\
And often is his gold complexion dimmed;\n\
And every fair from fair sometime declines,\n\
By chance, or nature’s changing course, untrimmed;\n\
But thy eternal summer shall not fade,\n\
Nor lose possession of that fair thou ow’st,\n\
Nor shall death brag thou wand’rest in his shade,\n\
When in eternal lines to Time thou grow’st.\n\
So long as men can breathe, or eyes can see,\n\
So long lives this, and this gives life to thee.\n\
\u2014William Shakespeare";

p.addChild(span);
textFlow.addChild(p);

//create an IFlowComposer
var composer:StandardFlowComposer = new StandardFlowComposer();
//assign it to the story
textFlow.flowComposer = composer;

var COUNT:int = 14;
var RADIUS:Number = stage.stageWidth * 0.7;
var ORIGIN:Point = new Point(stage.stageWidth/2, stage.stageHeight - 20);
for (var theta:Number = 0; theta <= Math.PI; theta += Math.PI/COUNT) {
//create a sprite for each container
var sprite:Sprite = new Sprite();
sprite.x = -RADIUS * Math.cos(theta) + ORIGIN.x;
sprite.y = -RADIUS * Math.sin(theta) + ORIGIN.y;
sprite.rotation = theta / Math.PI * 180;
addChild(sprite);
//create a controller for each container, and add it to the composer
composer.addController(new ContainerController(sprite, RADIUS-50, 20));

}

textFlow.textAlign = TextAlign.END;
textFlow.fontFamily = "Garamond, _serif";
textFlow.fontStyle = FontStyle.ITALIC;
textFlow.fontSize = 14;
textFlow.color = 0xd09000;

380

Chapter 18: Advanced Text Layout

textFlow.interactionManager = new SelectionManager();
//instruct the composer to flow the text into its containers
textFlow.flowComposer.updateAllControllers();

}
}

}

This example sets Shakespeare’s sonnet to the shape of sunrays. Although that’s nothing you couldn’t
have done with TextFields, when you interact with flowed text like this, it’s actually one contiguous
block of text. I’ve demonstrated this by enabling selection on the whole sonnet. The text appears all
over the screen, but you can still use the mouse to select text perfectly.

Text Layout Markup
Now that you understand the structure of the TLF and its model classes, you can start using markup
in place of those classes. TLF markup language (TLFML? Let’s not.) provides the same facilities as the
content model, but in a compact, portable XML format. TLF markup is converted to TLF objects at
runtime using a text importer class, and you can use a text exporter class to turn TLF objects back
into TLF markup.

In markup, each of the content element objects gets its own XML element; nesting two tags creates the
same parent-child relationship created at runtime with the elements’ addChild() methods.

//TLF code
var div:DivElement = new DivElement();
var p:ParagraphElement = new ParagraphElement();
div.addChild(p);
//TLF markup
<div><p></p></div>

Attributes are used mostly for formatting properties, just as you can set formatting properties on
FlowElements, because FlowElement implements ITextLayoutFormat.

//TLF code
var p:ParagraphElement = new ParagraphElement();
p.trackingRight = 3;
//TLF markup
<p trackingRight="3"></p>

Additionally, you can save a format and reuse it in various places like a CSS rule or an old-school
TextFormat. Define the format with a <format> tag, name it with the name attribute, and refer-
ence it in any elements that you want it to apply to.

//TLF code
var red:TextLayoutFormat = new TextLayoutFormat();
red.color = 0xff0000;

381

Part III: The Display List

var p:ParagraphElement = new ParagraphElement();
var s1:SpanElement = new SpanElement();
s1.text = "Mind your ";
p.addChild(s1);
var s2:SpanElement = new SpanElement();
s2.text = "p";
s2.format = red;
p.addChild(s2);
var s3:SpanElement = new SpanElement();
s3.text = "s and ";
p.addChild(s3);
var s4:SpanElement = new SpanElement();
s4.text = "q";
s4.format = red;
p.addChild(s4);
var s5:SpanElement = new SpanElement();
s5.text = "s!";
p.addChild(s5);
//TLF markup
<format name="red" color="0xff0000"/>
<p>
Mind your
p
s and
q
s!

</p>
//TLF markup, simplified
<format name="red" color="0xff0000"/>
<p>Mind your ps and qs!</p>

TLF markup is so much more compact that you might want to use it even if you’re not loading it
externally, by using inline XML.

Caution
If you’re using an older build of the TLF, the name property may be instead called id. You can cover your
bases by using both attributes:

<format name="red" id="red" color="0xff0000"/>

Setting Up TLF Markup

All TLF tags and attributes are namespaced, so you need to include this namespace in any TLF
markup you write. Set it to the default namespace for conciseness:

<TextFlow xmlns="http://ns.adobe.com/textLayout/2008">
<format name="red" color="0xff0000"/>
<p>Mind your ps

and qs!</p>
</TextFlow>

382

Chapter 18: Advanced Text Layout

Or, if you’re combining it with other XML, you may want to use a namespace handle:

<tlf:TextFlow xmlns:tlf="http://ns.adobe.com/textLayout/2008">
<tlf:format name="red" color="0xff0000"/> ...

Refer to Chapter 11, ‘‘XML and E4X,’’ for more information on handling XML and namespaces in
ActionScript.

TLF Tags

The TLF markup language is fairly simple. There are only a few defined elements, which are summa-
rized in Table 18-1. The table is roughly ordered: elements that can be nested in a given tag mostly
appear in rows below it.

TABLE 18-1

TLF Markup Tags

Element Name Equivalent Class Description Allowed Children

<TextFlow> TextFlow The root element of a
text flow

Text, any tag below this

<format/> TextLayoutFormat A reusable format None

<div> DivElement A section or group of
paragraphs

Text, any tag below this

<p> Paragraph
Element

A paragraph Text, any tag below this

<tcy> TCYElement Tate-chu-yoko text Text, any tag below this

<a> LinkElement A clickable link Text, any tag below this

 InlineGraphicElement Inline graphics None

 SpanElement A range of text Text,
, <tab>

 BreakElement Newline character (\n) None

<tab/> TabElement A tab character (\t) None

<linkNormalFormat> TextLayoutFormat Overriding formats for
a link

None

<linkActiveFormat> TextLayoutFormat Overriding formats
for a link while being
activated

None

<linkHoverFormat> TextLayoutFormat Overriding formats
for a link while being
hovered

None

383

Part III: The Display List

I should mention a few things about TLF markup that are easy to miss from just looking at this table.
First of all, notice that all the tags are lowercase, except for <TextFlow>. It’s essential to get the case
of your tags correct.

The
 and <tab> tags, although they have corresponding elements, just turn into their respec-
tive characters in the text when imported. The link format tags override formatting properties for the
link in the appropriate state, and they may appear almost anywhere. Their values cascade down the
element tree like any formatting property.

You’ll notice that TLF markup lets you elide purely structural elements. For example, you can add
text directly to a <TextFlow> if you don’t need the structure or style of the intermediate paragraph
or span. During importing, a default ParagraphElement and SpanElement are added to the
hierarchy.

As I’ve said, all the attributes of TLF tags are formatting properties. Some of these formats apply
only to the block-level elements <TextFlow>, <div>, and <p>. For example, you can’t set the
justification of a single character. It only makes sense for a paragraph or set of paragraphs. Because
they’re so numerous, you can read about the available formatting properties in the AS3LR under the
ITextLayoutFormat interface.

Importing and Exporting Markup

The flashx.textLayout.conversion package contains all you need to import and export TLF
markup. The import/export capabilities of the TLF are particularly open to extension, if you care to
define or create an adapter for another format. Two interfaces and their methods define all you need
to convert text between a TLF TextFlow and another format.

ITextImporter imports text into TextFlow objects with the following method:

function importToFlow(source:Object): TextFlow

Additionally, ITextImporters expose any problems they may have run into during conversion with
the property errors, a Vector of String error messages. You can instruct the importer to raise
exceptions by setting its throwOnError property to true.

ITextExporter exports TextFlow objects to another format with this method:

function export(source:TextFlow, conversionType:String):Object

The method is intended to produce either XML or plaintext, which can be selected with
the conversionType parameter. Use ConversionType.STRING_TYPE or
ConversionType.XML_TYPE.

Unless you’re creating your own format, you’ll probably be happy to stick with the built-in
class TextConverter, which can import and export in four formats. It’s a bit quirky, but
TextConverter doesn’t implement either of the aforementioned interfaces (although it can return
objects that do conform to those interfaces). Instead, it has similar static methods; these provide a few
more options, and let you use the class without instantiating it.

function importToFlow(source:Object,
format:String,
cfg:IConfiguration = null):TextFlow

Use this method to convert your markup into a TextFlow. It’s smart enough to know whether
source is a String or XML object, so pass whichever you like. To indicate which of the supported

384

Chapter 18: Advanced Text Layout

formats to use, pass its constant (such as TextConverter.TEXT_LAYOUT_FORMAT for TLF
markup) to format. The optional cfg parameter sets an initial configuration for the TextFlow,
which can always be set at a later time. You’ll read about configuring a TextFlow in the section
‘‘Flow and container configuration.’’

function export(source:TextFlow, format:String, conversionType:String):Object

This method of TextConverter exports a TLF story to some other format. It also adds a format
parameter, using the same formats and same constants to indicate them.

Example 18-5 should put TextConverter into context. You’ll find that it’s simple to use.

EXAMPLE 18-5 http://actionscriptbible.com/ch18/ex5

Using TextConverter

package {
import com.actionscriptbible.Example;
import flash.geom.Rectangle;
import flash.text.*;
import flashx.textLayout.conversion.ConversionType;
import flashx.textLayout.conversion.TextConverter;
import flashx.textLayout.elements.TextFlow;
import flashx.textLayout.factory.TextFlowTextLineFactory;
public class ch18ex5 extends Example {
public function ch18ex5() {
//import TLF markup
XML.ignoreWhitespace = false;
var tlfxml:XML =

<TextFlow xmlns="http://ns.adobe.com/textLayout/2008">
<format name="red" id="red" color="0xff0000"/>
<p fontFamily="Calibri, Verdana, _sans" fontSize="28">Mind your
ps and qs!</p>
</TextFlow>;

var textFlow:TextFlow =
TextConverter.importToFlow(tlfxml, TextConverter.TEXT_LAYOUT_FORMAT);

//display TextFlow
var factory:TextFlowTextLineFactory = new TextFlowTextLineFactory();
factory.compositionBounds = new Rectangle(0, 0, 500, 500);
factory.createTextLines(this.addChild, textFlow);

//export as TextField markup
var tfhtml:String = TextConverter.export(textFlow,
TextConverter.HTML_FORMAT, ConversionType.STRING_TYPE) as String;

trace("\n\n\n\n\n\n\n" + tfhtml);

//display TextField
var tf:TextField = new TextField();
tf.y = 50;
tf.autoSize = TextFieldAutoSize.LEFT;

continued

385

Part III: The Display List

EXAMPLE 18-5 (continued)

addChild(tf);
tf.htmlText = tfhtml;

}
}

}

The example first imports TLF markup into a flow. Then the example exports the text using HTML
formatting, finally displaying the converted text in a TextField to prove that the conversion
worked. It’s important to configure the XML parser not to ignore whitespace when writing text in
XML. TextConverter supports these formats:

� TextConverter.FXG_FORMAT— FXG format, an XML-based graphics exchange format
similar to SVG, that can be used in Flex 4, Flash Catalyst, and other applications.

� TextConverter.HTML_FORMAT— The subset of HTML supported by TextField. Cov-
ered in Chapter 17.

� TextConverter.PLAIN_TEXT_FORMAT— Plaintext, stripped of formatting.

� TextConverter.TEXT_LAYOUT_FORMAT— TLF markup. Only TLF format preserves all
the intricate layout details of a TextFlow.

TLF markup is a portable and concise way to store content for the Text Layout Framework.

Available Formatting Options
There are dozens of formatting options available in the TLF. Some of these, like columns, are
unique to the TLF, whereas many of them are provided directly by the FTE. Describing all of
them would take more room than I have here, so see the AS3LR for details. The documentation
on the ITextLayoutFormat interface explains all available formatting options. Find it at
http://bit.ly/ITextLayoutFormat.

Editing Features
You can endow any text flow with the ability to select or edit text. Because the TLF is so modular,
the classes that control text selection and editing are separate classes called interaction managers. The
interaction managers plug into the mouse events dispatched by each container in a text flow and add
the appropriate behaviors.

The interaction managers in the TLF are found in the flashx.textLayout.edit package.
SelectionManager lets you select and copy text; EditManager extends SelectionManager,
adding full text editing on top of selection. Again, the having a choice means you can make text
behave to your specifications while minimizing dependencies on the framework and thus code size.
Both of these interaction managers provide programmatic access in addition to user interactivity; for
example, you can select portions of text without user intervention by calling selectRange() on the
SelectionManager instance.

To bestow these abilities on a story, assign an instance of one of these classes (or your own, as
the TLF is extensible) to the interactionManager property of the TextFlow instance. Of

386

Chapter 18: Advanced Text Layout

course, for the interactivity to kick in, the story must be composed on-screen with a flow composer.
Remember that TextLine factories just spit out TextLines, so they can’t be interactive. It’s the
ContainerControllers that assist SelectionManager and EditManager.

You created a simple SelectionManager in Example 18-4. In Example 18-6, you’ll put a lot of
skills together: you’ll load TLF markup externally that uses a combination of formatting, apply it
to a series of connected containers, set up some properties of the containers you haven’t seen until
now, add text editing to the flow, and use ActionScript to set a link in the content without user
intervention.

EXAMPLE 18-6 http://actionscriptbible.com/ch18/ex6

Editable Text in Linked Containers

package {
import flash.display.Loader;
import flash.display.Sprite;
import flash.events.Event;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.utils.setTimeout;
import flashx.textLayout.compose.StandardFlowComposer;
import flashx.textLayout.container.ContainerController;
import flashx.textLayout.container.ScrollPolicy;
import flashx.textLayout.conversion.ITextImporter;
import flashx.textLayout.conversion.TextConverter;
import flashx.textLayout.edit.EditManager;
import flashx.textLayout.elements.TextFlow;
import flashx.undo.UndoManager;
public class ch18ex6 extends Sprite {
protected var textFlow:TextFlow;
protected var editManager:EditManager;
public function ch18ex6() {
var loader:URLLoader = new URLLoader(new URLRequest(
"http://actionscriptbible.com/files/alice-ch2-tlf.xml"));

loader.addEventListener(Event.COMPLETE, onLoadComplete);
}
protected function onLoadComplete(event:Event):void {
var tlfMarkup:String = URLLoader(event.target).data;
var flowComposer:StandardFlowComposer = new StandardFlowComposer();
var importer:ITextImporter =
TextConverter.getImporter(TextConverter.TEXT_LAYOUT_FORMAT);

importer.throwOnError = true;
textFlow = importer.importToFlow(tlfMarkup);
textFlow.flowComposer = flowComposer;

var l:Loader = new Loader(); addChild(l);
l.x = 10; l.y = 130;
l.load(new URLRequest("http://actionscriptbible.com/files/alice-1.jpg"));

var sprite:Sprite, container:ContainerController;
sprite = new Sprite(); addChild(sprite);

continued

387

Part III: The Display List

EXAMPLE 18-6 (continued)

sprite.x = 10; sprite.y = 10;
container = new ContainerController(sprite, 480, 120);
container.horizontalScrollPolicy = ScrollPolicy.OFF;
container.verticalScrollPolicy = ScrollPolicy.OFF;
flowComposer.addController(container);

sprite = new Sprite(); addChild(sprite);
sprite.x = 210; sprite.y = 130;
container = new ContainerController(sprite, 280, 170)
container.horizontalScrollPolicy = ScrollPolicy.OFF;
container.verticalScrollPolicy = ScrollPolicy.OFF;
flowComposer.addController(container);
sprite = new Sprite(); addChild(sprite);

sprite.x = 10; sprite.y = 310;
container = new ContainerController(sprite, 480, 300)
container.horizontalScrollPolicy = ScrollPolicy.OFF;
container.verticalScrollPolicy = ScrollPolicy.OFF;
flowComposer.addController(container);

editManager = new EditManager(new UndoManager());
textFlow.interactionManager = editManager;
textFlow.flowComposer.updateAllControllers();

setTimeout(demonstrateEdits, 2000);
}
private function demonstrateEdits():void {
try {
var pointer:* = textFlow.getChildAt(0); //textFlow>_div_
pointer = pointer.getChildAt(1); //textFlow>div>paragraph1, _paragraph2_
editManager.selectRange(pointer.getAbsoluteStart() + 1, 40);
editManager.applyLink("http://actionscriptbible.com");
textFlow.flowComposer.updateAllControllers();

} catch(error:Error) {
trace("Error editing: " + error.toString());

}
}

}
}

If you can, try running the example and editing the content of the story. As expected, editing the
text in any container causes the whole layout to reflow. At all times, the containers prevent text from
bleeding over the figure that’s floated to the left with the Loader instance.

To get more experience with TLF markup, you can also look at the XML file that this example loads.
It uses a few special styles for directions that Alice imagines writing, and for the title. You can try

388

Chapter 18: Advanced Text Layout

modifying the tab stops to change how Alice’s directions to her right foot look. This, and the song she
sings later, uses tab stops to present the text in a more interesting way.

Finally, you might try pressing Command-Z or Control-Z after making an edit to the text. If all goes
well, you should see your change revert, because you’ve also included undo support.

Undo and Redo History
The EditManager interaction manager allows you to attach an UndoManager as well, adding undo
and redo support to any TextFlow. This is another example of the TLF’s modularity. Each class or
set of classes adds on just one behavior or one cohesive set of behaviors. The UndoManager, found
in the flashx.undo package, works with the EditManager, recording the user’s actions editing the
associated TextFlow. It keeps two stacks of edit operations so that you can not only undo a change,
but redo it as well. The first stack is your usual history stack, but as you pop an edit operation off the
history stack, it is added to the redo stack so that it can be retained if you decide you want to do that
edit after all.

Because the UndoManager needs to work directly with the EditManager, the EditManager
owns it. You assign it to the EditManager using its constructor, as shown in Example 18-6. As you
saw in the example, no further action is required; now undo and redo are fully supported just as
you’d expect.

Programmatic Editing
All the managers that imbue a TextFlow with interactivity just snap in and work. But if you care to
dive in, you’ll notice that the managers are transparent. You can reach in and perform all the same
actions using ActionScript as you would using your mouse and keyboard.

In fact, it’s this feature that makes undo and redo so easy. As in many applications, undo and redo
are implemented with the command pattern: every action is represented by a command object, which
can be executed, and in this case, undone. Edit operations are represented by command objects found
in the flashx.textLayout.operations package, all of which implement IOperation. The
interface defines performUndo() and performRedo() methods, enabling the UndoManager to
perform its magic.

In practice, you’ll call methods directly on the interaction managers instead of using commands.
Table 18-2 explains some of the more useful methods you can use to perform selections, edits, and
undo/redo. Remember that EditManager extends SelectionManager, so all methods that apply
to SelectionManager apply to EditManager as well.

You’ll notice that a selection can be defined by more than just a beginning and an end. It is fully
described by a SelectionState, which contains the properties absoluteStart, absoluteEnd,
anchorPosition, and activePosition. The absolute start and end refer to the character indices
that the selection begins and ends at, as you’d imagine. But the anchor position and active position
refer to the selection as the user created it; they encode the direction that the user selected text in.
You can easily start a selection later in the text than you end it: simply hold down Shift while pressing
the left arrow, or shift-click to the left of the cursor (in left-to-right text). The activePosition of a
selection is the location of the cursor. Even if no text is selected, the SelectionState will indicate
a zero-length selection at the position of the cursor, so you can retrieve the cursor location as follows:

//assume textFlow is a selectable text flow
var cursorPosition:int = textFlow.interactionManager.activePosition;

389

Part III: The Display List

Clipboard

You can cut and paste text in a text flow by using the cutTextScrap() and pasteTextScrap()
methods of the EditManager mentioned in Table 18-2. These return and take instances of the
TextScrap class, which is basically opaque. It doesn’t store a copy of the text inside it, and you
can’t access this text.

You can create a new TextScrap programmatically by using its createTextScrap() static
method. Send the method a TextRange (the class SelectionState is based on) and it will create
a TextScrap associated with that range of text.

TABLE 18-2

Selected Interaction Manager Methods

Class Method or Property Description

SelectionManager selectRange() Selects a range of characters from
anchorPosition through
activePosition, leaving the cursor
at activePosition

selectAll() Select all text in the flow

absoluteStart,
absoluteEnd,
activePosition,
anchorPosition

The properties of the current selection

getSelectionState() Returns a SelectionState object
defining the current selection

editingMode How the associated TextFlow
may be interacted with:
EditingMode.READ_ONLY,
EditingMode.READ_SELECT, or
EditingMode.READ_WRITE.

focused Whether the text flow has focus

setFocus() Give focus to the text flow

EditManager EditManager.overwriteMode (static) Toggles between insert and
overwrite keyboard modes

undo(), redo() Undo or redo an operation; see also
methods of UndoManager

beginCompositeOperation(),
endCompositeOperation()

Group the operations between these
calls into a composite operation,
which can be reverted with a single
undo command

doOperation() Execute an operation on the text flow

390

Chapter 18: Advanced Text Layout

Class Method or Property Description

applyFormat() Apply container, paragraph, and char-
acter formats to applicable elements in
the selection

applyContainerFormat(),
applyParagraphFormat(),
applyLeafFormat()

Apply the appropriate kind of format
to applicable elements in the selection

applyLink(), applyTCY() Change selected text into a link ele-
ment or TCY element, or back into a
span

insertText(),
insertInlineGraphic()

Insert text or inline graphics at the
active selection position

deleteText() Delete the selected text

deleteNextCharacter(),
deletePreviousCharacter(),
deleteNextWord(),
deletePreviousWord()

Delete the character or word neigh-
boring the active selection position

splitParagraph() Split the paragraph at the active
selection position, creating a new
ParagraphElement

cutTextScrap() Delete the selection, returning it as a
TextScrap

pasteTextScrap() Insert the TextScrap, replacing the
current selection

UndoManager undo(), redo() Undo or redo the most recent
operation

canUndo(), canRedo() Return whether you can perform an
undo or redo

peekUndo(), peekRedo() Return the next undo or redo oper-
ation without removing it from the
stack

popUndo(), popRedo() Return the next undo or redo opera-
tion as an IOperation, removing
it from the stack but without
performing it

pushUndo(), pushRedo() Adds an operation to the undo or redo
stack

391

Part III: The Display List

Using TextScraps, you can set and load the contents of the system clipboard with
TextClipboard’s setContents() and getContents() methods. The Flash Player security
model prevents unfettered access to the clipboard, however. You’re allowed to read the clipboard if
the user has chosen to paste text into a text flow, and you’re allowed to set text to the clipboard in
response to any user input.

In Example 18-7, you’ll use user input to copy a text flow to the clipboard manually, without the text
being editable.

EXAMPLE 18-7 http://actionscriptbible.com/ch18/ex7

Copying to the Clipboard

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.text.*;
import flashx.textLayout.compose.StandardFlowComposer;
import flashx.textLayout.container.ContainerController;
import flashx.textLayout.conversion.TextConverter;
import flashx.textLayout.edit.TextClipboard;
import flashx.textLayout.edit.TextScrap;
import flashx.textLayout.elements.*;
public class ch18ex7 extends Sprite {
protected var flow:TextFlow;
public function ch18ex7() {
flow = TextConverter.importToFlow("Cellar door",
TextConverter.PLAIN_TEXT_FORMAT);

flow.fontFamily = "_typewriter";
flow.fontSize = 11;
flow.flowComposer = new StandardFlowComposer();

var container:Sprite = new Sprite();
addChild(container); container.x = 10; container.y = 10;
var containerController:ContainerController =
new ContainerController(container, 300, 20);

flow.flowComposer.addController(containerController);
flow.flowComposer.updateAllControllers();

var button:TestButton = new TestButton(100, 20, "Copy");
button.addEventListener(MouseEvent.CLICK, onClick);
addChild(button); button.x = 320; button.y = 10;

392

Chapter 18: Advanced Text Layout

//textfield to try pasting to afterward
var tf:TextField = new TextField();
tf.type = TextFieldType.INPUT;
tf.defaultTextFormat = new TextFormat("_typewriter", 11);
tf.width = 410; tf.height = 100;
tf.border = true;
tf.wordWrap = tf.multiline = true;
tf.text = "Try pasting the result here.";
addChild(tf); tf.x = 10; tf.y = 40;

}
protected function onClick(event:MouseEvent):void {
TextClipboard.setContents(
TextScrap.createTextScrap(new TextRange(flow, 0, flow.textLength)));

}
}

}
import flash.display.*;
import flash.text.*;
class TestButton extends Sprite {
public var label:TextField;
public function TestButton(w:Number, h:Number, labelText:String) {
graphics.lineStyle(0.5, 0, 0, true); graphics.beginFill(0xa0a0a0);
graphics.drawRoundRect(0, 0, w, h, 8);
label = new TextField(); addChild(label);
label.defaultTextFormat = new TextFormat("_sans", 11, 0, true, false,
false, null, null, "center");

label.width = w; label.height = h; label.text = labelText;
label.y = (h - label.textHeight)/2 - 2;
buttonMode = true; mouseChildren = false;

}
}

The highlighted line, triggered on a mouse click, creates the text scrap and sets it to the clipboard. A
traditional TextField is provided to test the contents of your clipboard and convince yourself it’s
working.

Events

Finally, no interactive text manager would be complete without its fair share of events. All the
pertinent events in the TLF are dispatched by the TextFlow. (You may have noticed by now that
the model, TextFlow, is far more important than any controller in the TLF architecture; it stores
references to all the associated helper classes and dispatches the events.) These are summarized in
Table 18-3.

393

Part III: The Display List

TABLE 18-3

Selected TextFlow Events

Event name Description

FlowElementMouseEvent.CLICK,
MOUSE_DOWN, MOUSE_UP,
ROLL_OVER, ROLL_OUT

Mouse action occurred on a link in the text flow. To click on
a link in editable text, you must hold down the Control or
Command key while clicking. Is also dispatched by individual
LinkElements.

CompositionCompleteEvent
.COMPOSITION_COMPLETE

The flow has finished being (re)composed.

StatusChangeEvent
.INLINE_GRAPHIC_STATUS_CHANGE

An inline graphic changed size or finished loading. Its new status
appears in the status property of the event object.

SelectionEvent
.SELECTION_CHANGE

The text flow’s selection was modified. The
selectionState property of the event object stores the new
selection.

FlowOperationEvent
.FLOW_OPERATION_BEGIN,
FLOW_OPERATION_END

An edit operation began or finished. The event object’s
operation parameter stores the operation. Call
preventDefault() on the event object to cancel the operation.

TextLayoutEvent.SCROLL A text container was scrolled.

Flow and Container Configuration
You can set options on any text container controller that fine-tune its detail and appearance. You do
so with the Configuration class, which can be assigned to a flow by passing it to the TextFlow
constructor, or to the TextConverter when importing text. These options fall under a few major
categories:

� Event handling — The manageEnterKey and manageTabKey properties control whether
the events for these keys are handled internally by the TLF, or available for your code to handle.
Turn on manageTabKey, for instance, and you can get the Tab key to indent text in a TLF
story, rather than advance focus through the tabbing order.

� Scrolling — Properties in the Configuration let you set how the text scrolls due to selection,
how much the mouse wheel scrolls, or how much a Page Down/Page Up key will scroll text.

� Selection formats — Using the SelectionFormat object, you can define how the cursor and
selection are drawn, including the color and alpha of the selection and the caret, and even the
blink rate of the caret. Separate properties of Configuration let you set different selection
styles depending on whether the window or the text flow have focus.

� Link formats — If not set individually with the linkNormalFormat, linkHoverFormat,
and linkActiveFormat properties of a FlowElement, or set via corresponding tags in TLF
markup, you can set defaults that apply to all text in the story by using these same properties on
the Configuration object.

A TextField Adapter Class
To truly blow your mind, the TLF comes with a UI control that implements the same interface as
TextField, but using the Text Layout Framework to lay out its content. The TLFTextField,

394

Chapter 18: Advanced Text Layout

found in the flashx.textLayout.controls package, has the methods and properties of
a TextField. However, some are there for show only: not all the features of TextField are
duplicated. The most notable exceptions are editing, selection, scrolling, and text measurement. Okay,
so it’s not perfect, but it has its place.

The TLFTextField control is useful to update legacy TextField code to use when you’re merg-
ing legacy code and the TLF, especially if you need to share a font that’s embedded using the newer
DefineFont4, because the original TextField won’t use those fonts.

Fonts Revisited
Along with the new Flash Text Engine, Flash Player 10 adds a new format for font embedding and
a new font rasterizer. The DefineFont4 rasterizer and CFF font embedding are used in all Flash Text
Engine and Text Layout Framework applications. Flash Player 10 also greatly improves the quality
of device text, using advanced font rendering available on the host OS. Because this builds on existing
technologies, and Flash Player is backward-compatible, old text renderers are still available. Table 18-4
summarizes the kinds of text rasterization used in Flash Player 10 and later.

The most important thing to realize is that there is a relationship between the text display com-
ponents, the kind of font embedding you use, and the font rasterizer used. You have to consider
all three. The new Flash Text Engine only works with device fonts and fonts embedded with
DefineFont4; it can use the new device font rasterizer, the classic Flash outline rasterizer, or the
CFF rasterizer. Conversely, the old TextField works only with device fonts and fonts embedded
with DefineFont3; it can use the new device font rasterizer, the classic Flash outline rasterizer, or the
Saffron type engine.

TABLE 18-4

Flash Player Text Rasterization

Rasterizer Available in How to Use Limitations and Notes

Device Fonts < FP10 Reference an installed
font that is not embedded

Cannot be rotated; aliased

Flash Outline
Rasterizer

All Embed with DF3 and use
AntiAliasType.NORMAL;
or embed with DF4 and use
RenderingMode.NORMAL

Anti-aliased but not crisp

Saffron FP8 Embed with DF3, use
AntiAliasType.ADVANCED

Works with TextField
and Halo Flex components;
looks great

Device Fonts
(new)

FP10 Reference an installed font that
is not embedded

Appearance controlled by
OS; can’t guarantee font is
installed

CFF Rasterizer FP10 Embed with DF4/CFF; use
RenderingMode.CFF

Works with FTE, TLF, and
Spark Flex components;
looks great

395

Part III: The Display List

Both the old Saffron rasterizer and the new CFF rasterizer produce excellent results. To compare these,
check out a demonstration from the Adobe Typography Blog at http://bit.ly/df3-vs-df4.

Embedding CFF Fonts
If you’re going to use the new Flash Text Engine in any capacity, you have to embed your fonts in
the Compact Font Format (CFF), using DefineFont4. Thankfully, as long as you know which font
embedding format to use, the methods don’t differ much. Again, you can use either Flash Professional
or the Flex SDK (including any IDE that uses it to compile, such as Flash Builder) to embed your
fonts.

Using Flash Professional

Flash Professional CS5 adds a new Font Embedding panel that makes embedding a font using
DefineFont3 or DefineFont4 easy. To access it, create a new Font symbol in the Library. You’ll see the
panel, pictured in Figure 18-5.

FIGURE 18-5

Flash Professional’s font embedding panel

In the Options tab, choose the font families and faces you’d like to embed, and give the font a name.
The name you choose for it in this panel will be the definitive name of the font to Flash Player at
runtime. You’ll retrieve the font later by referencing this name in the fontFamily property of an
ITextLayoutFormat; its original name is immaterial. In Figure 18-5, I’ve named the font Inconso-
lata by its original name, which is acceptable and certainly sensible.

In the ActionScript tab, once you’ve chosen to export the font for ActionScript, you have the option to
select whether it’s embedded using DefineFont3 or DefineFont4. Check TLF (DF4) to enable the font
for use in the FTE, TLF, or Flex Spark components.

See Chapter 17 for a refresher on the other font embedding parameters, if you need it.

396

Chapter 18: Advanced Text Layout

Using the Embed Tag

If you’re using the Flex SDK or a Flex SDK-based IDE, you can use the [Embed] metadata tag to
include a font in the compiled SWF. You saw how this worked for DefineFont3 fonts in Chapter 17.

To embed a font as CFF (using DefineFont4), simply add the attribute

embedAsCFF="true"

to any font embedding metadata tag. You can set the ranges of characters to be included using Uni-
code, as before. Setting up named Unicode ranges can make this process more palatable: find out how
at http://bit.ly/embed-named-unicode-ranges.

[Embed(
source="/../etc/Inconsolata.otf",
fontFamily="Inconsolata",
embedAsCFF="true",
unicodeRange="U+0020-U+002F,U+0030-U+0039,U+003A-U+0040,\

U+0041-U+005A,U+005B-U+0060,U+0061-U+007A,U+007B-U+007E"
)]
private var InconsolataEmbed:Class;

The preceding snippet embeds the OpenType Inconsolata font using the same font name, in CFF, and
limited to basic Latin characters.

Font Lookup
You can still use the Font class to list available fonts and examine the properties of these fonts; fonts
are still represented at runtime as subclasses of Font. Fonts that are embedded using DefineFont4
have a fontType property of FontType.EMBEDDED_CFF; you can use this property to identify
them.

More importantly, the Flash Text Engine introduces a new way to look for and describe fonts that I
mentioned way back at the beginning of this chapter, called FontDescription. The same properties
of FontDescription become some of the many properties of ITextLayoutFormat in the TLF.
In either case, the combination of these properties determines how Flash Player decides what font to
draw.

Both interfaces include these properties:

� fontFamily — The name of the font set when embedding it

� fontPosture — Whether the font is italic (FontPosture.ITALIC) or not
(FontPosture.NORMAL)

� fontWeight — Whether the font is bold (FontWeight.BOLD) or not
(FontWeight.NORMAL)

� fontLookup — Where to look for a font with this name, weight, and posture: either in system
fonts (FontLookup.DEVICE) or in embedded fonts (FontLookup.EMBEDDED_CFF)

� renderingMode — When rasterizing embedded text, whether to use the CFF rasterizer
(RenderingMode.CFF) or the classic Flash outline rasterizer (RenderingMode.NORMAL).
See Table 18-4.

397

Part III: The Display List

� cffHinting — When using the CFF rasterizer with DefineFont4 embedded fonts, defines
whether to optimize anti-aliasing for small font sizes, snapping horizontal stems that might
otherwise be lost in blending to the subpixel grid (CFFHinting.HORIZONTAL_STEM) or to
anti-alias mathematically, with no hints (CFFHinting.NONE).

These properties present a different way of requesting certain font features from the text engine than
you learned for TextField. Remember that the fontFamily property, specifically, can take a
comma-separated string so that a preferred series of fallback fonts may be specified. If you’re trying
to visualize some of the more advanced features, you can see the effect of the renderingMode and
cffHinting flags in the aforementioned demonstration at http://bit.ly/df3-vs-df4.

Caution
Forgetting to change the font lookup path to embedded fonts is a common error. Because you presumably had
the font installed to work with it in the first place, you might see the font as intended; but really you’re looking
at the device font. Test your application on computers that don’t have the fonts installed, and make sure to set
the fontLookup property of text flows when they use embedded fonts. �

Summary

� The Flash Text Engine (FTE) enables much richer text in Flash Player.

� TextField still exists and still has its purposes.

� The Text Layout Framework (TLF) extends the FTE to provide even more functionality.

� The TLF is written in pure ActionScript 3.0 and thus can be modified and extended.

� The TLF uses a hierarchy of content elements rooted in a single TextFlow.

� TLF uses either a TextLine factory or a flow composer to lay out its text.

� TLF markup mirrors class relationships and properties that can be set in code.

� TLF markup is imported and exported with TextConverter.

� TLF text flows may be selected or edited with the appropriate interaction manager.

� To use TLF or FTE with embedded fonts, you must embed the font as CFF.

398

Printing

FEATURED CLASSES

flash.printing.PrintJob

flash.printing.*

I
n this chapter, you learn how to print Flash content using the PrintJob
class. You’ll control what and how to print and even print documents differ-
ently than they appear on-screen. You’ll also look at different approaches to

printing.

Why Print from Flash?

ActionScript is used in many different contexts. For some of the more ‘‘tradi-
tional’’ applications, like a Flash banner, printing is out of the question. But
with ActionScript being deployed in enterprise-level Flex applications and on
the desktop in AIR applications, plenty of situations demand the ability to print,
like a timesheet application or ticketing software for an airline.

Additionally, when you’re talking about browser-based applications, browsers
might not print the contents of a plug-in like Flash Player, so you may have no
choice but to develop your own printing scheme.

Even better, when you use the print facilities in ActionScript, you have a lot of
control over how things print. You can print multipage documents and control
where they break pages; you can be aware of the printer’s properties and use the
correct page size, orientation, and margins; and you can create your own head-
ers and footers. Of course, printing from Flash Player gives you the advantage
of its display capabilities, such as precise layout, high-quality and low-file-size
vector graphics, embedded custom fonts, and image processing using filters and
BitmapData, to name a few. Many of these capabilities are not available when
using a browser to print.

Although printing with Flash Player gives you, the developer, a lot of control,
you may want to give some of that control back to your users. If you don’t
need any of those advantages and would rather the users be presented with
their familiar browser print experience, you can take another approach, which
I’ll just mention here. One option is to open a new browser window with the
content to be printed populated by a server-side script or JavaScript, using
ExternalInterface. Another option is to use a PDF generation library, such

399

Part III: The Display List

as AlivePDF(http://alivepdf.bytearray.org/), which lets the user not only print the docu-
ment but save and share it easily, or even put it on e-reader devices. If the output of your application
is destined for the internet, these may also be desirable alternatives, because HTML and PDF are gen-
erally quite accessible and can be indexed and searched easily. If the document is just destined for the
printer and you require control over how the document prints, it’s best to go with a PrintJob.

Controlling Printer Output from Flash
With the flash.printing.PrintJob class, you can define how pages are constructed and sent
to the printer. This section describes each of the methods and properties of the PrintJob class and
explains how each works. If you want to see the PrintJob API in action, continue to the section
‘‘Adding Print Functionality to Applications.’’

Introducing the PrintJob Class
On the surface, there isn’t too much to PrintJob. In fact, the class has only three methods. To create
a new instance of the PrintJob class, use the constructor:

var printJob:PrintJob = new PrintJob();

The constructor takes no arguments. Once you have a PrintJob object, you initiate the three meth-
ods of the object, in the following order:

� start() — Opens the Print dialog box on the user’s operating system. If the user clicks the
Print (or OK) button in the Print dialog box, the method returns a true value. If the user can-
cels the dialog box, the method returns a false value. You should use the other two methods
only if the start() method returns true.

� addPage() — Called sequentially, adds pages to the PrintJob object and tells it what to
print from the display list. This method uses a number of arguments, which are discussed in the
following sections.

� send() — Finalizes the output and sends the data to the printer’s spooler.

Once you have sent the output to the printer with the send() method, you can delete the PrintJob
object. Let’s take a closer look at the start() and addPage() methods.

Starting a Print Request
When you call the start() method, Flash opens a new Print dialog box that prompts the user to
accept or cancel the print request. It also allows the user to determine essential properties of the print
job — such as the printer to use, the page size, and the page orientation — and gives Flash Player
access to these choices.

The following properties are set on the PrintJob instance if the user clicks OK to a Print dialog box
initiated from a Flash application. Some of the properties are measured in points, abbreviated as pt.
There are 72 points to one inch. It’s important to remember that points, millimeters, and inches are
physical measurements, unlike pixels, which can appear at different physical sizes depending on the
size and resolution of the display. Also, all the properties are of type int, so they are accurate to 1pt,
or 1/72′′.

400

Chapter 19: Printing

� paperHeight — Represents the height (in points) of the paper size that the user has selected.
For example, if the user has selected a paper size of 8.5′′ × 11′′, paperHeight returns a value
of 792 points (11 in × 72 pt/inch = 792 pt).

� paperWidth — Represents the width (in points) of the paper size that the user has selected.
8.5′′ × 11′′ paper has a paperWidth value of 612 points.

� pageHeight — Perhaps the more useful of the height-based properties, the pageHeight
property returns the height (in points) of the actual printable area. Many printers can print
only to a certain portion of the paper size, leaving a margin around the edges of the paper. For
example, on an 8.5′′ × 11′′ piece of paper, a typical printer can print an area sized 8.17′′ ×

10.67′′. If you are trying to size output to the page, you should use this property over
paperHeight, or your document might appear cropped.

� pageWidth — Like pageHeight, this represents the width (in points) of the actual printable
area on the paper.

� orientation — Contains a string value of either PrintJobOrientation.PORTRAIT or
PrintJobOrientation.LANDSCAPE, based on the user’s setting in the Print dialog box.
Landscape pages are longer than they are high, and portrait pages are taller than they are wide.
This will be reflected in the width and height properties of PrintJob.

The start() method is synchronous. That means that it effectively pauses Flash until the user clicks
the OK or Cancel button in the Print dialog box.

Note
Users must have a print driver installed to print from Flash or any other application. If they don’t have a
printer, they can still install a print driver to print to a file, such as the open source PDFCreator for Windows
(http://pdfforge.org/). �

Determining the Print Target and its Formatting Options
So far you’ve only seen how to start and view the properties of a print job. To put content in that
print job, you need to become familiar with the addPage() method. The addPage() method uses
the following syntax, where printJob represents a PrintJob instance:

printJob.addPage(target, printArea, printOptions, frame);

The parameters are as follows:

� target — The Sprite that you want to print.

� printArea — A Rectangle instance whose properties determine the margins of the print-
able target. This parameter is optional; if it is omitted, the entire area of the target sprite is
printed.

Note
The print area’s coordinates are represented in the local coordinate system of the target sprite you are
printing. �

� printOptions — A PrintJobOptions instance that determines how the target’s contents
are sent to the printer. By default, all contents are sent as vector artwork. However, if you spec-
ify a PrintJobOptions value, you can control whether or not the page is printed as a bit-
map. The PrintJobOptions constructor accepts a Boolean parameter. If the property is set

401

Part III: The Display List

to true, the artwork is rendered as a bitmap and then sent to the printer. If the property is
set to false, the artwork is rendered in vectors and then sent to the printer. See the sections
‘‘Printing targets as vectors’’ and ‘‘Printing targets as bitmaps’’ for more information.

� frame — The frame number of the target movie clip to print. (Because MovieClip is a sub-
class of Sprite, you can specify a MovieClip instance as the target parameter.) If you
want to print a specific frame of the target, you can use this optional parameter. If you omit this
parameter, the current frame of the target is printed. Note that any ActionScript code on the
specified frame will not be executed. As such, this is more useful for printing static content. In
most cases, you will customize the print contents in a live display list and then print as-is.

You apply these parameters in later examples of this chapter. In the next sections, you learn more
specifics of the addPage() parameters and how they affect the printed output from the Flash
application.

Printing Targets as Vectors

You should omit the options parameter or use a PrintJobOptions instance whose
printAsBitmap parameter is set to false when you are printing vector graphics such as:

� Text contained within Static, Dynamic, or Input text fields

� Vector artwork created with Flash Professional or another vector authoring tool

� Non-Bitmap display objects without alpha, brightness, tint, advanced color effects, or filters
applied, and without cacheAsBitmap set

Especially if your print content includes text, you will really want to print the content as vectors.
Printers have a much higher resolution than the screen: typically around 300 or 600 dots per inch
as opposed to screens, which can be as low as 72 pixels per inch. Because of this, what looks crisp on
a screen usually looks disappointing when scaled up to fill the page. When you use vector printing,
Flash will scale up the print content to fill the print area using lossless vectors that preserve all their
sharp edges at the destination resolution.

Caution
Any alpha or color settings for symbol instances or artwork are ignored when printing as vectors. Bitmap images
also print with more aliasing (that is, rough, pixelated edges) if they’re printed as vector artwork. Printing as
vector artwork also fills alpha channels of any bitmap images with solid white. �

Printing Targets as Bitmaps

The PrintJobOptions parameter should be constructed with a value of true, or bitmap mode,
when you are using a variety of sources for your artwork and content, such as:

� Display objects using alpha, brightness, tint, advanced color effects, or filters.

� Display objects containing imported or loaded bitmap images or programmatically created
bitmaps. Although bitmap images can be printed as vector artwork, they appear sharper when
printed as bitmaps. More important, bitmap images with alpha channels print correctly if the
transparent areas of the alpha channel overlap other artwork.

What happens to vector artwork (including text) that is printed as bitmaps? This setting still prints
vector artwork, but it won’t be as crisp as artwork output with the vector setting. However, you might
find the differences between bitmap and vector settings with vector artwork negligible — if you’re ever
in doubt, test your specific artwork with both settings and compare the output. The bitmap setting is
usually the safest bet if you are using bitmap images and any alpha or color effects.

402

Chapter 19: Printing

Scaling Screen Dimensions to Print Dimensions

Perhaps the most difficult concept to grasp with the addPage() method is how the target is sized to
the printed page. Using a conversion formula, you can determine how large your target will print
on the printer’s paper:

1 pixel = 1 point = 1/72 inch

Therefore, if you have a sprite containing a 400 × 400–pixel square, that artwork will print at
roughly 5.5′′ × 5.5′′ on the printed page. Use this formula along with the scaleX and scaleY
properties of the target Sprite to size the content to its desired size on the page. You can revert
these properties after printing is done.

Potential Issues with the Flash-Printed Output
Watch out for the following two pitfalls with the addPage() method parameters, which can cause
unpredictable or undesirable output from a printer:

� Device fonts — If at all possible, avoid using device fonts with the printed output. Make sure all
text is embedded for each text field used for printable content. Text that uses device fonts will
print — however, if you have several elements in addition to device font text, the device text
may not properly align with other elements on the page.

� Background colors — If you are using a dark background color, make sure you account for how
that will affect the printing. If necessary, you can add a filled rectangle behind your printable
content inside the target sprite to increase visibility. For example, if you want to print black text
on white, you can temporarily add a white rectangle behind the text within the target sprite as
you send it to the printer.

Be sure to check your applications for these problems before you test your printed output from a
Flash application.

Adding Print Functionality to Applications
In Example 19-1, you’ll load text from the internet, display it on-screen, and print it. At first, using
no options, it will print on one page, cutting off much of the text.

EXAMPLE 19-1 http://actionscriptbible.com/ch19/ex1

Printing without Options

package {
import com.actionscriptbible.Example;
import flash.display.Sprite;
import flash.events.Event;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.printing.PrintJob;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
public class ch19ex1 extends Example {

continued

403

Part III: The Display List

EXAMPLE 19-1 (continued)

private var printableContent:Sprite;
private var textField:TextField;
private var loader:URLLoader;

public function ch19ex1() {
//Load the text from a text file.
loader = new URLLoader();
loader.load(new URLRequest(
"http://actionscriptbible.com/files/alice-ch1.txt"));

loader.addEventListener(Event.COMPLETE, onLoadComplete);

//Create a multiline text field that auto-sizes.
textField = new TextField();
textField.multiline = true;
textField.wordWrap = true;
textField.autoSize = TextFieldAutoSize.LEFT;

//Create a sprite container for the text field,
//and add the text field to it.
printableContent = new Sprite();
printableContent.addChild(textField);

}

private function onLoadComplete(event:Event):void {
trace("Done. Printing...");
textField.text = loader.data;
var printJob:PrintJob = new PrintJob();
if (!printJob.start()) {
trace("Printing cancelled!");
return;

}
printJob.addPage(printableContent);
printJob.send();
trace("Print job submitted!");

}
}

}

When you click OK in the Print dialog box, one page prints. That one page will be the first page of
text. Example 19-2 shows a way to print the entire text, page by page.

EXAMPLE 19-2 http://actionscriptbible.com/ch19/ex2

Printing Page by Page

package {
import com.actionscriptbible.Example;
import flash.display.Sprite;

404

Chapter 19: Printing

import flash.events.Event;
import flash.geom.Rectangle;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.printing.PrintJob;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;

public class ch19ex2 extends Example {
private var printableContent:Sprite;
private var textField:TextField;
private var loader:URLLoader;

public function ch19ex2() {
trace("Loading text...");
loader = new URLLoader();
loader.load(new URLRequest(
"http://actionscriptbible.com/files/alice-ch1.txt"));

loader.addEventListener(Event.COMPLETE, onLoadComplete);

//Create a multiline text field that auto-sizes.
textField = new TextField();
textField.multiline = true;
textField.wordWrap = true;
textField.autoSize = TextFieldAutoSize.LEFT;

//Create a sprite container for the text field,
//and add the text field to it.
printableContent = new Sprite();
printableContent.addChild(textField);

}

private function onLoadComplete(event:Event):void {
trace("Done. Printing...");

var printJob:PrintJob = new PrintJob();
if (!printJob.start()) {
trace("Printing cancelled!");
return;

}

//size the text field to the page
textField.height = printJob.pageHeight;
textField.width = printJob.pageWidth;
textField.text = loader.data;
var pages:int = Math.ceil(textField.textHeight / printJob.pageHeight);

//loop through each page
for(var i:int = 0; i < pages; i++) {
printJob.addPage(
printableContent,
new Rectangle(0, i * printJob.pageHeight,

continued

405

Part III: The Display List

EXAMPLE 19-2 (continued)

printJob.pageWidth, printJob.pageHeight)
);

}

printJob.send();
trace("Print job submitted!");

}
}

}

When you test printing this time, the Flash application prints as many pages as necessary to print the
entire text. However, pages can be cut off between lines. As an exercise, see if you can modify
the example using TextField’s scroll properties to avoid this. Or you might want to combine the
printing tasks you learned about in this chapter with the advanced text layout from Chapter 18.

Summary

� You can print many useful items from Flash movies, such as coupons, receipts, artwork, and
product catalogs or datasheets.

� The PrintJob class has all the methods and properties necessary to print Flash content.

� The addPage() method of the PrintJob class enables you to control which sprite is printed
and how it should be printed.

� You must scale your print content to fit the print area at 1 pixel per point.

� Printing as vectors is preferable when printing text to make it appear crisp.

406

Part IV

Event-Driven
Programming

IN THIS PART

Chapter 20
Events and the Event Flow

Chapter 21
Interactivity with the Mouse
and Keyboard

Chapter 22
Timers and Time-Driven
Programming

Chapter 23
Multitouch and Accelerometer
Input

Events and the Event
Flow

A
ctionScript 3.0 uses a powerful framework for handling internal commu-
nication known as the event framework. Events are messages that are sent
between objects when an action, such as a button click, has taken place.

This enables you to create functionality that occurs interactively and without the
need for direct method calls to other classes.

The Flash Player API uses events for many purposes in a unified way. Events
handle mouse actions, timers, networking, and asynchronous errors. In this
chapter you’ll learn about how these subsystems use the event framework.

I’ll take a look at how EventDispatcher objects communicate and how the
new Event objects are structured. I’ll also check out some of the more advanced
features of the event framework, including how to create your own custom
events and how to use event bubbling.

Introducing Events

What exactly is an event? At its core, an event is an object that represents an
occurrence and describes the conditions surrounding that occurrence. This
includes (but is not limited to) a description of the event, called the event type,
and the origin of the event, also known as the event target.

Events — and the Observer design pattern that the event framework
follows — allow one object, called an event dispatcher, to trigger the actions
of one or more other objects, called event listeners, without having to know
anything about the structure of the other objects. Because the object broadcasting
the event doesn’t need to know what methods to call on the receiving objects,
listeners can be added and taken away at any time without altering code or
creating dependencies. That is what makes them so powerful.

To understand this better, let’s look at a real-world example of how events work.

409

Part IV: Event-Driven Programming

Saturday Morning Events
The relationship between an event dispatcher and an event listener is like that of a person who sub-
scribes to a magazine or newspaper. Imagine it’s a laid-back Saturday morning, your opportunity to
wake up late, have a cup of coffee, and read the Saturday paper. Each Saturday, the paperboy delivers
the paper to neighbors Mims, Anja, and Jim. Mims likes the City section, Anja loves Style, and Jim
checks the Arts section for gallery openings. If you were to draw a diagram, it would look something
like Figure 20-1.

FIGURE 20-1

The paperboy delivers the paper to all the subscribers. Everybody’s happy!

PAPERBOY

ANJA
(STYLE)

MIMS
(City)

JIM
(ARTS)

This diagram shows almost the same thing that happens when an event is dispatched to its listeners.
In fact, it’s often said that a listener subscribes to an event dispatcher. Let’s imagine this scene a little
differently.

If you were describing this scenario with ActionScript, you might think of the paperboy as an event
dispatcher, the newspaper subscribers as event listeners, and the newspaper as an event (or as a prop-
erty of an event if you prefer). The action triggering the event in this case is the availability of a new
paper. Like the newspaper example, each subscriber can choose how to respond to that event by read-
ing a different section of the paper or by going to a particular reading spot.

So, let’s assume that the paperboy is an event dispatcher who fires off (or dispatches) an event of
type paperDelivered. Each person uses the addEventListener() method to subscribe to
the delivery event and sets up his version of the event handler onPaperDelivered(). When the
dispatchEvent() method is called by the paperboy, every listener receives notice and is passed an
Event object, as shown in Figure 20-2.

With a real newspaper subscription, if one of the subscribers decides she isn’t interested in keeping up
with the news anymore, she can easily unsubscribe by phoning the newspaper. The same thing works
for event listeners. By using the removeEventListener() method, it’s easy to unsubscribe from
the events.

410

Chapter 20: Events and the Event Flow

After you take a closer look at the different players and the terminology surrounding events, you’ll be
able to convert this pseudocode into real ActionScript.

FIGURE 20-2

The paperboy object sends a paperDelivered event to all the listeners.

JIM

ANJA

MIMS

Paperboy
addEventListener(PaperEvent.PAPER, onPaper);

addEventListener(PaperEvent.PAPER, onPaper);

addEventListener(PaperEvent.PAPER, onPaper);

JIM

ANJA

MIMS

Paperboy

function onPaper(event:PaperEvent):void { /*read Arts*/ }

function onPaper(event:PaperEvent):void { /*read Style*/ }

function onPaper(event:PaperEvent):void { /*read City*/ }

JIM

ANJA

MIMS

dispatchEvent(new PaperEvent(PaperEvent.PAPER));

Paperboy

Event Terminology
It will be easier to talk about event dispatchers once you have the terminology surrounding events
down. The following sections define important terms and what they refer to or what roles they play.

Event

The term event could refer to a single occurrence, such as a mouse click or the end of a load sequence,
or it could refer to the Event object that is dispatched during a dispatchEvent() call, such as an
instance of the MouseEvent class.

Type

This is the type of event being broadcast, represented by a String. You might also think
of this as being the title, kind, or name of the event. All calls to dispatchEvent() and
addEventListener() must include a specific event type. The type of an event is how you

411

Part IV: Event-Driven Programming

specify what kinds of events you’re interested in being notified of when adding an event listener. Each
Event class usually stores the names of its event types as static constants, and many Event classes
have multiple types. For example, MouseEvent.CLICK is a string constant of "click" and is the
event type of all mouse click events.

Target

When an event is broadcast, the target is the object that broadcasts the event, or the object that you’re
listening to. This can be a slightly confusing term if you expect the target to be the recipient of the
event. You should think of targets from the event listener’s point of view; they are a property of the
Event object that refers back to the object of interest. A reference to the target object is always
maintained during event propagation so that any event handler can know just who is dispatching the
events.

Dispatcher

This term also refers to the object calling the dispatchEvent() method. Dispatch, fire, and broad-
cast are all terms variously used to describe the action of sending out an event. In other languages this
might be called an observable, or a notifier.

Listener

A listener is an object that registers with a dispatcher to receive events. A listener might also be said to
listen for, or subscribe to, events. A single dispatcher may have several listeners. In other languages this
might be called an observer.

Handler

A function that is invoked when an event is received is called an event handler. It’s also called a listener
function.

Flow

The event system in ActionScript 3.0 works in a special mode for objects in a display list. When
dealing with objects in the display list (such as sprites), some events are sent through from the root
display object or stage, through every parent object of a given display object until reaching the target.
After reaching the target, the event is sometimes sent back through every parent object until reach-
ing the stage. This behavior is called the event flow. The event flow allows you to listen to events that
occur on whole groups of display objects or to avoid manually passing on a message through interme-
diary objects that don’t care about it. Objects not in the display list don’t participate in the event flow.
This may sound confusing, but I’ll cover it in the section ‘‘The Event Flow.’’

Phase

In the event flow, the event’s trip from the stage down to the dispatcher, the instant that it arrives at
the dispatcher, and the trip back up to the stage are separate phases. They are known as the capture
phase, target phase, and bubble phase, respectively. These, too, are covered in the section ‘‘The Event
Flow.’’

Now that you have a better understanding of the terminology, let’s dive into the classes of the event
framework.

412

Chapter 20: Events and the Event Flow

The EventDispatcher Class
At the root of event dispatching is the EventDispatcher class. You’ll find that many classes
in ActionScript 3.0 (including all display objects and many networking classes) already extend
EventDispatcher, making the logistics of sending events quite convenient.

Using EventDispatcher
Let’s walk through the process of triggering, dispatching, and receiving events. The first thing you
need is an event dispatcher. In this example, let’s create a Thermometer to measure temperatures.
The Thermometer will also be able to notify anyone who’s interested in the temperature. You’ll
do this by making Thermometer a subclass of EventDispatcher. You’ll also add a public set-
ter function for changing the temperature. In this setter, you’ll call dispatchEvent(), defined in
the superclass EventDispatcher, to notify other objects when the temperature changes:

import flash.events.*;
class Thermometer extends EventDispatcher {
protected var _temp:Number = 72;
public static const TEMP_CHANGED:String = "tempChanged";

public function set temp(newTemp:Number):void {
_temp = newTemp;
dispatchEvent(new Event(TEMP_CHANGED));

}

public function get temp():Number {
return _temp;

}
}

Let’s walk through some of the key lines more carefully.

protected var _temp:Number = 72;

_temp stores the temperature value. The default is 72 (since I’m in the United States where we use
crazy units of measurement, this property is in degrees Fahrenheit).

public static const TEMP_CHANGED:String = "tempChanged";

TEMP_CHANGED is a simple string that you’re going to use to define the type of event you’re broad-
casting. This string can be anything just as long as your event listeners are listening for the same
string. The easiest way to do this is to store the string in a static constant; that way, it’s always publicly
available and can’t be changed.

Note
You will often see event types defined as static constants of specific Event subclasses such as
MouseEvent.CLICK. This is a good practice to use, but to keep things simple, let’s define the event
type in the Thermometer class. �

413

Part IV: Event-Driven Programming

dispatchEvent(new Event(TEMP_CHANGED));

This is where your event is being fired out to the listeners. The dispatchEvent() method
takes a single argument, which is an Event object containing information about the event. In
this case, you’re creating a new Event with type TEMP_CHANGED and passing it directly to the
dispatchEvent() call.

This class is pretty straightforward. Whenever the temperature changes, an event is fired.

Example 20-1 creates some listeners for this dispatcher.

EXAMPLE 20-1 http://actionscriptbible.com/ch20/ex1

Dispatching and Listening to Events

package {
import com.actionscriptbible.Example;
import flash.events.Event;
public class ch20ex1 extends Example {
public function ch20ex1() {
var t:Thermometer = new Thermometer();
t.addEventListener(Thermometer.TEMP_CHANGED, onTempChanged);
t.debugSimulateCrazyWeather();

}
protected function onTempChanged(event:Event):void {
var t:Thermometer = Thermometer(event.target);
trace("It’s now " + t.temp.toFixed(1) + "◦F");

}
}

}

import flash.events.*;
import flash.utils.setInterval;
class Thermometer extends EventDispatcher {
protected var _temp:Number = 72;
public static const TEMP_CHANGED:String = "tempChanged";

public function set temp(newTemp:Number):void {
_temp = newTemp;
dispatchEvent(new Event(TEMP_CHANGED));

}
public function get temp():Number {
return _temp;

}
internal function debugSimulateCrazyWeather():void {
setInterval(function():void {temp += 3 * (Math.random() - 0.5);}, 1000);

}
}

Let’s step through the main example class now.

t.addEventListener(Thermometer.TEMP_CHANGED, onTempChanged);

414

Chapter 20: Events and the Event Flow

Here you tell the Thermometer instance to invoke the onTempChanged() function when the
TEMP_CHANGED event is dispatched.

Note
In ActionScript 3.0, methods are bound ; they remember the object they’re associated with and execute in the
correct scope independent of where they are called. That means that you don’t have to pass a context, del-
egate function, or reference to this to an event dispatcher, only the function that you want to use as the
callback. �

public function onTempChanged(event:Event):void {

You define onTempChanged as a function that takes one argument: an Event object. You’ll use this
function to gather data about the event and then act on it.

In every case, event handlers should have exactly one argument: for the Event object. Sometimes you
will actually use this event object and other times you won’t. If you know that the event object won’t
be used, you might find it helpful to set the argument to null by default:

function onEvent(event:Event = null):void { ... }

This way, you will be able to call the function with or without an event object, making it more versa-
tile. Back to the example:

var t:Thermometer = Thermometer(event.target);

By using the event.target property, you can get the original sender of the event, in our case,
the Thermometer. The target property is of type Object, so you have to cast it to type
Thermometer to access its temp property.

trace("It’s now " + t.temp.toFixed(1) + "◦F");

Finally, you trace out the value of the thermometer’s temperature, only displaying one decimal place.

Running the code causes the Thermometer to change its own value every second, firing an event,
which triggers the event handler, whose code runs and traces out the temperature. Not impressed?

I can’t say I blame you. Why do you need to pass an event just to display the temperature? Well, this
is a simplified setup for demonstration purposes, but as you’ll see, events can become quite powerful.

Say you want to add another view that acts as a heat gauge. It should go from green to red as the
temperature reaches an uncomfortable range, shown in Example 20-2. This code has little to do with
the original class that simply traces out the temperature, but it can get information from the same
source by adding an event listener.

EXAMPLE 20-2 http://actionscriptbible.com/ch20/ex2

Adding Another Event Listener

package {
import com.actionscriptbible.Example;
import flash.events.Event;

continued

415

Part IV: Event-Driven Programming

EXAMPLE 20-2 (continued)

public class ch20ex2 extends Example {
public function ch20ex2() {
var t:Thermometer = new Thermometer();
t.addEventListener(Thermometer.TEMP_CHANGED, onTempChanged);

var warn:TempWarning = new TempWarning(t);
warn.x = stage.stageWidth - warn.width;
addChild(warn);

t.debugSimulateCrazyWeather();
}
protected function onTempChanged(event:Event):void {
var t:Thermometer = Thermometer(event.target);
trace("It’s now " + t.temp.toFixed(1) + "◦F");

}
}

}
import flash.display.Sprite;
import flash.geom.ColorTransform;
class TempWarning extends Sprite {
public function TempWarning(t:Thermometer) {
graphics.beginFill(0xffff00);
graphics.drawRect(0, 0, 50, 50);
graphics.endFill();
t.addEventListener(Thermometer.TEMP_CHANGED, onTempChanged);

}
protected function onTempChanged(event:Event):void {
var t:Thermometer = Thermometer(event.target);
var ctx:ColorTransform = new ColorTransform();
var hotness:Number = mapRange(t.temp, 60, 100);
ctx.redMultiplier = hotness;
ctx.greenMultiplier = 1 - hotness;
this.transform.colorTransform = ctx;

}
//map a range of values from min->max to 0->1 (and clamp)
protected function mapRange(value:Number, min:Number, max:Number):Number {
return Math.min(1, Math.max(0, (value - min) / (max - min)));

}
}
import flash.events.*;
import flash.utils.setInterval;
class Thermometer extends EventDispatcher {
protected var _temp:Number = 72;
public static const TEMP_CHANGED:String = "tempChanged";

public function set temp(newTemp:Number):void {
_temp = newTemp;
dispatchEvent(new Event(TEMP_CHANGED));

416

Chapter 20: Events and the Event Flow

}
public function get temp():Number {
return _temp;

}
internal function debugSimulateCrazyWeather():void {
//tweak the weather to trend continuously higher (to see our handiwork)
setInterval(function():void {temp += 3 * (Math.random() - 0.4);}, 500);

}
}

The event is sent to both the example class and the new TempWarning class. Notice that the code
for Thermometer didn’t have to change at all. This will become a crucial feature as your applications
become more complex. You’ll find that, unlike using callback functions or storing a reference to all the
objects that need to be informed, using events to communicate between objects is a scalable solution.

Using EventDispatcher by Composition
IEventDispatcher, an interface found in the flash.events package, identifies a class as being
capable of dispatching events. EventDispatcher implements IEventDispatcher, which lets you
make a custom class an event dispatcher without actually subclassing EventDispatcher. Say you
have a class called Sprocket that must extend a custom class written by your client called Widget
(Widget can be any class that does not inherit from EventDispatcher). So you would have this:

class Sprocket extends Widget {
//...

}

How would you add the ability to dispatch events to Sprocket (assuming that you cannot go back
and edit Widget)? Remember that each class can extend only one other class.

The answer is that you add the event dispatching behavior by composition. That is, you compose the
class to include an event dispatcher. By combining this with the IEventDispatcher, you can get
the same functionality as an EventDispatcher by implementing the methods and passing them
through onto the internal EventDispatcher object. You don’t have to understand all of these meth-
ods to use them; simply pass them off to the internal EventDispatcher instance and let it worry
about them.

package {
import flash.events.Event;
import flash.events.EventDispatcher;
import flash.events.IEventDispatcher;

public class Sprocket extends Widget implements IEventDispatcher {
protected var dispatcher:EventDispatcher;
public function Sprocket() {
dispatcher = new EventDispatcher();

}

417

Part IV: Event-Driven Programming

public function addEventListener(type:String,
listener:Function,
useCapture:Boolean=false,
priority:int=0,
useWeakReference:Boolean=false):void {

return dispatcher.addEventListener(type, listener, useCapture,
priority, useWeakReference);

}
public function removeEventListener(type:String,

listener:Function,
useCapture:Boolean=false):void {

return dispatcher.removeEventListener(type, listener, useCapture);
}
public function dispatchEvent(event:Event):Boolean {
return dispatcher.dispatchEvent(event);

}
public function hasEventListener(type:String):Boolean {
return dispatcher.hasEventListener(type);

}
public function willTrigger(type:String):Boolean {
return dispatcher.willTrigger(type);

}
}

}

As you can see, by doing this you can get a Sprocket with all the benefits of Widgets and
EventDispatchers! Most of the time, you’ll be able to extend EventDispatcher, but this
technique is useful for those tight spots when you can’t.

Working with Event Objects
When an event occurs in ActionScript 3.0 and a dispatchEvent() call is triggered, a message
is sent to all the recipients of the event. That message comes in the form of an Event object.
flash.events.Event is a class that contains any pertinent data relating to an occurrence during
runtime.

The Event class is a base class for all other types of events. It can be subclassed and customized to
fit your needs. The Flash Player API comes with a handful of these subclasses of Event, found in
flash.events. Event subclasses may contain extra information unique to the kind of event they
describe. For example, a MouseEvent contains information about the position of the mouse and the
state of its buttons; a ProgressEvent contains the number of bytes in a file that have been loaded.
You can find a list of all these classes in the AS3LR.

Before dispatching any message, you need to create a new Event object. Using the Event class is
often sufficient. In general though, it’s good form to subclass Event and create a customized event
class that contains more data specific to your needs. You’ll focus on creating a basic event for now.

Here’s the function signature for the Event constructor:

public function Event(type:String, bubbles:Boolean = false,
cancelable:Boolean = false)

418

Chapter 20: Events and the Event Flow

First is the type parameter. You’ve seen this before in this chapter — it’s a string that describes the
event taking place, such as "click" or "load".

Next, bubbles is a flag you can pass to your event to indicate whether it should participate in the
bubbling phase of the event flow. You’ll see what the event flow is later in this chapter.

Finally, canceleable determines whether a default behavior can be canceled. This parameter is mostly
useful for predefined events within the Flash Player API. Again, I’ll talk about default behaviors later.

So to review, the Event constructor has a required type parameter and two less frequently used
optional parameters. Let’s create a new Event object simply by omitting these:

var event:Event = new Event("dance");

You just created a dance event! Firing this event is just as easy.

dispatchEvent(event);

Many times you’ll see these lines combined:

dispatchEvent(new Event("dance"));

One more thing: it’s not good practice to use raw strings such as "dance" in your code for a number
of reasons. First, strings and other literals are difficult to change. If you needed to make this "tango"
instead, you would have to search for every listener and make changes there as well. This method is
also more prone to typos because you can’t use code hinting. When working with constants, the com-
piler is able to check for errors at compile time, while string errors might pass through unchecked.

To avoid these problems, it’s common to use a static constant for every event type you want to
include. By convention, these constants are defined in the Event subclasses made for the event types.
(Custom event classes can still be used for multiple event types.) If you don’t want to create a subclass
of the Event class, you can define the constant in the class that’s dispatching the event instead:

public static const DANCE:String = "dance"; // add this to your class
dispatchEvent(new Event(DANCE));

However, for projects of any reasonable size, I recommend using custom event subclasses.

Adding and Removing Event Listeners
You’ve already taken a look at some examples that use addEventDispatcher(). Now I’ll go over
how listeners are added and removed in more detail. First, the following is the full method signature
for addEventListener():

function addEventListener(type:String,
listener:Function,
useCapture:Boolean = false,
priority:int = 0,
useWeakReference:Boolean = false):void

Whoa. There’s a lot going on here.

� type — You can think of type as the frequency over which the event is broadcast, the same
way a radio station uses a particular frequency to broadcast music. Most of the time, the type
you pass in is stored as a static string in the Event class that you are using.

419

Part IV: Event-Driven Programming

� listener — The function that will be invoked when the event is fired.

� useCapture — Determines whether you will listen for the event on the capture phase (true)
or on the target and bubble phases (false). This is used only for events that use the event flow,
which I discuss later in the chapter.

� priority — Even though all event listeners appear to execute simultaneously, there is a
distinct order in which the code is executed. Sometimes event handlers conflict with each other.
Say, for example, you have two different listener functions called onLoad in two different
objects. If the first one changes the loaded data before the second one reads it, you might
have an unexpected conflict that can be hard to troubleshoot. This is where the priority
parameter comes in. This value is an integer that can be set only while adding the listener. A
higher number listener is executed before lower numbers. If two listeners’ priorities are the
same, they’re executed in the order they were added to the event dispatcher. In most cases,
the default value, zero, can be used. If you find yourself relying on event priorities, it’s time
to restructure your code, because it’s difficult to follow code that depends on something as
obscure as event priorities scattered through the code.

There may be cases where you want to abort the handling of events. For example, you
might want to use a single event listener to validate data before allowing the event to
propagate to other listeners, canceling the event if the data is bad. You can do this using the
stopImmediatePropogation() method of the Event class. Calling this method cancels
all event handlers that haven’t already been invoked. This isn’t permanent; the effects last only
until the next time the event is dispatched.

� useWeakReference — Allows objects to be garbage-collected even if they are still subscribed
to events. In many cases, you will not need to use this parameter (whose default is false), but
for the sake of memory management, it’s not a bad idea. However, using this parameter without
thinking can cause its own problems, because in some cases objects can be removed by garbage
collection while you still need them. Here, too, you should prefer meticulous removal of added
event listeners to using this parameter as a crutch.

ActionScript 3.0 introduces the concept of weak and strong memory references. Typically, an
object is garbage-collected if there are no references to the object. That is, when no objects
are using a variable, it is thrown out. Weak references allow you to reference an object, but
the object is still eligible for garbage collection unless another object holds a strong reference
to the object. By setting the useWeakReference flag to true, you create a weak link
between the event broadcaster and the event listener. That way, if an event listener is
deleted while still listening to the event broadcaster, the weak reference allows it to be
garbage-collected. This helps to prevent memory leaks when you forget to unsubscribe from
events. However, useWeakReference can cause premature collection if you don’t keep your
own references to the dispatchers, stopping events from functioning properly.

Removing an event listener is as easy as adding one, and the syntax is similar:

function removeEventListener(type:String,
listener:Function,
useCapture:Boolean = false):void

as in:

dispatcher.addEventListener("eventType", onEvent);
dispatcher.removeEventListener("eventType", onEvent);

Note
If you set the useCapture flag to true when you add the event listener, you need to set it to true when
removing it as well. �

420

Chapter 20: Events and the Event Flow

Use removeEventListener() when you no longer want your listener to respond to events. You
should always remove all event listeners to an object when they are no longer needed and when
you’re ready to destroy the object. If active event listeners are observing an object, Flash Player doesn’t
actually release the object — unless you’ve subscribed using weak references. In events that should
happen only once, you can deregister the event listener right in the event handler. Example 20-3
shows what that looks like.

EXAMPLE 20-3 http://actionscriptbible.com/ch20/ex3

Deregistering a Single-Use Event

package {
import com.actionscriptbible.Example;
import flash.display.Loader;
import flash.display.LoaderInfo;
import flash.events.Event;
import flash.net.URLRequest;
public class ch20ex3 extends Example {
public function ch20ex3() {
var l:Loader = new Loader();
l.load(new URLRequest("http://actionscriptbible.com/files/roger.gif"));
l.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoadComplete);
l.y = 30;
addChild(l);

}
protected function onLoadComplete(event:Event):void {
event.target.removeEventListener(Event.COMPLETE, onLoadComplete);
trace("done loading, listener removed");

}
}

}

The Event Flow
When objects in the display list dispatch events, the events take on a more sophisticated behavior that
you can take advantage of. Instead of being fired directly from the dispatcher object, the event appears
to come from every DisplayObject walking down from the Stage to the actual target that called
dispatchEvent(). Then it’s dispatched by the dispatcher itself, and finally it walks back the other
way, appearing to come from the dispatcher’s parent, then it’s parent’s parent, all the way back to the
Stage again. This is called the event flow, and as strange as it may sound, it’s a W3C recommendation
for dealing with events.

Note
To clarify the phrase ‘‘objects in the display list,’’ the event flow applies to DisplayObjects and their sub-
classes that are currently in a display list. That is, they have been added to another display object in the display
list, or put another way, they can be found by walking down the display list from the stage. DisplayObjects
that have been created but not added to the stage are not subject to the event flow. �

421

Part IV: Event-Driven Programming

Even if you never use the other capabilities, the most common use of the event flow is to allow events
dispatched by child display objects to appear to come from the parent objects. For example, say you
had a sprite containing several buttons. Typically, listening for click events on all buttons requires
you to call addEventListener() for each button. But, because events in AS3 are dispatched from
every parent display object in the chain leading up to the target, you can listen for button clicks just
once on the parent sprite. This tells you that the user has clicked in the parent sprite or one of its
descendants.

Let’s look in detail at the three discrete phases that comprise the event flow.

The Phases of Event Flow
When the dispatchEvent() method is called from any DisplayObject in the display list, the
event goes through three phases. These are called the capture phase, the target phase, and the bubble
phase. You might think of an elevator where each floor is a parent display object on the way to the
target. The elevator stops and dispatches an event on every floor it passes, as shown in Figure 20-3.

FIGURE 20-3

The three phases of event flow

TARGET
DISPLAY OBJECT

PARENT
DISPLAY OBJECT

PARENT
DISPLAY OBJECT

STAGE

2. TARGET

1. CAPTURE

3. BUBBLE

EVENT

EVENT

EVENT

EVENT

422

Chapter 20: Events and the Event Flow

Capture Phase

In the capture phase, Flash Player steps through every parent display object starting with the Stage
and working up to the object that called dispatchEvent() and treats each one as though it were
the event target. The effect is that the event is broadcast from every level of the display list that is a
parent of the display object that calls dispatchEvent(). Display objects that are not ancestors of
the target object do not dispatch events. To listen for events in the capture phase, you have to set the
useCapture flag to true when adding the event listener.

Target Phase

During this phase, the event is dispatched directly from the target object. This is the phase you should
be familiar with from the examples presented thus far. It is the only phase that events partake in for
objects not in the display list.

Bubble Phase

Optionally, the event may bubble back up, dispatching from each parent display object until the stage
is reached. Whether an event bubbles is set when creating a new Event object. The default setting
depends on the class of the Event, but it is used for mouse and key events as well as other events
dispatched by the Flash Player API. In general, I find the bubble phase is useful because you are guar-
anteed that the target phase event dispatcher has already had a chance to deal with the event by the
time it is bubbling.

Note
By default, the target and bubble phases are listened for when calling addEventListener(). By setting
useCapture to true, the capture phase is used instead. If you want to use all three phases, you have to add
two separate event listeners: one with useCapture set to true and one with it set to false. �

Because the stage is the parent object for all display objects in the display list, events that use event
flow always pass through the stage. Therefore, it’s possible to listen for any event coming from within
the display list by adding event listeners to the stage. This is especially helpful for keyboard events,
which you often want to listen to globally. Remember that you can always use the type property of
an event to filter your responses from within an event handler.

The current phase of an event in the flow can be determined from the eventPhase property
of the Event object. The values returned are one of the following constants: EventPhase
.CAPTURING_PHASE, EventPhase.AT_TARGET, or EventPhase.BUBBLING_PHASE. You can
use a check like the one that follows to determine where in the event flow an event is and respond
differently depending on which phase it’s in. If you put this listener on the stage, you can see every
event fired by any DisplayObjects in the display list.

private function onEvent(event:Event):void {
if (event.eventPhase == EventPhase.CAPTURING_PHASE) {

trace("Capture Phase");
trace("Event is at " + event.currentTarget);

}
else if (event.eventPhase == EventPhase.AT_TARGET) {

trace("Target Phase");
trace("Event target is " + event.target);

}

423

Part IV: Event-Driven Programming

else if (event.eventPhase == EventPhase.BUBBLING_PHASE) {
trace("Bubble Phase");
trace("Event is at " + event.currentTarget);

}
}

Notice that you’re using both event.target and a property I haven’t covered yet:
event.currentTarget. This property returns the display object that is currently being tar-
geted within the event flow, whereas the target property remains the same and is always the
object from which the event was dispatched.

At any time, the events in the event flow might be terminated by an event handler by using
stopPropagation() or stopImmediatePropagation(). Overriding propagation can be useful
to prevent other listeners from receiving the event, for example, if you have a modal dialog box open,
you might handle any input in the dialog box and then stop the events, so that other display objects
up the chain don’t receive the input.

Event Flow in Action
The best way to understand the event flow is to see it in action. In Example 20-4, you create a set
of several buttons contained within a button container. To emphasize how the event bubbling affects
all the parent classes, place the button container inside a larger UI container, which you in turn place
on the stage. Even though you’ll create three buttons, only one listener is needed to handle all the
click events.

EXAMPLE 20-4 http://actionscriptbible.com/ch20/ex4

The Event Flow

package {
import com.actionscriptbible.Example;
import flash.display.*;
import flash.events.MouseEvent;
import flash.text.TextField;
public class ch20ex4 extends Example {
public function ch20ex4() {
var uiContainer:Sprite = new Sprite();
uiContainer.x = 200;
uiContainer.name = "uiContainer";
addChild(uiContainer);

//create the button container and add it to the UI container.
var buttonContainer:Sprite = new Sprite();
buttonContainer.graphics.beginFill(0x666666);
buttonContainer.graphics.drawRect(0, 0, 250, 50);
buttonContainer.name = "buttonContainer";
buttonContainer.y = 20;
uiContainer.addChild(buttonContainer);

//create the UI label and add it to the UI container.
var uiLabel:TextField = new TextField();
uiLabel.name = "uiLabel";
uiLabel.text = "Audio Controls";

424

Chapter 20: Events and the Event Flow

uiLabel.selectable = false;
uiLabel.width = 80;
uiLabel.height = 20;
uiContainer.addChild(uiLabel);

//create three buttons and add them to the button container.
var stopButton:Button = new Button("Stop");
stopButton.x = 10;
stopButton.y = 10;
buttonContainer.addChild(stopButton);

var playButton:Button = new Button("Play");
playButton.x = 90;
playButton.y = 10;
buttonContainer.addChild(playButton);

var pauseButton:Button = new Button("Pause");
pauseButton.x = 170;
pauseButton.y = 10;
buttonContainer.addChild(pauseButton);

uiContainer.addEventListener(MouseEvent.CLICK, onClick);
}
private function onClick(event:MouseEvent):void {
trace("\nClick received.");
trace("Event Target:", DisplayObject(event.target).name);
trace("Current Target:", DisplayObject(event.currentTarget).name);

}
}

}
import flash.display.Sprite;
import flash.text.TextField;
class Button extends Sprite {
private var labelField:TextField;
public function Button (label:String = "button") {
//draw the background for the button.
graphics.beginFill(0x3366CC);
graphics.drawRect(0, 0, 70, 30);
//store the label as the button’s name.
name = label;
//create a TextField to display the button label.
labelField = new TextField();
//ensure clicks are sent from labelField rather than the button.
labelField.mouseEnabled = false;
labelField.selectable = false;
labelField.text = label;
labelField.x = 10;
labelField.y = 10;
labelField.width = 80;
labelField.height = 20;
addChild(labelField);

}
}

425

Part IV: Event-Driven Programming

Notice that the only place where you added an event listener was on uiContainer. The UI con-
tainer is near the top of the display list ancestry because it contains the button container, which in
turn contains all the buttons. Because every parent display object dispatches the events, this is the
only listener where you need to capture clicks from the buttons. In fact, you may notice that this
captures clicks from not only the buttons, but from the uiLabel TextField and from the gray
buttonContainer as well.

Clicking each of the buttons triggers the onClick handler and produces the following results:

Click received.
Event Target: Stop
Current Target: uiContainer
Click received.
Event Target: Play
Current Target: uiContainer
Click received.
Event Target: Pause
Current Target: uiContainer

Again, you’re using the event’s target property to get the original display object that received the
click and the currentTarget property to get the display object that’s being listened to (in this case,
uiContainer).

Some properties of InteractiveObject and DisplayObjectContainer (subclasses of
DisplayObject) can help fine-tune events in the event flow. mouseEnabled controls whether
the instance is permitted to fire mouse events, and mouseChildren controls whether the instance’s
children are permitted to. These are particularly important when creating custom cursors (your clicks
must go through the cursor and interact with the scene below it) and buttons with labels. (If you
are using target instead of currentTarget, clicks on a label inside a button fire events whose
target is the label.) You can see these and the event flow interact at http://dispatchevent.org/
roger/hand-me-that-cursor-would-you/.

Preventing Default Behaviors
Many events are so commonplace in ActionScript programming that they are taken for granted. For
example, when a user inputs text into a text field, the letters appear on-screen. You may not real-
ize it, but that is the result of an event handler being invoked behind the scenes. Handlers like this
one — where there is an expected, predictable result — are called default behaviors.

Only events defined in the Flash Player API have default behaviors associated with them. You can’t
create a custom event that has a default behavior in Flash Player.

The event framework allows you to stop some of these default behaviors from occurring. Each
Event object has a property called cancelable, a flag set in the constructor that lets you
know whether the default behavior can be canceled. If this flag is set to true, as it is by
default in TextEvent.TEXT_INPUT, the default behavior can be prevented using the method
preventDefault(). The Event’s isDefaultPrevented property will let you know whether
default behavior has been canceled. Preventing default actions is great for intercepting text entry,
mouse scrolling, and other user inputs and repurposing them for your own devices.

426

Chapter 20: Events and the Event Flow

Summary

� Events notify observing objects of interesting occurrences and give those observers a chance
to react.

� Events are used throughout the Flash Player API, especially for user input, and asynchronous
operations such as network access.

� Flash Player uses a lot of its own events, but you can also create and use your own.

� A dispatcher fires event objects of a specific type. The event object knows its type and remem-
bers the dispatcher as its target. The event then proceeds through the phases of the event flow,
triggering the listeners of every object that has registered for the event.

� Events are dispatched by an EventDispatcher subclass, or, rarely, a class that implements
IEventDispatcher.

� DisplayObject extends EventDispatcher so all display objects can fire events.

� Use addEventListener() on a dispatcher to listen for events; call
removeEventListener() to stop listening.

� Event objects extend Event. Subclasses of Event can carry additional information about
the event.

� At minimum, Event objects are differentiated by type, which is normally stored as a static
String constant of the event class.

� Events that bubble can only be dispatched from objects currently on the display list.

� The capture, target, and bubble phases proceed in order. In most cases, the target phase is used,
and sometimes the bubble phase. Capture phase and event priority are used sparingly.

� Events can be aborted out of the event flow, and some built-in events can be stopped from per-
forming their default behavior.

427

Interactivity with the
Mouse and Keyboard

FEATURED CLASSES

flash.events.MouseEvent

flash.events
.KeyboardEvent

flash.events.FocusEvent

flash.events
.ContextMenuEvent

flash.display
.InteractiveObject

flash.ui.Mouse

flash.ui.MouseCursor

flash.ui.Keyboard

flash.ui.ContextMenu

flash.system.IME

T
he one consistent interface between most people and their computers
is, as you know, the keyboard and mouse. Because you can use Flash
Player for so many different kinds of applications, it has a flexible model

for capturing the user’s mouse and keyboard input. You can do anything from
simply capturing clicks on buttons to accepting complex mouse gestures. Flash
Player’s input handling is closely tied to its event model and the display list.
All mouse and keyboard input are available to ActionScript 3.0 code as events
of type MouseEvent or KeyboardEvent. In this chapter, you’ll learn how
mouse and keyboard events are handled in general, investigate the various kinds
of events Flash Player exposes, and see a variety of real-world input handling
code. I’ll also cover the focus model in Flash Player and creating custom
context menus.

Mouse and Keyboard Event Handling

Every InteractiveObject can dispatch events when interacted with
using the keyboard and mouse. This, of course, applies to the subclasses of
InteractiveObject, which includes all TextFields, Sprites, Loaders,
and the Stage; but not Bitmaps or Shapes.

You’ll learn how to listen and respond to these events, determine which events
are available, and discover how to combine them best throughout the course of
this chapter. But first I have to show just how these events are broadcast.

Note
Some users use alternative input methods for assistive purposes or on other
platforms. Most of these devices, however, emulate keyboard and mouse input.
So whether the end user is using her fingers, a stylus, a DualShock 3 controller,
eye-tracking hardware, or a trackball, Flash Player gets her input as mouse
events. You don’t need to take the terms ‘‘keyboard’’ and ‘‘mouse’’ literally. �

429

Part IV: Event-Driven Programming

Finding the Target
Mouse and keyboard events are broadcast by display objects and bubble up the display list, as
described in Chapter 20, ‘‘Events and the Event Flow.’’ Events begin their dispatch at the target
display object. For mouse events, this is typically the topmost display object under the mouse
pointer that accepts mouse input. ‘‘Topmost’’ refers here to the stacking order or depth. When
using display objects in three dimensions, z-depth is ignored; all that matters is the depth on the
display list.

Think about positioning your screen flat on a table and dropping a pin down where your mouse cur-
sor is. The object that the pin hits first is the target of your event. In Figure 21-1, I apply this test to
determine that the target of mouse events will be display object B.

FIGURE 21-1

A simple layout, exploded out to show which object the pointer falls over

B

A

B

A

stage

stage

If you have a display object with a big hole in it, and the hole is truly empty (and not simply filled
with a transparent or nearly transparent fill), your mouse and keyboard events can ‘‘fall through’’ this
gap. This works great for vector shapes but not bitmaps, because ‘‘blank’’ areas of bitmaps are defined
by transparent fills, which still catch the events.

Likewise, objects that don’t react to the type of input you’re giving them are ‘‘passed through’’ on Flash
Player’s quest from your mouse cursor to the target. Even if you create a big fat Shape that blocks out
everything else and sits on top, because it is impervious to interactivity, clicks and other mouse events
pass through it as if it didn’t even exist.

Keyboard input, on the other hand, uses Flash Player’s focus system to determine the target of the
events. The object currently in focus dispatches keyboard events, regardless of mouse position.
Although mouse and keyboard events determine their targets differently, once they’re dispatched,
both bubble.

430

Chapter 21: Interactivity with the Mouse and Keyboard

Bubbling and Nested Clips
Almost all keyboard and mouse events bubble. (The exceptions are mouse rollover and rollout.) Once
the event is triggered on the target object, it travels up the display list from the target object, to its
container, and so on, until it hits the stage. This gives you multiple opportunities to react to user
input. If you interpret the input event once and determine that parents of the currentTarget
display object shouldn’t hear about this event, you can call stopPropagation() on the event.

The nesting of display objects can affect how input events flow through the display list. In
Figure 21-2, for example, the user has clicked on the Pizza button. Because the mouse cursor is
over the TextField used to display the text pizza, that TextField is the target of the event. If
you are subscribed to its parent, the pizzaButton display object, you’ll receive the event as well,
but only during the bubble phase. Likewise, the window object will receive the event, but not the
background object, because it’s a sibling of pizzaButton, even though it’s directly underneath
pizzaButton.

FIGURE 21-2

Input event bubbling

Stage

window

background
tacoButton

pizzaButton

background
textfield

background
textfield Click!

pizza tacos

You can use four properties of InteractiveObject to effect tighter control on keyboard and
mouse events, especially when display objects are nested:

� mouseEnabled, keyboardEnabled — Determine whether mouse or keyboard events can
be triggered on the object.

� mouseChildren, keyboardChildren — Determine whether children of the object can
receive mouse or keyboard events. If set to false, the object becomes ‘‘opaque’’ to mouse or
keyboard events.

All these properties default to true. By changing them, you can impact how Flash Player determines
the target of a mouse or keyboard input event. By setting mouseEnabled to false on a display
object, you render it invisible to mouse events so that Flash Player ‘‘passes through’’ it when search-
ing for the target of a mouse event. By setting mouseChildren to false on a display object, you
‘‘flatten’’ it — both the display object and its children are considered one potential target. Set both to
true and the display object and its contents become completely non-reactive, ghosts to mouse input.
This is particularly useful if you have display-list-based visual effects in the extreme foreground, or if
you create a custom cursor, as in Example 21-8 later in the chapter.

431

Part IV: Event-Driven Programming

In Figure 21-3, I compare clicks inside the Pizza button’s TextField when all objects’
mouseChildren properties are set to true, when pizzaButton’s mouseChildren prop-
erty is set to false, and when window’s mouseChildren property is set to false. In all cases,
a click is made over the same place. The click is considered to have occurred on the innermost
reachable object, which changes due to the ‘‘flattening’’ effect of mouseChildren.

FIGURE 21-3

Effects of mouseChildren with nested display objects

default

pizzaButton.mouseChildren
= false

window.mouseChildren
= false

target = pizzaButtontarget = textfield target = window

Of course, these effects apply to keyboard events as well as mouse events, and with the two sets of
properties, you can control them differently.

Listening for All Events
Because input events that aren’t canceled find themselves eventually at the stage, you can capture all
events of a given kind by subscribing to the stage. Listening to the stage is especially useful for games,
where the player’s key and mouse input should be interpreted to affect her character regardless of the
position of the cursor or focus.

Mouse Interactions
Mouse input is translated by Flash Player into events of type MouseEvent. Mouse input comes in
many types, differentiated by the event’s type property. A quick summary of these events is shown in
Table 21-1.

Although these events may be self-explanatory, I’ll take some time in the following sections to show
exactly how the various mouse events work in context.

As you may have noticed, some of these events overlap each other. For example, a click
(MouseEvent.CLICK) is the aggregate of the user depressing the mouse (MOUSE_DOWN)
and releasing it (MOUSE_UP) in rapid succession, possibly with a small tolerance of mouse
motion (MOUSE_MOVE) as well. If you listen for all these events, you will receive all of them.
This allows you to make your mouse input handling quick and simple or as nuanced as
you like.

The MouseEvent class defines a few properties that apply to mouse input. Some of these properties
are related to specific types of mouse input and will remain undefined for other types of event that

432

Chapter 21: Interactivity with the Mouse and Keyboard

use MouseEvent. Among the more important properties are four Numbers that describe the cursor’s
location when the event took place:

� localX, localY — The cursor’s x and y position relative to the target of the mouse
activity

� stageX, stageY — The cursor’s global x and y position

Note that when handling a mouse event called event, event.localX should be equal to
event.target.mouseX, and event.stageX should be equal to stage.mouseX (and likewise
with the y properties). Recall from Chapter 14, ‘‘Visual Programming with the Display List,’’ that
it’s easy to translate between coordinate spaces; having the position defined for both spaces is a
convenience.

TABLE 21-1

Mouse Events

Event Name Description

MouseEvent.CLICK The main button of the mouse was clicked.

MouseEvent.DOUBLE_CLICK The main button of the mouse was double-clicked.

MouseEvent.MOUSE_DOWN The main button of the mouse was depressed.

MouseEvent.MOUSE_UP The main button of the mouse was released.

MouseEvent.MOUSE_MOVE The position of the mouse cursor moved.

MouseEvent.MOUSE_OVER The cursor moved over the display object.

MouseEvent.MOUSE_OUT The cursor moved off the display object.

MouseEvent.ROLL_OVER The cursor moved over the display object from outside it and its children.

MouseEvent.ROLL_OUT The cursor moved off the display object and any of its children.

MouseEvent.MOUSE_WHEEL The mouse wheel was rotated.

Tip
On rare occasions, I’ve experienced that the event object’s location properties are incorrect. If your mouse
position code seems to be error-prone in mouse event handlers, try using the mouseX and mouseY proper-
ties of the Stage instead; just ensure that the code always has access to the stage object, or you might run
into an error. �

Clicking
Flash Player makes it easy to detect clicks on objects. The user’s operating system interprets the time
between the mouse button being depressed and released to determine whether these two events con-
stitute a click. You don’t have to worry about just how the click occurred. Remember that this and
other mouse events are affected by the mouseEnabled and mouseChildren properties, not just for
the objects you click but their ancestors on the display list.

433

Part IV: Event-Driven Programming

Detecting a click on any InteractiveObject is trivial, as Example 21-1 shows.

EXAMPLE 21-1 http://actionscriptbible.com/ch21/ex1

Detecting a Click

package {
import com.actionscriptbible.Example;
import flash.events.MouseEvent;
public class ch21ex1 extends Example {
public function ch21ex1() {
var circ:ClickableCircle = new ClickableCircle();
circ.name = "Circle";
circ.x = circ.y = 100;
addChild(circ);

circ.addEventListener(MouseEvent.CLICK, onClick);
}
protected function onClick(event:MouseEvent):void {
trace(event.target.name + " clicked at " +

event.localX + "," + event.localY);
}

}
}
import flash.display.Sprite;
class ClickableCircle extends Sprite {
public function ClickableCircle(color:uint = 0, size:Number = 50) {
graphics.beginFill(color, 0.25);
graphics.drawCircle(0, 0, size);
graphics.endFill();

}
}

Running this example and clicking the circle prints the name of the display object, along with the
coordinates where you clicked.

Button Mode and the Hand Cursor
If you run Example 21-1, you will notice that although the ClickableCircle is indeed clickable,
it doesn’t indicate as much. It doesn’t react to your mouse moving over it. If you want a hand cursor
to appear in place of the normal pointer cursor, you can do so by indicating to Flash Player that the
display object is a button. You can do this in two ways: make it a subclass of SimpleButton, or set
its buttonMode property.

As far as Flash Player is concerned, being a button means a few important things. One, a button
is included in the tabbing order, so you can press the Tab key to put focus on the button. Two,
if you are focused on the button, pressing the spacebar simulates a click. These two effects ensure
that the user interface is accessible to the keyboard and assistive devices. You can always customize

434

Chapter 21: Interactivity with the Mouse and Keyboard

the focus and tabbing effects in more detail with the display object’s tabEnabled, tabOrder, and
focusRect properties. Three, buttons change your cursor to the system’s hand cursor when hovered
over. These effects are shown in Example 21-2.

EXAMPLE 21-2 http://actionscriptbible.com/ch21/ex2

Button Mode

package {
import com.actionscriptbible.Example;
import flash.events.MouseEvent;
public class ch21ex2 extends Example {
public function ch21ex2() {
var circ:ClickableCircle = new ClickableCircle();
circ.name = "Circle";
circ.x = circ.y = 100;
addChild(circ);
circ.addEventListener(MouseEvent.CLICK, onClick);

}
protected function onClick(event:MouseEvent):void {
trace(event.target.name + " clicked at " +

event.localX + "," + event.localY);
}

}
}
import flash.display.Sprite;
class ClickableCircle extends Sprite {
public function ClickableCircle(color:uint = 0, size:Number = 50) {
graphics.beginFill(color, 0.25);
graphics.drawCircle(0, 0, size);
graphics.endFill();
buttonMode = true;

}
}

Here you’ve added one line to Example 21-1 to enable button mode. In Sprite and other
InteractiveObject subclasses, buttonMode defaults to false, except of course for
SimpleButton, where it defaults to true. If you run this code, you see all three effects mentioned
in action. You might also notice that, as promised, where there is no fill in a display object, it does
not react to clicks. If you put your mouse just outside the edge of the circle, even though you may be
inside the display object’s bounding box (which you can see by tabbing to it), you won’t trigger the
hand cursor or any click events.

Complex Clicking
The MouseEvent.CLICK event is triggered when the user’s primary mouse button is clicked.
Whether the device is an actual mouse or something like a tablet or a gamepad, how many buttons

435

Part IV: Event-Driven Programming

the pointing device has and so on is of no consequence. Which button is considered the primary
button is also up to the user and his operating system.

The secondary mouse button — usually the right button — does not trigger a mouse event in the
Flash Player API. The secondary mouse button is reserved for displaying a standard context menu,
which Flash Player retains some control over but you can indeed customize. Further mouse buttons,
like a middle button, are not supported in Flash Player.

Note
In the AIR runtimes, you will have much more control over and access to mouse input. For example, the middle
and right mouse buttons are supported. If you are developing for AIR, check the AS3LR for these additional
events. �

Keyboard Modifiers

You can detect whether the user holds down certain keyboard modifier keys while clicking.
The MouseEvent object defines several Boolean properties you can use to detect these
keys:

� shiftKey — Whether the Shift key is held down

� ctrlKey — On PCs, whether the Control key is held down; on Macs, whether either of the
Control or Command keys is held down

� altKey — On PCs, whether the Alt key is held down; on Macs, ignored

You’ll use modifier keys in Example 21-6 to create and drag a copy of a display object instead of drag-
ging the original object.

Double-Clicking

Flash Player even tells you if the user double-clicks a display object. Although this is off by default,
simply set the display object’s doubleClickEnabled to enable it, as shown in Example 21-3.

EXAMPLE 21-3 http://actionscriptbible.com/ch21/ex3

Detecting a Double-Click

package {
import com.actionscriptbible.Example;
import flash.events.MouseEvent;

public class ch21ex3 extends Example {
public function ch21ex3() {
var circ:ClickableCircle = new ClickableCircle();
circ.name = "Circle";
circ.x = circ.y = 100;
addChild(circ);
circ.addEventListener(MouseEvent.CLICK, onClick);

}

436

Chapter 21: Interactivity with the Mouse and Keyboard

protected function onClick(event:MouseEvent):void {
trace(event.target.name + " clicked at " +

event.localX + "," + event.localY);
}

}
}
import flash.display.Sprite;
import flash.events.MouseEvent;
class ClickableCircle extends Sprite {
public function ClickableCircle(color:uint = 0, size:Number = 50) {
graphics.beginFill(color, 0.25);
graphics.drawCircle(0, 0, size);
graphics.endFill();
buttonMode = true;
doubleClickEnabled = true;
addEventListener(MouseEvent.DOUBLE_CLICK, onDoubleClick);

}
protected function onDoubleClick(event:MouseEvent):void {
alpha *= 0.5;
if (alpha < 0.1) alpha = 1;

}
}

In this example, you’ve elected to have the ClickableCircle handle its own double-click event
because you want this to be an effect of all ClickableCircles. If you try running the example,
you’ll see that the click event is still broadcast. In fact, when you double-click an object, the events
are dispatched in order:

mouseDown
mouseUp
click
mouseDown
mouseUp
doubleClick

So you can still react to behavior on a lower level while using high-level events like MouseEvent
.CLICK and MouseEvent.DOUBLE_CLICK.

Rollovers
Flash Player makes it easy to react to rollovers or hovering. You can use rollovers to change the
appearance of a display object as the mouse hovers over it to emphasize the fact that it’s active.

The SimpleButton class has this behavior built in. It switches between its upState, overState,
and downState display objects automatically as the mouse leaves, enters, and depresses the button.

You can easily add this behavior to any InteractiveObject by listening to the MouseEvent
.ROLL_OVER and MouseEvent.ROLL_OUT events, as Example 21-4 shows.

437

Part IV: Event-Driven Programming

EXAMPLE 21-4 http://actionscriptbible.com/ch21/ex4

Reacting to Mouse Hover

package {
import flash.display.Sprite;
public class ch21ex4 extends Sprite {
public function ch21ex4() {
var circ:ClickableCircle = new ClickableCircle();
circ.x = circ.y = 100;
addChild(circ);

}
}

}
import flash.display.Sprite;
import flash.events.MouseEvent;
class ClickableCircle extends Sprite {
public function ClickableCircle(color:uint = 0, size:Number = 50) {
graphics.beginFill(color, 0.25);
graphics.drawCircle(0, 0, size);
graphics.endFill();
addEventListener(MouseEvent.ROLL_OVER, onRollOver);
addEventListener(MouseEvent.ROLL_OUT, onRollOut);
onRollOut(null); //start in the "up"/not hovered state.

}
protected function onRollOver(event:MouseEvent):void {
alpha = 1;

}
protected function onRollOut(event:MouseEvent):void {
alpha = 0.5;

}
}

Two sets of events deal with hovering: MOUSE_OVER, MOUSE_OUT, ROLL_OVER, and ROLL_OUT.
The difference between these is subtle. The ROLL_OVER and ROLL_OUT events apply to a
display object and its children, but the MOUSE_OVER and MOUSE_OUT events only apply to
the display object. When moving your mouse from an inner display object to an outer display
object, MOUSE_OUT is dispatched on the inner object as MOUSE_OVER is dispatched on the outer
object. The difference might not be noticeable, however, because these events bubble, and the
MOUSE_OUT event is followed up closely by a MOUSE_OVER event, although their targets are
different.

In Example 21-5, you cancel bubbling to see just how the events differ. You’ll notice that when
you use MOUSE_OVER and MOUSE_OUT, as the blue circles on the right do, only the one specific
display object under the mouse receives events, so the parent circle’s stroke disappears when you
mouse onto its child. It’s best experimented with interactively, so run the example if you have
a chance.

438

Chapter 21: Interactivity with the Mouse and Keyboard

EXAMPLE 21-5 http://actionscriptbible.com/ch21/ex5

MOUSE OVER versus ROLL OVER

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
public class ch21ex5 extends Sprite {
public function ch21ex5() {
//use ROLL_OVER and ROLL_OUT on the left (red)
var a:NestedCircles = new NestedCircles(true, 0xff0000);
//use MOUSE_OVER and MOUSE_OUT on the right (blue)
var b:NestedCircles = new NestedCircles(false, 0x0000ff);
a.x = 100;
b.x = 250;
a.y = b.y = 150;
addChild(a); addChild(b);

}
}

}
import flash.display.*;
import flash.events.MouseEvent;
class NestedCircles extends Sprite {
public var child:NestedCircles;
protected var stroke:Shape;
public function NestedCircles(useRoll:Boolean, color:uint = 0,

size:Number = 60, isChild:Boolean = false) {
graphics.beginFill(color, 0.25);
graphics.drawCircle(0, 0, size);
graphics.endFill();
stroke = new Shape();
addChild(stroke);
stroke.graphics.lineStyle(5, 0xffff00);
stroke.graphics.drawCircle(0, 0, size);
stroke.visible = false;
if (useRoll) {
addEventListener(MouseEvent.ROLL_OVER, handler);
addEventListener(MouseEvent.ROLL_OUT, handler);

} else {
addEventListener(MouseEvent.MOUSE_OVER, handler);
addEventListener(MouseEvent.MOUSE_OUT, handler);

}
if (!isChild) {
child = new NestedCircles(useRoll, color, size/2, true);
addChild(child);
child.y = -size;

}
}
protected function handler(event:MouseEvent):void {
switch (event.type) {

continued

439

Part IV: Event-Driven Programming

EXAMPLE 21-5 (continued)

case MouseEvent.MOUSE_OUT:
case MouseEvent.ROLL_OUT:
stroke.visible = false;
event.stopPropagation();
break;

case MouseEvent.MOUSE_OVER:
case MouseEvent.ROLL_OVER:
stroke.visible = true;
event.stopPropagation();
break;

}
}

}

In most cases, you’ll probably want to stick to MouseEvent.ROLL_OVER and
MouseEvent.ROLL_OUT. And don’t forget the time-saving SimpleButton option.

When using hover-related events, you’re always moving the pointer from one object to another (even
if one of these objects is the stage). Whereas the target property of the event object tells you the
subject of this action — the target of a MouseEvent.ROLL_OUT event tells you where you’ve
rolled off of — the relatedObject property tells you what the other party is — where you rolled
off onto. Another example: you MOUSE_OVER a target, but your mouse was previously over the
relatedObject.

Dragging
A Sprite’s startDrag() and stopDrag() methods are perfect for implementing drag-and-drop
behavior, but you’ll still need some event dispatching glue to put the whole thing together. Simply
start dragging when the mouse button is pressed, and stop dragging when the mouse button is
released. Example 21-6 shows how this works.

EXAMPLE 21-6 http://actionscriptbible.com/ch21/ex6

Drag-and-Drop

package {
import flash.display.Sprite;
public class ch21ex6 extends Sprite {
public function ch21ex6() {
var circ:DraggableCircle = new DraggableCircle();
circ.x = circ.y = 100;
addChild(circ);

}
}

}

440

Chapter 21: Interactivity with the Mouse and Keyboard

import flash.display.Sprite;
import flash.events.MouseEvent;
class DraggableCircle extends Sprite {
public function DraggableCircle() {
graphics.beginFill(0, 0.5);
graphics.drawCircle(0, 0, 50);
graphics.endFill();
addEventListener(MouseEvent.MOUSE_DOWN, onStartDrag);
buttonMode = true;

}
protected function onStartDrag(event:MouseEvent):void {
if (event && event.shiftKey) {
cloneAndDrag();

} else {
startDrag();
stage.addEventListener(MouseEvent.MOUSE_UP, onStopDrag);

}
}
protected function onStopDrag(event:MouseEvent):void {
stage.removeEventListener(MouseEvent.MOUSE_UP, onStopDrag);
stopDrag();

}
protected function cloneAndDrag():void {
var copy:DraggableCircle = new DraggableCircle();
copy.x = this.x;
copy.y = this.y;
this.parent.addChild(copy);
copy.onStartDrag(null);

}
}

I’ve done one or two tricky things here, though. I’ve listened for MouseEvent.MOUSE_UP on the
stage, so that I’ll receive that event no matter what display object the mouse was over when the event
occurred (provided nobody cancels the event prior to it bubbling up to the stage). I did this just
in case you managed to have your mouse cursor escape the boundaries of the object in question.
Because it’s dragging, it should follow under your mouse cursor no matter what, but in its dragging
travels it may pass under other display objects, or it might change shape or size slightly due to
rollover effects, although it doesn’t here. I just want to make sure that, no matter what, the next
time you release the mouse button, the currently dragging object stops dragging. To complete this
cycle, of course, I have to remove the event listener from the stage immediately when the mouse is
released.

Additionally, I’ve looked at the state of the Shift key when the mouse is depressed. If you have the
Shift key down, instead of dragging the circle, it makes a clone of the circle and drags that. Event
handler methods are still normal methods, and they may be called directly as I have done here. How-
ever, if you pass an event object, it had better be valid. Because I sometimes pass null to the event
handler, in its body I have to make sure I don’t assume event is non-null.

441

Part IV: Event-Driven Programming

Position Tracking and Cursors
You already have the tools in your arsenal to follow the mouse around. Simply listen for
MouseEvent.MOUSE_MOVE on the stage, and you’ll be updated with the mouse’s movement. You
can use this to display custom cursors and mouse trails, control a game character, or even just to
stare at you creepily, as a big pair of eyes do in Example 21-7.

EXAMPLE 21-7 http://actionscriptbible.com/ch21/ex7

Following Mouse Movement

package {
import flash.display.Sprite;
public class ch21ex7 extends Sprite {
public function ch21ex7() {
var leftEye:Eye = new Eye(60);
var rightEye:Eye = new Eye(60);
leftEye.y = rightEye.y = stage.stageHeight/2;
leftEye.x = stage.stageWidth * 1/3
rightEye.x = stage.stageWidth * 2/3;
addChild(leftEye);
addChild(rightEye);

}
}

}
import flash.display.*;
import flash.events.*;
class Eye extends Sprite {
protected var pupil:Shape;
public function Eye(size:Number) {
graphics.lineStyle(3);
graphics.beginFill(0xffffff);
graphics.drawCircle(0, 0, size);
graphics.endFill();

pupil = new Shape();
addChild(pupil);
pupil.graphics.lineStyle();
pupil.graphics.beginFill(0x603030);
pupil.graphics.drawCircle(3/4 * size, 0, size/4);

scaleY = 2;
addEventListener(Event.ADDED_TO_STAGE, onAddedToStage);

}
protected function onAddedToStage(event:Event):void {
stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

}
protected function onMouseMove(event:MouseEvent):void {
pupil.rotation = Math.atan2(this.mouseY, this.mouseX) / Math.PI * 180;

}
}

442

Chapter 21: Interactivity with the Mouse and Keyboard

Note that I had to wait for the Event.ADDED_TO_STAGE event before accessing stage. This prop-
erty is not defined while the constructor executes, because the object hasn’t been put in a display list
yet. The application class doesn’t have this restriction.

An interesting property of MouseEvent.MOUSE_MOVE events is that they fire off whenever the
mouse moves, independently of the frame rate of the SWF. You can force Flash Player to draw a
new frame as soon as ActionScript is done executing (without waiting for it to be time to draw
the next frame as per the current frame rate). Simply call the updateAfterEvent() method of
Event when it’s imperative that there is no lag between your application’s user interface and the
mouse’s location.

This is especially useful for creating your own cursors, as Example 21-8 shows. Although the
Flash Player API uses the system’s default pointer and hand cursors, any other kinds of cursors,
or any custom cursors, must be implemented in ActionScript code. You can emulate a cursor
by creating it in a display object at the highest depth and following the mouse’s position with
MouseEvent.MOUSE_MOVE.

EXAMPLE 21-8 http://actionscriptbible.com/ch21/ex8

Custom Cursors

package {
import flash.display.*;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.net.URLRequest;
import flash.ui.Mouse;
public class ch21ex8 extends Sprite {
protected var customCursor:Loader;
public function ch21ex8() {

customCursor = new Loader();
var url:String = "http://actionscriptbible.com/files/spinner.swf";
customCursor.load(new URLRequest(url));
customCursor.mouseEnabled = false;
customCursor.mouseChildren = false;
addChild(customCursor);
stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);
stage.addEventListener(Event.MOUSE_LEAVE, onMouseLeave);

}
protected function onMouseMove(event:MouseEvent):void {

Mouse.hide();
customCursor.visible = true;
customCursor.x = stage.mouseX;
customCursor.y = stage.mouseY;
event.updateAfterEvent();

}
protected function onMouseLeave(event:Event):void {

customCursor.visible = false;
}

}
}

443

Part IV: Event-Driven Programming

In this example, I’ve gone a few steps further to ensure that the cursor acts as much like an OS cursor
as possible. I have disabled mouse events on the cursor. Because the cursor is on the top and sticks
to the mouse’s position, it would otherwise become the target of all mouse events, stealing events that
need to go to their intended targets. Turning off mouse events on the cursor allow clicks and mouse
events to ‘‘fall through’’ it.

I’ve used the static method Mouse.hide(), which hides the system mouse cursor. If I didn’t hide
the original cursor, two cursors would appear, destroying the illusion of a custom cursor. When the
mouse leaves Flash Player, the system restores the normal cursor. When you bring the mouse back
over to Flash Player again, however, the cursor doesn’t remember that it should be hidden. That’s why
I call Mouse.hide() every time the mouse moves, even though it may be overkill.

There is also a Mouse.show() method that makes the cursor visible again. You can use this if you
only want to show a custom mouse cursor while hovered over a certain object, for example.

I’ve also used the Stage class’s Event.MOUSE_LEAVE event. This event is broadcast when the
mouse exits Flash Player. By hiding the custom cursor when the mouse leaves, you prevent the cursor
from displaying near the edge when your real mouse cursor reappears, which breaks the illusion that
the custom cursor is your cursor.

In Flash Player 10 and up, you can use additional kinds of standard OS cursors through the Mouse
class, as listed in Table 21-2. Furthermore, you can invoke these cursors at will rather than relying on,
for example, input TextFields and SimpleButtons that trigger cursors by default. To set the cur-
sor type, simply assign the proper value to the static property Mouse.cursor. The available cursors
are enumerated by static constants in the flash.ui.MouseCursor class.

TABLE 21-2

System Standard Cursors Supported in Flash Player 10

Cursor name Cursor type

MouseCursor.AUTO Whichever cursor is appropriate for the content under the mouse (default)

MouseCursor.ARROW The default pointer arrow

MouseCursor.BUTTON A button-clicking hand

MouseCursor.HAND A dragging hand

MouseCursor.IBEAM A vertical text-editing I-beam

Version
FP10. The Mouse.cursor property can only be used to set cursor types in Flash Player 10 and up. �

After you’ve set a special system cursor, you can restore the cursor to its default behavior by setting
the cursor type to AUTO:

Mouse.cursor = MouseCursor.HAND; //set a custom cursor
Mouse.cursor = MouseCursor.AUTO; //reset to the default, contextual cursor

444

Chapter 21: Interactivity with the Mouse and Keyboard

Blocking All Mouse Input
An interesting test of your mouse interaction skills is to block all clicks. You might need to do
this if you present a modal dialog, which must be satisfied before any other user interaction can
take place. Or, you might choose to prevent all input while transitioning between two states
of your application — a quick and dirty way to prevent overlapping navigations that might throw
your application out of sync.

Again, I’ve already covered the principles that you’ll need to block all user input. If you want, take a
moment and imagine how you would block all clicks. I suggest the following method: create a display
object, fill it entirely with a transparent fill, ensure mouse events are enabled on it, and put it at the
top of the display list. Ensure that it stays on top and stays the size of the stage. Optionally, capture
all mouse events and stop their propagation to ensure even the stage doesn’t receive mouse events.
Because Flash Player looks for the topmost display object under the mouse to receive mouse events,
this screener object catches them all. Example 21-9 shows how this works.

EXAMPLE 21-9 http://actionscriptbible.com/ch21/ex9

Blocking Clicks

package {
import com.actionscriptbible.Example;
import flash.display.Sprite;
import flash.events.MouseEvent;
public class ch21ex9 extends Example {
protected var screen:Sprite;
public function ch21ex9() {
makeTestButton();

}
protected function makeTestButton():void {
var button:TestButton;
button = new TestButton(100, 30, "Pizza");
addChild(button); button.x = 10; button.y = 10;
button.addEventListener(MouseEvent.CLICK, onPizzaClick);

button = new TestButton(100, 30, "Tacos");
addChild(button); button.x = 130; button.y = 10;
button.addEventListener(MouseEvent.CLICK, onTacosClick);

button = new TestButton(110, 30, "SCREEN ON!");
addChild(button); button.x = 250; button.y = 10;
button.addEventListener(MouseEvent.CLICK, onScreenClick);

trace("\n\n\n");
}
protected function onPizzaClick(event:MouseEvent):void {
trace("Pizza button clicked!");

}
protected function onTacosClick(event:MouseEvent):void {
trace("Tacos button clicked!");

}

continued

445

Part IV: Event-Driven Programming

EXAMPLE 21-9 (continued)

protected function onScreenClick(event:MouseEvent):void {
trace("---- blocking events ----");
screen = new Sprite();
screen.graphics.beginFill(0, 0); //optionally, dim screen
screen.graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
//TODO: in a real application, add stage resize listeners
screen.graphics.endFill();
screen.mouseEnabled = true;
addChild(screen); //TODO: ensure that screen stays on top
//TODO: optionally, handle all events and cancel them

}
}

}
import flash.display.*;
import flash.text.*;
import flash.events.MouseEvent;
import flash.filters.BevelFilter;

class TestButton extends Sprite {
protected var bg:Shape;
protected var label:TextField;
public function TestButton(w:Number, h:Number, labelText:String) {
bg = new Shape();
addChild(bg);
bg.graphics.beginFill(0xa0a0a0);
bg.graphics.drawRect(0, 0, w, h);
label = new TextField();
addChild(label);
label.defaultTextFormat = new TextFormat("_sans", 11, 0, true, false,
false, null, null, "center");

label.width = w;
label.height = h;
label.text = labelText;
label.y = (h - label.textHeight)/2 - 2;
buttonMode = true;
mouseChildren = false;
addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
addEventListener(MouseEvent.MOUSE_UP, onMouseUp);
onMouseUp(null);

}
protected function onMouseDown(event:MouseEvent):void {
bg.filters = [new BevelFilter(4, 225, 0xffffff, 0.5, 0, 0.5, 1, 1, 1, 3)];
label.x++; label.y++;

}
protected function onMouseUp(event:MouseEvent):void {
bg.filters = [new BevelFilter(-4, 225, 0xffffff, 0.5, 0, 0.5, 1, 1, 1, 3)];
label.x--; label.y--;

}
}

446

Chapter 21: Interactivity with the Mouse and Keyboard

Although I’m getting a bit ahead of the game with filters and vector drawing, you can basically ignore
the TestButton class. It’s just there to demonstrate that mouse events are getting through. Once you
click the third button, an invisible screen is constructed that blocks all mouse events (except from the
stage, because we neglected to capture and cancel the events).

Mouse Wheel
You can capture input from the user’s mouse wheel, if she has one, by listening for
MouseEvent. MOUSE_WHEEL events. In event objects associated with this event, the delta
property is populated with an int representing the number of lines and direction the user scrolled
by. You may want to listen for this event on the stage because, like other mouse events, it is only
broadcast by the topmost object found under the mouse cursor, and users may expect scroll wheel
input to work even when the cursor is not directly over the target.

Caution
Scroll wheel support in the browser on Mac is not available before Flash Player 10.1, or in browsers that
don’t support Cocoa events like Safari 4. In non-compliant environments, you can use JavaScript to capture
mouse wheel events and forward them to Flash with ExternalInterface. A free library that does
this is SWFMacMouseWheel by Gabe Bucknall, found at http://blog.pixelbreaker.com/flash/
swfmacmousewheel. �

Keyboard Interactions
Keyboard input is easy to handle in Flash Player. There are only two events for keyboard input:

� KeyboardEvent.KEY_DOWN— A key is depressed

� KeyboardEvent.KEY_UP — A key is released

Keyboard input is dispatched by the focused InteractiveObject and bubbles up to the stage. I’ll
cover focus in depth later in the section titled ‘‘Focus.’’

When capturing key presses, you can choose to listen for either of these events. There’s no real way
to ‘‘cancel’’ a key press — once you’ve depressed the keyboard key, you’ve got little choice but to
eventually let it up — so either event is sufficient for simply capturing keystrokes. Because each key’s
downstroke and upstroke are captured, you can react to simultaneous keystrokes without other events.
Two keys pressed simultaneously results in four events: two KEY_DOWN and then two KEY_UP.

The way key events are structured, however, you have to write some code yourself if you want to
answer the question ‘‘What keys are being held down right now?’’ in the general case, outside an
event handler. The events don’t answer this question; but by recording the individual downstrokes
and upstrokes, you can remember if the key in question had previously been depressed and has not
yet been released.

Interpreting Keypresses
Each KeyboardEvent object encodes the key to which it refers in two ways and makes both avail-
able to you through two properties: keyCode and charCode.

keyCode is a uint in which every key on the keyboard has a unique value. For instance, the 1
key on the numeric pad and the 1 key on the top row are different physical keys and have different

447

Part IV: Event-Driven Programming

keyCodes. Conversely, both the letter a and the letter A are typed with the A key, which is the same
physical key and has the same keyCode.

charCode is a uint that represents the character you typed in the current character set. The
default character set is UTF-8, which is identical to ASCII for values 0–28 (including all English
alphanumeric characters). Because charCode is concerned with the character, typing a and A
produce two different characters and two different charCodes, even though they are typed with the
same physical key. Typing 1 on any part of the keyboard results in a 1 character, so the charCode is
the same.

You can convert one or more charCodes back into a String by passing them to the static method
String.fromCharCode(). The method converts its arguments from UTF-8 character codes into
the glyphs that they represent. To demonstrate, all three of these lines generate the same output, a
Japanese ideograph found tattooed above butts across America:

trace("\u7f8e");
trace(String.fromCharCode(0x7f8e));
trace(" ");

However, you’re not likely to see such exotic character codes, especially if your keyboard layout is
QWERTY or any Eurocentric layout. Keyboard events are for single keystrokes, and they take prece-
dence over Input Method Editor (IME) input.

Example 21-10 is a simple test that both shows how to listen for keyboard events and demonstrates
the differences between the two kinds of key properties.

EXAMPLE 21-10 http://actionscriptbible.com/ch21/ex10

Listening for Keyboard Events

package {
import com.actionscriptbible.Example;
import flash.events.KeyboardEvent;
public class ch21ex10 extends Example {
public function ch21ex10() {
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKey);
stage.addEventListener(KeyboardEvent.KEY_UP, onKey);
trace("event\t\tkeyCode\tcharCode");
trace("-------------------------------");

}
protected function onKey(event:KeyboardEvent):void {
var char:String =
(event.charCode > 31)? String.fromCharCode(event.charCode) : "n/a";

trace(event.type + "\t\t" +
event.keyCode + "\t\t" +
event.charCode + "\t(" + char + ")");

}
}

}

448

Chapter 21: Interactivity with the Mouse and Keyboard

Keys like Shift, Ctrl, and Esc have keyCodes but do not have associated charCodes. Thank-
fully, rather than remember what keyCode refers to which key, a handful of static properties
are defined by the Keyboard class for common nonprinting keys. Some of these are the F
or function keys like Keyboard.F11; cursor movement keys like Keyboard.PAGE_UP,
Keyboard.HOME, and Keyboard.END; whitespace like Keyboard.SPACE and Keyboard.TAB;
and toggle keys like Keyboard.CAPS_LOCK and Keyboard.INSERT. For the full list, consult
the AS3LR.

In Example 21-11, I’ll use some of the Keyboard constants with the keyCode property to move a
character around a screen.

EXAMPLE 21-11 http://actionscriptbible.com/ch21/ex11

Using Keyboard Constants

package {
import flash.display.Sprite;
import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.ui.Keyboard;
[SWF(backgroundColor="0x000000", frameRate="4")]
public class ch21ex11 extends Sprite {
protected var hero:Hero;
protected var keys:Array;
protected const MAX_KEY:int = 128;
public function ch21ex11() {
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKey);
stage.addEventListener(KeyboardEvent.KEY_UP, onKey);
keys = new Array(MAX_KEY);

hero = new Hero();
addChild(hero);
hero.x = stage.stageWidth/2;
hero.y = stage.stageHeight/2;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onKey(event:KeyboardEvent):void {
if (event.keyCode >= MAX_KEY) return;
keys[event.keyCode] = (event.type == KeyboardEvent.KEY_DOWN);

}
protected function onEnterFrame(event:Event):void {
if (keys[Keyboard.UP]) hero.y -= hero.height;
if (keys[Keyboard.DOWN]) hero.y += hero.height;
if (keys[Keyboard.LEFT]) hero.x -= hero.width;
if (keys[Keyboard.RIGHT]) hero.x += hero.width;

}
}

}

continued

449

Part IV: Event-Driven Programming

EXAMPLE 21-11 (continued)

import flash.display.Shape;
class Hero extends Shape {
public function Hero() {
graphics.beginFill(0x10c010);
graphics.drawRect(0, 0, 12, 30);
graphics.endFill();

}
}

I’ve also implemented a simple answer to ‘‘Which keys are being held down right now?’’ as described
at the beginning of this section. Using the unique keyCodes as indices of an array, I set the values
of the array to true when the key is depressed and false when the key is released, so that at any
point in time key[anyCode] returns whether the key with code anyCode is depressed.

From there, I simply check the four directional keys every time it’s time to draw a new frame, moving
the character in the proper direction. Because keys can be held down simultaneously, you can hold
down the right and down arrow keys, and the character will move diagonally as long as you have
both held.

The end effect recalls ancient terminal graphics games like Nethack. Try it out!

Modifier Keys
Like mouse events, keyboard event objects tell you the state of the modifier keys on the keyboard at
the time of the event. They use the same properties — altKey, ctrlKey, and shiftKey — for the
same purposes. (You may review these in the earlier section titled ‘‘Complex clicking.’’) Although you
can gain the same information by remembering the state of the modifier keys by watching for their
KEY_DOWN events, accessing these modifier key properties of the event object is easier.

Related Events
You can use keyboard events to develop more interactive extensions of input text fields, such as
those that automatically reformat your input as you type it or those that autocomplete your input. Be
aware that changes may be made to a TextField’s contents without key presses, such as by pasting
with a context menu or by a voice recognition engine. Choose your events carefully. These two events
dispatched by TextFields may prove useful to you:

� Event.CHANGE — Dispatched anytime the contents of the TextField change

� TextEvent.TEXT_INPUT — Dispatched when text is added to the TextField (but not
when it is deleted)

IMEs
An Input Method Editor, or IME, allows you to enter characters not found on your keyboard by typ-
ing a series or combination of keys. For instance, using the default U.S. input method on Mac OS

450

Chapter 21: Interactivity with the Mouse and Keyboard

X, you can hold down Opt and press e, and then release both keys and press e again (from here on
I’ll write this Opt-e, e) to generate the é character. Romaji-based Japanese IMEs on both OS X and
Windows let you type Japanese text in Roman characters and then convert it; you can press h, i, t, o,

spacebar to produce the character for ‘‘person.’’ In both examples, you’ve hit a complex sequence
of keys on the keyboard, but the IME has converted those keystrokes after the fact into a single char-
acter. Many IMEs require significant direction from the user to choose the correct translation for the
typed text.

KeyboardEvent events are only aware of the keystrokes you input before the IME does its work.
However, you can interact with the IME using the flash.system.IME class.

Depending on the system and the IME software, you will have varying levels of access to the installed
IMEs. Provided your system and IME are supported, you can request access to preconversion
strings, set the conversion mode, send text to be converted, and accept the first available possible
conversion.

The following code tests whether Flash Player supports IME interaction on the platform and whether
the IME is active in the current context. The code also tells you what kind of text the IME produces
after conversion.

if(Capabilities.hasIME && IME.enabled) {
trace(IME.conversionMode);

}

Note that the user’s IME functions perfectly well, converting keystrokes and inserting converted text,
without intervention from Flash Player. The only purpose for using the IME class is to control the
operation of the user’s IME through code. In almost every case, you should leave the operation of
the IME up to the user — although you may want to detect if one is active when listening to key-
board events so that you wait for the proper, converted text to arrive rather than listening keystroke
by keystroke.

Focus
In graphical user interfaces, one object has focus at a given time. This focused object is considered
the ‘‘active’’ object, and as such displays special behavior. In Flash Player, the focused object is the
recipient of any keyboard events and can display some kind of focus indicator if it was focused by
the keyboard. (By default, this indicator is a yellow rectangle surrounding the object.) Additionally,
SimpleButtons display their ‘‘over’’ state when focused.

You can change Flash Player’s focus with either the mouse or the Tab key. Focus can only be given
to InteractiveObjects. You set focus with the mouse by clicking on an InteractiveObject,
which becomes the new focus. Set can also focus with the keyboard by pressing Tab. The focus
proceeds through InteractiveObjects as you repeatedly press Tab, repeating the cycle once it
reaches the last object. The order these objects receive focus as you press Tab, or the tabbing order, is
determined by Flash Player but can be overridden in ActionScript. As you change focus with either
method, focus-related events are dispatched.

Finding or Setting the Current Focus
The focus of Flash Player is determined by the Stage’s focus property. This property is read-write,
so you can set the focus by assigning a new InteractiveObject to it. When the focus property
is null, no object has focus. Keyboard events are still received by the stage, however.

451

Part IV: Event-Driven Programming

Setting and retrieving the focus can be useful to enable and disable UI controls. It’s especially use-
ful for input text fields, because the text field with focus is the one to receive keyboard input. In
Example 21-12, I’ll create a sample form and manipulate the focus to make it a bit more usable.

EXAMPLE 21-12 http://actionscriptbible.com/ch21/ex12

Manipulating Focus

package {
import flash.display.Sprite;
import flash.events.KeyboardEvent;
import flash.events.MouseEvent;
import flash.text.*;
import flash.ui.Keyboard;
public class ch21ex12 extends Sprite {
protected var input:TextField;
protected var submitButton:TestButton;
protected var clearButton:TestButton;
public function ch21ex12() {
input = new TextField();
input.type = TextFieldType.INPUT;
input.defaultTextFormat = new TextFormat("_sans", 12, 0);
input.width = 215; input.height = 20;
input.border = true;
addChild(input);
input.x = 10; input.y = 10;
input.addEventListener(KeyboardEvent.KEY_UP, onInputKey);

submitButton = new TestButton(100, 30, "Submit");
addChild(submitButton);
submitButton.x = 10; submitButton.y = 40;
submitButton.addEventListener(MouseEvent.CLICK, onSubmit);

clearButton = new TestButton(100, 30, "Clear");
addChild(clearButton);
clearButton.x = 125; clearButton.y = 40;
clearButton.addEventListener(MouseEvent.CLICK, onClear);

stage.focus = input;
}
protected function onInputKey(event:KeyboardEvent):void {
if (event.keyCode == Keyboard.ENTER) {
onSubmit(null);

}
}
protected function onSubmit(event:MouseEvent):void {
stage.focus = null;
submitButton.label.text = "Submitted!";
input.mouseEnabled = input.tabEnabled = false;
input.background = true;
input.backgroundColor = 0xb0b0b0;
clearButton.removeEventListener(MouseEvent.CLICK, onClear);

}

452

Chapter 21: Interactivity with the Mouse and Keyboard

protected function onClear(event:MouseEvent):void {
input.text = "";
stage.focus = input;

}
}

}
import flash.display.*;
import flash.text.*;
class TestButton extends Sprite {
public var label:TextField;
public function TestButton(w:Number, h:Number, labelText:String) {
graphics.lineStyle(0.5, 0, 0, true);
graphics.beginFill(0xa0a0a0);
graphics.drawRoundRect(0, 0, w, h, 8);
label = new TextField();
addChild(label);
label.defaultTextFormat = new TextFormat("_sans", 11, 0, true, false,
false, null, null, "center");

label.width = w;
label.height = h;
label.text = labelText;
label.y = (h - label.textHeight)/2 - 2;
buttonMode = true;
mouseChildren = false;

}
}

There are a few things I’ve done here with focus. I’ve started the application with focus already in
the input text field. This means that as soon as you launch the application, you can start typing right
away. (However, when the application is embedded in a web page, you’ll still have to click somewhere
in Flash Player to give it focus. Oh well.)

Pressing Enter in the input text field does the same thing as clicking the Submit button. Because the
keyboard events are subscribed to input, only pressing Enter while it is focused triggers the submit
process.

Clicking the Clear button not only clears input, but it focuses it so that you can immediately type
in new input without clicking on it. (You removed focus from the text field when you clicked on the
Clear button.)

Submitting the form disables the input text field. I’ve done so by removing focus from it and prevent-
ing you from returning focus to it. Because the user can only focus an object by clicking or tabbing
into it, disabling mouse events and turning off tabEnabled cut off these two possibilities. More on
tabEnabled later.

Focus Events
You got a preview of focus events in action with input text fields in Chapter 17, ‘‘Text, Styles, and
Fonts,’’ in the section ‘‘Interaction with TextField Events.’’ This section also provides a good example

453

Part IV: Event-Driven Programming

of how focus management can improve a user interface, which you might want to review now
(http://actionscriptbible.com/ch17/ex8).

Not only TextFields, but all InteractiveObjects dispatch focus events when they receive and
give up focus. Furthermore, they dispatch special events when they are about to relinquish focus via
the mouse and keyboard. The focus events are

� FocusEvent.FOCUS_IN — The target received focus.

� FocusEvent.FOCUS_OUT — The target lost focus.

� FocusEvent.KEY_FOCUS_CHANGE— The target is about to lose focus from a keyboard
command, such as the user pressing Tab.

� FocusEvent.MOUSE_FOCUS_CHANGE— The target is about to lose focus from a mouse
event, such as the user clicking on another InteractiveObject.

The KEY_FOCUS_CHANGE and MOUSE_FOCUS_CHANGE events are cancelable, so you can handle and
then cancel these events with stopPropagation() to prevent the user from taking focus away via
one or both methods. You can trap the user into a text field until she answers correctly, for instance,
although that would most likely constitute bad usability design.

Focus event objects, like mouse event objects, have a relatedObject property that refers to the
other InteractiveObject related in an exchange of focus. When target refers to the object
gaining focus, relatedObject refers to the object losing it, and vice versa.

Tabbing
As mentioned, Flash Player cycles through InteractiveObjects that receive keyboard focus as the
user repeatedly presses the Tab key. This includes

� SimpleButton instances

� Input TextFields

� InteractiveObjects whose buttonMode or property is true

In addition, any InteractiveObject whose tabEnabled property is true is added to the
tab order. Setting tabEnabled to false, conversely, removes an otherwise tab-able object from
the tab order.

This automatic tab ordering doesn’t care about a display object’s depth, its nesting, or the order it was
added. Flash Player tries to make a sensible order out of the tab-enabled objects by ordering them as
they are positioned on stage, from left to right and top to bottom. This usually does a passable job,
but if it’s not cutting the mustard, you can create a fully custom tab order.

Flash Player can operate with either a fully automatic tab order as I’ve just described, or a fully
curated one. The second you start defining your own tab order, Flash Player gives up entirely
on automatic tab ordering, and only the objects you’ve defined tab orders for are reachable by
tabbing, so be careful. The transition between the two modes is entirely implicit as well. To return
to automatic tab order, you have to make sure that every InteractiveObject has an undefined
tab order.

To set a custom tab order, use the tabIndex property of the InteractiveObjects you want to
be able to tab to. Assign these properties unique integer indices, starting with 0, in the order you want
tabbing to follow. Flash Player treats these indices globally. No matter how deep your objects are or

454

Chapter 21: Interactivity with the Mouse and Keyboard

where they are positioned, they follow these indices unquestioningly. To remove them from the tab
order and restore automatic tab ordering, reset all the tabIndex properties to their default, −1.

Focus Rectangle
When the keyboard is used to set focus, buttons (that is, SimpleButtons and any
InteractiveObject with buttonMode set to true) indicate that they have focus by
displaying a yellow bounding box around their contents, called the focus rectangle.

You can enable or disable the focus rectangle on a case-by-case basis by setting the focusRect prop-
erty of the InteractiveObject. Set it to true, and a focus rectangle is displayed when tabbed to.
Set it to false, and no focus rectangle appears when it is tabbed to. Set it to null, however, and it
inherits the value from the stage’s stageFocusRect property.

Because the focusRect property of every InteractiveObject defaults to null, you can disable
or enable focus rectangles globally by setting the stageFocusRect property on the stage.

If you disable focus rectangles, it’s a good idea to provide some other way to indicate that the object
is focused. You can create a custom visual treatment and listen to FocusEvent.FOCUS_IN and
FocusEvent.FOCUS_OUT to toggle it.

Context Menus
The secondary mouse button (I’ll say right-clicking even though your secondary mouse button
might not be on the right) triggers a context menu in Flash Player. The context menu is indeed
contextual: which menu appears depends on what your mouse is over when you right-click. Just
like a mouse event, Flash Player searches for the topmost, visible, filled InteractiveObject
under the mouse pointer for which mouse events are enabled, to determine the target of your click.
If this target has a contextMenu property set to an instance of flash.ui.ContextMenu, it
displays this menu. Otherwise, it travels up the display list to the root display object looking for an
InteractiveObject with a defined contextMenu property. If none is found, Flash Player uses
the default context menu for the type of object your pointer is over. There are two kinds of default
context menus you can edit: the standard context menu, and a text-editing context menu for all
selectable or editable TextFields.

Creating and Setting a Context Menu
The most likely place to customize your context menu is at the root InteractiveObject. When
you create a custom context menu at the root level, it becomes the new de facto default context menu,
because Flash Player ultimately finds it when searching up the display list for a defined context menu.

Caution
Don’t set a context menu on the stage; Flash Player doesn’t allow it. Instead, set it on the instance of the
Application class in Flash Builder or the Document class in Flash Professional. �

Even though right-clicking an uncustomized InteractiveObject presents you with a context
menu, that doesn’t mean it has a contextMenu property defined that you can customize — you’re

455

Part IV: Event-Driven Programming

seeing the default menu or parent display object’s menu. To set a custom context menu, you have to
create a new one:

var buttonSprite:Sprite = new Sprite();
var menu:ContextMenu = new ContextMenu();
buttonSprite.contextMenu = menu;

Once you create a ContextMenu item, you can start customizing the menu by adding and removing
menu items.

Customizing Default Items
A new ContextMenu contains several built-in menu items, depending on whether the pointer is over
an editable TextField.

Note
When using context menus in the AIR runtime, there are no default or permanent menu items, and you
have fewer limitations and more control over the context menu than in Flash Player. Check the AS3LR for
details. �

Some context menu items are permanent and can’t be hidden or removed. Others can be included or
hidden by ActionScript. Table 21-3 summarizes all built-in menu items.

You can hide or show these items in detail by toggling Boolean properties of ContextMenu’s
builtInItems property and clipboardItems property. Or you can choose to hide all
nonpermanent items from a given context menu with a simple method call:

var menu:ContextMenu = new ContextMenu();
menu.hideBuiltInItems();

After calling this method, all menu items not marked as ‘‘Permanent’’ in Table 21-3 are
hidden from the context menu. (Just remember that you have to set that context menu to an
InteractiveObject before you’ll actually see it!)

Adding Custom Items
After cleaning up the menu a bit, you can add up to 15 custom menu items of your own design.
These appear above all built-in items.

You add a new context menu item by creating a new instance of ContextMenuItem, setting
its caption property, and adding it to the customItems array of the
ContextMenu you want it to appear in. When the menu item is selected, it broadcasts a
ContextMenuEvent.MENU_ITEM_SELECT event. Perform the action associated with your new
menu item when you receive this event.

You can insert separators into the context menu — usually horizontal rules — by turning on the
separatorBefore property of the ContextMenuItem that should go after the separator.

You can reuse ContextMenuItems in multiple menus by cloning them with their clone() method.
Finally, you can hide them by setting their visible property to false.

456

Chapter 21: Interactivity with the Mouse and Keyboard

TABLE 21-3

Built-In Context Menu Items

Label Permanent? Appears in Function

Zoom In No Normal menu Zooms in

Zoom Out No Normal menu Zooms out

100% No Normal menu Zooms to normal level

Show All No Normal menu Zooms to show entire stage

Quality No Normal menu Shows quality submenu to change stage
rendering quality

Print... No Normal menu Launches Print dialog to print whole con-
tents of stage

Play No Multiframe SWFs Toggles playback of main timeline

Loop No Multiframe SWFs Toggles looping of main timeline

Rewind No Multiframe SWFs Moves the playhead to the beginning of
the timeline and first scene

Forward No Multiframe SWFs Moves to the next scene or frame

Back No Multiframe SWFs Moves to the previous scene or frame

Cut No TextField menu Cuts selected text

Copy No TextField menu Copies selected text

Paste No TextField menu Pastes text

Delete No TextField menu Deletes selected text

Select All No TextField menu Selects all text

Show Redraw Regions Yes Debug Player Toggles highlighting of dirty rects

Debugger Yes Debug Player Opens dialog to connect to debugger

Settings... Yes Always Opens settings panel inside Flash Player

About Adobe Flash
Player [version]...

Yes Always Launches About dialog box

The constructor of ContextMenuItem optionally lets you set all these properties at once. It has the
method signature:

function ContextMenuItem(caption:String, separatorBefore:Boolean = false,
enabled:Boolean = true, visible:Boolean = true)

You must at least set the caption or label of the menu item. The other options are usually correct by
default.

457

Part IV: Event-Driven Programming

Let’s put all this together in Example 21-13, which revisits the cloning circles from Example 21-6.

Instead of cloning by Shift-dragging, I’ll add a context menu to all circles with a menu item to create

a new one. I’ll also customize the default context menu to include an Arrange All option, which will

arrange the circles in a grid.

EXAMPLE 21-13 http://actionscriptbible.com/ch21/ex13

Context Menus

package {
import flash.display.*;
import flash.events.*;
import flash.geom.Point;
import flash.ui.*;
[SWF(backgroundColor="0")]
public class ch21ex13 extends Sprite {
public function ch21ex13() {
var circ:DraggableCircle = new DraggableCircle();
circ.x = circ.y = 100;
addChild(circ);

var menu:ContextMenu = new ContextMenu();
menu.hideBuiltInItems();
var item:ContextMenuItem;
item = new ContextMenuItem("Arrange all");
item.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, onArrange);
menu.customItems.push(item);
contextMenu = menu;

}
protected function onArrange(event:ContextMenuEvent):void {
for (var i:int = 0, x:Number = 50, y:Number = 50; i < numChildren; i++) {
var circ:DisplayObject = getChildAt(i);
circ.x = x; circ.y = y;
if ((x += 50) > stage.stageWidth) {x = 0; y += 50;}

}
}

}
}
import flash.display.*;
import flash.events.*;
import flash.ui.*;
class DraggableCircle extends Sprite {
public function DraggableCircle() {
graphics.beginFill(makeColor(), 0.5);
graphics.drawCircle(0, 0, 50);
graphics.endFill();
addEventListener(MouseEvent.MOUSE_DOWN, onStartDrag);
buttonMode = true;
blendMode = BlendMode.ADD;

var menu:ContextMenu = new ContextMenu();
menu.hideBuiltInItems();

458

Chapter 21: Interactivity with the Mouse and Keyboard

var item:ContextMenuItem = new ContextMenuItem("Clone");
item.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, onClone);
menu.customItems.push(item);
contextMenu = menu;

}
protected function makeColor():uint {
var rnd:Function = function():uint{return uint(Math.random() * 256)};
return (rnd() << 16 | rnd() << 8 | rnd());

}
protected function onStartDrag(event:MouseEvent):void {
startDrag();
stage.addEventListener(MouseEvent.MOUSE_UP, onStopDrag);

}
protected function onStopDrag(event:MouseEvent):void {
stage.removeEventListener(MouseEvent.MOUSE_UP, onStopDrag);
stopDrag();

}
public function onClone(event:ContextMenuEvent):void {
var copy:DraggableCircle = new DraggableCircle();
copy.x = this.x + 10;
copy.y = this.y + 10;
this.parent.addChild(copy);

}
}

In the example, you can see both object-specific context menus and default context menus in action,
as well as the stripped-down built-in context menu.

Summary

� ActionScript’s event system handles mouse and keyboard events, as instances of MouseEvent
and KeyboardEvent.

� Mouse events set their target to the topmost, visible, nonempty InteractiveObject that
responds to mouse input.

� Keyboard events set their target to the focused object.

� Both mouse and keyboard events bubble and can be canceled.

� Listen to stage to get all mouse or keyboard events regardless of mouse position and focus.

� mouseEnabled, mouseChildren, tabEnabled, and tabChildren properties make the
display object invisible to or opaque to mouse and focus events.

� Single clicks and double clicks dispatch their own events, although double clicks require
doubleClickEnabled to be set.

� Mouse events carry information about the position of the cursor with them, as well as any key-
board modifier keys that were held down.

459

Part IV: Event-Driven Programming

� Use startDrag() and stopDrag() along with the MOUSE_DOWN and MOUSE_UP events to
click and drag.

� Keyboard input comes in two event types: KEY_DOWN and KEY_UP.

� KeyboardEvent objects carry information about the key that was pressed (keyCode) and
the character that the key is associated with (charCode), as well as information about modifier
keys held down.

� Character codes are in UTF-8 and can be converted back to their characters with
String.fromCharCode().

� Keyboard input occurs before IMEs convert the input. On some platforms you can control the
IME’s operation in ActionScript.

� Only one object has focus at a given time. The Stage instance keeps a reference to that object
in its focus property, which can be written to reset focus.

� Changes in focus dispatch FocusEvent events. You can prevent focus from changing by can-
celing some of these objects.

� Pressing Tab on the keyboard cycles through tab-enabled InteractiveObjects in the auto-
matic tab order, sorted by their position on-screen.

� You can override automatic tab order by setting tabIndex properties on
InteractiveObjects.

� When the keyboard is used to set focus, a focus rectangle appears around certain display objects
unless you set focusRect to false. Alternatively, you can control focus rectangles globally
with the Stage instance’s stageFocusRect property.

� Use tab ordering, focus indication, good labels, and if necessary AcessibilityProperties
(covered in Chapter 41) to help screen readers access your content.

� Context menus may be customized up to a point by hiding some built-in menu items and
adding your own custom ones.

� Assign a ContextMenu instance to the contextMenu property of the root display object, not
the stage, to set the default context menu.

� To respond to a user activating your ContextMenuItems, listen for the ContextMenuEvent
event.

460

Timers and Time-
Driven Programming

FEATURED CLASSES

flash.utils.Timer

flash.events.TimerEvent

flash.utils.getTimer()

flash.utils.setTimeout()

flash.utils.setInterval()

flash.utils.clearInterval()

T
he Timer class triggers time-based events in ActionScript 3.0. Nearly any
application that involves real-world time uses a timer. Timers can be use-
ful for animation, delaying an action, timing out when an asynchronous

action takes too long to execute, triggering an action repeatedly or after a delay,
or synchronizing several actions.

ActionScript 3.0 also provides access to several old-school timer methods that
aren’t object-oriented and don’t use the event framework but can have their
purposes.

In this chapter, I’ll discuss how to set up your own timers, and offer a few tricks
to help you get the most out of them.

Timer Basics

For working with time, you’ll be using the flash.utils.Timer class.

Each instance of a Timer will, while it’s running, repeatedly fire events spaced
out by a set amount of time. Using events rather than callback functions not only
makes Timers more consistent and easier to use, but it allows you to trigger
multiple functions with a single Timer.

Timers are similar in some ways to for loops in that both structures can be used
to repeat a bit of code several times but are otherwise quite different. for loops
execute every iteration without pause and without coming up for air. No other
code is executed until the for loop is finished. Long for loops can prevent your
application from drawing the next frame, hanging it. Timers, on the other hand,
always space out the execution of their scripts with some type of delay, and other
code can execute even if a timer is running.

461

Part IV: Event-Driven Programming

Creating a Timer
To create a timer, you use the Timer() constructor, which takes two arguments:

� delay — The number of milliseconds between each time the timer
event fires.

� repeatCount — The number of times the timer event will be fired. The default value, zero,
causes the timer to fire indefinitely until the timer is stopped or the program ends.

Tip
All variables related to delay or time in ActionScript use milliseconds — that is, thousandths of a second.
So, the number 1,000 represents one second. If you are working with values in seconds — for example, 120
seconds — it might be easier to read if you write the numbers as 120 * 1000 instead of 120000. �

Example 22-1 creates a timer that fires every second and ends after 10 iterations.

EXAMPLE 22-1 http://actionscriptbible.com/ch22/ex1

Using a Timer

package {
import com.actionscriptbible.Example;
import flash.utils.Timer;
public class ch22ex1 extends Example {
public static const TIMER_DELAY:Number = 1 * 1000;
public var timer:Timer;

public function ch22ex1() {
timer = new Timer(TIMER_DELAY, 10);

}
}

}

If you run this program, you’ll notice that the timer doesn’t do anything yet. That’s because you still
need to add event listeners to it.

Listening for Timer Events
Every time the timer delay elapses, an event is fired from the timer object. These events use the class
TimerEvent, a subclass of Event. You learned about events in Chapter 20, ‘‘Events and the Event
Flow.’’ There are two different event types in the TimerEvent class:

� TimerEvent.TIMER — Dispatched every time the timer delay has elapsed. In other words,
it’s the ticking of the timer’s clock.

� TimerEvent.TIMER_COMPLETE— Dispatched when the repeatCount is reached. When
the repeatCount is zero, this event is never dispatched. This is like the ‘‘DING!’’ of an egg
timer. When the timer’s complete, it stops running.

462

Chapter 22: Timers and Time-Driven Programming

Example 22-2 adds listeners for both of these events.

EXAMPLE 22-2 http://actionscriptbible.com/ch22/ex2

Timers and Event Listeners

package {
import com.actionscriptbible.Example;
import flash.utils.Timer;
import flash.events.TimerEvent;
public class ch22ex2 extends Example {
public static const TIMER_DELAY:Number = 1 * 1000;
public var timer:Timer;
public function ch22ex2() {
timer = new Timer(TIMER_DELAY, 10);
timer.addEventListener(TimerEvent.TIMER, onTimer);
timer.addEventListener(TimerEvent.TIMER_COMPLETE, onTimerComplete);

}
protected function onTimer(event:TimerEvent):void {
trace("Tick.");

}
protected function onTimerComplete(event:TimerEvent):void {
trace("Ding!");

}
}

}

Running this code still doesn’t do anything because you need to start the timer!

Starting, Stopping, and Resetting the Timer
Once your timer is instantiated and your event listeners are added, it’s time to start your timer. The
Timer class offers three methods for controlling the timer:

� start() — Starts the timer counting. When the timer is running, the timer’s read-only prop-
erty running is set to true.

� stop() — Stops the timer counting. When the timer is stopped, the running property is
set to false.

� reset() — Resets the number of times the timer has repeated since it was started. The
currentCount property is set back to zero.

Tip
It’s easy to forget to start your timer. If you’re having trouble, make sure you’ve called the start()
method. �

Once you add the start() method to the program, in Example 22-3, things start happening.

463

Part IV: Event-Driven Programming

EXAMPLE 22-3 http://actionscriptbible.com/ch22/ex3

Starting the Timer

package {
import com.actionscriptbible.Example;
import flash.utils.Timer;
import flash.events.TimerEvent;
public class ch22ex3 extends Example {
public static const TIMER_DELAY:Number = 1 * 1000;
public var timer:Timer;
public function ch22ex3() {
timer = new Timer(TIMER_DELAY, 10);
timer.addEventListener(TimerEvent.TIMER, onTimer);
timer.addEventListener(TimerEvent.TIMER_COMPLETE, onTimerComplete);
timer.start();

}
protected function onTimer(event:TimerEvent):void {
trace("Tick.");

}
protected function onTimerComplete(event:TimerEvent):void {
trace("Ding!");

}
}

}

Running this program should show the following output over the course of 10 seconds.

Tick.
Tick.
Tick.
Tick.
Tick.
Tick.
Tick.
Tick.
Tick.
Tick.
Ding!

Handling Timer Events
Now that you’ve looked at how to set up a timer and listen to the events it dispatches, let’s look at
some practical ways to use these events.

The Timer class fires TimerEvent event objects. These events are ultimately not much different
from the base Event class. No additional information is stored within a TimerEvent that’s not in a

464

Chapter 22: Timers and Time-Driven Programming

regular Event. You can get information about the Timer that fired the event using the event object’s
target property.

With the Timer reference, you can get more information such as the number of times the timer has
fired or the time between each tick, as shown in Example 22-4.

EXAMPLE 22-4 http://actionscriptbible.com/ch22/ex4

Getting the Timer from the Event Object

package {
import com.actionscriptbible.Example;
import flash.utils.Timer;
import flash.events.TimerEvent;
public class ch22ex4 extends Example {
public static const TIMER_DELAY:Number = 0.5 * 1000;
public var timer:Timer;
public function ch22ex4() {
timer = new Timer(TIMER_DELAY, 10);
timer.addEventListener(TimerEvent.TIMER, onTimer);
timer.addEventListener(TimerEvent.TIMER_COMPLETE, onTimerComplete);
timer.start();

}
protected function onTimer(event:TimerEvent):void {
var timer:Timer = Timer(event.target);
var timeElapsed:Number = timer.currentCount * timer.delay;
var remainingCount:Number = timer.repeatCount - timer.currentCount;
trace("Time elapsed :", timeElapsed / 1000, "seconds.");
if (remainingCount > 0) {
trace("There are", remainingCount, "ticks remaining.");

}
}
protected function onTimerComplete(event:TimerEvent):void {
trace("Ding!");

}
}

}

The event handler onTimer() prints out the time elapsed in seconds every time the TIMER event is
fired. The output of Example 22-4 should look something like this:

...
There are 3 ticks remaining.
Time elapsed : 4 seconds.
There are 2 ticks remaining.
Time elapsed : 4.5 seconds.
There are 1 ticks remaining.
Time elapsed : 5 seconds.
Ding!

465

Part IV: Event-Driven Programming

In the example, you useds three properties of the Timer class:

� currentCount — The number of times the timer has fired since it was started. If you use
the reset() command, this number is reset to 0. This is a read-only property, so it can’t be
changed directly.

� repeatCount — The number of times the timer event will be fired. The default value, zero,
causes the timer to fire indefinitely until the timer is stopped or the program ends. This is the
same value that is defined when you create the timer instance. repeatCount is a read/write
property, so it can be changed on the fly.

� delay — The number of milliseconds between each firing of the timer event. This is the same
value that is defined when you create the timer instance. delay is a read/write property, so it
can be changed on the fly.

Delaying the Execution of a Function
Timers make it easy to delay the execution of a function. Simply set up a timer that fires only once,
and set the delay for the time you’d like to wait before firing. A common application for this is creat-
ing a timeout, a predetermined time allotted for an action to take place, such as a server response, after
which the action is aborted.

In Example 22-5, you’ll use a timer to create something you’re no doubt familiar with from browsing
the internet, a redirect script. First you’ll create the Redirect class, which will handle the timer and
navigation. Then you’ll set up an example class to test it.

EXAMPLE 22-5 http://actionscriptbible.com/ch22/ex5

Delaying a Function’s Execution

package {
import com.actionscriptbible.Example;
import flash.text.*;
public class ch22ex5 extends Example {
protected const redirectURL:String = "http://www.wonderfl.net";
protected const redirectDelay:Number = 5 * 1000;
public function ch22ex5() {
var redirect:Redirect = new Redirect(redirectURL, redirectDelay);

trace("This page no longer exists. You will be redirected to\n"
+ redirectURL + " after " + redirectDelay/1000 + " seconds.");

}
}

}
import flash.utils.Timer;
import flash.events.*;
import flash.net.*;
class Redirect {
private var redirectTimer:Timer;
private var redirectURL:URLRequest;
private static const REDIRECT_DELAY:int = 5000;

466

Chapter 22: Timers and Time-Driven Programming

public function Redirect(url:String, delay:Number=REDIRECT_DELAY) {
redirectURL = new URLRequest(url);
redirectTimer = new Timer(delay, 1);
redirectTimer.addEventListener(TimerEvent.TIMER,onRedirect);
redirectTimer.start();

}
private function onRedirect(event:Event):void {
navigateToURL(redirectURL, "_self");

}
}

The result should be a page with the redirect message that navigates away after 5 seconds. You’ll have
to run this one on your own computer, because the security policy where the example is hosted won’t
let you navigate away.

Tip
You can create a simple timeout with the function flash.utils.setTimeout(), covered in the section
‘‘Other Time Related Functions.’’ �

Creating a World Clock
Let’s try a quick and easy example that uses the Timer class’s ability to send timing events to multiple
recipients. Example 22-6 shows a simple world clock that shows the time in multiple time zones. This
leverages what you learned about time zones and the Date class in Chapter 7, ‘‘Numbers, Math, and
Dates.’’

EXAMPLE 22-6 http://actionscriptbible.com/ch22/ex6

A World Clock

package {
import flash.display.Sprite;
import flash.utils.Timer;
public class ch22ex6 extends Sprite {
public function ch22ex6()
{

var timer:Timer = new Timer(1000);
var nyc:LocalClock = new LocalClock(timer, "New York City, USA", -5);
var paris:LocalClock = new LocalClock(timer, "Paris, France", 1);
var tokyo:LocalClock = new LocalClock(timer, "Tokyo, Japan", 10);

addChild(nyc);
nyc.x = 0;
addChild(paris);

continued

467

Part IV: Event-Driven Programming

EXAMPLE 22-6 (continued)

paris.y = 50;
addChild(tokyo);
tokyo.y = 100;
timer.start();

}
}

}
import flash.utils.Timer;
import flash.events.*;
import flash.display.Sprite;
import flash.text.*;
class LocalClock extends Sprite {
private var location:String;
private var timezoneOffset:int;
private var labelTF:TextField;
private var clockTF:TextField;
public function LocalClock(timer:Timer, location:String, tzOffset:int) {
this.location = location;
this.timezoneOffset = tzOffset;
labelTF = new TextField();
clockTF = new TextField();
labelTF.autoSize = clockTF.autoSize = TextFieldAutoSize.LEFT;
labelTF.width = labelTF.height = clockTF.width = clockTF.height = 0;
labelTF.selectable = clockTF.selectable = false;
labelTF.defaultTextFormat = new TextFormat("_serif", 12, 0, false, true);
clockTF.defaultTextFormat = new TextFormat("_typewriter", 12, 0x6AF685);
clockTF.background = true;
clockTF.backgroundColor = 0x000000;
labelTF.text = location;
clockTF.y = labelTF.textHeight + 5;
addChild(labelTF);
addChild(clockTF);
timer.addEventListener(TimerEvent.TIMER, onTimer);

}
private function onTimer(event:TimerEvent = null):void {
var date:Date = new Date();
date.hoursUTC += timezoneOffset;
clockTF.text = pad(date.hoursUTC) + ":"

+ pad(date.minutesUTC) + ":"
+ pad(date.secondsUTC);

}
private function pad(n:Number):String {
var s:String = n.toString();
while (s.length < 2) s = "0" + s;
return s;

}
}

468

Chapter 22: Timers and Time-Driven Programming

Each clock is set up with a timer so that it can subscribe to the tick events. These happen to be
dispatched once a second. The location and time zone offset are saved and used to create the readout.
Each time the TIMER event fires, the date is updated and the time zone offset is applied. Then the
local time is displayed in the readout.

In the example code, you can edit the time zones to show whatever cities are most useful for you,
or you can add an arbitrary number of clocks. Notice that all three clocks are able to use the same
Timer instance.

Enterframe Events
I touched on enter frame events in Chapter 14, ‘‘Visual Programming with the Display List.’’
Display objects that are on the display list dispatch two events — Event.ENTER_FRAME and
Event.EXIT_FRAME — as frames are drawn, one before the frame is drawn, and one after.
The rate that frames are drawn is set by the stage’s frame rate (which you can modify in the
frameRate property), but it is not guaranteed. Nonetheless, triggering updates from frame
events is a good idea because it ensures that your updates are performed at the same rate as the
display is refreshed. You have seen this used in numerous examples by now, such as Example 7-1
(http://actionscriptbible.com/ch7/ex1). I’ll introduce more information about using
enterframe events for animation in Chapter 39, ‘‘Scripting Animation.’’

Other Time-Related Functions
Although I recommend in general that you use Timers, sometimes it’s more convenient and simpler to
use one of the procedural time functions. These functions are included in the flash.utils package
along with Timer.

getTimer()
The getTimer() function — which, incidentally, has nothing to do with the Timer class — returns
the number of milliseconds that have elapsed since the program was initialized. getTimer() can be
a useful tool when you simply need to measure the duration of an action, such as an external XML
file loading, without dealing with the overhead of the Timer class.

To find an elapsed time, you can store one value from getTimer() as your starting time and sub-
tract it from another time when the action is finished:

var startTime:Number = getTimer();
// Do some action that might take a while
var endTime:Number = getTimer();
var elapsedTime:Number = endTime - startTime;

The current time is returned when you use getTimer(), regardless of whether a new frame has been
rendered. This is great because a Timer can actually run behind the requested interval or be slightly
off. getTimer() allows you to correct for these differences.

469

Part IV: Event-Driven Programming

setTimeout()
The setTimeout() function allows you to execute a function once after a predefined delay. It
doesn’t create objects or require listening to events, so it can be called in one line. It has some
arguments, so let’s look at how to call it.

function setTimeout(closure:Function, delay:Number, ...arguments):uint

The closure is any function. You can point it to a method in the current class, a method on another
instance, a variable of type Function, or type a function inline. The delay is in milliseconds. You
can also follow these with any number of arguments that will be passed to the closure after the
delay. It returns a unique ID that can be used to cancel the call with clearInterval(). This can
be nice to use occasionally because it doesn’t have as much code overhead as a Timer, and the func-
tion you trigger doesn’t have to be an event listener (whose signature, remember, must have only one
argument for the event object).

setInterval()
The setInterval() function is almost identical to setTimeout(), except that it keeps calling
the closure at intervals of delay. It can only be cancelled by a call to clearInterval(). I would
steer clear of this method and use Timers if you need to do something repeatedly, because it’s kind
of crummy to keep around numeric IDs to cancel setInterval(). It’s much more object oriented
to associate an object — a Timer — with the timed actions.

clearInterval()
Call clearInterval() with the ID returned from a setInterval() or setTimeout() call to
cancel that interval. The delayed action is canceled immediately. Again, managing these global interval
IDs is very un-OOP, so if you find yourself needing clearInterval(), it’s time to think about
using a Timer.

Aside: Threads
One thing that’s sorely missing from ActionScript 3.0 is the ability to execute code asynchronously.
Flash Player executes all ActionScript code associated with a frame sequentially before drawing the
next frame. This means that operations that take a long time can appear to hang your program,
because the heavy workload prevents user interaction from being processed or new frames from being
drawn. You’ll see this fairly frequently during initialization of a site. In many cases an entire site is
built and initialized after the first frame renders, leading to a slowdown during initialization.

You can use timers and enterframe events, however, to fake asynchronous code execution, or threads.
If you can break your code down into units that can execute sequentially, a thread manager can exe-
cute your task bit by bit, while preventing overall slowdown. It can do this by measuring time that
actually elapses between frames with getTimer() and comparing it to the target frame rate of the
SWF. By executing fewer chunks of an overall task, the thread manager can reduce time spent on any
given frame, keeping things smooth.

It should be noted that what’s described are not real threads, but merely an ActionScript-based
runtime simulation of threading. Sometimes this is referred to as green threading. One implementation

470

Chapter 22: Timers and Time-Driven Programming

is the Spark Project’s thread library, Soumen (http://www.libspark.org/wiki/Thread/en).
Additionally, Drew Cummins wrote up a framework and includes demos and source
(http://bit.ly/cummins-threads).

Summary

� The Timer class is an object oriented way to manage timed actions in ActionScript 3.0.

� Timers are useful for a number of things including delaying a function, repeating a function,
and synchronizing several functions.

� Timers have a delay time and a repeat count. Setting the repeat count to zero causes them to
continue firing indefinitely.

� Timers fire the events TimerEvent.TIMER and TimerEvent.TIMER_COMPLETE.

� Event.ENTER_FRAME is dispatched by display objects on the display list before each frame is
rendered. This event can be used for animation.

� The getTimer() function retrieves the time in milliseconds since the application started up
and is useful for accurate time measurements.

471

Multitouch and
Accelerometer Input

FEATURED CLASSES

flash.ui.Multitouch

flash.events.TouchEvent

flash.events
.GestureEvent

flash.sensors
.Accelerometer

flash.events
.AccelerometerEvent

D
ue to the efforts of the Open Screen Project (http://openscreen
project.org), Flash Player is appearing on a growing number of
smartphones. Simultaneously, consumers, desktop and laptop manufac-

turers, and makers of desktop operating systems are embracing touchscreens.
The net effect is that Flash Player has access to a wider array of input than ever
before. The user is no longer limited to a keyboard and mouse. In fact, she
may not even have a keyboard or mouse installed, although chances are in that
case that a software keyboard is provided and touch input can be interpreted as
mouse input.

In this chapter you’ll learn how to deal with not just touch-based input, but
information from various sensors Flash Player may have access to, including
accelerometers, and geolocation sensors such as GPS. I’ll mention it, but I
won’t go into depth on geolocation because it’s currently available only to AIR
or native apps. Between the keyboard and mouse (Chapter 21, ‘‘Interactivity
with the Mouse and Keyboard’’), the camera and microphone (Chapter 33,
‘‘Capturing Sound and Video’’), and touch and accelerometer (this chapter),
modern hardware has a surprisingly extensive repertoire of interaction modes.

Planning for Your Audience

Consider three platforms you can find Flash Player on: a phone with a 320 ×

480 pixel touch display and keyboard; a 720 × 1280 pixel TV with no mouse
or touch, only a remote; and a desktop PC with a 2560 × 2048 pixel display,
mouse, and keyboard. The users of these different platforms can’t be expected to
interact with them in the same way. When you’re writing an ActionScript pro-
gram, then, you must consider your audience and plan appropriately.

This doesn’t mean that you have to redo your application for every possible com-
bination of hardware. You can limit yourself to a specific audience. You can
develop a game specifically for a multitouch capable small-screen device; it won’t
work right on a desktop with a mouse, and that’s fine. It shouldn’t.

473

Part IV: Event-Driven Programming

On the other hand, you may need to ensure your application is available as widely as possible. In this
case, you may find it easier to create more than one version of the application, serving the correct one
to the correct user. Or, you can detect certain features and properties of the device Flash Player is run-
ning on and change the way your program behaves at runtime to better suit each user’s specific needs.
In most cases, however, the difference in processing power and screen size requires you to rethink or
redesign an application for a smartphone versus a desktop PC.

I only mention this because thinking about it before you start programming is essential. With Flash
Player on so many different kinds of devices, you can’t assume the user will have a big screen, fast
CPU, mouse, and keyboard, or a multitouch input device for that matter.

Note
Hypocrisy alert: many of the examples in this book don’t check whether you have an appropriate device or
tailor themselves for a certain size of screen. Remember, example code is a far cry from production-grade soft-
ware. (Sorry!) �

Using Multitouch
In case you missed the outrageous hype, a multitouch input device is one that can detect and track
more than one unique pointer at the same time. Most of the time, that pointer is a finger, and the
device is a screen. I can use a stylus on my multitouch screen, and Mac laptops have multitouch track-
pads rather than screens, but for convenience’s sake, I’ll write as if you’re touching a screen with your
fingers.

The raison d’être of multitouch displays is to make interfaces more ‘‘natural’’ to use. So, common uses
of multitouch include swiping to progress through pages, pinching to zoom, twisting to rotate, and
so on. You can use these commonly recognized touch gestures, or you can interpret touches in your
own way. If used properly, multitouch input can make an interface a joy to use or enable new kinds
of applications and games that would not be possible without it.

Flash Player 10.1 and later support multitouch screens. To use multitouch, you need to have appro-
priate hardware, drivers, and operating system support. At the time of this writing, Flash Player sup-
port for multitouch was limited to Windows 7 and iPhone OS, with some support on Mac OS X
10.5.3 and later (http://bit.ly/fp-beta-multitouch-support). There’s a chance this has
changed, so check Adobe’s Flash Player release notes to see which platforms can support multitouch
in Flash Player.

Version
FP10.1. Multitouch input is available only in Flash Player 10.1 and above; a later version may be needed to
support additional devices or operating systems. �

Because support for multitouch is so varied, you should check on the host’s multitouch capabil-
ities before you try to use any. Multitouch setup properties are stored as static properties of the
Multitouch class in flash.ui.

First of all, this class was added in Flash Player 10.1. Earlier versions of Flash Player can still run
code targeted for Flash Player 10.1; so accessing the Multitouch class causes older versions of Flash
Player to throw an error. If you don’t have the Multitouch class, you certainly don’t have access to
Flash Player’s multitouch API, so this is the first thing you should check. As soon as you find out that
Multitouch doesn’t exist, make sure to skip any and all code that uses it.

474

Chapter 23: Multitouch and Accelerometer Input

try {
var test:Class = Multitouch;
//anything using the Multitouch class

} catch (error:ReferenceError) {
//you must not have FP10.1+
trace("ERROR: Multitouch not supported in your runtime.");

}

Caution
You may be tempted to test against a particular Flash Player version number in your code. Although that may
work, it isn’t as maintainable, and it isn’t as self-explanatory, as catching the ReferenceError. �

If you’re all set and the Multitouch class is there, you can use these static properties to find out
more about the environment:

� supportsGestureEvents— true if the hardware and OS can recognize common multi-
touch gestures

� supportedGestures — A Vector of gesture names (Strings) that the hardware and OS
can recognize

� supportsTouchEvents — true if the hardware and OS can send the raw touch events

� maxTouchPoints — The number of simultaneous touches the hardware can recognize
(an int)

You can make sure that a multitouch device is available by checking if (Multitouch
.maxTouchPoints > 1). In Example 23-1, you’ll display the properties of a multitouch
display, remember whether multitouch is available, and prioritize one mode over another, all using
version-sensitive code that won’t throw an error.

EXAMPLE 23-1 http://actionscriptbible.com/ch23/ex1

Retrieving Multitouch Capabilities

package {
import com.actionscriptbible.Example;
import flash.system.Capabilities;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;
public class ch23ex1 extends Example {
protected var isMultitouch:Boolean;
public function ch23ex1() {
try {
var test:Class = Multitouch; //older FP should throw error here
trace("Multitouch capabilities on this device:");
trace("Screen type:", Capabilities.touchscreenType);
trace("Touch-level access?", Multitouch.supportsTouchEvents);
trace("Gesture-level access?", Multitouch.supportsGestureEvents);
trace("Number of touch points:", Multitouch.maxTouchPoints);
if (Multitouch.supportsGestureEvents) {
trace("supported gestures {");
for each (var gestureName:String in Multitouch.supportedGestures) {
trace(" -", gestureName);

continued

475

Part IV: Event-Driven Programming

EXAMPLE 23-1 (continued)

}
trace("}");

}
//remember whether multitouch mode is on
isMultitouch = Multitouch.maxTouchPoints > 1;
//prefer gesture mode if available
if (Multitouch.supportsGestureEvents) {
Multitouch.inputMode = MultitouchInputMode.GESTURE;

} else if (Multitouch.supportsTouchEvents) {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

}
} catch (error:ReferenceError) {
trace("Sorry, but multitouch is not supported in this runtime.");
isMultitouch = false;

}
}

}
}

This is a good starting point for boilerplate code that toggles multitouch features based on availability.

In this example, you also use Multitouch.inputMode, which tells Flash Player which mode it
should engage the multitouch display in. This is the only of the Multitouch properties that can be
set as well as read. Besides the two options in the example, there’s a MultitouchInputMode.NONE
mode, which ignores the special nature of touch and converts touch events into mouse events when
possible.

The two multitouch modes — touch mode and gesture mode — behave very differently. Gesture
mode lets the OS interpret touches into gestures, while touch mode lets you watch every action
of every finger. Unfortunately, it’s all-or-nothing. You have to choose the correct mode for the job
(although don’t forget that you can switch modes at runtime).

Touch Mode
Touch mode is the more powerful of the two modes. In touch mode, you can see every motion of
every finger, almost like having multiple mice. Touch events, represented by the TouchEvent class,
are broadcast by the innermost and topmost InteractiveObject under the touch location, and
they bubble up to the stage, just like MouseEvents.

To use touch mode, just set

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

And add event listeners normally. You can track these types of events related to each touch:

� TouchEvent.TOUCH_BEGIN — Like MouseEvent.MOUSE_DOWN

� TouchEvent.TOUCH_END — Like MouseEvent.MOUSE_UP

� TouchEvent.TOUCH_MOVE — Like MouseEvent.MOUSE_MOVE while the mouse
button is down

476

Chapter 23: Multitouch and Accelerometer Input

� TouchEvent.TOUCH_OVER— Like MouseEvent.MOUSE_OVER while the mouse
button is down

� TouchEvent.TOUCH_OUT — Like MouseEvent.MOUSE_OUT while the mouse
button is down

� TouchEvent.ROLL_OVER

� TouchEvent.ROLL_OUT

� TouchEvent.TOUCH_TAP — Like MouseEvent.CLICK

The difference between these touch events and their corresponding mouse events is that a multi-
touch device only registers a touch while your finger is down. So TOUCH_MOVE is more like what
you’d think of as a mouse drag. Although it might be my hardware or a bug, I find ROLL_OVER and
ROLL_OUT aren’t fired consistently; I use TOUCH_OVER and TOUCH_OUT instead.

Event Object Properties Shared by MouseEvent

Like MouseEvent, TouchEvent objects are associated with an InteractiveObject target,
and as they bubble, their currentTarget changes. Their position, the position of your finger, is
exposed relative to the target as localX and localY, or in global coordinates as stageX and
stageY.

Also like MouseEvent, although less likely to be used, TouchEvents let you know the state of key-
board modifiers, such as shiftKey, ctrlKey, and altKey.

Event Object Properties Unique to TouchEvent

The most important addition to TouchEvent objects is the touchPointID property. If multiple
fingers are down, each finger may be triggering TouchEvents simultaneously. These touches
would be impossible to distinguish, except that Flash Player assigns each continuous touch a unique
touchPointID.

The ID is assigned when your finger first touches the screen. Anything that your finger does while
it’s pressed against the screen generates TouchEvents with that touchPointID. And finally, you
can forget all about the ID as soon as you lift your finger. The system has no clue which finger you’re
using: if you use your pinky one time and your ring finger the next, or your index finger both times,
it could care less. But it does know that whatever fleshy appendage A smashed into the screen is the
same appendage A that rolled over button B a second later. The system may recycle the same numbers
for these IDs, but there’s no continuity between touchPointIDs after the finger is lifted.

When you’re tracking multiple concurrent touches, you might want to store the current state of each
touch in an array by its touchPointID so that you can easily update the correct one every time you
get a TouchEvent.

If you want to ignore every finger that comes after the first in a multifinger gesture, or if you want to
treat the first finger pressed in a special way, there’s a simpler way. TouchEvents that are triggered
by the so-called primary finger have their isPrimaryTouchPoint property set to true.

If the hardware and OS support these properties, you may also be able to find out more about the
touch with these TouchEvent properties:

� sizeX, sizeY — The size of the contact area between your finger and the screen. Relative size,
not measured in pixels (at least on my hardware).

� pressure — How hard your finger is pressing down, between 0.0 (are you even trying?) and
1.0 (don’t break your monitor, dude).

These properties can bring a whole new level of detail to your multitouch application.

477

Part IV: Event-Driven Programming

Putting It Together

Something fun like multitouch calls for a fun example, don’t you think? I saw this little heat-activated
mood toy on the iPhone app store and thought it would make a great example (Example 23-2). It
does, however, use some graphics techniques from Chapters 34 to 37, so this is a taste of what you
can do in a short space with interactive graphics and multitouch.

EXAMPLE 23-2 http://actionscriptbible.com/ch23/ex2

Multitouch in Touch Mode

package {
import flash.display.*;
import flash.events.*;
import flash.filters.BlurFilter;
import flash.geom.*;
import flash.ui.*;
public class ch23ex2 extends Sprite {
protected const BMP_SCALE:Number = 1/2;
protected const D:Number = 1.015;
protected const DIM_EFFECT:ColorTransform = new ColorTransform(D, D, D);
protected const B:int = 16;
protected const BLUR_EFFECT:BlurFilter = new BlurFilter(B, B, 1);
protected var RLUT:Array, GLUT:Array, BLUT:Array;
protected var sourceBmp:BitmapData;
protected var colorBmp:BitmapData;
protected var touches:Array = new Array();
protected var fingerShape:Shape = new Shape();
public function ch23ex2() {
try {
var test:Class = Multitouch;
if (Multitouch.supportsTouchEvents) {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
init();

} else {
trace("Sorry, this example requires multitouch.");

}
} catch (error:ReferenceError) {
trace("Sorry, but multitouch is not supported in this runtime.");

}
}
protected function init():void {
//create a black-and-white bitmap and a color bitmap, only show the color
sourceBmp = new BitmapData(
stage.stageWidth*BMP_SCALE, stage.stageHeight*BMP_SCALE, false, 0);

colorBmp = sourceBmp.clone();
var bitmap:Bitmap = new Bitmap(colorBmp, PixelSnapping.ALWAYS, true);
bitmap.width = stage.stageWidth; bitmap.height = stage.stageHeight;
addChild(bitmap);

//create finger shape to paste onto the bitmap under your touches
fingerShape.graphics.beginFill(0xffffff, 0.1);
fingerShape.graphics.drawEllipse(-15, -20, 30, 40);
fingerShape.graphics.endFill();

478

Chapter 23: Multitouch and Accelerometer Input

//create the palette map from a gradient
var gradient:Shape = new Shape();
var m:Matrix = new Matrix();
m.createGradientBox(256, 10);
gradient.graphics.beginGradientFill(GradientType.LINEAR,
[0x313ad8, 0x2dce4a, 0xdae234, 0x7a1c1c, 0x0f0303],
[1, 1, 1, 1, 1], [0, 0.4*256, 0.75*256, 0.9*256, 255], m);

gradient.graphics.drawRect(0, 0, 256, 10);
var gradientBmp:BitmapData = new BitmapData(256, 10, false, 0);
gradientBmp.draw(gradient);
RLUT = new Array(); GLUT = new Array(); BLUT = new Array();
for (var i:int = 0; i < 256; i++) {
var pixelColor:uint = gradientBmp.getPixel(i, 0);
//I drew the gradient backward, so sue me
RLUT[256-i] = pixelColor & 0xff0000;
GLUT[256-i] = pixelColor & 0x00ff00;
BLUT[256-i] = pixelColor & 0x0000ff;

}

stage.addEventListener(TouchEvent.TOUCH_BEGIN, assignTouch);
stage.addEventListener(TouchEvent.TOUCH_MOVE, assignTouch);
stage.addEventListener(TouchEvent.TOUCH_END, removeTouch);
stage.addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function assignTouch(event:TouchEvent):void {
touches[event.touchPointID] = event;

}
protected function removeTouch(event:TouchEvent):void {
delete touches[event.touchPointID];

}
protected function onEnterFrame(event:Event):void {
for (var key:String in touches) {
var touch:TouchEvent = touches[key] as TouchEvent;
if (touch) {
//plaster the finger image under your finger
var m:Matrix = new Matrix();
m.translate(touch.stageX*BMP_SCALE, touch.stageY*BMP_SCALE);
sourceBmp.draw(fingerShape, m, null, BlendMode.ADD);

}
}
var O:Point = new Point(0, 0);
//blur and ever-so-slightly brighten the image to make the color last
sourceBmp.applyFilter(sourceBmp, sourceBmp.rect, O, BLUR_EFFECT);
sourceBmp.colorTransform(sourceBmp.rect, DIM_EFFECT);
//you’ve calculated the image in grayscale brightnesses, now make it color
colorBmp.paletteMap(sourceBmp, sourceBmp.rect, O, RLUT, GLUT, BLUT, null);

}
}

}

479

Part IV: Event-Driven Programming

In this example, you want the position of the current touches every frame, even if they’re not moving,
so you can hold down your finger and gradually add to the ‘‘heat’’ of the surrounding area. However,
you only get the finger location from a TouchEvent object, unlike the mouse location, which you
can get from any display object. To get around this, I’ve stored the most recent event objects by their
touchPointID, removing them when the finger is lifted. Then the location can be retrieved from the
event object at any time.

A modified version of this example that allows you to use the mouse if you don’t have multitouch is
included online. This kind of fallback behavior is critical to accommodate as many users as possible.

Gesture Mode
In gesture mode, the host operating system interprets the raw touch data for you, into a vocabulary of
gestures. This has clear pros and cons:

� PRO — You don’t have to come up with algorithms that interpret touches as gestures.

� PRO — Your application uses a gesture vocabulary consistent with the rest of the host OS.

� CON — You don’t have access to the raw touch events any more.

� CON — You’re limited to the gestures that the host OS provides and the way it interprets
touches into gestures (which can be error-prone).

� CON — The user can’t combine gestures; only one gesture at a time is recognized.

As you’ve already seen, you can determine if gestures are supported by querying
Multitouch.supportsGestureEvents. If they are, switch to gesture mode by setting

Multitouch.inputMode = MultitouchInputMode.GESTURE;

If you require a specific gesture to be supported, you can check against the supportedGestures
list that you learned about in the beginning of the section.

Table 23-1 summarizes all the gestures you can listen for.

Each gesture event object has a phase property that tells you if the gesture is beginning, ending,
or if it’s underway and it’s changing (for example, as a pan gesture pans around). These phases are
the string constants GesturePhase.BEGIN, GesturePhase.END, and GesturePhase.UPDATE,
in the flash.events package. It’s possible for an event to begin but never end (a two-finger tap
should be like this), or end without updating.

In gesture mode, the OS interprets normal, single-finger taps as mouse events; you can listen for them
with the normal mouse events.

As in touch mode, these events are assigned an InteractiveObject target and bubble. They have
the same modifier key properties and the same localX, localY, stageX, and stageY properties.

Special Properties of PressAndTapGestureEvent

The PressAndTapGestureEvent object contains one additional set of properties, which locate the
position that the second finger tapped. The primary location of the event is where you placed your
first finger. The properties tapLocalX, tapLocalY, tapStageX, and tapStageY identify where
the second finger tapped, relative to target and stage, respectively, as figure 23-1 illustrates.

480

Chapter 23: Multitouch and Accelerometer Input

TABLE 23-1

Gesture Events

Event Class Event Name Gesture

GestureEvent GESTURE_TWO_FINGER_TAP Tap quickly with two fingers close to
each other.

PressAndTapGestureEvent GESTURE_PRESS_AND_TAP Hold down one finger and tap quickly
with the other. You can keep moving
the first finger after lifting the second
finger.

TransformGestureEvent GESTURE_PAN Place two fingers and move them
slowly in unison.

TransformGestureEvent GESTURE_ROTATE Place two fingers and rotate them
around their center point.

TransformGestureEvent GESTURE_SWIPE Place two fingers and whisk them in a
direction, leaving the surface.

TransformGestureEvent GESTURE_ZOOM Place two fingers and spread them
apart or pinch them together around
their center point.

FIGURE 23-1

The press-and-tap gesture and the positions of the two fingers

(localX, localY)

(tapLocalX, tapLocalY)

481

Part IV: Event-Driven Programming

Special Properties of TransformGestureEvent

You can use different transformation gestures to apply affine transformations in a natural way. When
you use TransformGestureEvents — pan, rotate, swipe, and zoom — the host environment
figures out how to translate the finger movements into these transformations. It stores these in the
following properties of the event object:

� offsetX, offsetY — The translation since the last event in this gesture

� rotation — The rotation (in degrees) since the last event in this gesture

� scaleX, scaleY — The scale since the last event in this gesture

Putting It Together

You can use the fact that there are a variety of different gestures to manipulate an object in three
dimensions. In Example 23-3, you’ll use a two-finger pan gesture in 2D to rotate a plane around the
x- and y-axes, a rotation gesture to rotate it around the z-axis, a pinch to scale it up and down, and
a two-finger tap to reset it. This feels slightly more natural than trying to control all three dimensions
with a 2D mouse cursor.

EXAMPLE 23-3 http://actionscriptbible.com/ch23/ex3

Multitouch in Gesture Mode

package {
import flash.display.*;
import flash.events.*;
import flash.geom.Point;
import flash.geom.Rectangle;
import flash.net.URLRequest;
import flash.system.LoaderContext;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

[SWF(backgroundColor="#404040", width="1024", height="768")]
public class ch23ex3 extends Sprite {
protected var holder:DisplayObjectContainer;
protected var cropRect:Rectangle;
public function ch23ex3() {
try {
var test:Class = Multitouch;
if (Multitouch.supportsGestureEvents) {
Multitouch.inputMode = MultitouchInputMode.GESTURE;
var l:Loader = new Loader();
l.load(new URLRequest(
"http://actionscriptbible.com/files/bluemarble.jpg"),
new LoaderContext(true)

);
l.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoadComplete);

} else {
trace("Sorry, this example requires multitouch.");

}
} catch (error:ReferenceError) {

482

Chapter 23: Multitouch and Accelerometer Input

trace("Sorry, but multitouch is not supported in this runtime.");
}

}
protected function onLoadComplete(event:Event):void {
this.x = stage.stageWidth/2; this.y = stage.stageHeight/2;
this.transform.perspectiveProjection.projectionCenter =
new Point(stage.stageWidth/2, stage.stageHeight * 0.25);

this.transform.perspectiveProjection.fieldOfView = 70;

var content:DisplayObject = LoaderInfo(event.target).content;
holder = LoaderInfo(event.target).loader;
content.x = -content.width/2; content.y = -content.height/2;
var targetWidth:Number = stage.stageWidth * 0.7;
var scale:Number = Math.min(1, targetWidth / content.width);
holder.z = 100;
holder.scaleX = holder.scaleY = scale;
addChild(holder);
stage.addEventListener(GestureEvent.GESTURE_TWO_FINGER_TAP, onDoubleTap);
stage.addEventListener(TransformGestureEvent.GESTURE_PAN, onGesture);
stage.addEventListener(TransformGestureEvent.GESTURE_ROTATE, onGesture);
stage.addEventListener(TransformGestureEvent.GESTURE_SWIPE, onGesture);
stage.addEventListener(TransformGestureEvent.GESTURE_ZOOM, onGesture);

}
protected function onDoubleTap(event:GestureEvent):void {
holder.transform.matrix3D.identity();

}
protected function onGesture(event:TransformGestureEvent):void {
switch (event.type) {
case TransformGestureEvent.GESTURE_PAN:
var SCALE:Number = 0.5;
holder.rotationY -= event.offsetX * SCALE;
holder.rotationX += event.offsetY * SCALE;
break;

case TransformGestureEvent.GESTURE_ROTATE:
holder.rotationZ += event.rotation;
break;

case TransformGestureEvent.GESTURE_ZOOM:
holder.scaleX *= event.scaleX;
holder.scaleY = holder.scaleX;
break;

}
}

}
}

There’s a lot you can do with these built-in gestures. Hopefully when you build your applications they
will be more mouse-friendly and more obvious what to do than this example. Unlike a menu or a
button, which contains a pithy self-description, touch interactions are not visible, so you have to make
them second-nature, explain them, or make them optional.

483

Part IV: Event-Driven Programming

Touch-Related Methods
In addition to the events added for touch, Sprite two methods to enable touch-driven
drag-and-drop. Called startTouchDrag() and stopTouchDrag(), these have the same interface
and usage as startDrag() and stopDrag(), but with the addition of an argument for the
touchPointID. This way, you can have multiple simultaneous drag events, each with its own touch.

In Example 23-4, you create one ball for each finger your screen can recognize; then you enable
drag-and-drop with the built-in Sprite methods. You can drag each ball with a different finger
simultaneously.

EXAMPLE 23-4 http://actionscriptbible.com/ch23/ex4

Multitouch Drag-and-Drop

package {
import flash.display.Sprite;
import flash.events.TouchEvent;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;
public class ch23ex4 extends Sprite {
public function ch23ex4() {
try {
var test:Class = Multitouch;
if (Multitouch.supportsTouchEvents) {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
for (var i:int = 0; i < Multitouch.maxTouchPoints; i++) {
var b:Ball = new Ball();
b.x = Math.random() * stage.stageWidth;
b.y = Math.random() * stage.stageHeight;
addChild(b);

}
stage.addEventListener(TouchEvent.TOUCH_BEGIN, onTouchBegin);
stage.addEventListener(TouchEvent.TOUCH_END, onTouchEnd);

} else {
trace("Sorry, your device doesn’t support touch-level events");

}
} catch (error:ReferenceError) {
trace("Sorry, but multitouch is not supported in this runtime.");

}
}
protected function onTouchBegin(event:TouchEvent):void {
var b:Ball = event.target as Ball;
if (!b) return;
b.startTouchDrag(event.touchPointID, false);

}
protected function onTouchEnd(event:TouchEvent):void {
var b:Ball = event.target as Ball;
if (!b) return;
b.stopTouchDrag(event.touchPointID);

}
}

484

Chapter 23: Multitouch and Accelerometer Input

}
import flash.display.BlendMode;
import flash.display.Sprite;
class Ball extends Sprite {
public var touchPointID:int;
public function Ball() {
graphics.beginFill(Math.random() * 0xf0f0f0);
graphics.drawCircle(0, 0, 70);
blendMode = BlendMode.MULTIPLY

}
}

Using the Accelerometer
Many mobile manufacturers are including accelerometers in their handsets. This sensor detects motion
and orientation by sensing its acceleration relative to freefall; it’s only really useful for handheld
devices, not so much for desktops that stay put on the floor or a desk.

Accelerometers are already a big part of gaming today — they are used for many games on mobile
phones, and they enable orientation-sensing controllers like the Wiimote and DualShock 3. They can
be used for more passive interaction, where you don’t have to be positioned to accurately touch the
screen, or as a supplemental input method. Device motion can also be interpreted for another level of
gestural input, like the ‘‘shake’’ gesture common on iPhone and iPad, in which a quick shake of the
phone usually means ‘‘undo’’ or ‘‘reload.’’ Other gestures are certainly possible.

With Flash Player 10.1, you can access data from supported accelerometer devices. Much like
Camera or Microphone, covered in Chapter 33, ‘‘Capturing Sound and Video,’’ you use static
methods of Accelerometer (in the flash.sensors package) to configure the device; then you
obtain an instance of Accelerometer to interact with.

Because the Accelerometer class was added in Flash Player 10.1, if you want to make sure the
code works with older versions of Flash Player, you should wrap code that uses it in a try/catch
block, as you did with Multitouch earlier in this chapter. If the Accelerometer class is present,
find out if a compatible device is installed with the static accessor Accelerometer.isSupported.

try {
var test:Class = Accelerometer;
if (Accelerometer.isSupported) {
var acc:Accelerometer = new Accelerometer();
acc.addEventListener(AccelerometerEvent.UPDATE, onAccelerometerData);

}
} catch (error:ReferenceError) {
trace("Sorry, but accelerometers are not supported in this runtime.");

}

Now all you have to do is get a concrete Accelerometer instance — simply call its
constructor — and subscribe to its AccelerometerEvent.UPDATE event.

485

Part IV: Event-Driven Programming

When you attempt to use an Accelerometer instance, the device may prompt the user for permis-
sion, or use her saved privacy settings, before giving you access. You’ll know you’ve been denied when
Accelerometer.isMuted is true.

However, if all goes well, now you should be receiving AccelerometerEvents. If you
wish, you can tweak the frequency of this data by using the static method Accelerome-
ter.setRequestedUpdateInterval(). Each event object contains a vector representing
measured acceleration, as three components: accelerationX, accelerationY, and
accelerationZ. These are measured in Gs and are relative to the phone when you hold it
in front of you with the screen facing you (and the y-axis is up, unlike the screen space where
positive y is down). In this orientation, if you hold the phone still, accelerationY should be
–1, because gravity is pulling down on the phone at the rate of 1G. If you drop your phone, it’s
in freefall, and the acceleration vector is <0, 0, 0> until it spikes up very high and you curse very
loudly.

With these three values and some vector math, you can control orientations in 3D. You can isolate
a single value and look for a pattern such as a shake. If you’re going to do any direct mapping of
accelerometer input, you will benefit from some data smoothing algorithms such as low-pass filtering.

Other Sensors
The flash.sensors package may become the home to more sensors in future versions of the Flash
Player API. There is already one more that, although it’s not currently accessible to Flash Player, can
be used in AIR 2.0 and in native-compiled iPhone apps and may open up to Flash Player in the
future. The Geolocation sensor class provides access to location services on a device, such as a
GPS. It works in much the same way as Accelerometer: create a new Geolocation instance and
subscribe to its GeolocationEvent.UPDATE event. The GeolocationEvent object contains all
you need to know about the host device’s location, between latitude, longitude, altitude,
heading, and speed.

Summary

� Multitouch screens and sensors can enable an application to be more intelligent and react to
the user in a more meaningful or natural way. Flash Player 10.1 and later have access to a wide
array of devices: keyboard, mouse, touchscreen, camera, microphone, and accelerometer.

� For backward compatibility, you may want to test for existence of FP10.1-only classes, catching
ReferenceErrors and falling back if they arise.

� Multitouch capabilities depend not only on hardware, but on the host OS and drivers. Research
the capabilities of a multitouch interface with the flash.ui.Multitouch class.

� You can use multitouch in Flash Player in one of three mutually exclusive modes, set with
Multitouch.inputMode to a constant of MultitouchInputMode.

� In touch mode, you get all finger tracking events with TouchEvent. It’s more flexible, and you
can define your own behavior.

486

Chapter 23: Multitouch and Accelerometer Input

� In gesture mode, the OS interprets sets of touches into common gestures. You get the benefit of
a common vocabulary at the expense of customization. Gestures are broadcast as instances of
GestureEvent and its subclasses.

� Accelerometer support gives you access to the orientation and motion of the device in three
dimensions, when the appropriate sensor is present.

� Create an Accelerometer instance and subscribe to its AccelerometerEvent.UPDATE
event to get accelerometer data, an event object with the vector encoded in accelerationX,
accelerationY, and accelerationZ properties.

487

Part V

Error Handling

IN THIS PART

Chapter 24
Errors and Exceptions

Chapter 25
Using the AVM2 Debugger and
Profiler

Chapter 26
Making Your Application
Fault-Tolerant

Errors and Exceptions

FEATURED CLASSES

Error

ArgumentError

IOError

ReferenceError

SecurityError

TypeError

flash.error.*

flash.events.ErrorEvent

flash.events
.UncaughtErrorEvent

D
espite our best intentions and wishes, programs sometimes fail. In
Chapter 5, ‘‘Validating Your Program,’’ you learned about ways the
compiler can catch your typos and invalid requests: syntax errors and

type mismatches. These are kinds of compile-time errors. But there are countless
kinds of errors that can happen while your program is running, and these may
be the result of a logical error in your code or just the result of unexpected
circumstances out of your control. Whichever is the case, ActionScript 3.0 gives
you the opportunity to handle these errors at runtime. This chapter provides the
tools for you to understand runtime errors and keep them from affecting the
end user.

Comparing Ways to Fail

If a certain function fails, there are a few ways for it to signal this failure. Some
functions return a value that indicates that the function did not complete suc-
cessfully. Code that uses this function must then check to make sure all went as
planned before continuing. This approach has a few problems, though.

First, returning a Boolean signifying whether the function call was successful is
not always possible. What if the function is already supposed to return a value?
If you are returning a complex object, setting the value of this returned object to
null is one option. If you are returning an int, you must decide on a reserved
number to signify failure, such as –1. But these values might actually be valid
responses, which also means that different functions might return different val-
ues for a failure state. Checking for failure becomes more and more complex
this way.

The increasing complexity of checking return values of these functions is another
good reason to avoid this approach. If you have to wrap every function call in an
if statement to check its results, your code starts becoming ugly and unneces-
sarily complex.

491

Part V: Error Handling

Most programmers respond to this dilemma by skipping these checks, assuming that when things go
wrong, they can insert the checks only where really necessary. In fact, it’s sometimes not obvious that
the function is supposed to return a particular value if it fails. It’s not entirely the programmer’s fault
for being negligent here: it’s difficult to keep track of every possible failure point.

The ultimate result of this kind of error reporting is a problem that might be familiar to you. Say you
have a sequence of operations: you call a function, assign the returned value to some variable, use
that variable in a different context, pass it around, and do some more things to it. Eventually, way
down the line, something truly fatal happens. When you finally catch it, you have no way to know
that the problem is from seven steps ago, when a function returned null, which was automatically
converted to false, or an empty string, or the number 0, and the program went on assuming this
was the intended value. It becomes your job to painstakingly tease out what went wrong and where.

That’s why this kind of error reporting is known as failing silently. Unless you put in those checks
yourself, the program will keep on truckin’, attempting to use your failure value as a real value, as
long as it’s nonfatal. And when everything fails silently, everything is nonfatal, so you really don’t
find out what went wrong until much later. As a general strategy, you should make your code noisy.
Be alarmist! Run in circles, scream, and shout! In code, as in life, the sooner you become aware of a
potential problem, the easier it is to fix it.

I should draw a distinction between ActionScript language features and application design.
Returning null and using exceptions are two ways to signal and handle errors. These are part
of ActionScript’s error-handling capabilities. Knowing what to do when a runtime error occurs
is part of an error-handling strategy and is part of your application design. In this chapter, I’ll
cover low-level error handling; once you have this as a foundation, you learn how to employ these
practices in an error-handling strategy in Chapter 26, ‘‘Making Your Application Fault-Tolerant.’’

Understanding Exceptions
Exceptions are another way to signal, transmit information about, and capture errors at runtime. They
are a language feature made explicitly for this purpose, so they won’t interfere with your code’s normal
activities. They don’t prevent you from returning certain values or limit anything your code can do.

Exceptions are both ordinary and extraordinary. They are objects that exist in the virtual machine and
can be manipulated like any other object. But when you use exceptions, you also alter the control flow
of your program.

Because exceptions are objects, you can consider them nouns. To understand them better, let’s exam-
ine what verbs you can apply to them. You might say that exceptions are like baseballs when you’re
the fielding team. You can throw them and catch them, but if nobody catches them, it’s a real error
(ha). You can throw an exception, and you can catch an exception. There are also uncaught exceptions,
which are unarguably a bad thing.

Throwing Exceptions
Errors at runtime are represented by exceptions; throwing an exception is the way in which you sig-
nal an error. Confusingly, there is no Exception class. Rather, all exceptions are represented by
instances of Error or its subclasses. Further, there is special syntax for throwing an exception. You
are performing a verb and have a noun, so you might expect this to look like the following:

492

Chapter 24: Errors and Exceptions

var myException:Error = new Error();
myException.throw();

But we have the actor wrong here. Really, the exception represents the error, and the virtual machine
handles propagating it; the exception is passive, much like an event object. The syntax for throwing
an exception is this:

throw new Error("oh noes!! i already eated the cookie", 512);

You can use two lines, as in the first snippet, to create and then throw the exception, but using one
line as in the preceding code is more common. As shown in the preceding code, Error objects are
allowed to carry a human-friendly message describing what went wrong in more detail, and a more
computer-friendly error code that you can use in your error-handling strategy. In addition, the type of
the exception encodes information about what went wrong. There are several subclasses of Error,
and you can define your own. Both of the exception’s descriptors, the message and the id, are
optional. In this snippet, an exception is thrown without a description, but its type communicates
some information:

throw new ArgumentError();

Note
The implementation of exceptions in ActionScript 3.0 is similar to that in Java, but methods that throw errors
do not explicitly say so in the method signature as they do in Java. �

Catching Exceptions with Try and Catch
When you’re handling errors with exceptions, you can handle errors and do whatever is necessary to
recover from them by catching the appropriate exception. There’s more to catching exceptions than
a single-line catch method, however. Handling exceptions involves surrounding the dangerous code
in a special kind of construct. This construct has at least two parts: first, the code that might generate
exceptions, and next, one or more blocks to handle certain kinds of exceptions; and optionally a block
to run whether there were exceptions or not.

These three units make up a try/catch/finally block, or simply a try/catch block
because the finally clause is optional. One of the benefits of exceptions is the way in which
they can break out of the normal flow of a program. When an expression results in a thrown
exception, Flash Player drops everything and starts looking for an appropriate catch block
to handle the exception. It doesn’t continue to execute the next line of code. This is in stark
contrast to handling errors by returning null, in which case the code keeps executing, making
it more likely to lose track of where the error occurred. This also enables you to write code that
otherwise assumes that everything went well, confident that the lines after an error will not be
executed.

You encapsulate potentially exception-generating code and the instructions that depend on it in
its own try block. Everything that does not depend on the potentially error-prone operation and
has no chance of failure can go outside the block. Everything that might cause an error, and the
code that depends on an error not happening, goes inside the block. Here’s an example of a try
block, but note that it is not complete (it won’t even compile) without the catch block, which I
cover next:

493

Part V: Error Handling

var foo:Array = [1, 2, 3];
try
{

var a:int = potentiallyUnsafeOperation(foo[0]);
a += 10;
trace(a);

}
//TODO: catch goes here
var b:int = 1 << 10;

Before and after the try block, you do operations completely unrelated to the potentially unsafe
function, which might throw an exception. Inside the try block, however, you include every-
thing that depends on that function executing properly: anything that uses its return value a. If
potentiallyUnsafeOperation() threw an exception, or if foo happened to have no object in
index 0, or if that object were of the wrong type for the method’s parameter, it would never store the
return value into a because the exception would have interrupted execution.

You use try blocks not just to contain an error, but to define where it should be handled. Each try
block must be coupled with one or more catch blocks. If the exception is generated in a try block
and handled in a subsequent catch block, execution can resume after the block is over. Thus, the
exception is generated and handled, and then the program keeps going. Voilà! Furthermore, with mul-
tiple catch blocks, you can handle multiple types of errors differently within a single try/catch
block, allowing your try block to contain a whole series of actions, each action depending on the
success of the one before it, even if they all throw different kinds of errors.

Let’s add a catch block to the preceding snippet:

var foo:Array = [1, 2, 3];
try
{
var a:int = potentiallyUnsafeOperation(foo[0]);
a += 10;
trace(a);

} catch (error:Error) {
trace("An error occurred", error.message);

}
var b:int = 1 << 10;

If the potentially unsafe function call ends up throwing an exception, flow proceeds immediately to
the catch block. There, the system traces out an error message, including the message defined in the
Error object. Finally, execution continues with the first line outside the block, assigning 1024 to b.

The Exception Flow
When you throw an exception, it follows a well-defined flow, much like events do. Exceptions bubble
up through the call stack until they find themselves in a try block. For each one of these, the excep-
tion compares its type to the types of the errors the associated catch blocks are looking for, top to
bottom. If no catch block catches that type of exception, it continues its way up the call stack. If it
reaches the top of the call stack without being caught, it becomes an uncaught exception.

This means that not only do you have a choice of where to catch exceptions, but that choice makes a
difference in how your program behaves. Take, for example, the class shown in Example 24-1, which
computes 10 square roots of whole numbers between –50 and 50.

494

Chapter 24: Errors and Exceptions

EXAMPLE 24-1 http://actionscriptbible.com/ch24/ex1

Throwing and Catching an Exception

package {
import com.actionscriptbible.Example;
public class ch24ex1 extends Example {
public function ch24ex1() {
try {
for (var i:int = 0; i < 10; i++) {
var n:Number = Math.round(Math.random() * 100 - 50);
trace("

√

"+n+" = "+squareRoot(n));
}

} catch (err:ArgumentError) {
trace("ERROR: " + err.message);

}
}
protected function squareRoot(n:Number):Number {
if (n < 0) {
throw new ArgumentError("squareRoot() doesn’t support \

imaginary numbers.");
}
return Math.sqrt(n);

}
}

}

The squareRoot() method checks its input and considers an attempt to calculate the square root
of a negative number an error. Checking your inputs for validity is one important part of an over-
all error-handling strategy. The virtual machine and compiler can ensure your arguments are of the
right type, but sometimes your preconditions must be more specific. In this case, the best the type
system can do is ensure that a Number is passed to squareRoot(), but it can’t verify that the num-
ber is positive with types alone. An ArgumentError is an Error subclass designated for exceptions
relating to arguments passed to a method.

In any case, this version of the example will terminate the loop the first time a negative number is
chosen. You might receive only three square roots before an error message, or seven, or none, depend-
ing on your luck. This says that the entire loop is predicated on all the iterations finishing successfully.

However, you can change this behavior by simply moving the try block. By putting the try block
inside the loop body, the program always prints out 10 results or errors rather than quitting after the
first error. Why don’t you modify the code and try it? (Groan.) The flow of control in your program
is affected by exception handling, and changes in your exceptions can change the outcome of your
program.

The catch blocks specify what kind of error is being handled. Because all exceptions are either an
instance of Error or a subclass thereof, catching an Error type handles any kind of exception. You
can use this in the same way you would use default in a switch statement. Example 24-2 shows
an error being handled further up the call stack, and with multitiered catch blocks.

495

Part V: Error Handling

EXAMPLE 24-2 http://actionscriptbible.com/ch24/ex2

Errors and the Call Stack

package {
import com.actionscriptbible.Example;
public class ch24ex2 extends Example {
public function ch24ex2() {
try {
var n:int = sumSomeNumbers();
trace(n);

} catch (e:UnrelatedError) {
trace("something unrelated happened.");

} catch (e:DispleasingNumberError) {
trace("somewhere, a number is displeasing.");

} catch (e:Error) {
trace("something bad happened");

}
}

protected function sumSomeNumbers():int {
var sum:int = 0;
for (var i:int = 0; i < 10; i++) {
sum += someNumber();

}
return sum;

}

protected function someNumber():int {
var n:int = Math.round(Math.random() * 10);
if (n < 2) {

throw new PatheticallySmallNumberError();
}
return n;

}
}

}
class DispleasingNumberError extends Error {}
class PatheticallySmallNumberError extends DispleasingNumberError {}
class UnrelatedError extends Error {}

With any luck, this example will eventually throw a PatheticallySmallNumberError because
it is displeased with encountering the number 0 or 1. This exception originates in someNumber(),
goes unhandled to the code that called it in sumSomeNumbers(), which again is not in a try block,
and finally goes up to where the call originated, when the constructor CatchBlocksExample()
called sumSomeNumbers(). This is inside a try block, so the exception compares itself with
the handled exception types in the associated catch blocks in order. Because the runtime is
comparing the exception object to different classes to see if it is an instance of the class specified
in the catch clause or its subclasses, you can think of this comparison as using the is operator.
The PatheticallySmallNumberError is not an UnrelatedError, but it is a

496

Chapter 24: Errors and Exceptions

DispleasingNumberError, so the second catch block will handle it, and ‘‘somewhere, a
number is displeasing’’ is traced out. If neither of these catch blocks had caught the exception,
again, the third would have, because all exceptions are Errors.

Uncaught Exceptions
When an exception is thrown without being caught anywhere, it is an uncaught exception. All
your chances to intercept and handle it, by definition, have passed, and it is up to Flash Player
to decide what to do with the error. Different versions of Flash Player treat uncaught exceptions
differently.

If you’re developing applications, you’re probably running SWF files in the debug version of Flash
Player. When an uncaught exception occurs in the debug version of Flash Player, execution halts and
you are presented with a dialog box giving you information about the error, as shown in Figure 24-1.

FIGURE 24-1

An uncaught exception using the Debug Flash Player

Even better, if you are running a SWF compiled for debugging, and you have connected to a debugger
using Flash Builder, or Flash Professional, instead of the dialog box, your IDE will enter an inter-
active debugging mode. Debugging applications this way is covered in greater detail in Chapter 25,
‘‘Using the AVM2 Debugger and Profiler.’’ Suffice to say, this gives you an excellent way to identify
bugs immediately, and at their source.

If you are running the production or release distribution of Flash Player, unhandled exceptions
are silent. No dialog box is displayed, the currently executing code is immediately terminated, and
the next frame is rendered, at which point further code might be triggered. This means that if you
should somehow let a bug slip into your program unhandled, and that program is deployed, the end
users will not see a glaring ‘‘Error’’ dialog box as you do. The program might not work correctly,
but that’s not nearly as worrisome as a giant error dialog box. When this happens to you — and it
will — explain this to your boss, customer, or client, say that everything is going to be all right, and
go fix that bug.

The finally Clause
Finally, we come to finally. The optional finally clause can appear after the catch blocks, and
code inside it will execute after the try block successfully completes or after the relevant catch
block finishes. If the try block depends on certain objects that need to be set up and created, use

497

Part V: Error Handling

the finally block to break them down and clean them up. They should be properly disposed of
whether you had an error or not.

Most of the examples that necessitate a finally block involve creating a file handle or stream object,
trying to read from it, and then closing it whether there was an error or not, because these kinds of
objects need you to explicitly clean up after them. However, most of these accesses are asynchronous
in ActionScript 3.0, and try/catch/finally helps you catch synchronous errors only, as
Example 24-3 shows.

EXAMPLE 24-3 http://actionscriptbible.com/ch24/ex3

Cleaning Up After an Error with finally

package {
import com.actionscriptbible.Example;
import flash.errors.IOError;
import flash.net.Socket;

public class ch24ex3 extends Example {
public function ch24ex3() {
try {

var s:Socket = new Socket();
s.connect("http://www.actionscriptbible.com/", 80);
//TODO: add asynchronous error handling;
//see "Handling Asynchronous Errors" below.
trace("SUCCESS!");

} catch(error:IOError) {
trace("I/O Error:", error.message);

} catch(error:SecurityError) {
trace("Security Error:", error.message);

} finally {
s.close();

}
}

}
}

This is a good example of an object that needs to be cleaned up after, and thus a good use of
finally. However, even this is not entirely realistic because you’d usually do many (asynchronous)
accesses on the socket before closing it, so you wouldn’t have the opportunity to wrap the entire
session in a single block.

Rethrowing Exceptions
If the baseball analogy holds true, you can also pass the ball: catch it and throw it to another team-
mate. If you catch an exception and determine, by examining the id of the Error, perhaps, that
a higher authority needs to handle the exception, you can rethrow the same Error object that was

498

Chapter 24: Errors and Exceptions

passed to you in the first place. This puts the exception back in the flow up the call stack, as you can
see in the following snippet:

try
{

try
{

throw new Error();
} catch (error:Error) {

trace("inner handler");
throw error;

}
} catch (error:Error) {

trace("outer handler");
}
//inner handler
//outer handler

Errors Generated by Flash Player
In ActionScript 3.0, many of the built-in methods throw exceptions to signal errors. This is a godsend
because it helps you track down bugs immediately as they surface. If you don’t handle them you are
alerted via the uncaught exception handler (the error dialog box or debugger).

You can catch these errors in the same way you catch any other exception. Wrap the potentially
error-causing code and any dependent code in a try block, and create catch blocks for the kinds of
errors that may arise.

A common time to generate errors is when downcasting objects. If you try to convert a type to an
incompatible type using an explicit cast, a TypeError exception is thrown:

var displayObject:DisplayObject;
var object:Object = "Definitely Not a Display Object";
try
{

displayObject = DisplayObject(object);
} catch (error:TypeError) {

trace("Incompatible cast!");
displayObject = new Sprite();

}
addChild(displayObject);

In this case, an incompatible cast would recover by creating a new, empty Sprite to add to the dis-
play list. This way, the code can continue executing.

To find out what kinds of exceptions a given method can throw, look up its definition in the
ActionScript 3.0 Language Reference, and look for the ‘‘Throws’’ header. The documentation includes
all exceptions that each method can throw, and descriptions of the errors. An exhaustive list would
be difficult to reproduce here and of little use. However, Table 24-1 lists quite a few common
exceptions.

499

Part V: Error Handling

TABLE 24-1

Built-In Exception Types

Exception Type Description Potential Cause and Notes

Error Base exception type. Custom errors without custom subclasses.
Not abstract; can be used for actual
errors.

EvalError Errors in eval(). Any call to eval(), which is provided
for ECMAScript compatibility but not
implemented.

RangeError A number is out of the valid
range.

Converting numeric types, getting dis-
play object children at invalid indices,
creating Arrays of invalid sizes, writing
bytes as characters when they are not in
the range of acceptable characters, and
so on.

ReferenceError Attempt to access an undefined
property of an object.

Looking up a property that doesn’t exist
on a sealed class.

SyntaxError Code is not syntactically valid. Usually compiler catches syntax errors,
but they can arise with invalid RegExps.

TypeError Mismatched types. The type of an argument is incompatible
with the expected type, as a parameter
to a function, operator, assignment, and
so on.

ArgumentError Error with arguments passed to
a function.

Common in methods with variable
argument lists or flexibly typed argu-
ments such as Object or *. Occurs
when function does its own validation
manually.

SecurityError Violation of Flash Player’s secu-
rity policy.

When access is denied to a URL, server,
or system hardware, either by the security
sandbox or the user.

VerifyError Malformed SWF encountered. Attempting to load a corrupt SWF into the
program.

flash.error.EOFError Attempted to read beyond the
end of the stream/file.

When reading more bytes than are avail-
able from a URLStream, ByteArray, or
Socket.

500

Chapter 24: Errors and Exceptions

Exception Type Description Potential Cause and Notes

flash.error
.IllegalOperationError

A method call exists but is
not supported.

Calling certain
DisplayObjectContainer meth-
ods on stage, FileReference
methods called in the wrong order,
Accessibility methods are called
when the SWF is not compiled with
accessibility support, and so on.

flash.error.IOError Error reading or writing to a
resource.

Can happen to any network access,
because networks are inherently
unreliable.

flash.error
.MemoryError

Memory was requested that
cannot be provided.

Requesting more memory than can be
addressed. More common on embed-
ded devices where addresses might
be shorter. When more memory is
requested than is available, a different
error (#1000) is thrown.

flash.error
.ScriptTimeoutError

Code executes beyond a set
duration before completing
and allowing Flash Player to
draw the next frame.

The script timeout duration can be
written into the SWF. By default, it is
15 seconds. Can be caught only once;
otherwise, it is an uncatchable error.

flash.error
.StackOverflowError

The execution stack exceeds
its maximum depth.

A recursive function is probably not
reaching the intended end conditions
and recurses infinitely.

Custom Exceptions
Because catch blocks depend on the type of the exception object to match and handle excep-
tions, you should use the appropriate kind of Error object for each error. For some errors
that you might encounter in your own code, the built-in Error classes are appropriate,
such as throwing ArgumentErrors and RangeErrors when arguments are invalid or out
of range.

You should use custom Error subclasses when you are throwing errors specific to your program
that you are going to handle. As you have already seen in this chapter, this is as simple as cre-
ating an otherwise empty subclass of the Error class. Additionally, you can create more specific

501

Part V: Error Handling

exceptions by further extending Error subclasses. This hierarchy can be used to catch with more
specificity.

For example, you could enable assertions in your code easily. An assertion is a basic defensive-
coding tool that simply requires some expression to be true. You use it to make sure that pre-
conditions and postconditions of your methods are upheld, and any time you need a sanity
check.

function assert(b:Boolean):void { if (!b) throw new AssertionError(); }
class AssertionError extends Error {}
//usage
assert(inputNumber >= 0);
Math.sqrt(inputNumber);

If you want to share these outside the file they’re defined in, you can put the assert() method
and the AssertionError class in their own files inside some package, and make both items
public.

Any time the assertion fails, an exception is thrown. Appropriately, this is an AssertionError, so
that catch clauses can specify it by class name. (Although I can’t think of a case where it’s a good idea
to catch an assertion error. Assertions are there to notify you, the programmer, and they do no good
if they’re handled.)

Handling Asynchronous Errors
Not all errors occur immediately, just as not all functions can return a result immediately.
ActionScript 3.0 has many functions that perform their task asynchronously, reporting their
result by firing an event. Unfortunately, because exceptions are tied into the control flow and
asynchronous calls may finish after the code inside a try block is done executing, excep-
tions are not an appropriate mechanism to handle asynchronous operations that result in
failure.

Instead, asynchronous operations signal failure using the same method by which they return a
valid result: by broadcasting an event. These error events are broadcast and subscribed to in the
same way as any other event. For a review of events, please reference Chapter 20, ‘‘Events and the
Event Flow.’’

Because asynchronous errors are just events, they are not subject to the exception flow. You must
subscribe to the error events of asynchronous methods if you wish to handle them. An uncaught asyn-
chronous error event gets the same treatment in the debug Flash Player as an uncaught exception: an
alarming dialog box. However, because these errors are asynchronous, the debug player won’t break
into the debugger to show you where your error is; the error is where you forgot to add a handler for
the error event.

To see what asynchronous errors are dispatched by built-in methods, check the AS3LR for that
method and look under the ‘‘Events’’ header. Asynchronous error events typically have names ending
in ErrorEvent, such as IOErrorEvent. In Example 24-4, you add an error event listener to the
socket from Example 24-3.

502

Chapter 24: Errors and Exceptions

EXAMPLE 24-4 http://actionscriptbible.com/ch24/ex4

Asynchronous Error Events

package {
import com.actionscriptbible.Example;
import flash.events.Event;
import flash.events.IOErrorEvent;
import flash.events.SecurityErrorEvent;
import flash.net.Socket;

public class ch24ex4 extends Example {
protected var sock:Socket;
public function ch24ex4() {
sock = new Socket();
sock.addEventListener(Event.CONNECT, onSocketOpen);
sock.addEventListener(IOErrorEvent.IO_ERROR, onIOError);
sock.addEventListener(SecurityErrorEvent.SECURITY_ERROR, onSecurityError);
sock.connect("www.actionscriptbible.com", 80);

}
protected function onSocketOpen(event:Event):void {
trace("Connected succesfully!");
sock.close();

}
protected function onIOError(event:IOErrorEvent):void {
trace("ERROR:", event.text);
sock.close();

}
protected function onSecurityError(event:SecurityErrorEvent):void {
trace("ERROR:", event.text);
sock.close();

}
}

}

This example attempts to connect to a web server, an asynchronous operation. Failure is sig-
naled by broadcasting the IOErrorEvent.IO_ERROR event, which is captured and handled
by onIOError(). Likewise, a security violation broadcasts the SecurityErrorEvent
.SECURITY_ERROR event and triggers onSecurityError().

Capturing Unhandled Events
When an exception is not handled by any catch block in the call stack, or an error event isn’t han-
dled by any event listener, Flash Player aborts executing ActionScript until the next frame, and in the
debug player, pops an error dialog box. In Flash Player 10.1, you can register a global error handler
that catches these wayward errors that fall through every other net. This is your last line of defense
against the unhandled error dialog box.

503

Part V: Error Handling

Version
FP10.1. Global event handlers are only available in Flash Player 10.1. �

With great power comes great responsibility, and the global error handler is not simply there to
absolve you of good error handling. The fact is, an unhandled exception has already done its damage.
There’s not much you can do if your program has already failed to catch the error.

What a global error handler does help with is logging and reporting the error, and preventing that
damnable dialog box. You’ll learn more about what to do with unfixable errors in Chapter 26.

To register a global event handler, listen to the UncaughtErrorEvent.UNCAUGHT_ERROR event
dispatched by the UncaughtErrorEvents object owned by the SWF’s LoaderInfo object. You’ll
learn more about LoaderInfo in Chapter 27, ‘‘Networking Basics and Flash Player Security,’’ but it’s
not necessary to understand now. All you need to do is add the global error handler like so:

loaderInfo.uncaughtErrorEvents.addEventListener(
UncaughtErrorEvent.UNCAUGHT_ERROR, onUncaughtError);

where onUncaughtError() is your global error handler function. Write this code inside any
DisplayObject attached to the display list of the SWF generating errors.

Summary

� Returning a special value to represent errors is an approach with severe limitations.

� Exceptions are a better way to report and handle errors.

� Exception objects represent an error.

� Exceptions can be thrown, caught, rethrown, or uncaught.

� Exceptions interrupt the flow of control of your program.

� Exceptions travel up through the call stack until they find themselves in a try block, and they
match the first catch block that handles exceptions of the same type.

� Error is the base class for exceptions and the catch-all type for catch blocks.

� The type of exceptions denotes the kind of error, and its id and message transmit more
information.

� Uncaught exceptions are caught in the debugger, display an error dialog box in the debug Flash
Player, or stop all frame scripts in the release Flash Player.

� You can create your own Error subtypes to use as custom exceptions.

� Flash Player defines many built-in types of exceptions.

� Asynchronous errors are just events.

504

Using the AVM2
Debugger

E
very builder needs the right tools for the job, and with ActionScript 3.0
comes a much-improved tool for correcting problems: an interactive
debugger. With effective use of the debugger, you can locate and correct

problems in your code intelligently, without hunting or head-scratching.

Introducing Debugging

An interactive debugger performs lots of different jobs. The net effect is that you
can run your program in a controlled environment and interactively follow its
execution. Without a debugger, executing code is like running an experiment
with tiny particles: because you can’t see them, you have to rely on secondary or
tertiary effects of your experiment to determine what’s really going on. You must
carefully craft situations in which you can measure the outcome and attempt to
support your theory with the data. When you have a debugger, it’s like having a
powerful microscope: you can see everything in perfect detail, and make primary
observations rather than deducing cause-and-effect; it removes the mystery from
your code.

When you compile your ActionScript 3.0 program, it turns into a series of sim-
ple instructions called bytecodes that are interpreted by the ActionScript Vir-
tual Machine 2 (AVM2). When you run the program in Flash Player, it’s those
bytecodes that are being interpreted; the system doesn’t know or care what you
originally wrote in AS3 code. But when you compile your SWF with debugging
information and use the debugger, you can watch the program being run by the
AVM2 as if the virtual machine were running your original code and not the
bytecode. You wrote the code, and the bugs are in your code, so you get to see
your code. The debugger helps you visualize your code in action.

Running your program in the debugger is like stepping in as the director and
running a dress rehearsal of your program. You have the script — the source
code — in your hand. But now you can call the shots. You can start and stop
the production. You can stop at a specific scene, or a specific line, and have your

505

Part V: Error Handling

actors read the scene line by line. You can automatically cut the production when a catastrophe
occurs. And you have a camera that lets you focus in on any actor. You can always find where the
production is in the script, and you can always find out how it got there. Using your powers as
director, you can interactively run through your production and work out the kinks in the script.

You’ll see how this metaphor applies as you learn about the features of the interactive debuggers.

Launching the Debugger
The first thing you need to do to debug your program is to get the debugger running. Different prod-
ucts that use ActionScript 3.0 have different options for debugging, which I cover in this section. At a
minimum, to start a debugging session, you need three things:

� A SWF compiled specifically for debugging

� The debugger version of Flash Player

� An AVM2 debugger

These loose requirements mean that you can debug programs in a variety of situations. You can debug
a program running inside your browser from a remote web site, for instance, as long as your browser
is running the debugger version of Flash Player, the remote SWF has been compiled for debugging,
and you are running a debugger locally.

Tip
It’s possible to have different versions of the Flash Player installed in different browsers, as well as to have
a different version of the standalone SWF player. If you are having trouble starting a debugging session,
double-check the installed version of Flash Player in the environment you are attempting to debug the SWF
in. Visit http://actionscriptbible.com/version.swf to get information about your copy of Flash
Player. �

When you’re developing an application on your computer and you run into a problem, you can usu-
ally run a debugging session locally, and if you’re using Flash CS3 Professional and up, Flex Builder 2
and up, or Flash Builder, you can do this with one click or keystroke. So although there is a multitude
of ways you can set up a debugging session, for most purposes it’s a simple affair.

Each development environment for ActionScript 3.0 has its own debugger. If you are building your
applications in Flash Professional, you will use the AVM2 debugger in Flash. If you are using Flex
Builder or Flash Builder, you will use the Flex Debugging perspective or Flash Debug perspective. If
you are using the Flex SDK toolchain, you can use the command-line Flash Player Debugger, fdb.
To get started, let’s look at how to launch a debugging session in the more recent tools: Flash CS5
Professional and Flash Builder 4 Premium.

Starting and Stopping the Flash Professional Debugger
You can start debugging a project in Flash Professional by choosing Debug Movie from the Debug
menu, as shown in Figure 25-1, or by pressing Cmd+Shift+Return (on a Mac) or Ctrl+Shift+Enter
(on a PC).

Doing this compiles your application with debugging information, launches the SWF in the debugger
version of the Standalone Flash Player, and opens panels associated with debugging. You should be
able to see and use the following panels: Debug Console, Variables, and Output. If any of these fail to
appear, you can re-enable them by finding them in the Window ➪ Debug Panels menu. It helps to
organize the panels so that you can see all of them, as shown in Figure 25-2.

506

Chapter 25: Using the AVM2 Debugger

FIGURE 25-1

Starting a debugging session in Flash CS4 Professional

FIGURE 25-2

Debugging in Flash CS5 Professional

507

Part V: Error Handling

To stop a debugging session in Flash, select End Debug Session, either as the red X button in the
Debug Console or under the Debug menu.

Starting and Stopping the Flash Builder Debugger
You can debug a project in Flash Builder by choosing Debug [name of the application] in the Run
menu, by clicking the Debug button (a green bug icon in the toolbar), by setting up a custom debug
configuration (choose Debug ➪ Other), or by pressing an associated keyboard command. Depend-
ing on your project’s configuration, your project will launch in either a browser or a standalone Flash
Player. If you want to debug in-browser, it’s important to make sure that your browser has a debug-
ging version of the Flash Player plug-in installed.

Once the debugging session starts, you may automatically be taken into the Flash Debugging perspec-
tive. If not, click the Flash Debug button in the perspective bar (by default in the upper-right toolbar).
In Figure 25-3, a debugging session is about to be initiated in Flash Builder 4.

FIGURE 25-3

Starting the debugger in Flash Builder 4

In the Flash Debugging perspective, you should be presented with a few views: Debug, Variables,
Console, Breakpoints, and Expressions. The Debug view is analogous to Flash’s Debug Console, the
Variables view to Flash’s Variables panel, and the Console view to Flash’s Output panel. If these views
are not visible, you can enable them in the Window menu. Figure 25-4 shows the Flash Debugging
perspective in action. The Expressions view is not pictured here.

508

Chapter 25: Using the AVM2 Debugger

FIGURE 25-4

The Flash Debug perspective in Flash Builder 4

To stop a debugging session in Flash Builder 4, select Run ➪ Terminate or press the Terminate button
(the red square icon on the Debug view’s toolbar). You can also disconnect the debugger from the
Flash Player without terminating it by pressing the Disconnect button in the Debug view’s toolbar.

Debuggers Compared
The Flash Builder and Flex Builder debuggers are, while essentially the same debugger as the Flash
Professional debugger, easier to use and have a few additional useful features such as temporarily tog-
gling all breakpoints (covered in the section ‘‘Taking Control of Execution’’). If you have the choice,
you might find it easier to debug your programs using the Flash Builder debugger.

Throughout the rest of this chapter, I use the Flash Professional debugger to illustrate debugging con-
cepts. All the interactive debuggers, even the command-line debugger fdb, are operated in the same
manner and support the same kind of actions.

Caution
While the debugger is running, either Flash Player or the browser remains in suspended animation, so it may
appear to be an unresponsive program to the system. Instead of forcibly terminating the player or your browser,
terminate the debugging session first. �

509

Part V: Error Handling

Note
If you are debugging in a browser and you need to use the browser normally while debugging, use a browser
that can run windows in separate processes, or debug in a different browser than you use for browsing. �

Taking Control of Execution
To start a debugging session, you compile a SWF, launch it in a debugger version of the Flash Player,
and connect a debugger to it. Although you’re all set to debug now, nothing might happen. By default,
the program runs normally. As the director, you need an opportunity to step in and yell ‘‘Cut!’’ before
you can start working on a particular bug. This is called breaking the program (break as in ‘‘taking a
break’’ more than ‘‘Honey, I broke that dachshund gravy boat you love’’), or halting execution. There
are three ways to transfer control between normal execution and interactive debugging.

Stopping at an Uncaught Exception
If your debugging session started properly, when things go catastrophically wrong, you will be handed
the director’s bullhorn and have an opportunity to step in. Uncaught exceptions, which without
a debugger connected might pop up a dialog box, now automatically break the execution of the
program right where the error occurs. Figure 25-2 shows a program halted because of an uncaught
exception.

Halting everything when an uncaught exception occurs allows you to get to the cause of the error
immediately, so with little effort, you can fix runtime errors as quickly as they crop up. The combina-
tion of an API that utilizes exceptions fully and a debugging environment that halts automatically on
uncaught exceptions is great for finding and solving small bugs before they become big bugs. You saw
how thoroughly the Flash Player API uses exceptions in the last chapter, ‘‘Errors and Exceptions.’’

In the remainder of this chapter, I look at how to use the tools the debugger gives you. For now
let’s take a sneak peek and see how you can use the debugger to resolve an uncaught exception. In
Figure 25-2, you see the debugger immediately after an uncaught exception halted execution. The
source code of this program is shown in Example 25-1.

EXAMPLE 25-1 http://actionscriptbible.com/ch25/ex1

An Uncaught Exception Halts Execution

package {
import flash.display.Sprite;
import flash.utils.Timer;
import flash.events.TimerEvent;

public class ch25ex1 extends Sprite {
protected var timer:Timer;

public function ch25ex1() {
var timer:Timer = new Timer(500, 1);
timer.addEventListener(TimerEvent.TIMER_COMPLETE, onTimerComplete);
timer.start();

}

510

Chapter 25: Using the AVM2 Debugger

protected function onTimerComplete(event:TimerEvent):void {
if (timer.running) {
}

}
}

}

The arrow in the source editor in Figure 25-2 points to where the program was halted; this
is where the exception must have originated. This line is displayed in bold in the preceding
listing. The Output panel gives you the kind of error that occurred: Cannot access a prop-
erty or method of a null object reference. You can put these two bits of information
together: you tried to access a property or method of null, and it happened on a line where you
check timer.running. At this point you might suspect that the timer reference is null, and
you would be correct. In ‘‘Pulling Back the Curtain,’’ you’ll see how to use the Variables panel to
investigate problems like this.

This runtime error, raised when you try to access something under a null reference, tells you what
ultimately went wrong. You’re likely to see this error when you erroneously assume that an object
existed in the variable you’re accessing. In some cases, null is a valid value for a given variable,
in which case the error is simply assuming that the variable was non-null. In this case, timer
shouldn’t be null, so the cause for the error — looking for a property of a null variable — is
a clue for finding the original logical error. Here, you fully expect timer to exist — after all, it’s
created in the constructor. So why is it null? When you set timer in the constructor, it was to a
local timer variable, which shadowed the timer instance variable. By simply removing the local
variable in the constructor, you can fix the error:

//var timer:Timer = new Timer(500, 1); //original line with error
timer = new Timer(500, 1); //corrected line

Let’s introduce some techniques for using the debugger to answer questions like, ‘‘Why is it null?’’
With these tools, you’ll be able to sleuth out the original cause of an error when the actual runtime
error is only the outcome of a larger error.

Stopping at a Breakpoint
An essential technique for interactive debugging is setting breakpoints. A breakpoint, literally, is a point
in the code at which normal execution will break and you can debug. In the stage rehearsal analogy,
setting a breakpoint is like telling the actors that when they get to a certain point in the script, you’re
going to start directing them. You don’t necessarily have to choose a line where you know an error
occurs, either. You can set the breakpoint a few lines earlier so you can get some context, or you can
set a breakpoint just to make sure a piece of code is behaving as you expect it to. Breakpoints are
gateways between normal execution and debugging.

To set a breakpoint in an ActionScript file in Flash Professional, just click once on the left gutter
(the gray vertical bar to the left of the line numbers) of the line you want to stop at. The breakpoint
appears as a red octagon, like a stop sign. To toggle it off, just click it again. You can also use Debug
➪ Toggle Breakpoint or its associated keystroke. To clear all breakpoints at once, Flash Professional
provides Debug ➪ Remove Breakpoints in This File and Debug ➪ Remove Breakpoints in All AS Files.

511

Part V: Error Handling

To set a breakpoint in Flash Builder, double-click the gutter of the line you want to break at. The
breakpoint appears as a blue circle. To toggle it off, double-click the blue circle, and it disappears.
You can also use the menu item Run ➪ Toggle Line Breakpoint or its associated key command. You
can manage breakpoints in Flash Builder with the Breakpoints view. This allows you to see all the
breakpoints in one spot, selectively remove or temporarily disable them, and clear all of them at once.

Tip
You may not set a breakpoint at a line where there is no executable code. You might also decide to break up a
long expression into multiple lines so that you can set a breakpoint somewhere in the middle. �

When you start a debugging session with breakpoints set, the program executes normally without
interaction until it reaches a breakpoint. In Figure 25-5, a breakpoint has been set on line 28. A
debugging session is then started. Because the line that the breakpoint is on is triggered by a click
on the button, the program executes normally, showing a button, until you click it. At that time, the
program is halted and the debugging windows come to the front. Figure 25-5 shows the Flash Profes-
sional debugger right after the button was clicked.

FIGURE 25-5

The debugger becoming active at a breakpoint

Breakpoints are great for when a program misbehaves in a way that doesn’t throw errors. If you are
getting unexpected results and you have an idea where they might be originating, you can break there,
investigate, and confirm your suspicion.

512

Chapter 25: Using the AVM2 Debugger

Stopping on Demand
Finally, you can halt execution manually, just like grabbing the bullhorn and yelling, ‘‘Cut!’’ This
method of gaining control over debugging is more difficult to control, but you can use it to catch
infrequent bugs that don’t throw exceptions and manifest themselves in a way you can see. When you
halt the program manually, it’s rarely in a useful place, like the beginning of a frame or a timer tick.
But you can take the opportunity to set new breakpoints and then continue normal execution until
they are hit.

In Flash Builder, you can stop execution at the next line of source code to be run by select-
ing Suspend from the Run menu or the Debug view. In fdb, when the program is running
normally, press Enter and confirm the prompt to break normal execution at the next line of
ActionScript.

In Flash Professional, there is no way to force execution to halt immediately. However, in all three
debuggers, you can add a breakpoint while the program is running, which you can exploit in much
the same way to break the program when you see something you want to investigate further.

All in all, this method of halting execution is not as useful as setting breakpoints and often is used as
a means to set breakpoints.

Pulling Back the Curtain
You can gain a complete understanding of your program by tightly controlling its execution and by
examining the state at any step. This section teaches you how to see inside Flash Player, and the next
one covers how to control execution.

Using the Variables panel in Flash Professional, the Variables view in Flash Builder, and the print or
p command in fdb, you can examine the value of any variable in scope at the current line.

ActionScript developers may be used to adding trace statements to find out the value of a variable.
Logging with trace() or a custom logger is still a possible debugging technique, but examining
the variables interactively while execution is halted enables you to spot things you weren’t looking
for, gives you feedback instantly, and lets you investigate whatever you want without adding code or
recompiling.

Tip
Logging a value can be more effective than inspecting variables in certain cases. Remember to always use the
tool that is best suited to the task! When you have to see what range of values a variable can take, or you want
to collect a large sample of possible values, it’s better not to have to stop execution for every measurement. In
these cases, logging the values and analyzing the results afterward may be a better technique. �

Interpreting the Variables Panel
The Variables panel is a tree view in two columns. The left column shows the name of the variable or
property, and the right column shows its value. Because types are maintained at runtime, the debugger
can format these appropriately: Strings appear in quotes, ints appear as numbers and optionally
with a hexadecimal interpretation, and Booleans appear as true or false. Complex types and

513

Part V: Error Handling

Arrays and Objects that are non-null display their type and their location in memory, and you
can expand them to see, in turn, their contents.

In Figure 25-5, the Variables panel is visible. The code being executed is shown in the figure and
listed in Example 25-2.

EXAMPLE 25-2 http://actionscriptbible.com/ch25/ex2

Using the Variables Panel

package {
import flash.display.*;
import flash.filters.BevelFilter;
import flash.events.MouseEvent;
public class ch25ex2 extends Sprite {
protected var button:Sprite;
public function ch25ex2() {
button = new Sprite();
button.graphics.beginFill(0xaaaaaa);
button.graphics.drawRoundRect(-50, -10, 100, 20, 6, 6);
button.graphics.endFill();
button.filters = [new BevelFilter(2)];
button.buttonMode = true;
button.x = stage.stageWidth / 2;
button.y = stage.stageHeight / 2;
addChild(button);

button.addEventListener(MouseEvent.CLICK, onButtonClick);
}
protected function onButtonClick(event:MouseEvent):void {
doSomethingTricky(event.localX, event.localY);

}
protected function doSomethingTricky(x:Number, y:Number):void {
var distance:Number = Math.sqrt(x * x + y * y);
trace("Distance:", distance);

}
}

}

The debugger is halted at a breakpoint set at the line presented in bold in the preceding code. The
Variables panel in Figure 25-5 displays all the variables in scope. This includes local variables bound
to the arguments of a method, such as x and y; local variables created with var, such as distance;
and instance variables of the class the code is executing in the scope of — in other words, everything
under this. If you were to expand the view of this, you would find the instance variable button,
but also all the properties of a Sprite such as scaleX and visible, because the example extends
Sprite.

The variables in scope depend on where in the code you’re looking, and they represent the variables’
state at the moment in time you are looking at. The line that your program is about to run is marked

514

Chapter 25: Using the AVM2 Debugger

with an arrow, which in Figure 25-5 is superimposed over the breakpoint symbol because the pro-
gram is halted exactly at the breakpoint. You can see that the distance variable is undefined. That’s
because the current line calculates distance, and it has not run yet. You can see the values of x and
y, and you can see the type of this, which verifies the class that is currently in context.

You can configure the Variables panel to show all the fields of a class, including its private instance
variables, implicit getter functions and derived properties, constants, and static variables, by using the
Variables panel menu (the icon with the downward facing arrow on the top right corner of the panel).

Flash Builder Variables Panel and Watches
The Variables view in Flash Builder has some convenient options not present in the Flash Professional
debugger. Flash Builder gives you more temporal feedback on variables: when variables change or are
assigned new values, they flash red momentarily. The Flash Builder Variables view enables you to see
the currently selected variable in a detail pane, which uses text wrapping so you can see long strings,
XML, and other verbose variables in detail.

In addition, Flash Builder’s Flash Debug perspective adds an Expressions view to the Variables view.
This is similar to the Variables view, but it lets you watch just the values you are looking for, and it
lets you construct simple expressions that are evaluated at the current line in the debugger. This is
handy for keeping an eye on certain values or watching for a specific situation that you can write an
expression to test for. You manually add and remove watch expressions from this view. For example,
you could watch a deeply nested property without the need to roll down all the objects in the Vari-
ables panel by adding an expression like:

this.loader.content.width

Tip
Often, expressions you write can be evaluated only in a certain scope. Outside this scope, your watch expres-
sion displays in red as <errors during evaluation>. Don’t let this stop you from creating the watch
expressions that help you in a particular scope. �

In the command line debugger fdb, you can add and remove watch expressions with the display
and undisplay commands.

Navigating through Code
With an interactive debugger, you can drive the execution of your program. Once you break normal
execution of the code, you can take over, moving and jumping ahead in your program. (Unfortu-
nately, you can’t jump back.)

Continue
You can resume normal execution of a suspended program by continuing. You will give up debugging
control over the program until execution is again halted by another breakpoint or uncaught exception.

You can use a combination of continue and breakpoints to jump a long distance forward in your pro-
gram. When execution is halted, you can set a new breakpoint and then click Continue to jump right
to it, provided Flash Player doesn’t hit another breakpoint or uncaught exception first.

515

Part V: Error Handling

You can continue a suspended program in Flash Professional by choosing Debug ➪ Continue or by
clicking the green right-facing triangle button in the Debug Console panel.

In Flash Builder, the command is called Resume, and it is found in Run ➪ Resume or as a yellow bar
and green triangle button, reminiscent of the Frame Advance button on a VCR, in the Debug view.

In fdb, type c or continue to continue a suspended program.

Continue can be useful if you have a breakpoint set on a function triggered multiple times or by user
interaction, and you are interested in it only in certain cases. When the program breaks and you don’t
have anything to debug in this particular case, you can click Continue and wait for the code to be
invoked again.

Tip
If you are using Flash Builder’s Flash Debug perspective, as an alternative to setting a breakpoint and continuing
multiple times when it’s not relevant, you can set a breakpoint and toggle whether it is active or not using the
Breakpoints view. This way, you can keep your breakpoints set but ignore them until you’re ready to trigger the
case you want to debug. An inactive breakpoint will not break the program when it is reached. �

The Call Stack
As the ActionScript virtual machine executes your code, it has to shift gears all the time. Every time
you call a function, the AVM must remember what it was doing, what the scope was, what all the
local variables were immediately before the function call. With this information secured away, it can
start with a clean slate in the new function, which may be running in a different scope (as a bound
method) and with a new set of local variables. Similarly, once it reaches a return statement, it must
grab that return value; go back to whatever it was doing before, with all the scope and local variables
restored; use the returned value as the evaluation of the function call; and continue executing.

Every time the AVM enters a function, it adds a new stack frame onto the call stack. This frame repre-
sents the new environment: the scope, the local variables, and the location in the code. The new stack
frame is added on the top of previous frames, which provide a trail of crumbs back to where the out-
ermost method was invoked. When the function returns, that executing frame is complete, and it pops
off the top of the stack. Finally, the AVM returns to the calling function and its stack frame, which is
the new top of the stack. Therefore, the top of the stack always represents the currently executing
environment.

In the following example, if you create a new A, the stack builds up as the constructor for A calls the
constructor for B, and the constructor for B calls the method c(). As each function returns, however,
it returns control to the line that called that function, and so on until the end of the constructor of A
is reached, and the work of making a new A is over.

class A {
var b:B;
public function A() {

//1. call stack is A::A
b = new B();
//6. call stack is A::A. Now return and stack is empty.

}
}
class B {
public function B() {

516

Chapter 25: Using the AVM2 Debugger

//2. call stack is B::B, A::A
c();
//5. call stack is B::B, A::A

}
protected function c():void {
//3. call stack is B::c, B::B, A::A
return;
//4. start going back up

}
}

The call stack gives context to the code that’s being executed. When you view the contents of the
call stack, you’re looking at a stack trace. Although you might be looking at a line somewhere in a
class, that line is executing as the result of a chain reaction of method calls, which the stack trace is
documentation for.

Both the Debug Console panel in Flash and the Debug view in Flash Builder give you an interactive
view of the call stack. You can use it as a stack trace, to see why the current line of code is being run.
In Figure 25-5, you can see that the current method is doSomethingTricky() because it is at the
top of the call stack, and it was called by the entry below it, onButtonClick().

In fdb, use bt to print a backtrace, another term for a stack trace.

The call stack in the graphical debuggers is interactive: if you click a stack frame below the current
one (which is, again, always on top), the code view, current line, and variables view refresh to show
you the state of the suspended stack frame. You can see the code that called the method you’re cur-
rently debugging and the state of the scope and locals in that frame when it invoked the function.

Step Into
You can move a line forward in your program with ease. When you do this repeatedly, you are
stepping through your code. In general, a step takes you forward one line of the program. But even this
definition has some ambiguity, and there are three kinds of steps you can take to step forward. Step
Into takes you to the next line of code to execute, drilling into any calls the current line might make.

For example, if this line of code were up next:

var name:String = getName(); //<---
name = "Mr. " + name;

Step Into would transport you to the first line of the getName() function, rather than to the line that
adds ‘‘Mr.’’

Step Into drills its way into accessor functions, even if they are implicit. So when you see an innocu-
ous assignment such as the following:

color = child.color;

you may end up stepping first into the implicit getter function for color (on child) and then
into the implicit setter function for color on this. A single line like this, when executing, can
end up jumping to many different parts of a program before finishing. Step Into follows every line
that the AVM executes without sparing you details.

517

Part V: Error Handling

Caution
While stepping into, the AVM2 debugger does not enter Flash Player API calls. These are part of the Flash
Player software and are not written in ActionScript, nor do their internals become part of your program. The
debugger steps through lines of code that are compiled into your program from ActionScript or SWCs. How-
ever, the Flex framework is written in ActionScript, and the AVM2 debugger does attempt to step into the
framework’s internals if you step into a Flex API call. �

Stepping through code while inspecting variables gives you a perfect view of how your program actu-
ally works (or fails to work). It is the ultimate in virtual machine voyeurism.

Step Over
Step Into might provide you with more excruciating detail than you need. If you find yourself impa-
tiently clicking Step Into over and over, you should either jump ahead to another breakpoint or use
Step Over. Step Over lets you jump to the next line in the current scope, if it exists, jumping over
any function calls that exist in the current line. These calls are performed and completed, but you
don’t have to see them step by step; just as when you continue until the next breakpoint, all code in
between is executed normally.

Use Step Over when you’re interested in the behavior of a certain block of code or algorithm and want
to track it without shifting perspective into other stack frames. Step Over may be the most useful kind
of step.

Step Out
Step Out (in Flash Professional) and Step Return (in Flash Builder) are used to jump out of the cur-
rent stack frame. They execute everything in the current function until the function returns, and they
leave you at the previous stack frame, where the function was called from.

Step Out is useful when you accidentally step into a function, or when, in looking at code in the
debugger, you develop a suspicion that the problem lies in a calling function rather than the current
one. You can somewhat preview a Step Out operation by examining the stack frame that you would
return to by actually stepping out, but that won’t do anything to actually move the current line or step
forward in the execution of the code.

Debugging a Simple Example
In this example, I tried to make a rocket ship point toward your mouse cursor. But I left in an error
that you can use the debugger to help find. First, the code:

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.Point;
public class RocketShipExample extends Sprite {

protected var ship:MovieClip;
public function RocketShipExample() {
ship = getChildByName("rocketshipMovieClip") as MovieClip;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {

518

Chapter 25: Using the AVM2 Debugger

var p:Point = new Point(stage.mouseX, stage.mouseY);
p.subtract(ship.localToGlobal(new Point()));
var radians:Number = Math.atan2(p.y, p.x);
ship.rotation = radians * 180 / Math.PI;

}
}

}

This class was set as the document class of a new Flash file. I drew a rocket ship, made it a movie
clip symbol with the registration point at the center, and set its instance name on the stage to
rocketshipMovieClip.

On every frame, the class changes the rotation of the ship so that its nose points toward
the mouse cursor. It does this by constructing a vector that points from the center of the ship (the
MovieClip’s registration point) to the current position of the mouse. Then it takes the arctangent of
this vector to get its angle and assigns that rotation to the ship, converting from radians to degrees
along the way.

Or, that’s the way it should work. But when you run this, the rocket ship only seems to point
between right and down (0 to 90 degrees). There’s something wrong, but no errors are thrown, so
it’s up to you to figure out where the error is. The angle that’s produced is incorrect, so you know
that the error must be somewhere in the lines that produce that angle (lines 15–18, as shown in
Figure 25-6).

FIGURE 25-6

Debugging the rocket ship example

You’ll figure out what is going wrong with the angle calculation by looking at the variables involved.
Set a breakpoint at the beginning of the calculation, line 15. When you start debugging, the program
immediately breaks before you can see what’s going on. This might be a good opportunity to add a
breakpoint at runtime, so you can try removing the breakpoint, seeing how the rocket ship reacts to
the mouse, and adding the breakpoint during the debug session when you’re ready to dive in. Because
code runs every frame, adding a breakpoint inside onEnterFrame() while the program is running
suspends execution on the next frame.

519

Part V: Error Handling

The first two lines create a Point object that defines the vector between the rocket ship and the
mouse, or, to think of it another way, the location of the mouse with the origin placed at the center
of the ship. First, the point p is set to the absolute position of the mouse. To see this assignment, you
can step into or step over after the breakpoint. This executes the line you were at (the breakpoint, line
15). In the Variables panel, p turns from null into a flash.geom.Point. Use the Variables panel
to examine the contents of this object by clicking the plus/minus box. The Point contains properties
x, y, and length. In Figure 25-6, you can see that p.x is 17 and p.y is 84.

The next line shifts that point so that it’s relative to the position of the rocket ship rather than abso-
lute. It gets a new Point, which is initialized to (0, 0), and converts that location on the rocket ship
to a global location. By converting the origin of the rocket ship to the global coordinate space, you
find the absolute location of the ship. Then that location is subtracted from the position of the mouse
to find the position of the mouse relative to the ship. Again, Step In or Step Over to execute the line.
Note that because the inner function calls in this line are calls to the Flash Player API, Step Into does
not drill into them. After you execute this line, keeping your eye on the Variables panel, you should
notice that the properties of p don’t change. This means that either the rocket ship is at the origin of
the global coordinate space (because subtracting (0, 0) wouldn’t do anything) or there is an error in
this line. If you want to eliminate the possibility of the first case, you can stop debugging to create
an intermediate variable that you can then monitor, as discussed in the next section. However, if you
check that line more carefully with the knowledge that p doesn’t change, you should be able to realize
the error in this code.

Calling subtract() on p doesn’t change the value of p. Why? Because Point::subtract() is
a nondestructive method. It returns the result of the subtraction rather than performing it on itself.
Mixing up destructive methods with nondestructive methods is a common programming slip-up, espe-
cially when the method name doesn’t hint at whether it is destructive or not.

To fix the example, simply change line 16 to read as follows:

p = p.subtract(ship.localToGlobal(new Point()));

Interactive debugging is an investigative science. You have to use the tools in the debugger together to
collect facts or run tests that confirm or disprove hypotheses. The most important tool in debugging is
your brain. The debugger doesn’t debug your programs — you do.

Using the Debugger Effectively
I’ve covered all the basic techniques you can employ to debug programs in ActionScript 3.0. As you
use the debugger, you can develop your own combinations of techniques that help you figure out
different kinds of problems. Here are a few techniques that can help you get started.

When you encounter an uncaught exception, the call stack is especially useful in figuring out why it
happened. In these cases, you have no control over where the program breaks, so rather than go back
in time, which you can’t do, you can go up the call stack, examining the Variables view in previous
stack frames to, at a minimum, build up a case that can replicate the error or, at best, determine the
problem right off the bat.

You should use the Variables panel or Variables view liberally to not just see what variables are at a
certain line but watch them as the code executes. However, you can also use it to assign new values to
variables at runtime. You can use this to see how your program will deal with invalid input or excep-
tional cases, and you can use it to instigate rare errors manually, if you know what situation leads to
that kind of error.

520

Chapter 25: Using the AVM2 Debugger

When you have complex expressions that you can’t step into, you might consider — at least
temporarily — splitting the expression into intermediate variables. This way, you can debug the
expression piece by piece when you could not otherwise. For example, you might break up this:

return (Math.sqrt(x * x + y * y));

into this:

var x2:Number = x * x;
var y2:Number = y * y;
var sum:Number = x2 + y2;
var ret:Number = Math.sqrt(sum);
return ret;

This way, you can use the Variables panel to examine all the constituents of the expression one
by one.

A similar technique is to use the Variables panel to try out several options for evaluating an expression
if things aren’t working right one way. Again, create several local variables to hold the results of the
expression evaluated multiple ways. You can then set a breakpoint after they’re evaluated and check
them out in the Variables panel. This is a lot better than tracing out their values because you can dig
into their references if they are complex objects.

At the top of a function, you might notice that all the local variables are already populated in the Vari-
ables view, but with unassigned values (null for objects, NaN for Numbers, and so on), even if you
don’t declare these local variables until later. This is because the ActionScript 3.0 compiler uses vari-
able hoisting: all the declarations for local variables are moved to the top of the function even if they
don’t get an assignment until later. This fact shouldn’t affect your program, but you will be reminded
of it by the compiler if, for example, you create a variable inside a loop block with the same name as
one that’s declared elsewhere in the method.

You can use Continue as a kind of code stepping for loops. Set a breakpoint at the first line of the
body of a loop, and click Continue to step to the next iteration of the loop body.

Given an interactive debugger, some techniques for utilizing it, and a forensic approach, you should
be able to fix bugs in your code quickly, effectively, and without resorting to trial and error.

Summary

� The AVM2 debugger is an interactive tool that helps you fix problems in your program.

� There is a version of the AVM2 debugger for each product that uses ActionScript 3.0.

� The debugger must be launched with a SWF compiled for debugging and using a debugger
version of Flash Player.

� IDEs such as Flash Professional, Flash Builder, and Flex Builder let you launch debugging
sessions in one click.

� The program executes normally until the debugger takes over.

� The debugger can take over at an uncaught exception or a breakpoint.

� You can use the debugger to examine, and even change, properties of any variable in scope.

521

Part V: Error Handling

� You can follow any reference in the debugger to reach nested or associated objects.

� You can watch the variables change as you move through the program.

� The call stack allows you to see what called the current code.

� The call stack enables you to switch perspective through all the lines that called methods to get
to the current line.

� You can examine local variables at other depths of the call stack.

� You can move through the program with Step Into, Step Over, Step Out/Return, and Continue.

� The debugger is a set of tools, but the real debugger is you. Set up experiments and test cases
that can help you get to the bottom of a bug.

522

Making Your
Application
Fault-Tolerant

Y
ou can call it many things: fault-tolerant, bulletproof, robust. However

you describe it, an application that doesn’t shatter when things go wrong
is a joy to use. These kinds of applications behave well not through luck

or coding practices but because an extensive error-handling strategy was devised
and applied. This chapter introduces the kinds of errors that can occur and gen-
eral strategies for handling them.

Developing a Strategy

Why does your application need an error-handling strategy? Despite the best
efforts of the smartest people, things always, always, always go wrong. If you
do nothing to recover from errors, your program can appear to malfunction to
the end user. In Chapter 24, ‘‘Errors and Exceptions,’’ you learned that uncaught
exceptions in the release versions of the Flash Player terminate all code execut-
ing on the frame. Although this might not sound so bad — at least the program
keeps going on the next frame, right? — terminating all code for a frame can be
disastrous, skipping vital code and leaving the internals of your program in an
invalid state. Imagine if one day, without warning, you were transported forward
in time a full year. You would find your taxes have not been paid; you haven’t
showed up to work; and you haven’t answered your spouse’s calls. Things would
probably not be so great for you. Just like life, most programs have to finish
things up in an expected way before moving forward, so you can’t rely on the
default behavior of uncaught exceptions.

Handling failures is not as simple a topic as it might seem. Especially for large
applications, it’s important that you develop (and even document) a strategy for
handling failures. To do this, you need to determine what kinds of failures you
should handle, how you should handle them, and what kind of information to
collect and display about them.

523

Part V: Error Handling

Determining What Errors to Handle
Catching exceptions is only the beginning of an error-handling strategy. Any kind of input that you
are expecting from outside your program, especially from the internet or a user, should be validated.
You should be prepared for any request from a network to fail, including both multimedia content
and server requests. Not only could the resource you are looking for have been moved, but it’s possi-
ble that the server hosting it is down or unavailable, or the user’s computer’s connection is terminated
or disrupted.

If your project has a server-side component, code on the server might fail. When this happens,
the request might complete successfully from a networking perspective, but the result might not
be a valid response. For example, you might make a request expecting an XML file to be served
in response but receive an error from the web server or the script’s interpreter. If you go to
http://example.com/dosomething.php?make=measammich and expect something like this:

<?xml version="1.0"?>
<response>

<banhmi/>
</response>

there may be a chance that an error in the server code will result in a response that isn’t valid XML:

Notice: ARGGH i died! in
/usr/local/share/apache/www/example.com/dosomething.php
on line 1

If you have any control over the server-side component of a client-server application, you should
ensure that server-side failures are communicated to your program in a way that you can capture that
information. You need to be able to determine that an error happened on the server side, and you
have to prevent your program from interpreting the error message as it would normal data.

Even if you include measures that validate security concerns, it’s possible that your requests might still
fail if the user specifically denies them. You should handle denied requests, even when they should
be accepted by default. For example, requests to store information locally with a SharedObject (see
Chapter 29, ‘‘Sharing Data Locally with SharedObject’’) or capture audio from the user’s microphone
(see Chapter 33, ‘‘Capturing Sound and Video’’) may require permission from the user. Users can also
use software or their browser preferences to deny storing cookies or opening pop-up windows.

It’s not possible to list all potential causes for error that you should handle, but here is a partial list:

� Errors loading XML/text

� Strings/XML not formatted as you expect

� Errors loading images/video/sound/SWFs

� Events coming from unexpected targets

� Functions that return error codes or null

� Functions that raise exceptions

� Server-side errors

� Timeouts in network requests

� Security sandbox violations

� State of the display list not as expected

524

Chapter 26: Making Your Application Fault-Tolerant

In addition, keep your eyes open to the kinds of errors you get as you are actively developing your
program. An error that occurs to you once in a freak accident can point you to a weakness in your
error-handling strategy.

Categorizing Failures
After identifying the kinds of errors that might occur in your program, you can determine how to
react to them. For each potential error, there might be steps you can take to alleviate the problem. For
some errors, however, there may be no way to recover. In determining how to handle an error, you
must first decide if it is possible to recover from it. These kinds of decisions affect how the application
works for the end user, and they should be made with the end user’s experience in mind.

For example, if an image fails to load, you can draw a ‘‘broken image’’ icon or placeholder image in
its place. But think about how it will make your program behave. In some cases, drawing a place-
holder image might not be appropriate, for example if the image is a CAPTCHA image. CAPTCHA
images are simple queries that theoretically prove that a human user is interacting with the computer
by requiring some trivial task that is difficult for a computer, typically recognizing a distorted word,
as demonstrated in Figure 26-1. If this image fails to load, showing a replacement image won’t be an
acceptable solution, as Figure 26-2 makes evident. This example illustrates the need to react to errors
based on the user’s experience. A good strategy in one case can be unacceptable in another case.

FIGURE 26-1

A program using a CAPTCHA image

FIGURE 26-2

A program using an error-handling strategy for images that fail to load

In general, your intent in handling an error should depend on the severity of the failure. If the error is
nonfatal, your intent should be to return the program to a state in which everything else can continue
normally. If the error is fatal, your intent should be to try again, or gracefully terminate the program.

Returning the program to a normal state can be difficult, especially if other areas of the program
depend on something that failed. You must also ensure that even if a runtime error disrupts the flow
of control of your application, you can resume and perform necessary cleanup code. In other words,
make sure you utilize the catch and finally blocks when handling runtime errors.

In addition to your primary goal of returning the program to normalcy, two actions are useful to any
error-handling strategy: logging errors and reporting failures to the user.

525

Part V: Error Handling

Logging Errors
Why should you log errors? When developing an application, these logs can be vital to your own
development and bug-fixing process. Once the application is deployed, the logs can help you col-
lect and fix bugs that appear in the wild. For instance, if the person who paid for the software you
developed has some problem with it on her computer at home, the hope is that you will still be able
to investigate the causes of that failure.

Logging, although it technically doesn’t help you handle an error once the error occurs, is an essential
part of any long-term error-handling strategy. Without logging, you won’t be able to tell the difference
between a program that is handling lots of faults correctly and a program that is having no trouble at
all. Error logs help you start identifying problems without a debugger (remember that a debugger only
works with SWFs compiled for debugging, which the public versions of your application probably
won’t be), and they let you capture error information in a way that you can control and retain.

Logging can be tricky because there are many ways to get information out of a running SWF. Your
approach can greatly depend on how your program is deployed, as well. Therefore, the implementa-
tion details of different logging methods are beyond the scope of this book. Some ways you can log
information, in brief, are

� Using trace() output — This method can be viewed only if you have the debugging version
of Flash Player and have it configured correctly for logging. This approach takes no effort
to write code for, but it can be complicated to set up properly, especially if you need to
capture logs from a SWF running in a browser. Mark Walters explains how in his post at
http://bit.ly/capture-trace.

� To a separate application through sockets or a LocalConnection — This approach doesn’t
require special setup of the Flash Player but does require an external application to capture
the logs. Several third-party products provide the external log viewer and the framework
to log to it. Popular loggers (that often provide further debugging features) include SOS
(http://fdt.powerflasher.de/developer-tools/sosmax/home/), XRay
(http://osflash.org/xray), and Arthropod (http://arthropod.stopp.se/).

� To the browser or enclosing web page using JavaScript — One example of this is
logging to FireBug, a debugging extension to the Firefox browser. This approach
requires that specific browser and extension, but it is easy to set up. One implemen-
tation of this idea is hosted at http://bit.ly/logger-marumushi, another at
http://bit.ly/logger-grumblecode.

� To a file, if the program is running on the desktop with Adobe AIR — One approach is
described at http://dispatchevent.org/roger/logging-to-a-file-in-apollo.

� To a server — You should be careful of both network overhead and privacy concerns if you
choose this method. You should let the user know exactly what is being transferred and avoid
logging personal or sensitive information at any cost.

In all these cases, you should log information that will help you debug problems if they arise. A
message in the log that says, ‘‘Something went wrong!’’ is useless. Log a description of what went
wrong and where. The following snippet shows specific messages depending on the kind of error that
happened:

public function displayText():void {
try {

var tf:TextField = TextField(getChildAt(0));
tf.htmlText = "Hello World!";

} catch (error:RangeError) {
Console.log("displayText(): No display child found at position 0!");

526

Chapter 26: Making Your Application Fault-Tolerant

} catch (error:TypeError) {
Console.log("displayText(): Display child at position 0 \

is not a TextField!");
}

}

All the preceding logging methods require you to write slightly different code, so in place of
Console.log() you might see trace() or Log.getLogger().log() or something entirely
different. The concept is always the same, however: get a message out of the program without
notifying the user.

Along with a message, it is typical to log the severity of the error. The canonical error severities are:

� info — Not an error, just information. You should remove most of these before deploying
your program for general use.

� warn — A warning. Something is atypical and might cause an error later, or an easily recover-
able error was handled.

� error — Some kind of error. Should be recoverable.

� fatal — An error that can’t be recovered from. The program must terminate.

A severity is sent along with a logging message in some way similar to this:

Log.getLogger("com.actionscriptbible.Shell").fatal("Can’t load main SWF!");

ActionScript 3.0 doesn’t specify how logging should work or the syntax for logging errors.
However, if you are using Flex, it has a good logging framework that you should employ. The
preceding example shows the syntax used in the Flex framework logging system. The class name
com.actionscriptbible.Shell is used here as a logging category to help you identify where
the error came from.

Whichever way you choose to log errors, having a record of those errors will benefit you.

Messaging the User
An important component of handling errors — both ones that can be recovered from and especially
fatal ones — is messaging the user. In some cases this can be implied, such as using a ‘‘broken image’’
icon. In other cases you can reuse a general error dialog, like the one shown in Figure 26-3, to com-
municate explicitly.

FIGURE 26-3

A reusable message dialog box

If you are doing something that might take a while, you should definitely warn the user. For example,
if a server call fails to return, you could wait a moment and try it again. If this is going to take more
than a second or two, it might be good to let the user know that there is some network trouble.

527

Part V: Error Handling

If the server fails outright when the user requests some action, the expectation that the request was
fulfilled is not just your program’s but the user’s as well. You should let the user know if a request she
initiated was not completed normally. For example, if she clicks the Save button but the server can’t
save the file, you should be a pal and tell her that her document wasn’t actually saved. Otherwise, she
might close your program, lose her changes, and will probably be very unhappy when she finds out
much later what happened, filing a complaint with the Ministry of Flash. They will then find out you
read this book and undoubtedly forward the complaint to me, and I will be very, very, disappointed
with you.

Of course, you want to limit the feedback you give users. We all know how irritating it can be to be
assaulted with dozens of confirmation dialog boxes that you don’t care about. If the user doesn’t need
to know that you recovered from an error successfully, just log it. Remember, I get those complaints,
and I read every one.

In the case of a completely fatal error, the best thing you can do is inform the user and, depending
on who the audience is, consider providing an explanation. We’ve all had the experience of staring at
a stalled, or blank, or messed-up screen, wondering if we should just keep waiting or give up and
reboot. Not knowing makes the experience even more harrowing. Although you should do every-
thing in your power to avoid the situation in the first place, making a complete failure into an elegant,
apologetic event can parlay a user’s frustration into some measure of appreciation.

Degrading Styles: An Example
Example 26-1 shows a text field that tries to display a message with some styling. Because the style
isn’t as important as the message, failing to load the style sheet isn’t treated as fatal. In all failure
cases, a bare-bones style, which is compiled into the program, is used. Additionally, a timer stops the
stylesheet from loading if it takes more than 2 seconds.

EXAMPLE 26-1 http://actionscriptbible.com/ch26/ex1

Gracefully Handling Load Failure

package {
import com.actionscriptbible.Example;
import flash.events.*;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.text.StyleSheet;
import flash.text.TextField;
import flash.utils.Timer;

public class ch26ex1 extends Example {
protected const STYLESHEET_LOCATION:String =
"http://actionscriptbible.com/files/example.css";

protected const BASIC_STYLE:String =
"a {text-decoration: underline; color: #0000ff}";

protected const TIMEOUT:int = 2000;
protected var timer:Timer;
protected var loader:URLLoader;
protected var tf:TextField;

public function ch26ex1() {
makeTextField();

528

Chapter 26: Making Your Application Fault-Tolerant

loadStyleSheet();
trace("\n\nLogging ---------------");

}
protected function makeTextField():void {
tf = new TextField();
tf.width = stage.stageWidth;
tf.height = stage.stageHeight;
tf.multiline = true;
tf.wordWrap = true;
addChild(tf);

}
protected function loadStyleSheet():void {
loader = new URLLoader();
loader.addEventListener(IOErrorEvent.IO_ERROR, onLoadError);
loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,onLoadError);
loader.addEventListener(Event.COMPLETE, onLoadSuccess);

loader.load(new URLRequest(STYLESHEET_LOCATION));

timer = new Timer(TIMEOUT, 1);
timer.addEventListener(TimerEvent.TIMER, onTimeout);
timer.start();

}
protected function onLoadError(event:Event):void {
removeEventListeners();
trace("Error loading CSS:", event.type, ". Using basicstyle.");
setDefaultStyle();

}
protected function onLoadSuccess(event:Event):void {
removeEventListeners();
try {
var cssText:String = loader.data;
var styleSheet:StyleSheet = new StyleSheet();
styleSheet.parseCSS(cssText);
setStyle(styleSheet);
trace("CSS set successfully");

} catch (error:Error) {
trace("Error parsing CSS. Using basic style.");
setDefaultStyle();

}
}
protected function onTimeout(event:TimerEvent):void {
trace("CSS loading timed out. Using basic style.");
loader.close();
removeEventListeners();
setDefaultStyle();

}
protected function removeEventListeners():void {
timer.stop();
timer.removeEventListener(TimerEvent.TIMER, onTimeout);
loader.removeEventListener(IOErrorEvent.IO_ERROR, onLoadError);

continued

529

Part V: Error Handling

EXAMPLE 26-1 (continued)

loader.removeEventListener(SecurityErrorEvent.SECURITY_ERROR,onLoadError);
loader.removeEventListener(Event.COMPLETE, onLoadSuccess);

}
protected function setDefaultStyle():void {
var styleSheet:StyleSheet = new StyleSheet();
styleSheet.parseCSS(BASIC_STYLE);
setStyle(styleSheet);

}
protected function setStyle(styleSheet:StyleSheet):void {
tf.styleSheet = styleSheet;
tf.htmlText = ‘<p>Welcome to the AS3Bible! ‘ +

‘Go here.</p>’;
}

}
}

The example responds to all errors that might arise when loading the CSS file from the internet,
in onLoadError(). If there’s an error parsing the CSS for any reason, you catch the errors in
the catch block of onLoadSuccess(). A timer is also used to stop waiting for a long load
(perhaps a bit contrived, as a very long delay will eventually trigger a load error on its own), calling
onTimeout() if the program is tired of waiting. All of these log a message with trace(), and all of
them fall back on a recovery strategy — using a built-in stylesheet, set in setDefaultStyle().

Another approach to this problem is to add the text into the text field at the beginning and redraw
the text with the appropriate style after the stylesheet loads successfully. This way, the user can
see the content without delay. On the other hand, it might produce a visible flicker as the text is
redrawn. These kinds of considerations are at the core of an error-handling strategy.

Summary

� It’s necessary to come up with a comprehensive error-handling strategy.

� Error handling isn’t just about try/catch blocks.

� You should handle errors that occur from a variety of sources, including from any remote or
unverified source.

� Some errors you can recover from; others are fatal.

� Think of errors from the user’s standpoint: how does the program behave?

� When you handle an error, your job is to return the program to a normal state and make sure
that dependent code will be okay.

� When errors occur, log them.

� Logging can be done many different ways, each with its pros and cons, depending on the envi-
ronment your program executes in.

� When errors affect the user, let the user know with some kind of feedback.

� When errors are fatal, let the user know.

530

Part VI

External Data

IN THIS PART

Chapter 27
Networking Basics and Flash
Player Security

Chapter 28
Communicating with Remote
Services

Chapter 29
Storing and Sending Data with
SharedObject

Chapter 30
File Access

Networking Basics
and Flash Player
Security

FEATURED CLASSES

flash.display.Loader

flash.net.URLLoader

flash.net.URLRequest

flash.net.URLVariables

flash.net.sendToUrl()

flash.net
.navigateToUrl()

flash.system.Security

A
time will come where you, like Leif Eriksson, will yearn to leave the
fjords of Iceland, which you’re accustomed to, and explore the great
unknown across the Atlantic. Now, replace ‘‘fjords of Iceland’’ with

‘‘the contents of memory’’ and ‘‘the Atlantic’’ with ‘‘the internet,’’ and you’ve
got something to talk about. The experience of crossing the sea differs for
each who crosses it, and so varies the manner in which you can communicate
with the vastness of the internet. Besides containing an incomprehensible
variety of data in a comparably broad multitude of formats, the internet has
innumerable services you can communicate in both directions with. In this
and the following chapters, I’ll dive into the many ways Flash Player can make
use of the internet. In this chapter, I’ll start with some of the most useful
and simple ways to do so. I’ll present an overview of the most common and
best-supported protocol in Flash Player for networking, HTTP. You’ll use
ActionScript 3.0 to open a web page, load graphics and SWFs, and load files.
Finally, I’ll look at Flash Player’s security model, which you must be aware of
when developing networking-enabled applications.

HTTP in Brief

The internet is kept alive by the furious and continuous exchange of information.
This exchange takes place in a variety of protocols. These application-layer pro-
tocols are agreements between two computers connected to the internet on how
they should structure their communication. Some examples of application-layer
protocols are FTP, Bittorrent, DNS, IMAP, POP3, and SMTP. The whole of
the World Wide Web, however, is built on one application layer protocol: the
HyperText Transfer Protocol (HTTP).

533

Part VI: External Data

Note
The internet itself relies on a whole stack of lower and lower-level protocols. Each layer of protocol builds on
the ones below it, providing more structure. You can learn more about the seven-layer model of networking
protocols, or OSI model, in a networking text or online (http://en.wikipedia.org/wiki/OSI model).
In addition, although not part of the burrito-like seven-layer model, there are protocols on protocols that live
on top of HTTP. I’ll touch on some of these higher-level protocols in Chapter 28, ‘‘Communicating with Remote
Services.’’ �

Because Flash content so often lives on the web, HTTP is ingrained in Flash Player, and you’ll soon be
using it to load and send data, so let’s take a brief excursion into how it works. I’ll try not to bore you
to tears with detail but provide just what you need. If you have a grip on HTTP, feel free to skip this
section.

There are two participants in any HTTP exchange. I’ll call them the client and the server. Let’s con-
sider a simple case: you use your web browser to display http://actionscriptbible.com.
Now, your computer is the client and some big, fat, rack-mounted, air-conditioned computer in Los
Angeles is the server. Actually, I’ve never seen the server, but it doesn’t actually matter what it is or
where it is — that’s the whole point of the internet.

Back to the example. Every HTTP exchange has two acts: a request and a response. Simple enough.
The client asks for something, and the server gives it back. Your browser opens a connection
to the server hosting actionscriptbible.com (using the DNS protocol to figure out that
server’s IP address, if you care) and sends it a request for /. If you were loading the page
http://actionscriptbible.com/crossdomain.xml, it would request /crossdomain.xml.
The server then tries to find the resource you requested, and sends you back what it finds. This step
can have lots of interpretation going on in the background: a script can be run by the server, it can
alias your request to a different location, it can fail to find the resource you’re requesting, and so on.
This is the basic pattern. You send a request, and the server sends a response.

Let’s look a little bit closer at the structure of a request and a response. Although you won’t often have
to write these by hand, it’s nice to know that these take place in plaintext and that the HTTP protocol
is pretty readable. Let’s take a quick peek at what the example transaction looks like.

First the client sends a request to the server:

GET / HTTP/1.1
Host: actionscriptbible.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.0.13)
Gecko/2009073022 Firefox/3.0.13 (.NET CLR 3.5.30729)
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Then the server sends the response to the client:

HTTP/1.1 200 OK
Date: Fri, 14 Aug 2009 21:06:17 GMT
Server: Apache

534

Chapter 27: Networking Basics and Flash Player Security

Last-Modified: Mon, 08 Jun 2009 17:38:10 GMT
Content-Encoding: gzip
Content-Length: 39
Content-Type: text/html

<html>...

This is followed by the contents of the HTML file index.html. These examples are real world and
contain more information than you need to worry about. For example, my browser has signaled that
the server can send data compressed, and the server has replied that the contents are indeed com-
pressed. My browser has also sent along information about what kind of browser it is and what lan-
guages I prefer to read in. These are incidental details! The most important lines in the request and
response are the first lines of each, which I’ve bolded.

First let’s look at the request: GET /. Requests can be for a few different kinds of actions. In this case
you’ve performed the GET method, which as you might guess, asks the server to get the resource. The
second argument, /, specifies the resource. The browser has also been so kind as to notify the server
that the request is written in version 1.1 of the HTTP standard.

Note
Although current web servers have quite a limited vocabulary, using the HTTP request as a meaningful verb
in client-server applications is a tenet of the RESTful ideology. For further reading, I recommend the article by
Ryan Tomayko at http://tomayko.com/writings/rest-to-my-wife. �

Now the response: 200 OK. Whether the resource is found or not, whether the requested action
could be performed or whether it triggered an error, the server sends a response. The 200 OK is the
response code, which indicates what happened when the server tried to carry out your request. It has
a numeric code and a human-readable form. For example, if you GET a resource that doesn’t exist on
the server, it sends a response with the response code 404 Not Found. In this example, the server
has interpreted the request for /, finding an index.html file in the root web directory associated
with actionscriptbible.com and returning the contents thereof.

You’ll notice that in both the request and response there are a series of lines with the form
Some-Key: value. These are the HTTP headers, and they are used to convey both
meta-information — information about the HTTP request itself — and other data. In an HTTP
request or response, the end of the headers and the start of the data contained in the response
is indicated by a double newline; that is, a blank line is always between the last header and the
start of the response data. One of the really important headers is Content-Type. This header
tells the recipient of the message exactly what kind of data appears in the body. Likewise, the
Content-Length header tells the recipient how big said data is.

Loading something like a web site is usually more than a single HTTP exchange. In most cases, the
HTML file that the server retrieves for you includes references to all kinds of external files that must
also be fetched, like a CSS file, several image files, maybe some JavaScript files, and sometimes even
SWF files! Each one of these files is then loaded subsequently by the browser to get and render the
web site in all its glory.

This should be enough to get you started with some simple networking in Flash Player. Much like
a web browser, Flash Player can handle making and sending HTTP requests and interpreting HTTP
responses by itself. The more you dig into the networking API, the more you’ll interact with the HTTP
protocol.

535

Part VI: External Data

Tip
You can examine HTTP requests and responses by using a debugging proxy. This is extremely useful when
debugging networking code in Flash Player. There are many proxies out there. I recommend Charles, an
excellent cross-platform debugging proxy (http://www.charlesproxy.com/). �

Introducing URLRequest
In Flash Player, even the simplest HTTP request is mediated by a URLRequest object. For every
HTTP request you make, an instance of the URLRequest class controls how Flash Player constructs
the request. Flash Player takes care of creating the actual text of the request; URLRequest provides a
convenient interface.

The simplest request specifies a URL. You can either specify the URL in the constructor of the
URLRequest object or using its url property.

var request:URLRequest = new URLRequest("http://actionscriptbible.com/");

var request:URLRequest = new URLRequest();
request.url = "http://actionscriptbible.com/";

Here you create a request for http://actionscriptbible.com/ using both methods.

Using URLRequest, you can control all those things you learned about in the previous section,
including the HTTP method and the headers. I’ll detail these features as you need them, but because
all HTTP networking methods use URLRequests, an early introduction is necessary.

Navigating to a Web Page
You can use a URLRequest to specify a URL that Flash Player should launch in your browser, just
as if you’ve clicked a link, using the package-scoped function flash.net.navigateToUrl().
This is a public function that takes two parameters. The first is the URLRequest that contains the
URL you want to navigate to, and the second is the window that you want to open the link in. The
navigateToURL() function takes the following parameters:

� request — A URLRequest object that specifies the URL to navigate to.

� window — An optional String parameter specifying the browser window or frame to display
the URL into. Special values are the same as in HTML: _self, meaning the current window;
_blank, meaning a new window; _parent, which means the parent frame if your page is
using frames; or _top, meaning the top-level frame in the window. The default is _blank.

If you’re looking at a SWF embedded in a web page and you want it to replace the page with a new
page, you would use the following code:

navigateToURL(new URLRequest("http://actionscriptbible.com/"), "_self");

This is frequently done in response to a click on a display object.

This function, like all networking behavior, is subject to restrictions by Flash Player’s security
policy. In this case, how the SWF is embedded in an HTML page can affect whether the navigation is

536

Chapter 27: Networking Basics and Flash Player Security

allowed. The allowScriptAccess embedding parameter has this effect. More on this in
Chapter 43, ‘‘Interfacing with JavaScript.’’

Caution
Don’t forget to import the function before use, as it is defined in the flash.net package.

Pop-up blockers in a browser can prevent new windows from being launched from inside Flash Player. You
might want to instead try to launch the pop-up with JavaScript (using ExternalInterface as described
in Chapter 43, as JavaScript can at least return a value telling you whether the pop-up was launched
successfully. �

Loader
Flash Player can display graphics in three ways: you can use ActionScript (and sometimes Pixel Ben-
der) code to draw graphics on the screen (see Part VIII, ‘‘Graphics Programming and Animation’’),
you can use embedding to associate graphics with Class references (see Chapter 16, ‘‘Working with
DisplayObjects in Flash Professional’’), or you can use Flash Player’s networking capabilities to load
graphics files from the internet. The Loader class provides an easy-to-use interface for including the
contents of external files in your Flash application.

Note
Choosing whether to embed graphics or load them externally (or even draw them programmatically when you
can) is not always easy. The overall strategy you pick for including graphical content in your application can
have a big impact on how you load and structure it. Because dynamically loaded graphics are easy to manipu-
late and there are multiple free libraries to assist in managing large external libraries, I prefer to externalize all
assets in ActionScript projects. �

The Loader class is a subclass of DisplayObject. Not only does it load in external graphics, it dis-
plays them as well. This makes it really easy to get graphics onto the screen. You just create a Loader
instance, tell it where to request the file from, and add it into your display list like any other display
object. Even more, it inherits from InteractiveObject, so you can use loaded graphics interac-
tively, receiving mouse clicks and so on.

Example 27-1 shows just how easy it is to put an image on the screen using Loader.

EXAMPLE 27-1 http://actionscriptbible.com/ch27/ex1

Displaying an Image with Loader

package {
import flash.display.Loader;
import flash.display.Sprite;
import flash.net.URLRequest;

public class ch27ex1 extends Sprite {
public function ch27ex1() {

var loader:Loader = new Loader();
//image courtesy NASA, Blue Marble Project

continued

537

Part VI: External Data

EXAMPLE 27-1 (continued)

var url:String = "http://actionscriptbible.com/files/bluemarble.jpg";
loader.load(new URLRequest(url));
addChild(loader);

}
}

}

Here you can see that only three steps are required: create a Loader object, call its load() method
with a valid URLRequest, and add it to a display list. That’s it! Loader does all of its own loading
and drawing. You can just ‘‘set it and forget it.’’

Graphics File Formats
One of the best things about Loader being so self-sufficient is that it knows how to actually decode
graphics files. Because you don’t have to think about it, it’s easy to overlook this step that Loader
handles. It will load all sorts of things you throw at it:

� PNGs, including 32-bit PNGs with a full 8-bit alpha channel

� GIFs, including transparent GIFs (but not animated)

� JPEGs, including progressive JPEGs

� SWFs

If you want to display graphics in other formats, Flash Player provides you all the tools you need to
do it yourself (using BitmapData, see Chapter 36, ‘‘Programming Bitmap Graphics’’), if you can tell
Flash Player how to convert the binary data in the file to the pixels on the screen. One example is the
AS3 GIF Player library by Thibault Imbert, available at http://as3gif.googlecode.com/, that
lets you display animated GIFs.

The point I’m making here is that Loader is a simple interface to some of the built-in file decoding
facilities of Flash Player, which is part of the reason that it makes displaying graphics so simple. In
fact, you can utilize just the decoding abilities of Loader if you want, by passing in binary data to
Loader’s loadBytes() method. I’ll cover that in the section ‘‘Using Loader to Interpret Files in
Memory.’’

Accessing Information about the Loading Process
The Loader class loads, decodes, and displays images. It also compartmentalizes these different
responsibilities and gives you deeper access to them by exposing some of its properties. For instance,
in Example 27-1 you loaded and displayed an image in the simplest way possible. You exercised no
control over how the image was loaded, so it appeared when it was fully loaded with no intervention
from you. You didn’t care how big the image file was, how long it took to load, or even if the load
process failed. But Loader does provide information on the loading process should you need it.

A Loader exposes instances of the LoaderInfo class, which provide all kinds of information about
the loading process and data about the loaded images. In addition, the LoaderInfo object dis-
patches events related to the loading process. Remember that this relationship is called composition.

538

Chapter 27: Networking Basics and Flash Player Security

The LoaderInfo class has one specific responsibility, and the Loader class owns and relies on a
LoaderInfo to do that part of its job.

When loading external images, the LoaderInfo object is commonly used to

� Determine how large the image being loaded is.

� Calculate the progress of a load operation.

� Notify other objects that the file is done loading.

� Notify other objects that the file failed to load.

� Retrieve the original dimensions of the loaded image.

Before I get into the details of LoaderInfo, let’s clear up some confusing points about LoaderInfo
objects. These are some of the stickiest issues in the whole Flash Player API, so heed well!

LoaderInfo versus ContentLoaderInfo

Loader instances contain two public LoaderInfo properties: loaderInfo and
contentLoaderInfo. The relationship of these two LoaderInfo instances is shown in
Figure 27-1.

FIGURE 27-1

LoaderInfo objects in a display list

Stage

DisplayObject

DisplayObject

D
is

p
la

y
L

is
t

Loader

root
DisplayObject

root
DisplayObject

LoaderInfo

LoaderInfo

loaderInfo

Information about
SWF A

Information
about SWF B

SWF B

contentLoaderInfo

loaderInfo

The loaderInfo property is inherited from DisplayObject. That’s right — all display objects
have a loaderInfo property, which is a read-only reference to a LoaderInfo object. The
loaderInfo property is set on any object on the display list of a given SWF. The property is
defined on DisplayObject so that you can easily tell which SWF any display object belongs to.

539

Part VI: External Data

This isn’t the same LoaderInfo object that provides information about an image file you load
dynamically. The typical application of this loaderInfo property is to find out meta-information
about the currently running SWF file, often the parameters it has been passed either through
FlashVars or in a query string. (See more about passing parameters to SWF files in Chapter 42,
‘‘Deploying Flash on the Web.’’) You can also use it to find out the version of Flash Player the SWF
was published for, the original published dimensions and frame rate, and so on.

Loader objects, as subclasses of DisplayObjects, must also have this loaderInfo property.
However, this property does not contain information relating to the file they’re loading. It is the same
loaderInfo property just described.

For information about the content being loaded, Loaders expose a separate property that is also
a LoaderInfo object: contentLoaderInfo. Because it’s also an instance of the LoaderInfo
object, you can get all the same kind of information about images being loaded and any running SWF.
This distinction isn’t always obvious, and it’s easy to forget about, so it’s a common stumbling block.
Just remember that for a Loader, you are always interested in its content. You’ll see the term ‘‘content’’
applied to mean ‘‘that which a Loader loads’’ throughout the Loader API.

Loading Events

Another common problem is that of subscribing to load events. Naturally, you’ll want to be notified
by a Loader when it is done loading an image, when the loading fails to complete, and so on. You
might do this by subscribing to events on the Loader. It does inherit from EventDispatcher,
after all. But all the interesting events you want to listen for are actually dispatched by the associated
LoaderInfo object, not the Loader itself!

This can become a bit of a nasty slip-up as well, especially because there is no compile-time or
run-time check for event subscriptions. It’s perfectly legal to subscribe to events that will never be
broadcast. So the outcome of subscribing to load events on the Loader instance isn’t an error, but
merely a confusing absence of events.

Remember to subscribe to load events broadcast by the contentLoaderInfo property of a Loader,
not by the Loader itself. Now that you know how to use contentLoaderInfo, you can look at
some of the various properties and events of a LoaderInfo object to see what kind of loading infor-
mation you can use.

The LoaderInfo Class

First I’ll cover some of the interesting properties of LoaderInfo. Because this class provides informa-
tion about a SWF or image that it can’t change, all the properties are read-only. These properties can
refer to either an image or a SWF that’s being loaded, or a currently running SWF.

� width, height — Store, as ints, the dimensions of the image or published size of the SWF.

� bytesLoaded, bytesTotal — Return the number of bytes in the file and how many have
been thus far loaded. Note that too early in the load process, before Flash Player has received a
size for the file, bytesTotal can return 0 even though the file is actually large, so be careful
when using this for calculations.

� contentType — The MIME type of the image file being loaded. May be null before enough
is loaded to determine.

� frameRate — For a SWF, the frame rate it was published at.

� parameters — For a SWF, stores, as an Object with named properties, the FlashVars and
URL parameters passed in by the browser.

540

Chapter 27: Networking Basics and Flash Player Security

There are some properties that are useful specifically when loading a SWF from the internet. I’ll cover
these in the section ‘‘Loading external SWFs.’’

These events allow you to track the progress of the Loader’s load process:

� Event.COMPLETE — Signifies that the load completed successfully.

� IOErrorEvent.IO_ERROR— Signifies that some networking error occurred. The load oper-
ation will fail.

� SecurityErrorEvent.SECURITY_ERROR— Signifies that the file could not be loaded
because it would violate the security policy. The load operation will fail. See ‘‘Understanding
Flash Player Security’’ later in this chapter.

� Event.OPEN — Dispatched when the load begins.

� HTTPStatusEvent.HTTP_STATUS— Dispatched when Flash Player receives an HTTP
response. The status property of the event object contains the HTTP status code. In case of
an error code, sometimes an IOErrorEvent is broadcast instead, so don’t rely on this event
to report HTTP error codes accurately.

� ProgressEvent.PROGRESS— Dispatches every time more data is received from an active
load. The bytesLoaded and bytesTotal properties of the event object tell you exactly how
much progress has actually occurred.

� Event.UNLOAD — Dispatched when the loaded content is removed by using the loader to
load another image, or with the Loader methods unload() or unloadAndStop().

Caution
Error events, if not handled, can interrupt normal processing of ActionScript and might show an error dia-
log box in debug versions of Flash Player. Check Chapter 24, ‘‘Errors and Exceptions,’’ for more information.
Because of this, it’s good practice to always handle the LoaderInfo’s error events. �

Example 27-2 puts together some of what you’ve learned about Loader and LoaderInfo to track
the load progress of a large image.

EXAMPLE 27-2 http://actionscriptbible.com/ch27/ex2

Tracking Load Progress

package {
import flash.display.*;
import flash.events.*;
import flash.text.*;
import flash.net.URLRequest;

public class ch27ex2 extends Sprite {
protected var preloadTF:TextField;
protected var l:Loader;
public function ch27ex2() {
l = new Loader();

continued

541

Part VI: External Data

EXAMPLE 27-2 (continued)

//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/2940373537/
var url:String = "http://actionscriptbible.com/files/heiwadoori.jpg";
l.load(new URLRequest(url));

//this text field will show the progress of the loading process.
preloadTF = new TextField();
preloadTF.defaultTextFormat = new TextFormat("_sans", 12, 0);
preloadTF.autoSize = TextFieldAutoSize.LEFT;
addChild(preloadTF);

l.contentLoaderInfo.addEventListener(Event.COMPLETE, onComplete);
l.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS, onProgress);
l.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR, onError);

}

protected function onComplete(event:Event):void {
var info:LoaderInfo = LoaderInfo(event.target);
preloadTF.text = "loaded " + info.width + "x" + info.height + " " +

(info.bytesTotal>>10) + "kb" + " image of type " + info.contentType;
l.y = preloadTF.textHeight + 4;
addChild(l);

}

protected function onProgress(event:ProgressEvent):void {
var percent:Number = event.bytesLoaded / event.bytesTotal * 100;
preloadTF.text = percent.toFixed() + "%";

}

protected function onError(event:ErrorEvent):void {
preloadTF.text = event.text;

}
}

}

The example demonstrates some of the most common tasks regarding loading information. You
know when the image is done loading because you subscribed to the Event.COMPLETE event. You
can notify the user about how the load is progressing because you subscribed to the Progress
Event.PROGRESS event. You know various information about the loaded file from its LoaderInfo
object, and you handle errors by catching IOErrorEvent.IO_ERROR events. The example works
correctly because it uses the Loader’s contentLoaderInfo property for loading-related events and
properties.

Just like you can get a reference to the object that dispatched an event by querying the target prop-
erty of an event object, you can work backward from a loading event to the Loader. In the example,

542

Chapter 27: Networking Basics and Flash Player Security

the Loader is an instance variable, but if it were not, you could get back to it by using the loader
property of a LoaderInfo object:

var loader:Loader = LoaderInfo(event.target).loader;

Getting Loaded Content
The Loader object, as you’ve seen, can draw itself since it is a DisplayObject. You can add it to
the display list before you even ask it to load an external image with load(). It has no visual content
or dimensions of its own. When an image or SWF is loaded, it is added to the Loader as a child dis-
play object, just like creating an empty Sprite and adding a visible display object to its list. In many
cases, it’s perfectly acceptable to consider the Loader the content. The intermediary, otherwise empty
Loader, like a container Sprite, has no impact on the appearance or behavior of its contents. You
can move, scale, rotate, and filter the Loader because these transforms affect not just the Loader but
its children.

Should you need access directly to the loaded image, however, Loader makes this possible. Sim-
ply use the content property of a Loader instance. This property is read-only, and it’s typed as a
DisplayObject. The actual type of the content depends on what you loaded in (although it will
always be a subclass of DisplayObject, of course). Loader will do the correct thing for the file
type you load. Should you load a bitmap image, it will be a Bitmap. If you load a SWF, content
will be either the type of the root display object, or an AVM1Movie if you load a SWF published
using ActionScript 1.0 or ActionScript 2.0. You can’t count on the content property being defined
until the load completes successfully.

By accessing their content property, you can use Loader instances to provide your application with
graphical assets. For example, you can get the raw bitmap data out of an image file by loading it and
then using content to get down to a BitmapData instance. Example 27-3 uses this technique to
draw a swatch with the color the mouse is over.

EXAMPLE 27-3 http://actionscriptbible.com/ch27/ex3

Getting at a Loader’s Content

package {
import flash.display.*;
import flash.events.*;
import flash.net.URLRequest;
import flash.system.LoaderContext;
import flash.text.*;

public class ch27ex3 extends Sprite {
protected var bmpData:BitmapData;
protected var swatch:Swatch;

public function ch27ex3() {
var l:Loader = new Loader();
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/188712483/
var url:String = "http://actionscriptbible.com/files/pastels.jpg";
l.load(new URLRequest(url), new LoaderContext(true));

continued

543

Part VI: External Data

EXAMPLE 27-3 (continued)

l.contentLoaderInfo.addEventListener(Event.COMPLETE, onComplete);
l.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR, onError);
addChild(l);

}
protected function onComplete(event:Event):void {
var loader:Loader = LoaderInfo(event.target).loader;
if (loader.content is Bitmap) {
bmpData = Bitmap(loader.content).bitmapData;
swatch = new Swatch();
addChild(swatch);
addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

}
}
protected function onError(event:ErrorEvent):void {
trace(event.text);

}

protected function onMouseMove(event:MouseEvent):void {
var mx:int = stage.mouseX, my:int = stage.mouseY;
if (mx >= 0 && mx < bmpData.width && my >= 0 && my < bmpData.height) {
swatch.x = mx;
swatch.y = my;
swatch.color = bmpData.getPixel(mx, my);
event.updateAfterEvent();

}
}

}
}

import flash.display.Shape;
class Swatch extends Shape {
public function set color(c:uint):void {
graphics.beginFill(c);
graphics.lineStyle(0, 0xffffff, 1, true);
graphics.drawRect(10, 10, 25, 15);
graphics.endFill();

}
}

You’ll learn more about BitmapData and the graphics property used to draw the swatch in Part VIII
of this book. The important aspect of this example is that the Loader not only loads an image and
adds it to the display list, but it provides access to the display object that Loader constructs from the
file. Not only is the Loader displaying an image of brightly colored pastels, it’s done so totally within
the normal Flash Player API — the loaded image is a Bitmap in the display list of the Loader.

544

Chapter 27: Networking Basics and Flash Player Security

You might notice a second argument passed to load() that I didn’t cover. This was required for
the example to be able to access the data from the loaded image; you’ll learn more about why in the
section ‘‘Understanding Flash Player Security’’ later in this chapter.

You can, like any other display object, remove the loaded content from its Loader and place it else-
where in another display list. The Loader won’t lose track of it; it will still be the content property
of the Loader, and it will still disappear if you unload() the Loader.

Tip
When unloading sounds and movies loaded using a Loader, you typically have to be very careful to remove
all event listeners and null all references to the media to be a hundred percent certain that the media stops
playing. Otherwise, you may notice that the media continues playing in the background despite your efforts.

In Flash Player 10.1 and later, you can use the hammer of doom on your loaded media with Loader’s
unloadAndStop() method, which assures your media unloads properly despite normal garbage collection
rules. �

Loading External SWFs
Again, if all you want to do with a loaded SWF is put it on the stage, you can do it as succinctly as in
Example 27-1; loading works the same no matter what image format you load.

However, the ability to load SWFs at runtime provides some interesting opportunities to break out
applications into multiple files or interface between several separate programs.

Instantiating Classes from External SWFs

Both code, and assets like graphics, sounds, videos, and fonts, are represented by classes in Action-
Script 3.0. Recall from Chapter 16 that assets published in a SWF that are exported for ActionScript
become classes that extend the appropriate type of asset, whether you publish them from Flash Pro-
fessional or use Embed metadata tags with the Flex SDK compiler.

Typically, you create a new instance of a class with the new operator, as in new Sprite(). But you
can also use new with a variable of type Class, which stores a class reference. You can get a class
reference by assigning it directly to a known class:

var rectClass:Class = Rectangle;
var rect:Rectangle = new rectClass();
trace(rect); //(x=0, y=0, w=0, h=0)

You can also look up classes by their name, using the getDefinitionByName() function in the
flash.utils package.

var pointClass:Class = Class(getDefinitionByName("flash.geom.Point"));
var point:Point = new pointClass();
trace(point); //(x=0, y=0)

You have to cast the definition to a Class because you can also use the getDefinitionByName()
function to look up other public items like functions, values, and namespaces.

When you have multiple SWFs loaded, the system must figure out how to partition the definitions in
the SWFs. Class uniqueness is only guaranteed for one SWF. The compiler can’t, and shouldn’t, try
to ensure that no two SWFs ever have classes with the same name. So when you load in a new SWF,

545

Part VI: External Data

by default, it gets a unique domain to define namespaces and classes within. This domain is called an
ApplicationDomain, and you can access and manipulate it in ActionScript. In fact, when you tell a
Loader to load() a SWF, you can actually specify what ApplicationDomain Flash Player should
place the definitions from that SWF into, including the option of merging the classes into the current
domain, in which case definitions from the newly loaded SWF may override existing definitions.

For instance, if you declare PILL to be blue in your SWF and load in a SWF that defines PILL as
red, these PILLs can either exist in separate domains, alternate universes in which the PILL is to
everyone’s knowledge definitely blue or definitely red, depending on which domain you are running
in; or the newly loaded one can take precedence, merging the two universes and overwriting values of
PILL with the newly loaded red-pill reality.

When you use getDefinitionByName(), it’s looking for definitions in the current
ApplicationDomain. What determines the current domain? Simply where the currently
executing code originated — which SWF it was compiled into. You can access the current
domain, by the way, with the static property ApplicationDomain.currentDomain.

Things get interesting when you access other SWFs’ application domains. The LoaderInfo object
associated with a SWF contains a reference to the SWF’s ApplicationDomain. And, using methods
of the ApplicationDomain, you can query and retrieve class references from the SWF. The result
is that you can load in a SWF that is not intended to be added to the stage, but rather acts as a library
of code or assets. The code and assets can be retrieved dynamically by any code at runtime, provided
the code can find the loaded SWF’s application domain.

In Example 27-4, two library SWFs were prepared, one using the Library in Flash Professional,
and one using the Embed metadata tag in Flash Builder. In both SWFs, an icon was linked to
the class assets.Icon. The example loads the two SWFs dynamically, retrieves references to
classes called assets.Icon from both application domains, and attaches them to the stage. This
demonstrates that the same class name can resolve to different classes in different domains; although
the SWFs both define a class named assets.Icon, each presents a different graphic. Furthermore,
describeType() is used to get runtime information about each class. If you parse out the
inheritance diagram from each SWF’s version of Icon, you see that assets embedded with Flash
Professional and with Flash Builder have different structures.

EXAMPLE 27-4 http://actionscriptbible.com/ch27/ex4

Retrieving Data from Multiple Domains

package {
import flash.display.*;
import flash.events.Event;
import flash.net.URLRequest;
import flash.system.*;
import flash.text.*;
import flash.utils.describeType;

public class ch27ex4 extends Sprite {
public function ch27ex4() {

546

Chapter 27: Networking Basics and Flash Player Security

var l:Loader;
l = new Loader();
l.load(new URLRequest("http://actionscriptbible.com/files/icon-fl.swf"),
new LoaderContext(true, null, SecurityDomain.currentDomain));

l.contentLoaderInfo.addEventListener(Event.COMPLETE, onComplete);

l = new Loader();
l.load(new URLRequest("http://actionscriptbible.com/files/icon-fx.swf"),
new LoaderContext(true, null, SecurityDomain.currentDomain));

l.contentLoaderInfo.addEventListener(Event.COMPLETE, onComplete);
}

protected function onComplete(event:Event):void {
var loaderInfo:LoaderInfo = LoaderInfo(event.target);
var iconClass:Class =
Class(loaderInfo.applicationDomain.getDefinition("assets.Icon"));

var icon:DisplayObject = DisplayObject(new iconClass());
addChild(icon);

var tf:TextField = new TextField();
tf.defaultTextFormat = new TextFormat("_sans", 11, 0);
tf.width = 150; tf.height = 400; tf.y = 130;
tf.multiline = tf.wordWrap = true;
addChild(tf);

tf.text = loaderInfo.url + "\n\n" + typeInfo(icon);
if (numChildren > 2) tf.x = icon.x = 160;

}

protected function typeInfo(obj:Object):String {
var info:XML = describeType(obj);
var ret:String = info.@name;
for each (var extendsNode:XML in info.extendsClass) {
ret += " \u2192 " + extendsNode.@type.toString().replace(/^.*::/, "");

}
return ret;

}
}

}

Rather than using the package-scoped function getDefinitionByName(), Example 27-4 uses the
method getDefinition() of the correct ApplicationDomain instance to retrieve a class refer-
ence from a specific domain. If you had used the package-level function, Flash Player would look for
an assets.Icon class in the current application domain and fail to find one.

Because Flash Professional makes it easy to visually manage and tweak the compression settings of
bitmap and vector graphics, sounds, videos, and fonts with its Library panel, I use Flash Professional
to compile SWFs containing all the assets I’ll need for an application. This way, I can load the site’s

547

Part VI: External Data

assets at runtime with a Loader and query all of them from one unified ApplicationDomain.
The relatively expensive operation of recompressing and recompiling the assets into a new SWF only
needs to be done when I update assets, and the application SWF can be code-only so that it compiles
quickly and is lightweight.

Tip
If you want to share a project between developers on multiple computers, especially multiple platforms where
font handling differs slightly, you might consider creating one SWF that contains just the fonts. By isolating this
SWF from all other assets and code, you can ensure that people working on the code and people working on
the other assets don’t need to have the fonts correctly installed. �

Interacting with Loaded SWFs

Because the content of a loaded image or SWF is placed inside the Loader, you can interact with
a loaded SWF through the display list. You can also instantiate classes from its application domain
as just shown. In either scenario, however, your code may not know about the classes in the loaded
SWF; the whole point is that they are separate, after all.

Note that in Example 27-4, you never created a variable typed as Icon, even though that’s the
class you created, because Icon is a class that was only defined in the loaded SWFs. Instead, you
typed the Icon instance as a DisplayObject and forced it to be such with a cast. You can do
this when you know for certain that Icon should extend DisplayObject, and you need it to be a
DisplayObject to add it to the display list. This usually works fine for asset classes whose
supertypes are known ahead of time.

But what if you need to call methods of a class from another domain, whose definition you don’t have
in your own codebase? If you load a SWF zoo.swf with a class Hare in it, although you can get the
definition of a Hare, a class reference to a Hare, and even a Hare itself from the loaded zoo.swf,
the code you write to interact with the Hare won’t actually have a Hare class available. This is actu-
ally the perfect place to use untyped variables. When you use an untyped variable, no typechecking
is done at compile time. You can call a method or access a property on an untyped variable with any
name. Whether that method or property actually exists is a question left until runtime. So you can call
hop() on what you believe to be a Hare object, even if you don’t have a definition of Hare to code
against.

var hareClass:Class = Class(zooApplicationDomain.getDefinition("Hare"));
var hare:* = new hareClass();
hare.hop();
trace(hare.whiskerLength);

If you use untyped variables, your code can easily interface with classes from dynamically loaded
SWFs, while skipping type checks from the compiler. Of course, you should be doubly careful to do
runtime error handling in these cases.

Calling code in other SWFs is subject to the Flash Player security model, which is covered later in this
chapter.

Loading AVM1 SWFs

If you load a SWF that’s published using ActionScript 1.0 or ActionScript 2.0 — for Flash Player ver-
sions less than 9 — this SWF runs in a completely different virtual machine in Flash Player, the legacy
AVM1 (ActionScript Virtual Machine version 1). All ActionScript 3.0 programs run in AVM2. Because

548

Chapter 27: Networking Basics and Flash Player Security

it’s running in a completely different environment, you won’t be able to interface with the code in an
AVM1 SWF. You won’t be able to dive into its display list, instantiate classes from it, or call meth-
ods on its root object. However, it will still run and display as intended. To the Flash Player API in
ActionScript 3.0, the loaded movie will appear as a black box, an AVM1Movie instance, which is a
subclass of DisplayObject.

There are some ways to find out information about a loaded SWF, besides the fact that after a Loader
loads in an AVM1 movie, its content property is an AVM1Movie. These properties of a
LoaderInfo object relate to its version:

� swfVersion — The major version of Flash Player the SWF was published for, as a
uint. These values are correlated to static constants defined by SWFVersion such as
SWFVersion.FLASH10, which equals 10.

� actionScriptVersion — The language used when the SWF was compiled, as a
uint. The values are correlated to static constants of ActionScriptVersion, such as
ActionScriptVersion.ACTIONSCRIPT3 (which has the value 3). The
actionScriptVersion property only distinguishes between older versions of ActionScript
(which are all lumped into ‘‘ActionScript 2.0’’) and ActionScript 3.0. Essentially, it tells you
whether the SWF is running in AVM1 or AVM2.

Using these properties at runtime, you can determine if the loaded SWF is compatible and choose
what to do with it.

There is one way that communication can be established between an AVM1 and an AVM2 SWF,
and that is through a LocalConnection. Because this connection is not code that is communicat-
ing directly, but one side broadcasting and another side receiving over an opened channel, you can
use this to communicate with legacy code if you absolutely must. LocalConnection is covered in
Chapter 44, ‘‘Local Connections Between Flash Applications.’’

Using Loader to Interpret Files in Memory
As hinted at, you can bypass the loading facilities of Loader and use its file decoding abilities
directly. This is great if you

� Load the contents of an image file stored on the local system.

� Decode data from another format (zipped data, Base-64 encoded).

� Extract a binary image file from a larger data stream.

� Manufacture a file by ‘‘hand’’ in memory (for a time, dynamic sound was achieved by using code
to craft legal SWF files with the correct sound embedded, and then loading and playing these
SWFs as they are generated).

If you can get the binary contents of an image file into a ByteArray using these approaches or one
of your own design, you can display it using a Loader instance by passing it to loadBytes().

As you’ve seen, Loader is a versatile, multipurpose class. It loads data from the network or memory,
decodes it, and displays it on-screen.

URLLoader
Although Loader is great for loading images, use the URLLoader class to load any kind of data over
HTTP. URLLoader doesn’t decode or display the contents of an HTTP response; instead, it provides
them to you raw. So you can use URLLoader to write custom communications that occur over HTTP,
from something as simple as loading an XML file to something as complex as implementing a web
service, which I’ll start to get into in the next chapter.

549

Part VI: External Data

Loading a File
The URLLoader performs an HTTP request, which you specify with a URLRequest object, and
receives an HTTP response. The URLLoader is an EventDispatcher, so it uses events to notify
any listeners when it begins loading data, if there’s an error, what the status of the HTTP request is,
when there’s any progress, and finally, when it’s complete. These events are identical to those dis-
patched by a Loader’s LoaderInfo object, although in this case, there is no intermediary object.
The events are dispatched directly by the URLLoader.

You’ve already used a URLLoader to get data for previous examples. Recall Example 17-13
(http://actionscriptbible.com/ch17/ex13). In this example, you loaded a chapter of
Alice’s Adventures in Wonderland by using the following code:

var loader:URLLoader = new URLLoader(new URLRequest(
"http://actionscriptbible.com/files/alice-ch1.txt"));

The URLLoader constructor can also be called with no parameters, in which case you would pass the
URLRequest to its load() method when you are ready to start loading. When passed directly to
the constructor, loading begins automatically.

After you begin loading (really after you begin sending the HTTP request), you’re going to need to
know when loading is complete (when you can access the full contents of the HTTP response) so that
you can do something interesting with what you’ve loaded.

In the example, you subscribed to the Event.COMPLETE event:

loader.addEventListener(Event.COMPLETE, onLoadComplete);

After a URLLoader has finished loading, you can get at what it loaded through the data property.
This is just the contents of the HTTP response; all the headers and meta-information are handled by
URLLoader, giving you direct access to the important part: the data. In this case, this is just plaintext.
You retrieve it like so:

protected function onLoadComplete(event:Event):void {
tf.text = URLLoader(event.target).data;

}

Simple! You just assign the data property, which is untyped but contains a String value, to the
text property of the text field tf, which is a String.

Loading and Canceling
You can start a URLLoader loading by calling its load() method, passing the URLRequest describ-
ing the HTTP request. Stop a load operation with the close() method.

Tracking Load Progress
The URLLoader class dispatches most of the same events as a LoaderInfo class. You can review
these in the earlier section ‘‘The LoaderInfo class.’’ The supported events are

� Event.COMPLETE — The load completed.

� HTTPStatusEvent.HTTP_STATUS— The HTTP status code is received.

550

Chapter 27: Networking Basics and Flash Player Security

� IOErrorEvent.IO_ERROR— A communication error occurred.

� Event.OPEN — A connection has been opened.

� ProgressEvent.PROGRESS— More data has been loaded.

� SecurityErrorEvent.SECURITY_ERROR— The load operation violated Flash Player’s
security policy.

Additionally, the URLLoader object exposes the bytesLoaded and bytesTotal properties (also
available in a ProgressEvent event object).

Loading Different Formats
You can use a URLLoader to load any kind of data. The API distinguishes among the types of data in
three broad categories: text, binary, or URL-encoded variables. Now, to be sure, URL-encoded vari-
ables are also a kind of text-based data, but Flash Player supports them specially. To get the data
from a completed load operation, as you’ve seen, you simply access the URLLoader’s data property.
Before you start loading, however, you should provide a hint to the URLLoader as to what gen-
eral category of data it’s going to be receiving so that the data is interpreted properly and the data
property is populated with the correct type. You do this by setting the URLLoader’s dataFormat
property. dataFormat is a string that can have one of these three values, as defined by the enumer-
ation URLLoaderDataFormat:

� URLLoaderDataFormat.TEXT— Interpret the response as text. The data property will be
of type String. This is the default.

� URLLoaderDataFormat.BINARY— Interpret the response as binary data. The data prop-
erty will be of type ByteArray.

� URLLoaderDataFormat.VARIABLES— Interpret the response as URL-encoded variables.
The data property will be of type URLVariables.

Once you’ve chosen the proper category for the data, you may still need to parse it. Let’s look at how
to load some common types of data.

Loading XML

XML is a text-based format, so load the file as text, and then use the top-level XML() cast-like func-
tion to convert the String into XML, as shown in Example 27-5.

EXAMPLE 27-5 http://actionscriptbible.com/ch27/ex5

Loading and Reading XML

package {
import com.actionscriptbible.Example;
import flash.events.Event;
import flash.net.*;

public class ch27ex5 extends Example {
public function ch27ex5() {
var URL:String = "http://actionscriptbible.com/files/hand.xml";
var loader:URLLoader = new URLLoader(new URLRequest(URL));

continued

551

Part VI: External Data

EXAMPLE 27-5 (continued)

loader.dataFormat = URLLoaderDataFormat.TEXT;
loader.addEventListener(Event.COMPLETE, onLoadComplete);

}
protected function onLoadComplete(event:Event):void {
trace("Done loading XML.");
var loader:URLLoader = URLLoader(event.target);
var hand:XML = XML(loader.data);
var card:XML = hand.card[0];
trace("Your first card is a " + card.@type + " of " + card.@suit);
trace(hand.toXMLString());

}
}

}

Loading CSS

CSS is another text-based format. Example 27-6 uses the StyleSheet class and its parseCSS()
method.

EXAMPLE 27-6 http://actionscriptbible.com/ch27/ex6

Loading and Parsing CSS

package {
import com.actionscriptbible.Example;
import flash.events.Event;
import flash.net.*;
import flash.text.StyleSheet;

public class ch27ex6 extends Example {
public function ch27ex6() {
var URL:String = "http://actionscriptbible.com/files/example.css";
var loader:URLLoader = new URLLoader(new URLRequest(URL));
loader.dataFormat = URLLoaderDataFormat.TEXT;
loader.addEventListener(Event.COMPLETE, onLoadComplete);

}
protected function onLoadComplete(event:Event):void {
trace("Done loading CSS.");
var loader:URLLoader = URLLoader(event.target);
var css:StyleSheet = new StyleSheet();
css.parseCSS(loader.data);
trace("Paragraphs use color " + css.getStyle("p").color);
trace(loader.data);

}
}

}

552

Chapter 27: Networking Basics and Flash Player Security

Loading a Binary File

It’s not realistic to include the full source of an example that loads and parses a binary file
format (for which Flash Player doesn’t already have a decoder). Typically, these rely on
libraries you write yourself or link in. For instance, you can get libraries to decode ZIP
archives (FZip, http://codeazur.com.br/lab/fzip/), crack open SWF files (swfassist,
http://www.libspark.org/wiki/yossy/swfassist), parse VCards (Adobe corelib,
http://code.google.com/p/as3corelib/), and the list goes on. But unless the library does
its own loading, the process for loading binary-format files is identical: load the file as a binary type,
and pass along the URLLoader’s data property as a ByteArray to whatever library you will use to
decode the file.

In Example 27-7, instead, you’ll load a JPEG file and look for a part of the JPEG header called the JFIF
(for JPEG File Interchange Format) marker. This marker contains some essential information about the
image and would be used by a JPEG parser, if you were for some reason inspired to write one.

EXAMPLE 27-7 http://actionscriptbible.com/ch27/ex7

Loading and Reading from a Binary File

package {
import com.actionscriptbible.Example;
import flash.events.Event;
import flash.net.*;
import flash.utils.ByteArray;

public class ch27ex7 extends Example {
public function ch27ex7() {
var URL:String = "http://actionscriptbible.com/files/caviar.jpg";
var loader:URLLoader = new URLLoader(new URLRequest(URL));
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onLoadComplete);

}
protected function onLoadComplete(event:Event):void {
trace("Done loading JPEG.");
var loader:URLLoader = URLLoader(event.target);
var data:ByteArray = ByteArray(loader.data);
data.position = 0x06; //the JFIF id string starts 6 bytes into the file
//the JFIF ID is the zero-terminated string "JFIF", so if we try to
//read in a string starting here, we should find "JFIF".
var markerString:String = data.readUTFBytes(4);
trace("Marker: " + markerString);

}
}

}

Loading URL-Encoded Variables

In actuality, URL-encoded variables are even more useful when sending data than receiving data,
because they are the standard way to communicate arguments to a server-side script. Both the GET

553

Part VI: External Data

and POST HTTP methods allow you to send arguments in the HTTP request. The URLVariables
class simplifies this process.

make=Panasonic&model=PT%2DAE2000U&resolution=1080p

These name-value pairs are an example of URL-encoded variables — simply a string that encodes vari-
ables with name=key pairs separated by ampersands (&). The names and values in the string are
escaped using URL encoding to ensure that the full string can be used in a URL and to ensure that
reserved characters like & and = are not used within the string, which would mess up the encoding.
Here a hyphen (-) was replaced by its URL-encoded equivalent, %2D. There is plenty of further read-
ing on URL encoding available on the internet. Thankfully, you don’t have to worry too much about
the encoding because you have URLVariables to take care of it for you.

Tip
Two functions in the default package help with URL encoding: escape() and unescape(). These convert
strings to and from their URL-encoded versions. �

To use URLVariables, simply set and retrieve properties on the URLVariables instance by
name. It works just like an Object in that it’s declared as dynamic so you can access properties of a
URLVariables by any old name. Let’s re-create the preceding query string:

var vars:URLVariables = new URLVariables();
vars.make = "Panasonic";
vars.model = "PT-AE2000U";
vars.resolution = "1080p";
trace(vars.toString()); //make=Panasonic&model=PT%2DAE2000U&resolution=1080p

If you’re going to receive data in a URL-encoded string, you can set the dataFormat property of
your URLLoader to URLLoaderDataFormat.VARIABLES, as Example 27-8 demonstrates.

EXAMPLE 27-8 http://actionscriptbible.com/ch27/ex8

Loading URL-Encoded Variables

package {
import com.actionscriptbible.Example;
import flash.events.Event;
import flash.net.*;

public class ch27ex8 extends Example {
public function ch27ex8() {
var URL:String = "http://actionscriptbible.com/files/projector.txt";
var loader:URLLoader = new URLLoader(new URLRequest(URL));
loader.dataFormat = URLLoaderDataFormat.VARIABLES;
loader.addEventListener(Event.COMPLETE, onLoadComplete);

554

Chapter 27: Networking Basics and Flash Player Security

}
protected function onLoadComplete(event:Event):void {
trace("Done loading variables.");

var loader:URLLoader = URLLoader(event.target);
var vars:URLVariables = URLVariables(loader.data);
trace("It’s a " + vars.make + " " + vars.model);
trace(vars);

}
}

}

Sending Variables with URLRequest
Now, in addition to loading information from external sources, you can send information to external
sources that will allow you to receive data based on what you sent. I’ll go much more deeply into this
in the next chapter, but let’s look at the basics here.

GET and POST are two ways of sending information between web pages via the browser. The main
difference between these two HTTP methods is that GET puts the variables in the URL, whereas POST
adds them to the body of the HTTP request. Let’s look at a GET request first:

http://actionscriptbible.com/do?user=me&login=true

What this is telling you is to not only access this page, but also to take along with you two GET vari-
ables: one called user, which is set to me, and one called login, which is set to true. The actual
HTTP request for this looks like this (simplified):

GET /do?user=me&login=true HTTP/1.1
Host: actionscriptbible.com
User-Agent: Mozilla/4.0

The one thing to always remember about GET is that it is not safe from prying eyes. Anyone can see
the information sent in a GET in your URL, which hopefully would not be a credit card number or
other valuable information.

A POST doesn’t show up in the URL; it is hidden in the actual HTTP request. Caution, however!
Although variables are not transparent in a POST, this doesn’t make them any more secure. A sim-
plified POST request looks like this:

POST /do HTTP/1.1
Host: actionscriptbible.com
User-Agent: Mozilla/4.0
Content-Length: 19
Content-Type: application/x-www-form-urlencoded

user=me&login=true

555

Part VI: External Data

As you can see, the information and its encoding are the same, but the method that you’re sending it
in is not. You set the method that you want to use in the method property of the URLRequest. The
possible values — GET and POST — are available as constants defined by URLRequestMethod.

var request:URLRequest = new URLRequest("http://actionscriptbible.com/do");
request.method = URLRequestMethod.GET;

Now that you’ve established that you’re using the GET HTTP method, you can set some data to go
over with this request using the data property. The property accepts binary data as a ByteArray,
URL-encoded variables as a String or URLVariables instance, or any other text as a String.

request.data = "name=me&login=true";

Request and Response with URLLoader
Now you can use the URLLoader class just like always to send the request (now carrying a payload
of data, and using the method you specified) and load the response, as shown in Example 27-9.

EXAMPLE 27-9 http://actionscriptbible.com/ch27/ex9

HTTP Request and Response

package {
import com.actionscriptbible.Example;
import flash.events.*;
import flash.net.*;

public class ch27ex9 extends Example {
public function ch27ex9() {
var url:String = "http://actionscriptbible.com/files/login.php";
var request:URLRequest = new URLRequest(url);
request.method = URLRequestMethod.POST;
var vars:URLVariables = new URLVariables();
vars.login = true;
vars.user = "Roger";
request.data = vars;

var loader:URLLoader = new URLLoader(request);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS, onHttpStatus);
loader.addEventListener(Event.COMPLETE, onLoadComplete);

}
protected function onHttpStatus(event:HTTPStatusEvent):void {
trace("HTTP response code " + event.status);

}
protected function onLoadComplete(event:Event):void {
trace("Response follows >>>>>>");
var loader:URLLoader = URLLoader(event.target);
trace(loader.data);

}
}

}

556

Chapter 27: Networking Basics and Flash Player Security

None of the URLLoader code is different from any other loading example you’ve seen up until this
point. Where Example 27-9 differs is that the URLRequest is jammed full of data, and the POST
method is chosen. If you try removing the login variable or changing the name, you should see
changes in what the script returns.

When loading a file, recall that you’re still making an HTTP request. It’s just a GET for the URL
you requested. So the technique differs very little; in both cases you make a request and get a reply.
It’s just that now, communicating with a script instead of asking for a static file, the contents of the
response depend on the data found in the request.

In reality, you’d want to make sure that you’re always listening for potential errors when you’re load-
ing data because you never know what might go wrong: a server down, an ISP conking out, Earth
destroyed to make way for a highway, or any number of potential disasters. It’s best to be able to say,
‘‘Something went wrong’’ rather than just leaving the user to wonder if you know what you’re doing.
Remember to listen for IOErrorEvents as well as SecurityErrorEvents.

You can communicate with many kinds of server-side scripts using GET and POST and loading the
results, and in the next chapter I’ll expand on this to explore communication with well-structured
web services. For now, however, you understand the basics of this communication. You know how to
send data, and you know how to listen for the response, and those are powerful things to know.

Request Only with sendToUrl()
In some cases you might not care about what the server replies when you make a request. This can
be useful for tracking usage of your application, for updating your status in a multiuser environment,
and so on.

Although there’s no reason you can’t make a request and ignore the response by simply sending it
through a new URLLoader whose events you ignore and whose existence you promptly forget, Flash
Player does give you a tool specifically to send a request without expectation of a reply. This is the
function sendToUrl(), exposed in the flash.net package. This function takes one argument, the
URLRequest, and returns nothing.

sendToURL(new URLRequest("http://example.com/counter?increment=true"));

Understanding Flash Player Security
Because so many applications live on the internet now, it’s essential that internet-enabled software
be well behaved. Our notion of well behaved usually centers on the idea of sandboxing — your
app shouldn’t be able to mess with data from another app, like say, your online banking site. Each
site operates in its own little sandbox. And because Flash Player doesn’t know or care if you’re a
good guy or a bad guy when it executes your code, it gives nobody the benefit of the doubt and
runs all code with a fair measure of skepticism. Generally, this skepticism applies when things are
happening between two domains, like when a SWF from wonderfl.net tries to access data on
actionscriptbible.com. Sometimes Flash Player’s security model prevents you from doing
things, sometimes it asks the user for permission with a dialog box, but most often, you have to prove
to it that what you’re doing is expected. For example, the owner of actionscriptbible.com has
to prove to Flash Player that it’s okay for code in wonderfl.net to poke around.

Flash Player security is pretty in depth and applies to many parts of the API, and its rules
can be a little complicated. In this section, I’ll touch on the most important parts, but for

557

Part VI: External Data

great detail, refer to the AS3LR or Adobe’s white papers on Flash Player Security, found at
http://adobe.com/go/fp9 0 security and http://adobe.com/go/fp10 0 security.

The first of the security model’s restrictions is that Flash Player is limited by your operating system to
certain behavior, much like what your operating system does to other scripts or applications running
in your browser. You wouldn’t want someone else’s JavaScript going and running shell scripts on your
computer, and neither would you want Flash Player doing that. The good news is, it can’t. That part
is quite solid and doesn’t affect you much in day-to-day development. The part that does affect you in
day-to-day development is the security sandbox, which affects where you can load files from.

The security sandbox exists to ensure that you and only you can specify the locations where content
will be loaded into the SWF file that you’re hosting. When you put a SWF file on your server and a
user downloads it, the Flash Player notes the domain where that SWF is coming from and creates a
security sandbox defined by that domain. That means if the user goes and downloads SWF files from
my web site with the name http://www.mysite.com, the Flash Player will define a security sand-
box for http://www.mysite.com that all content and data for that player must originate from.
It’s important to note that http://www.mysite.com is not the same as http://mysite.com
or http://82.39.28.182, even if http://82.39.28.182 is the IP address of your web site.
This is nice because it greatly decreases the likelihood that someone will get a virus or something
somehow malevolent from viewing Flash content on your site, but it can be a nuisance when you’re
trying to load XML files or pictures from another site. Flash Player raises a security sandbox excep-
tion, and fails to load whether the exception is handled or not. The way around this is to define a
crossdomain.xml file that lists all the IP addresses and domain names that you plan to access con-
tent from for your SWF file. This crossdomain.xml file should sit at the server root so the Flash
Player can access it and needs to be nothing more than a list of acceptable domains. An example
crossdomain.xml file might look like this:

<?xml version="1.0"?>
<cross-domain-policy>

<allow-access-from domain="*.mysite.com" />
<allow-access-from domain="www.anotherofmysites.com" />
<allow-access-from domain="282.39.28.182" />

</cross-domain-policy>

Now PNG files, SWF files, and XML from the host can be loaded by SWFs on any of these
three sites. You can place the file at any location on the host and load it manually with
Security.loadPolicyFile(); if you can, place it at the server root
(http://example.com/crossdomain.xml) so that Flash Player doesn’t have to be told
where to find it. This is a good idea when you have multiple SWF files with different sandbox
requirements.

If you want to know what the current security settings of a SWF file are, you need only to call
Security.sandboxType() and see the string that is returned. The possible values are

� Security.REMOTE — The SWF file is from an internet URL and follows the domain-based
sandboxing described here.

� Security.LOCAL_WITH_FILE— The SWF file is running locally, but it has not been
trusted by the user and was not published designated for network use. The SWF file can read
from local data sources but cannot communicate with the internet.

� Security.LOCAL_WITH_NETWORK— The SWF is running locally, has not been trusted by
the user, but it was published designated for network use. The SWF can communicate with the
internet but not locally.

558

Chapter 27: Networking Basics and Flash Player Security

� Security.LOCAL_TRUSTED— The SWF file is a running locally and has been trusted by the
user, using the Settings Manager. The SWF file can both read local resources and communicate
with the internet.

In addition to restricting the URLs from which the Flash Player may access content, the security mech-
anism might restrict what loaded content can access or load. When you load a SWF file, you can set
the context parameter of the load() method of the Loader object that is used to load the file. This
parameter takes a LoaderContext object. When you set the securityDomain property of this
LoaderContext object to Security.currentDomain, Flash Player trusts the loaded SWF exactly
as much as it already trusts the executing SWF. In other words, it applies the security settings of the
current SWF to the loaded SWF. If securityDomain is not set (this is the default), the loaded SWF
is loaded in a fresh sandbox, and its actions must be approved anew.

Additionally, by setting the applicationContext parameter of the LoaderContext object, you
can load the SWF file as imported media. In this way, the file doing the loading can access objects
and classes in the application domain of the loaded SWF. The following code snippet shows loading a
SWF file and setting that SWF file’s ApplicationDomain to be the domain of the loading SWF:

public function load(lib:String):void
{

var loader:Loader = new Loader();
var request:URLRequest = new URLRequest(swfLib);
var context:LoaderContext = new LoaderContext();
context.applicationDomain = ApplicationDomain.currentDomain;
loader.load(request, context);

}

Additionally, the Security.allowDomain() method allows the loaded SWF to do things
within the domain of the loading SWF file. Call the Security.allowDomain() method in the
constructor method of the main class of the loaded SWF file, and then have the loading SWF file
add an event listener to respond to the init event dispatched by the contentLoaderInfo
property of the Loader object. When this event is dispatched, the loaded SWF file has called the
Security.allowDomain() method in the constructor method, and classes in the loaded SWF file
are available to the loading SWF file. The loading SWF file can retrieve classes from the loaded SWF
file by calling Loader.contentLoaderInfo.applicationDomain.getDefinition(). The
following example shows how a SWF loaded into another SWF can use Security.allowDomain()
to allow the domain of the loading SWF:

public function ExampleConstructor() {
Security.allowDomain("http://www.newdomain.com");

}

Summary

� The URLRequest class is used to store information about a URL you might want to navigate
to, send information to, or get information from, or data that you might want to send.

� To redirect the browser, you use flash.net.navigateToURL() and pass in a
URLRequest object that has the URL that you want to redirect to.

559

Part VI: External Data

� You can also set GET and POST variables to be used by the URLRequest. These need to be
URL-encoded.

� To load data from a URL, you use a URLLoader object. URLLoaders dispatch events when
they are opened, when they make progress in downloading, when there is an error in down-
loading, and when they are completed.

� To access the information downloaded by the URLLoader, you access the URLLoader’s data
property. You can access this only when the downloading is complete. You determine when a
URLLoader is finished downloading by listening to the Event.COMPLETE event.

� If you are downloading text or XML, you want the URLLoader’s dataFormat to be
set to text, which is the default. If you are downloading URLVariables, you want the
URLLoader’s dataFormat to be set to "variables". This creates a URLVariables
object that you can loop through to access all its properties and data.

� If you aren’t interested in any response to your URLRequest, you can use the sendToURL()
method, which sends the request but doesn’t listen for information from the user.

560

Communicating with
Remote Services

FEATURED CLASSES

flash.net.URLLoader

flash.net.URLRequest

flash.net.Socket

flash.net.XMLSocket

flash.net.NetConnection

flash.net.Responder

I
n systems design, code that runs on the user’s computer is called client-side,
and code that runs on a server on the internet somewhere is called
server-side. Applications like single-player games can be entirely client-side,

and scheduled tasks like indexing files for search can be entirely server-side, but
the majority of applications that live on the internet trade off some of the work
between the client and the server. These are client-server applications.

The great thing about client-server applications, and one of the strengths of the
internet, is that as long as you agree on a specification for client-server communi-
cation, you can use any technology on the client side and any technology on the
server side. That’s how you’ve seen web sites transition into web services. What
at one time was simply a site for sharing photos, presenting your browser with
static pages of photos, is now a photo-sharing service, which you can interface
with in a mobile phone app, another web site, or a stand-alone application. As a
client-side developer, you use the APIs that the service exposes (and some expose
the same services in multiple ways to be even more flexible) to take advantage of
that service.

ActionScript 3.0 is a client-side technology: it runs in Flash Player on the
end-user’s computer. And, like a good client-side technology, it makes it
easy to speak a variety of services. There are a ton of ways to get clients and
servers to communicate, so in this chapter I’ll cover some of the most common
ones from the perspective of writing the client-side code. If the choice of which
client-server protocol to use is yours, you’ll have to make this decision based on
deeper knowledge of the technologies than I cover here. I also won’t show too
much server-side code because there are so many options, and you can better
learn those technologies elsewhere. Furthermore, this chapter is meant to be an
introduction. I aim for breadth, not depth, while covering a variety of forms of
client-server communication. The chapters in this part should give you the tools
necessary to work with any of these and provide a springboard if you want to
dive in deeper.

561

Part VI: External Data

Web Services Using HTTP
A huge proportion of client-server communication is built on HTTP. Whether you’re talking REST or
SOAP or XML-RPC, or simply an ad-hoc collection of scripts, a lot of client-server communication is
made simple — for both the server and the client — by talking in the same way web browsers and
web servers talk. It’s kind of a no-brainer: technologies that live on the web already talk in HTTP, so
why reinvent the wheel?

Remember from Chapter 27, ‘‘Networking Basics and Flash Player Security,’’ that HTTP is the proto-
col of the web: it defines how to make several requests like GET, POST, PUT, and DELETE, and it
defines how the server responds to these requests. If you need to communicate with a server, you can
simply access a script hosted at a certain URL, send it arguments with GET or POST, and listen to the
response; nothing on top of existing HTTP is needed. An ad-hoc service might provide clients access
via a smattering of different scripts at various locations that return information in a variety of formats.
If you redesign these scripts such that their URLs, and the HTTP methods you send them, obviously
communicate the nature of your request, and they return the resources you request in appropriate
and consistent formats, you’re building a RESTful system. REST is just an architectural style that fits
nicely with HTTP. It’s not a technology, and it can be done in any language. Both ad-hoc and RESTful
services can be built using just HTTP and nothing more.

Some client-server communication technologies that use HTTP — SOAP and XML-RPC, notably
— define protocols ‘‘on top’’ of HTTP. This means that, although you still send requests and receive

responses through normal HTTP, the format of those requests and replies is prescribed by the SOAP
or XML-RPC spec. These specifications are good because as long as you know the endpoint of any
service — the URL that responds to your requests — you can send well-formed requests to it.

Take a look at popular APIs out there: Flickr, Google Maps, Facebook, and so on. Every public web
service offers up its API through either REST, SOAP, or XML-RPC, some offering multiple options. So,
at least for public services, it’s a snap to develop clients in ActionScript 3.0. As you learned in Chapter
27, URLRequest and URLLoader let you craft and send HTTP requests and load their responses.
With just these two classes (okay, usually XML, too) you can write the client side of a client-server
application. I introduced fairly straightforward use of URLRequest and URLLoader before. For your
convenience, let’s review the properties you need to communicate over HTTP with web services:

� URLRequest.method — Set the HTTP method to URLRequestMethod.GET or
URLRequestMethod.POST. Unfortunately, using the Flash Player API, you are restricted to
these two methods, which might hamper your use of certain fully RESTful APIs. Note that if
you make a POST with empty content, Flash Player will use a GET request instead; use dummy
content to force the POST.

� URLRequest.contentType — Sets the MIME Content-Type header sent in an HTTP
request. Defaults to application/x-www-form-urlencoded, so this works automatically
if you’re just sending form variables with POST. Otherwise, set this to correspond to the type of
data you’re sending in the URLRequest.data parameter.

� URLRequest.data — Sets the content of an HTTP request. It accepts a String, a
URLVariables, or a ByteArray for binary data.

� URLLoader.dataFormat — Instructs the URLLoader to interpret the server’s response as
text (URLLoaderDataFormat.TEXT), binary data (URLLoaderDataFormat.BINARY), or
URL-encoded variables (URLLoaderDataFormat.VARIABLES).

� URLLoader.data — The content of the HTTP response from the server.

Let’s look at how you’d use URLRequest and URLLoader to utilize server-side code.

562

Chapter 28: Communicating with Remote Services

REST
A RESTful service uses nothing on top of HTTP, as Example 28-1 shows. All you need is to use
URLRequest and URLLoader efficaciously — perhaps some E4X to interpret the responses.

EXAMPLE 28-1 http://actionscriptbible.com/ch28/ex1

A REST Service

package {
import com.actionscriptbible.Example;
import flash.events.*;
import flash.net.*;
public class ch28ex1 extends Example {
private const ENDPOINT:String = "http://geocoder.us/service/rest/geocode";
public function ch28ex1() {
geocode("2225 Jackson Ave, Long Island City, NY");

}
public function geocode(address:String):void {
trace("Looking up " + address + "...");
var req:URLRequest = new URLRequest();
req.url = ENDPOINT;
req.method = URLRequestMethod.GET;
req.data = "address=" + address;
var loader:URLLoader = new URLLoader(req);
loader.addEventListener(Event.COMPLETE, onLoadComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onError);

}
protected function onLoadComplete(event:Event):void {
var loader:URLLoader = URLLoader(event.target);
var response:XML = XML(loader.data);
var geo:Namespace = response.namespace("geo");
var lat:Number = parseFloat(response..geo::lat.text());
var long:Number = parseFloat(response..geo::long.text());
trace("(" + lat + ", " + long + ")");

}
protected function onError(event:Event):void {
trace("Error!");

}
}

}

SOAP
Next to REST, SOAP is probably the most common style of web service. In SOAP, requests
and responses have a well-defined XML format. Web services in this style clearly define their
methods, parameters and types, and return types. You can load a WSDL file to have the service
describe itself in full. Because of this structure, SOAP web services are predictable and are usually
organized well.

563

Part VI: External Data

You can either write your own code to craft requests and interpret responses, or you can choose to use
a library that encapsulates not only the SOAP structure but the networking code as well, abstracting
the web service to an object.

The Flex framework has a fleshed-out framework for SOAP web services, in the mx.rpc.soap pack-
age. (In fact, it also includes one for REST in the mx.rpc.http package, although it may not save
you much effort.) The Flex SOAP framework can theoretically be used with an ActionScript-only
project, but in reality it takes some hacking, and you’re better off just creating a simple Flex shell for
your ActionScript application if you want to take advantage of the SOAP classes.

Alternatively, Peter Michels maintains an extremely lightweight Flex-free SOAP framework at
http://as3webservice.googlecode.com. In Example 28-2, you use this library to simplify a
weather web service.

EXAMPLE 28-2 http://actionscriptbible.com/ch28/ex2

A SOAP Service

package {
import be.wellconsidered.services.Operation;
import be.wellconsidered.services.WebService;
import be.wellconsidered.services.events.OperationEvent;
import com.actionscriptbible.Example;
public class ch28ex2 extends Example {
protected var weatherService:WebService;
public function ch28ex2() {
weatherService = new WebService(
"http://www.webservicex.net/WeatherForecast.asmx?wsdl");

getWeatherByZipCode("11238");
}
public function getWeatherByZipCode(zipCode:String):void {
trace("Looking up weather in " + zipCode + "...");
var op:Operation = new Operation(weatherService);
op.addEventListener(OperationEvent.COMPLETE, onResult);
op.addEventListener(OperationEvent.FAILED, onFault);
op.GetWeatherByZipCode(zipCode);

}
protected function onResult(e:OperationEvent):void {
var result:Object = e.data;
trace("Weather for " + result.PlaceName + ", " + result.StateCode);
for each (var weatherToday:Object in result.Details) {
if (weatherToday.Day) {
trace(weatherToday.Day + ":\t" +

"Low " + weatherToday.MinTemperatureF +
"\tHigh " + weatherToday.MaxTemperatureF);

}
}

}
protected function onFault(e:OperationEvent):void {
trace("Error: " + e.data);

}
}

}

564

Chapter 28: Communicating with Remote Services

XML-RPC
XML-RPC is another contender in the web service arena. It is similar to SOAP in many ways. In fact,
SOAP evolved from XML-RPC. XML-RPC is minimal; it is much simpler and more readable than
SOAP, but it also lets you specify typed parameters and responses. Just like with SOAP, you can craft
and interpret the XML-RPC requests and responses yourself using E4X, or you can use a library to
abstract away the details of the service. The Flex framework doesn’t provide a premade XML-RPC
library, but the community has created a few ActionScript 3.0 XML-RPC libraries, including Akeem
Philbert’s AS3 RPC Lib (http://as3-rpclib.googlecode.com).

Socket Services
Lower-level services on the internet communicate over TCP/IP without using HTTP. HTTP is actu-
ally one protocol built on top of TCP/IP. However, it is not the only one, and using Flash Player,
you can program clients that will connect to any service that uses TCP/IP sockets (including HTTP;
interestingly, nothing’s stopping you from writing your own HTTP stack if you don’t like the way
URLLoader works).

Sockets are abstractions that simplify networking code. A socket is a connection between two comput-
ers that works just like a stream. You connect up the socket, and information flows in two directions.
You can shove data down the pipe, and you can listen for data to come up the pipe. When you’re all
done, you just disconnect the socket. Simple, no? In reality, there’s a lot of code that goes into estab-
lishing these connections, keeping them alive, buffering the data that you push down the pipe and
sending it along. With sockets, you don’t have to worry about any of that.

Think of HTTP. You connect to the server, you send an HTTP request down the pipe, you listen for
the response to come back up the pipe, and you disconnect. This is a kind of socket connection. You
don’t use it like a socket because URLLoader handles both the network code and the HTTP protocol
that sits on top of it. Just a few services that use TCP/IP include

� Remote terminals (Telnet, SSH) — Allow you to use a command line on a remote computer as if
you were there locally. You send keystrokes down the pipe, and the computer sends the output
back to you rather than to the screen.

� File transfers (FTP, SFTP, SCP) — After a connection is established to the FTP server, you use
simple commands to browse the remote filesystem. Huge chunks of data can be sent up and
down the pipe to upload and download files.

� Mail (POP3, IMAP, SMTP) — Every time you check your mail (unless you use webmail, that is),
you establish a connection to the mail server and send requests asking it to describe your inbox.
Usually it sends you the headers; then you may or may not actually request the messages one
by one.

� Chat protocols (Jabber, AIM, MSN, Yahoo!) — Chat is usually achieved by keeping a connec-
tion open to a central server. When you send your mom a chat message, you send a command
to the server with the message. The server then pushes the message down the socket that con-
nects your mom to the server.

You can create a client for any of these services and more using sockets. All it takes is knowledge of
the protocol. You have to be able to send the right commands up to the server and know how to
respond to data you receive from the server.

You connect to sockets in ActionScript 3.0 with the Socket class. Sockets, as you just learned, are
nothing more than bidirectional streams that can be connected and disconnected. So Socket imple-
ments an input stream and an output stream, and it provides connect() and close() methods.

565

Part VI: External Data

The input and output stream interfaces, IDataInput and IDataOutput, should be familiar from
ByteArray, which also implements them (see Chapter 13, ‘‘Binary Data and Byte Arrays’’).

Note
If you want to write a client for some service in ActionScript 3.0, it’s best to do a thorough search online to
see if there is already a client — whether completed, under development, or abandoned — that you could use.
There’s no need to reinvent the wheel unless you have a good reason to. Of course, I give you my unconditional
approval to write a client just to help you learn sockets! �

You should also be aware that connecting to a service can be a security threat. You or
whoever controls the service has to specifically allow access from Flash Player clients,
on a domain-by-domain basis, with a crossdomain.xml file. For more information, see
http://www.adobe.com/go/flex3 progAS3 security.

If you decide to implement a common service that uses TCP/IP, chances are you will find an exhaus-
tive description of its protocol as a Request For Comment (RFC). Several sites provide access to these
public documents; simply search for ‘‘RFC’’ and the name of the protocol, and you’re likely to find it.

These are the universal steps to socket programming and how to achieve them with Socket:

� Connect to a service — Specify the server’s domain name or IP address, and the port, to the
Socket’s connect() method. Listen for the Socket to dispatch an Event.CONNECT event,
confirming the connection is established. At any time, you can check whether the socket is con-
nected by checking the value of the Boolean property connected.

� Send data — As long as you’re connected to the server, you can send data at will using
IDataOutput methods. The protocol itself specifies how to communicate discrete messages
to the server — for example, a null byte or two line endings after each command. As far as the
socket is concerned, you’re just sending and receiving bytes.

� Receive data — You have to be connected to read data from the stream, but of course, the
server must have sent some stuff for you to be able to read any stuff. You can read and react
to the data immediately, which is the normal operating procedure, or you can go ahead and
leave the data in the buffer until you are ready for it. New data coming down the pipe from the
server will accumulate. Like any input stream implementing IDataInput, Socket exposes a
bytesAvailable implicit accessor (property) that tells you how much data there is to read.
Furthermore, Socket dispatches ProgressEvent.SOCKET_DATA events as data is received,
so you don’t always have to be checking.

� Disconnect — When you’re done with the session, make sure to terminate the socket connec-
tion. This is pretty easy: just call close() on the Socket. Not closing a socket you’re done
with is not only lazy but downright irresponsible! Keep in mind that either party can terminate
a socket connection; the server may hang up on you at will. Be sure to listen for this with the
Event.CLOSE event.

And that’s all there is to it! The socket programming API is terribly easy, although conforming to the
protocol of a given service may not be.

Let’s create a partial HTTP client of your own in Example 28-3, by using sockets.

566

Chapter 28: Communicating with Remote Services

EXAMPLE 28-3 http://actionscriptbible.com/ch28/ex3

Using Sockets

package {
import com.actionscriptbible.Example;
import flash.events.Event;
import flash.events.ProgressEvent;
import flash.net.Socket;
public class ch28ex3 extends Example {
protected var sock:Socket;
public function ch28ex3():void {
sock = new Socket("actionscriptbible.com", 80); //http uses port 80
sock.addEventListener(Event.CONNECT, onConnected);
sock.addEventListener(Event.CLOSE, onClosed);
sock.addEventListener(ProgressEvent.SOCKET_DATA, onSocketData);

}
protected function onConnected(event:Event):void {
//make a GET request. HTTP requests end in two newlines.
var request:String = "GET /files/hand.xml HTTP/1.1\n" +

"Host: actionscriptbible.com\n\n";
sock.writeUTFBytes(request);

}
protected function onSocketData(event:ProgressEvent):void {
//we got some data... let’s just let it fill up the buffer
//and wait for the server to disconnect!

}
protected function onClosed(event:Event):void {
var response:String = sock.readUTFBytes(sock.bytesAvailable);
trace(response);

}
}

}

This example is far from an actual HTTP client; it merely shows enough understanding of the HTTP
protocol to make a request for a file, get at the data the server returns, and close the connection.

XML Socket Services
An XML socket server is just a socket server with a simple protocol: requests and responses are XML
documents terminated by a null byte. Sure, you can send and receive XML through a web service,
but web services use HTTP, so they include HTTP headers with each request and response. HTTP is

567

Part VI: External Data

also a request-response model, so the server can’t simply push a message to you without your ask-
ing. Furthermore, each request-response in HTTP is a full socket lifecycle, whereas an XML socket
server maintains the same connection as long as necessary. These advantages, coupled with the ubiq-
uity of XML and the simplicity of implementing it on the server as well as the client, make XML
socket servers a good choice for low-latency, bidirectional communication, such as chat and multi-
player games.

Many multiuser servers do XML sockets out of the box, including Swocket (http://swocket.sf
.net/), Palabre (http://palabre.gavroche.net/), SmartFoxServer (http://www.
smartfoxserver.com/), and ElectroServer (http://www.electro-server.com/). Alterna-
tively, you can build on top of an existing socket server, adding on XML parsing to roll your own
XML socket server.

For an ActionScript 3.0 client to connect to your XML socket server, you can easily build on Socket.
However, Flash Player gives you an even simpler interface to XML socket servers with the XMLSocket
class. In many ways, XMLSocket works identically to Socket; sending and receiving is simplified
because the protocol is predetermined.

To communicate with an XML socket server, create a new XMLSocket object, connect() to the
server, and listen for Event.CONNECT just as you would with a Socket. Sending data is now
as simple as using the send() method with an XML parameter. Receive data by listening for a
DataEvent.DATA event; the event object will contain the XML message in its data parameter.

var socket:XMLSocket = new XMLSocket();
socket.connect("example.com", 8080);
socket.addEventListener(Event.CONNECT, onConnect);
socket.addEventListener(DataEvent.DATA, onData);
private function onConnect(event:Event):void {
var message:XML = <echo>ping</echo>;
socket.send(message);

}
private function onData(event:DataEvent):void {
var message:XML = XML(event.data);
trace(message);

}

Flash Remoting
Flash Remoting is a powerful tool for client-server communication. It was originally created to inter-
face Flash Player clients with application servers built by Adobe, such as ColdFusion and Flash Com-
munication Server (now Flash Media Server). Now, with the specification opened by Adobe, it can
be used to connect Flash Player to virtually any back end. Flash Remoting adapters have been cre-
ated for server-side languages like PHP (AMFPHP, Zend AMF, WebORB for PHP, SabreAMF), Python
(PyAMF, AmFast), Ruby (RubyAMF), Perl (AMF::Perl), Java (BlazeDS), Erlang (erlang-amf), as well as
application frameworks that use these languages. Like all client-server technologies, at its core, Flash
Remoting allows the client to invoke methods on the server and receive a response.

For the server, Flash Remoting provides a gateway that dispatches service requests to the proper
code, so you don’t have to handle incoming connections. The Remoting adapter invokes the proper
server-side code depending on the request. In many implementations, the adapter maps service
requests to classes and methods on the server side.

568

Chapter 28: Communicating with Remote Services

Flash Remoting uses a more structured protocol than the ones I’ve discussed so far in this chapter:
the Action Message Format (AMF). This is a compressed, binary message format, which is usually sent
over HTTP, but it can utilize other protocols as well. AMF has several benefits over other formats such
as XML:

� Native type support — In XML, you have to interpret all data back from strings. AMF supports
native data types on both the client and the server (where an appropriate type can be mapped
to). This means that no parsing, conversion, or even casting is necessary for these types:
undefined, null, Boolean, int, Number, String, XMLDocument, Date, Array,
Object, XML, or ByteArray. You can use IExternalizable to serialize custom classes
into AMF as well.

� Size — AMF packets are tightly packed, binary, and compressed. They take up far less band-
width than the equivalent XML in all conceivable cases. This means you can send more data,
more quickly.

� Speed — AMF is quickly interpreted by Flash Player, whereas larger XML documents can take a
few moments to parse. Many of the server-side remoting adapters are also able to prepare AMF
data with great speed.

The native type support in AMF works especially well when you pass complex objects back and forth
between client and server. The remoting adapter allows these objects to come through the network
barrier intact and in an equivalent representation for languages on both sides.

NetConnection
You use a NetConnection object to connect to a service that has a remoting gateway. This gateway
is the URL through which service calls may be made. To set up a connection to a remoting gateway,
use the object’s connect() method with the remoting gateway URL:

var nc:NetConnection = new NetConnection();
nc.connect("http://server.com");

Note
NetConnection is also used for playing video and for integrating with Flash Media Server (FMS). FMS goes
above and beyond Flash Remoting by providing object synchronization and server-to-client calls, as well as
client stream publishing. Flash Media Server is not covered in this book, but you can consult the documentation
available at http://www.adobe.com/support/documentation/en/flashmediaserver/. �

You should use one NetConnection object per gateway that you would like to connect to. This is
usually one, as you’re more likely to call multiple methods on the same gateway than you are to have
separate gateways. The NetConnection object is reused between different calls, even if internally it
is creating and terminating multiple HTTP sessions.

Once you’re ‘‘connected,’’ make service calls with the call() method. The call() method of the
NetConnection object invokes a server-side method. Its signature is

function call(command:String, responder:Responder, ... arguments):void

command is the name of the method. responder is a Responder object, covered in the next
section, and (optionally) any arguments the method takes.

569

Part VI: External Data

When you’re finished working with a NetConnection, you should call the close() method to
close the connection to the server. Any queued data that hasn’t yet been sent to the server will be
discarded, and any data that the server has yet to send to the application will not be received. To
reconnect, you don’t need to create a new NetConnection object; you can simply call connect()
on an object previously created and go from there.

Responder
The Responder is an object that responds to the server’s response to a NetConnection call. You
pass it to call() to act as a delegate for the response from the server; it specifies what to do with the
result and what to do in case of failure. The constructor for a Responder has one or two parameters:
the function that will be called when the server returns a method, and the function to be called in
case of an error. You can use a function reference — the name of a method in scope — just as well
as an inline anonymous function, or a Function variable. Following is a code snippet that creates a
Responder with appropriate handler methods:

var responder:Responder = new Responder(resultHandler, errorHandler);
function resultHandler(result:Object):void {
trace("Success! Received result.");
for (var property:String in result) {

trace(property + " : " + result[property]);
}

}
function errorHandler(error:Object):void {

trace(error.description);
}

Notice that the parameters used by the result and error handler functions are not Events as they
would be with normal event handlers. The result handler is passed whatever the server call returns;
in this case, you’ve assumed it’s an Object with properties. If the server-side method returns a single
integer, the responder’s result handler function should expect an integer parameter.

Summary

� You can use the URLLoader class to communicate with any HTTP-based service. Pass parame-
ters via GET using the URL string or by via POST using the data property.

� SOAP and ad-hoc web services can simply use URLLoader, but SOAP and XML-RPC web ser-
vices are eased by using a library.

� Sockets let you code lower-level protocols on top of TCP/IP rather than on top of HTTP. Use
the Socket class and the I/O stream methods from IDataInput and IDataOutput.

� XML socket servers are servers that keep a persistent connection open to send and receive
XML fragments. The client is notified whenever data has been sent from the server via the
XMLSockets instance.

� Flash Remoting is a method of communicating with a server using AMF, which is faster and
smaller than other client-server protocols.

570

Storing and Sending
Data with SharedObject

FEATURED CLASSES

flash.net.SharedObject

flash.net
.registerClassAlias()

W
hen you’re building programs in ActionScript that run inside a
browser, you don’t have unlimited access to the user’s hard drive.
At best, you can load or save one file at a time, with the user’s

permission in Flash Player 10, as you’ll see in Chapter 30, ‘‘File Access.’’

However, using local shared objects, you can easily store all kinds of informa-
tion that can be retrieved when the program runs again, even after the user shuts
down the browser or her computer — usually without explicit user action. Using
SharedObjects, you can give users the power to personalize your programs,
retain those preferences, and improve their experience.

Comparing Approaches to Persistent

Storage

There are several ways that SWFs playing in the browser can attain persistent
storage. By persistent storage, I mean the ability to store data, close the browser,
and then come back later and retrieve the data. All the approaches have different
strengths and weaknesses, so let’s compare them briefly.

Storing Information in a Local Shared Object
Using SharedObjects to persistently store data from ActionScript is as cheap,
painless, and efficient as instant noodles for dinner, and probably better for you,
too. However, SharedObjects have some limitations in terms of the size of the
information you can store, and their dependence on the host computer.

The biggest limitation of SharedObject data is that it’s associated with
a single machine. When you store information in a local shared object,
it is saved on the computer. When you use the program again from the
same computer, you have access to that information; when you use it from

571

Part VI: External Data

another user’s account or another computer, you don’t. On shared computers that use a single guest
account rather than registered user accounts, like those in some libraries and schools, the shared
objects’ data is also shared. For instance, if you remember the user’s name, address, and phone
number on a public computer, there’s a chance that the next user of the terminal has access to that
information, presenting a clear privacy concern.

Storing Information in Local Files
In Flash Player 10 and later, and with the AIR runtime, you can write to and read from arbitrary files
on the user’s system. You can read more about this technique in Chapter 30. This is great for storing
large amounts of data or making the output of a program portable so that the user can open it in other
programs. In the Flash Player API, you rely on the user to provide the locations for both opening and
saving files. Because of this restriction, local file access is not as convenient for saving preferences or
repeated accesses to the same data. And, of course, this approach is not available in Flash Player 9.

Storing Information on a Server
If you’re building a client-server application, you can always send things you need to be stored to
the server. Ironically, though it requires sending the information over the network, this is the only
approach for which you can guarantee some security. You can require authentication to get to infor-
mation on a server, and you can transmit it across secure connections. Finally, unlike with files and
shared objects on the user’s machine, you can control the longevity of and guarantee the persistence
of the information stored on it.

However, using a server to maintain information from a SWF means a lot of additional work. You
must develop code on the server that can accept and retrieve the requested information. You must
develop a way in which sessions can be tracked, and you can verify that the same user is retrieving his
own information. You must determine and implement a way to serialize and deserialize information
sent to and from the server.

A server that stores information can be made secure and can handle bigger loads of data, but it is far
from the convenience of using a SharedObject.

Storing Information in the Browser
Web browsers allow a kind of persistent storage through cookies. Cookies are extremely limited in
size, and they can only be string values, so if you want to store more complex types, you first have
to encode them as strings. Because cookies are part of the browser’s API in JavaScript, you have to
interface with JavaScript code to use them. You can read more about interfacing with JavaScript in
Chapter 43, ‘‘Interfacing with JavaScript.’’

Cookies are subject to the same limitations as SharedObjects as far as being associated with a phys-
ical computer and system account rather than with the user. A further limitation is that cookies are
associated with the browser that created them. SharedObjects can store information for a SWF
regardless of the version of Flash Player used to create them and which browser they were running in,
but a cookie created while browsing in Firefox won’t be available in Opera, even on the same com-
puter. In addition, many savvy users clear their cookies frequently, so they may be more volatile than
SharedObject storage.

On the other hand, the cookie mechanic may be desirable if you want users to be able to easily
clear saved data. Because users are more likely to be savvy at clearing browser cookies than
SharedObject data, placing your cached data in a cookie may be a concession to usability.

572

Chapter 29: Storing and Sending Data with SharedObject

If you’re interfacing with the browser, you may also have the ability to plug into other methods of
offline storage, such as the Google Gears plug-in (http://code.google.com/apis/gears/)
or HTML 5’s web storage mechanism (http://dev.w3.org/html5/webstorage/). These
more mature technologies provide database-like local storage and may be preferable in some cases.
Of course, you’ll still need a JavaScript bridge to interface with these browser-based technologies.
Table 29-1 summarizes some of the issues inherent in using these four approaches to persistent
storage.

TABLE 29-1

Solutions for Persistent Storage from ActionScript

Local Shared Objects Local Files Cookies Servers

Ease of Implementation in
ActionScript 3.0

Easy Easy Intermediate Intermediate to
difficult

Additional Work to Use None None Some Some to lots

Privacy Low Low Low High

Persistence Medium Low Low High

Storing Typed Data Easy Easy Difficult Intermediate

Default Size Limit 100KB 100MB 4KB None

Identifying Useful Situations for Shared Objects
Using local shared objects is great when you need to store small to medium amounts of
non–mission-critical information that is not private. Local shared objects are excellent for stor-
ing users’ preferences without requiring them to sign in. These are some ideas for how you can use
shared objects:

� Store a user’s progress in a game.

� Keep bookmarks in text, audio, and video, so that the user can come back to long media and
continue right from where he left off.

� Remember the text size picked by the user, so that she can read text in a way that is
comfortable to her.

� Save the user’s preference to hear music or sound effects on a site that provides them.

� Retain any kind of theme customizations such as colors and background images.

� Remember which parts of your program have been used or visited.

� Present help or intro animations only once.

Returning to an application that remembers these kinds of small details without asking can be a posi-
tive experience. These are good examples because they are not personal or private; they help users in
tangible ways when they have already expressed a preference that is not likely to change, and they are
small features that it would be frustrating to authenticate just to retrieve.

573

Part VI: External Data

Note
In Flash Player 10.1 and later, shared objects respect ‘‘private browsing’’ settings available on many browsers,
so shared objects created during a private session will be wiped at the end of it. �

Shared Objects and Remoting
It should be mentioned that SharedObjects have a secret second life. While during the day, the
mild-mannered SharedObject helps you remember bits of information by keeping them filed away
and synchronized on the user’s hard drive, come nightfall it does a quick costume change and instead
negotiates synchronized objects over the network with Flash Media Server and compatible servers.
You call the first kind of SharedObject local shared object, and the second remote shared object. I’ll
focus on local shared objects in this chapter. Although the concepts for connecting and synchronizing
with a remote shared object differ from those of loading and flushing to a local shared object, simple
modifications of properties in shared objects are the same.

It’s incredibly useful to be able to deal with real class instances on either side of a client-server appli-
cation, rather than always converting from XML, JSON, or another transport format. Beyond being
able to store typed data, AMF, the format used in shared objects, is binary, compressed, and fast. So,
consider applying these serialization and deserialization strategies to support Flash Remoting in your
client-server program.

For more information on remote shared objects, see Chapter 28, ‘‘Communicating with Remote
Services,’’ as well as the AS3LR entries on NetConnection and SharedObject, and the Flash
Media Server developer documentation, available at http://bit.ly/fms-dev-guide.

Using SharedObjects
Using SharedObjects is about as simple as it can get. You retrieve a SharedObject and then read
and write to it. Things you put in it, stay in it.

Retrieving a SharedObject
Before you can start storing information in a SharedObject, you must get one. Your program can
create and use as many as it needs until it exceeds the space limitation set for it. More on that later,
however. Because you can create lots of SharedObjects, you have to identify them by a unique
name. To get a local SharedObject, use the static SharedObject.getLocal() method. The full
class name is flash.net.SharedObject, so don’t forget the import statement.

Caution
The name of the shared object cannot contain spaces or these characters: ∼ % & \ ; : " ‘ , < > ? #. �

In Example 29-1 you retrieve the SharedObject named hiscores. The first time you try to get the
SharedObject with this name, it is created for you, so you don’t have to worry if a SharedObject
already exists.

import flash.net.SharedObject;
var hiscores:SharedObject = SharedObject.getLocal("hiscores");

574

Chapter 29: Storing and Sending Data with SharedObject

Caution
Do not use new to construct a SharedObject. Use the static method SharedObject.getLocal(). �

Reading from and Writing to a SharedObject
After you have retrieved a local shared object (LSO), use its data property, an Object, as an asso-
ciative array. Any property you add to the data object is stored and available in later sessions.

You can set and retrieve properties of data, like any other Object, using either dot notation or array
access notation. For a refresher on using Objects as associative arrays, see Chapter 10, ‘‘Objects and
Dictionaries.’’ To read from the SharedObject, just access the desired property of the data object.
If you try to access a property that has not yet been stored, you get undefined.

EXAMPLE 29-1 http://actionscriptbible.com/ch29/ex1

Reading and Writing SharedObject Data

package {
import com.actionscriptbible.Example;
import flash.net.SharedObject;
public class ch29ex1 extends Example {
public function ch29ex1() {
//retrieve or create a SharedObject
var hiscores:SharedObject = SharedObject.getLocal("hiscores");

//initialize properties if they don’t exist
if (!hiscores.data.highest) hiscores.data.highest = 999999;
if (!hiscores.data.scores) hiscores.data.scores = new Array();

//add a new entry
hiscores.data.scores.push(
{score: int(Math.random()*1000), time: (new Date()).time}

);

//dump all the data
trace("HIGHEST SCORE: " + hiscores.data.highest);
for (var i:int = 0; i < hiscores.data.scores.length; i++) {
trace("Score:\t" + hiscores.data.scores[i].score +

"\tat\t" + new Date(hiscores.data.scores[i].time).toString());
}

}
}

}

Caution
You can’t assign a value to the data object. You may add only properties to it. �

575

Part VI: External Data

And that’s it! Every value you put into the data property of a SharedObject will be there when
you retrieve it the next time with getLocal(). If you try reloading the previous example, you’ll see
the record of high scores grow with every access of the SWF.

Deleting Information from a SharedObject
Because the data property of a SharedObject is an Object, you can delete properties from a LSO
just as you would delete them from an Object. Just use the delete operator with the property you
want to clear from the data property, as the following snippet shows:

var so:SharedObject = SharedObject.getLocal("hiscores");
delete so.data.highest; //delete the top score

Removing properties from a SharedObject ensures that they won’t be available the next time you
attempt to retrieve them. Additionally, the space available to SharedObjects is fairly limited, so it’s
a good idea to clear out larger structures if they are no longer needed.

To totally wipe out the entire SharedObject, use its clear() method. This not only removes all
the stored data, but the SharedObject file.

var so:SharedObject = SharedObject.getLocal("hiscores");
so.clear(); //nuke the LSO

After using clear(), the next time you request a local SharedObject with the same name, it won’t
be found and a new one will be created for you and returned.

Saving Information
You don’t have to do anything to ensure that the local shared object’s information is stored for
later reference. An LSO is be synchronized to disk when the SWF is unloaded or when the
SharedObject is no longer used and your program retains no more references to it.

However, you can force the SharedObject to save to disk manually by calling its flush() method.
With no arguments, the method simply forces the LSO to write itself to disk. It’s unlikely you’ll ever
need to do so, because the LSO saves automatically.

When passed an argument, the flush() method is useful for reserving space for large objects, so I
will revisit it in ‘‘Working with Size Constraints.’’

Sharing Information between SWFs
By default, when you save information to a local shared object, it is associated with the SWF that cre-
ated it. The SWF is identified by the location it was loaded from, so that each SWF gets its own whole
namespace of possible SharedObject names. This means you don’t have to worry if another SWF
on the internet wants to use the name storage for its SharedObject.

To understand this better, let’s lift back the hood of Flash Player and find how SharedObjects are
stored on your local drive. Somewhere in your drive, under your username, is a folder that stores all

576

Chapter 29: Storing and Sending Data with SharedObject

those SharedObjects. Let’s call this directory #SharedObjects. When you create an LSO named
storage in a file hosted at http://example.com/examples/sharedobjects.swf, informa-
tion stored in that shared object ends up in a file named

#SharedObjects/example.com/examples/sharedobjects.swf/storage.sol

This literal mapping between the name of the SharedObject and a file on the filesystem explains
why you are prevented from using specific characters when naming an LSO.

Note
I’m using the #SharedObjects alias for the shared object directory because the full path differs by operating
system and contains a random string. If you poke around your filesystem, you can find this actual directory. For
me it happens to be

C:\Users\roger\AppData\Roaming\Macromedia\Flash Player\#SharedObjects\LAHE8YH2

The Wikipedia article http://en.wikipedia.org/wiki/Local Shared Object#File locations
can help you find your own shared object directory. �

This scheme of storing shared object files also allows you to share shared objects between SWFs
hosted in different locations on the same domain. You can, for example, store a central set of
preferences that are implemented across several modules seamlessly.

To be able to share local shared objects, you must ensure that the shared object file is stored in a place
that is accessible to SWFs in both locations. If you placed the shared object file at

#SharedObjects/example.com/storage.sol

it would be accessible to any SWF stored on http://example.com/. Likewise, storing it in the
examples/ directory would make it accessible to any SWF stored in the examples directory or its
subdirectories, but not in other directories or other domains.

To modify the location of the local shared object, you can pass a second parameter to the
SharedObject.getLocal() method. This optional parameter defines the path (relative to the
domain) under which the local shared object file will be stored, and by extension it defines which
SWFs can share data stored in it. The parameter defaults to the location of the SWF, as in the
following example:

//in code run by http://DOMAIN/ORIGINAL/PATH/test.swf ...

SharedObject.getLocal("NAME");
//creates or retrieves #SharedObjects/DOMAIN/ORIGINAL/PATH/test.swf/NAME.sol

SharedObject.getLocal("NAME", "/");
//creates or retrieves #SharedObjects/DOMAIN/NAME.sol

SharedObject.getLocal("NAME","/NEW/PATH");
//creates or retrieves #SharedObjects/DOMAIN/NEW/PATH/NAME.sol

577

Part VI: External Data

By targeting all your SWFs on the same domain to use a shared object file at the same location and
choosing that location so that it is accessible to all your SWFs, you can share one set of data persis-
tently between multiple programs or multiple parts of a program.

Caution
It is not possible to move the LSO file outside of the domain name directory. The highest directory you can set
for the localPath parameter is /, which maps to the root of the domain. Using this value for localPath
allows any SWF in the domain to access the SharedObject. Be aware that Flash Player’s security sandbox
restrictions still apply in addition to the localPath parameter. �

Requiring a Secure Connection
You can add a further layer of security by creating local shared objects that are available only from
SWFs served through a secured (HTTPS) connection. Pass true as the optional parameter security
of SharedObject.getLocal() to retrieve a SharedObject that is only valid for SWFs served
from secured connections.

This is the final parameter that getLocal() can accept, so let’s review its full method signature:

function getLocal(name:String,
localPath:String = null,
security:Boolean = false):SharedObject

When you retrieve a SharedObject from a SWF served over HTTPS, a SharedObject is
retrieved or created that can’t be accessed from non-HTTPS locations. Attempting to retrieve a secure
SharedObject from an HTTP connection returns null.

//from https://example.com/shortbread.swf
var so:SharedObject = SharedObject.getLocal("desserts", "/", true);
so.data.cookies = 100;

//from https://example.com/frozen/icecream.swf
var so:SharedObject = SharedObject.getLocal("desserts", "/", true);
trace(so.data.cookies); //100
so.data.icecreams = [{flavor: "chocolate", rating: 5}];

//from http://example.com/hot/pie.swf
var so:SharedObject = SharedObject.getLocal("desserts", "/", true);
//returns null

//from http://example.com/hot/pie.swf
var so:SharedObject = SharedObject.getLocal("desserts", "/");
trace(so.data.cookies); //undefined
trace(so.data.icecreams); //undefined

In the preceding example, the desserts SharedObject can exist both as a secured
SharedObject and an insecure one. These two live independently, but SWFs served from
insecure connections such as pie.swf don’t have access to the secure versions.

578

Chapter 29: Storing and Sending Data with SharedObject

Caution
Storing local shared objects as secured guarantees only the ability or inability of Flash movies to access the
data in them. However, any information you store in them is stored unencrypted on the user’s computer in an
accessible directory. Again, do not use local shared objects to store sensitive or private information, especially
without the user’s consent. �

Sharing with ActionScript 1.0 and 2.0 SWFs
ActionScript 3.0 uses the AMF3 format for serializing data to local shared objects. However, SWFs
that use prior versions of ActionScript use AMF0. By default, this means that a SWF written in AS3
can read from shared objects saved by SWFs written in AS1 or AS2. But those older SWFs can’t access
shared objects saved by SWFs that use ActionScript 3.0.

To restore compatibility in both directions, you can explicitly instruct SharedObjects to use AMF0
or AMF3 when encoding data. To do so, use the static SharedObject.defaultObjectEncoding
property or the instance variable objectEncoding.

If you want to pick one format to use for the entire program, just set SharedObject
.defaultObjectEncoding once during your program’s initialization. If you need more fine
control, you can set the objectEncoding property on each SharedObject instance as you
require.

These properties accept uints. The value 0 represents AMF0, and 3 represents AMF3, but you should
instead use the static properties AMF0 and AMF3 of flash.net.ObjectEncoding, as shown in the
following snippet:

import flash.net.ObjectEncoding;
SharedObject.defaultObjectEncoding = ObjectEncoding.AMF0;

If you choose to use AMF0, types new to ActionScript 3.0, such as ByteArray, int, and
XML, will be stored incorrectly. You also won’t be able to work with custom classes that use
IExternalizable (see ‘‘Storing Custom Classes’’) while using AMF0.

Working with Size Constraints
Ultimately, the user has control over whether your program can store data locally, and how much.
Therefore, technically you can’t rely on local shared objects for your application to work correctly.
However, the vast majority of users have local shared objects enabled, and in reality, you can make
this a requirement without shutting out more than a user or two. Your power users are far more likely
to disable Flash Player entirely than specifically limit shared object use. The same limitations hold true
for browser cookies, and there are a great number of web applications that require cookies. In fact,
local shared objects have an advantage here because you have the ability to query the user for more
space when you need it.

User Settings
You, and any Flash Player user, can control Flash Player’s policies on local storage by accessing the
Flash Player Settings Manager. The Settings Manager is an embedded control panel that you can find
by accessing http://adobe.com/go/settingsmanager.

579

Part VI: External Data

There are two relevant panels for controlling local shared object storage. You can set how much space
is allotted by default for sites using the Global Storage Settings panel, as shown in Figure 29-1. You
can control the space allotted to sites on a site-by-site basis, examine disk usage, and clear individual
sites’ local shared objects by using the Website Storage Settings panel, as shown in Figure 29-2.

FIGURE 29-1

The Flash Player Global Storage Settings panel

FIGURE 29-2

The Flash Player Website Storage Settings panel

It’s worth repeating that a majority of users will use your program with the default settings: 100KB
allotted by default per site.

User Requests
When your program uses more than its allotment of space, rather than failing to save the requested
information, the user is prompted to allow this action. Flash Player automatically opens a dialog box
with this prompt, showing the space requested and the space currently allocated. You don’t have to
provide this dialog box yourself, but you also can’t customize it. A sample dialog box is shown in
Figure 29-3.

580

Chapter 29: Storing and Sending Data with SharedObject

Caution
Any SWF that might display this kind of prompt must be at least 215 pixels wide by 138 pixels high or bigger
to accommodate this prompt. If the stage is smaller, the request is automatically denied and the user sees no
prompt! �

FIGURE 29-3

Flash Player requesting additional space

This kind of prompting means that you can have the chance to store as much information as you want
in a shared object, but also that it is never guaranteed. Furthermore, for some applications, allow-
ing the user to see this dialog box might be unacceptable, and you might have to plan for a limit of
100KB and hope for the best.

Asking for Space before It’s Too Late
Earlier you learned that SharedObjects are synchronized to disk automatically as the SWF unloads,
so you don’t have to use flush(). However, if your assignments to the LSO require it to ask the user
to expand in size, it is too late to display this dialog box if the SWF is closing.

If you are using SharedObjects to casually store a tiny bit of noncritical information, this should
be no problem and you may choose not to manually synchronize the shared object to disk with
flush(). In this case, popping up a dialog box isn’t even preferable to losing the information if the
information is so unimportant.

However, if you need to know if the data was successfully stored, you should explicitly use flush().

Asking for Space up Front
The flush() method can take an optional parameter that represents the disk space you anticipate
needing. By using this parameter, you can limit user-facing dialog boxes to a single request.

For example, say you store 150KB, flush, store another 150KB, flush, and store a final 50KB and
flush. With a default limit of 100KB, this results in three dialog boxes, first to expand from 100KB
to 150KB, then to expand from 150KB to 300KB, and finally to expand from 300KB to 350KB.

Instead, you could — even before storing data to the SharedObject — flush while requesting
350KB of space. This presents a dialog box, but then (assuming the user accepts) the rest of the flush
operations proceed without requiring user intervention, because the total space of 350KB was already
allocated.

581

Part VI: External Data

Using flush()
The signature of the SharedObject’s flush() method is

function flush(minDiskSpace:int = 0):String

Use the minDiskSpace argument to request the total space you anticipate needing, in bytes.

The return type lets you know if you need to wait for the user to accept or deny the request or if the
operation failed. flush() can also throw an Error or dispatch an asynchronous NetStatusEvent
error if the user specified to globally deny these requests or the dialog box can’t be shown.

The possible return types are defined by static properties of the SharedObjectFlushStatus class:

� SharedObjectFlushStatus.PENDING is returned if the user has been presented with a
dialog box requiring his approval.

� SharedObjectFlushStatus.FLUSHED is returned if the shared object has been success-
fully written to disk.

When calling flush(), you can check to see if user verification is necessary, and if so, subscribe to
the SharedObject to be notified if the request is approved or denied. Example 29-2 shows how to
do this by requesting space up front with the minDiskSpace parameter of flush().

EXAMPLE 29-2 http://actionscriptbible.com/ch29/ex2

Asking the User to Expand SharedObject Space

package {
import com.actionscriptbible.Example;
import flash.events.NetStatusEvent;
import flash.net.SharedObject;
import flash.net.SharedObjectFlushStatus;

public class ch29ex2 extends Example {
protected var so:SharedObject;

public function ch29ex2() {
so = SharedObject.getLocal("storage");

//request 1MB up front
if (so.flush(1024 * 1024) == SharedObjectFlushStatus.PENDING) {
so.addEventListener(NetStatusEvent.NET_STATUS, onUserAction);
trace("User approval pending...");

}
}

public function onUserAction(event:NetStatusEvent):void {
so.removeEventListener(NetStatusEvent.NET_STATUS, onUserAction);
switch (event.info.code) {

582

Chapter 29: Storing and Sending Data with SharedObject

case "SharedObject.Flush.Success":
trace("Accepted");
break;

case "SharedObject.Flush.Failed":
trace("Denied");
//do error recovery
break;

}
}

}
}

Unlike most events in which the type of the event is communicated fully by its type parameter, the
NetStatusEvent.NET_STATUS event can signal many kinds of events, so you must inspect the
event’s info object to determine what really happened.

Viewing Used Space
You can check the disk space already in use by a SharedObject by accessing its size implicit
getter. This returns the size of the particular local shared object in bytes. However, it calculates this
by measuring every object inside it, so it can be processor-intensive for exceptionally cluttered LSOs.

Storing Custom Classes
Using a SharedObject, you can store any native type in ActionScript 3.0 persistently. You can also
store your own custom classes, with a little bit of extra work. The extra work has to do with the pro-
cess of encoding objects into bytes so that they can be written to the local shared object file. Encoding
objects into a flat binary representation is called serialization, and restoring them into their original
form as runtime objects is called deserialization. You’ve already seen that Flash Player uses AMF to
serialize and deserialize objects for storage in shared objects.

Storing Custom Classes without Modification
Certain kinds of classes can be serialized and deserialized in AMF with no problem. You can store and
retrieve instances of a class in a SharedObject without additional code as long as:

� All properties of the class are public.

� The class’s constructor takes no arguments, or all arguments to the constructor are optional.

Classes that are structured like this are essentially Objects with methods attached: AMF can serial-
ize Objects, and methods are not serialized. Of course, all the object’s properties must also be of
serializable types for the object to be serialized.

The following is a custom class that can be natively serialized in AMF3. Because it uses an int type,
you should use AMF3 as the encoding method. (Again, this is the default when programming in
ActionScript 3.0.)

583

Part VI: External Data

class Bookmark {
public var page:int;
public function Bookmark() {
}
public function toString():String {

return "[Bookmark at page " + page + "]";
}

}

Note that the Bookmark class has only public properties, and its constructor takes no arguments.
Let’s see how you can use and persistently store this custom class.

For Flash Player to know what class to associate an object with when it comes out of a serialized
format, it must also know what class the bytes originally represented. So to use custom classes in a
shared object, you must give the class a name that will be stored along with it. This must be done in
both directions: to ensure that a name is saved along with a class’s representation, and to know what
class to create from the class’s name when it is reconstituted. This is performed rather simply by one
operation: registerClassAlias(). This function, in the flash.net package, registers a class
definition with a String identifier. You must ensure that this is called before any SharedObject
that contains custom classes is retrieved or created.

Then, to get the type back when retrieving an instance of a custom class, retrieve the property
from the shared object’s data property and upcast it to the type that it should be, as shown in
Example 29-3.

EXAMPLE 29-3 http://actionscriptbible.com/ch29/ex3

Storing and Retrieving a Serializable Class in a SharedObject

package {
import com.actionscriptbible.Example;
import flash.net.SharedObject;
import flash.net.registerClassAlias;
public class ch29ex3 extends Example {
protected var currentPage:int;
protected var so:SharedObject;
public function ch29ex3() {
registerClassAlias("Bookmark", Bookmark);
so = SharedObject.getLocal("storage");
if (so.data.bookmark) {
//go to the stored bookmark
var b:Bookmark = Bookmark(so.data.bookmark);
trace("found", b);
gotoPage(b.page);

//read the next page and bookmark it
trace("advancing a page...");
gotoPage(currentPage + 1);
setBookmark();

} else {
//start at the first page if there’s no bookmark

584

Chapter 29: Storing and Sending Data with SharedObject

gotoPage(1);
setBookmark();

}
}
public function setBookmark():void {
var b:Bookmark = new Bookmark();
b.page = currentPage;
so.data.bookmark = b;
trace("setting", so.data.bookmark);

}
public function gotoPage(page:int):void {
trace("going to page", page);
currentPage = page;

}
}

}

class Bookmark {
public var page:int;

public function Bookmark() {
}

public function toString():String {
return "[Bookmark at page " + page + "]";

}
}

To make sure there are no name collisions, it’s customary to use the fully qualified class name
as the alias name in registerClassAlias(). Another common trick to ensure that class
aliases are registered before any code requiring them is run. To do this, set the result of your
registerClassAlias() call to a static constant. This way, the function is run even before the
constructor:

package {
public class ch29ex3 {
protected static const ALIAS:* = registerClassAlias("Bookmark", Bookmark);

//...

The value ALIAS is never used; its purpose is simply to force registerClassAlias() to run. In
fact, the function returns void; there is, in fact, no result to speak of.

Creating Self-Serializing Classes
You can get around the public variable restriction by using AMF3 and implementing the interface
flash.utils.IExternalizable in your custom classes. By implementing this interface, you
define how your class is turned into bytes and how it restores itself from bytes. In other words, if you
elect to figure out how to do the serialization and deserialization of your class, Flash Player simply
relies on the encoding methods you provide.

585

Part VI: External Data

The IExternalizable interface includes two functions that you must implement:

function readExternal(input:IDataInput):void
function writeExternal(output:IDataOutput):void

These methods, when implemented, deserialize your class from, and serialize your class to, binary
data. The IDataInput and IDataOutput interfaces are implemented by ByteArray; see Chapter
13, ‘‘Binary Data and ByteArrays’’ for more information on how to use these interfaces.

Internally, you can take advantage of AMF3 by using the readObject() and writeObject()
properties of IDataInput and IDataOutput, which perform AMF3 serialization and deserializa-
tion on Objects. For instance, you might simply construct an Object of your nonpublic properties
and use AMF3 to serialize that Object for you. This way, you don’t have to worry exactly how your
instance collapses into bytes; you can control the serialization at a higher level and use AMF encod-
ing to do the grunt work. Note that when you’re implementing IExternalizable, you’re provided
with IDataInput and IDataOutput instances as arguments; you can use any method that these
interfaces provide to help you serialize and deserialize your data.

The revised Bookmark class shown in Example 29-4 shows this approach in action. Note that you
can protect your properties this way, which is important to maintain encapsulation.

EXAMPLE 29-4 http://actionscriptbible.com/ch29/ex4

Making a Class Serializable Manually

package {
import com.actionscriptbible.Example;
import flash.net.SharedObject;
import flash.net.registerClassAlias;
public class ch29ex4 extends Example {
protected static const RED:uint = 0xff0000;
protected var currentPage:int;
protected var so:SharedObject;
public function ch29ex4() {
registerClassAlias("Bookmark", Bookmark);
so = SharedObject.getLocal("storage");
if (so.data.bookmark) {
trace("Found bookmark...");
trace(so.data.bookmark);

} else {
so.data.bookmark = new Bookmark(345, RED, "b");
trace("Saving bookmark...");

}
}

}
}
import flash.utils.IDataOutput;
import flash.utils.IDataInput;
import flash.utils.IExternalizable;
class Bookmark implements IExternalizable {
protected var page:int;
protected var color:uint;

586

Chapter 29: Storing and Sending Data with SharedObject

protected var name:String;
public function Bookmark(page:int = 0, color:uint = 0, name:String = null) {

this.page = page;
this.color = color;
this.name = name;

}
public function getPage():int {
return this.page;

}
public function readExternal(input:IDataInput):void {
var props:Object = input.readObject();
page = props.page;
color = props.color;
name = props.name;

}
public function writeExternal(output:IDataOutput):void {
var props:Object = {page: page, color: color, name: name};
output.writeObject(props);

}
public function toString():String {
return "[Bookmark at page " + page + " color: 0x" + color.toString(16) +

" name: " + name + "]";
}

}

The most important aspects of this example are that the Bookmark class hides its properties and
provides a public interface as good object oriented design dictates, and it performs the custom seri-
alization simply. More complex objects that contain non-base-types or deep data structures require
you to put a bit more thought into your serialization and deserialization methods.

By implementing IExternalizable and providing your own serialization and deserialization
methods, you can store and retrieve custom classes that contain complex types without breaking
encapsulation.

Summary

� Using SharedObject for locally shared objects is painless in ActionScript 3.0.

� SharedObjects give you a decent amount of storage.

� Local SharedObjects are comparable to browser cookies but have more persistence, security,
and size, and they require no bridge to JavaScript.

� Storing information on a server is, in most cases, more secure and more appropriate for media
or other large data.

� SharedObjects are tied to an account on a computer rather than an actual user.

� You can share information in a SharedObject between SWFs in different locations on the
same domain by constructing an appropriate localPath argument.

587

Part VI: External Data

� You can create local shared objects that are used only in SWFs hosted from secure connections.

� The user ultimately has control over the available size for shared objects.

� When requesting more data than is available, the user is prompted.

� You can find out whether prompts to expand the available SharedObject size were
successful.

� You can store custom classes in SharedObject instances with registerClassAlias()
and, if necessary, IExternalizable.

588

File Access

FEATURED CLASSES

flash.net.FileReference

flash.net
.FileReferenceList

F
lash Player can help your users connect their content with the rest of the
world. With a good file API, you empower users to share their video,
images, audio, and documents; to generate or receive receipts, maps, and

shopping lists; and even to edit, post-process, or mash up songs or videos.

Abilities of the File API

The file management abilities of Flash Player have evolved over time, so different
versions of Flash Player support different operations. Uploading files to the web
via an HTTP post and saving files to the user’s system from an HTTP request are
supported in Flash Player 9 and up. Opening local files, accessing their content
as a ByteArray, and saving content from Flash Player directly into a file on the
user’s system are supported in Flash Player 10 and up.

The AIR runtime includes even more detailed control over files, such as a stream
interface to files, file-browsing components, and scripted access to files. I won’t
cover AIR runtime features here.

Any time you deal with files in Flash Player, the user is prompted to select a file
or destination with a standard system dialog box. At no time can Flash Player
open or save a file on its own accord. Nor can ActionScript code browse through
the filesystem at will, even if the user is doing just that. Control is passed entirely
away from ActionScript while the user confirms file actions.

Introducing FileReference

All file access in Flash Player starts at the FileReference class. Not only can
a FileReference represent a reference to a file on the user’s system, providing
access to its attributes and (sometimes) contents, but it controls asynchronous
operations like saving and loading those files.

589

Part VI: External Data

A FileReference doesn’t start out associated with a given file. Typically, you create an empty
FileReference and then, using methods it provides, you prompt the user for the actual file it
should refer to. Once the user makes her choice, it dispatches an event, and the object is set.

Because a FileReference starts out empty, you can create your own FileReference objects with
its argument-less constructor:

var fileToUpload:FileReference = new FileReference();

What you do next with the reference depends on which file operation you’re interested in. If you
were to upload a file or load its contents into memory, you’d prompt the user to pick an existing
file first, by calling browse(). Then, once the FileReference is associated with a file, you’d call
upload() or load(). If you were to download a file or save bytes in memory down to a file, you’d
again prompt the user for a destination file, this time with the download() or save() methods.

Alternatively, if you want the user to be able to select many files at once, you can use a
FileReferenceList object. Just instantiate the object, and again call browse(). Once the
user chooses one or more files, her FileReferences are stored in the fileList parameter.

Choosing a File
Before you load or upload a file, you have to pick one out. As I just said, to select a file, create an
empty FileReference and ask the user to associate it with a real file by calling browse(). When
you call browse() with no parameters, it opens a new browse dialog box from which the user can
select a file.

fileToUpload.browse();

By default, the browse dialog box displays all file types. If you want to simplify the file picker, you
can show only files of the correct types by passing an array of FileFilter objects to browse().
For example, if the user just clicked a button to upload a photo, you might want to only show JPEG,
PNG, RAW, TIFF, or CR2 files. Or if you know the back end can only deal with JPEGs, great — only
show JPEGs!

One FileFilter object describes each desired set of file types, not merely a single file type. You’d
usually do this for a whole class of related file types. If you provide multiple FileFilters, the user
will get his choice of classes of files. The FileFilter constructor takes the following parameters,
which may also be changed after creation:

� description — A human-readable description of the class of files, like "Source code
files" or "Photos".

� extension — A list of file extensions that match this class of file, as a String. Include the
wildcard and period in each extension, and separate each one with a semicolon, as in:

"*.jpg;*.jpeg;*.png;*.raw;*.tif;*.tiff;*.cr2"

� macType — Optionally, a list of Mac four-character file type codes, again as a semicolon-
delimited String. You can probably safely ignore this now. Years ago, OS X began using file
extensions instead of the creator and type codes.

Here’s an example that opens a browse dialog box with two options. One filter displays only JPEG,
GIF, and PNG images, and the second filter displays only QuickTime movies.

590

Chapter 30: File Access

fileToUpload.browse([
new FileFilter("Image Files", "*.jpg;*.gif;*.png"),
new FileFilter("Quicktime Movies", "*.mov")

]);

The FileReferenceList class also defines a browse() method that uses identical syntax to the
FileReference method of the same name. The only difference is that the browse dialog box
opened from a FileReferenceList object allows the user to select more than one file.

Determining When a File Is Selected
Calling browse() causes the browse dialog box to open. However, it doesn’t guarantee that the user
will select a file. The browse dialog box has two buttons from which the user can select: Open and
Cancel. If the user selects Cancel, the browse dialog box closes without selected files being sent to
Flash Player. In that case, you should know better than to go ahead with any file operations that
depend on the FileReference.

Both FileReference and FileReferenceList objects dispatch Event.SELECT and
Event.CANCEL events when the user clicks the Open and Cancel buttons, respectively.
Example 30-1 illustrates how these events work. When the user clicks the browse files text, the
application launches a browse dialog box. Watch to see what the user will do.

EXAMPLE 30-1 http://actionscriptbible.com/ch30/ex1

Prompting the User to Select a File

package {
import com.actionscriptbible.Example;
import flash.events.*;
import flash.net.*;
public class ch30ex1 extends Example {
public function ch30ex1() {
var fileReference:FileReference = new FileReference();
fileReference.addEventListener(Event.SELECT, onSelect);
fileReference.addEventListener(Event.CANCEL, onCancel);

var btn:TestButton = new TestButton(100, 25, "Browse");
addChild(btn);
btn.x = btn.y = 20;
btn.addEventListener(MouseEvent.CLICK, function(event:MouseEvent):void {
fileReference.browse([
new FileFilter("All Files", "*"),
new FileFilter("Images", "*.png;*.jpg")

]);
});
trace("\n\n\n");

}
private function onSelect(event:Event):void {
var fileReference:FileReference = FileReference(event.target);

continued

591

Part VI: External Data

EXAMPLE 30-1 (continued)

var extension:String = fileReference.name.match(/\.\w+$/)[0];
trace("So you like " + extension + "s, huh?");

}
private function onCancel(event:Event):void {
trace("What, you don’t like files?");

}
}

}
import flash.display.*;
import flash.text.*;
class TestButton extends Sprite {
public var label:TextField;
public function TestButton(w:Number, h:Number, labelText:String) {
graphics.lineStyle(0.5, 0, 0, true);
graphics.beginFill(0xa0a0a0);
graphics.drawRoundRect(0, 0, w, h, 8);
label = new TextField();
addChild(label);
label.defaultTextFormat = new TextFormat("_sans", 11, 0, true, false,
false, null, null, "center");

label.width = w;
label.height = h;
label.text = labelText;
label.y = (h - label.textHeight)/2 - 2;
buttonMode = true;
mouseChildren = false;

}
}

Did you notice? I went ahead a little bit and showed you properties of the file.

Retrieving File Properties
Once a FileReference object is associated with a real file, its accessors can give you a variety of
information about the file it references, including

� name — The name of the file

� size — The size of the file in bytes

� type — The file extension in Windows and Linux, or four-character file type code in
Mac OS X

� creationDate — A Date object for the time at which the file was created

� modificationDate — A Date object for the time the file was last modified

� creator — The creator type in Mac OS X

Caution
Calling any of these accessors results in an IllegalOperationError if the FileReference is not
associated with a file.

592

Chapter 30: File Access

On Mac OS X, the type parameter of a FileReference stores the file type code. This and the creator code
are deprecated methods of determining file type used in Mac OS 9 and earlier. These values will be null more
often than not. To determine the file type more reliably for modern files, look at the file’s extension by manu-
ally parsing it out of the file’s name, as in Example 30-1.

As an aside, the idea of ‘‘file type’’ is more tricky than you might realize, and Apple’s current way of identifying
it is the Universal Type Identifier. See http://bit.ly/osx-utis for lots more information. �

Uploading a File
Once it’s selected, you can upload a file via the upload() method of FileReference. If you used
a FileReferenceList object to let the user select more than one file, you have to call upload()
on each file independently.

The upload() method requires one parameter — a URLRequest object specifying the web ser-
vice to which you want to upload the file. The URLRequest object must point to a resource that
can handle HTTP file upload requests, such as a PHP script like the one used in the exercise in the
following section. When the file data is uploaded, it is sent via HTTP POST with a content type of
multipart/form-data. By default, the content name (by which you can reference the file data
from the script) is Filedata. Therefore, to the server resource handling the upload, it is as though
the file is being uploaded via an HTML form with a file input named Filedata. If you prefer to use
a custom name, you can specify a second, optional parameter to the upload() method.

fileReference.upload(new URLRequest("upload.php"), "CustomFile");

The upload() method, like all network access in Flash Player, is asynchronous.
FileReference objects dispatch events as you attempt to upload files, identical to the
events dispatched by URLLoader while downloading a file. Similarly, uploading files is subject to
the same security model as any other HTTP request from Flash Player. Either the URL must be in
the same domain as the SWF, or the server must have a policy file. Review URLLoader events and
networking security in Chapter 27, ‘‘Networking Basics and Flash Player Security.’’

One additional event is dispatched when uploading a file. Beyond Event.COMPLETE, which
is dispatched when the upload is complete, the FileReference object also dispatches a
DataEvent.UPLOAD_COMPLETE_DATA event if the server accepts and finishes your upload, and
then it has something to say about it — if the web service has an HTTP response to your HTTP POST
request. The response string is passed to you in the data property of the event object.

Adding Upload Handling to a Server
In this exercise, you build a simple application that lets users upload files to a server from Flash
Player utilizing a PHP script on the server. To run the exercise, you’ll need access to a web server
that runs PHP — which is pretty much all of them — or a local installation of PHP, available for
free at http://php.net, and a web server. (You can try one of the all-in-one easy installers like
LAMP/WAMP/MAMP, which are totally painless, or you can use Web Sharing on Mac OS X, which
should work out of the box.)

To get started, write a simple file upload script such as simpleFileUpload.php:

<?php move_uploaded_file(
$_FILES[’Filedata’][’tmp_name’],

593

Part VI: External Data

‘./’.time().$_FILES[’Filedata’][’name’]
);?>

Copy the PHP file to a hidden directory on your web host or to your local web server. It’s not the
most secure 100-character program, so for Pete’s sake, delete it when you’re done!

With the server-side code in place, you can run the client-side code in Example 30-2.

EXAMPLE 30-2 http://actionscriptbible.com/ch30/ex2

Uploading to a Server

package {
import flash.display.Sprite;
import flash.events.*;
import flash.net.*;
import flash.text.*;
public class ch30ex2 extends Sprite {
protected var fileRef:FileReference;
protected var uploadButton:TestButton;
protected var tf:TextField;
protected const YOUR_UPLOAD_URL:String = "upload.php";
public function ch30ex2() {
fileRef = new FileReference();
fileRef.addEventListener(Event.SELECT, selectHandler);
fileRef.addEventListener(Event.CANCEL, cancelHandler);
fileRef.addEventListener(ProgressEvent.PROGRESS, progressHandler);
fileRef.addEventListener(IOErrorEvent.IO_ERROR, errorHandler);
fileRef.addEventListener(SecurityErrorEvent.SECURITY_ERROR, errorHandler);
fileRef.addEventListener(Event.COMPLETE, completeHandler);

var btn:TestButton;
btn = new TestButton(100, 25, "Browse...");
btn.addEventListener(MouseEvent.CLICK, function(event:Event):void {
fileRef.browse();

});
btn.x = btn.y = 20;
addChild(btn);

uploadButton = btn = new TestButton(100, 25, "Upload");
btn.addEventListener(MouseEvent.CLICK, function(event:Event):void {
fileRef.upload(new URLRequest(YOUR_UPLOAD_URL));

});
btn.x = 20; btn.y = 55;
addChild(btn);

tf = new TextField();
tf.defaultTextFormat = new TextFormat("_sans", 11, 0);
tf.multiline = tf.wordWrap = true;
tf.autoSize = TextFieldAutoSize.LEFT;
tf.width = 300; tf.x = 130; tf.y = 58;
addChild(tf);

594

Chapter 30: File Access

cancelHandler(null);
}
protected function selectHandler(event:Event):void {
tf.text = fileRef.name;
uploadButton.mouseEnabled = uploadButton.tabEnabled = true;
uploadButton.alpha = 1;

}
protected function cancelHandler(event:Event):void {
tf.text = "";
uploadButton.mouseEnabled = uploadButton.tabEnabled = false;
uploadButton.alpha = 0.3;

}
protected function progressHandler(event:ProgressEvent):void {
tf.text = "Uploading " +
event.bytesLoaded + " / " + event.bytesTotal + "bytes ...";

}
protected function errorHandler(event:ErrorEvent):void {
tf.text = event.text;

}
protected function completeHandler(event:Event):void {
tf.text = "Upload complete!";

}
}

}
import flash.display.*;
import flash.text.*;
class TestButton extends Sprite {
public var label:TextField;
public function TestButton(w:Number, h:Number, labelText:String) {
graphics.lineStyle(0.5, 0, 0, true);
graphics.beginFill(0xa0a0a0);
graphics.drawRoundRect(0, 0, w, h, 8);
label = new TextField();
addChild(label);
label.defaultTextFormat = new TextFormat("_sans", 11, 0, true, false,
false, null, null, "center");

label.width = w;
label.height = h;
label.text = labelText;
label.y = (h - label.textHeight)/2 - 2;
buttonMode = true;
mouseChildren = false;

}
}

When you test the application, you should be able to browse to a file, select it, and then click the
link to upload it. To verify that the file gets uploaded, change YOUR_UPLOAD_URL to point to a valid
upload script you have control over, like the simpleFileUpload.php script I provided.

595

Part VI: External Data

Downloading a File to Disk
Using the download() method of FileReference, you can save a file from a URL directly to a
user’s computer (of course, with a prompt). You can use this to bypass trying to explain how to save
files in the browser, which might vary slightly between browsers and OSes. You can use it when a file
is not ready immediately — as soon as Flash Player determines the file is ready for download, you
can push the save dialog box at the user. Or, you can use this when a server generates dynamic con-
tent for the user, like a gift certificate, map, prescription, receipt, or questionable internet ministerial
license.

Even though you don’t call browse(), when the download() method is called, a new dialog box
is opened prompting the user to save the file. The download() method requires one parameter: a
URLRequest pointing to an HTTP resource to download:

var URL:String = "http://actionscriptbible.com/files/roger.gif";
fileToDownload.download(new URLRequest(URL));

Optionally, you can specify a second parameter, which determines the default name of the file as it
appears in the download dialog box.

Because you’re passing a URLRequest, not just a URL, you could put variables in the URL, as shown
in Example 30-3. Check this out!

EXAMPLE 30-3 http://actionscriptbible.com/ch30/ex3

Downloading a File to Disk

package {
import flash.display.Sprite;
import flash.events.*;
import flash.net.*;
import flash.text.*;
public class ch30ex3 extends Sprite {
protected var fileRef:FileReference;
protected var button:TestButton;
protected var tf:TextField;
public function ch30ex3() {
button = new TestButton(100, 25, "Gimme");
button.addEventListener(MouseEvent.CLICK, onGimme);
button.x = 330; button.y = 20;
addChild(button);

tf = new TextField();
tf.type = TextFieldType.INPUT;
tf.defaultTextFormat = new TextFormat("_sans", 12, 0);
tf.multiline = tf.wordWrap = false;
tf.border = true;
tf.width = 300; tf.height = 24; tf.x = 20; tf.y = 20;
addChild(tf);
tf.text = "TYPE HERE.";

}
protected function onGimme(event:MouseEvent):void {

596

Chapter 30: File Access

fileRef = new FileReference();
//uses ENfer, a Smeltery free font - http://www.smeltery.net
var URL:String = "http://actionscriptbible.com/files/text.php";
var urlReq:URLRequest = new URLRequest(URL);
urlReq.data = new URLVariables();
urlReq.data.text = tf.text;
fileRef.download(urlReq, "Your Dang Hot Pink Text.png");
fileRef.addEventListener(Event.CANCEL, onReset);
fileRef.addEventListener(Event.COMPLETE, onReset);

button.mouseEnabled = button.tabEnabled = false;
button.alpha = 0.5;

}
protected function onReset(event:Event):void {
fileRef.removeEventListener(Event.CANCEL, onReset);
fileRef.removeEventListener(Event.COMPLETE, onReset);

tf.text = "";
button.mouseEnabled = button.tabEnabled = true;
button.alpha = 1;

}
}

}
import flash.display.*;
import flash.text.*;
class TestButton extends Sprite {
public var label:TextField;
public function TestButton(w:Number, h:Number, labelText:String) {
graphics.lineStyle(0.5, 0, 0, true);
graphics.beginFill(0xa0a0a0);
graphics.drawRoundRect(0, 0, w, h, 8);
label = new TextField();
addChild(label);
label.defaultTextFormat = new TextFormat("_sans", 11, 0, true, false,
false, null, null, "center");

label.width = w;
label.height = h;
label.text = labelText;
label.y = (h - label.textHeight)/2 - 2;
buttonMode = true;
mouseChildren = false;

}
}

Example 30-3 saves a file to your disk with the text you typed, rendered in a sweet hot pink font
courtesy of PHP. Woo!

The sequence of events is like so. If the user clicks Cancel, the object dispatches an Event.CANCEL
event. If the user clicks Save, the object dispatches an Event.OPEN event. As the file downloads, the
object dispatches ProgressEvent.PROGRESS events just like URLLoader. And when the file has

597

Part VI: External Data

downloaded, the object dispatches an Event.COMPLETE event. If there are errors, the appropriate
error events are dispatched.

Loading a File into Memory
You can load files from your local system into Flash Player, without a round-trip to the server. In
other words, even though you may be running a SWF from the internet, it can work off of your local
files completely unplugged. You can load your photo into a toy or game, for instance, to customize
your character. You can make a Papervision preview app that loads in local Collada files. Or if you’re
developing a game, you can write the editor with the ability to load and save levels, maps, and so on
to your system. This ability is much more useful for offline applications, such as if you compile your
SWF into a projector or you use AIR.

Version
FP10. Access to local files was added in Flash Player 10. In Flash Player 9, you can simulate this by roundtrip-
ping the file: upload the file to a server and then load it with a URLLoader to gain access to it. �

The contents of your file appear as a ByteArray, for you to play with in any way you see fit.
Remember from Chapter 13, ‘‘Binary Data and ByteArrays,’’ that with the power of byte-level access,
as long as you understand the file format, you can interface with any kind of file in the world.

The process should be getting familiar by now. Simply select a file to load by creating a
FileReference and calling browse(). Then load it into memory with load(), which is also
asynchronous, broadcasting Event.OPEN, ProgressEvent.PROGRESS, and Event.COMPLETE
events like any other load. Just no HTTP status event, of course. Although the file is available locally
and should be able to load relatively quickly if it’s on a hard drive, what if the ‘‘local’’ file is actually
on a mounted network drive located halfway across the world? Making all the file operations work
similarly helps keep the API uniform. One final note: if you attempt to load a file so large that Flash
Player can’t allocate enough memory to hold it, Flash Player throws a MemoryError.

Once the file is completely loaded, its contents are assigned to the FileReference’s data property
as a ByteArray, as shown in Example 30-4. Couldn’t be easier!

EXAMPLE 30-4 http://actionscriptbible.com/ch30/ex4

Loading a Local File into Memory and Using It

package {
import flash.display.*;
import flash.events.*;
import flash.geom.Matrix;
import flash.net.*;
public class ch30ex4 extends Sprite {
protected var fileRef:FileReference;
public function ch30ex4() {
//Click the stage to load in a pattern
fileRef = new FileReference();
fileRef.addEventListener(Event.SELECT, onFileSelect);

598

Chapter 30: File Access

stage.addEventListener(MouseEvent.CLICK, onChooseFile);
}
protected function onChooseFile(event:MouseEvent):void {
fileRef.browse([new FileFilter("Image Files", "*.png;*.jpg;*.gif")]);

}
protected function onFileSelect(event:Event):void {
fileRef.removeEventListener(Event.SELECT, onFileSelect);
stage.removeEventListener(MouseEvent.CLICK, onChooseFile);

fileRef.addEventListener(Event.COMPLETE, onFileLoad);
fileRef.load();

}
protected function onFileLoad(event:Event):void {
fileRef.removeEventListener(Event.COMPLETE, onFileLoad);

//interpret the bytes into a DisplayObject
var image:Loader = new Loader();
image.loadBytes(fileRef.data);
image.contentLoaderInfo.addEventListener(Event.COMPLETE, onImageParse);

}
protected function onImageParse(event:Event):void {
//get the (uncompressed) bitmap that decoding the file results in
var content:DisplayObject = LoaderInfo(event.target).content;
var bitmapData:BitmapData = Bitmap(content).bitmapData;
var m:Matrix = new Matrix();
m.identity();
m.scale(0.25, 0.25);
graphics.clear();
graphics.beginBitmapFill(bitmapData, m, true, true);
graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);

}
}

}

In this example, you load an image file locally and, assuming it’s a format that Flash Player can under-
stand, use Loader to get a raw bitmap out of the encoded file. Then you fill the screen with that
image, tiled.

Saving Data to Disk
Last but far from least is the ability to store data from Flash Player right on your filesystem. This
is great for applications that generate media in code. For example, the ActionScript PDF library
AlivePDF (http://alivepdf.bytearray.org/) can generate a PDF file in memory and then
prompt the user to save it to her system using FileReference. As you may have noticed, there are
more ActionScript 3.0 libraries out there than you can shake a stick at, and a good number of them
help you read and write files of some crazy format or other. Most of the application ideas discussed in
‘‘Loading a File into Memory’’ benefit from a symmetrical capacity to write out files to disk. The two
go hand in hand.

599

Part VI: External Data

Version
FP10. Access to local files was added in Flash Player 10. In Flash Player 9, you can upload the file to a server
and then download it again to save it. �

The general procedure for saving a file should be no surprise by now. With an empty
FileReference, call save(), passing it the data to write to a file, and optionally a default
filename. (The user can always choose his own.) The OS save dialog box is presented to the user
automatically, and events are broadcast that let you know what happened. If the user cancels the dia-
log box, Event.CANCEL is broadcast and nothing is saved. Otherwise, Event.SELECT is broadcast;
then Event.OPEN is broadcast when the file is opened for writing, ProgressEvent.PROGRESS as
it is being written to, and Event.COMPLETE when the file is done writing. Any write errors raise an
IOErrorEvent.IO_ERROR event.

The save() method is a little more intelligent than the load() method, because Flash Player knows
more about the kind of data you have in a typed ActionScript variable than it’s willing to wager about
the binary data it finds in a file. Depending on what type you pass to save(), Flash Player will help
you out:

� String — Pass in text, and it will be written to a file as plaintext (using UTF-8 encoding).

� XML — Pass an XML object, and XML source will be written into the file.

� ByteArray — Binary data will be written to the file verbatim.

� * — Any other type of parameter will be converted to a string using its toString() method
and written out as plaintext.

In Example 30-5, you create a world-class fully featured office productivity tool.

EXAMPLE 30-5 http://actionscriptbible.com/ch30/ex5

Loading and Saving Local Text Files

package {
import flash.display.Sprite;
import flash.events.*;
import flash.net.*;
import flash.text.*;
public class ch30ex5 extends Sprite {
protected var tf:TextField;
protected var fileRef:FileReference;
public function ch30ex5() {
var btn:TestButton;
btn = new TestButton(100, 25, "Load");
btn.addEventListener(MouseEvent.CLICK, onLoadClick);
btn.x = btn.y = 20;
addChild(btn);
btn = new TestButton(100, 25, "Save");
btn.addEventListener(MouseEvent.CLICK, onSaveClick);
btn.x = 130; btn.y = 20;
addChild(btn);

tf = new TextField();
tf.type = TextFieldType.INPUT;

600

Chapter 30: File Access

tf.defaultTextFormat = new TextFormat("_sans", 12, 0);
tf.multiline = tf.wordWrap = tf.border = true;
tf.width = stage.stageWidth - 40;
tf.height = stage.stageHeight - 75;
tf.x = 20; tf.y = 55;
addChild(tf);

}
protected function onLoadClick(event:Event):void {
fileRef = new FileReference();
fileRef.browse([new FileFilter("Text files", "*.txt"),
new FileFilter("All Files", "*")]);

fileRef.addEventListener(Event.SELECT, onLoadSelect, false, 0, true);
}
protected function onLoadSelect(event:Event):void {
fileRef.load();
fileRef.addEventListener(Event.COMPLETE, onLoadComplete);

}
protected function onLoadComplete(event:Event):void {
tf.text = fileRef.data.readUTFBytes(fileRef.data.length);

}
protected function onSaveClick(event:Event):void {
fileRef = new FileReference();
fileRef.save(tf.text, "ch30ex5.txt");

}
}

}
import flash.display.*;
import flash.text.*;
class TestButton extends Sprite {
public var label:TextField;
public function TestButton(w:Number, h:Number, labelText:String) {
graphics.lineStyle(0.5, 0, 0, true);
graphics.beginFill(0xa0a0a0);
graphics.drawRoundRect(0, 0, w, h, 8);
label = new TextField();
addChild(label);
label.defaultTextFormat = new TextFormat("_sans", 11, 0, true, false,
false, null, null, "center");

label.width = w;
label.height = h;
label.text = labelText;
label.y = (h - label.textHeight)/2 - 2;
buttonMode = true;
mouseChildren = false;

}
}

In the example, text can be loaded from a file into the text field, edited, and saved back into a file. Eat
your heart out, Word.

601

Part VI: External Data

Summary

� Flash Player 9 allows for file upload and download between your filesystem and a web server.
Flash Player 10 allows files to be loaded and saved between memory and disk locally.

� The user must approve all file operations using a standard operating system dialog box. Flash
Player can’t access files without the user’s explicit action. AIR can.

� Using the FileReference or FileReferenceList classes, you can prompt users to
browse to and select a file or files from their local drive to upload or load files.

� With byte-level access and a file API, there’s no limit to what you can create.

602

Part VII

Sound and Video

IN THIS PART

Chapter 31
Playing and Generating Sound

Chapter 32
Playing Video

Chapter 33
Capturing Sound and Video

Playing and
Generating Sound

FEATURED CLASSES

flash.media.Sound

flash.media.SoundChannel

flash.media
.SoundTransform

flash.media.SoundMixer

flash.media.ID3Info

S
ound is a powerful tool. A little bit of well-chosen sound goes a long way
in adding depth and character to your Flash application. In this section, I
look at ways to integrate sound into your program.

Through the past few versions, Flash Player has iterated on its sound support,
making it far more robust. You can play SWF-embedded sound and load and
stream MP3s. You can mix sounds, pan, and fade them. You can get a spectrum
of the audio coming out of Flash Player for audio visualization. In Flash
Player 10 and above, you can even sample sounds and generate your own
dynamically. I’ll cover all these in this chapter.

Flash Player also gives you access to audio coming in from the user’s micro-
phone or other audio input. This is covered in Chapter 33, ‘‘Capturing Sound
and Video.’’

An Overview of the Sound System

I’ll tackle the sound system task by task. Before you start playing sounds, how-
ever, let’s take a quick birds-eye view of the sound architecture in Flash Player.
A few classes work in concert, handling different aspects of playing and mixing
sounds. All these classes belong to the flash.media package.

� Sound — Represents sound data. When you’re going to play sounds in
Flash Player, you always start with a Sound object. Instances of this class
hold, load, buffer, and accept audio data. Like the Loader class, Sound
encapsulates the loading and decoding of files over the network. If you
only need to play simple sounds, you can get away with only using this
class. After you start playing a Sound, however, playback is controlled
through a new SoundChannel instance that’s created.

605

Part VII: Sound and Video

� SoundChannel — One audio stream that Flash Player mixes into its audio output. Represents
an actively playing sound. Every time you play a Sound object, you get a new SoundChannel.
Even if the audio is stereo — with two channels — it counts as a single SoundChannel. Flash
Player mixes up to 32 simultaneous SoundChannels to produce the mix that it sends to your
computer (which probably does its own additional mixing with other open programs and so on,
but let’s ignore that). Because it represents an actively playing audio stream, you can terminate
it and control how it is mixed. You do this through a SoundTransform object.

� SoundTransform — Controls how a sound is mixed. Use its properties to change the volume
and panning of the associated sound.

� SoundMixer — The global mix of all playing sounds in Flash Player. You can control the
overall volume and panning of the mixed-down audio by modifying the SoundMixer’s
SoundTransform. Because this is a global object, it exposes all static properties and methods.

FIGURE 31-1

Classes involved in the Flash Player sound system

Sound

SoundChannel

SoundTransform

S
o
u
n
d
M
i
x
e
r

SoundTransform

SoundTransform

SoundChannel

Sound

SoundTransform

SoundChannel

Sound

606

Chapter 31: Playing and Generating Sound

The relationship between these classes is shown in Figure 31-1. It’s most important to understand
the difference between Sound and SoundChannel. You have one Sound for each audio file and
one SoundChannel for every currently playing stream. Say you have a game with a laser sound and
an explosion sound: that’s two unique Sound objects. When you destroy the final boss, you might
hear 20 copies of the explosion sound layered on top of each other: that’s 20 SoundChannel objects
created from the same Sound object.

Sounds in Flash Player use the event framework to broadcast information about their current sta-
tus. Events dealing with loading sounds, generating audio, and getting metadata from sound files are
broadcast by Sound objects. An event specifying that the sound is finished playing is dispatched by a
SoundChannel object.

Prepping and Playing Sound Objects
The audio data associated with Sound objects in Flash Player can come from different
sources — either from a local file in your asset folder or from a remote URL, or it can be
embedded into your SWF file. You can also generate audio data on the fly, which will be covered in
the section ‘‘Synthesizing Audio.’’

Loading a Sound from an External File or URL
Besides holding onto audio data, the Sound class loads this data. While loading audio files, Sound
instances behave much like Loader, covered in Chapter 27, ‘‘Networking Basics and Flash Player
Security.’’ Loading a sound from a URL is simple, whether your URL points to a local file or a file on
the network, whether it is a relative or absolute path. Simply create the proper URLRequest and pass
this to the Sound object’s load() method. The signature of the load() method is

function load(stream:URLRequest,
context:SoundLoaderContext = null):void

The required property stream locates an MP3 file to play. MP3 is the only format that Sound can
load from a file. The optional context argument provides options for loading the file, similar to a
LoaderContext. However, SoundLoaderContext also lets you set the buffer time: how much
of the sound is loaded before you can start streaming it. Because the examples communicate across
domains, I use this argument, but in most cases, you can leave out the context.

After your sound is loaded, playing it back is a piece of cake — just call play(). Example 31-1
shows how this works.

EXAMPLE 31-1 http://actionscriptbible.com/ch31/ex1

Loading and Playing a Sound

package {
import flash.display.Sprite;
import flash.media.Sound;
import flash.media.SoundLoaderContext;
import flash.net.URLRequest;
public class ch31ex1 extends Sprite {

continued

607

Part VII: Sound and Video

EXAMPLE 31-1 (continued)

public function ch31ex1() {
//The Four Seasons: Winter [performance & recording in the public domain]
//composed by Antonio Vivaldi, performed by the US Air Force Band
var winterSong:Sound = new Sound();
winterSong.load(
new URLRequest("http://actionscriptbible.com/files/winter.mp3"),
new SoundLoaderContext(5000, true)

);
winterSong.play();

}
}

}

Caution
All the rules for Flash Player Security apply to the Sound object. Please reference the Flash Player security
model introduced in Chapter 27. �

Buffering a Streaming Sound
When you play a sound before it is finished loading, Flash Player automatically buffers the sound,
making sure that a certain amount of audio is loaded before actually playing, regardless of when you
ask the sound to play. This is the case in Example 31-1. Because you call play() immediately after
load(), the file hasn’t even begun to arrive when you call play(). Because Flash Player automati-
cally buffers the file, however, you needn’t worry about that.

On slower connections, you can help keep the client from running out of audio to play by setting
a longer buffer time. This value is specified in the SoundLoaderContext object. You can omit
this parameter to use the default value of 1000ms (one second), or you can customize it like in
Example 31-1.

Embedding Sounds in a SWF
You can include sounds directly in your SWF by embedding them, eliminating the need to load them
at runtime. Additionally, when embedding sounds you have a much wider option of formats for the
source file, and SWFs can embed multiple sounds per file. Perhaps most importantly, embedded
sounds can be stored and played back using other audio codecs that Flash Player supports beyond
MP3. These advantages make embedding sounds an attractive option.

You can embed sounds in the same SWF as your ActionScript code or in an external SWF. Sounds
embedded in a SWF exist as subclasses of the Sound class so that you can use them easily. You can
use these embedded Sound subclasses in the same way as other Sound instances, except of course
you don’t have to call load().

608

Chapter 31: Playing and Generating Sound

Although embedding assets has been covered in Chapter 16, ‘‘Working with DisplayObjects in Flash
Professional,’’ let’s look at specific options you have when embedding sounds. I’ll pay particular
attention to the supported source file formats and encoding formats. The technique, as always, differs
whether you’re compiling with Flash Professional or a Flex SDK-based toolchain (including Flash
Builder).

Embedding Sound with Flash Professional

Of all methods, Flash Professional supports the most diverse input file formats and audio codecs, as
well as the best control over transcoding quality. Table 31-1 lists the kinds of file that you can import.
To embed sounds in a SWF with Flash and make them available to ActionScript, import the file to the
Library as a Sound symbol, and assign it a linkage class name.

TABLE 31-1

Sound Files Supported for Import in Flash Professional

Format Platform/s Other requirements

ASND Win/Mac

WAV Win/Mac QuickTime must be installed on Mac.

MP3 Win/Mac

AIFF Win/Mac QuickTime must be installed on Windows.

AU Win/Mac QuickTime must be installed.

QuickTime movies Mac/Win QuickTime must be installed.

Sound Designer II Mac QuickTime must be installed.

System 7 sounds Mac QuickTime must be installed.

To embed a sound in a SWF with Flash and make it available to ActionScript, import the file to the
Library as a Sound symbol, and assign it a linkage class name.

1. Import the sound to the Library with File ➪ Import ➪ Import to Library.

2. Locate the sound symbol in the Library panel, select it, and choose Properties in the context
menu. This opens the Sound Properties dialog, pictured in Figure 31-2.

3. Make sure the Export for ActionScript box is checked.

4. Give the sound a fully qualified class name; the class you specify here becomes a subclass of
Sound

The Sound Properties panel also lets you customize how the sound is embedded by selecting a codec
and customizing encoding options. This gives you excellent control over compression, letting you
tweak the relationship between quality and file size. You can use the Test button to check the quality
of the compressed audio. Encoding audio with Flash Professional is the only way to utilize the other
audio codecs built into Flash Player beyond MP3.

609

Part VII: Sound and Video

FIGURE 31-2

The Sound Properties dialog, which provides sound export options

Table 31-2 compares the audio codecs Flash Player contains. Some of these codecs have special pur-
poses. Only codecs with ‘‘Flash Pro’’ listed as an encoder can be embedded with Flash Professional.

Embedding Sound with Flash Builder

When using Flash Builder and other Flex SDK-based IDEs, you can embed sound data with the
Embed metadata tag, which requires the location of the audio’s source file. The Flex SDK compilers
can only import and encode MP3s. Here’s how you’d embed ‘‘Winter’’ from Vivaldi’s Four Seasons into
the SWF as the Sound subclass WinterSong.

[Embed(source="winter.mp3")]
public var WinterSong:Class;

The Flex SDK compilers don’t provide encoding options with the Embed tag. The original MP3 data
is used without transcoding.

610

Chapter 31: Playing and Generating Sound

TABLE 31-2

Audio Codecs Supported for Embedded Sound Playback in Flash Player

Codec Notes Encoders Decoders

MP3 All-purpose, can be tuned
for high fidelity as well as
high compression.

Flash Pro, Flex SDK Flash Player 9+

Uncompressed
(‘‘Raw’’)

You’d be pretty insane to
use this.

Flash Pro Flash Player 9+

ADPCM Use for shorter clips. Flash Pro Flash Player 9+

Nellymoser
(‘‘Speech’’)

Use for speech. Flash Pro, Flash Player
9+

Flash Player 9+

Speex Use for speech; only pro-
duced when recording from
Microphone in FP.

Flash Player 10+ Flash Player 10+

HE-AAC Embedded in video streams. N/A Flash Player 9.0.115

Accessing Embedded Sounds

Regardless of which method you use to embed sound, to utilize the embedded sounds in your code,
simply instantiate the class that the sound is embedded in to create a new Sound object. In this case,
you’re using a sound whose class was called WinterSong. This class, when initialized, already holds
the proper audio data.

//if you’re pulling the Class definition dynamically, use something like:
var WinterSong:Class = Class(getDefinitionByName("assets.WinterSong"));
var sound:Sound = new WinterSong();
sound.play();

Controlling Sound Playback
After you’ve fired off an audio stream from a Sound object, you can control its playback. Remember
that the handle for an active audio channel is the SoundChannel object returned by calling play()
on a Sound.

Playing and Stopping
If you’re sick of the sound you’ve chosen to play(), you can stop() it just as easily. Just call
the stop() method on the SoundChannel object. This stops the audio and resets its playhead to
zero — rewinds it. Example 31-2 modifies the Vivaldi player to stop playing when it detects a click.

611

Part VII: Sound and Video

EXAMPLE 31-2 http://actionscriptbible.com/ch31/ex2

Stopping Playback

package {
import com.actionscriptbible.Example;
import flash.events.MouseEvent;
import flash.media.*;
import flash.net.URLRequest;

public class ch31ex2 extends Example {
protected var activeSound:SoundChannel;
protected var winterSong:Sound;
public function ch31ex2() {
//The Four Seasons: Winter [performance & recording in the public domain]
//composed by Antonio Vivaldi, performed by the US Air Force Band
winterSong = new Sound();
winterSong.load(
new URLRequest("http://actionscriptbible.com/files/winter.mp3"),
new SoundLoaderContext(5000, true)

);
stage.addEventListener(MouseEvent.CLICK, onClick);
activeSound = winterSong.play();
trace("Playing song...");

}
protected function onClick(event:MouseEvent):void {
if (activeSound) {
activeSound.stop(); //it’s that easy
activeSound = null;
trace("Stopped!");

}
}

}
}

After a SoundChannel is stopped, it’s pretty much finished, and you can discard it. If you want to
replay the sound, call play() on the Sound again, which creates a new SoundChannel.

If you are streaming an audio file, you can also stop it from playing back by using the Sound object’s
clear() method. This not only causes the sound to stop, but it stops the download of the streamed
audio file. If you want to play the sound again, you have to reinitiate the loading of the sound file
before you can play it.

In some cases, you’ll want to quickly stop all audio playback. To handle this, you can use the nuclear
option: SoundMixer.stopAll(). When you call this static method, all currently playing sounds
are stopped immediately.

612

Chapter 31: Playing and Generating Sound

Seeking and Looping
You’ve used the play() method several times now, but I haven’t explored its parameters. By using
the optional parameters of play(), you can do much more with a sound. The full signature for
play() is

function play(startTime:Number = 0,
loops:int = 0,
sndTransform:SoundTransform = null):SoundChannel

Let’s look at each of these parameters:

� startTime — Determines the position of the playhead when the sound starts playing, in mil-
liseconds. The default is 0; when you call play() with no arguments, the sound starts playing
from the beginning.

sound.play(2500); //plays the sound starting at 2.5 seconds in

� loops — Determines how many times the sound plays. The default is again 0, which actually
plays the sound once. Values higher than 1 loop the sound when it reaches its end. Because this
argument is an int you can’t pass infinity, but you can pass int.MAX_VALUE if you want the
sound to loop almost forever.

beersOnTheWallSong.play(0, 99); //play the song 99 times

� sndTransform — Sets an initial SoundTransform to modify how the sound is mixed. Can
also be set after the sound starts playing. I’ll discuss how to use sound transforms in the section
‘‘Applying Sound Transformations.’’

All sound playback is achieved by sending different parameters to the play() method. I’ll create
some specific examples in the following section.

Fast-Forwarding, Rewinding, Pausing, and Restarting a Sound
In this section, you build a simple audio player. With just the startTime parameter of the play()
method and the position property of the SoundChannel class, you can create all the standard
audio player controls you know and love. I’ve already beaten play() and stop() to death with a
stick.

With fast-forward or rewind, the goal is to jump forward or backward from the currently playing por-
tion of the sound. To do this, you use the position property to get the current playhead position,
add or subtract some value to that, and then restart the song from the new position.

Pausing a sound is almost the same. Because the stop() method causes the position to be lost, you
just remember the playhead position at the time the user pauses. Later, when the song is resumed,
you can use the value to pick up where you left off.

Example 31-3 a simple sound player example with four buttons — rewind, pause, play, and
fast-forward — that uses the position parameter in the play() method. There is also a text field that
shows the current position and the overall time in seconds.

613

Part VII: Sound and Video

EXAMPLE 31-3 http://actionscriptbible.com/ch31/ex3

Creating Standard Audio Controls with Sound Methods

package {
import flash.display.Sprite;
import flash.net.URLRequest;
import flash.events.*;
import flash.media.*;
import flash.text.*;
public class ch31ex3 extends Sprite {
protected var sound:Sound;
protected var channel:SoundChannel;
protected var lastPosition:Number;
protected var positionTF:TextField;
protected var isPaused:Boolean = false;
protected const SEARCH_RATE:int = 2000;
public function ch31ex3() {
createChildren();
var songurl:String = "http://actionscriptbible.com/files/winter.mp3";
sound = new Sound(new URLRequest(songurl));
play();

}
protected function createChildren():void {
var txtFormat:TextFormat = new TextFormat("_typewriter", 14, 0);
var controlsTF:TextField = new TextField();
controlsTF.defaultTextFormat = txtFormat;
controlsTF.selectable = false;
controlsTF.htmlText = ‘<<\t’ +
‘||\t>>’;

controlsTF.addEventListener(TextEvent.LINK, onControlClicked);
addChild(controlsTF);
positionTF = new TextField();
positionTF.defaultTextFormat = txtFormat;
positionTF.x = controlsTF.textWidth + 15;
addChild(positionTF);
this.addEventListener(Event.ENTER_FRAME, updatePositionDisplay);

}
public function play(position:int = 0):void {
if (channel) channel.stop();
channel = sound.play(position);

}
public function rewind(event:Event = null):void {
if (!channel) return;
isPaused = false;
lastPosition = channel.position - SEARCH_RATE;
lastPosition = Math.max(0, lastPosition);
play(lastPosition);

}
public function fastForward():void {
if (!channel) return;
isPaused = false;
lastPosition = channel.position + SEARCH_RATE;

614

Chapter 31: Playing and Generating Sound

lastPosition = Math.min(sound.length, lastPosition);
play(lastPosition);

}
public function pause():void {
lastPosition = channel.position;
channel.stop();

}
public function resume():void {
play(lastPosition);

}
protected function updatePositionDisplay(event:Event):void {
if (channel && sound) {
positionTF.text = (channel.position/1000).toFixed(2) + " / " +

(sound.length/1000).toFixed();
}

}
protected function onControlClicked(event:TextEvent):void {
switch (event.text) {
case "pause":
(isPaused)? resume() : pause();
isPaused = !isPaused;
break;

case "rw": rewind(); break;
case "ff": fastForward(); break;

}
}

}
}

Tip
Make sure you stop the channel that’s playing before playing again at a different position. If you don’t stop the
channel, you will hear a second instance of the sound playing on a different overlapping channel. �

You might want to try adding onto this simple audio player as an exercise.

Applying Sound Transformations
Just as you can transform graphics to alter their appearance (as I show in Chapter 34, ‘‘Geometric and
Color Transformations’’), you can transform sounds to alter the way they are mixed. This is done by
modifying the SoundTransform associated with a sound. Instances of the SoundTransform class
define several properties, modifying which immediately alters how the associated sound is mixed.

The six Number properties of SoundTransform control the way a sound is mixed:

� volume — The volume, from 0 (completely muted) to 1 (maximum gain).

� pan — The balance of the sound between the left and right speaker, from –1 (play entirely out
of the left speaker), through 0 (the source mix of the sound with no changes), to 1 (play entirely
out of the right speaker).

615

Part VII: Sound and Video

� leftToRight, leftToLeft, rightToRight, rightToLeft — Mix the source chan-
nels to the output channels. Each contribution is measured as a number between 0 and 1. You
can use these to modify the stereo mix between the left and right channels. Whereas panning
‘‘moves’’ the sound from the left to the right channel, these properties can modify both channels
independently. You can use this, for example, to swap the left and right channels in a stereo
audio track, a feat that panning alone cannot accomplish.

Simply retrieve the SoundTransform object associated with a playing sound (or the global sound
mix) and modify these properties directly. Because changes are immediate, you can use ActionScript
to animate these properties as well, producing smooth fades.

Working with a Sound’s Metadata
If you subscribe to the proper events on the Sound class, you can be notified of a variety of useful
information about a sound, such as how it’s loading and properties of the sound itself.

Checking Load Progress
Similar to the LoaderInfo class, Sound objects have bytesTotal and bytesLoaded proper-
ties that expose the sound file’s total size and the amount that is loaded so far. You can observe load
progress in action by subscribing to the ProgressEvent.PROGRESS event. The Sound object also
broadcasts Event.OPEN as the load begins, Event.COMPLETE when loading completes successfully,
and IOErrorEvent.IO_ERROR if loading fails. See Chapter 27 to review these events.

Getting a Song’s ID3 Data
When using MP3-encoded sound, you can retrieve even more information about the sound by access-
ing its ID3 data, if it’s so included. ID3 tags add metadata to audio files, such as the song’s name,
artist, track number, album name, and so on. Any music you play with jukebox software such as
iTunes, Windows Media Player, and the like is organized and sorted by this data. Of course, you can’t
be certain that a given song has some or any ID3 data, because all ID3 tags are completely optional.

You can access ID3 metadata of an MP3 through the Sound’s id3 property. ID3 data is stored toward
the beginning of an MP3, so it may be available before the song is completely loaded. If you’re load-
ing an MP3 over the network, listen for the Event.ID3 event, which is broadcast as soon as ID3
information becomes available. Before this event is broadcast, all these tags are null.

Once available, the id3 property is an object of type ID3Info. ID3 tags are key-value pairs defined
by the ID3 specification. Flash Player 9 and later support the ID3 2.4 spec for song metadata. All ID3
keys have four-letter case-insensitive codes like TALB (album title) and TCON (genre). The more com-
mon of these tags are available through more readable properties of ID3Info such as album and
genre. Regardless of this convenience, all properties including these are available as their capitalized
four-letter property name under the ID3Info object. (ID3Info is a dynamic class, so it supports
any property name.) In Example 31-4 you retrieve and display information about ‘‘Winter’’ from
the MP3 file.

Note
Supported ID3Info shortcuts are album, artist, comment, genre, songName, track, and year. Find a
full listing of all ID3 tags in the specs on http://id3.org/. �

616

Chapter 31: Playing and Generating Sound

EXAMPLE 31-4 http://actionscriptbible.com/ch31/ex4

Accessing ID3 Tags

package {
import flash.display.Sprite;
import flash.events.Event;
import flash.media.*;
import flash.net.URLRequest;
import flash.text.*;

public class ch31ex4 extends Sprite {
protected var sound:Sound;
protected var channel:SoundChannel;
protected var songInfoTF:TextField;

public function ch31ex4() {
createChildren();
var songurl:String = "http://actionscriptbible.com/files/winter.mp3";
sound = new Sound(new URLRequest(songurl),

new SoundLoaderContext(1000, true));
sound.addEventListener(Event.ID3, onMetadata);
channel = sound.play();

}
protected function createChildren():void {
var txtFormat:TextFormat = new TextFormat("_typewriter", 14, 0);
songInfoTF = new TextField();
songInfoTF.defaultTextFormat = txtFormat;
songInfoTF.autoSize = TextFieldAutoSize.LEFT;
addChild(songInfoTF);

}
protected function onMetadata(event:Event):void {
songInfoTF.text = "NOW PLAYING:\n" +

sound.id3.songName + "\n" +
"from " + sound.id3.album + "\n" +
"by " + sound.id3.artist;

}
}

}

As an exercise, you might try adding the ID3 info from Example 31-4 to the audio player in
Example 31-3.

Sampling Audio
Starting in this section, I’ll dig into the more dynamic ways you can use sound in ActionScript. Playing
audio is all good and well, but with some new improvements in Flash Player 9 and 10, the possibili-
ties really open up. First, let’s do some audio visualization.

617

Part VII: Sound and Video

The SoundMixer class mixes all the sounds Flash Player is playing into a single audio stream it sends
to your speakers. You can query it for a snapshot or an analysis of the mixed-down audio it’s currently
playing. When you call the static method SoundMixer.computeSpectrum(), Flash Player sam-
ples the audio output at that moment, putting it in a ByteArray. Let’s take a look at the method’s
signature:

function computeSpectrum(outputArray:ByteArray,
FFTMode:Boolean = false,
stretchFactor:int = 0):void

The first thing to note is the required ByteArray argument and void return type. To keep this
method fast and efficient, it doesn’t allocate a new ByteArray and return it every time you call
it. Rather, you pass in an existing ByteArray and the method fills it up. You should reuse this
ByteArray instance between calls to computeSpectrum() to avoid thrashing memory. The
outputArray tightly packs 512 Numbers (that’s 2KB or 2,048 bytes at 8 bytes per Number). Use
readFloat() to get the Numbers out of the ByteArray, as you learned about in Chapter 13,
‘‘Binary Data and Byte Arrays.’’ The data it returns can represent two kinds of data, as described in the
next paragraph, but it is always stored as 512 values between –1.0 and 1.0, the first 256 of which
represent values in the left channel and the second 256 values from the right channel.

Caution
When you sample audio, Flash Player not only mixes down all sounds playing in your application, but it may
include sound produced by other Flash Player instances running, for example if you have two browser windows
open, each playing its own audio.

Furthermore, when you request audio samples, every sound being played must be able to provide sample data.
This means every sound needs to be accessible in the active security context. You can play sounds from any
networked location, but to get low-level access including ID3 data and samples, a cross-domain file needs to
approve the accessing domain.

Because there are no guarantees that the user isn’t playing a sound in another Flash Player instance that you
don’t have access to, when you sample audio there’s a real chance it may fail through no fault of yours. Take
care to catch these errors. �

The computeSpectrum() method can give you the sample’s waveform or its frequency spectrum,
depending on the FFTMode parameter. By default (when FFTMode is false), the method sam-
ples the audio and gives you a waveform: the wave being output to your speakers by Flash Player
during the sample time. For waveforms, the x-axis or index in the array represents time, and the y-axis
or value at each index represents amplitude. For example, a low humming would be visible as a long
sine wave. The distance between the peaks of the waves is the tone’s frequency, and the height of
those waves is its amplitude.

When you pass true as the FFTMode, Flash Player passes the waveform through a Fourier transform.
(The FFT in FFTMode stands for Fast Fourier Transform.) This transform calculates the frequen-
cies that contribute to the overall sound. So when you use FFTMode, instead of a waveform, you
get a frequency distribution. The x-axis or index in the array represents different frequencies, from
low to high, and the y-axis or value at each index represents the contribution of that frequency dur-
ing the duration of the sample. For example, if you watch a frequency spectrum as a song while a
well-defined drumbeat plays, you see repeated peaks shoot up near the low end of the graph in time
with the drums. The x-position of the peak is the mean frequency of the drum.

Both of these kinds of audio samples use a slice of time. You can also control how wide of a slice
is used by setting the sample length. This is done implicitly with the stretchFactor parameter.

618

Chapter 31: Playing and Generating Sound

By default, and when the stretchFactor is 0, audio is sampled at 44.1 kHz. This means that the
waveform you get back is 1/44100 of a second in duration (or the spectrum represents frequencies
that occurred in that duration). When you increase the stretchFactor, it decreases the sample
rate by that factor plus one, which stretches out the slice by that factor plus one. Let’s say you use
a stretchFactor of 1. This causes Flash Player to sample audio two times slower, at 22.05kHz,
meaning that the samples are 1/22050 of a second, twice as wide. So the samples have effectively
been stretched by a factor of two. You don’t need to be so super-accurate with the sample rate when
visualizing sound, because your ears are much more attuned to that kind of speed than your eyes.

You’ve probably seen both kinds of audio visualizations — waveforms and frequency
spectrums — in action. They are compared in Figure 31-3. If you simply draw the output of
calculateSpectrum() directly, you can get two passable kinds of audio visualizations, as shown
in Example 31-5. But, of course, you can tie the produced data to all kinds of properties or put it
through further calculations to make all kinds of interesting sound-reactive applications.

FIGURE 31-3

An example of both waveforms and frequency spectrums

Waveform

Frequency Spectrum

EXAMPLE 31-5 http://actionscriptbible.com/ch31/ex5

Audio Visualization

package {
import flash.display.Sprite;
import flash.events.Event;
import flash.media.*;
import flash.net.URLRequest;
import flash.utils.ByteArray;

continued

619

Part VII: Sound and Video

EXAMPLE 31-5 (continued)

[SWF(frameRate="60",backgroundColor="#808080")]
public class ch31ex5 extends Sprite {
protected var sound:Sound;
protected var waveform:ByteArray;
public function ch31ex5() {
var songurl:String = "http://actionscriptbible.com/files/winter.mp3";
sound = new Sound(new URLRequest(songurl),

new SoundLoaderContext(1000, true));
sound.play();
waveform = new ByteArray();
this.addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
graphics.clear();
SoundMixer.computeSpectrum(waveform, false, 2);
//draw the left channel in blue
graphics.lineStyle(0, 0x0000ff);
drawChannel();
//and the right in red
graphics.lineStyle(0, 0xff0000);
drawChannel();

}
protected function drawChannel():void {
var W:Number = stage.stageWidth;
var H:Number = stage.stageHeight;
var SAMPLES:Number = 256;
var xstep:Number = W/SAMPLES;

graphics.moveTo(0, H/2);
//assumes that the ByteArray is already at the correct location
for (var i:int = 0, x:Number = 0; i < SAMPLES; i++, x+=xstep) {
var amplitude:Number = waveform.readFloat();
var y:Number = H/2 + (amplitude * H/2); //amplitude is from -1 to 1
graphics.lineTo(x, y);

}
}

}
}

This example shows a basic and somewhat boring waveform visualization. There are hundreds of
examples of exciting ones that you can find by searching for computeSpectrum on the internet
or http://wonderfl.net/. See also the results of the visualization contest that took place on
http://theflashblog.com/?p=197.

620

Chapter 31: Playing and Generating Sound

Extracting Audio
When you sample audio with SoundMixer.computeSpectrum(), you get a tiny slice of the com-
plete audio mix at the current time. But in Flash Player 10 and above, you can do better: you can
extract any portion of any single sound. This has many applications. You can use it to draw a preview
of a whole sound clip for an audio editing application. You can use beat detection to try to match the
tempo of a song. Or you can take an input sound, modify its audio data, and play back the modified
audio — there you have an effect filter!

Version
FP10. Extracting sound is only possible in Flash Player 10 and later. �

You can extract audio from a Sound with its extract() method. In this case, you call it on the
Sound you want to sample, unlike SoundMixer.computeSpectrum(). Its signature is

function extract(target:ByteArray,
length:Number,
startPosition:Number = -1):Number

This method, too, passes the sample data by reference. The important value is not the return value so
much as the ByteArray target. Calling this method fills up target with the sample data. The
data is provided in 44.1 kHz stereo, again as a series of Numbers between –1.0 and 1.0.

The length parameter specifies how many of those samples you want, and will, of course, determine
the size of target. The startPosition parameter works in two ways. If you always omit
it, repeated calls to extract() advance through the source Sound, pulling the next available
samples since the last call. This makes it convenient to progressively process a whole sound. (You
might want to spread out this processing over some time so as not to hang up Flash Player.) If you
specify a value for this parameter, the returned audio data draws from the source sound starting at
startPosition and ending at startPosition+length, expressed as numbers of samples. For
example, a startPosition of 44100 and length of 22050 extracts the raw audio data between
1.0 sec and 1.5 sec.

Synthesizing Audio
Few will argue that the most compelling audio feature added in Flash Player 10 is the ability to gen-
erate dynamic audio. Developers clamored for this feature, and we got it. So use it!

Version
FP10. Flash Player versions 10 and later can play real-time synthesized audio. �

To generate audio, simply create an empty Sound and play() it. The Sound requests audio data be
fed to it periodically. It does this by dispatching a SampleDataEvent. You simply fill that request
by filling the event object with audio data. As long as you keep up with the Sound’s requests, the
sound keeps playing. The sound completes playing when you stop filling up the buffer or when you
call stop() on the associated SoundChannel. Essentially, the Sound becomes an input stream to
which you provide raw data. It keeps playing what it has buffered and asking for more, like a bucket
with a hole in the bottom.

621

Part VII: Sound and Video

First let’s look at the event. You’ll subscribe to SampleDataEvent.SAMPLE_DATA. When you
receive this event, Flash Player is asking for more audio samples to play. Regardless of when you
get this signal, the SampleDataEvent event object tells you where in the audio stream it needs
more data. You need to fill up the buffer with a continuous sound, but you’re doing it piecemeal, so
you need to make sure that every chunk of audio you add to the buffer lines up with the last. The
SampleDataEvent object tells you where the requested sample goes in the audio stream with its
position property. The position in the stream is measured in number of samples at a sample rate
of 44.1 kHz (so a request with a position of 88200 starts 2 seconds into the audio stream).

The other property of SampleDataEvent is data, an empty ByteArray it provides you to fill up
with data. Flash Player wants you to write between 2,000 and 8,000 samples in the buffer for every
request. The less you provide, the more likely it is that the buffer will run out between calls to fill
it up if Flash Player becomes busy. Write in raw audio data as a wave with Number values between
–1.0 and 1.0, at a sample rate of 44.1 kHz, alternating left and right channels. Let’s look at a simple
example in Example 31-6.

EXAMPLE 31-6 http://actionscriptbible.com/ch31/ex6

Synthesizing Simple Tones

package {
import flash.display.Sprite;
import flash.events.SampleDataEvent;
import flash.media.Sound;

public class ch31ex6 extends Sprite {
public function ch31ex6() {
var sound:Sound = new Sound();
sound.addEventListener(SampleDataEvent.SAMPLE_DATA, onBufferSound);
sound.play();

}
protected function onBufferSound(event:SampleDataEvent):void {
//for every sample, from the requested position through 8k samples later
for (var t:int = event.position; t < event.position + 8192; t++) {
//to generate a wave with any amplitude (volume) and frequency (pitch)
//amplitude * sin(frequency * time)

//the sin of this has 1 peak every seconds--is a 1Hz wave
var tNormalized:Number = (t / 44100) * (2 * Math.PI);

//write middle-C (261Hz) at full (1.0) volume to the LEFT channel
event.data.writeFloat(1.0 * Math.sin(tNormalized*261.626));
//write G4 (392Hz) at low (0.2) volume to RIGHT channel
event.data.writeFloat(0.2 * Math.sin(tNormalized*391.995));

}
}

}
}

622

Chapter 31: Playing and Generating Sound

In this example, you generate two sine waves. Air vibrating in a perfect sine wave like this produces
this perfect — although a bit boring — tone. By alternating writing values, you can write to the left
and the right channel independently, so the two alternating calls to writeFloat() produce two
stereo channels. To play a mono sound, just write the same value twice. You might also notice that a
chunk of 8,000 samples actually has 16,000 floating point numbers in it.

If you want to see how synthesized sound can improve an application, you might want to check out
Example 37-5. In this example, you’ll use filters along with sound synthesis to implement a repeating
memory game. Check it out at http://actionscriptbible.com/ch37/ex5. The sound code is
almost identical to the simple sine generator in Example 31-6, but with a fade-out.

Have fun! With some simple waves — sine, square, sawtooth — some noise, and some envelopes
and effects, you can create a full range of retro sound. There are plenty of books and articles
on audio synthesis. This series that spans five years of articles is superb: http://bit.ly/
reid-synth-secrets. Or visit André Michelle’s lab to have your mind blown with what you can
do with Flash Player audio: http://lab.andre-michelle.com/tag/audio/.

Detecting Audio Capabilities
Now that you’ve seen what’s possible, let’s take a short sanity check. It’s not a great idea to
create an application that relies on audio alone. There are those of us who are hard of hearing
or deaf — and those of us who don’t have audio support on our computers. For the former
category of users, you should come up with a strategy to support them, for example, providing
a dialog to enable visual cues where audio would otherwise be used. For the latter category,
you can check whether the client’s computer has audio support by using the Capabilities
class. The static Capabilities.hasAudio and Capabilities.hasStreamingAudio
properties of this class tell you if the client can support sound or streaming sound files. Here’s a
simple check:

if (Capabilities.hasAudio) {
trace("Audio OK!");

} else {
trace("Audio not available");

}

Note
If you attempt to play sounds on a computer that does not have audio support, the Sound.play() function
returns null instead of a SoundChannel object. �

Summary

� The sound system is made up of several classes that work together. The Flash Player event
framework is used to communicate the status of sounds loading and playing.

� A Sound object contains the sound data and loads and streams sound files. SoundChannel
is a handle on the audio output from a Sound object. The SoundMixer controls the overall
output of all the sounds, and SoundTransform controls how sounds are mixed.

� Sounds can be embedded, loaded from local files, or streamed from external files over
the internet.

623

Part VII: Sound and Video

� ID3 data contains detailed metadata about an MP3 song, such as artist, genre, and song name.
Access this information through a sound’s id3 property.

� You can sample audio as a waveform or a frequency spectrum to enable audio visualizations.

� In Flash Player 10 and up, you can extract, modify, and generate audio as it is playing.

624

Playing Video

FEATURED CLASSES

flash.net.NetConnection

flash.net.NetStream

flash.media.Video

I
n this chapter, I’ll cover a huge topic: video. Flash Player is, at
the moment, the leading way to watch video content on the web.
Although many technologies are nipping at its heels, none has the reach

that Flash Player does. With wide adoption of the Open Screen Project
(http://www.openscreenproject.org), the Flash Platform is poised to
continue delivering content on not just computers but a plethora of thin and
mobile devices.

To do real justice to all the activities and topics surrounding video in Flash,
I’d need another thick book. Not surprisingly, several such tomes exist. For an
expertly detailed reference, I recommend Video with Adobe Flash CS4 Professional
Studio Techniques by Robert Reinhardt (Adobe Press, 2009). There are other such
books and reference materials available in print and online.

In this chapter, I’ll survey how the Flash Platform deals with video: how you
can create, encode, deliver, and play it. Most of these activities fall outside of
Flash Player, but they are important aspects of video in the Flash universe. After
this overview, you’ll learn about how to handle video inside Flash Player using
ActionScript 3.0, building a simple video player from scratch.

Video and the Flash Platform

In this section, I’ll overview the topics surrounding video and the Flash platform,
without diving into code. I’ll cover what Flash Player is capable of, the many
kinds of video, and the path that video content takes from production through
playback.

Video Sources
You can work with different kinds of video in Flash Player. Each of these is
handled in a significantly different way, so it’s important to make these distinc-
tions now.

625

Part VII: Sound and Video

Embedded

Using Flash Professional, you can embed video into a SWF. Inside Flash Professional, the video
appears on the timeline. The video data is included in the SWF, which can make for large files.
Embedded videos are easy to manage and add because they don’t require loading and are neatly
encapsulated. On the other hand, you don’t have much control over how an embedded video plays,
and of course you’re stuck with the video you embedded — you can’t choose to play a different video
at runtime.

If you need to integrate complex, prerendered animated effects into a design, embedded videos are a
good choice. You can preview them inside Flash Professional, and no code is required to set up and
play them. You can also manipulate them visually to match up perfectly to the nonmoving elements
of the design. Embedded video is frequently used in transitions of high-production-value web sites to
exact a cinematic, lush visual experience.

Embedded videos are inappropriate, however, for the kind of video you sit back and watch. A sensible
video player is able to show you video from any source, not just videos you’ve embedded. Besides,
embedding video is one additional step of preparation that’s just not necessary.

Flash Player looks at embedded videos as subclasses of Video; you can also choose to embed the
video in a MovieClip instance.

Video Files and Streams

In this chapter and in your programming career, you’re probably going to spend most of your time
with video files and video streams. These are external resources that you tell Flash Player to retrieve.
The actual video data might be contained in a file on a server or the user’s system, or it might be
generated on the fly by a live broadcast or a friend’s webcam. Video files and streams may differ in
specifics but are handled similarly. As far as classifying kinds of video, any video that you load dynam-
ically can be lumped together under this banner. You may simply hear this category called ‘‘Flash
video,’’ because it encompasses all the ways Flash plays video from the internet.

All video sites that use Flash Player, like YouTube, Vimeo, and Hulu, play video files or video streams.
If the goal of your application is to play prerecorded or live video content, you’ll use this kind of
video.

Video that’s played dynamically is loaded or streamed with a NetStream object and attached to a
Video instance with its attachNetStream() method. I’ll cover this in depth in the section ‘‘Imple-
menting a Video Player.’’

Webcam

Video from a camera attached to or integrated with the user’s computer can be accessed, recorded,
and streamed to a media server. Camera video is a distinct kind of video that is attached to the
screen and handled differently. Recording audio and video is covered in Chapter 33, ‘‘Capturing
Sound and Video.’’

To display video from the user’s camera, use a Camera instance and attach it to a Video instance on
stage with the attachCamera() method.

Codecs and Container Formats
Let’s talk about the video data. Video files have to store a huge amount of information. A typical video
has about 30 frames per second. That’s 30 images every second. If you were to simply store these

626

Chapter 32: Playing Video

images sequentially, the resulting file would be huge, perhaps over a hundred megabytes for just a
minute of video. Just as image formats compress the image data rather than storing the color of every
pixel, videos are compressed, taking advantage of similarities between frames as well as compress-
ing the image data. Just as there are different compression formats for images (like JPG and PNG),
there are a variety of compression formats that Flash Player supports. In audio and video especially,
these are called codecs because they have to be able to both compress and decompress the video data.
During the (continuing!) development of Flash Player, newer codecs are added as they prove their
utility. This means different versions of Flash Player support different codecs.

A video contains not only a moving image but usually an audio track as well. So video files actually
use two kinds of codec: one for video and one for audio. Flash Player supports a variety of audio
codecs.

Finally, all this audio and video data must be wrapped up together and packaged in a file somehow.
Different container formats are used to bundle multiple streams of data and metadata into a file. For a
long time, the FLV file container was your only option in Flash Player. Now a more advanced con-
tainer format, F4V, has taken precedence over FLV. The F4V container format is compatible with
MPEG-4, and Flash Player can even load files that properly use the MPEG-4 Part 12 container for-
mat, including MP4, M4V, M4A, and some 3GP and MOV files. Whether Flash Player can access the
streams in these files is another question.

To play a media file, then, Flash Player has to both understand the container format and have a proper
codec for each stream, whether it be audio or video.

The following audio codecs are supported in Flash Player 10 and up:

� MP3 — A flexible, if aging, codec

� ADPCM — A simple and therefore fast codec

� Nellymoser — A proprietary single-channel codec for speech

� AAC — A more recent, more open standard for multichannel audio; already widely used

� Speex — An open, higher-quality speech codec

These video codecs are supported:

� Sorenson Spark — An aging proprietary codec

� On2 VP6 — A proprietary codec with higher performance

� Screen Video — A codec for screencasts, used by Adobe Connect

� Screen Video 2 — Its successor

� H.264, aka AVC or MPEG-4 Part 10 — A recent, open, high-quality standard; already widely
used

A comparison of these formats, which Flash Player versions support which, and their strengths and
weaknesses is available at http://bit.ly/video-compression-and-encoding, an excerpt
from the aforementioned book Video with Adobe Flash CS4 Professional Studio Techniques.

The most important things to know are that the F4V and MPEG-4 container formats, H.264
video, and AAC audio, are only available in Flash Player 9.0.115 and later. If you are dealing
with high-quality video, I recommend that you use this combination. You should also know that
if you use an F4V container, you can’t use any of the proprietary older codecs. You may use
AAC or Speex for audio and H.264 for video. You can see the compatibility of codecs and file
containers, as well as a useful guide for which audio and video codecs usually go together, at
http://bit.ly/video-codecs-and-pairings.

627

Part VII: Sound and Video

This is a lot of information, especially for anyone new to video. You can always come back to ref-
erence this information. The takeaway should be this: video consists of a compressed video stream,
and possibly a compressed audio stream, packed into a container format.

Metainformation
Flash video can carry metadata along with it: information about the video itself, as well as additional
streams such as a timed text track for subtitles or cue points. You can use cue points to trigger Action-
Script code when a video is playing, and you can use metadata about the video to fill in information
on a video player. The kind of metadata that is available is based on the container format and, of
course, whether the data happens to be included, because it is entirely optional.

Metadata

Standard video metadata includes parameters such as the pixel dimensions of the video, duration,
data rates, video frame rate, and audio and video codec types. This data will be made available to
the onMetaData() function of the NetStream’s delegate. I’ll show this in action later in this
chapter.

Additionally, F4V/MPEG-4 files can contain XMP metadata. XMP is a standard for storing metadata
and is used in nearly every digital camera. Using XMP, you can add a huge amount of data to your
video files. This data is available to ActionScript as an XML document to the onXMPData() function
of the NetStream’s delegate. XMP is heavily namespaced, so don’t forget about XML namespaces if
you want to parse this data!

Cue Points

Cue points fire off events at predetermined points during a video’s playback. You can couple
these cue points with data in key-value pairs. Use cue points to create interactive videos and
content-aware applications.

In FLV files, cue points trigger the onCuePoint() function of the delegate. In F4V files, the cue
points are instead embedded in the XMP metadata, so you can parse them out and wait for the speci-
fied timecodes, but the callback won’t be fired automatically.

Subtitles and Closed Captioning

Subtitles are made much easier with the adoption of MPEG-4 Timed Text tracks (MPEG-4 Part 17).
Use F4V or another MPEG-4 container format, and you can easily include subtitles, closed captioning,
or any other timed text application. (Karaoke, anyone?) Nothing in Flash Player draws the text for
you; you still have to decide what to do with the text. However, the text is reported to you as the
video plays through the delegate’s onTextData() callback function.

Delivery Methods
Although the codecs you use can affect the quality of a video, choosing how to deliver the video can
completely change the user’s viewing experience. Delivery is the process of getting the video data to
the user’s computer or device.

628

Chapter 32: Playing Video

Local, Progressive Download

The most straightforward way to deliver video is over HTTP. If you’re developing an application that
lives on the web, like a web site or banner, chances are that your SWF itself and all its assets are deliv-
ered over HTTP. When you have a directory structure on a site that includes images, sounds, external
SWFs, and so on, and you use relative URLs to load external resources like

loader.load(new URLRequest("../images/header.png"));

even though no http:// appears in the URL, the resources are loaded from the same site as the
application.

You can load videos just as easily as resources by using relative or absolute URLs. If the app is running
locally — for example, if you’re testing it during development — video files play from the drive on
your computer. If the URL points to a web server, the video files are requested and delivered over
HTTP like any other resource. These two cases are handled seamlessly depending on their URL, just
like any other dynamic loading situation in Flash Player.

Loading a video off of a web server is usually called progressive download. Flash Player can play a video
as it is downloading. Because the file contains video data from start to finish, as you load the file,
you get access to later positions in the video. By loading data into a buffer as it arrives and playing
video out of the buffer as it needs to appear on-screen, Flash Player can handle the video loading and
playing at different rates.

Even better, all modern web servers can let you seek around the video by serving up the file starting
at a requested offset rather than the whole file. (If the web server doesn’t support this through HTTP
headers, there are server-side scripts that do the same thing with HTTP request variables and that you
can use to proxy access to your videos.) If the user decides to seek to a position in the video that
hasn’t been loaded, you can make a request for the video starting at or around that offset and start
playing that video immediately.

Delivering video files through HTTP has some limitations, however. Because you’re hosting your video
on a web server, those files are available like any other file on the server. You can’t easily control
access to these videos. It’s a simple matter for anyone to download the video file and keep it to replay
at any time. Unfortunately, this can be a nonstarter for some content providers. Besides content pro-
tection, web servers don’t provide services for connecting peers’ video sources, connecting you to a
live video source, true streaming, automatic bandwidth detection and stream selection, or playlists. All
these things are supported, however, by specialized video servers.

Streaming

Various specialized servers are available that provide more advanced video services. For your refer-
ence, these are some of the available servers:

� Flash Media Server (including its editions Flash Media Interactive Server, Flash Media
Streaming Server, and Flash Media Development Server), the standard in server software from
Adobe. The different editions carry different price tags, starting at free. See an overview at
http://adobe.com/products/flashmediaserver/compare/.

� Red5, a popular, free, and open source server written in Java (making it very portable). Available
at http://red5.googlecode.com/.

� ElectroServer, http://electro-server.com/.

� Wowza Media Server, http://wowzamedia.com/.

629

Part VII: Sound and Video

Keep in mind that you can only choose to use a media server if your host supports it or you have the
access to install and support it yourself.

First and foremost, a media server enables you to deliver true streaming Flash video. Video is streamed
when the server and the client keep a connection open, the server sending the client only the video it
needs to play next. The client and server stay in touch throughout playback and can even adjust the
quality of the video to adapt to changes in available bandwidth.

Video streams are the only way to share live video feeds such as live events and webcam input.
When sharing video streams from a client’s webcam, you can either use a media server to repub-
lish the stream to the connected peers or use RTMFP (available in Flash Player 10 and up) to
stream directly between two clients, using a matching service only to connect the two clients.
This kind of video is called peer-to-peer. Adobe provides a free matching server, called Stratus, at
http://labs.adobe.com/technologies/stratus/.

Streaming video is more easily controlled than progressive download. Not only can media servers
apply special rules to the clients when they try to play a stream, but media servers that support
RTMPE or RTMPS can send protected streams that are encrypted during transport. Both protected
and unprotected streaming video are more difficult to save locally than a simple web-hosted video
file. Protected streams have added security, making it more difficult (although still not impossible) to
capture the source video.

True streaming uses a variety of protocols, some of which I’ve already mentioned. Because this array
of technology has grown quite large, it is summarized in Table 32-1. Keep in mind that progressive
download uses only one protocol: HTTP.

Beyond the selection of protocol, you can configure your media server in all kinds of ways to limit
access to content, provide alternate streams for different viewers, provide different quality streams for
different bandwidths, set up playlists, and so on. And outside of the scope of video, media servers
can use their connection for Flash Remoting (see more in Chapter 28, ‘‘Communicating with Remote
Services’’) so that you can share video and data simultaneously.

Delivery Networks

As video has eclipsed all other forms of traffic on the internet in its sheer abundance, the importance
of delivery has increased, and more people have come to rely on delivery networks. A content delivery
network, or CDN, is a system of servers throughout the internet that provide better access to data than
a single central server. This is done by redundancy of computers and replication of data for reliability,
and connecting users to servers with less load and that are closer in terms of network topology (and,
as it follows in most cases, geography) for higher responsiveness.

Although I just described the technical aspect of a CDN with respect to video, the business of a
CDN is more interesting. Depending on what your aim is, getting video to users can be a simple
task — encode a single video, upload it to your web server, and be done with it — or a serious
process — like encoding, tagging, captioning, setting up viewing rules for, organizing, and delivering
the back catalog of every episode for every show a major broadcaster owns. An industry has evolved
to assist businesses in the more complex end of that spectrum. Offerings vary, but most providers
attempt to simplify this job with a front end that organizes huge media libraries as well as automates
encoding and publishing. In some cases, CDNs have been adding these services, and in other cases,
new companies have sprung up offering them under the banner of an Online Video Platform,
or OVP.

630

Chapter 32: Playing Video

TABLE 32-1

Protocols Used to Stream Video to Flash Player

Protocol Full Name Comments

RTMP Real Time Messaging Protocol Adobe-created (application layer) proto-
col over TCP, supporting video and audio
streaming as well as AMF-encoded data.

RTMPT RTMP Tunneled RTMP packets are encapsulated in HTTP
packets and sent over HTTP, usually on port
80, to avoid being blocked by firewalls.

RTMPS RTMP Secure RTMP tunneled like RTMPT but sent over a
secure HTTPS connection.

RTMPE RTMP Encrypted RTMP using end-to-end encryption; faster
than HTTPS and without requiring certifi-
cate management. Encrypts communications
channel but using keys based on pub-
licly available data and ‘‘secret’’ constants,
presenting only a moderate barrier to attack.

RTMPTE RTMPE Tunneled RTMP using end-to-end encryption like
RTMPE but tunneled in HTTP packets over
port 80.

RTMFP Real Time Media Flow Protocol Similar to RTMP but uses UDP instead of
TCP; other small changes.

These service providers may offer different combinations of delivery methods for Flash video. They
aren’t a true third option — as far as ActionScript goes, you’ll still choose to deliver video over either
HTTP or a media server — but they are so prevalent that if you do any video work, you’re likely to
run into one.

Encoding
Flash video must usually be encoded — that is, compressed and saved into a file of the proper format.
Before Flash Player 9.0.115 added support for F4V and MPEG-4-like container formats, and widely
used open codecs H.264 and AAC, re-encoding video for use in the Flash Platform with its proprietary
FLV container was basically a prerequisite. Even with this support, the source for many videos is a
high-quality master, so some re-encoding to get the video file slim enough to fit through normal-sized
internet tubes is still called for.

The way you encode your video has no impact on ActionScript code. However, it’s an important activ-
ity in bringing video to the Flash platform.

Adobe Media Encoder

Flash Professional ships with the de facto application for encoding video, Adobe Media Encoder. The
app lets you batch-encode multiple files, add metadata and cue points, and do basic cropping and
trimming.

631

Part VII: Sound and Video

Exporting from Applications

Installing Flash Professional also installs the Flash video codecs to your system so that video and
animation applications will typically be able to export directly to an FLV or F4V file. For example,
entries for ‘‘F4V (H.264)’’ and ‘‘FLV’’ should appear in the Format list when rendering a comp in After
Effects. If the video is being used only for Flash, this may be a good option to cut one encoding step
out of your workflow.

Video Encoding Services

There are other pieces of software and online services that encode videos for you. These can be of
some advantage if you need to encode many files, especially to multiple formats at once. Video encod-
ing may often be provided by an OVP.

Playback
The last step in video’s journey to your users’ eyeballs is getting it on-screen. But playing back video
can be a much more involved job than slapping some moving things on the screen. First, let’s briefly
learn how Flash Player optimizes the path from video data to the screen.

Video Acceleration

As Flash Player has been under development, many changes have been made to improve video per-
formance and take advantage of modern graphics hardware. All versions of Flash Player (that support
AS3) can display full-screen video.

Starting in Flash Player 9.0.115, Flash Player uses the GPU to scale up and draw full-screen video.
This occurs whether or not your Flash Player content is embedded in the browser with the proper
WMODE set. This hardware scaling is also available using the fullScreenSourceRect parameter
of Stage.

Starting in Flash Player 10.1, Flash Player additionally offloads the decoding of H.264 video to the
GPU, if it is capable. This drastically decreases the workload borne by the CPU.

Video Players

The Flash Player API includes the classes necessary to load a video and put it on the screen. But
not much more. As with many of the deeper capabilities of the Flash platform, the Flash Player API
exposes low-level tools, enabling you to build your own framework or use an existing one. In this
chapter you’ll build a simple one just as an exercise to familiarize yourself with the video classes.
You’ll see that there is no video player built into Flash Player; even a feature as simple as play/pause
must be written in ActionScript 3.0.

That said, there are several capable video players out there that you can use and, in some cases, cus-
tomize, to play back video content in your Flash application.

Perfectly capable players are provided with Adobe tools. Flash Professional comes with a
FLVPlayback component that you can include and skin. You can use this component with
the authoring tool as well as pure ActionScript 3.0 code. The Flex 3 Framework comes with the
VideoDisplay control, and the Flex 4 Framework includes an updated Spark VideoPlayer
component.

A popular drop-in solution is the JW FLV Player (http://longtailvideo.com). Another nice
one is flowplayer (http://flowplayer.org). There are dozens more commercial and free players,

632

Chapter 32: Playing Video

all with a variety of features, licenses, and prices. If your large project is integrating with an OVP,
this provider will likely have a player for you to use and customize, such as Brightcove’s Brightcove
Player.

Finally, don’t forget that some of the biggest sites that host video content may allow you to embed
their player’s SWF into your own to play content hosted on the site. For example, if you host
video content on YouTube, you can benefit from using its familiar and capable video player (see
http://bit.ly/youtube-embedding).

It’s important to realize that all these video players work slightly differently, support unique features,
provide for various levels of customization, and integrate in their own way with your code. Plus, you
can always write your own. It’s not always an easy choice to make. If you’re writing an application for
which video isn’t the primary use, you can probably exhale now, pick something free and simple, and
move on.

Open Source Media Framework

As anyone following internet trends in the past few years knows, the growth of online video has big
content owners scrambling to track and monetize their content. The relatively recent explosion of
technology surrounding the delivery, tracking, and monetization of Flash video has transformed the
business of developing a fully featured video player from simply annoying to ponderously complex.
To paraphrase Will Law, to write a fully featured modern video player, you now have to be an expert
at all of these:

� User interfaces, UX and design

� Dynamic streaming

� Playlist parsing

� Streaming and progressive delivery

� Content Delivery Network integration and authentication

� Ad network integration

� Tracking provider integration

� Social networking features

� Quality of Service reporting

It’s getting a bit out of hand. Furthermore, as you just saw, the ecosystem of competing video players
is not only challenging to evaluate but difficult to integrate with different providers for the features
mentioned here.

Thankfully, Adobe and Akamai are leading the way to provide you with one media player to rule them
all. Together, they started the Open Source Media Framework project, a free and extensible Action-
Script 3.0 media player framework and a set of plug-ins for it. Not surprisingly, the project aims to
provide all the features just listed. I don’t mean to sound evangelical, but as a developer I’m as glad
as anyone to download a free, open source, well-tested, extensible, and feature-rich video player; and
the more developers that adopt the player, the more time that can be pooled to make that one player
better rather than writing different versions of the same thing.

You can read all about the project and download the player at
http://opensourcemediaframework.com/. The OSMF code comes bundled with the
latest Flex SDK and Flash Builder 4.

633

Part VII: Sound and Video

Implementing a Video Player
Now that I’ve told you never to write your own video player, let’s write a video player! Whereas a
novice can drop in a video player, an expert understands the underlying code.

Flash video uses three principal classes: Video, NetConnection, and NetStream, which we’ll go
over now.

Video
I’ve been primarily talking about Flash video in this chapter — as opposed to embedded and camera
sources — but all types of video use the Video object. Its job is simply to display the video content.
You use this class to get video in the display list, so naturally it extends DisplayObject. This sim-
ple fact — that video is a first-class display object — is one of the powerful features of Flash Player.
You can do with a Video what you can do with any DisplayObject: filter it, mask it, draw it to
a bitmap, scale, translate, and rotate it, and in Flash Player 10, transform it in 3D space and apply
shaders to it.

Video’s constructor optionally takes an initial size (width and height as ints). If you can match this
up exactly to the size of the video source, you can avoid scaling, for sharp video and less CPU usage.
Once created, you can attach different video sources to a Video object with these methods:

� attachCamera(camera:Camera)— Start using the specified Camera as the video source.

� attachNetStream(netStream:NetStream)— Start using the specified NetStream as
the video source.

Pass null to these methods to detach the current video source.

Because Video is just a display class, it can’t control the video stream it’s displaying. You can, how-
ever, use it to toggle some quality options. You can use these properties to improve video appearance:

� smoothing — When set to true, uses higher-quality scaling when the video is scaled, at the
expense of some processor utilization. In Flash Player 9.0.115 and higher, when smoothing is
on, video is mipmapped for especially nice-looking results when scaled down by powers of 2.

� deblocking — For lower bit-rate video, you can use a deblocking algorithm to post-process
the video, smoothing out sharp ‘‘blocky’’ artifacts. This increases processor utilization. Different
int values trigger different deblocking algorithms, which you can look up in the AS3LR. In
almost all cases, you can leave this as the default, which automatically applies deblocking when
needed.

NetConnection
Unlike the HTTP-centric world of URLLoader and URLRequest that you saw in Chapter 27 and
throughout the book, video can be delivered over a variety of protocols, so it uses a different class,
NetConnection. You might remember this class from its other purpose as the connection to a
remoting server from Chapter 28. Remoting and streaming video go hand in hand. They use the same
family of RTMP protocols, and media servers provide both remoting operations and video streaming.
A NetConnection represents a persistent connection to a media server. Once you have established
a connection, you can use the single NetConnection to open multiple simultaneous streams and
send remoting calls, if the server supports it.

634

Chapter 32: Playing Video

To establish a connection to a media server application, use the NetConnection’s connect()
method with a String specifying the hostname or IP, protocol, and application name:

var nc:NetConnection = new NetConnection();
nc.connect("protocol://host[:port]/appname[/instanceName]");

The protocol can be any of those enumerated in Table 32-1. You might want to consult the Adobe
Flash Media Server 3.5 Developer Guide at http://bit.ly/fms-dev-guide if you need to set
up and connect to a Flash Media Server.

Flash video works over plain old HTTP as well; nevertheless, you still use a NetConnection when
playing Flash video over HTTP. This keeps the interface the same, avoiding complication. When using
progressive download video, just create a placeholder NetConnection and connect() it to null
rather than a valid media server endpoint.

NetStream
Once you have a NetConnection established, you can open streams on it using instances of
NetStream. A NetStream represents a single, one-directional audio or video stream. For example,
you might open a connection to a multiuser chat application and talk to three peers by publishing
your own stream and opening the three other streams active in the room. In this example, you have
four active NetStreams on the same NetConnection.

The NetStream object, finally, is used to monitor and control a video stream and access its metadata.
First, though, you have to get a NetStream from a NetConnection, play the proper resource, and
connect it to the Video object to give it a place to display.

Every NetStream must be linked to a NetConnection, which is done in the NetStream
constructor. For HTTP progressive download videos, use a dummy NetConnection as
previously discussed.

var ns:NetStream = new NetStream(nc);

Version
In Flash Player 10 and later, the NetStream constructor has a second, optional argument that can be used to
set up peer-to-peer connections. �

Next, play the resource using the play() method. This method takes a variable argument list. When
playing a video file on a web server, just provide the URL to the file here. When streaming a video file
or a live stream, use these parameters:

function play(name:Object, start:Number = -2, len:Number = -1, reset:Object = 1)

� name — The stream’s name or filename, possibly with a format prefix. For MP3 files,
use "mp3:<stream name>". For F4V and other MPEG-4 container format files, use
"mp4:<stream name or filename>". For FLV files, use the stream name; a prefix is not
necessary.

� start — The number of seconds into the video that playback should begin. Negative numbers
can signify priorities in stream selection.

� len — Set to a positive number to limit playback to a specific number of seconds. –1 means
‘‘play through to the end.’’

� reset — Controls whether the stream is played immediately (default) or added to a playlist.

635

Part VII: Sound and Video

You already learned how to connect the NetStream to a Video:

video.attachNetStream(ns);

Now that the video is playing, you can monitor and control its playback with NetStream methods:

� pause() — Pauses the video stream. Does nothing to a paused stream.

� resume() — Resumes a paused video stream. Does nothing to a playing stream.

� togglePause() — Switches between paused and playing states.

� seek(offset:Number) — Moves the playhead to the keyframe nearest offset seconds or
generates a new keyframe at that offset dynamically if the media server supports it.

� time — A read-only Number accessor that represents the position of the playhead in seconds.

� soundTransform — A SoundTransform object that lets you modify the mix of the
video’s audio stream. See Chapter 31, ‘‘Playing and Generating Sound,’’ to learn about
SoundTransform.

You can also use these methods and parameters for quality control:

� bufferTime — A Number specifying how many seconds of video should be buffered before
playback begins. Pausing increases the buffer in Flash Player 9.0.115 and up. See the AS3LR for
more detail on buffering behavior.

� bufferLength — A read-only Number accessor that returns how many seconds of video are
currently in the buffer.

� info — A NetStreamInfo object that reports detailed statistics on the audio and video
streams of the video in Flash Player 10 and later.

� play2(param:NetStreamPlayOptions)— Like play() but can be used to
switch streams during playback, for example, to switch bitrates midstream. The
NetStreamPlayOptions instance includes information on the new stream and old
stream. Use this method to implement dynamic streaming, only available in Flash Player 10
and later and Flash Media Server 3.5 and later.

Finally, you can respond to video events, including those that provide metadata. NetStream events
come in two varieties, both a little different than your garden variety Flash Player event, so they
require some special attention.

First are NetStatusEvent events, which report on a variety of stream conditions. Instead of sub-
scribing to each event type individually, all NetStatusEvents use the same and only event type,
NetStatusEvent.NET_STATUS. Actual information about the event is stored instead in the event
object’s info property, which in turn has two properties: level and code. The level categorizes
the importance of the event into status, warning, or error, and the type of event is stored as a
string in code. To react to NetStatusEvents, you can subscribe to the single event type and use a
switch statement in the event handler:

ns.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);

function onNetStatus(event:NetStatusEvent):void {
switch (event.info.code) {

case "NetStream.Buffer.Empty":
displayBufferingScreen();
break;

636

Chapter 32: Playing Video

case "NetStream.Buffer.Full":
hideBufferingScreen();
break;

case "NetStream.Play.Stop":
enablePlayButton();
break;

}
}

Normally, these would be different events.

The other class of video events doesn’t even use Events, but rather calls functions that you define
in a delegate object. Simply define these functions in a class or store them in an Object, and tell
the NetStream to use that instance as its delegate by assigning it to the client property of the
NetStream. When the video event occurs, NetStream looks for the appropriate function in its del-
egate object, calling it with any associated parameters. The client property defaults to this, so you
could also simply subclass NetStream, adding these delegate methods to the class itself and letting
the class be its own delegate. Delegates can define these functions:

� onCuePoint(cuePointEvent:Object)— Called when an FLV cue point is reached by
the video playing. The cuePointEvent object contains the following:

� name:String — The name of the cue point as encoded.

� parameters:Array — An associative array of key-value pairs stored with the cue
point.

� time:Number — The time in seconds when the cue point was fired.

� type:String — The type of the cue point: navigation or event.

� onPlayStatus(netStatusInfo:Object)— Called when a stream has finished playing
or switches to another stream, passing an object with the same properties as the info property
of a NetStatusEvent. For streaming video.

� onMetaData(metadata:Object)— Called when metadata is available. The passed
metadata object includes parameters like the duration in seconds, the framerate, the
height and width of the video, and so on.

� onXMPData(xmpData:Array)— Called when XMP metadata is available. See the section
‘‘Metainformation’’ for more details. You can access the raw XML in xmpData["liveXML"].
Available in Flash Player 10 and later.

� onTextData(textData:Object)— Called when an MPEG-4 Timed Text track in the
video hits text data during playback. The textData object has a trackid property that stores
the track number of the text track and a text property that stores the text itself. Available in
Flash Player 9.0.115 and later.

� onImageData(imageData:Object)— Called when an image track in an MPEG-4 file
has image data. The imageData object has a trackid that stores the track number of the
image track, and a data property that stores the image data in a ByteArray. You can use
Loader.loadBytes() to display the image. Available in Flash Player 9.0.115 and later.

That’s a lot of stuff you can do with a NetStream! By using these features, you can build a nice video
player that monitors quality and delivers a great experience for everyone.

637

Part VII: Sound and Video

Putting It All Together
Let’s see how the pieces fit together by making a simple video player. Example 32-1 isn’t something
you should go and use in a production environment, but it demonstrates the major video playback
features that Flash Player provides.

EXAMPLE 32-1 http://actionscriptbible.com/ch32/ex1

A Simple Video Player

package {
import flash.display.*;
import flash.events.*;
import flash.media.Video;
import flash.net.NetConnection;
import flash.net.NetStream;
import flash.text.*;
import flash.utils.Timer;
public class ch32ex1 extends Sprite {
protected var video:Video;
protected var nc:NetConnection;
protected var ns:NetStream;
protected var nsDuration:Number;
protected var playPauseButton:TestButton;
protected var progressTF:TextField;
protected var progressTimer:Timer;
public function ch32ex1() {
video = new Video(224, 168);
video.x = video.y = 10;
addChild(video);

nc = new NetConnection();
nc.connect(null);

ns = new NetStream(nc);
ns.client = {
onCuePoint: onCuePoint,
onMetaData: onMetaData,
onXMPData: onXMPData,
onPlayStatus: onPlayStatus

}
ns.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);

video.attachNetStream(ns);
ns.play("http://actionscriptbible.com/files/fire.flv");

playPauseButton = new TestButton(24, 24, "||");
playPauseButton.x = 10; playPauseButton.y = 180;
playPauseButton.addEventListener(MouseEvent.CLICK, onPlayPauseClicked);
addChild(playPauseButton);

638

Chapter 32: Playing Video

var rwButton:TestButton = new TestButton(24, 24, "<<");
rwButton.x = 39; rwButton.y = playPauseButton.y;
rwButton.addEventListener(MouseEvent.CLICK, onBackClicked);
addChild(rwButton);

var fwButton:TestButton = new TestButton(24, 24, ">>");
fwButton.x = 68; fwButton.y = playPauseButton.y;
fwButton.addEventListener(MouseEvent.CLICK, onForwardClicked);
addChild(fwButton);

progressTF = new TextField();
progressTF.height = 24; progressTF.width = 140;
progressTF.x = 97; progressTF.y = playPauseButton.y + 4;
progressTF.defaultTextFormat = new TextFormat("_sans", 11, 0,
false, false, false, null, null, "center");

progressTF.selectable = false;
addChild(progressTF);

progressTimer = new Timer(100);
progressTimer.addEventListener(TimerEvent.TIMER, onUpdateProgress);
progressTimer.start();

var fsButton:TestButton = new TestButton(82, 24, "fullscreen");
fsButton.x = playPauseButton.x; fsButton.y = playPauseButton.y + 29;
fsButton.addEventListener(MouseEvent.CLICK, onFullScreenClicked);
addChild(fsButton);

}
protected function onNetStatus(event:NetStatusEvent):void {
switch (event.info.code) {
case "NetStream.Play.Stop":
ns.seek(0);
ns.pause();
playPauseButton.label.text = ">";
break;

}
}
protected function onPlayStatus(event:Object):void {
trace(event);

}
protected function onCuePoint(cuePointEvent:Object):void {
progressTF.text = "[cue point] " + cuePointEvent.name;
progressTimer.delay = 750;

}
protected function onXMPData(data:Object):void {
}
protected function onMetaData(obj:Object):void {
nsDuration = obj.duration;

}
protected function onUpdateProgress(event:TimerEvent = null):void {
progressTF.text = ns.time.toFixed(1) + "s / "

+ nsDuration.toFixed(1) + "s";
progressTimer.delay = 100;

}
continued

639

Part VII: Sound and Video

EXAMPLE 32-1 (continued)

protected function onBackClicked(event:MouseEvent):void {
var seekTime:Number = ns.time - 1;
seekTime = Math.max(0, seekTime);
ns.seek(seekTime);
onUpdateProgress();

}
protected function onForwardClicked(event:MouseEvent):void {
var seekTime:Number = ns.time + 1;
seekTime = Math.min(seekTime, nsDuration);
ns.seek(seekTime);
onUpdateProgress();

}
protected function onPlayPauseClicked(event:MouseEvent):void {
if (playPauseButton.label.text == ">") {
ns.resume();
playPauseButton.label.text = "||";

} else {
ns.pause();
playPauseButton.label.text = ">";

}
}
protected function onFullScreenClicked(event:MouseEvent):void {
stage.fullScreenSourceRect = video.getRect(stage);
stage.displayState = StageDisplayState.FULL_SCREEN;

}
}

}
import flash.display.*;
import flash.text.*;
class TestButton extends Sprite {
public var label:TextField;
public function TestButton(w:Number, h:Number, labelText:String) {
graphics.lineStyle(0.5, 0, 0, true);
graphics.beginFill(0xa0a0a0);
graphics.drawRoundRect(0, 0, w, h, 8);
label = new TextField();
addChild(label);
label.defaultTextFormat = new TextFormat("_sans", 11, 0, true, false,
false, null, null, "center");

label.width = w;
label.height = h;
label.text = labelText;
label.y = (h - label.textHeight)/2 - 2;
buttonMode = true;
mouseChildren = false;

}
}

640

Chapter 32: Playing Video

This is a basic, imperfect player that demonstrates some of the fundamentals of player technology:

� Loading a progressive download video

� Connecting NetConnection, NetStream, and Video

� Setting up a NetStream delegate and callbacks and listening to NetStatus events

� Watching for metadata and cue points

� Controlling and monitoring playback with NetStream

� Scaling full-screen video

Dealing with Video, NetStream, and NetConnection is the key to successfully integrating video
into your Flash applications.

Summary

� The Flash Platform is a powerful vehicle for video online.

� Embedded videos, camera video, streaming video, and progressive download videos are han-
dled differently.

� Flash Player supports various video container file formats, audio codecs, and video codecs in
different combinations. Support varies by Flash Player version.

� There is a suite of streaming protocols and media servers that use these protocols to deliver
streaming video to Flash Player clients; files on web servers and local disks may also be used.

� Modern video players take care of a huge set of features, especially those that attempt to mone-
tize online video.

� There are dozens of video players available, but if a standard emerges, it will likely be the Open
Source Media Framework.

� Video handles display of video content, NetConnection establishes a connection to a media
server or acts as a dummy connection, and NetStream controls a single video stream. All three
work together to play video.

641

Capturing Sound
and Video

FEATURED CLASSES

flash.media.Camera

flash.media.Microphone

T
oo often, Flash Player is viewed strictly as a way to show things to the
user. But Flash Player can also be a tool that the user can communicate
with. A computer’s inputs aren’t limited to just a mouse and keyboard:

most computers have microphones or cameras attached or integrated. Action-
Script can use these peripherals with the Camera and Microphone classes.
Video and audio streams can be saved using Flash Media Server or a compatible
product, or they can be analyzed and recorded locally.

Video Input Using a Camera

To capture video, you first have to retrieve the appropriate Camera object. The
user’s operating system is responsible for reporting compatible video devices to
Flash Player; not just webcams, but digital video cameras, and maybe the occa-
sional TV tuner card, may be used as a video source. I’ll generically refer to all of
these as a ‘‘camera’’ for simplicity’s sake. Also, it’s quite possible that the user has
no compatible video device connected.

Retrieving a Camera Object
Each accessible video device on the user’s system appears as an instance of
Camera, so you don’t create a Camera instance yourself, but retrieve the
proper one.

To get a single Camera object, call the static method Camera.getCamera().
The method takes the name of the camera you’d like to connect to, optionally.
Leave the parameter out, and it returns the default camera (as best as Flash
Player can tell which is the default). If there are no available devices, it
returns null. You can get an array of all the cameras attached to the system
with the static accessor Camera.names, but in most cases you should use
getCamera() with no arguments; this gives the user a chance to pick the right
camera.

643

Part VII: Sound and Video

When ActionScript tries to access the camera returned by getCamera(), Flash Player displays a
dialog box that lets the user choose whether to allow or deny access to the camera, as shown in
Figure 33-1. Make sure your application window size is at least 215×138 pixels; this is the minimum
size Flash Player requires to display the dialog box. If the user has chosen to remember the camera
settings for the domain hosting the SWF, or if he’s used the Flash Player Settings Manager to globally
set camera access, the dialog box does not appear.

FIGURE 33-1

Allow Camera Access dialog box

When the user responds to this dialog box, the Camera instance fires a StatusEvent.STATUS
event. The event object’s code property indicates the user’s response: Camera.muted if the user
denied access; Camera.unmuted if he permitted it. You can also find out if the request was accepted
after the fact, without listening for the event, by using the muted property.

Viewing Video from a Camera
In most cases, you’ll want to show the video coming from the camera back to the user. Frequently,
you’ll show feedback on top of the video, for instance placing a 3D scene in a video feed of a physical
space for augmented reality, or showing image analysis at work, or simply as a visual cue for the user
that the application is recording.

Camera is not a display object. To get it to display on-stage, you need to create a Video object and
associate the two. Then the Video — which is a DisplayObject — can be added to the stage.
Even if you never show the video on-stage, you need to create a Video object to grab image data
from the camera.

In Example 33-1, you’ll retrieve a Camera, ensure that the user approved it, add it to a Video object,
and display it on-stage. You won’t be doing anything exciting with the video (yet), but you’ll repeat
this scaffolding code every time you need to use the camera.

EXAMPLE 33-1 http://actionscriptbible.com/ch33/ex1

Obtaining and Displaying a Camera

package {
import flash.display.Sprite;
import flash.events.StatusEvent;
import flash.media.Camera;

644

Chapter 33: Capturing Sound and Video

import flash.media.Video;
import flash.system.Security;
import flash.system.SecurityPanel;
public class ch33ex1 extends Sprite {
protected var camera:Camera;
protected var video:Video;
public function ch33ex1() {
camera = Camera.getCamera();
if (camera) {
camera.addEventListener(StatusEvent.STATUS, onCameraStatus);
if (camera.muted) {
Security.showSettings(SecurityPanel.PRIVACY);

} else {
attach();

}
}

}
protected function attach():void {
video = new Video(camera.width, camera.height);
video.attachCamera(camera);
addChildAt(video, 0);

}
protected function onCameraStatus(event:StatusEvent):void {
switch (event.code) {
case "Camera.Muted": removeChild(video); video = null; break;
case "Camera.Unmuted": attach(); break;

}
}

}
}

Notice that you can force Flash Player to show the privacy dialog box, which lets the user allow or
deny access to the camera and microphone, by calling Security.showSettings(). If you so
desire, you can also prompt the user to choose a different camera source by showing the camera panel
of the settings dialog box instead, with Security.showSettings(SecurityPanel.CAMERA).
Users can always access these security panels themselves by clicking Settings in Flash Player’s con-
text menu.

Now that you’ve seen the ‘‘right’’ way to do things, know that you can simply go ahead with attach-
ing the camera, even if it’s muted, and nothing will happen. However, you should at least check that
camera exists to avoid dereferencing null, which causes a runtime error.

var camera:Camera = Camera.getCamera();
if (camera) {
var video:Video = new Video(camera.width, camera.height);
video.attachCamera(camera);
addChild(video);

}

Go ahead and use this code instead if you don’t care whether the user allows you to access his camera
or not.

645

Part VII: Sound and Video

Tweaking Camera Settings
There are a few settings of the Camera object that you can modify to tweak how video is captured,
compressed, and displayed. These preferences are set by a few methods, and they’re accessed through
read-only properties.

The setMode() method sets the most important properties of the camera: the width, height, and
frame rate that it will attempt to capture video at. Its arguments are

� width — The width of each frame the camera should attempt to capture.

� height — The height of each frame the camera should attempt to capture.

� fps — The number of frames the camera should attempt to capture every second.

� favorArea — Whether the camera driver will use the exact values you pass at the expense
of performance (true) or come back with the closest matching native capture mode (false).
Optional, defaults to true.

The camera’s capture area is of particular importance. You can display the image at other sizes than
the capture size (by attaching it to a differently sized Video), and it will be scaled. You can usually
speed up the capture speed by using the minimum acceptable size and scaling up to the desired out-
put size afterward.

I suggest always passing false to favorArea. Using a native capture mode means less work for
the camera driver and a smoother capture rate. When not using favorArea, the properties of the
camera’s capture frames may be different from what you request. You can always check their current
value with the width, height, and fps properties.

Example 33-2 demonstrates using a scaled-down capture frame and allows the camera driver to pick
a more efficient size if you’ve picked a difficult one. The actual frame size used to capture depends on
your camera driver and the size of the stage.

EXAMPLE 33-2 http://actionscriptbible.com/ch33/ex2

Setting Video Capture Properties

package {
import com.actionscriptbible.Example;
import flash.media.Camera;
import flash.media.Video;
public class ch33ex2 extends Example {
protected const S:Number = 2; //scale down factor
public function ch33ex2() {
var camera:Camera = Camera.getCamera();
if (!camera) return;
camera.setMode(stage.stageWidth/S, stage.stageHeight/S, 90, true);
var video:Video = new Video(camera.width*S, camera.height*S);
video.attachCamera(camera);
video.smoothing = false;
addChildAt(video, 0);

646

Chapter 33: Capturing Sound and Video

trace("Used", camera.width, "x", camera.height, "@", camera.fps, "FPS");
trace("Stage size was", stage.stageWidth, stage.stageHeight);

}
}

}

The following methods apply to compression setting when sending video across the network to a
Flash Media Server.

� setQuality() — Sets video compression parameters bandwidth (bytes per second the
compressed stream can use) and quality (amount of compression used) between 1 and 100
(highest quality and least compression). Set either of these to 0 to indicate that the other argu-
ment should be given priority. If you set both arguments and Flash Player can’t stay under the
required bandwidth while using the specified quality level, frames will drop.

� setKeyframeInterval()— Sets the distance between key frames when encoding video
feeds from this camera.

� setLoopback() — Determines if the local view of the camera feed is compressed or uses the
raw data available from the camera. By default, Flash Player shows the loopback video — that
is, uncompressed video. To give the user a preview of the compression settings being used, pass
true to this method.

Detecting Camera Activity
Flash Player monitors the motion in a video feed, and reports when motion occurs, if you want to
trigger recording or image processing in response to motion. This is entirely optional.

When the contents of the video frame are changing significantly, the Camera instance broadcasts a
ActivityEvent.ACTIVITY event. The event object has a Boolean activating property that tells
you whether the camera detected that activity started (true) or determined that there’s no activity
(false).

The camera also defines a method to set the amount of motion that triggers the camera’s activity event:
Camera.setMotionLevel(). The method takes two parameters that determine the level of motion
required to trigger activity (between 0 and 100) and the duration of nonactivity (in milliseconds)
required to switch back to ‘‘inactive.’’

At any time, you can find out how much activity the camera deems is happening by accessing the
Camera’s activityLevel property. Camera activity is measured by an integer in the range 0
to 100.

Capturing and Analyzing Camera Data
Once the camera has been attached to a Video instance, you can get the current frame captured
by the camera as a bitmap using BitmapData and the draw() method. This technique will be
discussed in Chapter 36, ‘‘Programming Bitmap Graphics.’’ There’s nothing more you have to do with
the Camera instance; BitmapData takes care of everything.

647

Part VII: Sound and Video

Sound Input Using a Microphone
Audio input is somewhat of an underutilized feature in Flash Player. Audio input can be used to
enable hands-free interaction, a feature well suited to mobile devices. With Flash Player 10.1, you
get full access to the sound data being recorded by the microphone, enabling everything from pitch
shifting and real-time audio effects to voice recognition. Otherwise, you can have access to the overall
audio level and, of course, you can send audio data to a Flash Media Server.

Retrieving a Microphone Object
Much like Camera, the system retains one Microphone object for each recognized audio input
device. These audio inputs may be used for much more than simply listening to the user’s voice.
Connect with a Microphone object that represents a plugged-in instrument, and you can write
music editing and mixing software, for instance. Again, I’ll generically refer to a compatible audio
input device as a ‘‘microphone.’’

Retrieving a Microphone object is just like Camera, so be prepared for some repetition. To retrieve
a Microphone object, use the static method Microphone.getMicrophone(), which can accept
an optional parameter used to identify a specific microphone. It’s best to leave this off and let Flash
Player pick the default, or let the user pick which one.

var mic:Microphone = Microphone.getMicrophone();

After the Microphone is initialized, it dispatches a StatusEvent where the Microphone reports
whether or not the user will allow the SWF access to the microphone. If the value of the code prop-
erty is Microphone.Muted, the user didn’t allow the SWF access to the microphone. The value
Microphone.Unmuted means that the user allowed the microphone access. You can also find this
out after the fact by examining the Microphone instance’s Boolean muted property.

You can manually present the user with Flash Player security panels relating to microphone access,
with the Security.showSettings() static method. Pass this SecurityPanel.PRIVACY to
show her the allow/deny interface (again). Pass it SecurityPanel.MICROPHONE to allow her to
choose the correct audio input device.

Playing Back Microphone Input
You can play back microphone audio locally by using the microphone loopback mechanism. Loopback
is a term originating in analog electronics in which you patch your own output back in, perhaps with
a short loop of wire: in this case, playing back what was just heard. Anyone who’s tried this knows
it’s almost always a bad idea because of the inevitable feedback loop, even with a good headset.

Nonetheless, enable and disable the loopback with the setLoopBack() method. Pass it true to
play through the speakers, or false to turn it off. If you do use the loopback, be sure to turn on
echo suppression, covered in the next section, ‘‘Tweaking microphone settings.’’ You can also use
the Microphone’s soundTransform property to set a SoundTransform, which affects how the
loopback audio is played through the speakers. See Chapter 31, ‘‘Playing and Generating Sound,’’ for
information on SoundTransform.

Tweaking Microphone Settings
The microphone hardware and compression settings may be set up by using the Microphone inter-
face. Unlike Camera, not all of its settings-related properties are read-only.

648

Chapter 33: Capturing Sound and Video

Sound Recording Settings

Change the way the microphone records audio with the following properties and method:

� gain — Boosts the recording volume above what the operating system provides. Uses a
Number between 0 and 100, defaulting to 50. The user can modify the gain in the Microphone
Settings Panel.

� rate — The sample size used when recording audio. Set this value as a Number with a value
that represents a valid frequency rate in kHz, rounded down, and limited to what the hardware
supports. For example, 44 represents 44.1 kHz. You can set it to 5, 8, 11, 22, or 44.

� setUseEchoSuppresion()— Call this method with true to enable echo suppression.
An audio processing algorithm goes over the recorded audio in real time, attempting to reduce
echoes that may be produced by using loopback audio. The user can also enable or disable echo
suppression in the Microphone Settings Panel.

� noiseSuppresionLevel — Only available when using the Speex codec (in Flash Player
10.1 and later), sets the maximum attenuation of noise in decibels. Defaults to –30 dB. The
codec attempts to reduce noise below these levels.

The most important of these settings are probably the first two. If the user is too quiet or too loud,
use gain to shift the volume into an acceptable range.

In Example 33-3, you display the microphone activity while changing gain with the keyboard. A
‘‘peak’’ light lets you know when the microphone is peaking, or louder than can be digitized. Try
using the keyboard to move the gain around until there’s no more peaking.

EXAMPLE 33-3 http://actionscriptbible.com/ch33/ex3

Adjusting Microphone Settings

package {
import flash.display.*;
import flash.events.*;
import flash.media.*;
import flash.system.*;
import flash.text.*;
import flash.ui.Keyboard;
public class ch33ex3 extends Sprite {
protected var mic:Microphone;
protected var levelMeter:Shape;
protected var peak:Shape;
protected var gainTF:TextField;
public function ch33ex3() {
mic = Microphone.getMicrophone();
//you can’t see any activity without loopback being on
mic.setLoopBack(true);
//but loopback is annoying, so mute it!
mic.soundTransform = new SoundTransform(0);

gainTF = new TextField();
gainTF.autoSize = TextFieldAutoSize.LEFT;

continued

649

Part VII: Sound and Video

EXAMPLE 33-3 (continued)

gainTF.defaultTextFormat = new TextFormat("_typewriter", 12, 0);
addChild(gainTF); gainTF.x = gainTF.y = 10;
levelMeter = new Shape();
levelMeter.graphics.beginFill(0x0000ff, 1);
levelMeter.graphics.drawRect(0, 0, 80, -220);
addChild(levelMeter); levelMeter.x = 10; levelMeter.y = 220 + 30;
var s:Shape = new Shape();
s.graphics.lineStyle(2, 0, 1, true, null, null, JointStyle.BEVEL);
s.graphics.drawRect(0, 0, 80, 220);
addChild(s); s.x = 10; s.y = 30;
peak = new Shape();
peak.graphics.beginFill(0xff0000, 1);
peak.graphics.drawCircle(0, 0, 8);
addChild(peak); peak.x = 120; peak.y = 30;

addEventListener(Event.ENTER_FRAME, onEnterFrame);
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);

}
protected function onKeyDown(event:KeyboardEvent):void {
switch (event.keyCode) {
case Keyboard.ESCAPE:
case Keyboard.SPACE:

Security.showSettings(SecurityPanel.MICROPHONE); break;
case Keyboard.UP: mic.gain += 1; break;
case Keyboard.DOWN: mic.gain -= 1; break;

}
}
protected function onEnterFrame(event:Event):void {
levelMeter.scaleY = mic.activityLevel / 100;
gainTF.text = mic.gain.toFixed(1);
if (mic.activityLevel >= 100) {
peak.alpha += 0.33;

} else {
peak.alpha *= 0.7;

}
}

}
}

If you want to build on this example, try prompting the user to read a sentence aloud, and closely
watch the activityLevel. You can adjust gain as he speaks to automatically calibrate the micro-
phone. This is a much preferable solution than randomly picking a gain, and it’s easier for the user
than asking him to select it himself.

Sound Compression Settings

Several settings of Microphone let you tweak its compression settings, if its audio stream is being
transferred to a Flash Media Server. These settings have no effect on the audio sample data you can
analyze in Flash Player, which is always presented uncompressed.

650

Chapter 33: Capturing Sound and Video

Version
FP10. These properties are available only in Flash Player 10 and later. �

� codec — Sets the codec used to compress microphone audio. Options are enumerated as con-
stants of SoundCodec. Currently Nellymoser and Speex are supported. Both are codecs tuned
for speech compression. Speex is newer, lower latency, and provides more features. In Flash
Player versions below 10, Nellymoser is available and used by default.

� encodeQuality — Applies only to the Speex codec. Controls compression quality, accepting
an int between 0 and 10. Higher qualities take more bandwidth. (See the AS3LR for exact bit
rates.)

� framesPerPacket — Applies only to the Speex codec. Sets the number of speech frames
transmitted in each packet. Including more data in each packet increases latency but decreases
required bandwidth.

Detecting Microphone Activity
You can detect microphone activity in several ways. Like the Camera interface, you can elect to be
notified when significant audio activity starts and ends, and you can see the activity level (the over-
all volume) at any time. The Speex codec, available in Flash Player 10 and later, can even filter out
nonvoice audio and notify you when the user is speaking.

Overall Activity

To determine the overall volume the microphone is currently detecting, use the activityLevel
accessor. Complete silence is an activity value of 0, and peak volume registers a 100. Use the
gain setting to make sure audio peaks don’t get clipped over 100; Example 33-3 shows one
approach.

You can also be notified of microphone activity by subscribing to the ActivityEvent.ACTIVITY
event. The activating Boolean property of the event object tells you if activity is beginning (true)
or ending. ‘‘Activity’’ refers to a duration of noise of a certain volume. For example, in creating a
chat or broadcast application, when no one is talking, bandwidth can be saved because there is no
need to send data. This information can also be used for visual feedback so that users know they
(or others) are silent.

Microphone defines a read-only silenceLevel property that reports what the silence level of the
microphone is. This can be set using setSilenceLevel(), which sets the minimum input level
that should be considered activity and (optionally) the duration of silence necessary before activity is
considered over. Silence values correspond directly to activity values. After gain is calibrated appropri-
ately, any noise quieter than silenceLevel is not considered audio activity.

This method is similar in purpose to Camera.setMotionLevel(); both methods specify when the
activity event is dispatched. However, these methods have a significantly different impact on publish-
ing streams:

� Camera.setMotionLevel() is designed to detect motion and does not affect bandwidth
usage. Even if a video stream does not detect motion, video is still sent.

651

Part VII: Sound and Video

� Microphone.setSilenceLevel() is designed to optimize bandwidth. When an audio
stream is considered silent, no audio data is sent. Instead, a single message is sent, indicating
that silence has started.

Voice Activity

The Speex codec can recognize characteristics of voice and use its own heuristics to determine activity.
To use voice-based activity instead of levels-based activity, follow these steps:

1. Set the codec to SoundCodec.SPEEX.

2. Enable voice activity detection by setting enableVAD to true.

3. Set the silence level to 0 with setSilenceLevel(). This lets Speex do its job instead.

Version
FP10.1. Voice Activity Detection is available only in Flash Player 10.1 and later. �

Capturing and Analyzing Microphone Data
With Flash Player 10.1 and later, you can get raw audio samples from the Microphone. Voice recog-
nition is an obvious application; Didier Brun of http://bytearray.org was first out of the gate to
develop such an application. See his original post at http://bit.ly/bytearray-voice-gesture.

Capturing audio from a Microphone is similar to dynamically sending audio to a Sound object.
Simply subscribe to the Microphone’s SampleDataEvent.SAMPLE_DATA event. The audio data
is stored as a sequence of samples, each with a floating-point amplitude between –1 and 1. If you
want frequencies instead, you have to do the Fourier transform yourself — unless you want to mute
all other sounds, set up a loopback, and use the SoundMixer’s computeSpectrum() method. See
Chapter 31 for more information about sound data.

Example 33-4 draws the audio data to the screen in the simplest way possible.

EXAMPLE 33-4 http://actionscriptbible.com/ch33/ex4

Visualizing Captured Audio Data

package {
import flash.display.Sprite;
import flash.events.ActivityEvent;
import flash.events.SampleDataEvent;
import flash.media.Microphone;
import flash.utils.ByteArray;
public class ch33ex4 extends Sprite {
protected var mic:Microphone;
public function ch33ex4() {
mic = Microphone.getMicrophone();
mic.rate = 22;
mic.addEventListener(SampleDataEvent.SAMPLE_DATA, onSampleData);

}

652

Chapter 33: Capturing Sound and Video

protected function onSampleData(event:SampleDataEvent):void {
var waveform:ByteArray = event.data;
var SAMPLES:Number = waveform.length / 4; //4 bytes per float
var W:Number = stage.stageWidth;
var H:Number = stage.stageHeight;
var xstep:Number = W/SAMPLES;

graphics.clear();
graphics.lineStyle(0, 0);
graphics.moveTo(0, H/2);
for (var i:int = 0, x:Number = 0; i < SAMPLES; i++, x+=xstep) {
var amplitude:Number = waveform.readFloat();
var y:Number = H/2 + (amplitude * H/2); //amplitude is from -1 to 1
graphics.lineTo(x, y);

}
}

}
}

You can definitely get crazy with analyzing microphone input. You might even consider attempting to
use one of the many C sound libraries using Alchemy (a product that runs C code in a virtualized C
runtime inside the AVM2, allowing you to use C code alongside ActionScript 3.0).

Flash Media Servers
Cameras and microphones become even more powerful tools when they are paired with a media
server. When the camera or microphone is paired with a media server, you can create video- and
audio-enabled chat applications, video that can be saved on a server, and a wealth of other options.
The canonical media server product is Adobe’s own Flash Media Server, available in many editions
and price points. Another option is Red5, an open source media server and general all-around Flash
communication server. See Chapter 32, ‘‘Playing Video,’’ for more details on alternative media servers.

Media servers allow you to stream data from the user’s cameras and microphone to the server for
recording or for relay to other users, as in a video chat application. Sending a video or audio stream
to a media server is called publishing a stream. You can also easily subscribe to other video or audio
streams, whether those come from a recorded source or another user as in a chat application.

To publish a video or audio stream, follow these general steps:

� Create a new NetConnection object.

� Establish a connection to the media server with the NetConnection’s connect() method.

� Create a new NetStream, associating it with the NetConnection.

� Attach a camera or microphone (or both) to the NetStream, using the attachCamera() and
attachAudio() methods.

The same general approach applies to peer-to-peer connections.

653

Part VII: Sound and Video

Summary

� To retrieve a camera, call the static method Camera.getCamera().

� To view the video feed from the camera, attach the camera to a Video instance with
attachCamera().

� Monitor the video activity by subscribing to the ActivityEvent.ACTIVITY event or watch-
ing the activityLevel property.

� Process video images by drawing the Video object into a BitmapData.

� To retrieve a microphone, call the static method Microphone.getMicrophone().

� To listen to the audio from the microphone, call the setLoopBack() method.

� Monitor the audio activity by subscribing to the ActivityEvent.ACTIVITY event or watch-
ing the activityLevel property.

� Process microphone audio by listening to the SampleDataEvent.SAMPLE_DATA event.

� Publish video and audio to a media server with NetStream.

654

Part VIII

Graphics
Programming and

Animation
IN THIS PART

Chapter 34
Geometric and Color
Transformations

Chapter 35
Programming Vector Graphics

Chapter 36
Programming Bitmap Graphics

Chapter 37
Applying Filters

Chapter 38
Writing Shaders with Pixel
Bender

Chapter 39
Scripting Animation

Chapter 40
Advanced 3D

Geometric and Color
Transformations

FEATURED CLASSES

flash.geom.Transform

flash.geom
.ColorTransform

flash.geom.Matrix3D

flash.geom.Vector3D

G
eometric transformations, like moving, scaling, rotating, and skewing,
and color transformations, like tint and brightness adjustment, can be
represented as matrices. When you apply successive transformations,

those transformation matrices are multiplied together so that the current state of
an object can be represented by a single matrix, even though it may be the result
of several transformations. Flash Player gives you access to these transformations
with the flash.geom.Transform class. Using the properties of Transform,
you can manipulate an object’s geometric transformation matrices and its color
transformations, giving you a more computer-graphics-centric interface to geo-
metric transforms including position, scale, rotation, translation, and skew, and
enabling basic manipulation of colors.

You can always manipulate the geometry of display objects with their properties
like x and rotation. The transformation matrices introduced in this chapter
provide a more powerful, mathematical interface to the same geometry. I hate to
say it because it’s so interesting, but you could consider this chapter optional.

To use transformation matrices, you’ll need to understand some matrix math.
In the section ‘‘Matrices and coordinates’’ I’ll provide a brief introduction. When
you get into 3D I’ll provide another refresher in the section ‘‘Basic 3D concepts
review.’’ However, if you’ve never seen a matrix before, I highly recommend that
you pick up a computer graphics or introductory linear algebra text while read-
ing this chapter. I recommend some specific resources in the section ‘‘Basic 3D
Concepts Review.’’

DisplayObject and the Transform

Object

Every instance of a DisplayObject has a transform property, which always
contains a Transform instance. The Transform object is a container for the
different kinds of transformation matrices that can be applied to the display
object. Its most important properties are those matrices:

� colorTransform — A ColorTransform object that represents a
color transformation matrix

657

Part VIII: Graphics Programming and Animation

� matrix — The display object’s current two-dimensional geometric transformation matrix

� matrix3D — The display object’s current three-dimensional geometric transformation matrix

Only one of the two properties matrix and matrix3D may be set at a time, because the associ-
ated display object is definitively and exclusively either in two dimensions or three. If you set the
display object’s z value to something nonzero, a Matrix3D is created and placed in the Transform’s
matrix3D property, and the Transform’s matrix property is set to null.

Version
FP10. The matrix3D property of Transform, the Matrix3D class, and the 3D-related properties (such as z)
of DisplayObject are available in Flash Player 10 and later. �

Remember that the various transformation matrices of a display object are contained in its
Transform instance. To access them, you need to dig a little deep:

var sprite:Sprite = new Sprite();
var colorTransform:ColorTransform = sprite.transform.colorTransform;
var transform:Matrix = sprite.transform.matrix;
var transform3D:Matrix3D = sprite.transform.matrix3D;

The transformation matrix matrix represents the transformation applied to the associated display
object in its local coordinate space. For instance, if a display object’s parent is rotated 45 degrees,
its contents appear rotated at 45 degrees even if their local rotations are zero. Modifying the trans-
formation matrix changes the properties of the display object in the same way that the properties
such as x, y, rotation, scaleX, and so on do: with respect to its parent. But the Transform
object also provides access to the concatenated transformation matrices. These matrices represent the
orientation of the object in the global coordinate space (relative to the stage) and the combined color
transform of the display object and all its ancestors. These matrices are available as the following
properties of Transform:

� concatenatedMatrix

� concatenatedColorTransform

The concatenated matrices, however, are read-only. Because they combine transformations from poten-
tially many display objects up the display tree, they are a derived value that wouldn’t make sense to
directly modify.

Now that you’ve seen how to find the transformation matrices, it’s time to use them.

2D Affine Transformations
Affine transformations modify a coordinate space while preserving collinearity (straight lines don’t
become bent, parallel lines stay parallel) and ratios of distances (things can scale but only uniformly
throughout the space). Perspective projections, for example, are not affine, because once-parallel lines
converge on the vanishing point. When you manipulate a display object in 2D, the kinds of trans-

658

Chapter 34: Geometric and Color Transformations

formations you apply to it are affine transformations. You should be more than familiar by now with
these properties that transform the geometry of a DisplayObject:

� x

� y

� rotation

� scaleX (width)

� scaleY (height)

These properties change the orientation of the object and implicitly apply transformation matrices. By
manipulating the transformation matrix, you can carry out the same kinds of transformations explic-
itly. These properties cover translation, rotation, and scaling. You can also construct transformation
matrices that shear the object, a transformation that doesn’t have an equivalent DisplayObject
property.

Matrices and Coordinates
But why matrices? What does a matrix have to do with rotation, translation, or even position? Well,
computers are awesome at math. They eat that matrix stuff up! So if you tell me to move something
right by 2 and down by 3, I might do something ridiculous like this in my head:

x’ = x + 2
y’ = y + 3

Note
x′, read ‘‘x prime,’’ indicates the ‘‘new x’’: the value of x after the transformation. �

How incredibly droll of me. Two equations. The computer suppresses a little laugh. It proceeds to
school me: ‘‘You know, if you just got a little comfy with matrices, that could be one equation instead
of two.’’

| x’ | | x | | 2 |
= +

| y’ | | y | | 3 |

Sure, basically, it’s the same so far. Instead of two values, x and y, you have a one-column matrix
that contains those values. Matrices let you deal with whole systems of values at once. This is just
a warm-up, though. To scale up by a factor of 2 horizontally and 3 vertically, I would use these
equations:

x’ = 2x
y’ = 3y

You can’t use matrix addition for this, obviously, and you can’t simply multiply [2 3] by
[x y] — the sizes are incompatible for matrix multiplication. But if you use a 2×2 matrix instead,
you can do matrix multiplication:

| x’ | | a b | | x | | ax + by |
= =

| y’ | | c d | | y | | cx + dy |

659

Part VIII: Graphics Programming and Animation

Or, in linear equations,

x’ = ax + by
y’ = cx + dy

To scale up x and y, you can ignore y in x’s equation and x in y’s equation. You can make their
contributions nil by using 0 for the b and c terms in the matrix:

| x’ | | a 0 | | x | | ax + 0y | | ax |
= = =

| y’ | | 0 d | | y | | 0x + dy | | dy |

So if the computer wanted to scale up by a factor of 2 horizontally and 3 vertically, it might use the
matrix

| 2 0 |
| 0 3 |

and multiply it by the coordinates:

| x’ | | 2 0 | | x | | 2x |
= =

| y’ | | 0 3 | | y | | 3y |

This is a transformation matrix! In general, the form

| sx 0 |
| 0 sy |

is a transformation matrix that scales up by sx horizontally and sy vertically.

When a computer graphics algorithm is processing millions of points per second, it can do so with
terrific speed by thinking of translations as matrices. The most twisted series of skews, scales, rota-
tions, and translations is as simple as a single translation: they all boil down to multiplying a transfor-
mation matrix with the point’s coordinate vector.

When we simple humans look at a rotation matrix, it’s difficult for us to see a rotation. It seems pretty
arbitrary compared to the sprite.rotation = 90 statement you could otherwise use. But when a
computer looks at a matrix, it sees a tight package of data that it can crank through a million multi-
plications in the blink of an eye. It may not look semantically meaningful, but the CPU cares not for
such things — it needs to process numbers.

Using transformation matrices and the DisplayObject API, programmers have access to both per-
spectives on transformation.

Let’s focus on the math again. You’ve derived (or guessed at) a 2×2 scale transformation matrix.
The real transformation matrices Flash Player uses internally are 3×3 matrices. With this
dimension — and a padding value in the coordinate vector to match — you can perform translations
within the same matrix multiplication. Here’s the multiplication decomposed:

x’		a c tx		x		ax + cy + tx
y’	=	b d ty		y	=	bx + dy + ty
1		0 0 1		1		1

Or, in linear equations,

x’ = ax + cy + tx
y’ = bx + dy + ty

660

Chapter 34: Geometric and Color Transformations

I’ve renamed a lot of the coefficients in this transformation matrix to match how the Matrix class
names them. Can you see how the addition of 1 and tx and ty enables translation in the matrix
multiplication? The translation elements of the matrix, tx and ty, are only ever multiplied by the
new row 1, so they remain independent of x and y.

Kinds of Affine Transform and Their Matrices
With this general form for a 2D affine transform, this section examines the kinds of transforms men-
tioned, without necessarily deriving them.

The Identity Matrix

An identity matrix is a square matrix that, when multiplied by any compatible matrix, leaves it
unchanged. Likewise, the identity matrix is a no-transform transform, but I thought it would be good
to look at it anyway.

x’		1 0 0		x		x
y’	=	0 1 0		y	=	y
1		0 0 1		1		1

As with all the examples, I encourage you to follow along and perform the matrix multiplication your-
self. I promise it will help you gain insight into why the transformation matrices are constructed the
way they are.

The identity matrix here leaves x′ = x and y′ = y. Nothing goes anywhere.

Translation

Given the general form of the affine transformation matrix, you should be able to guess the form of a
translation matrix.

x’		1 0 tx		x		x + tx
y’	=	0 1 ty		y	=	y + ty
1		0 0 1		1		1

This scales x and y by a factor of 1 (that is to say, not at all), and then adds on the tx and ty factors
as a translation.

Scale

You’ve already derived the scale transformation matrix in 2×2, so you should also have no trouble
extending it to the 3×3 form.

x’		a 0 0		x		ax
y’	=	0 d 0		y	=	dy
1		0 0 1		1		1

Rotation

The rotation matrix looks a little odd to Cartesian-centric thinking:

x’		cos(θ) sin(θ) 0		x		xcos(θ)+ ysin(θ)
y’	=	-sin(θ) cos(θ) 0		y	=	ycos(θ)–xsin(θ)
1		0 0 1		1		1

661

Part VIII: Graphics Programming and Animation

Note that although the rotation property expects degrees, this is not the natural unit for transfor-
mation matrices: θ must be measured in radians.

Skew

Skewing or shearing an object is simply a matter of shifting x proportional to y or vice versa.

x’		1 c 0		x		x + cy
y’	=	b 1 0		y	=	y + bx
1		0 0 1		1		1

To shear horizontally, set c to the amount of shear, and keep b at 0. To shear vertically, set b and
keep c at 0. You can skew in both directions, too. It might be fun to play with how these values affect
the shear, as shown in Example 34-1.

EXAMPLE 34-1 http://actionscriptbible.com/ch34/ex1

Skew Transforms

package {
import flash.display.Shape;
import flash.display.Sprite;
import flash.display.Stage;
import flash.events.Event;
import flash.geom.Matrix;
public class ch34ex1 extends Sprite {
protected var shape:Shape;
public function ch34ex1() {
shape = new Shape();
shape.graphics.beginFill(0);
shape.graphics.drawRect(0, 0, 300, 300);
shape.graphics.endFill();
addChild(shape);
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
var s:Stage = stage;
var xmouse:Number = (s.mouseX - s.stageWidth/2) / s.stageWidth;
var ymouse:Number = (s.mouseY - s.stageHeight/2) / s.stageHeight;
var m:Matrix = new Matrix(1, ymouse, xmouse, 1, 100, 100);
shape.transform.matrix = m;

}
}

}

This example lets you see the effect that the b and c coefficients have on a transformation. It draws a
rectangle that you can skew horizontally, vertically, or some combination by moving the mouse.

662

Chapter 34: Geometric and Color Transformations

The Matrix Class
Flash Player provides a class for manipulating matrices, but unfortunately it is not designed for
arbitrary-size matrices or even matrices with arbitrary content. It is specifically for use with affine
transformation matrices. Using the Matrix class, you’re restricted to the top two rows of a 3×3
matrix. This is all you’ll need for transformation matrices, but it’s no general-purpose matrix math
library.

Example 34-1 already used a Matrix object and its constructor. The constructor takes from zero to
six parameters: the coefficients a, b, c, d, tx, and ty, in that order. The matrix assumes these values,
but you can also set them by their property name at any time after calling the constructor. The unde-
fined third row always contains [0 0 1], as all 2D affine transformation matrices do. The default
values for the arguments to the constructor construct an identity matrix when passed nothing.

Multiplying one transformation matrix by another combines their effects. You might visualize the
series of transformations applied to a display object as a list; so adding another transformation to
this series is sometimes called concatenating a transformation matrix. Of course, under the hood, Flash
Player doesn’t keep a list: it multiplies the successive transformation matrices. You can do this yourself
with a Matrix by calling its concat() method. This method takes a Matrix as its only param-
eter and multiplies itself by the passed matrix. The result of the multiplication replaces the object’s
own value, and the transformation matrix represents the combination of the old transformation and
the new. For example, if you move right by 5 and then subsequently move down by 10, the resulting
transformation matrix should show a translation of (5, 10).

var m1:Matrix = new Matrix();
m1.tx = 5;
var m2:Matrix = new Matrix();
m2.ty = 10;
m1.concat(m2);
trace(m1); //(a=1, b=0, c=0, d=1, tx=5, ty=10)

Transform Methods

Rather than having to remember and reconstruct transformation matrices of the correct form, you can
use convenience methods of Matrix to apply transformations. These transformations are immediately
concatenated to (multiplied with) the contents of the Matrix instance, so their effects are cumulative.

The Matrix methods that correspond to affine transforms are

� translate(dx:Number, dy:Number):void

� scale(sx:Number, sy:Number):void

� rotate(angle:Number):void

These methods should be self-explanatory. The angle parameter to rotate() is measured in radi-
ans. You can also set a combination of transformations with one method:

function createBox(scaleX:Number, scaleY:Number,
rotation:Number = 0,
tx:Number = 0, ty:Number = 0):void

Note that, at minimum, you must include values for scale. The result of createBox() is equiva-
lent to that of calling identity(), rotate(), scale(), then translate() with the appropriate
parameters. The order that transformations are applied is important. More on order of applications
later.

663

Part VIII: Graphics Programming and Animation

Utility Methods

The Matrix class has a few more methods used to reset the matrix, test its effects, and set a combi-
nation of transformations.

� identity():void — Resets the transformation matrix to an identity matrix

� invert():void — Performs the opposite of the transform in the transformation matrix

� clone():Matrix — Returns a new copy of the matrix

� transformPoint(p:Point):Point— Suitable for testing the transformation matrix;
applies the transformation to a single point

� deltaTransformPoint(p:Point):Point— Suitable for testing the transformation
matrix; applies the transformation, except for any translation it includes, to a single point

Order of Application
The order in which you apply transformations is critical. You can’t reorder a series of transformations
and expect the final orientation to be the same. A simple example consists of a translation and a rota-
tion. If you translate an object right and then rotate it clockwise 45 degrees, you expect it to appear
to the right of where it was, rotated. However, if you rotate the object and then move it to the right,
after the rotation it has a new frame of reference, in which the translation doesn’t go objectively to
the right any more. In the new coordinate system, ‘‘right’’ has been rotated 45 degrees. Now ‘‘right’’ is
diagonally down and to the right — to the objective frame of reference, that is!

In Example 34-2, two identical objects go through the same transformations in opposite order, paus-
ing after every transform so that you can see how they diverge.

EXAMPLE 34-2 http://actionscriptbible.com/ch34/ex2

Order of Transformations

package {
import flash.display.Shape;
import flash.display.Sprite;
import flash.events.TimerEvent;
import flash.geom.Matrix;
import flash.utils.Timer;
public class ch34ex2 extends Sprite {
protected var s1:Shape;
protected var s2:Shape;
protected var moves:Array;
protected var moveNum:int;
protected var timer:Timer;
public function ch34ex2() {
s1 = new Shape();
s2 = new Shape();
s1.graphics.beginFill(0xff0000, 0.5);
s1.graphics.drawRect(20, 20, 100, 50);
s1.graphics.endFill();
s2.graphics.beginFill(0x0000ff, 0.5);
s2.graphics.drawRect(20, 20, 100, 50);
s2.graphics.endFill();
addChild(s1);

664

Chapter 34: Geometric and Color Transformations

addChild(s2);

var m:Matrix;
moves = new Array();

m = new Matrix();
m.translate(200, 0);
moves.push(m);

m = new Matrix();
m.scale(1, 3);
moves.push(m);

m = new Matrix();
m.rotate(Math.PI/4);
moves.push(m);

moveNum = 0;
timer = new Timer(1500);
timer.addEventListener(TimerEvent.TIMER, nextMove);
timer.start();

}
protected function nextMove(event:TimerEvent):void {
var m:Matrix;
var i:int;

i = moveNum;
m = s1.transform.matrix;
m.concat(moves[i]);
s1.transform.matrix = m;

i = moves.length - moveNum - 1;
m = s2.transform.matrix;
m.concat(moves[i]);
s2.transform.matrix = m;

if (++moveNum >= moves.length) {
timer.stop();

}
}

}
}

The red rectangle goes through the transformations in the order they are created: translate, scale,
rotate. The blue rectangle goes through the transformations in reverse order, and you can see them
diverge quickly. Try modifying this code to create your own set of transformations.

Applying Transformation Matrices
When you retrieve the transformation matrix from the Transform object, a copy is returned. To
apply a new transformation matrix, it’s not sufficient to modify the transformation matrix inline: you
only end up modifying a copy that is not in use. Instead, set a transformation matrix by assigning a

665

Part VIII: Graphics Programming and Animation

new Matrix to the Transform’s matrix property. Whether you assign a new matrix of your own
creation or a modified copy of the preexisting matrix doesn’t matter.

shape.transform.matrix.translate(10, 0); //doesn’t move shape

var m:Matrix = shape.transform.matrix;
m.translate(10, 0);
shape.transform.matrix = m; //moves shape

Color Transforms
There are several ways to modify the color of display objects — using aColorTransform or a
ColorMatrixFilter. Using the ColorTransform object, you can quickly apply solid-color fills,
tints, and brightness changes to display objects. For more complex color operations such as changing hue,
saturation, and the like, use a ColorMatrixFilter object. The ColorTransform transformation
matrix is part of the transformation API, described in this chapter, but the ColorMatrixFilter
is part of the filter API, covered in Chapter 37, ‘‘Applying Filters.’’ The ColorMatrixFilter uses
matrix multiplication on a column matrix containing the color components R, G, and B, much
like the transformation matrices in this chapter operate on column matrices containing position
components x and y (and sometimes z). However, although it’s also part of the transformation API,
ColorTransform uses a simpler, nonmatrix method, which gives you less control than a
ColorMatrixFilter.

Color Fills
The ColorTransform class defines a color property that lets you apply and retrieve a solid-color
fill. The property applies a solid-color fill, not a tint. That means any contrast of color that is visible in
the actual contents of a display object is indistinguishable after the fill is applied. For example, if you
apply a solid-color fill to an object containing a rectangular photograph, the effect is a rectangle filled
with a solid color. The contents of the photograph are no longer discernible.

The value of the color property is an unsigned integer color ranging from 0x000000 to 0xFFFFFF.
This color is then applied to every pixel of the display object.

The following example constructs a new ColorTransform object, assigns a value of 0xFF0000 (red)
to the color property, and then assigns the object to the transform.colorTransform property
of shape:

var colorTransform:ColorTransform = new ColorTransform();
colorTransform.color = 0xFF0000;
shape.transform.colorTransform = colorTransform;

You can also retrieve the color that is currently applied to a display object using the color property.
The property returns the current color applied to the ColorTransform object (if any):

var colorTransform:ColorTransform = circle.transform.colorTransform;
trace(colorTransform.color);

However, a ColorTransform object does not report the color of the artwork within a display
object. It reports only on the color transform applied to the instance. For example, if a display
object instance has a yellow square within it but no color transform applied to the instance, the

666

Chapter 34: Geometric and Color Transformations

transform.colorTransform.color property does not return the number corresponding to
yellow. It returns 0 because no color transformation has yet been applied.

Color Transformation Math
Color transformations using ColorTransform allow you to apply both a multiplier and an offset to
each color channel, including the alpha channel. The transformation follows this formula:

r’ = mrr + or
g’ = mgg + og
b’ = mbb + ob
a’ = maa + oa

Each color channel gets its own multiplier m and offset o. Use the color property of a
ColorTransform to replace a display object’s color wholesale. This shortcut sets all the mul-
tipliers to 0, and sets the offsets to the components of the destination color. The end effect is an
entirely new color:

r’ = 0r + or = or
g’ = 0g + og = og
b’ = 0b + ob = ob

Additionally, the alpha value remains unchanged. If the ColorTransform object contained an alpha
scale or shift prior to setting color, it remains. Otherwise, the default scale and shift remain, affecting
no change.

The ColorTransform class defines the following properties that correspond to the eight parameters
in the preceding equation:

� redMultiplier

� greenMultiplier

� blueMultiplier

� alphaMultiplier

� redOffset

� greenOffset

� blueOffset

� alphaOffset

You can set the properties of a ColorTransform object using the constructor, or you can set them
once the object has already been constructed. The constructor accepts from zero to eight parameters
matching the properties in the preceding list, in the same order as they appear in the list. The follow-
ing code constructs a new ColorTransform object with the default properties:

var colorTransform:ColorTransform = new ColorTransform();

Each of the multiplier properties (redMultiplier, greenMultiplier, and so on) can range from
–1 to 1 and determines the percentage of the color component that is applied to each pixel. The mul-
tiplier properties default to 1, which means that each red, green, and blue component of each pixel’s
color is at 100 percent. By changing the multiplier properties, you can effectively apply a tint to a
display object.

When the multiplier properties are changed, it doesn’t remove the contrast and definition of the con-
tents within a display object. For example, if a display object contains a photograph, applying changes

667

Part VIII: Graphics Programming and Animation

to the multiplier properties changes the tint of the photograph, but the subject of the photograph is
likely still distinguishable. The following code applies a green tint to a photo by reducing the red
and blue components to 0:

photo.transform.colorTransform = new ColorTransform(0, 1, 0, 1, 0, 0, 0, 0);

The offset properties (redOffset, greenOffset, and so on) add to and subtract from the red,
green, blue, and alpha components of the color. The ranges for the offset properties are from –255
to 255. The default values are 0. Remember that when you store a color in a 32-bit integer, you use
8 bits for each channel, and each channel’s total value can range from 0 through 255 (or 0xFF). You
saw earlier how setting the color property uses the offsets to encode the new color, while eliminating
the original color by setting its multipliers to 0.

The following applies a red tint to a photograph by setting the redOffset to 255:

var colorTransform:ColorTransform = new ColorTransform();
colorTransform.redOffset = 255;
photo.transform.colorTransform = colorTransform;

The multiplier and offset properties of a ColorTransform object can work in conjunction with one
another. The multiplier properties affect the percentage of a color component already present within
each pixel, whereas the offset properties add or subtract to or from the color component of the pixel.
For example, if a pixel has a color of 0xFFFFFF (white), setting the redMultiplier to 0 or setting
the redOffset to –255 has the same effect. However, if the color is 0x000000 (black), setting the
redMultiplier property does not change the amount of red in the color, because anything times 0
is still 0. But you can set the redOffset to add red to the color.

Cross-Reference
How the three color components are packed into one uint is described in Chapter 13, ‘‘Binary Data and
ByteArrays.’’ �

Resetting and Combining Color Transforms
You can reset the colors applied to a display object by applying a ColorTransform object with the
default properties as follows:

sprite.transform.colorTransform = new ColorTransform();

Just like a transformation matrix, you can also concatenate a new ColorTransform onto the existing
one, combining their effects, using the concat() method.

var c1:ColorTransform = new ColorTransform(2); //multiply red
var c2:ColorTransform = new ColorTransform(1, 2); //multiply green
c1.concat(c2);
trace(c1); //(redMultiplier=2, greenMultiplier=2, blueMultiplier=1,...

Applying Color Transformations
In Example 34-3, you’ll load an image into the player and then use a ColorTransform object to
tint it based on the location of the mouse.

668

Chapter 34: Geometric and Color Transformations

EXAMPLE 34-3 http://actionscriptbible.com/ch34/ex3

Color Transformations

package {
import flash.display.Loader;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.geom.ColorTransform;
import flash.net.URLRequest;
public class ch34ex3 extends Sprite {
protected var l:Loader;
protected var mode:int;
public function ch34ex3() {
l = new Loader();
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/3712472723/
l.load(new URLRequest("http://actionscriptbible.com/files/caviar.jpg"));
addChild(l);
l.addEventListener(MouseEvent.CLICK, clickHandler);
l.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveHandler);

}
protected function mouseMoveHandler(event:MouseEvent):void {
var value:Number = l.mouseY / l.height;
var colorTransform:ColorTransform = l.transform.colorTransform;
switch (mode) {
case 0: colorTransform.redMultiplier = value; break;
case 1: colorTransform.greenMultiplier = value; break;
case 2: colorTransform.blueMultiplier = value; break;
case 3: colorTransform.alphaMultiplier = value; break;

}
l.transform.colorTransform = colorTransform;

}
protected function clickHandler(event:MouseEvent):void {
if(++mode == 4) {
mode = 0;

}
}

}
}

When you test the application, you can move the mouse from top to bottom to adjust the red, green,
blue, and alpha multipliers for the image. Each time you click the mouse, it advances to the next color
component.

Retrieving the property from the Transform object returns a copy, so to update the display
object with the new transformation, you must set a ColorTransform object to the
transform.colorTransform property, rather than simply modifying it inline, just as with a
transformation matrix. For more details, see ‘‘Applying Transformation Matrices,’’ earlier in this
chapter.

669

Part VIII: Graphics Programming and Animation

3D Transformations
In Flash Player 10 and later, DisplayObjects can be drawn in three dimensions. In Chapter 15,
‘‘Working in Three Dimensions,’’ you learned how to position and orient 3D objects with
DisplayObject properties. But just like their 2D brethren, 3D DisplayObjects can be trans-
formed with transformation matrices. Using the transformation API in 3D is generally more powerful,
and applicable, than in 2D. This is partially because the relative and absolute orientation of objects is
increasingly hard to visualize and keep consistent in three dimensions, and partially because of the
extended set of tools that the flash.geom package provides in Flash Player 10 and later.

Version
FP10. All topics covered in this section apply to Flash Player 10 and later. �

This section provides a refresher on some basic 3D math concepts that were only touched on in
Chapter 15, making sure to include matrix math in the mix. This section covers not only affine
transforms in 3D, but perspective projection transforms. With an overview of the theory, you can dive
into the classes that aid 3D geometry in ActionScript 3.0, comparing them to similar classes that exist
for 2D geometry.

Basic 3D Concepts Review
Before beginning, I want you to know that there are far better resources on 3D math than what you
are about to read. I’m going to review some concepts at breakneck speed, mostly to introduce termi-
nology and jog your memory. If you are new to 3D, there are many online and offline resources for
learning the essential yet difficult concepts involved.

For beginners, I recommend 3D Math Primer for Graphics and Game Development by Fletcher Dunn
and Ian Parberry (http://gamemath.com/). It starts at square one and has an easy pace without
skimping on explanation. It contains problem sets so you can test yourself. Best of all, it’s mercifully
short and mostly sticks to the real foundation material. Go get it as a companion if you are learning
3D concepts for the first time.

Online, the gamedev.net forums (http://gamedev.net/) are an endless treasure trove of informa-
tion on graphics programming and beyond.

Now’s a good time to review some of the terms and concepts needed to operate in 3D. For now it’s
important not to think about any ActionScript 3.0 classes you may have seen with similar names and
just focus on the mathematical concepts. The class names and topics don’t translate perfectly; the cor-
rect classes will be covered shortly.

Coordinate System

The coordinate system for 3D graphics in Flash Player 10 is a Cartesian space with three axes: x, y,
and z. The origin is at the top-left corner of the screen. The +x axis proceeds toward the right of the
screen, and the +y axis goes down the screen. The +z axis points away from you ‘‘into’’ the screen,
and –z extends ‘‘out of’’ the screen, toward you, the viewer. The plane of the screen is where z = 0.
The global coordinate space is pictured in Figure 34-1.

670

Chapter 34: Geometric and Color Transformations

FIGURE 34-1

Global coordinate space superimposed on a screen

z

x

y

Compy 486

Points

In an n-dimensional Cartesian coordinate system, a location is described by n numbers. Each describes
a component of the location along one of the space’s axes. For instance, in two dimensions, a point is
described by two numbers. You write this (x, y). The x value describes the point’s position along the
x-axis; the y value describes its position along the y axis. In three dimensions, you add a third axis, z,
so you require a third variable to locate a point along the z-axis. A three-dimensional point has three
values and is written (x, y, z). A real point, of course, uses real values in place of the variables, such
as (5, 5, 5), pictured in Figure 34-2. The dotted lines help you visualize the point’s position in three
dimensions.

FIGURE 34-2

A three-dimensional point

z

x

y

(5, 5, 5)

671

Part VIII: Graphics Programming and Animation

Points only have a location, no other properties. They represent a location in a coordinate space, but
that coordinate space can be subjected to transformations. Your frame of reference is subjective. You’ve
already seen this in two dimensions, as points in a child display object that is in motion are static
within the display object’s coordinate space, but they are in motion in the screen’s coordinate space.

Vectors

A vector is similar to a point. (Remember, I’m not talking about the Vector class right now!)
Vectors in n dimensions consist of n values. You can write a three-dimensional vector like this:
a = <5, 5, 5>. The name of the vector, a, is written in bold or with an arrow atop it. This vector is
pictured in Figure 34-3.

FIGURE 34-3

A three-dimensional vector a

z

x

y

a = 〈5, 5, 5〉
⇀

⇀
a

You’ll notice that a vector in three dimensions is composed of three values, corresponding to the three
axes, just like a point in three dimensions. But whereas a point represents a location in the coordinate
system, a vector represents both a magnitude and a direction. You can see that the vector a points in
one specific direction, and it has a beginning and an end, and thus a length or magnitude. The arrow
indicates the direction of the vector. The beginning and end are not properties of the vector. They are
merely by-products of the fact that this vector has been drawn starting at the origin, and if you follow
the vector for its distance in its direction away from where you started, you inevitably arrive at its end.
But the vector a never told you where to start, nor does any vector. I just picked the origin.

Vectors represent offsets or, if you like, displacements. The vector a doesn’t tell you what to offset,
where to start, or where it is. It tells you a direction and a distance. So it is less tied to the idea of an
origin. But, as you saw, if you use a vector as a displacement from the origin, it perfectly represents a
point.

Performing arithmetic on points doesn’t make a whole lot of sense. Can you really ‘‘add’’ two loca-
tions? But performing arithmetic on vectors makes intuitive sense and is key to geometric transforma-
tions. The vector a+b has the same effect as following the vector a, then from there following vector
b. This is pictured in Figure 34-4. Scaling a vector (multiplying it by a scalar) affects the magnitude of
the vector but not its direction.

672

Chapter 34: Geometric and Color Transformations

FIGURE 34-4

Summing two vectors

x

z

y

a
⇀

b
⇀

⇀
c

a = 〈2, 4, 0〉
⇀

b = 〈0, 0, 2〉
⇀

⇀⇀⇀

c = a + b = 〈2, 4, 2〉

Vectors can be rotated, scaled, or even projected onto other vectors. You can compare them, measure
their magnitudes and orientations, find angles between them, and even find a vector that’s mutually
perpendicular to two others. Because vectors and points are equivalent in terms of the information
they carry, and because many of these useful operations apply well to vectors but not points, vectors
are used far more often.

Matrices

Matrices have been introduced in this chapter. So, too, has the concept of a vector being written in
matrix form. You can write a vector as a column matrix:

| 1 |
a = <1, 2, 4> = | 2 |

| 4 |

Writing a vector in matrix form doesn’t change the vector or what it represents. It’s not as if the vector
is now a matrix, an incompatible kind of entity. On the contrary, a matrix is simply a way to organize
a vector’s information, and the change in forms is purely notational.

As you’ve seen with 2D transforms, matrix multiplication is an efficient replacement for multiple linear
equations. In 3D, too, you can transform vectors through matrix multiplication:

x’		2 0 0		x
y’	=	0 2 0		y
z’		0 0 2		z

Above, you uniformly scale up a vector <x, y, z> by a factor of 2 by using a 3×3 scale transformation
matrix.

You should be familiar with the rules for matrix multiplication by now. Recall also that the identity
matrix I is a square matrix with 1s down the diagonal. Following is the 3×3 identity matrix.

673

Part VIII: Graphics Programming and Animation

| 1 0 0 |
I = | 0 1 0 |

| 0 0 1 |

You might notice that this is the same as scaling by a factor of 1, which should, of course, have no
effect!

When using 3D transformation matrices, it’s important that all the matrices are invertible — that is,
for matrix M there exists a matrix M–1 such that M M–1 = I. The matrix M–1 is the inverse of M.
You can check whether a matrix is invertible by calculating its determinant. Matrices with nonzero
determinants are invertible. You won’t have to know how to calculate a determinant to understand
the concepts in this chapter; you can find out more in the recommended references. The inverse of a
transformation matrix reverses the effects of that transformation. Unlike 3D transformation matrices,
the 2D transformation matrices in ActionScript 3.0 are nonsquare, so they can’t have inverses.

A final note on matrices and vectors. When you break up a matrix, its rows and columns are vectors,
and it’s not uncommon to look at the rows or columns that make up a matrix. For example, the sec-
ond row (or the second column, as the matrix is diagonal) of the previous identity matrix is the vector
<0, 1, 0>.

Orientation

Angular orientation can be measured in many ways. Orientation describes the rotation in three dimen-
sions of an object. You can also talk about angular displacement instead of orientation, just as vectors
are interchangeable with points. In any case, Flash Player gives you access to three ways of describing
orientations:

� Euler angles — These define an orientation as a series of rotations around the coordinate space’s
axes. To achieve a certain direction, you rotate around the x-axis, then the y, then the z. You
may be familiar with roll, pitch, and yaw. Those are Euler angles. Euler angles are famously easy
to understand but infamously bad for interpolation and for gimbal lock, where two axes become
coplanar during the rotation, eliminating a degree of freedom.

� Axis angles — These describe orientation as a scalar angular rotation around some vector,
which is not necessarily an axis vector. The vector shows which direction the object is
facing, and the rotation about it illustrates which way is facing ‘‘up.’’ This form is also easy to
understand and can simplify some calculations like movement in the direction of an object.

� Quaternions — These are notoriously weird representations of a rotation by a four-dimensional
number, which is actually a kind of complex number in which there are three imaginary parts
and one real part rather than one imaginary part and one real part. It can be written as the 4D
vector <x, y, z, w>. Quaternions are great at interpolating orientations smoothly and are easy
to concatenate.

3D Affine Transformations
Recall that for 2D affine transformations, an extra column was added onto the transformation matrix
to enable translations (and extend linear transformations to affine transformations). Similarly, you can
perform affine transformations in three dimensions by adding a fourth dimension to the matrix:

x’		a b c tx		x
y’		d e f ty		y
z’	=	g h i tz		z
1		0 0 0 1		1

674

Chapter 34: Geometric and Color Transformations

The 4×4 matrix on the left of the multiplication, of course, is the transformation matrix. (And
now that you know the correct terminology, the 4×1 column matrices on the left and right are
the post-transformation vector and the original vector.) The addition of the fourth column of the
transformation matrix, and the dummy dimension of the vector spaces, allows for the tx, ty, and tz
coefficients to effect translation in the x, y, and z directions.

The scaling, translation, and even rotation matrices are of a familiar form to those in two dimensions.
You should be able to guess the forms of the scale and translation matrices. Rotations around the three
axes look like this:

| 1 0 0 0 |
Rx(θ) = | 0 cos(θ) sin(θ) 0 |

| 0 –sin(θ) cos(θ) 0 |
| 0 0 0 1 |

| cos(θ) 0 -sin(θ) 0 |
Ry(θ) = | 0 1 0 0 |

| sin(θ) 0 cos(θ) 0 |
| 0 0 0 1 |

| cos(θ) sin(θ) 0 0 |
Rz(θ) = | -sin(θ) cos(θ) 0 0 |

| 0 0 1 0 |
| 0 0 0 1 |

Now, because any angle can be represented as a sequence of rotations around the three axes, any angle
can be represented as a product of these three matrices, each of which rotate about a single axis. This
means that you can represent any orientation with the product of these translation matrices, which is
in itself a 4×4 translation matrix. Likewise, any affine transformation can be composed into a single
matrix with matrix multiplication.

Projection Transformations
ActionScript 3.0, however, actually provides access to the fourth dimension in the 4D vectors used
with 4×4 transformation matrices, not to mention access to the bottom row of those matrices which
has heretofore been filled with <0, 0, 0, 1>. The fourth dimension is called w, and it is not used as
a real, independent dimension. Nor is it used in 3D space or in any transformation that takes place in
3D space (or rather, it is degenerate; the value 1 is always used for w). Where it is used, however, is
during projection.

| x |
| y |

v = | z |
| w |

Almost every screen today, like this piece of paper, is two-dimensional and displays a two-dimensional
image. Yet it’s easy to look at the page and discern 3D shapes. That’s because these 3D shapes are
drawn on a 2D surface in much the same way that your eyes focus an image on your retinas, or cam-
eras focus an image on film or a sensor. Because your brain processes 2D projections of the 3D world
all day long from the day you’re born, it’s adept at recognizing 3D shapes in artificial projections
as well.

There are multiple ways you can project a 3D reality onto a 2D image. Artists have been doing this
much longer than computers, so the art world is a much better place to look for different examples of

675

Part VIII: Graphics Programming and Animation

projections. Technical drawings and schematics are often drawn with an orthogonal projection, where
there is no vanishing point: parallel lines stay parallel. Specifically, isometric projections are common,
in which the axes are drawn at equal angles. In the Renaissance, perspective was finally cracked and
popularized. When that looked too boring, cubists decided to break free from representational pro-
jections and draw impressions of a scene from fragmented viewpoints, where the connection between
the point in 3D space and its position on the 2D image is more tenuous. To this day, some brave
computer graphics researchers still toy with alternative methods of projection. But the clear winner in
almost every produced image is, of course, the perspective projection.

Flash Player 10 lets you easily do perspective transformations. Of course, from the moment you use
a display object in three dimensions, Flash Player is performing these transformations for you. So
why do you care? One, to explain the use of w and the size of 4×4 transformation matrices. Two,
to demystify how perspective projection works. And three, to be able to modify your projections.

At its core, perspective transformations are simple. To simulate foreshortening, where farther-away
objects appear smaller, you simply scale down the coordinates of every point by some factor related to
its distance from the projection plane. See Figure 34-5.

FIGURE 34-5

A perspective projection

Scene

Projection plane,
image plane

Focal point

d

In fact, you first calculate this factor in the w dimension. For a focal point at the origin and a projec-
tion plane at distance d from the focal point, you set the w of every point to the ratio of its distance
from the focal plane:

x’		1 0 0 0		x		x
y’		0 1 0 0		y		y
z’	=	0 0 1 0		z	=	z
w’		0 0 1/d 0		w		z/d

Then, to make this perspective factor affect the image, you convert 4D to 3D, scaling down all the
coordinates by w. So the 3D version of this vector is <x/w, y/w, z/w>. In the end, you throw away z
and draw the vector at <x/w, y/w>, where w is z/d.

For this trivial example, x′ = dx/z and y′ = dy/z. Look closely: you’re just scaling down the points
depending on their distance. And that’s what perspective is all about! With a more complex projection
matrix, you can change the field of view and the position of the focal point.

Why does this all work? Because the four-dimensional space you work in is a homogeneous coordinate
system. Its fourth dimension, w, extends all points in three space into a set of equivalent points in the

676

Chapter 34: Geometric and Color Transformations

homogeneous coordinate system. For any vector <x, y, z> in real coordinates, there exists an infinite
equivalent set of points of the form <kx, ky, kz, k> (for all values of k) in homogeneous coordinates.
The homogeneous coordinate space of dimension n+1 still represents points of dimension n, but it
‘‘stretches out’’ each point in the n-dimensional space to a line of all possible points in dimension
n+1 in which the homogeneous coordinate is a common divisor of the other coordinates. That’s why,
when you project from the 4D homogeneous dimensions into real 3D space, you divide x, y, and z by
w. And it’s also why you can treat vectors in three dimensions as existing in four dimensions where
w = 1. (You can think of the ‘‘plane’’ at w = 1 as overlapping the ‘‘real’’ coordinate space.)

Another convenient property of homogeneous space is that it respects linear transformations. Its
homogeneous properties are not broken when you apply a linear transformation in four dimensions.
And, even better, affine transformations in 3D space are linear transformations in 4D space. When
you translate in 3D space (using a 4×4 transformation matrix), you’re actually shearing 4D space!
By scaling just w with regard to distance from the image plane (the camera), you’re scaling all the
original coordinates because of the ratio relationship they have to the homogeneous coordinate.

If you find it hard to visualize, think of w as a redundant, invisible dimension that is used to control
the scale of the other coordinates. At least half its purpose is simply enlarging vectors to 4×1 so that
they can be multiplied by 4×4 transformation matrices with a fourth column that enables translation
through matrix multiplication. The other half is, as you’ve seen, used in perspective projections.

3D Transformations in ActionScript
Up to this point, I’ve carefully avoided mentioning how ActionScript 3.0 utilizes these basic principles
of 3D transformations. As the language has grown somewhat organically to support first 2D, then 3D
geometry, there are some oddities that would have otherwise bogged down this introduction.

To get started, I’ll compare the different classes in use for 2D and 3D math. All the classes in
Table 34-1 are in the flash.geom package. You’ll notice that the naming scheme is a bit inconsis-
tent. Point becomes Vector3D instead of Point3D; Point is able to behave like a vector; the
Vector class refers to a data structure and not a mathematical vector. Although the class Vector in
the default package and the class flash.geom.Vector could easily coexist thanks to namespaces,
the Flash Player architects have spared you this particular confusion.

TABLE 34-1

Geometry Classes in 2D and 3D

Concept 2D Class Remarks 3D Class Remarks

Point/Vector Point 2 dimensions; has vector methods Vector3D 4 dimensions

Transformation Matrix Matrix 3×3, no access to third row Matrix3D 4×4, access to all elements

There are more differences between the Matrix3D class and the Matrix class than just their dimen-
sion. The Matrix3D class, because it exists only in Flash Player 10 and later, uses other features that
are also only available in Flash Player 10, notably Vectors. And the Matrix3D class provides some
extremely helpful utilities to ease working in three dimensions. Even further utilities are included in
the Utils3D class, which is covered in Chapter 40, ‘‘Advanced 3D.’’

677

Part VIII: Graphics Programming and Animation

Vector3D

In actuality, the Vector3D class is a four-dimensional vector of the form <x, y, z, w>. You can use
Vector3D to represent vectors and points in 3D by ignoring the w coordinate, leaving it set to 1. The
earlier discussion on homogeneous coordinate space explains the purpose of using a 4D vector to rep-
resent 3D space. You can use Vector3D all day without ever thinking about the fourth coordinate.
Unless you dig really, really deep, Flash Player handles it for you.

This 4D vector can be used for purposes other than points and vectors in 3D space. It can also hold
a row or column of a 4×4 matrix, represent a quaternion, or store the channels of a color as in
<r, g, b, a>.

A Vector3D stores each coordinate in the properties x, y, z, and w. These properties can also be set
at construction time. The constructor takes these parameters, all optionally:

function Vector3D(x:Number = 0, y:Number = 0, z:Number = 0, w:Number = 0)

You can leave w off when you’re representing 3D points. Here you create a new vector for the
point (5, 5, 5):

var v:Vector3D = new Vector3D(5, 5, 5);

The Vector3D class has some static constants that represent the three axes:

trace(Vector3D.X_AXIS); //Vector3D(1, 0, 0)
trace(Vector3D.Y_AXIS); //Vector3D(0, 1, 0)
trace(Vector3D.Z_AXIS); //Vector3D(0, 0, 1)

Recall that a vector encodes both a direction and a magnitude. You can easily access the magnitude of
a vector through its length and lengthSquared properties, as Example 34-4 shows. These prop-
erties are read-only. In math notation, you write the magnitude of a vector v like |v|. These vertical
bars, although I have typeset them the same, are not the same bars that are used to outline a matrix.
In other words, |v| is not a 1×1 matrix but the notation for the magnitude of v.

EXAMPLE 34-4 http://actionscriptbible.com/ch34/ex4

Collected Snippets: 3D Geometry

var v:Vector3D = new Vector3D(8, 4, 1);
trace(v.length); //9
trace(v.lengthSquared); //81

Of course, the magnitude of a vector is its length, so you can calculate its magnitude with the Carte-

sian distance formula
√

x2 + y2 + z2.

All the basic vector arithmetic you can do is readily performed with the Vector3D class.

� add(a:Vector3D):Vector3D, subtract(a:Vector3D):Vector3D— Performs vec-
tor addition and subtraction, returning the result of the sum. Vector addition sums each com-
ponent individually:

<x1, y1> + <x2, y2> = <x1 + x2, y1 + y2>

� incrementBy(a:Vector3D):void, decrementBy(a:Vector3D):void— Performs
vector addition and subtraction destructively, replacing the contents of the vector with the
result of the sum.

678

Chapter 34: Geometric and Color Transformations

� scaleBy(s:Number):void— Performs scalar multiplication destructively, replacing the
contents of the vector with the result of the scalar multiplication. Scalar multiplication multi-
plies each component of the vector with the scalar:

k <x, y> = <kx, ky>

� negate():void — Negates a vector by multiplying it by –1. The operation is destructive,
replacing the vector’s contents with its negation.

� equals(toCompare:Vector3D, allFour:Boolean = false):Boolean — Compares
two vectors, returning true if the vectors are equal. By default, this method compares the
vectors as if they have three dimensions, ignoring any differences in w. By passing true to the
allFour parameter, the method compares all four dimensions of the vectors. Vector equality is
the equality of all the vectors’ components:

<x1, y1> = <x2, y2> iff x1 = x2 and y1 = y2

� nearEquals(toCompare:Vector3D, tolerance:Number, allFour:Boolean =
false):Boolean — Compares two vectors, allowing for a certain amount of error. If the
two vectors’ components differ by less than the tolerance value, they are considered equal.
In Chapter 7, ‘‘Numbers, Math, and Dates,’’ you learned that floating-point numbers are not
infinitely precise. Using this method, you can ignore small rounding errors and still determine
if the vectors are meant to be equal, or you can provide a higher tolerance and determine if the
vectors are ‘‘nearly equal.’’ The allFour parameter acts as it does in the equals() method.

As I’m sure you noticed, some of the preceding operations are destructive and some are nondestruc-
tive. You can make copies of a Vector3D by calling its clone() method.

The Vector3D class also provides vector operations like dot product and cross product. The dot
product of two vectors is useful for projecting one vector onto another vector. In Figure 34-6,
vector v is projected onto the x-axis. The length of the projection is given by the vector’s dot
product with a unit vector in the x direction. In mathematical notation, dot products are written
with a dot: a · b.

FIGURE 34-6

Using a dot product to determine a vector’s projection onto an axis

x

y

v
⇀

v · x
⇀ ⇀

The cross product produces (when possible) a vector that is mutually perpendicular to the two argu-
ment vectors. This operation is essential for computing the normals of polygons. A normal vector is a
vector pointing ‘‘up’’ from a surface; with a flat surface like a polygon, this determines the direction

679

Part VIII: Graphics Programming and Animation

the surface is facing. Normals are used all over the place in computer graphics. Two of the simpler
applications are for back-face culling and lighting, which you’ll learn a little about in Chapter 40,
‘‘Advanced 3D.’’ Figure 34-7 calculates the normal of a triangle by producing the cross product of two
of its edge vectors. Cross products are noncommutative; the order of their arguments matter. They
also depend on the handedness of the coordinate system. The 3D coordinate system in use in Flash
Player is right-handed. This means if you curl the fingers of your right hand into a fist from the direc-
tion of the first vector to the second vector, your thumb will be pointing in the direction of the cross
product. In math notation, cross products are written with a cross: a × b.

FIGURE 34-7

Using a cross product to determine a polygon’s normal vector

x

y

z

a
⇀

b
⇀

a × b
⇀ ⇀

These two operations are supported by the dotProduct() and crossProduct() methods:

var a:Vector3D, b:Vector3D, c:Vector3D;
a = new Vector3D(12, 47, 209);
trace(a.dotProduct(Vector3D.X_AXIS)); //12

a = new Vector3D(12, 0, 0); //points along +x
b = new Vector3D(0, 12, 0); //points along +y
c = a.crossProduct(b); //should point along +z, perpendicular to both
trace(c); //Vector3D(0, 0, 144)

Vector normalization is also frequently useful in computer graphics. Normalization keeps a vector’s
direction but loses its magnitude. This is done simply by scalar division by the vector’s magnitude,
so that the new magnitude is 1. Rather than take these two steps, however, Vector3D provides a
normalize() method, which destructively normalizes the vector:

trace(c); //Vector3D(0, 0, 144)
c.normalize();
trace(c, c.length); //Vector3D(0, 0, 1) 1

680

Chapter 34: Geometric and Color Transformations

Vector3D provides a few final useful operations:

� Vector3D.angleBetween(a:Vector3D, b:Vector3D):Number — Returns the angle
between two vectors. If you think of the vectors as line segments starting at the origin, they
form an angle on the plane between them. This static method measures that angle in radians. It
doesn’t care about the order of the vectors.

� Vector3D.distance(pt1:Vector3D, pt2:Vector3D):Number — Measures the dis-
tance between two points defined by vectors. This is identical to |pt2 − pt1|, the magnitude of
the vector between them.

� project():void — Destructively projects a vector from 4D homogeneous coordinates into
3D coordinates, by dividing x, y, and z by w.

Matrix3D

The Matrix3D class stores a 4×4 matrix. Although you can store any 4×4 matrix in it, it’s designed
for 3D transformation matrices.

Unlike the Matrix class, in which you could set the elements of the matrix directly through instance
properties, the Matrix3D class has too many elements (16) for this to be very manageable. Instead,
you can access its contents directly through a Vector of 16 Numbers (Vector.<Number>).
Just like 2D transformation matrices, however, it’s much easier to use the convenience methods of
Matrix3D to construct and concatenate the proper matrices for you.

You can pass these 16 values to Matrix3D’s constructor or set them with the rawData property. The
values are in column-major order — that is, they are stored from top to bottom and then left to right.
If you don’t pass a Vector of values to Matrix3D’s constructor, a 4×4 identity matrix is created.
The rawData property returns a copy of the matrix’s elements; to change them you have to assign
a whole new Vector to the rawData property. (You can’t modify it inline.) The default Matrix3D
constructed when you pass nothing to the constructor is a 4×4 identity matrix. Of course, you can
restore the matrix to the identity matrix at any time by calling identity() on it. All this is shown
in Example 34-5.

EXAMPLE 34-5 http://actionscriptbible.com/ch34/ex5

Using Matrix3D

package {
import com.actionscriptbible.Example;
import flash.geom.Matrix3D;

public class ch34ex5 extends Example {
public function ch34ex5() {
//create a default (identity) matrix
var m:Matrix3D = new Matrix3D();
prettyPrintMatrix(m); //identity matrix

var v:Vector.<Number> = m.rawData;
v[4] = 9.2;
m.rawData = v;

continued

681

Part VIII: Graphics Programming and Animation

EXAMPLE 34-5 (continued)

prettyPrintMatrix(m); //9.2 appears on top of 2nd column
m.identity(); //reset matrix
m.appendTranslation(16, 19, 21);
prettyPrintMatrix(m); //the translation factors appear in column 4

}
protected function prettyPrintMatrix(m:Matrix3D):void {
var str:String = "";
for (var col:int = 0; col < 4; col++) {
var line:String = "|";
for (var row:int = 0; row < 4; row++) {
line += "\t" + m.rawData[row*4+col].toPrecision(3) + "\t";

}
str += line + "|\n";

}
trace(str);

}
}

}

These methods enable some matrix operations on a Matrix3D instance:

� identity():void — Replaces the matrix with a 4×4 identity matrix.

� transpose():void — Replaces the matrix with its transpose. Transposing a matrix swaps
its columns and rows. It’s easiest to think of this as flipping a matrix (as you’d write it down on
paper) across the top-left-to-bottom-right diagonal. For a matrix M, the transpose is written MT.
Also, (MT)T = M.

1 2 3	T	1 4 7
4 5 6	=	2 5 8
7 8 9		3 6 9

� invert():Boolean — Replaces the matrix with its inverse. Inverting a matrix is discussed
earlier in ‘‘Matrices.’’ Not all matrices are invertible, but all transformation matrices are. The
method aborts and returns false if the matrix is not invertible.

� determinant:Number — A read-only property that calculates the determinant of the matrix.
If this is zero, the matrix is not invertible.

Unlike 2D transformations, in 3D you have the option of applying the transformation to the trans-
formation matrix before all the existing transformations or after all the existing transformations. Recall
that the concat() method of Matrix multiplied its argument to the contents of the matrix, with the
argument matrix first and the subject matrix (the object whose concat() method you call) second.
Matrix3D, on the other hand, does not have a concat() method but instead has prepend() and
append() methods that perform the multiplication with the argument matrix on either the left or

682

Chapter 34: Geometric and Color Transformations

the right hand of the multiplication. Additionally, each transformation matrix method has two flavors.
One immediately prepends the matrix and the other immediately appends it, as follows:

� prependTranslation(x:Number, y:Number, z:Number):void,
appendTranslation(x:Number, y:Number, z:Number):void — Composes a
translation with the existing transformation. The arguments determine the offsets in each axis.

� prependScale(xScale:Number, yScale:Number, zScale:Number):void,
appendScale(xScale:Number, yScale:Number, zScale:Number):void —
Composes a scale with the existing transformation. The arguments determine the scale factor in
each direction (1 being no change).

� prependRotation(degrees:Number, axis:Vector3D, pivotPoint:Vector3D
= null):void, appendRotation(degrees:Number, axis:Vector3D,
pivotPoint:Vector3D = null):void — Composes a rotation with the existing trans-
formation. The arguments describe the rotation as a rotation around a certain vector, which
need not be one of the coordinate space’s axes. When passed a pivotPoint in the object’s
own coordinate space, this position is used for the center of rotation.

There’s another convenient way to set the rotation of an object using its transformation matrix. The
pointAt() method sets the contents of the Matrix3D to a transformation that reorients its subject
to point at a certain target. This can shortcut potentially painful calculations, and it’s quite convenient
for games. Example 34-6 creates a vector pointing in a random direction, uses Vector3D methods
you just learned to set its magnitude to the radius of a sphere. This algorithm creates a random point
on the surface of a sphere, because the surface of a sphere is the union of all points the same distance
from its center. Then pointAt() is used to reorient an arrow to point at the randomly placed target.

EXAMPLE 34-6 http://actionscriptbible.com/ch34/ex6

Matrix3D’s pointAt() Method

package {
import flash.display.*;
import flash.events.MouseEvent;
import flash.geom.Matrix3D;
import flash.geom.Vector3D;
[SWF(width="500",height="500",backgroundColor="#000000")]
public class ch34ex6 extends Sprite {
protected const targetSphereRadius:Number = 180;
protected var holder:Sprite;
protected var target:Shape;
protected var arrow:Shape;
public function ch34ex6() {
holder = new Sprite();
holder.x = stage.stageWidth/2; holder.y = stage.stageHeight/2;
addChild(holder);
makeArrow();
makeTarget();

continued

683

Part VIII: Graphics Programming and Animation

EXAMPLE 34-6 (continued)

stage.addEventListener(MouseEvent.CLICK, pointToRandom);
pointToRandom(null);

}
protected function makeTarget():void {
var SIZE:Number = 10;
target = new Shape();
target.graphics.beginFill(0xff0000, 0.8);
target.graphics.drawCircle(0,0, SIZE);
holder.addChild(target);

holder.graphics.lineStyle(0, 0xffffff, 0.8);
holder.graphics.drawCircle(0, 0, targetSphereRadius);

}
protected function makeArrow():void {
var SIZE:Number = 20, ARROW_SIZE:Number = 9, LINE_WIDTH:Number = 4;
arrow = new Shape();
arrow.graphics.lineStyle(LINE_WIDTH, 0xffffff, 1, false,
LineScaleMode.NORMAL, CapsStyle.NONE, JointStyle.MITER, ARROW_SIZE);

arrow.graphics.moveTo(-SIZE, 0);
arrow.graphics.lineTo(SIZE-LINE_WIDTH/2, 0);

arrow.graphics.moveTo(SIZE-ARROW_SIZE, ARROW_SIZE);
arrow.graphics.lineTo(SIZE, 0);
arrow.graphics.lineTo(SIZE-ARROW_SIZE, -ARROW_SIZE);
holder.addChild(arrow);

}
protected function pointToRandom(event:MouseEvent):void {
var r:Function = function():Number {return Math.random() - 0.5;}
var randomDirection:Vector3D = new Vector3D(r(), r(), r());
randomDirection.normalize(); //sets the magnitude to 1
randomDirection.scaleBy(targetSphereRadius); //sets the magnitude to r
m = new Matrix3D();
m.position = randomDirection;
target.transform.matrix3D = m;

var m:Matrix3D = new Matrix3D();
m.pointAt(randomDirection, Vector3D.X_AXIS, Vector3D.Z_AXIS);
arrow.transform.matrix3D = m;

}
}

}

In Example 34-6, I passed several arguments to pointAt(). Now look at the signature to see what
they do.

function pointAt(pos:Vector3D, at:Vector3D = null, up:Vector3D = null):void

The first argument, pos, is the location that you want the display object — the subject of this trans-
formation matrix — to point at. Optionally, at defines the orientation of the display object in its own

684

Chapter 34: Geometric and Color Transformations

coordinate space, where it’s pointing by default. I drew an arrow facing to the right, so its orienta-
tion is along the +x axis. Optionally, up defines which direction is ‘‘up’’ to the display object in its
own coordinate system. Because I drew the arrow using 2D vector graphics, it’s a drawing facing you
on the xy plane. ‘‘Up’’ points out from the screen toward you, so ‘‘up’’ in the drawing of the arrow is
the –z axis. I’ve passed the +z axis, but it doesn’t make much of a difference because the back of the
arrow looks identical to the front of the arrow. (Tricky!)

The example also uses the position vector of a Matrix3D. This property gives another
way to modify the translation part of the matrix. Unlike prependTranslation() and
appendTranslation(), though, modifying this sets the translation anew rather than
concatenating the results.

There are some other methods that let you deal with the transformation matrix as a sum of its con-
stituent parts (translation, rotation, scale). Because the scale and rotation matrices use some of the
same matrix elements, it’s not fun to try to pick apart a matrix that combines all these kinds of trans-
formation. Thankfully, Flash Player does it for you and even lets you put these constituents back
together.

� decompose(orientationStyle:String = "eulerAngles"):
Vector.<Vector3D> — Pulls apart a transformation matrix into a Vector of three
vectors, which represent its translation, rotation, and scale, in that order. As you might guess,
the translation is stored in a three-dimensional vector as <tx, ty, tz>, and the scale likewise as
<sx, sy, sz>. The orientationStyle you pass in determines how the method returns the
rotation part of the transformation. These are described in the earlier ‘‘Orientation’’ section. Pos-
sible values include Orientation3D.AXIS_ANGLE, in which case a 4D vector of the form
<axisx, axisy, axisz, θ> is returned; Orientation3D.EULER_ANGLES, in which
case a 3D vector of the form <θx, θy, θz> aka <pitch, yaw, roll> is returned; and
Orientation3D.QUATERNION, in which case a 4D vector of the form <x, y, z, w> is
returned.

� recompose(components:Vector.<Vector3D>, orientationStyle:String =
"eulerAngles"):Boolean— (Re)constructs a transformation matrix out of its constituent
transformations. The components argument expects a Vector of three vectors, representing
the desired translation, rotation, and scale, in that order, and defined in the manner described
earlier. The method returns false if you fail to pass these three vectors (because the contents
of a Vector can’t be checked at compile time).

Two important side effects of this pair of methods have to do with how they enable rotation. For
one, the methods are the only way to access the rotation of a transformation matrix as quater-
nions. For another, they enable more convenient access to the rotation as Euler angles. Because
appendRotation() and prependRotation() take the orientation in axis-angle form, you can
still do a rotation with Euler angles by calling them three times with the axis set to the x, y, and z
axes, and the angles as the orientation’s Euler angles. Of course, the rotationX, rotationY, and
rotationZ properties also enable direct access to the rotation as Euler angles, if you want to break
back out of the transformation API.

Matrix3D, like Matrix, lets you test the effect of transformation matrices. Of course, whereas
Matrix (2D) transformed Points (2D), Matrix3D transforms Vector3Ds.

� transformVector(v:Vector3D):Vector3D— Transforms a single vector with the
transformation matrix by multiplying the matrix with the vector (as a column matrix).

� deltaTransformVector(v:Vector3D):Vector3D— Transforms a single vector,
ignoring any translation.

685

Part VIII: Graphics Programming and Animation

� transformVectors(vin:Vector.<Number>, vout:Vector.<Number>):void
— Batch-transforms a set of coordinates. Rather than vectors, these are passed as a list of
coordinates, assumed to proceed in an x, y, z, x, y, z pattern. This is useful to transform a whole
mesh, perhaps for use with drawTriangles(). (See Chapter 40.) You must pass a resizable
or appropriately sized Vector to vout to store the results.

As you can see, the facilities provided for matrix math and 3D geometry calculations are quite robust
in ActionScript 3.0. Using transformation matrices directly instead of the DisplayObject properties
described in Chapter 15 opens up a powerful set of tools.

Combined with some methods in the Graphics object and a few classes that haven’t been touched
on in the flash.geom package, Flash Player contains a pretty strong foundation for a 3D graphics
pipeline. Read on to Chapter 40 to see more of what’s possible.

Summary

� Each display object has a transform property from which you can access the matrix,
colorTransform , and matrix3D properties to apply transforms to the object.

� Using the matrix property, you can apply transforms such as rotation, translation, scaling, and
shearing.

� Using the colorTransform property, you can apply colors and tints to display objects.

� Using 3D matrices and vectors along with the matrix3D property, you can have powerful
numerical control over 3D transformations.

686

Programming Vector
Graphics

FEATURED CLASSES

flash.display.Graphics

flash.display.Shape

D
rawing programmatically allows you much greater freedom in creat-
ing and modifying your graphics at runtime, enabling you to create
rich and exciting interactivity. It also enables you to make incredibly

small files without embedded graphics — all the drawing executed at runtime by
ActionScript. Vector graphics are drawn with lines and fills. Like vector graphics
imported into your SWF, they look good at any scale. When programming vec-
tor graphics, you have many of the same tools in code that you may be familiar
with from drawing software packages like Adobe Illustrator or Inkscape, such as
curved and straight lines, rectangles, and ellipses.

Flash Player 10 adds new vector drawing methods that let you efficiently batch
drawing commands, draw in three dimensions, and use shaders. The new APIs
provide a great low-level toolkit for building three-dimensional graphics engines.
Look for the Version notes that indicate features only available in Flash Player 10
and later.

Overview

This chapter needs to cover a lot of ground. A high-level view of the drawing API
helps you keep oriented as you learn about the details of each part.

The classes involved in the drawing API are part of the flash.display pack-
age. Primarily, you’ll be using the Graphics class, which acts as a canvas for
drawing vector graphics. The Graphics class is an abstract class; you can’t
create instances of it directly with new Graphics(). Furthermore, it’s not a
DisplayObject, so you can’t add it to the display list. To get your vector
drawings on stage, you use the existing Graphics instances that are attached
to all your favorite display objects: Sprite, MovieClip, and Shape. Each of
these classes has a public property called graphics that you can access to draw
programmatically into the instance.

687

Part VIII: Graphics Programming and Animation

You haven’t used much of the Shape class up until now, but it’s only now that it steps into the spot-
light. Shapes are lightweight display objects that make perfect containers for drawing but do little
else. They can’t contain other display objects; they don’t extend DisplayObjectContainer. Fur-
thermore, they can’t receive user interaction like clicks; they don’t extend InteractiveObject. But
they do extend DisplayObject, so they can be added to a display list. Creating a Shape is the next
best thing you can do next to creating a Graphics object. Nonetheless, in examples I’ll frequently
use Sprite instead; it’s good to have user interaction, and the extra overhead is not worth worrying
about.

Example 35-1 offers a quick preview of using Graphics to get access to the drawing API and getting
those graphics on-screen.

EXAMPLE 35-1 http://actionscriptbible.com/ch35/ex1/

Using the Graphics Class

package {
import flash.display.Shape;
import flash.display.Sprite;
public class ch35ex1 extends Sprite {
public function ch35ex1() {
var s:Shape = new Shape();

s.graphics.lineStyle(3, 0xff0000);
s.graphics.beginFill(0xffff00);
s.graphics.drawCircle(0, 0, 30);
s.graphics.endFill();

s.x = stage.stageWidth / 2;
s.y = stage.stageHeight / 2;
addChild(s);

}
}

}

Notice that all the drawing API methods are called on the Graphics instance that belongs to the
Shape. Alternatively, because the example class extends Sprite, you can use the graphics prop-
erty to draw directly inside the example class ch35ex1, without need for a child Shape.

Note
I contrast vector drawing with bitmap drawing in this part of the book, but sometimes there is overlap. You
can use bitmap data to fill in vector drawings, and you can use the drawing API in Flash Player 10 to output
texture-mapped triangles, where the texture maps are bitmaps. So to clarify, the drawing API, the topic of this
chapter, includes methods that affect a Graphics object. Bitmap drawing includes any methods that affect a
BitmapData object. I’ll use BitmapData in some parts of this chapter, but I’ll save the in-depth coverage for
Chapter 36, ‘‘Programming Bitmap Graphics.’’ �

The drawing API is implemented as a state machine. The drawing functions that you call describe a
series of steps that the drawing API follows sequentially. Every drawing function you call changes the
state of the drawing API. It’s a lot like giving orders: the drawing API carries out the commands it’s

688

Chapter 35: Programming Vector Graphics

given in the order you give them. Just try reading Example 35-1 shown earlier, and imagine you’re
talking to someone who has a pen. First, set the pen color to red. Then start coloring things in yellow.
Draw a circle of radius 30, and finish up. As you see more complex examples, you realize that the
order of drawing commands is vitally important.

Note
If you’re around my age, you no doubt used a simplistic programming language called Logo to move a little
turtle around the screen, telling it to RIGHT 90 and FORWARD 100 and RIGHT 90 and FORWARD 100. If you
know what I’m talking about, congratulations: you’re old. Also, you know what a state machine is.

If you’ve ever programmed in OpenGL, that’s a state machine, too. Think of the Flash Player drawing API as
OpenGL’s dull third cousin. �

I’ll start by covering the most atomic drawing operations: moving the ‘‘pen,’’ drawing line segments,
drawing curve segments, and filling them in. Then I’ll cover styles — how the lines and fills look.
After that I’ll discuss primitives that you can draw with one call, like Example 35-1.

Flash Player 10 and later let you codify a bunch of drawing commands in objects, throw them into a
Vector, and pass the whole package to a Graphics object, rather than writing each command as
ActionScript code. This lets you do some interesting metaprogramming: although you can’t have your
program change its own code, you can certainly have it change a list of drawing commands. The bulk
of this chapter focuses on the procedural style of using the drawing API; once you’re well grounded in
the API, I’ll cover the command equivalents of the functions you learned, and then you’ll see how to
batch them and execute them. It’s quite easy to bridge these two ways of using the API.

Armed with this overview, you can now start drawing vector graphics with the Flash Player
drawing API.

Drawing Basics
You can think of the Graphics object as a robot holding a pen. The robot is pretty dumb; you have
to tell it every little thing it should do. Pretend you’re just learning how to use your robot. Test it and
see if it works. Maybe you can have it move the pen around.

Moving the Pen
To move the pen, use the moveTo() command. Remember that all these methods are defined on the
Graphics class. To specify where to move the pen, just give the robot x and y coordinates. Keep
in mind that these x and y coordinates are in the coordinate space of the Graphics object; if you
rotate and scale the display object that owns the Graphics canvas, you’ll see your drawings rotate
and scale, but all your drawing commands continue to be relative to the original coordinate space.
This, too, applies to the whole drawing API. Got it?

function moveTo(x:Number, y:Number):void

Now test it.

var s:Shape = new Shape();
s.graphics.moveTo(10, 10);
s.graphics.moveTo(20, 20);
s.graphics.moveTo(30, 30);

689

Part VIII: Graphics Programming and Animation

If you try out this code, you’ll see . . . nothing. You can’t really verify that the robot is moving the
pen, because, of course, the robot is pure analogy.

The drawing API uses the same coordinate system as the rest of the Flash Player API: the origin is at
the top left, x increases to the right, and y increases down.

Straight Line Segments
Want to see if you can get the robot to produce something worth looking at? How about a line seg-
ment? Line segments are finite, straight lines that connect two points. Now, because this is a state
machine, a simpleton robot, you don’t tell it which two points to connect, but rather ‘‘put your pen
down and move the pen to’’ The robot faithfully draws the line from where the pen was last to
where you tell it to go. That’s one reason you need moveTo().

function lineTo(x:Number, y:Number):void

Why don’t you try drawing an X? Planning how you’d tell the robot to move, you could move
the pen to the top left, place the pen down and draw a line to the bottom right, pick up the
pen and move it to the top right, and then put the pen down again and draw a line to the
bottom left. Example 35-2 shows one way you could do it. (Of course, you could do the strokes
in any order or direction. This is merely one option that seems natural to me because of the
way I was trained to write. The robot could easily draw bottom to top or a combination of
directions.)

EXAMPLE 35-2 http://actionscriptbible.com/ch35/ex2

Drawing Line Segments

package {
import flash.display.Sprite;
public class ch35ex2 extends Sprite {
public function ch35ex2() {
graphics.lineStyle(1);
graphics.moveTo(0, 0);
graphics.lineTo(20, 20);
graphics.moveTo(20, 0);
graphics.lineTo(0, 20);

}
}

}

Notice anything tricky about this? I’ve snuck in two things. First, I’m drawing inside the example
class because it’s a Sprite and contains a Graphics instance in its graphics property. Second,
I’ve cheated and set a line style. Line and fill styles deserve their own section — it’s coming right up.
But if you want to see any lines, you have to set a line style. If you comment out the first line in the
example, you won’t see anything. So I’ve issued one additional command to the drawing robot: ‘‘Use
a pen that’s one pixel thick.’’ There are a ton more settings for the line, but I’ve let the rest keep their
defaults.

690

Chapter 35: Programming Vector Graphics

You don’t have to pick up the pen between every line segment like this example does. Remember the
exercise of seeing if you can draw a little house (see Figure 35-1) without lifting the pencil or crossing
lines? Is the draw-bot up to the challenge? Example 35-3 has the answer.

FIGURE 35-1

Drawing lines without lifting the pencil

EXAMPLE 35-3 http://actionscriptbible.com/ch35/ex3

Drawing Connected Lines

package {
import flash.display.Sprite;
public class ch35ex3 extends Sprite {
public function ch35ex3() {
graphics.lineStyle(2);
graphics.moveTo(0, 100);
graphics.lineTo(0, 50);
graphics.lineTo(25, 0);
graphics.lineTo(50, 50);
graphics.lineTo(0, 50);
graphics.lineTo(50, 100);
graphics.lineTo(50, 50);
graphics.lineTo(0, 100);
graphics.lineTo(50, 100);
x = y = 10;

}
}

}

Before going on, I want to try something fun. Example 35-4 shows drawing a Hilbert curve in two
dimensions. A Hilbert curve is a fractal curve that follows a simple rule of drawing forward and turning
to describe an open cup like a ‘‘U’’ . . . but if you recurse and follow the same rules between the turns,

691

Part VIII: Graphics Programming and Animation

you’ll come up with a winding path that fills the screen. After a few iterations, it’s kind of hard to
believe that the dense tapestry it creates is the same single line, but nowhere do you ‘‘pick up the
pen.’’ Figure 35-2 shows the curve after a few iterations.

EXAMPLE 35-4 http://actionscriptbible.com/ch35/ex4

Drawing a Continuous Fractal Curve

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
public class ch35ex4 extends Sprite {
protected var iterations:int = 0;
protected var hilbertCurve:Hilbert;

public function ch35ex4() {
hilbertCurve = new Hilbert(stage.stageWidth, stage.stageHeight);
addChild(hilbertCurve);
stage.addEventListener(MouseEvent.CLICK, onClick);
onClick(null);

}

protected function onClick(event:MouseEvent):void {
if (++iterations > 7) {
iterations = 1;
hilbertCurve.scaleX = hilbertCurve.scaleY = 1;

}
hilbertCurve.clear();
hilbertCurve.hilbert(iterations);
hilbertCurve.scaleY = hilbertCurve.scaleX /= 2;

}
}

}
import flash.display.Shape;
class Hilbert extends Shape {
protected const U:int = 0, R:int = 1, D:int = 2, L:int = 3;
protected var curx:Number, cury:Number;
protected var len:Number;

public function Hilbert(w:Number, h:Number) {
len = Math.min(h, w);

}

public function clear():void {
graphics.clear();
graphics.lineStyle(0);
cury = 0;
curx = len/2;
graphics.moveTo(curx, cury);

}

692

Chapter 35: Programming Vector Graphics

public function hilbert(iter:int, dir:int = U):void {
if (--iter < 0) return;
switch(dir) {
case L: //left-facing cup is drawn right, down, left
hilbert(iter, U);
drawSegment(R);
hilbert(iter, L);
drawSegment(D);
hilbert(iter, L);
drawSegment(L);
hilbert(iter, D);
break;

case R: //right-facing cup is drawn left, up, right
hilbert(iter, D);
drawSegment(L);
hilbert(iter, R);
drawSegment(U);
hilbert(iter, R);
drawSegment(R);
hilbert(iter, U);
break;

case U: //up-facing cup is drawn down, right, up
hilbert(iter, L);
drawSegment(D);
hilbert(iter, U);
drawSegment(R);
hilbert(iter, U);
drawSegment(U);
hilbert(iter, R);
break;

case D: //down-facing cup is drawn up, left, down
hilbert(iter, R);
drawSegment(U);
hilbert(iter, D);
drawSegment(L);
hilbert(iter, D);
drawSegment(D);
hilbert(iter, L);
break;

}
}

protected function drawSegment(dir:Number):void {
switch (dir) {
case U: graphics.lineTo(curx, cury -= len); break;
case R: graphics.lineTo(curx += len, cury); break;
case D: graphics.lineTo(curx, cury += len); break;
case L: graphics.lineTo(curx -= len, cury); break;

}
}

}

693

Part VIII: Graphics Programming and Animation

FIGURE 35-2

A Hilbert curve drawn with lineTo()

Curved Line Segments
But enough boring straight lines. How about drawing some pretty curves? The friendly draw-bot
draws a curve with the following method:

function curveTo(controlX:Number,
controlY:Number,
anchorX:Number,
anchorY:Number):void

Now, it looks like only two points are encoded in this method call, but remember that commands
are relative to the current location of the ‘‘pen.’’ So three points are involved in a curve: the initial
position, a control point, and an endpoint. The curve draws from the initial position to the endpoint
at (anchorX, anchorY). It does not pass through the control point at (controlX, controlY) but
bends toward it. This is illustrated in Figure 35-3.

This kind of curve is a quadratic Bézier curve. The kind of curves you may be used to drawing in
illustration software packages are cubic Bézier curves. These have two control points, or ‘‘handles,’’ per
segment. You’ll notice that the curveTo() method uses only one control point.

694

Chapter 35: Programming Vector Graphics

FIGURE 35-3

A curve and its control point

Control

Anchor

Start

Maybe you want to draw a longer, continuous curve. There are a plethora of techniques for approxi-
mating other kinds of curves with quadratic Béziers. However, you can create perfectly natural contin-
uous curves with a simple technique.

Your first thought might be to continue the curve by attaching segments to each other, with the end-
point of one being the starting point of the next. Before you raise your hand to answer what’s wrong
with this, I’ll show you. You can try Example 35-5, clicking to add points to the would-be curve.
(Press any key to clear them.)

EXAMPLE 35-5 http://actionscriptbible.com/ch35/ex5

Continuous Curves, First Attempt

package {
import flash.display.Shape;
import flash.display.Sprite;
import flash.events.KeyboardEvent;
import flash.events.MouseEvent;
import flash.geom.Point;
public class ch35ex5 extends Sprite {
protected var pts:Vector.<Point>;
protected var curve:Shape;
protected var points:Shape;
public function ch35ex5() {
points = new Shape();
addChild(points);
curve = new Shape();
addChild(curve);
//click to add a point
stage.addEventListener(MouseEvent.CLICK, onClick);
//press any key to clear the screen
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);
onKeyDown(null);

}
protected function onClick(event:MouseEvent):void {
var p:Point = new Point(stage.mouseX, stage.mouseY);
pts.push(p);
drawCurve();

continued

695

Part VIII: Graphics Programming and Animation

EXAMPLE 35-5 (continued)

//the points you originally clicked will be displayed
points.graphics.drawCircle(p.x, p.y, 2);

}
protected function onKeyDown(event:KeyboardEvent):void {
pts = new Vector.<Point>();
curve.graphics.clear();
points.graphics.clear();
points.graphics.lineStyle(1, 0, 0.5);

}
protected function drawCurve():void {
if (pts.length < 3) return;
curve.graphics.clear();
curve.graphics.lineStyle(1);
curve.graphics.moveTo(pts[0].x, pts[0].y);
for (var i:int = 0; i < pts.length - 2; i += 2) {
curve.graphics.curveTo(pts[i+1].x, pts[i+1].y, pts[i+2].x, pts[i+2].y);

}
}

}
}

If you play with this code, you’ll quickly see the problem. The good thing is, the resulting curve is
continuous: you connected the endpoint of every quadratic curve segment to the control point and
endpoint of the next segment. However, its first derivative is not continuous. In other words, the slope
changes abruptly between segments. Right now the curve segments are completely independent. You
haven’t done anything to make sure the curves blend into each other. The solution I’m going to pro-
pose is a simple one. It may not be desirable because the curve it produces doesn’t actually go through
any of the points you give it — but it looks nice and it’s trivial.

Perhaps you have a bunch of points to define a curve. First draw midpoints between every set of two
points. You’ve just created a bunch of new points. Now, instead of drawing curves only using the
initial set of points, you have interpolated points to draw with, as you can see in Figure 35-4. If you
use the interpolated points as endpoints and the original points as control points, the result is a curve
that’s both continuous and smooth, as Example 35-6 shows.

EXAMPLE 35-6 http://actionscriptbible.com/ch35/ex6

Continuous Curves, Second Attempt

package {
import flash.display.Shape;
import flash.display.Sprite;
import flash.events.KeyboardEvent;
import flash.events.MouseEvent;
import flash.geom.Point;

696

Chapter 35: Programming Vector Graphics

public class ch35ex6 extends Sprite {
protected var pts:Vector.<Point>;
protected var curve:Shape;
protected var points:Shape;
public function ch35ex6() {
points = new Shape();
addChild(points);
curve = new Shape();
addChild(curve);
//click to add a point
stage.addEventListener(MouseEvent.CLICK, onClick);
//press any key to clear the screen
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);
onKeyDown(null);

}
protected function onClick(event:MouseEvent):void {
var p:Point = new Point(stage.mouseX, stage.mouseY);

//first add in the midpoint between the last point and this point
if (pts.length > 0)
{
var midpoint:Point = Point.interpolate(pts[pts.length-1], p, 0.5);
pts.push(midpoint);
points.graphics.lineStyle(1, 0, 0.2);
points.graphics.lineTo(p.x, p.y);
points.graphics.drawCircle(midpoint.x, midpoint.y, 5);

}
pts.push(p);
points.graphics.lineStyle(1, 0, 0.5);
points.graphics.drawCircle(p.x, p.y, 2);

drawCurve();
}
protected function onKeyDown(event:KeyboardEvent):void {
pts = new Vector.<Point>();
curve.graphics.clear();
points.graphics.clear();

}
protected function drawCurve():void {
if (pts.length < 4) return;
curve.graphics.clear();
curve.graphics.lineStyle(3);
curve.graphics.moveTo(pts[1].x, pts[1].y);
//throw out the first point (i = 1) and the last (i < pts.length - 3)
//because you’re only drawing between midpoints
for (var i:int = 1; i < pts.length - 3; i += 2) {
curve.graphics.curveTo(pts[i+1].x, pts[i+1].y, pts[i+2].x, pts[i+2].y);

}
}

}
}

697

Part VIII: Graphics Programming and Animation

FIGURE 35-4

Quadratic Bézier curve segments, using unmodified set of points and using interpolated anchor points

Points in set

Interpolated points, used as vertices

Shows interpolated points are midpoints

Using interpolated points

Using original points

(unused)

This technique — midpoint interpolation — is useful for generating smooth curves, but not
for approximating higher-degree Bézier curves. The math behind Bézier curves is really cool
and surprisingly graspable. It would be easy to keep going, but there’s a lot more drawing
API to cover! I highly recommend reading the articles and TechNotes on Jim Armstrong’s site
(http://algorithmist.wordpress.com/ and http://algorithmist.net/technotes
.html), which are a treasure trove of curvy goodness. Also, the Wikipedia entry on Béziers is not
half bad (http://en.wikipedia.org/wiki/Bezier_curve).

Filling a Path
You can instruct the drawing API to fill the path you define. Most likely, you’re going to want to
ensure you draw closed paths while using fills so that you know where your fill is filling. Because the
analogy robot has such a terrible memory, you have to tell it when to start filling the paths it’s draw-
ing and when to stop. If you forget to tell the little guy to stop, he goes along his merry way, spilling
ink all over as he keeps drawing paths you never intended to be filled. So remember, for every begin
fill command, you must issue an end fill command!

Now, these commands, like line styles, have different commands for different kinds of fills. You’ll learn
about those next, but for now stick with solid-color fills. You can start filling with a solid color using
this method:

function beginFill(color:uint, alpha:Number = 1.0):void

Finish any kind of fill with the simple method:

function endFill():void

Just because you should close your paths when using fills doesn’t mean you have to. Flash Player fills
the path you define as if you had connected the first and the last point on it.

698

Chapter 35: Programming Vector Graphics

Have some fun with another example. Recall that you can define a circle parametrically as

x(t) = cos(t)
y(t) = sin(t)

This means that you can draw a circle by drawing a point for every value of t in its range of 0 to 2π .
If you start a fill, draw points for a bunch of values of t, and end the fill, you should be able to draw
a circle.

But circles are boring! Who cares! You’ll see how to make a circle in one line later. For now, you’ll
learn how to tweak things by bubbling the edge of the circle up. You do this by modifying each
x and y value by adding in another term that describes a more rapidly rotating circle. Imagine the
Earth circling the sun and tracing a circle (fine, ellipse, if you have to be like that). Now imagine the
moon circling the Earth more rapidly. Try to trace out in your mind what the path of the moon rela-
tive to the sun looks like. That’s what you’ll do in Example 35-7.

EXAMPLE 35-7 http://actionscriptbible.com/ch35/ex7

Filling a Path

package {
import flash.display.Shape;
import flash.display.Sprite;
import flash.events.Event;
import flash.utils.getTimer;
[SWF(backgroundColor="#000000", frameRate="45")]
public class ch35ex7 extends Sprite {
protected var r:Number; //radius
protected var shape:Shape;
public function ch35ex7() {
shape = new Shape();
shape.x = stage.stageWidth / 2;
shape.y = stage.stageHeight / 2;
addChild(shape);
r = Math.min(stage.stageWidth, stage.stageHeight) * 0.3;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
var w:Number = int(30 * ((stage.mouseX / stage.stageWidth) - 0.5));
var r2:Number = 2 * ((stage.mouseY / stage.stageHeight) - 0.5)
r2 = r * 3 * Math.pow(r2, 3);
shape.graphics.clear();
shape.graphics.beginFill(0xff00cc);
for (var t:Number = 0; t < Math.PI * 2; t += 0.03) {
var x:Number = r * Math.cos(t) + r2 * Math.cos(t * w);
var y:Number = r * Math.sin(t) + r2 * Math.sin(t * w);
if (t == 0) shape.graphics.moveTo(x, y);
shape.graphics.lineTo(x, y);

}
shape.graphics.endFill();

}
}

}

699

Part VIII: Graphics Programming and Animation

Note the beginFill() call before the sequence of lineTo() calls and the endFill() after it. If
you run this example, control the amount of pucker or bloat — the radius of the moon’s orbit — with
the y position of your mouse, and control the number of moon orbits per Earth orbit with the x posi-
tion of your mouse. You’ll notice that for small pucker and bloats, the fill is solid because the devi-
ation from a smooth circle is small. Once the values get out of hand, however, the path you ask the
drawing API to fill crosses over itself. When this happens, the outside edge of the path enters the cir-
cle itself, so a lacuna is formed. The fill, in addition to closing gaps, doesn’t fill where the path twists
inside itself.

Clearing Graphics
Well, thanks a lot, Example 35-7 — the cat’s out of the bag. There’s not much more to clearing the
graphics context than calling the method

function clear():void

This method also resets any line or fill styles.

Setting Drawing Styles
Now, you’ve drawn some interesting graphics, but you’ve done so without style. No style, no grace,
no panache, no guts! The drawing API allows you to use the following for both strokes and fills:

� Solid colors

� Gradients

� Bitmaps

� Shaders (Pixel Bender content)

Version
Flash Player 10 and later support all listed content for both strokes and fills. Flash Player 9 supports solid-color,
gradient, and bitmap fills and solid-color and gradient strokes. �

Solid Colors
Solid colors are a simple way to get graphics on-screen quickly and easily. Color fills and strokes may
have an alpha value; keep in mind that you can apply any filters, blend modes, and transformations
to the display objects that contain your Graphics object. So plain colors aren’t all that bad.

To start a solid-color fill, use

function beginFill(color:uint, alpha:Number = 1.0):void

The color is a standard RGB unsigned int such as 0xff0000 (red). Set a transparency with the
optional parameter alpha, which should be scaled between 0 and 1.

700

Chapter 35: Programming Vector Graphics

To set a solid-color stroke style, use this monster method:

function lineStyle(thickness:Number = NaN,
color:uint = 0,
alpha:Number = 1.0,
pixelHinting:Boolean = false,
scaleMode:String = "normal",
caps:String = null,
joints:String = null,
miterLimit:Number = 3):void

As you can see, there are plenty of options, but all of them are optional. Much of the time, the first
three parameters will suffice, but it’s great to have all the options available. They give you an insane
amount of control over how strokes are drawn.

� thickness — Thickness of the stroke in pixels. Strokes are drawn centered on the path that
defines them. This parameter can range from 0 to 255. If NaN (Not a Number, see Chapter 7,
‘‘Numbers, Math, and Dates’’) is passed, no stroke is drawn. You can also turn off strokes by
calling lineStyle() with no arguments, because the default value for thickness is NaN.
A value of 0 uses hairline thickness: no matter how the graphics’ display object is scaled, the
strokes draw one pixel thick.

� color — Color of the stroke.

� alpha — Opacity of the line, between 0 and 1.

� pixelSnapping — When true, instructs the stroke to snap to whole-pixel values. Defaults
to false. See the following examples.

� scaleMode — How the thickness of the line scales. By default, the value is "normal" or
LineScaleMode.NORMAL, which means the line scales as the graphics’ display object scales.
For example, a 1-pixel line within a Shape that is scaled by a factor of 2 appears 2 pixels
wide. Using the value LineScaleMode.NONE prevents the stroke from scaling under any
circumstance. Using LineScaleMode.VERTICAL prevents the stroke from scaling when
the display object is only scaled vertically. If the stroke is scaled horizontally or a combina-
tion, the stroke scales despite using LineScaleMode.VERTICAL. The same applies for
LineScaleMode.HORIZONTAL and horizontal-only scaling.

� caps — The kind of cap to apply to the stroke’s end. Options are CapsStyle.NONE,
CapsStyle.ROUND, and CapsStyle.SQUARE. The default is round caps. See the following
examples to compare cap styles.

� joints — How lines join to one another. If two lines share a common endpoint, Flash
Player applies a joint style. Options are JointStyle.BEVEL, JointStyle.MITER, and
JointStyle.ROUND. By default, the joint style is round. See the following examples to
compare joint styles.

� miterLimit — Only used with the miter joint specifies the distance from the vertex at which
the joint is mitered or cut off. Expressed as a factor of the thickness, so that a value of 3 indicates
that the joint may extend three times the thickness of the stroke past the vertex.

701

Part VIII: Graphics Programming and Animation

Example 35-8 illustrates pixel snapping. Pixel snapping tells the anti-aliasing code in Flash Player
to draw strokes that are close to being on a whole pixel on the pixel boundary rather than
blending between the neighboring pixels. The code draws two identical rectangles just slightly
off whole pixels. The only difference is that one uses pixel snapping in the line style, and the
other does not. When you test the code, you notice that the first rectangle has smoothed-out lines
that show the inaccuracy, whereas the second appears sharp and straight. The effect is shown
in Figure 35-5.

EXAMPLE 35-8 http://actionscriptbible.com/ch35/ex8

Pixel Snapping

package {
import flash.display.Shape;
import flash.display.Sprite;
public class ch35ex8 extends Sprite {
public function ch35ex8()
{
var nosnap:Shape = new Shape();
addChild(nosnap);
nosnap.graphics.lineStyle(0, 0, 1, false);
nosnap.graphics.lineTo(100, 0.4);
nosnap.graphics.lineTo(100.4, 50);
nosnap.graphics.lineTo(0, 50.4);
nosnap.graphics.lineTo(0.4, 0)
nosnap.x = nosnap.y = 20;

var snappy:Shape = new Shape();
addChild(snappy);
snappy.graphics.lineStyle(0, 0, 1, true);
snappy.graphics.lineTo(100, 0.4);
snappy.graphics.lineTo(100.4, 50);
snappy.graphics.lineTo(0, 50.4);
snappy.graphics.lineTo(0.4, 0);
snappy.x = 200; snappy.y = 20;

}
}

}

Example 35-9 illustrates the scale type parameter. Both rectangles are scaled to four times their orig-
inal size in the x direction. However, whereas the line thickness in the first rectangle scales, the line
thickness in the second does not. The effect is shown in Figure 35-6.

Notice that for the special case of 1-pixel-wide strokes, setting the stroke to hairline thickness has the
same effect as setting the scaleMode to LineScaleMode.NONE.

702

Chapter 35: Programming Vector Graphics

FIGURE 35-5

The pixel-snapping parameter urges edges close to a pixel boundary to draw on the pixel rather
than anti-aliasing.

Pixel Snapping Off Pixel Snapping On

EXAMPLE 35-9 http://actionscriptbible.com/ch35/ex9

Scale Types

package {
import flash.display.LineScaleMode;
import flash.display.Shape;
import flash.display.Sprite;
public class ch35ex9 extends Sprite {
public function ch35ex9() {
//normal scale mode (by default), strokes scale
var normalscale:Shape = new Shape();
addChild(normalscale);
normalscale.graphics.lineStyle(1);
normalscale.graphics.drawRect(10, 10, 50, 50);
normalscale.scaleY = 4;

//no-scale mode, strokes don’t scale
var noscale:Shape = new Shape();
addChild(noscale);
noscale.x = 100;
noscale.graphics.lineStyle(1, 0, 1, false, LineScaleMode.NONE);
noscale.graphics.drawRect(10, 10, 50, 50);
noscale.scaleY = 4;

//normal scale mode, hairline stroke, strokes stay at 1 px wide
var hairline:Shape = new Shape();
addChild(hairline);
hairline.x = 200;
hairline.graphics.lineStyle(0);
hairline.graphics.drawRect(10, 10, 50, 50);
hairline.scaleY = 4;

}
}

}

703

Part VIII: Graphics Programming and Animation

FIGURE 35-6

Setting the scale type parameter determines how strokes scale.

1px stroke
Normal scale mode, scaled up

1px stroke
No scale mode, scaled up

Hairline stroke
Normal scale mode, scaled up

Example 35-10 shows the available types of stroke end caps. The effect is shown in Figure 35-7.

EXAMPLE 35-10 http://actionscriptbible.com/ch35/ex10

Stroke End Caps

package {
import flash.display.*;
public class ch35ex10 extends Sprite {
public function ch35ex10() {
var g:Graphics = graphics;
g.lineStyle(40, 0, 0.5, false, LineScaleMode.NONE, CapsStyle.ROUND);
drawStroke(40);
g.lineStyle(40, 0, 0.5, false, LineScaleMode.NONE, CapsStyle.SQUARE);
drawStroke(100);
g.lineStyle(40, 0, 0.5, false, LineScaleMode.NONE, CapsStyle.NONE);
drawStroke(160);

}
protected function drawStroke(y:Number):void {
graphics.moveTo(0, y);
graphics.lineTo(150, y);
graphics.lineStyle(0);
graphics.moveTo(0, y);
graphics.lineTo(150, y);

}
}

}

704

Chapter 35: Programming Vector Graphics

FIGURE 35-7

The line cap styles

CapsStyle.ROUND

CapsStyle.SQUARE

CapsStyle.NONE

Example 35-11 illustrates the join styles and miter limits. The effect is shown in Figure 35-8.

EXAMPLE 35-11 http://actionscriptbible.com/ch35/ex11

Joins and Miters

package {
import flash.display.*;
public class ch35ex11 extends Sprite {
public function ch35ex11() {
graphics.lineStyle(20, 0, 0.3, false, null, null, JointStyle.ROUND);
drawStrokes(40);
graphics.lineStyle(20, 0, 0.3, false, null, null, JointStyle.BEVEL);
drawStrokes(120);
graphics.lineStyle(20, 0, 0.3, false, null, null, JointStyle.MITER);
drawStrokes(200);
graphics.lineStyle(20, 0, 0.3, false, null, null, JointStyle.MITER, 20);
drawStrokes(280);

}
protected function drawStrokes(y:Number):void {
graphics.moveTo(0, 0+y);
graphics.lineTo(100, 0+y);
graphics.lineTo(-20, 50+y);
graphics.lineStyle(0);
graphics.moveTo(0, 0+y);
graphics.lineTo(100, 0+y);
graphics.lineTo(-20, 50+y);

}
}

}

705

Part VIII: Graphics Programming and Animation

FIGURE 35-8

Joint styles

JoinStyle.ROUND

JoinStyle.BEVEL

JoinStyle.MITER, default miter

JoinStyle.MITER, 20px miter

Here I used a tiny shortcut. The string constant parameters to this method may be sent null, and
they take their default values.

Gradients
The drawing API lets you use gradients for both fills and strokes. The drawing API creates linear and
radial gradients for you. When you use a gradient line style, it merely defines how the gradient fills
up the stroke. A call to lineStyle() is still required to set the basic parameters of the stroke. Once
the basic line style is set, the drawing API knows how to draw the shape of the stroke; the gradient,
bitmap, and shader line styles merely fill in the shape of the stroke that lineStyle() defines.

The methods to apply gradients to strokes and fills are very much the same, so I’ll show them as a set.

function beginGradientFill(type:String,
colors:Array,
alphas:Array,
ratios:Array,
matrix:Matrix = null,
spreadMethod:String = "pad",
interpolationMethod:String = "rgb",
focalPointRatio:Number = 0):void

function lineGradientStyle(type:String,
colors:Array,
alphas:Array,
ratios:Array,
matrix:Matrix = null,

706

Chapter 35: Programming Vector Graphics

spreadMethod:String = "pad",
interpolationMethod:String = "rgb",
focalPointRatio:Number = 0):void

These methods control everything about the gradient, from the colors it’s made up of to how they
blend into each other. You’ll note that at least the first four parameters are required.

� type — Whether the gradient is to be linear (the color changes gradually along a line) or
radial (the color changes gradually from a central point and moves outward). Options are
GradientType.LINEAR and GradientType.RADIAL.

� colors — An array of color values specified as RGB uints. You can specify two or more col-
ors; the gradient blends between these. For linear gradients, the colors gradate from left to right.
For radial gradients, the colors gradate from the center out.

� alphas — For each color value, you must include a corresponding alpha value. This array
parallels the colors array, specifying a series of alpha values between 0 and 1.

� ratios — The drawing API also needs to know how to weight the colors. Where along the
spectrum of the gradient should Flash center each color from the colors array? An array of val-
ues from 0 to 255 that correspond to the colors and alphas arrays specifies this. A value of
0 means that the corresponding color’s center should be located at the far left (linear) or center
(radial) of the gradient. A value of 255 indicates that the corresponding color’s center should be
located at the far right (linear) or outside (radial) of the gradient.

� matrix — A transformation matrix to be applied to the gradient. This is used to rotate and
translate the gradient within the area to be filled or stroked by the gradient. This parameter is
optional, but you’ll usually need to include it.

� spreadMethod — How the gradient should fill up the space provided. Options are
SpreadMethod.PAD (the default), SpreadMethod.REFLECT, and SpreadMethod
.REPEAT. The PAD option fills any leftover space of the line or shape with the color from the
edge of the gradient closest to the empty space. REFLECT mirrors the gradient repeatedly to fill
the space. When the REPEAT option is selected, the same gradient simply repeats as necessary.
This option results in discontinuities if the colors at the edges of the gradient are not the same.

� interpolationMethod — Determines how the intermediate colors in a gradient are
calculated. Defaults to InterpolationMethod.RGB; this interpolates values in the
sRGB color space, which gives a more perceptually smooth gradient. You may also choose
InterpolationMethod.LINEAR; this interpolates the colors linearly without conversion,
which gives a numerically accurate gradient.

� focalPointRatio — Used in radial gradients only, this shifts the focus (the center of the
gradient) from left (–1) to right (1) within the ellipse.

That’s a lot of parameters, so it’ll be good to look at a few examples. First, however, you’ll learn how
to construct a matrix using the Matrix class. You can construct a standard Matrix object and then
use the createGradientBox() method. The createGradientBox() method accepts up to five
parameters — width, height, rotation in radians, amount to translate in the x direction, and amount to
translate in the y direction. The width and height parameters are required. The remaining param-
eters have default values of 0. The following code creates a Matrix object that you can use with the
lineGradientStyle() method to apply a gradient that has dimensions of 200 by 100 pixels:

var mxBox:Matrix = new Matrix();
mxBox.createGradientBox(200, 100);

Example 35-12 uses both gradient strokes and gradient fills for a truly gaudy appearance.

707

Part VIII: Graphics Programming and Animation

EXAMPLE 35-12 http://actionscriptbible.com/ch35/ex12

Gradient Strokes and Fills

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
public class ch35ex12 extends Sprite {
public function ch35ex12() {
stage.addEventListener(MouseEvent.CLICK, onClick);

}
protected function onClick(event:MouseEvent):void {
var s:Sticker = new Sticker();
s.x = stage.mouseX;
s.y = stage.mouseY;
s.scaleX = s.scaleY = 0.5 + Math.random()*0.5;
s.rotationZ = (Math.random() - 0.5) * 20;
addChild(s);

}
}

}
import flash.display.*;
import flash.text.*;
import flash.filters.*;
import flash.geom.Matrix;
class Sticker extends Sprite {
protected static const labels:Array = ["OMG!", "WOW!", "BETA", "MFJ", "ORLY",
"LULZ", "OMFG", "KITTENS", "ZOMG", "WUT?", "2.0", "SNACKS!", "TACO",
"ONOES!", "DESU"];

protected static const SIZE:Number = 100;
public function Sticker() {
var gradientMatrix:Matrix = new Matrix();
gradientMatrix.createGradientBox(SIZE, SIZE, Math.PI/2);

graphics.lineStyle(5, 0, 1, false, null, null, JointStyle.MITER, 10);
graphics.lineGradientStyle(GradientType.LINEAR,
[0xfff600, 0x837749],
[1, 1],
[0, 255],
gradientMatrix

);

graphics.beginGradientFill(GradientType.LINEAR,
[makeColor(), makeColor()],
[1, 1],
[0, 255],
gradientMatrix

);

drawPolyStar();
graphics.endFill();

var label:TextField = makeLabel();

708

Chapter 35: Programming Vector Graphics

label.x = -0.5 * label.textWidth;
label.y = -0.5 * label.textHeight;
addChild(label);
filters = [new DropShadowFilter(0, 0, 0, 0.6, 64, 64, 1, 2)];

}
protected function drawPolyStar():void {
var rdelta:Number = 10; //how pointy the points are
var tdelta:Number = Math.PI*2 / 40; //40 points
for (var t:Number = 0; t < Math.PI*2; t += tdelta) {
rdelta *= -1;
var x:Number = (SIZE + rdelta) * Math.cos(t);
var y:Number = (SIZE + rdelta) * Math.sin(t);
if (t == 0) {
graphics.moveTo(x, y);

} else {
graphics.lineTo(x, y);

}
}

}
protected function makeLabel():TextField {
var tf:TextField = new TextField();
tf.width = tf.height = 0;
tf.selectable = false;
tf.autoSize = TextFieldAutoSize.LEFT;
tf.defaultTextFormat = new TextFormat("_sans", 35, 0xffffff, true, true);
tf.text = labels[Math.floor(Math.random() * labels.length)];
return tf;

}
protected function makeColor():uint {
var rnd:Function = function():uint{return uint(Math.random() * 128 + 128)};
return (rnd() << 16 | rnd() << 8 | rnd());

}
}

First, check out the gradient styles in the Sticker() constructor. Notice that I set a stroke style
before setting the gradient style. Using a long miter lets the points of the star come to a sharp point.
The two gradients are linear gradients, sharing the same matrix transformation that makes them ver-
tical. The stroke is populated with a predetermined gold color, whereas the fill gradient has its colors
set at runtime by makeColor(). Refer to Chapter 13, ‘‘Binary Data and ByteArrays,’’ for more infor-
mation on the bit math. Notice also that the rotationZ property is being used to rotate a device
font. This only works in Flash Player 10 and later — but that has nothing to do with the gradient fills
and strokes.

You might also notice that the algorithm to draw the star shape is similar to that used in
Example 35-7. A starburst shape is basically circular, so I started with the parametric circle equation
again. At every point on the starburst, the vertex is either moved in or out from where it should be.
In other words, its radius alternates. Every loop, flip the magnitude of a constant added onto the
radius of what’s otherwise a circle and, voila, you’ll get a starburst. Simply make sure that there are
an even number of points and that they divide into 2π to ensure that the start and end points of the
starburst shape are the same.

709

Part VIII: Graphics Programming and Animation

I’ve cheated yet again and snuck in a hint of upcoming chapters. A shadow filter is applied to the
stickers to give them depth as they pile up; learn more about filters in Chapter 37.

You can do a lot more with gradients. Try playing with the code to draw other shapes or make more
interesting gradients with more colors or radial gradients or with less random color schemes!

Bitmaps
Using the drawing API, you can fill paths with bitmaps. This is particularly cool for tiled graphics. Say
you have to fill a huge background area. Instead of loading a 500KB image, you could create a tiling
bitmap that’s only 10KB and repeat it. With bitmap fills, this task is trivial.

Again, the methods used for bitmap fills and strokes are the same, so look at them as a group.

function beginBitmapFill(bitmap:BitmapData,
matrix:Matrix = null,
repeat:Boolean = true,
smooth:Boolean = false):void

function lineBitmapStyle(bitmap:BitmapData,
matrix:Matrix = null,
repeat:Boolean = true,
smooth:Boolean = false):void

Version
Flash Player 10 and later support bitmap fills and strokes. Flash Player 9 supports bitmap fills. The
lineBitmapStyle() method is only available in FP10 and later. �

The parameters to the bitmap fill and stroke methods are fairly simple. Be sure to read up on bitmap
data in Chapter 36.

� bitmap — The bitmap data to draw.

� matrix — A transformation matrix that allows you to translate and rotate the source bitmap
while drawing it into the stroke or fill.

� repeat — Set this to true to tile the bitmap. Defaults to true.

� smooth — Set this to true to use smoothing when drawing the bitmap. Defaults to false.
You probably want to keep this off as long as no transformations are applied, especially with
pixel tiles.

In Example 35-13, you’ll add a bitmap tile that will continually resize itself to match the stage’s size.
This is perfect for backgrounds in sites. I’ve used this very class in multiple client projects.

EXAMPLE 35-13 http://actionscriptbible.com/ch35/ex13

Tiling a Pattern with Bitmap Fills

package {
import flash.display.*;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.net.URLRequest;

710

Chapter 35: Programming Vector Graphics

import flash.sampler.NewObjectSample;
import flash.system.LoaderContext;
public class ch35ex13 extends Sprite {
public function ch35ex13() {
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
var l:Loader = new Loader();
l.load(new URLRequest("http://actionscriptbible.com/files/plaid.gif"),
new LoaderContext(true)); //thanks to squidfingers.com for the tile!

l.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoadComplete);
}
protected function onLoadComplete(event:Event):void {
var b:Bitmap = LoaderInfo(event.target).content as Bitmap;
if (b) {
var tile:TileBitmap = new TileBitmap(b.bitmapData);
addChild(tile);
tile.followStageSize(stage);
tile.addEventListener(MouseEvent.CLICK, onClick);

}
}
protected function onClick(event:MouseEvent):void {
//go full screen on click to see more of this beautiful plaid
stage.displayState = (stage.displayState == StageDisplayState.NORMAL)?
StageDisplayState.FULL_SCREEN : StageDisplayState.NORMAL;

}
}

}
import flash.display.*;
import flash.events.Event;
class TileBitmap extends Sprite
{
protected var srcBitmap:BitmapData;
protected var smoothing:Boolean = false;
protected var _width:Number = 0;
protected var _height:Number = 0;
public function TileBitmap(srcBitmap:BitmapData, smoothing:Boolean = false) {
super();
this.smoothing = smoothing
this.srcBitmap = srcBitmap;
redraw();

}
public function followStageSize(s:Stage):void {
s.addEventListener(Event.RESIZE,
function(event:Event):void {matchStageSize(Stage(event.target))});

matchStageSize(s);
}
protected function matchStageSize(s:Stage):void {
width = s.stageWidth;
height = s.stageHeight;

}

continued

711

Part VIII: Graphics Programming and Animation

EXAMPLE 35-13 (continued)

override public function set width(w:Number):void {
if (Math.abs(w - width) < 1) return;
_width = w;
super.width = _width;
redraw();

}
override public function get width():Number {return _width;}
override public function set height(h:Number):void {
if (Math.abs(h - height) < 1) return;
_height = h;
super.height = _height;
redraw();

}
override public function get height() : Number {return _height;}
protected function redraw():void {
scaleX = scaleY = 1;
if (srcBitmap && width > 0 && height > 0) {

graphics.clear();
graphics.beginBitmapFill(srcBitmap, null, true, smoothing);
graphics.drawRect(0, 0, Math.ceil(width), Math.ceil(height));
graphics.endFill();

}
}

}

After the tile loads (a whopping 1KB!), you can click the background to see it full screen. It should
tile magnificently to cover any area.

Game developers can also make good use of beginBitmapFill(). It’s a fast and simple method
for blitting, which is just a fancy word for dumping bitmap data onto the screen as fast as possible.
Blitting to a graphics surface using the drawing API has far less overhead than creating Bitmap
instances for each game sprite, though there are definitely other approaches. This is one of those
hybrid vector-bitmap programming techniques I mentioned in the overview.

Shaders
Finally, the drawing API lets you fill and stroke paths with output from a shader. You’ll learn more
about shaders in Chapter 38, ‘‘Writing Shaders with Pixel Bender.’’ The methods for using a shader on
a stroke and a fill are practically identical:

function beginShaderFill(shader:Shader, matrix:Matrix = null):void

function lineShaderStyle(shader:Shader, matrix:Matrix = null):void

Version
FP10. Shaders are only available in Flash Player 10 and up, and so too these methods. �

712

Chapter 35: Programming Vector Graphics

When using these methods, all inputs to the shader must already be satisfied. The transformation
matrix, as usual, allows a final linear transformation to be applied before drawing the fill or stroke.
Just load in a precompiled Pixel Bender kernel for now, and save the shader code for Chapter 38. In
Example 35-14, I’ve used Ricardo Cabello’s plasma shader to stroke a Lissajous curve. Lissajous curves
are a fun family of parametric equations that let you see harmonic oscillations; circles and ellipses are
some of the degenerate cases of a Lissajous curve. The parametric equations are

x(t) = sin(at + d)

y(t) = sin(bt)

You can see how they are similar to circles. The equations become especially familiar when the d term
is π /2, because sin(t + π /2) = cos(t).

EXAMPLE 35-14 http://actionscriptbible.com/ch35/ex14

Shaders and Lissajous Curves

package {
import flash.display.*;
import flash.events.Event;
import flash.net.*;
import flash.utils.ByteArray;
import flash.utils.getTimer;
[SWF(backgroundColor="#000000")]
public class ch35ex14 extends Sprite {
protected var plasma:Shader;
protected var shape:Shape;
public function ch35ex14() {
plasma = new Shader();
shape = new Shape();
shape.x = stage.stageWidth/2; shape.y = stage.stageHeight/2;
addChild(shape);
var loader:URLLoader = new URLLoader();
loader.dataFormat = URLLoaderDataFormat.BINARY;
//plasma shader courtesy the inimitable mrdoob (Ricardo Cabello)
loader.load(new URLRequest(
"http://actionscriptbible.com/files/mrdoob-plasma.pbj"));

loader.addEventListener(Event.COMPLETE, onLoadComplete);
}
protected function onLoadComplete(event:Event):void {
var loader:URLLoader = URLLoader(event.target);
plasma.byteCode = ByteArray(loader.data);
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
var t:int = getTimer();
var w:Number = stage.stageWidth/2; var h:Number = stage.stageHeight/2;
var d:ShaderData = plasma.data;
d.center.value = [Math.sin(t*.002)*300+w, Math.cos(t*.0001)*300+h];
d.wave.value = [Math.sin(t*.001)*.06+0.01, Math.cos(t*.00005)*.05];
d.offset.value = [Math.sin(t*.004)*200, Math.cos(t*.0003)*200];
d.color_offset.value = [Math.sin(t*.002)*2, Math.sin(t*.00009)*2,
Math.cos(t*.00005)*2];

continued

713

Part VIII: Graphics Programming and Animation

EXAMPLE 35-14 (continued)

d.distort.value = [Math.sin(t*.0008)*.05];

shape.graphics.clear();
shape.graphics.lineStyle(6, 0, 1, false, null, CapsStyle.NONE);
shape.graphics.lineShaderStyle(plasma);
drawLissajous();

}
protected function drawLissajous():void {
var H:Number = stage.stageHeight, W:Number = stage.stageWidth;
var a:Number = ((stage.mouseX / W) - 0.5) * 16;
var b:Number = ((stage.mouseY / H) - 0.5) * 16;
for (var t:Number = 0; t < Math.PI * 2; t += 0.02) {
var x:Number = W/2 * Math.sin(a * t + Math.PI/2);
var y:Number = H/2 * Math.sin(b * t);
if (t == 0) {
shape.graphics.moveTo(x, y);

} else {
shape.graphics.lineTo(x, y);

}
}

}
}

}

Filling a rectangular area with the result of a shader is one of the quicker ways to get shader output
onto the screen.

Drawing Primitives
The drawing API lets you draw any number of simple shapes to the Graphics object. Using these
built-in primitive drawing methods is much less painful than describing the primitives in terms of
their constituent lines and curves. To use all the primitive drawing commands, set your line and fill
styles, call the primitive drawing function, and then end any fills you started. In the examples thus far,
I’ve already shown some of the primitive drawing methods in use here and there without comment.
The next sections explore these methods in detail.

Rectangles and Squares
Use the drawRect() function to draw rectangles and squares.

function drawRect(x:Number, y:Number, width:Number, height:Number):void

714

Chapter 35: Programming Vector Graphics

The x and y parameters define the top-left point of the rectangle; the width and height parameters
remain a mystery to this day. (Kidding.) Rectangles have a ridiculous number of uses. Just to
name one, combine a filled rectangle with a TextField and a bevel filter for a sweet-looking
button.

Circles and Ellipses
You can draw a circle with the — surprise! — drawCircle() method.

function drawCircle(x:Number, y:Number, radius:Number):void

The x and y parameters define the center of the circle, and radius defines its radius. Remember that
circles draw from the center out, unlike rectangles. To position a circle via the top-left corner of its
bounding box, just add its radius to its center x and y positions.

You can draw ellipses with the drawEllipse() method. Do you sense a pattern here?

function drawEllipse(x:Number, y:Number, width:Number, height:Number):void

Unlike circles, and like rectangles, ellipses are drawn from the top-left corner of their bounding box, a
point which the parameters x and y define. Also note that you set an ellipse’s width and height rather
than its eccentricity or focal distances.

Rounded Rectangles
The Graphics object has two methods to draw rounded rectangles. The first is the
drawRoundRect() method, which creates a rectangle masking an inner ellipse. What you
end up seeing is the intersection of the two shapes. You get the straight edges of the rectangle, with
the roundness of an ellipse at the corners. See Figure 35-9 for an illustration. The method is as
follows:

function drawRoundRect(x:Number,
y:Number,
width:Number,
height:Number,
ellipseWidth:Number,
ellipseHeight:Number = NaN):void

The x and y position define the top-left corner of the rectangle. The width and height parameters
determine the size of the rectangle. The size of the ellipse is actually defined relative to the smallest
ellipse that fully contains the rectangle, such that the intersection of the two shapes is equal to the
rectangle. When you set ellipseWidth and ellipseHeight, you’re actually specifying the num-
ber of pixels the ellipse should be shrunk in each dimension. The higher these numbers, the smaller
the ellipse, and the more the ellipse defines the corner. Or you can simply think of these values as the
radius of the corners. You may omit the last parameter, and the ellipse will use the same dimension
for ellipseWidth and ellipseHeight.

715

Part VIII: Graphics Programming and Animation

FIGURE 35-9

The intersection of an ellipse and a rectangle yields a rounded rectangle.

The second way of drawing a rounded rectangle is to use the drawRoundRectComplex() method,
which allows you to independently define the radius of each of the four corners of your rectangle.
This method is way cooler, but it’s undocumented, so if you want to be conservative, you might
steer clear of it. But at this point the rectangle will boldly go where no rounded rectangle has gone
before:

function drawRoundRectComplex(x:Number,
y:Number,
width:Number,
height:Number,
topLeftRadius:Number,
topRightRadius:Number,
bottomLeftRadius:Number,
bottomRightRadius:Number):void

The parameters are pretty self-explanatory. Besides letting you create rectangles with different amounts
of rounding on each corner, drawRoundRectComplex() is just a lot simpler to think about. On
the other hand, it only lets you use circular corners — but I think the elliptical corners tend to look
horrendous.

Now you’ll put all these primitives to use in a bigger example.

Example: A Drawing Application
Using what you’ve learned about the drawing API so far, you can create a simple drawing applica-
tion. This simple application consists of three classes: the ColorPicker, the ToolSet, and the
DrawingCanvas. The DrawingCanvas contains both the tool set and the color picker, and it uses
events to set the color and tool when these are clicked. It also handles mouse interaction, creating a
new curShape when you press the mouse, and updating it as you move the mouse, depending on
the tool, color, and other parameters.

Example 35-15 shows the application, all at once.

716

Chapter 35: Programming Vector Graphics

EXAMPLE 35-15 http://actionscriptbible.com/ch35/ex15

A Drawing Application

package {
import flash.display.Sprite;
public class ch35ex15 extends Sprite {
public function ch35ex15() {
addChild(new DrawingCanvas(stage));

}
}

}
import flash.display.*;
import flash.events.*;
import flash.geom.Point;
import flash.ui.Keyboard;
class DrawingCanvas extends Sprite
{
private var canvas:Sprite;
private var toolState:String = "pen";
private var curShape:Shape;
private var curColor:uint;
private var lineThickness:Number = 4;
private var colorPicker:ColorPicker;
private var toolSet:ToolSet;
private var origin:Point = new Point();
public function DrawingCanvas(_stage:Stage) {
canvas = new Sprite();
canvas.graphics.beginFill(0xFFFFFF, 1);
canvas.graphics.drawRect(0, 0, _stage.stageWidth, _stage.stageHeight);
canvas.graphics.endFill();
addChild(canvas);
_stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);
canvas.addEventListener(MouseEvent.MOUSE_DOWN, startDraw);
canvas.addEventListener(MouseEvent.MOUSE_UP, stopDraw);
colorPicker = new ColorPicker();
addChild(colorPicker);
colorPicker.x = 0;
colorPicker.addEventListener("colorSelected", changeColor);
toolSet = new ToolSet();
addChild(toolSet);
toolSet.y = 100;
toolSet.x = 5;
toolSet.addEventListener("toolSelected", changeTool);
curShape = new Shape();

}
private function onKeyDown(event:KeyboardEvent):void {

switch (event.keyCode) {
case Keyboard.UP: lineThickness++; break;

continued

717

Part VIII: Graphics Programming and Animation

EXAMPLE 35-15 (continued)

case Keyboard.DOWN: lineThickness = Math.max(0, lineThickness-1); break;
}

}
private function stopDraw(mouseEvent:MouseEvent):void {
canvas.removeEventListener(MouseEvent.MOUSE_MOVE, draw);

}
private function startDraw(mouseEvent:MouseEvent):void {
curShape = new Shape();
origin.x = canvas.mouseX;
origin.y = canvas.mouseY;
addChild(curShape);
canvas.addEventListener(MouseEvent.MOUSE_MOVE, draw);
if(toolState == "line" || toolState == "pen" || toolState == "eraser") {
curShape.graphics.moveTo(mouseEvent.stageX, mouseEvent.stageY);

}
}
private function draw(mouseEvent:MouseEvent):void {
var cursor:Point = new Point(canvas.mouseX, canvas.mouseY);
var dist:Point = cursor.subtract(origin);
switch(toolState) {
case "pen":
curShape.graphics.lineStyle(lineThickness, curColor);
curShape.graphics.lineTo(mouseEvent.stageX, mouseEvent.stageY);
break;

case "line":
curShape.graphics.clear();
curShape.graphics.lineStyle(lineThickness, curColor);
curShape.graphics.moveTo(origin.x, origin.y);
curShape.graphics.lineTo(mouseEvent.stageX, mouseEvent.stageY);
break;

case "ellipse":
curShape.graphics.clear();
curShape.graphics.beginFill(curColor, 1);
curShape.graphics.drawEllipse(origin.x, origin.y, dist.x, dist.y);
break;

case "rect":
curShape.graphics.clear();
curShape.graphics.beginFill(curColor, 1);
curShape.graphics.drawRect(origin.x, origin.y, dist.x, dist.y);
break;

case "roundrect":
curShape.graphics.clear();
if (dist.x < 0 || dist.y < 0) break;
curShape.graphics.beginFill(curColor, 1);
curShape.graphics.drawRoundRect(origin.x, origin.y, dist.x, dist.y,
lineThickness, lineThickness);

break;
case "eraser":
curShape.graphics.lineStyle(lineThickness, curColor);

718

Chapter 35: Programming Vector Graphics

curShape.graphics.lineTo(mouseEvent.stageX, mouseEvent.stageY);
break;

}
}
private function changeTool(evt:DataEvent):void {
toolState = evt.data;
if (toolState == "eraser") {
curColor = 0xffffff;
toolState = "pen";
lineThickness = 30;

} else {
lineThickness = 4;

}
}
private function changeColor(dataEvent:DataEvent):void {
curColor = parseInt(dataEvent.data, 16);
curShape.graphics.lineStyle(lineThickness, curColor);
if (toolState == "eraser") {
toolState = "line";

}
}

}
import flash.display.*;
import flash.geom.ColorTransform;
import flash.events.MouseEvent;
import flash.events.DataEvent;
class ColorPicker extends Sprite {
private var k:int = 255;
public function ColorPicker() {
for(var i:int = 0; i < 256; i += 48) {

for(var j:int = 0; j < 256; j += 48) {
var spr:Sprite = new Sprite();
spr.graphics.beginFill(0xFFFFFF, 1);
spr.graphics.drawRect(0, 0, 10, 10);
spr.graphics.endFill();
spr.buttonMode = true;
//apply color transofrm
var trans:ColorTransform = new ColorTransform();
var red:uint = i << 16;
trans.color = red + green + blue;
var green:uint = j << 8;
var blue:uint = k;
spr.transform.colorTransform = trans;
addChild(spr);
spr.addEventListener(MouseEvent.CLICK, onColorPicked);
spr.x = i / 4;
spr.y = j / 4;
k -= 48;

}
}

}
continued

719

Part VIII: Graphics Programming and Animation

EXAMPLE 35-15 (continued)

private function onColorPicked(mouseEvent:MouseEvent):void {
var target:Sprite = mouseEvent.target as Sprite;
var trans:ColorTransform = target.transform.colorTransform;
var color:uint = trans.color;
var dataEvent:DataEvent = new DataEvent("colorSelected", false, false,
trans.color.toString(16));

dispatchEvent(dataEvent);
}

}
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.events.DataEvent;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
class ToolSet extends Sprite {
public function ToolSet() {
var pen:Sprite = makeButton("pen");
pen.graphics.beginFill(0);
pen.graphics.drawCircle(10, 10, 2);
pen.graphics.drawCircle(15, 15, 2);
pen.graphics.drawCircle(20, 20, 2);
var ellipse:Sprite = makeButton("ellipse");
ellipse.graphics.beginFill(0)
ellipse.graphics.drawCircle(15, 15, 12);
ellipse.graphics.endFill();
var square:Sprite = makeButton("rect");
square.graphics.beginFill(0);
square.graphics.drawRect(5, 5, 20, 20);
var roundrect:Sprite = makeButton("roundrect");
roundrect.graphics.beginFill(0);
roundrect.graphics.drawRoundRect(5, 5, 20, 20, 8);
var line:Sprite = makeButton("line");
line.graphics.lineStyle(4);
line.graphics.moveTo(10, 10);
line.graphics.lineTo(20, 20);
var eraser:Sprite = makeButton("eraser");
eraser.graphics.lineStyle(4);
eraser.graphics.moveTo(10, 10);
eraser.graphics.lineTo(20, 20);
eraser.graphics.moveTo(20, 10);
eraser.graphics.lineTo(10, 20);

}
private function makeButton(id:String):Sprite {
var s:Sprite = new Sprite();
s.name = id;
s.graphics.beginFill(0, 0);
s.graphics.lineStyle(0, 0, 0.3);
s.graphics.drawRect(0, 0, 30, 30);
s.graphics.endFill();
s.graphics.lineStyle();

720

Chapter 35: Programming Vector Graphics

s.buttonMode = true;
s.addEventListener(MouseEvent.MOUSE_DOWN, toolClicked);
var label:TextField = new TextField();
label.autoSize = TextFieldAutoSize.LEFT;
label.text = id;
label.y = -15;
s.addChild(label);
s.y = numChildren * 45;
addChild(s);
return s;

}
private function toolClicked(event:MouseEvent):void {
var tool:DisplayObject = event.target as DisplayObject;
dispatchEvent(new DataEvent("toolSelected", false, false, tool.name));

}
}

Phew! All the exciting drawing code is contained in startDraw() and draw() of the
DrawingCanvas. Note that you can use the keyboard to change the thickness of the pen and
line tools, and the roundness of the corners of the round rect. This example brings together primitives
and basic drawing commands.

Batched Drawing
Beginning in Flash Player 10, the drawing API has been augmented with the ability to draw whole
chunks of a drawing at once, rather than calling a long string of functions. Command objects encap-
sulate drawing commands in a compact form and can be used to pass around whole drawings or
complex paths. You’ll even notice a speed boost when using these batched drawing methods instead
of subsequent calls.

Version
FP10. All methods and classes covered in this section are only available in Flash Player 10 and later. �

The drawing API lets you batch generic drawings, complex paths, and strips of triangles. All these
drawing methods have their own uses and their own slightly different approaches.

Drawing a Path
If you have a complicated path with dozens of points or curves, instead of calling moveTo(),
lineTo(), and curveTo() repeatedly, you can store all the essential data about these paths in a
dense format and use the Graphics object’s drawPath() method to execute the path. If you’d
like to fill the path, you can surround the drawPath() call with beginFill() and endFill()
as you normally would; likewise, you can set stroke styles just as you normally would. The drawing
API still acts statefully as always. By drawing a path with drawPath(), you merely collapse all the
moveTo(), lineTo(), and curveTo() calls into one function call.

721

Part VIII: Graphics Programming and Animation

So what is the ‘‘essential data’’ about paths? Most importantly, you need to know the points on the
‘‘canvas’’ that are involved in the path. You can store a list of x and y positions used to draw the path.
By using a Vector of Numbers (Vector.<Number>), you can store a collection of points by simply
alternating x, y, x, y, x, y . . . in the Vector by convention. This is an outrageously compact way to
store a sequence of locations! This can be referred to as the ‘‘coordinates vector.’’

But paths can involve moving the pen, drawing a straight line segment, and drawing a quadratic Bézier
segment. Just storing the points is not enough: you have to know what to do with them. You’ve heard
the possible options several times. If you simply assign a unique numeric value to each option and
store them in a Vector of ints (Vector.<int>), you’ll have a compact way to know what to do
with the locations. This can be called the ‘‘commands vector.’’ You’ll encode the possible path opera-
tions in the manner described in Table 35-1.

TABLE 35-1

Path Commands Enumerated

Int Const Command Type

0 GraphicsPathCommand.NO_OP Do nothing. Might be useful if you want to pad
your commands vector.

1 GraphicsPathCommand.MOVE_TO A moveTo() command. Expects one point (two
Numbers) in the coordinates vector.

2 GraphicsPathCommand.LINE_TO A lineTo() command. Expects one point (two
Numbers) in the coordinates vector.

3 GraphicsPathCommand.CURVE_TO A curveTo() command. Expects an anchor point
and an endpoint (four Numbers) in the coordinates
vector.

4 GraphicsPathCommand.WIDE_LINE_TO A lineTo() command, but allows you to use a
dummy point that will be ignored, expecting four
Numbers in the coordinate vector rather than two.
Use this and the following command if you want
to keep your coordinates vector aligned regularly.

5 GraphicsPathCommand.WIDE_MOVE_TO A moveTo() command, but allows you to use a
dummy point that will be ignored, expecting four
Numbers in the coordinate vector rather than two.
Use this and the preceding command if you want
to keep your coordinates vector aligned regularly.

When drawing a path using drawPath(), you use the commands vector and the coordinates vector
to encode all the information about a path. There’s one more argument that determines the order in
which points are drawn, but you’ll learn about that later.

These two Vectors are interdependent; the commands vector acts like an index for the coordinates
vector. As the long-forgotten drawing robot processes a path using drawPath(), it has to look at
the commands vector to see not only what to do with the next numbers in the coordinates vector,
but how many of them to read off of the coordinates vector. You’ll notice some interesting operations,

722

Chapter 35: Programming Vector Graphics

like NO_OP, WIDE_LINE_TO, and WIDE_MOVE_TO. You, the programmer, can use these operations
to make some guarantees about the pattern of these lists; this can make it easier to loop through the
vectors. For instance, if you only use WIDE_LINE_TO and WIDE_MOVE_TO instead of their ‘‘narrow’’
equivalents, you know that every four Numbers in the Vector defines a new command. You could
loop through the vector without paying attention to the commands vector. Or, if you wanted to loop
through both vectors with the same index variable, you could pad the commands vector with NO_OPs,
perhaps three NO_OPs following every other command along with the ‘‘wide’’ commands, allowing you
to iterate through both vectors like so:

for (var i:int = 0; i < commandsVector.length; i += 4) {
var command:int = commandsVector[i]; //the following 3 are padded with NO_OP
var point0:Point = new Point(coordinatesVector[i], coordinatesVector[i+1]);
var point1:Point = new Point(coordinatesVector[i+2], coordinatesVector[i+3]);
//do something with it...

}

In most cases, you may find this overkill. These examples use the normal move, line, and curve
commands.

Finally, the Method

Look at the drawPath() method. It will be used as an example.

drawPath(commands:Vector.<int>,
data:Vector.<Number>,
winding:String = "evenOdd"):void

The first two arguments are the command vector and the coordinates vector just discussed.

Winding

The winding argument tells the happy draw-bot what to do when paths overlap. In Example 35-7,
you saw that when a filled path crosses itself, the fill alternates between present and vacant. This is
even-odd winding.

If you create overlapping paths that are drawn in a given order, you can determine whether a
given intersection is filled by summing up the directions of the paths that intersect: clockwise paths
counting as +1 and counterclockwise paths counting as –1. Even-odd winding colors only areas that
sum up to odd numbers, leaving even-numbered intersections void. That’s why you see an alternating
pattern in Example 35-7; the clockwise path crosses itself time and time again, incrementing the
winding order by 1 each time. This is both the default for drawPath() and the only way that
the nonbatched drawing API commands fill paths. To specify even-odd winding, use the constant
GraphicsPathWinding.EVEN_ODD.

The other option to determine how intersecting areas fill is nonzero winding. This method, as
you might guess, fills all intersecting areas that have a nonzero winding count. In Example 35-7,
this fills all areas, because the purely clockwise path crosses itself, and all intersecting areas have
a positive winding order of various magnitude. All intersecting areas with a zero winding order
are left blank. For example, if you intersect a clockwise path with a counterclockwise one, the
intersection is not filled because the winding order is 0. To specify nonzero winding, use the constant
GraphicsPathWinding.NON_ZERO.

This chapter doesn’t bother with the winding argument in its examples; it’s optional.

723

Part VIII: Graphics Programming and Animation

Example: Drawing a Glyph

A pervasive example of complex paths in use is fonts. Every glyph in a font is defined by a path.
When rendering text, your computer follows these paths and fills them in. You can get really creative
by moving the rendering of text away from TextFields and into the drawing API. For instance, you
could bulge the letters, smooth them out, vary them up, or transform them so that they appear to be
in three dimensions.

A vector-based 3D library, Five3D by Mathieu Badimon (http://five3d.mathieu-badimon
.com/), does just this. By storing the outlines of fonts and transforming them in perspective as they
are drawn, Five3D allows for perspective vector drawing. Although you can transform objects in 3D
in Flash Player 10 and later, Five3D has the advantage of still using the drawing API for these trans-
formed vectors, rather than rasterizing the vectors before applying the perspective transformations, as
Flash Player does internally (see Figure 35-10). In any case, one great thing about Five3D is that it
comes with a drop-in to Flash that can generate a ‘‘typography file’’ from a font on your computer.
The output of this file is just what you need to draw a path, in a startlingly similar format.

FIGURE 35-10

Five3D in action

In Example 35-16, you leverage Five3D’s font conversion to draw a glyph’s path in one triumphant
line. To make it a little interesting, you’ll use a gradient fill, which you’d have to resort to some trick-
ery to implement with TextFields. Of course, there’s the chance that by the time you read this,
Mathieu will have upgraded Five3D or the font file generator to take full advantage of drawPath().

EXAMPLE 35-16 http://actionscriptbible.com/ch35/ex16

Using drawPath()

package {
import flash.display.*;
import flash.events.KeyboardEvent;
import flash.geom.Matrix;
public class ch35ex16 extends Sprite {
public function ch35ex16() {
MuseumFoundry.initialize();
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKey);

}
protected function onKey(event:KeyboardEvent):void {
var key:String = (String.fromCharCode(event.charCode).toLowerCase());
if (!(key in MuseumFoundry.__motifs)) return;

var pathData:Object = Five3DGlyphUtils.convertGlyph(MuseumFoundry, key);

724

Chapter 35: Programming Vector Graphics

var s:Shape = new Shape();
var m:Matrix = new Matrix();
m.createGradientBox(100, 100, Math.PI/2);

s.graphics.beginGradientFill(GradientType.LINEAR, [0xff0000, 0x0000ff],
[1, 0.7], [0, 255], m);

s.graphics.drawPath(pathData.commands, pathData.coordinates);
s.graphics.endFill();

s.blendMode = BlendMode.MULTIPLY;
s.x = stage.mouseX;
s.y = stage.mouseY;
addChild(s);

}
}

}
import flash.display.GraphicsPathCommand;
class Five3DGlyphUtils {
public static function convertGlyph(typo:Object, glyph:String):Object {
var fiveCommands:Array = typo.__motifs[glyph];
var commands:Vector.<int> = new Vector.<int>(fiveCommands.length);
var coordinates:Vector.<Number> = new Vector.<Number>();

for each (var fiveCmd:Object in fiveCommands) {
var fiveCmdType:String = fiveCmd[0];
var fiveCmdCoords:Array = fiveCmd[1];
switch (fiveCmdType) {
case "M":
commands.push(GraphicsPathCommand.MOVE_TO);
coordinates.push(fiveCmdCoords[0], fiveCmdCoords[1]);
break;

case "L":
commands.push(GraphicsPathCommand.LINE_TO);
coordinates.push(fiveCmdCoords[0], fiveCmdCoords[1]);
break;

case "C":
commands.push(GraphicsPathCommand.CURVE_TO);
coordinates.push(fiveCmdCoords[0], fiveCmdCoords[1],

fiveCmdCoords[2], fiveCmdCoords[3]);
break;

}
}

return {commands: commands, coordinates: coordinates};
}

}

//Museum Foundry font by Raph Levien (http://levien.com)
//licensed under Open Font License
//converted to Five3D Typography class
//Five3D by Mathieu Badimon (http://five3d.mathieu-badimon.com/)

continued

725

Part VIII: Graphics Programming and Animation

EXAMPLE 35-16 (continued)

class MuseumFoundry {
static public var __motifs:Object = {};
static public var __widths:Object = {};
static public var __heights:Number = 100;
static public var __initialized:Boolean = false;
//NOTE: the outlines of the font are embedded in this class file.
//They are extremely large. Only part of one glyph will be shown
//to conserve space.
//Please download or run the example online to see its effect.
static private function initializeMotifs():void {
__motifs["a"] = [[’M’,[22.9,60.2]],[’L’,[22.7,67.5]],[’C’,[22.7,67.55...

}
}

Click inside the stage and type letters to draw those letters in Museum, an open font by Raph Levien.
The Five3DGlyphUtils class converts paths from the Five3D typography format — which you will
notice is the same information you need, in a slightly modified form — into the command vector and
coordinate vector objects necessary to draw the entire glyph at once using drawPath().

Because paths are represented as two Vectors, they are extremely compact and easy to serialize and
deserialize (convert into a form that can be written to disk or sent over the network). This would be
an ideal way to implement a multiuser drawing app or save and repeat user-generated drawings.

Storing a Path in a Command
One part of Example 35-16 that bugs me is that you have to pass the two Vectors in an anony-
mous Object to get them out of the function. That’s not very object oriented! You should be able to
encapsulate all knowledge about a path into one path object. Enter GraphicsPath.

On one level, GraphicsPath is just a wrapper class for a path defined as you have seen before, with
the properties commands, data, and winding defining the properties drawPath() expects. You
can set these properties or assign some or all of them at construct time:

var p1:GraphicsPath = new GraphicsPath();
p1.commands = commandsVector;
p1.data = coordinatesVector;
var p2:GraphicsPath = new GraphicsPath(commandsVector, coordinatesVector);

On another level, GraphicsPath provides an easier way to construct the data that makes up a path.
It contains methods to push each kind of path command onto the Vectors: moveTo(), lineTo(),
curveTo(), and the ‘‘wide’’ methods wideLineTo() and wideMoveTo(). You call these just like
you would call the corresponding methods on a Graphics object, but remember that they’re used
to modify the path stored in the GraphicsPath, not the ‘‘canvas’’ on-screen. Because these methods
write to the vectors internally, you don’t have to worry about modifying them manually. An error in
writing to these vectors that puts the two out of sync — by adding the wrong number of numbers
to the coordinates vector, for instance — ruins the rest of the path. Using the convenience functions
prevents this.

726

Chapter 35: Programming Vector Graphics

Finally, GraphicsPath is interesting because it implements IGraphicsData, meaning that it’s
one of the drawing commands that can be drawn in a batch. ‘‘But wait,’’ you say, ‘‘isn’t a path already
a batch of moves, lines, and curves?’’ Indeed, you are right. But because you almost always draw
paths with more than one segment, paths are considered one atomic drawing command in a batch.
The next section looks at how all the Graphics methods translate to IGraphicsData batch
commands.

To draw a batch of commands, use the Graphics object’s drawGraphicsData() method.
This method takes a Vector of IGraphicsData objects (Vector.<IGraphicsData>). Using
this method, you can include fill and stroke options in a list of commands. But I’m getting ahead
of myself. In Example 35-17, you’ll try upgrading the Five3DGlyphUtils class to output
a GraphicsPath object instead of the anonymous object you’d used before. Then you’ll use
drawGraphicsData() rather than drawPath() to get the path on-screen.

EXAMPLE 35-17 http://actionscriptbible.com/ch35/ex17

Using GraphicsPath

package {
import flash.display.*;
import flash.events.KeyboardEvent;
import flash.geom.Matrix; public class ch35ex17 extends Sprite {
public function ch35ex17() {
MuseumFoundry.initialize();
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKey);

}
protected function onKey(event:KeyboardEvent):void {
var key:String = (String.fromCharCode(event.charCode).toLowerCase());
if (!(key in MuseumFoundry.__motifs)) return;

var s:Shape = new Shape();
var m:Matrix = new Matrix();
m.createGradientBox(100, 100, Math.PI/2);

var batch:Vector.<IGraphicsData> = new Vector.<IGraphicsData>();
batch.push(new GraphicsGradientFill(GradientType.LINEAR,
[0xff0000, 0x0000ff], [1, 0.7], [0, 255], m));

batch.push(Five3DGlyphUtils.convertGlyph(MuseumFoundry, key));
batch.push(new GraphicsEndFill());
s.graphics.drawGraphicsData(batch);

s.blendMode = BlendMode.MULTIPLY;
s.x = stage.mouseX;
s.y = stage.mouseY;
addChild(s);

}
}

}
import flash.display.GraphicsPathCommand;
import flash.display.GraphicsPath;
class Five3DGlyphUtils {

continued

727

Part VIII: Graphics Programming and Animation

EXAMPLE 35-17 (continued)

public static function convertGlyph(typo:Object, glyph:String):GraphicsPath {
var fiveCommands:Array = typo.__motifs[glyph];
var path:GraphicsPath = new GraphicsPath();

for each (var fiveCmd:Object in fiveCommands) {
var fiveCmdType:String = fiveCmd[0];
var fiveCmdCoords:Array = fiveCmd[1];
switch (fiveCmdType) {
case "M":
path.moveTo(fiveCmdCoords[0], fiveCmdCoords[1]);
break;

case "L":
path.lineTo(fiveCmdCoords[0], fiveCmdCoords[1]);
break;

case "C":
path.curveTo(fiveCmdCoords[0], fiveCmdCoords[1],

fiveCmdCoords[2], fiveCmdCoords[3]);
break;

}
}
return path;

}
}

//NOTE: MuseumFoundry font class omitted for space.

Note that in addition to the path object, the begin fill and end fill methods have been converted into
commands. All these instructions are batched together into one Vector of IGraphicsData and sub-
mitted in one line using drawGraphicsData().

Batching Generic Drawing Commands
Not just paths, but all the basic drawing API methods can be represented in IGraphicsData
command objects. A Vector of these can be drawn in a batch with the Graphics object’s
drawGraphicsData() method, as you just saw. This provides a powerful way to store drawings,
modify them with code, serialize and deserialize them and, of course, draw them. In Table 35-2,
you’ll see how different drawing API calls translate to IGraphicsData objects. To make sense of
how these objects relate, you can cross-reference the informal class diagram in Figure 35-11.

There are no drawing command objects for clear() or any of the primitive-drawing commands such
as drawRect().

By storing all the drawing commands in a Vector rather than immediately applying them to
a Graphics object, you gain the ability to modify them with code during runtime. Here’s an
interesting exercise for you: modify Example 35-15, appending drawing commands to a Vector,

728

Chapter 35: Programming Vector Graphics

and implement undo functionality by popping off the most recent command and redrawing. You
may want to disable the primitive drawing tools for simplicity, because they have no corresponding
IGraphicsData objects.

TABLE 35-2

Converting Drawing API Calls to Drawing Command Objects

Drawing API Call IGraphicsData Command Object Notes

moveTo() GraphicsPath Add onto the data and commands vectors,
or use moveTo() or wideMoveTo().

lineTo() GraphicsPath Add onto the data and commands vectors,
or use lineTo() or wideLineTo().

curveTo() GraphicsPath Add onto the data and commands vectors,
or use curveTo().

drawPath() GraphicsPath Encapsulate data and command vectors,
winding into a GraphicsPath instance.

beginFill() GraphicsSolidFill Use the same parameters
in GraphicsSolidFill’s constructor.

beginGradientFill() GraphicsGradientFill Use the same parameters in
GraphicsGradientFill’s constructor.

beginBitmapFill() GraphicsBitmapFill Use the same parameters in
GraphicsBitmapFill’s constructor.

beginShaderFill() GraphicsShaderFill Use the same parameters in
GraphicsShaderFill’s constructor.

endFill() GraphicsEndFill

lineStyle() GraphicsStroke Use the same parameters in
GraphicsStroke’s constructor, with the
addition of an optional fill parameter
instead of subsequent line*Style() call.

lineGradientStyle() GraphicsGradientFill Assign the GraphicsGradientFill object
to the GraphicsStroke’s fill property.

lineBitmapStyle() GraphicsBitmapFill Assign the GraphicsBitmapFill object to
the GraphicsStroke’s fill property.

lineShaderStyle() GraphicsShaderFill Assign the GraphicsShaderFill object to
the GraphicsStroke’s fill property.

drawTriangles() GraphicsTrianglePath Use the same parameters in
GraphicsTrianglePath’s constructor.

729

Part VIII: Graphics Programming and Animation

FIGURE 35-11

Drawing command objects and their relationships

IGraphicsFill IGraphicsStroke

IGraphicsPath

GraphicsPath GraphicsTrianglePath

GraphicsStroke

IGraphicsData

GraphicsSolidFill

GraphicsGradientFill

GraphicsBitmapFill

GraphicsShaderFill

GraphicsEndFill
data commands indices vertices uvtData

Copying and Pasting Drawings
In Flash Player 10 and later, the drawing API allows you to easily clone a drawing performed in
one Graphics object to another. To do so, simply use the copyFrom() method, passing in the
Graphics object to clone. For example:

var destination:Graphics, source:Graphics;
destination.copyFrom(source);

This method clones the drawing commands performed in one context to the other. When you use
the drawing command objects that implement IGraphicsData, replicating drawings is painless:
just apply the batch of operations using drawGraphicsData() as before. But in cases where you
haven’t kept a record of the commands — where you have a Graphics object in an arbitrary, com-
plex state — copying the drawing is the perfect way to duplicate the state.

Note
In Flash Player 9, you can replicate a Graphics object by drawing it to a bitmap with BitmapData.draw().
However, this doesn’t actually clone the drawing; it just saves it as a bitmap. You can learn more about
draw() in Chapter 36. �

Example 35-18 creates a kind of interactive kaleidoscope by copying a drawing into many mirrored
shapes.

EXAMPLE 35-18 http://actionscriptbible.com/ch35/ex18

Cloning Graphics

package {
import flash.display.*;
import flash.events.MouseEvent;

730

Chapter 35: Programming Vector Graphics

public class ch35ex18 extends Sprite {
protected const NUM_COPIES:int = 6;
public function ch35ex18() {
for (var i:int = 0; i < NUM_COPIES; i++) {
var copy:Shape = new Shape();
copy.graphics.lineStyle(8, 0xE91C7A, 0.3, false);
copy.rotationY = 70;
copy.rotationZ = i * (360 / NUM_COPIES);
copy.x = stage.stageWidth / 2;
copy.y = stage.stageHeight / 2;
addChild(copy);

}
stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

}
protected function onMouseMove(event:MouseEvent):void {
var source:Shape = Shape(getChildAt(0));
source.graphics.lineTo(stage.mouseX - stage.stageWidth/2,

stage.mouseY - stage.stageHeight/2);
for (var i:int = 1; i < NUM_COPIES; i++) {
var copy:Shape = getChildAt(i) as Shape;
copy.graphics.copyFrom(source.graphics);

}
}

}
}

3D Drawing
The drawing API in Flash Player 10 and later also hides one of the most powerful low-level tools for
drawing 3D graphics. Alongside methods that innocuously draw lines, curves, and shapes is a power-
ful method that can draw texture-mapped triangles to the screen. You can use this as the basis of an
engine that draws polygonal, skinned models, or as a one-off effect to distort an image. This method
is drawTriangles(), with a corresponding graphics command object, GraphicsTrianglePath.

Version
FP10. drawTriangles() is only available in Flash Player 10 and later. �

This advanced 3D technique is covered in more depth in Chapter 40, ‘‘Advanced 3D.’’

Summary

� Drawing vector graphics programmatically in Flash Player is performed through the
Graphics object.

� You can’t instantiate a Graphics object or put it in the display list. Use the graphics prop-
erty of a Shape, Sprite, or MovieClip instead.

731

Part VIII: Graphics Programming and Animation

� Graphics objects are state machines.

� Basic path operations include moving the ‘‘pen,’’ drawing a straight-line segment, and
drawing a curve.

� To stroke a path, you must first set a line style with lineStyle().

� Line styles can be followed by stroke fill styles for non-solid-color fills.

� To fill a path, use begin[kindof]Fill() methods and endFill().

� Clear the canvas by calling clear().

� Strokes and fills may be styled with solid colors, gradients, bitmap fills, and shader fills (varies
by Flash Player version).

� Draw primitives with methods like drawRect() and drawCircle().

� Paths can be stored as lists of command types and coordinates and drawn with drawPath()
(varies by Flash Player version).

� Paths, fills, and strokes can be encapsulated in drawing command objects that implement
IGraphicsData and drawn with drawGraphicsData() (varies by Flash Player version).

� Mapping textures to polygons is possible with drawTriangles() (varies by Flash
Player version).

732

Programming Bitmap
Graphics

FEATURED CLASSES

flash.display.BitmapData

flash.display.Bitmap

flash.display
.IBitmapDrawable

C
omplementing the vector graphics API described in Chapter 35,
‘‘Programming Vector Graphics,’’ Flash Player has an easy-to-use bitmap
graphics API. Bitmap graphics are composed of pixels instead of strokes

and fills. They are a direct way to work with on-screen graphics. Just as having
direct access to binary data opens a whole set of possibilities, direct access to the
pixels on-screen means you can display anything you can imagine, or at least
anything you can figure out how to code.

Draw bitmap graphics in Flash Player with two classes: BitmapData and
Bitmap. The BitmapData class stores image data, but by itself, BitmapData
doesn’t display anything. The Bitmap class is a DisplayObject that displays
the contents of the BitmapData object associated with it. In other words,
BitmapData is the model and Bitmap is the view; you need a Bitmap to
display a BitmapData.

In this chapter you’ll see many applications of the bitmap drawing API from the
mundane to the magical as you learn how to use the Bitmap and BitmapData
classes.

Bitmaps and Their Applications

A bitmap is the simplest and most literal representation of an image. Bitmaps
store the color of every pixel in the image. They usually do this in some sort of
two-dimensional array, so you can access the color of a given pixel by its location
in the matrix. Bitmaps in Flash Player store one 32-bit integer value for each
pixel, which stores the color and transparency of the pixel. This color value is
the combination of four 8-bit integers, which represent the alpha, red, green,
and blue (ARGB) values of the pixel, respectively.

733

Part VIII: Graphics Programming and Animation

Note
If you extract just one of these color values from every pixel, you end up with a single channel of the image.
For example, look at the alpha value of every pixel, and you have the alpha channel of that image. A channel
is a single coherent data stream within a larger set of data. Bitmaps in Flash Player have alpha, red, green, and
blue channels. The same concept applies to video streams that multiplex video and (potentially multiple) audio
channels, or stereo audio streams that interleave left and right channels. �

In Flash Player, bitmaps are stored in BitmapData objects, rather than two-dimensional arrays of
integers. This way, BitmapData can provide useful methods on top of, and its own interface to, the
underlying data.

The bitmap graphics API in Flash Player — which is to say, the collection of classes and methods in
the Flash Player API that deal with bitmaps — has one striking property. It’s completely integrated
into the display list. Why is that so impressive? Video, text, 3D graphics, masked display objects,
huge nested compositions, and single objects can all be easily accessed as bitmaps in the same way.
The display list makes no distinctions, which means there are no barriers to your creativity. Like-
wise, Bitmap is a DisplayObject like any other and can be placed in the display list without
limit. Because the bitmap API is full circle, you can do things like replacing a video with a bitmap
that color-corrects the video frames in real time.

Bitmaps are important as an alternate to the display list. If you have a visual idea that’s difficult or
impossible to accomplish using sets of display objects, you can always fall back on a bitmap. Bitmaps
are the ultimate blank canvas — you have total control over every pixel. This no-rules openness is
comparable to the advantage you get with ByteArray, covered in Chapter 13, ‘‘Binary Data and
ByteArrays.’’ For example, recall that Loader can load, decode, and display image files in JPEG, PNG,
or GIF formats. What if you need to display a RAW file from a digital camera? Without ByteArray
and Bitmap, you’d be stuck with what Flash Player provides; with them, limitations are eradicated.
You can load the file into a ByteArray, decode it, write the bitmap to a BitmapData, and display
it in a Bitmap. Do that, and you’ve just eclipsed the capabilities of Flash Player!

This example addresses another important thing about bitmaps. They are always stored uncompressed.
It’s essential to quickly have access to any pixel value, a property that storing the data compressed
wouldn’t allow for. This means that the data stored in image files like PNGs and JPGs are not
bitmaps — but they can be decompressed and the bitmap data can be extracted.

As an alternative to the display list, bitmaps are great for games! Tile engines use small square tex-
tures tiled across the screen to easily generate huge terrains, usually for top-down adventure games
or strategy games. Texture atlases use one large bitmap to store different frames of animation; moving
the area that’s drawn from the atlas to the screen provides a computationally cheap way to animate
prerendered game sprites. A frame buffer stores a bitmap as it’s built, eventually drawing to the screen
at once. You can use frame buffers to incorporate elements of the last frame into the current frame,
for example, to draw trails, smoke, fire, halos, and so on. All of these old-school game tricks are easily
implemented with bitmaps.

One application of bitmaps is important for more than just games. You can use bitmaps to cheaply
scale up content to great sizes. For example, drawing a complex scene using the display list at
1600×1200 can really hurt your frame rate, especially if you’re using filters (covered in Chapter 37,
‘‘Applying Filters’’). Instead, you can draw the scene at 640×480, render it to a bitmap, and scale the
bitmap up 2.5×. The end result will lose some clarity by being scaled up, but the frame rate is sure
to improve drastically. You don’t need to use this trick for video or if you’ve already chosen to use
full-screen with a fullScreenSourceRect; both use hardware acceleration in the latest versions of
Flash Player.

734

Chapter 36: Programming Bitmap Graphics

You’ve just seen some definite advantages of using bitmaps to display graphics. But the fact that you
can read from bitmaps is huge, too. Access to the pixels of an image opens the door to image analy-
sis. You can use computer vision algorithms to extract meaningful information out of a webcam feed,
for example, to track a user’s face, eyes, or tracking markers. You can track the location of a fiducial
marker and attach a 3D scene to the marker, overlaid on the video feed, a gimmick called augmented
reality. Image analysis isn’t limited to webcam data, either. An automated testing system can simulate
clicks on your program and compare the screen’s appearance to what it expects to see.

Creating and Displaying Bitmaps
In this section, you’ll get familiar with the BitmapData and Bitmap classes, with the goal of dis-
playing a bitmap on stage. First you’ll create a BitmapData instance. You can create BitmapData
instances that are blank, or you can initialize them from embedded bitmaps.

Creating Empty BitmapData Instances
You can construct a new BitmapData object using its constructor, which takes the following param-
eters, the first two of which are required.

� width — Width of the bitmap in pixels.

� height — Height of the bitmap in pixels.

� transparent — Whether the bitmap background is transparent. Note that bitmaps have
an alpha channel regardless of this setting, but when accessing and modifying a bitmap, alpha
channels are discarded if this is not set. Optional; defaults to true.

� fillColor — Initial color of the bitmap, if it’s not transparent. Defaults to 0xFFFFFFFF
(opaque white).

Note
Color values, in this chapter and elsewhere, are 32-bit uints written in hex notation, in ARGB order. For
instance, 0xFF00CED1 is an opaque turquoise color. Its alpha value is 255 (0xFF), red value is 0 (0x0), green
value is 206 (0xCE), and blue value is 209 (0xD1).

Occasionally, the alpha value is left out, as in 0x00CED1. In this case, you can assume the alpha value is fully
opaque, or 0xFF.

To review hex notation and bit packing, refer to Chapter 7, ‘‘Numbers, Math, and Dates,’’ and Chapter 13,
‘‘Binary Data and ByteArrays.’’ �

The size of a bitmap is fixed at construction time. You have to pick a size at the outset, and you can’t
change the size later on: you’ll have to copy the bitmap data into a new, larger bitmap if you need to
grow. These examples construct a variety of bitmaps:

//create a 500x200 pixel empty, transparent bitmap
var bmpRectangle:BitmapData = new BitmapData(500, 200);
//create a 500x200 pixel opaque, red bitmap
var bmpRectangle:BitmapData = new BitmapData(500, 200, false, 0xFFFF0000);

Use the BitmapData constructor when you’re creating bitmaps from scratch or existing display
objects. Most of the time, you’ll be filling in the bitmaps with your own contents before displaying
them, so you can usually omit the fill color.

735

Part VIII: Graphics Programming and Animation

Creating Instances of Embedded Assets
In Chapter 16, ‘‘Working with DisplayObjects in Flash Professional,’’ you saw how to embed bitmap
symbols in a SWF. When linked with a class, these produce subclasses of BitmapData. When you
want to use an embedded bitmap symbol as BitmapData, just instantiate the class. Because the
asset class extends BitmapData, you have to use the BitmapData constructor, at minimum includ-
ing the width and height parameters. However, you don’t actually have to know the width and
height of the embedded bitmap. You can pass 0, or any value, to the constructor, and the resulting
BitmapData subclass will be the correct size, ignoring your arguments.

//assuming your asset is linked to assets.FishingCatBitmap
import assets.*;
var bmp:BitmapData = new FishingCatBitmap(0, 0);
trace(bmp.width, bmp.height); //400 400

When using assets embedded using the Flex SDK or the [Embed] metadata tag, you can skip this
step outright. Images embedded with [Embed] are turned into subclasses of BitmapAsset, a
core Flex class that extends Bitmap. This means that it can be added directly to the display list.
You explored the differing base classes for imported assets in Example 27-4. You can always get the
BitmapData out of the asset if you need; you’ll see how to access a Bitmap’s BitmapData shortly.

Displaying Bitmaps
Regardless of how you create a BitmapData object, it exists only to store the bitmap’s data. To ren-
der it, you have to attach it to a Bitmap and add it to the display list.

First create the Bitmap. Its constructor has the following optional arguments:

� bitmapData — The bitmap to draw.

� pixelSnapping — Whether the bitmap should be drawn at the nearest pixel when placed
between pixels. Options include PixelSnapping.NEVER, PixelSnapping.ALWAYS, and
PixelSnapping.AUTO (the default, which uses pixel snapping when the image isn’t rotated
or scaled). Drawing the bitmap at even pixel values results in the fastest rendering and the least
fuzziness.

� smoothing — Whether to interpolate the bitmap when it’s scaled. Defaults to true.

You can read or set any of these parameters at any time, so it’s not necessary to declare them in the
constructor.

A Bitmap is meant to display a single bitmap; it can be repurposed to display a different one simply
by setting the bitmapData parameter. This would also be the way to retrieve the bitmap data from
an embedded BitmapAsset.

As a DisplayObject, a Bitmap instance can be rotated, scaled, skewed, and transformed in 3D.
Its width and height reflect its current transformation and may be quite different from the original
bitmap’s dimensions. As a DisplayObject, you can also add it to the stage like so:

var bmp:BitmapData = new BitmapData(200, 200, false, 0xFFCC00CC);
var bitmap:Bitmap = new Bitmap(bmp);
addChild(bitmap);

736

Chapter 36: Programming Bitmap Graphics

Bitmap Quality
Bitmap quality is affected most by each Bitmap’s smoothing parameter, but there are other factors
at play. If the stage quality mode (covered in Chapter 14, ‘‘Visual Programming with the Display List’’)
is StageQuality.LOW, all bitmap anti-aliasing is disabled regardless of the smoothing setting.
Mipmapping automatically takes place in Flash Player 9.0.60 and later, which increases the quality of
a bitmap when it’s scaled down.

Disposing Bitmap Data
Releasing the memory held by a BitmapData object is just as important as creating it in the first
case. Bitmaps, because they’re uncompressed, can take up a huge amount of memory (up to 64MB
each). The more bitmaps you use, the more trouble you can get into when not properly managing
your BitmapData instances.

If your application is designed correctly and you remove all references to a BitmapData when you’re
done with it, the AVM2 garbage collector should free its memory automatically, and in a short amount
of time.

As a precaution, however, you can dispose() bitmap data when you’re done with it. This instructs
Flash Player to free the memory used to store that data immediately. It does so without removing
the BitmapData object. The BitmapData object becomes invalid and will hopefully be garbage
collected soon. Even if it’s not, it’s no longer the end of the world, because a BitmapData without
bitmap data is small.

Only call dispose() on a BitmapData instance when you’re good and done with it — ideally
at the same time you remove all references to it. After disposal, if you call any substantive meth-
ods on the ‘‘empty shell’’ BitmapData, you get a runtime error: removing the bitmap data from a
BitmapData doesn’t leave it in good shape to do much of anything.

//create enormous bitmap
var hugebmp:BitmapData = new BitmapData(2880, 2880);
//clear out memory. hugebmp is now dead to me
hugebmp.dispose();

Capturing and Copying Bitmaps
As much fun as creating cerulean rectangles is, bitmaps are put to better use by modifying existing
imagery. You can capture bitmap data from any display object or by copying another bitmap in whole
or part.

Copying from Display Objects
The draw() method is hands-down the most important method of BitmapData. It captures any
DisplayObject (or portion thereof) as a bitmap. Keeping in mind that DisplayObjects can have
any number of children and that the stage is also a DisplayObject, the draw() method can cap-
ture individual display objects, groups or layers, or portions of the whole screen.

The draw() method accepts any object that implements the IBitmapDrawable interface, which
includes not only DisplayObject but also BitmapData, so you could draw() from one bitmap
into another. Here I’ll focus on drawing display objects.

737

Part VIII: Graphics Programming and Animation

When you capture the bitmap data of a display object using draw(), keep in mind that you’re cre-
ating a static copy of the pixels the display object renders to. The bitmap remains the same as the
source changes. Scale the bitmap up enough, and you’ll see the individual pixels of the bitmap, even
if the original display object can be scaled up without losing fidelity. And, of course, the bitmap is not
interactive; clicking on an image of a button doesn’t trigger that button. Hopefully, none of this comes
as a shock. Just think of draw() as taking a snapshot.

The draw() method accepts the following parameters. Only the first parameter is required.

� source — The IBitmapDrawable object to draw.

� matrix — A Matrix object used to apply a transformation to the display object as it’s drawn.
This can scale, rotate, move, or skew the image into a desired orientation without changing the
DisplayObject. See more on transformations in Chapter 34, ‘‘Geometric and Color Trans-
formations.’’ By default, no transformation occurs.

� colorTransform — A ColorTransform object that adjusts the colors as the pixels are
copied. See Chapter 34 for more on color transformations. By default, no changes in color are
made.

� blendMode — A blend mode to apply if drawing the pixels on top of existing bitmap
data. Blend modes are specified using values of BlendMode, which you can review in
Chapter 14.

� clipRect — Defines a region of interest in source to capture, as a Rectangle. Anything
falling outside this area is not drawn. By default, as much of source is drawn that fits inside
the BitmapData, starting from the origin of the display object.

� smoothing — Whether to interpolate the content when it is drawn. The default
is false.

You may want to set some of the later arguments without setting other arguments before it. In this
case, you can simply pass null to the arguments you want to keep default values for. For example,
to set only the blendMode, you might write this:

bmp.draw(source, null, null, BlendMode.ADD);

In this snippet, you pass null to some arguments and leave others (clipRect, smoothing) off
entirely.

In many cases, only the first argument is necessary. For example, you can take a snapshot of the stage
with the following code:

var bmp:BitmapData = new BitmapData(stage.stageWidth, stage.stageHeight);
bmp.draw(stage);

Better yet, Example 36-1 shows how to use a sprite sheet — a single bitmap that contains many indi-
vidual pictures — to animate a bitmap character. It loads a flat image with a series of frames laid out
in a strip and draws from it to display one frame at a time. In the real application, of course, you hide
the strip of images and only show the animating bitmap.

738

Chapter 36: Programming Bitmap Graphics

EXAMPLE 36-1 http://actionscriptbible.com/ch36/ex1

Capturing a DisplayObject with draw()

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
import flash.net.URLRequest;
import flash.system.LoaderContext;
[SWF(frameRate="10")]
public class ch36ex1 extends Sprite {
protected const SIZE:Rectangle = new Rectangle(0, 0, 48, 48);
protected var TOTALFRAMES:int;
protected var bmp:BitmapData;
protected var filmstrip:Loader;
protected var frame:int = 0;
public function ch36ex1() {
filmstrip = new Loader();
//Animation by Derek Yu - www.derekyu.com - used with permission
filmstrip.load(
new URLRequest("http://actionscriptbible.com/files/monkey.png"),
new LoaderContext(true));

filmstrip.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
addChild(filmstrip);
bmp = new BitmapData(SIZE.width, SIZE.height);
var bitmap:Bitmap = new Bitmap(bmp);
addChild(bitmap);
bitmap.y = SIZE.height + 10;

}
protected function onLoad(event:Event):void {
TOTALFRAMES = filmstrip.width / SIZE.width;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
frame = ++frame % TOTALFRAMES;
//highlight the area you’re drawing
graphics.clear();
graphics.lineStyle(0, 0xff0000);
graphics.drawRect(frame*SIZE.width, 0, SIZE.width, SIZE.height);
//clear the bitmap
bmp.fillRect(bmp.rect, 0);
//shift the filmstrip to the left to put the right frame in place
var shiftTransform:Matrix = new Matrix();
shiftTransform.translate(-frame * SIZE.width, 0);
//use SIZE to clip the shifted graphic to the correct position and size
bmp.draw(filmstrip, shiftTransform, null, null, SIZE);

}
}

}

739

Part VIII: Graphics Programming and Animation

This example delves into transformations just a tiny bit, for a good reason. If you try using no
transformation matrix and instead move the sourceRect, you’ll see that the correct frame of
animation is displayed, but in its original location. That is to say, it looks like you’re moving a mask
along a long strip. In fact, you’ll only notice this if you enlarge the bitmap bmp wide enough to see
those frames. So, you use the matrix parameter to move the correct frame into place, and you use
the sourceRect parameter to clip it. Because the bitmap itself is already the correct size, using a
sourceRect is optional.

Copying from BitmapData Objects
You can copy pixels not only from display objects but also from BitmapData objects. You can use
the following methods to copy from a BitmapData object:

� draw() — Draw pixels from a BitmapData just as you’d draw them from a
DisplayObject.

� clone() — Return a new BitmapData object with an exact copy of the bitmap.

� copyPixels() — Copy a region of a bitmap.

� copyChannel() — Copy a single channel of another bitmap, or copy one channel into
another.

� merge() — Merge the bitmap and another bitmap, letting you assign a weight to each channel.

I’ll cover each method next.

Drawing from Another Bitmap

The draw() method covered in the previous section applies to BitmapData objects as well. When
you’re drawing from other bitmaps, the smoothing parameter may become particularly useful.

Example 36-1 loaded in a bitmap but drew it from the Loader, a DisplayObject. You can make a
slight modification to the code and draw directly from the bitmap, which Example 36-2 demonstrates.
Once you do this, you’re no longer using Loader to display an image — instead, you’re using it to
decode a compressed image file into usable bitmap data, a trick you’ve seen in a few places before.

EXAMPLE 36-2 http://actionscriptbible.com/ch36/ex2

Capturing Bitmap Data with draw()

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
import flash.net.URLRequest;
import flash.system.LoaderContext;
[SWF(frameRate="10")]
public class ch36ex2 extends Sprite {
protected const SIZE:Rectangle = new Rectangle(0, 0, 48, 48);
protected const SCALE:int = 4;
protected var TOTALFRAMES:int;
protected var bmp1:BitmapData; //on the left, no smoothing
protected var bmp2:BitmapData; //on the right, smoothing
protected var filmstrip:BitmapData;
protected var frame:int = 0;

740

Chapter 36: Programming Bitmap Graphics

public function ch36ex2() {
var loader:Loader = new Loader();
//Animation by Derek Yu - www.derekyu.com - used with permission
loader.load(
new URLRequest("http://actionscriptbible.com/files/monkey.png"),
new LoaderContext(true));

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
bmp1 = new BitmapData(SIZE.width * SCALE, SIZE.height * SCALE);
bmp2 = bmp1.clone();
var bitmap:Bitmap = new Bitmap(bmp1);
addChild(bitmap);
bitmap = new Bitmap(bmp2);
addChild(bitmap);
bitmap.x = bmp1.width + 10;

}
protected function onLoad(event:Event):void {
filmstrip = Bitmap(LoaderInfo(event.target).content).bitmapData;
TOTALFRAMES = filmstrip.width / SIZE.width;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
frame = ++frame % TOTALFRAMES;
//clear the bitmaps
bmp1.fillRect(bmp1.rect, 0);
bmp2.fillRect(bmp2.rect, 0);
//shift the filmstrip left to put the correct frame in place; scale up
var transform:Matrix = new Matrix();
transform.translate(-frame * SIZE.width, 0);
transform.scale(SCALE, SCALE);
//omit sourceRect, let bitmap’s own size clip the output
bmp1.draw(filmstrip, transform, null, null, null, false);
bmp2.draw(filmstrip, transform, null, null, null, true);

}
}

}

In Example 36-2, you animate two bitmaps instead of one, and you animate them from a
BitmapData that you extract from the Loader (which loads in the image as a Bitmap). Both
bitmaps are scaled up, again using a transformation matrix; the one on the left renders without
smoothing using the nearest neighbor method to scale up; the one on the right uses interpolation to
smooth out the resulting bitmap. Again, don’t sweat the transformation matrix, though it’s clear what
it’s doing.

If you run this example, you’ll immediately realize that the technique of using a bitmap to scale up
images is perfect for retro-styled games, specifically when smoothing is turned off.

Cloning a BitmapData Object

You can create a perfect copy of a bitmap using the clone() method. The method requires no
parameters, returning a new BitmapData object:

var cloneBitmapData:BitmapData = originalBitmapData.clone();

741

Part VIII: Graphics Programming and Animation

Cloning BitmapData objects is useful when you want to create several independent versions of a
bitmap. It’s not necessary to create clones to display the same bitmap data several times because you
can associate one BitmapData object with many Bitmap objects. However, clones of BitmapData
objects are useful because changes made to the clones don’t affect the original.

In Example 36-2, you used clone() in a simple fashion to save a few keystrokes; copying the
just-initialized bmp1 into bmp2 sets its size to be identical, which is all you’re after.

Copying Pixels

You can use the copyPixels() method to copy a rectangular region from another bitmap. From
a practical perspective, copyPixels() is similar to draw(). For copying a specific area out of a
source bitmap, like you’ve been doing in the past few examples, it is much easier. The parameters of
copyPixels() are

� sourceBitmapData — The bitmap from which to copy a region.

� sourceRect — The region of the source bitmap to copy, as a Rectangle.

� destPoint — Where the copied pixels should appear in the destination bitmap, as a Point
defining the top-left corner.

� alphaBitmapData — Optionally, a separate bitmap to use as an alpha channel. By default,
the alpha channel of the source BitmapData object is used. Use this if you have sprites in an
opaque image, with a separate image defining a mask.

� alphaPoint — Optionally, the origin of the rectangular area to be copied out of the mask
bitmap (alphaBitmapData), if it doesn’t have the same layout as the image data.

� mergeAlpha — A Boolean value indicating whether or not to merge the alpha channels of
both the source bitmap and alphaBitmapData. If false, only the alphaBitmapData’s
alpha channel is used. If true, both alpha channels are blended. The parameter is optional.

In Example 36-3, you’ll use the copyPixels() method to further simplify the use of a sprite sheet.

EXAMPLE 36-3 http://actionscriptbible.com/ch36/ex3

Copying Bitmap Data with copyPixels()

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
import flash.net.URLRequest;
import flash.system.LoaderContext;
[SWF(frameRate="10")]
public class ch36ex3 extends Sprite {
protected const SIZE:Rectangle = new Rectangle(0, 0, 48, 48);
protected var TOTALFRAMES:int;
protected var bmp:BitmapData;
protected var filmstrip:BitmapData;
protected var frame:int = 0;
protected var sourceRect:Rectangle = SIZE.clone();
public function ch36ex3() {
var loader:Loader = new Loader();
//Animation by Derek Yu - www.derekyu.com - used with permission

742

Chapter 36: Programming Bitmap Graphics

loader.load(
new URLRequest("http://actionscriptbible.com/files/monkey.png"),
new LoaderContext(true));

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
bmp = new BitmapData(SIZE.width, SIZE.height);
var bitmap:Bitmap = new Bitmap(bmp, PixelSnapping.ALWAYS, false);
bitmap.scaleX = bitmap.scaleY = 4;
addChild(bitmap);

}
protected function onLoad(event:Event):void {
filmstrip = Bitmap(LoaderInfo(event.target).content).bitmapData;
TOTALFRAMES = filmstrip.width / SIZE.width;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
frame = ++frame % TOTALFRAMES;
sourceRect.x = frame * SIZE.width;
bmp.fillRect(bmp.rect, 0);
bmp.copyPixels(filmstrip, sourceRect, new Point(0,0));

}
}

}

Here, you see that scaling up the bitmap while drawing isn’t the only way to increase the size of the
content. You can, instead, simply scale up the Bitmap that your bitmap data is displaying in using
DisplayObject methods, setting the smoothing option on the Bitmap instead.

You’ll notice that instead of translating and then drawing pixels, copyPixels() just lets you specify
where the pixels come from and where they go. This makes the example much simpler, but you also
have fewer options than with draw(), and of course it can only be used to copy regions of a bitmap
from another BitmapData, not from any DisplayObject like draw().

Copying Channels

The copyChannel() method lets you copy a portion of a bitmap like copyPixels(), but selecting
a single channel (red, green, blue, or alpha). In fact, you can even assign pixels from one channel to a
different channel using this method. The parameters for copyChannel() are as follows:

� sourceBitmapData — The bitmap from which to copy a region.

� sourceRect — The region of the source bitmap to copy, as a Rectangle.

� destPoint — Where the copied pixels should appear in the destination bitmap, as a Point
defining the top-left corner.

� sourceChannel — Which color channel to extract from the source bitmap; can be
BitmapDataChannel.ALPHA, BitmapDataChannel.RED,
BitmapDataChannel.GREEN, or BitmapDataChannel.BLUE.

� destChannel — Which color channel to place the copied region into (using the same options
as before).

In Example 36-4, you’ll draw a white circle on a black background, using the drawing API covered in
Chapter 35. After capturing the composition as a bitmap, you split it into its three color components,

743

Part VIII: Graphics Programming and Animation

spreading them out based on the position of the mouse, and clearly showing additive color at work.
(The intersection of all three will be white.) You’ll see that the ADD blend mode is not used; the three
channels are set individually, and the color channels always mix together additively.

EXAMPLE 36-4 http://actionscriptbible.com/ch36/ex4

Copying Color Channels of Bitmap Data

package {
import flash.display.*;
import flash.events.MouseEvent;
import flash.geom.Point;
[SWF(backgroundColor="#000000")]
public class ch36ex4 extends Sprite {
protected var center:Point;
protected var sourceBmp:BitmapData;
protected var destBmp:BitmapData;
protected var splitChannelsBitmap:Bitmap;
public function ch36ex4() {
//draw a white circle in the center
center = new Point(stage.stageWidth/2, stage.stageHeight/2);
var source:Shape = new Shape();
source.x = center.x; source.y = center.y;
addChild(source);
source.graphics.beginFill(0xffffff, 1);
source.graphics.drawCircle(0, 0, 100);
//capture a bitmap of the white circle in sourceBmp
sourceBmp = new BitmapData(stage.stageWidth, stage.stageHeight, false, 0);
destBmp = sourceBmp.clone();
sourceBmp.draw(stage);
//create a holder for destBmp
splitChannelsBitmap = new Bitmap(destBmp);
addChild(splitChannelsBitmap);
stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

}
protected function onMouseMove(event:MouseEvent):void {
//hold mouse button to show source graphic
splitChannelsBitmap.visible = !event.buttonDown;
var dist:Number = Point.distance(new Point(stage.mouseX, stage.mouseY),
center) / 2;

//copy the white circle, offseting RGB channels based on mouse location
destBmp.copyChannel(sourceBmp, sourceBmp.rect, new Point(0, -dist),
BitmapDataChannel.RED, BitmapDataChannel.RED);

destBmp.copyChannel(sourceBmp, sourceBmp.rect, new Point(-dist, dist),
BitmapDataChannel.GREEN, BitmapDataChannel.GREEN);

destBmp.copyChannel(sourceBmp, sourceBmp.rect, new Point(dist, dist),
BitmapDataChannel.BLUE, BitmapDataChannel.BLUE);

event.updateAfterEvent();
}

}
}

744

Chapter 36: Programming Bitmap Graphics

You’ll see that copyChannel() works much like copyPixels(). You also used the rect property
of the BitmapData object to select the entire area of the bitmap for copying.

Merging BitmapData Images

Use the merge() method to blend data from two bitmaps. With this method, you can create a cus-
tom mix of the ARGB channels between the two images. I don’t use this method often, but you can
use it to quickly fade between two images. The method requires these parameters:

� sourceBitmapData — The bitmap from which to copy a region.

� sourceRect — The region of the source bitmap to copy, as a Rectangle.

� destPoint — Where the copied pixels should appear in the destination bitmap, as a Point
defining the top-left corner.

� redMultiplier — The weight the source image’s red channel will be given, from
0–256. The destination image’s red channel will be weighted by the remaining amount
(256 – redMultiplier). So 128 or 0x80 provides an even mix.

� greenMultiplier — The mix for the green channel; see redMultiplier.

� blueMultiplier — The mix for the blue channel; see redMultiplier.

� alphaMultiplier — The mix for the alpha channel; see redMultiplier.

In Example 36-5, you take two small tiles and blend them gradually, producing a grid of gradations
between the two.

EXAMPLE 36-5 http://actionscriptbible.com/ch36/ex5

Merging Bitmap Data

package {
import flash.display.*;
import flash.geom.*;
import flash.events.Event;
import flash.net.URLRequest;
import flash.system.ApplicationDomain;
import flash.system.LoaderContext;
public class ch36ex5 extends Sprite {
public function ch36ex5() {

var loader:Loader = new Loader();
loader.load(
new URLRequest("http://actionscriptbible.com/files/bitmaptiles.swf"),
new LoaderContext(true));

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
}
protected function onLoad(event:Event):void {

//extract A and B bitmaps from library SWF
var L:ApplicationDomain = LoaderInfo(event.target).applicationDomain;
var tileA:BitmapData = new (Class(L.getDefinition("assets.TileA")))(0,0);
var tileB:BitmapData = new (Class(L.getDefinition("assets.TileB")))(0,0);

var steps:int = 60;
var size:Rectangle = tileA.rect;

continued

745

Part VIII: Graphics Programming and Animation

EXAMPLE 36-5 (continued)

var wrapAt:Number = stage.stageWidth;
var destination:Point = new Point(), origin:Point = new Point();
var bmp:BitmapData = new BitmapData(stage.stageWidth, stage.stageHeight);
var tempBmp:BitmapData = new BitmapData(size.width, size.height);
for (var i:int = 0; i < steps; i++) {
//clear temp bitmap
tempBmp.fillRect(size, 0);
//temp bitmap = A
tempBmp.copyPixels(tileA, tileA.rect, origin);
var blend:int = i / steps * 256;
//blend temp (contains A) and B into temp
tempBmp.merge(tileB, tileB.rect, origin, blend, blend, blend, blend);
//copy temp (A-B blend) into next position in grid
bmp.copyPixels(tempBmp, tempBmp.rect, destination);

destination.x += size.width;
if (destination.x + size.width > wrapAt) {
destination.y += size.height;
destination.x = 0;

}
}
var bitmap:Bitmap = new Bitmap(bmp);
addChild(bitmap);

}
}

}

The tiles here are stored in a SWF as BitmapData objects with class linkages. Once you’ve loaded
the SWF and instantiated the bitmaps from its library, a loop generates a grid full of different blends
of tile A and tile B into a large bitmap that covers the stage. Because blend() operates on the object
you call it on and outputs to the object you call it on, you can’t blend A and B into the large bitmap.
Instead, a temporary bitmap tmpBmp is used, first receiving tile A, then blending in the appropriate
amount of tile B (storing the result back into tmpBmp), and finally copying the blended image into
the next slot in a grid.

Pixel-Level Access
For the most direct access to the screen imaginable, you can read and write pixels individually. So far,
you’ve been using loaded images or the drawing API to create bitmaps; with per-pixel access, you can
draw directly to the bitmap. Again, this opens the door wide open for any kind of graphics you can
program, like custom software renderers, algorithmic art, and optimized rasterizers.

Caution
If you can do something natively in Flash Player, like draw text or curves, it’s typically faster to use the
native methods to draw and then capture them in a bitmap with draw() than to draw them in a bitmap
pixel-by-pixel. However, this is a general rule, and there are exceptions. Most often, developers save per-pixel
drawing for effects that simply can’t be generated with the display list. �

746

Chapter 36: Programming Bitmap Graphics

There are several methods for accessing the raw bitmap data. Some methods exist to get and set a sin-
gle pixel, whereas others retrieve and set whole ranges of pixels at once. Because drawing to a bitmap
usually entails setting many pixels, often thousands at a time, the methods that copy more bitmap data
with a single call are much more efficient.

Accessing Single Pixels
Retrieve or set the color of a single pixel with these methods:

� getPixel(x:int, y:int):uint — Return the color of the pixel at (x, y), without its
alpha component.

� getPixel32(x:int, y:int):uint — Return the color of the pixel.

� setPixel(x:int, y:int, color:uint):void — Set the color of the pixel, without
its alpha component.

� setPixel32(x:int, y:int, color:uint):void — Set the color of the pixel, includ-
ing its alpha component.

The 32-bit methods accept and return 32-bit integers packed as ARGB, such as 0xFF00CED1, an
opaque turquoise, while the 24-bit methods accept and return 24-bit integers packed as RGB, such
as 0x00CED1, the same color.

When you’re drawing any significant number of pixels, use the lock() and unlock() methods
between batches of setPixel() calls. These prevent Flash Player from doing extra work repeatedly
updating the on-screen representation of the bitmap, when it’s just going to be changed again by the
next setPixel() call.

In Example 36-6, you’ll use setPixel() to draw alpha-blended circles, in which the color drops off
towards the edge of the circle.

EXAMPLE 36-6 http://actionscriptbible.com/ch36/ex6

Drawing Pixel by Pixel

package {
import flash.display.*;
import flash.geom.*;
import flash.events.MouseEvent;
public class ch36ex6 extends Sprite {
protected const AVG_RADIUS:Number = 30;
protected var bmp:BitmapData;
public function ch36ex6() {
bmp = new BitmapData(stage.stageWidth, stage.stageHeight);
var bitmap:Bitmap = new Bitmap(bmp);
addChild(bitmap);
stage.addEventListener(MouseEvent.CLICK, onClick);

}
protected function onClick(event:MouseEvent):void {
bmp.lock();
var radius:Number = (Math.random() - 0.5) * AVG_RADIUS + AVG_RADIUS;
var center:Point = new Point(event.localX, event.localY);
var bounds:Rectangle = new Rectangle(center.x, center.y, 0, 0);
bounds.inflate(2*radius, 2*radius);

continued

747

Part VIII: Graphics Programming and Animation

EXAMPLE 36-6 (continued)

bounds = bounds.intersection(bmp.rect);
var p:Point = new Point();
for (p.y = int(bounds.top); p.y < bounds.bottom; p.y++) {
for (p.x = int(bounds.left); p.x < bounds.right; p.x++) {
var dist:Number = Point.distance(p, center);
if (dist < radius) {
var alpha:uint = 0xff * (1 - dist / radius);
bmp.setPixel32(p.x, p.y, alpha << 24);

}
}

}
bmp.unlock(bounds);

}
}

}

You’ll have to use the implicit definitions of any geometry you’d like to draw. For example, the cir-
cle you drew in the example appears when you color every pixel within its radius. If you run the
example, you’ll notice that while the edges of each circle fade out, overlapping circles don’t blend.
This should be no surprise, since each click overwrites the pixels with no concern for their prior con-
tents. For an additional challenge, you could blend these easily, either by drawing the circle into a
new bitmap and merge()ing them, or by blending the pixels with getPixel32() inside the inner
loop.

You’ll notice that all of the setPixel() calls are surrounded by a pair of lock() and unlock()
calls. Whether you include these calls or not, you’ll never see the pixels be set gradually on screen, not
simply because they’re set too fast for you to catch, but because the screen is only refreshed after all
ActionScript 3.0 code in a frame has been executed. The loops in onClick() are run synchronously,
and the image appears at the next redraw. But locking and unlocking is still important. Flash Player
needs to get the hint from you. Passing the bounds rectangle to the unlock() call in Example 36-6
is another, optional, hint. It tells Flash Player which area of the bitmap has changed; when you tell
Flash Player, it saves it the time and effort of finding out. Conveniently, in the example, you’ve precal-
culated that value.

Accessing Bitmap Data in Memory
In the beginning of this chapter, you learned that bitmaps are nothing more magical than a huge
array of color values — but that the BitmapData class manages this data. So you end up using
setPixel() and getPixel() methods to access pixels rather than something simple — and
fast — like direct array access.

var bmp:BitmapData = new BitmapData(100, 100);
bmp[50][50]; //XXX not available
bmp.getPixel(50, 50); //OK, but cumbersome

Rather than using these somewhat cumbersome methods thousands of times to manipulate a whole
region of pixels, BitmapData will allow you to get a copy of a region (which can, in fact, be the
entire image) in a more comfortable data type.

748

Chapter 36: Programming Bitmap Graphics

Using ByteArray

The getPixels() and setPixels() methods provide access to bitmap data as a ByteArray.
Each pixel color is stored as a 32-bit uint. Pixels are stored in row-major order, that is, how you
would read the pixels if they were an English-language newspaper: left-to-right, top-to-bottom. Each
of the methods accepts a region as a Rectangle, which the pixels will be read from, or written into.

You might want to use a ByteArray for bitmap data when importing or exporting image data,
from a file or possibly even a network connection. For instance, the screen-sharing application
VNC operates by continuously sending compressed image data for small changed regions of the
screen. You could use a Socket, receive ByteArrays, decode them, and copy them into the screen
BitmapData using setPixels().

A distinct advantage of using ByteArray for bitmap operations is that ByteArray permits
array-style access with square brackets ([]). Moreover, because it’s a byte array, an index in this
style returns a single byte. In 32-bit bitmap data, a single byte corresponds to a single channel of
a pixel. So you can use array access notation to easily address a single channel of a single pixel, as
Example 36-7 shows.

EXAMPLE 36-7 http://actionscriptbible.com/ch36/ex7

Accessing Bitmap Data in a ByteArray

package {
import flash.display.*;
import flash.events.Event;
import flash.net.URLRequest;
import flash.system.LoaderContext;
import flash.utils.ByteArray;
[SWF(backgroundColor="#000000")]
public class ch36ex7 extends Sprite {
public function ch36ex7() {
var l:Loader = new Loader();
l.load(
new URLRequest("http://actionscriptbible.com/files/testpattern.png"),
new LoaderContext(true)

);
l.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);

}
protected function onLoad(event:Event):void {
var src:BitmapData = Bitmap(LoaderInfo(event.target).content).bitmapData;
//setting the alpha channel doesn’t work if the image isn’t transparent
//so you copy the bitmap data into a new transparent BitmapData
var bmp:BitmapData = new BitmapData(src.width, src.height, true);
bmp.draw(src);
var bytes:ByteArray = bmp.getPixels(bmp.rect);
for (var y:int = 0; y < bmp.height; y+=2) {
for (var x:int = 0; x < bmp.width; x++) {
//find the alpha channel of x,y
bytes[y * bmp.width * 4 + x * 4] = 0x0;

}
}

continued

749

Part VIII: Graphics Programming and Animation

EXAMPLE 36-7 (continued)

//you must rewind the ByteArray first, for some reason
bytes.position = 0;
bmp.setPixels(bmp.rect, bytes);
var bitmap:Bitmap = new Bitmap(bmp);
addChild(bitmap);

}
}

}

In Example 36-7, you use a ByteArray to darken out every other row of pixels like an old-school
TV monitor, by zeroing out each pixel’s alpha channel. Using a ByteArray, you can do so with
per-byte array access. Because each pixel takes up four bytes and the pixels are stored in row-major
order, channel number C of pixel x, y is stored at

y * (width of a row) * (number of channels) + x * (number of channels) + C
4 * y * width + 4 * x + C

Two complications arise in the example. The alpha channel is ignored when the bitmap does not have
its transparent flag set. And the setPixels() method starts reading pixels at the cursor position
of the ByteArray, so you’ll need to rewind it to the correct position if you’ve done any writing.

Using Vector

In Flash Player 10 and later, BitmapData lets you access regions of pixels as Vectors of uints.
Besides being awfully convenient, this method is hands-down the fastest way to achieve direct access
to bitmap data. The getVector() and setVector() methods provide Vector access to bitmap
data, also with a region Rectangle. Other than the difference in data type, these work exactly like
getPixels() and setPixels().

Version
FP10. The getVector() and setVector() methods of BitmapData, like Vector itself, are available only
in Flash Player 10 and later. �

Note
Programmer Nathan Rixham shares his speed comparison of different per-pixel bitmap access methods in a nice
article at http://bit.ly/direct-bitmap-access-compared. �

Again, the pixels are stored in row-major order and packed into 32-bit uints in ARGB order.
Vectors, you’ll recall, also allow array-style access, but because the parameterized type of these
Vectors is uint, each index addresses a single pixel.

Use a Vector to access bitmap data when you’re writing your own renderers and rasterizer tech-
niques and when your application will be run in Flash Player 10 or later.

Note that when you use a Vector or a ByteArray, it’s not necessary to lock() the BitmapData,
because you’re only using a single call to write a whole set of pixels.

750

Chapter 36: Programming Bitmap Graphics

Working with Colors
Bitmaps provide some useful techniques for analyzing and manipulating colors within an image.

Filling with a Solid Color
Fill a rectangular region of a bitmap with a solid color using the fillRect() method. The method
requires two parameters: a Rectangle defining the region to fill, and the color. You’ve already seen
this rather simple method in many of the examples, usually used to clear the entire bitmap.

var bmp:BitmapData = new BitmapData(300, 300);
//draw a solid blue rectangle in the middle
bmp.fillRect(new Rectangle(100, 100, 100, 100), 0xff0000ff);
//clear the whole thing (write transparent black)
bmp.fillRect(bmp.rect, 0);

Replacing a Color with a Flood Fill
Flood fills replace an area of contiguous color with another color, essentially changing the color of
any shape with a solid fill. Without being told the boundaries of the shape, the fill starts at an ori-
gin point and floods outward in every direction until the color changes — even a little bit. You’re
probably familiar with this tool from image editing programs.

Apply flood fills to bitmaps using the floodFill() method, which takes the start position of the
fill and the new color, as Example 36-8 shows. Unlike the flood fill tool in an image editing program,
you really can’t change the threshold: the flood fill extends only to areas of precisely the same color.

EXAMPLE 36-8 http://actionscriptbible.com/ch36/ex8

Flood Fills

package {
import flash.display.*;
import flash.events.MouseEvent;
import flash.geom.Rectangle;
public class ch36ex8 extends Sprite {
protected var bmp:BitmapData;
public function ch36ex8() {

bmp = new BitmapData(200, 200, false);
bmp.fillRect(new Rectangle(0, 0, 100, 100), 0xffff0000);
bmp.fillRect(new Rectangle(100, 0, 100, 100), 0xff00ff00);
bmp.fillRect(new Rectangle(0, 100, 100, 100), 0xff0000ff);
bmp.fillRect(new Rectangle(100, 100, 100, 100), 0xffffff00);
var bitmap:Bitmap = new Bitmap(bmp);
addChild(bitmap);
stage.addEventListener(MouseEvent.CLICK, onClick);

}

continued

751

Part VIII: Graphics Programming and Animation

EXAMPLE 36-8 (continued)

private function onClick(event:MouseEvent):void {
bmp.floodFill(event.localX, event.localY, Math.random() * 0xffffff);

}
}

}

Color Transforms
Recall from Chapter 34 that you can change the appearance of any display object by modifying its
color transform. BitmapData is not a DisplayObject, but you can still apply a color transform
to it. Unlike display objects, which retain their transformations and are continually affected by them,
bitmaps are static, so the colorTransform() method permanently modifies the color of every pixel.
The colorTransform() method requires two parameters: a Rectangle object defining the region
to which to apply the color transform, and a ColorTransform object to use.

Color transforms are really useful when you want to use a bitmap as a frame buffer, drawing new
frames on top of older frames. To create a great motion trail effect with little effort, just dim the pre-
vious contents of the frame before drawing a new frame, as shown in Example 36-9.

EXAMPLE 36-9 http://actionscriptbible.com/ch36/ex9

Applying Color Transforms

package {
import flash.display.*;
import flash.events.*;
import flash.geom.*;
[SWF(backgroundColor="#000000",frameRate="60")]
public class ch36ex9 extends Sprite {
protected const MAXSPEED:Number = 8;
protected var ball:Shape;
protected var holder:Sprite;
protected var bmp:BitmapData;
protected var velocity:Point;
public function ch36ex9() {
bmp = new BitmapData(stage.stageWidth, stage.stageHeight);
var bitmap:Bitmap = new Bitmap(bmp);
addChild(bitmap);
holder = new Sprite();
addChild(holder);
ball = new Shape();
ball.graphics.lineStyle(0, 0xff0000);
ball.graphics.beginFill(0xffffff, 0.1);
ball.graphics.drawCircle(0, 0, 30);
holder.addChild(ball);
stage.addEventListener(Event.ENTER_FRAME, onEnterFrame);
stage.addEventListener(MouseEvent.CLICK, onMouseClick);
velocity = new Point(1, 1);

}

752

Chapter 36: Programming Bitmap Graphics

protected function onEnterFrame(event:Event):void {
ball.x += velocity.x;
ball.y += velocity.y;
ball.rotation += velocity.length / 5;
if (ball.x >= bmp.width || ball.x <= 0) velocity.x *= -1;
if (ball.y >= bmp.height || ball.y <= 0) velocity.y *= -1;
bmp.colorTransform(bmp.rect, new ColorTransform(1, 1, 1, 0.9));
bmp.draw(holder);

}
protected function onMouseClick(event:MouseEvent):void {
ball.x = stage.mouseX;
ball.y = stage.mouseY;
velocity.x = Math.random() * MAXSPEED * 2 - MAXSPEED;
velocity.y = Math.random() * MAXSPEED * 2 - MAXSPEED;

}
}

}

In the example, you implement a simple motion trail by drawing every frame into the same bitmap,
while fading out the contents continually with a ColorTransform.

Retrieving a Histogram
A histogram shows the distribution of colors in an image. In Flash Player, a bitmap’s histogram is
provided for each of the four channels individually. Each channel’s histogram is a plot of the lumi-
nance value (between 0 and 255) and its frequency — the number of pixels in the image that have
that value for the specified channel.

You can use a histogram to quickly get a glance of the dominant colors in the image and their lumi-
nances. By summing up the contributions from the RGB channels, you can look at the distribution
of light levels in an image, too. This information is useful in computer vision algorithms, often as a
first-pass analysis. For instance, when attempting to track a color marker, you can look for a signifi-
cant amount of the target color in the image; if it doesn’t appear, you can save processor time by not
even attempting to locate the marker.

When using a histogram to do image analysis, you’ll likely want to smooth out the data to minimize
impact of noise and artifacts. And you’ll usually be looking for local and global minima and maxima
to identify dominant colors or brightnesses. In object recognition algorithms, you may also want to
retrieve the histogram of a subset of the image to try to zero in on the location of the object.

Retrieve the histogram of an image, or a region of interest (ROI) within an image, by calling the
histogram() method. The method optionally takes a Rectangle defining the region of interest.
It returns a Vector of Vectors of Numbers — in other words, four histograms, one for each
channel, each with 256 frequencies, indicating the number of pixels found in the bitmap with the
corresponding brightness.

Version
FP10. You can use the histogram() method in Flash Player 10 and later. In Flash Player 9, you can generate
a histogram manually with pixel-by-pixel tallying of the entire image. �

753

Part VIII: Graphics Programming and Animation

In Example 36-10, you’ll draw a live histogram over the webcam’s image, in much the same way that

you’d write a spectrum visualizer for sound.

EXAMPLE 36-10 http://actionscriptbible.com/ch36/ex10

Getting an Image’s Histogram

package {
import flash.display.*;
import flash.events.Event;
import flash.media.Camera;
import flash.media.Video;
[SWF(width="500",height="500",frameRate="20")]
public class ch36ex10 extends Sprite {
protected const COLORS:Vector.<uint> = new <uint>[0xff0000, 0xff00, 0xff];
protected const SCALE:Number = 200 / 256;
protected var bmp:BitmapData;
protected var video:Video;
protected var hstR:Shape, hstG:Shape, hstB:Shape;
protected var allHstShapes:Vector.<Shape>;
public function ch36ex10() {
bmp = new BitmapData(stage.stageWidth, stage.stageHeight);
video = new Video(stage.stageWidth, stage.stageHeight);
video.attachCamera(Camera.getCamera());
addChild(video);
stage.addEventListener(Event.ENTER_FRAME, onEnterFrame);
var hstbox:Sprite = new Sprite();
addChild(hstbox);
hstbox.x = stage.stageWidth - 270 - 10;
hstbox.y = 10;
hstbox.graphics.lineStyle(0, 0xffffff);
hstbox.graphics.beginFill(0, 0.5);
hstbox.graphics.drawRect(0, 0, 270, 150);
hstR = new Shape(); hstG = new Shape(); hstB = new Shape();
allHstShapes = new <Shape>[hstR, hstG, hstB];
for each (var hstShape:Shape in allHstShapes) {
hstbox.addChild(hstShape);
hstShape.y = hstbox.height - 10;
hstShape.blendMode = BlendMode.ADD;
hstShape.rotationY = 36;
hstShape.scaleY = -1;

}
hstR.x = 10; hstG.x = 30; hstB.x = 50;

}
protected function onEnterFrame(event:Event):void {
bmp.draw(video);
var allHstData:Vector.<Vector.<Number>> = bmp.histogram(bmp.rect);
var PIXELCOUNT:int = bmp.width*bmp.height;
for (var i:int = 0; i < allHstShapes.length; i++) {
var hstData:Vector.<Number> = allHstData[i];
var g:Graphics = allHstShapes[i].graphics;
g.clear();

754

Chapter 36: Programming Bitmap Graphics

g.beginFill(COLORS[i]);
for (var x:int = 0; x < hstData.length; x++) {
g.drawRect(x*SCALE, 0, SCALE, hstData[x]/PIXELCOUNT * 1500*SCALE);

}
}

}
}

}

Although histogram() generates four histograms, the fourth, alpha channel, is ignored in this
example because the webcam feed is completely opaque.

Replacing Colors with Threshold
Another one of the simplest and most useful tools for image processing and computer vision is
the threshold. Computer programs, with their binary logic, have a hard time making decisions
on images with their 16.7 million possible values each pixel. Running a threshold opera-
tion reduces an image to a black-and-white, yes-or-no answer for every pixel. The threshold
usually asks the question: is this pixel’s color value greater than a certain target? Actually, a
threshold can perform any numerical comparison on pixels: greater than, less than, equal, not
equal, and so on. After reducing an image to binary, it’s much simpler to analyze and make
decisions about.

Computer vision programs frequently use thresholds to determine which areas of an image are note-
worthy, and they focus on them. For instance, you can threshold an image to try to determine the
foreground. In fact, you can use the information a histogram provides about an image to decide how
to threshold it for a better result.

The threshold() method performs a threshold operation. Like copyPixels(), it has an input
and output bitmap; often you want to use the thresholded image as additional information about
the image, without replacing and losing the original image data. The method accepts the following
parameters:

� sourceBitmapData — The bitmap from which to copy a region.

� sourceRect — The region of the source bitmap to copy, as a Rectangle.

� destPoint — Where the copied pixels should appear in the destination bitmap, as a Point
defining the top-left corner.

� operation — The comparison to perform on each pixel. One of the following as a String:
<, >, <=, >=, !=, or ==.

� threshold — The color to compare against.

� color — Pixels for which the threshold test results in true will be set to this color.

� mask — If provided, input color values will be masked with this value before comparison; for
example, color & mask == threshold & mask. Optional.

� copySource — If true, the source pixel’s color is used when the threshold test fails.
Optional; defaults to false.

755

Part VIII: Graphics Programming and Animation

In Example 36-11, you black out all pixels of a webcam feed that are brighter than the dominant
color. This should help isolate objects from a solid, bright background or light source. However, if
the image is predominantly dark, this might black out the whole image. A better approach might be
to use the brightest local maximum to threshold rather than the global maximum. You can experiment
with different approaches.

EXAMPLE 36-11 http://actionscriptbible.com/ch36/ex11

Applying a Threshold

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.Point;
import flash.media.Camera;
import flash.media.Video;
public class ch36ex11 extends Sprite {
protected var bmp:BitmapData;
protected var thresholdBmp:BitmapData;
protected var video:Video;
public function ch36ex11() {
bmp = new BitmapData(400, 300);
addChild(new Bitmap(bmp));
video = new Video(400, 300);
video.attachCamera(Camera.getCamera());
stage.addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
bmp.draw(video);
var hst:Vector.<Vector.<Number>> = bmp.histogram(bmp.rect);
var maxValue:Vector.<int> = new Vector.<int>(3, true);
var maxFrequency:Vector.<Number> = new Vector.<Number>(3, true);
for (var channel:int = 0; channel < 3; channel++) {
for (var i:int = 0; i < 256; i++) {
var value:Number = hst[channel][i];
if (value > maxFrequency[channel]) {
maxFrequency[channel] = value;
maxValue[channel] = i;

}
}

}
var threshold:uint = maxValue[0] << 16 | maxValue[1] << 8 | maxValue[2];
bmp.threshold(bmp, bmp.rect, new Point(),
">", threshold, 0xff000000, 0x00ffffff, true);

}
}

}

756

Chapter 36: Programming Bitmap Graphics

Remapping Colors with Palette Mapping
Color transforms are great for changing relative levels of colors in an image, but their simple linear
formula restrains their effects. When you want to get really freaky with color, you can define a com-
pletely arbitrary mapping between colors. Yes, you can actually pick a new value for each one of the
16.7 million colors in an image (4.2 billion when you count alpha). You’re probably sick of hearing
this, but this gives you limitless control over an image’s colors.

You can use palette mapping to more effectively replace single colors or whole ranges of colors. You
can use them to easily shift hues or change the response curves (gamma) of an image. In classic com-
puter games, images were often stored as indexed colors, and often with 256 or fewer colors. Then
palette mapping was a cheap and trippy special effect, which you can re-create in Flash Player.

Remap the palette of a bitmap using paletteMap(). Like copyPixels(), it can copy from a
source to a destination bitmap, placing a particular region in a specific destination. Of course, you
can use the entire bitmap and copy it into itself if you wish. The paletteMap() method accepts the
following parameters:

� sourceBitmapData — The bitmap from which to copy a region.

� sourceRect — The region of the source bitmap to copy, as a Rectangle.

� destPoint — Where the copied pixels should appear in the destination bitmap, as a Point
defining the top-left corner.

� redArray — An array defining the mapping for the red channel.

� greenArray — An array defining the mapping for the green channel.

� blueArray — An array defining the mapping for the blue channel.

� alphaArray — An array defining the mapping for the alpha channel.

The four arrays define the mapping. Rather than specifying a mapping from 32-bit color A to 32-bit
color B, you define a mapping between the individual channels, although you can easily construct
those color-to-color mappings in code. The index of each array (between 0 and 255) represents the
color component value; the value at the index, an integer between 0 and 255, defines what the new
color component will be. These array parameters are optional. If they are omitted or null, the corre-
sponding color channel will not be changed.

In Example 36-12, you construct a palette mapping that modifies the gamma of a video as you move
your mouse. You can change gamma depending on the platform as a simple form of color correction,
because Mac platforms and Windows platforms typically drive their displays at different gamma values
(although this is no guarantee that the user’s display isn’t set differently). As a better alternative, you
should use stage.colorCorrection if available (in Flash Player 10 and later). See Chapter 41,
‘‘Globalization, Accessibility, and Color Correction,’’ to find out how.

EXAMPLE 36-12 http://actionscriptbible.com/ch36/ex12

Adjusting Gamma with Palette Mapping

package {
import flash.display.*;
import flash.events.*;

continued

757

Part VIII: Graphics Programming and Animation

EXAMPLE 36-12 (continued)

import flash.geom.Point;
import flash.media.Video;
import flash.net.*;
import flash.text.*;
public class ch36ex12 extends Sprite {
protected var RLUT:Array, GLUT:Array, BLUT:Array;
protected var video:Video;
protected var bmp:BitmapData;
protected var tf:TextField;
public function ch36ex12() {
RLUT = new Array(256);
GLUT = new Array(256);
BLUT = new Array(256);
var nc:NetConnection = new NetConnection();
nc.connect(null);
var ns:NetStream = new NetStream(nc);
ns.play("http://actionscriptbible.com/files/bullettrain.mp4");
ns.client = new Object();
video = new Video();
video.attachNetStream(ns);
video.scaleX = video.scaleY = 0.5;
bmp = new BitmapData(320, 240);
addChild(new Bitmap(bmp));
video.addEventListener(Event.ENTER_FRAME, onEnterFrame);
stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);
tf = new TextField(); tf.width = 26; tf.height = 14; tf.x = tf.y = 5;
tf.backgroundColor = 0; tf.background = true;
tf.defaultTextFormat = new TextFormat("_typewriter", 10, 0xffffff);
addChild(tf);

}
protected function onEnterFrame(event:Event):void {
bmp.draw(video);
bmp.paletteMap(bmp, bmp.rect, new Point(), RLUT, GLUT, BLUT);

}
protected function onMouseMove(event:MouseEvent):void {
var newGamma:Number = (1 - stage.mouseY / stage.stageHeight) * 2.5;
tf.text = newGamma.toFixed(1);
for (var v:int = 0; v < 256; v++) {
BLUT[v] = int(Math.pow(v / 256.0, newGamma) * 256);
GLUT[v] = BLUT[v] << 8;
RLUT[v] = GLUT[v] << 8;

}
}

}
}

You might also consider modifying the response curve of an image at real time to simulate changes in
exposure, such as if the character steps outside into a bright scene and his eyes adjust.

758

Chapter 36: Programming Bitmap Graphics

Detecting Areas of a Solid Color
Detecting the extents of a color is a powerful image analysis technique, especially when the colors of
an image have been simplified a bit (as this method, like floodFill() discussed earlier, has zero
tolerance). For example, once you have determined that a solid-colored feature you would like to rec-
ognize is within some region of interest, you can find the smallest bounding region that contains the
color and determine its position from this (perhaps with temporal interpolation, taking its prior loca-
tions into account).

To find out the smallest region that encloses the solid-colored area of a bitmap, use the
getColorBoundsRect() method. The method has some things in common with threshold()
in the way it compares pixels of a bitmap to a target color. It accepts the following parameters:

� mask — Causes pixel values to be masked prior to comparison. The comparison
pixel & mask == color & mask is used. Particularly useful if you’re only inter-
ested in the alpha channel (use 0xFF000000), or not interested in the alpha channel (use
0x00FFFFFF). Use 0xFFFFFFFF to consider all channels.

� color — A color to detect the bounds of.

� findColor — If true, returns the area containing the color; otherwise, returns the area in
which the color is not found. Optional; defaults to true.

The method returns a Rectangle object enclosing the region that contains the color.

In Example 36-13, left-aligned text is wrapped around an image by detecting, for each line, where that
line overlaps the image, and then within that overlap, how much of the image is transparent (or solid
white, in an opaque image).

EXAMPLE 36-13 http://actionscriptbible.com/ch36/ex13

Detecting Solid Color

package {
import flash.display.*;
import flash.events.Event;
import flash.net.*;
import flash.text.*;
public class ch36ex13 extends Sprite {
protected var tf:TextField;
protected var img:Loader;
public function ch36ex13() {
tf = new TextField();
tf.width = stage.stageWidth * 0.75;
tf.height = stage.stageHeight - 4;
tf.x = 4; tf.y = 4;
tf.defaultTextFormat = new TextFormat("Garamond", 12, 0x303030);
tf.multiline = tf.wordWrap = true;
addChild(tf);
var u:URLLoader = new URLLoader(
new URLRequest("http://actionscriptbible.com/files/alice-ch8.txt"));

u.addEventListener(Event.COMPLETE, onTextLoad);
}

continued

759

Part VIII: Graphics Programming and Animation

EXAMPLE 36-13 (continued)

protected function onTextLoad(event:Event):void {
tf.text = URLLoader(event.target).data;
img = new Loader();
addChildAt(img, 0);
img.load(
new URLRequest("http://actionscriptbible.com/files/alice-8.gif"));

img.contentLoaderInfo.addEventListener(Event.COMPLETE, onImageLoad);
}
protected function onImageLoad(event:Event):void {
img.x = stage.stageWidth - img.width + 30;
img.y = 30;
WrapTextUtility.wrapText(tf, img, 2, true);

}
}

}

import flash.geom.*;
import flash.display.*;
import flash.text.*;
class WrapTextUtility
{
private static const KILL_LIMIT:int = 100;
private static const GUTTER:int = 2;
private static const NEWLINE:String = "\n";
private static const WHITESPACE:RegExp = /[\s\-_]/;
public static function wrapText(tf:TextField, edge:DisplayObject,

paddingPx:int = 6,
transparentBackground:Boolean = false):void {

if (!tf.hitTestObject(edge)) return;
var edgeOffset:Point = edge.localToGlobal(new Point()).subtract(
tf.localToGlobal(new Point()));

var lineY:Number = GUTTER;
var bmpSlice:BitmapData = new BitmapData(edge.width, edge.height, true, 0);
var i:int = 0;
do {
try {
var lineMetrics:TextLineMetrics = tf.getLineMetrics(i);

} catch (err:RangeError) {
break;

}
var lineBaseline:Number = lineY + lineMetrics.ascent;
bmpSlice.fillRect(bmpSlice.rect, 0x00000000);
var clipRect:Rectangle = new Rectangle(0, lineY - edgeOffset.y,
edge.width, lineMetrics.ascent + lineMetrics.descent);

lineY += lineMetrics.height;
if (clipRect.width <= 0 || clipRect.height <= 0)
continue;

if (clipRect.y >= edge.height || clipRect.y + clipRect.height <= 0)
continue;

bmpSlice.draw(edge, null, null, null, clipRect);
var colorRect:Rectangle = bmpSlice.getColorBoundsRect(

760

Chapter 36: Programming Bitmap Graphics

(transparentBackground? 0xFF000000 : 0xFFFFFFFF), 0x00000000, false);
if (colorRect == null || colorRect.width <= 0 || colorRect.height <= 0)
continue;

var wrapChar:int = tf.getCharIndexAtPoint(
colorRect.x + edgeOffset.x - paddingPx, lineBaseline);

var firstCharInLine:int = tf.getLineOffset(i);
var allText:String = tf.text;
if (wrapChar <= 0) continue;
while (allText.charAt(wrapChar).match(WHITESPACE) == null &&
wrapChar > firstCharInLine) --wrapChar;

if (wrapChar <= firstCharInLine) {
tf.text = allText.slice(0, firstCharInLine)
+ NEWLINE
+ allText.slice(firstCharInLine);

} else {
tf.text = allText.slice(0, wrapChar)
+ NEWLINE
+ allText.slice(wrapChar + 1);

}
} while (++i < KILL_LIMIT);
bmpSlice.dispose();

}
}

Once the line’s overlap with the image is detected, you create a small bitmap slice (bmpSlice) that
represents that overlap. Then you use getColorBoundsRect() to see which part of it can have text
drawn on top (if it’s transparent or white). Then you manually wrap the text to the right edge of that
rectangle.

Bitmap Effects
With the use of some final methods by the BitmapData class, you can generate interesting effects.
Some of these, such as Perlin noise, can be generated in a bitmap and then used in a wide variety of
other contexts.

Applying Filters
Filters, covered in Chapter 37, can be applied to any display object. The BitmapData class isn’t a
DisplayObject, but you can apply a filter to it. Much like colorTransform(), the filter will
have a one-time effect. However, you can certainly apply the filter repeatedly, especially when main-
taining the prior contents of the frame buffer as in Example 36-9.

To apply a filter to a BitmapData object, use the applyFilter() method, which accepts the fol-
lowing parameters:

� sourceBitmapData — The bitmap to apply the filter to.

� sourceRect — The region of the source bitmap to copy, as a Rectangle.

� destPoint — Where the copied pixels should appear in the destination bitmap, as a Point
defining the top-left corner.

� filter — A BitmapFilter to apply.

761

Part VIII: Graphics Programming and Animation

Scrolling a Bitmap
You can move a bitmap’s data around in a simple manner with the scroll() method. The same
effect can be achieved with copyPixels() or draw(), but scroll() is quick and easy. Rather
than using a source bitmap, the BitmapData shifts its own contents. The method takes an x and y
delta in position. When using scroll(), you should have a larger bitmap than is shown on-screen:
the source pixels have to come from somewhere as they are shifted.

You can use scroll() to create a smoothly scrolling tile map. Tile maps are an old-school game
technique to create and store large maps at a low cost. Game artists would create patches of ground
that fit together seamlessly and reuse them to build a large map. As the game character walks toward
the edge of the screen, new tiles have to be brought on from the edge. You can draw on these tiles
with copyPixels(), but to generate the frames of animation where the screen is smoothly scrolling
halfway between two unit tile sizes, scroll() can come in handy. The bitmap loses data as pixels
are pushed off the edge, so it comes at a cost: you have to redraw the map after scrolling changes
directions.

You can also use scroll() for simple frame buffer effects, such as fire that scrolls up and fades out
gradually. Each frame, the whole bitmap can shift up, fade out, and perhaps blur.

Using Pixel Dissolves
Although perhaps one of the less useful features of BitmapData, you can copy a random set of pixels
from a bitmap, usually to evince a ‘‘pixel dissolve,’’ a transition between two images, or an image and
black, in which pixels progressively disappear in a random fashion. The pixelDissolve() method
does just this.

Making Noise
Noise typically refers to random, unintentional, and unwanted image data. However, there are many
good reasons to intentionally introduce noise. For example, you can use noise to add texture like film
grain; and fractal noise is useful for simulating natural motion. There are two methods to create noise
in a bitmap.

Random Noise

The noise() method applies randomly distributed noise to a bitmap. This kind of noise is akin to
film grain or static. The noise is applied to the entire image. The noise at each pixel is a random value
conforming to certain parameters. The noise() method accepts the following parameters, which are
all optional but the first:

� randomSeed — A seed for the random number generator. Because the random numbers are
pseudorandom, use of the same seed generates the same noise (not that anyone is likely to
notice). A convenient random seed that’s not likely to be seen twice by the same person is the
current time, (new Date()).getTime().

� low — The minimum possible value for each channel (ARGB). Optional; defaults to 0.

� high — The maximum possible value for each channel. Optional; defaults to 255.

� channelOptions — Which channels noise will be added to. Use a combination of the RED,
GREEN, BLUE, and ALPHA constants of BitmapDataChannel, or their values, 1, 2, 4, and 8.
Use multiple channels with addition (+) or binary OR (|). Optional, defaults to RGB.

762

Chapter 36: Programming Bitmap Graphics

� grayScale — Whether to create grayscale noise. If true, the same random value is used for
all channels specified in channelOptions, and the noise appears different levels of gray.
Optional; defaults to false.

Example 36-14 uses the noise() method to attempt realistic film grain. Because the per-pixel noise
is so sharp, a blur filter is used. This, and the multiply blend mode, help make the noise appear more
realistic. Finally, add in a flicker and set the frame rate to 24 to make it totally filmic.

EXAMPLE 36-14 http://actionscriptbible.com/ch36/ex14

Adding Noise

package {
import flash.display.*;
import flash.events.Event;
import flash.filters.BlurFilter;
import flash.geom.Point;
import flash.net.URLRequest;
import flash.system.LoaderContext;
[SWF(frameRate="24", backgroundColor="#000000")]
public class ch36ex14 extends Sprite {
protected var bmp:BitmapData;
protected var seed:int;
protected var image:Loader;
public function ch36ex14() {
image = new Loader();
addChild(image);
image.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
image.load(
new URLRequest("http://actionscriptbible.com/files/caviar.jpg"),
new LoaderContext(true)

);
}
protected function onLoad(event:Event):void {
var src:BitmapData = Bitmap(image.content).bitmapData;
bmp = new BitmapData(src.width, src.height, true);
var bitmap:Bitmap = new Bitmap(bmp);
addChild(bitmap);
bitmap.blendMode = BlendMode.MULTIPLY;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
bmp.fillRect(bmp.rect, 0);
bmp.noise(++seed, 200, 255, BitmapDataChannel.BLUE, true);
bmp.applyFilter(bmp, bmp.rect, new Point(), new BlurFilter(4, 4, 2));
image.alpha = (seed % 2)? 0.95 : 1;

}
}

}

Notice how you also used a bitmap filter with applyFilter() to soften the otherwise-harsh grain.

763

Part VIII: Graphics Programming and Animation

Perlin Noise

Perlin noise is a kind of fractal noise. Unlike the harsh grit of totally random noise, Perlin noise is
flowing, liquid, organic. It’s fractal because it contains multiple layers of the same kind of noise, each
at a smaller size — called octaves — so it’s self-similar. Usually, only a few octaves are shown, unlike
fractals that iterate toward infinity. Many aspects of the noise are controlled by code, so that you can
corral the effect to your own ends. The usefulness of Perlin noise extends beyond creating plasma-like
blobs; you can even generate an image with Perlin noise and examine its pixels as a replacement for
Math.random() in totally nonbitmap code.

It’s hard to visualize Perlin noise from a short description; you can see a basic example of it in
Figure 36-1. Without much manipulation, you can make Perlin noise approximate wood grain,
marble, and clouds. Using randomness it outputs, you can model terrain, wind, fire, and ripples.
Those examples are just the most common applications. Use Perlin noise a few times, and you may
find yourself realizing it’d be perfect for a completely different application.

FIGURE 36-1

Basic Perlin noise

The perlinNoise() method fills a bitmap with Perlin noise. Control the noise generation with the
following parameters:

� baseX — The width to base the frequency of noise on. Use the width of the bitmap as a stan-
dard of measurement. Fit more or less in the bitmap by scaling this factor up and down.

� baseY — The height to base the frequency of noise on. See baseX.

� numOctaves — The number of octaves to render. Typically only a few octaves are rendered.
Fewer octaves mean faster render times.

� randomSeed — A seed value for the pseudorandom number generator. Use the same seed to
repeat the same general appearance. Changes in seed value don’t appear continuous.

� stitch — Whether the edges of the noise are made to fit together, should the noise be tiled.

� fractalNoise — Whether the style of noise should be fractal noise (true) or turbulence
(false). The setting slightly alters the noise algorithm to produce a different style of
noise with the same properties. Fractal noise is more continuous, whereas turbulence has
more gaps.

764

Chapter 36: Programming Bitmap Graphics

� channelOptions — Which channels noise should be generated into. See the same option of
noise(). Optional; defaults to RGB.

� grayscale — Whether or not the noise is grayscale. Optional; defaults to false.

� offsets — An array of Points, one for each octave, that position the layers.

The perlinNoise() method has a ton of options, but a couple of examples illustrate its capabilities.

Example 36-15 shows some basic Perlin noise and examines the effect of baseX, baseY, and
numOctaves.

EXAMPLE 36-15 http://actionscriptbible.com/ch36/ex15

Basic Perlin Noise

package {
import flash.display.*;
import flash.events.Event;
import flash.events.KeyboardEvent;
public class ch36ex15 extends Sprite {
protected var bmp:BitmapData;
protected var octaves:int = 1;
public function ch36ex15() {
bmp = new BitmapData(stage.stageWidth, stage.stageHeight);
var bitmap:Bitmap = new Bitmap(bmp);
stage.addChildAt(bitmap, 0);
addEventListener(Event.ENTER_FRAME, onEnterFrame);
stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);

}
protected function onKeyDown(event:KeyboardEvent):void {
switch (String.fromCharCode(event.charCode)) {
case "+": case "=": octaves++; break;
case "-": case "_": octaves--; break;

}
}
protected function onEnterFrame(event:Event):void {
bmp.perlinNoise(mouseX, mouseY, octaves, 1, false, false);
graphics.clear();
graphics.lineStyle(0, 0xffffff, 0.5);
graphics.drawRect(0, 0, mouseX, mouseY);

}
}

}

Try running the example. Move the mouse, and you’ll update the size of the rectangle used to calcu-
late a single cycle of the noise’s first octave. Use the + and – keys to add and remove octaves. Notice
that after around 5 octaves, you can’t really see additional octaves; also note the impact on refresh rate.

In Example 36-16, you see the effect of edge stitching by creating a BitmapData object with Perlin
noise and using it as a bitmap fill. Press a key on the keyboard to toggle stitching on and off.

765

Part VIII: Graphics Programming and Animation

EXAMPLE 36-16 http://actionscriptbible.com/ch36/ex16

Perlin Noise and Edge Stitching

package {
import flash.display.*;
import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.events.TimerEvent;
[SWF(frameRate="2")]
public class ch36ex16 extends Sprite {
protected var bmp:BitmapData;
protected var stitch:Boolean = false;
public function ch36ex16() {
bmp = new BitmapData(200, 200);
var shape:Shape = new Shape();
shape.graphics.lineStyle(0, 0, 0);
shape.graphics.beginBitmapFill(bmp);
shape.graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
shape.graphics.endFill();
addChild(shape);

stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onKeyDown(event:KeyboardEvent):void {
stitch = !stitch;

}
private function onEnterFrame(event:Event):void {
bmp.perlinNoise(100, 100, 2, Math.random()*1000, stitch, false, 1, true);

}
}

}

Using the offsets parameter to offset individual octaves of Perlin noise can generate interesting
effects. For a good example, look ahead to Example 37-13 (http://actionscriptbible.com/
ch37/ex13). In that example, you use Perlin noise to simulate wind rippling a flag. The bigger
octaves move more slowly because the prevailing power of the wind fluctuates slowly, whereas
smaller octaves move faster, pushing small ripples by much faster in addition to the overall motion.

Summary

� A bitmap is a grid of colors, one for each pixel. Bitmaps in Flash Player store 32 bits per pixel in
four 8-bit channels: alpha, red, green, and blue.

� With bitmaps, you have total control over what goes on the screen. Use this to write anything
from a simple effect to your own graphics engine.

766

Chapter 36: Programming Bitmap Graphics

� BitmapData stores the bitmap data. It doesn’t give you direct access to the pixels in memory,
but it allows you to retrieve and set them through certain methods.

� BitmapData can’t be placed on the stage. Bitmap is a display object that can. Bitmap serves
the sole purpose of displaying bitmap data.

� BitmapData objects can be transparent or discard alpha channel information. Set this with the
transparent property.

� BitmapData objects are fixed in size at construction time.

� Bitmap data takes up memory. When releasing BitmapData instances, call dispose() on
them to manually dispose the internal bitmap data.

� Bitmaps may be smoothly interpolated if the Bitmap’s smoothing property is set to true.
If false, stage quality settings have no effect on their appearance.

� You can get the bitmap representation of any display object or composition of display objects
by calling draw() on the BitmapData to draw into.

� Copy regions of bitmaps or channels of those regions with copyPixels() and
copyChannel().

� Access single pixels with the [get/set]Pixel[32]() family of methods.

� You can copy and set regions of — or whole — bitmaps in memory using a ByteArray or
Vector.

� Fill a region with a solid color using fillRect(), or flood-fill areas of a solid color with
floodFill().

� You can apply filters and color transforms to a BitmapData with applyFilter() and
colorTransform(); unlike with display objects, these have one-time effects.

� Methods especially useful for image analysis include histogram(), threshold(), and
getColorBoundsRect().

� Palette mapping — achieved with paletteMap() — is a powerful tool for color modification.

� Flash Player has built-in support for two kinds of procedural noise: fractal, naturalistic Perlin
noise, and basic per-pixel noise.

767

Applying Filters

FEATURED CLASSES

flash.filters
.BitmapFilter

flash.filters.*

W
ith ActionScript 3.0, you can easily apply one or a combination of
preset graphical styles to any display object. Perhaps you’d like to
blur an image, create a beveled edge, or add a glow to a Sprite, or

maybe you want to distort an image. Like bitmap image-editing programs such
as Photoshop, these treatments are made available as filters. In the Flash Player
API, subclasses of the flash.filters.BitmapFilter class represent filters
you can use to style display objects at runtime.

Introducing Filters

Filters are built-in effects you can apply to any DisplayObject, like Sprite,
MovieClip, or TextField. All the filters discussed in this chapter are built
into the Flash Player runtime, which makes them fast to render. Under the
hood, when you apply a filter to a DisplayObject, Flash Player renders
the display object as a bitmap and applies the filter to the bitmap to produce the
desired graphical effect. Any time you apply a filter to a DisplayObject, its
cacheAsBitmap property is set to true.

The filters available in Flash Player 9 and later are as follows:

� BevelFilter

� BlurFilter

� ColorMatrixFilter

� ConvolutionFilter

� DisplacementMapFilter

� DropShadowFilter

� GlowFilter

� GradientBevelFilter

� GradientGlowFilter

769

Part VIII: Graphics Programming and Animation

Flash Player 10 adds the ShaderFilter, enabling you to use Pixel Bender shaders easily on display
objects with the same interface as any of the built-in filters. You’ll learn about Pixel Bender shaders in
Chapter 38, ‘‘Writing Shaders with Pixel Bender.’’

Applying Filters to Display Objects
Every DisplayObject instance has a filters property of type Array. This property contains
the filter objects applied to the instance. If you apply a filter at authoring time in Flash Professional,
that filter object is accessible during runtime via the filters property.

When you read elements from the filters array, you get copies of, rather than references to, the
actual filter objects. That means that if you access an element in the filters array and change its
properties, these changes to the filter aren’t applied to the display object automatically. You’ve merely
modified the properties of a new BitmapFilter instance that’s not in use.

When you want to apply a filter to an object programmatically, you must assign an array of filter
objects to the filters property. Not only does the filters array return copies of the filter objects,
but when you read the filters property, it returns a copy of the array rather than a reference. So
it won’t work to use standard array methods such as push(), and you cannot overwrite elements of
the array and have the updates affect the display object automatically. The only way to change, add,
or remove filters is to assign a whole new array of filters to the filters property.

Some examples will help clarify this technique. In subsequent sections you’ll learn more about each of
the different types of filter classes. For the next few examples, however, you construct very basic filter
objects. For example, the following code constructs a basic DropShadowFilter object:

var shadowFilter:DropShadowFilter = new DropShadowFilter();

You can only add filters to a DisplayObject by assigning a whole new filters array. So once
the filter object is constructed, you pop it in a new array of filters. Here, I apply the drop shadow to a
DisplayObject named circle:

circle.filters = [shadowFilter];

Additionally, if you change a property of a filter object after you assign it to the filters array of a
display object, it will have no effect on the display object. For example, DropShadowFilter objects
have a distance property that determines the displacement of the shadow in pixels. The default is 4
pixels. If you set the property before assigning the object to the filters array, there will be a visible
effect:

shadowFilter.distance = 100;
circle.filters = [shadowFilter];

However, if you change the property after assigning the object to the filters array, it won’t affect the
display object:

circle.filters = [shadowFilter];
shadowFilter.distance = 100; //no effect

770

Chapter 37: Applying Filters

If you want to reapply a filter after changing the properties, as in the preceding example, you need to
reassign the filters property. For example, the following retrieves a filter from the filters array,
makes a change to it, and reassigns the whole array:

//get it
var shadowFilter:DropShadowFilter = circle.filters[0] as DropShadowFilter;
//change it
shadowFilter.distance = 0;
//reassign the whole thing
circle.filters = [shadowFilter];

Multiple Filters
Because the filters property is an array, you can add multiple filters on a single display object.
The order of filters in the array determines the order that the graphic effects will be processed and can
have a big effect on the final image. Of course, the more filters you use, the more processing will be
required to render each frame. The size of images you’re applying filters to and the quality setting of
the filter both contribute to the speed at which Flash Player can render filtered display objects.

The next section looks more closely at each of the different filters and examines the parameters that
each filter accepts and possible uses for each.

Blurs
You can add blur effects to display objects using BlurFilter objects. The BlurFilter class has
three properties:

� blurX — The number of pixels to blur in the x direction. The default is 4.

� blurY — The number of pixels to blur in the y direction. The default is 4.

� quality — The number of times to run the blur. The range is from 0 to 15. The default
value is 1.

You can make a new BlurFilter instance using the BlurFilter constructor. The constructor
accepts from 0 to 3 parameters. The parameters are the same as in the preceding list. The following
code constructs a BlurFilter instance with default settings:

var blurFilter:BlurFilter = new BlurFilter();

The following constructs a new BlurFilter instance that blurs 100 pixels in the x direction but no
pixels in the y direction. It uses a quality setting of 15 to achieve a very smooth blur.

var blurFilter:BlurFilter = new BlurFilter(100, 0, 15);

As with any other filter, you can change the properties of a BlurFilter object after it has been
instantiated.

771

Part VIII: Graphics Programming and Animation

Example 37-1 uses blur filters on a stack of ball-like objects layered in Z space to simulate a camera
lens with a narrow depth of field. This example requires Flash Player 10 and later but can be easily
retrofitted for Flash Player 9 by substituting a scaleX and scaleY factor for the z property.

EXAMPLE 37-1 http://actionscriptbible.com/ch37/ex1

Using the Blur Filter

package {
import flash.display.GradientType;
import flash.display.Sprite;
import flash.events.Event;
import flash.filters.BlurFilter;
import flash.geom.Matrix;

public class ch37ex1 extends Sprite {
protected const NUM_COPIES:int = 28;
public function ch37ex1() {
var W:Number = stage.stageWidth;
var H:Number = stage.stageHeight;
for (var i:int = 0; i < NUM_COPIES; i++) {
var s:Sprite = new Sprite();
var m:Matrix = new Matrix();
m.createGradientBox(40, 40, 0, -20, -20);
s.graphics.beginGradientFill(GradientType.RADIAL, [0xE76921, 0x8F1F08],
[1, 1], [0, 255], m, null, null, 0.6);

s.graphics.drawCircle(0, 0, 20);
s.graphics.endFill();
s.x = (Math.random()-0.5)*200 + 0.5*W;
s.y = (Math.random()-0.5)*200 + 0.5*H;
s.z = -(i-NUM_COPIES/2) * W/NUM_COPIES;
s.filters = [new BlurFilter(0, 0, 2)];
addChild(s);

}
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
var focusZ:Number = stage.mouseX - stage.stageWidth/2;
for (var i:int = 0; i < numChildren; i++) {
var s:Sprite = Sprite(getChildAt(i));
var blurFilter:BlurFilter = BlurFilter(s.filters[0]);
var blurAmount:Number = 0.05 * Math.abs(focusZ - s.z);
blurFilter.blurX = blurAmount;
blurFilter.blurY = blurAmount;
s.filters = [blurFilter];

}
}

}
}

772

Chapter 37: Applying Filters

Drop Shadows
You can use a DropShadowFilter to apply a drop shadow to a display object. Instances of
DropShadowFilter have the following properties:

� distance — The number of pixels from the display object to offset the shadow.
The default is 4.

� angle — The angle of the light source in degrees, where 0 is directly to the left of the object.
The default value is 45.

� color — The color of the shadow specified as an unsigned integer from 0x000000 to
0xFFFFFF. The default value is 0x000000.

� alpha — The alpha of the shadow from 0 to 1. The default is 1.

� blurX — The amount to blur the shadow in the x direction from 0 to 255. The default is 4.

� blurY — The amount to blur the shadow in the y direction from 0 to 255. The default is 4.

� strength — The punch strength of the shadow from 0 to 255. The default is 1.

� quality — The number of times to run the blur on the shadow. The range is from 0 to 15.
The higher the number, the smoother the blur of the shadow will appear. The default is 1.

� inner — A Boolean value indicating whether the shadow should be applied to the inside
of the object. The default value is false, which means the shadow is applied outside the
object.

� knockout — A Boolean value indicating whether the original display object contents should
be transparent. If true, that section of the object is transparent (the background or whatever is
underneath the object is visible), and the drop shadow is visible around the edges of that area.
The default value is false.

� hideObject — A Boolean value indicating whether to hide the contents of the display object.
If true, the contents of the display object are hidden, and the drop shadow is visible. The
default value is false.

The DropShadowFilter constructor accepts between 0 and 11 parameters. The parameters are in
the order they appear in the preceding list. The following constructs a DropShadowFilter object
with the default settings:

var shadowFilter:DropShadowFilter = new DropShadowFilter();

The following constructs a DropShadowFilter object with a red shadow offset of 20 pixels to the
right:

var shadowFilter:DropShadowFilter = new DropShadowFilter(20, 0, 0xFF0000);

Example 37-2 simulates a light source with the mouse cursor, illuminating some text in the center and
projecting the shadow away from the light source.

773

Part VIII: Graphics Programming and Animation

EXAMPLE 37-2 http://actionscriptbible.com/ch37/ex2

Drop Shadows

package {
import flash.display.Sprite;
import flash.events.Event;
import flash.filters.DropShadowFilter;
import flash.geom.Point;
import flash.text.*;

public class ch37ex2 extends Sprite {
protected var s:Sprite;
public function ch37ex2() {
var tf:TextField = new TextField();
tf.defaultTextFormat = new TextFormat("_sans", 35, 0, true, false);
tf.selectable = false;
tf.width = tf.height = 0;
tf.autoSize = TextFieldAutoSize.LEFT;
tf.text = "Hello Shadows";
s = new Sprite();
s.addChild(tf);
tf.x = -tf.textWidth/2;
tf.y = -tf.textHeight/2;
s.x = stage.stageWidth/2;
s.y = stage.stageHeight/2;
addChild(s);

s.filters = [new DropShadowFilter(0, 0, 0, 0.4, 12, 12, 1, 2)];
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
var filter:DropShadowFilter = DropShadowFilter(s.filters[0]);
var vector:Point = new Point(stage.mouseX - s.x, stage.mouseY - s.y);
var m:Number = new Point(stage.stageWidth/2, stage.stageHeight/2).length;
var normalizedDistance:Number = vector.length / m;
filter.distance = Math.pow(normalizedDistance, 2) * 100;
filter.blurX = filter.blurY = normalizedDistance * 20;
filter.alpha = Math.pow(normalizedDistance, 2);
filter.angle = Math.atan2(vector.y, vector.x) / Math.PI * 180 + 180;
s.filters = [filter];

}
}

}

774

Chapter 37: Applying Filters

Bevels
A bevel filter simulates a beveled edge on top of the content it’s filtering. It makes the surface appear
as though the edge has been chiseled to an angle, so it catches the light. Bevel filters are represented
by instances of the BevelFilter class, which has the following properties:

� distance — The offset of the bevel in pixels. The greater the number, the more pronounced
the bevel. The default is 4.

� angle — The angle of the light source to the object in degrees. A value of 0 makes the light
source directly to the left, whereas a value of 180 makes the light source directly to the right.
The default is 45.

� highlightColor — The highlight color specified as an unsigned integer from 0x000000 to
0xFFFFFF. The default value is white (0xFFFFFF).

� highlightAlpha — The alpha of the highlight. The range is from 0 to 1. The default is 1.

� shadowColor — The shadow color specified as an unsigned integer from 0x000000 to
0xFFFFFF. The default value is black (0x000000).

� shadowAlpha — The alpha of the shadow. The range is from 0 to 1. The default is 1.

� blurX — The number of pixels to blur the bevel in the horizontal direction. The greater the
number, the softer the bevel appears. The default is 4.

� blurY — The number of pixels to blur the bevel in the vertical direction. The greater the num-
ber, the softer the bevel appears. The default is 4.

� strength — The punch strength of the bevel. The greater the number, the more visible
the shadow and highlight will be when the blur properties are set to greater numbers.
The default is 1.

� quality — The number of times to run the blur. The range is from 1 to 15. The greater the
number, the smoother the bevel appears. The default is 1.

� type — The type can be one of the constants BitmapFilterType.INNER,
BitmapFilterType.OUTER, or BitmapFilterType.FULL. The default is
BitmapFilterType.INNER.

� knockout — Whether to knock out the contents of the object. The default is false.

The BevelFilter constructor accepts between 0 and 12 parameters. Parameters are in the same
order they appear in the preceding list. For example, the following instantiates a BevelFilter object
with a distance of 10 pixels and an angle of 0:

var bevelFilter:BevelFilter = new BevelFilter(10, 0);

The following instantiates a new BevelFilter object with each of the 12 parameters:

var bevelFilter:BevelFilter = new BevelFilter(10, 0,
0xFF0000, .5, 0xCCCCCC, .5, 10, 10, 5, 15,
BitmapFilterType.INNER, true);

Example 37-3 adds onto the effects in the previous example with a bevel also following the virtual
light under the mouse.

775

Part VIII: Graphics Programming and Animation

EXAMPLE 37-3 http://actionscriptbible.com/ch37/ex3

Bevel Filters

package {
import flash.display.Sprite;
import flash.events.Event;
import flash.filters.BevelFilter;
import flash.filters.DropShadowFilter;
import flash.geom.Point;
import flash.text.*;

public class ch37ex3 extends Sprite {
protected var s:Sprite;
public function ch37ex3() {
var tf:TextField = new TextField();
tf.defaultTextFormat = new TextFormat("_sans", 35, 0x303030, true, false);
tf.selectable = false;
tf.width = tf.height = 0;
tf.autoSize = TextFieldAutoSize.LEFT;
tf.text = "Hello Bevels";
s = new Sprite();
s.addChild(tf);
tf.x = -tf.textWidth/2;
tf.y = -tf.textHeight/2;
s.x = stage.stageWidth/2;
s.y = stage.stageHeight/2;
addChild(s);

s.filters = [new DropShadowFilter(0, 0, 0, 0.4, 12, 12, 1, 2),
new BevelFilter(2, 0)];

addEventListener(Event.ENTER_FRAME, onEnterFrame);
}
protected function onEnterFrame(event:Event):void {
var shadow:DropShadowFilter = DropShadowFilter(s.filters[0]);
var bevel:BevelFilter = BevelFilter(s.filters[1]);
var vector:Point = new Point(stage.mouseX - s.x, stage.mouseY - s.y);
var m:Number = new Point(stage.stageWidth/2, stage.stageHeight/2).length;
var normalizedDistance:Number = vector.length / m;
shadow.distance = Math.pow(normalizedDistance, 2) * 30;
shadow.blurX = shadow.blurY = normalizedDistance * 20;
shadow.alpha = Math.pow(normalizedDistance, 2);
shadow.angle = Math.atan2(vector.y, vector.x) / Math.PI * 180 + 180;
bevel.angle = shadow.angle;
bevel.strength = 2 * normalizedDistance;
s.filters = [shadow, bevel];

}
}

}

776

Chapter 37: Applying Filters

Gradient Bevels
The GradientBevelFilter class is much like the BevelFilter class, except that rather than
adding areas of highlight and areas of shadow to the display object, the entire area is filled with
gradations between the values you provide. The class defines the following properties:

� distance — The number of pixels from the edge of the display object to offset the bevel. The
default is 4.

� angle — The angle of the light source in degrees, where 0 is directly to the left of the object.
The default value is 45.

� colors — The colors of the bevel specified as an array of an unsigned integer from 0x000000
to 0xFFFFFF.

� alphas — The alphas of the bevel specified as an array of values from 0.0 to 1.0 such that each
element corresponds to an element in the colors array. The default is null.

� ratios — The ratios to use when distributing the colors across the bevel specified as an array
of values from 0 to 255. Each element of the array corresponds to an element of the colors
array. Each color in the colors array blends into the next, so each color appears at 100 percent
at just one point in the continuum.

� blurX — The amount to blur the bevel in the x direction from 0 to 255. The default is 4.

� blurY — The amount to blur the bevel in the y direction from 0 to 255. The default is 4.

� strength — The punch strength of the bevel from 0 to 255. The default is 1.

� quality — The number of times to run the blur on the bevel. The range is from 0 to 15. The
higher the number, the smoother the blur of the bevel appears. The default is 1.

� type — The type can be one of the constants BitmapFilterType.INNER,
BitmapFilterType.OUTER, or BitmapFilterType.FULL. The default is
BitmapFilterType.INNER.

� knockout — A Boolean value indicating whether the original display object contents should
be transparent. If true, that section of the object is transparent. (The background or whatever
is underneath the object is visible.) The default value is false.

The GradientBevelFilter constructor accepts between 0 to 11 parameters from the preceding
list. The following code constructs a new GradientBevelFilter with the default values:

var gradientBevel:GradientBevelFilter = new GradientBevelFilter();

Unlike many other filter types, the GradientBevelFilter default values don’t have a visible effect
because the defaults for the three array parameters are undefined. Therefore, for there to be some
visible effect, you need to specify values for at least the three array parameters. The following code
constructs a new GradientBevelFilter object with blue, white, and black colors:

var colors:Array = [0x0000FF, 0xFFFFFF, 0xFFFFFF,
0xFFFFFF, 0x000000];

var alphas:Array = [100, 20, 0, 20, 100];
var ratios:Array = [0, 255 / 4, 2 * 255 / 4, 3 * 255 / 4, 255];
var gradientBevel:GradientBevelFilter = new GradientBevelFilter(10, 45,
colors, alphas, ratios);

777

Part VIII: Graphics Programming and Animation

Bevels, including gradient bevels, are great for making faux-3D objects. Example 37-4 exploits
GradientBevelFilter to produce a decent-looking button using only code.

EXAMPLE 37-4 http://actionscriptbible.com/ch37/ex4

Creating 3D-Looking Objects with Bevels

package {
import flash.display.Sprite;
public class ch37ex4 extends Sprite {
public function ch37ex4() {
var b:BeveledButton;
b = new BeveledButton("Click me");
b.x = b.y = 100;
addChild(b);
b = new BeveledButton("Please don’t click me");
b.x = 200; b.y = 100;
addChild(b);

}
}

}
import flash.display.*;
import flash.text.*;
import flash.filters.GradientBevelFilter;
import flash.events.MouseEvent;
class BeveledButton extends Sprite {
protected var _label:String;
protected var tf:TextField;
protected var bg:Shape;
protected const ANGLE:Number = -10;
protected const MARGIN_W:Number = 15, MARGIN_H:Number = 8;
public function BeveledButton(initialLabel:String = "") {
bg = new Shape();
addChild(bg);
tf = new TextField();
tf.defaultTextFormat = new TextFormat("_sans", 11, 0xffffff, true);
tf.selectable = false;
tf.multiline = false;
tf.autoSize = TextFieldAutoSize.LEFT;
addChild(tf);

mouseChildren = false;
buttonMode = true;

var colors:Array = [0x606060, 0x909090, 0xe0e0e0];
var alphas:Array = [100, 100, 100];
var ratios:Array = [0, 127, 255];
bg.filters=[new GradientBevelFilter(3, 90+ANGLE, colors, alphas, ratios)];

778

Chapter 37: Applying Filters

label = initialLabel;
addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
addEventListener(MouseEvent.MOUSE_UP, onMouseUp);

}
public function set label(s:String):void {
tf.width = tf.height = 0;
tf.text = s;
var W:Number = tf.textWidth + 2*MARGIN_W;
var H:Number = tf.textHeight - 4 + 2*MARGIN_H;
tf.y = MARGIN_H - 4;
tf.x = MARGIN_W;
bg.graphics.clear();
bg.graphics.beginFill(0);
bg.graphics.drawRoundRect(0, 0, W, H, 8);
bg.graphics.endFill();

}
public function get label():String {return _label;}
protected function onMouseDown(event:MouseEvent):void {
var bevel:GradientBevelFilter = GradientBevelFilter(bg.filters[0]);
bevel.angle = -90 + ANGLE;
bg.filters = [bevel];
tf.x += 1;
tf.y += 1;

}
protected function onMouseUp(event:MouseEvent):void {
var bevel:GradientBevelFilter = GradientBevelFilter(bg.filters[0]);
bevel.angle = 90 + ANGLE;
bg.filters = [bevel];
tf.x -= 1;
tf.y -= 1;

}
}

Try modifying this code to include more colors in the gradient. See how that affects the appearance of
the buttons.

Glows
You can use instances of the GlowFilter class to make display objects glow either from the inside
or to the outside. The GlowFilter class has the following properties:

� color — The color of the glow specified as an unsigned integer from 0x000000 to 0xFFFFFF.
The default value is 0xFF0000.

� alpha — The alpha of the glow from 0 to 1. The default is 1.

779

Part VIII: Graphics Programming and Animation

� blurX — The amount to blur the glow in the x direction from 0 to 255. The default is 6.

� blurY — The amount to blur the glow in the y direction from 0 to 255. The default is 6.

� strength — The punch strength of the glow from 0 to 255. The default is 2.

� quality — The number of times to run the blur on the glow. The range is from 0 to 15. The
higher the number, the smoother the blur of the glow appears. The default is 1.

� inner — A Boolean value indicating whether the glow should be applied to the inside of the
object. The default value is false, which means the glow is applied outside the object.

� knockout — A Boolean value indicating whether the original display object contents should
be transparent. If true, that section of the object is transparent (the background or whatever
is underneath the object is visible), and the glow is visible around the edges of that area. The
default value is false.

The GlowFilter constructor accepts from 0 to 8 parameters as described in the list. The parameters
are in the order they appear in the preceding list.

I might have gone a bit overboard with Example 37-5. A glow filter is perfect to simulate a flashing
light. So this example re-creates the classic game ‘‘Simon,’’ in which there are four color buttons
that light up in a sequence, which you must match. You and the computer take turns, the sequence
getting longer by one move every time you successfully repeat it, as well as playing faster. The
flashing lights are simulated by an outer glow with an animating alpha value. Each colored light has
a similarly colored glow. Additionally, the example incorporates audio synthesis, each button having a
unique tone. See Chapter 31, ‘‘Playing and Generating Sound,’’ for more.

EXAMPLE 37-5 http://actionscriptbible.com/ch37/ex5

A Game Using Glow Filters

package {
import flash.display.Sprite;
[SWF(backgroundColor="#000000")]
public class ch37ex5 extends Sprite {
public function ch37ex5() {
var game:RepeatGame = new RepeatGame(stage);
addChild(game);
game.x = stage.stageWidth/2;
game.y = stage.stageHeight/2;
game.startGame();

}
}

}
import flash.filters.GlowFilter;
import flash.display.*;
import flash.events.*;
import flash.utils.*;
import flash.ui.Keyboard;
import flash.media.Sound;
class RepeatGame extends Sprite {
protected var cpuMoves:Array;

780

Chapter 37: Applying Filters

protected var moveIndex:int;
protected var isCpuTurn:Boolean;
protected var movePlaybackTimer:Timer;
protected var piecesByKeyCode:Array;
protected var piecesById:Array;
public function RepeatGame(s:Stage) {
s.addEventListener(KeyboardEvent.KEY_DOWN, onPlayerMove);
movePlaybackTimer = new Timer(0);
movePlaybackTimer.addEventListener(TimerEvent.TIMER, onCpuMove);
buildPieces();

}
protected function buildPieces():void {
piecesById = new Array();
piecesByKeyCode = new Array();
var piece:GamePiece;
var arci:Number = - 3/4 * Math.PI;
piece = new GamePiece(0x47cf51, 0x00ff00, arci, arci + Math.PI/2, 220);
piecesByKeyCode[Keyboard.UP] = piece;
piecesById.push(piece);
addChild(piece);
arci += Math.PI/2;
piece = new GamePiece(0xe52a37, 0xff0000, arci, arci + Math.PI/2, 293);
piecesByKeyCode[Keyboard.RIGHT] = piece;
piecesById.push(piece);
addChild(piece);
arci += Math.PI/2;
piece = new GamePiece(0x3e49da, 0x0000ff, arci, arci + Math.PI/2, 392);
piecesByKeyCode[Keyboard.DOWN] = piece;
piecesById.push(piece);
addChild(piece);
arci += Math.PI/2;
piece = new GamePiece(0xf5ed10, 0xffff00, arci, arci + Math.PI/2, 440);
piecesById.push(piece);
piecesByKeyCode[Keyboard.LEFT] = piece;
addChild(piece);

}
public function startGame():void {
movePlaybackTimer.delay = 2000;
cpuMoves = new Array();
nextRound();

}
protected function nextRound():void {
trace("NEXT ROUND!");
isCpuTurn = true
cpuMoves.push(int(Math.random() * piecesById.length));
moveIndex = 0;
movePlaybackTimer.delay *= 0.75;
movePlaybackTimer.reset();
movePlaybackTimer.start();

}
continued

781

Part VIII: Graphics Programming and Animation

EXAMPLE 37-5 (continued)

protected function onCpuMove(event:TimerEvent):void {
GamePiece(piecesById[cpuMoves[moveIndex]]).flash();
if (++moveIndex >= cpuMoves.length) {
isCpuTurn = false;
moveIndex = 0;
movePlaybackTimer.stop();
return;

}
}
protected function onPlayerMove(event:KeyboardEvent):void {
var selectedPiece:GamePiece = piecesByKeyCode[event.keyCode] as GamePiece;
if (selectedPiece == null || isCpuTurn) return;
selectedPiece.flash();
var correct:Boolean = (selectedPiece == piecesById[cpuMoves[moveIndex]]);
if (correct) {
trace("RIGHT!");
if (++moveIndex >= cpuMoves.length) {
isCpuTurn = true;
setTimeout(nextRound, movePlaybackTimer.delay);

}
} else {
trace("WRONG!");
isCpuTurn = true;
setTimeout(startGame, 1000);

}
}

}
class GamePiece extends Sprite {
protected const INNER_RADIUS:Number = 100;
protected const OUTER_RADIUS:Number = 160;
protected const ARC_PADDING:Number = 0.06;
protected var glow:GlowFilter;
protected var pitchHz:Number;
public function GamePiece(color:uint, glowColor:uint,

arcStartAngle:Number, arcEndAngle:Number,
pitchHz:Number) {

this.pitchHz = pitchHz;
arcStartAngle += ARC_PADDING;
arcEndAngle -= ARC_PADDING;
graphics.beginFill(color);
var step:Number = (arcEndAngle - arcStartAngle) / 200;
var theta:Number;
for (theta = arcStartAngle; theta <= arcEndAngle; theta += step) {
var X:Number = Math.cos(theta) * INNER_RADIUS;
var Y:Number = Math.sin(theta) * INNER_RADIUS;
if (theta == arcStartAngle) {
graphics.moveTo(X, Y);

} else {
graphics.lineTo(X, Y);

}

782

Chapter 37: Applying Filters

}
for (theta = arcEndAngle; theta >= arcStartAngle; theta -= step) {
graphics.lineTo(Math.cos(theta) * OUTER_RADIUS,
Math.sin(theta) * OUTER_RADIUS);

}
graphics.endFill();
glow = new GlowFilter(glowColor, 0, 32, 32, 2, 2, false);
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
public function flash():void {
glow.alpha = 1;
var s:Sound = new Sound();
s.addEventListener(SampleDataEvent.SAMPLE_DATA, onBufferSound);
s.play();

}
protected function onBufferSound(event:SampleDataEvent):void {
var tEnd:int = 44100 * 0.5; //duration = 0.5sec
var tMax:int = Math.min(tEnd, event.position + 8192);
for (var t:int = event.position; t < tMax; t++) {
var n:Number = Math.sin(t / 44100 * 2 * Math.PI * pitchHz);
n *= ((tEnd-t) / tEnd) * 0.5; //fade out
event.data.writeFloat(n);
event.data.writeFloat(n);

}
}
protected function onEnterFrame(event:Event):void {
if (glow.alpha > 0) {
glow.alpha -= 0.05;
filters = [glow];

} else {
filters = null;

}
}

}

Play this game with the arrow keys on your keyboard. Try forking the code to include more possible
buttons or to add more effects to the buttons.

Gradient Glows
Gradient glows are applied using the GradientGlowFilter class. This renders the glow as a
custom gradient instead of the default single-color alpha ramp of a normal glow. The properties
of the GradientGlowFilter class are identical to those of GradientBevelFilter. Simi-
larly, the GradientGlowFilter constructor accepts the parameters in the same order that the
GradientBevelFilter constructor does.

783

Part VIII: Graphics Programming and Animation

Color Effects
You can achieve some simple color effects without the use of filters by altering the
ColorTransform of a display object, as described in Chapter 34, ‘‘Geometric and Color
Transformations.’’ One adaptable filter, however, gives you much richer control over the colors in a
display object. Using a ColorMatrixFilter, you can adjust the saturation, hue, or contrast of a
display object or apply other special color effects. The ColorMatrixFilter changes every pixel’s
color by performing matrix multiplication on the pixel’s color and a matrix of your design.

When using a color matrix, the color of each pixel is decomposed into its red, green, blue, and alpha
components and packed into a 5×1 column matrix:

| red |
| green |
| blue |
| alpha |
| 1 |

The matrix you provide a ColorMatrixFilter is 4×5. This is multiplied by the input color, result-
ing in the output color:

a b c d e		R		output red
f g h i j		G		output green
k l m n o		B	=	output blue
p q r s t		A		output alpha

| 1 |

Multiplying the 4×5 filter matrix by the 5×1 input color matrix results in a 4×1 output color matrix.
If you do the matrix multiplication by hand, you see that each channel of the output color is a linear
combination of the input color channels. In other words, by choosing the contents of the filter matrix
you create equations that define each output color channel as a combination of the input colors.
Now you’ll expand the matrix multiplication to see that in action:

output red = aR + bG + cB + dA + e
output green = fR + gG + hB + iA + j
output blue = kR + lG + mB + nA + o
output alpha = pR + qG + rB + sA + t

The power of this method of transforming colors comes from the fact that you can tweak just how
each channel relies on the other ones. The extra 1 that pads the input color matrix allows for the
addition of a fifth column of the filter matrix that can add a color offset to each channel that is inde-
pendent of the input color. You can see that the column [e, j, o, t] and the terms e, j, o, and
t in the preceding equations are not multiplied by any of the input color channels.

When using a ColorMatrixFilter, you specify the 4×5 matrix in the matrix property of the
ColorMatrixFilter instance. Instead of using a two-dimensional array, you should provide
the matrix contents as a one-dimensional array in row-major order. That is, lay out the matrix terms
left to right and top to bottom in an Array of size 20:

var cmt:ColorMatrixTransform = new ColorMatrixTransform();
cmt.matrix = [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t];

784

Chapter 37: Applying Filters

Although you will provide the matrix’s contents in a flat array, remember that they represent and will
be interpreted as a 4×5 matrix.

The default filter matrix is almost an identity matrix; when it is multiplied by the input color
matrix, the colors remain unchanged. (The filter matrix can’t be a real identity matrix because it’s
nonsquare.)

1 0 0 0 0		R		R
0 1 0 0 0		G		G
0 0 1 0 0		B	=	B
0 0 0 1 0		A		A

| 0 |

By designing the filter matrix carefully, you can achieve many interesting effects. Following are some
of the more useful color effects. I’ve tried to organize these so that the matrix multiplications start out
simple — even if you don’t follow along with the matrix math, you should be able to get a feel for
how the parameters in the filter matrix affect the colors in the image.

Note
The Adjust Color filter available in Flash Professional uses a ColorMatrixFilter to achieve the bright-
ness, contrast, saturation, and hue adjustments shown in the filter’s UI. �

Brightness
You can change the brightness of an image by either scaling or offsetting the color channels uniformly.
Example 37-6 compares an unfiltered original image, a version in which each of the red, green, and
blue values is uniformly doubled, and a version in which each of the red, green, and blue values is
uniformly shifted up by 60. These appear left to right in the example.

EXAMPLE 37-6 http://actionscriptbible.com/ch37/ex6

Adjusting Brightness with a ColorMatrixFilter

package {
import flash.display.Sprite;
import flash.filters.ColorMatrixFilter;

public class ch37ex6 extends Sprite {
function ch37ex6() {
var original:TestImage = new TestImage(0.3);
var a:TestImage = new TestImage(0.3, 150);
var b:TestImage = new TestImage(0.3, 300);
addChild(original);
addChild(a);
addChild(b);
//brighten method 1: scale

continued

785

Part VIII: Graphics Programming and Animation

EXAMPLE 37-6 (continued)

var aMatrix:Array = [2, 0, 0, 0, 0,
0, 2, 0, 0, 0,
0, 0, 2, 0, 0,
0, 0, 0, 1, 0];

a.filters = [new ColorMatrixFilter(aMatrix)];
//brighten method 2: offset
var bMatrix:Array = [1, 0, 0, 0, 60,

0, 1, 0, 0, 60,
0, 0, 1, 0, 60,
0, 0, 0, 1, 0];

b.filters = [new ColorMatrixFilter(bMatrix)];
}

}
}
import flash.display.Loader;
import flash.net.URLRequest;
import flash.system.LoaderContext;
class TestImage extends Loader {
public function TestImage(scale:Number = 1, x:Number = 0, y:Number = 0) {
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/2940373537/
var url:String = "http://actionscriptbible.com/files/heiwadoori.jpg";
load(new URLRequest(url), new LoaderContext(true));
scaleX = scaleY = scale;
this.x = x; this.y = y;

}
}

Tint
You can use a color matrix to tint an image. There are two ways to apply the tint, and they corre-
spond to the two ways of tinting via a ColorTransform object: multipliers and offsets. Using a
ColorMatrixFilter object, the multipliers are the diagonal elements represented by r, g, b, and
a in the following matrix.

| r 0 0 0 0 |
| 0 g 0 0 0 |
| 0 0 b 0 0 |
| 0 0 0 a 0 |

The range that is typically useful for the multipliers is from –1 to 1. Changing the multipliers in a
matrix that otherwise looks like an identity matrix is called scaling the color because the effect of such
a matrix is that it simply multiplies one or more of the color components (red, blue, green, or alpha).

786

Chapter 37: Applying Filters

You can also apply offsets to each of the color components via a matrix in the following form.

| 1 0 0 0 r |
| 0 1 0 0 g |
| 0 0 1 0 b |
| 0 0 0 1 a |

In this matrix, r, g, b, and a represent the red, green, blue, and alpha offsets. The range that is typi-
cally useful for offsets is from –255 to 255.

Example 37-7 compares an unmodified original image, one tinted by scaling down the green and blue
channels to emphasize the red channel, and one tinted by topping out the red channel with an offset.

EXAMPLE 37-7 http://actionscriptbible.com/ch37/ex7

Tinting with a ColorMatrixFilter

package {
import flash.display.Sprite;
import flash.filters.ColorMatrixFilter;

public class ch37ex7 extends Sprite {
function ch37ex7() {
var original:TestImage = new TestImage(0.3);
var a:TestImage = new TestImage(0.3, 150);
var b:TestImage = new TestImage(0.3, 300);
addChild(original);
addChild(a);
addChild(b);
//tint method 1: scale down G & B
var aMatrix:Array = [1, 0, 0, 0, 0,

0, 0.5, 0, 0, 0,
0, 0, 0.5, 0, 0,
0, 0, 0, 1, 0];

a.filters = [new ColorMatrixFilter(aMatrix)];
//tint method 2: shift up R
var bMatrix:Array = [1, 0, 0, 0, 255,

0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0];

b.filters = [new ColorMatrixFilter(bMatrix)];
}

}
}
import flash.display.Loader;
import flash.net.URLRequest;
import flash.system.LoaderContext;
class TestImage extends Loader {
public function TestImage(scale:Number = 1, x:Number = 0, y:Number = 0) {
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/2940373537/
var url:String = "http://actionscriptbible.com/files/heiwadoori.jpg";

continued

787

Part VIII: Graphics Programming and Animation

EXAMPLE 37-7 (continued)

load(new URLRequest(url), new LoaderContext(true));
scaleX = scaleY = scale;
this.x = x; this.y = y;

}
}

Of course, you can combine both multipliers and offsets in one matrix, just as you can combine mul-
tipliers and offsets in a ColorTransform object.

Negative
A digital negative substitutes the complementary color for each pixel in the original. A color and its
complement always add up to white (0xFFFFFF). It follows that each channel of a color and the cor-
responding channel from its inverse add up to 0xFF or 255. You can calculate the complementary
color by subtracting the red, blue, and green parts each from 255. See if you can figure out the matrix
needed to find every color’s complement. For the moment just worry about the red channel. Call the
input red component R and the output red component R’.

R’ + R = 255
R’ = 255 – R
R’ = -R + 0G + 0B + 255

Extrapolate or repeat for the green and blue channels, and you’ll realize the matrix must be

| -1 0 0 0 255 |
| 0 -1 0 0 255 |
| 0 0 -1 0 255 |
| 0 0 0 1 0 |

Example 37-8 compares a test image and its digital negative.

EXAMPLE 37-8 http://actionscriptbible.com/ch37/ex8

Applying a Negative with a ColorMatrixFilter

package {
import flash.display.Sprite;
import flash.filters.ColorMatrixFilter;

public class ch37ex8 extends Sprite {
function ch37ex8() {
var original:TestImage = new TestImage(0.5);
var neg:TestImage = new TestImage(0.5, 250);
addChild(original);

788

Chapter 37: Applying Filters

addChild(neg);
var negMatrix:Array = [-1, 0, 0, 0, 255,

0, -1, 0, 0, 255,
0, 0, -1, 0, 255,
0, 0, 0, 1, 0];

neg.filters = [new ColorMatrixFilter(negMatrix)];
}

}
}
import flash.display.Loader;
import flash.net.URLRequest;
import flash.system.LoaderContext;
class TestImage extends Loader {
public function TestImage(scale:Number = 1, x:Number = 0, y:Number = 0) {
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/2940373537/
var url:String = "http://actionscriptbible.com/files/heiwadoori.jpg";
load(new URLRequest(url), new LoaderContext(true));
scaleX = scaleY = scale;
this.x = x; this.y = y;

}
}

Contrast
You can adjust the contrast of a display object by applying a ColorMatrixFilter object that both
scales and offsets the color channels. To increase contrast, scale up all the colors but then compensate
for the additional brightness with a negative offset. Likewise, to decrease the contrast, scale down the
colors but then shift them up to keep them from getting too dark.

In Example 37-9, you can modify the contrast by sliding the mouse from left to right.

EXAMPLE 37-9 http://actionscriptbible.com/ch37/ex9

Changing Contrast with a ColorMatrixFilter

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.filters.ColorMatrixFilter;

public class ch37ex9 extends Sprite {
protected var img:TestImage;
function ch37ex9() {

img = new TestImage();
addChild(img);

continued

789

Part VIII: Graphics Programming and Animation

EXAMPLE 37-9 (continued)

addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);
}
protected function onMouseMove(event:MouseEvent):void {
//1 for no change, 0 for lowest contrast, 2 and up for high contrast
var contrastAmount:Number;
//mouse at left for lowest contrast, right for 3x contrast boost
contrastAmount = stage.mouseX / stage.stageWidth * 3;
var scale:Number = contrastAmount;
var offset:Number = 128 * (1 - scale);
var aContrast:Array = [scale, 0, 0, 0, offset,

0, scale, 0, 0, offset,
0, 0, scale, 0, offset,
0, 0, 0, 1, 0];

img.filters = [new ColorMatrixFilter(aContrast)];
}

}
}
import flash.display.Loader;
import flash.net.URLRequest;
import flash.system.LoaderContext;
class TestImage extends Loader {
public function TestImage(scale:Number = 1, x:Number = 0, y:Number = 0) {
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/2940373537/
var url:String = "http://actionscriptbible.com/files/heiwadoori.jpg";
load(new URLRequest(url), new LoaderContext(true));
scaleX = scaleY = scale;
this.x = x; this.y = y;

}
}

Convert to Grayscale
You can design a matrix that will remove all color from an image. Try deriving it from first principles.

Shades of gray contain equal amounts of red, green, and blue: black has 0 of each, 50 percent gray
has 128 of each (0x808080, 0x80 = 128), and white has 255 of each (0xFFFFFF, 0xFF = 255). So
one property of the matrix is that all the equations to determine red, green, and blue channels must be
the same, to ensure the output is equal. In matrix terms, this means the first three rows should
be identical.

In a grayscale image, there is no hue. There is only the relative lightness or darkness of the pixel. So
if you wanted to convert a color image to grayscale, the color of the output pixel should be related to
the brightness of the input pixel. A good way to do this is to average the RGB channels. So every gray
value is determined by an equal weighting of the brightness of the three color channels. This leads to
the simple equation:

790

Chapter 37: Applying Filters

R’ = G’ = B’ = (R * G * B)/3 = 0.33R + 0.33G + 0.33G

Or, in matrix form:

| 0.33 0.33 0.33 0 0 |
| 0.33 0.33 0.33 0 0 |
| 0.33 0.33 0.33 0 0 |
| 0 0 0 1 0 |

However, brains are wired to perceive visual reality in a subjective manner. Anyone who’s looked at
optical illusions knows how subjective vision is. Sometimes what is mathematically precise is not what
looks the best. Remember in Chapter 35, ‘‘Programming Vector Graphics,’’ that the default blending
mode for gradients is not linear through RGB — there, the blending mode that looks best isn’t the
most mathematically precise. Likewise, you can make a better-looking grayscale image by choosing
nonequal bias for each of the red, green, and blue channels. Choosing biases, or luminance coefficients,
of 0.3086, 0.6094, and 0.0820, respectively, yields a more natural-looking image. This matrix encodes
the constants:

| 0.3086 0.6094 0.0820 0 0 |
| 0.3086 0.6094 0.0820 0 0 |
| 0.3086 0.6094 0.0820 0 0 |
| 0 0 0 1 0 |

Example 37-10 uses this matrix to desaturate an image.

EXAMPLE 37-10 http://actionscriptbible.com/ch37/ex10

Converting to Grayscale with a ColorMatrixFilter

package {
import flash.display.Sprite;
import flash.filters.ColorMatrixFilter;

public class ch37ex10 extends Sprite {
function ch37ex10() {
var img:TestImage = new TestImage();
addChild(img);
var grayMat:Array = [0.3086, 0.6094, 0.082, 0, 0,

0.3086, 0.6094, 0.082, 0, 0,
0.3086, 0.6094, 0.082, 0, 0,

0, 0, 0, 1, 0];
img.filters = [new ColorMatrixFilter(grayMat)];

}
}

}
import flash.display.Loader;
import flash.net.URLRequest;
import flash.system.LoaderContext;
class TestImage extends Loader {

continued

791

Part VIII: Graphics Programming and Animation

EXAMPLE 37-10 (continued)

public function TestImage(scale:Number = 1, x:Number = 0, y:Number = 0) {
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/2940373537/
var url:String = "http://actionscriptbible.com/files/heiwadoori.jpg";
load(new URLRequest(url), new LoaderContext(true));
scaleX = scaleY = scale;
this.x = x; this.y = y;

}
}

Saturation
Converting an image to grayscale is a special case of modifying the saturation of an image. Saturation
measures the amount or vividness of color in an image; converting to grayscale is called desaturation
because, of course, it removes all color from an image. But you can modify the saturation of an image
with more accuracy than simply all-or-nothing.

Changing the saturation does two things simultaneously. It tones down each channel in much the
same way that you scaled brightness (although this time you’re going to use the luminance coefficients
instead of giving each channel equal weight). At the same time, changing the saturation gives each
channel an extra dose of its own color. In other words, it turns up the color of each channel while
turning down the brightness overall to compensate. To calculate the red channel with a saturation
scale factor of s, and the luminance coefficient constants 0.3086, 0.6094, and 0.0820 given by rw,
gw, and bw, the equation is

R’ = ((1-s)rw + s) * R + ((1-s)gw) * G + ((1-s)bw) * B

Every channel is scaled down as the saturation scales up, but the red channel is scaled up. In other
words, the contribution of each color to its own channel is emphasized, enhancing the saturation of
each color.

Example 37-11 changes the saturation of the image with the x position of the mouse.

EXAMPLE 37-11 http://actionscriptbible.com/ch37/ex11

Adjusting Saturation with a ColorMatrixFilter

package {
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.filters.ColorMatrixFilter;

public class ch37ex11 extends Sprite {
protected var img:TestImage;

792

Chapter 37: Applying Filters

function ch37ex11() {
img = new TestImage();
addChild(img);
addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

}
protected function onMouseMove(event:MouseEvent):void {
//1 for no change, 0 for desaturate, >1 for high saturation
//mouse at left for grayscale, right for 3x saturation boost
var s:Number = stage.mouseX / stage.stageWidth * 3;
var R:Number = (1 - s) * 0.3086;
var G:Number = (1 - s) * 0.6094;
var B:Number = (1 - s) * 0.0820;
var satMatrix:Array = [R+s, G, B, 0, 0,

R, G+s, B, 0, 0,
R, G, B+s, 0, 0,
0, 0, 0, 1, 0];

img.filters = [new ColorMatrixFilter(satMatrix)];
}

}
}
import flash.display.Loader;
import flash.net.URLRequest;
import flash.system.LoaderContext;
class TestImage extends Loader {
public function TestImage(scale:Number = 1, x:Number = 0, y:Number = 0) {
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/2940373537/
var url:String = "http://actionscriptbible.com/files/heiwadoori.jpg";
load(new URLRequest(url), new LoaderContext(true));
scaleX = scaleY = scale;
this.x = x; this.y = y;

}
}

Convolution Filters
You can run convolution filters in Flash Player by using the ConvolutionFilter class. A convolu-
tion filter uses a pixel’s neighbors to help determine its output value. The amount that each neighbor
contributes to the output is defined by a convolution matrix. Rather than using matrix multiplication,
this matrix simply provides the influence of the neighboring pixels. When calculating the output value
of the filter on a given pixel, its neighbors are pulled from the image in the surrounding area, with the
target pixel in the center. You can provide convolution matrices of different sizes; these matrices don’t
even need to be square. This 3×3 convolution matrix leaves an image unchanged, because the output
value for each pixel is 1 times its original value (the value at the center of the matrix) and 0 times all
its neighbors.

| 0 0 0 |
| 0 1 0 |
| 0 0 0 |

793

Part VIII: Graphics Programming and Animation

Now you’ll look at applying a simple convolution matrix to a small image. The convolution matrix is
the 3×3 matrix on the left, and the image is the 5×5 image on the right.

a b c		00 01 02 03 04
d e f		10 11 12 13 14
g h i		20 21 22 23 24

| 30 31 32 33 34 |
| 40 41 42 43 44 |

Given this setup, to determine the output of the pixel at (1,1), labeled 11, you would see the follow-
ing contributions:

output(1, 1) = a*00 + b*01 + c*02
+ d*10 + e*11 + f*12
+ g*20 + h*21 + i*22

In fact, ConvolutionFilter uses this formula but with two changes. You can use a different divi-
sor than 1 for the weighted average. By default, the divisor is 1, so all the coefficients in the con-
volution matrix should sum to 1 to keep colors in acceptable bounds. But by setting the divisor
property, you can choose another number to divide the product above by.

The other factor omitted in this formula is a final offset value to add. This is determined by the value
of the bias property of the ConvolutionFilter, which defaults to 0.

What happens when you need to calculate the value of the pixel at (4, 0), labeled 40? If you line up
the center of the convolution matrix to that pixel, the values a, d, g, h, and i fall outside the image.
ConvolutionFilter gives you two options. It can extend the colors at the edge of the image to
‘‘outside’’ the image. This is called clamping. In this case, the value i corresponds to the pixel labeled
41, even though you’ve already used that pixel with the f coefficient. You simply extend the edges
of the image down and to the left (or in other directions, when you’re processing a pixel on other
edges of the image) as far as necessary to provide a corresponding value for every coefficient in the
convolution matrix. The alternative is to use a predefined color value for all pixels outside the defined
image.

You can choose whether to clamp the image or use a preset value with the clamp Boolean property of
a ConvolutionFilter. The filter uses clamping by default. When set to false, you can provide
the ‘‘out-of-bounds’’ color with the color and alpha properties.

You provide the matrix to this filter as a one-dimensional array with the matrix contents in row-major
order, left to right and top to bottom. You tell the ConvolutionFilter what dimensions to inter-
pret your matrix as with its matrixX and matrixY properties. For example, to define the following
3×5 matrix

| a b c d e |
| f g h i j |
| k l m n o |

you would use the following code:

var f:ConvolutionFilter = new ConvolutionFilter();
f.matrixX = 5;
f.matrixY = 3;
f.matrix = [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o];

794

Chapter 37: Applying Filters

It’s important to set the dimensions of the input matrix before setting the matrix. You may also set all
three at the same time using ConvolutionFilter’s constructor.

Here are the properties of ConvolutionFilter:

� matrixX — Number of columns in the convolution matrix.

� matrixY — Number of rows in the convolution matrix.

� matrix — Array defining the elements of the convolution matrix. Its size must correlate to the
dimensions provided by matrixX and matrixY.

� divisor — Number that the sum of the pixel contributions is divided by.

� bias — Number added to the sum of the pixel contributions.

� preserveAlpha — Whether to apply the convolution to alpha values. When true, the
result of the convolution affects only the red, green, and blue channels, and alpha values are
unchanged. Defaults to true.

� clamp — Whether to clamp edges of the image. Defaults to true.

� color — If clamp is false, the out-of-bounds color as a uint.

� alpha — If clamp is false, the alpha of the out-of-bounds color.

Like other filters, these parameters may be provided to the constructor in this order, and all are
optional. Convolution matrices are used in computer vision and computer graphics because they
are fast and versatile. You can use different matrices to sharpen an image, blur it, detect and enhance
edges, do cheesy embosses and bevels, or create other effects that operate on local features of the
image.

Note
Under certain conditions, 3×3 convolution matrices are accelerated if your processor supports a certain
extended instruction set. Check the AS3LR under the matrix property of ConvolutionFilter for details. �

Example 37-12 shows a few useful convolution matrices.

EXAMPLE 37-12 http://actionscriptbible.com/ch37/ex12

Multiple Convolution Matrices

package {
import flash.display.Sprite;
import flash.filters.ConvolutionFilter;
public class ch37ex12 extends Sprite {
function ch37ex12() {
var a:TestImage = new TestImage(0.5, 0, 0);
var b:TestImage = new TestImage(0.5, 250, 0);
var c:TestImage = new TestImage(0.5, 0, 167);
var d:TestImage = new TestImage(0.5, 250, 167);
addChild(a);
addChild(b);
addChild(c);
addChild(d);

continued

795

Part VIII: Graphics Programming and Animation

EXAMPLE 37-12 (continued)

var aMat:Array = [0, 1, 0,
1, -4, 1,
0, 1, 0]; //edge detect

a.filters = [new ConvolutionFilter(3, 3, aMat)];
var bMat:Array = [0, -1, 0,

-1, 5, -1,
0, -1, 0]; //sharpen

b.filters = [new ConvolutionFilter(3, 3, bMat)];
var cMat:Array = [1, 1, 1,

1, 1, 1,
1, 1, 1]; //blur

c.filters = [new ConvolutionFilter(3, 3, cMat, 9)];
var dMat:Array = [-2, -1, 0,

-1, 1, 1,
0, 1, 2]; //emboss

d.filters = [new ConvolutionFilter(3, 3, dMat)];

}
}

}
import flash.display.Loader;
import flash.net.URLRequest;
import flash.system.LoaderContext;
import flash.events.MouseEvent;
import flash.geom.Point;
class TestImage extends Loader {
protected var scale:Number;
protected var origin:Point;
public function TestImage(scale:Number = 1, x:Number = 0, y:Number = 0) {
//photo (CC-BY) Roger Braunstein
//source http://www.flickr.com/photos/rogerimp/2940373537/
var url:String = "http://actionscriptbible.com/files/heiwadoori.jpg";
load(new URLRequest(url), new LoaderContext(true));
this.scale = scale;
this.origin = new Point(x, y);
addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
addEventListener(MouseEvent.MOUSE_UP, onMouseUp);
onMouseUp(null);

}
protected function onMouseDown(event:MouseEvent):void {
parent.setChildIndex(this, parent.numChildren-1);
scaleX = scaleY = 1;
x = y = 0;

}
protected function onMouseUp(event:MouseEvent):void {
scaleX = scaleY = scale;
x = origin.x; y = origin.y;

}
}

796

Chapter 37: Applying Filters

The first matrix, aMat, enhances an image so that edges are highlighted (usually in crazy neon
colors.) Think a bit about how this is done. A pixel’s four neighbors in every direction are added up,
and the pixel is subtracted away. When the neighbors up, down, left, and right are close to the input
pixel value, the four positive pixels and the –4x pixel should cancel out. But when the color changes
abruptly in one or more of those directions, the difference between the sum and the center pixel is
significant. So areas of little change appear black, and areas where the color changes abruptly in one
of the four cardinal directions get colored. You can perform more simple edge detection biased for
a single direction by balancing out the center pixel and its neighbor in one direction with opposite
coefficients, setting all other elements to zero.

The bMat matrix works in almost the same way, except that the center pixel is weighted one more
than the sum of the other pixels — so the original colors are preserved and added onto rather than
subtracted away. Where there is little localized contrast, additional brightness is sucked away by the
four –1x pixels on the sides, leaving at minimum the input value remaining. Where there is a lot
of local contrast, the center pixel is multiplied in brightness: with less than a full –1x contribution
coming from each of the four neighboring pixels, more of the center pixel’s 5x coefficient remains.
So pixels where the neighbors are of different brightness are enhanced, which appears to sharpen the
image.

The cMat matrix produces a simple Gaussian blur, much like a BlurFilter can provide. A Gaus-
sian blur averages neighboring pixels within a given radius. To blur more or less, you would create
matrices of the same form with greater or smaller sizes. A larger matrix takes into account pixels
farther away, thus increasing the radius or ‘‘blurriness’’ of the blur. Note that rather than set each coef-
ficient to 1/9, I’ve written in all the coefficients as 1 and used a divisor of 9. This saved me some
typing.

Finally, dMat produces a cheesy-looking emboss. By inversely removing contributions from the
upper-left quadrant of neighbors and adding contributions from the bottom-right quadrant of
neighbors, you emphasize pixels where the contrast is high in one direction, as if they are lit up by
light coming from that direction — in this case, a diagonal from bottom right to top left.

So that you can look at the results in more detail, holding down the mouse button on any of the
images scales the image up temporarily.

These filters, and others you can perform with a convolution filter, may not be high quality, but they
are excellent for preparing images and video for analysis by computer vision algorithms. They run fast
and can emphasize certain local features of images that may be important.

Displacement Maps
The DisplacementMapFilter class lets you arbitrarily distort a display object. Common appli-
cations for this include simulating an image projected on a surface, such as a map projected onto a
globe, a label projected onto a cylinder, a panoramic photo projected into the inside of a sphere or
cube, or the surface of a flapping banner; interactive distortions like Photoshop’s Liquefy filter or Kai’s
Power Goo (if you remember that); optical distortions like an image viewed through glass or water;
and distortions like pinching, bloating, and nonuniformly stretching.

A displacement map filter doesn’t change the colors or appearance of an image like the filters covered
previously. Instead, it distorts the image, and it uses a displacement map, a second image, to define
how the image should be distorted. To find out what to draw in pixel (x, y), the filter looks at the
displacement map at (x, y) and uses its color to determine an offset. It adds that offset to (x, y) and
looks at this new location for the pixel to copy into the output image. So, for example, if you have a

797

Part VIII: Graphics Programming and Animation

displacement map of a solid color, the result of the filter will be the original image, undistorted, offset
a constant amount: Every location the filter looks at returns the same color, which maps into the same
offset. So every output pixel gets the value of an input pixel a constant distance away. Figure 37-1
shows how this works for a single pixel.

FIGURE 37-1

Drawing one pixel with a displacement map applied

INPUT

OUTPUT

MAP

INPUT

OUTPUT

(A) (B)

∆x, ∆y

R G B

You use bitmap image data as a displacement map, whereas other filters you’ve seen in this book use
a matrix. This is simply a matter of managing data. In previous filters, you’ve used relatively small
matrices. To determine the offset of a pixel, you need to store two values for its offset in x and y.
And you need an offset value for every pixel in the source image, so two matrices of size W×H are
required, where the input image is W by H pixels. Dealing with, and generating or loading, these
potentially huge matrices would be unwieldy. Instead, a bitmap image is used to store the data. Each
pixel’s color is a combination of red, green, blue, and alpha channels, and you exploit this to store
multiple channels of data (the x and y offsets) in one image. You can store four 8-bit (1-byte) values
in every position of a bitmap image in Flash Player if you consider each color channel independently.
In a displacement map, only two are used. Each channel can store values in the range [0, 255], which
are normalized (scaled and shifted) to the range [–0.5, 0.5]. This has one important implication: a
black (0x00000000) pixel in the distortion map actually encodes the maximum negative displacement
in both directions, not a zero-distance displacement. A 50 percent gray (0x80808080) pixel encodes
this instead.

Say you have an input image input, and a displacement map image map, and you’ve decided to
encode the x offsets in map’s red channel and the y offsets in its green channel. In pseudocode,

offset(x, y) = (normalize(map(x, y).red) * scaleX,
normalize(map(x, y).green) * scaleY)

output(x, y) = input((x, y) + offset(x, y))

You can use an algorithm to generate a displacement map programmatically, using the bitmap drawing
methods described in Chapter 36, ‘‘Programming Bitmap Graphics,’’ or using vector drawing tools and

798

Chapter 37: Applying Filters

capturing the drawing in a BitmapData object with the draw() method. For projections defined by
optics or geometry, it makes sense to generate these maps in code. You can also simply load an image
as a Bitmap and use its bitmapData. No matter how the displacement map is created, you pass it
to the DisplacementMapFilter as BitmapData.

Following are the filter’s properties:

� mapBitmap — The displacement map.

� mapPoint — When the displacement map and input image are not aligned, a Point that
describes the origin (top left) of the input with respect to the map.

� componentX — Which color channel from the map bitmap encodes the horizontal
displacement. One of BitmapDataChannel.RED, BitmapDataChannel.GREEN,
BitmapDataChannel.BLUE, or BitmapDataChannel.ALPHA.

� componentY — Which color channel from the map bitmap encodes the vertical displacement.
See componentX for possible values.

� scaleX — The maximum absolute horizontal displacement.

� scaleY — The maximum absolute vertical displacement.

� mode — How to displace pixels along the edges. This filter suffers from a similar
problem as a convolution filter: what should it do when the post-displacement loca-
tion in the source image is out of bounds? The filter provides the following options.
DisplacementMapFilterMode.IGNORE uses the undisplaced source pixel instead.
DisplacementMapFilterMode.WRAP uses the pixel that would be present if the source
image tiled infinitely. DisplacementMapFilterMode.CLAMP uses the nearest in-bounds
pixel. DisplacementMapFilterMode.COLOR uses a predefined substitute color instead.
The default is WRAP.

� color — The substitute color when mode is DisplacementMapFilterMode.COLOR.

� alpha — The alpha value of the substitute color when mode is
DisplacementMapFilterMode.COLOR.

The parameters in the given order are also the parameters to DisplacementMapFilter’s construc-
tor, where they are optional.

In Example 37-13, Perlin noise, covered in Chapter 36, is used to animate a flag flapping in the wind.

EXAMPLE 37-13 http://actionscriptbible.com/ch37/ex13

Using a Displacement Map

package {
import flash.display.*;
import flash.events.Event;
import flash.filters.DisplacementMapFilter;
import flash.filters.DisplacementMapFilterMode;
import flash.geom.*;
import flash.net.URLRequest;
[SWF(width="500",height="500",backgroundColor="#000000",frameRate="50")]

continued

799

Part VIII: Graphics Programming and Animation

EXAMPLE 37-13 (continued)

public class ch37ex13 extends Sprite {
protected const FLAG_WIDTH:Number = 315, FLAG_HEIGHT:Number = 170;
protected const WIND_SPEED:Number = -15;
protected const DISPLACEMENT:Number = 20;
protected const OCTAVES:int = 3;
protected const SHIFT_COLORS:ColorTransform

= new ColorTransform(2, 2, 2, 1, -128, -128, -128, 0);
protected var flag:DisplayObject;
protected var fadeOutWave:Shape;
protected var map:BitmapData;
protected var offsets:Array;
protected var perlinSeed:Number;
protected var displacementFilter:DisplacementMapFilter;
public function ch37ex13() {
var l:Loader = new Loader();
l.load(new URLRequest("http://actionscriptbible.com/files/flag.swf"));
l.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoadComplete);

}
protected function onLoadComplete(event:Event):void {
flag = LoaderInfo(event.target).content;
flag.width = FLAG_WIDTH;
flag.height = FLAG_HEIGHT;
flag.x = 20;
map = new BitmapData(FLAG_WIDTH, FLAG_HEIGHT, false, 0x808080);
displacementFilter = new DisplacementMapFilter(map, new Point(),

BitmapDataChannel.RED, BitmapDataChannel.RED,
DISPLACEMENT*0.7, DISPLACEMENT,
DisplacementMapFilterMode.COLOR);

addChild(flag);
flag.filters = [displacementFilter];
perlinSeed = int(Math.random() * int.MAX_VALUE);
offsets = new Array();
for (var i:int = 0; i < OCTAVES; i++) offsets[i] = new Point();

fadeOutWave = new Shape();
var m:Matrix = new Matrix();
m.createGradientBox(FLAG_WIDTH/2, FLAG_HEIGHT);
fadeOutWave.graphics.beginGradientFill(GradientType.LINEAR,

[0x808080, 0x808080], [1, 0], [0, 255], m);
fadeOutWave.graphics.drawRect(0, 0, FLAG_WIDTH/2, FLAG_HEIGHT);
fadeOutWave.graphics.endFill();

var shadeBitmap:Bitmap = new Bitmap(map);
shadeBitmap.height = FLAG_HEIGHT + DISPLACEMENT*2;
shadeBitmap.width = FLAG_WIDTH + DISPLACEMENT;
shadeBitmap.y = -DISPLACEMENT;
addChild(shadeBitmap);

800

Chapter 37: Applying Filters

shadeBitmap.blendMode = BlendMode.OVERLAY;
shadeBitmap.alpha = 0.4;

this.x = 50; this.y = 50;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
for (var i:int = 0; i < OCTAVES; i++) {
offsets[i].x += Math.pow((1+i), 0.2) * WIND_SPEED;

}
map.perlinNoise(map.width, map.height * 6, OCTAVES,

perlinSeed, false, true, 0, true, offsets);
map.colorTransform(map.rect, SHIFT_COLORS);
map.draw(fadeOutWave);
displacementFilter.mapBitmap = map;
flag.filters = [displacementFilter];

}
}

}

By using Perlin noise as a displacement map, you can simulate vertical and horizontal waves in the
fabric of the flag. The displacement map pulls double duty to shade the flag for added realism.
Another visual tweak blends the displacement toward a no-offset displacement as you approach
the left side of the flag, which would be presumably tethered and less reactive to wind shear.
Note the color transform applied to the bitmap. This shifts the ranges of the colors generated by the
Perlin noise generator so that they are centered on 128.

Shaders
Pixel shaders can be applied to display objects with the ShaderFilter class. This filter consumes
a Shader object, set in the constructor or assigned to its shader property, and runs the shader,
setting its first input to the display object it is filtering. Thus, your shader kernel must accept at least
one image4 input.

Version
FP10. Shaders, and ShaderFilters, are supported in Flash Player 10 and later. �

Shaders give you full programmatic control over the pixels on-screen. If you have an effect in mind
that you can’t achieve with any of Flash Player’s built-in filters, you can write a custom shader for the
effect. Likewise, you can replicate any of the filters covered in this chapter with a shader. Shaders are
covered in detail in Chapter 38.

801

Part VIII: Graphics Programming and Animation

Summary

� Filters let you apply bitmap effects to display objects.

� You can apply a filter to a display object by adding a BitmapFilter subclass to the filters
array property that every DisplayObject possesses.

� Filter effects are cumulative and applied in the order they appear in the filters array.

� Filter objects are stored and retrieved by copy, so you must assign a new filters array to
update the filters applied to a display object.

� Flash Player has a number of built-in filters that can be used for many purposes.

802

Writing Shaders with
Pixel Bender

FEATURED CLASSES

flash.display.Shader

flash.display.ShaderJob

flash.display.ShaderData

flash.filters.ShaderFilter

P
ixel Bender, a cross-product toolkit for image processing, opens a whole
new set of possibilities in Flash Player version 10 and above. You can use
Pixel Bender to generate graphics, to filter display objects, to create cus-

tom blend modes, and even to process heaps of nonimage data. Pixel Bender
uses its own language entirely separate from ActionScript 3.0, and it is compiled
before being used in Flash Player. In this chapter, you’ll learn about the ways
Pixel Bender can enhance your Flash applications, how to load and use Pixel
Bender programs in ActionScript, and how to program in the Pixel Bender kernel
language.

Version
FP10. Only Flash Player 10 and up can execute Pixel Bender kernels. Future
versions of Flash Player may add support for Pixel Bender features not currently
available, such as dependent values, region functions, loops, arrays, variable
vector indices, and so on. �

Introducing Pixel Bender

Pixel Bender is a pixel shader (or fragment shader, sometimes) system developed
for use across Adobe Creative Suite products. In theory, you can use the same
shader as a filter in Photoshop, After Effects, and during runtime in Flash Player.
A pixel shader is a short program whose output is the color of a given pixel.
When an area affected by a pixel shader needs to be rendered, the system runs
the program on each pixel that needs to appear on-screen, and it faithfully ren-
ders that pixel as the color returned by the program. In this way, the aggregate
effect of the pixel shader is to color, or shade, the region. You can also bend
Pixel Bender to your will and make it run on nonimage data. In the general case,
a single Pixel Bender program is called a kernel.

803

Part VIII: Graphics Programming and Animation

Note
In reality, each product that uses Pixel Bender has some specific limitations that mean some shaders won’t be
entirely portable. This chapter focuses on the kinds of Pixel Bender programs that run in Flash Player. You’ll see
that, currently, Flash Player imposes some serious limitations on Pixel Bender kernels that make them best kept
simple. �

Pixel shaders aren’t like the kinds of programs that you learn to write in the rest of this book. Like
regular expressions, they are tools perfectly suited for their singular task. Regular expressions don’t
look anything like the rest of ActionScript, and they are executed in their own fashion, to efficiently
and concisely manipulate strings. Similarly, Pixel Bender shaders use a language of their own, the Pixel
Bender kernel language, and are executed in a manner completely unlike ActionScript code, all in the
service of quickly generating graphics. To write a pixel shader, you have to think like a pixel shader.

The Case for Pixel Shaders
Pixel shaders were created to take advantage of increasingly powerful 3D graphics cards. Before pixel
shaders, lighting calculations and texture mapping on the graphics card determined the appearance
of a 3D model. The effects you can achieve relying on this pipeline are limiting. With pixel shaders,
developers could send a short program to the graphics card and have it execute this program on every
pixel with blinding speed. The appearance of a pixel-shaded triangle is completely open to creativity.
Why pixel shaders though? Couldn’t developers write that functionality directly into their programs?
In theory, the main program could render every pixel of every output frame. But the rest of the 3D
graphics pipeline was on the graphics card; moving the scene back to the CPU to shade each pixel
and then back to the graphics card for display would hardly be efficient. The point of pixel shaders is
to take advantage of graphics cards’ strengths and speed.

It’s important to understand this background. It explains shaders’ existence, but also their properties.
To shade a 640 × 480 area at 30 frames per second, a pixel shader kernel must run over 9 million
times a second. It can do this because pixel shaders are

� Highly parallel — Graphics cards run many instances of the shader at the same time, drawing
their outputs into the buffer as they complete. Kernels can depend on varying inputs, but they
can’t depend on other shaded pixels, which would create a requirement that some pixels are
shaded before others.

� Optimized to work on GPU hardware — In practice, this means that vector and matrix oper-
ations can be carried out very fast. You’ll see that the language reflects this, as many of its data
types are vectors.

� Compiled and optimized — Pixel shader languages are low level and are compiled before being
sent to the graphics card.

That said, Flash Player currently executes Pixel Bender code on the CPU, not the GPU. Even so, Pixel
Bender kernels run almost as if they were on a graphics card. They are executed in parallel, using all
available CPU cores and using their instruction sets optimized for vector processing, and they are run
asynchronous to the ActionScript Virtual Machine. Drawing graphics with Pixel Bender kernels blows
the equivalent ActionScript bitmap code (like setPixel()) out of the water in terms of performance,
though the gains are most evident on multicore processors.

Caution
Pixel Bender kernels are by nature intensive and may bog down even recent computers. Use sparingly. �

804

Chapter 38: Writing Shaders with Pixel Bender

Version
Flash Player 10.0 through 10.1 run Pixel Bender kernels on the CPU regardless of the render path, on both
mobile and desktop platforms. Future releases may move Pixel Bender kernels onto the graphics card when
possible. �

Thinking Like a Pixel Shader
Now that you understand a little bit about how Pixel Bender kernels are run, you can get comfortable
with how they’re structured. I’ll show some Pixel Bender kernel language here, just to get you used to
how it looks. I won’t focus on syntax, data types, or functions of the language until the section ‘‘Pixel
Bender Kernel Language.’’

A Pixel Bender kernel is, as I’ve said, a self-contained program. The program is run, in parallel, once
for every output pixel, and the output pixels are reassembled into the output image. A kernel is very
much like a class. It can have member variables and functions, but it must always have one main
function, called evaluatePixel(), which assigns a result value to a pixel. This way, Pixel Bender
knows how to run the kernel and what to do with the output. You specify this like so:

<languageVersion : 1.0;>
kernel FillColor
< namespace : "com.actionscriptbible";
vendor : "ActionScript 3.0 Bible";
version : 1;
description : "Fills image with a single color";

>
{
output pixel4 result;

void evaluatePixel() {
result = pixel4(1.0, 0.0, 0.0, 1.0);

}
}

Note
Code inside angle brackets <> is metadata. Although this is necessary for Pixel Bender, I’ll exclude it in
examples in this section to focus on the implementation. I’ll bring it back when I get into language details. �

You can see that the kernel looks like a class. Rather than return a value, you mark that the
variable result will hold the output value with the output keyword and assign it a value, in this
case the color red. Each time this is run, it returns the red color, so it turns each pixel red.

This simple kernel has no inputs. You can have multiple inputs for a kernel, a single input, or even
no inputs. Perhaps the most common application of a shader is to determine the appearance of a
single image (or polygon). This kind of shader might have a single input image. Now, even though the
kernel is executed for a single pixel, the input isn’t limited to a single pixel of the image. The kernel
has access to the full image so that it can, for example, flip an image across the diagonal:

kernel Mirror <...>
{
input image4 source;
output pixel4 result;

805

Part VIII: Graphics Programming and Animation

void evaluatePixel() {
float2 location = outCoord();
location.xy = location.yx;
result = sample(source, location);

}
}

You can see that the input is an entire image, even though the output is a single pixel. Given an input
image source, you find out which pixel you’re supposed to be drawing. Instead of a flat color, you
pick the color from another pixel in the source image, because you have access to the whole image.
You find the location of the output pixel with outCoord(), switch its y and x coordinates, and then
look up the color at the new location. You could have just as easily picked the color 30 pixels to the
right, or you could have divided the x coordinate by 2 to stretch out the image horizontally.

Maybe you want to draw a circle. To do so, you should pick a color to draw the pixels that fall inside
the circle, and another for pixels that fall outside the circle:

kernel Circle <...>
{
input image4 source;
output pixel4 result;
const float2 circleCenter = float2(50.0, 50.0);
const float circleRadius = 50.0;

void evaluatePixel() {
float2 location = outCoord();
if (distance(location, circleCenter) < circleRadius) {

result = pixel4(1.0, 1.0, 1.0, 1.0);
} else {

result = pixel4(0.0, 0.0, 0.0, 1.0);
}
}

}

Once you’ve specified the circle’s center and radius, you test the output pixel location. If it falls inside
the circle, you color it white. Otherwise, you color it black. The result is a white circle on a black
background. This kernel ignores — in fact, replaces — the contents of the input image.

As I demonstrated with the previous two examples, when you write pixel shaders, you have to think
about their effects implicitly, which might take some getting used to. Rather than setting an image’s
scale or procedurally drawing a circle, you have to tell a program what to do with each pixel. The
simple rules, when applied to every pixel, result in a consistent output. Some filters ask you to think
in the same way. The convolution filter asks, ‘‘How is the color of each pixel influenced by its neigh-
bors?’’ And the displacement map filter asks, ‘‘How far away from the output pixel location should I
sample the source image?’’ Of course, you can replicate these filters easily with the tools Pixel Bender
provides to you.

Now you’ll go back to the inputs to a kernel. You’ve seen shaders with zero and one image inputs.
When would you use more image inputs? How about building a shader to be used as a blend mode?
Blend modes determine how an image looks after being layered on top of another image. For example,
the BlendMode.MULTIPLY mode multiplies the colors in the top image with the cumulative col-
ors below it. A kernel that’s going to be used as a blend mode should take two images and output a
single image.

806

Chapter 38: Writing Shaders with Pixel Bender

kernel MultiplyBlendMode <...>
{
input image4 source1;
input image4 source2;
output pixel4 result;

void evaluatePixel() {
result = sample(source1, outCoord()) * sample(source2, outCoord());

}
}

That was easy! For each output pixel, sample the corresponding pixels in the two layers and multiply
their colors. You can easily implement all the built-in blend modes with a line or two of Pixel Bender
code.

Besides the input images, Pixel Bender shaders can take parameters of any type. These parameters are
available to Flash Player so that you can create interactive shaders that respond to input from Action-
Script, whether that’s user-directed input or the result of an animation or algorithm.

In summary, when you’re developing pixel shaders, you ultimately have to answer the question, ‘‘What
is the color of a single pixel?’’ not the question, ‘‘What does the effect look like?’’ To determine this,
you can access input images and input parameters and do all sorts of math, as long as you output a
single color. Flash Player relentlessly executes your program in parallel for every pixel in the output
image, taking advantage of your CPU as much as it can.

Integrating Pixel Bender and Flash Player
Pixel Bender kernels may be run by Flash Player as a fill, a stroke fill, a filter, a blend mode, or simply
as a job. In each application, the results of the kernel are used differently. But in every application, the
kernel is encapsulated the same way.

A Pixel Bender kernel is represented in ActionScript 3.0 as an instance of the Shader class. This class
acts as the interface between the two technologies. It owns the kernel code and proxies the parameters
you define in the kernel. But it doesn’t go further. Unlike regular expressions or E4X, the Pixel Bender
kernel language is not part of the AS3 language spec. It can’t be inlined with your existing code.

Flash Player consumes Pixel Bender kernels only after they have been compiled to bytecodes. So you
need to feed your otherwise-empty Shader instance a compiled kernel. First compile the kernel for
Flash Player by using either the Adobe Pixel Bender Toolkit’s Export Filter for Flash Player menu or
the command-line tool pbutil, also included with the Adobe Pixel Bender Toolkit. This results in a
PBJ file, a Pixel Bender Kernel bytecode.

Note
A bytecode is a compiled, machine-independent intermediate representation of the code; a SWF contains
ActionScript bytecodes. Flash Player actually takes Pixel Bender kernel bytecodes and compiles them on
demand into machine code that runs right on your CPU. By compiling bytecode at runtime (JIT, or Just In Time
compilation), you can optimize one centrally-distributed bytecode on the user’s machine for the user’s CPU,
which differs in architectures and features. �

How you feed this bytecode file to Flash Player is up in the air. You’ve already learned several ways
you can do so. The Shader instance exposes a byteCode property of type ByteArray through

807

Part VIII: Graphics Programming and Animation

which you can set the bytecode, or you can pass the data into the constructor. You learned about how
to deal with binary data in Chapter 13, ‘‘Binary Data and ByteArrays.’’

Once the shader is running, it should determine the correct image inputs by its context; parameters
to the shader, metadata, and inputs of the kernel are exposed in Shader’s data property, a dynamic
object of type ShaderData.

The section ‘‘Interfacing with Pixel Bender Kernels’’ shows code to load, use, and twiddle with kernels
in ActionScript.

Pixel Bender Kernel Language
You’ve already seen a few extremely simple kernels, during which I avoided talking about the Pixel
Bender kernel language too much. Now you can jump in, explore what the language is capable of,
and code it up!

Syntax
As you have doubtless realized by now, the kernel language is not like ActionScript 3.0. But it’s not
entirely foreign either. The Pixel Bender kernel language is akin to GLSL, OpenGL’s shader language.
Some key things to note:

� Types are placed before the variable name, without a colon, as in C.

float radius = 1.0;

� In function declarations, the return value comes before the name of the function, and the
parameters place the types before the parameter names. However, Pixel Bender in Flash Player
does not currently allow you to call functions you define yourself.

void evaluatePixel() {}
float2 customFunction(float a, float b) {} //not in Flash Player!

� Functions are overloaded — that is, many functions may exist by the same name, with differ-
ent arguments. The correct version will be called depending on its arguments. This makes for
flexible handling of different dimensions. The length() function, for instance, calculates the
length of a one, two, three, or four-dimensional vector, depending on the type of its argument:

float length(float x) {}
float length(float2 x) {}
float length(float3 x) {}
float length(float4 x) {}

� Literals are not automatically converted between numeric types. Include a decimal somewhere
in your literal to indicate it is a float (a floating-point number like Number). Leave out the
decimal to interpret it as an int.

float a = 2.0; //Preferred
float b = .4;
float c = 5.;
float d = 6; //ERROR
int e = 7;

808

Chapter 38: Writing Shaders with Pixel Bender

Knowing this, you should be able to find your way around a Pixel Bender kernel. These programs
are structurally simple, so there are no classes or OOP, and only a few built-in types and functions.
The Adobe Pixel Bender Toolkit is an IDE for these programs, so its editor gives you code hinting and
compiler errors and warnings. Be sure to turn on Flash Player warnings and errors in the IDE to limit
yourself to Pixel Bender features supported in Flash Player.

Tip
If you want to create a kernel that executes specific code only if the kernel is being used in Flash Player,
use the compiler preprocessor symbol AIF_FLASH_TARGET. This is a C-style #define, so you can include
code if the kernel is being run in Flash Player. Instead of #ifdef, use #if. There is no #ifndef.

#if AIF_FLASH_TARGET
//code that runs if you’re in Flash Player

#endif
//code that runs no matter what
#if !AIF_FLASH_TARGET
//code that runs if you’re NOT in Flash Player

#endif

Structure of a Kernel
A Pixel Bender kernel is like a simplified class. Every kernel compatible with Flash Player follows this
template:

<languageVersion: 1.0;>
kernel (kernel name)
<
namespace: (a namespace);
vendor: (name of your entity);
version: (version number);

>
{
(member declarations including consts, parameters, inputs, and outputs)
void evaluatePixel() {
(statements, including an assignment to the output)

}
}

I’ve removed all elements that Flash Player doesn’t support from this template. Most importantly, no
extra functions are allowed in the kernel. Pixel Bender defines several other reserved functions, but
they all relate to Pixel Bender operations that Flash Player does not currently support, like regions and
dependents. Your only function should be evaluatePixel(), so I’ve baked it into the template.

The metadata included in this template is also required. Metadata is placed within angled brackets and
is in pairs of

name: value;

The semicolons are required, including the one trailing the last name-value pair in the metadata block.

The name of the kernel is pretty arbitrary. Name it like you would name a class. Don’t use periods
in the name: a namespace, if required, can go in the kernel metadata.

809

Part VIII: Graphics Programming and Animation

Required Metadata

The language version tag simply marks the source code as conforming to a certain version of the Pixel
Bender kernel language. For now, 1.0 is the only version, so just use this.

The kernel metadata, also required, includes the three pairs you see in the template and may contain
an optional description. The tags should be self-explanatory. See the example:

kernel FillColor
< namespace : "com.actionscriptbible";
vendor : "ActionScript 3.0 Bible";
version : 1;
description : "Fills image with a single color";

>

Tip
The Pixel Bender Toolkit generates a working template for you when you choose New Kernel, automatically
filling in your vendor and namespace from its preferences. �

Member Declarations

The member declarations are like instance variables in a class, but each one must have a stated pur-
pose. You can only declare members that are constants, parameters, inputs, or outputs. For a basic
instance variable, instead use a local variable declaration inside evaluatePixel().

All member declarations take the form:

(member type) (data type) (name) [= (literal value for const members)];

For example:

const float circleRadius = 25.0;
input image4 inputImage;
output pixel4 returnPixel;

A constant should need no explanation. Flash Player usually assigns the inputs and outputs of a kernel
automatically. That’s where parameters come in.

Parameters make up the public interface to the kernel. They may be modified by ActionScript code
while the kernel is running, and you can tweak them by hand to test your kernel if you’re using the
IDE. You could convert the constant values that define a circle in your Circle kernel from earlier
into parameters:

<languageVersion: 1.0;>
kernel Circle <namespace: "as3b"; vendor: ""; version: 2;>
{
input image4 source;
output pixel4 result;
parameter float2 circleCenter <

minValue: float2(0.0, 0.0);
maxValue: float2(1000.0, 1000.0);
description: "Center point of the circle";

>;

810

Chapter 38: Writing Shaders with Pixel Bender

parameter float circleRadius <
minValue: 1.0;
maxValue: 500.0;
defaultValue: 25.0;

>;

void evaluatePixel() {
float2 location = outCoord();
if (distance(location, circleCenter) < circleRadius) {
result = sample(source, location);

} else {
result = pixel4(0.0, 0.0, 0.0, 0.0);

}
}

}

When you use parameters, you can optionally add metadata to the parameters that set a minimum,
maximum, and default value. All these values are optional. If you define none of these, you may omit
the whole metadata block.

If you run this example in the IDE, you’ll see that sliders appear to control the parameter values, and
these sliders respect your defined ranges. You might also notice that I’ve changed the effect slightly.
Instead of drawing a white circle inside a black field, it draws a spotlight on the image — a circular
mask. If the pixel is inside the circle, you sample the source image. If the pixel is outside the circle,
you return not just black but a completely transparent color.

Basic Control Structures
The only kernel language control structures that Flash Player supports are if and if/else. No loops,
no nothing! This might seriously quash some ideas you might have had for Pixel Bender kernels, like
maybe if you’re trying to come up with a really cool example to write in a book, so think ahead and
determine whether Pixel Bender is the right application.

Types
The basic types in the Pixel Bender kernel language are bool, int, float, and pixel1.

� bool — A Boolean value that takes the keywords true and false.

� int — An integer value, signed. In Flash Player it is 16 bits.

� float — A floating-point value. In Flash Player it is 32 bits.

� pixel1 — A single channel of a pixel. Flash Player uses 4-channel RGBA pixels. pixel1 is
one 32-bit floating-point channel; it’s identical to a float.

Caution
Flash Player stores bitmaps as 4 channels, ordered ARGB, 8 bits per channel as an unsigned integer from 0
to 255. Pixel Bender uses 4 channels, ordered RGBA, 32 bits per channel as a floating-point number from
0.0 to 1.0. Conversion in both directions is automatic. �

811

Part VIII: Graphics Programming and Animation

Vector Types

Each of these types has vector versions, which wrap several values into a single variable.

� bool2, bool3, bool4 — Vectors of Booleans.

� int2, int3, int4 — Vectors of integers.

� float2, float3, float4 — Vectors of floating-point numbers. Useful for positions in 2D
and 3D space, quaternions, and so on.

� pixel2, pixel3, pixel4 — Vectors of multichannel pixels. Most often, you’ll use pixel3,
which can store RGB channels, and pixel4, which can store RGBA channels.

You can create vector literals by calling the ‘‘constructor’’ function with the correct number of argu-
ments or with a single argument, which fills all the elements with that value.

float3 center = float3(0.0, 0.0, 0.0);
float3 alsoCenter = float3(0.0);
bool2 options = bool2(true, false);

Vector types are awesome because operators are overloaded to work on vector types. This means
that you can add two float4s in precisely the same way that you add two floats. In the
MultiplyBlendMode shader example, you simply multiplied two pixel values:

result = sample(source1, outCoord()) * sample(source2, outCoord());

Each call to sample() here returned a pixel4 because the images were 4-channel images. So with
one line, four multiplications and four assignments were performed. Arithmetic operators work on
each element of a vector independently. The dot product and cross product can be performed with
functions. If you weren’t able to use vector multiplication, you would have had to use this equivalent
but tedious (and typo-prone) code:

pixel4 a = sample(source1, outCoord());
pixel4 b = sample(source2, outCoord());
result.r = a.r * b.r;
result.g = a.g * b.g;
result.b = a.b * b.b;
result.a = a.a * b.a;

Another cool thing about vectors in the Pixel Bender kernel language is how you can access their ele-
ments. You can use vectors like ActionScript vectors and arrays, with bracket notation (a[0], a[1],
a[2], a[3]). The kernel language gives you shortcuts — syntactic sugar — for these vector indices,
based on the typical ways you’d use the vectors. You just saw one. Table 38-1 shows all of them. Each
row in this table is an equivalent way to access the element.

These shortcuts are for your own convenience. Pixel Bender doesn’t know or care what kind of data
you’re storing in a float3, as long as it’s floating-point numbers. You use RGB or XYZ or STP to
access its elements for one reason: to make the code more readable.

812

Chapter 38: Writing Shaders with Pixel Bender

TABLE 38-1

Vector Index Shortcuts

Array Style Color Channels Coordinates Texture Coordinates

[0] .r .x .s

[1] .g .y .t

[2] .b .z .p

[3] .a .w .q

Finally, vectors in the kernel language can be swizzled. This means that, using the shortcuts in
Table 38-1, you can whisk around elements out of vectors and recombine them by using the index
shortcuts, totally freeform. Try these:

float4 pxl = sampleNearest(src, outCoord());
float3 dropAlpha = pxl.rgb;
float4 grayFromRed = pxl.rrra;
float4 reversed = pxl.abgr;

Crazy, right?

Matrix Types

The kernel language also has built-in floating-point matrix types for these dimensions:

� float2x2, float3x3, float4x4 — Square matrices of floating-point values, dimensions
2×2, 3×3, and 4×4.

These may be instantiated with the proper constructors, passing a list of column vectors, the proper
total number of elements in column-major order, or with a single float that fills in the diagonal, leav-
ing all other elements 0.

//define the 2x2 matrix:
// | 1.0 2.0 |
// | 3.0 4.0 |

float2x2m = float2x2(1.0, 3.0, 2.0, 4.0);

float2 col0 = float2(1.0, 3.0);
float2 col1 = float2(2.0, 4.0);
float2x2m = float2x2(col0, col1);

You can find an element with double bracket notation, column then row, or pull out a column vector
with a single pair of brackets.

//pull out element 2.0
float element = m[1][0];

//pull out column vector <1.0, 3.0>
float2 firstCol = m[0];

813

Part VIII: Graphics Programming and Animation

The arithmetic operators are overloaded for matrices, too. In this case, multiplication of matrices with
the same dimension actually performs matrix multiplication, not per-element multiplication. Multipli-
cation of vectors and matrices with the proper dimension in the proper order also performs matrix
multiplication. For example,

float2x2 * float2x2 -> float2x2
//multiplies 2x2 matrix by 2x2 matrix, yielding 2x2 matrix

float2 * float2x2 -> float2
//multiplies 1x2 matrix by 2x2 matrix, yielding 1x2 matrix (row vector)

float2x2 * float2 -> float2
//multiplies 2x2 matrix by 2x1 matrix, yielding 2x1 matrix (column vector)

float * float2x2 -> float2x2
//multiplies scalar by 2x2 matrix, yielding 2x2 matrix

Manipulating whole vectors and matrices at a time is not only concise and fast, but applicable to
3D graphics and some image processing algorithms.

Image Types

Suitable only for input images, Pixel Bender includes image types for images with various numbers of
color channels.

� image1, image2, image3, image4 — An image with the specified number of channels.

As I’ve already noted, you will be working mostly with 4-channel images, so you can get used to
image4.

Pretty much the only thing you can do with an image is sample it, using the three sample functions
listed toward the end of Table 38-2. This yields a pixel of the corresponding number of channels.

Stuff You Don’t Get

Unfortunately, Pixel Bender on Flash doesn’t support arrays. Instead, you could try to encode a series
of float values in an n×1 one-channel image (image1). Regions are not yet available.

Functions
Pixel Bender provides a suite of mathematical functions, all of which are overloaded to work with
vectors of any dimension when it makes sense. For example, log() can take the logarithm of a num-
ber if passed a float, but it also takes the logarithm of four numbers at once if passed a float4. I
signify that any dimension of float may be passed with the (purely notational) type floatn. So few
functions are defined that they can be summarized in Table 38-2.

814

Chapter 38: Writing Shaders with Pixel Bender

TABLE 38-2

Pixel Bender Functions

Function Signature What It Does

floatn radians(floatn d) Converts d degrees to radians

floatn degrees(floatn r) Converts r radians to degrees

floatn sin(floatn r) Sine; r is in radians

floatn cos(floatn r) Cosine

floatn tan(floatn r) Tangent

floatn asin(floatn x) Arcsine

floatn acos(floatn x) Arccosine

floatn atan(floatn slope) Arctangent

floatn atan(floatn y, floatn x) Arctangent

floatn pow(floatn a, floatn b) Raises ab

floatn exp(floatn x) Raises ex

floatn exp2(floatn x) Raises 2x

floatn log(floatn x) Natural logarithm of x

floatn log2(floatn x) Base 2 logarithm of x

floatn sqrt(floatn x) Positive square root of x

floatn inverseSqrt(floatn x) Reciprocal of the positive square root of x

floatn abs(floatn x) Absolute value of x

floatn sign(floatn x) Sign of x. Returns -1.0, 0.0, or 1.0

floatn floor(floatn x) Rounds down x to nearest whole number

floatn ceil (floatn x) Rounds up x to nearest whole number

floatn fract(floatn x) Fractional part of x

floatn mod(floatn a, floatn b) Returns a modulo b, remainder of a divided by b

floatn min(floatn a, floatn b) Minimum of the two arguments

floatn max(floatn a, floatn b) Maximum of the two arguments

continued

815

Part VIII: Graphics Programming and Animation

TABLE 38-2 (continued)

Function Signature What It Does

floatn step(floatn a, floatn b) Returns 0.0 if the first argument is greater, 1.0 if
the second argument is greater or they are equal

floatn clamp(floatn x,
floatn min, floatn max)

Clamps a value x to the range [min, max]
inclusive

floatn mix(floatn a,
floatn b, floatn t)

Linear interpolation between a and b, with t in
the range 0.0 (returns a) to 1.0 (returns b)

floatn smoothStep(floatn edge0,
floatn edge1, floatn x)

Hermite interpolation for x between edge0 and
edge1, clamped to the range [edge0, edge1]

float length(floatn x) Length/magnitude of vector x

float distance(floatn x,
floatn y)

Distance between vectors x and y

float dot(floatn x, floatn y) Dot product of vectors x and y

float3 cross(float3 x, float3 y) Cross product of vectors x and y

floatn normalize(floatn x) Normalizes x so that its magnitude is 1.0

floatnxn matrixCompMult
(floatnxn x, floatnxn y)

Per-element multiplication of matrices x and y
where * would perform matrix multiplication

booln lessThan(intn/floatn x,
intn/floatn y)

Compares elements of vector with <

booln lessThanEqual(intn/floatn x,
intn/floatn y)

Compares elements of vector with <=

booln greaterThan(intn/floatn x,
intn/floatn y)

Compares elements of vector with >

booln greaterThanEqual
(intn/floatn x, intn/floatn y)

Compares elements of vector with >=

booln equal(intn/floatn/booln x,
intn/floatn/booln y)

Compares elements of vector with ==

booln notEqual(intn/floatn/booln x,
intn/floatn/booln y)

Compares elements of vector with !=

bool any(booln x) Returns true if any element of x is true

bool all(booln x) Returns true if all elements of x are true

booln not(booln x) Negates all elements of vector

pixeln sample(imagen img, float2 p) Returns pixel color of image img at location p,
using bilinear interpolation between pixels

816

Chapter 38: Writing Shaders with Pixel Bender

Function Signature What It Does

pixeln sampleLinear(imagen img,
float2 p)

Returns pixel color of image img at location p,
using bilinear interpolation between pixels

pixeln sampleNearest(imagen img,
float2 p)

Returns pixel color of image img at location p,
using nearest-neighbor to round position

float2 outCoord() Returns the pixel location that this instance of
the kernel is currently being run on

float2 pixelSize(imagen/pixeln) Returns the size of a single pixel (not the size of
the image) for an input image or output pixel;
Flash Player returns <1.0, 1.0>

float pixelAspectRatio(imagen/pixeln) Returns the aspect ratio of a pixel (for non-
square pixels) for an input image or output
pixel; Flash Player returns 1.0

And there you have, in a nutshell, everything Pixel Bender can do. The rest is up to your imagination!

Interfacing with Pixel Bender Kernels
In this section, I’ll show how to load in a kernel’s bytecode and get a Shader handle to the kernel.
Once you have a Shader, I’ll show the different ways to run it to generate or modify graphics. Then,
with the kernel running, I’ll show ways to interface with it.

Loading the Bytecode
Recall from the section ‘‘Introducing Pixel Bender’’ that you always load compiled Pixel Bender byte-
codes, typically stored as PBJ files. Any method of loading binary data will suffice.

You can load in the PBJ file from the web using URLLoader, as you saw in Chapter 27, ‘‘Flash Player
Networking Basics.’’

var urlRequest:URLRequest = new URLRequest("shader.pbj");
var urlLoader:URLLoader = new URLLoader();
urlLoader.dataFormat = URLLoaderDataFormat.BINARY;
urlLoader.addEventListener(Event.COMPLETE, createShader);
urlLoader.load(urlRequest);

function createShader(event:Event):void {
var shader:Shader = new Shader(ByteArray(event.target.data));

}

You can embed the bytecode in the SWF during compilation with an Embed metadata tag, as you did
with fonts in Chapter 17, ‘‘Text, Styles, and Fonts.’’

817

Part VIII: Graphics Programming and Animation

[Embed(source="shader.pbj", mimeType="application/octet-stream")]
var ShaderBytecode:Class;

var shader:Shader = new Shader(new ShaderBytecode());

Ensure that you use the application/octet-stream MIME type to embed the file as raw binary
data. It will come out as a subclass of ByteArray.

You can even load a local PBJ file at runtime with FileReference, as you saw in Chapter 30, ‘‘File
Access.’’

var fileReference:FileReference = new FileReference();
fileReference.addEventListener(Event.SELECT, onFileSelect);
fileReference.browse([new FileFilter("Pixel Bender Bytecode", "*.pbj")]);

protected function onFileSelect(event:Event):void {
var fileReference:FileReference = FileReference(event.target);
fileReference.addEventListener(Event.COMPLETE, onLoadComplete);
fileReference.load();

}

protected function onLoadComplete(event:Event):void {
var fileReference:FileReference = FileReference(event.target);
new Shader(fileReference.data);

}

Tip
Although Flash Player loads only compiled Pixel Bender bytecodes, there’s nothing technically prevent-
ing you from creating a valid kernel bytecode file in memory. James Ward has published a Flash Player
PBJ runtime assembler based on the Haxe PBJ assembler. It is called pbjAS, and you can find it at
http://bit.ly/pbjas. �

Running a Kernel in ActionScript
Now that you have a Shader instance, you can use it in several different contexts.

� As a fill style — Call beginShaderFill() instead of beginFill() on a Graphics object.

shape.graphics.clear();
shape.graphics.beginShaderFill(aShader);
shape.graphics.drawCircle(0, 0, 200);

� As a stroke style — I first showed this in Chapter 35, ‘‘Programming Vector Graphics.’’ Call
lineShaderStyle() on a Graphics object.

shape.graphics.lineStyle(20, 0, 1);
shape.graphics.lineShaderStyle(aShader);
shape.graphics.moveTo(0, 0);
shape.graphics.lineTo(200, 200);

� As a filter — Simply wrap the Shader object in a ShaderFilter and use as any other
BitmapFilter. The shader should take one image input.

sprite.filters = [new ShaderFilter(aShader)];

818

Chapter 38: Writing Shaders with Pixel Bender

� As a blend mode — This requires two steps. On the display object you want to blend with a
custom shader, set the shader blend mode, and then assign the shader to the blendShader
property. The shader should take two image inputs.

sprite.blendMode = BlendMode.SHADER;
sprite.blendShader = aShader;

� As a standalone job — Use the ShaderJob class to control the inputs, outputs, and execution
of the kernel. This manner of execution enables some clever programming and warrants its own
section. I’ll show what standalone shader jobs can achieve in the later section titled ‘‘Bending
Other Data.’’

With an effect in mind, it should be fairly clear which method you should use to generate the correct
kind of graphics. If you’re writing your own 3D engine and using a pixel shader to shade polygons,
you’ll probably use the kernel as a fill mode with Graphics’s drawTriangles() method. If you’re
generating graphics to fill a surface, you’d probably again use the kernel as a fill style and fill the
whole surface with drawRect(). If you’re modifying existing graphics, it usually makes sense to use
a ShaderFilter. And so on.

Manipulating a Kernel
The real fun comes when you use ActionScript to interface with a Shader in real time. For example,
say your shader is doing light calculations. You’re going to need to send the Shader in the correct
parameters for the angle of incidence and the strength of the light for it to actually work correctly
in context. Otherwise, every surface would be shaded as if it had the same orientation and position
relative to the light.

The data associated with a Pixel Bender kernel is made available to ActionScript in the Shader’s
data property. This is a dynamic object of type ShaderData, whose properties can be these types:

� String — Metadata properties of the kernel itself are stored as name-value pairs in
ShaderData.

trace(aShader.data.name); //Circle
trace(aShader.data.version); //2

� ShaderInput — Input images to the kernel are stored by their variable name. ShaderInput
provides facilities for sending in ‘‘image’’ data as a BitmapData, a ByteArray, or a
Vector.<Number>. You can use these methods to coerce Pixel Bender to crunch huge sets of
data masquerading as images, without doing too much work on the ActionScript side to make
them look like images. More on this later. In a filter context and a blend mode context, Flash
Player can set one or two of the inputs automatically. If your kernel uses additional inputs, use
ShaderInput to specify them.

trace(aShader.data.optionalImage.channels);
//4 if optionalImage is an image4, 3 if it’s image3, etc.
aShader.data.optionalImage.input = someBitmapData;

� ShaderParameter — Parameters to the kernel are stored by their variable name, as instances
of ShaderParameter. The ShaderParameter object gives you access to the metadata asso-
ciated with the parameter, like description, minValue, maxValue, and defaultValue;
its type; and its current value. For Flash Player, all values are converted into Arrays to sup-
port vector and matrix values. Even scalars are converted into Arrays of size 1.

819

Part VIII: Graphics Programming and Animation

var circleCenter:ShaderParameter = shader.data.circleCenter;
trace(circleCenter.type); //float2
trace(circleCenter.minValue, "->", circleCenter.maxValue);
//0,0 -> 1000,1000
circleCenter.value = [10, 10]; //you can assign a value

Caution
Don’t forget that you have to assign the value of a parameter to the ShaderParameter’s value property.
A statement like

aShader.data.aParameter = [10]; //wrong

is actually valid, since the ShaderData is dynamic and aParameter is not type checked. Furthermore, the
parameter in your shader will take on the default value when you type this, so this kind of bug is terrifically
annoying. Remember to use value!

aShader.data.aParameter.value = [10]; //right

Through the metadata associated with a shader, you can discover its interface at runtime, and through
its ShaderParameters and ShaderInputs, you can interface with the kernel at runtime.

A Basic Shader in ActionScript
In this example, you take the Circle shader version 2, which masks its content with a circle like a
spotlight, and hook it up to ActionScript, as shown in Example 38-1. You can find the Pixel Bender
kernel language source earlier in this chapter. You use the mouse’s position to move the spotlight, and
you resize the spotlight with the mouse wheel. It’s been set up to mask your webcam feed.

EXAMPLE 38-1 http://actionscriptbible.com/ch38/ex1

Using a Shader as a Filter

package {
import flash.display.*;
import flash.events.*;
import flash.filters.*;
import flash.media.*;
import flash.net.*;
import flash.utils.ByteArray;

public class ch38ex1 extends Sprite {
protected var camVideo:Video;
protected var shader:Shader;
protected var shaderFilter:ShaderFilter;
public function ch38ex1() {
camVideo = new Video(stage.stageWidth, stage.stageHeight);
camVideo.attachCamera(Camera.getCamera());
addChild(camVideo);

820

Chapter 38: Writing Shaders with Pixel Bender

var PBJURL:String = "http://actionscriptbible.com/files/circle2.pbj";
var loader:URLLoader = new URLLoader(new URLRequest(PBJURL));
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onBytecodeLoaded);

}
protected function onBytecodeLoaded(event:Event):void {
var loader:URLLoader = URLLoader(event.target);
loader.removeEventListener(Event.COMPLETE, onBytecodeLoaded);
shader = new Shader(ByteArray(loader.data));
shaderFilter = new ShaderFilter(shader);
stage.addEventListener(Event.ENTER_FRAME, onEnterFrame);
stage.addEventListener(MouseEvent.MOUSE_WHEEL, onMouseWheel)

}
protected function onEnterFrame(event:Event):void {
shader.data.circleCenter.value = [stage.mouseX, stage.mouseY];
camVideo.filters = [shaderFilter]; //update the filter

}
protected function onMouseWheel(event:MouseEvent):void {
shader.data.circleRadius.value[0] += 3 * event.delta;

}
}

}

The example explores all three topics covered in this section. You’ve loaded the bytecode into a
Shader instance, in this case using a URLLoader. You’ve executed the shader, in this case as a filter
for video content. And you’ve interfaced with its parameters to make the shader interactive.

This is about the simplest shader and application I could think of. It’s kind of boring. Next I’ll shoot
for something cool. What’s the point of Pixel Bender if you use it to re-create graphics you could make
with existing drawing and bitmap APIs?

Tip
Okay, here’s the point. Although boring, re-creating existing Flash Player effects can be instructional. Every
built-in blend mode and BitmapFilter can be easily accomplished as a Pixel Bender shader. It would be an
interesting exercise to compare performance of built-in effects with your Pixel Bender implementations. Given
that kernels can execute on multiple cores, you may be able to beat Flash Player at its own game. �

An Effect Shader in ActionScript
Now you’ll put together a complex effect in Pixel Bender. Within a single filter kernel, you can com-
bine a bunch of different operations so that all the parts of the compound effect render at the same
time. I’ve put together a ‘‘bad reception’’ Pixel Bender kernel that combines vertical roll, sinusoidal
distortion, noise distortion, color channel splitting, and some horizontal lines.

This example uses some workarounds that might be helpful to any Pixel Bender developer. Because
Pixel Bender doesn’t have noise — and you can’t loop to generate any — you use bitmap data and
feed in the noise as an extra input. In general, when Pixel Bender can’t generate the kind of input you
need, try sending it in as image data.

821

Part VIII: Graphics Programming and Animation

Also, you pass in the dimensions of the image as parameter dimensions, because Pixel Bender can’t
actually tell you the size of images.

<languageVersion : 1.0;>
kernel BadReception
< namespace : "com.actionscriptbible";
vendor : "ActionScript 3.0 Bible";
version : 1;
description : "Bad reception on your TV";

>
{
input image4 srcImage;
input image4 noiseImage;
output pixel4 dst;

parameter float2 dimensions
<minValue: float2(0.0, 0.0); defaultValue: float2(640.0, 480.0);>;

parameter float vRoll
<minValue: -200.0; defaultValue: 0.0; maxValue: 200.0;>;

parameter float channelSplit
<minValue: 0.0; maxValue: 50.0;>;

parameter float noisyHDisplace
<minValue: -100.0; maxValue: 100.0;>;

parameter float sinHDisplace
<minValue: -100.0; maxValue: 100.0;>;

parameter float3 sinHDisplaceFactors
<minValue: float3(0.0); maxValue: float3(10.0);>;

parameter float3 sinHDisplaceOffsets
<minValue: float3(-6.0); maxValue: float3(6.0);>;

parameter float noiseLayer
<minValue: 0.0; maxValue: 1.0;>;

parameter float blackoutThresh
<minValue: 0.0; maxValue: 1.0;>;

void evaluatePixel() {
float2 coord = outCoord();
//Vertical roll
coord.y = mod(coord.y - vRoll, dimensions.y);
//Displacements
float2 displace = float2(0.0);
displace.x = noisyHDisplace
* (length(sampleNearest(noiseImage, float2(0.0, outCoord().y))) - 0.5);

float3 sinDisplaces = sinHDisplace * sin(
float3(coord.y / 100.0)
* pow(sinHDisplaceFactors, float3(1.0, 2.0, 3.0))
+ sinHDisplaceOffsets
);

displace.x += sinDisplaces[0] + sinDisplaces[1] + sinDisplaces[2];
coord += displace;
//Color channel splitting
if (channelSplit == 0.0) {
dst = sampleNearest(srcImage, coord);

} else {

822

Chapter 38: Writing Shaders with Pixel Bender

float2 channelDisplace = float2(0.0, 0.0);
channelDisplace.x = -channelSplit;
dst.r = sampleNearest(srcImage, coord+channelDisplace).r;
channelDisplace.x = 0.0;
dst.g = sampleNearest(srcImage, coord+channelDisplace).g;
channelDisplace.x = channelSplit;
dst.b = sampleNearest(srcImage, coord+channelDisplace).b;

}
//Black lines at top and bottom
float blackoutPixel = pow(outCoord().y / dimensions.y * 2.0 - 1.0, 2.0);
if (sampleNearest(noiseImage, float2(dimensions.x*0.5, outCoord().y)).r
< blackoutThresh * blackoutPixel) {
dst = sampleNearest(noiseImage, outCoord()) * 0.05;

}
//Noise
dst -= noiseLayer * sampleNearest(noiseImage, outCoord());
dst.a = 1.0;

}
}

The pieces of this effect are pretty simple by themselves, but they all come together. If you used
BitmapData pixel operations and looped over each pixel in ActionScript, this effect would have
trouble keeping up any reasonable frame rate. When the kernel is run in the Pixel Bender toolkit on
the GPU, it’s blinding fast. (Too bad you can’t take advantage of that in Flash Player.)

Developing the filter is just the first step. To really sell the effect, you have to animate its parameters
so that it really looks like TV interference. Example 38-2 shows the ActionScript code used to do that.

EXAMPLE 38-2 http://actionscriptbible.com/ch38/ex2

Using a Complex Shader

package {
import flash.display.*;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.filters.ShaderFilter;
import flash.geom.Point;
import flash.media.*;
import flash.net.*;
import flash.utils.getTimer;
[SWF(width="500",height="500",frameRate="30",backgroundColor="#000000")]
public class ch38ex2 extends Sprite {
protected var holder:Sprite;
protected var video:Video;
protected var testPattern:Loader;
protected var noise:BitmapData;

protected var shader:Shader;
protected var shaderFilter:ShaderFilter;

continued

823

Part VIII: Graphics Programming and Animation

EXAMPLE 38-2 (continued)

protected var smoothRandomNoise:BitmapData;
protected var pointers:Vector.<Point>;
protected var rands:Vector.<Number>;

public function ch38ex2() {
noise = new BitmapData(stage.stageWidth, stage.stageHeight, false, 0);
holder = new Sprite();
video = new Video(stage.stageWidth/2, stage.stageHeight/2);
video.scaleX = video.scaleY = 2;
var camera:Camera = Camera.getCamera();
camera.setMode(stage.stageWidth/2, stage.stageWidth/2, 30, false);
video.attachCamera(camera);
testPattern = new Loader();
testPattern.blendMode = BlendMode.ADD;
testPattern.alpha = 0;
holder.addChild(video);
holder.addChild(testPattern);
addChild(holder);
stage.quality = StageQuality.LOW;

smoothRandomNoise = new BitmapData(300, 10, false, 0);
smoothRandomNoise.perlinNoise(Math.random()*100, Math.random()*100, 4,
int((new Date()).date) * int(1000*Math.random()), true, true, 7);

pointers = new Vector.<Point>(12);
rands = new Vector.<Number>(12);
for (var i:int = 0; i < 12; i++)
pointers[i] = (new Point(
Math.random()*smoothRandomNoise.width,
Math.random()*smoothRandomNoise.height));

var PBJURL:String = "http://actionscriptbible.com/files/badreception.pbj";
var loader:URLLoader = new URLLoader(new URLRequest(PBJURL));
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onBytecodeLoaded);

var IMGURL:String = "http://actionscriptbible.com/files/testpattern.jpg";
testPattern.load(new URLRequest(IMGURL));
testPattern.contentLoaderInfo.addEventListener(Event.COMPLETE, onImgLoad);

}
protected function onBytecodeLoaded(event:Event):void {
shader = new Shader(URLLoader(event.target).data);
shaderFilter = new ShaderFilter(shader);
shader.data.noiseImage.input = noise;
shader.data.srcImage.input = noise;
shader.data.dimensions.value = [noise.width, noise.height];

stage.fullScreenSourceRect = noise.rect;
stage.addEventListener(MouseEvent.CLICK, onFullScreen);

824

Chapter 38: Writing Shaders with Pixel Bender

stage.addEventListener(Event.ENTER_FRAME, go);
}
protected function onImgLoad(event:Event):void {
testPattern.width = noise.width;
testPattern.height = noise.height;

}
protected function onFullScreen(event:MouseEvent):void {
if (stage.displayState == StageDisplayState.FULL_SCREEN) {
stage.displayState = StageDisplayState.NORMAL;

} else {
stage.displayState = StageDisplayState.FULL_SCREEN;

}
}
protected function go(event:Event):void {
noise.noise(getTimer(), 0, 255, 7, true);
for (var i:int = 0; i < pointers.length; i++) {
var p:Point = pointers[i];
p.x = (int(p.x) + 2*(1+i)) % smoothRandomNoise.width;
rands[i] = smoothRandomNoise.getPixel(p.x, p.y) / 0x00ffffff;

}

var sd:ShaderData = shader.data;
testPattern.alpha = Math.max(0, rands[6] * 3 - 2);
sd.noisyHDisplace.value = [Math.pow(rands[2],4)*40];
sd.vRoll.value = [rands[0] * 80 - 20];
sd.channelSplit.value = [rands[3] * 40 - 10];
sd.sinHDisplaceAmplitudes.value = [20.0, 2.0, 1.0];
sd.sinHDisplaceFrequencies.value =
[rands[2]*2+0.4, rands[10]*4+4, rands[11]*8+8];

sd.sinHDisplace.value = [Math.pow(rands[2], 8) * 100];
sd.noiseLayer.value = [Math.pow(rands[10], 4) * 0.8];
sd.blackoutThresh.value = [rands[2]*0.3];
holder.filters = [shaderFilter];

}
}

}

In the example, you use a strip of Perlin noise to produce cycles of natural-looking randomness.
You have a set of points you move across the strip of noise at different speeds, sampling the cyclical
noise, and storing the random numbers in the rands vector. By picking an entry from this vector
with a higher index, you get faster-cycling noise. By raising these values — in the range zero to
one — to higher powers with Math.pow(), you make the distribution of the noise cluster toward
the edges more. This way, you get more extreme effects less often. Anyway, try it. The effect is akin to
Figure 38-1.

825

Part VIII: Graphics Programming and Animation

FIGURE 38-1

A complex effect given by Example 38-2

Bending Other Data
This section investigates two advanced applications of Pixel Bender: using kernels to crunch different
kinds of data efficiently, and asynchronously. These goals are far from mutually exclusive.

As I’ve said before, even if a Pixel Bender kernel runs on the CPU, it may utilize the CPU better than
ActionScript 3.0 would. If you design your programs to break out time-critical vector processing rou-
tines into Pixel Bender kernels, you can make better use of the CPU and squeeze out more perfor-
mance, especially on multicore machines.

Whether or not a kernel runs faster than equivalent ActionScript, the kernel is able to run
asynchronously to ActionScript code. For huge data sets, simply freeing up AVM2 to handle the
application’s interface and input handling is enough of a benefit. Rather than hang while the data is
processed, the kernel can execute in one or more threads, firing an event back to ActionScript when
its results are ready. In other words, you may not be able to move processing off the CPU, but you
can move it off the main thread.

To take advantage of Pixel Bender for generalized data processing, though, your problem should be
compatible with Pixel Bender’s pipeline. Rather than run your kernel on every pixel of an image, it
runs your kernel on every sample of the data. (Actually, the kernel still runs on an image — you just
craft this image to store your data.) So the problem should be highly parallelizable. The result for any
sample of the data can’t rely on the result for another sample. The input has to be one or more sets
of data, and the output of the kernel must be a set of data. You must be able to represent the input
and output data as sequences or arrays of 32-bit floating-point numbers. Also, you can only use the
math functions and data types that Pixel Bender provides, so save it for crunching numbers, vectors,
and matrices.

Preparing Data for Pixel Bender
You can use multiple inputs in a kernel, but all inputs must be image types. Recall that image types in
Pixel Bender have between one and four channels, which are stored as 32-bit precision floating-point

826

Chapter 38: Writing Shaders with Pixel Bender

values between 0.0 and 1.0. Keep in mind that, regardless of the number of channels, an image is still
conceptually two dimensional. These attributes of Pixel Bender inputs determine to a great extent the
design of your kernel and ActionScript program.

You’ve already looked at the ShaderInput class, which gives your ActionScript code access to the
inputs of a Pixel Bender kernel. This interface gives you three ways to provide data, as it accepts three
types to its input property. The same types are also acceptable types for a ShaderJob’s target
property, where the pixel outputs will be reassembled.

BitmapData

If you’re inputting image data in the first place, it’s easiest to send in image data as BitmapData. If
the input uses less than 4 channels, data in these channels will be ignored. Beware that Flash Player’s
ARGB 8-bit channels will be converted to Pixel Bender’s RGBA 32-bit channels, and vice versa. When
using BitmapData as a target type, expect significant precision loss. Additionally, channel val-
ues outside the 0.0–1.0 range are clamped when this conversion occurs. One of the benefits of using
BitmapData is that you don’t have to explicitly instruct Flash Player what the sizes of the input or
expected output are; dimensions are stored in the BitmapData instead.

Vector

Perhaps the best choice for custom, nonimage data, a Vector.<Number> requires no conversion.
You can both input and output 32-bit floating-point values whether they are in the acceptable range
for image data or not. The number of entries in an input or target vector must agree with the input or
output of the kernel. A 3×3 image at 4 channels needs 36 Numbers. If accepting output as a Vector,
the instance must be instantiated and with enough room to accommodate the expected output. You
must instruct the ShaderInput what dimensions to interpret a Vector as, and you must instruct
the ShaderJob what dimensions to expect back from the kernel if the target is a Vector. These
dimensions should not take into account the number of channels. Pixel Bender already knows that.

//kernel does image1 -> pixel4

var invec:Vector.<Number> = new <Number>[-4, 2, 100, 0.238];
//out-of-range floats will be respected
var input:ShaderInput = shader.data.inimg;
trace(input.channels); //1
input.input = invec;
input.width = 4; //let’s use the input like a long strip
input.height = 1;

var outvec:Vector.<Number> = new Vector.<Number>();
//must be initialized
var job:ShaderJob = new ShaderJob(shader);
job.target = outvec;
job.width = 4;
job.height = 1;
//or try mirroring the input
//job.width = input.width
//job.height = input.height
job.start(true);
trace(outvec.length); //16, 4 by 1 by 4 channels

827

Part VIII: Graphics Programming and Animation

ByteArray

You can also send or receive batches of floating-point data using a ByteArray. As with Vectors,
you won’t lose accuracy in the process. Use writeFloat() and readFloat() and the ByteArray
cursor to prepare and extract single points of data, keeping in mind that a 32-bit float is 4 bytes. This
method is useful when the data you need to process is already tightly packed floats, or when the result
of the kernel is to be used in this format, such as a sound sample. You’ll again have to instruct Pixel
Bender of the intended dimensions when using a ByteArray as input or output of a kernel.

//kernel does image4 -> pixel4

var input:ShaderInput = shader.data.inimg;
trace(input.channels); //4
input.width = 4;
input.height = 1;
var inbytes:ByteArray = new ByteArray();
for (var i:int = 0; i < input.width * input.height * input.channels; i++) {
inbytes.writeFloat(i % 4);

}
input.input = inbytes;

var outbytes:ByteArray = new ByteArray();
var job:ShaderJob = new ShaderJob(shader, outbytes, 4, 1);
job.start(true);
trace(outbytes.length / 4); //16 floats (4 is length of a float)
for (outbytes.position = 0; outbytes.position < outbytes.length;) {
trace(outbytes.readFloat());
//0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3 4 by 1 by 4 channels

}

Accessing Data in the Kernel
To get back at the data inside the kernel, use the sample function sampleNearest() as you might
use an array lookup in a 2D array. If you decided to store different information in the channels of
each pixel, you can get this out, and back in, by swizzling.

Remember that you can use multiple image inputs. Simply pass the image you want to use as input to
the sample function, and you can mix in data from multiple sources. After the next section, you’ll see
how to read and execute shaders, in Example 38-3.

Executing and Monitoring ShaderJobs
Use ShaderJob to control how a kernel is run. With ShaderJob, it’s up to you to provide all the
proper inputs and an appropriate target for the kernel’s output. These may be in any combination of
the types discussed in ‘‘Preparing data for Pixel Bender.’’

To create a ShaderJob, initialize it with a Shader parameter. You can set the target, width,
and height in the constructor or afterward using those parameter names. Before running the job,

828

Chapter 38: Writing Shaders with Pixel Bender

you need to specify a valid target for the output, but width and height may be omitted if this is a
BitmapData instance.

var job:ShaderJob = new ShaderJob(shader);
job.target = outByteArray;
job.width = 100;
job.height = 1;

var job:ShaderJob = new ShaderJob(shader, outBitmapData);

A ShaderJob may be used in synchronous or asynchronous mode. When in synchronous mode,
the job finishes before the next line of ActionScript is run. When using asynchronous mode, a
ShaderEvent.COMPLETE event is broadcast by the ShaderJob as soon as the kernel finishes
processing. To start a job, call start(), optionally passing true to use synchronous execution.
Asynchronous mode is the default.

job.addEventListener(ShaderEvent.COMPLETE, onComplete);
job.start();

job.start(true);
trace("already finished!");

Don’t forget to remove your event listeners when an asynchronous job completes.

You can check up on a job’s progress with its progress accessor (ranges between 0 and 1). Cancel
a job if necessary with the cancel() method. These, of course, apply only to asynchronous mode
ShaderJobs.

The Double-Shader Experiment
In Example 38-3, you’ll simulate asteroids in a binary star system with not one but two shaders. More
accurately, you’ll generate a static gravitational force field from two huge gravity wells (the binary star
system), then place a set of point masses — in other words, particles — inside this force field and let
the simulation run. You’ll use a different shader for each of these tasks.

A force field defines the forces acting on each point in the field, and you can easily encode one
in an image, by using two of the color channels to encode the x and y components of the force
vector at that pixel. Since Pixel Bender is so adept at image manipulation, this is the ideal way
to pass off the force information. And the benefit of precalculating this force field is huge. When
you’re calculating the forces on a given object in the scene — an asteroid, for example — you
never actually have to calculate those forces. The forces are entirely dependent on its position in the
scene, and finding the force to apply is a simple matter of looking up the object’s position in the
force field.

Back to the force map itself. With the stars’ positions and masses as parameters, Pixel Bender is the
perfect way to crunch out a huge force map in no time. For each output pixel, you calculate the
cumulative effects of gravity from the two stars.

829

Part VIII: Graphics Programming and Animation

<languageVersion : 1.0;>
kernel GravitySimGenerateMap
< namespace : "com.actionscriptbible";
vendor : "ActionScript 3.0 Bible";
version : 1;
description : "Generates a force map from two stars";

>
{
parameter float3 star0;
parameter float3 star1;
parameter float power <defaultValue: float(2.0);>;
input image4 src;
output pixel4 dst;

void evaluatePixel() {
float2 point = outCoord();
float2 totalForce = float2(0.0);
float2 force;
float dist;

//unrolled loop iteration 0
force = star0.xy - point;
dist = length(force);
force = normalize(force);
force *= star0.z / (pow(dist, power));
totalForce += force;
//unrolled loop iteration 1
force = star1.xy - point;
dist = length(force);
force = normalize(force);
force *= star1.z / (pow(dist, power));
totalForce += force;

totalForce = clamp(totalForce, -100.0, 100.0) + 100.0;
totalForce /= 200.0;
dst = pixel4(0.0, 0.0, 0.0, 1.0);
dst.rg = totalForce.xy;

}
}

Because Pixel Bender lacks looping structures, use an unrolled loop: write out the code for each itera-
tion of the loop, even if it means duplicating lines of code. To keep things relatively concise, you’ll
stop at two stars. You could easily add more by adding more parameters and more copies of the
unrolled loop.

I’ve parameterized the fall-off power of gravity here in order to exaggerate its effects. Of course, gravity
decreases in power proportional to the distance squared. But in Example 38-3, I’ll pass in a slightly
lower value so that the gravity wells are much more gentle than they otherwise would be.

Because the force map needs to go into an image, I’ve shifted forces up to all be positive, and in the
range 0 to 1.0. Recall that Pixel Bender stores channel values as 0 to 1.0 rather than 0 to 255. The
first step of Example 38-3 loads in this kernel, sets its parameters, and executes it with a synchronous
ShaderJob. Then it loads in the second shader.

830

Chapter 38: Writing Shaders with Pixel Bender

The second shader is even more data-centric. You can use Pixel Bender’s parallelism to process large
sets of independent data, so in this case you use it to calculate the new position and velocity of a
huge set of independent particles. In this shader, you pass in data as a Vector.<Number> as dis-
cussed in the section ‘‘Preparing data for Pixel Bender.’’ Each sample encodes a single point mass. You
use four channels to store the particle’s x and y position, and the x and y components of its veloc-
ity vector. Then you feed this Vector into the shader as a n × 1 image, where n is the number
of particles.

The shader’s code is trivial, if you know the basic equations of motion:

dv = a dt

dp = v dt

You simply unpack the particle’s position and velocity, and update them. You find the force to apply
by sampling the force field at the particle’s position. To simplify matters, you assume a unit mass and
a unit time step.

<languageVersion : 1.0;>
kernel GravitySimStep
< namespace : "com.actionscriptbible";
vendor : "ActionScript 3.0 Bible";
version : 1;
description : "Gravity simulation step";

>
{
parameter float2 scale <defaultValue: float2(1.0, 1.0);>;
input image3 forcemap;
input image4 inpoints;
output pixel4 outpoint;

void evaluatePixel() {
//each input pixel represents a point mass (particle) with mass=1
//inpoint.XY = <x, y> position
//inpoint.ZW = <x, y> velocity
float4 particle = sampleNearest(inpoints, outCoord());
//the forcemap at a pixel stores the force vector at that point
//forcemap[x, y].RG = <x, y> force vector (normalized... 0.5 = 0)
float2 force = sampleNearest(forcemap, particle.xy).rg;
force = (force - float2(0.5)) * scale;
float2 velocity = particle.zw + force;
float2 position = particle.xy + velocity;

outpoint.xy = position;
outpoint.zw = velocity;

}
}

The shader runs one step of the simulation, so at the end, you set the output pixel with the particle’s
updated position and velocity. In the ActionScript 3.0 code, you’ll run this shader on a large set of
particles, once per frame update.

Finally, put these two shaders together in Example 38-3.

831

Part VIII: Graphics Programming and Animation

EXAMPLE 38-3 http://actionscriptbible.com/ch38/ex3

Using ShaderJob on a Data Set

package {
import flash.display.*;
import flash.events.*;
import flash.geom.*;
import flash.net.*;
public class ch38ex3 extends Sprite {
protected const URL_BASE:String = "http://actionscriptbible.com/files/";
protected const INITIAL_PARTICLES:int = 1000;
protected const WELL_GRAVITY_MAX:Number = 5000;
protected var W:int, H:int;

protected var generatorShader:Shader;
protected var stepShader:Shader;
protected var forcemap:BitmapData;
protected var particleData:Vector.<Number>; //4 channels: px,py,vx,vy

protected var bmp:BitmapData;
protected var bitmap:Bitmap;
protected const DIM:ColorTransform = new ColorTransform(.9, .9, .9, .95);
public function ch38ex3() {
stage.frameRate = 60;
loadShader("GravitySimGenerateMap.pbj", onGeneratorShaderReady);

}
protected function loadShader(url:String, onComplete:Function):void {
var loader:URLLoader = new URLLoader(new URLRequest(URL_BASE + url));
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onComplete);

}
protected function onGeneratorShaderReady(event:Event):void {
event.target.removeEventListener(Event.COMPLETE, onGeneratorShaderReady);
generatorShader = new Shader(URLLoader(event.target).data);

forcemap = new BitmapData(stage.stageWidth, stage.stageHeight, false, 0);
W = forcemap.width; H = forcemap.height;
var forceBitmap:Bitmap = new Bitmap(forcemap);
addChild(forceBitmap);
bmp = new BitmapData(W, H, false, 0);
bitmap = new Bitmap(bmp);
addChild(bitmap);
bitmap.alpha = .99;

initializeParticles();
initializeWells();
loadShader("GravitySimStep.pbj", onStepReady);

}
protected function onStepReady(event:Event):void {
event.target.removeEventListener(Event.COMPLETE, onGeneratorShaderReady);
stepShader = new Shader(URLLoader(event.target).data);

832

Chapter 38: Writing Shaders with Pixel Bender

stage.addEventListener(MouseEvent.CLICK,
function(event:Event):void{initializeParticles()});

stage.addEventListener(KeyboardEvent.KEY_UP,
function(event:Event):void{initializeWells()});

addEventListener(Event.ENTER_FRAME, onEnterFrame);
}
protected function initializeParticles():void {
var r:Function = Math.random;
particleData = new Vector.<Number>();
for (var i:int = 0; i < INITIAL_PARTICLES; i++) {
particleData.push(r()*W, r()*H, (r()-0.5)*4, (r()-0.5)*4);

}
}
protected function initializeWells():void {
var r:Function = Math.random;
var data:ShaderData = generatorShader.data;
data.power.value = [1.4];
data.star0.value = [r()*W/2 + W/4, r()*H/2 + H/4, r()*WELL_GRAVITY_MAX];
data.star1.value = [r()*W/2 + W/4, r()*H/2 + H/4, r()*WELL_GRAVITY_MAX];
var shaderJob:ShaderJob = new ShaderJob(generatorShader, forcemap);
shaderJob.start(true);

}
protected function step():void {
var data:ShaderData = stepShader.data;
data.forcemap.input = forcemap;
data.inpoints.input = particleData;
data.inpoints.height = 1;
data.inpoints.width = particleData.length/4;
var shaderJob:ShaderJob = new ShaderJob(stepShader, particleData,
particleData.length/4, 1);

shaderJob.start(true);
}
protected function draw():void {
bmp.colorTransform(bmp.rect, DIM);
bmp.lock();
for (var i:int = 0; i < particleData.length; i+=4) {
bmp.setPixel(particleData[i], particleData[i+1], 0xffffff);

}
bmp.unlock();

}
protected function onEnterFrame(event:Event):void {
step();
draw();

}
}

}

The two bolded sections in the example show how parameters and data are submitted to two different
ShaderJobs. In the stepShader, two inputs are used. One, forcemap, is a BitmapData object,
while the other, particleData, is a Vector.<Number>. Note that when you submit a Vector,

833

Part VIII: Graphics Programming and Animation

you must explicitly tell the ShaderParameter what dimensions it should assign to the image. Also
notice how the Vector is a flat list of Numbers, every four defining a single particle; these four val-
ues become the four channels of the image4 input inside the shader.

For an even better application of shaders, you could simulate every particle interacting with every
other particle, a feat which would be very complex to code traditionally. Every possible combination
of two particles would have to be tested for effects on each other, the complexity increasing exponen-
tially with the number of particles. Instead, you could additively ‘‘stamp’’ the gravity well signature
for a particle on top of the force field bitmap to generate the force map used for the next frame. This
would make an excellent further exercise.

Summary

� Pixel shaders were created to move short, low-level, optimized calculations onto the graphics
card and into the hardware-accelerated graphics pipeline.

� Pixel shaders originally let 3D graphics programmers move beyond built-in lighting and textur-
ing. Modern graphics cards are highly programmable.

� Pixel Bender lets you write 2D pixel shaders that work inside Flash Player on the CPU. GPU
support may come in future versions.

� Pixel Bender is available on other Creative Suite products, After Effects, and Photoshop.

� Pixel Bender programs, or kernels, run in parallel for every pixel, taking in zero or more images
and outputting a single pixel. The pixels are reassembled to form an output image.

� Flash Player loads kernels as bytecode, and then it further compiles the bytecodes at runtime to
run on your hardware, including vector instruction sets and multiple cores of your CPU.

� Pixel Bender kernels can operate asynchronously to ActionScript code.

� The kernel language is inspired by GLSL. Pixel Bender on Flash Player is missing several key
features like loops. It’s simple.

� Kernels have metadata, members (constants, parameters, inputs, and an output), and a single
evaluatePixel() function.

� The Pixel Bender kernel language provides scalar, vector, matrix, and image types, as well as
dozens of top-level functions, mostly for math. Operators and functions are overloaded.

� ActionScript interfaces with a kernel through the Shader object, which is associated with the
PBJ bytecode as a ByteArray.

� ShaderData, found in the data property of a Shader, contains the kernel’s metadata,
ShaderInputs, and ShaderParameters.

� ActionScript may run shaders as filters, strokes, fills, blend modes, or standalone jobs.

� Use instances of BitmapData, Vector.<Number>, or a ByteArray full of floats to send
data to or receive data from a kernel, including masquerading nonimage data as an image.

834

Scripting Animation

FEATURED CLASSES

fl.motion.*

A
nimation is one of the serious strong points of the Flash platform. Flash
evolved out of an animation tool, and it continues to be used to animate
everything from web comics to popular television shows and advertise-

ments. There has always been a big gap between using the Flash IDE to animate
by hand and creating animations in ActionScript 3.0. Motion XML, introduced in
Flash Professional CS3, helps to bridge this gap. In addition, the Flex framework
sports its own animation framework, and there are a number of freely available
third-party animation frameworks for ActionScript 3.0.

Understanding Flash Player and

Animation

Intuitively, you know that animation is movement. Specifically, animation is
movement achieved by sequencing individual still pictures. Your eyes and your
brain conspire to interpret these separate pictures, or frames, as one fluid motion,
through persistence of vision.

Frame Rate
Flash Player, like all things running on a computer, displays static frames in
sequence. It attempts to display these frames as fast as the frame rate of the
movie, which is measured in frames per second. Motion at 30 frames per second
(fps) appears fluid, but presenting even more frames per second can help.
In both Flex and Flash you have control over the frame rate of the SWF you
publish, and I recommend using at least 30 fps unless you have a compelling
reason not to.

835

Part VIII: Graphics Programming and Animation

Note
If video is playing in your SWF, the video still plays at its source frame rate regardless of the frame rate of
the host SWF. However, a subordinate SWF loaded into your own SWF plays in the master SWF’s frame rate
regardless of its own. �

For comparison, you probably know that films play at 24 fps, and television in the United States plays
at about 30 fps. Computer displays can be driven at a great variety of actual refresh rates (usually
around 60 fps), but when designing your application, target it for whatever speed you desire.

Flash Player Operation
Flash Player does not always display new frames at the rate you request. The frame rate you set is a
goal that Flash Player tries to achieve. The actual frame rate is limited by many variables.

To render a frame, Flash Player must utilize enough CPU time to render the new frame before it is
scheduled to display. This can be limited by the complexity of the animation and ActionScript code
that is running, the speed of the CPU and other hardware factors (bus speed, memory available, cache
misses, and so on), as well as by the operating system and browser. It’s a lamented fact that no SWF
file running in a browser runs as fast as it does in the standalone Flash Player application. The plug-in
architectures available on the various browsers limit the plug-in Flash Player’s access to and allotment
of resources. The browser and operating system sometimes take further chunks of performance away
from plug-ins like Flash Player for the sake of power consumption and other first-class applications.

Executing ActionScript is just part of what goes into rendering a frame. Flash Player must also put
together the image you will see. In most cases, Flash Player renders frames entirely with software,
as opposed to 3D games and newer operating systems, which offload much of this work onto
your graphics card. Because the images that you see are composed using your CPU, composing
any one frame can take up a lot of time in addition to any ActionScript running. For a great
description of how Flash Player spends its time rendering a frame, see Sean Christmann’s article at
http://bit.ly/elastic-racetrack.

If you set the frame rate of a SWF file to 60 fps, Flash Player has just 1/60 of a second to draw each
frame, or 16.67 milliseconds. If the system takes 25 milliseconds to render one of these frames, it’s
going to show up as soon as it can, around 8 milliseconds late. Already, with one frame late, Flash
Player isn’t truly playing at 60 fps. If a few frames come in late, you might see that the player’s true
frame rate is fluctuating. And if every frame takes 25 milliseconds to render, Flash Player will play at
40 fps, regardless of the fact that you asked for 60 fps. In conclusion, the frame rate is not a guaran-
tee, and it is not fixed. It controls how often Flash Player tries to render new frames, not necessarily
how often it does.

Flash Player juggles two kinds of control flow: while it’s rendering frames, it’s also running Action-
Script. It’s important to understand that for any given frame to render, all ActionScript for that frame
must be completed. If, for example, you ran the following code

for (var i:int = 0; i < 500; i++) {
myBlueShape.x = i;

}

the display object myBlueShape would not appear to move from the left edge of the stage to 500
pixels to the right. Instead, it would appear suddenly at 500 pixels. Because all available ActionScript
code is executed before you see the next frame, you can’t use synchronous code to make anything

836

Chapter 39: Scripting Animation

move. Flash Player does execute all 500 iterations of this loop, and each assignment is made in order
(x holds the value 0, then 1, then 2, and so on), but nothing makes its way to the screen until all the
code is completed. Because Flash Player works this way, you have to be aware of the order that things
occur. Although action B might occur far after action A in code, the user cannot see this gap in time
represented on the screen. And if you set a variable to something in reaction to an event, there may
be frames that execute for which that variable is not yet set.

A side effect of the order in which Flash Player operates is that involved computation can slow down
or halt the rendering of new frames. This is also the reason that, when an uncaught exception aborts
all ActionScript on a frame, the results can be fatal. Skipping to ActionScript executed in the next
frame can ignore hundreds or thousands of lines of code.

ActionScript that you write isn’t concurrent. It can’t be threaded or fork off processes. It executes
from top to bottom. However, native Flash Player API calls may execute in parallel behind the scenes,
like network accesses. You can use some asynchronous events like those broadcast by Timer (see
Chapter 22, ‘‘Timers and Timer-Driven Programming’’) and the Event.ENTER_FRAME event to
schedule ActionScript to execute after one or more frames are rendered. Correspondingly, you can
use updateAfterEvent() methods to request a frame to draw immediately after ActionScript
processing finishes, regardless of when the next frame is scheduled to render.

These asynchronous events are the primary way that ActionScript gets executed in frames after the
first one; as such, they can make things animate.

Animating with Code
At the core of any programmatic animation is some event that is fired at regular intervals. This enables
ActionScript to be executed repeatedly across time, rather than all at once. If you can move an object
a tiny bit at a time at regular intervals, you have achieved animation. I will show simple examples
of building animation from scratch using only Event.ENTER_FRAME or a Timer. Many examples
in previous chapters use these simple time-based animations, but in this section you’ll learn how to
refine those methods.

Creating these examples yourself will give you an understanding of what’s happening behind the
scenes and enable you to create your own animation code when premade animation packages do not
suffice.

This chapter will only get you started with animation principles with ActionScript. For a guide to cre-
ating algorithmic motion in code, including basic physics, particles, and forward and inverse kinemat-
ics, take a look at Foundation ActionScript 3.0 Animation: Making Things Move! by Keith Peters (Friends
of ED, 2007).

Animating by Time
Animating using a Timer object gives you some distinct benefits. When you are using a Timer
object, you can set the frequency at which new frames are drawn completely independently of the
published frame rate of the SWF. You can employ this to change the frame rate of programmed
animations without interfering with timeline animations created by the Flash authoring tool or
running two animations at different frame rates. For example, you can animate the main characters of
a game at 30 fps but save some CPU time by animating the background at 15 fps.

It’s possible for events from a Timer object to fire more frequently than the published frame
rate of a movie, and you can ensure that the results of these events are made visible by calling

837

Part VIII: Graphics Programming and Animation

updateAfterEvent() on the event object. This can actually make Flash Player play faster than the
published frame rate. However, updating more frequently than the frame rate without showing the
results visually is a waste.

Example 39-1 animates a DisplayObject moving the object to the right at whatever frame rate is
assigned to the fps variable (here, it is 60), regardless of the published frame rate (set to 1 here).

EXAMPLE 39-1 http://actionscriptbible.com/ch39/ex1

Timer-Driven Animation

package {
import flash.display.*;
import flash.events.TimerEvent;
import flash.utils.Timer;
[SWF(frameRate="1")]
public class ch39ex1 extends Sprite {
protected var ball:DisplayObject;
public function ch39ex1() {
ball = new Ball();
ball.y = stage.stageHeight/2;
addChild(ball);

// fps = frames/second
var fps:int = 60;
// 1/fps = seconds/frame, 1/fps*1000 = milliseconds/frame
var mspf:int = Math.round(1 / fps * 1000);

var t:Timer = new Timer(mspf);
t.addEventListener(TimerEvent.TIMER, onTimer);
t.start();

}
protected function onTimer(event:TimerEvent):void {
ball.x += 0.5;
event.updateAfterEvent();

}
}

}
import flash.display.Shape;
class Ball extends Shape {
public function Ball(color:uint = 0xff0000, size:Number = 50) {
graphics.beginFill(color);
graphics.drawCircle(0, 0, size);

}
}

The onTimer() method is called every 17 milliseconds, or about 60 times a second, or as close to
that as Flash Player can manage. After the method modifies the x property of the display object, it
asks Flash Player to redraw the screen. You’ll see that even a SWF published at 1 fps runs the anima-
tion at the requested 60 fps.

838

Chapter 39: Scripting Animation

Animating by Frames
You can tie the frame rate of programmatic animation to the frame rate of the movie by using the
Event.ENTER_FRAME event broadcast by display objects when Flash Player advances to the next
frame. This is a less invasive way of scheduling animations: it lets the host SWF determine the frame
rate, and it doesn’t force frames to be drawn when they wouldn’t normally be drawn.

Note
You can set, and even change, the frame rate at runtime by assigning a Number (in FPS) to
stage.frameRate. �

Example 39-2 animates a display object toward the right just like Example 39-1, but using the SWF’s
own frame rate.

EXAMPLE 39-2 http://actionscriptbible.com/ch39/ex2

Frame-Driven Animation

package {
import flash.display.*;
import flash.events.Event;
[SWF(frameRate="60")]
public class ch39ex2 extends Sprite {
protected var ball:DisplayObject;
public function ch39ex2() {
ball = new Ball();
ball.y = stage.stageHeight/2;
addChild(ball);
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
ball.x += 0.5;

}
}

}
import flash.display.Shape;
class Ball extends Shape {
public function Ball(color:uint = 0xff0000, size:Number = 50) {
graphics.beginFill(color);
graphics.drawCircle(0, 0, size);

}
}

Animation and Speed
Both of the previous examples move the display object at a particular frequency: 1 pixel every 2
frames. But in both approaches, the speed of the motion depends on the frame rate. To determine
how fast the object appears to be moving, you can factor frames out of the equation:

pixels

second
=

pixels

frame
∗

frames

second

839

Part VIII: Graphics Programming and Animation

Applying this equality, the object moves at 30 pixels per second at 60 fps, and 15 pixels per sec-
ond at 30 fps. Again, the number of frames per second determines how fluid motion is; pixels per
second is an absolute measure of speed.

The formula tells why it can be dangerous to program animation in terms of frames. In the timer
example, changing the SWF’s frame rate doesn’t actually change the frame rate of the programmatic
animation, and the object should appear to move at the same speed. In the enterFrame example,
changing the SWF’s frame rate directly changes the speed of the animation. In both cases, when Flash
Player can’t keep up with the requested frame rate, the speed of the animation is affected.

A better approach is to construct an update function that moves the target at the desired speed by
linking the amount of motion to the amount of time that has actually elapsed since the last frame
was rendered. If you ignore the frame rate of the SWF and the frequency of the Timer interval and
measure the time yourself, you can adjust for inadequate or changing frame rates. Although you can
never guarantee that the frame rate will keep up, you can guarantee that if it doesn’t, the speed of the
motion will remain the same.

You can use the getTimer() function from the flash.utils package to measure real elapsed
time. The function returns the number of milliseconds since the SWF started playing. Remember that:

v =
�p

�t

Or, velocity equals the change in position over the change in time. To animate at a constant velocity,
you must determine how far to move the object at every frame. To find that out, simply rearrange the
equation:

�p = v �t

Every frame, you simply find out how much time has elapsed (�t), multiply by the velocity (v), and
move the object by that distance (�p).

Example 39-3 keeps track of the change in time to move the object a constant speed regardless of
frame rate.

EXAMPLE 39-3 http://actionscriptbible.com/ch39/ex3

Framerate-Independent Motion

package {
import flash.display.*;
import flash.events.Event;
import flash.text.*;
import flash.utils.getTimer;
public class ch39ex3 extends Sprite {
protected const SPEED:Number = 50 / 1000;
//50 pixels per second * 1sec / 1000ms = 50/1000 pixels per millisecond
protected var ball:DisplayObject;
protected var tf:TextField;
protected var lastTime:int;
public function ch39ex3() {
ball = new Ball();
ball.y = stage.stageHeight/2;
addChild(ball);
tf = new TextField(); tf.width = 0; tf.height = 14; tf.x = tf.y = 5;
tf.autoSize = TextFieldAutoSize.LEFT;

840

Chapter 39: Scripting Animation

tf.backgroundColor = 0; tf.background = true;
tf.defaultTextFormat = new TextFormat("_typewriter", 11, 0xffffff);
addChild(tf);
addEventListener(Event.ENTER_FRAME, onEnterFrame);
lastTime = getTimer();

}
protected function onEnterFrame(event:Event):void {
//mess things up by changing the frame rate randomly
stage.frameRate = Math.random() * 45 + 1;

var time:int = getTimer();
var dt:Number = time - lastTime;
ball.x += SPEED * dt;
lastTime = time;

tf.text = stage.frameRate.toFixed() + " fps";
if (ball.x > stage.stageWidth) ball.x = 0;

}
}

}
import flash.display.Shape;
class Ball extends Shape {
public function Ball(color:uint = 0xff0000, size:Number = 50) {
graphics.beginFill(color);
graphics.drawCircle(0, 0, size);

}
}

You should apply this principle, especially in games and simulations, to keep differences in computers’
speed from affecting the gameplay or visual feedback. Even when things aren’t moving at constant
speeds, it’s a great idea to move them based on actual time elapsed rather than time derived from a
frame rate, which may not be accurate.

Animating Using Flash Professional
The Flash authoring tool enables you to create timeline animations that are compiled into the SWF
and play out without ActionScript code. You can find out how to use Flash Professional to create
timeline animations in any Flash book such as Flash CS4 Professional Bible by Robert Reinhardt
and Snow Dowd (Wiley, 2009). Timeline animations are easy to create, but in the context of an
ActionScript-driven project, they are inflexible.

By using code to create your animations, you can modify animations on-the-fly, make them more
interactive, apply them to different kinds of targets, and even load them externally.

Flash Professional (versions CS3 and later) comes with a new animation framework that can represent
animations as chunks of XML, called motion XML. With the addition of E4X, this means you can con-
struct and modify complex animations deftly. It also makes animations convenient to store and load.
The icing on the cake is a set of Flash commands that bridge animations you create on the timeline

841

Part VIII: Graphics Programming and Animation

with motion XML. You can create an animation on the timeline, convert it into XML, optionally mod-
ify it in ActionScript to meet your needs, play the animation back without a timeline using the Flash
motion package, and even go round-trip, converting motion XML back into timeline animations. You
can find these commands in the Commands menu of Flash Professional.

Of course, you can also create animations using motion XML you create by hand, using the
Animator class to consume the XML. However, you should also consider other animation libraries
if you’re going to be creating animations in code, because most of them can describe animations far
more concisely.

Preliminarily, I’ll review some animation terminology as it relates to Flash animation. Then I’ll intro-
duce the structure of motion XML, and finally I’ll investigate how to use the fl.motion package.

Review: Tweens, Keyframes, and Easing
Two important terms are used consistently to describe animations. Because this terminology carries
over into motion XML and ActionScript, it begs a small review.

The pioneers of animation quickly discovered a concept that carries through to all modern animation
processes: you have to draw a lot of pictures, and some aren’t as important as others. For example,
picture Bugs Bunny sneezing. His face goes from normal, to all twisted up, to forcefully expelling air
and spittle. You can, in your mind’s eye (hey, he’s still under copyright), picture these three key states.
But if the act of sneezing takes a whole second of film, then in addition to those three key frames, you
will have to draw all 21 other pictures that go in between: the frames that move his face at the right
speed through those key positions.

The key frames are called keyframes, and the in-between frames are called tweens. Animation is a ton of
work, so early on in animation studios, it became the lead animator’s responsibility to draw those key
frames, and it was up to the junior animators to fill in the in-between frames. Nowadays, animation
is still a ton of work, and in-between frames are often sent to third parties to finish. Now computers
have made things easier for everyone. With Flash Professional and other animation packages, you can
set up two keyframes and have the system tween between them. No interns necessary!

Your brain has adapted to intuitively recognize the effects of Newton’s laws. Due to inertia, things
always accelerate and decelerate rather than instantly switch speeds. Thus, a linear tween between two
positions almost always looks unnatural. Although a linear tween can move an object from point A to
point B smoothly, it does so at a constant speed; so at the beginning of the tween, the object instantly
changes from no speed to the average speed, and at the end of the tween, the object instantly stops.
Thankfully, you can ease into and ease out of tweens, accelerating at the beginning and decelerating
at the end, to make the motion look more natural, as shown in Figure 39-1. The change in speed
through a tween is called its easing, and it can be set by the Flash authoring tool as well as animations
created in ActionScript.

Introducing Motion XML
Motion XML is composed of a few simple elements in a predictable structure. Although animating in
the timeline can provide for some awkwardly precise decimal values, motion XML should be on the
whole easy to read and modify.

842

Chapter 39: Scripting Animation

FIGURE 39-1

Figure 39-1: Three animations: one with no tweening, one with easing out at the end, and one with
easing in and out

Each capitalized tag found in motion XML corresponds to a class, usually one from the fl.motion
package. In the root tag, <Motion>, XML namespaces are imported that help you identify where the
classes come from. Lowercase tags indicate that the child of the tag is assigned to a property on the
parent object. Attributes of a tag also become properties of the object that tag will create. For example,

<Sandwich layers="4">
<toppings>

<Lettuce/>
<VeggieMeat/>

</toppings>
</Sandwich>

creates a Lettuce object and a VeggieMeat object inside the toppings property of a Sandwich
object, like this:

var sandwich:Sandwich = new Sandwich();
sandwich.layers = 4;
sandwich.toppings = [new Lettuce(), new VeggieMeat()];

This naming convention should be familiar to Flex users. I’ll call nodes that correspond to objects
object nodes, and nodes that correspond to properties property nodes. This structure should help you
understand how motion XML is converted into objects in the fl.motion package, but you don’t
have to understand it to create and use motion XML. In fact, you can simply use the Flash authoring
environment to generate motion XML for you. The package adapts to many styles of use.

The basic structure of motion XML is as follows. Namespaces and attributes are omitted for clarity,
and all optional nodes are shown.

843

Part VIII: Graphics Programming and Animation

<Motion>
<source>

<Source>
<dimensions>

<Rectangle/>
</dimensions>
<transformationPoint>

<Point/>
</transformationPoint>

</Source>
</source>
<Keyframe>

<color>
<Color/>

</color>
<tweens>

<ITween/>
</tweens>
<filters>

<BitmapFilter/>
</filters>

</Keyframe>
</Motion>

Before I go into the details of each node, here’s an overview. All motion XML is contained inside a
root Motion node. The Motion node optionally contains a source property node containing a
Source object node. Following the source property node is the bulk of the motion XML, a series
of any number of Keyframe object nodes.

Each Keyframe can set any combination of transformation properties, color transformations, and fil-
ters. The color transformations are encoded in the color property node and the Color object node,
and the filter settings for a given keyframe are encoded as object nodes inside a filters property
node. The node name of a filter object node is equivalent to the name of the filter class.

A Keyframe also defines the easing applied to the keyframe by including tween object nodes in a
tweens parameter node. All tweens implement ITween. You can theoretically include more than
one tween object node to tween different properties separately (a situation you can’t replicate using
timeline tweens).

The Motion Object

The root node of any motion XML, the <Motion> node sets up the XML’s namespaces, associating
each namespace with a package so that child nodes scoped to a namespace can be mapped to valid
classes within the package. Additionally, the Motion object defines the duration of the animation in
frames.

<Motion duration="14" xmlns="fl.motion.*" xmlns:geom="flash.geom.*"
xmlns:filters="flash.filters.*"></Motion>

This sample node defines an animation that will last 14 frames. It also scopes itself and all child nodes
with no explicit namespace to the "fl.motion.*" namespace. This helps the animation framework
know that when you write a <Keyframe> node, it describes an instance of the class Keyframe

844

Chapter 39: Scripting Animation

in the fl.motion package. For more information about XML namespaces, see Chapter 11, ‘‘XML
and E4X.’’

Running motion XML you create is covered in the section ‘‘Using the Flash motion package.’’ To fol-
low along with the examples, create an object to animate, and use a new Animator object to execute
the motion XML you create. Remember that thanks to E4X, you can type XML directly into your code:

var ball:Sprite = new Sprite();
ball.graphics.beginFill(0xff0000);
ball.graphics.drawCircle(0, 0, 20);
ball.graphics.endFill();
addChild(ball);

var motionXML:XML = <Motion duration="14" xmlns="fl.motion.*"
xmlns:geom="flash.geom.*" xmlns:filters="flash.filters.*"></Motion>;

var animator:Animator = new Animator(motionXML, ball);
animator.play();

This particular example doesn’t do anything but set up the motion XML, so it won’t animate the ball.
But you can apply this example snippet to the following motion XML examples to see them in action.

The Source Object

Stored in the source property of the Motion object, the Source object is a comprehensive record
of the context in which motion XML was created. It can help Flash Professional map imported XML
back onto display object instances. For custom motion XML, you can omit it with no ill effect.

Properties that a Source object stores about its contents include the display object’s type, instance
name, and symbol in the library; the frame rate of the containing document; and the initial position,
scale, rotation, and skew of the display object.

The most useful property of a Source object, and the main reason to use a Source node in custom
motion XML, is the transformationPoint property. This property stores a Point object, which
represents the location around which transformations in the animation happen; it is equivalent to the
position of the transformation point (the white circle with a black stroke) in Flash Professional. Setting
this can drastically change the outcome of rotation, scaling, and skewing.

The Point object in the transformationPoint property is normalized, or scaled to a unit square.
Regardless of the size of the object you are animating, (0, 0) corresponds to the upper-left corner, and
(1, 1) corresponds to the lower-right corner.

The following is an example motion XML with only a source property:

<Motion duration="5" xmlns="fl.motion.*"
xmlns:geom="flash.geom.*" xmlns:filters="flash.filters.*">

<source>
<Source frameRate="12" x="145" y="81" scaleX="1" scaleY="1"
rotation="0" elementType="movie clip" symbolName="Square">

<dimensions>
<geom:Rectangle left="0" top="0" width="44" height="44"/>

</dimensions>

845

Part VIII: Graphics Programming and Animation

<transformationPoint>
<geom:Point x="0.5" y="0.5"/>

</transformationPoint>
</Source>

</source>
</Motion>

Notice that the <geom:Point> and <geom:Rectangle> nodes are in the geom namespace, which
refers to "flash.geom.*". This lets the animation framework know to convert the nodes into a
flash.geom.Point and a flash.geom.Rectangle.

Again, the source attribute node is optional. You can leave it out, or you can include a Source
node with only a transformationPoint attribute node.

The Keyframe Object

The <Keyframe> node corresponds to the fl.motion.Keyframe class. These objects represent a
single keyframe. At any keyframe, you can set a slew of properties; the change in these properties is
tweened when the animation plays.

A simple Keyframe might be represented in motion XML as follows:

<Keyframe index="13" x="100" y="78" scaleY="1" rotation="70"/>

Attributes of the <Keyframe> node, shown in Table 39-1, determine the time at which the keyframe
is set, the basic transformations of a display object at that point in time, and various special behaviors.

Additionally, several attributes provide finer control for graphics symbols, motion paths, and other
flags that are particular to the Flash authoring environment.

The Keyframe object can also contain a color property, a filters array, and a tweens array.
These are represented in motion XML as child nodes.

TABLE 39-1

Attributes of the <Keyframe> Node

Attribute Name(s) Type Usage

index int The frame at which this keyframe is set.

label String Sets an accessible frame label at this keyframe.

x, y Number Position of the target at this keyframe.

scaleX,scaleY Number The horizontal and vertical scale of the target at this keyframe.

tweenScale Boolean When set to false, ignores scaling.

skewX,skewY Number The horizontal and vertical skew of the target at this keyframe.

846

Chapter 39: Scripting Animation

Attribute Name(s) Type Usage

rotation Number The rotation, in degrees, of the target at this keyframe.

rotateTimes uint Sets rotation by number of revolutions.

rotateDirection String Determines direction of rotation (‘‘auto’’ by default). Defined
by constants in fl.motion.RotateDirection.

orientToPath Boolean Whether the target rotates to match its path.

blank Boolean If this is an empty keyframe.

blendMode String Changes the blend mode of the target at this keyframe.

The Color Object

The fl.motion.Color class, stored in the color attribute of a Keyframe, is used to tween colors
and transparency. A Color object encodes a color transform at a point in time in much the same way
that a flash.geom.ColorTransform object does. In fact, Color extends ColorTransform,
adding the ability to easily construct color transformations that match the brightness and tint controls
in the Flash authoring environment.

To set a control point for any of the properties of a color transform, set the corresponding attribute on
the <Color> node. For example, this motion XML turns an object’s brightness all the way down and
then fades it out.

<Motion duration="90" xmlns="fl.motion.*" xmlns:geom="flash.geom.*"
xmlns:filters="flash.filters.*">

<Keyframe index="0">
<tweens>

<SimpleEase/>
</tweens>

</Keyframe>
<Keyframe index="45">

<color>
<Color brightness="-1"/>

</color>
<tweens>

<SimpleEase/>
</tweens>

</Keyframe>
<Keyframe index="90">

<color>
<Color alphaMultiplier="0"/>

</color>
</Keyframe>

</Motion>

847

Part VIII: Graphics Programming and Animation

The following attributes are supported from ColorTransform:

� redMultiplier

� greenMultiplier

� blueMultiplier

� alphaMultiplier

� redOffset

� greenOffset

� blueOffset

� alphaOffset

For more detail on those properties, see Chapter 34, ‘‘Geometric and Color Transformations.’’ The
Color class adds the following properties to the preceding list:

� brightness:Number — A percentage of brightness between –1 and 1.

� tintColor:uint — A color to tint to.

� tintMultiplier:Number — The amount of tint to apply, between 0 and 1.

These properties control the color of the target, like the Brightness and Tint controls in the Color area
of the Properties panel in Flash Professional.

Filter Objects

Filters can be set on any keyframe by adding the appropriate filter objects to the filters property
of the Keyframe object. In motion XML, this consists of creating a tag in the filters namespace
with the name of the filter you want and the properties of the filter encoded in attributes. If you have
the same kind of filter in two or more adjacent keyframes, you can animate properties of the filter.
However, you must always include all properties of the filter: default values for omitted properties are
picked up from the defaults of the filter class rather than the last keyframe in which they were set.

<Keyframe index="4">
<tweens>

<SimpleEase ease="0"/>
</tweens>
<filters>

<filters:GlowFilter blurX="12" blurY="12"
color="0xFFFFFF" alpha="1" strength="1" quality="2"
inner="false" knockout="false"/>

</filters>
</Keyframe>

The ITween Objects

For the properties you set on a Keyframe object to be automatically interpolated, the Keyframe
must contain at least one ITween object that defines how to tween the values into the next keyframe.
These tweens come in four types: SimpleEase, CustomEase, FunctionEase, and BezierEase.

848

Chapter 39: Scripting Animation

A SimpleEase tween can be linear, an ease in, or an ease out, depending on the value assigned to
its ease property. When omitted, this property defaults to 0, a linear tween with no easing. This kind
of tween is the same as the one created by the Ease slider in the Flash authoring environment.

� <SimpleEase/> — linear easing; constant speed throughout the tween.

� <SimpleEase ease="-1"/> — 100% ease in; quadratic acceleration in the beginning of
the tween.

� <SimpleEase ease="1"/> — 100% ease out; quadratic deceleration at the end of the
tween.

A CustomEase tween follows a Bezier curve to interpolate values between the two keyframes. You
can declare any curve you want starting at (0, 0) and ending at (1, 1). The x-axis represents time,
where 0 is exactly at the keyframe whose ease you are declaring, and 1 is at the time of the following
keyframe. The y-axis represents the progress of the tween, where 0 is all the values as set at the first
keyframe, and 1 is the end values as they are set in the next keyframe. If you draw a straight line from
(0, 0) to (1, 1), that’s a linear ease. The steep vertical parts of your curve animate very fast (lots of
value change over little time change), and flat parts of your curve slow down or freeze the animation
(very little change over lots of time).

You can draw these curves using the Custom Ease In / Ease Out panel in the Flash authoring environ-
ment, and you can export them to motion XML. Because this enables you to visually draw and pre-
view the curve, it’s much easier than writing CustomEases manually. Following is a simple example
of a keyframe that eases in at the beginning of a tween and eases out at the end of it:

<Keyframe index="4">
<tweens>

<CustomEase>
<geom:Point x="0.5" y="0"/>
<geom:Point x="0.5" y="1"/>

</CustomEase>
</tweens>

</Keyframe>

Note that the control points are defined with Point object nodes. Also, the first (0, 0) and last
(1, 1) points are implied. The two points are not control points themselves, but the right handle of
the control point at (0, 0), and the left handle of the control point at (1, 1). The curve defined by this
CustomEase is shown in Figure 39-2.

Other than the first and last point, each control point in a CustomEase curve is defined by 3 Point
objects: the location of the incoming handle, the location of the point, and the location of the outgoing
handle. So a more complex curve with 3 control points in the middle would be defined by 11 Point
objects: 3 for each of the control points, 1 for the outgoing handle of (0, 0), and 1 for the incoming
handle of (1, 1).

A FunctionEase tween uses a formula to determine the easing of the tween. All the
well-known easing functions by Robert Penner are included in the animation framework in the
fl.motion.easing package. Simply assign the fully qualified name of a function with the correct
signature to this object’s functionName property to apply it:

<FunctionEase functionName="fl.motion.easing.Bounce.easeIn"/>

Note
You can read more about Robert Penner’s easing equations on his site at www.robertpenner.com/
easing/. �

849

Part VIII: Graphics Programming and Animation

FIGURE 39-2

Figure 39-2: Curve of a CustomEase that eases in and out

For the motion XML to be able to find the function, you must also remember to import the easing
class and ensure it’s compiled in. You can do this simply by referencing it:

import fl.motion.easing.Bounce;
Bounce; //force the Bounce class to compile into the SWF

A BezierEase tween is similar to a CustomEase tween. They both depend on a user-supplied
Bezier curve to fully define the value at every point of time. The BezierEase tween, however, uses
unscaled values of y: the y-axis represents the literal value that the tweened property will take on,
rather than the interpolation between the values set out in the keyframes. Therefore, you can use this
kind of tween to blow the value out of the range that would otherwise be defined by the endpoints.

Like the CustomEase, however, the first and last points are still implied, and the x-axis is still scaled
to unit time between the current keyframe (0) and the next (1).

Using the Flash Motion Package
To use the motion XML that you write or copy from the timeline, you need to use the Flash motion
package. You can use the classes in this package by themselves or describe animations entirely in
motion XML and let the motion package automatically instantiate all the objects you described in
XML. For this approach, the main entry point to the motion package is the fl.motion.Animator
class.

Caution
The Flash motion package, when compiled into your SWF, adds a little more than 12KB to the size of
the SWF. This is fairly heavy for an animation toolkit, so if size is a great concern, you might want to
consider alternatives. �

850

Chapter 39: Scripting Animation

Version
FP9. The Flash motion package requires Flash Player version 9.0.28.0 or later. �

To create a new animation from motion XML, pass the motion XML and the display object you wish
to animate to the Animator constructor:

var anim:Animator = new Animator(myMotionXML, myDisplayObject);

When you have an Animator, you’re set. You can use some intuitively named methods to control the
playback of your new animation, detailed in Table 39-2.

TABLE 39-2

Methods of the Animator Class

Method Function

play():void Starts playing the animation.

stop():void Stops playing the animation and returns to the first frame.

end():void Stops playing the animation and moves to the last frame.

pause():void Pauses the animation until resume() is called.

resume():void Resumes a paused animation.

nextFrame():void Proceeds to the next frame in the animation.

rewind():void Jumps to the first frame in the animation.

Additionally, there is a static method, Animator.fromXMLString(), that creates new Animator
objects without using the constructor. It accepts a String containing XML rather than an XML object.

You can set the transformation point of the target display object by assigning it to the
transformationPoint property of the Animator object, allowing you to avoid using the
Source object entirely.

The time property of an Animator object not only lets you check the current progress of an anima-
tion in frames, but it lets you skip to a specific frame by writing to the property.

You can use the autoRewind property and the repeatCount to set up a looping animation.

The Animator object also broadcasts some useful events, described in Table 39-3. All these events
are of the type fl.motion.MotionEvent.

Any animation structure that you could build in motion XML, you can build by creating and
composing classes, but doing so is painfully verbose. Instead, use E4X to set up those relationships
in XML. This isn’t to say that there is no reason to use the classes in the fl.motion package by
themselves. You can exploit some of the work that the motion package has to do internally, to save
yourself some time. For instance, the Color class has a method, interpolateColor(), that can
blend any two colors.

851

Part VIII: Graphics Programming and Animation

TABLE 39-3

MotionEvent Events

Constant Purpose

MotionEvent.MOTION_START The motion has started playing.

MotionEvent.MOTION_END The motion has ended, of its own accord or by a call to
stop() or end().

MotionEvent.TIME_CHANGE The animation is about to work on the next frame. The time
property has been updated.

MotionEvent.MOTION_UPDATE The animation finished working on a frame and updated the
screen.

The real gem is MatrixTransformer, a class that does some of the heavy lifting for the motion
package. You can use this class to set skews, transform objects around points other than their regis-
tration point, and work in radians, all with ease. This is a nice bonus, even if your project doesn’t use
the rest of the fl.motion package to animate.

Animating Using Flex
The Flex framework has an effects system that works brilliantly with styles and states. It enables you
to create one-off effects or reusable ones, in ActionScript 3.0 or MXML. Unlike the Flash motion pack-
age, the effects package provides support for sequential and parallel animations. It also comes with a
few base effect types that you can easily customize. Creating entirely custom effects using the Flex 2
effects framework is less intuitive, however.

If you are using Flex, I recommend you tie into the mx.effects package. You can find more infor-
mation about effects in Flex in the Flex documentation or a book such as Programming Flex 3, by
Chafic Kazoun and Joey Lott (O’Reilly, 2008) or Flex 3 Cookbook, by Joshua Noble and Todd Ander-
son (O’Reilly, 2008).

Choosing a Third-Party Animation Toolkit
In addition to the choices enumerated above, there are always a growing number of excellent
third-party animation packages. Which one you use is usually a matter of personal choice; get to
know one inside and out, and it’s an obvious choice for any new project.

Your choice of animation toolkit will likely depend on only a few factors:

� syntax — The best advertisement for any code is that you enjoy using it.

� features — Features like animating filters, color transforms, good event management, and event
sequencing can all be important.

� speed — You probably want the library to run animations as fast as possible, leaving the rest of
your code lots of CPU to spare.

� size — This may only be a real concern for you if you’re programming a banner with a strict size
limit, but the size of a library’s compiled code can be an issue.

852

Chapter 39: Scripting Animation

Which animation library to use is a constant source of debate (mostly civil) and is as old as
time. So there are already some interesting comparisons out there. This article by Mims Wright,
author of the KitchenSync library, compares some of the major animation packages, including
pros and cons, and syntax samples: http://bit.ly/mims-tweening-lib-review. And
there are at least two speed comparisons available online: one by Moses Gunesch, author of Go
at http://go.mosessupposes.com/?p=5; and one by Jack Doyle, author of TweenLite at
http://blog.greensock.com/tweening-speed-test/.

Table 39-4 is a nonexhaustive list of free animation libraries available in ActionScript 3.0. Maybe you
can tell, but I use TweenLite. New libraries are in development all the time, and new features are
being added to most of these engines.

TABLE 39-4

Free ActionScript 3.0 Tweening Libraries

Name Homepage Comments

TweenLite http://blog.greensock.com/tweenlite/ Fast, light, modular and
featureful

Tweener http://tweener.googlecode.com/ Excellent overall engine

KitchenSync http://kitchensynclib.googlecode.com/ Excellent OO design

Eaze http://eaze-tween.googlecode.com/ Nice chaining syntax

gTween http://gskinner.com/libraries/gtween/

AS3 Animation

System

http://boostworthy.com/blog/?p=170

Grape http://grape-as3.googlecode.com/ Specifically for animat-
ing complex paths

Twease http://twease.googlecode.com/

Tweensy http://tweensy.googlecode.com/

BetweenAS3 http://www.libspark.org/wiki/BetweenAS3/en

Go http://goasap.org/ An extensible framework
for developing animation
tools

Summary

� Animation changes properties over time.

� Flash Player is running frames as well as ActionScript.

� Flash Player has to finish all the ActionScript on a frame before it can draw the next one.

853

Part VIII: Graphics Programming and Animation

� The frame rate of a SWF is not a guarantee.

� You can use asynchronous code to create motion.

� Two approaches are enterFrame events and Timer.

� Timer animation is more flexible, but it can be wasteful if you run faster than the frame rate
and don’t force screen updates.

� Use the actual time differential as reported by getTimer() to keep speed constant regardless
of frame rate.

� Keyframes are the important frames, and tweens automatically fill the in-between frames.

� Easing can modulate the speed of tweens.

� Flash has a motion package that has feature parity with the timeline.

� The motion package lets you use motion XML, which can be exported from the timeline and
imported to the timeline, as well as modified and written from scratch with E4X.

� Motion XML is translated into objects and properties with the same names as the nodes and
attributes.

� Motion contains an optional Source and Keyframes.

� Keyframe objects can animate anything the timeline can: transformations, color, and filters.

� The motion package supports four ways to describe easing.

� Wrap motion XML in an Animator to use it.

� The Flex framework has a totally different approach to animation than the Flash
motion package.

� Third-party animation packages are available that might be better for the job, depending on
your goals.

854

Advanced 3D

FEATURED CLASSES

flash.display.Graphics

flash.display
.GraphicsTrianglePath

flash.geom.Utils3D

flash.geom
.PerspectiveProjection

flash.geom.Matrix3D

flash.geom.Vector3D

I
n Chapter 15, ‘‘Working in Three Dimensions,’’ you learned how to place
display objects in 3D space, using what I’ll call the 3D display list API. There
I introduced perspective projection, the 3D coordinate system, and points

and vectors in three dimensions. If all went well, this was a gentle introduction
to 3D concepts, and the 3D display list API was a simple and natural interface
for 3D work.

Then, in Chapter 34, ‘‘Geometric and Color Transformations,’’ you learned
about 3D transformation matrices. You delved much deeper into the mathe-
matical principles that enable 3D. You learned how matrix multiplication
concatenates transformations and matrix-vector multiplication projects vectors
(when the vectors are written as row and column matrices). You didn’t use this
for any additional rendering techniques, but you did see how to manipulate 3D
data such as points and transformations.

In this chapter, you’ll put together your grasp of 3D gained in Chapter 15 with
your theoretical understanding of transformations and vectors from Chapter 34,
along with your experience using the vector graphics API from Chapter 35, ‘‘Pro-
gramming Vector Graphics,’’ and Pixel Bender from Chapter 38, ‘‘Writing Shaders
with Pixel Bender,’’ to use the lowest-level 3D facilities provided by Flash Player
10. With these advanced 3D techniques, you can come much closer to drawing
3D solid models; you can even texture and light them. I have little doubt that
the methods presented in this chapter were exposed to ActionScript 3.0 code
solely to enable ActionScript developers to write custom software 3D render-
ing engines and to enable those existing software engines to move more of the
processor-intensive tasks from ActionScript code to Flash Player.

The three key techniques covered here are projecting batches of points, drawing
triangle strips, and UV-mapping textures. I also touch on techniques for backface
culling, lighting, and shading. Use these techniques if you’re writing a custom
3D renderer. If you’re just looking to transform flat sprites, stick with the 3D
display list API, and if you’re more interested in using an engine than writing
one, use one of the software engines covered in Chapter 15. For the brave and
the curious, read on.

855

Part VIII: Graphics Programming and Animation

Version
FP10. This entire chapter is applicable to Flash Player 10 and later. �

Game Plan
In this chapter, you’ll start where prior chapters left off and build toward a more complete 3D engine
that will display solid, textured, and lit models. You’ll take this one step at a time:

1. You’ll take a batch of vertices in 3D space as Vector3Ds and project them all, using Utils3D.

2. You’ll draw these as points using methods of Graphics that you already know.

3. You’ll connect the vertices into a triangle strip and draw them using drawTriangles() or
drawGraphicsData() with a GraphicsTrianglePath.

4. You’ll experiment with wireframe drawing and solid fills.

5. You’ll learn about backface culling and enable it so that you don’t have to worry about overlap-
ping polygons on convex objects.

6. You’ll learn how a texture is mapped onto a model using UV mapping and map a simple tex-
ture on a model.

7. Finally, you’ll get a taste of lighting and shading techniques using multipass textures and Pixel
Bender shaders.

It’s an ambitious plan, but if you understand matrices and vectors, you’re already halfway there. (If
you don’t, please do try some of the 3D texts and sites I’ve cross-referenced in Chapter 34 before you
go on.)

Projecting Batches of Points
In almost all renderers, solid 3D models are drawn as a continuous shell made up of many flat
shapes — if you put the camera inside a model you’ll see that it’s empty. By breaking up what could
be a curvy, complex surface into small pieces, you can draw something that appears to have depth,
surface detail, even curves (one hard problem) by instead rendering thousands of little flat shapes
with no depth (lots of easy problems). Again, in almost all 3D renderers, these objects are triangles.
These polygons only approximate a complex surface; use more to get more detail, or use fewer to
render faster.

Each triangle is a face of the object, and each point on the triangle is a vertex. Because a continuous
surface is tessellated into many adjoining triangles, these vertices are shared between multiple trian-
gles. But wait, let me explain more before going on.

First, according to plan, create a batch of points that make up a surface. As a simple example, I’ll
use an implicit surface defined by a 3D sine wave, shown in Example 40-1. It should look like a
big ripple. It makes the most sense to represent a set of vertices as a Vector (in the Array sense)
of Vector3Ds (in the Point sense). You’ll soon see that this isn’t the only option, but I’ll start
with this.

After creating the set of points, you’ll set up an animation that projects all the points into 2D and
draws them.

856

Chapter 40: Advanced 3D

EXAMPLE 40-1 http://actionscriptbible.com/ch40/ex1

Projecting Points One at a Time

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
public class ch40ex1 extends Sprite {
protected var perspective:PerspectiveProjection;
protected var viewMatrix:Matrix3D;
protected var modelMatrix:Matrix3D;
protected var model:Plot3D;
public function ch40ex1() {
stage.quality = StageQuality.MEDIUM;
//center coordinates
this.x = stage.stageWidth/2;
this.y = stage.stageHeight/2;
//set up "camera" perspective projection
perspective = new PerspectiveProjection();
perspective.fieldOfView = 50;
perspective.projectionCenter = new Point(0, 0);
//set up view projection
//move camera up, back and angle down before projecting
viewMatrix = new Matrix3D();
viewMatrix.appendTranslation(0, 4, 11);
viewMatrix.appendRotation(26, Vector3D.X_AXIS);
viewMatrix.append(perspective.toMatrix3D());
//set up model transformation
modelMatrix = new Matrix3D();
//set up model
model = new Plot3D();
model.plot(new Rectangle(-3, -3, 6, 6), 70);
//render loop
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
//rotate model progressively
modelMatrix.appendRotation(2, Vector3D.Y_AXIS);
//when you project, first apply the model matrix and then the
//view/projection matrix. Precalculate into one matrix here.
var concatenatedMatrix:Matrix3D = modelMatrix.clone();
concatenatedMatrix.append(viewMatrix);

var v:Vector3D;
graphics.clear();
graphics.beginFill(0, 1);
for each (v in model.vertices) {
v = Utils3D.projectVector(concatenatedMatrix, v);
graphics.drawRect(v.x, v.y, 1, 1);

}

continued

857

Part VIII: Graphics Programming and Animation

EXAMPLE 40-1 (continued)

}
}

}
import flash.geom.Rectangle;
import flash.geom.Vector3D;
class Plot3D {
public var vertices:Vector.<Vector3D>;
public var tOffset:Number = 0;
public function plot(xzBounds:Rectangle, resolution:Number = 200):void {
vertices = new Vector.<Vector3D>();
var r:Rectangle = xzBounds;
for (var z:Number = r.top; z < r.bottom; z += r.height/resolution) {
for (var x:Number = r.left; x < r.right; x += r.width/resolution) {
var y:Number = Math.sin(Math.pow(x, 2) + Math.pow(z, 2) + tOffset);
vertices.push(new Vector3D(x, y, z));

}
}

}
}

The Plot3D class is built by evaluating the 3D equation at regular intervals, which become the vertices
of the model. The essential part of this example is the for..each loop that’s been highlighted. It
takes every vertex, translates it into screen space by projecting it with a perspective projection matrix,
and draws the point in screen space. The Utils3D class contains two static methods for projecting
vectors. The syntax of projectVector() here should be self-evident: it takes a projection matrix
and a 3D point and projects the point into 2D space by using that matrix. Another new bit of code is
the toMatrix3D() method of PerspectiveProjection. You know that a perspective projection
matrix is just another matrix; Flash Player exposes it as a different class so that you can set proper-
ties of the perspective projection easily. The toMatrix3D() method just retrieves its internal matrix
representation.

I threw some bonus ideas into this example. The idea of model and view transformations is ubiqui-
tous. Model transformations move objects around the scene — in this case, spin the plot around the
Y axis. View transformations move the viewport — here, moving your eyes back from the origin so
you can see the plot, and up so you can look down onto it rather than viewing it front-on. Combine
view transformations with a perspective projection, and you finally have the missing pieces of a real
camera that can tilt and move around. Remember that the cool thing about transformation matrices
is that their effects are chained by simple concatenation (matrix multiplication), an effect that I take
advantage of here, first to create a viewMatrix that moves the camera and applies perspective, and
then to concatenate the model and view matrices into concatenatedMatrix so only one matrix
is needed when projecting each vertex. The order you apply matrices is essential; concatenate the
modelMatrix after the viewMatrix, and you’d be rotating the flat, post-projection, image plane
instead of rotating and projecting the model.

This method is pretty slow. You have to iterate through the vertices, projecting each one and draw-
ing each one individually. But there are ways to project the vertices as a batch, as well as to batch
up drawing commands. To take advantage of these, you have to start treating vertex lists a little bit
more raw.

858

Chapter 40: Advanced 3D

Instead of Vectors of Vector3D objects, store vertices in a Vector of Numbers; you and Flash
Player have to trust each other that those numbers refer to components of vertices, ordered in
the proper manner, which is to say, x1,y1,z1,x2,y2,z2, and so on. Once you store vertices this way,
you can use the static Utils3D method projectVectors(), which projects a whole batch of
points at once:

function projectVectors(projectionMatrix:Matrix3D,
vertices:Vector.<Number>,
projectedPoints:Vector.<Number>,
textureCoords:Vector.<Number>):void

The projectionMatrix should be familiar as the matrix used to project vertices in 3D space onto
screen space. The vertices argument contains the original 3D vertices to project, flattened out into
repeating sets of three x, y, and z coordinates as just described. The projectedPoints list, how-
ever, holds the result of the projection — you must send in a valid, non-null Vector.<Number>,
but the method itself sets its value — this is an alternative to returning the value; notice that the
return type is null. After the method is through, the projectedPoints list contains the vertices’
position on the screen in 2D, as a list of coordinate components ordered x1,y1,x2,y2,x3,y3 and so
on — with only two values per coordinate. Likewise, textureCoords is modified by the method.
I’ll explain how when I cover texture mapping; for now, you can send this parameter an empty but
valid Vector.<Number>.

In Example 40-2, you use vertices in a flat layout to take advantage of projectVectors(). You
also experiment with another, faster way of drawing the vertices.

EXAMPLE 40-2 http://actionscriptbible.com/ch40/ex2

Projecting Batches of Points, Drawing Batches of Strokes

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
public class ch40ex2 extends Sprite {
protected var perspective:PerspectiveProjection;
protected var viewMatrix:Matrix3D;
protected var modelMatrix:Matrix3D;
protected var model:Plot3D;

protected var projectedPoints:Vector.<Number> = new Vector.<Number>();
protected var texturePoints:Vector.<Number> = new Vector.<Number>();
protected var drawCommands:Vector.<int>;
public function ch40ex2() {
stage.quality = StageQuality.MEDIUM;
this.x = stage.stageWidth/2;
this.y = stage.stageHeight/2;
perspective = new PerspectiveProjection();
perspective.fieldOfView = 50;
perspective.projectionCenter = new Point(0, 0);

continued

859

Part VIII: Graphics Programming and Animation

EXAMPLE 40-2 (continued)

viewMatrix = new Matrix3D();
viewMatrix.appendTranslation(0, 4, 11);
viewMatrix.appendRotation(26, Vector3D.X_AXIS);
viewMatrix.append(perspective.toMatrix3D());
modelMatrix = new Matrix3D();
model = new Plot3D();
model.plot(new Rectangle(-3, -3, 6, 6), 70);
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
modelMatrix.appendRotation(2, Vector3D.Y_AXIS);
var concatenatedMatrix:Matrix3D = modelMatrix.clone();
concatenatedMatrix.append(viewMatrix);
Utils3D.projectVectors(
concatenatedMatrix, model.vertices, projectedPoints, texturePoints);

graphics.clear();
graphics.lineStyle(0, 1);
if (!drawCommands) {
drawCommands = new Vector.<int>();
for (var i:int = 0; i < projectedPoints.length; i+=2) {
drawCommands.push(((i/2) % model.resolution == 0)?
GraphicsPathCommand.MOVE_TO : GraphicsPathCommand.LINE_TO);

}
}
graphics.drawPath(drawCommands, projectedPoints);

}
}

}
import flash.geom.Rectangle;
import flash.geom.Vector3D;
class Plot3D {
public var vertices:Vector.<Number>;
public var tOffset:Number = 0;
public var resolution:Number;
public function plot(xzBounds:Rectangle, resolution:Number = 200):void {
vertices = new Vector.<Number>();
this.resolution = resolution;
var r:Rectangle = xzBounds;
for (var z:Number = r.top; z < r.bottom; z += r.height/resolution) {
for (var x:Number = r.left; x < r.right; x += r.width/resolution) {
var y:Number = Math.sin(Math.pow(x, 2) + Math.pow(z, 2) + tOffset);
vertices.push(x, y, z);

}
}

}
}

In the example, after projectVectors() fills up projectedPoints with the screen-space 2D
points of the model, you batch up the drawing commands as well with drawPath(). If you remem-
ber from Chapter 35, drawPath() takes a list of commands and a list of points. You have the list of

860

Chapter 40: Advanced 3D

points you’d like to draw, so all that remains is a set of drawing commands; here I’ve constructed one
that connects all vertices at the same z value with a line. Finally, you pulled up all reusable Vectors
to be instance variables, so that they don’t have to be created anew every frame, an easy and effective
optimization. Figure 40-1 shows the results for both Example 40-1 and Example 40-2.

FIGURE 40-1

Output from Examples

The optimizations in Example 40-2 should result in more fluid animation and reduced CPU utiliza-
tion. Always batch up drawing commands and vector projection when you can.

Triangle Strips
Your 3D engine is well underway. You can create a set of vertices and draw them as points or a
rudimentary kind of wireframe. The next stage is drawing something solid. To move from a network
of points to a solid surface, you have to stop thinking about points and edges and start thinking about
faces.

Vertices, edges, and faces are defined by the same data. Connect the points with lines, and you get
edges. Fill in the triangles defined by three points, and you get faces. Figure 40-2 should help visu-
alize this. You have all the points you need — but you need to help Flash Player tell which points
define which triangles. Connecting the wrong vertices to form faces is a sure way to make a model
useless.

No matter how you fill them, you draw solid faces (triangles) with the drawing API’s
drawTriangles() method — or its equivalent command object version,
GraphicsTrianglePath. I’ll just cover the imperative method; the objective one is nearly identical.
The method, defined in Graphics, looks like this:

function drawTriangles(vertices:Vector.<Number>,
indices:Vector.<int> = null,
uvtData:Vector.<Number> = null,
culling:String = "none"):void

The vertices are the projected, 2D vertices, in a flat, xyxy order. You already have this data. The
one missing piece, indices, tells Flash Player which points to connect into faces. Imagine that all
vertices are assigned a number as they are inserted into the vertices list. You connect the dots by
number: a single triangle is defined by three entries in the indices list, each referencing a vertex by its
order. The indices are also stored flat and repeating, in sets of three. In this manner, you can define
exactly how the triangles are constructed by the vertices. Figure 40-3 illustrates a sequence of vertices
and the indices necessary to create triangles out of them.

861

Part VIII: Graphics Programming and Animation

FIGURE 40-2

Vertices, edges, and faces. Vertices connected in the wrong order.

edges

faces

incorrect edges

vertices

FIGURE 40-3

Ordered vertices, and a sequence of indices that constructs triangles

1 2

0 3

1 2

0 3

indices = [0, 2, 1 0, 3, 2]

In almost every case, you’ll mention vertices multiple times, as adjoining triangles share two vertices.
Most times you’ll be building up these layers of tessellated triangles in strips, almost like laying down
bricks. These patterns can make programmatically creating the indices list easier. You can leave the
indices vector empty, but this causes Flash Player to create one triangle out of every three vertices,
losing its contiguous nature. This is rarely the right thing to do.

In Example 40-3, I’ll start over with a trivially simple model so that you can picture exactly where
each vertex is in your mind. A plane is about as simple as you can get, with four vertices and two
triangles. I’ll order the vertices and index the triangles exactly as pictured in Figure 40-3.

862

Chapter 40: Advanced 3D

EXAMPLE 40-3 http://actionscriptbible.com/ch40/ex3

Drawing Triangles

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
import flash.utils.getTimer;
public class ch40ex3 extends Sprite {
protected var viewMatrix:Matrix3D;
protected var modelMatrix:Matrix3D;
protected var model:Plane3D;
protected var projectedPoints:Vector.<Number> = new Vector.<Number>();
protected var texturePoints:Vector.<Number> = new Vector.<Number>();
public function ch40ex3() {
this.x = stage.stageWidth/2;
this.y = stage.stageHeight/2;
var perspective:PerspectiveProjection = new PerspectiveProjection();
perspective.fieldOfView = 50;
perspective.projectionCenter = new Point(0, 0);
viewMatrix = new Matrix3D();
viewMatrix.appendTranslation(0, 0, 20);
viewMatrix.append(perspective.toMatrix3D());
modelMatrix = new Matrix3D();
model = new Plane3D(new Rectangle(-8, -4.5, 16, 9));
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
modelMatrix.identity();
modelMatrix.appendRotation(getTimer()/30, Vector3D.Y_AXIS);
modelMatrix.appendRotation(45*Math.sin(getTimer()/900), Vector3D.X_AXIS);
var concatenatedMatrix:Matrix3D = modelMatrix.clone();
concatenatedMatrix.append(viewMatrix);
Utils3D.projectVectors(
concatenatedMatrix, model.vertices, projectedPoints, texturePoints);

graphics.clear();
graphics.lineStyle(0, 1, 0.5);
graphics.beginFill(0x808080, 1);
graphics.drawTriangles(projectedPoints, model.indices);

}
}

}
import flash.geom.Rectangle;
import flash.geom.Vector3D;
class Plane3D {
public var rect:Rectangle;
public var vertices:Vector.<Number>;
public var indices:Vector.<int>;
public function Plane3D(r:Rectangle):void {
rect = r;

continued

863

Part VIII: Graphics Programming and Animation

EXAMPLE 40-3 (continued)

vertices = new Vector.<Number>();
indices = new Vector.<int>();
vertices.push(
r.left, r.bottom, 0, //bottom left = 0
r.left, r.top, 0, //top left = 1
r.right, r.top, 0, //top right = 2
r.right, r.bottom, 0 //bottom right = 3

);
indices.push(
0, 2, 1, //left-side triangle BL->TR->TL
0, 3, 2 //right-side triangle BL->BR->TR

);
}

}

You can play with the fill and stroke styles for various effects. This example demonstrates both a wire-
frame and a fill. For realistic rendering, you don’t want to expose the vertices and edges, and you’ll
keep strokes turned off.

Make sure that you can follow along with the way that the triangles were created, because there’s one
more thing to worry about. Notice how I ordered the vertices in each triangle. To you or me, a trian-
gle is the same no matter what order the vertices come in. But to a 3D engine, the direction in which
the vertices of a face are defined — called the winding order — encodes some important information
about the face. Imagine you’re looking at a piece of glass, and an assistant has drawn an arrow around
the edge going clockwise. Now he turns the glass around so that it faces away from you. The glass
looks the same from the other side, but you notice that the arrow is pointing counterclockwise. The
direction that arrow goes indicates which direction the glass is facing. (You can try this yourself with
just a piece of paper. Draw an arrow going in a clockwise circle, flip the paper over, and hold it up to
the light.)

In the same way, if you know for certain that you defined every face with the points going clockwise,
when you see those points going counterclockwise, you know that part of the object is facing away
from you. In the plane example, notice that both triangles were intentionally defined counterclock-
wise. It doesn’t matter much which direction you define the points of a triangle, as long as you’re
consistent.

Backface Culling
When you’re rendering a convex object by drawing its shell (broken up into lots of little polygons),
there’s one problem. Think of a simple object like a sphere. The shell of the sphere goes all the
way around the sphere, of course. When you look at the sphere, however, you only see part of the
shell. The back side is right there on the far side of the sphere, but if the sphere is opaque like a
baseball, you can’t see through to it. One way to solve this problem is to z-sort the polygons, drawing
the front of the shell on top of the back, so that all you see is the opaque front side. However,
drawTriangles() is drawing all the triangles on the same Graphics object at the same depth.

864

Chapter 40: Advanced 3D

(I’ll show how to z-sort faces in the section ‘‘Z-Sorting, Shading, and Further Topics.’’) Another
approach is to determine which part of the shell faces away from you and simply elect not to draw
it. So in reality only the front half of the baseball would exist, but you’d never know. As you rotate
the ball, the new parts that face you become visible. You can never see parts of it that face away from
you. (If the object isn’t convex, this guarantee breaks down.)

When you don’t draw polygons that face away from you, those polygons are sometimes called
single-sided; removing those faces from the list of polygons to draw is called backface culling. Beyond
solving the depth sorting issue for convex objects, it’s an easy way to speed up rendering, because (to
make a rash generalization) around half of the surface is usually facing away from you.

To enable backface culling, first make sure that all your triangles are defined in the same winding
order. Then pass an appropriate culling mode to the culling parameter of drawTriangles():
TriangleCulling.POSITIVE to remove back-facing polygons when you define the faces in a
counterclockwise winding order, TriangleCulling.NEGATIVE when they’re defined in a clock-
wise winding order. Or, use the opposite value to cull front-facing polygons for whatever reason.
Passing in TriangleCulling.NONE turns off backface culling, rendering all polygons (the default).
If you modify the drawTriangles() call in Example 40-3 to read

graphics.drawTriangles(projectedPoints, model.indices,
null, TriangleCulling.POSITIVE);

you notice that the plane disappears for half its revolution. Later in the chapter, you apply backface
culling to a more exciting shape and see that it really works.

Texture Mapping
Your 3D engine can now display solid convex meshes without overlapping the far side of the object,
but something’s still lacking. You’re limited to the fill and line styles that Graphics provides; your
models are drawn with a flat color over the entire thing. Even if you picked a particularly appealing
color, it’s going to look like a flood filled silhouette, completely flat, mocking your attempts at realism.
Mocking!

The next evolution in your increasingly impressive 3D engine is textures. Texture mapping takes a
single flat image and uses it to paint a whole set of 3D faces. Basically, each triangle in the model gets
assigned a triangle-shaped area in the image. When the triangle is drawn, instead of being filled with a
solid color, it’s filled with the part of the texture map it’s associated with. Now, if that triangle appears
at an angle to the viewer, the texture triangle is distorted to match; this is how texture-mapped objects
give the impression of depth.

You can do an impressive amount with a simple texture map, because you’re free to design it down to
the pixel. Faces define the shape of the model; a texture map defines its appearance.

You define the mapping between triangles on a 3D surface and areas on a texture by adding another
set of data to the vertices. Each vertex in 3D is mapped to a point on the texture image. This is also
called UV-mapping because you traditionally use another set of coordinates to refer to texture-space:
u and v (and sometimes t), so you map XYZ coordinates into UV coordinates.

The coordinate system of texture-space is really simple (forgetting about t). Much like screen-space,
the top-left is the origin (0, 0), u increases to the right, and v increases down. The entire texture is
always scaled to exist within (0, 0) to (1, 1), or you can think of it the other way: that space is scaled

865

Part VIII: Graphics Programming and Animation

to fit a unit square to the size of the texture. One way or another, the u and v coordinates indicate a
percentage of the full width and height of the texture, so that (0.5, 0.5) is the center of the image.

Let’s start by texture mapping a simple object, the plane. Mapping a texture onto a plane is a
degenerate example, because you just map each corner to each corner, as Figure 40-4 shows. Doing
so by hand and visually (in Example 40-4) helps you understand the mapping, however. Once you
get the example running, you can see the effect of changing the UV map.

EXAMPLE 40-4 http://actionscriptbible.com/ch40/ex4

Texture Mapping a Plane

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
import flash.net.URLRequest;
import flash.system.LoaderContext;
import flash.utils.getTimer;
public class ch40ex4 extends Sprite {
protected var viewMatrix:Matrix3D;
protected var modelMatrix:Matrix3D;
protected var model:Plane3D;
protected var texture:BitmapData;
protected var projectedPoints:Vector.<Number> = new Vector.<Number>();
public function ch40ex4() {
this.x = stage.stageWidth/2;
this.y = stage.stageHeight/2;
var perspective:PerspectiveProjection = new PerspectiveProjection();
perspective.fieldOfView = 50;
perspective.projectionCenter = new Point(0, 0);
viewMatrix = new Matrix3D();
viewMatrix.appendTranslation(0, 0, 20);
viewMatrix.append(perspective.toMatrix3D());
modelMatrix = new Matrix3D();
model = new Plane3D(new Rectangle(-8, -4.5, 16, 9));
var l:Loader = new Loader();
l.load(new URLRequest(
"http://actionscriptbible.com/files/texture-approved.jpg"),
new LoaderContext(true));

l.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
}
protected function onLoad(event:Event):void {
texture = Bitmap(LoaderInfo(event.target).content).bitmapData;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
modelMatrix.identity();
modelMatrix.appendRotation(45*Math.cos(getTimer()/582), Vector3D.Y_AXIS);
modelMatrix.appendRotation(45*Math.sin(getTimer()/900), Vector3D.X_AXIS);
var concatenatedMatrix:Matrix3D = modelMatrix.clone();
concatenatedMatrix.append(viewMatrix);

866

Chapter 40: Advanced 3D

Utils3D.projectVectors(
concatenatedMatrix, model.vertices, projectedPoints, model.uvt);

graphics.clear();
graphics.beginBitmapFill(texture, null, false, true);
graphics.drawTriangles(projectedPoints, model.indices, model.uvt);

}
}

}
import flash.geom.Rectangle;
import flash.geom.Vector3D;
class Plane3D {
public var vertices:Vector.<Number> = new Vector.<Number>();
public var uvt:Vector.<Number> = new Vector.<Number>();
public var indices:Vector.<int> = new Vector.<int>();
public function Plane3D(r:Rectangle):void {
vertices.push(
r.left, r.bottom, 0, //bottom left = 0
r.left, r.top, 0, //top left = 1
r.right, r.top, 0, //top right = 2
r.right, r.bottom, 0 //bottom right = 3

);
uvt.push(
0, 1, 0, //bottom left
0, 0, 0, //top left
1, 0, 0, //top right
1, 1, 0 //bottom right

);
indices.push(
0, 2, 1, //left-side triangle BL->TR->TL
0, 3, 2 //right-side triangle BL->BR->TR

);
}

}

This doesn’t seem like much of an achievement, because you’ve essentially just re-created what you
could do by setting the rotationX property of an image. But now that you understand how it’s
done, you can easily apply these techniques to bigger and better models!

The UV map is set by assigning UVT coordinates to the uvt Vector, again in a flat list of Numbers
in uvtuvt order. Set the t coordinate to 0. When you project the vertices, notice that the UV map is
sent as well; when Utils3D projects the vertices, it remembers how far away each one is and tucks
that away in the t coordinates of the UV map, modifying it inline. That’s why you pass uvt to
projectVectors() as well. (Because it doesn’t touch the other data, you can let it reuse that
Vector, overwriting old values for t every time it projects.) The t coordinate, because it stores
distance, helps distort the texture triangle in perspective.

Finally, you use a bitmapFill() and pass in the UV coordinates to drawTriangles(). When
Graphics sees that you’re using a bitmap fill and you’ve provided this vector, it takes over and maps
the texture to each triangle; otherwise, the bitmap is used as a normal fill. You can still set properties
of the bitmapFill() — turn on smoothing to make the texture look a bit nicer.

867

Part VIII: Graphics Programming and Animation

FIGURE 40-4

Texture space, model space, and the UV mapping between them. For a flat surface, the mapping
is direct.

(0,0)

(1,1)

u

texture space

model space

x

y

z

v

In Example 40-5, you texture map a much more complex object, using the same techniques.
The result is shown in Figure 40-5.

EXAMPLE 40-5 http://actionscriptbible.com/ch40/ex5

A Tasty Textured Torus

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
import flash.net.URLRequest;
import flash.system.LoaderContext;
[SWF(backgroundColor="#B0E1E3")]
public class ch40ex5 extends Sprite {
protected var viewMatrix:Matrix3D;
protected var modelMatrix:Matrix3D;
protected var model:Torus3D;
protected var texture:BitmapData;
protected var projectedPoints:Vector.<Number> = new Vector.<Number>();
public function ch40ex5() {
stage.quality = StageQuality.LOW;
this.x = stage.stageWidth/2;
this.y = stage.stageHeight/2;
var perspective:PerspectiveProjection = new PerspectiveProjection();
perspective.fieldOfView = 80;
perspective.projectionCenter = new Point(0, 0);

868

Chapter 40: Advanced 3D

viewMatrix = new Matrix3D();
viewMatrix.appendTranslation(0, 7, 12);
viewMatrix.appendRotation(40, Vector3D.X_AXIS);
viewMatrix.append(perspective.toMatrix3D());
modelMatrix = new Matrix3D();
model = new Torus3D(2, 6, 40, 40);
var l:Loader = new Loader();
l.load(new URLRequest(
"http://actionscriptbible.com/files/texture-donut.jpg"),
new LoaderContext(true));

l.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
}
protected function onLoad(event:Event):void {
texture = Bitmap(LoaderInfo(event.target).content).bitmapData;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
modelMatrix.appendRotation(2, Vector3D.Y_AXIS);
var concatenatedMatrix:Matrix3D = modelMatrix.clone();
concatenatedMatrix.append(viewMatrix);
Utils3D.projectVectors(
concatenatedMatrix, model.vertices, projectedPoints, model.uvt);

graphics.clear();
graphics.beginBitmapFill(texture, null, false, false);
graphics.drawTriangles(
projectedPoints, model.indices, model.uvt, TriangleCulling.POSITIVE);

}
}

}
import flash.geom.Rectangle;
import flash.geom.Vector3D;
class Torus3D {
public var vertices:Vector.<Number> = new Vector.<Number>();
public var uvt:Vector.<Number> = new Vector.<Number>();
public var indices:Vector.<int> = new Vector.<int>();
public function Torus3D(crossSectionRadius:Number, radiusToTube:Number,

uResolution:Number = 50, vResolution:Number = 50) {
var R:Number = radiusToTube, r:Number = crossSectionRadius;
var uStep:Number = Math.PI * 2 / uResolution;
var vStep:Number = Math.PI * 2 / vResolution;
var FLOAT_ERROR:Number = 0.0001;
for (var u:Number = 0; u <= Math.PI*2 + FLOAT_ERROR; u += uStep) {
for (var v:Number = 0; v <= Math.PI*2 + FLOAT_ERROR; v += vStep) {
var x:Number = (R + r * Math.cos(v)) * Math.cos(u);
var y:Number = r * Math.sin(v);
var z:Number = (R + r * Math.cos(v)) * Math.sin(u);
vertices.push(x, y, z);
uvt.push(u / (Math.PI*2), v / (Math.PI*2), 0);

}
}

continued

869

Part VIII: Graphics Programming and Animation

EXAMPLE 40-5 (continued)

for (var ui:int = 0; ui <= uResolution; ui++) {
for (var vi:int = 0; vi <= vResolution; vi++) {
var thisSlice:int = ui * vResolution + vi;
var nextSlice:int = (ui+1) * vResolution + vi;
indices.push(thisSlice, nextSlice + 1, nextSlice,
thisSlice, thisSlice + 1, nextSlice + 1);

}
}

}
}

FIGURE 40-5

How a 2D texture is mapped onto a more interesting 3D model. The donut is the output of
Example 40-5.

Try running the example. I don’t know about you, but I totally headed to Krispy Kreme after writing
this. See if you can follow along with how the texture is mapped both in this example and in code.
The UV map is simple because the object (a torus) is created as a function of u and v to begin with.
If you want to see how the triangles are created, try turning the model resolution lower and drawing
lines in addition to the texture. Essentially, I stepped through u and v, connecting every set of four
points with two triangles, making sure that all of them were in the same order. You can see that this
works correctly with backface culling in the example — but because the torus isn’t totally convex,
there are camera angles that show some overlapping areas of the model. I’ve carefully chosen a projec-
tion that avoids this. Finally, you have to mind the gap — the gap between the end of the model and
the beginning. If you construct this incorrectly, you can end up with a gap in the torus (as my first
attempt did), or with the texture mapped incorrectly in the final segment (as my second attempt did).
This is the purpose of FLOAT_ERROR: to make sure that a final set of vertices is created that overlaps
the first one (at 0 and 2π), avoiding any gaps.

Z-Sorting, Shading, and Further Topics
You’ve learned a huge amount about 3D graphics in a small space and put the essentials in place for
a decent 3D engine. In this final section, I’ll speed up a bit and introduce some topics for further
research.

870

Chapter 40: Advanced 3D

Polygon Z-Sorting
In ‘‘Backface Culling,’’ you saw that backface culling removes faces that point away from you, hiding
what would otherwise be overlapping portions of convex objects. However, even an object as sim-
ple as the torus in Example 40-5 overlaps itself in places despite backface culling, and more complex
objects are likely to have problems as well. Backface culling is still a great optimization, because figur-
ing out that a polygon is facing away takes far, far less time than drawing it to the screen, but the real
solution to overlapping polygons is to sort them by their distance from the viewport.

Yes, all triangle drawing may take place on a single display object, but you can change the order in
which your triangles are drawn. Draw the bottommost triangles first and the topmost triangles last to
get the proper effect, just like the 2D painter’s algorithm introduced in Chapter 14, ‘‘Visual Program-
ming with the Display List.’’ Even if some triangles overlap, the topmost ones are visible.

The texture coordinate t is calculated during projectVectors() and stores the distance to the
vertex post-projection. So you can reuse this value to sort the list of triangles. In Example 40-6, you
add z-sorting to the faces of the donut and rotate it to see that no two faces overlap. The changes are
in bold.

EXAMPLE 40-6 http://actionscriptbible.com/ch40/ex6

Z-Sorting Faces

package {
import flash.display.*;
import flash.events.Event;
import flash.geom.*;
import flash.net.URLRequest;
import flash.system.LoaderContext;
[SWF(backgroundColor="#B0E1E3")]
public class ch40ex6 extends Sprite {
protected var viewMatrix:Matrix3D;
protected var modelMatrix:Matrix3D;
protected var model:Torus3D;
protected var texture:BitmapData;
protected var projectedPoints:Vector.<Number> = new Vector.<Number>();
public function ch40ex6() {
stage.quality = StageQuality.LOW;
this.x = stage.stageWidth/2;
this.y = stage.stageHeight/2;
var perspective:PerspectiveProjection = new PerspectiveProjection();
perspective.fieldOfView = 80;
perspective.projectionCenter = new Point(0, 0);
viewMatrix = new Matrix3D();
viewMatrix.appendTranslation(0, 7, 12);
viewMatrix.appendRotation(40, Vector3D.X_AXIS);
viewMatrix.append(perspective.toMatrix3D());
modelMatrix = new Matrix3D();
model = new Torus3D(2, 4, 20, 20);
var l:Loader = new Loader();

continued

871

Part VIII: Graphics Programming and Animation

EXAMPLE 40-6 (continued)

l.load(new URLRequest(
"http://actionscriptbible.com/files/texture-donut.jpg"),
new LoaderContext(true));

l.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
}
protected function onLoad(event:Event):void {
texture = Bitmap(LoaderInfo(event.target).content).bitmapData;
addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
protected function onEnterFrame(event:Event):void {
modelMatrix.appendRotation(-0.4, Vector3D.Z_AXIS);
modelMatrix.appendRotation(0.8, Vector3D.X_AXIS);
modelMatrix.appendRotation(2, Vector3D.Y_AXIS);
var concatenatedMatrix:Matrix3D = modelMatrix.clone();
concatenatedMatrix.append(viewMatrix);
Utils3D.projectVectors(
concatenatedMatrix, model.vertices, projectedPoints, model.uvt);

graphics.clear();
graphics.beginBitmapFill(texture, null, false, false);
graphics.drawTriangles(projectedPoints, model.getZSortedIndices(),

model.uvt, TriangleCulling.POSITIVE);
}

}
}
import flash.geom.Vector3D;
class Torus3D {
public var vertices:Vector.<Number> = new Vector.<Number>();
public var uvt:Vector.<Number> = new Vector.<Number>();
public var indices:Vector.<int> = new Vector.<int>();
private var zSort:Vector.<ZSort>;
public function Torus3D(crossSectionRadius:Number, radiusToTube:Number,

uResolution:Number = 50, vResolution:Number = 50) {
var R:Number = radiusToTube, r:Number = crossSectionRadius;
var uStep:Number = Math.PI * 2 / uResolution;
var vStep:Number = Math.PI * 2 / vResolution;
var FLOAT_ERROR:Number = 0.0001;
for (var u:Number = 0; u <= Math.PI*2 + FLOAT_ERROR; u += uStep) {
for (var v:Number = 0; v <= Math.PI*2 + FLOAT_ERROR; v += vStep) {
var x:Number = (R + r * Math.cos(v)) * Math.cos(u);
var y:Number = r * Math.sin(v);
var z:Number = (R + r * Math.cos(v)) * Math.sin(u);
vertices.push(x, y, z);
uvt.push(u / (Math.PI*2), v / (Math.PI*2), 0);

}
}
zSort = new Vector.<ZSort>();
for (var ui:int = 0; ui <= uResolution; ui++) {
for (var vi:int = 0; vi <= vResolution; vi++) {
var thisSlice:int = ui * vResolution + vi;
var nextSlice:int = (ui+1) * vResolution + vi;
if ((nextSlice + 1) * 3 + 2 < vertices.length) {

872

Chapter 40: Advanced 3D

indices.push(thisSlice, nextSlice + 1, nextSlice,
thisSlice, thisSlice + 1, nextSlice + 1);

zSort.push(new ZSort(thisSlice, nextSlice + 1, nextSlice),
new ZSort(thisSlice, thisSlice + 1, nextSlice + 1));

}
}

}
}
public function getZSortedIndices():Vector.<int> {
var node:ZSort;
for each (node in zSort) {
node.t = Math.min(uvt[node.i1*3+2], uvt[node.i2*3+2], uvt[node.i3*3+2]);

}
zSort = zSort.sort(ZSort.compare);
var zSortedIndices:Vector.<int> = new Vector.<int>();
for each (node in zSort) zSortedIndices.push(node.i1, node.i2, node.i3);
return zSortedIndices;

}
}
class ZSort {
public var i1:int, i2:int, i3:int, t:Number;
public function ZSort(i1:int, i2:int, i3:int) {
this.i1 = i1; this.i2 = i2; this.i3 = i3;

}
public static function compare(a:ZSort, b:ZSort):int {
return (a.t < b.t)?-1:1;

}
}

For each face, the minimum projected depth of the three vertices is used as the face’s depth.

Shading and Lighting Introduced
Things look pretty good, but still flat, because you’re not taking any light into account. It’s as if every
point of the donut is being hit with equal light from every direction. To increase realism, the next step
is setting up light sources and shading the model.

First consider a single, directional light source. It casts light rays at a certain angle, all parallel to each
other. You can represent this kind of light as a vector pointing in the correct angle. Besides ambient
light — consistent light from every angle, which can be achieved simply by dimming or brightening
the texture — this is the simplest form of lighting. When you combine ambient light with directional
light, it’s a rough approximation of direct sunlight: some parts of the sun’s light are bounced around
more or less randomly, to hit the object more or less evenly, and the rest directly hit the object from
the angle of the sun in the sky.

Adding a light to the scene is all well and good, but you only notice its presence when it interacts
with objects in the scene. When you draw the surface of an object, changing the colors to make some
impression — like that of light, or surface texture, or reflectivity — you’re shading an object.

In many 3D engines, the simplest kinds of lighting, and the first you’ll learn, are per-face shading (like
flat shading) and per-vertex shading (like Gourad shading). In Flash Player, you’re not drawing every

873

Part VIII: Graphics Programming and Animation

polygon individually. That approach is too slow. Instead, you draw the entire object with a bitmap
that’s UV-mapped. You can’t specify a fill per face or a fill per vertex. Instead, you use a more sophis-
ticated technique: you modify the texture so that the texture itself looks lit correctly.

You can do this with some simple effects — a ColorTransformFilter will be sufficient to light
a model with one or more directional and ambient lights — or with a Pixel Bender shader for even
more complex (and optimized) effects such as reflectivity, environment mapping, bump mapping,
normal mapping, and so on. Whichever approach you take, because you’re taking a texture and mod-
ifying it at least once, this can be called multitexturing (or a multipass texture).

To calculate per-pixel lighting, you need to generate a normal map.

Normal Maps

A normal is a vector that points directly out of a face, perpendicular to its surface. The way light affects
the appearance of a surface depends on the angle of the light and the angle of the surface. So normals
are key to calculating lighting.

Because you have all the information on the geometry of an object, you can determine its normals
mathematically. (Take the cross product of the vectors that define two edges of the triangle.) This
approach is useful when you’re doing per-face or per-vertex lighting; you can calculate the normals
dynamically and on-demand. You can do so with more detail and faster by precalculating the normals
for every pixel on the surface. A normal map uses the same UV coordinates and UV mapping as the
texture map, but instead of a color, it stores a normal at every pixel. One way to do this is to encode
the X, Y, and Z components of an Euler angle in the R, G, and B channels. Or you can encode the
four components of a quaternion in R, G, B, and A.

In 3D models generated with a modeling package, you’ll usually be able to build a normal map
directly in software. With a primitive like a torus, it’s easily calculated.

Note
An awesome side effect of normal mapping is that the normal map can contain far more detail than the 3D
model itself. For instance, you can create a head in a 3D modeling package that has 3 million polygons, render
a normal map using this geometry, and then simplify the geometry down to 800 polygons. So in your real-time
3D engine, you only draw 800 faces (or the subset of these that face forward, naturally), but you shade the
model per-pixel with the geometry of the original, complex model. �

Shading with a Normal Map

Once you have a normal map and a texture map, you can calculate all kinds of lighting effects.

� Bump mapping and simple lighting — Apply a ColorTransformFilter to the normal map
that multiplies each RGB component (representing an XYZ component) with the light’s XYZ
components. This is an extremely streamlined method for getting the dot product of the normal
vector and the light vector. Use the effected normal map to multiply the color values from the
texture, and you get the effect of a single light on a surface. Apply multiple times for multiple
light sources.

� Environment mapping — Reflective surfaces are usually rendered with the help of an environ-
ment map, which wraps a 360◦ image around the whole scene (usually without displaying said
image). Then use the normal at each point to cast out a ray to the cube or sphere environment.
Use the pixel in the environment map that this normal points at as the (or to influence the) color
at the point on the model, and it reflects its environment. Using an additional image input for
the environment map, you can implement this with a Pixel Blender filter.

874

Chapter 40: Advanced 3D

� Cel shading — Also known as cartoon shading, you can posterize a texture after calculating
lighting to reduce the number of colors used and give the model an interesting effect. Try using
threshold() or paletteMap() in BitmapData to create the posterized effect.

And more. Modifying the texture map in relation to lights and the geometry of the object
(encoded in its normal map), you can come up with all kinds of impressive 3D effects and
optimize them to run in real time. There are plenty of impressive posts by Raph Hauwert
(http://unitzeroone.com/blog/), Andy Zupko (http://blog.zupko.info/), David
Lenaerts (http://derschmale.com/), Ricardo Cabello (http://mrdoob.com/blog),
and others that show just how creative you can be with 3D effects, especially with the power of
Pixel Bender.

Summary

� Flash Player 10 and later include low-level math utilities that facilitate 3D engines more power-
ful than the 2.5D DisplayObject API. The coding is up to you.

� Some of the software 3D libraries mentioned in Chapter 15 already take advantage of these, and
they make displaying 3D much easier, if you’re more interested in getting things on the screen.

� Utils3D contains two static methods used to project a single 3D vector and a batch of vectors;
they take a perspective projection matrix.

� You can retrieve the transformation matrix from a PerspectiveProjection object through
its toMatrix3D() method.

� 3D models are at minimum a list of vertices. To display them as solid faces, you need to order
the vertices into triangles.

� Use the drawTriangles() method of Graphics to draw solid or wireframe surfaces to the
screen.

� When using a bitmap fill with drawTriangles(), UV-mapped coordinates may be supplied;
these fill each face with the appropriate piece of a texture.

� Utils3D also transforms UV coordinates.

� Backface culling skips drawing any part of the surface that faces away after projection. This is
calculated by the winding order of the polygon, so make sure all triangles are defined in the
same order.

� Sort the list of triangles by their projected z value in order before sending to
drawTriangles(), and the polygons will be z-sorted.

� By constructing a normal map and modifying the texture based on the lights and normal at each
point, you can shade objects per pixel.

875

Part IX

Flash in Context

IN THIS PART

Chapter 41
Globalization, Accessibility,
and Color Correction

Chapter 42
Deploying Flash on the Web

Chapter 43
Interfacing with JavaScript

Chapter 44
Local Connections between
Flash Applications

Globalization,
Accessibility, and Color
Correction

FEATURED CLASSES

flash.globalization.*

flash.accessibility.*

W
hy do these topics belong together? They are all tools you can use to
ensure that your content is usable and beautiful for everyone, regard-
less of their primary language, sightedness, and monitor settings. In

this chapter, you’ll learn how to use all of these, and I’ll briefly give mention to
other user-adaptive technologies and techniques that have been covered in prior
chapters.

Globalization and Localization

An important step in the planning process of any project is to identify what
locales it will be deployed in. In this context, locale doesn’t refer to a specific
geographic area so much as a set of conventions: not just the language, but its
dialect (U.S. English vs. British English); its measurement system (Metric/SI or
Imperial); its currency, date, and numeric conventions (7,00 vs. $7.00); and
so on. Essentially, a locale is the set of regional rules surrounding written mate-
rial. As you can imagine, supporting more than one locale means making some
changes in the way you present text and numbers. Knowing the locales ahead of
time, or at least knowing the fact that you need to support more than one locale,
lets you write your user interface code with localization in mind and saves you
from going back and ripping apart perfectly good, tested code later.

Now that I’ve dispensed with that obligatory warning, I’ll return to those terms.
Globalization, also called internationalization, entails writing code that’s easy to
localize. It’s that planning ahead part I just mentioned. Localization is the process
of adapting it to a specific locale. For example, this code has not been interna-
tionalized; it’s not easily localized:

priceTF.text = "$" + priceValue.toFixed(2);
button.labelTF.text = "Add to Cart";
button.labelTF.width = 200;

879

Part IX: Flash in Context

There are specific problems with code like this; moreover, these problems are the same problems
you’ll see over and over again. The things you have to watch out for when localizing are almost always
the same, including

� A specific, hardcoded algorithm being used to convert numeric quantities into text.

� User-facing text being hardcoded.

� Dimensions and positions linked to presumed size of text. This is a huge, often overlooked issue
in localization; it frequently takes more or less space to say the same thing in different languages.
(And don’t get me started with the impact that vertical versus horizontal or left-to-right versus
right-to-left text has on a layout!)

There are many solutions to these localization problems. Of course, the general approach is usually
the same:

� Use code for outputting numeric quantities that can be parameterized by locale.

� Use some sort of string lookup table that can be parameterized by locale.

� Write liquid, dynamically sizing, and positioning user interfaces when possible.

Of course, remember that your first step should be to identify which locales your application will be
used in. You can cut corners safely if you’re assured that the application is limited to certain locales.
Furthermore, it comes as no surprise that there are plenty of tools around to solve these well-known
problems.

Rudimentary locale support exists as the toLocaleString() method of any Object. Almost zero
classes, however, override this method for locale-specific formatting. Only Date seems to use it.

If you’re using the Flex framework, for instance, there’s a great ResourceManager that lets you
replace text and even assets and data, by locale, at compile time or runtime. You can easily create
resource bundles for each locale by editing properties files, which are very simple. The Flex frame-
work also provides a set of Formatter objects that make it easy to reformat text for different locales.
It’s not feasible to use these classes outside a Flex project, so you may consider moving to Flex to get
all these localization features ‘‘for free.’’

More to the point, ActionScript 3.0 has its own globalization API, found in the
flash.globalization package. Found in Flash Player 10.1 and later, the API contains
formatters for dates, times, currencies, and numbers; it can more intelligently compare and modify
characters and strings than the String class. Better yet, regional support is built in; you don’t have
to code the rules yourself.

Version
FP10.1. All flash.globalization classes are available in Flash Player 10.1 and later. The remainder of this
section covers these classes and is applicable only to this version. �

Together with the new Flash Text Engine and its great international capabilities, the globalization
package in Flash Player 10.1 makes Flash Player truly a citizen of the world.

Identifying Locale
Locales are represented by a standardized code (following the spec at http://unicode.org/
reports/tr35/) as a String. To simplify that document tremendously, a locale is uniquely
identified by a language code and potentially a region. Each of these is two characters. For instance,

880

Chapter 41: Globalization, Accessibility, and Color Correction

my primary region is en-US, which stands for English as it’s used in the United States. I can also
certainly read en-GB (British English) or to lesser extents ja (Japanese) and es (Spanish). A language
without a region is still a valid locale. The LocaleID class helps standardize locale strings and
provides you with a little information about a locale. It’s not necessary to encapsulate the locale code
in that class, though. You can keep it around as a string.

So this begs the question, how do you determine the user’s locale? It’s an interesting question that’s
not as easy to answer as you’d think. Although you can simply use the OS default, you should put
some thought into the best way to identify the locale.

Using the Default That the Operating System Provides

The simplest method of choosing the user’s preferred locale is listening to the operating system
default. LocaleID.DEFAULT represents the OS’s current locale. But it’s a bit quirky; it isn’t a static
accessor that dynamically grabs the current locale string. It’s actually a constant, special-case locale
string: i-default. No code retrieves an actual locale until you try to use this locale with one of the
classes in the globalization package. Only when it’s used is the real locale retrieved.

The globalization classes have a common mechanism in which they’re initialized with a locale, but
they may end up using a different locale if that one’s not available to the OS. These two locales — the
one that’s requested and the one that’s resolved — are made available to ActionScript through the
actualLocaleIDName and requestedLocaleIDName properties of the globalization classes. If
you need to, then, you can resolve the actual locale by creating a globalization class instance.

var g11n:StringTools = new StringTools(LocaleID.DEFAULT);
trace("Requested locale =", g11n.requestedLocaleIDName); //i-default
trace("Actual locale =", g11n.actualLocaleIDName); //en-US (for me)

However, you’ll usually be fine using LocaleID.DEFAULT.

Using the OS default locale is easy enough. Consider this, however. People may use their OS in the
default language if it’s difficult to configure, if it came preinstalled with a fixed language, or if foreign
language packs cost extra. For instance, Windows 7 supports user accounts with different individual
languages only in its more expensive Enterprise and Ultimate editions.

Based on Location

Can you use location to infer the user’s locale? Not necessarily. I’m sure you know at least one person
who lives in your country but doesn’t speak the national language as his primary language. Maybe this
even applies to you, your parents, or your grandparents. Using location to infer locale is a start, but
it’s not nearly accurate.

Based on the Browser

If your application is living on the web, you can ask the browser for its language. There may be a bet-
ter chance that the user is using the correct-language edition of her browser, at least. Using JavaScript
(and ExternalInterface, covered in Chapter 43, ‘‘Interfacing with JavaScript’’), you can get this
property from JavaScript’s navigator object. The language property is usually what you want
here, but it can go by several different names. However, this simply returns the language that the
browser’s UI is in.

881

Part IX: Flash in Context

Based on the Browser’s Configuration

Perhaps the most useful way to get the locale is to find out what languages the browser is prepared
to accept from the web. You can set this up in the preferences of your browser, specifying as many
languages as you’re comfortable reading, in whatever order you choose. The browser sends this infor-
mation to web servers in the Accept-Language HTTP header so that the server can choose to pre-
pare your content in the correct language. You can’t get a handle on this request using Flash Player,
but there’s a simple workaround: make a request to a script that responds with the contents of that
header. You request the page in ActionScript; the browser sends the HTTP request, including that
header with the languages you can read; and the server, instead of using this hint to deliver the right
language, spits out the whole list of languages verbatim, for ActionScript to then parse. Got it?

For instance, in PHP, you simply write a script with these contents:

<?php echo($_SERVER[HTTP_ACCEPT_LANGUAGE]); ?>

Put it on a web server with PHP, and try hitting it with your browser to see what languages your
browser is configured to accept.

The benefit of this approach is that (ideally) you get a list of all acceptable locales, sorted by prefer-
ence. In Figure 41-1, you can see the languages I’ve set in Firefox. The request string that this pro-
duces is

en-us,en;q=0.8,ja;q=0.5,es;q=0.3

FIGURE 41-1

Language settings in Firefox

882

Chapter 41: Globalization, Accessibility, and Color Correction

Just Ask

Guess what? It may be annoying, but the only way to be absolutely sure the user is using the locale
most comfortable to her is to ask her. I think the best technique is to guess intelligently using the
techniques described earlier, but give the user the opportunity to change the locale manually.

An Example

In Example 41-1, you see two browser-based locale retrieval methods in action, and you see the infor-
mation you can pull out of a locale with LocaleID.

EXAMPLE 41-1 http://actionscriptbible.com/ch41/ex1

Getting the User’s Locale

package {
import com.actionscriptbible.Example;
import flash.events.*;
import flash.external.ExternalInterface;
import flash.globalization.LocaleID;
public class ch41ex1 extends Example {
public function ch41ex1() {
trace("Browser’s locale--------------------");
trace(getLocaleFromBrowser());
trace("HTTP Accept-Languages locales-------");
(new GetLocalesFromRequest()).addEventListener(Event.COMPLETE, onReady);

}
protected function getLocaleFromBrowser():String {
if (ExternalInterface.available) {
return ExternalInterface.call("\
function() {\
var ret = null;\
if (navigator) {\

if (!ret) ret = navigator[’language’];\
if (!ret) ret = navigator[’browserLanguage’];\
if (!ret) ret = navigator[’systemLanguage’];\
if (!ret) ret = navigator[’userLanguage’];\

}\
return ret;\

}");
}
return null;

}
protected function onReady(event:Event):void {
var response:GetLocalesFromRequest = GetLocalesFromRequest(event.target);
for each (var pair:LocalePriorityPair in response.locales) {
trace(pair.locale, "\t(preference =", pair.priority.toFixed(1), ")");

}
createLocaleID(response.bestLocale);

}
continued

883

Part IX: Flash in Context

EXAMPLE 41-1 (continued)

protected function createLocaleID(localeName:String):void {
var locale:LocaleID = new LocaleID(localeName);
trace("Locale information-------------------");
trace("lang =", locale.getLanguage(), "\nregion =", locale.getRegion(),
"\nscript =", locale.getScript(), "\nrtl? =", locale.isRightToLeft());

}
}

}
import flash.events.*;
import flash.net.*;
class GetLocalesFromRequest extends EventDispatcher {
public var rawHeader:String;
public var locales:Vector.<LocalePriorityPair>;
public var bestLocale:String;
public function GetLocalesFromRequest():void {
var l:URLLoader = new URLLoader(new URLRequest(
"http://actionscriptbible.com/files/accept-languages.php"));

l.addEventListener(Event.COMPLETE, onLoad)
}
protected function onLoad(event:Event):void {
rawHeader = URLLoader(event.target).data;
locales = new Vector.<LocalePriorityPair>();
var re:RegExp = /([\w\-\,]+);q=([\d\.]+)\,?/gs;
if (re.test(rawHeader)) {
re.lastIndex = 0;
var match:Object;
while (match = re.exec(rawHeader)) {
var samePriorityLocales:Array = match[1].split(",");
var priority:Number = parseFloat(match[2]);
for each (var localeName:String in samePriorityLocales) {
if (!bestLocale) bestLocale = localeName;
locales.push(new LocalePriorityPair(localeName, priority));

}
}

} else if (rawHeader.length > 0) {
bestLocale = rawHeader;
locales.push(new LocalePriorityPair(bestLocale, 1));

}
dispatchEvent(new Event(Event.COMPLETE));

}
}
class LocalePriorityPair {
public function LocalePriorityPair(l:String, p:Number) {
locale = l; priority =p;

}
public var locale:String;
public var priority:Number;

}

884

Chapter 41: Globalization, Accessibility, and Color Correction

To get the browser’s language from JavaScript, I’ve included a few properties of navigator that
may be hiding the value I want (depending on what archaic browser you run it on), where one falls
through to the next one if it fails to get any value. See Chapter 43 to learn more about interfacing with
JavaScript.

Much of the code in the example is spent parsing the wacky Accept-Language headers. You can
shift some of this parsing off to the server side, if you want, returning JSON or XML or URL-encoded
variables or something like that.

Getting the Closest Match

Say you’ve painstakingly localized your application for six locales. The user specifies a list of
three locales or languages that he’s comfortable with, in a preferred order. You need to determine
which locale to actually use based on the languages you support and the languages the user
wants to see. The LocaleID class can help you determine that. Call its static method
determinePreferredLocales(), passing a Vector of the user’s locales (in decreasing
order of his preference), and a Vector of the localized locales, and it solves this for you, returning a
Vector of the locale(s) you should use.

For brevity’s sake, in examples here, I’m either going to use a specific locale or the default one, rather
than applying these locale-finding techniques.

Formatting Numbers
Format numbers and interpret numeric input in a locale-specific way with a NumberFormatter
instance. Simply instantiate one, passing the constructor your locale code (just a String; you won’t
really use the LocaleID object), and you can convert text to numbers and numbers to text using
these methods (demonstrated in Example 41-2):

� formatNumber() — Convert a Number into text in the object’s locale.

� formatInt() — Convert an int into text in the object’s locale.

� formatUint() — Convert a uint into text in the object’s locale.

� parseNumber() — Convert a String containing only a single number in the object’s locale
into a Number.

� parse() — Convert a String containing a number in the object’s locale, possibly along with
non-number garbage, returning a NumberParseResult, which tells you the startIndex
and endIndex of the number within the source string, as well as the value it found.

Additionally, there are a number of properties you can set that control the format of a number in the
locale. I won’t go into depth on these, because the point of this class is to know how numbers look in
the supported locales so that you don’t have to.

EXAMPLE 41-2 http://actionscriptbible.com/ch41/ex2

Localizing Numbers

package {
import com.actionscriptbible.Example;
import flash.globalization.NumberFormatter;
public class ch41ex2 extends Example {

continued

885

Part IX: Flash in Context

EXAMPLE 41-2 (continued)

public function ch41ex2() {
var usa:NumberFormatter = new NumberFormatter("en-US");
var german:NumberFormatter = new NumberFormatter("de-DE");
var russian:NumberFormatter = new NumberFormatter("ru-RU");
var thai:NumberFormatter = new NumberFormatter("th-TH");
var tamil:NumberFormatter = new NumberFormatter("ta-IN");
var all:Vector.<NumberFormatter> =
new <NumberFormatter>[usa, german, russian, thai, tamil];

var n:Number = usa.parseNumber(" 5,619.02");
for each (var formatter:NumberFormatter in all) {
trace(formatter.requestedLocaleIDName,"\t",formatter.formatNumber(n));

}
}

}
}

This example parses in a number, comma separator and all, the way it’s written it in the States.
(parseFloat() would choke on the comma, natch.) Then it spits it out in a variety of interesting
locales. For example, in Germany, the separators are flipped and it’s written 5.619,02, and in
Russia, it’s written 5 619,02. Tamil and Thai use non-Roman digits, but I won’t force my poor
editors to reproduce them here.

Formatting Dates
Dates and times can also be automatically converted by locale. As you found out in Chapter 7, ‘‘Num-
bers, Math, and Dates,’’ dates can be pretty tricky, so the DateTimeFormatter is a godsend. Like
other formatter classes, create a new DateTimeFormatter by passing in a locale code to the con-
structor. In addition, you tell the formatter how tersely it should represent the date and time. The
options are constants of DateTimeStyle: NONE, SHORT, MEDIUM, LONG, and CUSTOM. Either pass
these to the constructor:

//Short date, no time, aussie style
var australian:DateTimeFormatter = new DateTimeFormatter("en-AU",
DateTimeStyle.SHORT, DateTimeStyle.NONE);

trace(australian.format(new Date(1981, 4, 12))); //12/05/1981

or set them with setDateTimeStyles(). You can retrieve them at any time using the analogous
getDateStyle() and getTimeStyle() methods.

//Long date, no time, austria style
var austrian:DateTimeFormatter = new DateTimeFormatter("de-AT");
austrian.setDateTimeStyles(DateTimeStyle.LONG, DateTimeStyle.NONE);
trace(austrian.format(new Date(1981, 4, 12))); //Dienstag, 12. Mai 1981

886

Chapter 41: Globalization, Accessibility, and Color Correction

Did you see how easy that was? In the words of someone who’s had to painstakingly localize applica-
tions into languages he doesn’t know: ‘‘booya.’’

Translate Date objects into localized text with the format() method. You can also use a Date
object in UTC time by passing it to formatUTC() instead. Note that neither method messes with
the time; for instance, the formatter won’t try to convert from GMT-0500 Eastern time to GMT+0100
Austria time.

Beyond the flexible options given by DateTimeStyle, you can completely customize the formatting
of a date by setting properties of the DateTimeFormatter instance. Again, I won’t cover those here,
because the whole point is that these classes are already populated with the correct formatting for the
given locale.

Additionally, DateTimeStyle lets you grab those localized month and day-of-the-week names if
you need them in other places. Use getMonthNames() and getWeekdayNames() for this. These
take optional parameters that let you request the full name or a long or short abbreviation (Thursday,
Thurs., Th., for instance). Example 41-3 shows several date formats in action.

EXAMPLE 41-3 http://actionscriptbible.com/ch41/ex3

Localizing Dates

package {
import com.actionscriptbible.Example;
import flash.globalization.*;
public class ch41ex3 extends Example {
public function ch41ex3() {
var rogerDay:Date = new Date(1981, 4, 12);
var all:Vector.<DateTimeFormatter> = new Vector.<DateTimeFormatter>();
all.push(new DateTimeFormatter("ja-JP", //Japanese/Japan
DateTimeStyle.MEDIUM, DateTimeStyle.NONE));

all.push(new DateTimeFormatter("he-IL", //Hebrew/Israel
DateTimeStyle.LONG, DateTimeStyle.NONE));

all.push(new DateTimeFormatter("pt-PT", //Portuguese/Portugal
DateTimeStyle.LONG, DateTimeStyle.NONE));

for each (var formatter:DateTimeFormatter in all) {
trace(formatter.requestedLocaleIDName,"\t",formatter.format(rogerDay));

}

//I forget, what are the days of the week in Swedish again?
trace((new DateTimeFormatter("sv")).getWeekdayNames().toString());

}
}

}

887

Part IX: Flash in Context

Formatting Currency
For currency, use the CurrencyFormatter, which has much the same structure as
NumberFormatter, but it’s endowed with the ability to format quantities in the local cur-
rency correctly. When you create a CurrencyFormat object, you pass its constructor a locale string
like the other globalization classes, associating it with

� The locale — Which you can retrieve as actualLocaleIDName, and of course, you can
access requestedLocaleIDName as well.

� The currency used in the locale — currencyISOCode contains the three-letter code (like
USD) for the currency used in the locale, and currencySymbol contains the symbol (like $)
used to write amounts in the local currency.

� Currency formatting rules — If digits are grouped, the pattern of the groups, the number of
decimal places, the separator characters, and so on.

Together, these rules define not only the locale, but its currency and how it’s written. This means that
a CurrencyFormat is best used to represent monetary amounts in the region’s own currency, not in
foreign currencies.

Note
The three-letter currency codes, like CAD, EUR, HKD, GBP, and so on, are standardized by ISO 4217; find a
reference at http://bit.ly/ISO4217. �

To localize a monetary amount, call format() on the CurrencyFormat, passing in a bare number,
as Example 41-4 shows. The number is presumed to be a quantity in the locale’s own currency and
is treated as such. A second optional Boolean argument uses the currency symbol ($) instead of the
currency code (USD) when set to true.

EXAMPLE 41-4 http://actionscriptbible.com/ch41/ex4

Localizing Currency

package {
import com.actionscriptbible.Example;
import flash.globalization.*;
public class ch41ex4 extends Example {
public function ch41ex4() {
var local:CurrencyFormatter = new CurrencyFormatter(LocaleID.DEFAULT);
trace(local.format(123456.78)); //USD123,456.78
var usa:CurrencyFormatter = new CurrencyFormatter("en-US");
trace(usa.format(123456.78, true)); //$123,456.78
var jp:CurrencyFormatter = new CurrencyFormatter("ja-JP");

trace(jp.format(123456.78, true)); //¥123,457

var de:CurrencyFormatter = new CurrencyFormatter("de-DE");
trace (de.format(123456.78, true)); //123.456,78
var fr:CurrencyFormatter = new CurrencyFormatter("fr-FR");
trace (fr.format(123456.78, true)); //123 456,78

888

Chapter 41: Globalization, Accessibility, and Color Correction

var localeID:LocaleID = new LocaleID(local.actualLocaleIDName);
trace("Local currency in " + localeID.getRegion() + ": " +
local.currencyISOCode + " (" + local.currencySymbol + ")");

}
}

}

Likewise, you can parse in a currency from localized text to a number, with the parse() method.
When passed a String containing a currency in the local format, the method returns a
CurrencyParseResult object with a value — the amount of money in the local currency — and
a currencyString — the substring that contains the unit of currency as a currency code or
symbol.

Localized String Comparison
Although the String class is perfectly adept at storing text in any language, some of its methods
aren’t intelligent enough to work in absolutely every case and every language. A particularly thorny
problem is string ordering. Different languages that share the same alphabet sometimes order it differ-
ently. Languages treat accented characters differently. Sometimes letter pairs are considered one letter.
And so on and so on. String comparison operators are incredibly stupid next to the complexity of
sorting in almost any language.

Because every language has its own rules, localizing an ordered set of data, or data in a pivot table,
requires writing sorting algorithms again and again for every supported locale. Moreover, the built-in
comparisons don’t even work for English most of the time, so you’d always have to write a custom
sort function. No longer! Now you can use the Collator class.

After constructing the Collator class with the correct locale, use two of its methods to perform
localized string comparison.

� compare() — Compares two String arguments and returns an int indicating the two argu-
ments’ relative order.

� equals() — Compares two String arguments and returns true if they are equal.

The compare() method can be used as an argument to Array’s sort() method, as Example 41-5
demonstrates.

EXAMPLE 41-5 http://actionscriptbible.com/ch41/ex5

Localized String Comparison

package {
import com.actionscriptbible.Example;
import flash.globalization.Collator;
public class ch41ex5 extends Example {
public function ch41ex5() {

var words:Array;
var a:String = "apples";
var b:String = "Barnaby";

continued

889

Part IX: Flash in Context

EXAMPLE 41-5 (continued)

var c:String = "calliope";
var d:String = "detritus";
var e:String = "éclair";
var f:String = "firefight";

words = [f, d, b, e, c, a];
words = words.sort();
trace(words); //Barnaby,apples,calliope,detritus,firefight,éclair

words = [f, d, b, e, c, a];
var usaCollator:Collator = new Collator("en");
words = words.sort(usaCollator.compare);
trace(words); //apples,Barnaby,calliope,detritus,eclair,firefight

usaCollator.ignoreCase = true;
usaCollator.ignoreDiacritics = true;
trace(usaCollator.equals("Eclair", "eclair")); //true

}
}

}

In this example, you use a naı̈ve sort method on a list of English words. It’s flummoxed by the mixed
case of the words and an accented E for éclair. With use of an English-locale Collator, the sort
works as expected.

Some properties of Collator can be modified to change the way a sort proceeds. In Example 41-5,
the sort actually was case-sensitive, although capitals are placed correctly with their lowercase com-
panions rather than before any lowercase letter. You can actually make Collator blind to not only
letter case, but diacritics and more, as demonstrated at the end of the example, when ‘‘Eclair’’ and
‘‘éclair’’ are found to be equivalent.

These properties are affected by the mode the Collator is created in. Options can be set to
favor sorting, as you did in the first half of the example, or pairwise matching, as you did in
the second half of the example. Set the initial mode by passing CollatorMode.SORTING or
CollatorMode.MATCHING as the second, optional argument to the constructor:

var localSorter:Collator = new Collator(LocaleID.DEFAULT, CollatorMode.SORTING);

Sorting mode is selected by default if the argument is omitted.

The initial mode does nothing more than initially set properties of the Collator that affect compari-
son. These may all be set after construction time as well, and include

� ignoreCase — When true, a lowercase letter and its capital are considered equivalent.

� ignoreCharacterWidth — When true, half-width versions of Japanese and Chinese char-
acters are treated identically to their full-width versions.

� ignoreDiacritics — When true, accents and diacritics are ignored.

890

Chapter 41: Globalization, Accessibility, and Color Correction

� ignoreKanaType — When true, hiragana and katakana versions of the same syllable are
treated identically.

� ignoreSymbols — When true, symbolic characters including whitespace, punctuation,
currency, and math characters are ignored.

� numericComparison — When true, numbers in strings are treated numerically, rather
than character-by-character. For example, using string sorting, ‘‘100’’ < ‘‘2’’ (‘‘1’’ comes before
‘‘2’’), but using numeric sorting, 2 < 100.

As in other globalization classes, these usually take on the right properties depending on their locale
and the CollatorMode used (as you saw in Example 41-5, because the sort worked perfectly with-
out modifying the Collator). Tweaking them individually can be useful, though — particularly
numericComparison.

Localized Capitalization
In a few edge cases, String’s capitalization facilities also fall short. In general, toUpperCase()
and toLowerCase() do an admirable job, handily changing the case of all kinds of accented Latin
characters (covering languages from Afrikaans to Vietnamese), the Cyrillic alphabet, the Greek alpha-
bet, and even Japan’s full-width roman character sets. Where it falls short are a few cases where the
capitalization rule is not so simple. For instance, German’s lowercase ß should become an SS when
capitalized, and Greek’s lowercase sigma when in the word-end position, ς , should become a capital
sigma �.

Of course, ‘‘just’’ screwing up one letter in the alphabet every time it appears is hardly acceptable.
When you need to ensure that capitalization uses locale-specific rules, use the StringTools class,
as shown in Example 41-6. After initializing it with a locale code, call its toLowerCase() and
toUpperCase() methods instead of String’s.

EXAMPLE 41-6 http://actionscriptbible.com/ch41/ex6

Localized Capitalization Rules

package {
import com.actionscriptbible.Example;
import flash.globalization.StringTools;
public class ch41ex6 extends Example {
public function ch41ex6() {
var odysseus:String = " ";
var greekStringTools:StringTools = new StringTools("el-GR");
trace(odysseus);
trace(odysseus.toUpperCase());
trace(greekStringTools.toUpperCase(odysseus));

var biteme:String = "beißen mich";

var germanStringTools:StringTools = new StringTools("de-DE");
trace(biteme);
trace(biteme.toUpperCase());
trace(germanStringTools.toUpperCase(biteme));

}
}

}

891

Part IX: Flash in Context

Error Handling
All the preceding globalization classes handle errors the same way. Although error handling wasn’t
shown in these examples for brevity, you should check for errors in two places.

First, you should make sure that the locale the system provides is what you had in mind, or an
acceptable alternative for, the locale you requested. Flash Player leans on the host operating system
for localization support, so the supported locales may vary from system to system. There’s no
guarantee that when you request a locale, the system has an appropriate match. After constructing
the globalization class, check its actualLocaleIDName against the requestedLocaleIDName.
If an appropriate one can’t be found, the system returns the default locale. Whether that’s a fatal
error for you or not depends on the requirements of your app, so be sure to check it out if it
would be critical. You can also get the locales supported by a globalization class by calling its static
getAvailableLocaleIDNames() method. This returns a Vector of locale names.

The classes covered in this section don’t raise errors when performing localizations. Instead, they
indicate either success or a wide variety of errors in their lastOperationStatus property. This
way, they can automatically localize a whole interface, ignoring errors, and you don’t need to stay
up at night worrying that a strange translation in one language out of fifty supported languages
causes an error that brings down the application. The localization will go on. That doesn’t mean,
of course, that you should ignore errors. Check the lastOperationStatus property frequently,
or when the result of a localization operation is used elsewhere or is otherwise critical. The
LastOperationStatus class enumerates a bunch of possible errors that may be found in
that property.

Accessibility
Not everyone experiences your Flash application the same. Few people have perfect sight and hearing;
some will use assistive software or hardware to make interacting with the computer easier, or possi-
ble at all. For users with limited hearing, you can include captions, transcripts, or picture-in-picture
video of a sign language translator. Enabling applications for users with limited or no sight is more of
a challenge. Assistive software that aids users with limited vision usually does so by picking out the
interactive elements of a UI and enabling keyboard navigation between them, along with describing
and reading graphics and text when possible.

Now, Flash Player gets a bad rap where accessibility is concerned. But the fact is, Flash Player enables
truly deep integration with assistive software. But it’s up to developers to make applications accessible.
Not that this is the fault of developers, necessarily. Many Flash projects, if they’re not highly visual by
nature, are rushed to the finish line with no budget and schedule for QA, much less localization or
accessibility concerns.

Blame game aside, you can do a lot to improve accessibility of your application merely by ensuring
that UI elements are tab accessible with a sane tab ordering as discussed in Chapter 21, ‘‘Interactivity
with Mouse and Keyboard Events.’’

Flash Player 10 and later support Microsoft Active Accessibility (MSAA) on Windows, as long as
you are using the ActiveX version of the plug-in, and when the embedding parameter wmode is not
windowless or transparent. This standard gives screen readers that support it the ability to
intuit information about custom UIs in Flash Player, such as by assuming that noninput text inside a
button is probably the button’s label. To see more about what Flash Player 10 MSAA support can do
for you, visit http://bit.ly/fp10 accessibility.

892

Chapter 41: Globalization, Accessibility, and Color Correction

More importantly, you can provide assistive devices with meta-information about display objects with
the AccessibilityProperties class. The class is trivial to use:

input.accessibilityProperties = new AccessibilityProperties();
input.accessibilityProperties.name = "Full name";
input.accessibilityProperties.description = "Your full name, first
then last.";

Caution
This name property is not the same as the DisplayObject’s name property, which screen readers ignore. �

The accessibilityProperties property can be set on any button, display object container, text
field, or the application class. In other places, it is ignored. Simply adding name accessibility prop-
erties to buttons and description accessibility properties to groups of important controls does a
world of good. With the forceSimple property of AccessibilityProperties, you can make
the associated display object opaque to screen readers — they ignore its children.

group.accessibilityProperties = new AccessibilityProperties();
group.accessibilityProperties.description = "Three screen captures of \
the software in action.";
group.accessibilityProperties.forceSimple = true;

Similarly, there is an accessibilityProperties.silent property that hides the display object
from screen readers when set to true.

Additionally, you can supply an alternate interface optimized for screen readers if one is active. You
can detect screen reader software by using the static read-only property Accessibility.active in
the flash.accessibility package.

But wait! Don’t go wild setting thousands of accessibility properties around your application just yet.
Flash Player’s auto-labeling features may do a tolerable job for much of your app. If you can, get a
free or open source screen reader, or a trial version, and find out where you should focus your efforts
at clarifying the interface for assistive devices.

Color Correction
Flash Player 10 and later can use color correction when the host environment supports it. Color cor-
rection is used by software to ensure colors are reproduced consistently across different devices — in
this case, displays, but color correction is also critical for accurate printing, scanning, and image acqui-
sition. Different models of a display, and especially displays from different manufacturers, reproduce
colors slightly differently. If the display’s manufacturer is concerned at all about color accuracy, it pro-
vides you with a color profile for the display. The color profile tells software in great detail about how
colors are produced by the device, something software alone could never find out, and usually using
tightly controlled data (creating your own accurate color profile can’t be done well without an optical
color calibration device). Now that it has a color profile, your software is armed with knowledge about
how your monitor translates the colors in memory to the exact colors that the hardware emits. With
this knowledge, it can adjust the colors it asks to display, so that the ones that come out are exactly
the intended colors in the first place. That’s color correction.

893

Part IX: Flash in Context

Version
FP10. Flash Player color correction is available only in Flash Player 10 and later. �

Use color correction to ensure a consistent and accurate color experience between users with differ-
ent displays. The effects of color correction may not be noticeable when the hardware is close to the
default color profile used by Flash Player, but it’s critical for image editing applications and precision
video and image review.

Your operating system has color correction built in, but it may not be doing anything for you unless
you have the correct color profile installed. Presume that you have one installed and working. The
plug-in and ActiveX versions of Flash Player still have to rely on the host browser, which may or may
not be applying color correction to its contents. In general, Flash Player tries to match the color cor-
rection settings of the browser. That way, if Flash content is integrated with non-Flash content, the
adjusted colors don’t clash.

Two properties on the Stage instance provide access to color correction.

� colorCorrectionSupport — Read-only; specifies whether Flash Player can use color cor-
rection and whether the browser is using it. If the monitor doesn’t have an ICC color profile or
Flash Player can’t read the profile, the value is ColorCorrectionSupport.UNSUPPORTED.
Otherwise, color correction can be used, and its default state is indicated by a value of
ColorCorrectionSupport.DEFAULT_ON or ColorCorrectionSupport
.DEFAULT_OFF.

� colorCorrection — Turns color correction on and off. Set to ColorCorrection.ON,
ColorCorrection.OFF, or ColorCorrection.DEFAULT to inherit behavior from the
host browser.

It’s not really necessary to check the support first. If you want color correction to be on, just set
it to on.

stage.colorCorrection = ColorCorrection.ON;

Turning on color correction uses more CPU time. You may not notice a difference when you toggle
between them. If you want to see the effects, try creating a custom color profile with a software moni-
tor calibration tool (your OS probably has one built in), and make sure its effects are exaggerated.

Color correction is especially important if your site was designed on all Macs or all PCs and if it’s very
dark or very bright. Macs and PCs traditionally display at different gamma levels, which are sure to
lose details in the shadows and highlights. Enabling color correction can fix this.

Check out Example 36-12 (http://actionscriptbible.com/ch36/ex12) to see how you can
use palette mapping to correct colors in pure ActionScript. You can use this approach in Flash Player
versions earlier than 10.

Tip
Here’s a massive power tip. Flash Player only color-corrects its color output. All external files and art are
assumed to be in the sRGB color space. So when you’re creating art assets for Flash Player, always work in,
and save to, the sRGB color space. �

894

Chapter 41: Globalization, Accessibility, and Color Correction

Summary

� Globalization, accessibility, and color correction all help ensure that everyone can enjoy your
ActionScript application.

� Globalization, or internationalization, is the process of readying your application for use in mul-
tiple locales. Localization is the process of converting your application for a specific locale.

� A locale defines conventions for written text. It’s at least a language and usually a combination
of language and region, such as U.S. English (en-US).

� Flash Player 10.1 and later include a globalization package that makes localizing numbers,
currency, dates, and times easy. It also aids locale-appropriate String comparisons
and capitalization.

� It’s not impossible to make Flash applications accessible, nor is it very hard.

� Use sane tab ordering, and when necessary, AccessibilityProperties objects attached
to InteractiveObjects, to make your application sound more descriptive and organized to
users without sight.

� The best way to test accessibility is to try your application in a screen reader.

� Color correction is used to reproduce colors accurately across display devices with different
color characteristics.

� Flash Player 10 and later include software color correction, which typically does whatever the
host browser does. Turn it on or off manually with the stage.colorCorrection property.

895

Deploying Flash
on the Web

P
rogramming your creation in ActionScript 3.0 is the first and most impor-
tant step. Any successful project must also be deployed correctly. In most
cases, Flash content is seen on the World Wide Web, within your web

browser. There are other possibilities for your content, such as a screensaver or a
kiosk, that typically require third-party tools to implement. AIR applications are
deployed for desktop operating systems, and Flash Professional CS5 and later can
package your application as an iPhone app. But this chapter covers the important
issues in preparing your Flash content for deployment on the web.

Embedding Flash in a Page

If you are developing Flash content for the web, at some point you have to
embed your SWF in an HTML page. This process is a stroll in the park, but
unfortunately the park is strewn with land mines.

Rendering Flash in a web page requires the Flash Player plug-in. Despite the fact
that browsers have been around for nearly two decades, there are still differences
in plug-in architectures and the HTML that should be used to embed them.
To wit, Internet Explorer uses ActiveX controls, and Mozilla browsers use the
NSPlugin architecture. Different tags have been used to embed content: the
<embed> tag and the <object> tag. Browsers even implement these tags in
slightly different ways. To complicate matters, writing valid [X]HTML is desirable,
and often required, but the <embed> tag is not valid in HTML 4 or XHTML 1,
although it is valid in HTML 5. To make things worse, the EOLAS patent suit
against Microsoft in 2005 (http://en.wikipedia.org/wiki/Eolas) forced
Internet Explorer to require a mouse click to activate plug-ins.

In a utopian future where everyone’s browser fully supports HTML 5, you will
have to write just one standards-compliant <object> or <embed> tag to embed
Flash content. But at the present time, you have to choose a method of embed-
ding SWFs that will provide your content to people with all kinds of browsers,

897

Part IX: Flash in Context

without using invalid markup, that gets around the click-to-activate issue. It needs to be able to dis-
play alternative content if the user does not have Flash, and it must be able to detect the version of
Flash Player that you are targeting.

Caution
Without intervention, Flash Player tries to play SWFs published for any version of Flash Player. Flash Player 9
tries to display SWFs published for Flash Player 10. Backward compatibility is important to Flash Player: playing
a SWF made for an older version of Flash Player should never be a problem. However, forward compatibility
does not really exist. If you have any ActionScript in your Flash content, you should not allow older Flash Play-
ers to play your content. Accordingly, you should publish your SWFs to the lowest version of Flash Player that
supports all the features you use. If I haven’t made this clear yet, all ActionScript 3.0 programs require Flash
Player 9 or later. �

Fortunately, several tools have stepped up to fulfill these goals. The culmination of these is SWFOb-
ject (http://swfobject.googlecode.com), which is the marriage of two well-tested SWF
embedding toolkits. It is the de facto standard, it is tested and updated regularly, and I recommend
using it.

Flash CS4 Professional and Flex Builder 3 shipped with Adobe’s ActiveContent JavaScript embedding
solution, another embedding toolkit. Flash Professional CS5, and Flash Builder 4, on the other hand,
use SWFObject.

Alternatively, there are some HTML-only solutions that work with one or two exceptions to embed
content cross-browser. The nested object solution and the Flash satay solution are succinct and
standards compliant, but they have their limitations. SWFObject in static publishing mode uses the
double-object method that works without JavaScript but builds on it when JavaScript is available to
correct some browsers’ bugs.

As an added reason to use SWFObject, the web development community has produced some excel-
lent extensions to SWFObject. For example, SWFAddress (http://asual.com/swfaddress/)
makes it simple to provide browser history integration and deep linking. SWFMacMouseWheel
(http://blog.pixelbreaker.com/flash/swfmacmousewheel/) uses JavaScript to add sup-
port for the mouse wheel on the Mac platform. SWFFit (http://swffit.millermedeiros.com/)
forces the browser to display scroll bars when a full-page SWF is resized below certain minimum
dimensions. All these extensions greatly improve the usability of Flash applications, and I recommend
that you use them when appropriate.

Embedding Flash Using SWFObject
The main purpose of SWFObject is to be able to show your Flash content in any browser, but
only if you have the appropriate version of Flash Player, showing you alternative content if you
do not. Although the ultimate destination for information about SWFObject is its home page at
http://swfobject.googlecode.com/, a quick introduction of the SWFObject syntax here
provides context for the examples in the rest of the chapter.

SWFObject works in two modes: static publishing and dynamic publishing. Using static publish-
ing, HTML is written that includes the tags necessary to embed the SWF. This way, if JavaScript is
not available, the Flash content may still be run, although with some browser bugs (that are fixed if
JavaScript is available and you use SWFObject). In dynamic publishing mode, the proper embedding

898

Chapter 42: Deploying Flash on the Web

code is written into the page contents by JavaScript when the page renders. Both have their
advantages, which are outlined in the SWFObject documentation (http://code.google.com
/p/swfobject/wiki/documentation). I will cover the dynamic publishing method. Use
whichever suits you.

A simple HTML page that embeds Flash content using SWFObject might be written as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Demo</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script type="text/javascript" src="swfobject.js"></script>
<script type="text/javascript">
swfobject.embedSWF("demo.swf", "alternate-content", "500", "500", "9.0.0");

</script>
</head>
<body>
<div id="alternate-content">
Please Get Flash Player
to see this content.

</div>
</body>
</html>

When using SWFObject with dynamic publishing, you need to include the following three elements
in your HTML page:

� A <script> tag to include the SWFObject code. Download swfobject.js from the
SWFObject web page, upload it to your own site, and include it as in the preceding example.

� A <div> containing an HTML alternative to your Flash content, with an id. Think of this like
an alt tag on an image. The HTML content will not be displayed if the user is capable of dis-
playing the Flash content. It will appear to any search engine.

� A <script> block that calls the dynamic publishing method swfobject.embedSWF().

SWFObject replaces the content of the <div> named in embedSWF() with the HTML necessary to
embed the Flash content as you specified using the SWFObject object. So you have a <div> named
‘‘alternate-content’’ in which demo.swf is embedded, replacing its HTML content.

The most important — and required — parameters to the embedSWF() method are as follows:

� The URL to the SWF that will be embedded.

� The id of the HTML element to replace with Flash content.

� The width that Flash Player should take up (in any measurements understood by CSS).

� The height that Flash Player should take up.

� The minimum version of Flash Player that can correctly run the content. Lower versions will see
the alternate content, or automatically upgrade if you enable this option.

You can see the full list of parameters at SWFObject’s documentation page.

899

Part IX: Flash in Context

When creating an embed page, you may find that it’s easiest to use the SWFObject generator
(http://code.google.com/p/swfobject/wiki/generator) to create your HTML, or an
appropriate template for it. It allows you to customize your embed interactively.

Enabling Flash Player Options
Regardless of which embedding technique you use, the tags used to embed Flash content can convey
a variety of options to Flash Player. These are fully documented in the Flash Professional help. See
http://bit.ly/embed-parameters.

When an <embed> tag is used, these options are set as attributes of the embed tag. When
an <object> tag is used, the options are encoded as a sequence of child nodes of the form
<param name="" value=""/>. Use this approach when writing HTML by hand. For example, the
following code sets the quality of a Flash movie using an <embed> tag in HTML:

<embed src="foo.swf" quality="high"></embed>

To set the same property using an <object> tag, use this:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000">
<param name="movie" value="foo.swf"/>
<param name="quality" value="high"/>

</object>

SWFObject lets you set embedding options in the embedSWF() method. Pass a JavaScript Object
as the params argument to the function. This block of JavaScript replaces the div with an id of
flashcontent with the Flash movie, and it sets the quality:

<script type="text/javascript">
params = {quality: "high"};
swfobject.embedSWF("demo.swf", "alternative-content",

"500", "500", "9.0.0", false, {}, params);
</script>

When using static publishing with SWFObject, set the properties on both <object> tags by hand (or
using the generator), as described earlier.

Although the documentation covers all embedding parameters, I will describe some particularly useful
ones next.

Transparent Flash
By default, the Flash Player plug-in renders your Flash content with an opaque background and with-
out being composited against other elements in the browser. By setting the wmode parameter of the
embedding code to transparent, you can make Flash content render without a background, com-
posited with all other HTML elements in a page. This can draw SWFs with irregular borders, expand
Flash content by bleeding into an otherwise transparent region, and convincingly layer Flash content
with HTML content.

900

Chapter 42: Deploying Flash on the Web

Caution
Flash content embedded as transparent takes up more system resources and performs more slowly than its
opaque counterpart. Use transparent Flash sparingly! �

Hardware Acceleration
Different values for the wmode embed parameter can enable some of Flash Player’s hardware accel-
eration, controlling how Flash Player pushes graphics to your screen for, in many cases, enhanced
performance. The hardware acceleration comes in two flavors, each with a wmode parameter.

� direct — Uses direct mode rendering if possible, bypassing the browser’s rendering code and
drawing directly to whatever display API your OS exposes (DirectDraw, DirectX, or OpenGL).
This mode can improve performance in games, video players, and other applications that
redraw large areas of the screen.

� gpu — Uses GPU mode rendering using the OS’s display API (DirectX or OpenGL) to com-
posite frames after drawing, much like Mac OS X and Vista Aero composite windows on the
graphics card. This doesn’t speed up drawing, only compositing, and not in all cases. Also,
requesting GPU mode using the wmode parameter doesn’t guarantee it will be active. Hard-
ware and software requirements must be met. Use the Stage instance’s wmodeGPU parameter
to determine whether GPU mode is being used.

Hardware-accelerated Flash requires a modern graphics card and operating system. Acceleration won’t
improve performance in all cases. For a brief discussion of the GPU-accelerated rendering modes, read
Tinic Uro’s post at http://bit.ly/kaourantin-gpu-acceleration.

Version
FP 10. Hardware-accelerated rendering is only available in Flash Player 10 and up. �

Full-Screen Flash
You can use ActionScript to put the Flash Player in full-screen mode, overtaking the user’s entire
screen with your content. You can even enable this behavior in a browser. This allows a Flash video
player, for instance, to display in its normal size inside the browser window or to fill the user’s entire
display. I covered this in Chapter 14, ‘‘Visual Programming with the Display List.’’

Version
FP9. Full-screen mode is only available in Flash Player 9.0.28 and later. �

For the Flash Player plug-in to enable full-screen mode, the allowFullScreen embed parameter
must be set to true, as in the following:

params = {allowFullScreen: "true"};
swfobject.embedSWF("demo.swf", "alternative-content",
"500", "500", "9.0.0", false, {}, params);

Because this feature requires Flash Player 9.0.28 or later, be sure to configure your Flash embed to
require this version or later to ensure full-screen capability.

901

Part IX: Flash in Context

Passing Variables to a SWF
You can pass values from HTML into embedded Flash content. These variables are often inserted into
the HTML by scripts or passed in via the URL query string. You can use this technique to enable one
SWF to serve in many situations, to avoid adding a second network access to retrieve some value that
is available at the time the HTML page is served, or to ensure that a value is set before the first frame
of the SWF plays. For example, sIFR (http://www.mikeindustries.com/sifr/) uses one SWF
file (per font) to display any given text in a specific typeface by passing the text to be rendered into
the Flash content at embed time.

Passing values into embedded SWFs, in fact, is also achieved by setting an option on the embedding
tags. The option name is flashVars, and its value is a URL-encoded set of name/value pairs. By
using URL encoding, you can represent multiple variable names and values in one string so that you
can use that string as the value of a single Flash embedding option. The following example illustrates
this phenomenon. If you have the following variables

var name = "Roger";
var age = 28;
var eyes = "brown";

you can send these to an embedded SWF by setting the flashVars option:

<param name="flashVars" value="name=Roger&age=28&eyes=brown"/>

Because of the URL encoding, all variables passed to an embedded SWF are encoded as strings. You
can include as many variables as you want, but the whole URL-encoded string must be under 64KB
or browsers may not accept it.

SWFObject lets you send variables into embedded SWFs without dealing with URL encoding.
Just pass in a JavaScript Object containing all your variables to the flashvars argument of the
embedSWF() function.

flashvars = {name: "Roger", age: 28, eyes: "brown"};
swfobject.embedSWF("demo.swf", "alternative-content",
"500", "500", "9.0.0", false, flashvars);

To access these variables in the embedded SWF, access the LoaderInfo object of the root class of
that SWF. This is the Application class if you’re using Flash Builder, or it’s the class set to the Docu-
ment Class if you’re using Flash Professional. The parameters property of the LoaderInfo object
is an Object in which you will find all the variables passed in at embed time. Example 42-1, when
used as the root class, traces out all the variables passed in by the embed.

EXAMPLE 42-1 http://actionscriptbible.com/ch42/ex1

Accessing Variables Passed to the SWF

package {
import com.actionscriptbible.Example;
public class ch42ex1 extends Example {
public function ch42ex1() {
var flashVars:Object = this.loaderInfo.parameters;

902

Chapter 42: Deploying Flash on the Web

trace("flashvars ----------");
for (var variable:String in flashVars) {
trace(variable + ": " + flashVars[variable]);

}
}

}
}

Automatically Upgrading Flash Player
To ensure that users see your content with an appropriate version of Flash Player, you must ask those
with older versions to upgrade. However, you want to make this as easy as possible. Instead of redi-
recting users to Adobe’s Flash Player install page, you can actually trigger Flash Player to upgrade itself
without navigating away from the page using a technique called Express Install. Express Install will
display a dialog box on the page where your SWF would normally display, asking only that you con-
firm the upgrade. Figure 42-1 shows what the user will see in place of the Flash content.

FIGURE 42-1

The Express Install interface

To follow an Express Install process, you must first determine that the user’s Flash Player needs to
be upgraded. Then you typically pass off installation to an alternate SWF. This SWF, to be able to
upgrade the oldest possible Flash Player version, should be compiled for the earliest version of Flash
Player that supports Express Install, Flash Player 6.0.65. This SWF then loads an upgrader SWF
from Adobe: http://fpdownload.adobe.com/pub/flashplayer/update/current/swf/
autoUpdater.swf. Adobe’s SWF displays a dialog box to the user requesting permission to
upgrade the Flash Player, and if permission is granted, attempts to install the latest Flash Player.
When it is complete, Adobe’s updater SWF signals a status back to your SWF, letting you know
if the update was successful, failed, or was denied by the user. This description of the Express
Install process is mostly for educational purposes. SWFObject comes with a template FLA to
customize your Express Install experience, and in most cases, using the default Express Install
SWF provided by SWFObject suffices. Once you have an Express Install SWF, pass its URL as the
expressInstallSwfUrl parameter to embedSWF(). The following snippet uses the provided
upgrade SWF called expressInstall.swf.

swfobject.embedSWF("demo.swf", "alternative-content",
"500", "500", "9.0.0", "expressInstall.swf");

903

Part IX: Flash in Context

Flash Builder can generate and publish an Express Install SWF for your project if you choose to use
its HTML embedding templates. Check the Use Express Install option in a project’s ActionScript Com-
piler properties panel.

To use Express Install, the user must have at minimum Flash Player 6.0.65, and the SWF it is running
in must be at least 214 pixels wide by 137 pixels high. The user must also be able to install software
on her own computer, which is often not the case for corporate or shared computers.

Summary

� There are many ways to embed Flash content on the web.

� There are scripted solutions and tag-only solutions.

� SWFObject is the de facto standard.

� Flash content can be embedded with many options.

� Variables can be passed into embedded SWFs using flashVars.

� The Flash Player plug-in can attempt to update itself using Express Install.

904

Interfacing with
JavaScript

FEATURED CLASSES

flash.external.*

I
n this chapter, I’ll look at how you can communicate from Flash Player
to JavaScript and vice versa. When you deploy Flash content in a web
browser, you may want to be able to communicate with the container

HTML page. You may want to call JavaScript functions from the SWF, and
you may want JavaScript functions to be able to call functions within the
SWF. Tightly integrating Flash Player and its container page yields a hybrid
page that has the potential to be more accessible, quicker loading, or more
standards compliant. You can play to the strengths of each technology, using
small instances of Flash Player for graphically rich, multimedia, and highly
interactive content, and using HTML for long stretches of fully accessible
copy, dynamic CSS-directed layout, and CMS-driven content. With the
glue described in this chapter, you can ensure these two pieces are tied
together.

Using ExternalInterface

You can use the ExternalInterface class in the flash.external package
to call JavaScript functions from Flash and call ActionScript functions from
JavaScript. ExternalInterface is officially supported on the following
browsers:

� Firefox 1.0 and above for Windows and Mac, 1.5.0.7 and above for Linux

� Safari 1.3 and above for Mac

� Internet Explorer 5.0 and above for Windows

Discontinued browsers Netscape and Mozilla are also officially supported. In
addition, I have had no problems using ExternalInterface with Opera or
Chrome. You can reasonably expect it to be supported by your users.

To ensure ExternalInterface is supported before using it, use its static
available property.

905

Part IX: Flash in Context

Calling JavaScript Functions from Flash
You can use ExternalInterface to call a JavaScript function from within your SWF.
The JavaScript function can then return a value to Flash Player. Simply call the static
ExternalInterface.call() method. The call() method requires at least one parameter — the
name of the JavaScript function to call. You can also pass additional parameters, each of which is
passed to the JavaScript function as a function argument. The following code calls the JavaScript
alert() function with a parameter of hello:

ExternalInterface.call("alert", "hello");

If the JavaScript function returns a value, that value will be returned by call(). Furthermore,
JavaScript is executed synchronously: call() waits for the function it proxies to complete before
evaluating, and Flash Player only proceeds to the next ActionScript statement once the result of
the JavaScript function is computed. So you can treat call() as a transparent proxy for your
JavaScript functions. The following example code assigns the return value from a JavaScript function
getStringValue() to a variable:

var value:String = ExternalInterface.call("getStringValue");

Of course, the JavaScript function you call must be available in the same context as the Flash Player
embed. Usually, these are defined in <script> blocks or loaded by the browser from JS files. If you
use JavaScript to embed your SWF, you can ensure that the page has finished loading before running
SWF content, preventing the unlikely condition that your ExternalInterface call might execute
before the JavaScript function it calls is defined. Should you call an undefined JavaScript method,
undefined is returned.

If your Flash application needs to execute JavaScript that isn’t defined in the page, and for some rea-
son you can’t add this JavaScript code, you can use the following trick. Instead of a function refer-
ence, pass call() the function itself. In Example 43-1, you use an anonymous function to execute
JavaScript that’s not defined in a <script> tag.

EXAMPLE 43-1 http://actionscriptbible.com/ch43/ex1

Executing JavaScript with an Anonymous Function

package {
import com.actionscriptbible.Example;

import flash.external.ExternalInterface;

public class ch43ex1 extends Example {
public function ch43ex1() {
if (ExternalInterface.available) {
trace(ExternalInterface.call("function(){return navigator.userAgent}"));

}
}

}
}

906

Chapter 43: Interfacing with JavaScript

The example traces the browser’s identity from within Flash Player, using an extremely simple func-
tion you write inside your ActionScript file (as a String). Using a short function like this is innocu-
ous enough, but you should steer clear of passing long functions.

Note
You may be wondering how ActionScript and JavaScript can be compatible enough to pass data back and
forth. ActionScript — being an ECMAScript language — shares all the basic data types of JavaScript, like
String, Array, and Object. On the other hand, ActionScript defines many more data types that don’t exist
in JavaScript. Because you’re calling JavaScript code, you have no reason to use these data types as function
arguments, nor could a JavaScript function return them. �

Calling ActionScript Functions from JavaScript
You can also call ActionScript functions from JavaScript. To do so you must register the function in
ActionScript so that it is accessible from JavaScript and then call the function from JavaScript via the
Flash embed object.

You can expose an ActionScript function to JavaScript with the static ExternalInterface
.addCallback() method. The method requires two parameters: the name of the function as you
want to call it from JavaScript and the reference to the function or method that you want to register.
The following example registers a function called resume() so that you can call it from JavaScript as
resumeFlashGame():

ExternalInterface.addCallback("resumeFlashGame", resume);

Once a function is registered, you can call it from within JavaScript. From JavaScript, you call the
function as a method of the Flash object by referencing the ID of the plug-in or ActiveX object.
The standard way to do this is with the JavaScript getElementById() function, defined in
HTML DOM Level 2. This is compatible with all modern browsers. If your Flash content was
embedded with an ID of "flashObjectID", you would retrieve a reference to the plug-in object
like so:

document.getElementById("flashObjectID");

And you could call the registered ActionScript method from JavaScript with this code:

document.getElementById("flashObjectID").resumeFlashGame();

or:

window.flashObjectID.resumeFlashGame();

You can pass parameters from JavaScript to the function (again limited by the data types available in
JavaScript). Likewise, you can use the return value of the ActionScript function in JavaScript.

You should be able to determine the ID of the Flash Player embed element in JavaScript. However,
should you need it, ExternalInterface can report the ID of the Flash Player element it’s running
inside. Use the static property ExternalInterface.objectID.

907

Part IX: Flash in Context

JavaScript Interaction and Flash Player Security
To interface with scripts in the containing web page, the AllowScriptAccess embed parameter
must be set to the proper value. These values include

� always — Flash Player is allowed to communicate with the page, even if it is hosted in mis-
matching domains.

� sameDomain — SWFs may communicate with HTML from the same domain only. This is the
default value.

� never — This prohibits the embedded SWF from communicating to JavaScript in the page.

See more about this embedding tag at http://bit.ly/allow-script-access. Likewise, to
return values to ActionScript and register callbacks, you must allow access to the SWF from the
domain the HTML is hosted in using Security.allowDomain().

If the SWF is not permitted by these rules to communicate with the HTML page, SecurityErrors
are raised.

Making a Hybrid Application with

ExternalInterface
You’ve had a chance to read about the theory of ExternalInterface. Now you’ll use the theory
to put together a simple demonstration application. Example 43-2 uses a Flash movie with a rotating
rectangle, a start/stop button, and a text field. The Flash movie is placed within an HTML page with
a text input and a button. The Flash movie requests that data and displays it in the text field. When
the user clicks the start/stop button in the Flash movie, it pauses and resumes the rotation of the rect-
angle, and it sends a message to the HTML text input to display the current status of the rectangle.
The HTML button makes a new random color and sends it to the Flash movie. The Flash movie then
applies that color to the rectangle.

EXAMPLE 43-2 http://actionscriptbible.com/ch43/ex2

Exposing ActionScript Functions to JavaScript

package {
import flash.display.Shape;
import flash.display.Sprite;
import flash.events.TimerEvent;
import flash.external.ExternalInterface;
import flash.utils.Timer;

public class ch43ex2 extends Sprite {
private var rectangle:Shape;
private var timer:Timer;
public function ch43ex2() {
rectangle = new Shape();
rectangle.graphics.lineStyle(5, 0, 1);
rectangle.graphics.drawRect(0, 10, 100, 100);

908

Chapter 43: Interfacing with JavaScript

addChild(rectangle);
timer = new Timer(50);
timer.addEventListener(TimerEvent.TIMER, timerHandler);
togglePlayback();
if (ExternalInterface.available) {
ExternalInterface.addCallback("togglePlayback", togglePlayback);

}
}
public function togglePlayback():void {
if (timer.running) {
timer.stop();

} else {
timer.start();

}
}
private function timerHandler(event:TimerEvent):void {
if (stage) {
rectangle.x += 5;
if (rectangle.x > stage.stageWidth) {
rectangle.x = 0;

}
}

}
}

}

Publish the example as ch43ex2.swf. Use SWFObject to embed the Flash content in an
HTML page. You can learn more about using SWFObject in Chapter 42, ‘‘Deploying Flash
on the Web.’’ If you don’t already have the SWFObject JavaScript file, download it from
http://swfobject.googlecode.com/ and place the JS file in the same directory as the
SWF file. In the same directory as the SWF and JS files, add a new HTML document called
ch43ex2.html with the following contents:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Example ExternalInterface</title>
<script type="text/javascript" src="swfobject.js"></script>
<style type="text/css">
body {
background-color: #eeeeee;

}
#buttons {
width: 300px;
overflow: auto;

}
#flashcontent {
float: left;

909

Part IX: Flash in Context

margin: 15px 20px;
}

</style>
</head>
<body>
<div id="flashcontent">

You need to upgrade your Flash Player
</div>

<script type="text/javascript">
swfobject.embedSWF("ch43ex2.swf", "flashcontent", "550", "400", "9");

</script>
<div id="buttons">

<input type="button"
onClick="document.getElementById(’flashcontent’).togglePlayback()"
value="Toggle Playback" />

</div>

</body>
</html>

Because I can’t modify the containing HTML on wonderfl, you’ll notice that these examples are hosted
on http://actionscriptbible.com/ instead.

Summary

� You can use ExternalInterface to create integrated applications in which Flash and
JavaScript communicate synchronously.

� Use ExternalInterface.call() to call JavaScript functions from Flash.

� Use ExternalInterface.addCallback() to register an ActionScript function or method
so that it can be called from JavaScript.

910

Local Connections
between Flash
Applications

FEATURED CLASS

flash.net.LocalConnection

U
sing the LocalConnection class, you can enable multiple Flash appli-
cations running on the same computer to communicate with each other.
This is interprocess communication (IPC) for the Flash platform. I cov-

ered client-server communication in Chapter 28, ‘‘Communicating with Remote
Services’’: here I introduce client-client communication. Local connections work
without a network connection of any kind, directly between ActionScript running
in both applications.

Local Connections and Their Uses

Local connections enable communication between one or more Flash platform
applications on the same computer without additional tooling. Just like most of
the client-server techniques used in Chapter 28, by ‘‘communication’’ I specifi-
cally mean ‘‘method invocation.’’ After you open a local connection from a send-
ing application A to a receiving application B, application A can call methods,
optionally passing arguments, to application B. This connection is one way in
that A can only call methods on B. However, you can program a simple hand-
shaking protocol that makes B establish a parallel connection back to A so that
one connection exists for each direction, simulating bidirectional communication.
Furthermore, the one-directional communication extends to return values: A can
call methods on B, but any return values from B methods are lost; they are not
sent back to A. The method invocations are asynchronous, but A can listen for
an event indicating whether the message was successfully sent to B.

Local connections are convenient because they don’t impose additional require-
ments: any two Flash platform applications on the same computer can commu-
nicate (assuming they don’t violate the security policy). You don’t need to open a
network connection or even have a network adapter in the computer. You don’t
need to call out to the application’s container, JavaScript, COM, or anything. The
Flash runtime handles all of it. I’ve been implying another powerful advantage
of local connections by saying ‘‘Flash platform’’ and ‘‘Flash runtime’’ rather than
‘‘Flash Player.’’ Local connections work between different Flash runtimes, as well.

911

Part IX: Flash in Context

So you can communicate between ActionScript running in an AIR application and ActionScript run-
ning in Flash Player in the browser.

Another important property of local connections is that they work in all versions of Flash Player,
including those that run AVM1 (pre-ActionScript 3.0; Flash Player 8 and below). Recall that
AVM1 and AVM2 are completely separate virtual machines that run isolated from each other,
so when you load in a SWF that was published for Flash Player 8 or earlier, your Action-
Script 3.0 code has no access to the ActionScript 1.0/2.0 code in the loaded SWF. But both
can use local connections! So LocalConnection can act as the bridge between SWFs run-
ning in AVM1 and AVM2; it can interface ActionScript 1.0 and 2.0 code with ActionScript
3.0 code.

There are several good but specific applications for local connections:

� Interfacing with a loaded SWF that uses AVM1

� Ensuring that only one instance of an application is running at once

� Using a web page to check if an AIR application is running, and communicating with it

� Linking Flash elements in a hybrid Flash/HTML site

� Linking multiple advertisement units in a single web page, making them interact cleverly

These are just some ideas. Any time you have to make Flash applications interact on the same com-
puter, LocalConnection might be able to help.

There are obvious security concerns with letting Flash applications talk to each other; Flash Player or
AIR can deny any local connection that doesn’t satisfy its security policy. Security and local connec-
tions are discussed later in this chapter.

Implementing a Local Connection
There are two sides to any connection: the sending application and the receiving application. Let’s see
how to code each side.

The Sending Application
Creating and sending data over a LocalConnection is a cinch:

1. Create a LocalConnection object.

2. Send methods to the receiving application.

3. Optionally, listen for the status of those method invocations.

To create a new LocalConnection object, just use its constructor, which takes no arguments:

var sendingConnection:LocalConnection = new LocalConnection();

Sending Methods to a Receiving Application

With client-server communication, you pick a specific server to communicate with by its URL or
domain/IP and port. But local connections can be made to any listening Flash application running

912

Chapter 44: Local Connections between Flash Applications

on the computer, regardless of where the SWF is hosted or what Flash runtime it’s using. So it’s up to
you to specify who to talk to. You do this by agreeing to a channel to communicate on.

Say you’re going on a trip into the deep woods with a hiker friend of yours. You agree ahead of time
with your friend on a radio frequency to communicate on, and you both go your separate ways. You
don’t know what other hikers are out there in the woods listening to your radio, and without broad-
casting, you don’t even know if your friend is listening. So you turn on your radio and broadcast
over the predetermined frequency. Your friend hears your signal and can listen to you. That’s just
how the sending application finds the listening application. There’s also a chance of a rather unlikely
problem here: a different hiker might be using the same frequency and might reply instead of your
friend. In the same way, it’s best to come up with a channel name for your LocalConnection
that’s unique.

Unlike client-server applications, where you should ensure a connection is established before sending
data over it, you can just broadcast over your channel at will with local connections. Just like in the
woods, you broadcast on your frequency without knowing who is listening; it’s up to your friend to
turn on his radio and tune it into that frequency.

So let’s invoke a method on listening applications. To do so, use the send() method. You’ll have to
pass this method the channel name, the name of the function you’d like to invoke on the listening
application, and optionally any number of arguments.

sendingConnection.send("mouseChannel", "mouseMoved", 234, 107);

In this line you’re attempting to tell an application listening to channel mouseChannel to call
mouseMoved(234, 107), to set a new mouse position perhaps.

Note
A LocalConnection is limited to sending 40KB of data at a time; if you pass more to send(), it raises an
ArgumentError. �

Listening for the Status of Local Method Invocations

The LocalConnection object broadcasts a StatusEvent.STATUS event for every method invoca-
tion you send to the receiving application. This event can indicate either success or failure of the call,
shown by the level property of the event object. However, this is somewhat misleading. The status
event doesn’t indicate whether the code on the receiving application executed without error. It merely
indicates whether the invocation message was received by a receiving LocalConnection listening
on that channel.

In the radio example, the status event indicates whether someone heard your broadcast. It does not
indicate whether the listener acted on your message. You can’t really know that, because your friend
can only listen and you can only send.

Listen to StatusEvent.STATUS to make sure your method invocation was received. If the
level property of the event object is "status", the message was received. If the level property is
"error", there was no receiving application listening on that channel.

Caution
Status events with a level of "error" are considered asynchronous errors by Flash Player, so they present
an error dialog in debugging versions of Flash Player. Make sure to subscribe to status events so that errors are
captured. �

913

Part IX: Flash in Context

Before sending the first invocation, you might add a status listener to the sending application:

sendingConnection.addEventListener(StatusEvent.STATUS, onSendStatus);

protected function onSendStatus(event:StatusEvent):void {
if (event.level == "error") {

trace("ERROR: local connection failed to send the message.");
}

}

And that’s all it takes to invoke methods on local applications. Note that you didn’t need to connect
or disconnect. This is not necessary because sending LocalConnections are broadcast only; they
are stateless.

The Receiving Application
Listening to method calls from another local application using LocalConnection is also relatively
easy, although the process is not totally analogous to the sender application:

1. Create a LocalConnection object and, optionally, assign it a delegate that contains func-
tions that may be invoked by another local application.

2. Open the LocalConnection to messages by listening to a particular channel.

3. Methods are called by the LocalConnection as received.

4. Disconnect from the channel when you are finished receiving method invocations.

Both sending and receiving applications use the LocalConnection class. To implement the receiv-
ing application, first create a new LocalConnection.

var listeningConnection:LocalConnection = new LocalConnection();

Assigning a Delegate

When the sending application calls functions by name, the receiving application has to find those
functions. By default, it looks to the receiving LocalConnection instance for those functions.
For instance, if listeningConnection receives a method invocation for a function called
mouseMoved, it attempts to call the function listeningConnection.mouseMoved(). There’s
just one problem with this: LocalConnection is not a dynamic class, so you can’t add a
mouseMoved function to it.

Not to worry, though, because LocalConnection lets you specify a delegate object. The
delegate is the object that the received function calls are executed on. Set this property of a
LocalConnection with its client property. For example, to have functions in the same context
called, just set the delegate to this:

listeningConnection.client = this;

Or perhaps you could limit the local connection to certain functions by creating a delegate object
with function references or inline functions. Assuming you have functions mouseMoved() and
mouseClicked() defined in scope, you can create a delegate object limited to these two methods
like so:

listeningConnection.client = {
mouseMoved: mouseMoved,
mouseClicked: mouseClicked

};

914

Chapter 44: Local Connections between Flash Applications

By creating your own delegate object like this, you can not only limit the functions that can be called,
but map them from different names and pull them in from various different classes. You can also
define the functions inline with this approach.

Listening to a Named Channel

Before you can receive any messages, you have to tune in to the proper channel. Simply call
connect() with the name of the channel:

listeningConnection.connect("mouseChannel");

The channel name has some impact on the security policy, which I’ll cover in the next section.

That’s all! You have a sending connection and a receiving connection. Methods can now be invoked
across these two applications on the same computer. The functions called by send() on the send-
ing application execute the corresponding functions on the client object of the connected receiving
application.

Closing the Connection

When you want to stop receiving from the local connection, just call its close() method:

listeningConnection.close();

Local Connections and the Security Policy
By default, local connections work between Flash applications hosted on the same domain
(or between SWFs on your local filesystem). That is, if a sending application is being run
from actionscriptbible.com, it defaults to broadcasting to other applications on
actionscriptbible.com. With just a few changes, however, you can configure applica-
tions to send and receive messages across domains so that, for example, an application loaded from
actionscriptbible.com can communicate with an application running on the same machine but
loaded from wiley.com.

The channel name you choose has a big impact on cross-domain local connections. Thus far, you’ve
simply chosen a channel name. Behind the curtains, however Flash Player has actually been modifying
the channel names. When a SWF hosted on www.actionscriptbible.com connects to a channel
mychannel, Flash Player expands this channel name into the following:

actionscriptbible.com:mychannel

Note
It is actually the superdomain that is added to the channel name, not the exact domain. You can see here that
the www. was stripped from the domain. �

Thus, if the sending application is on senddomain.com and the receiving application is on
receivedomain.com, the sending application sends to channel mychannel, and the receiving
application connects to channel mychannel. Although the channels seem to be the same, they will
actually be mismatched after Flash Player expands them:

915

Part IX: Flash in Context

receivedomain.com:mychannel
senddomain.com:mychannel

Local connections are unlike most other security policy concerns that operate through
crossdomain.xml files. You have several options to get around this restriction.

Specifying the Domain in the Sender
If you know the domain of the receiving application, you can specify this in the channel name when
calling send(), instead of having your own domain name prepended automatically. If, in the sending
application, you call

sendingConnection.send("receivedomain.com:mychannel", "ping");

the ping() function is called on the receiving application’s local connection delegate. On the receiv-
ing side, don’t specify the domain in connect(). It is added on automatically.

This method doesn’t require changes to the receiving application, but it does require that you
specify the receiving application’s domain exactly. If this changes, you need to change the channel
name in the sending application.

Removing the Domain from the Channel Name
If you start the channel name with an underscore (_), Flash Player doesn’t automatically prepend the
domain name. This means that the channel is open to any receiver on any domain. However, you’re
not out of the woods yet. This merely allows the connection name to be unchained from the domain.

//in the sending application hosted on senddomain.com
sendingConnection.send("_mychannel", "ping");

//in the receiving application hosted on receivedomain.com
listeningConnection.connect("_mychannel");

In the preceding code, the sending and receiving applications could be on any domain, and they
would still have the opportunity to make a local connection.

Allowing Cross-Domain Local Connections from
the Receiving Application
If you use a domain-free channel name (one that begins in an underscore) and communicate
between applications loaded from different domains, you still have to explicitly permit the
interaction. The receiving application has to approve sending applications by domain; you do
so by using allowDomain() and allowInsecureDomain() on the receiving application’s
LocalConnection instance. These work the same way as Security.allowDomain() and
Security.allowInsecureDomain() but apply specifically to the local connection.

//in the sending application hosted on senddomain.com
sendingConnection.send("_mychannel", "ping");

916

Chapter 44: Local Connections between Flash Applications

//in the receiving application hosted on receivedomain.com
listeningConnection.allowDomain("senddomain.com");
listeningConnection.connect("_mychannel");

In this example, even though the channel name is not domain specific, local connections are accepted
only from applications hosted on senddomain.com.

If you want, you can let applications from any domain establish connections by allowing the wildcard
domain.

listeningConnection.allowDomain("*");
listeningConnection.connect("_mychannel");

The localhost domain is reserved for applications loaded from the local filesystem; AIR applications
loaded locally have their own schema based on the application ID. You can also use these methods to
accept multiple domains by passing as many parameters as you like.

You can find some diagrams of the multiple ways to connect locally between cross-domain applica-
tions in the AS3LR page on LocalConnection.

Example: Following the Mouse
Let’s flesh out a full example where the sending application sends the position of the mouse, and the
connected listening application mirrors this location with an arrow.

First, the sending application is shown in Example 44-1.

EXAMPLE 44-1 http://actionscriptbible.com/ch44/ex1

Sending the Mouse Position

package {
import com.actionscriptbible.Example;
import flash.events.MouseEvent;
import flash.events.StatusEvent;
import flash.net.LocalConnection;
public class ch44ex1 extends Example {
protected var sendingConnection:LocalConnection;
public function ch44ex1() {

//sending application.
sendingConnection = new LocalConnection();
sendingConnection.addEventListener(StatusEvent.STATUS, onSendStatus);
stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

}
protected function onMouseMove(event:MouseEvent):void {

sendingConnection.send("_mouseChannel", "mouseMoved",
event.stageX, event.stageY);

}

continued

917

Part IX: Flash in Context

EXAMPLE 44-1 (continued)

protected function onSendStatus(event:StatusEvent):void {
if (event.level == "error") {
trace("ERROR: local connection failed to send the message.");

}
}

}
}

The receiving application is shown in Example 44-2.

EXAMPLE 44-2 http://actionscriptbible.com/ch44/ex2

Receiving the Mouse Position

package {
import flash.display.*;
import flash.net.LocalConnection;
public class ch44ex2 extends Sprite {
protected var arrow:Shape;
protected var listeningConnection:LocalConnection;
public function ch44ex2() {
//listening application.
makeArrow();

listeningConnection = new LocalConnection();
listeningConnection.allowDomain("*");
listeningConnection.client = {mouseMoved: mouseMoved};
listeningConnection.connect("_mouseChannel");

}
protected function mouseMoved(newX:Number, newY:Number):void {
arrow.x = newX;
arrow.y = newY;

}
protected function makeArrow():void {
var SIZE:Number = 20, ARROW_SIZE:Number = 9, LINE_WIDTH:Number = 4;
arrow = new Shape();
arrow.graphics.lineStyle(LINE_WIDTH, 0, 1, false,
LineScaleMode.NORMAL, CapsStyle.NONE, JointStyle.MITER, ARROW_SIZE);

arrow.graphics.moveTo(-SIZE, 0);
arrow.graphics.lineTo(SIZE-LINE_WIDTH/2, 0);

arrow.graphics.moveTo(SIZE-ARROW_SIZE, ARROW_SIZE);
arrow.graphics.lineTo(SIZE, 0);
arrow.graphics.lineTo(SIZE-ARROW_SIZE, -ARROW_SIZE);
addChild(arrow);

}
}

}

918

Chapter 44: Local Connections between Flash Applications

You’ll have to launch both applications and make sure they’re both visible to see the effect.

Summary

� Flash applications can communicate with other Flash applications running on the same
machine by using LocalConnection.

� Local connections are completely one-way.

� Local connections invoke functions on the receiving application, optionally passing any number
of arguments and up to 40KB of data.

� Use a delegate object on the receiving application to define functions that may be called from
the sending application.

� By default, the LocalConnection object allows connections only between applications from
the same domain. However, with some changes in the sending and receiving applications, com-
munication can occur between applications from different domains.

919

Symbols
&, SharedObject, 574

&&, And operator, 28–29

""

SharedObject, 574

string literals, 19, 114

%

modulo operator, 25

SharedObject, 574

%=, compound assignment operator, 25

’’

SharedObject, 574

string literals, 19, 114

*

arrays, 176

multiplication sign, 24, 133

regular expression quantifiers, 240

save(), 600

wildcard

data types, 23

XML, 197

*/, comments, 20

+

addition operator, 24, 133

text concatenation, 118

trace(), 118

E4X, 204

octaves, 765

+=

compound assignment operator, 25

E4X, 204

++, increment operator, 24, 25

, 26

objects, 182

SharedObject, 574

-

hyphen, URLLoader, 554

minus sign, 24, 133

octaves, 765

-=, compound assignment operator, 25

--, decrement operator, 25

-->, XML comments, 20

.

kernel metadata, 809

regular expressions, 236

SharedObject, 574

.., descendant access operator, 200

..., rest parameters, 43–44

/

division sign, 24, 133

slash

localPath, 578

regular expressions, 237

/=, compound assignment operator, 25

//, comments, 20

:

data types, 46

functions, 41

objects, 182

regular expression quantifiers, 239

SharedObject, 574

::

namespaces, 77

scope resolution operator, 219–220, 227

;

kernel metadata, 809–810

SharedObject, 574

statements, 16

<

less than, 28

SharedObject, 574

<!--, XML comments, 20

<>, metadata, 805

>

greater than, 28

SharedObject, 574

=

assignment operator, 24

compiler, 27

default values, 43

namespaces, 76

==, equality operator, 27

?

regular expression quantifiers, 239–240

SharedObject, 574

@

attribute identifier, 198

namespaces, 219

(?:), conditional operator, 31–33

(), functions, 39–40, 48

{}

if, 27

objects, 182

921

Index

[]

arrays, 147, 265

ByteArray, 749

string characters, 120

XMLList, 197

[...], regular expressions, 239

[∧...], regular expressions, 239

\

escaped characters, 115

regular expressions, 237

SharedObject, 574

\", escaped characters, 114, 115

\’, escaped characters, 114, 115

\), regular expressions, 243

\\, TextField restrictions, 345
∧

regular expression anchor, 242

regular expressions, 238

TextField restrictions, 345

_

channel name, 916

properties, 80

!=, not equal to, 28

!, not operator, 28

|, regular expression alternation, 242

||, OR operator, 28–29

$, regular expression anchor, 242

#, SharedObject, 574

∼, SharedObject, 574

A
<a>

Flash Player HTML, 334

TLF markup, 383

a/*, javadoc comments, 21

a/**, javadoc comments, 21

AAC, audio codec, 627

-able, interfaces, 96

absoluteEnd, 389, 390

absoluteStart, 389, 390

Accelerometer, 485–486

Accept-Language, 882

access control attributes

OOP, 70–77

scope, 22

static, 84

accessibility, 892–893

Accessibility, 501

AccessibilityProperties, 893

accessors, 79–81

overrides, 90

Action Message Format (AMF), 268, 569

ActionScript 1.0

SharedObject, 579

SWFs, 548–549

ActionScript 2.0

ActionScript 3.0, 11–12

SharedObject, 579

SWFs, 548–549

ActionScript 3.0

ActionScript 2.0, 11–12

language basics, 15–38

ActionScript 3.0 Language and Component Reference

(AS3LCR), 26

ActionScript 3.0 Language Reference (AS3LR), 26

ActionScript Virtual Machine (AVM), 169

associative arrays, 183

call stacks, 516–517

SWFs, 548–549

actionscriptbible.com, 534

actionScriptVersion, 549

:active, 337

activePosition, 389, 390

ActivityEvent.Activity, 647, 651

activityLevel, 651–652

activityLevelMicrophone, 651–652

actualLocaleIDName, 888–889

add(), 290

addCallback(), ExternalInterface, 907

addChild(), 330, 377, 381

DisplayObject, 277–278

DisplayObjectContainer, 283

addChildAt(), 278, 283

addController(), 379

addControllerAt(), 379

addEventDispatcher(), 419–421

addEventListener(), 48, 411, 423

addNamespace(), 222

addPage(), 400, 401–403

add():Vector3D, 311, 678

adl, AIR, 8

Adobe Media Encoder, 631

ADPCM, 611, 627

affine transformations

2D, 658–666

3D, 674–675

AIFF, 609

AIF_FLASH_TARGET, kernel, 809

AIM, 565

AIR

adl, 8

API, 6–7

error logging, 526

runtime, 8, 10, 436, 589

.air, 8

album, ID3Info, 616

algorithmist.wordpress.com, 698

ALIAS, 585

aliases, 360, 402

anti-aliasing, 298, 365–366, 702

align, 287, 335, 341

AlivePDF, 399–400, 599

922

Index

allowDomain(), 916–917

allowFullScreen, 295, 901

allowInsecureDomain(), 916–917

AllowScriptAccess, 908

alpha, 361, 701, 779

DisplayObject, 281

DropShadowFilter, 773

alpha, red, green, and blue (ARGB), 733–734, 811

alphaArray, 757

alphaBitmapData, 742

alphaMultiplier, 667, 745, 848

alphaOffset, 667

alphaPoint, 742

alphas, 707, 777

Alternativa3D, 319

altKey, 436, 450

always, AllowScriptAccess, 908

AMF. See Action Message Format

anchorPosition, 390

anchors, regular expressions, 240–242

anchorX, 694

anchorY, 694

AND, 262

<and>, 202

angle, 773, 775, 777

animation, 835–854

BitmapData, 741

code, 837–841

DisplayObject, 838

Flash Player, 835–837

Flash Professional, 841–852

Flex, 852

frames, 839

onTimer(), 838

Timer, 837–838

Animator, 851

anonymous functions, 46–47

anonymous object, 189

Anthropod, 526

anti-aliasing, 298, 365–366, 702

API. See Application Programming Interface

append(), 682

appendChild():XML, 206

appendRotation(), 685

appendScale():void, 682

appendText(), 330

appendTranslation():void, 682

Application, 69

applications

bitmaps, 733–735

drawing, 716–721

ExternalInterface, 908–910

printing, 403–406

video, 632

Application Programming Interface (API), 6–7

AIR, 6–7

Flash Player, 6

runtime, 6–7

ApplicationDomain, 546

applyContainerFormat(), 391

applyFilter(), 761

applyFormat(), 391

applyLeafFormat(), 391

applyLink(), 391

applyParagraphFormat(), 391

applyTCY(), 391

ARGB. See alpha, red, green, and blue

ArgumentError, 495, 500

arguments

Bitmap, 736

functions, 39, 41–44

methods, default values, 43

objects, 188–189

arithmetic operators, 24, 133–135, 142, 260

Armstrong, Jim, 698

Array(), 180

arrays (Array), 145–165. See also ByteArray

*, 176

for, 153–154

associative, 162–163, 183–188

CSS, 339

casting, 99

concat(), 149–150

constructors, 145–147

debugger, 514

each...in, 154

every(), 159–161

filter(), 159–161

forEach(), 154–155

iteration, 153–155

literals, 147

loops, 153–154

map(), 162

multidimensional, 163–164

Pixel Bender kernel language, 814

pop(), 150–151, 227

push(), 150–151

reordering, 155–159

rest parameters, 44

reverse(), 159

shift(), 151–152

slice(), 152–153

some(), 159–161

splice(), 152

stack operations, 150–151

strings, 117, 148–149

trace(), 146

unshift(), 151–152

values, 147–148

vectors, 167–168, 169, 180

.as, 53

AS3 Animation System, 853

asc, 8

ascent, flash.text.TextLineMetrics, 357

923

Index

ASCII, 115, 123, 237, 448

as3isolib, 318

AS3LCR. See ActionScript 3.0 Language and Component

Reference

AS3LR. See ActionScript 3.0 Language Reference

ASND, 609

assert(), 502

AssertionError, 502

assignment operator, = (equals), 24

associative arrays, 162–163, 183–188

CSS, 339

as3webservice.googlecode.com, 564

asynchronous

code, 470

errors, 502–503, 913

ShaderJob, 829

attachCamera(), 210, 626

attachNetStream(), 210

attribute(), 199

attribute, 213

attributes

access control, 22, 70–77, 84

delete, 208

identifier, 198

motion XML, 843

XML, 198–199

attributes(), 199

AU, 609

auto-completion, 87

Automatically Declare Stage Instances, 324

autoSize, TextField, 331–332

available, ExternalInterface, 905

AVC, 627

AVM. See ActionScript Virtual Machine

AVM2

debugger, 505–522

Step Into, 519

AVM1Movie, DisplayObject, 284

Away3D, 318–319

axis angles, 674

B
\b

escaped characters, 115, 237

regular expression anchor, 242

, Flash Player HTML, 334

\B, regular expression anchor, 242

backface culling, 864–865

background colors, printing, 403

backgroundColor, TextField, 339

backreferences, 249–250

backtrace, 518

Badimon, Mathieu, 724

base types, 53

baseX, perlinNoise(), 764

baseY, perlinNoise(), 764

batched drawing, 721–731

beginBitmapFill(), 729

beginCompositeOperation(), 390

beginFill(), 721, 729

beginGradientFill(), 729

beginShaderFill(), 729

BetweenAS3, 853

BevelFilter, 775–776

BezierEase, 850

binary

arithmetic operators, 260

data, 257–263

files, URLLoader, 552

images, 259

operators, 24

bit shifting, 260–261

Bitmap, 284, 733, 734, 736

bitmap, 710

bitmaps

applications, 733–735

capturing/copying, 737–746

color, 751–761

ColorTransform, 752–753

creating/displaying, 735–737

drawing, 688, 710–712

effects, 761–766

embedded, 736

filters, 761

graphics, 733–767

instances, 736

memory, 737

noise(), 762–763

pixels, 746–750

printing, 402

quality, 737

scale, 734

scroll(), 762

solid color, 759–761

symbols, 326

BitmapAsset, 736

BitmapData, 399, 688

cel shading, 875

clone(), 737

colorTransform(), 752–753

copyChannel(), 743–745

data, 827

draw(), 737–741

lock(), 750

merge(), 745–746

methods, 734, 740

parameters, 735

pixelDissolve(), 762

Vector, 750

Video, 647

BitmapData.draw(), 730

bitmapFill(), 867

924

Index

BitmapFilter, 297, 821

bitwise logic, 262–263

black box principle, 55

blank, 847

_blank, 536

blendMode, 281, 738, 847

BlendMode.Layer, 297, 298

BlendMode.MULTIPLY, 806

blendShader, 819

blitting, 712

block comments, 20

blockIndent, 341

blueArray, 757

blueMultiplier, 667, 745, 848

blueOffset, 667, 848

BlurFilter, 771–772

blurX, 773, 775, 777, 780

blurY, 773, 775, 777, 780

bold, 341

bool, 811

Booleans, 19, 26, 31, 159, 186, 281, 436, 513, 566

borderColor, 339

bottom, 290

bottomRight, 290

bottomScrollV, 359

bound methods, 189

boundaries, regular expressions, 240–242

, 334, 384

, TLF markup, 383

break, 30–31, 37–38

breakpoints, 511–512, 516

brightness, color, 785–786, 848

browse(), 590, 591

browser

debugger, 509–510

localization, 881–885

SharedObject, 572–573

bubble phase, 412, 419, 423

bubbling

keyboards, 431–432

mouse, 431–432

buffering, sound, 608

bufferLength, 636

bufferTime, 636

bullet, 341

bump mapping, 874

buttonMode, 285, 434–435

byte order, 259

ByteArray, 123, 168, 265–268, 500, 549

[], 749

Bitmap, 734

clear(), 265

compression, 266

computeSpectrum(), 618

data, 828

deflate(), 266

files, 598

getPixels(), 749

IDataOutput, 265

images, 266–267

loadBytes(), 266

lock(), 750

objects, 267–268

position, 265–266

save(), 600

setPixels(), 749

Socket, 749

bytecode, 807–808, 817–818

bytesAvailable, 266

bytesLoaded, 8

bytesTotal, SWFs, 8

C
c(), call stacks, 517

C1100 error, 108

Cabello, Ricardo, 713, 875

cacheAsBitmap, 298

calculateSpectrum(), 619

call

functions, 39–40

operator, 39, 48

call(), 569, 570, 906

call stacks

AVM, 516–517

c(), 517

exceptions, 494

runtime errors, 108

Camera, 9, 643–647

Camera.getCamera(), 643

Camera.setMotionLevel(), 651

cancel(), ShaderJob, 829

cancelable, 419

canRedo(), 391

canUndo(), 391

Capabilities.hasAudio, 623

Capabilities.hasStreamingAudio, 623

capitalization, 891

caps, 701, 704–705

CAPTCHA, 525

capture phase, event flow, 412,

423

cartoon shading, 875

CASEINSENSITIVE, 158

casting, 98–99

catch, 494–497, 525

catching, exceptions, 493–494

cel shading, 875

CFF. See Compact Font Format

CFF Rasterizer, 395

cffHinting, 398

channel name, _ (underscore), 916

channelOptions, 762, 765

925

Index

characters

code, 120

escaped, 114–115

regular expressions, 236–237

metacharacters, 238

strings, 119–120

charAt(), 120

charCode, 447–450

charCodeAt(), 120

charlesproxy.com, 536

chat protocols, 565

checkPolicyFile, 336

child(), 197

child axis, 196–197

childIndex(), 198

childNode, 192

children(), 197

circles, 715

class

core, 57

CSS, 337

custom, 583–587

defining, 545

DisplayObject, 280–289

document, 274

dynamic

delete, 187

objects, 181–182

OOP, 100

enumerations, 87

events, 419

extends, 93

final, 69–70

geometry, 289–292

inheritance, 63–64

instances, 54

SWFs, 545–548

interfaces, 93

multiple interfaces, 96

nested folders, 58

OOP, 51–53, 54

package, 53

polymorphism, 66

responsibilities, 52

scope, 22

self-serializing, 585–587

SWFs, 326

symbols, 324–326

this, 83

types, 52–53, 54

utility, 89

values, 53

variables, 17, 84–85

class, 197

clear(), 265, 337, 576, 612, 728

clearInterval(), 470

clicking

complex, 435–437

mouse, 433–434

client, 534, 561, 566

clipRect, 738

clone(), 456, 740–742

clone():Matrix, 664

close(), 565, 570, 915

closed captioning, 628

closure, 470

code

animation, 837–841

asynchronous, 470

blocks of, 16

comments, 20–22

custom namespaces, 76

hinting, Flash Builder, 87

inheritance, 64–65

literals, 18–19

packages, 58–61

polymorphism, 66–67

self-commenting, 21–22

self-referential, 82–83

codec, 651

codecs, video, 626–628

coercion, 97–98

Collator, 889–891

CollatorMode.MAtCHING, 890

CollatorMode.SORTING, 890

Color, 844, 847–848, 851

<Color>, 847

color (color), 336, 666–667, 755, 844

bitmaps, 751–761

brightness, 785–786, 848

contrast, 789–790

correction, 893–894

drawing strokes, 701

DropShadowFilter, 773

fillRect(), 751

floodFill(), 751–752

getColorBoundsRect(), 759

GlowFilter, 779

grayscale, 790–792

negative, 788–789

saturation, 792–793

scale, 785–786

solid

bitmaps, 759–761

drawing, 700–706

fills, 700–706

Stage, 289

TextFormat, 341–342

tint, 786–788

uint, 735

colorCorrection, 894

colorCorrectionSupport, 894

926

Index

ColorMatrixFilter, 784–793

colors, 707, 777

ColorTransform, 666–670, 784, 847–848

bitmaps, 752–753

colorTransform, 657, 738

colorTransform(), 752–753

ColorTransformFilter, 874

command, 569

comment, 616

commented-out lines, 21

comments, 20–22, 192

Compact Font Format (CFF), 362, 396–397

compare(), 889

compc, 8

compiler, 7–8

=, 27

data types, 46

errors, 104–105

executable, 4

SWCs, 373

warnings, 104

compile-time errors, 104

complex clicking, mouse, 435–437

complex content, 214–215

complex data types, 41–43

composition

EventDispatcher, 417–418

vs. inheritance, 67–69

LoaderInfo, 538

compound assignment operators, 25

compression

ByteArray, 266

Flash Media Server, 647, 650–651

Microphone, 650–651

vector graphics, 298

video, 647

computeSpectrum()

ByteArray, 618

FFTMode, 618

concat, 118

concat(), 149–150, 682

concatenatedColorTransform, Transform, 658

concatenatedMatrix, 858

Transform, 658

concatenation

E4X, 204

transformation matrices, 663

conditionals, 26–33

loops, 33

operators, 31–33

Configuration, 394

connect()

LocalConnection, 915

NetConnection, 570

socket services, 565

XMLSocket, 568

const, 18, 78

constants, 18, 78

internal, 78

side effects, 19

static, 85–87

constructors, 77–78

arrays, 145–147

casting, 99

return types, 46

subclasses, 91

this, 83

ContainerController

IFlowComposer, 378

Sprite, 378

containers

formats, video, 626–628

Loader, 388

text, 378–391

contains, 283

contains(), 291

containsPoint(), 291

containsRect(), 291

Content Markup, TLF, 373

ContentElement, 370, 371, 373

Content-Length, 535

ContentLoaderInfo, LoaderInfo, 539–540

contentType, 8

Content-Type, 535

context, 607

ContextMenu, 455–459

contextMenu, InteractiveObject, 283

ContextMenuItem, 456–459

clone(), 456

separatorBefore, 456

Continue, Flash Professional, 515–516

continue, loops, 37–38

contrast, color, 789–790

controllers, text, 375–381

controlX, 694

controlY, 694

conversion

numbers, 132, 259

strings, 115–117, 132–133

types, 98–99

XML, strings, 209–212

ConvolutionFilter, 793–797

cookies, persistent storage, 573

coordinates, 659–661

3D, 303–304, 670–671

coordinate space, DisplayObject, 274–276

copyChannel()

BitmapData, 740, 743–745

parameters, 743

copyFrom(), 730–731

copyPixels(), 740, 742, 762

copySource, 755

core classes, 57

counters, loops, 33

927

Index

createBox(), 663

createGradientBox(), 707

createTextLines(), 377

creationDate, FileReference, 592

creator, FileReference, 592

cross products, 679–680

crossdomain.xml, 566

/crossdomain.xml, 534

CSS

associative arrays, 339

classes, 337

Flash Player, 336–337, 339

selectors, 337

StyleSheet, 337–339

URLLoader, 552

ctrlKey, 436, 450

culling, 865

Cummins, Drew, 471

currency

localization, 888–889

parse(), 889

CurrencyFormatter, 888–889

CurrencyParseResult, 889

currencySymbol, 888–889

currentCount, 466

currentFrame, 285

currentFrameLabel, 285

currentLabel, 285

currentLabels, 285

currentScene, 285

currentTarget, 431

cursor, 444

Flash Player, 444

mouse, 442–444

SimpleButton, 444

TextField, 444

curved line segments, 694–698

curveTo(), 694, 721, 722

GraphicsPath, 726, 729

CustomEase, 849

customItems, ContextMenu, 456–459

cutTextScrap(), 390, 391

D
\D, regular expressions, 238, 239

\d, regular expressions, 238, 239

%2D, URLLoader, 554

damaged zones, TLF, 379

data

binary, 257–263

BitmapData, 827

ByteArray, 828

kernel, 828

Pixel Bender, 826–834

Vector, 827

data, 575, 576

data types, 23

:, 46

* (wildcard), 23

AMF, 569

compiler, 46

complex, 41–43

declaration, 23

runtime, 12

XML, 202

DataEvent.DATA, 568

dates (Date), 138–144

localization, 886–887

DateTimeFormatter, 886–887

deblocking, 210

debugger

AVM2, 505–522

breakpoints, 511–512

browser, 509–510

Flash Builder, 106–107, 506

Flash Player, 11, 506

Flash Professional, 104–106, 506–508

HTTP, 536

IDE, 497

Suspend, 513

SWFs, 506

uncaught exceptions, 510–511

Variables panel, 513–515

declarations

data types, 23

functions, 47

Pixel Bender kernel language, 808

variables, 17–18

decompose():Vector, Matrix3D, 685

decrement operator, 25

decrementBy():void, Vector3D, 678

default, switch, 495

defaults

behavior

cancelable, 419

events, 426

Flash Player, 426

namespace, 215–216

values

= (equals sign), 43

method arguments, 43

DefineFont4, 395

defining

classes, 545

functions, 40–41

deflate(), 266

delay, 466

delegates, LocalConnection, 914–915

delete, 40

attributes, 208

dynamic classes, 187

key-value pairs, 187

928

Index

length, 187

nodes, 208

deleteNextCharacter(), 391

deleteNextWord(), 391

deletePreviousCharacter(), 391

deletePreviousWord(), 391

deleteText(), 391

deltaTransformVector():Vector3D, Matrix3D, 685

depths, display lists, 278–279

derived properties, 80

descendant access operator, 200–201

DESCENDING, 158

descent, flash.text.TextLineMetrics, 357

describe, 183

describeType(), 546

description, FileFilter, 590

destChannel, 743

destPoint

applyFilter(), 761

copyChannel(), 743

copyPixels(), 742

merge(), 745

paletteMap(), 757

threshold(), 755

determinant:Number, Matrix3D, 682

determinePreferredLocales(), Vector, 885

Device Fonts, 360–362, 395

deviceOrientation, 288

dictionaries (Dictionary)

associative arrays, 183–188

key-value pairs, 184

direct, wmode, 901

DirectX, 901

dirty rectangles, 297

dispatchEvent(), 411, 412, 413, 418, 421

display, 336

display lists, 273–299

depths, 278–279

DisplayObject, 273–279

adding, 277–278

removing, 278

drag-and-drop, 292–294

examining, 279

display types, 11

DisplayObject, 69, 169

addChild(), 277–278

animation, 838

AVM1Movie, 284

Bitmap, 284, 734

classes, 280–289

coordinate space, 274–276

creating, 276–277

display lists, 273–279

DisplayObjectContainer, 283–284

draw(), 739

filters, 770–771

Flash Professional, 321–328

getBounds(), 292

InteractiveObject, 283

Loader, 537, 543

loaderInfo, 539–540

name, 893

performance, 297

properties, 306, 659

removeChild(), 278

reparenting, 279

Shape, 284, 687

SimpleButton, 284–285

Sprite, 276–277

Stage, 421

TextLine, 371

3D, 280, 301–319, 670

Transform, 657–658

Video, 284, 644

z-sorting, 305

DisplayObjectContainer, 286, 330

DisplayObject, 283–284

Loader, 286

Shape, 687

Sprite, 285

TextLine, 371

DispleasingNumberError, 496

dispose(), 737

distance(), 290, 311

distance, 773, 775, 777

<div>, 383, 384, 899

document class, 274

domain name

packages, 57

send(), 916

doOperation(), 390

dotall flag (s), regular expressions, 246

dotall:Boolean, 254

doubleClickEnabled, 283, 436–437

Dowd, Snow, 841

do...while, 36–37

downcasting, 98–99

download(), 596–598

downState, 284, 437

drag-and-drop

display lists, 292–294

hit testing, 292–294

mouse, 440–441

Multitouch, 484–485

draw(), 647, 721, 762

BitmapData, 737–741

DisplayObject, 739

parameters, 738

drawCircle(), 715

drawGraphicsData(), 727, 730

drawing, 687–732

applications, 716–721

batched, 721–731

bitmaps, 688, 710–712

929

Index

drawing, (continued)

clearing, 700

commands, 728–730

compression, 298

copying, 730–731

curved line segments, 694–698

drawing styles, 700–714

fills, 698

gradients, 706–710

pasting, 730–731

primitives, 714–716

shaders, 712–714

solid color, 700–706

straight line segments, 690–694

strokes, 701

styles, 700–714

3D, 731

DrawingCanvas, 721

drawPath(), 721–726

GraphicsPath, 729

drawRect(), 714–715, 728, 819

drawRoundRect(), 715–716

drawRoundRectComplex(), 716

drawTriangles(), 731, 861–864

bitmapFill(), 867

culling, 865

Graphics, 819

GraphicsTrianglePath, 729

DropShadowFilter, 773–774

dropTarget, 285

DualShock 3, 429

Dunn, Fletcher, 670

dynamic, 100

dynamic classes

delete, 187

objects, 181–182

OOP, 100

dynamic pseudo-classes, 337

dynamic types, Flash Player, 168–169

dynamically typed variables, 54

E
each...in, 154

easing, 842, 843, 849

Eaze, 853

ECMAScript, 5, 907

eval(), 500

ECMAScript for XML (E4X), 12,

191–224

+, 204

+=, 204

concatenation, 204

descendant access operator, 200–201

filters, 201–203

methods, 206–207

query, 205–206

XML, 6

edge cases, numbers, 130–131

Editability and Events, TLF, 373

editingMode, 390

EditManager, 387, 389, 390

EditManager.overwriteMode, 390

ElectroServer, 629

electro-server.com, 568

element, 213

elements, 192

indexed, 197–198

ElementFormat, 370

1119 error, 108

1120 error, 108

1136 error, 110

ellipseHeight, 715

ellipses, 715

ellipseWidth, 715

else, 30

Embed, 546, 610

<embed>, 897

[Embed], 362–363

BitmapAsset, 736

CFF, 397

embedding

bitmaps, 736

CFF, 396–397

fonts, 360–365

Flash Professional, 396

SWFObject, 898–900

video, 626

embedSWF(), 899–900

encapsulation

internal, 75

OOP, 55–56

encodeQuality, Microphone compression,

651

encoding

strings, 123

video, 631–632

endCompositeOperation(), 390

endFill(), 721, 729

endianness, 259

end():void, Animator, 851

enumerations, 87

environment mapping, 874

epoch time, 139–140

equality operator, 27

equals()

Point, 290

Rectangle, 291

String, 889

Vector3D, 679

error, 527

930

Index

errors (Error), 103–107, 523–536

assignment statement, 267

asynchronous, 502–503, 913

compiler, 104–105

eval(), 190

events, 524

fixing, 108–110

Flash Builder, 104

Flash Player, 499–501

Flash Professional, 104

globalization, 892

id, 498–499

images, 524

LoaderInfo, 541

logging, 526–527

memory, 501

messages, 527–528

null, 524

numbers, 131

runtime, 12, 104, 492

call stacks, 108

null, 511

selection of, 524–525

servers, 524

severity of, 527

sound, 524

strings, 524

SWFs, 524

targets, 524

Type Coercion Error, 149

types of, 524

Variables panel, 520

video, 524

XML, 524

ErrorEvent, 502

<errors during evaluation>, 515

escape(), 554

escaped characters, 114–115, 236–237

Euler angles, 674

eval(), 190, 500

EvalError, 500

even-odd winding, 723

Event

dispatchEvent(), 418

eventPhase, 423

updateAfterEvent(), 443

events, 409–427

classes, 419

default behavior, 426

definition, 411

dispatchers, 189, 409–410, 412

errors, 524

flow, 412, 421–426

focus, 453–454

framework, 409

functions, 48

handlers, 412

listeners, 409–410, 412, 415–421

model, 12

strings, 411, 419

targets, 412

TextField, 347–354

TextFlow, 393–394

timers, 462–466

TLF, 393–394

types, 411–413

unhandled, 503–504

Event.ADDED_TO_STAGE, 282, 443

Event.CANCEL, 591

Event.CHANGE, 349–352, 450

Event.CLEAR, 283

Event.COMPLETE, 541, 550, 593

Event.CONNECT, 568

Event.COPY, 283

event.currentTarget, 424

Event.CUT, 283

EventDispatcher, 413–418

Loader, 540

URLLoader, 550

Event.ENTER_FRAME, 282, 469, 837,

839

Event.EXIT_FRAME, 469

Event.MOUSE_LEAVE, 444

Event.OPEN, 541, 551

Event.PASTE, 283

eventPhase, 423

Event.REMOVED_FROM_STAGE, 282

Event.SCROLL, 354

Event.SELECT, 591, 600

Event.SELECT_ALL, 283

event.target, 189, 424

Event.UNLOAD, 541

every(), 159–161

E4X. See ECMAScript for XML

exceptions, 492–499

call stacks, 494

catching, 493–494

custom, 501–502

throwing, 492–493

exec(), 229–233

executables

breakpoints, 512

compiler, 4

SWFs, 8

execution delay, timers, 412–413

explicit accessors, 79–80

Export SWC, 327

export, TLF markup, 384–386

Expressions view, Flash Builder, 515

extended flag (x), regular expressions, 246–247

extended:Boolean, 254

extends, 63, 93

931

Index

eXtensible Markup Language (XML), 191–224. See also

ECMAScript for XML

attributes, 198–199

child axis, 196–197

comments, 20

data types, 202

duplicating, 208

errors, 524

E4X, 6

indexed elements, 197–198

legacy handling, 195

literals, 192–194

modifying, 203–209

motion XML, 841–850

namespaces, 75, 215–222

query, 217–222

nodes, 207–208

meta-information, 213–214

replacing, 209

normalize(), 212

objects, 189

options, 223

prettyIndent, 211–212

prettyPrinting, 211

query, 196–203

socket services, 567–568

string conversion, 209–212

text, 199–200

TLF, 388–389

URLLoader, 212–213, 551–552

extension, 590

ExternalInterface, 537, 905–910

extract(), 621

F
\f, escaped characters, 115, 237

failing silently, 492

fatal, 527

fault tolerance, 523–530

favorArea, 646

FFilmation, 318

FFTMode, 618

fieldOfView, 315

files

AIR runtime, 589

ByteArray, 598

download(), 596–598

management, 589–602

memory, 598–599

transfers, 565

video, 626

FileFilter, 590

filelist, 590

FileReference, 589–593

AlivePDF, 599

IllegalOperationError, 592

save(), 600

upload(), 593

FileReferenceList, 591

fillColor, 735

fillRect(), 751

fills

drawing, 698

gradients, 706–710

solid color, 700–706

FILO. See first in, last out

filter(), 159–161

filter, 281, 761

filters, 769–802

BevelFilter, 775–776

bitmaps, 761

BlurFilter, 771–772

ColorMatrixFilter, 784–793

ConvolutionFilter, 793–797

DisplacementMapFilter, 797–801

DropShadowFilter, 773–774

E4X, 201–203

GlowFilter, 779–783

GradientBevelFilter, 777–779

GradientGlowFilter, 783

multiple, 771

ShaderFilter, 801

filters, 770–771, 848

final, 69–70

finally, 493, 497–498, 525

findColor, 759

FireBug, 526

first in, last out (FILO), 150–151

Five3D, 318, 724

Five3DGlyphUtils, 726

fixed, vectors, 172–173

FIXME, 21

flags, regular expressions, 244–247

Flash Builder, 4, 515, 516

code hinting, 87

debugger, 106–107, 506, 508–509

embedded fonts, 362–363

errors, 104

sound, 610

source directory, 58

Step Return, 518

SWCs, 327, 373

Flash CS4 Professional Bible (Reinhardt and Dowd), 841

Flash Lite, 10

Flash Media Server, 629, 647, 650–651, 653

Flash motion package, 850–852

Flash Outline Rasterizer, 395

Flash Platform, 4–11

Flash Player, 10–11

animation, 835–837

anti-aliasing, 365–366

API, 6

932

Index

ARGB, 811

automatic upgrades, 903–904

bitmap graphics, 734

Camera, 9

CSS, 336–337, 339

cursors, 444

debugger, 11, 506

default behavior, 426

dynamic types, 168–169

errors, 499–501

fonts, 334, 360–366

frame rate, 835–836

grids, 366

high-level objects, 168–169

HTML, 334–335

HTTP, 533–536

kernels, 804

Loader, 537–549

mouse, 311

Pixel Bender, 807–808

plug-in, 10

pop-up blockers, 537

printing, 399–403

projector, 10

recursion, 49

runtime, 5, 6, 9–10

security, 557–559, 608

Settings Manager, 579–580

smart phones, 473

standalone, 10

SWFs, 11, 898

text wrapping, 354

TextField, 354, 369

TextFormat, 339

3D, 301–319

toString(), 183

URLRequest, 536

UTF-8, 123

versions, 11, 167, 361–362, 506, 598

batched drawing, 721

bytecode, 818

color correction, 894

compression, 266

cursors, 444

drawTriangles(), 731

Flash motion package, 851

flash.globalization, 880

FTE, 367

full-screen mode, 287, 901

getVector(), 750

global event handlers, 504

Graphics, 730

hardware acceleration, 901

lineBitMapStyle(), 710

matrix3D, 658

multitouch, 474

NetStream, 635

perspective projection, 302

Pixel Bender, 805

setVector(0, 750

ShaderFilter, 801

shaders, 712

solid color, 700

strokes and fills, 700

SWFs, 880

3D transformation matrices, 670–686

video, 625–633

Voice Activity Detection, 652

Flash Professional

animation, 841–852

Continue, 515–516

debugger, 104–106, 506–508

DisplayObject, 321–328

embedded fonts, 363–364

errors, 104

FLVPlayback, 632

font embedding, 396

Library, 321–327

sound, 609–610

source directory, 58

stage, 321–327

Step Out, 518

SWCs, 373

SWFs, 326

symbols, 321–327

3D, 304

TLF, 369

Flash Remoting, 568–570

Flash satay, 898

Flash Text Engine (FTE), 344, 367, 368, 370–372

flash.accessibility, 893

flash.display, 687

flash.display.DisplayObject, 11

flash.error, 500–501

flash.events, 18, 417

flash.events.Event, 418

flash.events.EventDispatcher, 12

flash.external, 905

flash.globalization, 880

flash.media, 605–607

flash.printing.PrintJob, 400

flash.sensors, 486

flash.text.Fonts, 362

flash.text.TextField, 344

flash.utils, 461

flash.utils.IExternalizable, 585–586

flash.utils.setTimeout(), 413

flashVars, 902

Flex, 9

animation, 852

Application, 69

compilers, 8

embedded fonts, 362–363

MXML, 5, 9

933

Index

Flex, (continued)

namespaces, 76

SOAP, 564

SWCs, 373

fl.motion, 843

float, 811

floating-point numbers, 127–128

floodFill(), 751–752, 759

flowComposer, 378

FlowElement, 373–375, 381

flowplayer.org, 632

flush(), 581–583

FLV, 627, 628, 631, 637

FLVPlayback, 632

focalLength, 315

focalPointRatio, 707

focus

events, 453–454

graphical user interface, 451–455

rectangles, 455

focused, 390

FocusEvent.FOCUS_IN, 283, 347–349, 454

FocusEvent.FOCUS_OUT, 283, 347–349, 454

FocusEvent.KEY_FOCUS_CHANGE, 454

FocusEvent.MOUSE_FOCUS_CHANGE, 454

focusRect, 283, 435, 455

font, 342

, 334

fonts, 326, 395–398, 548

embedding, 360–365

Flash Professional, 396

Flash Player, 334, 360–366

printing, 403

FontDescription, 371, 397

Font.enumerateFonts(), 362

fontFamily, 397

font-family, 336

fontLookup, 397

fontName, 362

fontPosture, 397

font-size, 336

fontStyle, 362

font-style, 336

fontType, 362, 397

FontType.EMBEDDED_CFF, 397

fontWeight, 397

font-weight, 336

for, 33, 37, 153–154

for each...in, 34–35

forEach(), 154–155

for...each, 95

for...in, 34–35

<format>, 381, 383

formatInt(), 885

formatNumber(), 885

Formatter, 880

formatUint(), 885

4D, transformation matrices, 675–677

fps, 646

fractalNoise, 764

fragment shader, 803

frame, 402

frames, 835

animation, 839

rate, Flash Player, 835–836

scripts, 52

frameRate, 8, 286, 469, 839

framesLoaded, 285

framesPerPacket, 651

fsch, 8

FTE. See Flash Text Engine

FTP, 565

full-screen mode, 287–288, 295–296, 901

fullScreenHeight, 288

fullScreenSourceRect, 297, 734

fullScreenWidth, 288

fully qualified name, 56

Function, 377

function, 197

functions, 39–50. See also methods

body, 41

Pixel Bender, 814–817

kernel language, 808

Responder, 570

functional programming, 46

FunctionEase, 849–850

G
g, regular expressions global flag, 244

gain, 649

gamedev.net, 670

gamemath.com, 670

gamma, 757–758

genre, 616

Geolocation, 486

geometry, 289–292

3D, 309–311

transformations, 657–666

gesture mode, 480–483

GestureEvent, 481

GESTURE_PAN, 481

GESTURE_PRESS_AND_TAP, 481

GESTURE_ROTATE, 481

GESTURE_SWIPE, 481

GESTURE_TWO_FINGER_TAP, 481

GESTURE_ZOOM, 481

GET, 555–556

get, 80–81

GET /, 535

getAvailableLocaleIDNames(), 892

getBounds(), 282, 292

934

Index

getCamera(), 643–644

getCharBoundaries(), 357

getCharIndexAtPoint(), 355

getCharIndexAtPoint():int, 28

getChildAt(), 283

getChildByName(), 283, 324

getChildIndex(), 283

getColorBoundsRect(), 759

getContents(), 392

getDateTimeStyles(), 886

getDefinition(), 546

getDefinitionByName(), 545, 546

getFirstCharInParagraph, 354

getFoo(), 80

getImageReference(), 336

getLineIndexAtPoint():int, 28

getLineIndexOfChar, 354

getLineLength():int, 354

getLineMetrics(), 356

getLineOffset():int, 354

getObjectUnderPoint(), 283

getPixels(), 749

getPixel():uint, 747

getRect(), 282

getSelectionState(), 390

getStyle(), 337

getTag, 248

getters, 80

getTimer(), 142–143, 469, 470

getTimeStyle(), 886

getVector(), 750

GIFs, 538

global coordinate system, 276

global event handlers, 504

global flag (g), 244

global scope, 22

global:Boolean, 254

globalization, 253, 879–892

globalToLocal3D(), 282, 311

GlowFilter, 779–783

glyphs, 724

Go, 853

Google Gears, 572–573

gpu, 901

GradientBevelFilter, 777–779

GradientGlowFilter, 783

gradients, drawing, 706–710

Grape, 853

GraphicElement, 370, 371

GraphicEndFill, 729

graphics. See also drawing

bitmaps, 733–767

file formats, 538

Graphics(), 687

Graphics, 687, 688, 689, 721, 730, 819

graphics, 285

GraphicsBitmapFill, 729

GraphicsGradientFill, 729

GraphicsPath, 726–728, 729

GraphicsPathCommand, 722

GraphicsPathWinding, 723

GraphicsShaderFill, 729

GraphicsSolidFill, 729

GraphicsTrianglePath, 729, 861–864

GraphicStroke, 729

grayscale, 763, 765, 790–792

greedy matching, 248–249

green threading, 470–471

greenArray, 757

greenMultiplier, 667, 745, 848

greenOffset, 667, 848

GridFitType, 366

Grossman, Gary, 169

GroupElement, 371

groups

lookahead, 250–251

regular expressions, 243

gTween, 853

H
H.264, 627

hardware acceleration, 901

hasBackground, 339

hasComplexContent(), 214–215

hasOwnProperty(), 187

hasSimpleContent(), 214–215

Hauwert, Raph, 875

HE-AAC, 611

headers, HTTP, 535

Accept-Language, 882

height, 8, 707

BitmapData, 735

DisplayObject, 280, 306

flash.text.TextLineMetrics, 357

, 335

Rectangle, 291

setMode(), 646

ShaderJob, 828

hexadecimal numbers, 126, 259

hideObject, 773

hierarchy, 57–58

high, 762

high-level objects, 168–169

highlightAlpha, 775

highlightColor, 775

Hilbert curves, 691–694

histogram(), 753–755

hitArea, 285

hitTestObject(), 282

hitTestPoint(), 282

hitTestState, 284–285

homogeneous coordinate system, 676–677

935

Index

:hover, 337

hover, mouse, 438–440

hspace, 335

HTML, 334–336, 897

htmlText, 339

HTTP. See HyperText Transfer Protocol

HTTPS, 578

HTTPStatusEvent.HTTP_STATUS, 541, 550

HyperText Transfer Protcol (HTTP), NetConnection, 635

HyperText Transfer Protocol (HTTP), 533–536, 563–564,

565, 567–568

debugger, 536

headers, 535, 882

progressive download, 630

video, 629

Web services, 562–565

I
I, 92

i, 244–245

i+, 33

<i>, 334

i <=100;, 33

IBitmapDrawable, 282, 737

id, 336, 498–499

@id, 202

id3, 616

IDataInput, 263, 566, 586

IDataOutput, 263, 265, 566, 586

IDE. See Integrated Development Environment

identity matrix, 661

identity():void, 664, 682

ID3Info, 616

IEventDispatcher, 96, 417

IExternalizable, 586

if, 26–27, 811

if...else, 30

if/else, 811

IFlowComposer, 378, 379

ignore case flag (i), 244–245

ignoreCase, 890

ignoreCase:Boolean, 254

ignoreCharacterWidth, 890

ignoreComments, 214, 223

ignoreDiacritics, 890

ignoreKanType, 890

ignoreProcessingInstructions, 214,

223

ignoreSymbols, 891

ignoreWhitespace, 223

IGraphicsData, 727

IllegalOperationError, 592

images

binary, 259

ByteArray, 266–267

errors, 524

types, Pixel Bender kernel language, 814

IMAP, 565

IME. See Input Method Editor

, 334–336, 383

implements, 93

implicit accessors, 80–81, 90

import, 59–60

import, TLF markup, 384–386

increment operator, 24, 25

incrementBy():void, 678

indent, 342

index, 846

indexed elements, 197–198

index.html, 535

indexOf(), 120–121, 155, 184

indices, 861–864

infinity, 131

infix operators, 23

inflate(), 291

inflatePoint(), 291

info, 527, 636

information hiding, 55

inheritance

chain, 64, 65

vs. composition, 67–69

interfaces, 92

OOP, 61–70

protected, 73

InlineGraphicElement, 374

inner, 773, 780

Input Method Editor (IME), 450–451

insertChildAfter():*, 206

insertChildBefore():*, 206

insertInlineGraphic(), 391

insertText(), 391

instance variables. See properties

instances

bitmaps, 736

classes, 54

SWFs, 545–548

nested, 324

objects, 54

OOP, 54

symbols, 323

int, 129, 168, 811

Integrated Development Environment (IDE), 7–8, 497

InteractionManager, 386, 390–391

InteractiveObject, 429, 431

ContextMenu, 455–456

DisplayObject, 283

focus, 451, 454

tabIndex, 347, 454

TextField, 285

interfaces, 92–96

internal, 70, 74–75, 78

936

Index

interpolate(), 290

interpolateColor(), 851

interpolationMethod, 707

interprocess communication (IPC), 911

intersects(), 291

invert():Boolean, 682

invert():void, 664

invoking. See call

IOErrorEvent, 502

IOErrorEvent.IO_ERROR, 541, 551, 600

IOErrorEvents, 557

isDefaultPrevented, 426

isNaN(), 131

isPrimaryTouchPoint, 477

italic, 342

iteration

arrays, 153–155

associative arrays, 188

Hilbert curves, 691–694

loops, 33

ITextExporter, 384

ITextImporter, 384

ITextLayoutFormat, 375, 381, 397

ITween, 848–850

J
Jabber, 565

Java Runtime Environment, 10

javadoc comments, 21

JavaScript, 5, 905–910

JFIF. See JPEG File Interchange Format

join(), 148

join(""), 149

joints, 701, 705–706

JPEG, 538

JPEG File Interchange Format (JFIF), 553

JSON, 190

Julia, 829

JW FLV Player, 632

K
Kazoun, Chafic, 852

kernel, 803–804, 809–811

data, 828

drawRect(), 819

language, Pixel Bender, 808–817

kerning, 336

keys

associative arrays, 183

modifier, 450

objects, 185

testing, 186–187

Key listener, 120

key[anyCode], 450

keyboard

bubbling, 431–432

constants, 449–450

interactions, 447–451

InteractiveObject, 431

modifier keys, 450

mouse, 429–460

TextField, 450

keyboardChildren, 431

keyboardEnabled, 431

KeyboardEvent, 429, 447–450

KeyboardEvent.KEY_DOWN, 283, 447

KeyboardEvent.KEY_UP, 283, 447

keyCode, 447–450

Keyframe, 844

<Keyframe>, 846–847

keyframes, 842

key-value pairs, 184, 187, 188

KitchenSync, 853

knockout, 773, 775, 777, 780

L
label, 846

LANDSCAPE, 401

language, 5–6, 15–38

lastIndex:Number, 254

lastIndexOf(), 120–121, 155

LastOperationStatus, 892

lazy matching, 248–249

leading, 336, 342, 357

left, 290

leftMargin, 342

leftToLeft, 616

leftToRight, 616

len, 635

Lenaerts, David, 875

length, 119, 148, 187

length(), 808

letterSpacing, 342

letter-spacing, 336

Levien, Ralph, 726

, 334

libraries, 7

Flash Professional, 321–327

threads, 471

3D, 318–319

lighting, 3D, 873–875

line segments

curved, 694–698

straight, 690–694

lineBitMapStyle(), 710

lineBitmapStyle(), 729

lineGradientStyle(), 707, 729

lineShaderStyle(), 729

937

Index

lineStyle(), 706, 729

lineTo(), 721, 722, 726, 729

lingua franca, 259

linkActiveFormat, 383, 394

LinkElement, 374

linkHoverFormat, 383, 394

linkNormalFormat, 383, 394

Lissajous curves, 713

listener, 420

listener functions, 48

literals, 18–19

arrays, 147

numbers, 130

Pixel Bender kernel language, 808

XML, 192–194

load(), 543, 545, 607–608

FileReference, 590

URLLoader, 550

loadBytes(), 266, 549

Loader

containers, 388

DisplayObjectContainer, 286

Flash Player, 537–549

SWFs, 364

LoaderInfo, 539–541, 616, 902

loaderInfo, 539–540

local coordinate system, 275

local scope, 22

local shared object (LSO), 575

LocalConnection, 526, 911–919

LocaleID.Default, 881

localization, 879–892

localName(), 222

localPath, 578

local3DToGlobal(), 311

localToGlobal(), 282

localX, MouseEvent, 433

localY, MouseEvent, 433

lock(), 748, 750

logging, 513

errors, 526–527

longtailvideo.com, 632

lookahead groups, 250–251

loops, 33–38

arrays, 153–154

break, 37–38

recursion, 49

sound, 613

Lott, Joey, 852

low, noise(), 762

LSO. See local shared object

M
m, regular expressions multiline flag, 245–246

macType, 590

makeColor(), 709

manageEnterKey, 394

manageTabKey, 394

many-to-one relationship, 183

map(), 162, 177, 180

margin-left, 336

margin-right, 336

mask, 281, 755, 759

match(), 230–232

match(pattern:):Array, 121

Math, 89, 134–135

Math.random(), 137

matrices, 813–814

3D, 673–674

Matrix, 661, 663–664

matrix, 658, 707, 710, 738

Matrix3D, 677, 681–686

matrix3D, 658

MatrixTransformer, 852

maxChars, 345

maxScrollH, 359

maxScrollV, 359

maxTouchPoints, 475

MAX_VALUE, 131

member declarations, Pixel Bender, 810–811

memory

bitmaps, 737, 748–750

errors, 501

files, 598–599

Loader, 549

vectors, 170

merge(), 740, 745–746

mergeAlpha, 742

metacharacters, 238

metadata

<>, 805

kernel, 809–810

sound, 616–617

video, 628

meta-information, XML nodes, 213–214

metasequences, regular expressions, 238

methods

argument default values, 43

BitmapData, 734, 740

bound, 189

closures, 12

E4X, 206–207

InteractionManager, 390–391

OOP, 77–78

overloading, 90

Responder, 570

signature, 39

Michels, Peter, 564

Microphone, activityLevel, 648

Microphone.Muted, 648

Microphone.setSilenceLevel(), 652

Microsoft Active Accessibility (MSAA), 892

938

Index

milliseconds, 142, 462

minDiskSpace, 582–583

MIN_VALUE, 131

miterLimit, 701, 705–706

modelMatrix, 858

model-view-controller, 371, 373

modificationDate, 592

modifier keys, 450

modulo operators, 25

Motion, 844, 845–846

<Motion>, 843, 844

motion XML, 841–850

MotionEvent.MOTION_END, 852

MotionEvent.MOTION_START, 852

MotionEvent.MOTION_UPDATE, 852

MotionEvent.TIME_CHANGE, 852

mouse, 917–919

AIR runtime, 436

blocking input, 445–447

bubbling, 431–432

buttonMode, 434–435

clicking, 433–434

complex clicking, 435–437

cursors, 442–444

drag-and-drop, 440–441

Flash Player, 311

focus, 451

hovering, 438–440

interactions, 432–447

InteractiveObject, 431

keyboard, 429–460

position tracking, 442–444

rollovers, 437–440

SimpleButton, 434–435

3D, 311–314

wheel, 447

mouseChildren, 283, 431

MouseCursor.ARROW, 444

MouseCursor.AUTO, 444

MouseCursor.BUTTON, 444

MouseCursor.HAND, 444

MouseCursor.IBEAM, 444

mouseEnabled, 283, 431

MouseEvent, 429, 432–447, 477

MouseEvent.CLICK, 283, 413, 437

MouseEvent.DOUBLE_CLICK, 283, 436–437

MouseEvent.MOUSE_DOWN, 283

MouseEvent.MOUSE_MOVE, 283, 442

MouseEvent.MOUSE_OUT, 283

MouseEvent.MOUSE_OVER, 283

MouseEvent.MOUSE_UP, 283

MouseEvent.MOUSE_WHEEL, 283

MouseEvent.ROLL_OUT, 437–440

MouseEvent.ROLL_OVER, 437–440

Mouse.hide(), 444

MOUSE_OUT, 438–440

MOUSE_OVER, 438–440

Mouse.show(), 444

MOUSE_WHEEL, 447

mouseWheelEnabled, 359

mouseX, 282

mouseY, 282

moveTo(), 689, 721, 722, 726, 729

MovieClip, 285, 687

MP3, 609, 611, 616, 627

MPEG-4, 627

MSAA. See Microsoft Active Accessibility

[msc], 238

MSN, 565

multidimensional arrays, 163–164

multiline, 332–333

multiline flag (m), 245–246

multiline:Boolean, 254

Multitouch, 474–485

drag-and-drop, 484–485

gesture mode, 480–483

MouseEvent, 477

properties, 475

Sprite, 484

touch mode, 476–480

TouchEvent, 476–480

Multitouch.inputMode, 476

mx_internal, 76

MXML, 5, 8, 9

mxmlc, 8, 362–363

N
\n, escaped characters, 114–115, 237

{n,}, regular expression quantifiers, 240

{n}, regular expression quantifiers, 240

name, 893

DisplayObject, 281

FileReference, 592

NetStream, 635

TLF markup, 382

named groups, regular expressions, 251–253

name=key, 554

Namespace, 195, 216

namespaces (namespace), 56–57, 217

::, 77

=, 76

custom, 70, 75–77

declarations, 192

default, 215–216

Flex, 76

motion XML, 843

packages, 57

scope, 22

visibility, 75–76

XML, 75, 215–222

query, 217–222

939

Index

name:String, 636

NaN (Not a Number), 117

navigateToURL(), 536

nearEquals():Boolean, 679

negate():void, 679

negative color, 788–789

negative lookahead groups, 251

Nellymoser, 611, 627

nesting

data objects, 189–190

display list transformations, 294–295

folder classes, 58

instances, 324

objects, 880

NetConnection, 569–570, 634–635

NetStatusEvent, 636

NetStream, 626, 628, 635–637

never, 908

new, 40

new Function(), 47–48

New Kernel, Pixel Bender, 810

nextFrame(), 285

nextFrame():void, 851

nextScene(), 285

{n,m}, regular expression quantifiers, 240

nodeKind(), 213

nodes, 192

XML, 207–209, 213–214

noise(), 762–763

noiseSuppressionLevel, 649

noncapturing groups, 250

Non-Strict mode, 103

nonzero winding, 723

normal maps, 874–875

normal vectors, 679–680

normalize(), 212, 680

NOT, 262

nouns, 40, 79

null, 29

errors, 524

FileReference, 592

focus, 451

objects, 187

runtime error, 511

Sound.play(), 623

nullSprite, 108

NumberFormatter, 885–886

numbers (number), 125–144

arithmetic operators, 133–135

conversion, 132, 259

edge cases, 130–131

Error, 131

floating-point, 127–128

frameRate, 839

hexadecimal, 126

literals, 19, 130

localization, 885–886

randomness, 137

rest parameters, 42–43

sets, 125–126

signed integers, 127

strings, 116–117

trigonometric calculations, 135–137

undefined, 131

unsigned integers, 126–127

numChildren, 283

NUMERIC, 158

numericComparison, 891

numLines, 354

numOctaves, 764

O
Object(), 182

<object>, 897

objects (Object), 181–190. See also DisplayObject;

SharedObject

anonymous, 189

arguments, 188–189

associative arrays, 183–188

ByteArray, 267–268

creating, 182

debugger, 514

dynamic classes, 181–182

functions, 47–48

inheritance, 63

instances, 54

JSON, 190

keys, 185

key-value pairs, 184

LSO, 575

nested data, 189–190

nodes, 843

null, 187

OOP, 53–54

parent container, 11–12

properties, 182–183

Sound, 607–611

toLocaleString(), 880

toString(), 183

XML, 189

object oriented programming (OOP), 51–101

access control attributes, 70–77

classes, 51–53, 54

constructors, 77–78

dynamic classes, 100

encapsulation, 55–56

hierarchy, 57–58

inheritance, 61–70

instances, 54

interfaces, 92–96

940

Index

methods, 77–78

objects, 53–54

packages, 56–61

properties, 78–83

static methods, 83–89

types, 54, 96–100

octaves, 764, 765, 766

offset(), 290, 291

offsetPoint(), 291

offsets, 765, 766

offsetX, 482

offsetY, 482

On2 VP6, 627

onClick(), 748

onCutePoint(), 628, 636

onImageData(), 636

Online Video Platform (OVP), 630

onLoadComplete(), 213

onLoadError(), 530

onLoadSuccess(), 530

onMetaData(), 628, 636

onPlayStatus(), 636

onTextData(), 636

onTimer(), 838

onUncaughtError(), 504

onXMPData(), 628, 636

OOP. See object oriented programming

Open Screen Project, 473

Open Source Media Framework, 633

Open-Closed Principle, 74

OpenGL, 689, 901

operation, 755

operators, 23–26

arithmetic, 24, 133–135, 142, 260

call, 39, 48

OR, 262

orientation

smart phones, 288–289

3D, 674

orientation, 288, 401

orientToPath, 847

outCoord(), 806

overloading methods, 90

overrides, 89–91

inheritance, 63

overState, 284, 437

OVP. See Online Video Platform

P
<p>, 335, 383, 384

package, 53, 60

packages

code, 58–61

domain name, 57

hierarchy, 57–58

import, 59–60

namespaces, 57

OOP, 56–61

visibility, 58

pageHeight, 401

pageWidth, 401

painter’s algorithm, 274

palabre.gavroche.net, 568

paletteMap(), 757–758, 875

pan, 615

paperHeight, 401

Papervision3D, 318–319

paperWidth, 401

parallel projection, 3D, 302

parameters

applyFilter(), 761

BitmapData, 735

ColorTransform, 667

copyChannel(), 743

copyPixels(), 742

draw(), 738

functions, 39

kernel, 810–811

merge(), 745

noise(), 762–763

paletteMap(), 757–758

perlinNoise(), 764

Pixel Bender kernel language, 808

play(), 613

ShaderParameter, 820

threshold(), 755

parameters, 8

parameters:Array, 636

Parberry, Ian, 670

parent, 282

parent container object, 11–12

parent-child relationship. See inheritance

parentNode, 192

parse(), 885, 889

parseCSS(), 337–339, 552

parseFloat(), 133

parseInt(), 133

parseNumber(), 885

pasteTextScrap(), 390, 391

PatheticallySmallNumberError, 496

pause(), 636

pause():void, 851

pbutil, 807

peekRedo(), 391

peekUndo(), 391

Penner, Robert, 849

performance

DisplayObject, 297

rendering, 297–299

941

Index

performRedo(), 389

performUndo(), 389

perlinNoise(), 764–766, 801

persistent storage, 571–573

perspective projection, 302, 676

PerspectiveProjection, 315, 858

PHP, 593–595

ping(), 916

pixel1, 811

pixels, 276, 746–750

Pixel Bender, 6, 805

data, 826–834

Flash Player, 807–808

functions, 814–817

kernel language, 808–817

member declarations, 810–811

shaders, 803–834

pixelDissolve(), 762

pixelSnapping, 701–703, 736

platform independence, 10

play(), 607

buffering, 608

MovieClip, 285

parameters, 611–613

play2(), 636

playback

Microphone, 648

sound, 611–615

video, 632–633

play():void, 851

plug-in, Flash Player, 10

PNGs, 538

Point, 289–290, 845–846

globalToLocal3D(), 311

projectionCenter, 315

points, 400

3D, 671–672, 856–861

pointAt(), 683–684

polymorphism, 56, 66–67

pop(), 150–151, 172, 227

POP3, 565

popRedo(), 391

popUndo(), 391

pop-up blockers, 537

PORTRAIT, 401

position

ByteArray, 265–266

Matrix3D, 685

position tracking, mouse, 442–444

positive lookahead groups, 250–251

POST, 555–556

postfix operators, 23

potentiallyUnsafeOperation(), 494

prefix operators, 23

prepend(), 682

prependChild():XML, 206

prependRotation(), 685

prependRotation():void, 682

prependScale():void, 682

prependTranslation():void, 682

PressAndTapGestureEvent, 480–481

pressure, 477

prettyIndent, 211–212, 223

prettyPrinting, 211, 223

preventDefault(), 350, 426

prevScene(), 285

primary types, 168

primitives

data types, 41–42

drawing, 714–716

printArea, 401

printAsBitmap, 402

printing, 399–406

trace(), 18

PrintJob, 400–403

PrintJobOptions, 401–402

printOptions, 401

priority, addEventListener(), 420

private, 70–72

private browsing, 574

procedural programming, 52

processing instruction nodes, 192

Programming Flex 3 (Kazoun and Lott), 852

ProgressEvent.PROGRESS, 541, 551

progressive download

HTTP, 630

video, 629

projection

3D, 302

modifying, 314–318

transformations, 675–677

projectionCenter, 315

projectionMatrix, 859

project():void, 681

properties

_ (underscore), 80

adjectives, 79

data, 575

derived, 80

DisplayObject, 306, 659

InteractiveObject, 431

internal, 78

MouseEvent, 433

Multitouch, 475

nouns, 79

objects, 182–183

OOP, 78–83

RegEx, 254

SWFs, 286–287, 540–541

this, 83

variables as, 17

protected, 70, 73–74

942

Index

protected streams, 630

public, 70–72, 78

push(), 150–151, 172

pushRedo(), 391

pushUndo(), 391

Q
QName, 195

quadratic Bézier curve, 694–698

quality

BevelFilter, 775

DropShadowFilter, 773

GlowFilter, 780

GradientBevelFilter, 777

Stage, 286–287

quantifiers, regular expressions, 239–240

quaternions, 674

query

E4X, 205–206

XML, 196–203

XML namespaces, 217–222

queues, 151–152

QuickTime movies, 609

R
\r, escaped characters, 115

randomness, numbers, 137

randomSeed, 762, 764

RangeError, 172, 500

rasterization, text, 395–396

rate, Microphone, 649

ratios, 707, 777

rawData, 681

readBoolean(), 264

readByte(), 264

readBytes(), 264

readDouble(), 264

readFloat(), 264, 828

readInt(), 264

readMultiByte(), 264

readObject(), 264, 586

readShort(), 264

readUnsignedByte(), 264

readUnsignedInt(), 264

readUTF(), 264

readUTFBytes(), 264

Real Time Media Flow Protocol (RTMFP), 630, 631

Real Time Messaging Protocol (RTMP), 631

Real Time Messaging Protocol Encrypted (RTMPE), 631

Real Time Messaging Protocol Encrypted Tunneled

(RTMPTE), 631

Real Time Messaging Protocol Secure (RTMPS), 630, 631

Real Time Messaging Protocol Tunneled (RTMPT), 631

recompose():Boolean, 685

Rectangle, 290–292

rectangles, 714–715

dirty, 297

focus, 455

rounded, 715–716

recursion, 48–49

loops, 49

Red5, 629

redArray, 757

Redirect, 412

redMultiplier, 667, 745, 848

redo(), 390, 391

redOffset, 667, 848

ReferenceError, 500

reflection, SWFs, 100

region of interest (ROI), 753

registerClassAlias(), 268, 584–585

regular expressions (RegExp), 12, 225–255

alternation, 242

anchors, 240–242

backreferences, 249–250

boundaries, 240–242

escaped characters, 236–237

exec(), 229–233

flags, 244–247

globalization, 253

greedy matching, 248–249

groups, 243

named, 251–253

noncapturing, 250

lazy matching, 248–249

lookahead groups, 250–251

match(), 230–232

properties, 254

quantifiers, 239–240

replace(), 233–234

split(), 235

String, 227, 253

strings, 121–122

test(), 227–228

Reinhardt, Robert, 841

relatedObject, 440

remote terminals, 565

remoting, SharedObject, 574

removeChild(), 278, 283

removeChildAt(), 283

removeEventListener(), 14–15, 410

removeNamespace(), 222

rendering, 297–299

renderingMode, 397

repeat, 710

repeatCount, 462, 466

replace(), 209, 233–234

replaceSelectedText(), 330

943

Index

replace(pattern:*. replacement:Object):String, 121

replaceText(), 330

request

HTTP, 534, 567–568

URLLoader, 556–557

request, 536

Request For Comment (RFC), 566

requestedLocaleIDName, 892

reset(), 463, 466

reset, 636

ResourceManager, 880

Responder, 570

responder, 569

response

code, 535

HTTP, 534, 567–568

URLLoader, 556–557

responsibilities

classes, 52

LoaderInfo, 539

REST, 563

rest parameter, 43–44

restrict, 345–346

resume(), 636, 907

Resume, Flash Builder, 516

resume():void, 851

return, 45, 78

return types, 46

return values, 44–46

RETURNINDEXEDARRAY, 158

reverse(), 159

rewind():void, 851

RFC. See Request For Comment

RIAs. See Rich Internet Applications

Rich Internet Applications (RIAs), 9

right, Rectangle, 290

rightMargin, 343

rightToLeft, 616

rightToRight, 616

Rixham, Nathan, 750

\r\n, escaped characters, 115

ROI. See region of interest

ROLL_OVER

MOUSE_OVER, 439–440

Multitouch, 477

rollovers, mouse, 437–440

root, 282

root node, 192

rotateDirection, 847

rotateTimes, 847

rotate():void, 663

rotation

TextField, 332

transformation matrices, 661

rotation

DisplayObject, 280, 306, 659

<Keyframe>, 847

Transform, 658

TransformGestureEvent, 482

rotationX, 280

rotationY, 280

rotationZ, 280

rounded rectangle, 715–716

RTMFP. See Real Time Media Flow Protocol

RTMP. See Real Time Messaging Protocol

RTMPE. See Real Time Messaging Protocol Encrypted

RTMPS. See Real Time Messaging Protocol Secure

RTMPT. See Real Time Messaging Protocol Tunneled

RTMPTE. See Real Time Messaging Protocol Encrypted

Tunneled

runtime, 9–10

AIR, 8, 10, 436, 589

API, 6–7

data types, 12

errors, 12, 104, 492

call stacks, 108

null, 511

Flash Lite, 10

Flash Player, 5, 6, 9–10

Variables panel, 520

S
\S, regular expressions, 239

s, regular expressions dotall flag, 246

\s, whitespace, 238, 239

Saffron, 395

Sandy, 319

_sans, 360

saturation, color, 792–793

save(), 600

scale

bitmaps, 734

color, 785–786

TextField, 332

transformation matrices, 661

scaleBy(), 311

scaleBy():void, 679

scale9Grid, 281–282

scaleMode, 287, 701, 703–704

scale():void, 663

scaleX, 280, 306, 659

<Keyframe>, 846

Sprite, 403, 514

Transform, 658

TransformGestureEvent, 482

scaleY, 280, 306, 659

<Keyframe>, 846

Sprite, 403, 514

TransformGestureEvent, 482

scope, 22

SCP, 565

Screen Video, 627

944

Index

<script>, 899

JavaScript, 906

scroll(), 762

scrollH, 359

scrolling, 358–360

scrollRect, 359

scrollV, 359

search(), 228

search, strings, 120–122

search(pattern:*):int, 121

security

Flash Player, 557–559, 608

LocalConnection, 915–917

sandbox, 524, 558

SharedObject, 578–579

Sound, 608

SWFs, 558–559

Security.allowDomain(), 559, 916

Security.allowInsecureDomain(), 916

SecurityError, 500

SecurityErrorEvents, 557

SecurityErrorEvent.Security_ERROR, 541, 551

Security.LOCAL_TRUSTED, 559

Security.LOCAL_WITH_FILE, 558

Security.LOCAL_WITH_NETWORK, 558

Security.REMOTE, 558

Security.sandboxType(), 558–559

Security.showSettings(), 645, 648

seek(), 636

selectable, 333

selectAll(), 390

SelectionFormat, 394

SelectionManager, 387, 390

SelectionState, 389

selectors

CSS, 337

dynamic pseudo-classes, 337

selectRange(), 390

_self, 536

self-commenting code, 21–22

self-referential code, 82–83

self-serializing classes, 585–587

send()

domain name, 916

LocalConnection, 912–914

PrintJob, 400

sendToUrl(), 557

separatorBefore, 456

_serif, 360

servers, 561

error logging, 526

errors, 524

Flash Remoting, 568

HTTP, 534

SharedObject, 572

set, 80–81

setChildIndex(), 278, 283

setChildren(), 209

setContents(), 392

setDefaultStyle(), 530

setFocus(), 390

setFoo(), 80

setInterval(), 470

setKeyframeInterval(), 647

setLocalName(), 222

setLoopback(), 647

setMode(), 646

setNamespace(), 222

setPixel(), 748

setPixels(), 749

setPixel():void, 747

setPixel32():void, 747

setQuality(), 647

setSilenceLevel(), 651

setStyle(), 337

setters, 80

setTextFormat(), 340

setTimeout(), 470

Settings Manager, Flash Player, 579–580

setVector(), 750

SFTP, 565

ShaderData, 819–820

ShaderFilter, 801, 819

ShaderInput, 819

ShaderJob, 819, 828–834

ShaderParameter, 819–820

shaders

drawing, 712–714

Pixel Bender, 803–834

3D, 873–875

shadowColor, 775

Shape, DisplayObject, 284, 687

SharedObject, 571–588

browser, 572–573

custom classes, 583–587

deleting, 576

flush(), 581–583

security, 578–579

servers, 572

SWFs, 576–579

SharedObjectFlushStatus, 582

SharedObjectFlushStatus.FLUSHED, 582

SharedObject.getLocal(), 575, 577

sharpness, TextField, 366

shearing 4D space, 677

shift(), 151–152

shiftKey, 436, 450

side effects, 81–82

constants, 19

sIFR, 902

signed integers, 127

silenceLevel, 651

simple content, 214–215

SimpleButton, 284–285, 434–435, 437, 444

945

Index

SimpleEase, 849

single-line comments, 20

size (size)

FileReference, 592

Rectangle, 291

stage, 295–296, 297

Stage, 286

TextFormat, 343

sizeX, TouchEvent, 477

sizeY, TouchEvent, 477

skew, transformation matrices, 662

skewX, 846

skewY, 846

slice(), 122, 152–153

Slider, 219

smart phones

Flash Player, 473

orientation, 288–289

smartfoxserver.com, 568

smooth, 710

smoothing, 210, 736, 738

SMTP, 565

sndTransform, 613

SOAP, 563–564

Socket, 500, 749

socket services, 565–568

solid color

bitmaps, 759–761

drawing, 700–706

fills, 700–706

some(), 159–161

someNumber(), 496

songName, 616

Sorenson Spark, 627

sort(), 156–159

sortOn(), 156–159, 177

SOS, 526

sound (Sound), 605–624

buffering, 608

capabilities, 623

clear(), 612

errors, 524

extract(), 621

fast-forward, 613–615

Flash Builder, 610

Flash Professional, 609–610

load(), 607–608

LoaderInfo, 616

loops, 613

metadata, 616–617

Microphone, 648–653

objects, 607–611

pausing, 613–615

play(), 611, 612

playback, 611–615

restarting, 613–615

rewinding, 613–615

security, 608

seeking, 613

SWFs, 608–609

symbols, 326

synthesize, 621–623

Sound Designer II, 609

Sound Properties, 609–610

SoundChannel, 606, 611

SoundLoaderContext, 607, 608

SoundMixer, 606, 618

SoundMixer.computeSpectrum(), 618, 621

SoundMixer.stopAll(), 612

Sound.play(), 623

SoundTransform, 606, 615–616

soundTransform, 636, 648

Source, 845–846

source, 738, 845–846

sourceBitmapData

applyFilter(), 761

copyChannel(), 743

copyPixels(), 742

merge(), 745

paletteMap(), 757

threshold(), 755

sourceChannel, 743

sourceRect

applyFilter(), 761

copyChannel(), 743

copyPixels(), 742

merge(), 745

paletteMap(), 757

threshold(), 755

source:String, 254

, 335, 383

SpanElement, 374

Spark, 369, 471, 627, 632

Speex

audio codec, 627

Flash Player, 611

framesPerPacket, 651

noiseSuppressionLevel, 649

splice(), 152, 184

split(), 117, 235

splitParagraph(), 391

spreadMethod, 707

Sprite

ContainerController, 378

DisplayObject, 276–277

DisplayObjectContainer, 285

drawing, 687

inheritance, 69

MovieClip, 285

Multitouch, 484

scaleX, 403, 514

scaleY, 403, 514

946

Index

startDrag(), 440–441

stopDrag(), 440–441

text containers, 378

sprite sheets, 738

squareRoot(), 495

squares, 714–715

src, 335

SSH, 565

stack. See also call stacks

frame, 517

operations, arrays, 150–151

overflow, recursion, 49

trace, 518

stage (stage, Stage), 894

color, 289

DisplayObject, 282, 421

DisplayObjectContainer, 286

Event.ADDED_TO_STAGE, 443

Event.MOUSE_LEAVE, 444

Flash Professional, 321–327

focus, 451

full-screen mode, 287–288

size, 286, 295–296, 297

SWFs, 286–287

stage.colorCorrection, 757

stageHeight, 288

StageOrientation, 288

stageWidth, 288

stageX, MouseEvent, 433

stageY, MouseEvent, 433

start(), 400–401, 463

start, 635

startDrag(), 285, 440–441

startDraw(), 721

startTime, 613

startTouchDrag(), 484

state machine, 689

statements, 15

; (semicolon), 16

static

constants, 85–87

methods

OOP, 83–89

utility classes, 89

variables, 84–85

statically typed variables, 54

StatusEvent.STATUS, 644

Step Into, 518–519

Step Out, 518

Step Over, 518

Step Return, 518

Sticker(), 709

stitch, perlinNoise(), 764

stop()

MovieClip, 285

sound, 611

SoundChannel, 611

timers, 463

stopDrag(), 285, 440–441

stopImmediatePropagation(), 424

stopPropagation(), 424, 431

stopTouchDrag(), 484

stop():void, 851

storage, 571–588

TLF, 373–375

straight line segments, 690–694

stream, 607

streaming

publishing, 653

subscribe, 653

video, 626, 629–630, 631

strength

BevelFilter, 775

DropShadowFilter, 773

GlowFilter, 780

GradientBevelFilter, 777

stretchFactor, 618–619

Strict mode, 103

String(), 113, 115–116

:String, 17

strings (String)

arrays, 117, 148–149

casting, 116

characters, 119–120

charCode, 448

combining, 118

compare(), 889

conversion, 115–117, 132–133

XML, 209–212

debugger, 513

dissection, 122

encodings, 123

equals(), 889

errors, 524

events, 411, 419

literals, 19, 113–115

"" (double quotes), 19

’’ (single quotes), 19

localization, 889–891

match(), 230

numbers, 116–117

RegExp, 227, 253

regular expressions, 121–122

save(), 600

search, 120–122

search(), 228

ShaderData, 819

text, 330

toLowerCase(), 118

toUpperCase(), 118–119

XML, 98

StringTextLineFactory, 378

947

Index

StringTools, 891

strokes

drawing, 701

gradients, 706–710

StyleSheet, 337–339

subclasses

constructors, 91

enumeration, 87

polymorphism, 66

subroutines, 46

subscribe, streaming, 653

substr(), 122

substring(), 122

subtitles, video, 628

subtract(), 290

subtract():Vector3D, 311, 678

sumSomeNumbers(), 496

super, 90–91

super(), 91

superclass, 62

overrides, 90–91

protected, 73

supportedGestures, 475

supportsGestureEvents, 475

supportsTouchEvents, 475

swapChildren(), 283

swapChildrenAt(), 283

SWCs

assets, 327

compc, 8

compiler, 373

Flash Builder, 327, 373

Flash Professional, 373

Flex, 373

symbols, 327

TLF, 373

SWFs, 8, 538, 880

ActionScript 1.0, 548–549

ActionScript 2.0, 548–549

ApplicationDomain, 546

assets, 327–328

AVM, 548–549

classes, 326

debugger, 506

errors, 524

executable, 8

Flash motion package, 850

Flash Player, 11, 898

Flash Professional, 326

fonts, 548

full-screen mode, 295–296

getTimer(), 470

instance classes, 545–548

Loader, 364

LoaderInfo, 540–541, 902

properties, 286–287, 540–541

reflection, 100

security, 558–559

SharedObject, 576–579

sound, 608–609

Stage, 286–287

symbols, 327

TextField, 335–336

variables, 902–903

versions, 506

video, 836

SWFFit, 880

SWFMacMouseWheel, 880

SWFObject, embedding, 898–900

swfVersion, 549

switch

break, 30–31

default, 495

NetStatusEvent, 636

swocket.sf.net, 568

Symbol Properties dialog box, 324–326

symbols

classes, 324–326

Flash Professional, 321–327

instances, 323

nongraphic types, 326–327

SWCs, 327

SWFs, 327

SyntaxError, 500

synthesize, sound, 621–623

System 7, 609

T
T1180 error, 108

\t, escaped characters, 115, 237

T, vectors, 176–177

<tab/>, 383, 384

tabs, 454–455

TextField, 347

tabChildren, 283

tabEnabled, 283, 435, 453,

454

tabIndex, 283, 347, 454

tabOrder, 435

tabStops, 343

tapLocalX, 480

tapLocalY, 480

tapStageX, 480

tapStageY, 480

targets

errors, 524

events, 412

target

PrintJob, 401

ShaderJob, 828

TextFormat, 343

timers, 465

948

Index

target phase

addEventListener(), 423

event flow, 412, 423

tate-chu-yoko text, 374

TCP/IP, 565, 566

<tcy>, 383

TCYElement, 374

Telnet, 565

1046 error, 110

1067 error, 110

ternary operator, 31–33

test(), 227–228

text

anti-aliasing, 298

containers, 378–391

controllers, 375–381

layouts, 367–398

rasterization, 395–396

TextField, 330

wrapping

Flash Player, 354

TextField, 332–333

XML, 199–200

text(), 200

Text Containers, TLF, 373

Text Layout Framework (TLF), 368, 372–395

content, 373–375

Content Markup, 373

damaged zones, 379

Editability and Events, 373

editing, 386–389

events, 393–394

Flash Professional, 369

formatting, 386

markup, 381–386

storage, 373–375

SWCs, 373

Text Containers, 373

TextField, 394–395

XML, 388–389

text-align, 336

TextBlock, 370, 371

TextClipboard, 392

textColor, 341

TextConverter, 384–386

TextConverter.FXG_FORMAT, 386

TextConverter.PLAIN_TEXT_FORMAT, 386

TextConverter.TEXT_LAYOUT_FORMAT, 386

text-decoration, 337

TextEvent.LINK, 352–353

TextEvent.TEXT_INPUT, 349–352

default behavior, 426

InteractiveObject, 283

TextField, 450

TextField(), 330

TextField, 329–360, 367

autoSize, 331–332

backgroundColor, 339

borderColor, 339

creating, 330

cursor, 444

Event.CHANGE, 450

events, 347–354

Event.SCROLL, 354

Flash Player, 354, 369

focus, 454

FocusEvent.FOCUS_IN, 347–349

FocusEvent.FOCUS_OUT, 347–349

getCharBoundaries(), 357

getImageReference(), 336

getLineMetrics(), 356

hasBackground, 339

HTML, 334–336

htmlText, 339

<img| >, 335–336

input, 344–347

InteractiveObject, 285

keyboard, 450

locations, 356

restrict, 345–346

rotation, 332

scale, 332

scrolling, 358–360

selectable, 333

sharpness, 366

size of, 330–332

StyleSheet, 338–339

SWFs, 335–336

tabs, 347

text, 330

text wrapping, 332–333

textColor, 341

TextEvent.LINK, 352–353

TextEvent.TEXT_INPUT, 450

TextFormat, 339–344

TEXT_INPUT, 349–352

thickness, 366

TLF, 394–395

type, 344

Unicode, 334

TextFieldAutoSize.CENTER, 332

TextFieldAutoSize.LEFT, 332

TextFieldAutoSize.NONE, 331

TextFieldAutoSize.RIGHT, 332

TextFieldType.INPUT, 345

TextFlow, 378, 393–394

<TextFlow>, TLF markup, 383, 384

TextFormat, 339

TextField, 339–344

TLF markup, 381

<textformat>, 335

text-indent, 337

TEXT_INPUT, 349–352

949

Index

TextLayoutFormat, 375

TextLine, 370, 371

factory, 375–378, 387

TextScrap, 390, 392

texture mapping, 3D, 865–870

thickness

drawing strokes, 701

TextField, 366

this, 83, 514

event dispatchers, 189

this.finish(), 83

threads, 470–471

3D

advanced, 855–875

affine transformations, 674–675

backface culling, 864–865

coordinates, 303–304

DisplayObject, 280, 301–319, 670

drawing, 731

Flash Professional, 304

geometry, 309–311

libraries, 318–319

lighting, 873–875

matrices, 673–674

mouse, 311–314

orientation, 674

points, 671–672, 856–861

projection modification, 314–318

shading, 873–875

texture mapping, 865–870

transformation matrices, 670–686

triangle strips, 861–864

vectors, 672–673

z-sorting, 305, 871–873

3D Math Primer for Graphics and Game Development

(Dunn and Parberry), 670

threshold, 755

threshold()

bitmap color, 755–756

cel shading, 875

throwing exceptions, 492–493

throwOnError, 384

time, 138–144

time, 636

time zones, 140–141

Timer(), 408, 465

timers (Timer), 461–471

animation, 837–838

creating, 462

events, 462–466

currentCount, 466

delay, 466

repeatCount, 466

execution delay, 412–413

Redirect, 412

reset(), 463

start(), 463

stop(), 463

target, 465

world clock, 467–469

TimerEvent, 462–466

TimerEvent.TIMER, 462

TimerEvent.TIMER_COMPLETE, repeatCount, 462

tint, color, 786–788

tintColor:uint, 848

tintMultiplier:Number, 848

TLF. See Text Layout Framework

TLFTextField, 394–395

toDateLocaleString(), 143

toDateString(), 143

TODO, 21

togglePause(), 636

toLocaleString(), 143, 880

toLocaleTimeString(), 143

toLowerCase(), 118, 891

toMatrix3D(), 858

Tomayko, Ryan, 535

_top, 536

top, Rectangle, 290

topLeft, Rectangle, 290

toString(), 98, 116, 180, 199, 209

dates, 143

Flash Player, 183

hexadecimal numbers, 259

Namespace, 216

objects, 183

trace(), 148

totalFrames, 285

toTimeString(), 143

touch mode, Multitouch, 476–480

TouchEvent, 476–480

TOUCH_MOVE, 477

TOUCH_OVER, 477

touchPointID, 477

toUpperCase(), 118–119, 891

toUTCString(), 143

toXMLString(), 199, 210

trace, 513

trace(), 99, 116

+, 118

arrays, 146

error logging, 526

printing, 18

toString(), 148

track, 616

Transform

DisplayObject, 657–658

PerspectiveProjection, 315

transformation matrices, 665

transform, 282

transform(), 339

transformations, 275

geometry, 657–666

nested display lists, 294–295

950

Index

transformation matrices, 659–661

affine transformations, 661–662

concatenation, 663

4D, 675–677

order of application, 664–665

rotation, 661

scale, 661

skew, 662

3D, 670–686

Transform, 665

translation, 661

transformationPoint, 845–846, 851

TransformGestureEvent, 481–482

transformPoint(p:Point):Point, 664

transformVectors():void, 685

transformVector():Vector3D, 685

translate ():void, 663

translation, transformation matrices, 661

transparent

BitmapData, 735

wmode, 900–901

triangle strips, 861–864

TriangleCulling.POSITIVE, 865

trigonometric calculations, 135–137

try, 494–497

try/catch, 493

Twease, 853

Tweener, 853

TweenLite, 853

tweens, 842, 843

tweenScale, 846

Tweensy, 853

2D, affine transformations, 658–666

type

addEventListener(), 419

BevelFilter, 775

drawing gradients, 707

FileReference, 592

GradientBevelFilter, 777

TextField, 344

types. See also data types

casting, 98–99

classes, 52–53, 54

coercion, 97–98

compatibility, 97–98

conversion, 98–99

determining, 100

events, 411–412, 413

images, Pixel Bender kernel language, 814

matrices, Pixel Bender kernel language, 813–814

OOP, 54, 96–100

Pixel Bender kernel language, 808, 811

vectors, Pixel Bender kernel language, 812–813

Type Coercion Error, 149

type parameters

compatibility, 179

vectors, 173–176

type safety, 54

type system, vectors, 170–171

typed language, 23

TypeError, 108, 499, 500

TypeError #1009, 108

type:String, 636

_typewriter, font alias, 360

U
<u>, Flash Player HTML, 335

uint, 129–130, 168

charCode, 448

color, 735

keyCode, 447

Vector, 750

unary operators, 24

uncaught exceptions, 497, 510–511

UncaughtErrorEvent.UNCAUGHT_ERROR, 504

undefined, 131

underline, 343

undo(), 390, 391

UndoManager, 389, 391

unescape(), 554

Unicode, 123, 334

UNIQUESORT, 159

Universal Type Identifier, 593

unload(), 545

unloadAndStop(), 545

unlock(), 748

\unnnn, escaped characters, 115, 237

UnrelatedError, 496

unshift(), 151–152

unsigned integers, 126–127

untyped variables, 23

upcasting, 98–99

updateAfterEvent(), 443, 837, 838

updateAllControllers(), 379

upload()

Event.COMPLETE, 593

FileReference, 590, 593

URLLoader, 593

URLRequest, 593

upState, 284, 437

url, 344

URLLoader, 549–557

CSS, 552

EventDispatcher, 550

load(), 550

upload(), 593

XML, 212–213, 551–552

URLLoader.data, 562

URLLoaderDataFormat, 551

URLLoader.dataFormat, 562

URLRequest, 536, 555–557, 593

951

Index

URLRequest.contentType, 562

URLRequest.data, 562

URLRequest.method, 562

URLStream, 263, 500

URLVariables, 554

useCapture, 420

useHandCursor, 285

useWeakReference, 420

UTF-8, 123

utility classes, static methods, 89

Utils3D, 858, 867

V
value, CurrencyParseResult, 889

values

arrays, 147–148

associative arrays, 183

classes, 53

constants, 18

data, 575

key-value pairs, 184, 187, 188

logging, 513

primitive data types, 41–42

return, 44–46

var, 17, 18, 78, 197

var i"int=1;, 33

variables, 17–19

class, 17, 84–85

declaration, 17–18

dynamically typed, 54

hoisting, 22, 507

nouns, 40

Pixel Bender kernel language, 808

scope, 22

static, 84–85

statically typed, 54

SWFs, 902–903

trace, 513

untyped, 23

URLLoader, 553–555

URLRequest, 555–557

Variables panel

debugger, 513–515

errors, 520

Flash Builder, 515

runtime, 520

Vector(), 178

Vector

BitmapData, 750

data, 827

determinePreferredLocales(), 885

lock(), 750

uint, 750

vectors, 167–180

arrays, 167–168, 169, 180

converting, 178–180

creating, 178–180

cross products, 679–680

equality, 679

fixed, 172–173

generic programming, 173–178

literals, 179

memory, 170

Pixel Bender kernel language, 812–813

printing, 402

T, 176–177

3D, 672–673

type parameters, 173–176

type system, 170–171

vector graphics. See drawing

Vector.<Number>, 859

Vector3D, 309–311, 678–681, 859

Vector3D.angleBetween():Number, 681

Vector3D.distance():Number, 681

verbs

functions, 40

HTTP, 535

properties, 79

VerifyError, 500

vertex, 856

vertices, 861–864

video, 625–641

acceleration, 632

applications, 632

Camera, 643–647

closed captioning, 628

codecs, 626–628

compression, 647

container formats, 626–628

encoding, 631–632

errors, 524

files, 626

Flash Player, 625–633

HTTP, 629

metadata, 628

NetConnection, 634–635

playback, 632–633

players, 632–633

progressive download, 629

sources, 625–626

streaming, 629–630, 631

streams, 626

subtitles, 628

SWFs, 836

symbols, 326

Video, 210, 284, 644, 647

VideoPlayer, 632

viewMatrix, 858

visibility

namespaces, 75–76

packages, 58

visible, DisplayO, 281

952

Index

Voice Activity Detection, Flash Player, 652

void, 46, 48

volume, 615

vspace, 335

W
\W, regular expressions, 238, 239

\w, regular expressions, 239

Ward, James, 818

warn, 527

warnings, compiler, 104

watch expressions, 515

WAV, 609

weakKeys, 185

Web services, 562–565

Webcam, 626

wheel, mouse, 447

while, 35–36, 37

while(true), 37

whitespace, 16, 238, 239

wideLineTo(), 726

wideMoveTo(), 726

width

BitmapData, 735

DisplayObject, 280, 306

drawing gradients, 707

flash.text.TextLineMetrics, 356

, 335

Rectangle, 291

setMode(), 646

ShaderJob, 828

SWFs, 8

winding, 723

winding order, 864

window, 536

wmode, transparent, 900–901

wmodeGPU, 287

wordWrap, 332–333

world clock, 467–469

Wowza Media Server, 629

writeBoolean(), 264

writeByte(), 264

writeBytes(), 264

writeDouble(), 264

writeFloat(), 264, 828

writeInt(), 264

writeMultiByte(), 264

writeObject(), 264, 586

writeShort(), 264

writeUnsignedByte(), 264

writeUnsignedInt(), 264

writeUTF(), 264

writeUTFBytes(), 264

X
x

DisplayObject, 280, 306, 659

flash.text.TextLineMetrics, 356

<Keyframe>, 846

Rectangle, 290

regular expressions extended flag, 246–247

Transform, 658

XML. See eXtensible Markup Language

XML(), 210, 551

XML, 194, 209

save(), 600

String, 98

XMLList, 194, 195, 209

[], 197

XML-RPC, 565

XMLSocket, 568

\xnn, escaped characters, 115, 237

XOR, bitwise operator, 262

XRay, 526

XXX, 21

[x − y], regular expressions, 239

Y
y

DisplayObject, 280, 306,

659

<Keyframe>, 846

Rectangle, 290

Transform, 658

Yahoo!, 565

year, 616

Yogurt3D, 319

YouTube, 633

Z
z-sorting, 865

DisplayObject, 305

3D, 305, 871–873

Zupko, Andy, 875

953

Get the most out of the latest software and leading-edge technologies
with a Wiley Bible—your one-stop reference.

The books you
read to succeed.

Available wherever books are sold.

978-0-470-45264-6

978-0-470-43640-0

978-0-470-50909-8

978-0-470-47191-3

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc.
All other trademarks are the property of their respective owners.

Learn how to identify security risks to networks and computers as you
prepare for the Certifi ed Ethical Hacker version 6 (CEHv6) exam.
This in-depth guide thoroughly covers all exam objectives and topics,
while showing you how Black Hat hackers think, helping you spot
vulnerabilities in systems, and preparing you to beat the bad guys at
their own game. Inside, you’ll fi nd:

Full coverage of all exam objectives in a systematic approach, so you can

be confi dent you’re getting the instruction you need for the exam

Practical hands-on exercises to reinforce critical skills

Real-world scenarios that put what you’ve learned in the context of actual

job roles

Challenging review questions in each chapter to prepare you for exam day

Exam Essentials, a key feature in each chapter that identifi es critical areas

you must become profi cient in before taking the exam

A handy tear card that maps every offi cial exam objective to the corre-

sponding chapter in the book, so you can track your exam prep objective

by objective

Kimberly Graves, CEH, CWSP, CWNP, CWNA, has over 15 years of IT
experience. She is founder of Techsource Network Solutions, a network and security
consulting organization located in the Washington, DC area. She has served as subject
matter expert for several certifi cation programs—including the Certifi ed Wireless
Network Professional (CWNP) and Intel Certifi ed Network Engineer programs—and
has developed course materials for the Department of Veteran Affairs, USAF, and
the NSA.

Prepare for CEH certifi cation
with this comprehensive guide

SYBEX TEST ENGINE
Test your knowledge with advanced
testing software. Includes all chapter
review questions and practice exams.

ELECTRONIC FLASHCARDS
Reinforce your understanding with
e ectronic fl ashcards.

Also on the CD, you’ll fi nd the entire
book in searchable and printable
PDF. Study anywhere, any time, and
approach the exam with confi dence.

FEATURED ON THE CD

$49.99 US
$59.99 CN

C A T E G O R Y
COMPUTERS/Certifi cation Guides

A B O U T T H E A U T H O R

ISBN 978-0-470-52520-3

Look inside for complete coverage
of all exam objectives.

www.sybex.com

	ActionScript 3.0 Bible, Second Edition
	About the Author
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	What’s New in This Edition
	Make Sure You Buy the Right Book
	How This Book Is Organized
	Conventions and Features
	Running Example Code
	On the Web Site
	Where to Go from Here

	Part I: ActionScript 3.0 Language Basics
	Chapter 1: Introducing ActionScript 3.0
	What Is ActionScript 3.0?
	Exploring the Flash Platform
	From ActionScript 2.0 to ActionScript 3.0
	Summary

	Chapter 2: ActionScript 3.0 Language Basics
	The Bare Essentials
	Using Variables
	Commenting Your Code
	Introducing Scope
	Introducing the Data Types
	Connecting You to an Operator
	Making Logical Choices with Conditionals
	Repeating Actions Using Loops
	Summary

	Chapter 3: Functions and Methods
	Calling Functions
	Creating Custom Functions
	Returning Results
	Anonymous Functions
	Functions as Objects
	Recursive Functions
	Summary

	Chapter 4: Object Oriented Programming
	Understanding Classes
	Object Oriented Terminology
	Encapsulation: Classes Are Like, So Selfish
	Packages: Classes, Functions, and Packing Peanuts
	Using Inheritance
	Access Control Attributes
	Methods and Constructors
	Properties
	Using Static Methods and Properties
	Overriding Behavior
	Designing Interfaces
	Manipulating Types
	Creating Dynamic Classes
	Summary

	Chapter 5: Validating Your Program
	Introducing Errors
	Fixing Errors
	Summary

	Part II: Core ActionScript 3.0 Data Types
	Chapter 6: Text, Strings, and Characters
	Working with String Literals
	Converting to and from Strings
	Combining Strings
	Converting the Case of a String
	Using the Individual Characters in a String
	Searching within a String
	String Dissection
	String Encoding and International Text
	Summary

	Chapter 7: Numbers, Math, and Dates
	Understanding Numeric Types
	Using Numbers in ActionScript
	Manipulating Numbers
	Performing Arithmetic
	Performing Trigonometric Calculations
	Generating Randomness
	Manipulating Dates and Times
	Summary

	Chapter 8: Arrays
	Array Basics
	Converting Arrays to Strings
	Adding and Removing Items from an Array
	Slicing, Splicing, and Dicing
	Iterating through the Items in an Array
	Searching for Elements
	Reordering Your Array
	Applying Actions to All Elements of an Array
	Alternatives to Arrays
	Amazing Properties of Arrays
	Summary

	Chapter 9: Vectors
	Vector Basics
	Generics and Parameterized Types
	Generic Methods of Vector
	Creating and Converting Vectors
	Summary

	Chapter 10: Objects and Dictionaries
	Working with Objects
	Using Objects and Dictionaries as Associative Arrays
	Using Objects for Named Arguments
	Using Objects as Nested Data
	Summary

	Chapter 11: XML and E4X
	Getting Started with XML in ActionScript
	Querying XML
	Modifying XML
	Converting to and from Strings
	Loading XML Data from External Sources
	Gathering Meta-Information about XML Nodes
	Using Namespaces
	Setting XML Options
	Summary

	Chapter 12: Regular Expressions
	Introducing Regular Expressions
	Writing a Regular Expression
	Applying Regular Expressions
	Constructing Expressions
	Regular Expression Flags
	Constructing Advanced Expressions
	Using the RegExp Class
	Summary

	Chapter 13: Binary Data and ByteArrays
	Binary Concepts
	Bit Math and Operators
	Binary Types in ActionScript
	Using ByteArray
	Common Uses of ByteArrays
	Summary

	Part III: The Display List
	Chapter 14: Visual Programming with the Display List
	Introducing Display Lists and Display Objects
	Display Object Classes
	Geometry Classes
	Putting the Display List to Use
	Rendering and Performance
	Summary

	Chapter 15: Working in Three Dimensions
	Introducing 3D in ActionScript 3.0
	DisplayObject Revisited
	Geometry Revisited
	Mouse and Point Translation in 3D
	Modifying the Projection
	Software 3D Libraries
	Summary

	Chapter 16: Working with DisplayObjects in Flash Professional
	The Stage, Symbols, and the Library
	Exporting and Using Assets
	Summary

	Chapter 17: Text, Styles, and Fonts
	Introducing TextFields
	Text with HTML and CSS
	Background and Border Treatments
	Styling Text with TextFormats
	Input TextFields
	Interaction with TextField Events
	Interactive Typography
	Fonts
	Summary

	Chapter 18: Advanced Text Layout
	Understanding Advanced Text Controls
	The Flash Text Engine
	The Text Layout Framework
	Fonts Revisited
	Summary

	Chapter 19: Printing
	Why Print from Flash?
	Controlling Printer Output from Flash
	Adding Print Functionality to Applications
	Summary

	Part IV: Event-Driven Programming
	Chapter 20: Events and the Event Flow
	Introducing Events
	The EventDispatcher Class
	Working with Event Objects
	Adding and Removing Event Listeners
	The Event Flow
	Preventing Default Behaviors
	Summary

	Chapter 21: Interactivity with the Mouse and Keyboard
	Mouse and Keyboard Event Handling
	Mouse Interactions
	Keyboard Interactions
	Focus
	Context Menus
	Summary

	Chapter 22: Timers and Time-Driven Programming
	Timer Basics
	Handling Timer Events
	Delaying the Execution of a Function
	Creating a World Clock
	Enterframe Events
	Other Time-Related Functions
	Aside: Threads
	Summary

	Chapter 23: Multitouch and Accelerometer Input
	Planning for Your Audience
	Using Multitouch
	Using the Accelerometer
	Other Sensors
	Summary

	Part V: Error Handling
	Chapter 24: Errors and Exceptions
	Comparing Ways to Fail
	Understanding Exceptions
	Errors Generated by Flash Player
	Custom Exceptions
	Handling Asynchronous Errors
	Capturing Unhandled Events
	Summary

	Chapter 25: Using the AVM2 Debugger
	Introducing Debugging
	Launching the Debugger
	Taking Control of Execution
	Pulling Back the Curtain
	Navigating through Code
	Debugging a Simple Example
	Using the Debugger Effectively
	Summary

	Chapter 26: Making Your Application Fault-Tolerant
	Developing a Strategy
	Determining What Errors to Handle
	Categorizing Failures
	Logging Errors
	Messaging the User
	Degrading Styles: An Example
	Summary

	Part VI: External Data
	Chapter 27: Networking Basics and Flash Player Security
	HTTP in Brief
	Introducing URLRequest
	Navigating to a Web Page
	Loader
	URLLoader
	Sending Variables with URLRequest
	Understanding Flash Player Security
	Summary

	Chapter 28: Communicating with Remote Services
	Web Services Using HTTP
	Socket Services
	XML Socket Services
	Flash Remoting
	Summary

	Chapter 29: Storing and Sending Data with SharedObject
	Comparing Approaches to Persistent Storage
	Identifying Useful Situations for Shared Objects
	Shared Objects and Remoting
	Using SharedObjects
	Sharing Information between SWFs
	Working with Size Constraints
	Storing Custom Classes
	Summary

	Chapter 30: File Access
	Abilities of the File API
	Introducing FileReference
	Uploading a File
	Adding Upload Handling to a Server
	Downloading a File to Disk
	Loading a File into Memory
	Saving Data to Disk
	Summary

	Part VII: Sound and Video
	Chapter 31: Playing and Generating Sound
	An Overview of the Sound System
	Prepping and Playing Sound Objects
	Controlling Sound Playback
	Applying Sound Transformations
	Working with a Sound’s Metadata
	Sampling Audio
	Extracting Audio
	Synthesizing Audio
	Detecting Audio Capabilities
	Summary

	Chapter 32: Playing Video
	Video and the Flash Platform
	Implementing a Video Player
	Summary

	Chapter 33: Capturing Sound and Video
	Video Input Using a Camera
	Sound Input Using a Microphone
	Flash Media Servers
	Summary

	Part VII: Graphics Programming and Animation
	Chapter 34: Geometric and Color Transformations
	DisplayObject and the Transform Object
	2D Affine Transformations
	Color Transforms
	3D Transformations
	Summary

	Chapter 35: Programming Vector Graphics
	Overview
	Drawing Basics
	Setting Drawing Styles
	Drawing Primitives
	Example: A Drawing Application
	Batched Drawing
	3D Drawing
	Summary

	Chapter 36: Programming Bitmap Graphics
	Bitmaps and Their Applications
	Creating and Displaying Bitmaps
	Capturing and Copying Bitmaps
	Pixel-Level Access
	Working with Colors
	Bitmap Effects
	Summary

	Chapter 37: Applying Filters
	Introducing Filters
	Blurs
	Drop Shadows
	Bevels
	Gradient Bevels
	Glows
	Gradient Glows
	Color Effects
	Convolution Filters
	Displacement Maps
	Shaders
	Summary

	Chapter 38: Writing Shaders with Pixel Bender
	Introducing Pixel Bender
	Pixel Bender Kernel Language
	Interfacing with Pixel Bender Kernels
	Bending Other Data
	Summary

	Chapter 39: Scripting Animation
	Understanding Flash Player and Animation
	Animating with Code
	Animating Using Flash Professional
	Animating Using Flex
	Choosing a Third-Party Animation Toolkit
	Summary

	Chapter 40: Advanced 3D
	Game Plan
	Projecting Batches of Points
	Triangle Strips
	Backface Culling
	Texture Mapping
	Z-Sorting, Shading, and Further Topics
	Summary

	Part IX: Flash in Context
	Chapter 41: Globalization, Accessibility, and Color Correction
	Globalization and Localization
	Accessibility
	Color Correction
	Summary

	Chapter 42: Deploying Flash on the Web
	Embedding Flash in a Page
	Embedding Flash Using SWFObject
	Enabling Flash Player Options
	Passing Variables to a SWF
	Automatically Upgrading Flash Player
	Summary

	Chapter 43: Interfacing with JavaScript
	Using ExternalInterface
	Making a Hybrid Application with ExternalInterface
	Summary

	Chapter 44: Local Connections between Flash Applications
	Local Connections and Their Uses
	Implementing a Local Connection
	Local Connections and the Security Policy
	Example: Following the Mouse
	Summary

	Index

