
AdvancED ActionScript 3.0
Animation

Keith Peters

www.allitebooks.com

http://www.allitebooks.org

Lead Editor

Ben Renow-Clarke

Technical Reviewer

Seb Lee-Delisle

Editorial Board

Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick,

Michelle Lowman, Matthew Moodie,

Jeffrey Pepper, Frank Pohlmann,

Ben Renow-Clarke, Dominic Shakeshaft,

Matt Wade, Tom Welsh

Project Manager

Sofia Marchant

Copy Editor

Nancy Sixsmith

Associate Production Director

Kari Brooks-Copony

Production Editor

Janet Vail

Compositor

Lynn L’Heureux

Proofreader

Nancy Bell

Indexer

Carol Burbo

Artist

Kinetic Publishing Services, LLC

Cover Image Designer

Bruce Tang

Interior and Cover Designer

Kurt Krames

Manufacturing Director

Tom Debolski

AdvancED ActionScript 3.0 Animation

Copyright © 2009 by Keith Peters

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1608-7

ISBN-13 (electronic): 978-1-4302-1608-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,

we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the

trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.

Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.

Phone 510-549-5930, fax 510-549-5939, e-mail , or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and

licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at

.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the

preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at in the Downloads section.

Credits

www.allitebooks.com

http://www.allitebooks.org

To Miranda and Kristine, for their patience and support,
once again.

www.allitebooks.com

http://www.allitebooks.org

v

CONTENTS AT A GLANCE

About the Author .xiii

About the Technical Reviewer . xv

About the Cover Image Designer . xvii

Acknowledgments . xix

Chapter 1 Advanced Collision Detection. .1

Chapter 2 Steering Behaviors . 49

Chapter 3 Isometric Projection . 99

Chapter 4 Pathfinding . 155

Chapter 5 Alternate Input: The Camera and Microphone 197

Chapter 6 Advanced Physics: Numerical Integration 237

Chapter 7 3D in Flash 10 . 275

Chapter 8 Flash 10 Drawing API . 311

Chapter 9 Pixel Bender . 359

Chapter 10 Tween Engines . 399

Index . 440

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author .xiii

About the Technical Reviewer . xv

About the Cover Image Designer . xvii

Acknowledgments . xix

Chapter 1 Advanced Collision Detection. .1

Hit Testing Irregularly Shaped Objects . 2

Bitmaps for collision detection . 5

Hit testing with semitransparent shapes . 9

Using BitmapData.hitTest for nonbitmaps . 11

Hit Testing with a Large Number of Objects . 14

Implementing grid- based collision detection . 16

Coding the grid . 20

Testing and tuning the grid . 28

Making it a reusable class . 31

Using the class . 37

Collision detection: Not just for collisions . 42

Summary . 47

Chapter 2 Steering Behaviors . 49

Behaviors . 51

Vector2D Class . 51

Vehicle Class . 60

SteeredVehicle Class . 67

Seek behavior . 69

Flee behavior . 71

Arrive behavior . 75

Pursue behavior . 77

Evade behavior . 80

Wander behavior . 81

Object avoidance . 84

Path following . 89

Flocking . 92

Summary . 97

CONTENTS

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

viii

Chapter 3 Isometric Projection . 99

Isometric versus Dimetric . 102

Creating Isometric Graphics . 104

Isometric Transformations . 104

Transforming world coordinates to screen coordinates . 105

Transforming screen coordinates to world coordinates . 110

IsoUtils class . 110

Isometric Objects . 113

Depth Sorting . 123

Isometric World Class. 129

Moving in 3D . 132

Collision Detection . 138

Using External Graphics . 141

Isometric Tile Maps . 146

Summary . 153

Chapter 4 Pathfinding . 155

Pathfinding Basics . 155

A* (A- Star) . 157

A* basics . 157

A* algorithm. 157

Calculating cost . 159

Visualizing the algorithm . 160

Getting it into code . 164

Common A* heuristics . 176

Implementing the AStar Class . 181

Refining the path: Corners . 185

Using AStar in a Game . 189

Advanced Terrain . 193

Summary . 195

Chapter 5 Alternate Input: The Camera and Microphone 197

Cameras and Microphones . 198

Sound as Input . 199

A sound- controlled game . 203

Activity events . 206

Video as Input . 209

Video size and quality . 211

Videos and bitmaps . 212

Flipping the Image . 213

Analyzing pixels . 213

Analyzing colors . 214

Using tracked colors as input . 219

Analyzing areas of motion . 221

Analyzing edges . 229

Summary . 235

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

ix

Chapter 6 Advanced Physics: Numerical Integration 237

Numerical Integration and Why Euler Is “Bad” . 238

Runge-Kutta Integration . 240

Time-based motion . 241

Coding Runge-Kutta second order integration (RK2) . 246

Coding Runge-Kutta fourth order integration (RK4) . 249

Weak links . 253

Runge-Kutta summary . 253

Verlet Integration . 253

Verlet points . 255

Constraining points . 258

Verlet sticks . 259

Verlet structures . 264

Hinges . 271

Taking it further . 272

Summary . 273

Chapter 7 3D in Flash 10 . 275

Flash 10 3D Basics . 276

Setting the vanishing point . 278

3D Positioning . 282

Depth sorting . 283

3D containers . 286

3D Rotation . 288

Field of View and Focal Length . 298

Screen and 3D Coordinates . 303

Pointing at Something . 307

Summary . 309

Chapter 8 Flash 10 Drawing API . 311

Paths . 312

A simple drawing program . 314

Drawing curves . 317

Wide drawing commands and NO_OP . 319

Winding . 322

Triangles . 326

Bitmap fills and triangles . 331

uvtData . 333

More triangles! . 337

Triangles and 3D . 340

The t in uvt . 345

Rotating the tube . 346

Making a 3D globe . 348

Graphics Data . 351

Summary . 357

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

x

Chapter 9 Pixel Bender . 359

What Is Pixel Bender? . 359

Writing a Pixel Shader . 361

Data Types . 365

Getting the Current Pixel Coordinates . 367

Parameters . 371

Advanced parameters . 374

Sampling the Input Image . 375

Linear sampling . 377

Twirl Shader for Flash . 379

Using Pixel Bender Shaders in Flash . 382

Loading shaders versus embedding shaders . 383

Using a shader as a fill . 384

Accessing shader metadata in Flash . 386

Setting shader parameters in Flash . 387

Transforming a shader fill . 388

Animating a shader fill . 390

Specifying a shader input image . 391

Using a Shader as a Filter . 393

Using a Shader as a Blend Mode . 395

Summary . 397

Chapter 10 Tween Engines . 399

The Flash Tween Class . 400

Easing functions . 402

Combining tweens . 403

Flex Tween Class . 406

Easing functions for the Flex Tween class . 411

Multiple tweens . 412

Tween sequences . 414

Tween Engines . 416

Tweener . 417

Easing functions in Tweener . 418

Multiple tweens in Tweener . 418

Sequences in Tweener . 419

TweenLite/TweenGroup . 421

Easing functions in TweenLite . 423

Multiple tweens in TweenLite . 424

Sequences in TweenLite/TweenGroup . 425

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

xi

KitchenSync . 430

Easing functions in KitchenSync . 431

Tweening multiple objects/properties with KitchenSync . 432

Tween sequences in KitchenSync . 434

gTween . 435

Easing functions in gTween . 436

Tweening multiple objects with gTween . 437

Tween sequences in gTween . 438

Summary . 439

Index . 440

www.allitebooks.com

http://www.allitebooks.org

xiii

Keith Peters is a non-recovering Flash addict, author of

several books on Flash and ActionScript, speaker at Flash

conferences around the world, and owner of various Flash-

related web sites (,

, and).

Keith lives in Wellesley, Massachusetts with his wife

Miranda and daughter Kristine, in a house that Flash

helped pay for. He works as a senior Flash programmer at

Infrared5 in Boston.

ABOUT THE AUTHOR

www.allitebooks.com

http://www.allitebooks.org

xv

Seb Lee-Delisle has been working in digital media for more than 15 years

and is one of the founding partners of UK Flash specialists Plug-in Media

(), working with clients such as BBC, Sony, Philips,

Unilever, and Barclays. He is also one of the developers of Papervision3D,

the highly successful open source, real time 3D ActionScript library. Seb’s

work with Plug-in Media has pushed the boundaries of 3D and gaming in

Flash. He has recently completed the live 3D GameDay visualizations for

Major League Baseball and a real time 3D website for the BBC kids’ show

Big and Small.

ABOUT THE TECHNICAL REVIEWER

xvii

Bruce Tang is a freelance web designer, visual programmer,

and author from Hong Kong. His main creative interest is

generating stunning visual effects using Flash or Processing.

Bruce has been an avid Flash user since Flash 4, when he began

using Flash to create games, websites, and other multimedia

content. After several years of ActionScripting, he found him-

self increasingly drawn toward visual programming and com-

putational art. He likes to integrate math and physics into his

work, simulating 3D and other real-life experiences onscreen.

His first Flash book was published in October 2005. Bruce’s

folio, featuring Flash and Processing pieces, can be found at

, and his blog at .

The cover image uses a high-resolution Henon phase dia-

gram generated by Bruce with Processing, which he feels is

an ideal tool for such experiments. Henon is a strange attrac-

tor created by iterating through some equations to calculate

the coordinates of millions of points. The points are then

plotted with an assigned color.

x
n+1

 = x
n
 cos(a) - (y

n
 – x

n
p) sin(a)

y
n+1

 = x
n
 sin(a) + (y

n
 – x

n
p) cos(a)

ABOUT THE COVER IMAGE DESIGNER

xix

Little—if any—of the material in this book is stuff I dreamed up in my own head. Thanks to the

hundreds of programmers, developers, scientists, mathematicians, and physicists who studied,

researched, programmed, translated, and made their work available for others to benefit from.

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are

used throughout.

 Important words or concepts are normally highlighted on the first appearance in italics.

 Code is presented in .

 New or changed code is normally presented in .

 Pseudo-code and variable input are written in .

 Menu commands are written in the form Menu ¢ Submenu ¢ Submenu.

 Where I want to draw your attention to something, I’ve highlighted it like this:

Ahem, don’t say we didn’t warn you.

 Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow

like this: £

£฀

ACKNOWLEDGMENTS

11

Chapter 1

Collision detection is the math, art, science, or general guesswork used to determine

whether some object has hit another object. This sounds pretty simple, but when you

are dealing with objects that exist only in a computer’s memory and are represented

by a collection of various properties, some complexities can arrive.

The basic methods of collision detection are covered in Foundation ActionScript 3.0

Animation: Making Things Move! (hereafter referred to as Making Things Move). This

chapter looks at one method of collision detection that wasn’t covered in that book

and a strategy to handle collisions between large amounts of objects.

Note that the subject of collision detection does not delve into what you do after

you detect a collision. If you are making a game, you might want the colliding objects

to blow up, change color, or simply disappear. One rather complex method of han-

dling the results of a collision was covered in the “Conservation of Momentum”

chapter of Making Things Move. But ultimately it’s up to you (and the specs of the

application or game you are building) to determine how to respond when a collision

is detected.

ADVANCED COLLISION DETECTION

2

CHAPTER 1

Hit Testing Irregularly Shaped Objects
Making Things Move covered a few basic methods of collision detection, including the built- in

 and methods, as well as distance- based collision detection. Each of these

methods has its uses in terms of the shapes of objects on which you are doing collision detection.

The method is great for detecting collisions between two rectangular- shaped objects,

but will often generate false positives for other shapes. The method is suitable for

finding out whether the mouse is over a particular object or whether a very small point- like object has

collided with any other shaped object, but it is rather useless for two larger objects. Distance- based

collision detection is great for circular objects, but will often miss collisions on other shaped objects.

The Holy Grail of collision detection in Flash has been to test two irregularly shaped objects against

each other and accurately know whether or not they are touching. Although it wasn’t covered in

Making Things Move, a method has existed for doing this via the class since Flash 8. In

fact, the method is even called .

First, a note on terminology. ActionScript contains a class, which holds the actual bitmap

image being displayed, and a class, which is a display object that contains a and

allows it to be added to the display list. If I am referring to either one of these classes specifically, or

an instance of either class, I will use the capitalized version. But often I might casually use the term

bitmap in lowercase to more informally refer to a bitmap image. Do not confuse it with the

class.

 compares two objects and tells you whether any of their pixels are

overlapping. Again, this sounds simple, but complexities arise once you start to think about it. Bitmaps

are rectangular grids of pixels, so taken in its simplest form, this method would be no more complex

(or useful) than the method on a display object. Where it really starts to get useful is

when you have a transparent bitmap with a shape drawn in it.

When you create a object, you specify whether it will support transparency right in the

constructor:

That third parameter is a Boolean value (/) that sets the transparency option. If you set it

to , the bitmap will be completely opaque. Initially, it will appear as a rectangle filled with the

specified background color. You can use the various methods to change any of the pixels

in the bitmap, but they will always be fully opaque and cover anything behind that . Color

values for each pixel will be 24- bit numbers in the form 0xRRGGBB. This is a 6- digit hexadecimal num-

ber, where the first pair of numbers specifies the value for the red channel from 00 (0) to FF (255), the

second pair sets the green channel, and the third sets the blue channel. For example, 0xFFFFFF would

be white, 0xFF0000 would be red, and 0xFF9900 would be orange. For setting and getting values of

individual pixels, you would use the methods and , which use 24- bit color values.

However, when you specify for the transparency option in a class, each pixel now

supports an alpha channel, using a 32- bit number in the format 0xAARRGGBB. Here, the first 2 digits

represent the level of transparency for a pixel, where 00 would be completely transparent, and FF

would be fully opaque. In a transparent , you would use and to

set and read colors of individual pixels. These methods take 32- bit numbers. Note that if you pass

2

3

ADVANCED COLLISION DETECTION

in a 24- bit number to one of these methods, the alpha channel will be evaluated as being 0, or fully

transparent.

To see the exact difference between the two, let’s create one of each. You can use the following class

as the main class in a Flex Builder 3 or 4 ActionScript Project, or as the document class in Flash CS3 or

CS4. This class, , is available at this book’s download site at .

3

4

CHAPTER 1

This code first draws a bunch of random lines on the stage, just so you can tell the difference between

the stage and the bitmaps. It then creates two bitmaps and draws red squares in the center of each.

The top bitmap is opaque and covers the lines completely. The bottom bitmap is transparent, so only

the red square covers the lines on the stage. You can see the result in Figure 1-1.

 Figure 1-1. An opaque bitmap on top, transparent below

Furthermore, with a transparent bitmap you can use partial transparency. Change the second

statement in the last code sample to the following:

Note that we used a 32- bit AARRGGBB color value for the fill, and the alpha value has been halved to

0x80, or 128 in decimal. This makes the red square semitransparent, as seen in Figure 1-2.

5

ADVANCED COLLISION DETECTION

 Figure 1-2. A semitransparent square

Bitmaps for collision detection

So now let’s take a look at how to use bitmaps to achieve collision detection. First, we’ll need a nice

irregular shape to test with. A five- pointed star will do nicely. Why not make it into its very own class

so we can reuse it? Here’s the class, also available at the book’s download site:

6

CHAPTER 1

This just draws a series of lines at increasing angles and alternate radii, which cleverly form a star. And

here is the class that does the hit testing. Again, like most of the code in this book, it can be used

either as a document class in Flash CS3 or CS4, or as a main application class in Flex Builder 3 or 4, and

is available from the book’s download site.

7

ADVANCED COLLISION DETECTION

Here we create a star using the class and draw it into two bitmaps. We use a matrix to offset the

star during drawing by 50 pixels on each axis because the registration point of the star is in its center,

and the registration point of the bitmap is at the top left. We offset it so we can see the whole star.

One of these bitmaps (bmp1) is in a fixed position on the stage; the other (bmp2) is set to follow the

mouse around. The key line comes here:

www.allitebooks.com

http://www.allitebooks.org

8

CHAPTER 1

This is what actually determines if the two bitmaps are touching. The signature for the

 method looks like this:

You’ll notice that the parameters are broken down into two groups: first and second. You supply

a point value for each. This corresponds to the top- left corner of . The reason for doing

this is that each bitmap might be nested within another symbol or deeply nested within multiple sym-

bols. In such a case, they might be in totally different coordinate systems. Specifying an arbitrary point

lets you align the two coordinate systems if necessary, perhaps through using the

 method. In this example, however, both bitmaps will be right on the stage, so we can

use their local position directly to construct the point for each.

The next first/last parameters are for the alpha threshold. As you saw earlier, in a transparent

, each pixel’s transparency can range from 0 (fully transparent) to 255 (fully opaque). The

alpha threshold parameters specify how opaque a pixel must be in order to register a hit. In this exam-

ple, we set both of these to 255, meaning that for a pixel in either bitmap to be considered for a hit

test, it must be fully opaque. We’ll do another example later that shows the use of a lower threshold.

Finally, there is the parameter. Note that it is typed to an object. Here you can use

a , a , or another as the object to test against. If you are using a or

, you do not need to use the final two parameters. Testing against a is useful if you

want to test whether the mouse is touching a bitmap. A quick example follows:

I can’t think of a particularly useful example for testing a bitmap against a rectangle, but it’s good to

know that if the need arises, it’s there!

In our example, however, we are using another object, so we pass that in along with the

second and alpha threshold.

Finally, if there is a hit, we give each star a red glow through the use of a default glow filter. If no hit,

we remove any filter. You can see the results in Figures 1- 3 and 1- 4.

9

ADVANCED COLLISION DETECTION

 Figure 1-3. Stars are not touching. Figure 1-4. And now they are.

Play with this for awhile, and you’ll see that it truly is pixel-to- pixel collision detection.

Hit testing with semitransparent shapes

In the preceding example, we drew a star that was totally opaque into each bitmap. We were thus

testing against fully opaque pixels in each bitmap and therefore we set the alpha threshold to 255 in

each one. (We actually could have set the alpha threshold to anything above zero and had the same

effect.)

Now let’s look at hit testing with a shape that isn’t fully opaque. We’ll alter the class

slightly, naming it (available for download on the book’s site):

10

CHAPTER 1

11

ADVANCED COLLISION DETECTION

Here we make a new named and draw a radial gradient- filled circle shape in it. We

draw this to instead of the star. If you test this, you’ll see that no hit will be registered until the

very center of the circle touches the star because only at the center is the circle fully opaque. You can

see the results in Figures 1- 5 and 1- 6.

 Figure 1-5. The star is touching Figure 1-6. Only the center of the
 the circle, but not a pixel that circle has an alpha of 255, so you
 has the required alpha threshold. get a hit.

Change the hit test line to make the second alpha threshold a lower value like so:

Now you have to move the circle only part way onto the square, just so it hits a pixel whose alpha is

at least 128. Try setting that second alpha threshold to different values to see the effects. Note that

if you set it to zero, you might get a hit even before the circle touches the star because it will suc-

cessfully hit test even against the fully transparent pixels in the very corner of the bitmap. Remember

that the bitmap itself is still a rectangle, even if you can’t see it all. Also note that changing the first

alpha threshold (to anything other than 0) won’t change anything because the star doesn’t. have any

semitransparent pixels—they are either fully transparent or fully opaque.

Using BitmapData.hitTest for nonbitmaps

In the examples so far, we’ve been using objects directly as the display objects we are moving

around and testing against. But in many (if not most) cases, you’ll actually be moving around differ-

ent types of display objects such as , , or objects. Because you can’t do this

type of hit testing on these types of objects, you’ll need to revise the setup a bit. The strategy is to

keep a couple of offline objects around, but not on the display list. Each time you want to

check a collision between two of your actual display objects, draw one to each bitmap and perform

your hit test on the bitmaps.

12

CHAPTER 1

Realize that this is not the only way, or necessarily the best possible way, of using bitmaps for collision

detection. There are probably dozens of possible methods, and this one works fine. Feel free to use it

as is or improve on it.

Here’s the class, (download it from the book’s site):

13

ADVANCED COLLISION DETECTION

฀

฀

In the constructor this time, we make two objects and two stars. There’s no need to put

the objects in , as they are not going on the display list. The stars, on the other

hand, do get added to the display list. The first star, , gets moved around with the mouse. Each

time the mouse is moved, both bitmaps are cleared by using , passing in a color value of

zero. Remember that if the alpha channel is not specified, it is taken as zero, so this has the result of

making all pixels completely transparent. Then each star is drawn to its corresponding bitmap:

The matrix uses the stars’ x and y positions as translation values, resulting in each star being drawn in

the same position it is in on the stage. Now we can do the hit test:

14

CHAPTER 1

Because is not on the display list or even in a wrapper, and because both stars

are in the same coordinate space and have been drawn to each in their relative positions,

we don’t need to do any correction of coordinate spaces. We just pass in a new default (which

will have x and y both zero) to each of the arguments. We’ll leave the alpha thresholds at 255

because both stars are fully opaque.

Although this example doesn’t look any different from the others, it’s actually completely inverted,

with the bitmaps invisible and the stars visible. Yet it works exactly the same way.

These are just a few examples of using to do collision detection on noncircle,

rectangle, or point- shaped objects. I’m sure once you get how it all works, you can think up some cool

variations for it.

Next up, we’ll look at how to do collision detection on a large scale.

Hit Testing with a Large Number of Objects
ActionScript in Flash Player 10 runs faster than ever before and it lets us do more stuff at once and

move more objects at the same time. But there are still limits. If you start moving lots of objects on

the screen, sooner or later things will start to bog down. Collision detection among large numbers

of objects compounds the problem because each object needs to be compared against every other

object. This is not limited to collision detection only; any particle system or game in which a lot of

objects need to interact with each other, such as via gravity or flocking (see Chapter 2), will run into

the same problems.

If you have just six objects interacting with each other, each object needs to pair up with every other

object and do its hit test, gravitational attraction, or whatever action it needs to do with that other

object. At first glance, this means 6 times 6, or 36 individual comparisons. But, as described in Making

Things Move, it’s actually fewer than half of that: 15 to be precise. Given objects A, B, C, D, E, F, you

need to do the following pairings:

AB, AC, AD, AE, AF

BC, BD, BE, BF

CD, CE, CF

DE, DF

EF

Notice that B does not have to check with A because A has already checked with B. By the time you

get to E, it’s already been checked against everything but F. And after that, F has been checked by all

the others. The formula for how many comparisons need to occur is as follows, where N is the number

of objects:

(N2 – N)/2

For 6 objects, that’s (36 – 6)/2 or 15.

15

ADVANCED COLLISION DETECTION

For 10 objects, that’s (100 – 10)/2 or 45 checks.

20 objects means 190 checks, and 30 objects is 435!

You see that this goes up very quickly, and you need to do something to limit it. One hundred objects

aren’t really hard to move around the screen in ActionScript 3.0, but when you start doing collision

detection or some other interobject comparisons, that’s 4,950 separate checks to do! If you are using

 distance- based collision detection, that’s 4,950 times calculating the distance between two objects.

If you’re using bitmap collision, as described earlier in the chapter, that’s 4,950 times clearing two

bitmaps, drawing two objects, and calling the method. On every frame! That’s bound to slow

your SWF file down.

Fortunately, there is a trick to limit the number of checks you need to do. Think about this: if two

relatively small objects are on opposite sides of the screen, there’s no way they could possibly be col-

liding. But to discover that, we need to calculate the distance between them, right? So we are back to

square one. But maybe there’s another way.

Suppose that we break down the screen into a grid of square cells, in which each cell is at least as

large as the largest object, and then we assign each object to one of the cells in that grid—based on

where the center of that object is located. If we set it up just right, an object in a given cell can collide

only with the objects in the eight other cells surrounding it. Look at Figure 1-7, for example.

 Figure 1-7. The ball can collide only with objects in the shaded cells.

The ball shown is assigned to a cell based on its center point. The only objects it can hit are those in

the shaded cells. There is no way it can collide with an object in any of the white cells. Even if the ball

were on the very edge of that cell, and another ball were on the very edge of a white cell, they could

not touch each other (see Figure 1-8).

16

CHAPTER 1

 Figure 1-8. There’s no way the two balls can collide.

Again, this scenario depends on the size of the cells being at least as large as the largest object you

will be comparing. If either of the balls were larger than the cells, it would be possible for them to hit

each other in the above scenario.

Okay, that’s the basic setup. Knowing that, there are probably a number of ways to proceed. I’m not

sure there is a single best way, but the goal is to test each object against all the other objects it could

possibly reach and make sure that you never test any two objects against each other twice. That’s

where things get a bit tricky.

I’ll outline the method I came up with, which will seem pretty abstract. Just try to get an idea of which

areas of the grid we’ll be doing collision detection with. Exactly how we’ll do all that will be discussed

next.

Implementing grid- based collision detection

We’ll start in the upper- left corner. I’ll reduce the grid size a bit to make things simpler. See

 Figure 1-9.

You’ll want to test all the objects in that first darker cell with all the objects in all the surrounding

cells. Of course, there are no cells to the left or above it, so you just need to check the three light

gray cells. Again, there is no way that an object in that dark gray cell can possibly hit anything in any

of the white cells.

When that’s done, we move on to the next cell. See Figure 1-10.

17

ADVANCED COLLISION DETECTION

 Figure 1-9. Test all the objects in the first cell Figure 1-10. Continuing with the next cell
 with all the objects in the surrounding cells.

With this one, there are a couple more available cells surrounding it, but remember that we already

compared all the objects in that first cell with all the objects in the three surrounding cells, which

includes the one being tested now. So there is no need to test anything with the first cell again.

We continue across the first row in the same fashion. We only need to test the current cell, the cell to

its right, and the three cells below it. See Figures 1- 11, 1- 12, and 1- 13.

 Figure 1-11. Continuing across the first row Figure 1-12. Next column in first row

Figure 1-13. Final column in first row

www.allitebooks.com

http://www.allitebooks.org

18

CHAPTER 1

Of course, when we get to the last cell in the row, there is nothing to the right, so it’s just the two

below it.

We then start row two. See Figures 1- 14 and 1- 15.

 Figure 1-14. Starting the second row Figure 1-15. Next column in second row

We begin to have all of the surrounding cells available, but the top row has already been completely

checked against anything in the second row. So we can ignore that. It winds up being no different

from the first row. It’s always nice when you can reuse your code.

Finally, we get to the last row. See Figures 1- 16 and 1- 17.

 Figure 1-16. The last row Figure 1-17. Second column, last row

Here, there is no lower row to worry about, and the upper row is done. So we just have to test each

cell against the cell to the right. When we get to the last cell, there is nothing to even test against

because all other cells have already tested against it. See Figure 1-18.

Okay, that’s what we have to do. Now how do we do it? Well, at most, we are going to have five cells

to deal with: the main cell we are examining, the one to the right, and the three below. Each of these

“cells” is actually an array of objects. Call these arrays cell0, cell1, cell2, cell3, cell4, and cell5. And to

keep it simple, we’ll assume that each cell contains only objects.

19

ADVANCED COLLISION DETECTION

 Figure 1-18. Nothing to do here

Let’s take cell0, the first array of ball objects. Any of the balls in this cell might be hitting any of the

others, so we need to test them all against each other. We do that via a double loop, as described in

Making Things Move. Here’s a rough pass at the code for it:

This tests each ball against every other ball, in a way that no ball is ever tested against itself, and no

pair is ever tested twice. That does it for all collision detection between the balls in cell0. Now we

move on to testing cell0 against cell1. This is a bit different: we take each ball in cell0 and test them,

one by one, against each ball in cell1. Again, this winds up as a double loop:

Note that this code iterates fully through all the elements of both arrays, unlike the first compari-

son, which did some fancy tricks to avoid double- checking. We don’t have to worry about that here

because we’re dealing with two arrays that contain completely different elements.

We can repeat this last type of check to compare cell0 with cell2, cell3, cell4, and cell5. At that point,

cell0 would be complete, and we would move on to the next cell, which would then become cell0.

Of course, there will be fewer than four surrounding cells for all the cells on the left, right, or bottom

edge, so we have to take that into account.

20

CHAPTER 1

Now, if your brain is like mine, it’s hard to read all this and see how that complexity could possibly be

more efficient than just comparing all the objects to each other. But let’s do the math. Remember that

if we compared 100 objects with each other, we would do 4,950 checks. In the examples that follow,

we’ll be keeping track of exactly how many comparisons actually occur. The numbers will vary based

on the size of the screen, the size of the objects, the number of objects, the size of the grid, and the

random distribution of the objects. In my tests, 100 objects were averaging between 100 and 200 indi-

vidual hit tests. That’s a saving of about 4,800 checks! Because each hit test consists of several lines of

code, including a fairly expensive square root calculation, the CPU savings can be significant.

Of course, there is significant overhead in creating and updating the grid, assigning all the objects to

it, and looping through all those arrays, which is something you’ll usually do on every frame. In the

case of a large number of objects, the savings you get from the reduced number of calculations will

far outweigh that overhead. But in a system with fewer objects, it will be more efficient to just check

each object against all the others. We’ll discuss how to gauge the benefits of both methods to decide

when to use each later in the chapter.

Coding the grid

Okay, our first go at this will be purely for clarity’s sake. We’ll break down each function so you can see

what’s happening as we go through it. Then we’ll go clean it up and make it a reusable class.

Before we dive into the collision detection itself, let’s get something to detect collisions: the

class, which you can download at this book’s site at :

21

ADVANCED COLLISION DETECTION

22

CHAPTER 1

There’s no rocket science here. It takes a radius and a color and then draws a circle. Each circle keeps

track of its x and y velocity and adds them to its position when told to update. Good enough.

Now here’s the start of the application class, which you can use as your main class in Flex Builder or

your document class in Flash CS3 or CS4. Make sure that the class is in the same location as this

class. I’ll keep everything in the default package for now, again for clarity. Feel free to organize the

classes into a package structure that works for you. This is the class, which you can

download from this book’s download page.

23

ADVANCED COLLISION DETECTION

Here we have some constants for the grid size and the radius of the balls. Remember that the grid

size should be at least the size of the largest object, which for a circle would be twice its radius. So we

satisfied that requirement.

Then we have an array for the balls and another array to serve as the grid. We’ll be testing with 100

balls and we have a variable to hold the cumulative number of hit tests we’re doing.

The constructor calls a number of methods: to create the balls, make the grid, draw the grid, assign

the balls to the grid, and check the grid for collisions. Finally it traces out how many hit tests were

done.

Now let’s start in on the other methods of the class. First is :

Again, nothing too complex here. This makes an array, runs a loop creating a bunch of instances of

, randomly scatters them around the stage, adds them to the display list, and pushes them in the

 array.

Next is the method:

24

CHAPTER 1

Here we create a two- dimensional array in which each element represents a square portion of the

screen. Each element of the two- dimensional array contains yet another array. (You could call this

a three- dimensional array, but it doesn’t really fit our paradigm.) These final arrays will be used to hold

the objects assigned to each area of the grid.

The next method, , is for your eyes only. It doesn’t do anything useful in terms of collision

detection; it just helps you visualize where each grid element is. In a final game or application, you

would most likely not draw the grid.

On to one of the most important methods, :

This code might need a bit of explanation. The first part is pretty obvious: loop through the array,

getting a reference to each object in it. We then divide that ball’s x position by the grid size and

round the result down to the nearest integer value. This tells us in which column of the grid that ball

should be. We do the same thing for the y position, which gives us the row of the grid to put it in. See

 Figure 1-19.

25

ADVANCED COLLISION DETECTION

 Figure 1-19. Figuring out which grid element a ball belongs to

In this example, let’s say that the grid elements are 100�100. The ball you see there is at a position of

380 on the x- axis and 280 on the y- axis. We divide 380 by 100 and get 3.8. Round that down to get 3,

which tells us that the ball goes in column 3 of the grid. Remember that arrays are zero- indexed, so an

index of 3 is actually the fourth column. Doing the same thing for y tells us that it’s in row 2 (the third

row). You can easily validate the math by looking at the diagram and seeing that the center point of

the ball is indeed in the fourth column, third row of the grid (counting from the top left).

Going back to the code, we assign the results of these calculations to and and use them to

index the two- dimensional grid. Because each element of that two- dimensional array is an array itself,

we push the object onto the array in that element.

When the loop is finished, each object will be in a specific element in the grid. Some grid elements

will contain a single object; some will contain multiple objects; many will be empty. Now we are ready

to do our hit testing.

The method does all the heavy lifting. In fact, it relies on a few other methods that you’ll

soon see as well. Let’s jump in:

26

CHAPTER 1

We use a double loop to loop through each column and row of the grid. The indexes and repre-

sent the cell we are currently examining. The first thing we do is compare all the objects in that cell to

each other via the method:

This code does a double loop through the array, as described in Making Things Move, which results in

every object in the cell compared with every other object exactly one time.

We then call the method four times:

The indexes and still refer to the main cell we are checking. Then refers to the cell to

the right; is the cell to the lower left; is directly below; and is the

lower right, exactly as shown in Figures 1- 9 through 1- 18. Here is :

27

ADVANCED COLLISION DETECTION

Here, and have become and . These variables are used to get a reference to the first cell. The

next two parameters have become and . We need to make sure that they are in range. If is

less than zero, or greater than or equal to , will be null. This will occur if the

main cell is in the first or last column. (See Figures 1- 9 and 1- 13.) Similarly, if is greater than the

number of cells in that column, it will be out of range, and will be null (See Figures

 1- 16 through 1- 18.) If any of these conditions occur, we just exit out of the method because there is

no valid second cell to check against.

However, if we make it past that, we can successfully get references to the two cells to check. We use

a double loop to loop through all the elements of the first cell and compare them with all the ele-

ments of the second cell, exactly as described earlier.

Last but not least is the collision detection itself. We’ve gotten all the way down to the point where we

have two objects to test against each other. We call , passing in a reference to each

of them. That method looks like this:

Because we are actually down to the point of performing real live collision detection between two

objects, we update the property. Then we do a standard distance- based, collision- detection

method using the square of the distances between the two balls on the x- axis and y- axis. If it is less

than the sum of their radii, we color them both red. We could actually do even more optimization by

www.allitebooks.com

http://www.allitebooks.org

28

CHAPTER 1

getting rid of the square root, squaring the sum of the radii, and comparing them. Any time you can

avoid a function, you can save some CPU time.

Whew. That’s a lot of work, but remember that you are avoiding executing the last method possibly

thousands of times. If all goes well, you should wind up with something like Figure 1-20.

 Figure 1-20. One hundred objects, successfully hit- tested

Verify that all the balls that are touching are red, and those that are not touching are white. If that’s

not the case, there’s an error somewhere. Find it and fix it before moving on. The most important part

of a collision- detection routine is, of course, accurately detecting collisions.

Testing and tuning the grid

Each time you run this application, you should get a trace of how many collision checks were done.

On my computer, with a screen resolution of 1440�900 and running the SWF in a maximized browser,

I get anywhere from 80 to 130 hit tests occurring for the exact code described previously: 100 balls

of radius 25 and a grid size of 50. A smaller stage size will generate more hit tests. Run it a few times

to see what range of numbers you get. Because the only thing changing in consecutive runs is the

random distribution of the balls, you will get an idea of the average you are getting.

Now try increasing the size of the grid by setting it to 100, for example. You’ll notice that you will get

a significantly higher number of hit tests because there are more balls in each cell. This sounds bad,

29

ADVANCED COLLISION DETECTION

but it also decreases the number of cells and the number of arrays you have to loop through, which

can be a benefit, as you’ll soon see.

Now try reducing the grid size to 40—or even 30. There are fewer hit tests, but look closely at the

results. You’ll probably see an occasional missed hit—two objects touching that have not been marked

as hitting (that is, they are still white). This is not good, but it should serve to remind you of the impor-

tance of the grid size being at least as large as the largest object. You could take this a step further and

dynamically set the size of the grid based on the largest object in the simulation.

Set the grid size back to 50 and change the line that creates each ball in to this:

This change shouldn’t have any effect on the number of checks; it works fine. It just points out that

the system still works when the objects are of different sizes—keeping in mind the rule about grid

size, of course.

Now let’s do some serious tuning and see how we’re actually doing in terms of performance, particu-

larly in comparison with the “test each object against every other object” method.

To do this, we’ll need another method to test against. Well call this method . Here it is:

This is the code that will generate 4,950 hit tests for 100 objects. We know we are beating that in

terms of raw number of checks, but there is a heck of a lot less overhead than all that grid stuff. How

do the two methods stack up against each other? Are we really seeing any benefit?

Well, obviously we must be seeing some benefit or this chapter wouldn’t be here, but instead of taking

my word for it, I’ll let you see for yourself. What we’ll do is do run our grid- based code ten times and

then run this method ten times, and see which takes less time to run. This will happen in the construc-

tor, which I’ve changed to look like this:

30

CHAPTER 1

Here we create variables for the start time and elapsed time of each test. Set the start time to the

result of and run the following three methods ten times:

Subtract the start time from the current time to see how long that took. Do it again with

run ten times.

What kind of results does that give you? For my setup, I’m seeing that the grid- based method runs

almost 2.5 times faster than the basic check. Not as dramatic as I would have expected, considering

we’re doing away with 4,800 hit tests, which shows that the grid method does have considerable over-

head. But still, a 2.5 times increase in speed is a good thing, right?

Furthermore, the more objects you have, the better savings you’re going to see. If I increase the

 property to 1000, the grid- based method handles it in less than a second, whereas the basic

check takes more than 13 seconds. (Of course, one frame per second is not an acceptable frame rate,

but it’s better than 13 seconds per frame!) On the other hand, if I reduce the number of balls down

to 50, the basic check is actually faster. So there is a make/break point where the overhead starts to

outweigh the savings in the hit testing you’re getting, and it’s better to switch over to a simple test.

Where that point is depends on your application and needs to be tested for.

31

ADVANCED COLLISION DETECTION

Set back to 100 and run it a few times just to get an idea how long the grid- based method

is taking. On my machine, I’m averaging about 55 milliseconds for the 10 runs. Now change the grid

size from 50 to 75. My average goes down to about 37 milliseconds. I found that a grid size of between

85 to 100 averages about 32 milliseconds, which is more than 4 times faster than the basic check! Note

that all these numbers are just examples to serve as a basic guide. You might get very different results.

The important fact to take away is that by tweaking the grid size you can find a setting that gives you

optimal results for your application. There are a lot of variables here: stage size, number of objects,

size of objects, grid size, and the hit testing algorithm you are using (not to mention individual com-

puter performance). I haven’t come up with a magic formula that will give you the best parameters

to use.

Making it a reusable class

Hopefully, going through the class has helped you get a good grasp of the concepts

behind grid- based collision detection and proven its worthiness. But there are quite a few problems

with it. First of all, it’s all wrapped up in the main document class, so it would require copying and

pasting to use it in another application. It’s also heavily coupled with the class. If you wanted

to use it with another class of object, you’d have to change all references to that class. Furthermore,

the hit testing algorithm is coded into it as a distance- based collision detection. You might want to

use a simple or even a bitmap- based hit test instead. So let’s create a new class that

handles all these issues and is about as optimized as I could make it. We’ll call it , which

is among this book’s downloads at :

32

CHAPTER 1

33

ADVANCED COLLISION DETECTION

34

CHAPTER 1

Most of this code should be familiar from the previous example. A lot has been done to make it as

optimized as possible, especially the use of vectors. Vectors are new to Flash 10, and are essentially

typed arrays. Because the compiler knows that every element in the vector is going to be the same

type, it can create much more efficient byte code that executes faster at run time. Switching from

arrays to vectors nearly doubles the performance of this application!

The method is no different from what you saw earlier. It draws a grid!

The method is the main public method you will interact with in this class. You pass it a vec-

tor of . I chose because objects used for collision detection are

usually sprites, movie clips, shapes, or bitmaps, which are all defined by classes that inherit from

. s also all have x and y properties, which we need to determine their

position and hence their location in the grid. If you are using a custom class that does not inherit from

, be sure to change the type in the class.

The method creates a vector called , and another called . You are familiar

with , but it is implemented a bit differently here—as a one- dimensional vector with some

tricky indexing instead of a two- dimensional array. This is done because it is quicker and uses fewer

resources to loop through a single array than to loop through two. We’ll go through it in more detail

very shortly. The vector will be used to hold a list of objects that need to be hit tested. Note

that the class does not do the hit testing itself. It makes the grid, assigns the objects to

it, and generates a list of objects that could potentially be colliding. It’s up to you, the user of the class,

to go through this array and do the actual collision detection.

Next, it loops through the vector of passed to it and assigns each one to the grid. This

bit of code might need some explanation:

35

ADVANCED COLLISION DETECTION

Again, we are using a one- dimensional vector instead of a two- dimensional array. The index variable

figures out what element of that vector corresponds to a specific row and column. The basic formula

is the following, where x and y are the integer column and row indexes:

 Figure 1-21 should help to explain.

 Figure 1-21. Using a single flat array as a grid

There are five columns and five rows. The object is in column 3 and row 2, so x = 3, and y = 2. Thus

the index is 2 * 5 + 3, or 13, and that’s exactly where you see it in the grid.

In the code, we are getting the column and row index the same way we were before:

36

CHAPTER 1

and

The only difference is that we are doing the whole thing in one line:

The next statement is another optimization trick. Instead of looping through and creating a vector for

each grid cell, many of which will never be used, we just check whether or not a vector exists there. If

not, we create it. This is a form of lazy instantiation. In this case “lazy” isn’t a derogatory term; it just

refers to the decision to hold off creating something until you actually need it. There are cases when

it makes sense and other times when it doesn’t. Here, it seems to be a good idea:

When we get to the final line of this loop, we know that the vector exists and we push the object

onto it:

The final line of the method calls , which I’ll repeat here:

This doesn’t do anything different from the earlier example.

The and methods work essentially the same as well. Of course,

they use one- dimensional vectors instead of two- dimensional arrays, and because vectors are created

only for a cell when actually needed, they first check to see whether the cell is null. Also notice that

instead of doing collision detection, they simply push the two objects they are checking onto the

 vector.

37

ADVANCED COLLISION DETECTION

At the end of it all, will contain a list of objects that need to be checked against each other.

This is a simple list in which each 2 consecutive elements need to be checked (that is, check element

0 with element 1, element 2 with 3, 4 with 5, and so on). Finally, we provide a public getter called

 to access this list.

Using the class
Okay, we have this lovely class, so let’s see it in action. Here, I’ve altered the main class, naming it

. Like everything else, it’s downloadable from .

www.allitebooks.com

http://www.allitebooks.org

38

CHAPTER 1

The main changes are in the constructor. Because making and drawing the grid are encapsulated in

the class and just take a single line of code each, I removed the separate methods for

 and and just do those things directly in the constructor.

The method is called next. It is nearly identical to the earlier example, except that it uses

a vector instead of an array.

There’s a single timer loop because I was interested only in testing this new class. You can certainly

add another timer loop for the basic check to compare that as well, but you should already have an

39

ADVANCED COLLISION DETECTION

idea of how long that takes. In that loop, we call . We’ve already looked at that

in depth. When that is finished, we know that contains a vector of objects to compare.

The next loop shows how to use it:

Here we loop through that vector, incrementing by 2 each time; then we get references to the next 2

items with the indexes and . We cast these as and send them to the

method, which hasn’t changed at all.

In my tests, this application runs almost twice as fast as the first example, owing mainly to the use of

vectors and probably to the fact that we create vectors for cells only when we actually need them

(lazy instantiation). We’re ready for prime time with this, which means we can start to animate it.

Animating is really not much different from the single hit test; you just do it more often. Also, because

we’ve presumably tuned the engine to the stage size and number of objects and have figured out our

ideal grid size, we can get rid of the timing loop. But remember that when using this type of collision

grid again in a new project or changing the parameters of this application, you’ll want to do some

timing tests again to get it tuned.

Our main class becomes this, which you can find on this book’s download page:

40

CHAPTER 1

41

ADVANCED COLLISION DETECTION

The main changes are the addition of the method and method. The

constructor now just creates the grid and balls and sets up the listener. The

method updates each ball’s position via the method and then does the grid- based colli-

sion detection exactly as before. The method just moves things around, wrapping them

around the screen and changes the color of each ball back to white at the beginning of each frame. Only

if they collide in the method are they reset to red.

Of course, you can use a different type of collision reaction here now to get something that looks

like the balls actually bouncing off of each other. This is covered extensively in the “Conservation of

Momentum” chapter of Making Things Move.

This method of collision detection should increase the number of things you can have moving around

the stage at one time and reacting with each other by several times. Just remember the tuning tips and

test, test, test to make sure that you are getting the best performance and accurate detection.

42

CHAPTER 1

Collision detection: Not just for collisions

When you think of the term collision detection, it’s natural to think only about two objects hitting

each other. But particularly when you are using a distance- based method, it’s sometimes better to

think about it terms of the spatial relationship between two objects. Maybe you are not only inter-

ested in collisions, per se, but also in whether two objects are within a certain distance of each other.

Perhaps in a game, the enemy has to be within so many pixels of a “good guy” in order to see him,

for example.

For this, we can still use a grid- based collision detection setup, but instead of the size of the objects

determining the grid size, it’s the critical distance between two objects that would be important instead.

In Making Things Move, I showed an example of particles interacting that was inspired by Jared Tarbell’s

Node Garden (at). I realized that this would be a perfect example to convert to

a grid- based setup, so I did just that. First let’s take a look at the original code:

43

ADVANCED COLLISION DETECTION

44

CHAPTER 1

I won’t go into explaining this code in depth. It basically creates a number of particles and moves them

around. If two particles are less than a specific distance from each other, they will spring toward each

other, and a line will be drawn between them. The closer the particles, the stronger the force between

them, and the brighter the line. Notice also that the stage color has been set to black with SWF meta-

data at the top of the class:

This metadata will work in Flex Builder or Flash CS4, but Flash CS3 will ignore it, requiring you to

set the background color in the Properties Inspector instead. But because we’ll soon be using Flash

10–specific features (vectors), I’ll assume that you are using Flash CS4.

This file also uses a class called , which is slightly different from the class we’ve used so far in

this chapter. The one we’ve been using will look slightly different, but will work just fine.

This example uses 30 particles, with a distance of 100 pixels or less for particles to react to each other.

As is, this works just fine and doesn’t need any improvement. But let’s push it beyond its comfort zone

by changing a couple of parameters:

We’ll increase the number of particles to 500, and the distance will go down to 50. If you are using

the Flash authoring environment, you’ll probably want to make the stage size a bit larger to handle all

the particles without crowding them—say 1000�800. When you run the file now, you’ll see that it is

struggling significantly, achieving maybe a few frames per second.

45

ADVANCED COLLISION DETECTION

Now let’s see how implementing grid- based collision detection can help. The loop that does the check-

ing between all the particles is in bold. That’s the part we need to replace with the grid. We’ll also

probably see some improvement simply by changing the arrays into vectors. If you are curious, first try

changing each instance of to and see how much that improves things.

You’ll also need to import the class and cast the objects to the

class when you access them, like so:

In my tests, although there seemed to be some improvement, it was slight. A double loop with 500

elements results in 124,750 checks on every frame. It’s vital to get that number down because only

a small percent of them are potential collisions. Implementing grid- based collision detection will bring

that down to fewer than 10,000 checks. Here’s the code in a new class called (the

lines in bold are the only ones that have changed from the original):

46

CHAPTER 1

47

ADVANCED COLLISION DETECTION

Ensure that your movie is set to publish to the Flash 10 format and that the file

is in your class path. In my tests, this resulted in about 6,500 checks per frame. Note that the grid is

created with a grid size of 50, which is the same value as . This particular code does not rely

on the radii of the particles, only the distance between them. Remember that you’d probably want to

do some actual timing tests and adjust the grid size for best performance, however. A larger grid size

will give you more checks to do, but will result in less looping through arrays. Somewhere you’ll hit

a sweet spot of best performance. But even at the minimal value of 50, the performance is appreciably

better.

Summary
So that covers our discussion of advanced collision detection. There are many ways these two tech-

niques (bitmap- and grid- based collision checking) can be used, and the examples here were just

a few ideas to get you started. Again, the most important thing to take away from this, particularly in

the grid- based system, is to test, test, test; measure performance; and tune the collision engine for the

best results. And remember that it excels in high numbers of objects, but the overhead outweighs any

benefits for a smaller number of objects.

Next up is a very different subject, steering behaviors. We’ll also get into a bit of artificial intelligence.

www.allitebooks.com

http://www.allitebooks.org

4949

Chapter 2

The term steering behaviors refers to a set of algorithms that allows objects to

move around in a seemingly intelligent manner. These behaviors, which fall under

the headings of artificial intelligence and artificial life, enable characters to seem-

ingly take on a life of their own—deciding where, when, and how to move in order

to achieve goals, chase or run from other characters, avoid obstacles, follow paths,

and so on.

The term was coined by Craig Reynolds in a paper titled “Steering Behaviors for

Autonomous Characters,” published in 1999 for the Game Developers’ Conference.

It describes a number of algorithms that create a system of forces that are applied

to characters used in games and simulations. These forces are used to affect the

characters’ movements to carry out various things the characters need or want to do.

They also encompass various group dynamics such as flocking. In fact, Reynolds was

already known for his “boids” simulation of flocking birds (see Figure 2-1).

STEERING BEHAVIORS

50

CHAPTER 2

 Figure 2-1. Craig Reynolds’ “boids”

As of this writing, you can find Reynolds’ paper at , but a quick search for

the title will also give you multiple download locations. In the paper itself, Reynolds doesn’t go into

the implementations of the algorithms in much depth, although the page just mentioned does link

to an open source, C++ version of the behaviors: OpenSteer ().

Nevertheless, the system he describes in that paper has been at the foundation of many, if not most,

artificial intelligence movement engines created after that point. This chapter will follow in those foot-

steps, creating an ActionScript 3.0–based version of most of the behaviors described in the paper.

Before we dive in, let me say that the goal of this chapter is to introduce the behaviors, give an under-

standing of them, and show a framework with some basic implementations of each. Some of the later

 more- involved behaviors can be implemented in many different ways, with vastly different degrees of

complexity. There isn’t necessarily a “standard” or “correct” way of doing all the behaviors, and the

implementations I give are very much on the simple end of the spectrum. In other words, consider this

an introduction and launching- off point. For use in a production- level application, the code presented

here will need quite a bit of refinement as well as tailoring to your specific needs.

50

51

STEERING BEHAVIORS

Behaviors
First, let’s get a broad overview of the basic behaviors—what each one does and what it’s used for:

 seek: The character attempts to move to a specific point. This can be a fixed point or a moving

target, such as another character.

 flee: The exact opposite of seek. The character attempts to move as far away as possible from

the given point. Again, the point can be either fixed or moving.

 arrive: Identical to seek except that the character’s speed will slow down once it gets close

enough to the point, performing an easing motion to eventually stop right at the target point.

 pursue: An improvement on seek because the target’s velocity is taken into account. Instead of

seeking the point where the target is now, the character predicts where it is going and then

moves to that point. Obviously, this applies only to a moving target because a fixed point has

no velocity.

 evade: The opposite of pursue. The character predicts where the point will be based on its

velocity and tries to get as far away from that point as possible.

 wander: A random but smooth and realistic motion.

 object avoidance: The character can perceive objects in its path and steers to avoid them.

 path following: The character does its best to stay on a given path, but does so in a way that

continues to be realistic in terms of physics and any other behaviors being applied.

In addition to these behaviors, the complex compound behavior known as flocking simulates group

behavior of similar characters and is generally created by applying three other simple behaviors:

 separation: Each character in the flock tries to maintain an acceptable distance from its

neighbors.

 cohesion: Each character attempts to not stray too far from its flockmates.

 alignment: Each character tries to steer in the same direction as its neighbors.

Although these three behaviors are relatively simple, when combined they can produce some amazing

group dynamics that really make you feel that you are dealing with flocks of birds or groups of other

creatures. Adjusting various parameters on each of the three sub- behaviors can alter the character

of the group, resulting in a loose group that breaks up often, a tight- knit clump, a column following

a single leader, and many other variations.

Before we can get to work on the behavior of moving objects, however, we need to first work out

a method of moving them.

Vector2D Class
The steering behaviors as just described have been implemented numerous times in different lan-

guages (probably once or twice in ActionScript, too). The way they were originally described (and in

most implementations you will find it so) is with vectors. (If you want to learn more about vectors,

refer to Chapter 5 of Foundation ActionScript 3.0 Animation: Making Things Move!, in which I describe

them in more detail.)

51

52

CHAPTER 2

In brief, a vector describes something that has both direction and magnitude. For example, the veloc-

ity of a moving object consists of which way it is moving (direction) and its speed (magnitude). Thus,

velocity is best expressed as a vector. Acceleration—any force that acts to change the velocity of an

object—also consists of the magnitude of the force and its direction (another vector). Vectors are also

good for expressing the relative positions between two objects where the magnitude is the distance

between them and the direction is the angle from one to the other.

Furthermore, you can use a vector to describe a character’s heading or the way it is facing. In this case,

there is no magnitude involved, only direction, so you can set the magnitude to 1.0. Such a vector is

called a unit vector, and the fact that it’s only one unit long makes it capable of performing highly

optimized vector math calculations.

All these vector properties are very useful for steering behaviors because they make extensive use

of velocities, directional forces, distances between objects, and object headings. So a vector class in

ActionScript 3.0 would be very useful for creating steering behaviors. And, being the nice guy I am,

I went ahead and created one for you. Of course, I later found out that Flash CS4 ships with its own

 class, so you might want to eventually migrate over to it. But I find that the extra dimen-

sion brings quite a bit more complexity, so I decided to stick with my own class as a more

lightweight alternative for this chapter. I won’t explain it in depth, but it contains most of the useful

methods you’ll find in similar classes in other languages, specifically those used in creating steering

behaviors. I’ll present it here in its entirety because it will be good as a reference. As you use indi-

vidual methods of the class, I’ll explain them a bit more in detail. You can download the class as the

 file from this book’s download page at .

53

STEERING BEHAVIORS

54

CHAPTER 2

55

STEERING BEHAVIORS

56

CHAPTER 2

57

STEERING BEHAVIORS

58

CHAPTER 2

www.allitebooks.com

http://www.allitebooks.org

59

STEERING BEHAVIORS

Languages such as C or C++ have a neat feature called operator overloading, which enables you to

map a built- in operator of the language, such as + or -, to a method of a class. So instead of

, you could write vectorC = vectorA + vectorB.

Although operator overloading makes your classes look much more like native types and become

easier to work with, ActionScript does not yet support it, so we are stuck with using slightly more

wordy implementations.

Closely related to the implementation issue, one of the challenges of architecting a class like this is to

determine how certain class methods should work when called on an instance—in this case, methods

such as , , , , , , and . There are two possibili-

ties: a method such as can directly alter the internal state of the object it is called on or it can

return a new object that is a result of the vector operation.

For example, suppose that you had as (3, 2), meaning that its x value is 3 and y value is 2, and

 as (4, 5). Then you ran the following code:

According to the first school of thought, would remain unchanged, but would be

altered to equal (7, 7).

The other possibility would look something like this:

Here, and would both maintain their original values (3, 2) and (4, 5), and a newly

created would be equal to (7, 7).

So which of these is the correct way for the method to work? I went back and forth on this a few

times while creating the class and eventually realized that there are many cases in which you need to

grab a vector from an object, such as its position or velocity, and do some mathematical manipulation

on that value without changing the object itself. So , , , and leave the

original object untouched.

However, operations such as , , and strongly imply that they are doing

something to the object itself. So they do alter the internal values as well as return an instance of the

object itself, which will be useful.

It’s not too hard to do the opposite of these behaviors. If you want to add to , for

example, and have get the result of the add operation, just do this:

And if you need to get the truncated, reversed, or normalized value of a vector without changing the

original, use the method like so:

This method creates a copy of and normalizes it, leaving the original untouched.

60

CHAPTER 2

As Seb Lee- Delisle pointed out while doing the technical review of this book, creating copies of

objects like this can result in a situation in which you might have many objects being created, used

briefly, and then discarded. One of the side effects is that the garbage collector in the Flash Player has

to track all these dead objects and remove them, which leads to performance issues. I opted to leave

things the way they are for clarity’s sake, but realize that this is an area for fine- tuning.

Now that we have a vector class to represent a character’s position, velocity, and various forces, we’ll

need a base class to represent a character.

Vehicle Class
The class is the base class for the steered characters, but it does not have any steering behav-

iors. It merely handles basic motion: position, velocity, mass, and what happens when the character

hits the edge of the screen (it can either bounce off or reappear on the opposite edge of the screen).

The class extends , adding the steering behaviors themselves. Using this kind

of architecture allows the class to potentially be used for other types of objects that need to

move around but do not require steering behaviors. It also allows The class to con-

centrate solely on the implementation of the steering functionality without worrying about the details

of basic motion.

So far, we’ve been referring to characters as the things moving around and having behaviors. From

here on out, I’ll be using the terms character and vehicle somewhat interchangeably. If it helps, think

of a character as the thing riding around in a vehicle, even if that “vehicle” is the character’s own

body. If that doesn’t help, read the “Locomotion” section of the “Steering Behaviors for Autonomous

Characters” article referenced at the beginning of the chapter, which explains it quite nicely.

So without further ado, here’s the class, which you can download as the file from the

book’s download site:

61

STEERING BEHAVIORS

62

CHAPTER 2

63

STEERING BEHAVIORS

64

CHAPTER 2

If you are familiar with some of the basic concepts in Making Things Move, there are not any really

new concepts here, but things are handled differently. First, instead of representing position and

velocity as x and y values—for example, , , , —it uses a single for each:

and .

Most of the work happens in the method. First it truncates the velocity to ensure that it does

not exceed ; then it adds the velocity to the position. In Making Things Move, we would

have done something like the following:

65

STEERING BEHAVIORS

We can do it in a single line with vectors:

Then the method checks the edges and calls either the or the method. Finally, it updates

the screen position of the Sprite to match the x and y values of and then adjusts the rota-

tion so the character is pointed in the direction it is moving:

Most of the rest of the code consists of getters and setters for the various protected properties. I did

include a default method that gets called when the class is instantiated. This can be overrid-

den in subclasses to create proper graphics for your characters, but it allows something to be visible

onscreen until the graphics are all set to go.

As a quick test of the class, create a new document class named , available as the

 file from the book’s download page:

66

CHAPTER 2

This creates a new and adds it to the display list. It sets the position as a new

instance:

Another way of doing the same thing is to set the x and y values of the position directly:

Or with the overridden setters for x and y, you could even just set the x and y of the vehicle itself

directly, and the position vector would still get the values:

The class uses yet another tactic in setting the velocity: setting the length and angle of the velocity

property, which demonstrates the flexibility available in using vectors:

Here the length will be the speed, and the angle will be the direction. Don’t forget that the angle is in

radians, so is equal to 45 degrees. Again, if you knew the x and y velocity at which you

wanted the vehicle to move, you could assign a new with those values or set the velocity’s x

and y properties directly, as was done with the position.

Finally, it sets a listener to the event and calls on the vehicle each frame. This will

cause the vehicle to move in the assigned direction. When it hits the edge of the screen, it will wrap

around to the opposite side. You can see how this looks in Figure 2-2.

Good enough for a test of the class. Let’s move on to bigger and better things—steering

behaviors, which is what this chapter is all about.

67

STEERING BEHAVIORS

 Figure 2-2. A moving vehicle

SteeredVehicle Class
The class extends the class and adds the steering behaviors to it. Each behav-

ior will be defined in a public method that can be called on each frame or timer interval to apply

that type of steering force. Usually all steering forces would be applied and then the vehicle’s

method would be called.

For example, if we wanted to create a vehicle that simply wandered, we would call its method,

followed by its method on each frame:

68

CHAPTER 2

Here’s how steering methods work: whenever a steering method is called, it calculates a steering

force, which is a force that will cause the vehicle to turn clockwise or counterclockwise. For example,

the method would calculate a force that would be exactly enough to turn the vehicle from wher-

ever it is currently facing to head directly at the point it is seeking. There could be more than one

steering behavior active on any given vehicle—it might be seeking one point, but fleeing or evading

another vehicle at the same time. So these forces add up. When the method is finally called,

the vehicle takes the sum total of all the steering behaviors applied to it and uses it to change its

velocity (its direction and speed).

Here’s the core of the without any behaviors coded yet (the file is

, downloadable from this book’s site):

You can see immediately that there’s a property, which is a . This property

keeps track of the total steering force that is added to by each behavior (note that there is also

a property). You don’t see vehicles or characters turning “on a dime” in real life, so we limit

69

STEERING BEHAVIORS

how much turning force can actually occur on a single frame. Public access to this value is given via

the getter/setter pair. By adjusting , you can make a vehicle that makes sharp turns

and moves quickly and accurately to where it’s going, or one that makes large lazy loops.

Now let’s jump to the method. Imagine that there are some steering behavior methods and

one or more of them has been called, so the property contains a meaningful vec-

tor. The method first truncates so it is no larger than the maximum possible steering

force. It then divides by the vehicle’s mass. Just as in real life, a heavy vehicle has

more momentum and needs to turn in a wider arc, whereas a lighter vehicle can turn more quickly.

Then the steering force is added to the vehicle’s current velocity, and the variable

is reset to a zero vector so it can be added up the next time around. Finally, the super class’

method is called, doing all the basic motion stuff that is already in the class.

Now let’s take a look at the implementation of behaviors, starting with seek. Each one will be a new

public method of the class. Some of the behaviors will require new class properties

or additional methods, and they will be shown as they become necessary.

Seek behavior

As described before, seek merely causes the vehicle to move to a specific spot. Here’s how it looks:

First, we calculate a desired velocity, which is the exact velocity that would

put the vehicle at the target now. We get that velocity by subtracting the

vehicle’s position from the target position. This gives us a vector that says,

“If you moved this far, in this direction, you’d be where you want to be.”

See Figure 2-3.

Of course, you can’t always get what you want. But if you try sometime,

you’ll find you can come up with an algorithm that looks pretty good. Here,

we’ll normalize the desired velocity and multiply it by the maximum speed.

This will give us a vector that still points at the target, but whose magnitude

is equal to the fastest the vehicle can possibly travel, which is equivalent to

saying, “You can’t get there instantaneously, but go in this direction as fast

as you can, and you’ll get there as soon as you can.”

This is still just a desired velocity, however; the vehicle already has an existing

velocity. By subtracting it from the desired velocity, we now have a vector

that says, “Add this vector to your current velocity, and you’ll be doing the

best you possibly can, heading in the right direction at maximum speed.”
 Figure 2-3. The desired velocity
to reach the target right now

70

CHAPTER 2

This vector is then added to the overall steering force. Remember

that in the method, is then truncated to

, however. So we still will not wind up going exactly where

we want, but we’ll be doing the best we possibly can within the

constraints of and . Figure 2-4 shows this.

Now let’s see an example of the seek behavior in action:

This is a pretty simple example. It merely creates a new steered vehicle, puts it on stage, and then

on every frame the vehicle seeks the mouse and updates. Try changing the values for and

 on the vehicle, or even try changing its to get a good feel for how all those things

change the steering behavior. You can also cause it to seek to a fixed point instead of the mouse. Or

if you are feeling adventurous, create another and have the steered vehicle seek it. It might

look something like this in the method:

 Figure 2-4. Best possible desired
velocity, and the force required
to change current velocity to that

71

STEERING BEHAVIORS

You might even try having one steered vehicle seek the mouse and another steered vehicle seek the first

one. When you’ve got a good feel for how that all works, we’ll move on to the next behavior: flee.

Flee behavior

The flee behavior is the complete, total, and absolute opposite of seek. In fact, it is the exact same

implementation in all but the last line, which subtracts the calculated force from

instead of adding it:

There’s no need to cover this one in much detail because it’s all exactly the same as seek. The last line

says, “OK, you’ve figured out exactly what you need to do to hit that target. Now turn around and go

the exact opposite way.” Here’s a simple test of flee (you can download the file from the

book’s download site):

72

CHAPTER 2

The major differences here, apart from the obvious one of calling flee instead of seek, are that I posi-

tioned the vehicle out on the stage a bit and told it to bounce when it hits the edges. If you remove

those two lines, you’ll see why I added them. The vehicle will try to avoid the mouse by sticking itself

in the corners, and you might not even see it.

Now that we have a couple of diametrically opposed behaviors, the obvious next thing to do is to cre-

ate a couple of vehicles with each type of behavior and then see what they do with each other. The

next example does just that, available as the file from the download site:

73

STEERING BEHAVIORS

Here we have a couple of vehicles: and . I’m sure I don’t have to explain that the seeker

seeks the fleer, and the fleer flees the seeker (try saying that ten times quickly!). Let this one run for awhile

to see the two interacting on their own. Then try changing various parameters and see what happens.

Now that we have more than one behavior, we can apply multiple behaviors to a single vehicle. In the

next example, vehicle A will seek vehicle B, B will seek C, and C will seek A. Each vehicle will also flee

the one that is seeking it, and the three of them will chase each other around in circles. This example

is found in the file, and shown in Figure 2-5:

74

CHAPTER 2

 Figure 2-5. A chases B, B chases C, and C chases A.

75

STEERING BEHAVIORS

Again, play with the parameters, mix it up, and see what kind of situations you can create. When you

are ready, we’ll move on to the arrive behavior.

Arrive behavior

The arrive behavior is, in many respects, exactly the same as the seek behavior. In fact, they usually

use the same algorithm and operate exactly the same way. The difference is that when a vehicle gets

within a certain distance of its target in arrive mode, it switches into a kind of precision mode where

it eases in to the target point, slowing down as it gets closer and closer.

To see why the arrive behavior is sometimes necessary, run the class shown earlier. Move the

mouse to a position away from the vehicle and let go and allow the vehicle to “catch” it. You’ll see that

the vehicle zooms right past the target; then it seems to realize its mistake, flips around, and heads

back. This process continues indefinitely because the vehicle will always attempt to head toward its

target at maximum speed, even if it’s only a few pixels away.

The arrive behavior fixes this problem by slowing things down as the vehicle approaches the target:

The first couple of lines are the same as the seek behavior method. But before multiplying the desired

velocity by maximum speed, we check the distance to the target. If the distance is greater than a cer-

tain threshold, we multiply as usual. After exiting the statement, we continue the method exactly

the same as the seek method.

However, if the distance is less than this threshold, we have to do something else altogether. Instead

of multiplying by , we multiply by . If the distance

is just a bit less than the threshold, will be a number very close to 1.0, such

as 0.99. Thus, will be very close to (but somewhat less than) . As the dis-

tance approaches zero, however, that ratio gets smaller and smaller, as does the resulting magnitude

of . So the resulting velocity also goes to zero (assuming that’s the only behavior or

force working on the vehicle). This is shown in Figure 2-6.

76

CHAPTER 2

 Figure 2-6. If within the arrival threshold, ease to target.
Otherwise, just use seek.

Of course, the class now needs this new threshold property, so we’ll add it to the top

of the class:

And we’ll add a setter and getter for so you can tweak the value:

77

STEERING BEHAVIORS

You can see this in action in the following test class:

The only difference between this class and the class is that one line in where

it calls arrive instead of seek. You’ll see that if you move the mouse around, the vehicle behaves just

as it would if it were seeking, but if you leave the mouse alone and let the vehicle approach it, it will

ease in to a perfect stop right at the mouse cursor. Move the mouse again and it goes back to seek

mode. By adjusting on the vehicle, you can change how close it gets to the target

before it switches into arrive mode.

Feel free to add some other vehicles and play around with this one if you want. Otherwise, we’ll move

on to pursue.

Pursue behavior

Once again, I get to say something along the lines of “this is very similar to the seek behavior.” And it’s

true. In fact, pursue makes a call to seek as its last action. The essence of pursue is prediction of where

the target will be in the future. This implies that the target is a moving object, so it has a position and

78

CHAPTER 2

velocity. Therefore, we can say that the target is a . In fact, it might be another ,

but it is still a by inheritance.

So, how do we predict where the target will be? We take its current velocity, extend it into the future,

and then use that predicted point as the target for seek. But how far in the future do we calculate?

Very good question! We’ll call this the look ahead time. If you calculate too far into the future (high

look ahead time) you’ll overshoot the target. Not far enough into the future (low look ahead time)

and you’ll still be lagging behind. In fact, the seek behavior could be defined as pursue with a look

ahead time of zero. (Where is it zero seconds in the future? Right where it is.)

One strategy is to base the look ahead time on the distance between the two vehicles. If you are far

from your target, it will take you awhile to get there, so predict further into the future. If you are very

close, you’ll be there very soon, so the look ahead time should be much smaller. This is the technique

that uses. Let’s take a look:

The first thing we do is calculate the look ahead time, based on the distance between the two divided

by the maximum speed. This gives the number of frames or timer intervals it would take to reach the

target if it were not moving. We can then predict the target’s position that many frames in the future

by taking its current position and adding its velocity times the look ahead time. Finally, we just seek to

this new predicted target. See Figure 2-7.

 Figure 2-7. Pursue calculates
where the vehicle will be in
the future and then seeks to
that point.

79

STEERING BEHAVIORS

Again, this method will result only in a rough estimate because everything is in motion. But it’s good

enough to make it more accurate than just seeking. It’s also pretty simple and fast. There are more

accurate (and more complex) algorithms out there for pursue, and you are welcome to research and

implement them as you wish. But this will at least get you started.

Now let’s see it in action. We’ll create three vehicles this time. One is a simple moving that

serves as the target. Each of the other two is a , one seeking the target’s position and

the other pursuing the target. If all goes well, the pursuer should win, thanks to its superior algorithm.

You can download the file from this book’s site.

80

CHAPTER 2

Note that the two steered vehicles start out at the same position, but although the seeker moves to

where the target is at any given moment, the pursuer immediately heads out in front of the target

and intercepts it.

Definitely experiment with this one—there are a lot of potential parameters and values to mess

around with. Next up is evade.

Evade behavior

As you might already have guessed, evade is the exact opposite of pursue. And as pursue was analo-

gous to (and used) seek, evade is analogous to flee and will make use of it.

Essentially, evade predicts where the vehicle that it is trying to avoid will be in the future and goes

directly away from that point. All the same principles discussed in the pursue section apply here. In

fact, it’s really the same method as pursue, but its last line calls flee instead of seek:

Not much more needs to be said about it. Here’s a quick test of the and methods, avail-

able as the file:

81

STEERING BEHAVIORS

As you can see, this example is essentially the same test as , but it uses pursue and

evade instead. Because both vehicles use the more advanced methods, neither winds up with any par-

ticular added advantage, so it’s hard to see the difference between it and the seek/flee test. But play

with it a bit, swap out some methods, and see what you can discover. Next, we move away from the

seek/flee type of behaviors into the more random wander behavior.

Wander behavior

The wander behavior is pretty much just what it sounds like. The character just moves about the

screen rather aimlessly. It’s often used to simulate searching or foraging in games or simulations—or

simply just wandering.

As simple as it sounds, the wander behavior turns out to be a bit more complex. You could simply

apply some random, Brownian motion to a character, but it would wind up looking rather jittery or

jerky. We’re looking for something smoother and more natural. The way this is usually done is by plac-

ing an imaginary circle in front of the character, picking a random spot on that circle and using that as

82

CHAPTER 2

a target. On each frame or update, that random point is randomly moved somewhat. But because that

target point is always on that imaginary circle, the resulting steering force never varies hugely from

one frame to the next. You can see this behavior in Figure 2-8.

 Figure 2-8. Wander’s use of distance, radius, and
offset to produce a steering force

A few factors can vary to give a range of different flavors of wandering: the size of the circle, how far

out in front of the character the circle is placed, and how much the target point can randomly move

on each frame.

Here’s the wander method:

First we find the center of the circle. The velocity vector will point directly in front of the vehicle. By

normalizing this vector and multiplying it by , we get where the circle will be. From

there, we add another vector called , which is the random point on the circle. So the length of

 is the , and the angle is . We’ll then randomly change

within the range of . The center plus offset gives a vector that is the steering force for this

behavior. We’ll add this to the overall steering force and we’ll be done.

83

STEERING BEHAVIORS

Note that there are new variables for the class. We’ll define these at the start of the

class and initialize them with some default values:

And then we’ll provide some accessors for most of them so they can be changed on an individual

vehicle (is completely random and should not need to be set explicitly):

Finally, of course, an example to see how it looks, as in the file:

84

CHAPTER 2

You can experiment with various new wander variables to see what they do. And don’t forget to see

how the other properties (for example, , , and) affect wandering as well. You

might want to retry some of the earlier seek or pursue tests and have the seeker/pursuer chase a wan-

dering vehicle.

Things are starting to get interesting and will become even more so as we go on. We’re through with

the simpler behaviors. The remaining ones get more complex, starting with object avoidance.

Object avoidance

Unlike some of the behaviors you’ve looked at so far, not only is object avoidance much more compli-

cated but it also seems that everyone who has implemented it has a slightly different take on it—from

relatively simple methods to extremely intricate solutions. Because there isn’t a universally accepted

standard for this behavior, I’ll get you started with a very basic implementation and encourage you to

improve upon it as you wish.

The whole subject of object avoidance means that something is in a vehicle’s path, and the vehicle

has to steer one way or the other to avoid being hit. So it’s somewhat related to collision detection,

but it throws a prediction factor into the mix: “At my current velocity, I will hit this object in the

future.”

Of course, once a collision is predicted, some intelligent action needs to be taken to ensure that

the collision doesn’t occur. Naively, you could just stop or turn around, but remember that multiple

behaviors might be in play. If you are attempting to flee from or evade a predator, stopping or turning

back when you see a tree in your path isn’t a very intelligent option. Ideally, you should take whatever

85

STEERING BEHAVIORS

action is necessary to avoid the obstacle while continuing to flee or evade. And the predator itself will

most likely also need to avoid the obstacle while continuing to pursue you.

Furthermore, you can imagine that the closer you are to an object you need to avoid, the more you

have to alter your path to avoid it. If you were walking through the desert and saw a pyramid a few

miles off, you could just turn a degree or two either way and then walk right by it. But if you waited

until it was directly in front of you, you’d need to turn almost 90 degrees to avoid it.

So, you see how complex this can get and why there are so many different solutions. The first simpli-

fication that most solutions make is to treat obstacles as circles (or spheres in 3D). The obstacle might

not actually be a circle, but if you imagine it as a center point with a radius, calculations are a lot easier

and generally workable. Remember that you’re usually not looking for pixel- perfect collision detec-

tion; just to know where something is and roughly how big it is, so you can get the heck out of the

way. So here is the class that will represent obstacles to avoid:

This class simply takes a radius and a color and then draws a circle at that radius. It has a getter

for the radius and one for position, which returns a to make things fit in well with all the

 vector- based code. Now on to the implementation of the avoid behavior.

Because there usually will be more than a single object to avoid, the method takes an array of

circles, loops through them, and sees whether they need to be avoided. If so, it calculates a steering

86

CHAPTER 2

force to do so. This code gets pretty complex, and because there are so many variations on how to do

object avoidance, I’ll merely present this as an example without much detailed explanation.

The code to predict the collision is very roughly based on the example found in AI for Game Developers

by David M. Bourg and Glenn Seemann (O’Reilly), but greatly simplified. The steering force is calcu-

lated based on a conglomeration of multiple sources and ideas and a bit of my own imagination. I’ll

leave the comments to explain the code (and Figure 2-9 shows what’s happening):

87

STEERING BEHAVIORS

 Figure 2-9. When a collision with an object is
detected, a steering force is applied.

Note that there are a couple of additional properties you have to add to the class:

The avoid distance is how far into the distance a vehicle will look for obstacles. The avoid buffer is the

amount of space the vehicle will try to leave between itself and an object as it passes by.

This code isn’t perfect, but it performs relatively well and doesn’t hit the CPU all that hard. Use it as

is or feel free to improve upon it or start from scratch. Here’s an example of it in use, as seen in the

 file:

88

CHAPTER 2

An array of circles is created, and the vehicle wanders around while trying to avoid the circles. It’s

pretty simple to implement, but works well. This implementation can handle wandering or straight

motion, but it gets a bit rough used in combination with seeking as the vehicle attempts to seek

straight through an object while simultaneously trying to avoid it. This kind of behavior might be bet-

ter attempted with path finding, as covered in Chapter 4. Next we’ll move on to another behavior that

works well with path finding: path following.

89

STEERING BEHAVIORS

Path following

Path following is pretty much what it sounds like: the vehicle follows a predefined path. Although

paths can be represented graphically in a map or game world, for steering behaviors they are gener-

ally represented as a series of waypoints. In an ActionScript 3.0 implementation, it can be as simple as

an array of objects.

The strategy is amazingly simple. You take the first waypoint and seek to it as a target. When the

vehicle is within a certain distance from that waypoint, you consider that it has reached that waypoint

and move on to the next waypoint. And so on until the last waypoint is reached. You can have a loop-

ing path; in that case, it starts over again from the first waypoint when the last waypoint is reached.

See Figure 2-10.

 Figure 2-10. Seek to the first waypoint. When you get close enough,
seek to the next one. And so on.

There are two new properties that have to be added to the class:

And let’s provide some accessors to these properties:

90

CHAPTER 2

The first accessor, , holds the index in the array that points to the next waypoint. The

 accessor defines how close you must get to a waypoint before considering it “done.”

Here’s the implementation:

It’s a bit of a tangle of conditionals. First, we grab the first waypoint off the path array that is passed

in. If for any reason this is not a valid object, we simply return. This allows for an empty array

to be passed in without an error.

If it’s valid, we check to see whether it’s within the threshold distance. If so, we check to see whether

it’s the last waypoint of the path. If so, and if we are looping, we loop back to the first waypoint. If

it’s not the last waypoint, we move to the next one. A bit complicated to write, but if you draw out

a series of waypoints with a path running through them on a piece of paper and then step through the

logic, you’ll see that it’s really pretty straightforward.

At this point, we have the waypoint we’re moving to. We could just execute that last line here—

—and it would work relatively well. But we can make it a bit more elegant by allow-

ing for one special case: if we’re moving to the last waypoint in the path and we’re not looping, let’s

91

STEERING BEHAVIORS

perform an arrive behavior instead of seeking. This lets the vehicle ease nicely into the last point of

the path instead of doing that flipping-back-and- forth thing.

That’s all there is to it. Of course, we need an example of it in action (the file):

92

CHAPTER 2

Pretty basic, I’m sure you’ll agree. Most of the class is concerned with drawing the path so you can see

it. There’s a array and the vehicle is set to follow it in the method. Initially, it will

be an empty array—no waypoints—so the vehicle won’t move. But each time you click the mouse,

a new waypoint will be added to the path, based on where you clicked. Again, most of the code in the

 method is simply there to make the path visible.

As soon as you start clicking, the vehicle will start following the path you created. Because the

parameter is specified as , it will go around the path in a circuit. Note that the vehicle isn’t

mechanically sticking to the path; it’s moving naturally—overshooting sharp turns and cutting corners

a bit here and there. By changing the threshold value, you can affect how it handles corners. Other

properties of —such as , and —will also affect the turning

behavior. So you have plenty of values to tweak to get the exact look and feel you want.

Path following is often used in conjunction with path finding (covered in Chapter 4). Path finding is con-

cerned with finding the best path between two points. It takes into account areas that a character can’t

travel on and potentially factors in situations like rough terrain versus easy terrain. It is usually grid- based,

so the result is an array of grid cells for the character to move through to reach the goal. This array can

then be used as the path for the path following steering behavior, to give it a more natural feel.

Finally I’ll discuss the last behavior, flocking, which is really a complex behavior composed of three

 sub- behaviors.

Flocking
You can hardly mention flocking behaviors without referring to Craig Reynolds and his “boids” simula-

tion. Reynolds did an amazing job of breaking down a seemingly incredibly complex process into a few

simple behaviors.

If you think about a flock of birds, it has three main characteristics:

 First, the birds stay in the same general area. If one bird moves too far away from its flock, it

will soon return. This is known as cohesion (see Figure 2-11).

 Figure 2-11.
Cohesion: seek the
average position of
neighbors.

93

STEERING BEHAVIORS

 Second, the birds, despite sticking together, somehow manage to avoid hitting each other.

They have an individual sense of personal space and avoid getting too close to other birds or

allowing another bird to get too close. This is known as separation (see Figure 2-12).

 Figure 2-12. Separation:
if the neighbor is too
close, move away.

 Third, the birds move in the same general direction. Yes, there is a bit of individual variation,

but in general, the flock flies in this direction or that, with each individual bird eventually fall-

ing into line. This is known as alignment (see Figure 2-13).

 Figure 2-13. Alignment:
adjust to the average
velocity of neighbors.

These three behaviors—cohesion, separation, and alignment—make up complex flocking behavior.

When considering the complex behavior of a flock of birds, some tend to imagine some single intel-

ligence controlling the flock as a whole, or assume that each bird has complete awareness of every

other bird and the flock as a whole. I won’t argue against either of these things, but I will say that

when you start understanding the three behaviors that make up flocking, you’ll find that there is no

need for each bird to be all- knowing, nor is there any need for an overall “hive- mind” controlling the

flock. In fact, each bird just needs to be able to see the few other birds in its immediate vicinity. If it

steers to be close to them, but not too close, and aligns its direction with the way they are heading,

the seemingly mystical flocking behavior will emerge all by itself.

Although flocking technically consists of three sub- behaviors, these three are almost exclusively used

together. You’ll normally not want your characters to exhibit only one or two of these behaviors, so

all three will be coded into a single method. This implementation will also be more efficient because

there will be lots of looping going on and it will be good if we can accomplish everything in a single

loop instead of three. Okay, here’s the method:

94

CHAPTER 2

First, we pass in an array of vehicles. The strategy is to loop through this array and see which vehicles

are within the sight of the current vehicle. If a vehicle is within sight, we add its velocity and position

each to a running total. We also keep track of how many vehicles are within sight so that we can calcu-

late an average. Notice also that if the vehicle we are processing is the current vehicle, we ignore it.

If a vehicle is too close, we execute a flee behavior away from it, which allows for the separation

aspect.

Once we’ve gone through the whole array, if any were found in range, we calculate the average posi-

tion and velocity. We seek to the average position and we add steering force toward the average

velocity.

Not too painful, but you might notice that there are a couple of calls to methods we haven’t seen yet:

 and :

95

STEERING BEHAVIORS

The method determines whether a vehicle can see another vehicle. To do this, it first checks

whether the distance to that vehicle is within a certain range. If not, it returns . Then it does

some fancy vector math to determine whether the vehicle is in front of or behind it. If the other

vehicle is in front, the first vehicle can see that vehicle; if behind, it can’t. This is actually a rather

rigid implementation because it allows only for an 180- degree field of vision. It works well enough for

demonstration purposes, but if you want to improve upon this behavior, one of the first things you

can do is allow for a variable field of vision. A narrower field of vision would mean that the character

could see only what is directly in front of it and less to the sides. A wider field would mean that the

character could see somewhat behind itself. These variations in the field of vision would result in dif-

ferent patterns of flocking.

Next is the method, which returns if the vehicle is within a certain range; if not.

You’ll see that these two methods rely on a couple of other class variables. So we’ll add those as well

as some accessors:

Finally, we’ll need a class to test it with (you can find this in the file):

96

CHAPTER 2

97

STEERING BEHAVIORS

Here we simply make a whole bunch of steered vehicles, scatter them about on stage, and add them

to an array. On each frame, we loop through the array, running the flock behavior on each, and then

update it. You’ll see that although each vehicle is moving around on its own, it has an awareness of

those around it, and a group dynamic sets in. Play around with the variables, number of vehicles, and

so on to get an idea about how it all works.

Another candidate for improvement is optimization of the array handling. Each vehicle currently

checks the entire array of other vehicles, which can be pretty inefficient. You might want to try to

refactor it to use a double loop or even a grid- based approach, as described in Chapter 1. However,

this would require moving some of the flocking code outside of the class, either to

the main document class or perhaps to some other flock manager class. I’ll leave that to you.

Summary
This chapter covered the basics of steering behaviors, from simple seek and flee to far more complex

obstacle avoidance and flocking. The fun comes from combining these behaviors to create even more

complex dynamics. And again, this chapter is a mere introduction to the subject. There is a huge

amount of material online and in other books related to steering, often under the heading of artificial

intelligence. If nothing else, I hope you are at least inspired to start digging up that data and putting it

to use in your own ActionScript 3.0 applications and games.

The next chapter discusses isometric worlds and path finding. Combine them with steering behaviors

(and maybe some advanced collision detection), and you’ll have a blockbuster game on your hands.

9999

Chapter 3

Isometric projection is a technique that has been used in computer games since at

least the early ’80s. It’s a quick and efficient way of simulating a three- dimensional

space, giving you the illusion of depth without a lot of the costly perspective calcula-

tions you have to do in “real 3D.” In the early days, most video games were top- down

or side- scrolling. Zaxxon (see Figure 3-1) and Qbert (see Figure 3-2) were the first

commercial isometric games.

ISOMETRIC PROJECTION

100

CHAPTER 3

 Figure 3-1. Zaxxon

 Figure 3-2. Qbert

100

101

ISOMETRIC PROJECTION

These days, despite the cutting- edge 3D technology in first- person shooter games such as Halo, iso-

metric games are still very popular, particularly in role- playing or strategy games.

To understand isometric projection, first let’s take a look at projection is and how isometric projection

differs from other methods of visualizing 3D.

Projection refers to the representation of a three- dimensional object or scene on a two- dimensional

surface, whether a sheet of paper or a computer screen. A camera uses its lens to create a projection

of the objects in front of it onto a sheet of film or electronic sensor. Even your eyes do the same thing,

projecting an image onto your retina.

When we move to paper and computer screens, there are many different types of projection available.

The type you are probably most used to is perspective projection. In this type of projection, objects

that are farther away from the viewpoint are rendered smaller and closer to a vanishing point. This is

the type of projection described in the 3D chapters of Making Things Move, what is used by default in

3D frameworks such as Papervision3D and other 3D software, how cameras render their images, and

most imitates what you perceive with your own eyes.

Isometric projection, on the other hand, is a type of axonometric projection. In this type of projec-

tion, the scale of objects does not change as their distance from the camera changes.

The word isometric means “equal measure.” It refers to the fact that the angles between each of the

 x- , y- , and z- axis lines in this projection are the same: 120 degrees. You can see this in Figure 3-3.

 Figure 3-3. Picture this as the corner of
a room where the walls and floor meet. In
isometric projection, the angles between each
axis are 120 degrees.

Isometric worlds in games are almost always tile- based worlds, so you have a floor that is composed

of individual tiles instead of a continuous, seamless environment. Objects in the world are tiles them-

selves or are placed on tiles. In most cases, tiles are reused numerous times, so a single tile can be

used multiple times to create an entire floor (see Figure 3-4), or a relatively small number of tiles can

be used to create quite a varied environment (as in Zaxxon, shown in Figure 3-1).

101

102

CHAPTER 3

 Figure 3-4. A single tile used to create a whole floor

Isometric versus Dimetric
Okay, here’s a dirty little secret, a little tidbit you can drop into conversations at cocktail parties to

make yourself sound more intelligent (or just really geeky): almost every game, engine, art, and so

on labeled as isometric is not really isometric; they are dimetric, meaning that there are two different

angles used between the three axes (see Figure 3-5). Note that dimetric simply means “two mea-

sures.” (There is a third type of axonometric projection, called trimetric, in which each axis has a dif-

ferent angle.) Dimetric projection doesn’t have to use the angles shown in this example, but these are

the angles most used in computer games, isometric artwork, and so on.

 Figure 3-5. Dimetric projection uses two angles.

Now, those seem rather odd angles to use instead of the nice round 120s. But there are several very

good reasons for using these angles when you are working with pixels. Let’s take a single tile rendered

in true isometric and in dimetric (see Figure 3-6).

103

ISOMETRIC PROJECTION

 Figure 3-6. A single tile in true isometric and in dimetric projections

The top tile is rendered in isometric. The angle labeled is 60 degrees. The proportions of the tile’s

width to its height end up being 1.73:1. The bottom tile is dimetric. Although the angle is not a nice

whole number, the ratio of width to height is 2:1. This makes creating artwork for such systems far

easier. Instead of creating 173�100 pixel graphics for your tiles, for example, you create 200�100 tiles.

Positioning the tiles is similarly much more straightforward.

And if that weren’t important enough, the dimetric tile just looks a whole lot better. You can see it

in the full- sized tiles on the right—the dimetric one has nice smooth lines, whereas the isometric tile

edges look a little jagged. In the enlarged version to the left, you can see why that is. In isometric, for

every pixel you move vertically, you need to move 1.73 pixels horizontally. Because you can’t move

a partial pixel, sometimes you move two pixels; sometimes one. That’s what gives it the jagged look.

However, in the dimetric version, you move up or down one pixel and over two, every time, nice and

smooth.

Because it makes things easier to code and easier to design, and because that’s what everyone else

does, we’ll go with the dimetric system. And now that you have a thorough understanding of what’s

what and what’s not, we’ll relax a bit and even though we know it’s not really isometric, we’re going to

go ahead and call it that anyway (because everyone else does).

104

CHAPTER 3

Creating Isometric Graphics
Although it’s not coding, it’s useful to know how to create graphics for isometric systems. (And I’m

really talking about 2:1 ratio, 26.565 degree, dimetric systems, but this will be the last clarification.)

Specifically, let’s make a single tile.

First, go into Flash, Fireworks, PhotoShop, or whatever program in which you want to make your

graphics in. Make a square. A real square with all four sides equal, not an almost- square rectangle.

Make it 100�100.

Now rotate it 45 degrees. Again, use a tool that allows you to rotate it exactly 45 degrees, not roughly

45 degrees. Many tools allow you to hold down the Shift key to draw squares and snap rotations to 45

and 90 degrees. You should have a diamond shape now.

Finally, scale it by 50% vertically, keeping it at 100% horizontal scale.

You should wind up with the exact shape shown in the bottom half of Figure 3-6. The size of this shape

will now be roughly 141.4�70.7, which is a 2:1 ratio. Fireworks will round off to the nearest pixel, so

you’ll get 141�71, which is good enough for government work, as my stepdad used to say.

Now, if you tell your designers they have to make all their graphics some weird dimensions like

141.4�70.7, they won’t be too happy with you. So select the object and change its height to 100. Then

if it doesn’t do it automatically, change the width to 200. The shape is now 200�100, which will make

your designers very happy. You can, of course, go with smaller or larger tile sizes, as long as they retain

that 2:1 ratio. In practice, you’ll probably wind up making your tiles smaller than this to allow for more

detail and better collision detection (covered later in the chapter).

Now you can fill this diamond with whatever graphics

you want: grass, rocks, water, dirt, wood, stone, and so

on. Ideally the graphics will tile so they can be placed

together seamlessly. (That’s why they’re called tiles!) If

you want to give the tile some height, just move every-

thing up a bit, draw some lines down from the cor-

ners, and connect them like you see in Figure 3-7.

You’ll be able to dig up all kinds of good tutorials on

how to create isometric graphics online—how to do

color, shading, smooth tiling, and so on. Just search

for “isometric art tutorials” or “isometric pixel art”.

As for this chapter, we’ll get back to coding.

Isometric Transformations
One of the most important (and possibly the least understood, most confused, and most asked about)

subjects in creating isometric worlds is how to take isometric world x, y, z coordinates and transform

them into screen x, y, z coordinates, and vice versa.

I’ve seen this done at least five or six different ways, all quite different. Some were very accurate

but somewhat inefficient. Others were quick and worked well, but didn’t really reflect the actual 3D

transformations involved with an isometric view. And one or two were . . . well, I don’t know what they

 Figure 3-7. An isometric box

105

ISOMETRIC PROJECTION

were or where the authors came up with the ideas, and maybe they even worked, but they didn’t have

any logic I could understand.

Transforming world coordinates to screen coordinates

First, let’s look at the actual 3D transformation that goes on in viewing something in an isometric view,

which will enable you to understand the accurate method and the shortcuts that go into the quick

method. I created a SWF file that demonstrates the transformations. It’s called

and can be found with the files available from this book’s download page.

When you open the SWF, you’ll see a cube rendered in top, front, and side views, as shown in

 Figure 3-8.

 Figure 3-8. Three views of an unrotated cube

106

CHAPTER 3

This SWF also shows the coordinate system we’ll use, which is the same 3D coordinate system we

would use in most Flash- based 3D systems: the x- axis goes left to right, the y- axis goes up and down,

and the z- axis goes “in and out” of the screen, representing depth.

The first transformation is rotating the world 45 degrees on the y- axis. You can go ahead and do this

with the y- rotation slider. Use the left and right arrow keys to make it exactly 45 degrees, which gives

the picture shown in Figure 3-9.

 Figure 3-9. First rotation: 45 degrees on y- axis

107

ISOMETRIC PROJECTION

The second transformation will be a –30 degree rotation on the x- axis. Again, use the x- rotation slider

and keyboard. You can see the results in Figure 3-10.

 Figure 3-10. The second rotation: –30 degrees on the x- axis

You’ll see now that the top and bottom faces of the cube are the same shape displayed in the bottom

half of Figure 3-6. These shapes will be twice as wide as they are tall and will have the smooth 2:1

slope edges described earlier.

You can also create these same transformations by clicking the dimetric button, and you can see “true

isometric projection” by clicking that button as well.

108

CHAPTER 3

The pseudocode for creating these transformations is as follows:

This takes the x, y, and z world coordinates of a point in 3D space and calculates and , which

refer to a point that can be plotted onscreen. This represents rotating the point around the y- axis 45

degrees and then around the x- axis -30 degrees. (See the chapter on coordinate rotation in Making

Things Move.) Actually, the second-to- last line, which calculates , is not even needed here but was

included to show the full coordinate rotation. It will be needed later, however, when we do depth

sorting.

Although you can code a method like this and use it safely with the knowledge that you are following

all the rules of math, geometry, and trigonometry, there are a few problems with it from a practical

viewpoint. First are all those calls to trigonometry functions. Actually, you could do quite a bit of opti-

mization with this, so the trig wouldn’t be too much of a problem in the long run.

However, a more serious problem is that this method favors those odd tile sizes. Remember that

100�100 square we made in the preceding graphics creation section? And how when we rotated and

scaled it, it came out to 141.4�70.7? Well that’s exactly what we are doing here in code. So if you start

with four points that made up a 100�100 square and use the formulas just shown to rotate them, in

the end they will form a 141.4�70.7 diamond. So far, so good.

But remember that we then resized that diamond tile to 200�100. This amounts to multiplying the

width and height by 1.414, which is the square root of 2. That’s not a bizarre coincidence; it’s because

of various trigonometric relationships of angles of 45 degrees. I’ll leave you to work that out if you

are interested. If we are scaling our graphics like this, we need to do the same thing in our code, or

objects placed by code will be out of alignment with the graphics. And here is where something rather

cool happens.

When we factor in that square root of two to the coordinates in the isometric transform and simplify

it all down, you get the following:

If you are interested in how we do that simplification, it follows here. If you trust me, feel free to jump

to the next section.

We start off with the straight up coordinate rotation formula:

109

ISOMETRIC PROJECTION

Throw in some rough approximations for the trig:

Simplify:

Get rid of , expanding it in the formula for and :

Multiply , , and by the square root of 2 (1.414). It turns out that .707 * 1.414 = 1, which simpli-

fies a lot:

We’ll use this calculation again when we get to depth sorting.

So, whether you followed all that explanation or not, we now have a function that is quite a bit simpler

than the original function. All you have to remember is that a 100�100 square in the isometric world

equals a 200�100 diamond- shaped tile in the final 2D rendering. Of course, you’re not stuck with

using 200�100. If you start with a 50�50 square in world coordinates, you’ll get a 100�50 diamond.

To simplify it, the height of that diamond shape is equal to the size of the square that tile represents.

Simple!

Many implementations simply drop the 1.2247 and say the following:

This will work fine when all the objects in the scene are at the same height. In simple systems, all tiles

are simply put at a y of zero. In this case, you could reduce it to the following:

But in cases in which objects might be at different heights, that 1.2247 is required for correct screen

placement of objects. You can still get away without it, but any object placed at a height other than

zero will not really be at its proper height and can give the whole scene a feeling of being squashed.

110

CHAPTER 3

Transforming screen coordinates to world coordinates

Now we’ll need a way to go the other way as well: screen coordinates to isometric 3D coordinates.

There’s a little problem here because screen coordinates represent only two dimensions, and we need

three. Most of the time, the use case for such a transformation is to translate a mouse click position

to a location somewhere on the floor or ground of the world. Therefore, what we really want to do is

translate screen x, y coordinates to world x, z coordinates; and leave the y, or height, as zero. So, if we

take the isometric to screen algorithm, we get the following:

Set y to zero, solve for x and z, and simplify—we get the following pseudocode:

That’s straight algebra, nothing I dreamed up on my own. You start with screen coordinates, and ,

and get back an x, y, and z that represents a 3D point in the world space.

IsoUtils class

Enough theory and enough pseudocode. Let’s see some real code and see it in action. First, we’ll need

a structure to hold a 3D point. As with all the code in this book, it’s available on this book’s download

page at . You’ll find it as the file.

Now, here’s the class, available for download as , which handles the conversion

from world to screen coordinates, and vice versa, as we just covered:

111

ISOMETRIC PROJECTION

Note that the magic number, 1.2247, has been created as a static const and calculated with trig. This

will result in it being a precise value instead of the rounded- off version, and it will be calculated only

once. Accuracy and efficiency!

And now a rough idea of how these methods would be used:

112

CHAPTER 3

You can find this class in the file. It first creates four instances of ,

forming a square on the x- z plane. It then uses to convert them to four

 two- dimensional points, which are drawn to the screen—offset by 200 on the x- and y- axis so it’s not

jammed in the corner.

Running this class will result in the good old familiar diamond shape. If you were to throw the line

 in at the end of the class, you’d see that the diamond is exactly 200�100, as

you would expect.

Of course, plotting 3D points and drawing individual lines is no way to create a rich isometric world.

These utility methods are mainly used for positioning isometric objects in the world. Our next step is

to create a class to represent an isometric object.

113

ISOMETRIC PROJECTION

Isometric Objects
In general, the objects that make up your world will be created by graphic artists (or by yourself,

assuming the graphic artist role) in a graphics program such as Fireworks, Photoshop, or even Flash

itself. These objects include various tiles decorated with grass, trees, dirt, water, buildings, and so

on—or various characters, perhaps even animated ones. It will be your job (back in the programmer

role if you are a one- person shop) to get these graphics into the 3D world, to correctly place them,

and to move some of them around. This gives the concept of a graphical object that needs to be posi-

tioned and moved in isometric space. Sounds like a good candidate for a class. Here’s an introduction

to the class, available for download as the file:

114

CHAPTER 3

115

ISOMETRIC PROJECTION

116

CHAPTER 3

Most of this class deals with getting and setting the 3D position of the object and calculating its screen

position based on it. Because the class extends , the screen position can be set by assigning

values to and . (The is necessary because the getters and setters for and

have been overridden to refer to the 3D positions, not the screen positions.) Notice that the

 method makes use of the method you just saw.

If you’ll be using this class extensively, here’s a suggestion you might want to implement. As it stands,

 will be called three times if you set x, y, and z, which is rather inefficient. It

is often handled by having an invalidate method that marks the object as needing updating and sets

an listener to update it once on the next frame. That way, you could update x, y, and z

100 times in succession, and the screen position would be calculated only a single time when you’re

done.

The other methods—such as the getters and setters for , , and —mainly have to

do with depth sorting and collision detection, which we will cover later in the chapter.

Note that the constructor takes a single parameter, . All have a property that

determines their footprint, or how much space they take up on the x- z plane. This footprint is always

considered to be a square, which makes sense in a tile- based world. You’ll see more of this when we

start drawing tiles in the next section and when we enter the collision detection phase later on.

Now, this class has no graphics in it yet. We could draw some manually, but let’s just create

a new class or a drawn isometric tile, the class in the file:

117

ISOMETRIC PROJECTION

As you can see, this class adds and values to the constructor, which get passed to class

properties. There are also getters and setters for these two values. Although the value is not

used in this class, it can be used in subclasses that draw solid blocks instead of just flat tiles.

118

CHAPTER 3

The method is called by the constructor and any time the height or color is changed. It draws the

2:1 diamond shape that keeps reappearing in this chapter, using the specified color. Pretty simple, but

it allows you to start creating larger isometric areas composed of multiple tiles, as seen in the follow-

ing example, which you can find in the file:

This code first creates a sprite called , which acts as a holder for all the tiles, and allows us to

position them all as a group. This is moved to the center of the screen horizontally and down some-

what from the top edge.

Then a double loop is run. In the body of the inner loop, a new is created with a size of

20 and a default color. Its position is set on the x- and z- axis, as a multiple of the loop variables, and

the tile is added to the world. When you run this, you should get something like Figure 3-11.

119

ISOMETRIC PROJECTION

 Figure 3-11. laid out in a grid

This is the basic setup for a tiled isometric world. You should experiment with this one a bit. Note that

changing the length of the two loops controls the size of the resulting grid. Because the tiles’ sizes are

all 20, and they are each placed 20 units apart on the x- and z- axis, they line up perfectly. Try chang-

ing either of these values; you’ll see that the tiles either overlap or are left with gaps between them.

Normally you want them to tile seamlessly, of course, but it’s good to know how to change it if you

need to. You can also try fiddling with the y position. In the example, all tiles are set with a y of zero,

so they form a flat surface. Try different methods of changing the y to see what you can come up with.

Another thing to try is varying the colors somehow.

There’s no need even to use the double loop and create a grid. Try arranging tiles by placing each one

individually or coming up with some other algorithm to arrange them.

Tiles are good, but let’s go a bit further and create a 3D isometric block with a variable height. When

you get into 3D forms, you have to start thinking about lighting. An isometric block will have three vis-

ible faces, each pointing in a different direction. To enhance the illusion of space, each one should be

shaded a bit differently. Usually there’s a light source to the top left or top right, which makes the top

surface the brightest, and the left or right faces each a bit less bright, depending on whether the light

is to the left or right. In the class (see the file), I assume that the light

source is off to the right, so the right face is medium brightness and the left face is a bit darker:

120

CHAPTER 3

121

ISOMETRIC PROJECTION

Because we pass in only a single color, the class separates the color into its component red, green,

and blue values; reduces each component by a certain percentage; and recombines them into darker

colors for the left and right faces. Another possibility is to draw each face in its own sprite or shape,

and then adjust the color transformation values on the shapes used for the right and left panels. It can

be even more flexible when allowing for dynamic lighting, but I’ll leave that as an exercise for you and

go on with this isometric stuff.

Another important thing to notice is the following line:

This line takes the height that is passed in and converts it to an accurate transformed isometric height.

Remember when we derived the isometric transformation formulas, we were left with this:

I mentioned that some implementations dropped that 1.2247, which works to a degree but leaves

things a bit squashed. Well, because is a y value, we need to apply that correction here, too, or

the box will look squashed, too. This will mostly show up when attempting to create a cube. You make

both the size and height the same value: 20, for example. You expect to see a cube, but it looks more

like a cake box. Correcting the value allows you to make cube that looks like a cube.

Of course, now we need an example using the class. It would be easy to convert the

 class by just changing the name of the class when the object is created, but this wouldn’t be

too interesting because the height is still defaulting to zero, so it would just look like a tile. You can

change the height, but you’ll just have a thick plane instead of a flat plane. Instead, let’s do something

a bit more interesting: using the method of the class to capture mouse clicks

and dynamically add boxes where we click. The next example can be downloaded as :

122

CHAPTER 3

Most of the class is exactly the same as the class. After we create the grid of tiles, we add

a mouse click event listener to the world sprite. When the world is clicked on, we create a new box,

giving it a random color. Then we get the mouse coordinates from the world sprite and convert them

to an isometric point and use it to set the box’s position. Finally, we add the box to the world.

This class allows for a free form placement of the boxes. It might be good to align the new boxes with

the existing tiles by rounding the x, y, and z values to the nearest multiple of 20:

123

ISOMETRIC PROJECTION

Now when you click, the box that is created will snap to the grid created by the tiles, giving you some-

thing like Figure 3-12.

 Figure 3-12. es on a grid of tiles

You’ve probably already noticed some problems as you experimented with this one. Most likely these

problems had to do with depth sorting, which is exactly what will be covered next.

Depth Sorting
No doubt that as you clicked around in the last demo, you saw that boxes that should have been behind

other boxes were occasionally incorrectly placed in front. An example can be seen in Figure 3-13.

124

CHAPTER 3

 Figure 3-13. Oops! Depth problem.

The problem is that the method of the world sprite just puts the new child object on the

top of the display list above everything else that might be there. If you draw boxes from back to front,

you’ll be fine. The two boxes on the right side of Figure 3-13 were drawn this way. But those on the

left side were drawn from front to back, so although the second box should be behind the first one,

 just plopped it on top. To handle this situation, we need to determine the depth of each

object in the world and sort according to that.

Earlier in the chapter I mentioned that many different methods of isometric projection were out there.

The situation with isometric depth sorting is even worse—everyone has a little “trick” to sort objects.

I must have found at least a dozen, all different. And the arguments on various forums over which was

the proper way to do it—epic battles! Many of these methods worked fairly well if all objects were on

the same y value. But many also broke down as soon as you started dealing with objects at different

heights.

I didn’t want to just pass on some semiworkable “trick” that I didn’t really understand. It seemed to me

that the problem could be solved in a pretty straightforward mathematical manner.

Back when we discussed the rotational transforms that go into creating an isometric view (45 degrees

on the y- axis, –30 degrees on the x- axis), we boiled it down to the following:

125

ISOMETRIC PROJECTION

 and were the transformed x and y coordinates and were used to determine the screen position

of the point or object. is the transformed z- axis coordinate. Although we brushed it aside at the

time, we can now use it for depth sorting because it is what gives us the distance from the viewpoint.

This is what all those tricks are trying to do, with various degrees of success. But this is the exact math-

ematical value and it will sort things perfectly, no matter where they are on any axis.

So this is what I used. If you take another look at the class, you’ll see this method:

As you can see, this method calculates the transformed z value. I could have used more accurate val-

ues here, but because this method isn’t actually used to visually render anything, only to compare two

objects, these rounded- off values seemed adequate and quick.

The strategy is to put all the in an array and then sort the array based on the prop-

erty. We can then rearrange the display list based on the order of the array. We’ll have to sort the array

and rearrange the display list every time an object is added. We’ll do that in the next demo (available

for download as the file):

126

CHAPTER 3

127

ISOMETRIC PROJECTION

Here, we create an array called . Each tile and each box are added to the array, and the

 method is run. This method sorts the array on the property. Don’t forget to specify

 or it will sort the array as string values, evaluating "70" as greater than "100". (I’m

embarrassed to say how many hours I wasted trying to debug that one!)

One caveat for isometric depth sorting is that it relies on objects in the world being the same size (by

size I mean the property of the class that defines the object’s square footprint on the

 x- z plane). Objects can be any height without causing a problem, but should not be wider or deeper

than other objects in the world. You can usually get away with making one or two character objects

being smaller than the rest of the tiles, but you should usually choose a standard object size and stick

with it. I’ve seen a few attempts to make an isometric world with varying object sizes. They usually

result in fantastically complex depth sorting that nobody other than the original programmer really

understands and is usually quite error prone. Or they wind up imposing additional complex restric-

tions on object shapes and positions to make up for the standard tile size restriction. The better way

to make large objects is to split them up into multiple objects, each one the standard size.

This last example results in the boxes being perfectly sorted, no matter where you place them. However,

it seems that occasionally the tiles appear on top of the boxes. This is because when boxes are placed

“on top of” a tile, they actually have the exact same x, y, z position—meaning that their transformed

depths are also exactly the same. So from a sorting viewpoint, it doesn’t really matter which goes first.

There are two ways to handle it: put the tiles slightly lower or put the boxes slightly higher. It doesn’t

have to be much—not enough to be visible, but enough to affect the depth calculation. You can do

that in the line that creates the tiles:

Setting the y of each tile to 0.1 is enough to put it below the boxes, but not move it visibly.

Another somewhat more complex (but more efficient) way is to have two different world sprites—one

for the tiles and one for the boxes. You don’t really need to sort all those 400 tiles every time. They

aren’t moving, and you always want all the tiles to be under all the boxes. So put them in their own

sprite and put that sprite under the sprite that holds the boxes. Put only the boxes in the

and sort them. Here’s the revised class, as found in the file:

128

CHAPTER 3

129

ISOMETRIC PROJECTION

Here, a floor sprite is created and placed in the same position as the world sprite. Because it is added

to the display list first, it will be under the world sprite. All the tiles are added to the floor. They are

not pushed onto the because they don’t need to be sorted.

I changed the mouse click handler to listen for clicks on the stage because the world sprite will at first

be empty and won’t receive any mouse clicks. Other than that, all the code is the same.

The next step will consolidate a lot of what we just did into a reusable world class.

Isometric World Class
Because most of what we have been doing in terms of creating a floor sprite, a world sprite, and

object list and sorting algorithm will be something you’ll probably want to do in most projects you do,

it makes sense to create a class that handles it all in a generic way that can be used on each project.

This is the class, downloadable as the file:

130

CHAPTER 3

Most of this is exactly what we did in the last example: it creates a floor sprite, a world sprite, and

an object list; and handles sorting. It provides two methods for adding objects. The

method puts an object in the floor sprite, not the object list, and does not sort. Floors are assumed to

be flat tiles created in nonoverlapping grids, so sorting should not be necessary. The

method adds the object to the world sprite and the object list, sorts the list, and rearranges the display

list. We’ll be adding some additional functionality to this class later to assist in collision detection.

Using the class is pretty easy, as seen in the example found in the file:

131

ISOMETRIC PROJECTION

132

CHAPTER 3

In fact, this file is almost identical to the original class, with world being an instead of

a , and and being used instead of . But

takes care of creating separate sprites and doing all the sorting.

Moving in 3D
Motion itself is not much of a big deal in isometric 3D, especially when you have a class such as

 that automatically takes care of converting 3D coordinates to screen positions. You just

change any property (x, y, or z), and the object then moves to the correct screen position. The only

thing to remember is that each time you move an object, you need to call the method of the

 (or otherwise update your depth- sorting routine if you are not using) to account

for the fact that the object might be at a different depth.

From there, it’s pretty easy to implement just about any kind of motion: basic velocity, acceleration,

gravity, friction, bouncing, easing, springs, and so on (as described in Making Things Move). In fact, just

to make things tidy, I’m going to add three new properties to to handle velocity:

And I’ll add some getters and setters for them:

133

ISOMETRIC PROJECTION

The most obvious thing is to set up some keyboard event listeners and move an object based on what

key is being pressed. The following demo, found in the downloadable file, does just

that:

134

CHAPTER 3

135

ISOMETRIC PROJECTION

This is pretty straightforward. A tile floor is put in place, and a box is on top of it. Listeners are set up

for key up and key down events. If any of the cursor keys is pressed, the box’s or is set accord-

ingly. In the method, the box’s velocity values are added to its position. Simple enough.

Don’t forget to sort the world after each move, as you can see in the last line of .

Actually, in this case (with only a single object in the world) it is not so important, but it’s a good habit

to get into.

The is initially set to 20, so the box moves a full tile space on each move. Try changing that to

a lower value to have it move at a slower rate.

Just to show you can do just about any other type of motion of physics, here’s a more advanced demo,

which you can get it as the file:

136

CHAPTER 3

137

ISOMETRIC PROJECTION

This demo makes use of gravity, bouncing, and friction, as well as motion on the y- axis. When the mouse

is clicked, the box gets a random velocity on each axis. When the box goes past zero on the y- axis or

beyond any edge of the plane on the x- axis or z- axis, it bounces back. Some friction is also applied.

138

CHAPTER 3

I also threw in a shadow in the form of a at 50% alpha. This is put on the floor layer, but

moved to the same x and z position as the block on each frame. It’s also blurred based on the box’s

height, so it gets fuzzier as the box is higher. Not too complex and it makes a nice illusion.

So far, so good in this nice isolated world with only a single object. What happens when we throw

some more objects into the mix? That’s what we’ll look at next.

Collision Detection
To see why collision detection is important, take the first class and another box or two

like so:

They don’t have to move or anything; they can just sit there on the grid. Now move the movable box

around until it hits one of the new boxes. Not pretty, is it? The boxes will go right through each other

and will look fairly horrible in the process. In many cases it will look more like the moving box is going

under the stationary box. It appears as if the depth sorting has suddenly broken. But what’s really hap-

pening is that two objects are trying to occupy the same space. When this happens in the real world,

we get a bent fender or a stubbed toe. In an isometric simulation, we get a busted depth sort.

To handle this situation, we need some way of knowing where an object can move and where it can’t.

Because the class holds a list of all objects in the world, that’s a good place to put that func-

tionality. We’ll call this method . Here it is:

The method takes an instance and returns whether or not it is safe for that object to move

to the position it would be in if its x and z velocity were added to its position.

139

ISOMETRIC PROJECTION

If you look back to the class, you’ll remember that it has a property that is an instance

of . It represents the footprint of the object on the x- z plane. We take the

from the object that has been passed in and offset it by the amount of the x, z velocities of the object.

This will now represent the object’s footprint if it makes its next move.

We then loop through the list of objects in the world. We want to check for three conditions:

 First, that the object being checked is not the object being passed in. You don’t want to hit test

an object against itself.

 Second, that the object being checked is marked as not walkable (walkable means that another

object can occupy the same space as that tile). There may be times when an object in the world

is just a flat tile that can be walked on, just like a floor tile. Or perhaps a tile is up on the y- axis

and it’s possible for another object to “walk” underneath it.

 Third, that the offset rectangle we just computed does not intersect with the of the object

being checked, which is easy to do with the built- in method of the class.

If all three of these conditions are true for any object in the list, the object cannot move to a new

position based on its x and z velocity. We return immediately. However, if we make it through

the whole list without getting a hit, it is safe to move, and we return .

The way this is used is to check before adding the velocity to the position. Here’s the full

example, as seen in the file on the book’s download page:

140

CHAPTER 3

141

ISOMETRIC PROJECTION

As you can see, the only change here is wrapping the motion code in an statement to see whether

it is safe to move. I also cut the speed down to a low number so you can see that the collision detec-

tion is nice and accurate.

And that about covers the basic physics of our isometric engine. The final two sections cover integrat-

ing external graphics and designing the layouts of your isometric worlds.

Using External Graphics
The and classes are great for testing and development, but would get old

pretty quickly in a real game. More likely, you or your graphic designer will make some more detailed

isometric objects in some graphics program such as PhotoShop, Fireworks, or even Flash. You’ll need

some way to get those graphics into an . For this, we now have the class, which

you can download as the file:

142

CHAPTER 3

As you can see, this class extends and in addition to , it takes a class reference and an x

and y offset. The class reference is a class that is linked to some graphic. Usually this would be done via

an embed metadata statement, as covered in Making Things Move. But it could also be some other class

that extends a visible display object—such as , , , or —with code to draw

some type of graphic in itself. In any case, the constructor of creates an instance of this

class and adds it to its own display list. It then moves it according to the two offset values passed in.

To see how this all works and why the offsets are there, let’s first look at some external graphics. I’m

no great isometric artist, but I fired up Fireworks and threw together a couple of tiles. The first one

is a simple tile, canvas size 40�20, the familiar diamond shape filled with a wood grain texture (see

 Figure 3-14). I have no doubt you can do much better! This tile is saved as in the same

directory as the main class.

 Figure 3-14. A simple isometric tile in Fireworks

143

ISOMETRIC PROJECTION

The second graphic is a bit larger and more detailed. It is 40�40 with a simple cube, but I added

a door and window to make it a house. If you haven’t guessed, I spent a lot more time on writing and

coding than I did on creating graphics for this section. Anyway, this was saved as (see

 Figure 3-15).

 Figure 3-15. Another Fireworks isometric object

For the example (file), I reused the class, changing the tile types to

. I embedded the two graphics I just saved and passed in those classes to the

constructor:

144

CHAPTER 3

145

ISOMETRIC PROJECTION

So, back to the question: what are those two offsets all about? Well, the way we’ve been creating all

our graphics thus far is with the center point of the tile as the registration point. In other words, when

we place a tile at a certain screen x, y position, the tile is centered around that point. If the tile has

height, it extends upward from that point.

But when graphics are embedded, instantiated, and added to a display list, their registration point is

the top left and they will extend down and to the right. So we need to move the tile up and to the left

so that it is centered on that registration point. The first tile, , is 40�20 and is a simple

flat tile, so we need to move it 20 pixels to the left and 10 pixels up in order to center it. The other

one, , is a bit more complex. The x offset is again 20 pixels to center the tile horizontally,

but we actually need to move it up 30 pixels to center the bottom face of the cube on the registration

point. So its offsets are 20, 30.

When you run this demo, you’ll see the luxurious wood grain floor (okay, it looks more like a badly

rendered sand). Clicking on that, you will start building a small village of identical houses, giving you

something like the one in Figure 3-16.

 Figure 3-16. in action

Now that we have a way of getting just about any type of graphics into our tiles, we just need a way

to specify the layouts of all these tiles.

146

CHAPTER 3

Isometric Tile Maps
Well we have a nice little isometric engine going. We can position tiles, move them with all kinds of

physics, pick up 3D mouse clicks, sort on depths, do collision detection, import any kind of graphics,

and so on. Pretty much all the basics we need to start putting together a decent game. The one thing

that would be really helpful at this stage is some way to specify and build a world without hard- coding

all the positions and types of objects, and then later being able to edit and change the world without

recompiling the whole project.

This can all be accomplished with tile maps, which are simple text files that map out what types of

tiles we want to go where. Here’s a simple tile map:

This shows a 10�10 grid of tiles, mostly of type 0, with an inner square made up of type 1 tiles. What

are type 0 and type 1 tiles? That’s up to you. Basically, you edit this map text file and save it where

your game or application can get to it. The application loads and parses it, and then loops through it,

creating tiles and adding them to the world. It’s up to you to tell it that type 0 means a ,

size 20, color 0xcccccc, and walkable (for example). To make this process even simpler, I created

a class that loads in a specified map file and allows you to register different tile types

with different characters. It fires an event when the map is loaded and parsed, and then you can pull

 a ready- made world out of it. Nothing could be easier. Well, I suppose something could, but this is

a pretty good start. Here’s the class, as seen in the file:

147

ISOMETRIC PROJECTION

148

CHAPTER 3

149

ISOMETRIC PROJECTION

150

CHAPTER 3

This is a fairly complex class, but it makes building a world so much easier. It starts by loading the text

file specified in the argument of the method. Let’s look at a sample map file:

£

£

151

ISOMETRIC PROJECTION

Lines that begin with are comments and ignored. Lines that begin with are tile definitions. Tile

definitions consist of a symbol (0, 1, 2, 3, in this case) and a list of key/value pairs. All other non- empty

lines are rows of tiles.

When the map file loads, the method will run, which parses the text and does the following:

 1. It splits the text file into an array of lines.

 2. For each line, it determines whether it is a tile definition, a comment, an empty line, or a row

of tiles.

 3. If the line is a definition, it is parsed by the method. This method takes each

key/value pair and assigns it as a property on a generic object, which is then stored in the

 object.

 4. Lines that are rows of tiles are split into an array of symbols and stored in the array.

 5. When all that is done, it broadcasts a complete event, letting you know the file has been loaded

and processed. You can then call the method, which returns a fully populated world by

creating an , looping through the array, and each cell in it. It checks to

see what kind of tile to make and uses the other definitions as parameters to create that type of

tile, adding it to the world. When it’s done, it hands you back the world.

Using this class is very easy. Here’s an example, which you can download as the file:

152

CHAPTER 3

You create the , listen for its complete event, and load a map. When it’s done, you call

 and add that to the display list. Figure 3-17 shows the result of this class along with the

map file just shown.

 Figure 3-17. The class, doing its thing

One thing to mention here is the property in the tile definition:

£

153

ISOMETRIC PROJECTION

Here it is set to , but in the class, we have embedded the symbol like so:

So you might think that you should say . But is actually a private prop-

erty of the class. We won’t be able to see that private property in the class. But it

turns out that the real name of the class for an embedded asset is , where

 is the class that does the embedding, and is the property the embedded

asset is linked to. Because is the property and is the class that embeds the asset, the

class itself is .

You can now edit the map file to create all kinds of different layouts with different types of tiles, col-

ors, heights, external graphics, and so on—all without recompiling the SWF. (Of course, if you want to

embed new graphics, you’ll need to recompile to get them into the SWF.)

There’s a lot more that could be done with this class, and I assume that if you do use it, you will tweak

it for your personal needs. You might not like the idea of generic objects for definitions and want to

replace them with something better. Or you might want to add a way to specify that some tiles should

be added to the floor and others to the world. But I think this is a good start and should provide you

with a framework to build a pretty cool isometric world without doing it all from scratch.

Summary
Well, I think I’ve covered all the basics of Isometric 3D here, but I haven’t taken all your fun away. I left

you plenty of details to sort out and lots of stuff to optimize. But I’m thinking that you are well on

your way to making something cool.

Next up, we’ll be looking at pathfinding, which covers advanced ways of moving about in a tiled world,

completely applicable to the tile- based isometric worlds.

155155

Chapter 4

The term pathfinding means pretty much what it sounds like—finding a path. You

are at point A. You want to go to point B. How do you get there? This subject has

been extensively researched by game developers, and none of what I’ll present here

is new material, but it should cover the basics of the subject and give some decent

implementations of the standard solutions in ActionScript 3.0.

Pathfinding Basics
Pathfinding is often applied to a tiled world. Even when applied to a game or world

that is not tile based, the world is still usually viewed as some sort of grid from the

viewpoint of pathfinding. Thus, the result of pathfinding is a series of tiles that make

an unbroken path from a starting tile to an end tile. If it were just a matter of drawing

a line between the two, this would be a trivial problem even for a tile- based world—

hardly worth a whole chapter, much less the endless pages you will find with a simple

Internet search for the term “pathfinding”. The complexity increases when you make

some of these tiles unwalkable, which also means pretty much what it sounds like.

A character in the game cannot move on to or across any of these unwalkable tiles

and must go around them. If these unwalkable tiles form a barrier between the start

and end points, pathfinding now becomes the subject of how to get around this bar-

rier and still get to the goal. Figure 4-1 shows an example.

PATHFINDING

156

CHAPTER 4

 Figure 4-1. A path with barriers

Pathfinding also usually carries with it the idea that you are looking for the best path. In many imple-

mentations, the best path simply means the shortest path—the path made up of the fewest number

of tiles. But in pathfinding, we use the concept of the path with the least cost. Traveling from any tile

to any other tile costs a certain amount of effort. Distance, of course, is a big part of cost—it “costs

more” to move across two tiles than it does to just move across one—but there could be other costs

as well. In some games, for example, the path that leads through a swamp or over some mountains

might be the shortest, but it’s harder to climb mountains and move through swamps, so this path

might have a higher cost than the path that follows the main road, even though that path might

be longer. For a more familiar example, the shortest path from your office to your home might go

through the center of town, but if you are going home at rush hour, you probably prefer a somewhat

longer path that avoids the worst of the traffic.

156

157

PATHFINDING

A* (A- Star)
If you’ve done even the most cursory research on pathfinding, you have no doubt come across the

term A* (pronounced as “a star”). A* is a general algorithm for finding the best path from a starting

point to an ending point. It is pretty much the industry standard for pathfinding, used in almost every

game that uses pathfinding. Implemented correctly, A* is guaranteed to find the best path between

two points and is relatively efficient in terms of how it searches. For these reasons, many consider the

subject of pathfinding a closed case, with A* being the solution. For the kinds of scenarios that A* cov-

ers, you are much better off spending some time learning A*, as we’ll do in this chapter, than in trying

to come up with your own pathfinding algorithm.

One of the powerful aspects of A* is that it is a very general algorithm, more of an outline of how

to go about pathfinding than an exact formula. In fact, one of the pieces of the A* algorithm is the

heuristic, which itself is a subalgorithm used within one of the parts of the overall process. This heu-

ristic is not defined by A*, and there are several common heuristics in use, which give different results

in terms of speed and efficiency. In fact just about all aspects of A* can be tweaked and customized

based on specific- language feature strengths and application requirements.

In this chapter, we’ll go about building an ActionScript 3.0 implementation of A*. I don’t claim that it

will be the best possible implementation, but I do hope that it will be clear enough for you to learn and

understand the basic concepts of the subject. At any rate, it will be perfectly usable for most common

applications and ready for you to tweak to your heart’s delight to achieve ultimate optimization.

A* basics

In as concise terms as possible, A* consists of choosing a starting tile, visiting each surrounding tile,

and assigning a cost to each one. We’ll cover cost a lot more soon, but it has to do with the suit-

ability of a particular tile in terms of a path from start to end. The process is then repeated with the

 lowest- cost tile as the new starting tile. If you continue this way, you’ll eventually reach the end tile

and be able to track back to the starting tile for the best path between the two.

A* algorithm

Most explanations of A* start out with a pseudocode representation of the A* algorithm and proceed

to show some simple diagrams illustrating the progression of the search using the algorithm. That

seems to work pretty well, so I will follow suit. First though, let’s define some terms:

 node: This is essentially a tile in a tile- based world. But instead of using the term tile, cell, or

point, A* uses the term node to specify the segment of path being examined. So a path will

consist of the starting node, the end or goal node, and the list of nodes that form the best path

between them.

 cost: This is the ranking for each node based on how fitting it is for the path. Nodes with

a lower cost are preferable to nodes with a higher cost. Cost is made up of two parts: the cost

to get to a particular node from the starting node and the estimated cost to get from that

node to the goal node. Cost elements are usually signified with the variables f, g, and h, as

described next.

 f: The total cost of a specific node, defined as g + h.

157

158

CHAPTER 4

 g: The cost to get from the starting node to a specific node. It can be calculated exactly

because you always know the exact path you took to get to that node from the starting node.

 h: The estimated cost to get from a specific node to the end node. The estimate is done via

a heuristic function. It’s only an estimate because you don’t know the exact path you are going

to take. That’s what you’re trying to figure out!

 heuristic: A function that estimates the cost to get from a specific node to the end node. There

are various heuristics in general use that give different results in terms of speed, efficiency, and

so on.

 open list: The list of nodes that have been visited and assigned a cost. The lowest- cost node in

this list will be used in the next iteration of the search.

 closed list: The list of nodes whose neighbors have all been visited.

 parent node: When a node is iterated over, each of its neighbors is examined and assigned that

node as a parent. So when you reach the goal node, you can follow the chain of parent nodes

back to the start node. Because parent nodes were always the lowest- cost node on the open

list, you are guaranteed to have the best path.

Now let’s look at the algorithm description:

 1. Add the starting node to the open list.

 2. Main search loop:

 a. Find the node on the open list that has the least cost. This is the current node.

 b. If the current node is the end node, you’re done. Go to step 4.

 c. Examine each surrounding node (in a rectangular grid, there will be eight nodes). For each

surrounding node:

 i. If it is not walkable or is already on the open or closed lists, skip it and continue with the

next surrounding node; otherwise continue.

 ii. Calculate its cost.

 iii. Set the current node as its parent.

 iv. Add it to the open list.

 d. Add the current node to the closed list.

 3. Repeat step 2 with the updated open list.

 4. You’ve found the end node. Create a path list and add the end node to it.

 5. Add the parent of the end node to the path list.

 6. Add the parent of that node to the path list. Repeat until you reach the starting node. The path

list now holds the list of nodes that make up the best path from start to end.

We’ll go through this algorithm graphically very soon, but first you need to know how to calculate the

cost for a tile.

159

PATHFINDING

Calculating cost

As described in the definitions, the cost for a particular node is calculated with the formula f = g + h,

where g is the cost to get to that node, and h is the estimated cost to get from that node to the goal.

The first part of the cost formula is relatively straightforward: how many nodes have to be walked on

to get from the start node to that node. For now, we’ll say that walking from any node to any sur-

rounding node has a cost of 1.

So, beginning at the starting node and examining each of the surrounding nodes, you would assign

each one g=1 (see Figure 4-2).

In the next iteration, you can calculate g as the g of the current node, plus the cost to travel from the

current node to the node you are examining. In other words, suppose that the current node is one of

the nodes surrounding the starting node. So it has a g of 1. When you look at each node surround-

ing it, you would assign each one g=2 because it cost you 1 point to travel to the current node and

another 1 point to travel to the next node. This is shown in Figure 4-3.

 Figure 4-2. Assigning g from the Figure 4-3. Assigning g to a Figure 4-4. The cost for diagonal
start node subsequent node nodes is more than horizontal or

vertical.

In most implementations, however, all surrounding nodes are not equal. If you look at the distance

between two nodes in the same row or column, compared with two nodes diagonally next to each

other, you’ll see that the diagonal ones are actually farther apart. If you do the trig, you’ll see that

the distance is not simply 1, but 1.414, or the square root of 2. So, you can factor that into your cost.

(Don’t worry about it too much for now; we’ll be going into it soon.) Figure 4-4 shows this step.

The next part of the cost is the estimated cost to move from the specified node to the goal node.

Determining this is done with a heuristic, which is just another algorithm or formula. One of the sim-

plest heuristics is to take the distance between the two, using the good old Pythagorean Theorem. How

many rows between them? How many columns? Square each figure, add them, and take the square

root. Here’s the pseudocode:

160

CHAPTER 4

That’s your h. The cost for the node in question is now f, or g + h.

Again, we’ll be looking into this in more detail later, so as long as you have a general idea of what’s

going on here, that’s fine for now.

Visualizing the algorithm

We’ll start with a grid, a starting node, an end node, and some unwalkable tiles (see Figure 4-5).

 Figure 4-5. Ready to find a path

Proceeding with the algorithm, we add the starting node to the open list. We then look at the starting

list for the node with the least cost. There’s only one node in the list, the starting node, so that’s it.

We then examine each of the nodes surrounding the starting node and assign each a cost. We start

by calculating the g for each one. This is 1 for the nodes in the same row or column, and 1.4 for the

ones on a diagonal with it. For this exercise, we don’t have to be super accurate with the cost—1.4 is

close enough. See Figure 4-6.

Next we assign the h’s. Using the straight- line heuristic, it’s just the distance from each node to the

goal node. It’s not the pixel distance; it’s a unitized distance of the number of nodes between the two

using the Pythagorean formula (as shown earlier).

With both parts of the cost figured, we can add them together to get the total cost. Figure 4-7 shows

the result.

161

PATHFINDING

 Figure 4-6. The g’s have been assigned.

 Figure 4-7. Total cost for each node

162

CHAPTER 4

The current node can now be added to the closed list, and each of these visited nodes can be added

to the open list.

We then look at the open list again and find the node with the least cost in it, which is node B5 on

the grid, and repeat the process. This time, however, some of the nodes surrounding it are already

on the open list or closed list, so we can ignore those. We calculate the cost for the remaining nodes

(see Figure 4-8).

 Figure 4-8. Round 2 of pathfinding

Now B5 is added to the closed list and the just- examined nodes are added to the open list. Again we

choose the one from the open list with the lowest cost. This time it’s C5. We calculate the cost of its

surrounding nodes (the results are shown in Figure 4-9).

Now, notice that D5 and D6 have the same cost. Actually, because I’m rounding off the values here

for simplicity’s sake, they might or might not actually have the same exact cost, but this can happen,

so let’s say they do. Which one do you choose? Well, it really doesn’t matter. In fact, it’s not really up

to you, but usually up to some sorting algorithm. Now it might be pretty obvious to you that D6 is the

way to go because you can see the wall there. The heuristic can’t see the wall, though. It’s just calculat-

ing distance. So, from its viewpoint, either node is valid.

Anyway, suppose that we tossed a coin or ran a sort on the open list, and D5 came up. We then look at

the surrounding nodes, but there are none. They are all unwalkable, or on the open or closed list. No

problem. This is step 2c of the algorithm. If there are no valid surrounding nodes, we move on to step 3,

add node D5 to the closed list, and check the open list again for the node with the lowest cost. This time,

D6 is undisputed. We continue the algorithm by checking its neighbors. This brings us to Figure 4-10.

163

PATHFINDING

 Figure 4-9. Round 3 of pathfinding

 Figure 4-10. Pathfinding continued

164

CHAPTER 4

We continue this process, finding the lowest- cost node on the open list, calculating the cost for each

neighbor and adding them to the open list, putting the current node on the closed list, finding the

 lowest- cost node on the open list, and so on. Eventually, we’ll get to Figure 4-11.

 Figure 4-11. Almost there

The current node is G7. When we start to look at the surrounding nodes, we soon see that one of

them is the end node. We made it!

At each phase, when checking out new nodes, we set a parent property on each node to be equal to

the current node. Thus, we can now walk backward from the end node, all the way back to the starting

node. Reversing this path, we have the best path from start to end.

Getting it into code

To start coding A*, we first need some structures to represent a grid and a single node.

First, the class. As with all other code here, you can download it from the book’s site at

 (the file is).

165

PATHFINDING

166

CHAPTER 4

167

PATHFINDING

In the constructor, you pass in the number of rows and columns you want in the grid, which creates

an array of nodes. We’ll look at the class next. You can set the start node or end node by specify-

ing the x, y coordinates you want for each. Similarly, you can set any specific node as walkable or not.

Finally, you can get a reference to the start node, end node, or any specific node, as well as reading

the number of rows and columns in the grid.

Note that the class is merely an object to hold information about the grid—it has no visual rep-

resentation. We’ll create another class for that, but first let’s look at the class (available in the

 file):

168

CHAPTER 4

The class is a simple data object used to hold the properties of a node. It has no behavior itself,

so we’ll give it only public properties. Note that at this point, all nodes are equal, so the only cost

involved is in the length of the path. Later, you’ll see how you can have different intrinsic costs for

different types of nodes.

The next thing we need is a class that does the work of pathfinding itself. This is the class, avail-

able for download as the file. I’ll just dump it all on you at once; then we’ll go through it in

more detail:

169

PATHFINDING

170

CHAPTER 4

171

PATHFINDING

To begin with, we have some properties, followed by a default constructor:

172

CHAPTER 4

Here are arrays for the open and closed lists; a grid; a start and end node; an array to hold the final

path, which will be a list of nodes; and a heuristic property. I provided a few common heuristics in the

class, which are explained in more depth a bit later. You can choose among them by uncommenting

the one you want to use and commenting the rest. You might want to devise a more robust way of

switching between them, such as using a method, but I’ll leave that up to you. Finally

there are properties for the cost to travel to a node on a straight line and a diagonal line.

Next is the method:

This method initializes things by creating an empty open and closed list and then grabbing the start

and end nodes from the grid that was passed in. It calculates the cost for the start node and then runs

the method, which will iterate through to the end node and return the path.

Let’s take a look at how the method calculates the cost for the start node. It first sets the start node’s

g to zero because g is defined as the cost to get from the start node to the current node. Because

they are one and the same, there is no cost. We then call whatever heuristic method we have chosen,

passing in the start node, which will return the estimated cost to get from there to the end node. This

is h. Finally, we add g and h to get f, the total cost for the node.

Next up is the real meat of the class, the method. This is what goes through from the start

node and eventually ends up at the end node, calculating the best path as it goes:

173

PATHFINDING

174

CHAPTER 4

We start by making a node variable, which keeps track of the

current node that begins as the start node. It then runs a

loop, exiting only when the current node is equal to the end

node. At this point, we’re done.

The first thing we do inside this loop is to run a double

 loop to examine all the nodes surrounding the current node,

as shown in Figure 4-12.

First we get the x and y values of the current node and loop from

 x– 1 to x+1 and y– 1 to y+1 (remember that the x and y values

are integer values representing rows and columns here, not pixel

screen positions; nothing is onscreen yet):

We also have to make sure that we don’t try to access tiles off the sides or top or bottom of the grid,

as you can see in Figure 4-7. We do that by running the indexes through and so

they are never less than zero or greater than the last row or column of the grid.

For each node, we get the node itself from the grid. If the test node is the current node, or the test

node is not walkable, we can just ignore it and move on to the next one:

If we make it this far, we have a valid test node and need to determine its cost. First we calculate the

cost from the start node to this test node (the g cost). We can do this by taking the g of the current

node and adding the cost to get from the current node to the test node. A simple way is to assign

 if the node is on a horizontal or vertical line with the current node, or if the

node is on a diagonal. Then add the current node’s g to this to get the total g. We find h by running

the heuristic function on the test node, and f by adding g and h together:

 Figure 4-12. The x, y index values of the
nodes surrounding the current node

175

PATHFINDING

The next part gets a bit tricky, and is something we haven’t talked about yet. Earlier, I implied that if

a node was on the open or closed list, you wouldn’t need to examine it because it was already cov-

ered. However, the route you took to get to a node this time might result in a cost that is less than the

cost you calculated for it the first time around (for example, if you were calculating the cost based on

a diagonal but now you are directly next to a node on the horizontal or vertical, so the cost is lower).

So, even if a node is on the open or closed list, it’s good to compare the current cost with the previous

one. We do that by comparing the test node’s f with the f just calculated. If the previous f is greater,

we’ve found a better path this time, and we replace the f, g, and h on the test node. We also set the

parent of the test node to the current node. This will let us walk backward to the start point once we

reach the goal:

If the test node is not on the open or closed lists, we just assign the f, g, h, and parent straight away.

We also push the test node onto the open list because it has a fully calculated cost now and needs to

be considered in the next test for best node:

At this point, we have examined all valid nodes around the current node. There’s nothing more that

needs to be done with it, so we push it onto the closed list:

And then we need to find the next current node to repeat the process. We do this by examining the

open list and finding the lowest- cost node in it. But first we should check whether there are any nodes

on the open list at all. It can happen that the open list empties out. This means that there is no pos-

sible path between the start and end nodes:

176

CHAPTER 4

In this implementation, returns if a path is found and returns if no path is possible. This

can be checked by the code searching for the path to determine the outcome.

If there are more nodes on the open list, we need to find the lowest- cost one (that is, the one with the

lowest f). We can do this by sorting the list by the property of each element and taking the bottom

element off the list:

That is the end of this iteration, and we are left with a new current node. The loop now checks

again to see whether the current node is the end node. If not, it will go through the process again and

again until either it determines a path cannot be found or the end node is reached.

When we do find the end node, we call the method and return . Let’s look at

:

This code creates a new array for the path and pushes the end node onto it. It then s the end

node’s parent on to the list. By using instead of , we add each new node to the start of the

array, so it runs from start node to end node when it’s done. We repeat this process, adding each par-

ent’s parent until we reach the start node. At this point, the path array holds the best path from start to

finish. We are done! The code using the class can now check the return value of to see

whether it was successful; if so, it grabs the path array with the accessor.

If you’ve had enough of the internals of the class, you can jump ahead to the implementation

section. But if you are up for it, let’s take a look at the different heuristics included.

Common A* heuristics

The funny thing about A* is that it should give you an optimum path no matter which heuristic you

use. Note that I say an optimum path here, not the optimum path. In just about every case, there will

be multiple paths with the same cost. For example, Figure 4-13 shows three paths between the same

two nodes. Each path would have a full cost of 4.8 (two diagonal moves at 1.4 each, plus two horizon-

tal moves at 1.0 each).

177

PATHFINDING

 Figure 4-13. Three paths, one cost

As long as the solution comes up with one of these paths (or another path with a cost of 4.8), it is

a valid best path.

Thus, using a “better” heuristic doesn’t mean that you’ll get a shorter path. But some heuristics are

quicker than others. The biggest factor is that some heuristics result in more nodes being examined;

some result in fewer. The fewer nodes that need to be examined, the quicker you’ll get to the end

node, the fewer (and smaller) arrays you’ll have to sort, and so on.

Also, some heuristics tend to create paths that appear “straighter” to our eyes than others. For exam-

ple, most people would say that the first or second path in Figure 4-13 is shorter or more direct, even

though all three have the same cost. Most would say the third path just looks wrong. So, if a heuristic

tends to intersperse diagonal moves with straight moves, it will wind up creating a path that looks

more natural instead of grouping them all together.

You could write a whole chapter, possibly a whole book, just on different heuristics and the differ-

ences between them. I’ll just cover three commonly used heuristics (the ones included in the

class), with a brief explanation of each. But if you want to get into it more, do a web search for A*

heuristics and you’ll get enough reading material to last weeks. See Figure 4-14 to see how each heu-

ristic works as you read about it.

 Figure 4-14. Three common heuristics

178

CHAPTER 4

First is the so- called Manhattan heuristic, which ignores any diagonal movement and just adds the

total number of columns and rows between a test node and the end node. The idea is that if you were

on a grid like the streets of Manhattan, for example, and you needed to get from 5th and 40th to 8th

and 43rd, you’d have to go three blocks in one direction, and three in another. It wouldn’t matter if

you did all the streets first and then all the avenues, or vice versa; or street, avenue, street, avenue,

street, avenue. You’d still be doing three of each.

So this heuristic just gets the difference between the two nodes in terms of columns and in terms of

rows, and then adds them together. Simple enough.

The next common method is sometimes known as the Euclidian heuristic. It just calculates a straight

line from the test node to the end node and returns the length. This is the good old Pythagorean

theorem: A2 + B2 = C2.

We take the distance in rows, square it, add the distance in columns (also squared), and take the

square root of the sum. Also pretty simple.

The last method, the Diagonal heuristic, looks pretty convoluted, but essentially winds up calculating

a path as shown in Figure 4-13.

179

PATHFINDING

This heuristic, which is the most accurate of the three, will return the actual cost between the two

nodes if there are no barriers between the two. In fact, if you run through the heuristic with the fig-

ures shown in Figure 4-13, you’ll see that it returns a cost of 4.8, spot on.

The next three figures show the results of these three algorithms. Notice that all three have a path

including 23 horizontal moves and 25 diagonal moves, resulting in a total cost of 58. The different

heuristics had no affect on the length of the path. However, the character of the path and the number

of visited nodes (shown in gray on the grid) vary greatly between the different methods. You can see

that the Manhattan heuristic (Figure 4-15) wound up visiting almost every node in the grid before

finding the end node. Its path is also very unnatural, taking all its horizontal moves at once and then

all the diagonals.

 Figure 4-15. Result of the Manhattan heuristic

The next one, the Euclidian heuristic (see Figure 4-16), has a somewhat more natural- looking path,

visiting far fewer nodes.

180

CHAPTER 4

 Figure 4-16. Result of the Euclidian heuristic

The Diagonal heuristic (see Figure 4-17) was the most efficient of all, visiting very few unneces-

sary nodes. Although its path is not quite as natural looking as the Euclidian’s path, it’s better than

Manhattan’s path.

 Figure 4-17. Result of the Diagonal heuristic

181

PATHFINDING

Of course, there are trade- offs (as with everything). The Manhattan heuristic is the simplest and quick-

est to execute per node, although it winds up visiting more nodes. The Diagonal heuristic is more

complex but winds up being run less often. So, you see there is no “right” or “wrong” heuristic. Each

has its strengths, and there are other heuristics out there, as well as variations on the ones I’ve given.

It’s a matter of trial and error to find the one that gives the best results for your specific application.

And the preceding examples don’t show any barriers; once you start adding those in, things get even

more complex.

Now that we’ve covered all the basics, let’s see it in action.

Implementing the AStar Class
When you go to implement A* in a real game or application, you’ll probably create a tile- based world

with tiles that are obviously walkable or not. The starting point would probably be the tile a character

is on, and the ending tile might or might not be indicated. It could be a point where the user clicked

or the tile where a pot of gold, an enemy, or some other object is located. The path itself would

probably not be visualized, but simply used to move the character as it makes its way to the goal. For

demonstration purposes, I’ll create a class to show this visually (you can download this as

the file):

182

CHAPTER 4

183

PATHFINDING

184

CHAPTER 4

The constructor of the class takes a instance, which contains the list of all nodes, as

well as separate references to the start and end nodes. The method loops through all the

nodes, drawing a small square for each node. The size of the square is determined by the

property. The color of the square is determined by the method, which returns black for

a nonwalkable node, gray for the start and end nodes, and white otherwise.

Then the method is called, which creates an instance of the class and calls its

method, passing in the grid. If a path is found, it shows all the nodes that have been visited by coloring

them a light gray and shows all the nodes on the path by drawing a small circle on them. The results are

what you saw in Figures 4- 15, 4- 16, and 4- 17.

Of course, finding a path with no obstacles isn’t too exciting, so we add an event listener for the mouse

click event that calls . This finds the node associated with the point where the mouse was

clicked and then toggles its walkability on or off. It then clears the grid view and finds the path again,

which will redisplay the grid and its found path.

All we need now is something to tie this all together, our main document class, which you can find in

the file:

185

PATHFINDING

All this code does is to create a and a and tie them together. You can set different

start and end nodes; once the movie is up and running, you can click on various squares to create

barriers that cut across the existing path. Notice that as long as you allow some space for a path to

get through, A* will always find a path to the goal, and it will always be an optimal path, as you can

see in Figure 4-18.

 Figure 4-18. Pathfinding is complete

Refining the path: Corners

There’s one potential problem so far, which isn’t entirely noticeable in the examples, but can be seen

in Figure 4-18. When the path goes around the edge of a barrier, it kind of cuts the corner a bit, going

on a diagonal path from one side of the barrier to another. It doesn’t look too bad so far, but when we

get something like the path shown in Figure 4-19, we start to see a problem.

186

CHAPTER 4

 Figure 4-19. Slipping through cracks

Here, the path is finding its way through cracks between unwalkable paths. You might think you closed

off the path, but because walking diagonally is a perfectly valid move, that’s what the path does. It

just doesn’t look right. What we should really do is never cut corners

around unwalkable tiles. This forces us to go fully around these tiles,

and in the case where two corners join together diagonally (as in

 Figure 4-19), there will be no valid path found across them.

Taking a look at Figure 4-20, we can see the situation close up.

The black circle represents the current node we are examining, and

the gray square is the node we are currently testing to determine its

cost. We are at this point in the method of the class:

We make sure that the test node is not the current node and that the test node is walkable. If either

one of those cases is false, we skip it and move on to the next surrounding node. We want to throw in

one more condition: we want to skip this node if it is cutting the corner of an unwalkable node. When

 Figure 4-20. Close- up of a corner

187

PATHFINDING

 and are on a diagonal like that, two other nodes have to be tested. These nodes are at the

following coordinates:

and

In other words, the node that’s at the same row as and the same column as (and vice versa),

as you can see in Figure 4-21. You might have to work that out a bit more on paper, but you’ll see that

it makes sense.

 Figure 4-21. Finding a corner

So all we have to do is check to see whether either of those nodes is unwalkable. If so, we skip

and move on to the next surrounding node. Here’s the revised code:

With this simple addition, we now get paths as shown in Figure 4-22.

188

CHAPTER 4

 Figure 4-22. Better corners

Here, the path is now going fully around unwalkable nodes instead of cutting across them. Furthermore,

if you completely close off an area, as in Figure 4-23, no path will be found.

 Figure 4-23. There is no path.

189

PATHFINDING

The corner- cutting fix is something that you might or might not want to implement. In some imple-

mentations or games it makes sense; in others it doesn’t. You have to decide which kind of behavior

you want for your specific game or application. You might even want to design it to be a configurable

option on the class. Also, the way it is implemented here could be a target for optimization. Right now,

it’s always checking for corners even if the test node is not diagonal, which is a bit of a waste. I’ll leave

it that way for clarity, but you might want to fine- tune it later.

Using AStar in a Game
The previous example with the class is mostly for demonstration purposes—to see how the

path is made, to see which nodes get visited, and to experiment with what happens when different

nodes are made unwalkable to see how the path is affected.

In a real- life situation, things are almost exactly the opposite—the walkable states of various nodes

are set at the start and generally don’t change, but the start and end nodes are fairly dynamic. The

start node is wherever a particular character happens to be, and the end node is often where the

user wants the character to go, usually indicated by clicking somewhere on the grid. So let’s do a very

simple implementation of that kind of behavior. This is all jammed into the class, which you can

download from the book’s site on as the file:

190

CHAPTER 4

191

PATHFINDING

192

CHAPTER 4

This class has a lot of similarities to the example, but there are also some important differ-

ences. In the constructor, we create a player, which is just a sprite with a circle drawn in it that’s placed

randomly on the stage. We also create a and mark a whole bunch of nodes in it as unwalkable.

The and methods are essentially the same as in the previous example.

Then we listen for a event. When the grid is clicked on, we set the start node to whatever node

the player happens to be on and the end node to whatever node was clicked on. We then redraw the

grid to reflect those changes and try to find a path with the method.

The method simply creates an instance of and tries to find a path on the grid. If one

is found, it grabs the path and sets an property to zero so we are starting on the first node of

the path. Then it listens for the event, calling .

The handler grabs the next node on the path, as defined by the property, gets

the distance from the player to that node, and performs a simple ease to it. If the player gets close

enough, it moves onto the next node on the path. When it reaches the last node on the path (the end

node), it removes the event listener.

193

PATHFINDING

Advanced Terrain
There’s one concept that was mentioned at the start of the chapter that we haven’t touched on yet.

It’s the idea of having different costs for tiles beyond simply straight and diagonal movement—having

some tiles that are harder to traverse and others that are easier. We won’t go too deeply into this, but

I did want to cover it for completeness.

As an example, a dirt road node would have an inherently higher cost than a paved road node, and

a swamp or mountain node would be costlier. Different costs for terrain can be implemented by add-

ing an additional cost factor property to the class, which would probably be a multiplier. An ideal

walkable node would have a cost multiplier of 1.0, so to travel to it horizontally or vertically would

still be a cost of 1 and diagonally 1.414. However, nodes with a more difficult terrain might have a cost

multiplier of 2.0, for example, so their end cost would be 2 or 2.828.

This makes tend to avoid tougher terrain nodes in favor of easier nodes, even if the easier path

was longer. But at a certain point, the cost of “going through the swamp” might still wind up shorter

than traveling all the way around it. This is different from having an unwalkable node because even

a difficult node will still be walkable, but will look for an easier way around it first.

To implement this, first we’ll add a single new property to the class, :

194

CHAPTER 4

Then it takes one small change to implement in the method of the class. Go down to the

line where the g part of the cost is calculated:

Change it to this:

Now the cost for this one node will be adjusted based on its multiplier. In Figure 4-24, I altered the

 class to assign each node a different based on some random sine and cosine

calculations. In addition, I drew each node lighter or darker depending on its cost multiplier. White

nodes are easier to traverse than darker ones. You can find the changes in the file, avail-

able on the book’s web site. Notice that the path follows the easier route where at all possible.

 Figure 4-24. The path of least resistance

However, if you force the issue by making unwalkable nodes, will begrudgingly go through the

tough areas, as you can see in Figure 4-25.

195

PATHFINDING

 Figure 4-25. Forcing the path into difficult terrain

Summary
This final game example is pretty simple and leaves a lot for you to improve upon, but it shows you

the basic setup for using A* pathfinding in a real game. Play around with it and see how the player

navigates around the obstacles to get to where you clicked, if at all possible. Now you can imagine

making a more animated player that looks more like a little person on a quest, who turns to walk in

the direction he’s going, and so on. And you might want to redo the walking motion so he’s just walk-

ing in a smooth motion instead of easing from node to node. And, of course, some nice graphically

designed tiles to represent grass or roads (walkable nodes) and maybe rivers and mountains (unwalk-

able nodes).

You can also relatively easily apply pathfinding to an isometric world, particularly if you’ve read and

understood the previous chapter on isometric worlds. I’ll leave that as an exercise to you.

Next up, we’ll go in a completely different direction, looking at ways to use the microphone and

camera not just to capture sound and images, but also to function as a way for a user to control an

application with motion and noise.

197

If you’ve ever taken any kind of introductory computer science course, it’s a sure bet

that you ran across a diagram on your first day or in the first chapter of your text that

was some variation of the one shown in Figure 5-1.

 Figure 5-1. Input, process, output

If you were in the advanced course, there might have been another box hanging off

somewhere labeled Storage.

And that’s pretty much just what a computer does. It reads in some kind of data as

input, does something with it, possibly stores it, possibly later retrieves it, and then

spits it out in some form.

The vast majority of what has been written about computers and software focuses on

the middle box—processing some data to create something worthy of output.

ALTERNATE INPUT: THE CAMERA

AND MICROPHONE

Chapter 5

198

CHAPTER 5

Input is generally assumed to be via the keyboard or mouse, and output almost always consists of

writing something to the screen or making a sound come out of the speaker(s). Of course, there are

lots of alternatives and infinite variations, but most daily operations for average programmers and end

users deal with the mouse, keyboard, screen, and audio device.

To be fair, there’s a whole lot you can do with a keyboard and mouse in terms of input. It’s certainly

a far cry from the earliest “personal computers,” for which input meant flipping a series of switches,

and output meant interpreting the on/off state of a row of LEDs. But I feel there’s a bit of a discon-

nect in the fact that most of our input is mechanical or tactile, and most of our output is audible and

visual.

Now, if you are into science fiction, you know that eventually we’ll all be controlling our computers

visually à la Minority Report and have conversations with them as in 2001: A Space Odyssey (hopefully

things work out better than the end of that movie). And although progress has been made in both

areas, current touch screens tend to just mimic existing keyboards and existing physical input devices,

and voice recognition technology, although improving, hasn’t shown itself to be ready for prime

time.

So, although I don’t recommend that you write your next novel (or even your next program) via your

microphone, exploring alternate input methods can be great fun and is what we’ll explore in this chap-

ter, specifically via the microphone and camera.

Cameras and Microphones
One of the barriers to using alternate input methods is that any input requires an input device.

Alternate input requires an alternate device. Although you’d be hard- pressed to find a computer these

days without a keyboard and mouse/trackball/trackpad, some forms of input require specialized, hard

to get, and often expensive hardware. You also need to install special drivers, software, or even local

servers to interact with that hardware and make its input available for your program.

Fortunately, almost every consumer laptop produced in the last couple of years seems to have

a built- in camera and microphone, and even if your computer doesn’t have them, you can pick them

both up at almost any corner store for less than what you paid for this book. If you do need to buy

them, microphones are usually plug-and- play, and webcams always come with an easy installation

program that takes about three minutes to set up. And as a Flash developer, you have direct access to

the camera and microphone to use as input devices.

People often think of the camera and microphone only in terms of making a chat or video confer-

encing type of application (in other words, taking the voice or camera stream, sending it to another

computer, and playing it back pretty much as it came in). But a few people have experimented with

the idea of using sound and video as a more direct input device—capturing the audio or video input,

analyzing it, and using it to affect something that’s going on in a program.

This chapter gives you some ideas of how to use a camera and/or microphone as an input device. Of

course, there’s no way I could even come close to describing every possible way, but I’ll discuss the

basic techniques of how to capture video and sound, and show some ways to manipulate them. From

there, it’s all a matter of your own creativity for what you do with them. We’ll start out with the rela-

tively simple case of handling the microphone.

199

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

Sound as Input
Microphone input in Flash is done via (no surprise) the class. This class is quite easy to

work with, but unfortunately that’s because it is also rather limited in what you can do with it. Many

people who are familiar with ActionScript’s class learn about the class and imme-

diately try to compute real- time sound spectrums. If this is what you are expecting, let me dash your

hopes right here and now. Don’t think you can record the sound coming in through the microphone,

either. Neither is supported by the class.

The class’s main functionality is returning the current activity level of a particular micro-

phone. This activity level is a number from 0 to 100, indicating how much sound is being received

by the microphone—0 is no sound, and 100 is the maximum amount of sound it can register. With

a little creativity, you can do some cool things with this value. First let’s look at how to get access to

the microphone via ActionScript.

The class has a static method called , which returns an instance of the

 class that represents a single physical microphone attached to the computer. If you call

the method with no parameters, it will return the first microphone it finds on the system. If you pass

a value of –1 to , it will return the default microphone on the system. In most cases,

they are the same thing, and that is the microphone you are looking for. You can get fancy and retrieve

a list of all microphones on the system and use an index of that list to select a specific microphone to

use in Flash, but this is usually overkill.

You can try the following class to play around with the method.

Like the rest of the code in this book, it’s available for download from the book’s download page at

 (the file is):

Try passing in different values to and see what it traces out. Eventually, you’ll try to

index a microphone that doesn’t exist. This will return null and you’ll get an error saying you can’t

access a property or method of a null object, which is exactly what should happen.

If you want to prompt your users to choose a microphone, you do so by calling up the Microphone

settings panel via the method, like so:

200

CHAPTER 5

This will present the user with the Microphone dialog box shown in Figure 5-2, which prompts a micro-

phone selection.

After you choose a microphone and press the Close button, the Camera and Microphone Access dialog

box displays, as you can see in Figure 5-3.

 Figure 5-2. Microphone dialog box Figure 5-3. Camera and Microphone Access
dialog box

You’ve probably seen this dialog box before—it simply confirms that it is okay for the Flash movie

to use the microphone and/or camera on the computer. As you can imagine, it would be a problem

if a Flash movie could access your camera and microphone and start broadcasting your personal life

without your knowledge!

You might wonder why you didn’t get the access dialog box in the first example. Although you did

grab a reference to the microphone, you didn’t actually start using it, so there was no risk at that

point. Flash will know when the microphone’s data itself is accessed for the first time and will display

the access dialog box at that point.

201

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

Now let’s start accessing this microphone and reading the activity level. The activity level will change

constantly, so we’d better keep checking it. Sounds like a job for an handler. Our first

attempt as follows:

Simple enough. In the handler, you just trace out . However, when

you try this, you’ll just get a long column of –1s tracing out. Doesn’t matter how loud you talk, which

microphone you select, or whether you grant access to the Flash movie to use your microphone, there

just isn’t any activity registering. Again, this is because the Flash movie is not yet doing anything with

the microphone data.

There are two ways to get the Flash movie to start using the data. One is to attach the microphone to

a , which usually happens in some kind of chat application or voice recording system, by using

a streaming server such as Flash Media Server or Red5. The other way is to set the microphone’s input

to loop back through the speakers via the method. Passing in to this method causes

Flash to start accessing the microphone’s input, and you should see an activity level when you make

some noise. As you might expect, passing in stops the activity. If you don’t want to hear your own

voice coming back at you, simply turn down the volume of the output on your specific computer.

202

CHAPTER 5

Run this example, talk into your microphone, and see what numbers trace out. If these numbers are

very low, despite making a lot of noise, you might need to adjust the gain. Gain is essentially a level

of amplification that is applied to the microphone before its data is accessed in Flash. Gain can be set

in two ways: visually and by code. In the Microphone dialog box shown in Figure 5-2, there is a slider

labeled Record Volume. Changing this slider changes the gain. To change this value via code, just set the

microphone’s property to a value between 0 and 100, with 100 as the maximum amplification.

Assuming that you now have some interesting numbers tracing out, let’s do something with those

numbers besides just tracing them out. The next example creates a bitmap and uses the activity level

to set a pixel in it on each frame. The bitmap is scrolled to the left, so you get a running recording of

the sound volume reaching the microphone:

203

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

This gives you the result shown in Figure 5-4.

 Figure 5-4. Visually graphing the activity level

Now that’s fine for visualization purposes, but it’s not really using the microphone as an alternate

input method. How about a simple game using sound to control a character’s movement? The next

example does just that.

A sound- controlled game

The next example is a class called (you can find it as in the book’s down-

loadable files). We create an airplane- like vehicle that flies through a roughly drawn cave full of rather

rectangular stalactites and stalagmites, using the microphone activity level to control its lift:

204

CHAPTER 5

205

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

The flier is a sprite, and the background is a scrolling bitmap with random rectangles drawn over to

the right. The important part is right here in the method:

We keep track of a vertical velocity in the property. We add .4 to it each frame for gravity

and then subtract the activity level * .02 for some lift. These numbers were arrived at through lots of

trial and error. (Thanks to my six-year- old daughter Kristine for all the help in testing!) The velocity

is then added to the flier’s y position, some pseudo friction is applied through multiplying by .9, and

finally the flier’s position is bracketed within a minimum and maximum area to keep it visible. The

result is shown in Figure 5-5.

206

CHAPTER 5

 Figure 5-5. Sound flier!

As you talk or otherwise make noise into the microphone, the flier will fly. Shut up, and it falls to earth.

The stalagmites and friends scroll to the left, giving the illusion of the flier flying to the right. There’s

no collision detection implemented (I don’t want to do all your work for you!), but you get the idea.

Make just enough noise to keep the flier in the middle area. One thing you can say about a game like

this is that it’s not the kind of game you stealthily play in your cubicle when the boss isn’t looking.

Although really just the beginning of a game, this example should hopefully spark a few ideas on how

you can use a microphone to control some portion of a game or application. Next we’ll take a look at

an alternate way of handling microphone activity.

Activity events

In the game, we check the activity level on every frame. For that type of game, which

requires quick reflexes by the user and instantaneous reactions by the game itself, constant checking

and updating is vital. But you might envision an application that needs to do something only if the

sound reaches a certain threshold. You might try running an handler and checking the

activity level on each frame to see whether it is above a certain value. But this process would be very

inefficient, using up CPU cycles constantly when it should just be sitting and waiting for something to

happen.

Fortunately, the class provides an exact solution for this situation: the ,

which is an event class that the class dispatches whenever a specified sound threshold

level is crossed. Interestingly, an is dispatched in two circumstances: when the activity

level rises above the threshold and again when it drops below that threshold. To distinguish between

207

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

the two, the event has a Boolean value named . If it is , the activity level has gone

from a quieter state, crossing the threshold on the way up. If it is , the threshold has been

crossed as things are quieting down.

By listening for this event, you can have your application stand by in an idle state and react only when

the noise reaches a certain volume and again when it quiets down.

You can use this as a sort of “noise- activated switch” to control just about any aspect of any applica-

tion or game. You might want to think beyond browser- based applications here and consider how it

might be used in an AIR- based desktop application. You could even create a crude security system.

Imagine that when an application “heard a noise” at your house, it activated your webcam and notified

you at work, allowing you to see what’s happening there.

Or going the other way, you could set the microphone next to some machinery. If and when the

machinery stopped running, the application would sense the drop in activity below the threshold and

take action.

Let’s just run through a really quick example to see it in action. There’s not too much to wrap your

head around, so once you see how this works, you’ll be able to use this mechanism to control any-

thing. This will be a re- creation of an old device that you attach to the lamps in your house to turn

them on or off by clapping. So we’ll call the class (it is in the downloadable file):

208

CHAPTER 5

Pretty basic stuff here. We get a microphone, set it to loopback so Flash will start listening to

its input, and add a listener for . Note that we also call a method named

. Remember when I mentioned the concept of a threshold a few times in the preced-

ing discussion? This is how you define that threshold: it is the value below which Flash will consider

silence and above which Flash considers activity. When the of the microphone crosses

this level—going in either direction—an will fire. I set it to 25 so it takes a bit of noise

to get it to trigger, but you don’t have make a huge racket. If you don’t call , the

default threshold the microphone uses is 10.

The second parameter of is a timeout value measured in milliseconds. When an

 is dispatched, the microphone will ignore any other potential activity events for this

amount of time. Suppose that you want to pay attention to a sound that is not constant, such as

a bang, bang, bang. With each bang, the activity level goes up and then down, so you’ll get two events

for each bang. Instead, you just want to know when the banging starts and when it stops. By tweak-

ing this timeout, you can ignore the spaces in between the bangs. The default is 2000, or a 2- second

delay, which is probably optimal for a chat application in which a person might pause for a second or

so while speaking, but you don’t want to take it as silence. I set this a bit lower, down to 500 for this

application, so you can clap pretty quickly to toggle the “lamp” on and off.

The method checks the value of . Again, this will be if the activity

has gone from silence to noise, and will be if it has gone from noise to silence. We’ll ignore the

second case and just focus on new loud noises coming in: a clap. In here, we toggle the variable and

call . The method just draws a black or white rectangle, depending on the state of .

Try it out. Clap on, clap off! I recommend experimenting with the parameters of

to see how they affect things. It’s also worth mentioning that there are read- only properties on the

 class for and if you want to see their current settings.

209

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

Okay, those are the basics of using the microphone. As I said, there isn’t much complex functionality

there, but then again there isn’t much complex functionality with a keyboard or mouse, either, and

look what we do with them. Now let’s take a look at alternate input using video.

Video as Input
Although sound input is handled through the class, video input is handled through the

 class. Although they handle different things, these two classes are quite similar. You get a ref-

erence to a camera attached to the computer by calling . The class has an

 property, dispatches , and has a analogous to the

 class’s . Both are designed to be used either locally or in conjunction

with a streaming server such as Red5 or Flash Media Server. Again, we’ll be using just for local

input in this chapter.

But despite the similarities, there is a lot more you can do with a camera. First, in addition to simply

reading the activity level or responding to activity events, you can view the input of the camera via

a object, which is a display object that you add to the display list and can do anything you do

to a display object: filters, transformations, blend modes, and so on. And perhaps the most powerful

use of the camera is to draw the video to a . When you do that, you can start analyzing the

image pixel by pixel or frame by frame, comparing areas of the image with each other or comparing

one frame to the next. Once you start doing that, the possibilities really are endless. I’ll try to spark

your imagination with a few examples in this chapter, but even if I spent an entire book writing about

what you could do here, I’m sure you’d wind up with something a week later that I’d never imagined.

But all things start at the beginning, so let’s look at how to get a hold of the camera and see its input.

The first steps are almost identical to getting a microphone. The next class is available for download

as :

210

CHAPTER 5

You call to—well, to get a camera. You can pass a string referring to the name of

a camera on the system, but in general you won’t have any idea of what the cameras are, so it’s best

to pass nothing and get the default camera. However, it’s often a good idea to call up the Camera

settings dialog box to prompt the user to choose a specific camera. This is shown in the last line in

the example, and will result in the dialog box shown in Figure 5-6. Although I won’t show it in future

examples in this chapter, you should remember that it’s there and consider using it in your applica-

tions to make sure that the user knows how to select the camera.

 Figure 5-6. Camera dialog box

Now that we have a camera reference, let’s make it visible. You do this by attaching it to a

instance. The class is, as I just mentioned, a display object. So you create one, attach the camera

to it, and add it to the display list:

211

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

If all goes well, and if unlike me, you are in a decently lit room, you should see your beautiful face

staring back at you (I just see a grainy gray blob on a grainy gray rectangle, but I’m pretty sure it’s me).

After you run this file, you’ll see the Camera and Microphone Access dialog box shown in Figure 5-3

again because you are now accessing the camera’s input.

Video size and quality

You now have a camera capturing video and displaying it to the screen. All very good, but it’s not very

big and probably doesn’t look as detailed as other applications you use on the same computer with

the same camera. That’s not because Flash is bad, but simply because you’re using default settings and

sizes for both the camera and video.

You can specify the size of the video right when you create it. It defaults to 320�240, but you can pass

in a larger size:

Alternately, you can set the video’s width and height after it has been created.

You now have a bigger video, but it’s not necessarily a better picture. To improve it, we have to go

back to the class and its method. It takes four arguments, but we’ll discuss only the

first three here: width, height, and frames per second (fps). (The fourth argument determines how

Flash will handle a mode that can’t be matched by your camera. Feel free to read up on it.) By default,

these arguments are set to 160�120 at 15 fps. Aha! That’s why the video looked so bad. Bump this up

to 320�240 or even 640�480 to see the difference. The 15 fps setting is probably fine for now:

212

CHAPTER 5

Realize that the higher the fps and resolution for your camera, the more work your computer will have

to do to process all that incoming video data. As you’ll soon see, when using a camera for input, the

quality and size of the video might have less importance than when using it for something like video

conferencing. So don’t go overboard if you don’t need to. And if you’re digging around, you might

come across a method. It has to do with bandwidth and compression for sending the

video stream to a streaming server, and is not really applicable for what we’ll be doing in this chapter,

so don’t worry about it for now.

If this is the first time you’ve programmed with the camera in Flash, take some time to play. Throw

some filters or blend modes on the video, rotate, scale, move around, and have fun. When you’re

done, we’ll start digging in to dissect that video stream.

Videos and bitmaps

As mentioned earlier, some of the real power of using a camera as input is discovered when you start

combining it with the class. To do this, simply draw the video onto a object

using the method. Now you have pixel- level access to and control of the whole

thing. Of course, for a moving image, you’ll want to do this repeatedly, via either a timer or frames.

Here’s the basic setup, available in the downloadable file:

213

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

Here we create a , wrap it in a , and add it to the display list instead of the video. On

each frame, we draw the video onto the . I bumped the size back down to 320�240 to give

the CPU a break. Other than that, you shouldn’t really be able to tell that you’re watching a bitmap

instead of a video. But you now have the full power of and the ability to read and tweak

every pixel of that video in every frame.

Flipping the Image
One thing to keep in mind is that the user will be facing the camera and making various physical

gestures in an attempt to control things. If he moves left, he expects that motion to move something

to the left. If he moves right, he expects something to move to the right. But the camera displays

the user’s image exactly if someone were looking directly at him instead of looking in a mirror. This

will feel backward and confuse the user. But we can flip the image as we draw it to take care of this

confusion.

Just change the line that draws the video to the bitmap to read as follows:

Make sure that you import the class. Passing in a matrix transforms the object as it

is drawn. You can do a lot with a matrix, but (very simply put) the first four parameters control scaling,

rotation, and skew. Here –1 scales the image on the x- axis, flipping it. The zeros mean that the image

will not rotate or skew, and the next 1 means it will be scaled to 100% on the y- axis. But now it will

extend off the left of the bitmap, so you won’t see anything. The last two parameters move the image

on the x- and y- axis. So we move it on the x- axis by its own width, moving it back into viewing range,

and zero on the y- axis. Try this out with the previous example. Now it seems like you are looking in

a mirror and will allow controls to be much more natural.

Analyzing pixels

Now that you have your pixels, what do you do with them? Remember when I said that high- quality

and high- resolution video is not always necessary in video input? I’ll take that a step further and say

that it’s probably even better to go as low- res and low- quality as you can. If you take even a 320�240

video image, that’s 76,800 pixels to analyze per frame. Chances are you won’t need all that data.

Furthermore, trying to process it all will make your CPU work hard, which will make your computer

run hot, burn your legs, waste your battery, and make everything else on your computer run slow. So

give it all a break and don’t go crazy on the video size.

214

CHAPTER 5

As a matter of fact, you’ll see that the first few things we do are designed to get rid of a vast majority

of the information in all those pixels, anyway. All we are generally interested in are specific areas of

the video where a certain color appears, or there is a certain contrast, or something is changing.

Analyzing colors
For our first attempt, let’s try to track a particular color. We can then have the user hold something up

in front of the camera with a distinct color, say bright red, and track the location of that color as he or

she moves the object around, so it acts almost like a virtual joystick.

We can use a built- in method of to track certain color pixels: .

Essentially, we pass in a color to look for and it gives us back a rectangle describing a bounding box

that surrounds any and all pixels containing that color. The method looks like this:

The mask allows you to look for particular color channels. For example, if you pass in 0xFF0000 as

a mask, the method will look only at the red component of pixels to determine a match. This is

because the red channel of the mask is FF, and the green and blue channels are 00, so it ignores

those and looks only at red. The color is obviously the color you are trying to find. The

parameter, if , finds the rectangle surrounding all the pixels of the color you passed in; if , it

returns the rectangle that surrounds all the pixels that are not that color.

Because we don’t know what color users will try to track, we’ll let them click the bitmap to choose

a color. We’ll find the rectangle surrounding that color and draw a rectangle in a sprite on top of the

bitmap. Here’s what it looks like so far (in the file):

215

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

There’s no real rocket science going on here (yet). We create a sprite called into which we’ll

draw the color bounds rectangle. When users click the bitmap, we use to find out what color

pixel they clicked. This is passed to on each frame. Notice that we use a mask

of 0xFFFFFF, so we’re looking at all channels of the color. When we get the rectangle, we draw that

rectangle with a red line in . Simple enough.

Now, try this by holding some brightly colored object up in front of the camera, clicking it in the bit-

map, and then moving it around. You might see a rectangle appear on some frames, but it is probably

very tiny. It might disappear for awhile and then come back, get really big suddenly, and then go again.

It might work pretty well, tracking the object for awhile, but it’s certainly not stable enough.

216

CHAPTER 5

The problem is that there is just too much pixel information there—76,800 pixels, and each one can

be any one of more than 16 million possible color values. You’ve chosen one of those values. Even

if you have a solid colored object, the lighting, shadows, texture, shape, and so on cause all kinds

of variations in color across its surface. The lighting and angle change when you start moving things

around. At any given point there might be no pixels with that exact color value, or there might be

a few that are far apart.

Basically, we need to simplify things and make less variation in color. There are a number of ways to do

this. We can start off with a simple blur. Right after creating the object, add a blur filter to it:

This might or might not help immediately. This causes the variation between adjacent pixels to be less,

but they still aren’t exactly the same.

There are a several options here. If you haven’t played with the class or the bitmap fil-

ters, look them over. There are all kinds of manipulations you can do. Color transformations with the

 class are helpful, manipulating color channels with can be useful, and

the function is great at breaking down an image into simpler parts. But one I’ve found

really useful in this case is the method.

The method takes each of the red, green, and blue (and even alpha if you want) channels

of a bitmap and maps their values to another array. For each pixel in an image, each channel contains

a value from 0 to 255 (or 0x00 to 0xFF if you are into hexadecimal). Each of these channels can be

mapped to an array. The array would contain 256 values. So if the original value were 127,

would look at element 127 of the array to decide what value to give that pixel for that channel. What

gets a little confusing, however, is that the arrays themselves contain 32- bit numbers, not 0–255. So

your red channel mapping array would contain values from 0x000000 to 0xFF0000. The green channel

mapping array would contain values from 0x000000 to 0x00FF00, and blue would contain 0x000000

to 0x0000FF. Thus if you reversed each of these arrays, so that blue contained 0x0000FF through

0x000000, for example, it would totally invert the colors in your image. You can also mix and match

the channels, putting elements of red into the green channel, and so on.

All we are interested in doing here is reducing the number of colors per channel. We can do that

by saying that for a certain range of indexes in each array, all elements will have the same value—

basically rounding them off. For example, in the red array we say that from 0 to 15, all elements will

contain 0x000000 (0x00 in the red channel). From 16 to 31, they will contain 0x100000 (0x10 in the

red channel); from 32 to 63, they will contain 0x200000 (0x20 in red), and so on. If we do that on each

channel, each channel will contain just 16 different values instead of 256 individual values, for a pos-

sible total of only 4,086 colors in the image.

We’ll call the method to do this , and here it is:

217

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

Here, we are actually breaking each channel down into 8 individual values, for a total of only 256 col-

ors in the image. Doing this will make it quite easy to track an individual color. You can also change it

by changing the levels variable. Here’s the class with all this implemented:

218

CHAPTER 5

219

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

This doesn’t always work perfectly and it generally requires a bit of tweaking with lighting and background.

But if you have a distinctly colored object and have it well lit with a darker background, it can work pretty

well. You can also adjust the variable to get just the right amount of color variation to keep it

stable. In fact, you might want to make a sensitivity control in your application to allow the user to adjust

that value on the fly. Just make sure you recalculate the channel palette map every time it changes.

Using tracked colors as input
Okay, now that we’re tracking this rectangle, what do we do with it? Well, let’s use its position to move

something around. The next example creates a ball that will follow the motion of your object. You can

have it follow the object right on the image, but you can also have it move in a whole separate area to

perhaps control the character in a Space Invaders– type game.

The final code listing for this example throws in a sprite with a circle drawn in it and moves it around

the stage with the same motion you are moving your tracked object:

220

CHAPTER 5

221

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

In the constructor, the ball is created and added to the display list. In the handler, we first

see whether the color bounds rectangle is empty, meaning that no pixels of our color were found.

If so, we won’t move the ball at all. Without this check, the ball would suddenly jump to the top- left

corner any time no pixels were found. If we do have a rectangle, we find its center and the ratio of

the center to the dimensions of the bitmap. Then we move the ball to the same relative position on

the stage.

Again, this is just one way to track color. I highly encourage you to play around with some of the

other methods of manipulating bitmaps, particularly the threshold method, color channels, color

transforms, and other filters and blend modes. Instead of tracking specific colors, another strategy is

to just track areas of dark and light.

Next up, we’ll look at a more general way of tracking motion.

Analyzing areas of motion
In the last example, we attempted to track a specific object based on its color or (if you took up the

challenge) based on dark and light. In this section, we aren’t so much trying to keep track of the

motion of a particular object, but picking up any motion whatsoever.

Here’s the basic concept: if there is no motion, the bitmap will be pretty much the same from frame to

frame. So, if we compare two consecutive frames, the areas where pixels are different indicate areas

in which something has moved.

This implies two things. First, we’ll need two bitmaps: a before and after. Second, we need some

method of comparing the two to see what’s different. True enough. But, if you’re thinking that we

need to loop through all the pixels of each bitmap to compare them, there’s another trick that makes

things much easier: using blend modes.

When you draw an object onto a using its method, you have a few options. You’ve

already seen the use of a matrix to transform the object’s shape and position while drawing. There are

222

CHAPTER 5

a few more optional parameters after matrix: the next is a , and the next after that is

a blend mode.

Drawing with a blend mode changes how the newly drawn pixels affect existing pixels. If you don’t

specify a blend mode, the new pixel values will simply overwrite the existing values. That’s what we’ve

been doing so far. The old image is completely wiped out, leaving only the new one. But using blend

modes allows you to blend the two images together in a variety of ways. For our purposes, there is

a blend mode called difference, which basically compares the red, green, and blue channels of each

pixel in the two images and then gives you the difference between them. Comparing the same pixel in

both images, if they are exactly the same, the difference will be zero for each channel, and the result-

ing pixel will be colored black. For any pixel that is not exactly the same in both images, the resulting

pixel will have some other value. We have then simplified the problem down to looking for nonblack

pixels to find areas of motion.

Although we could probably get away with two bitmaps for this, let’s use three for clarity: one for the old

frame, one for the new frame, and one for the blend. Figure 5-7 shows roughly what we’ll be doing.

 Figure 5-7. Combining old and new frames with the difference blend mode

223

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

The new frame, old frame, and blend frame refer to the instances. First we draw the old

frame to the blend frame with no blend mode so it wipes out what was there. Then we draw the video

to the new frame, again with no blend mode.

Next, we draw the new frame to the old frame again with no blend mode, so it represents the previ-

ous frame next time around. Finally we draw the new frame to the blend frame with the difference

blend mode.

Here’s what it all looks like in code, which you can see in the file:

224

CHAPTER 5

Hopefully you should be able to understand most of this now. We create the new frame bitmap and

then create the rest by cloning it. We add only the last one to the display list. In the han-

dler we do the drawing in the same order specified in Figure 5-7.

When you first run this, you might see nothing but a black rectangle. But then move a bit and you’ll see

some ghostly white outlines (see Figure 5-8). These outlines are the areas that are different between

frames.

 Figure 5-8. Combining two frames with a difference blend mode

Now let’s see if we can use a color bounds rectangle to capture the areas of change. Create the

 sprite the same way you did in the previous example. In the handler, we do it

a bit differently:

225

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

Note that this time we are looking for the color 0x000000 (black), but we are specifying for

the last argument, meaning that we’ll get the rectangle that surrounds all nonblack pixels. But when

you go ahead and try it, you’ll find that the rectangle surrounds the entire bitmap (for the most part).

Hmmm. It looks like all those pixels that appear black are not actually completely black. So, pixel per

pixel, the two images weren’t exactly the same—just very close. Close enough to make the difference

look black to our eyes, but it’s just not equal to 0x000000.

Let’s pull another bitmap tool out of our bitmap toolbox— —which is one of the more com-

plex methods, but also one of the most powerful. I always struggle with it for awhile before I figure

out how to make it do what I want, so if you have a hard time grasping it, don’t feel alone.

The method works by examining a bitmap and comparing each pixel with a value. The

comparisons are almost all the numerical comparison operators: <, <=, ==, >=, >, and !=. If the com-

parison for a particular pixel evaluates to , it colors that pixel a color of your choice. You can also

specify a mask so that you are just looking at an individual color channel.

The mask is useful because you can’t really directly compare two full- color values. For example,

0x010000 is almost pure black, with just the tiniest bit of red in it; and 0x0000FF is 100% blue, much

brighter than 0x010000. Yet the blue would be evaluated as “less than” the almost black because

numerically it is a smaller value. Here’s what the method looks like:

The first parameter, , is the whose pixels are being examined. The

results will be drawn to the on which we are calling the method. Quite often

this is the same (as it is in our case), but you can examine one bitmap and draw the

threshold results to another.

The and determined the area of the bitmap to examine and where to place

the results. Using the property of and a new means it will examine the entire

bitmap and place the results at 0, 0. The operation is a string containing >, >=, ==, <=, <, or !=. The

 is the value you are comparing each pixel to, is the value to set the pixel if the

226

CHAPTER 5

comparison is , and is used to specify a particular color channel. The parameter

is used if you are examining one bitmap and drawing it to another. If so, you can choose to draw the

source bitmap’s pixels to the destination bitmap if the comparison is . In our case, it doesn’t

matter because we’re using only a single bitmap.

In this case, everything is so close to black that it doesn’t really matter which channel we choose to do

our comparison on. Red is as good as any. Here’s the revised handler:

So, if the pixel’s red channel (see how we masked red with 0x00ff0000) is less than (<) 0x00330000,

color it black (0xff000000). Otherwise, copy the source (which doesn’t matter because source and des-

tination are the same). To put it in even simpler terms, if the pixel is almost black, make it completely

black.

Note that I’m using 32- bit values for everything here. The threshold method is funny that way. Even if

you are using opaque bitmaps, if you don’t specify the alpha channel it will draw a transparent pixel.

So we use 0xff000000 instead of just 0x000000 for black.

If you try this, it should work quite well, drawing the rectangle exactly where you would expect based

on your movement.

So just what the heck should you use this moving rectangle for? Again, your imagination is the limit.

The first thing I thought of was a sort of breakout game in which you move the paddle across the bot-

tom of the screen to bounce a ball. But you could move the paddle by creating motion on either the

left or right side of the screen. Here’s a very rough example of how to begin:

227

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

228

CHAPTER 5

Actually pretty simple. Create a paddle sprite and draw a shape in it. If the color bounds rectangle

is to the right of center, move the paddle to the right. If it’s to the left, move the paddle to the left.

Brilliant, aren’t I? Again, this is a mere sketch of how to get started. I’ll leave it to you to make it pretty

and smooth. Notice that I also decided not to add the blend bitmap to the display list, adding the new

frame bitmap instead. This gives users an idea of where they are in the frame. Of course, the threshold

and color bounds and all the rest work whether the bitmap is visible or not. Hide that stuff and make

the motion detection seem like magic! Anyway, Figure 5-9 gives you an idea what this looks like.

229

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

 Figure 5-9. Controlling an object with hand motion

Analyzing edges
For our last foray into this subject, let’s re- create a popular effect: detecting edges in an image and

having things land on them. This makes for popular interactive exhibits often seen at children’s muse-

ums and such, with the child’s image onscreen and snow falling on it, butterflies landing on it, and so

on. It’s also been done in Flash a few times, probably most notably by Grant Skinner (

), but let’s have a go at it.

There are numerous ways to go about this, but what comes to mind immediately is to create a hori-

zontal edge detection filter using the class. A convolution filter goes through

a bitmap, taking each pixel and comparing it with a grid or matrix of surrounding pixels. Each pixel’s

value is weighted and added to a total and then potentially divided by some factor. The result is

applied to the original pixel. Convolution matrices are used extensively in image processing for blur-

ring, sharpening, embossing, edge detection and enhancement, and so on.

230

CHAPTER 5

 Figure 5-10 shows the basic setup for a blur filter. The center pixel is the pixel being examined. Each

pixel in the 3�3 grid is added to the total with a weight of 1. In other words, its value is multiplied by

1 before it is added to the total. Then the total is divided by 9, and the result is assigned to the center

pixel. This has the effect of averaging out all surrounding pixels, giving you a blur. For a larger blur,

you can use a larger grid.

 Figure 5-10. Convolution matrix used for a blur

If you’re interested in convolution matrices, a web search will turn up plenty of information and

examples, most of which can be used right in ActionScript. With a bit of digging around and experi-

mentation, I came up with some decent settings to create a horizontal edge- detecting filter. The

 constructor looks like this:

There are actually several more optional parameters, but these are all we need for now. The

and parameters are that specify the width and height of the matrix, or the grid that

will surround the pixel being examined. The matrix is an array of weights, which is what each pixel’s

value will be multiplied by before adding it to the total. The matrix array’s length should be equal to

 times . Finally, the is what the total is divided by before assigning it back to

the original pixel. So, if we wanted to create a blur filter using the example shown in Figure 5-10, it

would look like this:

This sets up a 3�3 matrix and fills all the elements with 1. The result is divided by 9. Simple.

Here are the convolution settings I came up with for horizontal edges:

Even simpler. It creates a 1�3 matrix, multiplies the current pixel by 4, and multiplies the lower pixel

by –4. The divisor is 1, so the total is applied to the center pixel as is. Again, you can read more about

how convolution matrices work if you want. This has the effect of darkening most pixels but lightening

those that fall on a visual horizontal edge. Let’s see it in action on a video. Here’s the class, which you

can find in the file:

231

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

Almost none of this is new ground, except the . I also threw a blur in there to

smooth things out. The result is shown in Figure 5-11.

232

CHAPTER 5

 Figure 5-11. Creating horizontal edge detection

Here you can plainly see that any horizontal edges are nice and bright, and the rest of the image is

nearly black. (Hint: The fact that I said “nearly black” should be a clue to you that we might be seeing

a threshold in use soon.)

So what do we do with this? Let’s make some snow fall on my head. First, let’s make a simple class to

represent snow (you can find it as the file):

233

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

This class draws a small, round, white circle that has an x and y velocity and a method to update itself.

Updating means randomly changing the x velocity and adding the velocity to the position. Good enough.

The plan is to create a new snow instance on each frame, add it to an array, and update each snow in

the array. But first, we’ll check to see whether the snow happens to be on an edge. In other words, is

the pixel at the x, y position of that snow greater than 0? Here’s where that threshold comes in—to

make those “nearly black” pixels completely black. Here’s the revised code:

234

CHAPTER 5

First, we create a array to hold all the instances.

Notice also that we have a second video that is flipped around and added to the display list instead

of . As in the motion- detection example, it lets users see their own unprocessed image instead

of the convoluted, blurred image.

We then apply a threshold, as mentioned, to make all the dark pixels completely black.

235

ALTERNATE INPUT: THE CAMERA AND MICROPHONE

On each frame we create a new instance, adding it to the display list and the array. We

then loop through this array, getting a reference to each in it. If the pixel represented by an indi-

vidual is equal to zero, we update it, causing it to move randomly left or right a bit and one pixel

down. If the pixel is not zero (nonblack), the pixel is on a horizontal edge, so we just leave it there.

Finally, if the pixel has moved off the bottom of the image, we remove it from the display list and the

 array. The result is shown in Figure 5-12.

 Figure 5-12. Video snow!

Granted, this isn’t an exactly useful example, but it is fun. Your kids will play with this endlessly (I speak

from experience). But, once you understand the workings of something like this, you will surely start

to see variations and other ideas will start to come to you. I look forward to seeing what you create.

Summary
In this chapter you saw some rather experimental examples of using both sound and video as input

methods. They are but a few samples of the many possible ways to use a camera or microphone to

affect elements of your Flash applications or games. I hope at least to have sparked some ideas in you

because there is so much that can be done along these lines. Again, I look forward to eventually seeing

what readers come up with, taking these examples far beyond what I have presented here.

237

In Making Things Move, I presented some elementary physics formulas for program-

ming motion in Flash. It mainly came down to this: add acceleration to velocity and

add velocity to position in every frame. I knew this wasn’t the most accurate physics

possible and made lots of disclaimers to that point. Still, I knew it was good enough

for games and animations most people would be doing in Flash.

After writing the first version of the book, I discovered that what I was describing is

commonly known as Euler integration. And it is indeed pretty inaccurate. It’s also

fairly simple, good enough for most casual applications, and pretty widely used. But

if Euler integration is not so great, what are the alternatives? This chapter is at least

a partial answer to that question. We’ll take a look at what numerical integration is

and what’s wrong with Euler, along with two alternatives and why you might want to

consider using them.

Also, I’ll save you some embarrassment at your next dinner party and tell you that

Euler (which is pronounced “oiler”, not “you-ler”) is named after Leonhard Euler,

a physicist and mathematician from the 18th century. Then again, if you’re talking

about Euler integration at a dinner party, embarrassment might be unavoidable.

ADVANCED PHYSICS: NUMERICAL

INTEGRATION

Chapter 6

238

CHAPTER 6

Numerical Integration and Why Euler Is “Bad”
First of all, when I say “bad,” I mean inaccurate. In other words, if you were to simulate an object moving

according to various forces using Euler integration, it would not be a perfectly accurate picture of what

would happen to that object in the real world. However, it would be close enough for casual games, ani-

mations, nonscientific simulations, and so on—and most people would never see anything wrong with it.

But in cases where you want or need a higher degree of accuracy, Euler just won’t cut it.

Why not? Well, the formulas for motion, velocity, mass, and acceleration have all been worked out for

centuries (thank Isaac Newton), and they work really well. If you took high school algebra, you prob-

ably remember the word problem that says, “A boy standing on a roof 50 feet off the ground throws

a ball up into the air at a velocity of 30 feet per second....” And then you have to calculate when it will

hit the ground or how high it is at a certain time. The formula you use is the following, where is the

time in seconds, is the initial velocity, is the initial height, and is the height at the given time:

If you follow that formula, you’ll have no problem. It’s perfectly accurate. So why don’t we just use

it for all our motion and be done with it? First, it describes a single axis of motion for a single object

moving in a single arc, with no other forces than gravity acting on it. Throw in another dimension or

two, such as air resistance, bouncing, additional objects and collisions; and any other forces such as

wind, and it suddenly becomes incredibly complex.

A far more practical approach is to take a snapshot of the object at discrete intervals, take any forces

acting on it at that one instance, calculate its velocity, and update its position. This process is called

integration. The ideal goal of integration is shown in Figure 6-1.

Figure 6-1. Real world motion and integrated approximation (ideal)

The top line is the smooth curve that an object would actually travel through. The lower segmented

line represents the velocities and positions you try to achieve with integration. The various methods of

integration are attempts to draw a series of straight lines that closely match the curve.

239

ADVANCED PHYSICS: NUMERICAL INTEGRATION

The problem with this is that physical forces act continuously in the real world. The forces on an

object are changing its position and velocity continuously, not in discrete jumps like that. For example,

gravity would be acting continuously on a falling object, increasing its speed, thus changing its position

smoothly over time. If we just apply gravity to an object and update its velocity and position once per

frame, we are missing the effects of gravity and velocity for all the points in between. So the more

often you update, the more accurate you are, but there’s always some discrepancy.

The Euler integration solution to this discrepancy is to ignore it, so it isn’t very accurate. I can’t put it

any simpler than that. Figure 6-2 shows the actual result of Euler integration calculated in one-second

intervals to exaggerate the error.

Figure 6-2. Real world motion and Euler integration

Again, if you decrease the interval, you get a better result, but it will be accurate only when increased

infinitely. Good luck with that.

Furthermore, Euler can also get into situations in which it becomes unstable. This can happen quite

easily with springs. The inaccuracies in the integration can sometimes lead to a point where the veloc-

ity keeps increasing and the whole thing blows apart.

But if Euler is that bad, what are the alternatives? The two we’ll cover here are called Runge-Kutta

integration and Verlet integration. Like Euler, they are named for the people who came up with

them: Carl Runge, Martin Wilhelm Kutta, and Loup Verlet. As you will see, these two other methods

have their strengths in different areas: Runge-Kutta is used when a higher degree of accuracy is

desired, and Verlet is often used in computer graphics for creating “rag doll physics,” a sort of inverse

kinematics. If that doesn’t make much sense to you now, don’t worry. When we get there, you’ll see

240

CHAPTER 6

that it’s pretty easy to work with and can create some really great effects. First up, let’s dive into

Runge-Kutta.

Runge-Kutta Integration
As discussed in the previous section, Euler integration fails because it tries to integrate acceleration,

velocity, and position in discrete steps. Because those things are changing continuously, this type of

integration results only in an approximation, which is not quite accurate. Runge-Kutta integration

doesn’t actually get around this time-step inaccuracy problem, but it does add in some extra calcula-

tions designed to get a better estimation of position and velocity. Just make sure that you’re clear on

that; just because you’re using Runge-Kutta doesn’t mean you will have a perfectly accurate simula-

tion, just a more accurate one.

So how accurate is Runge-Kutta? I’ll go out on a limb and say it’s probably as accurate as you’ll ever

need for any kind of simulation you’ll ever do in Flash. If your application is that critical, you probably

shouldn’t be using Flash in the first place.

I think the second time I ever heard the term Runge-Kutta was at a Flash user group meeting in

Boston, at which James Battat presented a series of physics simulations he and a colleague had done

using ActionScript 2.0 and Runge-Kutta integration for an introductory physics course in mechani-

cal systems they were teaching at Harvard University under the Presidential Instructional Technology

Fellowship Summer Program. That was a pretty good testimonial to its accuracy and made me want

to look into it further.

Naturally there is our old friend, the technology trade-off. Runge-Kutta is more accurate, but that

accuracy comes at the cost of more calculations, meaning more CPU use, slower execution, and so on.

So please do not jump on the Runge-Kutta bandwagon just because it’s “better,” more accurate, or

because all the cool kids are doing it. Make sure that extra accuracy is something you absolutely need.

Even though I’m writing a half a chapter about it, I’ll tell you flat out that in almost every case you’ll

come across in Flash, you don’t need that high degree of accuracy and you’ll just be heating up your

CPU for no good reason.

Okay, warnings out of the way. Let’s see how Runge-Kutta works. And let’s start calling it RK for short.

RK still does the time-step thing, but instead of blindly adding acceleration to velocity and velocity to

position for each step and calling it a day, it samples the curve multiple times within a single time step

to get an idea of what the curve is actually doing at that point. It then takes a weighted average of

these samples to try to get a better approximation of the curve. Not too complex an idea, really. Let’s

go a bit deeper and see exactly how it’s implemented.

There are two main flavors of RK: Runge-Kutta second order integration (RK2 for short) and Runge-

Kutta fourth order integration (RK4). The numbers refer to the number of intermediate samplings done.

RK2 samples two values per time step, and RK4 samples four. Most often you’ll hear about RK4, which is

good because talking about “Runge-Kutta fourth order integration” makes you sound really intelligent.

We’ll look at RK2 first because it’s a bit simpler to understand and is a good lead-in to RK4. You might

also see this technique listed under other names: “improved Euler,” “midpoint Euler,” or just “the mid-

point method.” It’s all the same thing. As its alternate names suggest, RK2 is not too different from the

Euler method of integration and indeed does something with a midpoint.

241

ADVANCED PHYSICS: NUMERICAL INTEGRATION

The strategy is to compute the acceleration, velocity, and position as they exist for the current state of

the object (basic Euler integration); then calculate what the state of the object would be after applying

the acceleration and velocity you just computed, averaging those two, and applying it to the state of

the object. In other words, where Euler tries to guess the overall velocity over a span of time based on

a single point, RK2 gets the velocity at the beginning and end points of that time span and averages

them to get an estimate of the velocity over that period. Again it’s not 100% accurate, but it is far more

accurate than Euler alone. Figure 6-3 shows the result of Euler versus RK2.

Figure 6-3. Real world motion, Euler integration, and RK2

At this resolution and this time span, you can’t really see any discrepancy in the RK2 graph. That’s

pretty good—probably more than good enough for anything you’re going to do in Flash.

Of course, if that’s not good enough, there’s always RK4, which averages out the slope of the curve

based on four samples within the segment. I won’t show this because it would be indistinguishable

from RK2 at this resolution. But it goes without saying that it is more accurate.

Time-based motion

Okay, okay, enough talking. Show us some code!

All right, all right, I will. But one more explanation first. All the code we use in this section will be using

time-based instead of frame-based motion code. This topic is covered in Chapter 19 of Making Things

Move, but I’ll cover it briefly here.

242

CHAPTER 6

In a lot of simple Flash-based motion code, there are values for velocity and acceleration, and we

apply them to our objects on each frame. The number of units we are moving things is considered to

be pixels, and the time interval is one frame. So our speed is in terms of “pixels per frame” instead

of miles per hour or feet per second. And we tweak the values for gravity, speed, and various forces

based on what looks good in the final movie. But if we’re going through all this extra work to come up

with something that is more accurate, we probably want to use standard measurements, at least for

time. So we’ll be keeping track of real live milliseconds and updating everything based on how many

seconds have passed in real time. The objects will move at the same speed as they would in the real

world, and we can measure them pretty accurately.

To do that, we have to use the method to measure the elapsed time since the

last update. This elapsed time feeds right into all the standard equations for motion, even Euler. For

example, the Euler equation for velocity is

. The only reason you get away without it in frame-based animation is because you are using

pixels per frame—updating every frame, the elapsed time is one. Velocity times one equals velocity so

you can just say .

We’ll also do a few other things that are worth mentioning. One is to store position, velocity, and

acceleration in objects. The class contains and properties, so instead of having

and for velocity, we’ll have just a single velocity variable. And we’ll keep track of position the same

way—assigning it back to the display object after all the calculations are done. Finally, instead of add-

ing gravity directly to velocity, we’ll create an method that will return a point containing

acceleration values on the x- and y-axis. For now, this will just be 0 on x and the gravity value on y, but

when you start adding more complex forces, it can do much more. In those cases, the resulting accel-

eration could be affected by an object’s position and velocity, so we’ll pass those in to the acceleration

method as parameters.

Just to get used to using all this in a familiar setting, let’s do it for Euler. Here’s the class, available as

the file from the book’s download page at :

243

ADVANCED PHYSICS: NUMERICAL INTEGRATION

244

CHAPTER 6

We create a ball, set the position and velocity values, and take note of the current time with the

method, which returns the amount of time that the movie has been running in milliseconds,. We store

that in . On each frame we call it again. The difference between the old time and the new time

is the elapsed time since the last frame. Divide it by 1000 to have seconds instead of milliseconds. Make

sure that we reset so it’s accurate the next time around.

Then we call the method to get the force(s) that will be applied to the object. Again,

it’s just gravity in this case.

Now, before we add velocity to the ball’s position, we multiply it by the elapsed time. Same with add-

ing the acceleration to the velocity. Thus if more time elapses between frames, the acceleration and

velocity are multiplied by a higher number, and the ball moves more. If less time has elapsed between

frames, it moves less. You can actually run this movie at a variety of different frame rates and observe

the same motion. Of course, on a slower frame rate, it will be choppier and smoother on a higher

frame rate, but the ball should move the same distance across the screen in the same amount of time.

Go ahead and set to 10 and then to 100. Although 100 looks a lot smoother, the ball

moves in the same path at the same speed.

I also threw a bounce in there just to keep the thing on screen long enough for you to see what’s hap-

pening. I’ll talk about that later.

Now you might be thinking, “Okay, but the ball is falling awfully slowly. That’s not very realistic.” We

set gravity to 32, which is what gravity is in the real world: 32 feet per second, per second. In other

words, a falling object will increase its speed by 32 feet per second for each second it is falling. So if

the units are feet and seconds, and we’re applying that unchanged to the position of a sprite, our scale

is one pixel = one foot. So imagine a 40-foot round ball falling from the top of an 800- or 900-feet tall

building—maybe it will look a bit more realistic!

You might want to scale things. Suppose that we want 100 pixels to equal 1 foot. We can set that in a

variable and apply it whenever we go between foot-based positions and pixel-based positions:

245

ADVANCED PHYSICS: NUMERICAL INTEGRATION

246

CHAPTER 6

Now you have something like a four- or five-inch round ball falling from eight or nine feet up. (Note

that I also adjusted the initial velocity to be a bit less.) This might be closer to your expectations.

Okay, that’s Euler integration in a time-based environment. Now let’s get back to Runge-Kutta.

Coding Runge-Kutta second order integration (RK2)

To recap RK2, the plan is to calculate the acceleration and velocity at the beginning of the time step,

again at the end of the time step, and take a sort of average between the two.

Let’s go through it in pseudocode.

First, calculate the acceleration at the start of the time step; then calculate position and velocity,

exactly as we just did with Euler. But this time we’ll store the new position and velocity in separate

variables:

Now and represent where the object will be at the end of this time step. Next

we’ll need the acceleration at the end of that step:

247

ADVANCED PHYSICS: NUMERICAL INTEGRATION

Now here’s the key part of RK2, in which we average the velocity and acceleration of these two

states:

We basically just take the start and end velocity and average them, multiply by the elapsed time, and

add that to the object’s position. Average the start and end accelerations, times elapsed time, and add

that to the velocity.

And that is RK2! Let’s see it in code:

248

CHAPTER 6

249

ADVANCED PHYSICS: NUMERICAL INTEGRATION

If you understood the explanations, you should see what’s going on in the code just fine. Now run

this file and see how much better and more realistic it looks than the Euler version! What? It looks the

same to you? Well it looks the same to me, too, but it really is slightly different. This is why I said that

Euler is good enough for most of what you’ll ever need to do in Flash. And realize that Figure 6-3 was

calculated with a one-second time step, so it’s exaggerated. If your Flash movie is running at 24 frames

per second, that’s a much smaller time step, and Euler will be much closer to RK2.

But also realize that this is a very simple simulation. When you start adding additional forces and carry

the simulation on longer than a few seconds, you will see more variance. At any rate, if accuracy is

what you need, you now know how to squeeze a bit more of it out of your Flash physics.

But wait! There’s more! That’s only RK2. We still have RK4 to discuss!

Coding Runge-Kutta fourth order integration (RK4)

RK4 is the big daddy of numerical integration. If people refer to “Runge-Kutta,” they are most likely

talking about RK4. If you have a decent idea about what’s going on with RK2, this shouldn’t be that big

a leap for you. We’ll do pretty much the same thing, but instead of just sampling the beginning and

end points of the segment, we’ll sample and average a total of four points.

In RK4, however, the average is a bit different. Let’s see how it looks in pseudocode. It gets pretty long,

so I shortened the names here:

250

CHAPTER 6

Note that the first and fourth order values are taken as is, but the second and third order values are

divided by two when being calculated, and multiplied by two when averaged. This gives a special

weighting to the ends and the middle of the curve. In other words, instead of all four sampled points

being equally added up and divided by four, the middle two are doubled, and the total is divided by

six. Do I understand exactly what is going on here? No. But it took both Runge and Kutta to figure

this one out, and they are both much smarter than me. I think it took them a long time, so I’m okay

with my vague understanding. The important thing is that I understand it just enough to actually get it

working in ActionScript. All right, take a deep breath; here’s the code:

251

ADVANCED PHYSICS: NUMERICAL INTEGRATION

252

CHAPTER 6

Wow. I’m thinking that if you had any inclination toward using RK4 just because it is “cool,” it just went

out the window after seeing this code. Yeah, it’s long, but if you have a basic idea of what’s going on

in the pseudocode, you should be able to follow along.

Again, if you can see any difference between this and RK2, or even Euler for that matter, you have

better eyes than I do. I won’t show any more in-depth examples for this reason and because imple-

menting RK4 is only the tip of the iceberg in creating a truly accurate simulation, as we’ll see in the

next section.

253

ADVANCED PHYSICS: NUMERICAL INTEGRATION

Weak links

Right now, the basic code for the ball’s motion is about as accurate as you are realistically going to get

using numerical integration. However, as an accurate model of motion, the file as it stands now is use-

less. That’s because the bounce mechanism we are using is totally bogus. Even worse than Euler inte-

gration, this method of bouncing was purely developed as a quick and easy method that looks good

to the eye. It is not at all accurate from a physics standpoint, however. Likewise with most of the other

motion code from Making Things Move: friction, collision reactions, large body gravity, springs, and so

on. Most of them are based on real world physics formulas, but almost all contain some simplification

or trick to make them a bit easier to code and a bit kinder to the CPU.

If you go through all the trouble to code RK4 and sacrifice all that extra compilation for the sake of

accuracy, don’t sabotage yourself by implementing inaccurate solutions to other parts of the simula-

tion. Unfortunately, I can’t rewrite all of Making Things Move for perfect accuracy and fit it into one

chapter, so you’re on your own from here. But you should find just about everything you need in a

decent college physics text book.

Runge-Kutta summary

Although I’ve given you several warnings about diving into Runge-Kutta integration needlessly, that’s

not to belittle or demean it; it’s a valuable tool for accurate simulations and is pretty much the stan-

dard for quality physics code in the programming community. Besides being more accurate than Euler,

it is more stable, so if your springs keep blowing apart, you might want to look into RK. I don’t imagine

that it’s something most ActionScript developers will need on a day-to-day basis, but I do hope that

this chapter helps a few people when they need it.

Now, in the second part of this chapter, we’ll cover yet another form of numerical integration that I

think you’ll find extremely useful and quite fun to create with: Verlet integration.

Verlet Integration
Verlet (pronounced ver-lay) integration was originally developed as a means of simulating molecular

interactions. In such a case, you have many particles that interact with each other in fixed relation-

ships. Each particle can have many other particles pushing or pulling it this way or that way, and there

are other forces acting on it to change its position and velocity. Existing forms of integration can

become too complex and too unstable in such situations, so Verlet integration was devised as a more

efficient, more stable solution.

In today’s software world, Verlet integration is often used for the creation of “rag doll physics” sys-

tems or for programmed character animation. The technique was popularized in a 2003 article titled,

“Advanced Character Physics,” by Thomas Jakobsen, which is still available on

(an excellent resource for gaming, physics, and other programming related knowledge, by the way).

The code in this section is largely based on the system described in that article (modified for use in

ActionScript 3.0, of course).

Because Verlet integration’s strong point is not super accuracy like Runge-Kutta, I’ll move back into

frame-based animation just to keep things a bit more simple and clear (there’s nothing preventing it

from being applied in a time-based system).

254

CHAPTER 6

One of the key features of Verlet integration is that you don’t explicitly store an object’s velocity.

Instead, you store its last position. Then when you need to know its velocity, you subtract the last posi-

tion from its current position. Thus, every time you move an object, you are also changing its velocity.

This simplifies a lot of things. Say an object is at an x coordinate of 100, and I move it to 110. The next

time it updates, it will see that it moved 10 pixels to the right since the last update and take on a value

of 10 as its x velocity. On each successive update, the old x will continue to be 10 pixels to the left of

the current x, so the object will continue moving across the screen to the right. So you can see that

you impart velocity just by changing an object’s position.

You might be able to see how this process is useful for molecular simulations. If you have a large num-

ber of particles all banging around together, each one attracting and repelling several others while

trying to maintain specific distances from each other, they can all just change each others’ positions

and let Verlet integration take care of the acceleration and velocity that those changes imply.

Another common feature of Verlet integration, as it is commonly used in software, is the concept of con-

straints between objects. Two objects can be paired to each other and told to maintain a specific distance

from each other. If they get farther apart or closer together, they will then adjust themselves back to the

positions needed to maintain their distance, which of course changes their velocity. Objects can have

multiple relationships so that a single object can be tied to more than one other object. Verlet is very

efficient at handling all these relationships and maintaining all these individual distance requirements. So

it becomes a great tool to use to start building up complex moving structures such as rag dolls.

Although I keep referring to them as objects, the things moving around usually don’t have any shape

or form. They are really just points. And I like to refer to the fixed distance between two points as a

stick. A stick is made up of two points, and structures are made up of one or more sticks. Also, as just

mentioned, two or more sticks can share a point, which lets you make hinged parts. Figure 6-4 shows

their relationships.

Figure 6-4. Points, sticks, structures, and hinges in Verlet integration

255

ADVANCED PHYSICS: NUMERICAL INTEGRATION

Let’s start at the beginning and get a point moving around.

Verlet points

We’ll create a class to encapsulate the behavior of a single point acting with Verlet inte-

gration. The point will, of course, need and properties, properties for the old x and old y, and an

 method. The method tells the point to take the difference of where it was after its last

update and where it is now, and use that value as its current velocity. It will then add that velocity to

its current position. But just before doing that, it has to store the current position as its “old” position

so that on the next update it knows where it was. Here’s the basic logic:

You need to store the current position in a temporary variable because you’ll be changing it before

you get a chance to assign it to the old position. And you can’t assign it to the old position earlier

because you need to use the “current old position” within the calculation.

Then you can calculate velocity as the current position minus the old position, and add that velocity to

the position. Finally you assign what was the current position over to the old position.

Here’s the class:

256

CHAPTER 6

257

ADVANCED PHYSICS: NUMERICAL INTEGRATION

Amazingly simple. You might be wondering why there are getters and setters for x velocity and y

velocity (and) when I said Verlet integration doesn’t explicitly store velocity. Those getters and

setters aren’t storing anything. When you set , for example, it subtracts that amount from the cur-

rent and assigns that to . This ensures that when update runs and subtracts from ,

that very same x velocity will be found. As for the getter, it’s just subtracting old from current. So no

velocity is stored explicitly.

I also threw in a method, which sets both the old and the new values to the specified

position. This is useful if you want to move a point to a certain location but not have that move change

the point’s velocity. Because the old and new positions are the same, the velocity will be zero.

I’ll cover that method in a moment, but first I’ll mention the method here. Because

the is not a display object, we can’t directly see it on stage. The method takes

an instance of and draws a small dot there, based on its position. This isn’t something you’d

probably want to do in your final movie or game, but it’s useful for debugging and testing.

Let’s see it in action:

In the constructor, we create a and listen for the event. In that handler, we

call on the point and then clear the graphics and call . Now, if you run it, you should

see the dot, but it will just be sitting there. We need to add some velocity. You can do that by setting

 or , like so, anywhere in the constructor after the point is created:

258

CHAPTER 6

This would move back the old x so that the update method sees a five-pixel change and takes that as

velocity. But you can also just move the point:

In most systems, this process would just change the point’s position and not affect its velocity at all.

But in Verlet integration, it also sets the point moving in that direction. It might help to think of it in

these terms: instead of picking up the point and placing it five pixels over, it’s more like you are push-

ing it five pixels over—giving it a little shove, after which it just keeps on going.

When you apply gravity, you have the same options. You can do it by adding to the y velocity or just

by adding to the y position. Putting either of these lines in the method, just before the

update, takes care of gravity:

or

The second line seems to be just changing position linearly, but remember that changing the position

will change the velocity, so it does act to constantly increase the velocity, like gravity. Although chang-

ing the velocity through the and accessors probably makes it clearer what is going on, changing

the position is much more efficient because you’re changing only a single public variable. If there are

lots of particles interacting, and you need to make things really efficient, this will help.

Constraining points
You might think that it would be nice to keep these points on stage. Constraining points to an area is

another integral part of Verlet integration and is quite simple. All we really have to do is ensure that a

point is within the rectangle that is our stage (or another rectangular area if you want to define one).

To do this, we make sure that the point’s x is no less than the rectangle’s left edge and no more than

its right edge, and not higher or lower than the rectangle’s top and bottom. Here’s where that

 method comes into play. In our main class, we’ll create a rectangle describing the area of the

stage (or again, any rectangular area you want). We’ll pass this in through the method on

each frame, just before the . All this does is make sure that the x value of the point is no less

or greater than the bounds of the rectangle. It’s kind of a shortcut into a couple of lines, but if you do

the logic you’ll see that it works. Here’s that method from again:

And here’s the test class utilizing it:

259

ADVANCED PHYSICS: NUMERICAL INTEGRATION

Now I know what you’re going to say: it doesn’t bounce. That’s right, it doesn’t. Now, you could prob-

ably modify to add in a bounce. It would get a bit more complex, but it would have those

points looking a lot better when they hit the walls. But remember that in general, points are really

used only to define sticks and structures, and generally don’t have any real visual representation

themselves. So let’s keep an eye on this one, see how sticks and structures react when they hit a wall,

and not add any additional complexity to the class unless we decide we need it.

Speaking of sticks, let’s take a look at them now!

Verlet sticks

Again, a stick binds two points together. It has a property, which is the distance that it tries to

keep between its two points. If the points are not exactly that distance apart, it will move them closer

together or farther apart to satisfy the property.

Here is the class:

260

CHAPTER 6

261

ADVANCED PHYSICS: NUMERICAL INTEGRATION

The constructor takes two instances and an optional

. If no length is given, it will calculate the initial length between

the two points passed in and take that as its length. Like ,

there is also a method that draws a line between the two

points on a instance, mostly for debugging and testing pur-

poses. The meat of the class is in its method, and this will

take some explaining.

First we get the distance between the two points and subtract it from

the property of the stick. This tells us how much longer or

shorter the stick currently is from its ideal length. This is stored in

the variable (see Figure 6-5).

We then do some tricky trigonometry to get the x and y components

of this difference. Realize that because cosine is adjacent/hypotenuse

and sine is opposite/hypotenuse, the following

is actually the same as this, where is the angle between the two points:

But this lets us avoid three trigonometry operations: to get the angle, and and

 to get the x and y offsets. You can see this in Figure 6-6.

Figure 6-6. Calculating the x and y components
of the difference

Note that we divide the result of this by 2 because we’ll be moving both points one-half the distance

to their ideal spots. Finally, we take this and and subtract them from the first point;

then add them to the second point. This puts them exactly the distance away from each other to sat-

isfy the length property, as shown in Figure 6-7.

Figure 6-5. Calculating the distance be-
tween the two points and the difference
between it and its ideal length

262

CHAPTER 6

Figure 6-7. Moving each point by half the difference on each axis makes the
distance equal to the stick length.

There are other ways to calculate this same thing, and some might be more efficient. But with only a

single class operation, this one is not bad. And I think it’s relatively clear what it’s doing (after my

explanations and diagrams, anyway), which is good for the purposes of this book.

Let’s make a stick and see what it does!

263

ADVANCED PHYSICS: NUMERICAL INTEGRATION

As you can see, there’s not much to do at all to add a single stick. First make the points; then make

the stick, passing it two points. Then in the handler, update the stick after updating the

points. And render it of course.

When you run this one, you should see the stick appear and fall to the bottom of the stage. And magi-

cally it actually bounces a bit! How did this happen—because we didn’t add any bounce code? This is

because the update code for the stick is trying to push the points apart, but when the bottom point

hits the edge of the rectangle, the constrain code pushes it back up. These two actions fight against

each other briefly, and the result is that both points wind up moving upward a bit trying to satisfy all

conditions.

Actually, this bouncing is kind of a side effect. I sort of like it, but because we didn’t explicitly code it,

it could be seen as a problem. To get rid of the bounce, we need to run through the point

calls and the stick calls a few times to let them settle out before moving on. We can change

the method to do this:

264

CHAPTER 6

Looping through the points’ constrain methods and the stick’s update method a few times gives them

a chance to arrive at a consensus on where the points should end up. Because you are not adding

gravity or updating the points during these iterations, the only velocity that gets added is the differ-

ence from where each point was to where it ends up at the end of the loop, so you don’t get that

spring and bounce here. It’s more like a steel rod than a springy green branch. Now you can adjust this

loop to change the character of your simulation—either kind of bouncy with a lot of elasticity by just

doing a single iteration through the loop or very rigid by adding more iterations.

Realize, however, that those iterations are executing quite a bit of code, particularly in the stick’s

update method. It’s not bad here for a single stick, but when you have larger structures, more itera-

tions can start taxing your computer’s resources. My advice is to leave it at one iteration and adjust it

upward if you feel you absolutely need to.

Verlet structures

A Verlet structure is more than one stick with some common points. The simplest solid structure is a

triangle. We just make three points and add three sticks connecting them:

265

ADVANCED PHYSICS: NUMERICAL INTEGRATION

266

CHAPTER 6

Here we make three points: A, B, and C; and three sticks: also A, B, and C. Each stick uses two different

points so they form a triangle. Run this one, and you should see the triangle fall to the bottom of the

stage, bounce up a bit, tip over, and land on its side. Try changing the constrain/update iteration vari-

able to something larger than one and you can really see how this makes the structure more rigid.

Let’s try for a square next. Your first attempt might be like this:

267

ADVANCED PHYSICS: NUMERICAL INTEGRATION

Make four points and connect them with four lines, right? That looks all right at first, but after it lands,

it kind of falls flat—literally. In this case, it’s a problem, but you’re seeing your first glimpse of hinges

here, which is a very cool feature. But before we go there, let’s reinforce this box so it doesn’t keep

falling apart. We can do that with one more stick. Declare a variable and make it go diago-

nally from point A to point C:

268

CHAPTER 6

Make sure that you update it and render it in the handler, too. If you really want to make

it strong, you can put another one from point B to point D.

If this falling-straight-down business is too boring, you can give it some spin. Just shove one of the

points a bit after you create it:

Because only one corner has any initial velocity, the whole thing will start spinning.

Now before we go any further, we should start thinking about cleaning up this code. Even with only

four points and five sticks, it’s getting a bit messy. Fortunately, after creating the sticks and points, we’ll

do the same things with each one: adding gravity to the points and updating them, constraining each

point and updating each stick (perhaps multiple times), and then rendering all the points and sticks.

We can easily create an array of points and an array of sticks and do all these actions in a loop:

269

ADVANCED PHYSICS: NUMERICAL INTEGRATION

270

CHAPTER 6

271

ADVANCED PHYSICS: NUMERICAL INTEGRATION

Now we have a lot more small functions, but we’re no longer stuck with individual variables for each

point and stick. Look how clean the handler has become. Furthermore, we can now add as

many new points and sticks as we want, and not have to change any other code. They’ll automatically

go into the arrays and be updated, constrained, and rendered.

Hinges

Now that we have a nice code structure going on, we can go crazy making different kinds of forms.

This is a good time to look at hinges, which are two structures that share a single point. They can each

have freedom of movement, but will pivot around that one common point.

Here’s how to do a swinging arm. I included only the constructor this time, which creates the points

and sticks. All the other methods are exactly the same as in the last example:

272

CHAPTER 6

This code creates a triangle base with an arm attached to the top point of the triangle and a weight

attached to end of the arm. Because the arm and base share only one point, the arm can swing. The

weight can also pivot on the end of the arm, although that’s not as noticeable because of its size.

Taking it further

There is so much more you can do, such as moving all the update, constrain, and render methods to

their own classes—maybe and or something. And building a visual editor

for it sounds like a lot of fun. Okay, I actually built a couple of visual editors for this kind of thing, and

it is a lot of fun!

You might want to create some more interesting graphics for each stick. If you place a graphic so its

left edge is centered on the first point of a stick, scale it so it is the same size as the length of the stick

and rotate it to match the stick’s orientation, you now have a custom graphic for each stick instead of

a black line. Customizing entire structures is a bigger challenge, but it can be done.

We are running out of room here, and I don’t want to take all the fun away from you, so we’ll end

here and I’ll let you go wild with this stuff. I have a feeling that when more people understand Verlet

integration in Flash, there will be some really cool stuff appearing on the Web.

273

ADVANCED PHYSICS: NUMERICAL INTEGRATION

Summary
This chapter covered numerical integration—what it is and the problems that come with it. You now

know that you’ve probably been using Euler integration (and you now know how to pronounce it) and

you have a few alternatives available to use. And most importantly, you hopefully have an idea about

when to use each one because they all have strengths and weaknesses.

Euler, Runge-Kutta, and Verlet are not the only forms of numerical integration. A quick check on

Wikipedia brings up this list of interesting sounding names: Backward Euler, Semi–implicit Euler, Velocity

Verlet, Beeman’s algorithm, Heun’s method, Newmark-beta method, Leapfrog integration, and Monte

Carlo integration. I have no idea what they all are, but it might be fun to find out. Over to you!

Next up, we’ll dive into some brand new Flash 10 features regarding 3D!

275

Since I’ve been involved in Flash, I’ve seen a new version of the Flash authoring tool,

along with a new Flash Player, come out about every 18 months. Shortly after each

version is released, the rumors, speculations, and wish lists for what will be in the

next version begin. Routinely, one of the longed- for features is native 3D. And just as

routinely, hopes are dashed when it doesn’t appear. Until Flash 10.

You could always do 3D in Flash by scaling and positioning things to make them

look like they are nearer or farther away. With ActionScript came the capability to

write real 3D engines. I covered the basics of this in Making Things Move, and in

the last couple of years, numerous powerful 3D engines have appeared for Flash.

PaperVision3D, Away3D, and others have the capability to load full 3D models and

textures from professional modeling tools, and render and manipulate them in real

time. But all these processes are done in ActionScript via classes that have been writ-

ten by members of the community. They are compiled and run in the Player instead

of being a native part of the Player itself.

In Flash 10, for the first time ever, we have the ability to create a display object—a

sprite, movie clip, text field, and so on—and then directly manipulate it in 3D space.

You can do this right in the Flash authoring tool itself and also via ActionScript. This

chapter will focus on the ActionScript part.

3D IN FLASH 10

Chapter 7

276

CHAPTER 7

Although this feature doesn’t have anywhere near the capabilities of PaperVision3D—such as loading

in models and textures, automatic depth sorting, and so on—it is extremely easy to work with and will

be more than enough for many basic 3D effects you want to do in Flash. Well, what are we waiting

for? Let’s do 3D.

Flash 10 3D Basics
This is an advanced book, so I assume that you

know at least a little bit about 3D. You have three

dimensions: x is horizontal, y is vertical, and z is in

and out. In Flash, the origin, or zero point, is the

 top- left corner of the screen, at least in 2D. The

 y- axis might seem upside down to you if you are

used to working in normal Cartesian coordinates,

but you’ll get used to it. In Flash 10 3D, z- axis

values get higher as an object moves “into the

screen” or away from the viewer. In other words,

an object with a lower z position will appear in

front of an object with a higher z position. See

 Figure 7-1.

It’s also worth mentioning how rotation works

on various axes in Flash 10 3D. Rotation around

the z- axis goes clockwise as the angle increases,

as viewed from in front. Again, this is opposite of

what you might be used to. Rotation on the y- axis

also goes clockwise (as viewed from above). On

the x- axis, rotation goes clockwise when viewed

from the left side of an object (see Figure 7-2).

 Figure 7-2. Flash 10 3D rotations

Another important thing to realize is that for 3D rotation in Flash 10, angles are in degrees, not

radians. This might seem odd if you’ve gotten used to programming 3D, in which you use a lot of

trigonometric functions that operate on radians. But 3D in Flash is tied to the authoring tools, which

are geared toward designers, not engineers. They want to put something at a 45- degree angle, not a

Math.PI/4 radian angle. In case you need a reminder of how to convert between radians and degrees,

here you go:

Figure 7-1. Flash 10 3D coordinates

277

3D IN FLASH 10

Okay, now that we’ve defined our terms, let’s look at what we have to work with in Flash 10 in terms of

the 3D application programming interface (API). Although there is a lot more than these, the real meat

of the whole new 3D API comes down to four new properties: , , , and .

We’ll cover the rest of the stuff, but these four properties will be your best friends while creating basic

3D effects.

Let’s try it out. Create the following class and compile it. As with all files in this chapter and the rest

of the book, you can find them at the book’s download page on . This file name

is :

Amazing! Native 3D in Flash!

278

CHAPTER 7

Setting the vanishing point

I know you want to dive in and start making cool 3D stuff, but please read this section—there’s some

vital stuff here. Even if you know 3D, there are some quirks in Flash that will drive you crazy unless you

know what’s happening. Once you understand it, it will make sense, but otherwise you’ll swear Flash

is just plain broken.

If you used the last class as a document class for an FLA and compiled via Flash CS4, you probably saw

something like Figure 7-3.

However, if you compiled for Flash 10 via Flex Builder or another setup using the Flex 4 SDK, you most

likely saw something like Figure 7-4.

 Figure 7-3. Rotation of a plane compiled Figure 7-4. Rotation of a plane compiled
in Flash CS4 in Flex Builder

You see that it’s kind of stretching off to the top left. The reason for this difference lies not in how

the movies are compiled, but in the different ways they are published and how Flash sets the vanish-

ing point. In 3D, the vanishing point is the point on which all objects converge as they move into the

distance. I could insert a picture of a railroad track going off to the horizon, but you know what I’m

talking about. When you code 3D from scratch, you have to manually choose a point to be the vanish-

ing point and make sure that all objects converge on it. People usually choose the center of the stage

as a vanishing point.

Flash 10 3D automatically sets the vanishing point for you and it will set it to the center of the stage.

But it only does this a single time, the instant the SWF loads. When you test the movie from Flash, it

pops up in a window based on the size set in the document properties panel. So the vanishing point is

at its center, and that works out just fine.

However, in Flex Builder, the default size for a SWF is set to 500�375 pixels. Thus your vanishing point

will be at 250, 187.5. But as soon as you set the to , and

 to , it increases the size of the stage. (It’s a common practice to

279

3D IN FLASH 10

set them so the SWF doesn’t scale all its content if the display area increases—it just makes the stage

larger.) You can see that by tracing out the stage width and height just before and after these calls:

You’ll get a different value for the last trace, depending on the size of your browser. So, the stage size

changes, and the sprite is then placed at the new center of the stage, which is something like 720, 397.

But the vanishing point is still stuck at 250, 187.5. That’s the problem right there.

The easiest way to fix this is to explicitly set a width and height in your SWF metadata:

This runs before the vanishing point is calculated, so it will be calculated as the center of 800, 800.

The stage size won’t change after the and are set, so your sprite gets placed at the

same center.

But, perhaps you want to have a variable stage size, one that does fill the browser window no matter

what size it is. Doing that is a bit more complex, but not too bad. You need to use a new class called

. This class controls various aspects about how 3D perspective is rendered,

including the vanishing point. Each display object in Flash 10 now can now have a

assigned to it to control how it renders 3D. It is assigned to the property of the

transform property. So, for a sprite named , for example, you would access it like so:

The class has a property named , which is an instance of

the class. This is actually what we have been calling the vanishing point. Thus, to set the vanish-

ing point for a display object to the center of the stage, you would do something like the following:

It sets the vanishing point for only that one object. But it also sets the vanishing point for any children

of that object. If you want to set the vanishing point for all objects in the movie, set it on the root

level, like so:

The following class does just that, right after setting the stage’s and , which fixes the

problem we saw earlier:

280

CHAPTER 7

You can go one step further and change the center point whenever the stage resizes by doing the

following:

281

3D IN FLASH 10

Because we listen for the event as a first action, the method will be called as soon as

we change the stage settings and the stage resizes, which will set the projection center immediately.

It will also be called any other time the user changes the stage size by resizing the browser. I’ve also

repositioned the shape to make sure it’s always center stage as well. But will be called the

first time before the shape has been created, so we have to make sure it exists first. Hence the con-

ditional in there.

For simplicity’s sake, I’ll go with the first solution of just setting the stage size with metadata in the rest

of the chapter.

Okay, that’s the vital stuff you need to know to keep your movies’ perspectives looking good. Let’s see

what else we can do with 3D.

282

CHAPTER 7

3D Positioning
This one is pretty obvious. I assume that you don’t need to be told how to change an object’s position

on the x- and y- axis. Changing it on the z- axis is just as easy. The next class (found in the

 file) sets up a sine wave that swings a shape out into the distance and back, over and over. It also

follows the mouse position on x and y:

I think the important thing to take away from this example is that once you change the z position,

the x and y of a display object no longer directly refer to screen coordinates; they refer to 3D space

coordinates. If you don’t move your mouse, the x and the y of the shape do not change, but its x and

y coordinates change onscreen. Only when z is equal to zero do the object’s x and y match the screen

x and y. This is because when z is less than zero, Flash scales the object up; when it’s greater than zero,

Flash scales the object down, but when z is exactly zero, the scale will be 100%.

283

3D IN FLASH 10

Depth sorting

One thing you’ll run into as soon as you start creating multiple objects and positioning in 3D space is

that objects that are farther away (higher z value) sometimes appear in front of objects that are closer.

I imagine you want to know the property or method. Unfortunately, there is no method or property

you can set or call to ensure that objects are sorted correctly.

The 3D API in Flash 10 handles perspective scaling and distortion on an individual display object—and

even that object’s children if it has any—but it does not affect the order in which they are drawn to

the screen. This is still handled the same way as for 2D objects in Flash 9: any object put on the display

list via the method will appear in front of previous objects added to the same container.

The only ways to alter this are the various methods for managing the display list, such as ,

, , , and so on. And because there is no sort method on a display

object container, any depth sorting has to be done manually.

To look at how to solve the issue, let’s first make an example that demonstrates the problem. How

about a forest full of trees?

284

CHAPTER 7

Here we created a whole bunch of shapes and used the drawing API to draw a randomly shaded green

tree in each one. Each one is randomly placed on x, y, and z. Not the high point in Flash design, but it

serves the purpose. It doesn’t look quite right, as you can see in Figure 7-5.

 Figure 7-5. Perspective is fine, but no depth sorting

Again, we can’t sort the display list, but we can sort an array. So instead of adding each tree to the

display list as it’s created, let’s put it in an array. Then we can sort the array and add the trees to the

display list in the right order—those with high z values first, lower z values later.

285

3D IN FLASH 10

Although this doesn’t make the picture you see in Figure 7-6 any more artistic, at least the far away

trees are behind the close ones, as you’d see them in a real forest.

286

CHAPTER 7

 Figure 7-6. Forest, now with depth sorting

3D containers

When I first started playing with the API, one of the things that made me really happy about 3D in

Flash 10 was the realization that display object containers transform their children when they are trans-

formed. In other words, when you add some display objects to a sprite and then move that container

sprite around, it doesn’t simply flatten the view of that sprite and move it around as a single object in

3D. No, it actually transforms each child so it looks like they are all moving individually in 3D space.

This is one of those things that’s a lot easier to show than to describe. So the next class demonstrates

it. Why don’t we use something other than shapes with squares drawn in them this time? Text fields

are display objects, too, and can be moved around in 3D exactly the same way. We’ll make a sprite,

throw a bunch of text fields in it with some random letters, and then move the sprite around. You can

find the next example in the file:

287

3D IN FLASH 10

Each text field is randomly positioned in three dimensions within the parent sprite. Although the sprite

is just moving back and forth on the x- axis, you can see the parallax effect as the letters move back

and forth in 3D. See Figure 7-7.

288

CHAPTER 7

 Figure 7-7. 3D containers that look much better in motion!

3D Rotation
In addition to moving things around in 3D space, you can rotate any display object on any axis. We

already saw a quick example of that at the beginning of the chapter, rotating a shape on the y- axis. I

don’t think I have to walk you through repeating this example on the x- and z- axis because you can

probably figure that out on your own, and have probably gone way on ahead of the class and got

something rotating on all three axes at once. (If you haven’t, go ahead and try it.)

When you’re ready, let’s jump into rotating containers with display objects in them. First, we’ll re- create

that first experiment, but put the shape inside a sprite first. You can find the

example file on the book’s download page:

289

3D IN FLASH 10

This just gives us a rotating square like before. But now let’s move the square around within the con-

tainer. First on the x- axis—add the line in bold in the constructor:

Now instead of just rotating, it’s kind of orbiting the center. We can get a different effect by moving

the shape on the z- axis first:

Well that’s pretty cool. Let’s make another square:

290

CHAPTER 7

We’ll put one at a z of 200 and the other at –200. Now when we rotate the container, they’ll kind of

rotate around each other. But why limit it to y rotation? Change to add some rotation

on another axis:

Heck, this is just too easy. Let’s add some more squares! This time, we’ll push them off to the left and

right on the x- axis, but we’ll also rotate them 90 degrees:

291

3D IN FLASH 10

Now you have four walls orbiting each other. Why stop there? You’re probably way ahead of me, but

let’s add a floor and ceiling (in a rough sense):

You can see the results in Figure 7-8.

 Figure 7-8. Rotating cube!

292

CHAPTER 7

Pretty neat, eh? And amazingly simple. Not even a single line of trig. I know exactly what you’re think-

ing now, too: photo cube! Well, maybe that’s not exactly what you’re thinking, but I’m sure you’re

thinking that those red squares are getting a bit stale and they need something different. Of course,

once you start changing colors and so forth, you’ll ruin my carefully crafted illusion. Okay, go ahead

and try it. Make each square a different color by changing the hex value in the call. You can

even do it randomly if you want:

You should see something like Figure 7-9.

 Figure 7-9. Adobe, we have a problem.

Now that things aren’t all red, you see the problem. If it’s not clear in the screenshot here, what’s hap-

pening is that parts of the cube that should be in back are now appearing in front. I’m hoping you’ve

learned enough already to recognize instantly that this is a problem in depth sorting. Well, we’ve

already learned about depth sorting and how to deal with that, so we can dive right in and apply it.

The next class, available in the file, attempts to solve the depth problem the

way we just learned—by sorting the shapes by their property and adding them to the display list in

that order. I added a method to remove some of the duplication:

293

3D IN FLASH 10

294

CHAPTER 7

In addition to the cleanup, we have an array called that contains all the shapes. The

 method is called after each rotation. It sorts the shapes array on z and adds each one back on

to the holder in the correct z order.

But, when you test it, it doesn’t really do a darned thing. The problem is that we’re sorting the ele-

ments on the z- axis internal to the container. So although they are correctly sorted on z, when the

container is flipped around, they are suddenly completely backward. What we need to do is sort

things in the order in which they appear from outside the holder. In other words, even if object A has

a lower z depth than object B, it should appear behind object B when the container is rotated so that

it is “backward” in respect to the z- axis.

 Figure 7-10. The effects of rotating a 3D container

To do this, we need to write a custom sort function that transforms the local coordinates inside the

container to the world (or stage or root) coordinates and then sorts based on it. The

method allows you to pass in a function as a parameter. This function is then called multiple times

with pairs of objects during a sort. The function should return a negative number if the first object

should be placed before the second in the array, a positive number if the first object should be placed

after the second, and zero if they should be left as they are.

295

3D IN FLASH 10

So now we need a way to convert the local coordinates to world coordinates. There are numerous

ways to do this, including manually doing coordinate rotation that involves lots of complex trigonom-

etry. Luckily, Flash 10 now has a new class, , which contains all kinds of useful

methods for manipulating 3D coordinates. Even here, there are probably multiple ways of accomplish-

ing what we are about to do. I don’t know if the way I’m presenting is the best way, but it does get the

job done and without too much pain.

This makes use of a method called on the class. Basically what this

does is take a 3D point (stored in a object) and applies the rotation and scaling portions of

a 3D matrix to it. In simple terms, it rotates the positions of all our shapes according to the rotation of

the container and lets us know where they sit in the global 3D space.

So first we need the that represents the rotation of the container. We can get that by typing

the following:

We can then call the method, passing in the 3D position of a point, and get

its rotated position:

If we do that to the positions of two separate shapes, we’ll then know which one is farther away on the

 z- axis as seen from a global viewpoint. The last piece of the puzzle we need is how to get a

representation of the position of a display object. We could just create one on the fly by using the

object’s , , and properties, but it happens that one already exists:

Now we have everything we need to get the global coordinates of two display objects:

We can then make a sort compare function, which will determine which of two display objects is in front:

If object A is farther away than object B from a rotated, global viewpoint, this function will return a

negative number, indicating that object A should be sorted before B in the array. We can then imple-

ment this in the method quite easily:

296

CHAPTER 7

Now the rotating shapes should sort just fine, creating a nice 3D object, as you can see in Figure 7-11.

 Figure 7-11. Correct depth sorting, even in a rotating container

By altering this slightly, we can get a carousel type of layout, often (maybe too often) used for naviga-

tion or for displaying galleries of images. I won’t actually load any images in the next example, but

you can easily modify the sprites to be loaders and supply them with a list of URLs. Anyway, here’s the

code, as found in the file:

297

3D IN FLASH 10

298

CHAPTER 7

The biggest changes are in bold: how the images get positioned and rotated originally, and how the

container is moved in the method. Instead of manually place each square, we do it in a

loop this time, dividing Math.PI * 2 radians (360 degrees) by the number of items and multiplying it by

the current item number. Using some trig on the resulting angle, along with a radius, gives us the x and

z position for each item. We then do a similar calculation with the property, this time using

degrees directly. Finally, in the handler, we rotate the container on the y- axis based on the

mouse position, as well as move it up and down on the y- axis to follow the mouse.

You can see how this looks in Figure 7-12.

 Figure 7-12. A 3D carousel

Now that we have some basic ideas of how to position and rotate things in 3D, let’s take a closer look

at how to fine- tune the appearance of 3D.

Field of View and Focal Length
Obviously, when you are viewing any kind of image on a flat screen, you are actually viewing a

 two- dimensional image. Programs that render things in 3D use a number of tricks to give the illusion

of a third dimension in a 2D plane. These various tricks come under the heading of perspective.

299

3D IN FLASH 10

One trick of perspective is having things that are supposed to be in the distance appear behind things

that are closer. We dealt with that in the last section when we did depth sorting. Another trick is mak-

ing things in the distance somewhat faded out, like fog. Similarly, you can have objects at a certain

depth in focus, and any objects closer or farther away out of focus. This is known as depth of field.

But the trick with the most impact by far is to make things that are farther away smaller, and have

them approach a vanishing point as they go away and get smaller. Of course, depth sorting is pretty

important for indicating a third dimension, too. Improper depth sorting will certainly ruin any illusion

of 3D, as you have seen. But if you do only depth sorting and don’t scale objects according to their

depth, you don’t really get much of a sense of 3D, either.

The big question is this: how much do you scale objects up and down as they get closer and farther

away? Fortunately, this question has existed and been asked and answered by artists, engineers, and

photographers long before personal computers existed. It all comes down to optics and the way the

lens of either your eye or a camera works. If you’ve done any photography, you know that there are

 wide- angle lenses and telephoto lenses (and a whole range between). There are even “fish- eye” lenses

that are essentially ultra- wide angle.

A wide- angle lens has a wide field of view. In other words, if you project an arc or cone out in front

of the lens, covering the area it could “see,” that cone would be very wide and cover a lot of area. A

 fish- eye lens can see almost 180 degrees. In a telephoto lens, this cone would be very narrow, covering

a narrow sliver of the world in front of it.

Along with field of view is another concept, focal length, which is the distance from the center of the

lens to its focal point (the point where the rays passing through it converge). See Figure 7-13.

 Figure 7-13. Focal length of a lens

300

CHAPTER 7

Focal length is described a bit differently in the Adobe help files, but it still works out to be the same

concept. Focal length and field of view are intimately related, and are also what determine how

much scaling or distortion appears. A wider field of view, as in a wide- angle lens, results in a shorter

focal length and a lot more scaling (which is why photos taken with a fish- eye lens often appear very

distorted). A narrower field of view, as in a telephoto lens, results in a very long focal length and far

less distortion. A good example of this includes photos from baseball games, taken from way back in

the outfield where the pitcher and the batter appear almost the same size, despite the batter being

farther away. In human perception, this kind of photo, with little or no distortion, can actually seem

more distorted and give the impression that the batter is huge. You can see the relationship between

field of view and focal length in Figures 7- 14 and 7- 15.

 Figure 7-14. Wide angle lens, short focal length

301

3D IN FLASH 10

 Figure 7-15. Narrow angle (telephoto) lens, long focal length

In Flash 10 3D, you can control this distortion by setting either focal length or field of view. Actually,

setting either one will change the other, but you get to use the one that’s most comfortable to you.

This is done through two properties on the property of a display object’s

transform property: and . Generally, it’s best to set these on the root of your

movie unless you have some need to have different containers or objects have different perspectives

(perhaps if viewing things in different windows).

The field of view is measured in terms of degrees, and it needs to be greater than 0 and less than 180,

or else you will get an error. Setting a field of view of 0 means you wouldn’t be able to see anything.

Setting it to 180 would make your focal length 0, which I imagine would cause some problems in trying

to calculate and render an image. You’ll probably want to avoid numbers very close to these extremes,

anyway. A field of view close to zero gives you a focal length close to infinity, which effectively cancels

out any 3D perspective scaling. Fields of view close to 180 give you tiny focal lengths and a massive

distortion of your rendered image. In the physical world, it is possible to get a field of view greater

than 180. As far as I can tell, the widest angle lens ever made had a field of view of 220 degrees!

Anyway, getting back to Flash, it’s a good thing to play around with these values and see what they

do. You can do so right from the Carousel example in the last section. Just add the line in bold, right

in the constructor:

302

CHAPTER 7

This gives you a very pronounced perspective. Because the squares closer to the “camera” are much

larger now, this is probably a good setting for a photo gallery type of application. See Figure 7-16.

 Figure 7-16. Wide field of view equals more perspective distortion

Try setting it down to 25, which narrows the field of view considerably. Now the perspective scaling is

much less noticeable. See Figure 7-17.

 Figure 7-17. Narrow field of view, less distortion

303

3D IN FLASH 10

You should also try various high and low values for focal length, to see what they do, as in the follow-

ing example:

Again, short focal lengths result in more distortion; high values result in less distortion.

Screen and 3D Coordinates
Occasionally you might need to find out the screen coordinates that correspond to a point in 3D space.

Or in reverse, you might need to take a point on the screen and figure out where it translates to in 3D

space. Fortunately, display objects have two built- in methods just for that purpose:

and . The first converts from a object to a 2D

 object, and the second does the conversion the other way around.

First, let’s see the method in action. We’ll make a sprite and move it around in 3D. In

that sprite there are some graphics, with a circle drawn at x=200, y=0, z=0. Then we’ll create another

sprite that will track that circle as it moves around by transforming the local 3D point (200, 0, 0) to

global screen coordinates. Here’s the class, which you can find in the file:

304

CHAPTER 7

The constructor makes a 3D sprite and a tracker sprite, and puts some graphics in them. The

handler mostly consists of some code to move the sprite around in 3D space in a seemingly random

fashion. It’s moving and rotating on all three axes at once, using numbers I just kind of randomly threw

in there. The important part is the line, in which it converts (200, 0, 0) to a 2D Point

object, and then assigns that location to the tracker sprite. When you run this, you’ll see that although

the sprite is moving all over the place in all three dimensions, the tracker follows the circle with no

problem at all. See Figure 7-18.

 Figure 7-18. Multiple shots of tracking a 3D point in 2D

305

3D IN FLASH 10

There are probably all kinds of uses for this, including knowing when a 3D object has gone off screen.

Because a 3D object’s x or y position might be much larger than the screen coordinates and still be vis-

ible if it is far back on the z- axis, it might be useful to know whether an object really was onscreen.

Going the other way, we can convert from a screen position to local 3D coordinates. I made a few changes

to the last file, now class , in the file. The main changes are outlined in bold:

306

CHAPTER 7

Here we draw a large square to the rotating sprite and put the tracker right inside of it. In the

 handler, we call to get the 3D coordinates that relate to the current

mouse position. This comes through as a object. The property of this will always

be in this case, so we just use its and properties to set the position of the tracker within the

rotating sprite. As you can see, it moves around in 3D but follows the mouse, which is moving in 2D.

You can see this in Figure 7-19.

 Figure 7-19. Tracking 2D coordinates in 3D

As cool as this is, though, I found a much simpler way to do the same thing: using local mouse coor-

dinates of the rotated object. It turns out that if you access the and properties of a 3D

transformed object, it will automatically do that global-to- local 3D conversion. So our

handler can become a bit simpler:

307

3D IN FLASH 10

This does exactly the same thing. Realize that it works only if you are converting mouse coordinates.

If you want to convert the coordinates of an object on . stage to local 3D coordinates, you’ll still need

to use the conversion function.

Pointing at Something
Once you get comfortable with Flash 10 3D, you might want to start poking around the various

related classes in the help files to see what’s there. A good place to start is the package,

which contains stuff like , , , , and .

All those classes are chock- full of methods to help you do all kinds of 3D calculations. A rather neat

one I dug up in the class is the method.

The method takes a object as a target to point at. If called from the object

of a display object’s transform property, it will rotate that display object in 3D to point at the specified

location. The following class, found in the file, demonstrates this in action:

308

CHAPTER 7

The constructor consists mostly of a bunch of s that draw an arrow in a sprite.

The method consists mostly of some code to move that sprite all around in 3D, not unlike

the example. The last line calls the method on the object on the trans-

form property of the sprite. It passes in a new object made up of the mouse x and y coordi-

nates, plus 0 on the z- axis. And just like that, the sprite, with its drawn arrow, will point at the mouse on

each frame. It’s moving all over the place, and you can move the mouse all over the place, but it never

loses track (see Figure 7-20).

 Figure 7-20. Pointing
at the mouse in 3D

309

3D IN FLASH 10

I’m not sure how practical this example is in and of itself, but I can think of all kinds of uses for this

technique in making 3D games: steering, aiming, and so on.

Summary
Although we covered a lot in this chapter, we really just barely scratched the surface of 3D in Flash

10. We’ll be looking into a few more 3D topics in the next chapter on the new drawing API features,

but hopefully this chapter has giving you a jump start on what’s possible in this subject. Again, look

through the documentation, specifically for and all the stuff in the

 package. I’m sure you’re going to have fun with this

311

If you’ve been involved in Flash for less than six years or so, you might not have

a full appreciation of the ActionScript drawing application programming interface

(API). From my viewpoint, its release in Flash MX in late 2002 revolutionized scripted

graphics in Flash. Prior to Flash MX, there was no way to dynamically generate any

graphic content at all. Even writing this now, it seems hard to believe, but it’s true—if

you wanted something visible to appear in your SWF, you had to draw it on stage or

import it to the library at author time, or load it in at run time. Naturally, there were

various tricks, such as keeping a movie clip in your library with a single line in it and

attaching numerous instances of this line clip, scaling, and positioning them to create

dynamic graphics.

But in Flash MX, for the first time, you could start out with a FLA and nothing but

code, and then create all kinds of graphics content completely on the fly. Despite

the fact that the API was unbelievably minimal (drawing commands were limited to

, , and , and later a few commands were added for drawing

rectangles, circles and ellipses), it has been responsible for a vast amount of the

graphics created on the Flash platform. In fact, there are many complex applications

whose entire interface is built up through drawing API commands.

So, with that background, let me introduce the Flash 10 upgrades to the drawing

API, which are anything but minimal. In fact, these “additions” dwarf the original

API itself, in the number of new methods, number of new objects, sheer power, and

complexity. So let’s dive in and see whether we can make some sense of it all.

FLASH 10 DRAWING API

Chapter 8

312

CHAPTER 8

Paths
The first topic we’ll discuss is paths, so I get to define the term for the second time—with a totally

different definition than the one used in Chapter 4. In terms of the new drawing API, a path is a series

of points and an associated series of drawing commands (, ,) that are used to

draw a shape in a object. It’s not unlike the “connect-the- dots” drawings you did as a kid.

In the old days (Flash MX through Flash CS3), you would individually make calls to the , ,

or methods, passing in appropriate values. At first, you probably hard- coded values in long

lists of graphics method calls. Later you realized that you could store the numbers for locations in

arrays and loop through the arrays calling repeatedly with the next values from the array. If

you were really good, you might have even devised a way to encode the different drawing methods

and store an array of them, so you could call , followed by a few methods, and then a

 method if you needed it. So you could have a list of commands and a list of points that made

up a shape. If you made it that far, or at least understand how it would have worked if you had done

it, you will have no problem understanding paths in the new drawing API because that’s precisely what

they are: a list of points and a list of drawing commands.

The first place where we run into paths is in the method of the

class. Let’s look at it in its simplest form:

We have a list of commands stored in a vector of s and a list of data stored in a vector of s.

The commands are , , and (and a few others you’ll see shortly). They are encoded

as integers and stored as static constant members of the class,

as follows:

Numbers 1, 2, and 3 should be familiar to you. The 0 command, , is like a null command and tells

the drawing API to do nothing. We’ll cover how that would be used along with what those last two

wide commands are all about a bit later.

When you want to draw a line, you usually move to a certain point and draw a line to another point.

To encode it in a vector of commands, you would do something like this:

Alternately, you could use s directly:

313

FLASH 10 DRAWING API

Of course, that doesn’t communicate what you are doing and you lose any compile time checking as

well. You could happily enter 17 as a command, thinking that it means something or merely as a slip

of the hand. Flash would happily compile it because it is in fact an , but your program certainly

wouldn’t do what you expected.

Now we need a vector, which will contain the points we want to draw the line between. You

might expect this to be a vector of objects, in which each element contained an x and a y value.

However, as you can see, it is a vector of s. So the first element represents the x value of the

first point, and the second element represents the y value of the first point. The next two elements

represent the next point, and so on. Although this is a bit confusing to grasp at first, it is more efficient

both in terms of speed and memory to store and access a vector of primitive values such as s

instead of complex objects such as s. And these new additions to the drawing API are built for

speed. One thing you need to make sure of is that you always have enough data points to match the

number of commands you have. If you run out of points before you use up your commands, Flash will

wind up using zeros for data, which is generally pretty useless.

Let’s draw a line from 100, 100 to 250, 200. Here’s the vector:

Now we can call , passing in the commands and data, and see a line. Of course we’ll need to

set a first. A path merely represents the points and type of the drawing operation. You still

have to specify any fills or strokes the old- fashioned way. (Later you’ll see how to encode line styles

and fills as well.)

Now let’s see the whole thing in a class you can actually execute. This one is available as the

 file from the book’s download page at :

314

CHAPTER 8

Now, you are probably thinking that’s a lot of code to draw a single line. And it’s true. If that’s all you

were doing, it would certainly be much easier to just call and and be done with it. As

you’ll see as we move through the examples, these new objects and methods are designed for far

more complex drawing operations such as drawing very complex shapes. As a matter of fact, one of

the main purposes of these additions is to enable the drawing of 3D forms. And yes, we’ll get into a

bit of that later in the chapter.

But first let’s see a more practical use of .

A simple drawing program

If you are familiar with software design patterns, you might see a bit of the command pattern begin-

ning to emerge here. In the command pattern, objects represent actions. You create a command

object that encapsulates an action as well as the parameters that are used with that action. Here we

are actually storing a list of actions (drawing commands) and their parameters (data).

In the next example, we’ll create a small drawing program that lets the user sketch some shapes. It

stores the drawing as a list of commands and data. This drawing can then be redrawn at any time just

by calling again. In this case, we will allow the user to change the line width using the up and

down keys, and set a random color using the space key. The program will then redraw the sketch using

the new line style. Of course, in a real application you would provide more useful controls to allow

selection of a line width and color, but we’ll concentrate on the drawing API stuff. Here’s the

class itself, which you can find as the file:

315

FLASH 10 DRAWING API

316

CHAPTER 8

The program starts by making vectors for commands and data, and assigning listeners for

and . We’ll walk through it from there. First we have the handler:

This method is called when the user pushes the mouse button on the stage. We want the drawing API

to move to that point, so we push a onto the vector, and push the mouse x and

y position onto the vector. We then listen for and events and call the

method.

The handler merely removes the event listeners. But let’s have another look at the

 handler:

This is pretty similar to —it pushes a onto the vector and the mouse

position onto the vector. Now the vector will have a list of s and s, and

 will contain a long list of numbers representing x and y coordinates. We can then call . Note

that when we first called in our method we pushed onto the

317

FLASH 10 DRAWING API

vector so the drawing API just moved to that point. Here, we’re pushing , so the API is now

drawing from that initial point to the position to which we moved the mouse. With that in mind, let’s

see what the method contains:

This is pretty simple. Clear the graphics; set a line style based on the and prop-

erties (both set to 0 initially); and call , passing in and . I won’t go into the

 method—it just checks what key was pressed and changes either the line width or color.

Now you can draw some lines on the stage and use the arrow keys to change the weight of the stroke

of those lines and the space key to change their color. Now this isn’t anything that you couldn’t have

done before, but it makes it a lot easier than having to figure out how to encode your s and

s and creating loops for drawing.

You could go a lot further with this kind of thing—separating each set of lines into its own path,

allowing for undo, redo, and so on. And in the last section of this chapter, you’ll look at some addi-

tional tools that make that kind of thing even easier. But first let’s look at the rest of the path- related

functionality.

Drawing curves

Drawing curves with is not much different from drawing lines. Of course, you need to

change the command from to , and you’ll also need to supply extra data—one pair

of numbers for the control point and another for the end point. And like , you usually want to

start with a or other drawing operation to set the starting point of the curve.

We’ll keep this example simple because there’s more to cover in this chapter. We’ll just make eight

points and draw some curves between them. The next class can be downloaded as the

 file:

318

CHAPTER 8

This class gives you the picture you see in Figure 8-1, which I’ve annotated to show the locations of the

points and what the drawing commands are doing.

 Figure 8-1. Curves drawn with a path

319

FLASH 10 DRAWING API

Again, this is nothing that might not be simpler with the old drawing API, but from the previous

example, hopefully you can see how you could work this into a more complex drawing program. We’ll

see more real- life examples as time goes on.

Wide drawing commands and NO_OP

Suppose that you want to use the data set we created in the last example and draw some lines to fur-

ther the shape. You might start out with creating a separate commands vector with s instead

of s, like so (class available in the file):

320

CHAPTER 8

However, that gives you the picture you see in Figure 8-2.

 Figure 8-2. Curves and lines

The problem here is that s consume two points whereas s consume only one. Because

we put in only four s, we only make it halfway around. Push four more s onto the

 vector and you have what we see in Figure 8-3.

321

FLASH 10 DRAWING API

 Figure 8-3. Curves and more lines

Good enough. But now say we wanted to simply replace each curve with a single line that went from

one end point of each curve to the other, ignoring the control point. This would be impossible using

the same data set with alone. You’d have to reconstruct a new data set pulling out every

other value.

This is where the command comes in. This command skips the next pair of numbers

and draws a line to the following pair. Thus it can be directly substituted for a command,

ignoring the control point and drawing a line directly to the end point. Thus we can replace the four

 commands with commands like so:

This will give us the picture shown in Figure 8-4.

322

CHAPTER 8

 Figure 8-4. Curves and wide lines

Similarly, will skip the next pair of number in the data vector, and move to the following

point (we can get away without an example for it).

You might expect that you can skip over the control points using a command like so:

Unfortunately this does not work.

The command is a noncommand; using it does nothing. It draws no lines or curves, and it does

not move the drawing cursor. However, it doesn’t consume any points from the data list, either. So

the next command will continue to draw a line directly to the next point on the list. I don’t

have a practical example for when you’d actually need , but I can imagine a few possibilities. For

example, if you want to skip drawing a portion of a drawing, you could swap out drawing commands

for those points with commands, thus preserving the data in case you need to draw the full

drawing again.

Winding

The last thing we’ll cover with paths is winding, which refers to the direction that the points making up

a shape are oriented. You know that a shape is drawn with lines or curves between points and should

be able to see that as these points form a shape, they go around either clockwise or counterclockwise.

A clockwise orientation is known as positive winding; a counterclockwise orientation is known as

323

FLASH 10 DRAWING API

negative winding. Of course, you could have a figure- eight shape, which has both positive and nega-

tive winding. This is not a problem because each part of the shape can be considered separately.

Now, for a single shape, the direction of its winding really doesn’t make any difference. It becomes

important when paths with the same fill intersect or overlap. When you are drawing two overlapping

paths or a single path that overlaps itself between a single set of / operations, there

are two possibilities for that area of overlap— either it can be filled along with the rest of the shape,

or the overlapping paths can cancel each other out—leaving an unfilled area. To see this in action,

take a look at the next example, which you can find in the file:

324

CHAPTER 8

Here we create two rectangles—one vertical, one hori-

zontal—that overlap to form a cross. We draw them both

using within a single set of and

 statements, so they are being drawn with the same

fill. By default, the intersecting area is unfilled, as you can

see in Figure 8-5.

Note that a key point of this behavior is that it occurs

when the paths are being drawn with the same fill. To see

this, try changing the last few lines to the following:

Because you ended the first fill and started a new one before drawing the second path, they overlap

and the entire area of both rectangles is filled.

Also note that a single path can overlap itself very easily, as you can see in this slightly altered version:

 Figure 8-5. An intersecting fill cancels itself
out.

325

FLASH 10 DRAWING API

This gives you the exact same result as the first version.

Taking this last version, if you want to override the default behavior and fill the whole area, you can’t

just throw an and new in the middle because there is only a single

call happening. This is where the third optional parameter to comes in: . This

 parameter is a string and can be either “evenOdd” or “nonZero”. They are provided as static

constants of the class: and

.

You can dig into this a bit more in the Flash CS4 help files to understand why they are called what they

are called, and the theories behind them. But in simple terms, is the default behavior that

does not fill any intersecting areas of shapes drawn with the same fill.

You can see this by changing the call to in the last example to the following and see that it

still behaves the same way:

326

CHAPTER 8

The alternate winding option gives you a bit more control in how the shapes intersect. Go ahead and

try it:

Now the shape is completely filled again. But it’s not as simple as saying, “ doesn’t fill inter-

sections, and does.” Remember that positive/negative winding stuff? Here’s the reason why

I talked about it. When you specify winding, Flash looks at the winding direction of the two

overlapping paths (or path portions) to determine what to do with that intersecting area, and applies

the following rules:

 If the winding directions of the two paths are the same direction (either positive or negative),

the intersecting area will be filled.

 If the winding directions of the two paths are different (one positive, one negative), the inter-

secting area is not filled.

In the previous example, both rectangles were drawn in a clockwise

direction, as you can see in Figure 8-6.

We can see this in action by switching a couple of the points in one

of the rectangles like so:

By switching the second and fourth points of the second rectangle, you are changing its winding to be

counterclockwise. Test that and you’ll see that the middle area is no longer filled. Switch the same two

points in the first rectangle and they’ll both have counterclockwise winding. But then the winding will

be the same, and the shape will be fully filled.

Okay, that’s all we’ll cover on , although paths will come up again in an even more powerful

context. Next up, we’ll take a look at triangles.

Triangles
Triangles are a pretty important concept in computer graphics. Two points form a line; three points

are required to define a plane. Thus, three points are the minimum needed to do any kind of color

or bitmap fill. Furthermore, triangles are often the basic building block of 3D modeling systems. Even

when you model with splines or primitives, models are often broken down into triangles somewhere

Figure 8-6. Two clockwise
paths

327

FLASH 10 DRAWING API

within the rendering process. And as a matter of fact, the new triangle drawing features in Flash 10 are

primarily aimed at 3D effects. But they can be used for a lot more.

Let’s start with the bare minimum case. We’ll draw a single triangle. A triangle is made up of three

points, right? So first we have to create a list of three x, y coordinates. Let’s go with 100, 100 for the

first point; 200, 100 for the second; and 150, 200 for the third.

So, to make a vector that contains the vertices to draw the single triangle we just described, we would

write the following:

Now, to draw this triangle, we simply pass it in to the method of a object,

like so:

Again, you’ll need to set a line style or some sort of fill in order to actually draw anything visible. The

following class, , demonstrates drawing this one triangle. You’ll find it as the

 file:

And Figure 8-7 shows you the result.

328

CHAPTER 8

 Figure 8-7. A single triangle

drawn with the
method

As you see, this is a bit easier than . No need for a or . You give it three points

and it knows what to do.

Next, let’s draw two triangles. For that, we’ll need 6 points, which means 12 numbers in the list. The

next class, , available for download as , shows this:

As you can see, the only thing we did here is add three more vertices, which draws the triangles seen

in Figure 8-8.

329

FLASH 10 DRAWING API

 Figure 8-8. A pair of triangles drawn with the method

When used this way, absolutely expects to be given a list of numbers whose total is a

multiple of six. For instance, try removing the last vertex from the list:

With only five vertices, Flash does not know how to construct two triangles and will complain that one

of the parameters to is invalid.

Now this brings to mind two thoughts: drawing a bunch of individual triangles has limited usefulness,

and I could draw two triangles with only four vertices by reusing two of the vertices. Fortunately,

although the default behavior of is to draw a separate triangle with each triplet of

vertices, the method has an optional second parameter, , that allows you to control which

vertices are used to draw certain triangles.

The parameter is again a vector (this time, a vector of). Each index in the vector

specifies an individual vertex in the vector. Going back to the first example, drawing a single

triangle, we had this:

330

CHAPTER 8

Using an vector, we can do exactly the same thing:

We tell Flash to use vertex 0 (100, 100) as the first corner of the triangle, vertex 1 (200, 100) as the sec-

ond corner, and vertex 3 (150, 200) as the final corner. Now that’s no different from what it was doing

all by itself, but it shows you how it works in the simplest example possible. Now let’s try to draw two

triangles with just four points. The next example is in the file:

We draw one triangle using vertices 0, 1, and 2, and another triangle using vertices 2, 3, and 0. This

gives you the shape you see in Figure 8-9. I’ve annotated this one to label the four vertices so you can

see what is being drawn.

331

FLASH 10 DRAWING API

Now, as we saw with , you don’t see the full power of these

new commands by meticulously hard- coding individual points and

commands, or vertices and indices. But when you start getting into

more complex shapes, keeping a vector or two around and pass-

ing it into a method to redraw that shape can be pretty powerful.

Furthermore, the real power of triangles comes in when you start

using it for bitmap fills, as discussed next.

Bitmap fills and triangles

When drawing shapes with the drawing API, you have always had a few options for filling in the shape:

a single color fill, a gradient fill, and a bitmap fill. As you’ll see in the next chapter, there is now also a

shader fill that works in conjunction with Pixel Bender.

But here we’ll look at some very significant improvements to bitmap fills that are available when creat-

ing a shape using triangles.

First, you can use any type of fills with triangles, just as you would use them with a path or any of the

older drawing API methods:

This will fill in each triangle or the shape they make up as a whole, with the color of the fill. Overlapping

triangles are rendered completely. There are no wrapping parameter or unfilled intersecting areas. Now

let’s see what we can do with a bitmap fill. The next class, available for download as

, will demonstrate the basics of filling a set of triangles with a bitmap:

 Figure 8-9. A
connected pair of
triangles

332

CHAPTER 8

It’s pretty much the same as the last example, but we are embedding an external JPG, creating an

instance of it as a , and using its property to fill the triangles we draw. The image I

used is also available for download, but any valid bitmap image will do (JPG, .tif, BMP, or GIF).

Now when you run this, you’ll see only a black square. You might see something else if you used a dif-

ferent image file, but you won’t be seeing the entire picture. The bitmap is displayed at full size, but

the square we are drawing with our two triangles is only 100�100 pixels, so you see only the top- left

corner of the bitmap.

You can try stretching out a couple of the vertices like so:

This will show a bit more of the bitmap (see Figure 8-10), but it’s not really what we are after.

You could also try applying a transform matrix to the call, but that can get pretty

complex, and still you wouldn’t be able to do all you can with the new triangle bitmap fill feature. So

let’s look at that new feature.

 Figure 8-10. A bitmap fill with triangles

333

FLASH 10 DRAWING API

uvtData
The third optional parameter to is another vector of , referred to as .

The part refers to three values that affect how the bitmap is mapped to the overall triangle

shape. The and values map values on the x- axis and y- axis of the bitmap to individual vertices of

the various triangles making up the shape. The value is optional and allows you to do further scaling

when using triangles for 3D. I’ll discuss and now (and a bit later in this section).

 Figure 8-11 shows how the and values are mapped to a bitmap.

 Figure 8-11. mapping of a bitmap

The top left of the bitmap corresponds to , values of 0, 0. The top right is 1, 0; and the bottom left

and bottom right are 0, 1, and 1, 1. You can map fractional values, too, but let’s just work with the

four corners for now.

In our last example, we had four points forming two triangles, arranged to make a rectangle. We can

now map those four points to the four corners of the bitmap. All we need to do is make a vector of

 and set a and value for each vertex in the vector. The next class, downloadable

as , shows this:

334

CHAPTER 8

We make a vector and push eight values to it. These map

to the eight values (four vertices) in the vector; and corre-

spond to the top left, top right, bottom right, and bottom left of the

bitmap. We pass that in as a third parameter to , and

the result is what you see in Figure 8-12.

It looks a bit squashed because the triangles are forming a square,

but the bitmap itself is a rectangle. We can now move the vertices

around and distort the image:

These coordinates will give you something like what you can see in Figure 8-13.

Already, this is starting to look 3D. But before we dive deep into that subject, let’s just play with 2D

distortion a bit more.

 Figure 8-12. A bitmap fill
with triangles and data

335

FLASH 10 DRAWING API

 Figure 8-13. Moving the points

The next example, in the file, extends the first one, making the vertices

dynamic. I won’t go into the class in too much detail, but essentially it creates four draggable handles.

When the handles are moved, the vertices vector is filled with the handles’ positions and the shape is

redrawn:

336

CHAPTER 8

337

FLASH 10 DRAWING API

You can drag around the four points interactively and see how the image distorts. This kind of thing

was possible in earlier versions of Flash, but involved complicated setups and more complicated math.

Here, we are doing the same thing without a single math operator!

More triangles!
So far we are dealing with just four points and two triangles, which limit us to four- sided shapes

(quadrilaterals). If we add some more triangles, we have more points to move around and do inter-

esting things with. We could painstakingly plot out each vertex and specify all the indexes for each

triangle by hand. Or we could figure out an algorithm to do it all for us. The next class, found in the

 file, does just that. I’ll present it first and then explain it. Some of the more

important points are in bold:

338

CHAPTER 8

339

FLASH 10 DRAWING API

First we set up three new variables: (resolution) determines the size of the triangles, and and

 determine how many rows and columns of vertices there will be. In the method,

we loop through and to make a grid of vertices. Each vertex is defined as , .

The is defined as . This will make it range from 0.0 to 1.0

on each axis.

Within this loop, if we are not at the last row or last column, we can make some triangles by taking

the current point, the point to its right, and the point below it as the first triangle. Then the one to its

right, the one down and to the right, and the one below it as the second triangle (see Figure 8-14).

 Figure 8-14. Moving the points

In this sample code, I not only drew the image using a bitmap fill with the triangles but also drew the

triangles again with a stroke, so you can see how they are arranged. Try changing the values for ,

, and to see how the layout and size of the final image change.

It is nice, but because we’re still just drawing a rectangle, we’re not really seeing much benefit from all

those extra triangles. Once we start moving these vertices around, we can create all kinds of effects,

including (drum roll, please) 3D!

340

CHAPTER 8

Triangles and 3D

Here’s the basic strategy behind using triangles for 3D:

 1. Create a bunch of vertices and indices that form triangles.

 2. Calculate the position of a 3D point that corresponds to each vertex.

 3. Use perspective to calculate the 2D screen coordinates of that 3D point. This becomes the

value of the vertex.

 4. Use , passing in the vertices and indices.

Realize that this type of 3D is quite different from the 3D that was discussed in Chapter

7. In fact, you could almost say that Flash 10 has two separate 3D engines now, with

being the second. The 3D calculations we’ll be using to apply the perspective here are exactly as

described in Making Things Move. You might want to review the 3D chapters of that book or other-

wise brush up on basic perspective calculations. The basic formula for perspective is as follows:

So, we have an x, y, and z position; we use the z position to find a scale. Then we multiply the x and

y values by this scale to get their screen position, which becomes the position of each vertex in the

vertices list.

The next class, which you can download as the file, builds on the last example, but now

arranges the vertices of the grid around in a tube shape. We’ll put the bitmap fill on hold briefly and

just draw triangles with strokes so we can see what we are drawing:

341

FLASH 10 DRAWING API

342

CHAPTER 8

The first difference you see is the introduction of the variable, which determines the radius of

the tube. Then we add a sprite to the stage and position it at 400, 400 (because in calculating 3D, we

need a vanishing point). We could set a vanishing point at 400, 400 and add this to each vertex, but it’s

simpler to leave the vanishing point as 0, 0; draw everything into a sprite; and move the sprite.

We moved the actual drawing code into its own method (you’ll see the reason for this later).

Finally, in , we calculate an angle that will range from 0 to PI * 2. Taking the cosine and

sine of this angle times the radius gives us the x and z position for each point. The y position will range

from a negative value to a positive one, based on the number of rows and the resolution.

Now that we have an x, y, and z value for each point, we calculate a scale. Each vertex can now be

defined as , which is the screen position of the 3D point after perspective

is applied. When this is run, you see the picture shown in Figure 8-15.

 Figure 8-15. A wire frame tube

343

FLASH 10 DRAWING API

This is a wire frame representation of all the triangles—they form a tube that is distorted by 3D

projection. So far, so good! Now we just need to add the bitmap fill back in, right? Well, yes and no.

There’s a bit more work to do. But let’s go ahead and see what happens. Change the method to

the following:

Hmmm. This doesn’t look quite right (see Figure 8-16).

 Figure 8-16. Something is wrong here.

344

CHAPTER 8

What’s happening is that we are drawing all the rectangles—the ones in back and the ones in front.

Now if you read Chapter 7, you probably have your hand raised and are ready to shout out, “Depth

sorting!” In a sense you are correct, but there’s a slightly different concept at work when drawing tri-

angles: backface culling (this was also covered in Making Things Move, and all worked out manually).

The basic concept is this: draw all triangles that are formed in a clockwise direction and don’t draw any

that are counterclockwise. Or vice versa—it depends on how you made your triangles. In either case,

if you made them consistently, the triangles facing you will be going one way (clockwise or counter-

clockwise), and the ones facing away from you will be going the opposite way. Those facing away are

called back faces and do not need to be drawn.

Fortunately, this is now all built into Flash. When we call , the optional fourth param-

eter is , which is a string that can be equal to “positive”, “negative”, or “none”. These values

are provided as static constants of the class:

You can read the Flash help file for this class for a more technical description of how culling works,

but here’s a simple way to think about it: positive culling draws only counterclockwise triangles, and

negative culling draws only clockwise triangles. Setting culling to results in all triangles being

drawn. Because the triangles we set up are done in a clockwise direction, we need to use negative

culling, like so:

Now when you run the file, you’ll see what is shown in Figure 8-17.

This actually looks like an image wrapped around a tube. You can remove the second

call to see just the image without the triangle outlines.

345

FLASH 10 DRAWING API

 Figure 8-17. Backface culling solved the problem.

The t in uvt
Now we come to that other part of the data: the , which is specifically used for adjusting the scaling of

the bitmap when drawing in 3D. In the last example, we calculated a scale value based on each point’s

z position. We used this scale value to adjust the x and y positions to project them to a screen position

and create the vertices used in drawing each triangle. It turns out that this scale value is also the value we

need to use for the value of each vertex. This affects how the pixels between any two points are scaled

and spaced out. If you can imagine a line of evenly spaced fence posts going off into the distance, the

posts in the distance will appear closer together when seen in 3D perspective, whereas the ones in the

foreground will seem farther apart. The value does this for pixels instead of fence posts. Without the ,

pixels between two points will be spaced evenly, which can result in an image looking distorted.

This value is added right after the and values in the vector, like so:

346

CHAPTER 8

Now you might think this would mess things up because previously every two values in

referred to two values in the vector. Now we have three values for each vertex. Luckily,

 is smart enough to figure this out. If is the same length as , it

assumes that it contains only and . If is 1.5 times the length of , it remaps it so

that each set of three values is interpreted as , , and .

Go ahead and add that line. You probably won’t see much of a difference in this example, but if you

were to do screen captures and compare them side by side, you’d see a very subtle change in how the

bitmap is stretched across the tube. Although it’s not so noticeable in this example, it’s good to get

into the habit of using the extra scaling because it can make a significant difference in how realistic

your 3D forms look, especially when perspective gets more pronounced.

Rotating the tube
Because the title of this book contains the word “animation,” let’s get this tube moving somehow. We

can at least make it rotate.

We’ll have an offset value that will continually change. We’ll move all the vertex and creation

into the method and update it each frame, adding the offset to the calculated angle. This will cause

the vertices to rotate around the tube, dragging the bitmap with it. The illusion is a rotating tube:

347

FLASH 10 DRAWING API

348

CHAPTER 8

Note that the method contains only the code to create the . Indices need to

be created only a single time and will not change. However, the and have to be

updated on every frame, so they are recalculated on every frame in the method.

Now that we have a tube, it’s not too much of a reach to transform it into a globe. Let’s try it.

Making a 3D globe
Our final exploration into 3D with triangles is creating a 3D rotating globe. I dug up a world map that

will fit nicely here, but again you can use any image you want to map to a sphere. Most of the code

will be the same as the tube example. We just need to adjust the vertex values so they join at the top

and bottom, and form a circle in between. This took a bit of trigonometry, and a lot of trial and error,

but here is the result, which you can find in the file:

349

FLASH 10 DRAWING API

350

CHAPTER 8

351

FLASH 10 DRAWING API

As you can see, there’s not a huge difference between it

and the tube: a different bitmap and a few more- complex

formulas for creating the vertices on each frame. The

 variable will range from –Math.PI to +Math.PI.

Taking the sine of this will position the y value of each

vertex from the “North Pole” to the “South Pole” of the

globe. The cosine of this angle will be used to smoothly

vary the radius of the circle around the y- axis, turning the

tube into a globe. You can see the result in Figure 8-18.

There’s lots of room to play with this one. And this is

only the beginning of showing you the types of things

you can model. Of course, it’s still not as powerful as

PaperVision3D, which already has much of this function-

ality in it already. But I’m sure portions of this new API will

find their way into the various Flash- based 3D packages

out there because they are now part of the Player and

operate at a lower level than compiled ActionScript.

Now we leave 3D behind and finish out the chapter with

a discussion of graphics data.

Graphics Data
So far we’ve covered drawing paths and drawing triangles, which are both powerful new aspects of the

drawing API. But believe it or not, they are just building blocks that are part of an even more power-

ful aspect of the drawing API. This new power is accessed primarily by the new method on

 called .

As you recall, you could draw lines or fills using or , but you had to specify

the line or fill styles using the same old and methods. With ,

you can specify paths, triangles, strokes (line styles), and any kind of fill.

The way it works is pretty simple: you pass the method a vector. This vector is filled

with objects of , which is an interface. This means that a number of different types of

objects can go into this vector—anything that implements the interface. The following

classes implement it:

 Figure 8-18. A rotating globe

352

CHAPTER 8

These classes are all in the package. I won’t go into every single one in detail, but will

cover a few of them well enough so you’ll have an idea of how to use them in general. Let’s start with

 and , which will at least allow you to draw a line or several. Here’s the

constructor for :

Anything you can specify in the method, you can also specify in a

object in the constructor. All these constructor parameters are also public properties of the class, so

you can just create a new object with the default parameters and then set the prop-

erties on it like so:

The one thing that might be confusing is the fill property. Normally you think of drawing a shape with

lines, and the fill is the color, gradient, or bitmap that fills up the space between those lines. In the

case of a object, however, the fill refers to the color, alpha, gradient, and so on of

the stroke itself. The fill is defined in another object of type . This again is an interface.

The following types of graphics fills implement the interface:

Let’s just use a solid fill for now. The class constructor looks like this:

These parameters are also public properties on the class in case you want to change them on an exist-

ing fill object. With all this, you can now create a stroke object like so, which creates a five-pixel- wide

red stroke:

353

FLASH 10 DRAWING API

Now we can create a object. The constructor for this is as follows:

We already know all about paths, so we can throw this together pretty easily:

Here we have a vector and a vector. We create a object passing them

into it.

Okay, now we have a stroke and a path. We just need to push them into a vector, pass

that vector to , and we should have a line. Here’s the final test, available as the

 file:

354

CHAPTER 8

The lines in bold are the only important ones you didn’t see before. Run it and you should get a red line

on the stage. Amazing! Just 13 lines to do what you could do in about 3 lines with the old drawing API!

You know what I’m going to say: that this is suited for more complex drawings. Earlier I mentioned the

command pattern, in which an action and its parameters are encapsulated in an object. This is exactly

what’s going on here. Instead of coding a long list of drawing methods, you create a vector of drawing

commands. Because each of these commands is an object, you can add more to the list, remove them,

rearrange them, alter them, and at any point draw the whole list. Let’s take a look at how useful this

can be.

In the final example of this chapter, we’ll do something similar to the simple sketch program we cre-

ated earlier, but we’ll give it some history. Here’s the strategy:

 1. Each time the mouse button is pressed, choose a random stroke (thickness and color) and add

it to a graphics data buffer.

 2. When the mouse moves, add s and data points to a path as before.

 3. When the mouse is released, create a object based on the commands and data

of the path just drawn. Push this object into the buffer.

 4. In the method, copy over the graphics data buffer into another vector of

and draw it using .

The reason for the buffer is to enable a history. Pressing the left or right key on the keyboard will move

an index variable up or down. The method actually copies over the commands from the buffer

up to the index variable. Thus if you’ve drawn five lines, but then hit the left key, the index variable will

be decremented. Then only the first four commands will be copied from the buffer into the

vector. So only the first four lines will be drawn. Press the right key, and the index is increased. Now all

five lines will be drawn. Here’s the code, which you can also find as the file:

355

FLASH 10 DRAWING API

356

CHAPTER 8

357

FLASH 10 DRAWING API

Note that in the handler we set the buffer length to the index, making the last path added

to it the last element in the vector. This is the usual behavior in undoable operations. If you draw

some lines, undo a few of them and draw some more; there is no way to redo the stuff that you just

undid. Allowing this would result in unpredictable behavior because you just inserted some stuff in the

middle of what was already there.

There you go—a drawing program with history. Of course, you could build this up to something more

professional, with real controls for changing color and thickness instead of random values, and so

on. And this is only the tip of the iceberg of graphics data. Remember that you can do any kind of

fills: gradient, bitmap, and even shader fills (which we will cover in Chapter 9). You can even draw tri-

angles. If you are really ambitious, you could redo the program to use

instead of .

Summary
This chapter covered the features of the new drawing API, but pretty much just skimmed the surface

of them. There’s so much more you can do here that you could fill an entire book with it. In fact, you

might want to take a look at Foundation ActionScript 3.0 Image Effects by Todd Yard (Apress, 2009).

Next up, we’re going to take a look at another fantastic graphics tool added to Flash 10: Pixel

Bender.

359

This is an interesting chapter because it introduces not only a whole new tool that

can be used in conjunction with Flash CS4 (or whatever you use to compile Flash

10 Player–based SWFs) but also a whole new language used by this tool. The Pixel

Bender Toolkit was prereleased under the code name Hydra in late 2007. If features

a simple integrated development environment (IDE) for coding and compiling pixel

shaders, which are like miniprograms that you can use within Flash, PhotoShop, and

After Effects to create very powerful image processing and animation effects. This

subject deserves a whole book, but in this one chapter I’ll try to give you at least

enough info to get you up and running and hopefully inspired to go forward and

learn more.

What Is Pixel Bender?
The Pixel Bender Toolkit refers to the IDE that is used to create, compile, test, and

export pixel shaders for use in various CS4 products, including Flash. It’s an extremely

simple IDE featuring a bare- bones code editor, a preview area, and an area for setting

parameters and viewing errors and warnings (see Figure 9-1).

Pixel Bender refers to the programming language you use to write pixel shaders

in the Pixel Bender Toolkit. I’ll start by assuming that you have a copy of the Pixel

Bender Toolkit, have successfully installed it, have figured out how to run the pro-

gram, and are ready to create some pixel shaders.

PIXEL BENDER

Chapter 9

360

CHAPTER 9

 Figure 9-1. Pixel Bender Toolkit

Okay, but what is a pixel shader? Simply put, it is a small program that calculates the value of a single

pixel. It sounds almost too simple when put that way, but that’s essentially what it does. It can rely on

various forms of input and make use of all kind of complex calculations, but in the end it says, “This

pixel should have this value.”

There are several reasons why this is a big deal and why people are excited about it. First, Pixel Bender

can take a bitmap, fill, or other visual object and then run this pixel shader on each and every pixel

in it. Not one by one, but in parallel. Yes, that’s right; it calculates all the pixels in an area at the same

time. They are compiled to be very optimized and run in a separate process from the Flash Player

itself. All this adds up to the fact that pixel shaders are incredibly fast, compared with just about any

other graphics process in Flash.

One of the disadvantages of having all this power is that Pixel Bender shaders must be created outside

of Flash using the Pixel Bender Toolkit and written in the Pixel Bender language, which is based on C.

Then they must be compiled, saved, and finally loaded or embedded into your Flash movie before

they can be used. Yes, it’s a bit of work, and yes, you are actually going to have to learn a bit of C.

Don’t worry; it will be good for you.

Pixel shaders exist in a very different paradigm than most ActionScript programs you are probably

familiar with. Because the shader is interested in only a single pixel and is being run probably thou-

sands of times in the same instant, all it inherently knows is the x, y value of the specific pixel it is

361

PIXEL BENDER

being run on. You can assign variables and pass in parameters (including one or more input images),

but when you first start coding these things, you might feel somewhat limited in what you can do. But

soon you’ll get a feel for the language and realize how to use the new capabilities Pixel Bender does

give you.

Within Flash, you can use Pixel Bender shaders in four ways:

 Custom filters: Just as you have drop shadows, blurs, bevels, and so on, you can now assign a

 to any display object. This is tied to a shader that you have written in Pixel

Bender.

 Fills: In the drawing application programming interface (API) you’ve always been able to fill a

shape with a solid color, a gradient, or a bitmap. Now you can fill it with a Pixel Bender shader

with the method.

 Blend modes: A pixel shader can also be used as a blend mode, affecting how a display object

is composited on what is beneath it. This is done by assigning a shader to the

property of a display object.

 “Generic number crunching”: This is a term given to using a shader’s power and speed to per-

form fast mathematical operations on a set of data. Instead of using the shader to actually

shade anything, you pass it in a byte array. It performs specified operations on the data in the

byte array and returns the processed data. All you have to do is make the shader see the byte

array as an image. This technique is beyond the scope of this book, but it is certainly an inter-

esting topic to research on your own.

Writing a Pixel Shader
So you have the Pixel Bender Toolkit fired up and you’re ready to write a pixel shader. Using the File

menu, choose New Kernel Filter or press the button on the bottom of the screen that says Create New

Filter. This should fill the editing area with something that looks like this:

362

CHAPTER 9

If you want to see the result of a shader in the toolkit, you’ll need to load an image. You do this

through the File menu as well, and several sample images are included with the toolkit, just in case

you don’t have any pictures on your computer or can’t find any on the Internet. Choose an image and

you’ll see it in the preview area. Press the Run button and you’ll see the result of the shader being

applied to the image.

And what do you see? Absolutely nothing; the image didn’t change at all because the default shader is

an identity shader. It just looks at the pixel in the source image that is in the same position as the pixel

it is evaluating and outputs that pixel. So your output is exactly the same as your input.

Actually, I think this default example starts a bit higher than I’d like to for an introduction, so change

the filter to the following:

You don’t have to stop the shader from running and you don’t have to save it at any point if you don’t

want to (although that’s always a good practice). Just type the new lines of code and press the Run

button when you see the changes. If you do this now, you’ll see your picture change to a solid red

rectangle (you’ll see why in a moment).

This shader is about the most minimum one you could write, so it’s a good place to start and examine

the different pieces that go into writing a shader. Any pixel shader must have the following elements:

 Metadata specifying the language version of the file.

 The kernel definition, which contains the rest of the required elements (I’ll cover exactly what

a kernel is shortly).

 Required kernel metadata, consisting of , , and (and optionally,

).

 An property, which represents a pixel that you are shading.

363

PIXEL BENDER

 A function called , which is the main function of a shader. In fact, when writing

shaders for use in Flash, it’s the only function you can have in your shader. So this is where all

the code will go to calculate what the pixel value will be.

 Although it’s not strictly required, you almost always want to specify an property, which

represents a source bitmap image. If you are using a shader for a fill in the drawing API, there

might not be any input image. However, in order to see anything at all while developing the

shader in the Pixel Bender Toolkit, you will need to specify an input image.

First, the language version metadata, which is the first line of the shader source file and looks like this:

There will be future versions of the tool with new capabilities, of course. So this lets the compiler and

Flash know which features to expect in this shader.

Then there is the kernel definition. A kernel is the basic unit of a shader. It’s pretty safe to regard a

kernel just as you would regard a class: it’s a single unit that defines a pixel shader object. It can have

functions, variables, and constants. The functions can make calls to each other and access the vari-

ables and constants of the kernel, and call other built- in functions and libraries of functions.

There are quite a few limitations when creating shaders for use in Flash: the use of other libraries and

calls to other functions outside of the main function are not allowed. You can, how-

ever, call other built- in functions, as you’ll see soon.

Like a class, a kernel is defined with the keyword , followed by the name of the kernel. The

body of the kernel is contained within brackets:

As you can see in the autogenerated shader code, just before the body of the kernel is another block

of metadata:

The , , and metadata are currently mandatory. You usually want to fill in the

namespace with some unique identifier that nobody else will use. Your domain name is a good bet.

The vendor is you or the company, and the version is the version of this specific shader. If you improve

it later, update the version number so people know which version they are using. The description is

optional, but it’s a good idea to put something in there. You can access this metadata from within

Flash after you have created the instance of the shader, as you’ll see later in this chapter.

364

CHAPTER 9

Within the kernel, we first have two special variables. These variables are specified with the keywords

 and . The variable refers to the source image passed into the shader; the

variable refers to the pixel value that is being evaluated.

If you are only used to ActionScript, the syntax for defining these variables might look strange. In

ActionScript we declare variables with the keyword and specify the type with post- colon syntax

like so:

In C, on which Pixel Bender is based, you declare variables simply by stating their type and name:

For these special variables, we have the additional and keywords tacked on in front, but

from the following you can see that we have a variable named (source) that is of type and

a variable named (destination) that is of type :

I’ll cover some of the different data types next, but represents a four- channel (red, green, blue,

alpha) bitmap image, and represents a four- channel pixel.

As mentioned earlier, you always almost want to have an input image variable, at least when develop-

ing the shader in the toolkit. You also must have exactly one output pixel variable.

Next comes the function. Like variables, functions in C are declared by stating the type

they return, followed by the function name, and then like ActionScript, the body of the function in

brackets:

In the autogenerated filter, this is formatted with the return type on one line and the function name

on the next. This is no different from the following, which might seem more natural:

The return type is , so we don’t need to return anything here. Whatever we do in the

method, however, it needs to result in the output variable being assigned a value. In this case,

that’s all we do. We assign it a value directly. The constructor for takes arguments for

each of the four channels of the pixel: red, green, blue, and alpha. Each of these channels can be

assigned a value from 0.0 to 1.0. Actually, you can assign it values higher or lower than that, but they

will be truncated to values within that range. So assigning is no different from

365

PIXEL BENDER

. In this example, we are setting red to 1, green and blue to 0, and alpha to 1.

This makes a solid opaque red pixel. This shader is run on every single pixel of the image in parallel, so

every single pixel is colored red. That’s why you wind up with a red rectangle.

Congratulations! You just made your first pixel shader; if you’ve followed along so far, you hopefully

understand exactly what you did, which is pretty impressive.

Data Types
Before we go on, we should take a look at some of the different data types available within Pixel

Bender. The basic types available are , , and , which correspond to , , and

 in ActionScript. The type holds / values, holds integers, and holds

 floating- point numbers.

An important thing to remember is that when assigning constant values, you must include the

decimal part. Otherwise, the number is considered to be an . For example, saying

will give you a compile error; you need to say . You are almost certain to make this

error countless times until you get used to the difference, so it’s good to be able to recognize it. You

also have to be careful about using an in place of a in various mathematical operations or as

arguments to functions. Again, you’ll probably do this many times and begin to recognize it quickly.

Then there are the various vector types, which are similar to vectors in ActionScript in that they hold

multiple values of the same type. For example, the type holds two types, holds

three types, and holds four types. Similar types exist for and . Of all these

types, you will probably use most often because it can be used like a class.

Then there are values for holding pixel and image data. The type holds a single channel of a

single pixel. Similarly, there are , , and vector types. This last one, , will be

used most often because it can hold all four channels—red, green, blue, and alpha—of a pixel. And

among the , , , and types, is most useful for the same reason.

In the ActionScript type, you need to use array notation to get at the individual elements in

the list, like so:

Pixel Bender vector types are much more user- friendly. For example, to get at the first element of a

 value (the red channel), you don’t have to write ; you just write . Similarly,

the green, blue, and alpha channels can be accessed by the , , and properties, respectively.

The values of a variable can likewise be accessed with its and properties.

Actually, all four- element vector types have the following properties, regardless of what types they

hold:

366

CHAPTER 9

These properties represent the four elements of the vector. So refers to the same thing as

, or even . It makes more sense to use the rgba values when using pixel types and

use the xyzw values when using floats.

You can rewrite the preceding example’s function as follows:

Furthermore, you can access any two or more of the single element properties by combining them

like so:

This lets you do complex combinations such as the following:

Here we make a value consisting of 1 on the red channel, 0 on the green channel, and 1 on

the blue channel—a purple color. We assign that to . But this leaves without any alpha

channel, so we assign that directly.

Even more powerfully, you can mix and match the , , , and values any way you want. For example,

in the following, I swapped the green and blue channels when assigning to :

This results in getting 1, 1, 0 for its , so you get a yellow rectangle. You can do the same thing

another way:

367

PIXEL BENDER

This swaps red and green on before assigning it to on , resulting in a cyan color. This swap-

ping around of vector elements is known as swizzling and can be used with very simple syntax for

powerful image processing.

Getting the Current Pixel Coordinates
One important bit of information that you do have when evaluating a pixel is the position of the pixel

you are evaluating. You can get at that with the built- in function . This returns a value,

consisting of an x, y coordinate. Because every pixel will have a different coordinate, you can now use

this data to color each pixel differently, instead of just assigning the same value to every pixel. You can

download the following example from the book’s website at (it is available as

the file):

The important parts are in bold. First we color the pixel opaque black; then we get the current pixel

coordinate as a value named . In the last line, we multiply by .2 to slow down the

wave a bit and then take the sine of that value. This will give us a value from –1.0 to +1.0. Multiply that

by .5 to get a range from –0.5 to +0.5; then add .5 to get a range from 0.0 to 1.0, which is the correct

range for a pixel channel value. Finally, assign that to . This will make the red value of each pixel

vary smoothly according to the x position, giving you the picture you see in Figure 9-2.

368

CHAPTER 9

 Figure 9-2. Pixel Bender gradient bars

We can then do the same thing for the y- axis, as you can see in the next example, available as the

 file:

This gives you the image shown in Figure 9-3.

369

PIXEL BENDER

 Figure 9-3. Double bars

Now, suppose that you want to change multiple channels at the same time. For example, you want to

make black and white bars, so you want to the red, green, and blue channels to change equally. You

might try something like this:

This is pretty wasteful, so you could do something more like this:

370

CHAPTER 9

This lets you do the calculation just once and then assign the output to each channel. But there’s even

a simpler way, as seen in the next example, available as :

If you make a vector value, passing in only a single value, Pixel Bender will fill all the elements of the

vector with that one value. Thus, the , , and of get the same value, resulting in grayscale verti-

cal bars, as you can see in Figure 9-4.

 Figure 9-4. Grayscale bars

371

PIXEL BENDER

The Pixel Bender Language Reference, which should have been installed when you installed the Pixel

Bender Toolkit, describes all the various built- in mathematical and geometric functions available to

you. Play around with some of them and see what kind of interesting patterns you can make. Next

we’ll look at how to vary values at run time.

Parameters
A Pixel Bender shader that consists of completely hard- coded values would have limited usefulness.

Suppose that you were making a shader that blurred an image. You would have to make one shader

for a slight blur, another for a medium blur, and yet another for a strong blur. Fortunately, Pixel

Bender allows you to vary certain values at run time. These special values are called parameters. In

their simplest form, they are declared just like any other variable, with the added keyword

in front:

When you add a numeric parameter and run the shader within the Pixel Bender Toolkit, you’ll see

a slider appear in the top- right area of the toolkit. If you add a parameter of type , you’ll see a

check box. Let’s try it. The next example is available in the file:

Running this should give you a slider like that shown in Figure 9-5.

372

CHAPTER 9

 Figure 9-5. Parameter slider in the Pixel Bender Toolkit

Here we create a parameter called . We multiply by this value before feeding it to the

 function to create the sine wave. Now you can adjust the size of the vertical bars by moving

the slider back and forth.

If you make a parameter of a vector type, you will get multiple sliders grouped together, as you can

see in the next example, available for download as :

373

PIXEL BENDER

Because the parameter is a value, you’ll get four sliders, as you can see in Figure 9-6.

 Figure 9-6. A four- channel slider

Move the sliders around to adjust the color of the resulting image. Of course, you’ll need to move

slider 3 (alpha) up at least a little bit to see any changes at all.

374

CHAPTER 9

Advanced parameters

When you create a parameter, it will default to minimum and maximum values of 0.0 and 1.0, and a

starting value of 0.0. For some parameters this might be fine, but in many cases you’ll want to choose

other values for maximum, minimum, and starting values. For this purpose, you can use parameter

metadata to affect these settings to look like this:

Important syntax to note: the metadata comes directly after the variable name, and the semicolon

goes after the metadata. Mess that up, and Pixel Bender will complain.

The settings consist of , , and , which are self- explanatory. Follow that

with a colon, the value you want to set it, and then a semicolon. The preceding example makes the

slider go from 0.0 to 100.0 and starts it out at 50.0.

The following example uses two parameters to create a checkerboard pattern (the file is

):

375

PIXEL BENDER

First we get the current coordinate with . We divide it by and take the floor of that

value. For example, if the width of the image is 500 and is 100, it results in values from 1 to 5.

Note that we need to cast to a float in order to divide by it.

Then we do the same thing for the y- axis. We take the modulus of each value and 2.0 (modulus is

what is left over if you divide a value by some other value). Taking the modulus of an integer and 2

results in 0 if the integer is even; it results in 1 if the integer is odd. The operator is an exclusive OR.

It means that if either one of the conditions, but not both, is , it will return . If this condition

is , we color the pixel white; otherwise, we color it black. The result is a checkerboard pattern.

You can adjust the slider to change the size of the squares (or rectangles) that make up the pattern.

Sampling the Input Image
So far we have been using the input image only to provide an area to work with. But at its heart, Pixel

Bender is an image- processing language, meaning it processes images. (And they pay me to write this

stuff!) So naturally it needs to provide a way to get at the data of the image. It does this through a

couple of different sampling functions (sampling means to get the pixel value of an image at a spe-

cific location).

The simplest sampling function is . This takes an image and a value that rep-

resents an x, y position in that image, finds the pixel in the image that is closest to that point, and

returns its value.

So now we can go back to that original default shader code that Pixel Bender spit out, and actually

understand it:

376

CHAPTER 9

We are passing in , which is the input image, as the first parameter; and passing in ,

which returns the –based coordinates of the current pixel, as the second parameter. Suppose

that we are evaluating pixel 100, 100. This will look at pixel 100, 100 in the source image and return

its value. Thus, pixel for pixel, the output image is exactly the same as the input image. Of course, we

can alter it to sample a different pixel from the current pixel we are evaluating. When we do this, we

can start to move pixels around from their original positions and create various distortions. The next

example, available as , does just that:

Instead of simply sampling the current pixel, this shader offsets the x, y coordinates by a certain

amount. This is done by taking the sine of the current x and y positions, reduced somewhat and mul-

tiplied by a certain amount. The reduction is done by the parameter, and the multiplication is

done by the parameter. The result is what you see in Figure 9-7.

377

PIXEL BENDER

 Figure 9-7. A glass tile effect

Linear sampling

I mentioned that there are a couple of different types of sampling. So far, we’ve just seen

. Again, this takes the x, y coordinate that is passed in and finds the closest pixel to it.

Take a look at Figure 9-8.

Figure 9-8. All three
sampled points will
get the value of the
middle pixel.

378

CHAPTER 9

The figure shows a closeup of a nine- pixel area. Suppose that the middle pixel is at location 100, 100.

The three crosshairs show three different points passed in to . Maybe the top- left one

is something like 99.7, 99.6; the one on the right is 100.4, 99.9; and the bottom one is 99.8, 100.5.

All are nearest to pixel 100, 100, so they would get the same values. Although this is a pretty simple

method of sampling and probably pretty quick, it can result in some blockiness (as you can see in

 Figure 9-9, which is a closeup of an image saved from the shader).

 Figure 9-9. Blockiness resulting from

If you are running into this kind of thing in your shaders, you can try the other sampling method:

. Actually, if you look in the documentation, you’ll see there are three sampling methods

listed: , , and . But actually, is just an alternate name for

; they are really the exact same function.

The way works is to take a sort of weighted average of the four nearest pixels. For

example, in Figure 9-10 you can see the crosshair representing the point passed in.

 Figure 9-10. The
sampled point will
get a weighted
average of the four
nearest pixels.

379

PIXEL BENDER

The four gray pixels represent the four pixels that will be sampled. They aren’t actually averaged per

se, but bilinearly interpolated. In other words, the pixels that are closest to the sample point will be

weighted more heavily in the average than the pixels that are farther from it. So you get a much

smoother blend between similar sample points.

To see this in action, simply change the line in from this:

to this:

or this:

This gets rid of the blockiness that was present before, and gives you smooth gradients, as you can

see in Figure 9-11.

 Figure 9-11. A smoother gradient produced by

Let’s do one more deformation before looking at how to actually use shaders in Flash.

Twirl Shader for Flash
In the sample shaders included with the Pixel Bender Toolkit is a twirl filter that spins the pixels around

a given point. Unfortunately, this is written using several features that are not available when export-

ing shaders for use in Flash. So let’s make one that will work in Flash.

The file is , and you can see it here:

380

CHAPTER 9

381

PIXEL BENDER

There are three parameters:

 The parameter specifies the point around which the twirl effect will take place.

Remember that Pixel Bender does not have any information such as image size, so there is no

concept of stage width and height as there is in Flash.

 The parameter determines how much the image will be twirled around the center

point.

 The parameter determines how much of the image will be affected. The shader will

affect only a circular area around the center point, defined by this radius.

In the function, we get the position of the current pixel being evaluated and the dis-

tance from that pixel to the parameter by using the built- in function. We also define

a value for because it is not otherwise available within Pixel Bender:

Next we have an statement, which is about the only real control structure available to you when

creating shaders for use in Flash. There are no arrays, or loops, or statements. The

limitations will make you more creative! Hopefully. Anyway, if the is less than the , we

calculate the twirl. If not, we just pass through the source image pixel as is.

Then we get into some math. We get the component distances from to on the x- axis and

 y- axis, and use that to get the between the two:

Now we want to add to that to perform the distortion. How much we add takes a bit of expla-

nation. Here’s the line again for reference:

First we take . The value of will be somewhere between 0.0 and , so

 will range from 0.0 to 1.0. Multiply this by , and it will go from 0.0 to 3.1459. Taking

the sine of this value gives us a smooth curve from 0.0 to 1.0 and back to 0.0. Finally we multiply it by

the value and add it to the , which means that at the center of the effect there will be no

distortion. Halfway out to the radius will be maximum distortion, and we’ll be back to no distortion at

the edge of the radius.

382

CHAPTER 9

Now we have a distance and an angle. We then find the point located at that angle and that distance

from the center and sample that point on the source image. This is the value that we use as an

output. You can see the result in Figure 9-12.

 Figure 9-12. The shader in action

You now know the basics of how to create shaders and some of the techniques involved. Searching

around the labs and developer center at or even just a search on the Web should give

you additional techniques and lots of sample Pixel Bender files to learn more from. Also, don’t limit

yourself to just Pixel Bender material. Pixel Bender is based on the Open GL shader language GLSL.

Although there are some differences, you should be able to pick up some tips and techniques from

reference materials on that language.

At any rate, I trust that you are on your way to creating some cool shaders with the Pixel Bender

Toolkit. Now let’s look at how to use them within Flash.

Using Pixel Bender Shaders in Flash
As covered in the introduction to this chapter, Pixel Bender shaders can be used in four possible ways

within Flash:

 Filters Blend modes

 Fills “Generic number crunching”

383

PIXEL BENDER

We’ll cover the first three here. Using shaders for high- speed generic math calculations is a bit too

broad and is (as of this writing) very much an experimental subject.

Using shaders in Flash requires three basic steps:

 1. Exporting the shader in a format Flash can read

 2. Loading or embedding the shader into a Flash movie

 3. Creating a shader instance within Flash and using that shader as a fill, filter, or blend mode

So let’s go through the steps. First we’ll export the shader from the Pixel Bender Toolkit. Open up the

 file created earlier for this example. Exporting the shader for Flash is as easy as

going to the File menu and choosing Export Kernel Filter for Flash Player. Use the default name, which

should be the same as the kernel file you just loaded. Save it in a location where your Flash movie

can access it. It will be saved with a extension (which always makes me think “peanut butter and

jelly,” but that’s another story).

Now we need to create a Flash movie to utilize this shader. We’ll create a document class that can be

used with Flex Builder, Flash CS4, or any other method of coding and compilation that you prefer.

Loading shaders versus embedding shaders

To use a shader in Flash, you’ll need to either load it in at run time or embed it when compiling the

movie. I prefer embedding for a few reasons. First, you don’t need to provision the shader along with

your SWF as it is compiled into the SWF. Second, you don’t have to wait for it to load because it is avail-

able as soon as the SWF loads. This makes it a lot easier to code, at least when developing and testing.

Of course, loading a shader in does have the benefit that if you change the shader at some point, you’ll

just need to replace the online version and will not need to recompile any SWFs that load it in.

At any rate, I’ll show you how to load shaders first and then embed them.

We start by creating the basic framework you use to load other content in, such as XML, using a

and a event handler. You can download the completed file as :

384

CHAPTER 9

One important thing to note is that we set the loader’s data format to binary because we are loading

in binary data. Also make sure that the shader file is in the same location as the final SWF so it

can be loaded or adjust the path of the URL as necessary.

Now that the shader data is loaded in, we need to make a object from it. This is an instance of

the class. The loader’s property will contain the binary shader bytecode.

You pass this into the constructor of the shader like so:

You need to do this step no matter what you are using the shader for: fill, filter, or blend mode. Let’s

use it as a fill.

Using a shader as a fill

We do this with the method, , passing in the shader you want to use. You

can then draw whatever you want, and—just like a solid fill, gradient fill, or bitmap fill—the shape you

draw will be filled with the pattern created by your shader. Here’s the completed class in full:

385

PIXEL BENDER

If all goes well, you’ll have drawn a rectangle filled with a checkerboard pattern.

Good enough. We’ll look at how to set parameters and some other things soon, but first let’s look at

how to do the same thing with embedding. For this we will use the metadata tag to compile the

shader right into the SWF so it will not need to be loaded. This is the same as embedding an external

bitmap, SWF, font, and so on. Here’s the basic setup for that, available as :

386

CHAPTER 9

Note that you have to set the to m”. Also, don’t forget to put

the file in the same directory as the source document class or otherwise adjust the path to it so

it can be found by the compiler.

Now you’re ready to create a shader the same way you created one in the last example. But now the

bytecode is contained in the class, so we make an instance of that and pass it to the

shader constructor:

Now you can use the shader instance in a , just like before. Here’s the whole class

again:

To me this is much easier than loading, which is why I prefer it. But at any rate, the rest of the tech-

niques in this chapter can be used no matter which method of getting the shader into your SWF you

use. First let’s look at accessing shader metadata.

Accessing shader metadata in Flash

Once you have a shader instance in Flash, you can access the metadata that you set while creating the

shader in the Pixel Bender Toolkit. You do this through the property of the shader itself. This is

an instance of the class. From this, you can access the , ,

, and metadata properties you set when creating the shader. You can also access

the of the shader itself, which is the name of the kernel you wrote. These all come through as

strings. Just add the following lines to the last example to see this in action:

387

PIXEL BENDER

This traces out like so:

Although you won’t always need this, it’s good to know you have access to it. It could be very useful

in creating a tool that allows you to load and apply different shaders because you could list this data

out in the interface.

Setting shader parameters in Flash

In the Pixel Bender Toolkit, any time you created a parameter you were given sliders or perhaps a check

box for altering those parameters in the toolkit itself and seeing the results. In Flash, of course, you won’t

see sliders or check boxes, but you do need some way to affect those parameters via code. This again is

done through the shader’s property. But it’s not quite as straightforward as you might hope.

Each parameter you created in your shader is a property on the shader’s property. So, for our

checkerboard shader, there will be this:

and this:

Now you might think that you can just set them with a line of code like this:

Go ahead and try it if you want, but it won’t work. It won’t throw an error or anything, but it doesn’t change

the parameter, either. You need to go one step deeper into the property of the parameter:

388

CHAPTER 9

But wait, there’s more! The property wants an array of values, not just a single value. Remember

that a parameter can be one of the vector types that could consist of up to four values. So even if you

are passing just a single value, you need to pass it in as an array, like so:

Finally, this passes through the value to the parameter as expected. In the preceding example, this will

result in something that looks like Figure 9-13.

 Figure 9-13. Checkerboard pattern produced with a fill

Try changing the parameter as well.

Transforming a shader fill

The , like some of the other fill methods, has a second parameter of type

. You can use it to scale, rotate, or translate the shader as it is drawn. If you look up

the class in the Flash help files, you’ll see that you can rotate a matrix by a certain angle with

the following parameters, where is the angle you want to rotate, in radians:

Of course, as Seb (this book’s tech reviewer) pointed out, you could just say this:

389

PIXEL BENDER

So now you know two ways of doing the same thing! Always good. Using this data, we can rotate the

shader by any angle as we draw it like so:

This rotates the shader by 45 degrees (PI / 4 radians) as it draws it, displaying what you see in

 Figure 9-14.

 Figure 9-14. Checkerboard pattern with a rotation matrix

390

CHAPTER 9

You can, of course, similarly scale, translate, or even skew a shader fill by using different parameters

for the matrix.

Animating a shader fill

Here’s where you see the real power of parameters to make shaders dynamic. The idea is quite simple:

draw a shader fill, change a parameter, apply it again on the next frame, and so on. The next example shows

a very simple example, again using the checkerboard pattern (the file is available as):

391

PIXEL BENDER

Here we create properties for an angle and speed on the x- and y- axis. We add the speed to the angle

on each frame and take the sine of that value. Multiply it by 50 and add it to 55, and you get values

ranging from 5 to 105. These are fed into the and parameters of the shader. Clear the

graphics and redraw the shape with the shader fill and you have animation.

Specifying a shader input image

In the previous examples, the shaders produced a pattern based purely on mathematical formu-

las. But what if you want to use another shader like the example? That shader really

is an image- processing shader because its pixel outputs are directly dependent on an input image.

Let’s go ahead and see what happens if we try to use it. The next example can be found in the

 file:

392

CHAPTER 9

If you run this program as is, you’ll get an error message—The Shader input src is missing or an unsup-

ported type—because the shader is trying to sample pixels on an image that doesn’t exist. The good

news is that we can simply pass it an image to use as a source image.

First we need to get a into the file. I included a photo of a good friend of mine and

embedded it in the class:

We can then make an instance of this embedded image, which will be of type . The

will be accessed through the property of that . We assign this to

, and the shader now has an input image to sample. The results are shown in Figure 9-15.

393

PIXEL BENDER

 Figure 9-15. The shader used as a fill

Note that the in is not some magic value. It comes directly from this line

in the shader kernel code:

Had we named the input image with some other variable name such as , we’d have to reflect

this in the ActionScript:

And that covers just about all you need to know about shaders used as fills. As a matter of fact, I

covered most of what you need to know about the class in general. I’ll cover using shaders as

filters and blend modes next, but everything just covered is fully applicable to those subjects as well.

Using a Shader as a Filter
Using a shader as a filter is, if anything, easier than using it as a fill. Let’s use the shader

again, but instead of an image, let’s prove that we can use it on any display object, even a text field.

The next file is called :

394

CHAPTER 9

Here we create a text field and fill it with some random text. In the very last line, we set the text field’s

 property to an array containing a new , passing in the shader we just created.

Couldn’t be more simple!

395

PIXEL BENDER

Using a Shader as a Blend Mode
This final use case is a bit different from the others. In fact, we’ll need to go back and make a new

shader that will work correctly when used as a blend mode.

First of all, your blend mode shader needs to have two input images: one for the background and one

for the foreground. You need to define them within the kernel, but on the Flash side of things it is

handled automatically—whatever display object the shader is being applied to will be passed in as the

foreground, and whatever display object it is on top of will be passed in as the background. Actually,

what happens is this: when you apply a blend mode to any display object, that object’s

property is set to . This generates a bitmap representation of the display object as it exists and

passes that through to the shader as a source image.

There are also some limitations of what you can do within the shader. You can’t do fancy sine waves,

checkerboard patterns, or distortions as with the other shaders. They will work in the Pixel Bender

Toolkit, but won’t do a thing once you use the shader as a blend mode. What you are basically left

with is the ability to sample the current pixel from both input images and then combine them in what-

ever way you want. The following file () demonstrates this:

First we declare two variables, fore and back. It doesn’t matter what you name them. The first

variable declared will receive the background image, and the second one will receive the foreground

image.

396

CHAPTER 9

In the function, we sample both images at the location. Up to this point is

basically what you would probably do for any shader to be used as a blend mode. After that, you can

combine those two pixels whatever way you want. In this case, I’m mixing the two based on the

parameter, which allows you to mix all the channels separately. To test this in the Pixel Bender Toolkit,

you’ll have to load in two images via the File menu. The first image you load will be the background,

and the second one will be the foreground. You can test the effect by playing with the sliders created

by the parameter.

Now, back into Flash (this file is available as):

Here we embed and instantiate two bitmap images and put them on stage. We create a new shader

based on the shader we just created, set some values, and assign that shader directly to

the property of the topmost bitmap. You should see something like Figure 9-16.

397

PIXEL BENDER

 Figure 9-16. Two images blended with the shader

If you used blend modes before, you might be used to assigning a string value to the prop-

erty. Actually, setting a shader to the property of a display object automatically sets the

 to .

Try changing the parameters and see that the shader behaves the same way as in the toolkit.

Summary
This chapter covered a lot in a short space. At least enough to get you up and running with creating

shaders and using them in Flash. Now it’s up to you to come up with some cool and useful ones. I’m

looking forward to seeing them.

399

In Chapter 8 of Making Things Move I wrote about a subject called easing. I called

this type of easing simple easing because it was quite easy to implement and had

limited power and flexibility. This type of easing consists of having an object and a

target location for that object to move to. On each frame you calculate the distance

between the object and the target and move it one- half (or some other fraction) of

that distance. The object moves smoothly into place, slowing down as it arrives at

the target.

In that chapter I made reference to Robert Penner’s easing functions and suggested

that you look into them, (referring to them as advanced easing). This was a subject

I would have liked to write about back then, but we ran out of room in that book.

So now I’ve finally gotten around to it. Robert Penner’s easing formulas have been

used extensively, not only in conjunction with the tweening classes provided with

Flash and Flex builder but also with a number of tween engines that have popped up

over the years.

As a quick note: from this point on in the chapter, when I refer to a tween or tween-

ing, I am referring to moving an object or changing some property over time with

code—usually by using some predefined tweening class. It has absolutely nothing to

do with tweening using the timeline.

There are two separate classes published by Adobe: ,

from the classes included with the Flash authoring environment; and

, included in the Flex framework. These classes do essentially the same thing:

TWEEN ENGINES

Chapter 10

400

CHAPTER 10

they take a start value and an end value, and interpolate values between them over a specific time

period. Both were built around Robert Penner’s easing formulas and allow you to do complex eases,

including easing in and out with different formulas, bouncing in and out, specifying the total time an

ease should take from start to end, and so on.

Tweening engines are code frameworks, most of which (also using Robert Penner’s easing formulas)

aim to make tweening easier. I’m not sure how many ActionScript tweening engines there are out

there. I made a list of some of the major ones when I started to write this book. By the time I got to

this chapter, I had to add two or three new engines to that list.

Now, let me tell you what this chapter isn’t.

First, it isn’t meant to be a definitive guide to every ActionScript 3.0 tweening engine out there. Like

so many other chapters in this book, that could be a whole book in itself. And such a book would

be outdated as soon as it was published. Actually, if you want to know more about the background

of tweening engines in Flash, take a look at Chapter 10 of The Essential Guide to Open Source Flash

Development (Apress, 2008). In that chapter, Moses Gunesch gives a history of tweening engines lead-

ing up to his own enormously popular Fuse tweening kit. He then introduces his new project, GoASAP,

which is a framework for creating tweening engines. I originally intended to write about Go in this

chapter, but I think Moses covers it better than I could.

Neither is this chapter intended to be interpreted in any way as a list of the “best” tween engines, a

list of my favorite ones, or any kind of endorsement for any particular engine. They all have strengths,

weaknesses, and different ways of handling things.

Finally, this chapter is not a complete guide to any of the engines mentioned here.

This chapter is an introduction and overview of different types of tweening engines so you can decide

which might be best for your purposes. I tried to get a bit of a range of the different engines in

terms of their approaches to doing tweening, and I cover a few basic tasks using each one. Thus you

can compare and contrast them, and see each one’s strengths and weaknesses. In addition to the

 Adobe- provided classes, the engines I’ve chosen are the following:

 Tweener

 TweenLite/TweenGroup

 KitchenSync

 gTween

Let’s start with the Adobe classes.

The Flash Tween Class
As mentioned, this class is part of the library of classes that gets installed when you install the

Flash authoring environment. It is in the package (along with some other interesting

classes you might not be aware of—all sorts of crazy transitions). But for the purposes of this chapter,

we’re talking about the class.

I assume that you are compiling via the Flash authoring tool, so the package will

automatically be available for you. You can compile these examples using Flex Builder or another

401

TWEEN ENGINES

 mxlmc- based method, but you need to add the file (which can be found in the Flash instal-

lation directory) to your library path. I won’t explain how to do that because it’s different for each

tool, and I don’t think many of you will be going down this road.

The way this class works is that you create an instance of it, passing in an object reference and the

name of some property on that object; an easing function (based on Robert Penner’s easing formulas);

a start and end value for that property; and a duration. Here’s the constructor:

The can be just about any object that has at least one public numeric property. The

parameter is a string representing the name of the property you want to change. For example, if the

 is a and you want to tween the x position of that sprite, you would pass in as the

 (including the quotes).

The is a function defined in one of the classes in the

package. We’ll take a look at these shortly.

The and properties are numeric values. When the tween starts, the property

specified will be set to the value. When the tween is complete, the property will be equal to the

 value.

By default, the specifies how many frames the tween will play across. But the final parameter is

a Boolean value called . It defaults to , meaning that the tween will interpret as

a number of frames. But if you set this last parameter to , will be interpreted as a number

of seconds.

Let’s see it in action. The first example is in a file called , available for download from

the book’s site at :

402

CHAPTER 10

The important lines, which are in bold, are where the tween is created. Note that the moment it is

created, it starts running. You do not have to do anything to make it start. The sprite (which has a red

rectangle drawn in it) moves from an x position of 100 to an x position of 500 in 1 second.

Easing functions

In the example just created, the easing function is defined as . You might be wondering

what that is all about. The easing function parameter determines what formula is used to ease in and

out of the animation. In other words, if you are tweening an object’s position, how quickly does it go

from 0 to full speed, and how quickly does it “brake” to arrive at the target point and stop?

In the package are a number of classes:

Each of these classes has three methods:

The class also has an method.

The methods control how the tween starts and builds up to full speed.

403

TWEEN ENGINES

The methods control how the tween slows down and stops as it approaches its target.

The methods control both of these things.

These methods are called internally by the class itself. You never have to call them yourself. You

just pass the method in as a parameter to the constructor. These methods are what contain the

easing formulas written by Robert Penner.

The example used the method of the easing class. This class creates a linear ease that is

not really an ease at all. The tween starts out at full speed and maintains that speed until the target

is reached—where it stops abruptly. Actually, it doesn’t matter which method of the class you

use—they all result in the same linear behavior.

Well, that’s not too exciting. Let’s see what some of these other methods do. We’ll try first. This

class creates eases that are the same as the eases you get when doing an old- school timeline tween in

Flash and choosing 100% ease in or out. Change the line that creates the tween to the following:

Now you see that the sprite starts out slowly, builds up speed, and stops abruptly. If you try

, you’ll see that the sprite starts out quickly and slows down as it approaches its target, roughly

the same way as the simple easing described in Making Things Move. Try , which

combines easing in and out. This is a pretty professional effect, great for moving all kinds of interface

elements around smoothly. Of course, play around with some of the other parameters. Change the

 or and properties. Try tweening a property other than , such as or .

Try easing from 0 to 1 like so:

The ease class does the same thing as , but with a more pronounced effect.

performs a bit of a springy oscillation while easing in or out. You might want to increase the duration

to see it more clearly:

The class also performs a bit of a bounce, but like the object bounces off a hard surface.

Finally, the class goes a bit in the opposite direction before beginning to move, shoots slightly

past the target, and then eases back to it. Try them out to get a feel for them. Now you know what you

need to know about the easing functions—at least for the Flash class.

Combining tweens

The first example works just fine, but tweens only a single property on a single object. If you’re tween-

ing only one property on an object, and all your tweens are completely independent, you’re all set.

But you’ll probably want to change more than one property of an object at the same time (at least

the x and y position). And sometimes you might want to tween one thing and then start another one

as soon as that tween is done.

Multiple tweens happening at the same time are known as parallel tweens or groups, and tweens

that occur one after the other are called tween sequences.

404

CHAPTER 10

Parallel tweens n the Flash class are pretty simple. Just make a new tween for each property and

object you want to tween. Say you want to move something on the x- and y- axis. Make two tweens

like so:

You can make as many of these as you want. They don’t need to use the same easing function or the

same duration, as you can see here:

Note that the rotation ease uses the ease class and takes four seconds, whereas x and y use

 and three seconds. Note that in these cases, I made additional tween properties to hold these

new tweens:

Sequences are a bit more complex: you need to wait for one ease to finish before starting the next.

To do this, listen for an event that tells you when the tween has completed (the

 event). Suppose that you want the three tweens from the last example to run one after

another instead of all at once. The next class, available in the file, gives a

simple example of how to do this:

405

TWEEN ENGINES

Here we create the first tween and immediately add an event listener for the event.

When this completes, we create the second tween and listen for the same event on that. When that

fires, we create the final tween. I kept it simple here, but in a more complete application you’d also

want to manage your event listeners, removing them if you were done with them, and so on.

If you have a complex interface with lots of things moving around, you can wind up with lots of event

handlers and a nightmare of logic to keep track of. Of course, there are other ways of structuring

something like that, maybe with a single event handler that checks the target of the event and acts

accordingly. But no matter what you do, it will get complicated.

406

CHAPTER 10

It was the desire to solve problems like this that gave rise to the various tween engines discussed later

in the chapter. But before we do that, let’s take a quick look at the class that comes with the

Flex framework.

Flex Tween Class
Although the Flex class is part of the Flex framework, you don’t need to create a Flex project

to use it; you can use it directly in an ActionScript 3.0 project, or even from a Flash CS4–based movie.

However, to use this in a non–Flex- based project, you need to add the file to your

library path. This SWC is located in the folder where your Flex framework is installed. Within that

folder, it’s in the path.

In Flex Builder, you add SWCs through the Project Properties panel, ActionScript Build Path section, and

Library Path tab (see Figure 10-1).

 Figure 10-1. Add SWCs in this dialog box

407

TWEEN ENGINES

Click Add SWC and browse to the file. See Figure 10-2.

 Figure 10-2. Adding the file

In Flash CS4, open up the Publish Settings panel, click the ActionScript 3.0 Settings button, and go to

the Library Path section. See Figure 10-3.

408

CHAPTER 10

 Figure 10-3. Library Path section

Click the + icon to add a new entry to the list, and then click the red icon two spots over to browse to

the file. When you are done, the panel should look something like Figure 10-4.

409

TWEEN ENGINES

 Figure 10-4. The file added to the library path

Adding this SWC to your project does not put the entire Flex framework into your final SWF—only

the classes you reference in your code and any dependent classes (which are not many in the case of

).

The Flex class is a bit different from the Flash one. You don’t supply an object and property to

the tween itself, just a listener object, start and end values, and duration. The listener object should

have methods on it that will be called as the tween updates and when it finishes. These methods

should be named and . Both should take a single argument of type .

Here is the full constructor for :

410

CHAPTER 10

The parameter is optional, and it sets a minimum number of times per second the tween will

run. You can generally leave this at its default value of –1.

 and are optional and allow you to pass in function references that will

be called instead of and . By default, if you have multiple tweens running,

and their parameter is the same, they will all call the same and

functions when they update. These last two parameters let you set up different update and end han-

dlers for each tween.

The next example shows you how to use the Flex class for a simple animation. The class is avail-

able in the file:

411

TWEEN ENGINES

Here we create the new passing in as the listener. Doing so makes the tween look at the

 class itself for the update and end handlers. We set a start value of 100, an end value of

800, and a duration of 1000. Here’s another difference between the Flash and Flex classes.

Although the flash class interprets duration in terms of frames by default but can be forced to

use seconds, the Flex class simply uses milliseconds (1000 milliseconds is 1 second).

Also note that the and values are simply numeric values; they don’t yet relate to any prop-

erty, position, or anything else. They simply get passed through to the and handlers, and

it’s up to you to do what you want with them there.

In the handler functions, these values get passed through as objects instead of numbers, and you’ll

see why in a moment. The first time is called, the value passed through will be slightly

more than the value. The last time it is called, it will be slightly less than the value. When

 is finally called, its parameter will be exactly equal to the value. Here, we simply

cast as a and assign it to . A bit more complex than the Flash class, but

it has a bit more power, too.

Easing functions for the Flex Tween class

Like its Flash cousin, the Flex class allows you to specify an easing function. Here, though, you

don’t do this in the constructor, but instead on the instance after it has been created. Similar to Flash,

these easing functions are methods (, ,) on a set of classes in an easing pack-

age. The package is , and the classes are as follows:

412

CHAPTER 10

These classes are a bit more mathematically oriented than the Flash classes. The , , and

classes are essentially the same as those with the same name in Flash. is equivalent to in Flash.

This leaves us with , , , , , , and . Probably the

easiest way to explain these classes is to point you to Robert Penner’s site, where he has an easing equa-

tion visualizer, which lets you choose an equation and move an object with that formula. It also gives a

visual graph of how the velocity will change over time. The URL for the demo is the following:

Incidentally, if you do not assign an easing function, the default one is . So now let’s

try some other ones. Right after you create the tween, assign an easing function:

Don’t forget to import whatever easing class you are using. I just tried in the last example, which

is the same as in Flash. So this performs a constant speed motion from to . Try a few

others and see how they work. Here’s , which has a very sharp acceleration curve:

It is different from or , which have much more gradual changes in speed.

Multiple tweens

In the Flash class, if you wanted to tween multiple properties of a single object, you had to

make multiple tweens. In the Flex version, you can use the same tween-to- tween multiple values. The

way this works is that instead of assigning single numerical values for the and values, you

assign an array of values. Now you see why these parameters, as well as the value parameters passed

to the and end handlers, are typed as objects: they can be simple numbers or arrays of

numbers. This is shown in the next class, available for download as :

413

TWEEN ENGINES

In the constructor we pass in an array of two values for both and values. Again, they don’t

inherently have any meaning; they are just two numerical values. The class will interpolate

between all elements of the arrays smoothly, and the interpolated values will come in as an array in

the handlers. In the handlers, we can interpret them whichever way we want. In this case, I’m taking

the first element as the x position and the second element as the y position. So I want the sprite to

move from 100 to 800 on x and 100 to 400 on y. Now we are tweening in two dimensions.

Another way of using this class is to simply pass 0 and 1 as and values, and do your

own calculations within the handlers. Something like this:

414

CHAPTER 10

The parameter will now be something between 0 and 1. We multiply that by the total distance

we want it to move and add it to the starting position. This is not quite as straightforward as passing in

direct values, but this method can be extremely useful when you need a lot of flexibility. For example,

say you wanted to have one object fade in while another fades out. Do a 0 to 1 tween and do this in

the handler:

As the value goes from 0 to 1, so does the . But the will go from 1 to 0. Single

tween, dual fade.

Tween sequences

Unfortunately, sequences are not much simpler with the Flex than they are in Flash. The

 package does have additional classes for doing parallel and sequential tweens, but they

are much more tied to the Flex framework itself and are really meant to be used within a Flex- based

application (unlike , which can easily be used by itself).

415

TWEEN ENGINES

When sequencing tweens with the Flex class, you need to wait for the handler to

fire; if you have specified another handler, you also need to wait for it to fire. The next class, as seen

in the file, demonstrates this. This class essentially duplicates the functionality

of the earlier example class . The key points are in bold:

416

CHAPTER 10

The first tween update handler changes the x value, the second changes the y value, and the third

changes the rotation of the sprite. As each tween ends, it creates the next tween.

This code is not too pretty and is for a relatively simple three- part motion. Some fancy interfaces

might have dozens of these synchronized and sequenced tweens. Of course, I didn’t go out of my way

to make the code pretty. There are various improvements you can make and patterns you can apply

that make the code a bit clearer, more concise, and even reusable. And going down this road is how

you end up with a tween engine, which is what I’ll discuss next.

Tween Engines
By now, I think you know why a tween engine is a good thing: it can make coding complex multiple

tweens of multiple properties on multiple objects a lot more manageable. Again, I chose a number

of different engines to take a look at, not because they are my favorite or “the best,” but because

they are fairly popular and demonstrate a range of different approaches to the problems. Some of

them are very developer- oriented and require a fair bit of code to get working. Others are more

 designer- oriented and are easy to work with, but some of the coding conventions would make a

 hard- core developer cry: untyped parameters, generic objects, “magic strings,” function callbacks in

lieu of events, and so on. The engine you use ultimately depends on which one fits best with your

workflow and team and gives you the functionality you need.

Again, the engines covered are as follows:

 Tweener

 TweenLite/TweenGroup

417

TWEEN ENGINES

 KitchenSync

 gTween

Let’s get started with Tweener.

Tweener
The Tweener tween engine has gained a fair amount of popularity over the years. It started as an

ActionScript 2.0 engine and was ported to ActionScript 3.0. Both versions are still available. In fact,

Tweener is at least in part based on an earlier ActionScript 1.0 engine called MC Tween, which was

released in 2003. Tweener was originally written by Zeh Fernando (), but has

had contributions from several others.

To install Tweener, download the source files from the Google code repository:

. The top- level folder of the package is named . Put that folder in the same

folder as the rest of the source files for your project (or in a location where your development envi-

ronment can find it). The main class for the engine is .

The Tweener syntax is pretty easy to get used to. Unlike the Adobe classes, you never make an

instance of the main class, . Instead, you call static methods on . The main method is

; it looks like this:

Both and are typed as . The is the object you want to

affect—usually a movie clip, sprite, or some other display object (although it can be anything with

at least one numeric public property that can be changed). The parameter is

a generic object with various properties that allow you to specify the tween values, easing function,

duration, and so on. So you might call it something like this, which moves the object named to

an x location of 800 in 3 seconds:

Or this, which moves the sprite to an x, y position of 800, 400:

Obviously, this procedure is far simpler than either of the Adobe classes. Any properties you

add to the object will be tweened on the target object. Notice that there is

no starting value. The starting values are presumed to be the target object’s current values for each

tweened property. Also important to realize is that the values specified in are

absolute target values. In other words, the sprite will not move 800 pixels on the x- axis and 400 pixels

on the y- axis. Instead, it will move to location 800, 400.

The generic object is one of Tweener’s strengths and one of the reasons why

many more serious developers might not like it. On one hand, it gives you enormous flexibility, allow-

ing you to tween just about any public numeric property on any type of object. For example, even

though Tweener was written long before Flash 10 was released, you can use it to tween the 3D proper-

ties of a sprite in Flash 10 with no problems whatsoever:

418

CHAPTER 10

On the other hand, because a generic object is used, and you can put any property of any type on

a generic object, you can do all kinds of crazy things that will never work. The compiler will happily

compile it, and you’ll only notice when you start throwing run- time errors—if you have the debug

player installed. For example, you could try a tween like this:

Obviously, is not a property of the class and has no business being there. It will blow up

when you run the SWF, of course, but this will compile without any warning. Furthermore, you can

start passing wrong types in, like so:

Now we all know should be a number, but if for some reason a string winds up getting in there, you

lose all compile time type- checking. This won’t even complain at run time. The sprite simply disap-

pears off screen to whatever numerical x location the string “dog” resolves to. On the other hand,

Tweener is smart enough to convert a number formatted as a string to a number. So the following

works just fine:

Easing functions in Tweener

Easing functions are also specified in the object. And not surprisingly, they are

based on Robert Penner’s equations. However, the classes and methods themselves are hidden. You

just pass in a string describing the type of ease you want; for example:

See the Tweener documentation for a full list of transition strings.

Again, this is probably much easier for a designer who just needs to remember a name, not the class-

path, class name, and method name. But what if you accidentally misspell it: ? It

would compile just fine, and even run just fine, but the easing formula would revert to the default

value, , which you might not notice until several weeks later when the client says that

something about the interface just doesn’t “look as nice” as it used to.

I’m not saying these types of issues are reasons why you should not use Tweener; I’m just pointing

them out as things to be aware of when evaluating the various engines. (Note that Tweener is not the

only engine that uses this type of syntax.)

Multiple tweens in Tweener

Tweens in Tweener are added on a per- object basis. So if you want to tween multiple objects, make

multiple tweens:

419

TWEEN ENGINES

I think this is offset by the fact that you can so easily tween multiple properties on a single object.

Sequences in Tweener

Another benefit of using Tweener is that it starts to make sequences much easier. There are actually

two ways to run one tween after another has completed. First, you can set up an callback

in the object. This is simply a function reference; the function will be called when the

tween is complete. It looks like this:

Here, is a reference to a function that will be called when the tween is done. So when one

tween is done, you might want to add another. I did this in the next demo, which you can download

as the file:

420

CHAPTER 10

When the first tween is complete, is called, which sets up another tween. When that’s done,

 is called, which sets up the last tween. This is a bit easier than setting up sequences in the

Adobe classes, but Tweener offers another way that is even easier: the property.

Another property you can add to is . This is a number in terms of seconds

that Tweener should wait before executing that tween. So you can set up something like it in the next

example (download):

421

TWEEN ENGINES

Here you just set up all your tweens directly. The first one will take three seconds, so we tell the second

one to wait that long before starting. Likewise, we tell the last one to wait six seconds. The result is that

all three tweens play out perfectly in sequence.

One situation to be careful of when using a is tweening the same property of the same object

twice with a . As long as the delay of the second tween is at least as long as the time of the first

tween, both will play out. In this case the sprite will move over to 800 on the x- axis and then move

to 100:

But if the delay of the second tween causes it to cut into the time of the first one, the first tween will

simply be overwritten by the second and not play at all.

Here, the sprite does not move at all for 2.5 seconds and then moves to 100 on the x- axis.

That should give you a pretty good idea of what Tweener is all about. As you can see, it provides some

nice shortcuts to making complex tweens with minimal code and with easy-to- understand syntax. And

there are plenty of other useful features available—just browse through the documentation on the

site listed previously. Some of the more hard- core developers might wince a bit at the looseness of

data types, but for many Tweener is an improvement over the Adobe classes.

TweenLite/TweenGroup
The next package consists of a couple of classes written by Jack Doyle of . You can

get the code from and, like Tweener, simply add the

 top- level folder, , to your project directory or somewhere else where your compiler can to find it.

The main class is in the top level of that package: .

422

CHAPTER 10

If you followed along with the previous section or are already familiar with Tweener, TweenLite should

be very easy for you. According to its author, the goal was to make TweenLite more compact, faster,

and more efficient than tween engines such as Tweener. This chapter also takes a look at ,

which is a dedicated class for making parallel tweens, tween sequences, and other coordinated groups

of tweens.

Like Tweener, you can create a tween by calling a static method on the class; in this case,

:

Here, you pass in the target object as a first parameter and the duration of the tween as the second

parameter. The third parameter is , and like Tweener’s object, it is a

generic object with properties that you want to tween. So the preceding example will move the object

named to an x position of 800 in 3 seconds.

Calling this method will return an instance of the class. You can then use this instance

to further tweak the tween:

But even more intuitively, you can just make a new instance of the class. The constructor has the same

syntax as the method:

Let’s put that all together in a class you can actually run (available as the file):

423

TWEEN ENGINES

The key lines are in bold. You can easily tween multiple properties by adding them to the

object:

Like Tweener, this again opens up the possibility of passing in nonexistent properties or incorrect data

types in the object. So be careful.

Easing functions in TweenLite

Here’s where TweenLite gets a little more programmer- ish. Instead of magic strings for easing func-

tions, it does use method names on various classes, just like the Adobe classes.

Not surprisingly, these easing classes are directly based on Robert Penner’s easing equations (are you

bowing down to him yet?) and are in the package:

Each has three methods: , , and . Like the Adobe classes, you choose

the type of ease by specifying the class and the method. This goes in the object, assigned

to the property:

Make sure to import any easing classes you are using or the entire package.

424

CHAPTER 10

Alternately, because you now have a reference to the tween, you can specify the ease type there:

Multiple tweens in TweenLite

Again, tweening multiple objects generally means making multiple tweens:

This tweens one sprite to 800 on the x- axis, while simultaneously tweening another to 100.

However, you can use to do this in a much more concise manner. The class is

also in the package and should be installed when you install TweenLite. It’s a pretty powerful class

that can be used several ways. If you are tweening a number of objects on the same properties, you can

tween them all at once with the static method. This works just like the

 method, but accepts an array of objects as the first parameter, instead of just a single object:

Here, , , , and (presumably 4 different sprites) will all be tweened to an x position of 800

over the next 3 seconds. Here’s a full class so you can see it in action (you can download this class as

):

425

TWEEN ENGINES

I added a method that allows us to easily create any number of sprites, and then position

and color them in a single line of code. We make four sprites and position them vertically. Then we

pass them all into to start them moving.

Note that returns an instance of , which you can then keep track of and

alter as needed:

Sequences in TweenLite/TweenGroup

I think that the sequencing capabilities in and are what make this package

really shine.

Like Tweener, TweenLite has a property that can be used to delay a tween. But there is a major

difference that actually gives you a bit more flexibility. First, going back to an example with a single

sprite, we sequence three tweens like so ():

426

CHAPTER 10

When you run this, nothing happens for six seconds and then the final tween runs. In TweenLite, any

tween on an object overwrites any previous tween by default—even if you are tweening different

properties and have sufficient delay between the tweens. You’ll remember that Tweener overwrites

only if two tweens share the same property and overlap in time.

Fortunately, you can control this behavior with the property on the object. This

takes a number from 0 to 4, meaning the following:

 0: NONE mode. No tweens are overwritten.

 1: ALL mode. All tweens are overwritten by any new tween on the same object.

 2: AUTO mode. This works like Tweener’s overwrite logic. Only overlapping tweens of the same

property are overwritten.

 3: CONCURRENT mode. Overwrites any overlapping tweens on the same object, regardless of

property.

Unfortunately, the concept of overlapping does not seem to take into account the delay. So even if

you set overwrite to 2 or 3 for and in the previous example, it would still result in only

the last tween running because the first two will be overwritten.

So, to fix the previous file, set the overwrite property to 0, which will ensure that none of the tweens

is ever overwritten:

Note that there is also a class called in the TweenLite package that includes these

values as static properties (that is, , , and so on).

Although it’s a bit more wordy, it does give you some compile- time checking and documentation of

your intentions.

427

TWEEN ENGINES

Another way to sequence is to wait for each tween to finish before starting the next one, which is

almost exactly the same thing done in the earlier example, :

428

CHAPTER 10

We create the first tween and set the callback. When that fires, we create the next tween

and set its callback. In the final callback we create the final tween. Of course, this is more

complex than using a , but in cases when you might need to perform other actions as each

tween finishes, it can be quite powerful. For example, when a navigation element finishes tweening on

the stage, it then needs to populate itself with a callback.

Finally, gives us even more powerful ways to synchronize and sequence tweens. The first

way to do this is to use the property of a object, which can be set to a number

of different modes and affects how the different tweens in a group play out together. For creating

sequences, the most useful one is . Going back to the class we cre-

ated a bit earlier in the section, we can turn the group into a sequence quite easily (the file for this

example is):

429

TWEEN ENGINES

Here we save the in the variable . We can then set the property of the group to

. This causes each tween in the group to happen only when the previ-

ous one has completed. When you run this, you’ll see that as a group the four sprites go one by one

instead of moving across the stage.

Now that’s fine if we have several objects to tween in a sequence, but what if we want to have a single

object tween in several different ways in a sequence (move on the x- axis, move on the y- axis, and then

rotate)?

We can make tweens for all these actions and then make a group that runs them in sequence. You can

see this in the next example, available as the file:

430

CHAPTER 10

At first glance, this seems a bit more complex than just using a because you’re creating an extra

object and setting a property on it. But it is so much more flexible. With a you have to keep

track of the duration of all the tweens in a sequence and make sure that each adds up to the

duration of all the tweens before it. Very easy to make an error! Of course, you could use variables

for the durations and add the variables together to get a , but once you start doing that, it starts

getting just as complex as using a group.

What we’ve touched on here is really only the tip of the iceberg of what is available with and

. And we haven’t even looked at ’s big brother, , which adds a whole bunch

of additional features. If you are doing a lot of complex sequenced tweens, these classes could save you.

KitchenSync
Our next tweening engine is KitchenSync, written by Mims Wright. You can download the project at the

Google code site () as either a source directory package

or an SWC library. I trust that you know how to add source directories and/or SWC libraries to your

build path. If not, see the installation notes page available on the KitchenSync site just mentioned.

The main class of the package is . As a first action in the main

document class of any KitchenSync project, you need to call . The use

of passes in a reference to the document class itself, but really you can pass in a reference to any

display object. KitchenSync uses the display object passed in to listen for events, which it

uses to update the progress of any tweens or time- based actions.

After you initialize the engine, you can make a tween, which is an instance of

. The constructor looks like this:

You can probably guess at most of these, but is the object that you want to tween;

is a string representing the property you want to tween, such as , , ; and

values are numeric values specifying where the property will start and end; and is how long

the tween will last.

An interesting thing about the property is that it can take a number or a string. If you pass

in a number, it is interpreted as milliseconds (so 3000 would be 3 seconds). However, you can pass in

a string like to represent the number of seconds the tween should last. That should be enough

to get by for now, but check the documentation to see the various strings you can use.

Another thing that is different about from all the other tween classes we’ve looked at so far

is that it does not start as soon as you create it. You’ll need to call the method on the

instance, or else your tweened object will just sit there doing nothing.

431

TWEEN ENGINES

Well, that’s enough to get started. Let’s make a KitchenSync tween (the next example is available as

):

The important lines are in bold. We initialize the engine, create a new tween that will move the sprite

from 100 to 800 on the x- axis over 3 seconds, and start the tween. Magic.

Easing functions in KitchenSync

Guess who wrote the easing equations used by KitchenSync? Robert Penner! Yes, but in addition to

the standard functions you’ve seen several times already, Mims has also included a few new classes of

his own:

432

CHAPTER 10

Feel free to experiment with them, but now let’s see how to specify an easing function. Basically,

you just pass it in as the last argument to the constructor. However, there is one more,

 second-to- last optional argument: . If you are not using a , you can just pass in 0 and then

the easing function. The easing classes are in the package and, simi-

lar to the other implementations, they each have an , , and method. So to

use the function, do the following:

Tweening multiple objects/properties with KitchenSync

Unlike Tweener or TweenLite, which allow you to tween several properties with one tween, with

KitchenSync you have to create a new tween for each property. There is a shortcut for making a

new tween: . You take an existing tween and call on it, passing in

another (or the same) target object, and a property string. So you can do something like this:

But this will copy the start and end values as well. In almost all cases, you’ll be using different values

when tweening multiple properties of the same object. So this clone method seems to have limited

usefulness in this case, and you are probably better off just creating a new tween:

Similarly, you’ll need to create multiple tweens to tween multiple objects. Here

might be more useful. See the next example ():

433

TWEEN ENGINES

Each additional tween is a clone of the first with a different target.

Notice that you have to start each tween separately. Some of the more powerful features of KitchenSync

are its action groups, which are similar to the class that’s part of the TweenLite package.

Using an action group, you can synchronize the action of multiple tweens. There are several types of

action groups. To start several tweens at the same time, use the

 class. Pass in any tweens you want to group together in the constructor and then call

 on the group, like so:

434

CHAPTER 10

Again, at first this looks more complex than just calling four times. However, the action groups

make up a lot of the power of KitchenSync. When creating an action group such as ,

you can pass in not only instances of but also other instances of or any

other action group. Thus, you can create complex nested, sequenced animations that you can replay

any time just by calling on the group. You’ll see more of this in the next section.

Tween sequences in KitchenSync

Similar to the other engines you’ve looked at so far, you can create sequences using or by listen-

ing for the completion of a tween before starting the next one. I won’t go through this again because

it’s not too different from the other engines. Far more interesting is using another action group,

, to create sequences.

Using is just as easy as using . The next class, available as

, demonstrates this:

435

TWEEN ENGINES

Here we create the three tweens for three different properties and feed them into a

instance. Start that group, and the whole thing plays out in order.

Remember that you can add a sequence group to a new parallel group to have that sequence run

alongside some other tweens, and vice versa. It can be quite powerful.

KitchenSync is probably a bit more developer- oriented than the two packages you’ve looked at so far.

Whereas with Tweener, you can do just about everything with a single class, and TweenLite has a few

more, KitchenSync is a large framework with dozens of classes, packages, and interfaces. It requires a

bit more of a learning curve, but might fit in well with your workflow and is flexible enough to do just

about anything you want.

gTween
The last engine is gTween by Grant Skinner. Grant is a well- known Flash developer and a good friend

(I’ve mentioned his work several times in this book). As of this writing, gTween has just recently been

released as a public beta, so its application programming interface (API) and workflow might change

by the time you read this, but I think it’s still worth getting a quick overview of the engine.

You can download gTween here: .

The whole of gTween exists in a single class: . The constructor for this

class is as follows:

436

CHAPTER 10

Like the other engines you’ve seen, is the object you’ll be tweening, and is how long

the tween will last. The parameter contains the properties of the object that you want to

tween. This is a generic object and works the same way that Tweener and TweenLite do. However, in

gTween there is a separate parameter, , that lets you customize other aspects of the

tween, such as a or an easing function.

This is enough to get us started. The next example is available as :

Pretty simple. If you’ve followed along with the other engine descriptions in this chapter, there’s really

no explanation needed here. Like Tweener and TweenLite, you can tween multiple properties on an

object just by adding them to the object:

Easing functions in gTween

One thing I admire about gTween is that it doesn’t try to reinvent what already exists. As you can

guess, the engine uses Robert Penner’s equations. But unlike the other engines that copy over all these

classes and functions into new, virtually identical classes and functions, gTween just uses the ones that

437

TWEEN ENGINES

come with Flash and the Flex framework: the ones in the package for Flash

and in the Flex framework.

You pass the easing function to the property of the tween either in the

parameter of the constructor or directly on the tween instance after it is created. Both of the follow-

ing examples set the function to (make sure that you

import whatever class you are using). Here’s the first one:

Here’s the second:

Tweening multiple objects with gTween

As is the norm for most tween engines, using multiple objects means creating multiple tweens. The

 class includes a method to make creating multiple tweens easier. You can pass in a new

target to the method, and the tween will be duplicated for that new target object. The next

class, as the file , demonstrates this:

438

CHAPTER 10

Tween sequences in gTween

Like the other tween engines, you can set up sequences by using the property or by listening

for the completion of one tween to start another one. I demonstrated this enough already and it

wouldn’t be much different here. Some engines have group classes that you can fill with tweens to

create groups. The class takes quite another approach to sequences, however, through the

 property.

Simply put, you can create two tweens and pause the second one. Pass a reference to the second tween

to the first tween’s property. When the first one is done, the second will start. This is probably

much better shown than described, so here’s the next example, as seen in the file:

439

TWEEN ENGINES

Here we create the three tweens and then pause the second and third. Set the

property to , set to , and they all play out perfectly.

Like just about everything else covered in this chapter, this discussion barely scratches the surface

of the full capabilities of gTween, which has a lot of functionality in a single class. Look through the

documentation, which I’m sure will be evolving, to see all the other stuff you can do with it. As a mat-

ter of fact, between the time I wrote this chapter and the time I gave it a final review, another build

of gTween was released. So take this as the briefest of introductions and go to the source to find out

what it’s capable of at the time you read this.

Summary
This chapter has hopefully given you a decent overview of the tween engine landscape. Perhaps you have

a better idea of the different approaches to tweening that have been taken and found one that suits your

needs. Or maybe you even think you can do better and create your own tween engine! Go for it!

And, although I’m guessing that you haven’t been reading this book linearly, this chapter also brings us

to the end of the book. I hope you have. nearly as much fun exploring the different topics we’ve cov-

ered here as I did when researching them, coming up with fun examples for them, and writing them.

At the very least, I trust that one or two of these chapters led you to a research project of your own.

441

properties and default constructor,

171–172

refining the path: corners, 185–189

using in a game, 189–192

avoid method, using with object avoid-

ance behavior, 85–87

AvoidTest.as file, 87–88

Away3D, in ActionScript for Flash, 275

axonometric projection, types of, 102

B
Back class, 403

in mx.effects.easing package, 411

back faces, 344

backface culling, 344

Ball class

collision detection with BEG, 20

collision detection with END, 22

ball objects, hit testing an array of, 19–20

basicCheck() method, 29–31

Battat, James, 240

beginFill/endFill operations, 323

beginShadeFill method, filling Pixel

Bender shader with, 361

beginShaderFill class, using shader

instance in, 386

behaviors

applying multiple to a single vehicle,

73–75

overview of basic, 51

Bitmap class, in ActionScript, 2

BitmapCollision2 class, hit testing with

semitransparent shapes, 9–11

BitmapCollision3 class, 12–13

BitmapCompare class, 3–4

BitmapData class, 2, 212

drawing video to, 209

getting into ShaderFillImage.as file,

392–393

BitmapData.hitTest

comparing two BitmapData objects

with, 2

getting into the code, 164–176

heuristics, common, 176–181

heuristic function in, 158

node, 157

open list in, 158

parent node in, 158

pathfinding with, 157–181

starting coding of, 164–181

terms defined, 157–158

visualizing, 160–181

acceleration, 52

acceleration method, calling in Eular.as

file, 244

ActionScript, Vector types, 365

ActivityEvent.ACTIVITY, adding listener

for, 209

ActivityEvent class

as a noise-activated switch, 206–207

dispatched by Microphone class, 206

activity level, visually graphing, 202–203

activityLevel property, for Camera class,

209

addChildToFloor method, 130

addChildToWorld method, 130

Adobe labs and developer center, web

site address, 382

advanced terrain, 193–194

alignment behavior, 51

in flocking, 93

angle, performing distortion with, 381

arrays, sorting by depth property,

125–127

arrivalThreshold, adding setter and get-

ter to, 76

arrive behavior, 51

slowing things down with, 75–77

artificial intelligence, 49

artificial life, 49

assignBallsToGrid method, 24–25

AStar.as file, AStar class in, 168–171

AStar class, 167–171

implementing, 181–189

Numbers and Symbols
2D distortion, playing with, 335–337

2D flash.geom.Point object, converting

to flash.geom.Vector3D object,

303

3D

basics in Flash 10, 276–281

carousel, example, 298

containers, 286–287, 294

coordinates and screen coordinates,

303–307

depth sorting, 283–285

engines for Flash, 275

field of view and focal length,

298–303

isometric block, creating, 119–121

pointing at something, 307–309

positioning, 282–287

rotation of display objects, 288–298

screen coordinates and, 303–307

setting the vanishing point, 278–281

triangles and, 340–344

3D positioning

depth sorting, 283–285

in Flash, 282–287

3D rotating globe, creating, 348–351

2001: A Space Odyssey, computer con-

trol in, 198

(hash sign), preceding tile definitions,

151

// (double slash), preceding comments in

code with, 151

A
A* (A-Star) algorithm, 157–181

basics, 157

closed list in, 158

common heuristics, 176–181

cost, 157

description, 158

f used in, 157

g used in, 158

INDEX

INDEX

442

using for nonbitmaps, 11–14

signature for, 8–9

BitmapData object, specifying transpar-

ency support for, 2

bitmap fills

moving points around and distorting

image, 334

triangles and, 331–332

bitmap filters, fixing color variations

with, 216

bitmaps

fill with triangles and uvt data, 334

for collision detection, 5–9

uv mapping of, 333

videos and, 212–213

BitmapTriangles.as file

for filling set of triangles with a bit-

map, 331–332

stretching a couple of vertices in, 332

BitmapTrianglesUV1.as file, 333–334

BitmapTrianglesUV2.as file, 335–336

BitmapTrianglesUV3.as file, 337–339

blend modes

using Pixel Bender shaders as, 361

using shader as, 395–397

blendShader property, assigning shaders

to, 361

blur filter, convolution matrix used for,

230

bool data type, values, 365

Bounce class, 403

in mx.effects.easing package, 411

bounce method, 65

BoxTest.as file, 121–122

adding box to world in, 122–123

buildPath method, calling, 176

C
Camera and Microphone Access dialog

box, displaying, 200

CameraBitmap.as file, creating a Bitmap-

Data with, 212–213

Camera class

setMode method, 211–212

video as input handled by, 209–235

Camera.getCamera, 210

getting reference to camera with, 209

cameras and microphones, as alternate

input devices, 198

Camera settings dialog box, calling to

choose a camera, 210

CameraTest.as file, 209–210

canMove method, 138–139

Carousel.as file, 296–298

caurina.transitions.Tweener class, main

class for Tweener engine, 417

_cbRect sprite

changing enterFrame handler in,

224–225

drawing color bounds rectangle into,

215

center to pos, getting component dis-

tances from, 381

ChannelBlend.pbk file, 395–396

channels, changing multiple at same

time, 369–370

checkCollision() method, calling, 27

Checkerboard.pbk file, 383

creating checkerboard pattern with,

374–375

check() method

checkGrid() method called by, 36

for drawing a grid, 34

checkGrid() method, 25–26

checkOneCell() method

comparing all objects in a cell with, 26

one-dimensional vectors used by, 36

_checks vector, created by check()

method, 34

checkTwoCells() method

calling four times, 26–27

one-dimensional vectors used by, 36

Circle class

adding properties to, 87

representing obstacles to avoid, 85

circle Sprite, 11

Circular class, in mx.effects.easing pack-

age, 411

Clapper class, creating, 207–209

ClassName_PropertyName, 153

cloneWithTarget, using, 432

closed list, in A* (A-star), 158

cohesion behavior, 51

in flocking, 92

collision detection, 138–141

advanced, 1–47

bitmaps for, 5–9

implementing grid-based, 16–20

not just for collisions, 42–47

with the Ball class, 20–22

CollisionGrid class, creating, 31–37

CollisionTest.as file, 139–141

color bounds rectangle, capturing areas

of change with, 224

color channels, manipulating, 216

color transformations, with ColorTrans-

form class, 216

ColorChooser.pbk file, code for four-

channel slider, 372–373

ColorTracking.as file, for video, 214–215

ColorTransform class, color transforma-

tions with, 216

cols variable, 339

com.gskinner.motion.GTween class, 435

commands vector, 353

comment lines, 151

complex flocking behavior, behaviors

that make up, 93

constrain method

from VerletPoint, 258

in Verlet integration, 257

test class utilizing it, 258–259

containers

adding floor and ceiling to, 291

adding squares to, 290

moving square around in, 289

rotating cube, 291

rotating with display objects in them,

288

Contrainer3D.as file, 286–287

convolution filter, function of, 229

ConvolutionFilter class, creating,

229–235

ConvolutionFilter constructor, 230

corners, refining the path, 185–189

cost

calculating in A*, 159–160

in A* (A-star), 157

costMultiplier property, adding to Node

class, 193–194

counterclockwise paths, in action, 326

Create New filter button, writing pixel

shader with, 361–365

Cubic class, in mx.effects.easing package,

411

CurveDrawing.as file, 317–318

curves, drawing in Flash 10, 317–319

curveTo method, in Flash MX and Flash

CS3, 312

CURVE_TOs, points consumed by, 320

D
data types, within Pixel Bender, 365–367

data vector, 313, 353

depth of field, 298

depth property, sorting an array by,

125–127

depth sorting, 123–129

creating forest with, 284–285

INDEX

 443

DepthTest2.as file, revised DepthTest2

class in, 127–129

destPoint, in threshold method, 225

Diagonal heuristic, 178–179

results from, 180

dimetric projection, isometric vs.,

102–103

DisplayObjects, looping through the vec-

tor of, 34–36

dist/radius*PI, getting a smooth curve

with, 381

Doyle, Jack, TweenLite classes written

by, 421

drawGraphicsData method, 351–357

drawGrid() method, 24, 34, 192

drawing commands, using, 312–314

drawing program, example of simple,

314–317

draw method, 118

contents of, 317

DrawnIsoBox class, 119

example using, 121

DrawnIsoTile.as file, DrawnIsoTile class

in, 116–117

DrawnIsoTile class, in DrawnIsoTile.as

file, 116–117

DrawnIsoTiles, laid out in a grid, 118

drawPath method

drawing curves with, 317–319

of flash.display.Graphics class, 312

practical use of, 314–317

drawTriangles method

culling parameter, 344

drawing two triangles with, 328

uvtData parameter to, 333–337

vertices needed for two triangles, 329

E
easeIn methods, 402

easeInOut methods, 403

easeNone method, in None class, 402

easeOut methods, 403

easing, advanced, 399

easing functions

assigning after tween is creating, 412

in FlashTween.as file, 402

in gTween, 436–437

in KitchenSync tweening engine,

431–432

EdgeTracking.as file, 230–232

Elastic class, in mx.effects.easing pack-

age, 411

end node, calling buildPath method, 176

endFunction, for mx.effects.Tween, 410

enterFrame event, 192

enterFrame handler

checking activity level with, 206

revised for analyzing areas of motion,

226

ENTER_FRAME listener, 41

Euclidian heuristic, 178

results from, 179

used in A*, 157

Eular.as file, 242–244

scaling things in, 244–246

Eular integration, 237

alternatives to, 239–240

in time-based motion, 241–246

numerical integration and, 238–240

real world motion and, 238–239

Eular, Leonhard, Eular integration named

after, 237

evade behavior, 51, 80–81

evaluatePixel function

required for pixel shader, 363

using, 364–365

using in TwirlFlash.pbk file, 381

evenOdd, string in winding parameter,

325

Exponential class, in mx.effects.easing

package, 411

external graphics, using, 141–145

F
Fernando, Zeh, Tweener originally writ-

ten by, 417

field of view

and focal length in 3D, 298–303

in a wide-angle lens, 299

perspective distortion with, 302–303

fieldOfView property, setting, 301

fills, using Pixel Bender shaders as, 361

filters

using Pixel Bender shaders as custom,

361

using shader as, 393–394

findColor parameter, 214

findPath method, 192

assigning from the start node,

159–160

in AStar class, 158, 172

Fireworks

another isometric object, 143

a simple isometric tile in, 142

_flakes array, in Snow.as file, 234

Flash

accessing shader metadata in, 386–387

setting shader parameters in, 387–388

steps for using shaders in, 383

twirl shader for, 379–382

using Pixel Bender shaders in, 382–393

Flash 10

3D basics, 276–281

3D in, 275–309

drawing API, 311–357

new properties in 3D API, 277

Flash 10 3D, setting focal length or field

of view in, 301

Flash 10 drawing API

drawing curves in, 317–319

paths in, 312

simple drawing program in, 314–317

wide drawing commands and NO_OP,

319–322

winding in, 322–326

Flash CS4

adding SWCs in Library Path section,

407

rotation of a plane compiled in, 278

Flash movie, ways to start using data,

201–202

Flash MX

limited drawing commands in, 311

release of ActionScript drawing API

with, 311

flash.display.Graphics class, drawPaths

method of, 312

flash.display.GraphicsPathCommand

class, 312

flash.display.GraphicsPathWinding class,

static constants of, 325

flash.display.Matrix parameter, using, 388

flash.display package, classes in, 351–352

flash.display.TriangleCulling class, 344

flash.geom.Matrix class, importing for

flipping video image, 213

flash.geom package, classes in, 307–309

flash.geom.Vector3D object, converting

to 2D flash.geom.Point object,

303

Flash Tween class, 400–406

vs. Flex Tween class, 409

FlashTween.as file, 401–402

FlashTweenSequence.as file, 404–405

flash.utils.getTimer method, measuring

elapsed time with, 242

flee behavior, 51

subtracting calculated force from

_steeringForce with, 71–72

INDEX

444

GTweenDemo.as file, 436

GTweenMulti.as file, 437–438

GTweenSequence.as file, 438–439

Gunesch, Moses, GoASAP project by, 400

H
heuristic, as part of A* algorithm, 157

heuristic function, in A*, 158

hinges, doing swinging arm with,

271–272

HistoryDraw.as file, 354–357

hit testing

irregularly shaped objects, 2–4

semitransparent shapes, 9–11

Star class, 6–7

stars, 13

with a large number of objects, 14–47

hitTestObject method, 2

hitTestPoint method, 2

horizontal edge-detecting filter, creating,

230–232

I
if statement, using in TwirlFlash.pbk file,

381

IGraphicsData interface, classes that

implement, 351–352

IGraphicsData vector

passing to drawGraphicsData, 353

pushing a stroke and a path into, 353

IGraphicsFill interface, graphics fills that

implement, 352

images

analyzing edges in, 229–235

flipping for video, 213

ImageSphere.as file, for rotating globe,

348–351

ImageTube.as file, 340–342

indices parameter, using in drawTriangles

method, 329–330

indices vector. See indices parameter

input devices, alternates to keyboard,

197–235

input image, sampling, 375–379

input property, for pixel shader, 363

inSight method

adding class variables and accessors

to, 95

calling, 94–95

int data type, integers held by, 365

integration, ideal goal of, 238

get path accessor, grabbing path array

with, 176

getColorBoundsRect

passing picked color pixel to, 215

tracking color pixels with, 214

getColor method, 192

getMicrophone method, 199

getPixel method, 2

getting color pixel choice with, 215

getTimer() method, 30

using in Eular.as file, 244

GlassTile.pbk file, for a glass tile effect,

376

globalToLocal3D method, 303

graphics. See isometric graphics

graphics data, 351–357

GraphicsDataDemo1.as file, 353–354

GraphicsPath class, 353–354

GraphicsPath object, creating, 353

GraphicsSolidFill class, using, 352

GraphicsStroke class, 352

graphicSymbol property, in tile defini-

tion, 152

GraphicTest.as file, 143–145

GraphicTile.as file, 141–142

GraphicTile class, 141–142

in action, 145

grid

coding for collision detection, 20–28

testing and tuning, 28–31

Grid class, in A*, 164–167

Grid.as file, 164–167

downloading, 164

grid-based collision detection, imple-

menting, 16–20

_grid.check(_balls), calling, 39

GridCollision2 class, using, 37–41

GridCollision class, 22–23

making it a reusable class, 31

_grid vector, created by check() method,

34

GridView class, creating, 181–184

Gridview.as file, downloading GridView

class as, 181

gs.easing package, easing classes in,

423–424

gs.TweenLite class, in TweenLite/Tween-

Group package, 421

gTween tweening engine

by Grant Skinner, 435–439

tweening multiple objects with,

437–438

tweening sequences in, 438–439

web site address, 435

Flex Builder, rotation of a plane com-

piled in, 278

Flex Tween class, 406–416

easing functions for, 411–412

sequencing tweens, 415–416

vs. Flash Tween class, 409

FlexTween.as file, using Tween class for

simple animation, 410–411

FlexTweenSequence.as file, 415–416

FlexTweenXY.as file, 412–413

float data type

assigning constant float values, 365

floating-point numbers held by, 365

float values, assigning constant, 365

flock of birds, main characteristics of, 92

flocking behavior, 51, 92–97

method for, 93–94

flocking birds (boids), Craig Reynolds’,

49–50

FlockTest.as file, 95–97

fl.transitions.easing package

classes in, 402

gTween easing functions for Flash, 437

methods in classes in, 402

fl.transitions package, Tween class in,

400–406

fl.transitions.Tween class, published by

Adobe, 399

focal length

and field of view in 3D, 298–303

of a lens, 299

focalLength property, setting, 301

focal point, 299

for loop, using, 39–41

Foundation ActionScript 3.0 Animation:

Making Things Move!

coordinate rotation chapter in, 108

for information about vectors, 51

Foundation ActionScript 3.0 Image Ef-

fects, by Todd Yard, 357

frames, combining two with difference

blend mode, 224

friends of ED download page, web site

address, 52, 110, 242, 277, 313

G
gain

adjusting for microphone, 202

changing via code, 202

Game class, 189–192

Game.as file, 167, 189–192

generic number crunching, using Pixel

Bender shaders for, 361

INDEX

 445

ints

list of commands stored in vector

of, 312

using directly, 312

isometric 3D, moving in, 132–138

isometric box, 104

isometric depth sorting, 123–129

isometric graphics, creating, 104

isometric objects, 113–123

isometric projection, 99–153

defined, 101

vs. dimetric, 102–103

isometric tile maps, 146–153

isometric transformations, 104–112

isometric world class, 129–132

IsoObject

adding properties to, 132

setting up keyboard listeners for, 133

IsoObjects.as file, introduction to,

113–116

IsoProjection.swf file, for demonstrating

transformations, 105

IsoTransformTest.as file, 111–112

IsoUtils class, 110–112

IsoUtils.isoToScreen method, 116

IsoUtls.as file, 110–111

IsoWorld.as file, 129–130

IsoWorld class, using, 130–132

J
Jakobsen, Thomas, 253

K
kernel

defining, 363

special variables specified in, 364

KitchenSyncDemo1.as file, making a

KitchenSync tween with, 431

KitchenSync.initialize(this), calling in

KitchenSync project, 430

KitchenSyncMultiple.as file, creating mul-

tiple tweens to tween multiple

objects with, 432–434

KitchenSyncSequence.as file, for using

KSSequenceGroup, 434–435

KitchenSync tweening engine

constructor for making a tween, 430

easing functions in, 431–432

main class of package, 430

shortcut for making new tween in,

432–434

tweening multiple objects/properties

in, 432–434

tween sequences in, 434–435

web site address, 430

written by Mims Wright, 430–435

L
language version metadata, 363

LineAndCurveDrawing.as file, 319–320

Liner class, in mx.effects.easing package,

411

linear sampling, 377–379

lineStyle, setting, 313

LINE_TOs, points consumed by, 320

lineTo method, in Flash MX and Flash

CS3, 312

local3DToGlobal method, 303

LocalGlobal.as file, code for, 303–306

look ahead time, calculating, 78

M
makeBalls method, 23

using a vector instead of an array, 38

makeGrid() method, 23–24

makePaletteArrays method, for fixing

video color variations, 216–219

makeSprite method, 425

makeTriangles method

calculating an angle in, 342

looping through rows and cols in, 339

Making Things Move, 1

Manhattan heuristic, 178–179

map file, sample of, 150–151

MapLoader class

doing its thing, 152

in MapLoader.as file, 146–150

MapTest class, embedded symbol in, 153

MapTest.as file, example of, 151–152

matrix, specifying width and height of,

230

_mic.activityLevel, tracing out, 201

microphone

accessing and reading activity level,

201

adjusting gain for, 202

prompting user to choose, 199–200

Microphone class, 199

Microphone dialog box

adjusting gain in, 202

prompting microphone selection in,

200

microphones and cameras, as alternate

input devices, 198

Microphone settings panel, calling,

199–200

MicrophoneTest class, code for, 199–200

minFPS parameter, for mx.effects.Tween,

410

Minority Report, computer control in,

198

motion, analyzing areas of in video,

221–228

MotionTest.as file, setting up keyboard

listeners with, 133–135

MotionTest2.as file, setting up keyboard

listeners with, 135–138

MotionTracking.as file, code for, 223–224

mouse, pointing at in 3D, 308–309

mouseDown handler, 316

moveTo method, in Flash MX and Flash

CS3, 312

moving rectangle, uses for, 226–228

mx.effects.easing package

classes in, 411–412

gTween easing functions in Flex

framework, 437

mx.effects.Tween class

constructor for, 409

published by Adobe, 399

N
namespace metadata, 363

narrow angle (telephoto) lens, long focal

length, 300

negative culling, using, 344

negative winding, 322

NetStream, attaching microphone to,

201

New Kernel Filter, writing pixel shader

with, 361–365

nextTween property, using in gTween

tweening engine, 438

node

calculating cost of, 159–160

in A*, 157

Node class, in Node.as file, 167–168

node cost, calculating in A*, 159–160

Node Garden, by Jared Tarbell, 42

Node.as file, Node class in, 167–168

NodeGardenGrid class, code for, 45–47

NodeGardenLines

changing parameters in, 44

original code for, 42–44

with stage color set to black, 44

INDEX

446

nodes

checking for on open list, 175

getting from the grid, 174

noise-activated switch

creating crude security system with,

207

uses for, 207–209

nonbitmaps, using BitmapData.hitTest

for, 11–14

None class, easeNone method in, 402

NON_ZERO winding, rules applied to,

326

nonZero, string in winding parameter,

325

NO_OP command, 312

and wide drawing commands,

319–322

Numbers, list of data stored in vector

of, 312

_numChecks property, updating, 27

numerical comparison operators, using

in threshold method, 225

numerical integration, 237–273

O
object avoidance behavior, 51, 84–88

objects

depth sorting of, 123–129

hit testing irregularly shaped, 2–4

hit testing with a large number of,

14–47

_oldTime, storing movie run time in, 244

onEnterFrame handler, 201

simplified, 306–307

onEnterFrame method, 70, 192, 298

adding rotation on another axis with,

290

for sound-controlled game, 205–206

using, 308

in Verlet integration, 258

onEnterFrame() method, 41

onLoad method, function of when map

file loads, 151

onMouseMove handler, 316–317

onMouseUp handler, 316

onResize method, 281

onTweenEnd method, 409

onTweenUpdate method, 409

open list

finding lowest cost node on, 176

in A*, 158

OpenSteer, web site address, 50

org.as3lib.kitchensync.action.KSParal-

lelGroup class, starting several

tweens at once with, 433–434

org.as3lib.kitchensync.easing package,

easing classes in, 432

outCoord function

getting current coordinate with, 375

returning float2 value with, 367

output property, required for pixel

shader, 362

OverwriteManager class, in TweenLite

package, 426

P
paletteMap method, fixing color varia-

tions with, 216

PaperVision3D, in ActionScript for Flash,

275

parallel tweens, 403

parameters

advanced, 374–375

in Pixel Bender, 371–375

settings for advanced, 374

setting shaders in Flash, 387–388

syntax for declaring, 371

parameter slider, in Pixel Bender Toolkit,

371

parent node, in A*, 158

pathfinding, 155–195

basics of, 155–156

Pathfinding.as file, 184–185

path following behavior, 51, 89–92

paths

defined, 312

drawing curves in, 317–319

simple drawing program in, 314–317

PathSketch.as file, creating, 314–317

PathTest.as file, 91–92

_pathThreshold accessor, implementa-

tion of, 90–91

Penner, Robert

KitchenSync easing equations by, 431

tweening classes built around easing

formulas, 399

perspective, in images, 298–303

perspective projection, defined, 101

PerspectiveProjection class

setting vanishing point for all objects

in movie, 279–280

using, 279

perspectiveProjection property, setting

properties on, 301

Pixel Bender Language Reference, built-

in functions described in, 370

Pixel Bender shaders

using in Flash, 382–393

ways to use, 361

Pixel Bender Toolkit, 359–397

data types available in, 365–367

declaring variable in ActionScript, 364

declaring variable in C, 364

twirl shader for Flash, 379–382

vector types, 365–367

what it is, 359–361

pixel coordinates, getting, 367–371

pixel shaders

elements needed for, 362–363

required kernel metadata for, 362

ways to use, 361

writing, 361–365

pixels, analyzing for video, 213–235

Point3D.as file, web site address, 110

pointAt method, 307–309

point objects, storing position, velocity,

and acceleration in, 242

Position3D.as class, code for, 282

positive culling, 344

positive winding, 322

projection, defined, 101

Project Properties panel, adding SWCs

through in Flex Builder, 406

pursue behavior, 51, 77–80

PursueEvadeTest.as file, for testing pur-

sue and evade methods, 80–81

PursueTest.as file, creating three vehicles

with, 79–80

Pythagorean Theorem, for moving from

specified node to goal node, 159

Q
Qbert, 99

Quadratic class, in mx.effects.easing

package, 411

Quadric class, in mx.effects.easing pack-

age, 411

Quintic class, in mx.effects.easing pack-

age, 411

Quintic.easeInOut, in mx.effects.easing

package, 412

R
radius variable, in ImageTube.as file, 342

rag-doll physics systems, 253

INDEX

 447

simple easing, 399

Sine class, in mx.effects.easing package,

411

Sine.easeInOut, default in mx.effects.

easing package, 412

SineWave1.pbk file, 367

SineWave2.pbk file, 368–369

SineWave3.pbk file, 370

SineWaveParam.pbk file, 371–372

SingleLine.as file, 313–314

size property, for IsoObjects, 116

sketch program, creating one with his-

tory, 354–357

Skinner, Grant, web site address, 229

Snow.as file

creating, 232–233

for making nearly black pixels com-

pletely black, 233–235

sort function, writing custom, 294–296

sortShapes method, called after each

rotation, 294

sound, as input in Flash, 199–203

sound volume, running recording of

reaching microphone, 202–203

sound-controlled game, creating,

203–205

SoundFlier class, creating sound-con-

trolled game with, 203–205

SoundFlier game, activity events in,

206–209

sourceRect, in threshold method, 225

stage.align, setting, 278

stage.frameRate, setting in Eular.as file,

244

stage.scaleMode, setting, 278

Star class, 5–6

hit testing, 6–7

web site address, 5

stars

drawing to corresponding bitmap, 13

hit testing, 13

start node, assigning g from, 159

SteeredVehicle class

accessors for variables, 83

new properties added to, 89

new threshold property for, 76

new variables for, 83

providing accessors to new properties,

89–90

test class for, 77

Vehicle class extended by, 67–92

vs. SeekTest class, 77

search method, in AStar class, 172–174,

186–189

secondObject parameter, 8

seek behavior, 51

in action, 70

moving vehicle to specific spot with,

69–71

using, 68

SeekFleeTest1.as file, 72–73

SeekTest class vs. SteeredVehicle class,

77

semitransparent shapes, hit testing, 9–11

separation behavior, 51

in flocking, 93

setLoopback method, setting micro-

phone’s input with, 201

setMode method, in Camera class,

211–212

setMotionLevel, for Camera class, 209

setPixel method, 2

setPoint method, in Verlet integration,

257

setQuality method, in Camera class, 212

setSilenceLevel method, 208–209

ShadeFilter, assigning to any display

object, 361

shader fill

animating, 390–391

transforming, 388–390

shader input image. See also input image

specifying, 391–393

shader metadata, accessing in Flash,

386–387

Shader object, making from shader data,

384

ShaderAsFilter.as file, 393–394

ShaderBlendMode.as file, 396–397

ShaderFillAnim.as file, animating a

shader fill with, 390–391

ShaderFillDemo.as file, 383–384

ShaderFillEmbed.as file, 385–386

ShaderFillImage.as file, specifying shader

input image with, 391–392

shaders. See also Pixel Bender shaders

exporting for Flash, 383

loading vs. embedding, 383–384

setting parameters in Flash, 387–388

ShaderFillDemo.as file, 383–384

steps for using in Flash, 383

using as blend mode, 395–397

using as fill, 384–386

using as filter, 393–394

_shapes array, 294

Record Volume slider, adjusting micro-

phone gain with, 202

Regular.easeInOut method, 403

Regular.easeOut method, 403

Regular method, 403

render method, in Verlet integration,

257

res (resolution) variable, 339

Reynolds, Craig, 92

Steering Behaviors for Autonomous

Characters paper by, 49

RK2 (Runge-Kutta second order integra-

tion), 240

averaging velocity and acceleration of

states, 247

calculating acceleration at end of

step, 246

calculating position and velocity, 246

coding, 246–249

how it works, 240–241

RK4 (Runge-Kutta fourth order integra-

tion), 240

coding, 249–253

getting code working in ActionScript,

250–252

pseudocode for, 249–250

weak links, 253

RK (Runge-Kutta) integration. See Runge-

Kutta integration

RotateAndPosition.as file, 288–289

RotateAndPosition2.as file, makeShape

method in, 292–294

rotating tube, code for, 346–348

rotation matrix, checkerboard pattern

with, 389

rows variable, 339

Runge-Kutta integration, 240–253

S
sampleLinear method, 378–379

smoother gradient produced by, 379

sampleNearest function, 375

sampling

input image, 375–379

methods, 378

scaling, in Eular.as file, 244–246

screen coordinates

and 3D coordinates, 303–307

transforming to world coordinates,

110

screenToIso method, using, 121–122

INDEX

448

SteeredVehicle.as file

explanation of, 68–69

without any behaviors coded, 68

steering behaviors, 49–97

coined by Craig Reynolds, 49

vector properties useful for, 52

Steering Behaviors for Autonomous

Characters paper

by Craig Reynolds, 49

web site address, 50

steering force, calculated by a steering

method, 68

steering methods, how they work, 68

_stickE variable, declaring in Verlet

structure, 267

sticks. See Verlet sticks

Strong ease class, 403

SWCs, adding in Flex Builder, 406

T
Tarbell, Jared, Node Garden by, 42

target object, using, 417–418

terms, defined in A*, 157–158

terrain

advanced, 193–194

implementing different costs for,

193–194

Test3D.as file, creating and compiling,

277

test node

assigning f, g, h, and parent right

away, 175

determining cost of, 174–175

pushing onto closed list, 175

pushing onto open list, 175

setting parent of to current node, 175

The Essential Guide to Open Source Flash

Development, chapter about

tweening engines in, 400

threshold function, breaking down an

image with, 216

threshold method

code for, 225

using, 225–228

tile definitions, 151

tile maps

example of simple, 146

isometric, 146–153

tiles

in isometric and dimetric projections,

102–103

making unwalkable, 155

TileTest.as file, 118

time-based motion, Euler integration in,

241–246

tooClose method

adding class variables and accessors

to, 95

calling, 94–95

tracked colors, using as video input,

219–221

transformations, pseudocode for creat-

ing, 108

transparency option, setting, 2

triangles

and 3D, 340–344

bitmap fills and, 331–332

creating more, 337–339

drawing, 327–328

drawing two with just four points,

330–331

in computer graphics, 326–351

passing to drawTriangles method, 327

Triangles1 class, 327–328

Triangles1.as file, 327–328

Triangles2 class, drawing two triangles

with, 328

Triangles2.as file, drawing two triangles

with, 328

Triangles3.as file, drawing two triangles

with four points with, 330–331

trimetric projection, 102

tube, rotating, 346–348

Tween class

alternate way of using, 413–414

in Flash, 400–406

Tween classes, published by Adobe, 399

tween engines, 399, 416–439

covered in book, 400

GoASAP framework for creating, 400

TweenerDelay.as file, 420–421

TweenerSequence file, for sequencing in

TweenLite, 427–428

TweenerSequence.as file, 419–420

Tweener tween engine, 417–421

easing functions in, 418

multiple tweens in, 418

sequences in, 419–421

syntax for addTween method, 417

web site address, 417

TweenEvent.MOTION_FINISH event, 404

TweenGroup. See TweenLite/TweenGroup

TweenGroupDemo2.as file, for turning a

group into a sequence, 428–429

TweenGroupDemo3.as file, 429–430

tweeningParameters object

adding delay to, 420–421

using, 417–418

TweenLite class, calling TweenLite.to on,

422

TweenLiteDemo1.as file, 422–423

TweenLite/TweenGroup, 421–430

easing functions in TweenLite, 424

multiple tweens in TweenLite, 424–425

sequences in, 425–430

web site address for code, 421

tweens

combining, 403–406

multiple, 412–414

shortcut for making new in Kitchen-

Sync, 432

starting several at one time, 433–434

synchronizing and sequencing in

TweenGroup, 428

tween sequences, 403, 414–416

twirl shader, for Flash, 379–382

TwirlFlash.pbk file

parameters for, 381

twirl shader for Flash, 379–381

TwistFlash shader, in action, 382

U
unit vector, 52

unshift, adding new node to start of ar-

ray with, 176

unwalkable tiles, 155

updateBalls() method, 41

updateFunction, for mx.effects.Tween,

410

update method, 64

calling, 67

updateScreenPosition method, 116

uvtData parameter, 333–337

the t in, 345–346

the u and v values in, 333

V
vanishing point, setting in 3D, 278–281

vector, defined, 52

Vector2D class, 51–60

Vector2D.as file

explanation of, 60

web site address, 52

Vector3D class, shipped with Flash CS4,

52

INDEX

 449

KitchenSync tweening engine, 430

Node Garden, by Jared Tarbell, 42

OpenSteer, 50

Penner, Robert, 412

Skinner, Grant, 229

Steering Behaviors for Autonomous

Characters paper, 50

Tweener tween engine source, 417

TweenLite/TweenGroup, 421

while loop, in AStar class, 174

wide-angle lens, with short focal point,

300

wide drawing commands, and NO_OP,

319–322

WIDE_LINE_TO command, 321

WIDE_MOVE_TO command, using, 322

WindingDemo.as file, 323–324

altered version, 324–325

winding parameter, in paths, 322–326

wire frame tube, example of, 342

world coordinates, transforming to

screen coordinates, 105–109

WorldTest.as file, using IsoWorld class in,

130–132

wrap method, 65

Wright, Mims, KitchenSync tweening

engine written by, 430–435

XYZ
Yard, Todd, Foundation ActionScript 3.0

Image Effects by, 357

_yVelocity property, keeping track of

vertical velocity with, 205

Zaxxon, 99

as input, 209–235

ColorTracking.as file, 214–215

flipping the image, 213

setting width and height after creat-

ing, 211

size and quality, 211–212

specifying size when creating, 211

testing, 215–216

Video class, creating, 211

video input, using tracked colors as,

219–221

Video object

adding blur filter to, 216

viewing input of camera via, 209

video objects, controlling with hand mo-

tion, 226–228

W
wander behavior, 51, 81–84

wander method, 82

calling, 67

WanderTest.as file, 83–84

web site address

Adobe labs and developer center, 382

“Advanced Character Physics” by

Thomas Jakobsen, 253

book download page, 199

downloading BitmapCompare class, 3

downloading Grid.as file, 164

Doyle, Jack, 421

Fernando, Zeh, 417

friends of ED, 277

friendsofEd downloads for book, 31,

52, 110, 242, 313, 367

gTween tweening engine, 435

Vehicle class, 60–64

explanation of, 64–65

VehicleTest.as file

creating, 66

web site address, 66

velocity, adding to ball position in Eular.

as file, 244

vendor metadata, 363

Verlet integration, 253–272

key feature of, 254

concept of constraints between

objects, 254

constraining points in, 258–259

points, sticks, structures, and hinges

in, 254

VerletPoint class

constraining points in, 258–259

creating, 255–257

in action, 257–258

VerletStick class, 259–261

calculating distance between two

points in, 261–262

changing onEnterFrame method in,

263–264

Verlet sticks, 259–264

making, 262–263

Verlet structures, 264–271

cleaning up the code, 268–271

creating square, 266–267

creating triangle, 264

giving spin to, 268

video

analyzing areas of motion, 221–228

analyzing colors, 214–219

analyzing pixels, 213–235

and bitmaps, 212–213

