
A 6UIO(TO MAPL(

www.allitebooks.com

http://www.allitebooks.org

Springer Science+Business Media, LLC

www.allitebooks.com

http://www.allitebooks.org

lRNI(KAMlRI(H

A6UID(
TOMAPL(
With 411llustrations

Springer

www.allitebooks.com

http://www.allitebooks.org

Emic Kamerich
Katholieke Universiteit Nijmegen
Toemooiveld 1
Nijmegen, 6525 ED
The Netherlands
emic@sci.kun.nl

Library of Congress Cataloging-in-Publication Data
Kamerich, Emic.

A guide to Maple / Emic Kamerich.
p. cm.

Inc1udes bibliographical references and index.
ISBN 978-1-4612-6436-1 ISBN 978-1-4419-8556-9 (eBook)
DOI 10.1007/978-1-4419-8556-9
1. Maple (Computer file). 2. Mathematics-Data processing.

1. Title.
QA76.95.K355 1998
510' .285'53-dc21 98-30559

Printed on acid-free paper.

Maple is a registered trademark ofWaterloo Maple, Inc.

© 1999 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc. in 1999
Softcover reprint ofthe hardcover Ist edition 1999
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission ofthe publisher(Springer Science+Business Media, LLC),
except for brief excerpts in connection with reviews or scholarly analysis. U se in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the
Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Anthony K. Guardiola; manufacturing supervised by Nancy Wu.
Camera-ready copy prepared using the author's TeX files.

9 8 7 6 5 432 1

ISBN 978-1-4612-6436-1 SPIN 10122799

www.allitebooks.com

http://www.allitebooks.org

Short Reference List

This list contains only the most basic Maple commands. AH commands ex­
plained in this book can be found in the Catehword Index.

Elements of commands that must be typed in literally are
printed in a typewriter font, as in the present line, or
in a bold font.
Elements of eommands that stand for Maple expressions to be ehosen by the user
are printed in an italie font, as in the present line.

1 special characters

\!, o, %%,

" .. "

"

:=

=
%1

%%%

ti nil

terminator for commands

the same, but without printing resuIts to
the screen

used in assignments

used in equations, not in assignments

abbreviation (in printed resuIts)

refer to last, second last, and third last re­
suIt in Release V.5 (in command lines)

refer to last, second last, and third last re-
suIt in releases before V.5

" a pair of double quotes makes the se­
quence of characters to a string in Re­
lease V.5

, a pair of single back quotes makes the
sequence of characters to a symbol in
Release Y.5 and to a string in earlier re­
leases

, a pair of single forward quotes prevents
evaluation

used for concatenation of strings or in
floating point numbers

range

* obligatory muItiplication sign

faculty

& prefix for special operators such as &*

postfix, indicating a property of a vari­
able (in printed results)

www.allitebooks.com

http://www.allitebooks.org

vi

2 general

{

Short Reference List

-) in function detinitions, where the ex-
pression after -> is taken literally

@ composition of functions

@@ repeated composition of a function

parentheses as usual in mathematics,
also for arguments to functions

] list

} set

, separator in sequences, lists, sets, and
between arguments of functions

_ underscore, used for internal names

$ repeat

•• for type testing of arguments to proce­
dures

? on-line help

constants e is entered as exp (1) , 7r as P i, i as 1

eval (expr, 1) evaluates expr only one step

as sume (expr , prop) assumes the property prop for the
-otherwise undetined-variable or ex­
pression expr

expr mod n ca1culates expr modulo n

sqrt (expr) square root of expr

wi th loads package

readlib reads a procedure from the standard li­
brary

www.allitebooks.com

http://www.allitebooks.org

3 substitution, subexpressions vii

3 substitution, subexpressions

s ubs (old=new , expr) substitutes new for old in expr.
If expr is a name referring to a procedure
or matrix, etc., apply

5ub5 (old=new, eval (expr))
For simultaneous substitution, use a list
of equations.

eval (expr, old=new) the same, but without replacing formal
parameters, such as x in diff(f(x),x)

simplify (expr, equation) simplify expr to side relation equation,
possibly with optional third argument
[<vars> J, indicating to which variables
the expression should be reduced

op (expr) yields the operands of expr;
cannot be applied to a sequence

op (n, expr) yields the nth operand of expr;
cannot be applied to a sequence

select rrom sequence by indexing: if 5015 is a sequence, then
5015 [2]

yields the second element of the
sequence 5015

subsop (n=exprl , expr2) substitutes exprl for the nth operand of
expr2

map (proced, expr) applies the procedure proced to alI the
operands of expr (possibly a list or set),
composing the results according to the
structure of expr

map2 (exprl ,proced, expr2) applies the procedure procedto exprl as
the first argument and the operands of
expr2 as second argument, composing
the results according to the structure of
expr2

coeff (poly, x, n) gives the coefficient of x n in the polyno­
mialpoly

numer yields the numerator of a quotient

denom yields the denominator of a quotient

lhs,rhs yield the left- and right-hand side of an
equation

www.allitebooks.com

http://www.allitebooks.org

viii Short Reference List

4 manipulating numbers and formulas

evalc (expr) tries to convert a complex algebraic ex­
pression expr into something of the form
a + b 1, where a and b are real expres­
sions, supposing that alI names in expr
refer to real numbers

con vert (expr, polar) converts a complex expression expr into
a polar form of type polar(a, ifJ), to be
interpreted as ae<l>i

collect (poly, x) describe poly as a polynomial in x

expand (expr) expands powers, multiplications, and
function calIs in expr

factor (expr) factors expr over the rational numbers

normal (expr) converts an algebraic expression expr
into one quotient and applies some ele­
mentary simplification rules

combine (expr, option) acts contrary to expansion of
functions, if the type of combination is
given as opt ion.
Possible options:

exp,ln,power,trig,Psi,
radical,abs, signum, plus,
atatsign,conjugate,plot,
product,range,polylog,
cmbplus,cmbtms,cmbpwr,
polylog

simpli fy (expr, option) simplifies expr, according to the rules of
the given option.
Possible options:

power,commonpow,radical,
RootOf,polar,infinity,max,
atsign, atatsign

collections of functions: trig,
arctrig,

or the name of a function such as
exp, In, Dirac, hypergeom, etc.,

for composition offunctions: atsign,
for repeated compositions: atatsign

convert (expr, option) action depends on option; many options
are available; consult the on-line help

convert (expr, RootOf) converts radicals in expr into RootOf
expressions

www.allitebooks.com

http://www.allitebooks.org

6 solving equations ix

convert (expr, radical) converts each RootOf expression in
expr into a radical by choosing one of
the values that is found with
allvalues, ifpossible

convert (expr, rational) converts aH the floating-point numbers
occurring in expr, into rational numbers;
optional third option exact

testeq (exprl =expr2) executes a numerical test on the given
equality. Not to be used with radicals
and RootOf expressions.

5 graphics and numeric al calculations

graphics for two-dimensional plots use plot, for
three-dimensional plots use plot3d.
Additional procedures in the packages
plots and DEtools.

plot (expr, x=a .. b) plots a graph of an algebraic expression
expr as a function in x, where x ranges
from a to b. Many options and varia­
tions possible.

plot3d(expr,x=a .. b, y=c .. d) the same for three-dimensional plots

plots [display] ({ }) combine several plots into one pic ture

evalf (expr, n) approximate aH the real numbers in expr
by floating-point numbers. Calculations
are executed to n digits.

6 solving equations

Digi ts variable that determines accuracy of
floating-point calculations when not
specified explicitly

sol ve (equa, x) tries to solve equa for the variable x ex­
actly

solve ({ equal ,equa2},{x,y}) tries to solve the system {equal,equa2}
for the variables x and y exactly (also
possible with larger systems)

www.allitebooks.com

http://www.allitebooks.org

x Short Reference List

f sol ve (equa, x) tries to find an approximation to one of
the solutions of equa for x (in case of a
polynomial: to all solutions), also to be
used for systems of equations

fsolve(equa,x,x=a •• b) tries to find one approximation to a so­
lution of equa for x within the segment
[a,b]

7 ca1culus

lhs,rhs yield the left and right-hand side of an
equation

alI values (expr) yields all possible values if the RootOf
expressions contained in expr are solved
as polynomial equations; it replaces
equal RootOf expressions on several
places by the same value if not an option
independentisadded

dsol ve solves differential equations: see calcu­
lus

di f f (f(x) , x) differentiates the expression f(x) in re­
spect to the variable x with result: an ex­
pression

D(f)

diff (f(x,y),x,y,y)

D[1,2,2](f)

differentiates the function f with result:
a function

calculates EixEi;y2 f(x, y)

calculates the function

(x, y) ~ EiXEi;y2 f(x, y)

int(expr,x)

int (expr,x=a • • b)

sum(expr, k=a • • b)

product (expr, k=a • • b)

infinity

numerical integration

J exprdx

J: exprdx

L:~ expr

n~ expr

is denoted as inf ini ty in Maple

evalf (lnt (expr,x=a .. b)) calculates a
numerical approximation to J: expr dx
without trying to calculate the integral
symbolically

www.allitebooks.com

http://www.allitebooks.org

7 calculus xi

series (expr, x=c, n) calculates a series expansion of expr,
perceived as afunction in x, aroundx=c.
The order can be determined with the aid
of the last argument, n in this case, but
may be lower than this number. The re­
suIt is of type series, usually.

convert (sr, polynom) converts the expression sr, supposed to
be of type series, into a (generalized)
polynomial, omitting the order term

Order variable that determines the order of se­
ries calculations, when the order is not
specified otherwise

Iimi t (expr, x=a) tries to calculate limx=a expr; a may
be infini ty or -infinity; an option
may be added: left, right, real, or
complex

dsol ve tries to solve a differential equation or
set of differential equations

differential equation is denoted in terms like
diff(f(x),x,x)=-f(x) or
D(D(f)) (x)=-f(x)

initial conditions are given like
f (0)=1,
D(f) (O)=a, etc.

- > (arrow: combination of "minus" and
"greater than"), used for construction of
functions, for instance

x->x A 2,
(x,y)->x*cos(y)

The expression at the right-hand side of
the arrow is taken literally.
For functions of more than one variable,
parentheses around the parameters are
obligatory.

unappIy (expr, vars) constructs a function in vars described
by the result of evaluating expr

? ini f cns yields a listing of an mathematical func­
tions known to Maple at start-up

piecewise yields piecewise-defined expression

xii Short Reference List

8 linear algebra

start linear algebra by reading the linalg package:
with(linalg):

create matrix or column vector, for example
matrixC [[1,2,3] [4,5,6]])
vector([1,2,3])

diagonal matrix for example diag(a, b, c)

evaluate matrix A (or vector) with eval (A) or,
if it contains assigned names,
map(eval,A)

matrix arithmetic requires always evalm, for instance
evalm(5*A h 2+B&*C)

Use &* for multiplying a matrix with a
matrix or vector, use * for scalar multi­
plications.

transpose vector or matrix with transpose

dotprod (v, w) dot product of v and w

copy (A) creates a new matri x or vector object in
memory with the same entries as A

det (A) determinant of A

eigenvals, eigenvects calculate eigenvalues and eigenvectors
of a square matrix

colspace, rowspace calculate a basis of the linear space
spanned by columns, or rows, of a ma­
trix

kernel calculates the kemel of a matrix

concat, stack glue two matrices together side by side,
or bottom to top

How to use this book
If you have little or no experience with Maple, you are advised to read the first
five chapters (70 pages) carefully, possibly skipping sections indicated with a star
before the number. It is advantageous if you can read with Maple running on a
computer close at hand; try out examples and experiment a little, but don't waste
time if you get stuck on something. Probably you willlearn about that problem by
reading ono

If you already have some experience with Maple, reading the first five chapters
may help you to use Maple more efficiently and to understand the basic ideas.

If you have read the first five chapters or already know the basics of Maple well,
you can proceed with the chapters related to your specific interests. Some of these
chapters are directed at a mathematical field, others at a symbolic manipulation
field. Each chapter has a preface, where you can see what you can expect in that
chapter. At the end of the book you can find appendices on some rather special
subjects.

When working with Maple and encountering problems, you can consult this book
with the aid ofthe contents and the index on catchwords. Each reference to a catch­
word corresponds to a bold printed word or a section heading in the text. It is no
problem if you have not read preceding parts of the book; the many cross refer­
ences make it easy to find additional information when necessary. Moreover, there
is an index on error messages, demonstrated and explained in examples in this
book.

If you are not a daily user, you might forget Maple commands. The most used com­
mands are summarized in the Short Reference List at the start of the book. There
is room to write your own extension of that list.

It is a good habit not to switch off your mind when you switch on the computer,
even when you are to use such a powerful tool as Maple. In many examples in this
book you can see how common mathematical sense can help considerably in using
Maple.

An essential aspect ofusing computer systems for calculation is the question of re­
liability of calculated results. This aspect is discussed throughout this book where
relevant, and ways of checking andlor testing are shown. However, even where a
calculation is said to be reliable, nobody can be sure that unknown bugs will not
appear. Testing and checking results is a good habit in general, and more so when
using such a complicated system.

The present book is based on Maple V Release 5, but differences from releases 3
and 4 are indicated where relevant. Maple output is printed in the style of output
generated by Maple versions for windowing systems, such as for MS-Windows,
Mac, X-terminals and -workstations, up to the choice of fonts and line breaking.

More on Maple

You can obtain general information on Maple, additional software (new pack­
ages in the Maple Share Library), demos, and Maple support information from
the Maple Info Server on http://www.maplesoft.com/home.html. On this same site
you can find titles of books on using Maple.

Here you can also download patches for bugs; as is the case with most software,
new releases tend to have bugs, these are attended to by the development team;
bug fixes become available from this www-site as patch files.

A vivid discussion on alI aspects of Maple is going on continuously in the Maple
User Group on electronic mail, where people ask simple as welI as advanced ques­
tions or bring Maple aspects to debate, and others reply. You can subscribe to this
group by sending an email messagetomajordomo<Ddaisy.uwaterloo.ca. with
the message body containing the line: subscribe maple-list [<address>].

Acknow ledgments

First I would like to thank the development team of Maple and the many contrib­
utors of mathematical algorithms and Maple source outside that team for creating
such a powerful and enjoyable companion in mathematical calculations.

I would like to thank the Mathematical Institute ofCatholic University Nijmegen,
which offered me the opportunity for writing this book and the necessary support,
and the computer department for their kind and patient help.

For the writing of this book, I owe many thanks to the people whom I could in­
troduce to Maple; by their asking questions and showing me their difficulties they
have helped me considerably in teaching the use of Maple. Another source of prob­
lems and ideas has been the discussions in the Maple User Group, whose contribu­
tors I would like to thank as welI. I would also like to thank Drs. A. Heck of Com­
puter Algebra Nederland for the productive arguments we of ten had on Maple and
on teaching its use, and I would like to thank Professor Dr. A.H.M. Levelt of Nij­
megen University for his incentive to write this book.

I would like to thank Drs. J.M.G. Ingelaat, Professor Dr. A.G.M. Janner at
Nijmegen University, R.M. Cofless, D. Redfem, B. Barber, and alI the other peo­
ple, who read the book or parts of it and commented it, for their helpful comments.
AIso I would like to thank

xvi Acknowledgments

This book has been written in TEX. I would like to thank Dr. V. Eijkhout for in­
troducing me to 1EX and helping me with some problems, and Yunliang Yu, who
created a powerful Maple package for converting Maple expressions into TEX;
I have adapted this package for simulating screen output of Maple commands in
this book.

At last I would like to thank my friends for encouraging me to write this book.

Emic Kamerich

In spite of alI efforts and help, undoubtedly there is room for improvements. So,
if you have suggestions, corrections, or other remarks conceming this book, I will
very much welcome your comments at the folIowing address:

Dr. B.N.P. Kamerich
Fac. of Math. and Comp. Sci.
Catholic University Nijmegen
Toemooiveld 1
6525 ED Nijmegen
The Netherlands

fax: 0031-243652140

electronic mail: ernic@sci.kun.nl

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

Chapter 2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12

Chapter3
3.1

3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10

Chapter4
4.1

Contents

Basic elements in the use of Maple 1
Meeting MapIe: symbolic ca1culations 1
Meeting Maple: numerical ca1culations 5
Meeting MapIe: symbolic ca1culations again 6
Spaces and asterisks 8
Terminating commands with semicolons or colons 8
Names and assignments 10
Referring to previous results with the ditto 11
Referring to previous results with other facilities 13
Using procedures 14
Procedures that seem to do nothing 14
The sign % for abbreviations in output 16
On-line help ... 17

Numbers and algebraic operators 19
Aigebraic operators 19
Parentheses and precedence rules 20
Rational numbers 22
Real constants .. 22
Complex numbers 23
Radicals ... 24
Manipulating radicals and complex numbers-an example .. 25
Floating-point numbers, approximations 26
Some effects of automatic simplification of
floating-point numbers 28
Calculations with integers 29
Integers modulo an integer 30
Aigebraic extensions and general rings 31

Names and evaluation 1: mathematical variables 32
Assigning names to objects and evaluating names
to objects .. 32
Assigning names and expressions to a name 33
Unassigning ... 35
Names and properties 36
Combinations of characters that can be accepted
as names .. 37
Greek letter names 38
Names with an index 39
Single back quotes 40
The concepts of name, symbol, and string in Maple 41
Recursive definitions of names 41

Elementary calculus 43
Differentiation ... 43

xviii

4.2
4.3
4.4
4.5

4.6
4.7

4.8

4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

Chapter5
5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9
6.10
6.11
6.12

Contents

The derivative at a point 45
Some more tools in differential calculus 46
Antiderivatives ... 46

Special elements appearing in the results of
the procedure int 47
Definite integrals 50
Helping Maple to find a definite integral by restricting
the domain of a parameter 50

Helping Maple to find an antiderivative by conversion
to RootOf .. 51
Helping Maple to find an antiderivative by substitution 52
More tools for integration 53
Reliability of the calculation of antiderivatives 53
Definite integrals of discontinuous functions 55
Definite integrals and branch cuts of functions 56
Reliability of calculations of definite integrals 56
Numerical integration 57
Numerical approximations to multiple integrals 58
Definite and indefinite sums and products 60
Other tools and pedagogical facilities 62

Names and evaluation 2: applying procedures 64
Evaluation of names in arguments of procedures 64
Options of procedures 65
Output and results of procedures 66
Assigning side results to arguments of procedures 67
Names referring to procedures 67
The Maple library of procedures 68
Asking procedures for additional information with
infolevel .. 70
Printing standard procedures from Maple's library 71

Creating and using mathematical functions 72
Standard mathematical functions 72
Definitions of inverse functions, branch cuts 73
Denotation of the functions exp, Gamma, and Zeta 74
Expressions versus functions, creating functions 75
Creating functions in several arguments 76
A pitfall in creating mathematical functions 76
Using existing expressions for creating mathematical
functions .. 77
Evaluation of names of procedures 79
Derivative functions 79
Derivatives of functions of more than one variable 81
Conversion between diff and D 82
Piecewise-defined functions and expressions 82

Contents

6.13

Chapter 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

Chapter 8
8.1
8.2
8.3
8.4
8.5
8.6

8.7
8.8
8.9
8.10
8.11
8.12
8.13

Chapter9
9.1
9.2
9.3
9.4
9.5
9.6

Chapter 10
10.1
10.2
10.3
10.4
10.5

xix

Creating functions by elementary operations on functions ... 85

Graphics .. 87
Graphs of real functions in one real parameter 87
Graphs of real functions in two real parameters 88
Assigning, manipulating, and printing graphical objects 91
Vertical asymptotes and discontinuities 92
Graphs with ranges to infinity 95
Logarithmic scalings 96
Parameterized curves and surfaces 97
Different types of coordinates 99
Empty plots caused by complex values 100
Plotting data .. 100
Graphs of relations or implicitly defined functions 103
Combining graphs 103
Maple's movies 105
More tools in graphics 105

Taylor or Laurent expansion and limits 107
Taylor expansion 107
The order of a series expansion 108
Estimating the order term 108
The subexpression structure of results from series 109
The leading term 110
Laurent, Puisseux, and generalized truncated
power series .. 111
Application of series to integration 112
Numerical evaluation of a series 113
Multivariate Taylor expansion 113
Calculating limits 114
Multiple limits .. 116
Continuity, singularities, and residues 116
Other facilities for series calculations 116

Numerical calculations with Maple 117
Accuracy ... 117
Speeding up by optimizing 118
Speeding up with ftoating-point facilities of the system 121
Some special procedures 121
Using Fortran and C in combination with Maple 122
Data files ... 122

Manipulating several objects at once 123
Creation of sequences, sets, and lists 123
Selecting elements of sequences, sets, and lists 125
Applying a procedure to several objects at once 126
Finding a special element in a set or a list 129
Finding the minimal or the maximal element 129

xx

10.6
10.7

Contents

Selecting the elements that satisfy a special condition 130
Generating sequences as values of a function or
an expression 131

10.8 Manipulating sequences, sets, and Iists 132
10.9 Conversions between sequences, sets, and lists 133
10.10 Tables 134

Chapter 11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

11.10
11.11
11.12

11.13
11.14

Chapter 12
12.1
12.2
12.3
12.4
12.5
12.6

12.7
12.8

Chapter 13
13.1
13.2
13.3

13.4
13.5
13.6
13.7
13.8

Substitution and subexpressions 136
Some examples of substitution 136
A substitution that fails 137
Subexpressions of polynomials, substitution 138
Subexpressions of rational expressions, substitution 140
Subexpressions ofunevaluated function caUs 141
The procedure eval 142
The procedures subs and eval-a survey 143
More than one substitution at once 143
The procedure PDEtools [dchange] for
changing variables 144
Substitution of algebraic subexpressions 145
Applying side relations 146
Finding the structure and subexpressions of
large expressions 147
Selecting suboperands 148
Substituting something for one component of
an expression ... 148

Manipulating and converting numbers 149
Real and imaginary parts of a complex number 149
Argument and absolute value of a complex number 150
The sign of a real or a complex number 150
Manipulating products and quotients of radicals 151
Nested radicals and roots of complex numbers 152
An example: substituting expressions with
radicals in polynomials 153
Converting ftoating-point numbers to rational numbers 155
Rounding rational numbers to integers 155

Polynomials and rational expressions 157
Polynomials and the standard arithmetic operators 157
Division of polynomials with a remainder 158
The greatest common divisor and the least common
multiple 159
The resultant of two polynomials 160
The coefficients of a polynomial 161
Truncating a polynomial above some degree 163
Sorting a polynomial 164
SimpIifying rational expressions 165

Contents

13.9
13.10
13.11

Chapter 14
14.1
14.2
14.3

14.4
14.5
14.6
14.7
14.8
14.9

14.10
14.11
14.12

Chapter 15
15.1
15.2
15.3
15.4
15.5

15.6
15.7
15.8
15.9
15.10
15.11

15.12
15.13
15.14

Chapter 16
16.1

16.2
16.3
16.4
16.5
16.6
16.7

xxi

Numerator and denominator 166
More tools .. 167
Reliability .. 167

Polynomial equations and factoring polynomials 168
Solving polynomial equations symbolically 168
Solving modest systems of polynomial equations 170
Finding or approximating the elements represented by
a RootOf expression 173
Calculating with RootOf expressions 174
RootOf expressions versus radicals 175
Factoring with the procedure factor 176
More tools for factoring 177
Solving with numerical tools 178
Solving complicated systems of polynomial equations
with Grobner basis 179
Algebraic extensions of the rational number field 182
Polynomial rings modulo ideals 185
Polynomials over Z mod p 185

Manipulating algebraic expressions 187
Options for simplify and combine 187
Simplifications depending on conditions 188
Sums of exponents, products of powers with equal basis ... 190
Powers of powers, products of exponents 192
Powers of products, products of powers with
equal exponents 194
Radicals .. 195
Manipulating logarithmic expressions 197
An example of the use of the option symbolic 200
Manipulating trigonometric expressions 202
Manipulating parts of expressions 206
An example: converting a complex expression into
a real expression 210
Verifying identities 211
Reliability .. 213
General advice for manipulating 213

Solving equations and inequalities in general 214
General principles in using Maple for solving
equations and inequalities 214
An example: a trigonometric equation 215
Another example: an exponential equation 218
No solutions found 219
Inequalities and systems of inequalities 220
Manipulating equations and sets of equations 221
Solving equations numerically 224

www.allitebooks.com

http://www.allitebooks.org

xxii

16.8
16.9
16.10
16.11
16.12

Contents

Solving systems of equations numerically 225
Series of an implicitly defined function 226
Recurrence relations 229
Solving identities, matching patterns 230
Other procedures for solving 231

Chapter 17
17.1

Solving differential equations 232
Ordinary differential equations (ODEs): denoting,

17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11

Chapter 18
18.1
18.2
18.3
18.4
18.5
18.6

solving, checking solutions 232
Ordinary differential equations with initial conditions 234
Implicit solutions and checking them 235
DESol expressions appearing in solutions 237
Numerical approximations to solutions 237
Series development of a solution 239
Systems of ODEs 240
Helping Maple in solving ODEs 242
Symbolic representations of solutions: DESol 243
Graphic tools for differential equations 245
More tools .. 246

Vectors and matrices 247
The linear algebra package 247
Creating vectors and matrices 248
Evaluation of vectors and matrices 249
Elements of vectors and matrices 250
Matrix and vector arithmetic operators 250
Manipulating alI the elements of a matrix or
vector at once ... 252

18.7 Processing a matrix that contains floating-point numbers ... 253
18.8 Names contained in elements ofmatrices and vectors 254
18.9 Determinant, basis, range, kernel, Gaussian elimination 255
18.10 Systems of linear equations 256
18.11 Characteristic polynomials and eigenvalues 258
18.12 Dot product, cross product, norms, and orthogonal systems 261
18.13 Vector calculus .. 262
18.14 Creating new vectors and matrices from old ones by

changing elements 263
18.15 Creating new matrices from old ones by transposing,

cutting, and pasting 265
18.16 Alternative ways of creating vectors and matrices 265
18.17 Special types of matrices: (anti)symmetric, sparse,

identity ... 266
18.18 Creating more special types ofmatrices 270
18.19 Functions yielding vectors and matrices 270
18.20 Vectors and matrices modulo an integer 272
18.21 Reading a matrix of data from a file 273

Contents

18.22

AppendixA
A.I
A.2
A.3
AA
A.5
A.6
A.7
A.8
A.9
A. 10
A.II

AppendixB
B.I
B.2
B.3
BA
B.5
B.6

AppendixC
C.1
C.2
C.3
CA
C.5

AppendixD
D.1
D.2
D.3

xxiii

Pedagogic al facilities 273

Types, properties, and domains 274
Basic types ... 274
More types ... 275
Selection on type 277
Properties, the assume faci1ity 277
Derived properties 278
Asking for the assumed properties 278
Adding properties 279
Combining properties 279
Properties and assigning 280
Properties and formal parameters 281
Domains, the Domains package 282

Names and evaIuation 3: some special features 284
Changing names, alias 284
Finding names used 286
Indexed names .. 286
Quotes with table, arrays, vectors, and matrices 287
Recovering lost procedures 288
Exceptions to the rule of automatic fuU evaluation 288

The user interface for text-only versions 290
Starting, interrupting, and quitting Maple 290
Editing commands 290
Pictures .. 291
Maple system messages 291
Saving a session and its results 291

Procedures remembering previous results 292
Remember tables of procedures 292
Clearing (parts of) the remember table 294
An example of side effects of the remember table:
infolevel ... 294

Appendix E Control structures 296
E.I Procedures .. 296
E.2 Searching for causes of odd behavior with trace Of

printlevel ... 298
E.3 Using if ... fi for choices 298
EA Recursion. .. 299
E.5 Using do ... od for repeating actions 301
E.6 An example: checking the results of sol ve by

substituting ... 304

Error messages and warnings 309

Catchword index .. 310

chapter 1

Basic elements in the use of Maple

The first three sections of this chapter introduce you to Maple with some basic ex­
amples in solving equations, both numerically and symbolically. At the same rime,
you see some general aspects of using Maple, such as giving commands and as­
signing values to variables. These are discussed systematically in the subsequent
sections, where some common users' mistakes are also demonstrated. Moreover,
these sections show some more basic examples of calcularions and the on-line help
system of Maple.

1.1 Meeting Maple: symbolic calculations

When you start Maple on your computer, you can see the cursor waiting for your
input at the right of the input prompt, usualIy" > "
If you see a cursor with a question mark, Maple is in the state of "math input",
where commands Can be entered with the aid of the mouse and the palettes of sym­
bols. You can change to the usual input from the keyboard by entering Control-J
or by choosing execut ion group from the Insert menu of the toolbar at the
top of the window.
Suppose that we are interested in a function in (positive) x, described by the for­
mula

16x2 - 24x + 121
32x2 - 48x + 34

This fonnula can be entered in Maple at the right of the prompt by typing
(16*x~2 - 24*x + 121) / (32*x~2 - 48*x + 34)

Please note that the spaces are optional, but can be useful for readability.

Now we type a semicolon (;) and press the Enter key. (In the state of math input
the semicolon is omitted.) Then the screen looks like

> (16*x~2 - 24*x + 121) / (32*x~2 - 48*x + 34);

16x2 - 24x + 121

32x2 - 48x + 34

Although the fonnula has to be entered in a simple linear way, Maple presents it in
the usual, much more readable fashion. IfMaple has been started in a tty (charac­
ters only) system (MS-DOS or Unix for instance), fonnulas are still presented in
the same style, but there are some restrictions in the presentation of special sym­
bols. AlI screen parts presented in this book are printed in the style of Maple on
windowing systems (such as Ms Windows), but line breaking may be different and
the left brackets in the Maple command screen are omitted.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

2 1. Basic elements in the use of Maple

First, let's make a graph. In the next command the percentage sign % is used for
referring to the previous formula.

> plot(% , x = O .. 10);

7

6

4

2

o 4 X 6 8 10

Maple has read the last command as if we had typed

plot«16*x-2-24*x+121)/(32*x-2-48*x+34),x = O .. 10);

In Maple the percentage sign % is called the ditto. In releases before Maple V.5,
the double quote " is used for the ditto.
It is a good idea to assign the formula to a name, say peak. For this purpose, we
have to ditto the formula again. That is possible with the twofold ditto, as the for­
mula is the second last result.

> peak := %% ;
peak := 16x2 - 24x + 121

32:z;? - 48x + 34

From now on, Maple reads peak as that formula.

Let's suppose that we intend to compare the previous expression with another ex­
pression in x,

> (476*x+891)/(484*x+53);
476x + 891
484x + 53

and that we want to know the area of the region where the tirst expression exceeds
the second one.

Let's assign this second formula to a name as well:

1.1 Meeting Maple: symbolic calculations

> fan := '/, ;

fi II '= 476 x + 891
a . 484 x + 53

3

In order to compare both, we can plot them together first. Because of the vertical
asymptote offan, we must restrict the vertical range ofthe plot, say to the range
0 ... 8.

> pIot({ peak , falI} , x=0 .. 10 , 0 .. 8);

8

7

6

5

4

2

o
2 4 X 6 8 10

Braces are used as they are used in mathematics: for denoting a set. The last argu­
ment restricts the range of the second coordinate to [0,8].

Our intention is to compute the area between the curves where the value of peak
is larger than the value of lalt. First, let's tind the x for which both are equal. If
you are using a windowing version of Maple, you can get approximations to the
coordinates of the intersection points by pointing with the mouse and clicking, but
you can also ask Maple to solve the following equation:

> peak = fan;

16x2 - 24x + 121 476 x + 891
32x2 - 48x + 34 484x + 53

> solve('/, , x);
11 5 5
- --+2V3 ---2V3 36' 4 '4

As could be guessed from the equation, we obtain three solutions. Generally,
solving third-degree equations yields much longer results. This is no problem for
Maple, but this example has been chosen in order to tind a more readable result.

The present solutions are expressed in an exact way, using rational numbers and

4 1. Basic elements in the use of Maple

square roots. This is typical for a symbolic calculator such as Maple. Approx­
imations are avaiIable as well by applying the procedure evalf ("evaluate to a
floating-point number").

> evalf([%]);

[.3055555556, 2.214101616, -4.714101616]

Square brackets are used for denoting a list. The solutions are bundled here into
a list because evalf can approximate only one object, and this object may be an
expression or a list of expressions, etc., but not a sequence of expressions; a more
detaiIed explanation is given in section 10.3 on page 127.

In order to compute the area of the region where the first function exceeds the sec­
ond one, the difference should be integrated from the first to the second solution. A
solution can be selected from the sequence of solutions by indexing, for instance:

> %%[1];
11
36

So the desired integral can be calculated by

> int(peak-fall , x = %%%[1] .. %%%[2]);

19211 - ~~~ V3 + ~ 0 arctan((-2 + 2 V3) 0) +

25376 ln(2) _ 25376 ln(-69 121 V3)
14641 14641 + +
13 (4) 25376 50752 "4 0 arctan 9 0 + 14641 ln(113) - 14641 ln(3)

Again, Maple has calculated this in an exact way. Let's approximate this to 40
digits:

> evalf(% , 40);

3.822742863575994928443933759352133657199

You may have wondered if we could not tell Maple beforehand that we want only
positive solutions of the equation peak = fali. However, if a symbolic solution
is a very complicated expression, it may take some clever, complicated, and time­
consuming manipulations in order to see in a symbolic way if this expression is
really a positive number or not; see Chapter 12, Manipulating and converting num­
bers, and Chapter 15, Manipulating algebraic expressions. Automatic manipula­
tions without the help of a user may even faiI to prove that a number is positive.
Therefore, the decision is left to the user. Usually, a f1oating-point approximation,
possibly with a high level of Digi ts, is an effective tool for such a decision, al­
though symbolic manipulation may be necessary if a strict mathematical proof is
required.

1.2 Meeting Maple: numeric al calculations 5

1.2 Meeting Maple: numeric al calculations

In the previous section, exact results have been found and these have been approxi­
mated. It is also possible, and of ten necessary, to calculate numeric results directly.
For instance, in the previous example, Maple had to solve a polynomial equation
of degree 3. But there is no method for solving alI polynomial equations, although
Maple always tries to solve a high-degree polynomial equation by special tricks. If
this is not successful, you may want to revert to numeric al calculations. Here you
see how the previous problem can be handled by the numerical equation solver of
Maple, the procedure fsol ve ("ftoating-point solve'').

> fsolve(peak=fall , x);

.3055555556

We achieve just one solution. The graph indicates that there are two more solu­
tions, one between O and 1 and the other between 2 and 3. We can ask for them by
specifying these ranges.

> fsolve(peak=fall , x , x=O .. l);

.3055555556

However, this equation can be handled in a much more elegant way by converting it
to a polynomial equation as folIows. First we convert peak - lall into one quotient
with normal:

> normal(peak-fall);

13 576 x3 + 1264 x 2 - 6452 x + 1837

2 (16x2 - 24x + 17) (484 x + 53)

Now let's solve for which x the numerator is zero.

> numer(%);

-7488x3 - 16432x2 + 83876 x - 23881

> fsolve(%=0 , x);

-4.714101615, .3055555556, 2.214101615

Maple uses a specific numerical method for solving polynomial equations, yielding
alI real solutions at once. All solutions of such a polynomial equation, including
complex ones, can be found by the command f sol ve (,x, complex) .

It is easy to obtain solutions with a higher accuracy by changing the value of Digits.
If we want solutions to 50 digits, we have to set the variable Digi ts to 50.

> Digits := 50:
Maple did not print a result on the screen for the last command because the com­
mand ended with a colon (:) instead of a semicolon (;).

6 1. Basic elements in the use of Maple

> fsolve(%%% , x);

-4.7141016151377545870548926830117447338856105076208,
.305556,
2.2141016151377545870548926830117447338856105076208

Let's reset Digi ts immediately to its usual value.

> Digits := 10:
Maple has many powerful numerical algorithms. For instance, we can calculate
the earlier integral in a numeric al way as weB. A very convenient aspect of using
Maple is the combination ofboth symbolic and numeric al calculations (and plot­
ting) in the same environment. However, ifyou want to take symbolic results over
to specialized numerical routines in Fortran or C, Maple offers translators for this
purpose; see section 9.5 on page 123.

1.3 Meeting MapIe: symbolic ca1culations again

Often, numerical methods are not realIy satisfactory, especially when using un­
known parameters. Here is an equation containing a parameter p:

> 18*p A 2*x A 4 + 36*p A 3*x A 2 + 36*p*x A 3 + 72*p A 2*x
+ 63*x A 2 + 27 = 27*p A 2*x A 2 + 54*x A 4 +
108*p*x A 2 + 54*p*x + 36*p;

18 p2 x4 + 36 p3 x2 + 36px3 + 72 p2 x + 63x2 + 27 =
27 p2 x 2 + 54x4 + 108px2 + 54px + 36p

As you can see, it is easy to enter large formulas: Maple continues on the next
line(s) until alI is entered, then you can terminate it with a semicolon. You can
force a new line by pressing the Enter key; in windowing systems you then get a
waming:

Warning. incomplete statement or missing semicolon

but that is only a reminder.

Let's assign this equation to a name. In Maple a narne can refer to a number, an
expression, an equation, a procedure and many other things.

> eq := % ;

eq := 18 p2 x 4 + 36 p3 x2 + 36px3 + 72 p2 x + 63x2 +
27 = 27 p2 x 2 + 54x4 + 108px2 + 54px + 36p

Let's solve for x. A numerical solver would be useless because p is contained in
the equation, so we use sol ve.

1.3 Meeting Maple: symbolic calculations again 7

> solve(% , x)j

1 1 1 -2p + 2 J2 p2 - 3
2 J-8p+6, -2 J-8p+6, 2 p2 - 3 '

1-2p-2J2 p2-3
2 p2-3

It is important to realize that the equation is solved only for a "general" p. Let's
have a closer look at this aspect by following the steps in this solving process.
Maple has solved a fourth-degree polynomial equation. Let's have a look at this
polynomial. First take the difference of the left-hand side and the right-hand side
of the equation with lhs and rhs:

> poly := lhs(eq)-rhs(eq)j

poly := 18 p2 x 4 + 36 p3 x2 + 36px3 + 72 p2 x + 63x2 +

27 - 27 p2 x2 - 54x4 - 108px2 - 54px - 36p

The result is assigned to the name poly. Let's write this as a polynomial in x.

> collect(% , x);

(-54 + 18p2) x4 +36px3+(63 - 108p - 27 p2 + 36 p3) x2+

(72 p2 - 54p) x + 27 - 36p

For special values of p (viz. V3 and -V3), the coefficient of x4 is zero. Conse­
quently, the general solution given by Maple cannot be applied to the cases where
p = V3 or p = -V3.

Names are interpreted as general abstract objects in Maple.
Substituting special values for names in the result of a command

does not always yield a correct result
for the corresponding special mathematical problem.

This special problem can be solved simply by substituting these special values and
solving the corresponding special problem separately. So let's substitute p = V3
in the original equation and solve the resulting equation.

> subs(p=sqrt(3) , eq);

54 x 4 + 108 v'3 x 2 + 36 v'3 x 3 + 216 x + 63 x 2 + 27 =

81 x 2 + 54x4 + 108 v'3x2 + 54 v'3x + 36 v'3

> solve(% , x);

~ /'--6 --8-v'3-3 - ~ /6 - 8 v'3 ~ '3
2 V '2 V ' 6 V0

8 1. Basic elements in the use of Maple

The third element of this solution is not contained in the solution for general p. The
same can be done for p = -V3.

Special cases for special values of parameters
have to be looked for by the user, possibly with Maple as a tool.

More on this subject can be found in R.M. Corless and DJ. Jeffrey: Well ... It
Isn't Quite That Simple, Sigsam Bulletin 26 (1992).
You have seen enough examples for now. It is time to look more systematically at
some details.

1.4 Spaces and asterisks

Generally, spaces are neglected by Maple.

* q;

ab+pq

However, spaces can improve readability; thus the frequent use of spaces in Maple
commands printed in this book.

In printing output, Maple represents multiplication by inserting spaces between the
factors, which might be tempting you to use spaces to denote multiplication in the
input. This, however, is not accepted by Maple; Maple reports a syntax error, in­
dicating the first offending character by the cursor, in this case the character b:

> a /b;
Syntax error, missing operator or ';'

Because Maple can use names of more than one character, the product of a and b
cannot be entered as ab either. Maple requires the asterisk (*) for each multipli­
cation.

1.5 Terminating commands with semicolons or colons

Each Maple command must be terminated with a semicolon (;) Of with a
colon (:). (This is not true if you have changed the Input Display form Maple
Notation to Standard Math in the Options menu: then no terminator is expected.)
Pressing the Enter key makes the present line enter the Maple system, but if no
terminator is detected at the end of the command, the line is supposed to be in­
complete and it must be continued on the next line. In windowing versions of
Maple the user gets a waming message incomplete statement or missing
semicolon.
It can easily happen that a user forgets the obligatory terminator:

www.allitebooks.com

http://www.allitebooks.org

1.5 Tenninating commands with semicolons or colons

> arcsin(1/2)
>

Warning, premature end of input

9

After that waming, you might be tempted to enter the line again, adding a semi­
colon. But then Maple gets really cross and issues a syntax error; from the first
command you can see the following on the screen:

> arcsin(1/2)
> arcsijn(1/2);

Syntax error, missing operator or ';'

In a windowing version you can see a bracket in the left indicating that both lines
are taken together as one command. The transition to the second line is interpreted
as a space: arcsin(1/2) arcsin(1/2); . (These brackets are omitted in this
book, but here such a bracket can help to see what has happened.)
Maple puts the cursor on the second line, which seems to be a perfect line, but
entering this again by pressing the Enter key does not work, because both lines are
still read together. The remedy is simple:

If you have forgotten the terminating semicolon,
type this semicolon on the next line and press the Enter key again,

or move the cursor back to the previous line,
add the semicolon, and press Eoter.

For instance, in the previous example:

> arcsin(1/2)
> ;

1
-7r
6

If you are using a Maple version for text-only command screens such as MS­
DOS Maple and Maple for Unix systems, you must be careful about missing
(semi)colons, and it might be worthwhile to look at Appendix C, The user interface
for text-only versions.

It is possible to give more than one command in one line. Here for instance the
roots of the derivative of an expression are calculated:

> x A 3 + 11*x A 2 - 16*x; diff(%,x); solve(% , x);

x3 + 11 x 2 - 16 x

3x2 + 22x -16

10 1. Basic elements in the use of Maple

2
-8, 3

The results from the commands an that one line are printed an subsequent lines.

Sometimes it is more efficient if Maple does not print the result of a command ta
the screen. For instance, after the command ta elaborate (x + f)12

> expand((x + y/3)-12);

22 220 55 88
X 12+4yxll +_y2 X lO+_y3 x9+_y4 X 8 +_y5 x7 +

3 27 9 27
308 6 6 88 7 5 55 8 4 220 9 3
243 Y x + 243 y x + 729 y x + 19683 y x +

22 10 2 4 11 1 12

19683 y x + 59049 y x + 531441 y

you might wish ta preserve the result by assigning it ta a name. It is useless ta
see this formula again, sa we terminate the command with a colon; this prevents
Maple from printing the result an the screen.

> pow := % :
Maple has executed the command and has stored the resulting expression for call­
ing with the ditto. However, you do not see the result because of the colon at the
end of the command.

1.6 Names and assignments

The combination of colon and equal sign (:=) is used ta assign a Maple abject ta
aname:

> y := a*x-2-1;

y := ax2 - 1

From now an, in almost any instance where Maple encounters y, it reads this as
a x2 - 1. A mathematician could say: "y is a formula in the free variables x and
a." In terms of Maple: "y, x, and a are names, where y is a name that refers to
an expression, while x and a do not refer ta anything."

Be careful about capitals in names: Maple distinguishes between lower case and
upper case:

> Y - y;

y - ax2 + 1

In mathematics, variables usually have one-Ietter names, but in Maple, words can
be used. In section 3.5 an page 37 you can read more about combinations of char­
acters that Can ar cannot be used as a name.

A typical mistake is the use of = ar : instead of : = in an assignment. Here is
an example where both mistakes are shown.

1.7 Referring to previous results with the ditto 11

> xl = 10;

xl = 10

> x2 20;

20

> xl + x2;

xl +x2

The first line yields an equation. The second line consists of two Maple commands:
the first asks Maple to evaluate x2, but Maple does not print the result to the screen
as the command is terminated with a colon. The second command on this line asks
Maple to yield 20. So both xl and x2 stay unassigned and the last line yields sim­
ply xl + x2.

1.7 Referring to previous results with the ditto

As you have seen, it is possible to refer to the previous result with the ditto (%).
In order to refer to results one or two steps earlier, you can use a two- or threefold
ditto.

Here is an example. First the antiderivative (indefinite integral) of an expression
is ca1culated.

> 1/x/(a*x~2+b*x)~(3/2);
1

x (ax2 + bx)(3/2)

> integrate(% , x);

_~ 1 +~ a(2ax+b)
3 b x v'a x2 + b x 3 ~b3;:-v-'-;=a=x""'2=+======b=x

> normal(%);

2 - b2 + 8 a2 x 2 + 4 a x b

3 b3 X v'a x2 + b x

Now the result of integrate can be checked easily by comparing its derivative
with the original expression by using the two- and threefold ditto.

> normale diff(%%,x) - %%%);

o

In the last line the twofold ditto caUs the second last result, the result of inte­
grate (% , x); and the threefold ditto caUs the third last result. the original
expression.

One might be tempted to enter something like:

12 1. Basic elements in the use of Maple

> newvar;

newvar

> % := 100;

%:= 100

If the second command was meant to assign 100 to newvar, it was not successful.
Maple seems to be willing, but the output of the last command already indicates
that something else happened: only the ditto is made to refer to 100, not newvar:

> newvar;

newvar

If you are using the ditto, remember that the re suit of a command terminated by
a colon is put on the ditto stack as well, although the result is not printed on the
screen. For example,

> r20:
> % / r18;

49

Some commands do not yield any result as far as the ditto is concemed. For in­
stance, the procedures print and lprint.

> lprint(x~2/3);
1/3*x~2

> %;
49

The ditto does not refer to the last command line, but to the last result. Remember
that more than one command can be given on one line, of ten generating more than
one result.
If you are using a windowing version, it is possible to execute any previous com­
mand again by mov ing the cursor to that line and pressing the Enter key. You can
also change the command by editing before issuing. However, this command will
use the present values of variables, and dittos will refer to the present history of
results. If this command yields a result, this is the last result at that moment. A
ditto in the command next issued will refer to that very result, which may not be
the result of the command above it in your worksheet.

It is not possible to refer to earlier results than the third last result with the ditto
facility.

If you are used to the double quote as the ditto in earlier releases, you might do
things such as:

1.8 Referring to previous results with other facilities

> a+Pi;

a+7r

> (cos(")+1)~2;
Warning, incomplete string; use II to end the string
(note that the ditto operator is now % instead of ")

13

The best thing you can do is edit the input line, replacing II with %. When you
follow the advice and enter a double quote, Maple is still not content:

> II. ,
; unexpected

This is caused by the parentheses in the start of the input: (cos (. In a windowing
version of Maple it will be necessary to enter these extra parentheses; correct the
input line into:

> "));
Error, cos expects its lst argument, x, to be of type algebraic,
but received 1)+1)-2;\n"

After this error, Maple is ready for new input.
In a text-only version, don't bother about it: Maple reports a syntax error and is
ready for new input.

1.8 Referring to previous results with other facilities

In windowing versions you can select a previous result by pointing to that result
with the mouse and then pressing Control with the left mouse button Of by triple
clicking with the left button. Then press Control-C to copy it to the clipboard, put
the cursor on the correct input line, and press Control-V to paste it there. Don't
forget to add a terminator. You can edit the expression before pressing the Enter
key. If the Output Display is in Editable Math Notation (see the Options menu),
the default at start-up, then you can select syntactically valid portions of an output
expression by pressing the left mouse button, keeping it pressed, and dragging the
mouse over that part.

Some versions of release V.S (MS Windows and Mac) offer a spreadsheet facility.
If you are experimenting with the input for a ca1culation over several command
lines, this can be a very comfortable tool: for the ca1culation in one cell you can
refer to the content of other cells, and changes in one cell will cause reca1culation
in ali the other cells referring to this cell.

An old, rather primitive facility is showtime. After the command showt ime () ,
results are stored by assigning them successively to the names 01, 02, etc. (the
character O, followed by a number). Moreover, for each command, processor time
and workspace are shown.

14 1. Basic elements in the use of Maple

1.9 U sing procedures

Let's have a close look at what happens when a procedure is applied. Here is an
example:

> form := (10*x~2-15*x)/(2*x~3+2*x-3*x~2-3) + 1;

f lOx2 -15x 1
arm:= +

2 x 3 + 2 x - 3 x 2 - 3

> normal(form);

x 2 +5x+l

x 2 + 1

What has happened due to the second command is

- the argument form has been evaluated to the formula to which it refers

- the procedure normal has converted this formula into one ratio and it has di-
vided out the common factor 2x - 3 from numerator and denominator

- the result has been printed to the screen

- and it has been 'stacked up' by Maple so that a ditto in the next command can
recaB this result.

By applying normal to form we have not changed the reference of form:

> form;

lOx2 -15x + 1
2 x 3 + 2 x - 3 x 2 - 3

The procedure normal could not have changed the value of form because form
was evaluated (its value was looked up) before normal carne into action.

This example illustrates the usual action of procedures: the arguments are evalu­
ated first, then the procedure uses the results of these evaluations to calculate the
next result.

1.10 Procedures that seem to do nothing

Sometimes a procedure seems to do nothing:

> normel(form);

(10x2 - 15x)
normeI 2 x3 + 2 x _ 3 x2 _ 3 + 1

Here Maple finds an unknown name of a procedure. For our eyes it may seem
to be a mistyping of normal. Maple does not protest, but prints the unevaluated
procedure caB on the screen. The idea behind it is the possibility that a procedure
normeI might be defined later.

1.10 Procedures that seem to do nothing 15

In the next command, the procedure sin is applied to 1; this procedure tries to
simplify the expression sin(1), but no better expression is found, so the function
call itself is retumed.

> sin(l);

sin(1)

This is called an unevaluated function caII. Generally, if asked for, Maple can
supply an approximation in such a case.

> evalf(% , 30);

.841470984807896506652502321630

Here we have asked for an approximation of sin(1) to 30 decimals.

Sometimes, applying a procedure can yield an error message, or an unexpected
result, possibly just silence. Then you can ask Maple for some elucidation about
its activities by using infolevel. For instance, if we ask for the exact solutions
of the equation sin(x2) = x3 in x, we cannot expect Maple to find them:

> sin(x~2)=x~3;

> solve(% , x);

>
It is clear that there are solutions: O is a solution, but no result or message is printed.
We can ask for more information: by setting the infolevel for sol ve:

> infolevel[solveJ := 3:
> solve(%% , x);

solve/rec2: solving for linear equation in _S03
solve/rec2: solving for linear equation in _SOi
solve/rec/RootOf: RootOfs substitution _S04 = RootOf(-_S03 A 3+_Z A 2)
solve/rec2: solving for linear equation in _S04
solve: Warning: no solutions found
solve: Warning: solutions may have been lost

Now we can see that Maple gives it a try with the aid of many tricks, but has to
give up in the end and then wams that solutions may have been lost.
The value of the infolevel of a procedure can be set to O, 1, 2, 3, 4, or 5. If the
value is set to 0, then no additiona1 information is given. Generally, the value 1
gives sufficient information.
It is a good idea to reset things immediately:

> infolevel[solveJ := O:

16 1. Basic elements in the use of Maple

1.11 The sign % for abbreviations in output

For complicated results, Maple can make results more readable by using abbrevi­
ations. For instance,

> x~3 - a*x - 1;

x3 - ax-l

> solve(% , x);

1 %1(1/3) + 2 a
6 %1(1/3) ,

1 a 1 m(1 12 %1(1/3)_ %1(1/3) +2 1 v3 (; %1(1/3) - 2

1 a 1 m(1 12 %1(1/3) - %W/3) 21 v 3 (; %1(1/3) - 2

%1 := 108 + 12 J-12a3 + 81

%1~1/3)) ,

%1~1/3))

The result of sol ve is a sequence of three numbers. This is printed with the use
of an abbreviation %1 for a common subexpression. The last line of the output
describes the meaning of this abbreviation.

The abbreviation system is standard in releases before V.5 and in text-only ver­
sions of release V.5, but in windowing versions of release V.5 abbreviations are
used only if you change Output Display from Editable Math Notation (the de­
fault) to Typeset Notation (or one of the other two choices) in the Options menu.
For improving readability, aII the output in this book is printed in Typeset Notation
with these abbreviations.

The present abbreviation can also be called by the user as long as Maple has not
cleareditout:

> %1;

108 + 12 J -12 a3 + 81

If we ask for the first solution, Maple does not use this abbreviation, because, in
each case, Maple decides separately which abbreviations are useful, if any. For
instance, let's ask for the first solution only by taking the first element of the second
last result:

> %%[1];

1 ()(1/3) a
6" 108+12J-12a3 +81 +2 (1/3)

(108 + 12y'-12a3 + 81)

1.12 On-line help 17

1.12 On-line help

Maple offers a simple and comprehensive guide to its facilities by its on-line help.
The HeI p menu activates a hypercard system (only from Release 4) for a search for
help on the word at the cursor (possibly the first characters of a word) or a search
by topic or a search for alI places in the help texts for a word. In a help page you
can c1ick with the mouse on an underscored word for getting specific information
on that subject.

For instance, we can ask for help on substitution. We choose Topi c Search from
the Help menu. As soon as we have typed one or more letters, we see a list of
topics, the first letters of which are equal to the letters entered. In this way, we can
ask for help on the procedure subs. In all versions of Maple, also in text-only (tty)
versions of Maple, there is another method of getting on-line help: type a question
mark and then the catchword.

Now let's suppose that we ask for help on the topic subs. In the following, the
help text given by Maple is printed in parts with some explanations thereafter:

First, the purpose of subs and the syntactically correct way to use subs is de­
scribed in a formal way.

Function: subs - substitute subexpressions into an expression
Then you can see how subs can be used:

Calling Sequence:
subs(x=a,expr)
subs(sl, ... ,sn,expr)

up to now, only the first way of using subs has been demonstrated.
Then you can see what type of parameters can be used. Types will be explained in
section 11.3 on page 139 and section A.l on page 275.
Now a description of the action of subs is given:

Description:
• The tirst form of the subs command substitutes a for x in the

expression expr.

The remaining part of the description is omitted here; these remarks require expla­
nations given later in this book.

Of ten, the fastest way to get an idea of the use of a command is reading the "Ex­
amples" at the end of the help text. If you had forgotten the way subs should be
used, the first example might suffice.

Examples:
> subs(x=2, x"2+x+ 1);

The remaining examples are left out here.
This information can be retrieved separately by the command ???subs.

18 1. Basic elements in the use of Maple

At the very end of the help text, Maple refers to related subjects. This can be very
helpful, for instance, when you do not know the name of a procedure that can do
the job; if you know a name of a procedure that does something related, you can
ask for help for the known procedure and look at the end.

See Also: op, subsop, eval, algsubs, lirnit
This list of related topics can be retrieved separately by the command
related(subs). Each ofthe underlined words can be clicked on in order to get
information about this topic.

The help system can do more than just explain Maple procedures. For example,
you can get a description of the changes made in new releases of Maple under the
topic updates.

Ifyou want to search the on-line help system systematically 00 a text-only system,
enter ?index to see the categories available.

www.allitebooks.com

http://www.allitebooks.org

chapter 2

Numbers and algebraic operators

In this chapter, various types of numbers are discussed together with their alge­
braic operators: rational numbers, radicals, special real numbers such as 7r, com­
plex numbers, jloating-point approximations, integers, and Z modulo n.

Toolsfor manipulating and converting numbers are discussed in Chapter 12, Ma­
nipulating and converting numbers, but the basic ideas for manipulating radicals
and complex numbers are demonstrated in the present chapter.

2.1 Algebraic operators

In Maple, the main algebraic operators for sum, difference, product, quotient, and
power are entered successively as +, -, *, / and A. Parentheses are entered as usual
in mathematics:

> p*(2*a-b)~5/(c+7);

p (2a - b)5

c+7

The results found by Maple are presented in the customary two-dimensional way,
but a formula must be entered in a linear way. For copy purposes, you can print a
formula in a linear way with lprint:

> lprint(%);
p*(2*a-b)A5/(c+7)

Maple does not interpret ax as the product of a and x, but as a two-Ietter name ax.

Each multiplicatian is ta be entered with an asterisk.

In printing output, multiplications are represented by spaces. However, this meth­
od of notation is not accepted as input.

It is tempting to make mistakes such as the following:

> a(b+c);

a(b + c)

At first glance, it may not be obvious that the result is not the product of a and b+c.
Actually, Maple supposes that a is a procedure (maybe a function) that is applied

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

20 2. Numbers and algebraic operators

to the surn of b and c. If you are using Maple in a windowing version, you can
see that a is printed upright, while the other characters are slanted, indicating that
Maple supposes that a is a function or procedure acting on b + c.

At first sight, the following result rnight look strange:

> solve(x-3 = 7(p+q) , X);

10

Maple has interpreted 7 (p+q) as application of the constant function 7 to the pa­
rarneter p+q, with the obvious result 7. This interpretation would have corne out
by Maple's screen output, ifthe equation had been entered before applying sol ve:

> x-3 = 7(p+q); solve(% , x);

x-3=7

10

Any user can rnake rnistakes in typing forrnulas. Advice:

Before applying a procedure to a formula
that has to be typed in,

it is better to enter this formula first,
check the result printed by Maple,

and then, if this is correct, apply the procedure.

In rnathernatics, the dot can be used in denoting rnultiplication, but not so in Maple:
it is used in floating-point nurnbers and for gluing strings together, i.e., concatena­
tion:

> toget.her;

together

2.2 Parentheses and precedence rules

Maple respects the standard precedence rules of arithrnetic operations. Please
check if the following two results are what you expect.

> 100 - b + 2*3~2;

118-b

This is interpreted as
(100 - b) + (2 * (32))

2.2 Parentheses and precedence rules

> 1 / p*q / r-l ;

This is interpreted as

q
--1
pr

1
pq -1
r

21

This last example may be another argument for entering a formula tirst, checking
the result on the screen, and only then applying a procedure.

Contrary to some other computer languages, Maple conforms to mathematics in
the handIing of minus a power. For example

> -3 ~ 4 ;

-81

The layoutofthe input in the lastexample niight be misleading, the spaces suggest­
ing a different interpretation. If you want the fourth power of -3, do not forget to
use parentheses:

> (-3) ~ 4 ;

81

Sometimes Maple demands more parentheses:

>3*1-4;
Syntax error, '-' unexpected

Correct input is:

> 3 * (-4);

The general rule in Maple:

-12

Never enter an arithmetic operator side by side with minus:
they should be separated by a parenthesis.

Moreover, due to the nonassociativity of the operator A , Maple demands paren­
theses in the following nad indicates an error with de cursor at the second A:

> 2 ~ 3 I~ 2;
Syntax error, 'A' unexpected

Correct input is:

22 2. Numbers and algebraic operators

> 2 ~ (3 ~ 2);

512

2.3 Rational numbers

When Maple divides two integers, where the second is not 0, it yields a rational
number after automatic dividing out the gcd of numerator and denominator.

> 26 / (-8);
-13

4

Approximation by a floating-point number can be obtained by the command
evalf, as discussed later in this chapter.

Be careful when entering decimal fractions. For example, let's calculate 1.45/3.

> 1.45/3 ;

.4833333333

Maple has calculated an approximation, as it interprets the floating-point number
1.45 as an approximation already. If you want to obtain an exact result for dividing
the rational number 1.45 by 3, enter 145/100 instead of 1.45.

> 145/100/3;
29
60

See the section Floating-point numbers, approximations of the present chapter for
more details.

An important Maple rule is the autosimplification of rational numbers: the op­
erators +, -, *, /, and A between rational numbers are activated immediately, with
one exception: a power with a noninteger exponent is not simplified.

2.4 Real constants

Some special mathematical constants are known to Maple:

- 7r is to be entered as Pi, but is printed as 7r in windowing versions.

- Catalan:= E:o (~~:i;2.
- ,:= the Euler constant:= limn -+oo ((E7=1 t) -ln(n)), printed as ,.

These names are unassigned, but several procedures can handle them, for example,

2.5 Complex numbers

> sin(100000000/3*Pi);
1 --V3
2

23

In releases before V.4, there is another constant E, denoting the base of the natural
logarithm, in mathematics generally denoted as e.

2.5 Complex numbers

The complex number i is represented in Maple as 1:

> r2;

-1

In fact 1 is an 'alias' for (-1)' (1/2):

> (-1)~(1/2);

1

The alias construction is discussed in section B.I on page 285. There you will
also see that you can choose another name for A.
Here are some calculations with complex numbers.

> (2 + 3*1)*(1 - 1);

5+1

> 1/(3-4*1);

-81

In other cases you must ask Maple to perform calculations with the procedure evalc
("evaluate as a complex number"):

> (1+I)* (x+I) ;

(1 + 1) (x + 1)

> evalc(%);

x -1 + 1(1 + x)

The procedure evalc tries to convert a complex number into the form a + bl,
where a and b are real numbers. Be careful:

24 2. Numbers and algebraic operators

The pracedure evalc assumes
that all names nat referring ta same abject

are real variables.

> evalc(exp(a*I));

cos(a) + 1 sin (a)

This is a correct splitting into a sum of the real and the imaginary component of
exp(ai) only if a is real. Maple does not expect the user to substitute, for instance,
2 * 1 fora.

Numbers of the type a + bA, where a and b are rational, form a special class
of numbers in Maple; these are called the rational complex numbers.

2.6 Radicals

A radical can be generated as a power. For instance, V'5O + if72 is entered as:

> 50 ~ (1/4) + 72 ~ (1/6);

50(1/4) + 72(1/6)

This can be converted to standard form by the procedure simplify:

> simplify(% , radical);

2(1/4) 25(1/4) + V2 9(1/6)

If the second argument radical is omitted, the same result is found here; but if
large expressions are ta be handled, it is more prudent to specify the type of sim­
plification in order to avoid unwanted effects.

A square root can be denoted with the procedure sqrt, too. This has built-in sim­
plification:

> sqrt(48/25);

> sqrt(8-sqrt(15));
1 1 -V30--V2
2 2

For radicals of complex numbers, evalc can be used in order to get the standard
form:

2.7 Manipulating radicals and complex numbers-an example 25

> (-I)~(1/4)j
(_ 1)(1/4)

> evalc(%)j

The procedure evalc interprets a power of a complex number za by conceiving z
as I ziei</> with -7f < <p ::; 7f and caIculating Izia eia</>. In particular, it takes the
principal branch of x -t x1/ n :

> (-625)~(1/4)j evalc(%)j

(_625)(1/4)

~ 625(1/4) .../2 + ~ 1625(1/4) .../2
2 2

> simplify(%,radical)j
5 5
-.../2+-1.../2
2 2

Automatic simplitication of the nth root is offered by root[n]():

> root [4] (-625) j

5 (_1)(1/4)

Another interpretation of the nth root is available. In caIculations with real num­
bers you want to tind a negative real number for an odd root of a negative number.
This can be found by surd, for instance, {/ -125:

> surd(-125,3)j

-5

For complex numbers, surd can be used as well, generally not yielding the prin­
cipal value, but a root with nearest argument to that of the original (useful for de­
viations in numeric caIculations).

2.7 Manipulating radicals and complex numbers-an example

As an introduction to manipulating radicals and complex numbers, here is an ex­
ample:

> evalc(I~ (1/4»

Now let's try to convert the fourth power of this to standard complex form in order
to get 1 again.

26 2. Numbers and algebraic operators

> % ~ 4;

This power is not elaborated automatically, so we must tell Maple to do that:

> expand(%);

The last result contains a product of square roots, where 1 is interpreted as a square
root by Maple as well. These four roots can be combined into the square root of
just one expression with the procedure combine:

> combine(%);

1

The procedure combine could have been given an option radical in this case in
order to re strict its actions.

2.8 Floating-point numbers, approximations

As shown previously, there is an essential difference between a decimal fraction
and a floating-point number:

> sqrt(13/10) , sqrt(1.3) ;

1~ V130, 1.140175425

In the second expres sion, Maple assumes that the user wants an approximation as
the result, because it considers 1 . 3 as an approximation.

In any case where Maple encounters
a ftoating-point approximation in an expression,

Maple supposes that the user wants an approximation as the result.

This should be kept in mind, for instance, when a square root expression is wanted
and not an approximation:

> 80~0.5, 80~(1/2);

8.944271910, v'8O

The general format for a floating-point number is scientific notation, containing a
factor IOn:

2.8 Floating-point numbers, approximations 27

> 1.234e+50 , 0.98e-7;

.12341051 , .9810-7

The standard procedure available for numerical approximation is evalf (evaluate
to a floating-point number):

> eva1f(1n(2) , 20);

.69314718055994530942

The second argument specifies the number of digits in the ca1culation. When the
number of digits is not specified, ca1culations with floating-point numbers are ex­
ecuted with a fixed number of digits; the standard number is 10. This default is set
by the value of the name Digits. The value can be changed by assigning another
number to Digi ta, with a maximum as high as 500,000 (student version: 100).

Maple does not daim that alI digits are correct in numerical computations; in this
respect it acts like most numeric al packages and calculators. But eventualIy, Maple
has an advantage: it can execute numerical calculations with very large numbers
of digits.

Sometimes, evalf yields a relatively small number that can better be neglected.
For instance, it is possible that you expect a real value in a calculation, but get a
small imaginary component when you apply evalf. In such cases you can use
fnormal

> convert(tan(l),exp);

> evalf(%);

> fnorma1(%)

1 ((e(I») 2 - 1)

(e(I»)2 + 1

1.557407725 + .167857278310-9 1

1.557407725

For fast numerical calculations, Maple can use fast floating-point procedures
(double precision) from the C-library on the system. The procedure for this pur­
pose is evalhf:

> appr := eva1hf(1n(2));

appr := .6931471805599453

Here the number of digits cannot be specified; it is determined by the actual system.

28 2. Numbers and algebraic operators

2.9 Some effects of automatic simplification of floating-point
numbers

If Maple switches over to approximation automatically, the number of digits it uses
in calculations is determined by the value of Digi ts. It does not help if you use
evalf in such a case:

> evalf(80~0.5 ,40);

8.944271910

It is obvious that this does not work. Evaluation, including automatic simplifica­
tion, is applied on the argument before the procedure comes into action. So, Maple
has approximated the power before evalf comes into action, and then it is too late
for evalf to get a result to 40 digits. The remedy would be assigning 40 to Dig­
i ts, before this calculation.

Using floating-point numbers in calculations can generate unexpected results:

> evalf(Pi , 30);

3.14159265358979323846264338328

> evalf(Pi , 50);

3.1415926535897932384626433832795028841971693993751

> % - %% ;
o

Maple yields zero for the difference because the last command has been executed
as a numerical calculation with 10 digits precision. When we set Digi ts to 50,
we get what we want:

> Digits := 50:
> evalf(Pi , 30) - evalf(Pi , 50);

.497115802830600624910-30

More on this subject can be found in Chapter 9, Numerical calculations with
Maple.

www.allitebooks.com

http://www.allitebooks.org

2.10 Calculations with integers

2.10 Ca1culations with integers

Maple can use very large integers:

> 7 A 1000;

12532566399657183181075548323827342061649850750809861714\
63495007520970596317381164324488390543515207631986159\
19551594076685828989467263022761790838270854579830015\
11124666120398462435892983257161571801470409630566809\
75076132736630232268952505413859271584260886844940824\
16768617708189592286936039922311125683719215046689156\
73835259013724155451018585596454992757549324739113254\
85343784979788060849510858742020118363623157274201095\
54782988791530088289711844550500230485638413189947132\
14224394733419925930073562249293741945365006149030210\
51279203144304016368556775491363374813218113496784270\
76091437345045399337348611261168055929355402992823192\
49119036002703611228318093587277521451746401317827465\
71007363215646068382527396011564146284455436631446960\
50650160812621814327062666195172701780200286645023823\
083185928061371310300829284071141207731280600001

29

There is a limit, but a very generous one. Generally, Maple can manage integer
numbers of more than half a million digits. If Maple foresees that an object cannot
be handled, ca1culation is stopped:

> 7 A 1000000;
Error. object too large

For factorial, the operator ! can be used:

> 5! ;

120

Division of an integer by an integer with the operator /, generally, yields a rational
number. Integer division with remainder can be executed by iquo and irem:

> iquo(705 , 7), irem(705 , 7);

100,5

Both results can be computed at the same time as follows:

30 2. Numbers and algebraic operators

> iquo(705 , 7 , 't');

100

> t;

5

The mechanism behind this construction is explained in section 5.4 on page 67.

For more information on calculations with integers and on using Maple in num­
ber theory, consult on-line help about binomial, ifactor, ifactors, iged,
igedex, ilem, issqr,nextprime,prevprime, ithprime, eombinat,and
numtheory.

2.11 Integers modulo an integer

Calculations modulo an integer can be carried out with mod. The arithmetic oper­
ators +, -, and * can be used in conjunction with mod an integer, and even division,
if possible, can be carried out with / .

> 20*x-5 - 12*x - 2 mod 3;

2x5 + 1

> 1/2 mod 9;

5

Calculation ofpowers in conjunction with mod can be considerably faster with &A.
See also the on-line help about Power and Powmod.

> 7 &- 1000000 mod 3;

1

These constructions with mod can be applied in cases with variables as welI, for
instance on polynomials over Z mod n. For univariate and bivariate polynomials
over the integers modulo a prime p, modp1 and modp2 are available. In section
18.20 on page 273, matrices with elements in Z mod n are demonstrated. For more
information on this subject, consult the on-line help about mod and inert.

For the Chinese remainder algorithm, the procedure ehrem is available.

2.12 Algebraic extensions and general rings 31

2.12 Algebraic extensions and general rings

Calculations in Maple using algebraic extensions of the rational field are discussed
in section 14.10 on page 183 and in Chapter 15, Manipulating algebraic expres­
sions. You can also consult the on-line help about evala.

For the creation of an abstract group or an abstract operator the procedure def ine
can be used. Moreover, Maple has special packages for peadic numbers padic,
Gaussian integers Gausslnt and for Galois fields GF (which can also be created
in Domains), and the procedure Berlekamp. These subjects are beyond the scope
of this book.

chapter 3

Names and evaluation 1:
mathematical variables

Maple uses numbers, mathematical variables, algebraic expressions, mathemati­
cal functions, matrices, and many other types of objects. This chapter discusses
the mechanisms in Maplefor handling names that refer to these objects.

The Maple commands in this chapter make up an unbroken Maple session, as it is
the case with each chapter.

More about names and evaluation can be found in Chapter 5, Names and evalu­
ation 2: applying procedures, and in Appendix B, Names and evaluation 3: some
special features.

3.1 Assigning names to objects and evaluating names to objects

In Maple, a name can be used without a value, emulating an undetermined math­
ematical variable; for instance, X and a in the following expression:

> 3*r2 + a;

Please pay attention to the use of upper-case and lower-case letters: both can be
used in names, and Maple distinguisbes between them. For instance, Maple per­
ceives x and X as different names.

Any name in Maple can refer to another Maple object. For instance,

> a := 1000;

a:= 1000

We say: "the number 1000 bas been assigned to the name a."

From now on, generally, Maple reads 1000 for eacb occurrence of a. We say: "the
name a refers to the number 1000":

> a A 2*t - 2*a - 1;

1000000 t - 2001

We say: "Maple bas evaluated a 2 t - 2 a-L" The term evaluation is given
several meanings in various computer languages. Strictly speaking, Maple evalua­
tion is finding the values of the variables (by the process of searcbing the memory

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

3.2 Assigning names and expressions to a name 33

for references of names), and does not imply any ca1culations. In Maple termi­
nology, a ca1culation is called a simplification. Generally, simplifications must be
requested by the user, but some basic simplifications are executed automatically,
such as ca1culating the square of 1000 and the combination of -2000 and -1 in
the last example. So Maple has calculated the result in that example by

- evaluating a to 1000

- autosimplification of the resulting expression

- sorting subexpressions in the resulting expression according to the internal
order in the Maple memory.

Evaluation is always followed by this autosimplification and sorting. Therefore,
this whole process also is called evaluation usually and so we do in this book.

3.2 Assigning names and expressions to a name

Now let's see what happens when we assign the first expression to a name.

> expr := 3*X~2 + a;

expr := 3X2 + 1000

What Maple has done is the following:

- The right-hand side has been evaluated to 3X2 + 1000.

- This result has been put on the 'stack' for reference by the ditto (%).

- The left-hand side, the name expr, is made to refer to this expression.

This last action is represented by Maple's response. If you had assigned something
to a previously and would have forgotten about that, you would not have expected
this result. Therefore, you better check the result. Advice:

When you enter an assignment, check its effect
by viewing the result that is printed to the screen.

The name a has been used in assigning a value to expr. But a has been evaluated
before the assignment. This makes expr refer to something that has nothing to
do with a. Therefore, if we now change the value of a, the value of expr is not
affected.

> a := 777 ;

a:= 777

> expr

3X2 + 1000

Now let's assign something to X and then ask for expr.

34 3. Names and evaluation 1: mathematical variables

> X := sqrt(7)-1;

X:= ../7-1

> expr;

After one step of evaluation of the name expr, Maple gat 3 X 2 + 1000, but now
X refers ta something, sa Maple takes another step in evaluating X. The situation
is shown in the following diagram:

expr

+
+ 1000

You can ask Maple ta evaluate exactly one step ar a number of steps by the proce­
dure eval.

> eval(expr,l);

3X2 + 1000

> eval(expr,2);

The standard in Maple is foII evaluation, with a few exceptions, discussed in Ap­
pendix B, Names and evaluation 3: some specialjeatures.

It may be dear that changing the value of X changes the result of evaluating expr.
> X := 5*Pi;

X:=511"

> expr;

7511"2 + 1000

It is essential ta consider present references of names involved in assignments, be­
cause the resuIt of evaluating the right-hand side is assigned ta the left-hand side.
You can test whether you understand this mechanism by predicting the results of
the following commands, then checking your predictions by entering the lines.

3.3 Unassigning 35

tI := 82 - 1

> s := 10:
> t2 := (sA2 - 1);

t2:= 99

> tl , t2

99, 99

> eval(tl,l) , eval(t2,1);

82 - 1, 99

> s:= 100: tl , t2

9999, 99

3.3 Unassigning

A name can be unassigned by the aid of siogle forward quotes.

>a:='a';

a:= a

As usual in assignments, the right-hand side is evaluated first. Evaluating some­
thing between forward quotes prevents Maple from looking in the memory for ref­
erences of the names between these forward quotes; instead of this, Maple peels
off that pair of forward quotes. Here the right-hand side evaluates to the name a
and the assignment determines the name a to once again have no reference. The
command may suggest that a would refer to itself in a recursive way, but this is
prevented by Maple. See the section Recursive definitions of names at the end of
this chapter.

Often, problems arise when the user forgets about an assignment earlier in the ses­
sion, and thinks that a name is unassigned.

It is wise to uoassigo aH oames
as sooo as their values become useless.

Let's act on this advice and unassign X and expr, previously assigned:

36 3. Names and evaluation 1: mathematical variables

> X:='X' : expr:='expr' :
We could have unassigned these names also with the procedure unassign as fol­
lows:

> unassign('X, expr');
Do not forget the single quotes, otherwise the arguments are evaluated before they
can be unassigned.

If you want to unassign ali names used, including ali procedures and tables read
from the library, you can enter restart. This brings the Maple engine nearly to the
state of start-up, but does not erase your worksheet.

3.4 Names and properties

Maple can give a name or an expression a property with the aid of the procedure
assume:

> assume(p < O);

> assume(x > 1);
Many procedures can use these assumptions:

> abs(x*p);

Maple informs the user that p and x have properties by printing their names with
a trailing tilde ('"). (In windowing versions you can make other choices.)

Maple can use this property for calculations, for instance in calculating
limn -+oo xn and limn -+oo (~) n.

> limit(x~n , n=infinity)j

00

> limit((l/x)~n , n=infinity);

O

If we had not made such an assumption about x, Maple would have retumed the
command uoevaIuated.
However, not ali procedures take such properties into account. For instance, in the
following command, solve does not take into account that x has been assumed to
be greater than 10:

> solve(x~2=400 , x);

20, -20

The assumptions about x can be omitted in the same way as x can be unassigned.

3.5 Combinations of characters that can be accepted as names 37

> x := 'x'; p := 'p';

x :=x

p:=p

The assume facility is explained in a more comprehensive way in Appendix A,
Types, properties, and domains.

3.5 Combinations of characters that can be accepted as names

Maple accepts almost any combinations oflower-case letters (a, . .. , z), upper-case
letters (A, ... , Z), digits, and the underscore character (_) as a name, if the first
character is not a digit.

However, the following keywords of the Maple language cannot be used as names
in a simple, direct way.

and by
el se end
if in
mod not
or proc
stop then

For example,

> in :1= 5 ;
Syntax error, ':=' unexpected

do
fi
intersect
od
quit
to

done
for
local
option
read
union

elif
from
minus
options
save
while

Moreover, many names used by Maple, for instance names of procedures, are pro­
tected; if you try to assign something to such a name, Maple protests.

> abs := 3;
Error, attempting to assign to 'abs' which is protected

This protection Can be removed by the procedure unprotect.

In practice, there can be more restrictions in the use of combinations of characters
as names. For example,

> 1 := 20;
Error, Illegal use of an object as a name

This rather mysterious message of Maple arises from the fact that 1 is an alias of
sqrt (-1) , so Maple reads the cornrnand as "sqrt (-1) : =20 ; " and does not ac­
cept this. More about alias can be found in Appendix B, Names and evaluation
3: some specialjeatures.

Moreover, a name used in an option should not be assigned.

38 3. Names and evaluation 1: mathematical variables

Although a name can have the underscore (_) as its tirst character, a not very
advanced user should not use such a name, because Maple uses this category of
names for internal purposes. For example, the procedure integrate substitutes
the name ..x for the integration parameter before it tries to calculate a result. Then,
if Maple tinds a re suit, this ..x is exchanged back for the original parameter.

A special cIass of names is formed by the environment variables of Maple,
containing especiaIly Digi ts, Order, printlevel, mod, Normalizer and
Testzero. Maple prevents an assignment to one of these if it makes no sense.
For instance, the number of digits in a floating-point approximation should be a
natural number, so the following command is rejected:

> Digits := sqrt(101) ;
Error, invalid assignment to Digits

Another special cIass of names is formed by the constants:

> constants;

false, "f, 00, true, Catalan, FAIL, 7r

> Pi := 3.14;
Error, may not assign to a system constant

The name Pi does not refer to anything else, though the procedure evalf can tind
floating-point approximations, but it is not possible to assign a value to this name
because it is contained in the sequence of constants.

3.6 Greek letter names

In windowing versions of Maple, the names of the Greek letters are printed as
Greek letters.

> phi, Phi;

Be careful with the name Pi: it is printed by Maple as 7r, exactly in the same way
as the name pi is printed. But Maple takes Pi as the mathematical constant 7r,
while pi is a name like other names and can be used as a variable.

> sin(pi), sin(Pi);

sin(7r), O

57r+77r

In the last result, both terms contain 7r, but the two are different, so the terms cannot
be combined into 1211". You can see this by applying Iprint:

www.allitebooks.com

http://www.allitebooks.org

3.7 Names with an index 39

> lprint(%);
5*Pi+1*pi

More possible causes for confusion of names can be found in Chapter 6, Creating
and using mathematical functions in the section Denotation of the functions exp,
Gamma, and Zeta.

3.7 Names with an index

A name with an index can be created with square brackets:

> A[n];

In fact, Maple reads A [n] as an element of a table with the name A; see section
10.10 on page 135.
Suppose, for instance, that you want to create a truncated power series with unde­
fined coefficients. You can do that as follows:

> ser := sum(c[i]*xAi , i=O .. 8);

ser := Co + CI x + C2 X2 + C3 x3 + C4 x4 + C5 x5 + C6 x6 + C7 x7 + Cs xs

More on this subject can be found in section B.3 on page 287.
As an alternative you can use

> ser := sum('C.i'*xAi , i=O .. 8);

ser:= cO + c1x + c2x2 + c3x3 + c4x4 + c5x5 + c6x6 +
c7x7 + c8xs

The period between the characters a and i is Maple's concatenation operator: it
evaluates i at its right side and then glues the result to the symbol a at its left side.
It works, but the result looks less attractive. Moreover, the forward quotes are
necessary here, because, generally, the arguments to a procedure are evaluated be­
fore they are handed over to the procedure; see Chapter 6, Creating and using
mathematical functions. So, if we had not used forward quotes, the concatena­
tion would have been executed before the procedure sum could have substituted
the successive values for i:

> misser := sum(c.i*xAi , i=O .. 8 };

misser := ci + ci x + ci x 2 + ci x 3 + ci x4 + ci x5 + ci x6 +
ci x7 + cix8

40 3. Names and evaluation 1: mathematical variables

3.8 Single back quotes

If you want ta use a name that is not acceptable ta Maple, you can make it accept­
able by enclosing it in back quotes.
For instance, here are names containing spaces, exclamation, and question marks:

> 'the largest number!!' := 100000000000000000;

'the largest number!!' := 100000000000000000

> 'a still larger number?' := 'the largest number!!'+l;

'a stiU larger number?' := 100000000000000001

In this way, a keyword can be used, too.

> ' qui t' : = O;

'quit' := O

Making a sequence of characters acceptable as a name is the only effect of a pair
of back quotes. For instance,

> t:=10: 'te;

10

The pair of back quotes around t here is superfluous, as the name t is acceptable.
Sa Maple neglects this pair of back quotes. For the same reason, back quotes can­
not change the behavior of an alias.

> '1' := 3 ;
Error, Illegal use of an object as a name

The rale of a pair of back quotes is ta make the command line interpreter accept a
combination of characters as a whole symbol, a name that can refer ta other objects.
A pair of back quotes does not prevent evaluation.

Be careful not ta enter unpaired back quotes. If you do, you will see strange warn­
ings:

> cos('new var);
Warning, incomplete quoted name; use' to end the name

You might think that entering the second back quote could satisfy Maple's syntax
checker, but that is not sa:

> '1;
Synt~x error, ';' unexpected

Here Maple expects you ta enter the closing parentheses, sa make the correction

> ');

3.10 Recursive definitions of names 41

cos('new var');
)

Now Maple is kindly waiting for new input.

3.9 The concepts of name, symbol, and string in Maple

In many computer languages, such as Pascal and Basic, a string is constructed by
enc10sing characters between a pair of single or double quotes. In Maple V re­
lease 5, such a string can be constructed by enc10sing it between a pair of double
quotes. (In previous releases the double quote is used for the ditto). But a name is
something quite different: a name can refer to something else and a name can act
as a variable. A pair of single back quotes urges Maple to accept the sequence of
characters between them as a name.

Likewise, enc10sing a name between a pair of single forward quotes may resem­
bIe the idea of creating a string in other computer languages, but again, it is quite
different: these forward quotes preserve the content from looking up its value, as
the evaluation peels off only this pair of forward quotes.

> 'a' + "b" + "'c"';

a +' b' +" c"

Forward quotes do not withhold Maple from elementary ca1culations:

> '6 + «a~2)~3) + 4';

3.10 Recursive definitions of names

There is one more pitfall in assignment.

> k := k+3;
Warning, recursive definition of name

k:= k + 3

Maple detects a loop in the reference ofk and wams the user. You can see this loop
by evaluating k only one step.

> eval(k ,1) ;

k+3

If you don't give the command

42 3. Names and evaluation 1: mathematical variables

> k := 'k';

k := k

but let Maple evaluate k, you get a message
Error, too many levels of recursion
or Maple crashes.

In more complicated cases, Maple may not detect such recursive definitions in time
to warn the user.

If Maple issues a message such as the above or if Maple crashes, in most cases
Maple has tried to evaluate a name that refers to itselfby a more or less complicated
detour.

chapter4

Elementary calculus

This chapter deals with calculating derivatives. antiderivatives (or primitive func­
tions. indefinite integrals) and definite integrals. as well as calculating sums and
products. Although Maple is very powerful in calculating antiderivatives. some­
times it can be useful to help it a little bit; this chapter pays attention to several
ways to do so. demonstrated by simple examples. Moreover, reliability and meth­
ods for checking are discussed.

Calculus is based on the concept offunctions. It is often more convenient to use
functions than expressions in calculations. In Chapter 6. Creating and using math­
ematical functions. the use offunctions is discussed. especially in connection with
calculus.

Applying series approximations ,for instance for antiderivatives. is shown in Chap­
ter 8. Taylor or Laurent expansion and limits. In that chapter limits are dealt with.
too.

4.1 Differentiation

An expression interpreted as a function in one variable can be differentiated with
the procedure diff. In order to check the correctness of the command before it is
evaluated, you can enter it between a pair of forward quotes:

> 'diff(exp(-a*x~2) , x)';

~e(-ax2)
âx

The name diff is evaluated in the next step, using the ditto, and so the correspond­
ing procedure becomes active:

> %;

The second argument for diff must be a name that does not refer to something
else.

Higher order and partial differentiation can be obtained by adding more arguments
to diff. For instance, ta t3) exp(-ax2) can be calculated by

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

44 4. Elementary calculus

> diff(exp(-a*x A 2) , x, a);

_2xe(-ax2) + 2ax3 e(-ax2)

In the same way ~ exp(-ax2) can be asked for:

> diff(exp(-a*x A 2) , x, x, x);

12 a2 x e(- a x 2) _ 8 a3 x3 e(- a x 2)

This last command can be abbreviated to diff (exp (-a*x~2) , x$3). The
operator $ is used for generating a sequence of equal objects, for instance.

> again $ 7;

again, again, again, again, again, again, again

Undefined functions can be used as well:

> diff(cos(f(x» , x);

- sin(f(x)) (:x f(X))

> diff(f(cos(x» , x);

- DU) (cos(x)) sin(x)

In the last result D (f) stands for the derivative function of f. The procedure D is
discussed in section 6.9 on page 79.

It is not possible to differentiate with respect to an expression such as u(t):
> diff(exp(u(t» , u(t));

Error, wrong number (or type) of parameters in function diff

Only a name can be accepted as a variable in respect to which an expression is to
be differentiated. In a case like this, you can first substitute u for u (t), ask for
differentiation to u, and then back substitute u(t) for u.

Differentiation is a straightforward algorithm and does not generate reliability
problems in principle.

4.2 The derivative at a point

4.2 The derivative at a point

There are two ways to find the derivative at a point.

A. The obvious way is by evaluating the derivative:

> exp(-x~2+x);

> diff(%,x);

> eval(%,x=l);

-1

45

In releases before V.5 eval cannot be used in this way. In this case, substi­
tution with the procedure subs could do the same job. However, there is a
subtle difference between evaluation at a point and substitution. This can be
illustrated in the following example:

> diff(cos(f(x» • x);

- sin(f(x)) (:x f(X))

> subs(x=O , %);

- sin(f(O)) diff(f(O), O)

This looks weird; evaluating it yields an error:

> %;
Error, wrong number (or type) of parameters in function diff

The procedure subs substitutes immediately, but eval knows that x in
diff (cos (f (x» ,x) must be interpreted as a stiU unknown expression in
x. As soon as this expression can be calculated, the actual substitution can be
executed:

> eval(%% • x=O);

- sin(f(O)) - f(x) (a)/ ax {x=o}

> subs(f=exp , %); %;

- sin(l) (aa ex) /
x {x=o}

B. The second method uses the procedure D that calculates the derivative of a
function. For the example at the start of this section, where the derivative of
the function x H exp(-x2 + x) at x = 1 is calculated, we can use also:

46 4. Elementary calculus

> D(x->exp(-x~2+x))(a)j

(-2a+ 1)e(-a2 +a)

The procedure D is discussed in section 6.9 on page 79.

4.3 Some more tools in differential calculus

For differentiation of implicitly defined functions you can use the procedure
implici tdiff, which must be read from the library with readlib (implici t­
diff) before it can be used. In releases before Release 4, you can use series ap­
proximations of solutions of equations; see section 16.9 on page 227.

There are procedures available for finding extrema: extrema, minimize, and
maximize. These are not always reliable.

For calculations in differential geometry, Maple offers a package ditTorms; this
can handle differential forms with wedge products, exterior derivatives, etc.

4.4 Antiderivatives

You can ask for the antiderivative (or primitive, indefinite integral) of an expres­
sion, e.g.,

J X2 dx
x3 +x2 + x + 1

with the procedure integrate, which can be abbreviated to int:

> x~2/(x~3+x~2+x+l)j

x3 + x2 + x + 1

> integrate(Y. , x)
1 1 1 2 ln(x + 1) + 4: ln(x2 + 1) - 2 arctan(x)

> int(%% , x)j
1 1 1 2 ln(x + 1) + 4: ln(x2 + 1) - 2 arctan(x)

The second argument to int should be a name not referring to something else.
The second argument cannot be something like x (t). This is analogous to the
procedure diff; see section 4.1 on page 43.

If you want to see an antiderivative as a function and want to apply this function,
use eval or useintat :

4.5 Special elements appearing in the results of the procedure int 47

> int (f (x) ,x) ;

1 f(x) dx

> eval(%,x=a);

(1 f(X)dX)I{x=a}

Of course, this expression is not defined mathematically, only differences are de­
fined in the case in which fis continuous; see section 11.6 on page 143. Essentially
the same result can be found in one step by the use of the procedure intat, but more
elegantly and more accessible for manipulation (see the on-line help for intat and
PDEtools [dchange]).

4.5 Special elements appearing in the results of the procedure int

Maple has been equipped with a comprehensive set of mathematical functions,
several of which are defined as an antiderivative. These can be used for expressing
other antiderivatives. For instance,

> 'int(sqrt(1-k~2*sin(x)~2),x)';

> %;

1 sqrt(l - k2 sin(x)2) dx

VCOS(X)2 EllipticE(sin(x), csgn(k) k)
cos(x)

The re suit contains a standard eIIiptic integral. The on-line help can tell you that
EllipticE(z,k) is defined as

iz vl- k2 t 2
-==:-dt

o Jf=t2
The integration methods used by Maple in the previous cases are more or less the
same as the usual methods applied in calculations done by hand. When Maple can­
not find results with these, it launches the attack with a laborious but very powerful
set of Risch algorithms. In order to see what methods are attempted, enter

> infolevel[int] := 1;

infolevelint := 1

This infolevel can be set to 2, 3, 4, or 5 for more details.

Here is an example of a calculation based on a Risch algorithm with a rather cryptic
result, which will be explained in the following.

48 4. Elementary calculus

> 'int(1/(x~6+x~3+1),x)';
int/indefl: first - stage indefinite integrat ion
int/ratpoly: rational function integrat ion
int/rischnorm: enter Risch-Norman integrator
int/rischnorm: exit Risch-Norman integrator
int/risch: enter Risch integrat ion
int/risch: exit Risch integrat ion

f 1 d
x6 + x3 + 1 X

> %
L _R ln(x - 729_R4)

-R=%I

Before analyzing this result, we reset the infolevel to prevent such additional
inforrnation:

> infolevel[int] := O;

infolevelint := O

The last result of the procedure int may look mysterious; it should be read as fol­
lows. The expres sion

RootOf(19683 -26 + 243 _Z3 + 1)
is the set of alI six complex roots of the equation in _Z:

19683_Z6 + 243_Z3 + 1 = O

If these are denoted as ZI ... Z6, then the antiderivative expression found by Maple
can be written as

6

L Zi ln(x - 729z i)

i=1

The appearance of this RootOfis caused by the action of sol ve within this Risch
algorithm. These RootOf expressions are explained in Chapter 14, Polynomial
equations andJactoring polynomials.

Maple can make the result more concrete with the aid of allvalues. This procedure
replaces a RootOf expres sion with alI the roots of the argument of that RootOf.
In the folIowing, you can see how that can be done. Don't bother to understand the
details before you have read Chapter 10, Manipulating several objects at once.

In the following we substitute the list of these roots for the RootOf expression (the
second subexpression of the second subexpression of resul t), at the same time
we convert the sum into a sequence and replace the internal name -It with j.

www.allitebooks.com

http://www.allitebooks.org

4.5 Special elements appearing in the results of the procedure int

> subs(%l = [allvalues(%l)] , sum=seq, _R=j, result);

~ %2(1/3) In (x __ 1_ %2(4/3))
18 144'

(- 3~ %2(1/3) + 3~ I v'a %2(1/3))

In (x -729 (_~ %2(1/3) + ~ I v'a %2(1/3)) 4)
36 36 '

(-~ %2(1/3) _ ~ I v'a %2(1/3))
36 36

In (x -729 (_ ~ %2(1/3) _ ~ I v'a %2(1/3)) 4)
36 36 '

~ %1 (1/3) In (x __ 1_ %1 (4/3))
18 144'

(- ~ %1 (1/3) - ~ I v'a %1 (1/3))
36 36

In(x-729 (_~%1(1/3) _ ~Iv'a%1(1/3))4)
36 36 '

(- 3~ %1(1/3) + 316 I v'a %1 (1/3))

In (x -729 (- 316 %1 (1/3) + 316 I v'a %1 (1/3)) 4)

%1 := -36 - 121 v'a

%2 := -36 + 12 I v'a

49

The result is an expression that would evaluate to a sequence of expressions, ob­
tained by substituting six complex numbers for j in j In(x - 729j4). This expres­
sion can be simplified with the tools of Chapter 15, Manipulating algebraic ex­
pressions, but we will not do so.

Now we can compute the result as the sum of these six expressions.

> sum(%[i] , i=1. .nops([%]»:
(Printing the result is suppressed by using the semicolon.)

50 4. Elementary calculus

4.6 Definite integrals

A definite integral can be requested as in the following example:

> int(x A 3 • x = a .. b);

! b4 _! a4

4 4

Here a.. b is the Maple denotation of the range from a to b.

> 'int(x A (-2) • x=-1 .. 1)';

> %;

11 1
2 dx

-1 x

00

> 'int(exp(-x) • x=O .. infinity)';

100
e(-X) dx

> %;
1

4.7 Helping Maple to find a definite integral by restricting
the domain of a parameter

In the following example, Maple gets stuck in an undefined limit:

> 'int(exp(-aA 2*x) • x=O .. infinity)';

100 e(-a2 x) dx

> %;
Definite integration: Can't determine if the integral is convergent.
Need to know the sign of --> a-2
Will now try indefinite integration and then take limits.

e(-a2 x)_1
lim ---~--

x-+oo a2

This is because Maple knows nothing about a and only supposes it to be a complex
number. In a future release Maple may ask questions to the user in such a case,
sometimes under the control of an option ask, but now we can take the initiative
and tell that a A 2 represents a positive number. We can say so with assume. See
section 3.4 on page 36 or section A.4 on page 278.

Helping Maple to find an antiderivative

> assume(a~2, positive)j

> int(exp(-a~2*x) , x=O .. infinitY)j
1

a",,2

51

The tilde character ("") that follows the name a in the result means that a has
properties, in this case, that a is assumed to be positive.

4.8 Helping Maple to find an antiderivative by conversion
to RootOf

In many cases, Maple prefers RootOf expressions above the corresponding radi­
cal expressions. See section 14.4 on page 175. For instance,

> integrand:=sqrt(x~6+x~3+1)/x~4,xj

sqrt(x6 + x3 + 1)
x4

> int(%,x) j

_! V x6 + x3 + 1 + f ! 2 x3 + 1 dx
3 x3 2 x V x6 + x3 + 1

This does not yield a desired result. Conversion to RootOf helps Maple out of
distress:

> convert(% , RootOf)j

1 RootOfCZ2 - x6 - x3 - 1)
-i x 3 +

f i 2x3 + 1 d
2" x RootOfCZ2 - x6 - x3 _ 1) x

The expression RootOf (_Z2 - x6 - x3 - 1) symbolizes a root of the equation in
_Z: _Z2 - x6 - x3 - 1 = 0, in fact ±vx6 + x3 + 1.
After the conversion no evaluation is performed, so we have to ask for evaluation
by entering the converted form:

> % j
_! %1 + ! ln(- -2 + 3x3 + 8x9 + 8%lx6 -ln4%lx3 + 2 %1)

3 x 3 6 x3

%1 := RootOf{_Z2 - x6 - x3 - 1)

The RootOfs in this result can be translated into radicals by

> convert(% , radical)j

_! %1 +! ln(- -2+3X3 +8X9 +8%IX6 -1n4%lx3 +2%1)
3 x3 6 x3

52 4. Elementary calculus

%1 := ";x6 + x3 + 1

This result should be checked, especially here after the two conversions. That can
be done in the standard way with diff and normal:

> normal(diff(%,x)-integrand);

O

4.9 Helping Maple to tind an antiderivative by substitution

Sometimes a mathematician can see pattems not recognized by Maple. This can
be used to help Maple. For instance:

> integrand := 1/(x~(1/2) + x~(1/3»;

. d 1
mtegran := VX + x{1/3)

> int(integrand,x);

-3 X{1/3) - 2 In (x{1/3) - 1) + In (X(2/3) + x{1/3) + 1) -

In(x - 1) + 2VX - 2arctanh(vx) + 6x{1/6) +
2 ln(X(1/6) - 1) -ln(X{1/3) + X(1/6) + 1)-2 In(X(1/6) + 1)+

In (X(1/3) - X{1/6) + 1)
The result is not very attractive; if you try numerical evaluation you even tind
imaginary components (-7ri). You can do better by guiding Maple as follows.
First use the inert version of the integral, which does not try to calculate some­
thing:

> Int(integrand,x);

J 1 d
VX + X(1/3) x

Now change the variable as you would do it by hand. For this purpose, use
PDEtools[dchange].
(In releases before Release 5, use student [changevar].)

> PDEtools[dchange]({x=t~6},%);

J 6 t 5 dt
+ (t6)(1/3)

In order to let Maple calculate this integral, use value:

4.11 Reliability of the calculation of antiderivatives 53

> value(%);

~ (t6)(1/6) (4 (t6)(1/3) -6 (t6)(1/6) + 12) _61n((t6)(1/6) + 1)

Supposing that you want x to be positive, substitute fIX for t:

> subs(t=x A (1/6),%);

~ X(1/6) (4 x(1/3) - 6 x(1/6) + 12) - 6 In (x(1/6) + 1)
> expand(%);

2 Vx - 3x(1/3) + 6X(1/6) - 6 In(X(1/6) + 1)

4.10 More tools for integration

In the package inttrans you can find procedures for calculation of several inte­
gral transfonns: Laplace, Fourier (complex, real), Hilbert, Mellin, andHankel, and
their inverses. For numerical calculations, FFf is available.

Generally, integrals over lines, areas, surfaces, etc. must be converted to nonnal
integrals, possibly using Maple for the manipulations, before Maple's integration
can be used. The student package contains a procedure Lineint for calculating
line integrals along parameterized curves in R2 , which must be used in combina­
tion with the procedure val ue. A quite different concept of line integral can be re­
alized with DEtools [line_int], which computes the solution of a total deriva­
tive.

4.11 Reliability of the calculation of antiderivatives

In practice, the antiderivatives produced with the procedure int turn out to be cor­
rect, apart from typical cases such as f xndx, where Maple forgets the possibility
that n might be 1.

However, there is a subtle question about continuity and constants. The procedure
int, applied to a continuous function f, defined on an open, connected part U of
the real or complex numbers, yields an antiderivative function of f that might con­
tain unnecessary singularities: removable singularities, which sometimes can be
removed by manipulations, and jumps, where the domain of the antiderivative is
split into connected parts of U and the antiderivative in two adjacent parts can be
made to join by adding different constant functions in the connected parts of the
domain. Therefore, evaluating an antiderivative at the boundaries and subtracting
the results is nof a reliable method for definite integration and a good reason for
the fact that Maple does not supply an undetermined constant to antiderivatives.

54 4. Elementary calculus

Getting unnecessary discontinuities in antiderivatives is a fundamental problem in
today's state-of-the-art symbolic computing.

Although, generally, Maple is reliable in antiderivation, to be absolutely sure you
can check the results of int by differentiating. Of ten, a check can be performed
as in the following example, which you might have encountered already in section
11.9 on page 145:

> integrand:=1/(x~(1/2) + x~(1/3));

. d 1
mtegran := vx + xe1/3)

> intresult:=int(%,x);

intresult := -3x(1/3) - 2 ln(x e1 / 3) - 1) +

ln(X e2 / 3) + x(1/3) + 1) -ln(x - 1) + 2 Vx-

2 arctanh(v'x) +6X(1/6) +2 In (X(1/6) -1) ­

In (X e1 / 3) + x(1/6) + 1) - 2 In (x(1/6) + 1) +

ln(x(1/3) - x(1/6) + 1)
Maple does not see the pattern a mathematician would, but does tind an antideriva­
tive, which can be checked in the usual way:

> normal(diff(%,x)-integrand);

O

This proves that the result of int is a correct antiderivative. However, the result
has discontinuities, although the integrand is continuous. If you look at the for­
mula, you can see immediately that a discontinuity arises at x = 1. A calculation
shows that the imaginary component is - 7r for x E< 0,1 > and 7r for x > 1. You
can easily see the jump in 1 with Maple:

> assume(x,RealRange(Open(O),Open(l)));
> evalc(Im(intresult));

-7r

> assume(x,RealRange(Open(1),2));
> evalc(Im(intresult));

7r

You can use numerical and graphical tools as well, but these are not reliable when
you are operating near a branch cut: if you are taking the logarithm of a negative
number, you ought to tind 7r as the imaginary component. But if a slight numer-

4.12 Definite integrals of discontinuous functions 55

ical deviation causes a logarithm to be taken of a number with a small negative
imaginary component, you get approximatily -7r.

The discontinuity at 1 ofthe antiderivative can be removed easily; see section 15.8
on page 201.

The standard method of testing the correctness of an antiderivative is:

- differentiate the found antiderivative

- subtract this from the original expression and

- apply normal to this difference and check if this is O.

Eventually, some extra manipulation may be necessary. See Chapter 15, Manipu­
lating algebraic expressions.

4.12 Definite integrals of discontinuous functions

In calculations of definite integrals, Maple looks for the presence of discontinuities
and asymptotes in the antiderivative and uses the results for the calculation. For
instance:

> integrate(1/x~2 , x=-l .. l)j

00

The test of continuity of an antiderivative between the boundaries of a definite in­
tegral can be discarded by adding an option continuous to the procedure int.

However, if the boundary values of the interval are abstract objects, Maple can­
not test if there are discontinuities between them. In these cases, a result is given
without any restrictions:

> integrate(1/x~2 , x=p .. q)j
-q+p

qp

If this result is evaluated at p=-l and q=l, the result does not equal J~l ~.
> eval(%,[p=-l,q=l])j

-2

56 4. Elementary calculus

4.13 Definite integrals and branch cuts of functions

Here is another rare case, where Maple gets wrong results in calculating a definite
integral:

> (-2*sin(x)+I*cos(x»/(2*cos(x)+I*sin(x»;
-2 sin(x) + 1 cos(x)
2 cos(x) + 1 sin(x)

> int(% , x=O .. 2*Pi);

o
This re suIt is not correct. It can be calculated easily by hand, yielding 211'. In fact, it
is a contour integral for the complex function z f-t ~,yielding 27ri times its residue
1 in O. (A procedure residue is available.)

Let's calculate the corresponding antiderivative:

> int(%% , x);

ln(2 cos (x) + 1 sin(x))

This antiderivative is correct, which can be checked easily. However, if we ask
for the integral from O to 211', the antiderivative crosses the branch cut of In at the
negative part of the real axis, and this causes the wrong result.

It is not difficult for Maple to approximate this integral by numeric al integration:

> evalf(Int(%%%,x=O .. 2*Pi));

- .639544833710-13 + 6.2831853071

> fnormal(%);

6.283185307 1

That is a good approximation to 27ri. Using numerical integration, possibly after
having chosen some values for parameters, is a recommended testing method, al­
though you should be aware of the risks of deviations, for instance with branch
cuts.

4.14 Reliability of calculations of definite integrals

In finding definite integrals, the present release 5 of Maple V seems to be rather re­
liable, apart from rare problems conceming discontinuities and branch cuts, shown
in the previous two sections. But it may be wise to test results, especially in compli­
cated cases with discontinuities in the integrand or with nonreal ranges. In search
of a definite integral, Maple generally works as follows:

- Try to find an antiderivative.

4.15 Numerical integration 57

- Then test this for continuity in the given range.

- If no discontinuity is found in the given range, try to calculate the definite
integral by subtracting the right limit of the right boundary from the left limit
of the left boundary of this antiderivative. In case of discontinuities, try to use
these by calculating limits.

In some cases, it can be complicated to test results in an exact way, but of ten it is
easy to test results in a numeric al way by numeric al integration andJor plotting.

What can be done to obtain correct results, generally?

- First have a close look at pattems and properties of expressions in input and
output that can predict something about the re suIt.

- Look for discontinuities.

- Try to check the antiderivative by differentiating and comparing the result
with the original expression.

- If possible, test numerically with evalf (lnt ()), possibly with op-
tions: _CCquad andJor -Dexp. The extra options serve to prevent Maple from
using symbolic methods near singularities.

4.15 Numerica! integration

The following definite integral cannot be calculated exactly.

> int(exp(x-x~3) , x=O .. l);

foI e(x-x3) dx

A numerical approximation can be found by applying evalf to this result, with the
number of digits as the second argument.

> evalf (% , 30);

1.29264345165894609581636207792

In the following case, Maple could yield an exact result for JOI vx3 - xdx, ex­
pressed in a lengthy and complicated expression containing Legendre functions.
This could then be approximated with evalf. There is a faster and simpler way
to achieve an approximation:

58 4. Elementary calculus

> lnt(sqrt(x-x~3) , x = O .. 1);

(Ol 10 Ix - x3 dx

The procedure Int is the inert version of int: it does not execute any calculations,
but if we ask for an approximation with evalf, numerical integration methods are
used:

> evalf(% , 20);

.47925609389423688298

In cases where the boundaries are definite real numbers and the integrand does not
contain undetermined variables, you can ask Maple to calculate a numerical ap­
proximation 10 an integral, using lnt and evalf as in the previous example. If the
boundary numbers are complex, you must choose an integration path and convert
the integral to an integral over a part of the real numbers, possibly using substitu­
tion. See section 11.9 on page 145.

In numerical integration, Maple tries to find a result where ali digits apart from the
last one are signijicant. It is possible to choose between several numerical integra­
tion techniques by adding an option _CCquad, _Dexp or _NCrule. Specific infor­
mation on these options can be obtained with the on-line help for int ,numeric.

You can speed up numeric integration by using optimize. See section 9.2 on page
119.

If Maple detects a discontinuity in between the boundaries of the integration, nu­
merical integration generates an error: (in evalf/int) unable to handle
singulari ty.

There is no direct facility to generate a table or interpol ating function for a numer­
ical approximation to an antiderivative on an interval. In order to obtain a graph
of an antiderivative function, you can think of integration as solving a differential
equation and use graphical facilities for this field. See section 17.5 on page 238.

4.16 Numerical approximations to multiple integrals

Here is an example of a double integral. Maple does not find a closed form but an
intermediate result:

> 'int(int(exp(t~3),t=0 .. x) , x=O .. l)';

11 1" e(t3) dtdx

> %;

4.16 Numerical approximations to multiple integrals 59

The procedure evalf can handle a multiple integral; however, be careful, do DOt

apply evalf as follows:
> evalf(int(int(exp(t~3),t=O .. x) , x=O .. l));

-.2803536934 - .4855868411 1

Obviously the result is not correct: the imaginary component makes no sense. In
fact, the previous result of the symbolic calculation of the double integral is incor­
rect. By applying evalf on int (înt (. ..)) we have caused Maple tirst to eval­
uate this by symbolical calculations and using that incorrect result. So it is wise to
avoid such a calculation by the aid of the inert version of the integral:

> Int(Int(exp(t~3),t=0 .. x) , x=O .. l);

11 1" e(t3) dtdx

> evalf(%);

.5607073869

Such calculations are rather time-consuming. Taking a series development of the
inner integral (to sufticient high order) and integrating this from O to 1 is much
more efticient. See Chapter 8, Taylor or Laurent expansion and limits. Already for
the present, rather undemanding case, the method below is about 20 times faster.

> series(exp(t~3) , t=O , 30);

1 + t3 + !t6 + !t9 + 2- t 12 + _1_ t15 + _1_ t18 + _1_ t21 +
2 6 24 120 720 5040

1 24 1 27 30
40320 t + 362880t + O(t)

> convert(% , polynom);

1 1 1 1 1 1
l+t3 +- t6 +_ t9 +_ t 12+_ t 15+_ t18 + __ t21 +

2 6 24 120 720 5040
1 24 1 27

40320 t + 362880 t
> int(int(% , t=O .. x) , x=O .. l);

4387950745386281
7825740931008000

> evalf(%);
.5607073866

From a rough estimate of the error with the Taylor remainder theorem, this result
should be accurate to at least three digits. According to this method of estimating

60 4. Elementary calculus

the error, a 10-digit accurate result would require series expansion to order 60. This
last task can be executed by Maple in no time, but a little experimenting with the
order shows that order 30 is sufficient for lO-digit accuracy in this case.

4.17 Definite and indefinite sums and products

The procedure sum is the discrete variant of int:

> 'sume 3~(-k) , k=1 .. 10)'; %;

> 'sume 3~(-k) , k=l .. N

3
2

10 L 3(-k)

k=l
29524
59049

)'; %;
N L 3(- k)

k=l

(~rN+1) + ~
> 'sume 3~(-k) , k)'; %;

L 3(- k)

k

-~ (~r
In the first and second example, the range is indicated with •• (two dots).
In the last case, we see the discrete sister of the antiderivative; discrete differenti­
ation yields the original expression:

> eval(%,k=k+l) - % ;

~ (~) (k+1) + ~ (~) k

> expand(%);

Summing to infinity:

> 'sume 3~(-k) , k=O .. infinity)'; %;
00 L 3(- k)

k=O
3
2

4.17 Definite and indefinite sums and products 61

Keep in mind that the arguments of sum are evaluated before the procedure comes
into action. So the "walking parameter" should not refer to something else:

> n := 1000;

n:= 1000

> sume 2~n, n=1 .. 10);
Error, summation variable previously assigned

second argument evaluates to
1000 = 1 .. 10

You can use forward quotes to prevent early evaluation of the arguments in such
cases:

> sume '2~n' , 'n'=1..10);

2046

Sums of less than 1,000 terms are calculated simply by calculating each term and
adding them, but if there are more terms, Maple tries to find a closed form.

> sum(1/k,k=1 .. 1000);

w(1001) + 'Y

w(x) is defined as d~ ln(r(x)) and'Y is the Euler constant.

This rule depends on the release, but it cannot be changed by the user unless
the procedure sum is changed (". .. elif dab < 1000 then ... "). However,
there is a trick; for instance,

> sum(cos(x),x=0 .. 7);

1 + cos(1) + cos(2) + cos(3) + cos(4) + cos(5) + cos(6) + cos(7)

You can urge Maple to search for a formula by presenting the right boundary of
the index as an indefinite, and then you can evaluate at N = 7:

> sume cos(x) , x = O .. N);

_! cos(N + 1) _ ! sin(1) sin(N + 1) + !
2 2 cos(1) - 1 2

> eval(% , N=7);

_! cos(8) _ ! sin(1) sin(8) + !
2 2 cos(1) - 1 2

The section 4.5 on page 47 shows a construction that yields sums over the set of
roots of a polynomial, using the RootOf denotation. The sum of the elements of
a set or list (see section 10.8 on page 133) can be found as follows:

62 4. Elementary calculus

> a_list := [2 , 3 , 5];

alist := [2, 3, 5]

10

An inert version of sum is available: Sum. This does no calculations, but can be
handled with manipulation procedures. It can be activated with value.

> Sum(x A 2 , x=l .. N);

x=l

> value(%);
1 3 1 2 1 1
"3 (N + 1) - 2 (N + 1) + ti N + ti

In connection to summation, Maple offers the Z-transform with ztrans; sev­
eraI other tools can be found in the package sumtools. Moreover, you can use
PDEtools [dchange] in the same way as in applying the substitution rule for in­
tegrals. (In releases before Release 5, use student [changevar].)

Calculation of products is analogous to calculation of sums; use the procedure
product:

> product(xAk , k=1 .. 100);

X 5050

4.18 Other tools and pedagogical facilities

Many more Maple tools are available for calculus. If you are looking for something
special, don't forget to look into the share library; see section 5.6 on page 69.

Mathematical education can profit considerabIy from using MapIe. For teaching
calculus, a special package, student, is available. Here is an exampIe: integra­
tion by parts. Maple can correctly compute the following antiderivative without
the manual use of this technique. In fact, we must keep Maple from calculating an
antiderivative by using the inert form of int: Int.

> Int(x*cos(x) , x);

J x cos(x) dx

4.18 Other tools and pedagogical facilities 63

> student [intparts](% , x);

x sin(x) - ! sin(x) dx

The application of the procedure value makes Maple calculate the integral by con­
verting the inert Int into the active int.

> value(%);
x sin(x) + cos(x)

It is advisable not to use the computer early. First, a student should become famil­
iar with the concepts involved, and execute sufficiently calculations for a specific
type of mathematical action by hand and mind, possibly only with the most ba­
sic methods, until she/he really understands what is happening and the goal of it.
Then, she/he can learn to execute the same calculations with one or more Maple
commands and learn to read the output generated by Maple. If a student has not
done so, he/she might use the facilities by trial and error, not knowing what to do.
In subsequently solving problems where this action is one of the steps, the student
can concentrate on choosing which step to take, not being distracted from this task
by the burden of the detailed calculation within each step. In this way, using Maple
can enhance abstraction processes in leaming and heuristics in problem solving.

chapter 5

Names and evaluation 2:
applying procedures

This chapter explains the use of Maple procedures, arguments and output. Ways
ofusing Maple's library ofprocedures are also explained. This chapter is a sequel
to Chapter 3, Names and evaluation 1: mathematical variables.

5.1 Evaluation of names in arguments of procedures

The following rule is very important for using Maple:

The arguments given to a procedure are evaluated
before the procedure comes into action,

excepting a few special procedures.

The exceptional procedures can be found at the end of section B.6 on page 289.

For example:

> x := 484~(1/2);

x:= v'484

> simplify(x);

22

After the second command, tirst x is evaluated, yielding v' 484. This is given to the
procedure simplify, which yields 22 as the result. This action does not change
the value of x:

> x ;

Obviously, there is no possibility for a procedure such as simplify to change
the reference of its argument, as the evaluation of it takes place before simplify
comes into action.

Here is an example where problems arise because arguments are evaluated tirst:

> diff(sin(x) , x);

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

5.2 Options of procedures 65

Error, wrong number (or type) of parameters in function diff

The last command seems to ask Maple to differentiate sin(x) with respect to x,
but x has been assigned the value v'484. Before diff carne into action, Maple
evaluated x to vi 484. Therefore, we asked Maple to differentiate sin(v' 484) with
respect to vi 484 and Maple cannot make sense of this strange command. In order
to tind out what is happening in such a case, evaluate the arguments:

> sin(x),xj

sin (v'484) , v'484

General advice:

If a procedure is behaving in an odd manner,
first test the values of the names contained in its arguments.

These troubles would have been prevented if we had unassigned the name x im­
mediately, when its value became obsolete.

> x := 'x' j

x :=x

But people of ten forget to unassign names.

5.2 Options of procedures

For each procedure there is a minimum number of arguments, but many proce­
dures can use more arguments. Some of these arguments can be options, deciding
which type of action is asked for. For instance, the procedure fsol ve tries to tind
numeric al solutions to an equation or set of equations:

> fsolve(sin(x)=1/3,x)j

.3398369095

Generally, f sol ve tries to tind real solutions and is content with just one solution;
see section 16.700 page 225.

> fsolve(sin(x)=2,x)j

fsolve(sin(x) = 2,x)

There are no real solutions here, but you can ask for a complex solution by adding
the option complex:

66 5. Names and evaluation 2: applying procedures

> fsolve(sin(x)=2,x,complex)j

1.570796327 - 1.3169578971

When a procedure fails to do what you want, always read the on-line help for this
procedure. In many cases, adding or changing an option can help.

5.3 Output and results of procedures

Generally, execution of a procedure yields a Maple object as a result. There are
three cases where no result is generated:

a. If the execution generates an error, the error message is printed to the screen
and no result is produced.

b. A few procedures never yield a result.

For instance, the procedures print and Iprint print their arguments to the
screen without pushing a result onto the ditto stack:

> ((5*8*x~2-1) / x~3)j

40x2 - 1

x3

> lprint(expand(%~2»;
1600/x A 2-80/x A 4+1/x A 6

> % j

Because lprint yields no result, it cannot leave a result on the stack of pre­
vious results, so the last ditto yields 40 ~~ -1 as the last result.

c. Some procedures occasionally yield no result, for instance, sol ve in the case
where no solution for the equation is found.

The result of a procedure can be used as input for another procedure by nesting
them:

> solve(diff(x~3-x,x) , x)j
1 1 -V3 --V3
3 ' 3

The procedure diff has calculated an expression, and this result has been used
by sol ve. The result of sol ve has been pushed onto the stack for quoting by the
ditto (%).
However, you are well advised to avoid nesting; better look at the result of each
step and each time use the ditto for reference to the previous result. It is easy, and
by tracking results often you can prevent mistakes and unwanted results.

5.5 Narnes referring to procedures 67

5.4 Assigning side results to arguments of procedures

In section 2.10 on page 29, the procedure iquo was introduced with a special
construction:

> iquo(25 , 7 , 't');

3

> t;

4

The integer division of 25 by 7 yields 3 with remainder 4; this remainder is as­
signed to t by iquo. If iquo gets a third argument, Maple tries to assign the re­
mainder of the division to that argument. This is only possible if the argument is
aname.

The forward quotes around tin the third argument to iquo make sure that t can­
not be evaluated. Let's see what happens without these forward quotes:

> iquo(45,13,t);
Error, wrong number (or type) of parameters in function iquo

Maple has tried to assign the remainder 6 to the third argument. But the third argu­
ment has been evaluated to 4 before execution of the procedure started, so Maple
would have to assign 6 to 4 and refuses to do so, reporting that there is something
wrong with the parameters.
This premature evaluation of t can be prevented with forward quotes:

> iquo(45,13,'t');

3

> t;

6

Obviously these forward quotes are not necessary if the third argument of iquo
is an unassigned name, as was the case in the first example of iquo. However,
in order to avoid problems, it is good practice to use forward quotes for the third
argument of iquo and generally for arguments of this kind.

5.5 Names referring to procedures

Procedures are common objects in Maple. For instance, "normal", "abs", etc.
are names referring to Maple procedures. Simply typing "abs" does not reveal
the fact that abs Îs a procedure:

68 5. Names and evaluation 2: applying procedures

> abs;

abs

Names of procedures must be dealt with in a special way; they are evaluated only
on special request:

> eval(abs) j

procO opt ion builtin; 64 end

The result states that the name "abs" is referring to a procedure contained in the
Maple kernel and supplies the internal number.

Names of Maple V procedures are protected against assignments from Release 3:

> abs := sqrt(7) ;
Error, attempting to assign to 'abs' which is protected

However, this protection can be made idle by the procedure unprotect:

> unprotect(abs):
(In earlier releases this is done by unassigning the name.) Now the name abs can
take any value:

> abs: =sqrt (7) j

abs:= V7
The name "abs" refers to V7 and the procedure abs has been lost, although only
for the current Maple session.

5.6 The Maple library of procedures

The Maple system contains an enormous number of procedures available for the
user. In Maple V release 5 more than 600 procedures can be used directIy as we
have done up to now. A list of these procedures is shown by the command ?in­
dex, function. Only a few of these (the "interior" procedures) are present in the
computer's working memory at start-up. Most other procedures are automatically
read from file into the memory when invoked the first time. Some other procedures
must be loaded explicitly by the user before they can be used with the aid of the
procedure readIib. For instance, the procedure psqrt can be used for finding the
square root of a polynomial, if it exists:

> expand((3*x-3*y-4 - 2*x*y-6 + 12*x-5*y-2)-2);

-39 x 6 y8 _ 12 x 4 ylO + 72 x 8 y6 + 4 x 2 y12 + 144 x lO y4

> psqrt(%)j
psqrt (-39 x 6 y8 _ 12 x 4 ylO + 72 x 8 y6 + 4 x 2 y12 + 144 x lO y4)

5.6 The Maple library of procedures 69

The procedure has done nothing because it is not known to the present Maple ses­
sion and is not loaded automatically. We have to read it from the library:

> readlib(psqrt);

proc(p) ... end

From now on, the procedure psqrt can be used:
> psqrt(IIIIII);

For each procedure that is not loaded automatically, the on-line help for that pro­
cedure says so.

Many other procedures are contained in packages for special fields. For a list
of these packages; see index, packages. For instance, there is a package or­
thopoly for orthogonal polynomials. For a list of all the procedures in this pack­
age; see ?orthopoly. One of them is the procedure P, which can calculate Leg­
endre polynomials. You can call it as orthopoly [P]:

> orthopoly[P] (4,x);
35 4 15 2 3
-x --x +-
8 4 8

However, such an indexed call to a procedure in a package can only be used for
some packages. For alt packages it is possible to load a procedure using with:

> with(orthopoly,P);

[P]

From now on, we can call this procedure directly:

> P(5,X);

If you want all the procedures of a package to be loaded at once, you can also use
with:

> with(orthopoly);

[G,H,L,P,T,U]

Now we can use the other procedures from the package as well.

A package may contain subpackages. This is the case with the stats package for
statistics. How such a package can be handled is shown in the on-line help for these
packages.

Moreover, contributions of Maple users are gathered in the share Iibrary. The
way this can be used is explained if one types ?share:

a. enter wi th (share) ;

70 5. Names and evaluation 2: applying procedures

b. search your tool by choosing your subject from '?share ,contents and read­
ing the contents of ?share,<subject>;

c. pick up the wanted tools according to their description, generally using
readshare.

5.7 Asking procedures for additional information with infolevel

Several procedures print additional information to the screen about their activities
if the infolevel of this procedure is set higher than O (maximal 5).

> infolevel[simplify]:=l:
> exp(sin(a)~2+cos(a)~2);

> simplify(%);
simplify:
simplify:
simplify:
simplify:
simplify:

applying
applying
applying
applying
applying

e(sin(a)2+cos(a)2)

trig function to expression
power function to expression
exp function to expression

commonpow fUnction to expression
power function to expression

e

If you have already executed the command before raising the corresponding in­
folevel, and then execute the command again, you may not get this additional in­
formation:

> simplify(%%);
e

'The remedy is applying forget to the procedure. An explanation of this is given
in Appendix D, Procedures remembering previous resuLts.

> readlib(forget)(simplify);

> simplify(%%%);
simplify:
simplify:
simplify:
simplify:
simplify:

applying
applying
applying
applying
applying

trig function to expression
power fUnction to expression
exp fUnction to expres sion

commonpow function to expression
power fUnction to expression

e

5.8 Printing standard procedures from Maple's library 71

5.8 Printing standard procedures from Maple's library

If you want to see how a procedure is programmed in the Maple language, you
must enable printing of these procedures by the command

> interface(verboseproc=2);
Now you can enter commands such as print (exp) and you will see how pro­
cedures are programmed. This book does not discuss programming, but a short
introduction can be found in Appendix E, Control structures.

chapter 6

Creating and using mathematical functions

The first part of this chapter discusses some aspects of the many mathematical
junctions contained in Maple.

Anyexpression containing "indeterminate variables" can be seen as ajunction in
these variables; junction values can be found by substituting values for the vari­
ables. In practice, this can be rather clumsy. It is of ten more efficient to create
and use your own junctions. In the second part of the present chapter this subject
is discussed.

Moreover, calculation of derivative junctions, creating junctions from existing
junctions, especially by composition, and piecewise-defined junctions are dis­
cussed.

Creating your ownfunctions is a start in programming. A juli guide to program­
ming is beyond the scope of this book. A basic step in this direction can be found
in Appendix E, Control structures.

6.1 Standard mathematical functions

Maple knows a considerable number of mathematical functions, such as sin, exp,
abs, GAMMA, Heaviside, etc. Some of the mathematical functions in Maple are
less common, like those used specifically for expressing antiderivatives. A concise
survey ofthe functions available at start-up of Maple is accessible with ?inifcns.

Several Maple packages for special mathematical fields yield additional mathemat­
ical functions, especially orthopoly, which can generate orthogonal polynomi­
als of several types: Chebyshev, Gegenbauer, Hermite, Jacobi, Laguerre, and
Legendre polynomials.

These mathematical functions are implemented in Maple as procedures in the same
way as other procedures such as expand, diff, etc. Applying a mathematical
function to an argument brings the simplijication rules programmed in this pro­
cedure into action:

> sin(100/3*Pi);
1 --V3
2

(Remember that the mathematical constant 7r is to be entered as Pi, not as pi.)

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

6.2 Definitions of inverse functions, branch cuts 73

If a function cannot calculate an exact function value for some argument, it retums
an unevaluated function caII:

> sin(l);

sin(l)

Generally, an approximation can be asked for by evalf:

> evalf(%,30);

.841470984807896506652502321630

If the argument is a ftoating-point number, Maple approximates automatically, with
accuracy determined by the value ofDigi ts. See section 2.8 on page 26 and sec­
tion 2.9 on page 28.

> sin(1.);

.8414709848

Logarithms with a base different from e are available, but these are automatically
converted into quotients of naturallogarithms:

> log[a] (b) ;

ln(b)

In (a)

6.2 Definitions of inverse functions, branch cuts

For most mathematical functions that are defined as inverses of other functions,
branches must be chosen. For instance, for the square root, being an inverse
of the square function, v'9 is defined as 3 and not as -3, and Vi is defined as
1/2v'2 + 1/2v'2i. Likewise, arccos(-1/2) yields ~11", although there are infinite
many solutions for the equation cos(x) = - ~.

The function In has been defined on the complex numbers (except for O) as a right
inverse of exp, where In (exp (r+ I*t/>)) yields r+ I*t/> if -11" < t/> :::; 11".

In many cases, the choice of branches is less evident than in the previous cases,
especially if such a function is to be applied to complex numbers. These choices
are fixed in Maple and cannot be changed without reprogramming the function.
In order to find the definitions of the inverse trigonometric functions and the in­
verse hyperbolic functions, use convert (... ,In):

> convert(arcsin(x) , In);

-Iln(~+Ix)

74 6. Creating and using mathematical functions

6.3 Denotation of the functions exp, Gamma, and Zeta

The function exp is printed in windowing versions of Maple as follows:

> exp(x)j

e'"

Do not enter this as

e'"

In the last case, you see only the undefined variable e to the power x. In releases
from V.4 you can see a difference in the e characters: the bold e denotes the base
of the naturallogarithm, while the slanted e is a variable.
If you like to use e as the base of the naturallogarithm, you can enter:

> alias(e=exp(l))j

I, e

(See section B.1 on page 285.)

Other possible causes of confusion are the functions GAMMA and Zeta. The name
ofthe function GAMMA is printed in the same way as the name Gamma in windowing
versions of Maple, and the name of the function Zeta is printed as a lower-case
Greek letter:

> Gamma, GAMMA, zeta, Zetaj

r, r, (, (

> Gamma(5), GAMMA(5), zeta(O), Zeta(O)j
-1

r(5), 24, ((O), 2

The differences can be made visible with Iprint:

> lprint(%%):
Gamma GAMMA zeta Zeta

The name ehi is not interpreted as a Greek letter, as it is the name of the hyperbolic
cosine integral.

In text-only versions of Maple (such as for MS-DOS), this confusion does not ex­
ist, because exp (x) is printed as exp (x) , and Greek letters are not printed on the
screen.

6.4 Expressions versus functions, creating functions 75

6.4 Expressions versus functions, creating functions

In Maple, functional relations can be described in two ways:

A. By an expression. For instance, if temperature is descending with time expo­
nentially, this can be embodied in:

> Texpr := TO * exp(-a*t);

Texpr:= TOe(-at)

The temperature at t=5 can be ca1culated by evaluation at a value (or substi­
tution):

> eval(Texpr , t=5);

TOe(-5a)

B. By a function. For instance, in the previous example the temperature can be
described as a function of the time:

> t -> TO * exp(-a*t);

t --+ TOe(-at)

The previous command is entered with an arrow by using a combination of
the minus and the greater than sign. In this way we obtain a Maple function,
which we can assign to a name:

> Tfunc := %:
Now the temperature at t=5 can be ca1culated by applying the junction:

> Tfunc(5);

TOe(-5a)

It is important that a user should be well aware of the distinction between an ex­
pression and a function. For example, in succession to the previous example, a user
could try to tind the moment when temperature descends to 100, in the following
erroneous ways:

> solve(Tfunc=100);

100

Here we have not entered the variable with respect to which the equation should be
solved, so Maple supposes that this variable is Tfunc and easily tinds the solution
100. If the variable t is given to sol ve, we get no result:

> solve(Tfunc=100 , t);
The last command asks Maple to tind values of t for which the algebraic expres­
sion Tfunc equals 100, and no solutions are found, so no re suIt is printed on the
screen. A correct command is:

76 6. Creating and using mathematicaI functions

> solve(Tfunc(t)=100 , t);

In (100 ~)
a

(You might have thought that Maple has interpreted the command sol ve
(Tfunc=100, t) ; as the odd question: "For which values of t does the function
Tfunc equal the constant function t f-+ IOD?" This is not the case, as Maple does
not evaluate the name Tfunc.)

6.5 Creating functions in several arguments

Functions in more than one argument can be created in the same way as functions
in one argument. For instance:

> saddle:= (x,y) -> 5*x~2 - 3*y~2;

saddle:= x,y -+ 5x2 - 3y2

> saddle(4,1);

77

The parentheses in the definition are essential: if those parentheses had been omit­
ted in the previous example by writing

x,y -> 5*x~2 - 3*y~2;

x, y -+ 5 x2 - 3 y2

Maple would have interpreted this as the sequence of the name x and the function
y -> 5*x~2 - 3*y~2.

Functions to vector spaces are discussed in section 18.19 on page 271.

6.6 A pitfall in creating mathematical functions

You might think that the following command could create a mathematical function:

> w(x) := 5*p~x;

w(x) := 5 p x

Maple accepts this command and it seems that it does the job:

> w(x);

5pX

But it does not:

6.7 Using existing expressions for creating mathematical functions 77

> w(3);

w(3)

In mathematics, you would say: for each x in R, f (x) := 5px. Of ten, people are
less precise in formulating, but Maple takes the definition entered above literalIy:
we have created a function that renders the value 5 pX if its argument is the name
x, but to alI other arguments it yields an unevaluated function calI. The correct
function can be created by:

> f := x -> 5*p~x ;

or with the aid ofthe procedure unapply, discussed in the next section or with the
aid of codegen [makeproc] .

6.7 Using existing expressions for creating mathematical functions

An important rule for the arrow function construction is:

In the creation of a function with the arrow,
the expression to the right of the arrow is not evaluated.

It is of ten convenient to use an existing expression for the creation of a function.
Here is such an expression, created by calculating an antiderivative expression (in­
tegral) of an expression:

> 85:= int(8in(x)~5 , x);

85 := -~ sin(x)4 cos(x) - 1~ sin(x)2 cos(x) - 185 cos(x)

If we want to find the antiderivative funetion or primitive function from this
expression, we can do so by using the arrow and typing this expression to the right
of the arrow, but it can be done in a much easier way with the procedure unapply:

> prim := unapply(85 , x);

prim ;= x --+ -~ sin(x)4 cos(x) - 1~ sin(x)2 cos(x) - 185 cos(x)

First, the arguments of unapply are evaluated; then a function is created. Let's
test this function:

> prim(Pi/2), prim(O);
-8

0, 15

You might think this function could be defined by:

78 6. Creating and using mathematical functions

> missprim := x -> s5;

missprim := x -+ s5

You see the effects of the special evaluation rule for the arrow construction: s5
is not evaluated, so the parameter x of the function has no relation to the x in the
expression that s5 refers to:

> missprim(O);

-~ sin(x)4 cos(x) - 1~ sin(x)2 cos(x) - 185 cos(x)

The function missprim yields s5, no matter what arguments are given to it.

Functions in more than one argument can be created with unapply as well:

> s := int(sin(x)~n , x);

s:= J sin(x)n dx

> prim2 := unapply(s , n , x);

prim2 := n, x -+ J sin(x)n dx

> prim2(5 , t);

-~ sin(t)4 cos(t) - 1~ sin(t)2 cos(t) - 185 cos(t)

A more powerful procedure to create functions is codegen[makeproc] (available
in release V.S). Let's use it for the same example:

> prim3 := codegen[makeproc](s , [n,x]);

proc(n,x) int(sin(xfn,x) end

Observe the square brackets around the parameter, which are necessary here. The
result looks a little bit different, but essentially it is the same as prim2. However,
codegen [makeproc] can handle more, for instance, a ca1culation in two or more
steps. Here is a simple example:

> twostep:=codegen[makeproc]([pol=x~2-1, exp(pol)], x);

proc(x) local pol; pol:= x A 2 - 1; exp(pol) end

> twostep(a,b);

The tirst argument is a list of ca1culation steps (brackets necessary). The interme­
diate result is assigned to pol in the tirst step (but using = instead of : =), then pol
is used in the second step. The variable pol is "local": it is not accessible outside
the procedure:

6.9 Derivative functions 79

> pol;

pol

In section 9.5 on page 123 and section 18.19 on page 271 you can see a more ad­
vanced use of this procedure.

6.8 Evaluation of names of procedures

A mathematical function in Maple has the data type procedure. A name referring
directly to a procedure is not evaluated to that procedure, unless eval acts on that
name. See section 5.5 on page 67.

There is a difference between procedures available from the Maple system and pro­
cedures that are defined by the user: these are printed to the screen with alI details:

> eval(saddle);

saddle:= x,y -t 5x2 - 3y2

> print(s5);

s5 := -~ sin(x)4 cos(x) - 1~ sin(x)2 cos(x) - 185 cos(x)

Procedures defined in Maple's library are not printed fulIy:

> eval(sin);

proc(x :: algebraic) ... end

This behavior can be changed by the command interface(verboseproc=2).
See section 5.8 on page 71.

6.9 Derivative functions

Maple can calculate derivative functions with the procedure D:

> DUn);

> D(cos);

> D(x -> exp(a*x));

1
a-t­

a

-sin

x -t ae(ax)

Even the derivatives of some exotic functions are available, for instance the deriva­
tive of the Dirac function, defined as the 'function' on the real numbers that yields

80 ,6. Creating and using mathematical functions

zero for any input apart from zero, at which point it has a singularity such that
J~oo Dirac(t)dt = 1.

> D(Dirac*sin);

(a -+ Dirac(l, a)) sin + Diraccos

The derivative of Dirac is known to Maple as a - > Dirac (1, a) .
The procedure D can also handle a function created by codegen[makeproc] if
there are no elements in it that are not amenable to differentiation with D. Let's
differentiate the procedure twostep from the previous section:

> D(twostep);

proc(x) local polx,pol; polx .- 2 * x; pol := x A 2 -

1; polx * exp(pol) end

> %(a);

In some cases, where such a procedure contains difficult elements such as sums, it
needs some polishing by applying codegen[prep2trans] before D can do its job.

The procedure D can also handle unknown functions:

> D(fUf2);

D(f1) f2 + fI D(f2)

An advantage ofusing functions over using expressions is that calculating function
values by applying functions is more efficient than substituting in expressions. The
same is true for calculating derivatives at a point by using derivative functions.
The easiest way of getting the derivative of tan at ax + b is:

> (D(tan))(a*x+b);

1 + tan(ax + b)2

Do not omit the parentheses around D (tan) .

The alternative with diff is more lengthy:

> diff(tan(t) , t);

1 + tan(t)2

> eval(% , t=a*x+b);

1 + tan(ax + b)2

Do not confuse diff and D:

6.10 Derivatives of functions of more than one variable 81

o
In the last case, Maple differentiates an expression, perceiving cos as a variable,
independent of x.

In the next example, Maple interprets a and x as mathematical functions:

> D(a*x~2);

D(a) x2 + 2a D(x) x

6.10 Derivatives of functions of more than one variable

The operator D can also be used for functions of more than one variable. In this case
you must indicate in respect to which variable the function should be differentiated.
That can be done with indices. For instance, in order to find the derivative in the
second argument of a function, apply D[2]:

> g ;= (x,y) -> cos(x*y) + exp(2*y);

g:= x,y --+ cos(xy) +e(2y)

> D[2] (g);

x,y--+ - sin(xy)x+2e(2 y)

Now let's differentiate g in respect to the second and then to the first variable:

> D [1 ,2] (g) ;

x, y --+ - cos(x y) y x - sin(x y)

Maple supposes that partial differentiation operators commute. In most practic al
cases, the encountered functions have alI their partial derivatives (of any order)
continuous; then this is nothing to worry about.

> D[3,1,2] (anyfunc);

D1,2,3 (anyfunc)

82 6. Creating and using mathematical functions

6.11 Conversion between diff and D

Conversion between D and diff notation is available:

> diff(u(t)*v(t) , t);

(:t U(t)) v(t) + u(t) (:t V(t))

> convert(% , D);

D(u) (t) v(t) + u(t) D(v) (t)

> convert(% , diff);

(! U(t)) v(t) + u(t) (:t V(t))

However, D (f) cannot be converted to diff notation in a direct way because the
differentiation parameter is lacking:

> convert(D(g) , diff);

D(g)

6.12 Piecewise-defined functions and expressions
,

Functions can be defined piecewise as in the following example:

> f:=x->piecewise(x<O,-x-2, x<1,x-2, x-3);

f := x -+ piecewise(x < O, _x2 , x < 1, x 2 , x 3)

What this means can be seen better if we apply this function to x:

> f(x);

x<O
x<1

otherwise

As you can see, the five arguments are to be read as follows:

• if x < O then _x2

• if that is not the case and if x < 1 then x 2

• otherwise x 3

This function can be used as any other function:

6.12 Piecewise-defined functions and expressions 83

> f(-3),f(1/2),f(3);
1

-9, 4,27

From release VA many procedures can handle such piecewise-defined functions or
expressions, for instance:

> plot(f(x) , x=-2 .. 2);

> salve(f(x)=5*x-2 , x);
5 1 5 1 -- - - v'33 - - - TI 2 2 2 '2 2 V l/,

> diff(f(x) , x);

{ul;;noo
3x2

> int(f(x) , x=-2 .. 2);
17
12

x~O

x<1
x=1
1<x

It is even possible to create other piecewise expressions by transformations such
as:

> simplify(%);

x2 < O
x 2 < 1

otherwise

84 6. Creating and using mathematical functions

{::
X 6

> piecewise(x<O,f(x),x~4);

x::; -1

x::; 1

l<x

x<o
x<1

otherwise

x<o

otherwise

> simplify(%);

x::;o
O<x

This can be converted into a function with unapply:

> g:=unapply(%,x);

> g(4);

256

x::;O
O<x

Because piecewise expressions can be handled so weB, it can be useful to convert
expressions and functions containing abs, signum, Heaviside, max, min, etc.
to piecewise-defined functions with convert(,piecewise):

> max(x+l,x~2);

> int(%,x=-2 .. 2);

[22 max(x + 1, x2) dx

> convert(%%,piecewise);

> int(%,x=-2 .. 2);

x<l_l ;g
-2 2 ViJ

x::;!+!v'5
!+!v'5<x

16 5 -+-V5
3 6

6.13 Creating functions by elementary operations on functions 85

6.13 Creating functions by elementary operations on functions

The composition oftwo functions can be made with the operator @, for instance,

> quint := x -> x-5;

quint := x -+ x5

> (quint Q sin) (x);

sin(x)5

> (sin Q quint) (x);

The brackets are necessary here, otherwise you can get rubbish:

> quint Q sin(Pi/3);

qUint@~ v'a

> (quint Q sin) (Pi/3);

For repeated compositions, you can use @@. For instance, you can get the func­
tion x f--t quint (quint (quint (x))) as quinUQ3. For example:

> (quintQQ3) (x);

Please pay attention to the differences in printing:

> (sinQQ2) (x); # This is in fact: sin(sin(x))

(sin(2 l) (x)

This is in fact: sin(x) * sin(x)

sin(x)2

(After the sign # you can add comment in Maple.)
New functions can be created from existing functions with the elementary arith­
metic operators +, -, *, and / , and with the composition operators Q and QQ:

> f := (2*quint*sin - 3*cosQquint)/exp;
f := 2 quint sin - 3 cos@quint

exp

> f(x);

2x5 sin(x) - 3 cos(x5)

eX

86 6. Creating and using mathematical functions

In such a function expression, each name is interpreted as a function, if possible.
For instance:

> (a*sin + b*cos) (x)j

a(x) sin (x) + b(x) cos(x)

> D(a*sin + b*cos)j

D(a) sin + a cos + D(b) cos - bsin

If you want O to consider a and b as constants, you can issue:

> D(a):=O: D(b):=O:
> D(a*sin + b*cos)j

a cos - bsin

chapter 7

Graphics

This chapter gives an overview ofthe most useful graphicalfacilities in Maple. Not
included are specific loolsfor differential equations, vector fields, ele.; these are
discussed in Chapter 17, Solving differential equations.

7.1 Graphs of real functions in one real parameter

As demonstrated in previous chapters, the graph of a function in one parameter can
be plotted by the procedure plot. For instance,

sin(7l'X3)
f: xt-+ 2

x
can be plotted on the range - 2 ... 2 by

> sin(Pi*x~3)/x~2 ;

> plot(% , x=-2 .. 2);

It is possible to make some changes to this picture in an interactive way. You can
bring the cursor into the region of the picture with the arrow keys and use the fa­
cilities of the toolbar at the top of the Maple window; or you can c1ick the right

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

88 7. Graphics

button of the mouse with the mouse arrow in that region and use the menu. Then
you can change "Style", "Axes" and "Projection". For instance, to plot only the
points of the graphic that are calculated by Maple, without connecting them, you
can choose the option Point in the Style menu. After clicking on the R in the
toolbar or on Redraw in the menu, you see the following picture, which can also
be achieved with the command:

> plot(%% , x=-2 .. 2 , style=POINT);

1.8 1'.
1.6

1.4

1.2
1-

,. 0.8

0.6
~ 0.4 . ~ ... 0.2

-2.. -.1 ...{J.2 ; • ...{J.4
~

-0.6 .'
...{J.S -;

.. 1
-1.2

-1.4

':'1.6
V-1.8

You are well advised to experiment a little with the choices offered by the menus.
AII changes made with graphic window menus can be achieved as well by adding
options to the command, but with options you have many more facilities available,
for instance scaling=CONSTRAINED, which causes the scalings of the axes to
be equal.

In the next section, using such choices for a three-dimensional plot is demon­
strated. In the following sections, effects of several choices and options are shown,
but not of ali options, for instance, not of options conceming color. Consult the on­
line help with ?plot, options or ?plot3d, options for a particular option.

7.2 Graphs of real functions in two real parameters

The graph of a function in two parameters can be plotted by the procedure plot3d.
For instance, the function

10
(x,y) t-+ 2 2 1 cos(x2 + y2)

x +y +
can be plotted in the range x from -3 to 3 and y from -3 to 3 by

7.2 Gmphs of real functions in two real parameters

> 10/(x~2+y~2+1)*cos(x~2+y~2);
cos(x2 + y2)

10--'-------..:...
x2 + y2 + 1

> plot3d(% ,x=-3 .. 3,y=-3 .. 3);

89

Let's make some choices from the menu options, using the right mouse button or
the toolbar.

- Style: Let's change the style to Patch and contour

- Color: As the pictures in this book are printed in black and white, the choices
of this menu are not relevant here. Neither can the possibilities of light ing
be used here; but this option can elucidate color pictures.

- Axes: We add a box with coordinates by choosing Boxed from this menu.

- Projection: Let's choose Medium Perspective instead of the default No

Perspect i ve.

It is also possible to change the aspect (the direction of viewing the object) by
pressing the (left) mouse button, keeping it pressed, and mov ing the mouse. In
the MS-DOS version, use the cursor keys instead. Then you see a box moving, in­
dicating the final direction of viewing. Moreover, the two spherical angles Theta
and Phi are printed. The default is e = 45 and cp = 45. In the next picture, this
is changed to e = 8 and cp = 50.

There is also an extra facility within the menu bar for changing the dimensions of
the window.

As soon as a menu choice is made, the picture disappears from the window, leaving
a box. The picture is redrawn if you click on the R in the toolbar or click on Redraw
in the menu.

90 7. Graphics

The result of the previous choices can also be created by a plot command with ap­
propriate additional options.

> plot3d(%%, x=-3 .. 3,y=-3 .. 3,style=PATCHCONTOUR,
> axes=BOXED,projection=O.1,orientation=[8,50]);

In practice, experimenting with tl{e menus is much easier than using options as
additional arguments, but there are options that can do things that cannot be re­
alized by the menus, such as changing the number of points to be calculated by
the option numpoints= ... , or rendering just a part of the picture by the option
view= . It is possible to set certain options as defaults by using the procedures
plots[setoptions] and plots[setoptions3d].

Here is another method of rendering a graph of a function in two parameters: a
density plot. Let's apply this to the expression of the previous plotting.

> plots[densityplot](%%% , x=-3 .. 3 , y=-3 .. 3 ,
> numpoints=2500, style=PATCHNOGRID);

7.3 Assigning, manipulating, and printing graphical objects 91

7.3 Assigning, manipulating, and printing graphical objects

Graphical procedures such as plot and plot3d yield special Maple objects. Such
an object can be called by the ditto (%) and it may be assigned to a name. For
instance:

> saddle:=plot3d(2*x A 2-y A 3,x=-2 .. 2,y=-2 .. 2,
> axes=BOXED, style=HIDDEN):

There is a special reason why we have used a colon instead of a semicolon in ter­
minating the command: if we had not done so, the plot data structure would have
been represented instead of the picture, making a lot of uninteresting data scroll
over the screen.
If you want to see the picture, you can use print in this case. In some exceptional
cases, using print yields the internal data structure; in such a case, you can use
plots[display] instead.

> print(saddle)j

15

10

o

-5

-2 -2

2 2

If you are using plotting in loops or procedures, see also section E.5 on page 302.

It is easy to send a worksheet to a printer or save it as a PostScript file, both with
the menu option Print in the toolbar menu File, but if you want to print a sep­
arate picture or export it to a file, set Plot Display to Window in the Options
menu. Now each picture is rendered in a separate worksheet, which can be printed
or exported to a file with the Print option in the File menu. There are several
forrnats available such as PostScript, jpeg, etc. Other facilities for this purpose are
shown in Appendix C, The user interfacefor text-only versions.

There are several commands for manipulation of graphical objects, for instance
plottools [rotate] ; let's use this to rotate the saddle over ~1r around the third
axis:

92 7. Graphics

> plottools[rotate] (saddle,O,O,Pi/2);

2 2

Other commands for manipulation are:

• plottools[translate]

• plottools[rotate]

• plottools[reflect]

• plottools [homothety] (scaling the axes to the same ratio)

• plottools[scale]

• plottools[project]

• plottools [transform] (very general, applying your own function)

• plots [display], which can change options and can do a lot more

• plottools [stellate] (for polygons).

With some of them (for instance plottools [transform]) it is also possible to
change the dimension.

7.4 Vertical asymptotes and discontinuities

Here is an expression with two zeroes:

> Y := x~3 - 6*x~2 + 32;

Y:=x 3 -6x2 +32

> plot(Y,x=-3 .. 5);

7.4 Vertical asymptotes and discontinuities 93

Let's ask for the graph of l/Y.

> plot(l/Y , x=-3 .. 5 , -1 .. 1);

0.8

0.6

0.4

0.2

-1 2 X 3 4

-0.2

-0.4

-0.6

-0.8

-1

This last graph is not correct, as can be seen from the previous graph. Maple has
calculated some points and connected them without looking for discontinuities. To
make Maple check on discontinuities or disconnected domains, supply the extra
option discont=true.

> plot(l/Y , x=-3 .. 5, -1 .. 1 , discont=true);

94 7. Graphics

0.8 -

0.6

0.4

0.2

-1 2 X 3

-0.2

-0.4

-0.6

-0.8

-1

As an alternative, you can revert to plotting only the points that are calculated by
Maple. Here is an example, first without special options:

> yl:= 1/sin(xA 2);
1

yl:=-­
sin(x2)

> plot(yl , x=-5 .. 5 , -10 .. 10);

10

8

~ tJ \)
4

~ ~ -2

-4

-6

-8

-10

Here plot with the option discont=true yields an error due to a bug:

> plot(yl , x=-5 .. 5 , -10 .. 10 , discont=true);
Error. Could not determine discontinuities

7.5 Graphs with ranges to infinity 95

So, let's use the option style=point and at the same time ask Maple to calculate
a sufficient number of points, say 3,000.

> plot(y1 , x=-5 .. 5 , -10 .. 10 ,
> style=POINT, numpoints=3000);

lO i

81

.'

V
.. . .

u
..

u u u V

~ ~~ ~ -2 ~ ~ ~ ~ :- : . .'
-4 . ' .. : : ~ ~

. .
-6

..
-8 .'

-10

7.5 Graphs with ranges to infinity

Maple offers the facility for plotting on infinite ranges, for instance

> plot(arctan(x),x=-infinity .. infinity);

x infinity

This is realized by a transformation of the first coordinate with the following func­
tion:

96

x,,{ 1~~
-1- ~

x

7.6 Logarithmic scalings

Log plots and log-log plots are available.

> 100*x+x~3j

if

if

if

> plots[logplot](% , x=O .. 10)j

-4 ~ x ~ 4

x2':4

x ~-4

> plots[loglogplot](%% , x=1 .. 100)j
le+06 _

le+05

.leS

. le4

1. 5. . le2 x .5e2 .le3

7. Graphics

7.7 Parameterized curves and surfaces

7.7 Parameterized curves and surfaces

Here is a graph of a parameterized curve in two dimensions:

> plot([sin(3*x),cos(x),x=O .. 2*Pi]);

97

Now an example in three dimensions: the hyperboloid described by the parame­
terizing function

(t, u) t---+ [cos(t) cosh(u) , sin(t) cosh(u), sinh(u)]

> plot3d([cos(t)*cosh(u),sin(t)*cosh(u),sinh(u)] ,
> t=O .. 2*Pi,u=-1 .. 1);

Observe the differences in syntax used in parameterizing; in the two-dimensional
case the range of the parameter is given as the third element of the list, so the basic
syntax is:

98 7. Graphics

plot([x(t),y(t),range_of_t])
so it is given within the pair of brackets, but in the three-dimensional case the
ranges are given outside the list:

plot3d([x(t,u),y(t,u),z(t,u)] , range_of_t,
range_oLt)
Such a difference between parameterizing in two and three dimensions can also be
found in analogous cases.

A curve in three-dimensional space can be drawn by plots[spacecurve].

> plots[spacecurve] ([(1+5*arctan(t))*cos(10*t),
> (1+5*arctan(t))*sin(10*t),-t], t=O .. 4,
> numpoints=200);

We can even blow up this curve to a tube by:

> plots[tubeplot] ([(1+5*arctan(t))*cos(10*t),
> (1+5*arctan(t))*sin(10*t),-t],t=O .. 4,
> radius=O.07*t,numpoints=200);

7.8 Different types of coordinates 99

7.8 Different types of coordinates

The second picture in the previous section could have been drawn more easily with
cylindrical coordinates, like the following:

> plot3d([cosh(t),phi,sinh(t)] , t=-1 .. 1 , phi=O .. 2*Pi ,
> coords=cylindrical);

Spherical coordinates can be used in plot3d by using the option coords=
spherical.

Maple offers a lot of coordinate systems: see the on-line help. Moreover, you can
create your own coordinate system with addcoords (which must be read with
readIi bfirst).

Here is another example. In two-dimensional space, polar coordinates can be used,
as in the following example, where the so-called lituus, described by the equation
r 2 <f> = 1, is drawn.

> plot([1/sqrt(phi),phi,phi=1 .. 100] ,coords=polar);

.8

0.6

100 7. Graphics

7.9 Empty plots caused by complex values

Sometimes, plotting a graph may not be successful. This may be caused by ap­
proximations that should be real numbers but turn out to contain a small imaginary
component.

> convert(tan(x) , exp);

1 ((e(I x)) 2 - 1)
(e(I x))2 + 1

Obviously, the values of this expression are real for real x, but plot gets into trou­
bIe.

> plot(% , x=-l .. l);
Plotting error, empty plot

This is caused by the fact that plot uses numerical approximations. For instance,

> evalf(subs(x=O.5,%%));

.5463024898 + .806035395210-11 1

Such a complex number is not accepted by the plot procedure. However, it is
easy to mend this problem: plot the real part of the expression.

> plot(evalc(Re(%%%)) , x=-l .. l);

7.10 Plotting data

1.6

1.4 .

1.2

0.8

A set of two- or three-dimensional data can be represented in a graphic. Let's create
a sequence of pairs of numbers.

7.1 O Plotting data

> data:=seq([k-2,k-3-8*k-2+17*k] ,k=O .. 6);

data := [O, O], [1, 10], [4, 10], [9, 6], [16, 4], [25, 10], [36, 30]

This sequence can be represented as a continuous graph, in fact, a polyline.

> plot([data]);

30

28

26

24

22

20

18

16

14

12

la
8

6

4

2

O~~~~~~~~~~~=V
4 8 12 16 20 24 28 32 36

or as a set of points, here indicated by small circ1es.

> plot([data] , style=POINT);

30

28

26

24 _

22

20

18

16

14

12

10

8

6

4

O~~~~~~=F~~~~=V
4 8 12 16 20 24 28 32 36

101

In both cases, the data should be bundled together as one argument by enc10sing
them within an outer pair of square brackets.

102 7. Graphics

It is also possible to create a smooth curve from these data with the aid of the proce­
dure spline, which creates a piecewise polynomial function from data. This must
be loaded tirst:

> readlib(spline);

proc(X, Y, z, d) ... end

For spline the data must be structured in a different way: a list of all tirst coor­
dinates and a list of all second coordinates; see Chapter 10, Manipulating several
objects at once:

> xdata:=[seq(op(1,data[i]),i=1 .. 7)];

xdata := [O, 1, 4, 9, 16, 25, 36]

> ydata:=[seq(op(2,data[i]),i=1 .. 7)];

ydata := [O, 10, 10, 6, 4, 10, 30]

> plot(spline(xdata,ydata,x) , x=O . . 40);

38

36
34

32

30

28

26

18
16

14

12

10

8

6
4

2

o
10 20

X
30 40

In a comparable way, a sequence of triads of numbers Can be plotted. However,
the procedure plot3d cannot be used for this purpose. Use plots [surfdata].

For statistical purposes you can use histograms, boxplots, etc.: see the on-line help
for stats, statplots.

You can also use plots [matrixplot] and plots [sparsematrixplot].

7.l2 Combining graphs 103

7.11 Graphs of relations or implicitly defined functions

A facility for plotting graphs of algebraic relations in two and three dimensions is
available:

> plots[implicitplot3d](x~2-z*y~2=1 ,
> x=-2 .. 2, y=-1.5 .. 1.5 , z=-l .. l , axes=BOXED ,
> style=PATCHCONTOUR, orientation=[85,45]);

For the two-dimensional case, use plot-s [implici tplot] .

Generally, the results of plotting graphs of functions and parameterized curves and
surfaces have better quality and can be produced faster than graphs of relations.

In some cases you also can use algcurves [parameterization].

7.12 Combining graphs

If you want to combine graphical objects in one picture, first create each of them
separately.

> parabolic ;= plot(x~2 , x=-1.5 .. 1.5);
Remember that an assignment of a graphical object to a name must be terminated
by a colon in order to keep Maple from printing the internal data structure to the
screen.

In the same way we can assign two other plots to names.

> circle ;= plot([1/2*cos(phi) , 1/2*sin(phi)+1/2 ,
> phi=O .. 2*Pi]);
> line ;= plot([1+h,1+2*h,h=-1/2 .. 1/2]);

104 7. Graphics

Now let's ask Maple to print all three together with the aid of the procedure
plots[display]:

> plots[display]({parabolic,circle,line});

-1.4 -1 -0.6 -0.2 0.2 0.6 1.4

Note that Maple chooses the range of the second coordinate, if the user does not
specify this. Therefore, a circle is rendered as an ellipse, generally. This can be
rectified by adding the option scaling=CONSTRAlNED:

> plots[display]({parabolic,circle,line} ,
> scaling=CONSTRAINED);

-1.4 -1 -0.6 -0.2 0.2 0.6 1.4

With display it is easy to plot a bundle of graphs in one picture. For instance,
let's create a sequence of circle graphs without printing them.

7.14 More tools in graphics lO5

> seq (plot([n*cos(phi) , n*sin(phi)+n , phi=0 .. 2*Pi]) ,
> n=1 .. 10):

These can be plotted together by

> plots[display]([%]);

In the same way, display can be used for combining three-dimensional graphics.
(In earlier releases, use plots [display3d] .)

7.13 Maple's movies

It is easy to create a small movie of parameterized graphics in Maple,
with or without looping, with the procedures plots[animate] and plots
[animate3d]. If you are interested, try some examples given by Maple in the
on-line help for these two procedures. Moreover, you can use plots [display]
to create a movie from a list of plot objects by adding the option insequence=
true. It is also possible to use html format for creating mov ies to be played with
software for these formats.

7.14 More tools in graphics

The plots and plottools packages contain several procedures not mentioned
previously for special types of plots, for instance some ready-to-use pictures, such
as:

> plottools[icosahedron] ([0,0,0] ,1):
The result of this command is suppressed by the colon: it is not a pic ture but an
internal structure for polygons. To get a picture, enter:

106 7. Graphics

> plots[display] (%);

Special tools aimed at differential equations can be found in the packages plots
and DEtools. These are discussed in section 17.5 on page 238.

The packages geometry and geom3d for geometry and the pedagogical package
student also contain some graphical tools.

chapter 8

Taylor or Laurent expansion and limits

When an exact algebraic computationfails, you can of ten resort to series approx­
imations, using the theory of Taylor and Laurent expansions. Sometimes, a series
approximation is even sufficient to get exact results,for instance, in calculations of
limits. This idea is exploited by Maple; therefore, this chapter includes calculation
oflimits.

8.1 Taylor expansion

For the calculation of a Taylor expansion of a function in one variable, the proce­
dure series can be used:

> (x+l)/(cos(x)+2);
x+l

cos (x) + 2

We have asked for a Taylor approximation centered at x = O. The term O (x5)

indicates a remainder term such that lim"'-to «,,"'55) exists.

The second argument to series determines the variable in which the expression
is to be expanded, and the point from which this is to be done:

> series(exp(x) , x=a , 5);

a a () 1 a ()2 1 a ()3 1 a ()4 e +e x - a +"2 e x - a +6 e x - a + 24 e x - a +
O((x - a)5)

The last argument to series may seem to ask for a fifth order expansion, but the
next section explains why that is not true.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

108 8. Taylor or Laurent expansion and limits

8.2 The order of a series expansion

lf Maple calculates a series expansion of an expression, generally it calculates se­
ries expansions of "elementary" subexpressions tirst and then combines these ex­
pansions. The third argument to series, 5 in the previous examples, determines
the order of the series expansions of these subexpressions. It is quite possible that
the series expansion found at the end has lower order than these intermediate re­
sults. So sometimes you must experiment a liUle with the order argument to se­
ries. For instance,

> sin(x)~4/x~4;

> series(% , x=O , 5);

The result is not of order 5 but only 2. In this case, order 9 in the calculations is
necessary for getting a series approximation of order 2: 5:

> series(%% , x=O ,9);
2 1

1 - _x2 + _x4 + O(x6)
3 5

However, series remembers the previous results. So, if we again ask for a series
expansion of order 5, Maple does not try to calculate it, but it remembers this sixth
order result and uses it:

> series(%%% , x=O ,5);
2 1

1 - _x2 + _x4 + O(x6)
3 5

If no third argument is supplied to series, the expansion order is taken to be equal
to the value of the environment variable Order, which is initiaIly 6.

8.3 Estimating the order tenn

A rough estimation of the order term can be calculated by using the Taylor Remain­
der Theorem. Let's estimate the remainder for order 6 on the domain [-1 ... 1] in
the foIlowing series expansion:

> Y := sin(1+x~2);

> series(% , x=O ,6);

sin(l) + cos(l)x2 - ~ sin(l)x4 + O(x6)

First we must take the sixth order derivative:

8.4 The subexpression structure of results from series

> diff(Y , x$6);

-64 sin(1 + x 2) x 6 +480 cos(1 + x 2) x4 +720 sin(1 + x 2) x 2 _

120 cos(1 + x 2)

109

Now we can use the procedure numapprox[infnorm], which estimates numeri­
cally the maximal absolute value of an expression:

> numapprox[infnorm](% , x=-l .. l);

488.3141273

So we get a rough estimate of an upper limit of the difference between function
value and series value on the domain [-1..1] as 4:,9 x6 •

8.4 The subexpression structure of results from series

A resuIt from series may look like a polynomial up to the order term, but gener­
ally it has a special data structure within the computer. As a consequence, such a
result behaves differently from polynomials, generally. Here is an example. Con­
sider the polynomial

> pn := expand((1+x)-3);

pn := x 3 + 3 x 2 + 3 x + 1

If we ask for a series expansion to order 4 of this third-degree polynomial, the order
term is rightly omitted:

> sr := series((1+x)-3, x=O, 4);

sr := 1 + 3x + 3x2 + O(x3)

The result is printed as if it is a polynomial, but it is a Maple object of a quite dif­
ferent structure; therefore, subtracting sr and pn does not yield O(x3) - x 3 :

> sr - pn;

The structural difference between pn and sr can be shown with whattype and op:

> whattype(pn); op(pn);

+

> whattype(sr); op(sr);

series

1, O, 3, 1, 3, 2, 1, 3

110 8. Taylor or Laurent expansion and limits

First we see, that pn is just asum. Its summands (the operands of the + operator)
are shown here with the aid of op. Then we see that sr has the series structure,
with coefficient 1 to the zeroth-order term, coefficient 3 to the first-order term, co­
efficient 3 to the second-order term and coefficient 1 to the third-order term. The
expansion variable x can be obtained with op (O, sr) .

The series structure may be somewhat willful occasionally, but it can prevent some
manipulations that could be hazardous. For instance,

> series(cos(x),x=0,5);
1 1

1 - _x2 + _x4 + O(x5)
2 24

> subs(x=O,%);

1

> subs(x=l,%%);
Error, invalid substitution in series

The first substitution is acceptable, but the second cannot generate an exact result
because of the existence of the order term, so this command is rejected. If the user
insists on substitution of 1 and wants to discard the order term, the series expansion
must first be converted to a polynomial:

> convert(%% , polynom);

> subs(x=l , %);

1 2 1 4 l--x +-x
2 24

13
24

The ca1culation of a Taylor expansion is based on differentiation, which is reliable
in Maple in principle.

8.5 The leading term

If only the leading term of a series (not vanishing term of minimal degree) is to be
ca1culated, use the following construction:

> series(leadterm(cos(x-30+x-50)-1) , x=O , 1000000);
1 60

-2 X

The third argument, 1000000, has been chosen absurdly high. There is no objec­
tion to so doing. It does not slow down ca1culations in practice and prevents Maple

8.6 Laurent, Puisseux, and generalized truncated power series 111

from failing; if the order (the third argument) is not high enough, the result is an
orderterm:

> series(leadterm(cos(x-30+x-50)-1) , x=O , 10);

+O(x60)

As this procedure has to test coefficients of a series expansion for being zero, this
procedure is not fully reliable in principle, but generally no reliability problems of
this type are expected.

8.6 Laurent, Puisseux, and generalized truncated power series

The procedure series can do more than Taylor expansion. For instance,

> sl := series(1/tan(x-2) , x=O , 11);
1 1

s1 := x-2 - _x2 - _x6 + O(x7)
3 45

Here a Laurent expansion has been calculated. Notice that the third argument (the
order 11) yields an expansion up to degree 6. As explained earlier in this chapter,
this is caused by the fact that ser ies calculates a result based on intermediate cal­
culations of series expansions of order 11. In practice, you must experiment with
the order argument to series.

This result can be converted to a generalized polynomial, containing terms of neg­
ative integer degree:

> convert(% , polynom);
1 1 2 1 6

x2 - 3" x - 45 x

If the limit of a function f to 00 exists, you can ask for a possible Laurent expansion
in 00:

> series(arctan(x) , x=infinity , 8);

~ 71' - ~ + ~ ~ - ~ ~ + ~ ~ + O (~)
2 x 3 x 3 5 x 5 7 x 7 x 8

The calculation can be represented by substituting y = 1/x in arctan(x), expand­
ing the result in y = 0+, and substituting y = 1/x in the result. You can use the
procedure asympt, too.

Here is a case where no Laurent expansion exists, but where series yields a Puis­
seux expansion:

> series(sqrt(x-3 + x) , x=O , 5);

Vx + ~ X(5/2) - ~ x(9/2) + O (X(13/2))

This is a very special case, as the result of series is not of type series in this
case, but simply a sum of a polynomial in x and a formal order term.

112 8. Taylor or Laurent expansion and limits

> whattype(%)j op(%%)j

+

This order term can be omitted by substituting O for it:

> subs(0=0 , %%%)j

Vi + ~ X(5/2) - ~ X(9/2) + O(x(13/2))

> %
1 1 Vi + - X(5/2) - - x(9/2)
2 8

The last step evaluates the result of the substitution. This is necessary because,
after a substitution, the result is presented without automatic evaluation and sim­
plification.

If the growth of a function is too fast, Maple may use a generalized series:

> series(x~x , x=O , 2)j

1 + ln(x)x + O(x2)

Here the coefficient of x is -In (1/ x) , not a constant, but its order is lower than
the order of the monomial that it belongs to, in this case, lower than x.

8.7 Application of series to integration

Series can be used when no exact antiderivative (primitive) function can be found.
For instance,

> x~4/cos(x)j

x4

cos(x)

> series(% , x=O , 12);
1 5 61

x 4 + _x6 + _x8 + _x10 + O(X12)
2 24 720

> int(% , x)j

1 5 1 7 5 9 61 11 13)
S"X + 14 x + 216 x + 7920 x + O(x

The approximation of this antiderivative now has the series data type like the
original expression yielded by series. In order to use it for further computa­
tions, you can apply convert (,polynom) or, as explained in the next section,
convert (,ratpoly) .

8.9 Multivariate Taylor expansion 113

If you want to use a series expansion for a definite integral, convert that series to
a polynomial or a rational expression, and then apply int, but, please, remember,
that you are responsible for neglecting the order term by removing it. This term is
why Maple refuses to calculate a definite integral of an object of type series.

Sometimes, series can be applied to an unevaluated integral (or an inert integral),
but only if expansion in O is asked for; for instance, in a variant of the previous
example:

> int(x~4/cos(x) , x);

J ~dX cos(x)

> series(% , x=O , 12);
1 5 1 7 5 9 61 11 13
5"X + 14 x + 216 x + 7920 x + O(x)

The use of series in solving equations or differential equations is discussed in sec­
tion 16.10 on page 230 and section 17.6 an page 240. Series expansions of solu­
tions of equations (series approximations to implicitly defined functions) are dis­
cussed in section 16.9 an page 227.

8.8 Numerical evaluation of a series

For numeric al evaluation of a series, it can be efficient ta convert it ta a rational
expression that has the present series as its series approximation (of the given or­
der). This is possible with convert (, ratpoly). Subsequently applying
convert (, confrac) can speed up things still more.

8.9 Multivariate Taylor expansion

For Taylor expansion of functions of more than one variable, the procedure mtay­
lor is available. This must be read from the miscellaneous library with readlib
before it can be used:

> readlib(mtaylor):
> m:= y - y*x - x~2 + sin(a*y+b*x);

m := y - y x - x 2 + sin(a y + b x)

> mtaylor(m,{x=O,y=O},2);

bx+(1+a)y

> mtaylor(m,{x=O,y=O},3);

b x + (1 + a) y - y x - x 2

114 8. Taylor or Laurent expansion and Iimits

> mtaylor(m,{x=0,y=0},4);

2 1 33 1 22 1 22 bx+{1+a)y-yx-x -fib X -"2 ayb X -"2a y bx-

1 _ a3 y3
6

The result is not oftype series and does not contain an order terrn. In fact, mtay­
lor uses the simple trick of substituting t*x for x, t*y for y, etc., calculating the
Taylor expansion to t with order equal to the third argument to the caII to mtay­
lor (excIuding the possibility of a Laurent expansion, etc.), and then converting
the result to a polynomial and substituting 1 for t. This explains the foIIowing
re suit:

> mtaylor((x~3-y~3)/(x~2+y~2) , {x,y} , 10);
x3 _ y3

x2 +y2

From the same reason, you may guess the background for the following error mes­
sage with its not very useful advice:

> mtaylor(x/(x~2+y~2) , {x=O,y=O} , 3);
Error, does not have a taylor expansion, try series()

A variant with weighted orders of the variables is available with an option to mtay­
lor.

8.10 Ca1culating limits

The procedure lirnit can be used for the calculation of limits:

> limite sin(x)/x , x=O);

1

> limite arctan(x) , x=infinity);
1

"2 7r

> limite l/x , x=O);

undefined

If it is desirable, you can indicate the direction with a third argument:

> limite l/x , x=O , left);

-00

The possible directions are left, right, real, and complex. Where the \imit
point is not 00 or -00 the default is real (bidirectional).

8.1 O Calculating limits 115

As limits are ca1culated with the aid of series, it can be important that series ex­
pansion is executed up to sufficient order. Sometimes, it can help to raise the level
ofOrder:

> series(cos(x),x=O,12);

1 2 1 4 1 6 1 8

1- 2x + 24 x - 720 x + 40320x
1 10 O(12)

3628800x + x

> convert(%,polynom);

1 2 1 4 1 6 1 8 1--x +-x --x +--x
2 24 720 40320

> limit«cos(x)-%)/x~12,x=O);

1 10

3628800 x

. cos(x) - 1 + ~ x2 - 214 x4 + 7~O x6 - 40~20 x8 + 362~800 x10
hm
x-+O X 12

The procedure limi t has called series, expanding the tirst argument up to the
standard order of series expansion given by the value of the name Order, and this
expansion is not sufticient for tinding the limit. So let's raise this order and start
the ca1culation again:

> Order:=13;

Order := 13

> %%;
1

479001600

In the following case, Maple cannot give a result:

> limit(exp(-pl*x),x=infinity);

Iim e(-p1x)
x-+oo

The user might intend pl to represent a positive real number, but Maple does not
know so. You can tell this to Maple by using the procedure assume. See section
3.4 on page 36 or section A.4 on page 278.

> assume(pl,positive);
Now Maple can tind the limit. As the previous command leaves no result on the
stack, we can use the double quote for repeating the limit command:

> % ;
o

The procedure PDEtools [dchange] can be used for substitutions in limits, al­
tematively using the inert variant Limi t of limi t. (In releases before Release 5,
use student [changevar] instead of PDEtools [dchange].)

Generally, ca1culating limits is reliable.

116 8. Taylor or Laurent expansion and limits

8.11 Multiple limits

Calculation of multiple limits is available in principle:

> limit((x~2+y~2)/(x+y+l) , {x=O,y=O});

O

> limit((x~2-y~2)/(x~2+y~2) , {x=O,y=O});

undefined

8.12 Continuity, singularities, and residues

The procedure iscoDt tries to check if a function is continuous on a given interval.
It uses some knowledge about standard functions and it depends on solving equa­
tions. So nobody can have a blind faith in the results of this procedure. The same
holds for the procedure singular that tries to calculate singularities of expres­
sions. If it retums an expression containing _N or _NN, these symbols represent an
integer or a natural number, respectively.

The procedure residue tries to compute the residue of a function of one variable
at a given point.

8.13 Other facilities for series calculations

Facilities for working with infinite formal power series are offered by the share­
ware packages PS and FPS and by an old, rather unfriendly package powseries.

Expansion into Chebyshev polynomials is available as numapprox [che byshev] ,
where the Chebyshev polynomials can be calculated by orthopoly [T] .

chapter 9

Numerical calculations with Maple

Symbolical manipulations are an essential part ofusing Maple, but powerful nu­
merical facilities are available, too. That makes it easy to handle parts of a cal­
culation with symbolical methods, so that the usual rounding problems when ap­
plying numerical procedures can be kept restricted to the remaining parts of the
calculation.

This combination of symbolical and numerical facilities makes Maple a very jlex­
ible and efficient tool. However, it may be necessary, for specialized purposes, to
use other numerical software. Maple offers facilities for using the programming
languages Fortran and C and the numerical software system Matlab.

This chapter links up with section 2.8 on page 26 and section 2.9 on page 28 on
jloating-point numbers. Some special subjects on numerical approximations are
discussed in connection with matching subjects in other chapters of this book.

9.1 Accuracy

The general approximation procedure in Maple is evalf:

> evalf(sqrt(3) ,50);

1.7320508075688772935274463415058723669428052538104

> Int(sin(x~3) , x=0 .. Pi~(1/4)); evalf(% , 20);

(07r(1/4 l

in sin(x3) dx

.53996849568350107601

Observe the use of Int instead of int in order to prevent Maple from starting sym­
bolical calculation of the integral. The second argument to evalf is the number
of digits to be used in the calculations, generally, it is not the expected accuracy
of the result. For instance, in the following case, the last two digits are not correct:

> evalf((1+sqrt(5))~100,5);

.100511052

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

118 9. Numerical calculations with Maple

In most cases it is easy to find more accurate results simply by increasing the num­
ber of digits:

> evalf«1+sqrt(5))-100,10);

.10040690911052

If no second argument is given to evalf, the value of the name Digits is used in­
stead. The value of Digi ts is 10 at the start-up of Maple.

If evalf has to handle an expression that contains ftoating-point numbers itself,
be cautious. For instance,

> evalf(0.3 - 100 , 50);

.515377520710-52

The reason for rounding to 10 digits, instead of 50, is that 0.3100 is caIculated im­
mediately by automatic simplification before the procedure evalf comes into ac­
tion, according to the mIe of evaluation of arguments. Since Digi ts is referring to
10, this automatic simplification yields a 10-digit result. To get the desired number
of digits, use 3/10 instead of 0.3:

> evalf((3/10)-100 , 50);

.5153775207320113310364611297656212727021075220010010-52

In more complicated cases, you can convert floating-point elements occurring in
expressions into rationals with convert(,rational). See section 12.7 on page
156.

The procedure evalf can handle many built-in procedures. More specific infor­
mation is found in this book where the relevant procedures are discussed and in
section 2.8 on page 26.

9.2 Speeding up by optimizing

Suppose that numeric al values of an expression are to be caIculated for many val­
ues of a, x, and y, for instance, for the purpose of numerical integration. Then
caIculations may be speeded up by manipulating that expression before. Consider
the expression

> pO ;= 9*a-3*x-5*exp(y)-2-6*a-3*x-4*exp(y)+
> a-3*x-3+27*exp(y)-3*a-2*x-4-18*exp(y)-2*a-2*x-3+
> 3*exp(y)*a-2*x-2+27*exp(y)-4*a*x-3-
> 18*exp(y)-3*a*x-2+3*exp(y)-2*a*x+9*exp(y)-5*x-2-
> 6*exp(y)-4*x+exp(y)-3-x-l;

9.2 Speeding up by optimizing

pO:= 9a3 x 5 (ey)2 _ 6a3 x4 eY +a3 x3 + 27 (ey)3 a2 x4 _

18 (ey)2 a2 x3 +3eY a2 x2 +27 (ey)4 ax3 -18 (ey)3 ax2 +

3 (ey)2 ax + 9 (ey)5 x2 - 6 (ey)4 x + (ey)3 - x -

1

The number of multiplications can be reduced with convert(,horner):

> pi := convert(% , horner);

p1 := -1 + (ey)3 + (-6 (ey)4 - 1 + 9 (ey)5 x) x +

((3 (ey)2 + (-18 (ey)3 + 27 (ey)4 x) x) x+

((3eY + (-18 (ey)2 +27 (ey)3 x) x) x2+

(1 + (-6eY + 9 (ey)2 x) x) x3 a) a) a

119

This has reduced the number of multiplications from 76 to 45. However, in the
last expression eY is to be calculated 11 times and several powers of this are to be
calculated. It is possible to make a further improvement with the procedure code­
gen[optimize], which yields an efficient sequence of calculations. (In releases be­
fore Map1e V.5, the package codegen is not available, use optimize after the
command readlib(optimize).)

> p2 := codegen[optimize](%%);

p2 := t1 = a2 , t2 = t1 a, t3 = x2 , t4 = t32 ,

t7 = eY, t8 = t72 , t14 = t3x, t16 = t8t7,

t26 = t82 , t41 = 9 t2 t4 x t8 - 6 t2 t4 t7 + t2 t14 +

27 t16 t1 t4 - 18 t8 t1 t14 + 3 t7 t1 t3 + 27 t26 a t14 -

18 t16 a t3 + 3 t8 a x + 9 t26 t7 t3 - 6 t26 x + t16 -

x-1

The result is a sequence of equations, indicating the calculation steps, the last yield­
ing the result. The procedure optimize uses the names ti, t2, t3 ... , supposing
that these names have not been assigned a value.
You can make optimize do still more than standard by adding the option try­
hard.

The easiest way of using this sequence of calculations is by incorporating it into a
procedure. This can be done with the procedure codegen[makeproc]. (In releases
before Maple V.5, use 'optimize/makeproc'; don't forget the back quotes.)

> f2 := codegen[makeproc]([p2] , [a,x,y]);

120 9. Numerical calculations with Maple

12 := proc(a, x, y)
local tl, t2, t41, t8, t4, t3, t7, t14, t16, t26;

tl := a'2;

t2 := tl * a;
t3 := x'2;

t4 := t3 A 2;

t7 := exp(y);

t8:= tT2;

tl4 := t3 * x;

tl6 := t8 * t7;

t26 := t8 A 2;

t41 := 9 * t2 * t4 * x * t8 - 6 * t2 * t4 * t7 + t2 *
tl4 + 27 * tl6 * tl * t4 - 18 * t8 * tl * tl4 + 3 * t7 *
tI * t3 + 27 * t26 * a * t14 - 18 * tl6 * a * t3 + 3 *
t8 * a * x + 9 * t26 * t7 * t3 - 6 * t26 * x + tl6 - x-
1

end

This procedure can now be used as a function that calculates values of the expres­
sion pO quickly:

> f2(0.33333 , -1.2345 , 3.1417);

.8831624520108

Such a procedure can be differentiated with the procedure D. See section 6.9 on
page 79. Moreover, when the original expres sion contains only one variable, and
consequently the corresponding procedure has just one argument, this procedure
can be numerically integrated:

> evalf(Int(f2(1.35,t,t~3/(t~2+1)),t=0 .. 1));

47.00305394

(In releases before Maple V.5, use 'evalf / int' for the calculation above.) Even
for the relatively small expression in the present example, this last calculation is
considerably (about twice) faster than numerical integration of the original expres­
sion pO.

The facilities discussed here can be quite efficient for more complicated calcula­
tions. The reduction in work can be shown by the procedure cost:

> codegen[cost] (p1);

13 additions + 46 multiplications + 11 lunctions

> codegen[cost] (p2);

9.4 Some special procedures 121

39 multiplications + 10 assignments + functions + 13 additions

In the last result "functions" is to be read as "1 function call".

For rational expressions and function calls, efficiency can be improved by
approximating the expression with a continued fraction, using the procedure
convert(,confrac,<var». This procedure calculates a series approximation to
the given expression with respect to the variable given as a third argument, and
then converts this into a truncated continued fraction (Pade approximation):

> convert(exp(t) , confrac , t);
t

The value of Order, or an additional fourth argument, determines the accuracy of
this approximation. See section 8.2 on page 109.

After conversion of an expression to a continued fraction, you can apply code­
gen[optimize] as well.

9.3 Speeding up with ftoating-point facilities of the system

Maple can use the standard facilities of the system for floating-point calculations
by the procedure evalhf:

> evalhf(exp(3));

20.08553692318767

Generally, this procedure is considerably faster than evalf, but the number of dig­
its is determined by the properties of the computer system, using "double preci­
sion". This procedure is also used in the context of hfarrays.

9.4 Some special procedures

The numapprox package contains several approximation procedures, for instance
infnorm, which estimates the maximum absolute value of a function on an in­
terval, and minimax, which tries to construct an optimal approximation to an ex­
pression by a rational expression. The share library offers more approximation
procedures; see section 5.6 on page 69. Moreover, Maple contains procedures for
Fast Fourier Transform (FFT and its inverse iFFT).

122 9. Numerical calculations with Maple

9.5 Using Fortran and C in combination with Maple

In Maple V.5 you can translate Maple procedures into Fortran or C routines, if the
original routine does not contain untranslatable parts. Let's translate the procedure
f2 from the above into C:

> codegen[C] (f2);
#include <math.h>
double f2(a,x,y)
double a;
double x;
double y;
{

do~ble ti;
double t2;
double t4i;
double t8;
double t4;
double t3;
double t7;
double t14;
double t16;
double t26;
{

ti = a*a;
t2 = ti*a;
t3 = x*x;
t4 = t3*t3;
t7 = exp(y);
t8 = t7*t7;
t14 = t3*x;
t16 = t8*t7;
t26 = t8*t8;
t4i = 9.0*t2*t4*x*t8-6.0*t2*t4*t7+t2*t14+27.0*t16*ti*t4-

i8.0*t8*ti*t14+3.0*t7*ti*t3+27.0*t26*a*t14-i8.0*t16*a*t3+
3.0*t8*a*x+9.0*t26*t7*t3-6.0*t26*x+t16-x-i.0;

return(t4i);
}

}

There are several options possible for these commands; for instance the option
filename = causes the output to be appended to the named file.
In previous re1eases, only a list of equations could be translated by fortran and C.

9.6 Data files

For reading in a data file of numbers, you can use the procedure readdata. This
is discussed in section 18.21 on page 274. For more complicated cases, readline
and sscanf are available, preferably in combination with anhfarray. For simple
output to files, you can use wri teto and appendto or wri te and wri teln; for
hfarrays, use printf. More information about these features can be found in
the on-line help.

chapter 10

Manipulating several objects at once

In Maple, several mathematical objects can be joined together in a sequence, a set,
or a Zist. This chapter shows you how to handle these, in which ways they can be
used, and how you can process several objects at once.
Besides these three constructions, Maple has tables and arrays. The las! section
ofthis chapter introduces tables. Arrays are more important in the common inter­
active use of Maple, especially when using matrices and vectors. This subject is
discussed in Chapter 18, Vectors and matrices.

10.1 Creation of sequences, sets, and lists

Maple procedures often yield sequences, for instance,

> 4*x-6+(16-4*b)*x-5+(12*b-75)*x-4+(63-9*b)*x-3;

4x6 + (16 - 4b) x 5 + (12b - 75) x 4 + (63 - 9b) x 3

> sol := solve(%,x);
3 3

sol := O, O, O, "2' "2' -7 + b

Now sol is a sequence of six objects.

We can also create a sequence in a direct way. For instance,

> sqA := 111, 2-x, a-3, cos(4), O;

sqA:= 111, 2x , a3 , cos(4), O

Now sqA is a sequence of five objects.

If we create a sequence of five objects by replacing the third element of sqA by the
sequence sol

> sqB := 111, 2-x, sol, cos(4), O;

sqB:= 111, 2x , O, O, O, ~, ~, -7 + b, cos(4), O

we do not obtain a sequence of five objects, but the elements of sol are merged
into the sequence and so we find a sequence of 10 objects. If we want to tie the
elements of sol together as a whole, we can bundle them into a set or a list.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

124 10. Manipulating several objects at once

> setA := {sol};
3

setA := {O, -7 + b, 2 }

In this example you can see that Maple conforms to the mathematical idea of a set:
it is useless to denote an element more than once. Moreover, Maple renders the
elements of a set in an order according to Maple's internal preferences. Here is an
example:

> setA :={111, 2-x, a-3, cos(4), O};

setA:= { 0,111,2:1:, cos(4), a3 }

Often, these characteristics of a set are not appropriate. Therefore, Maple has an­
other structure: list. A list can be created by writing down a sequence between
brackets:

> listA := [111, 2-x, a-3, cos(4), O];

listA:= [111,2:1:, a3 , cos(4), O]

> listB :=[sol];

listB:= [O, 0, o,~,~, -7+b]

These constructions can be combined as in the following example:

> 111, 2-x, [sol], cos(4) , O;

111,2:1:, [O, 0, O,~,~, -7+b], cos(4), °
Here the elements of sol are tied together in a list, which is used as one element
of the sequence containing five elements in all.

The void sequence (the sequence with no elements) is denoted by NULL, and the
void list and void set are denoted by [] and { }.

You can convert a set Of a list to a sequence with op:

> op(listA);

111,2:1:, a3 , cos(4), °
The procedure op cannot be applied to a sequence:

> op(%);
Error, wrong number (or type) of parameters in function op

The number of elements of a list or set can be ca1culated by nops:

> nops([p, q, r]);

3

10.2 Selecting elements of sequences, sets, and lists 125

The number of elements of a sequence can be caIculated by counting the elements
of the corresponding list:

> nops([%%]);

5

The number of elements in a sequence, list, or set can be up to 217 - 2 = 131070.
If there are more, you get a message:

> a $ 131071:
Error, object too large

10.2 Selecting elements of sequences, sets, and lists

Selecting from a set or a list is possible by using op:

> op(2, setA);

111

> op(3, listA);

You can use a range to obtain a subsequence:

> op(2 .. 4, listA);

2", a3 , cos(4)

Indexing can be used for lists and sets as weB:

> listB[6];

-7+b

It is not possible to change a sequence or set by assigning to an indexed element,
but it is possible for a list (from rele ase V.4):

> listA [1] : =10;

listA I := 10

> listA;

[10,2", a3 , cos(4), O]

Selecting from a sequence is possible by indexing, using square brackets:

126 10. Manipulating several objects at once

> sol [4] ;
3
-
2

You can obtain a subsequence by index ing with a range:

> so1[3 .. 5];

Remember:

3 3
0, 2' 2

The procedure op cannot be applied to sequences.

That is because op tries to convert its argument into a sequence:

> op (1 , sol);

Error. wrong number (or type) of parameters in function op

Searching and selecting special elements from a list or a sequence is discussed in
sections at the end of this chapter.

10.3 Applying a procedure to several objects at once

It is often efficient to process several objects at once. For instance, suppose that a
parameterized equation has been solved like this:

> equ := x~4+5*x~3*a-4*x~3*b-6*a~2*x~2-24*a*x~2*b+
> 36*a*x*b+14*a~2*x+16*x*b~2-16*b~2-16*b*a-4*a~2;

equ := x 4 + 5x3 a - 4x3 b - 6a2 x 2 - 24ax2 b+36ax b+

14a2 x + 16xb2 -16b2 -16ba - 4a2

> solutions := solve(%,x);

solutions:= -3a+V9a2 + 4b + 2a, -3a-V9a2 + 4b + 2a,
1 1 ~-=------::c------,.--

2 b + 2 a + 2 \1'16 b2 + 8 b a + a2 - 16 b - 8 a,

2 b + ! a - ! V16 b2 + 8 b a + a2 - 16 b - 8 a
2 2

10.3 Applying a procedure to several objects at once 127

Now you may want to substitute values for a and b in this sequence of four expres­
sions and try to do so as follows:

> subs(a=6 , b = 3 , solutions);

Error, wrong number (or type) of parameters in function subs

The cause of this error is that the name solutions refers to a sequence of four
expressions. So the arguments (a=6 , b=3 , solutions) are evaluated to a
sequence of six objects: two equations and four algebraic expressions. But subs
expects as its arguments one or more equations and at the end just one object to
which the substitutions have to be applied.

To substitute in ali the solutions at once, we have to tie them together into a list (or
a set), in order to give it as one last argument to subs:

> subs(a=6 , b = 3 , [solutionsJ);

[-18 + v'348, -18 - v'348, 9 + ~ v'228, 9 - ~ v'228]

Many procedures can handle lists and sets, for instance diff, evalf, expand,
normal, and simplify:

> simplify(%);

[-18 + 2 V87, -18 - 2 V87, 9 + vf57, 9 - vf57]

Generally, standard mathematical functions (see Chapter 6, Creating and using
mathematicalfunctions) cannot be applied to a list or a set:

> liste := [5*a-2*ln(3) , o , ln(b) J;

listC := [5 a2 ln(3), 0, ln(b)]

> exp(%);

exp ([5a2 In(3), 0, ln(b)])

The procedure exp cannot use a list as an exponent to e, but it does not protest
against this input and yields the exp of this list unevaluated, whatever that may
mean. For such a case, use the procedure map:

> map(exp , liste);

[e(5a2 In(3)), 1, b]

The procedure map has applied ln to ali the elements of liste, preserving the list
structure. Ifthe elements ofthis list should be simplified by simplify, you don't
need map; simplify can be applied to a list directly:

> simplify(%);

128 10. Manipulating several objects at once

The procedure map applies the tirst argument, which should be a procedure, to the
operands of the second argument:

> map(x->x~2 , [a,b,c]);

[a2 , b2 , c2]

Note that Maple chooses the order of elements in a set. So if you apply map to a
set, the order in the result may not correspond to the order in the original set:

> map(x->x~2 , {b,a,c});

{ a2 , b2 , c2 }

It is even possible to use map in combination with a sum. Here the procedure is
applied to the operands of the sum, the terms. The result is the sum of the procedure
values:

> map(x->x~2 , a+b+c);

a2 + b2 + c2

Sometimes a procedure expects more than one argument, for instance iquo, which
calculates the integer quotient of two integers:

> iquo(6020,6);

1003

The procedure map can be used for such procedures, too. As an object for demon­
strating this, we generate the tirst 18 prime numbers, using the procedure seq, ex­
plained in the next section.

> listD := [seq(ithprime(i) , i=1 .. 18)];

listD := [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 , 37, 41 , 43, 47,

53, 59, 61]

The integer quotients of the elements of listD divided by 6 can be calculated in
two ways:

> map(n->iquo(n,6) , listD);

[0,0,0, 1, 1, 2, 2, 3, 3, 4, 5, 6,6,7,7,8,9, 10)

> map(iquo , listD ,6);

[0,0, 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6,7, 7,8,9, 10]

In the last command the procedure map applies iquo to pairs consisting of an ele­
ment of listD and the number 6. You can enter the second argument of the pro­
cedure as the third argument to map. And you may go on with more arguments.

Now suppose we want to calculate the integer quotients of 6020, dividing this sub­
sequent1y by the elements of listD. Then we cannot use the previously explained

10.5 Finding the minimal or the maximal element 129

facility of map with additional arguments. But map2 can do the job:

> map2(iquo, 6020 , listD);

[3010,2006,1204,860,547,463,354,316,261, 207, 194, 162,

146, 140, 128, 113, 102, 98]

The procedure map2 applies iquo to pairs consisting of the number 6020 and an
element of listD.
It is also possible to multiply each element of a list with a number (not a symbolic
number) in a direct way:

> 2* [a, b , c] ;

[2a, 2 b, 2c]

10.4 Finding a special element in a set Of a list

You can ask if a special object occurs in a set or a list by member:

> member(3/2 , listB);

true

You can even ask for the first position where this element occurs, by using a name
as a third argument. This construction is explained in section 5.4 on page 67 for
the procedure iquo:

> member(3/2 , listB , 'pos');

true

> pos;

4

10.5 Finding the minimal Of the maximal element

The minimal and maximal elemeuts of a sequence of real numbers, possibly con­
taining symbolic elements, are ca1culated by miu and max:

> min(sqrt(10) , Pi, 22/7);

In the following case, Maple assumes a to be a real number:

130 10. Manipulating several objects at once

> max(a + 5, a+6 , 2*a+6);

max(2a + 6,a + 6)

Here Maple cannot decide fully, but if we indicate that a is a positive number,
Maple can do the full job:

> assume(a,positive);

> max(a + 5, a+6 , 2*a+6);

2a"-' +6

1 0.6 Selecting the elements that satisfy a special condition

You can select the elements of a list or a set that satisfy a test with the procedure
select. For instance, you can look for all prime numbers between 100,000 and
100,100 as follows:

> [seq(i , i=100000 .. 100100)]:
> select(isprime , %);

[100003,100019,100043,100049,100057,100069]

The first argument to select must be a test procedure (yielding true or false).
In the previous case, we have used the procedure isprime, which tests if its ar­
gument is a prime number and yields true or false as the re suit. The second
argument of select should be a list or a set (or asum or a product).

You can use a test procedure that uses options, too. For instance, let's select all the
elements that are of type numeric from a given set:

> { 3/2 , sqrt(2) , x + 7 , O };

{ O, x + 7, ~, V2 }

> select(type , % , numeric);
3

{O, 2}

Here the second argument to the procedure type is given as the third argument to
select. For information about the procedure type, consult the on-line help on
this subject and section A.1 on page 275.

The test procedure for select may be constructed with the aid of the arrow. For
instance, here is a numeric al test function that yields true if and only if the ap­
proximation by evalf of its argument x is a positive number smaller than 1:

10.7 Generating sequences as values of a function or an expression

> test := x->type(x,numeric) and x>O and x<l;

test := x -t false

131

The procedure test checks first if its argument is a numeric object; if not, Maple
recognizes that the result is false and so will not try to check if the argument lies
in the range -1 . .. 1.

Now we can select the solutions of an equation that lie in this range:

> fsolve(16*x A 4-60*x A 3+36*x A 2+4*x-4 , x);

-.3058273664, .4089006016, .6720007242, 2.974926041

> selecte test, [%]);

[.4089006016, .6720007242]

If you would have a list of numbers that contains complex numbers, you would
have to select the real ones first:

> [.5+3*I,.7,-Pi];

[.5+3.1, .7, -7r]

> select(x->(x=evalc(Re(x))),%);

[.7, -7r]

In this simple case, we can trust the condition x=evalc. In more complicated
cases, evalc might yield an imaginary component that equals zero mathemati­
cally (see for instance section 15.11 on page 211). In such a case, you might gam­
bIe with numeric al approximations using fnormal (see section 2.8 on page 26) to
avoid problems with small imaginary components:

> select(x->(fnormal(evalf(x))=evalc(Re(evalf(x)))),%):
The counterpart of select is remove, which is used in the same way, but removes
elements from a set or a list.

10.7 Generating sequences as values of a function or an
expression

A useful tool for generating sequences from an expression is the procedure seq:

> seq(n! , n=1 .. 10);

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800

The name n gets the inte ger values in the range from 1 to 10, denoted as 1.. 10,
and n! is calculated each time, yielding a sequence of values.

Here is an application: let's calculate the function values at the (approximated)
zeros of the derivative of a function:

132 10. Manipulating several objects at once

> f:=x->x~5-50*x~3-25*x~2+15*x-l;

f := x --t x 5 - 50 x 3 - 25 x 2 + 15 x - 1

> fsolve(D(f)(x) , x);

-5.291800567, -.5277249269, .1908553686, 5.628670126

Now we want to see the function values at each of these points:

> seq (f (% [n]) , n = 1.. nops ([%]));

2479.193139, -8.570742823, .604836765, -3975.227232

From rele ase V.4, the counting parameter of seq is a formal parameter, so it is not
assigned to by seq and it is not important if it is assigned to previously.

10.8 Manipulating sequences, sets, and lists

The sum or the product of the elements of a set or a list can be calculated by
convert (, '+') or convert (, '* ') :

> convert(listA, '+');

10 + 2'" + a",3 + cos(4)

For sets, the operators union, intersect, and minus are available:

> {1,3,5} union {2,3,4};

{ 1, 2, 3, 4, 5 }

> % intersect {3,4,5,6,7};

{3, 4, 5}

> % minus {4,6};

{3, 5}

These operators can also be used as procedures, but then the name should be en­
closed in a pair of back quotes; see section 3.8 on page 40. Using such an operator
as a procedure can be convenient for handling a sequence of sets. An example can
be found in section E.6 on page 305.

Here are two lists:

> listA; listB;

[10,2"', a",3, cos(4), O]

3 3
[O, O, O, 2' 2' -7+b]

Let's join them together into one list. This can be done as follows:

10.9 Conversions between sequences, sets, and lists 133

> [op ('1.%) , op ('1.)];

[10, 2x , a",3, cos(4), 0, 0, 0, 0, ~, ~, -7 + b]

Exchanging an element of a list for something else is easy with the aid of subsop.
For instance, the second element of listA can be exchanged for X as follows:

> listA;

> subsop(2=X , '1.);

[10, X, a",3, cos(4), O]

Note that this aetion does not ehange the value oJlistA:

> listA;

To change the value of listA, you must assign the new value:

> listA[2] := X;

listA2 := X

The procedure subsop can also be used for omitting an element:

> subsop(3=NULL , listA);

[10, X, cos(4), O]

Here subsop has created a new list by exchanging the third element of the previous
list by the void sequence, which omits the third element effectively.

10.9 Conversions between sequences, sets, and lists

In the previous section, you saw how a sequence could be converted into a list or
a set by enclosing it between brackets ([]) for a list or braces ({ }) for a set. For
the opposite direction, use the procedure op:

> listA;

[10, X, a",3, cos(4), O]

> op(%);

10, X, a 3 , cos(4), °
> op(setA);

134 10. Manipulating several objects at once

0,111, 2x , cos(4), a",3

The procedure op is a general tool that can be applied to any Maple object that is
not itself a sequence; it yields a sequence of the operands of its argument.

Conversion between lists and sets is achieved by going through a sequence:

> listB;

> { op(%) };

> [op(%)];

3 3
[0,0,0, 2' 2' -7+b)

3
{O, -7 + b, 2}

3
[O -7+b -) , , 2

Observe that the last result is not equal to listB.

10.10 Tables

Names with an index are introduced in section B.3 on page 287.

> P [n] ;

If you assign something to such a name, you create a table.

> P[l] :=sqrt(3);

> P;

> evalCP);
table([

1 =V3
))

p

In the second command the procedure eval is used in order to see the value of
P. For tables, the same evaluation rule is used as for procedures. Therefore, the
second command renders P; full evaluation is demanded with eval.
Such a table is very compliant; for instance:

10.10 Tables

> P[cos] :=sin;

PC08 := sin

> P[i,2,3,4,5] :=much;

> eval<P);

table([

cos = sin

1 = /3
(1,2,3,4,5) = much

])

P 1,2,3,4,5 := much

135

You can use tab Ies easily if you like. Maple itself uses many tabIes, such as the
remember tables for procedures; see section D.I on page 293.

chapter 11

Substitution and subexpressions

Substitution is an important tool in manipulating Maple expressions. It is not re­
strieted to substituting something for a name, but ean be used for many more pur­
poses. There are several general tools for substitution. This ehapter shows the
possibilities and restrietions ofthe substitution tools in Maple.

11.1 Some examples of substitution

The obvious usage of substitution is as in the following example:

> expr ;= sin(a);

expr := sin (a)

> subs(a 7, expr);

sin(7)

Remember that the last aetion has not ehanged the value of expr.

> expr;

sin (a)

To change the value of expr to the last result, assign it.

The procedure subs can do much more. For instance, it is possible to replace a
number with another expression.

> subs(7=a+b , %%);
sin(a + b)

Moreover, you can replace the name of a procedure with the name of another pro­
cedure, as in the following two examples:

> subs(sin=cos , %);
cos(a + b)

> subs(cos=(x->x+3*x-2) , %);

(x -t x + 3x2) (a + b)

You may wonder why Maple does not apply this simple function. The root of it is
that Maple does not evaluate the resuLtfound by subs automatically.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

11.2 A substitutioo that fails

When we offer this result again to Maple, it is evaluated.

> %;

11.2 A substitution that fails

Let's go 00 with the last result and now substitute something for a+b.

> subs(a+b=7 , %);
a + b+ 147

137

You may wonder why the first occurrence of a+b is not exchanged for 7, whereas
the second occurrence is exchanged. The cause is that Maple has not seen the first
occurrence as a subexpression.

We can break down an expression into its components, called "operands" in
Maple, by the procedure op.

> %%;

> op(%);
a, b, 3 (a + b)2

Maple interprets this expression as a sum of three terms. This is why Maple does
not see the sum of the first two terms, a+b, as a subexpression. However, the third
term contains a component a+b.

> op(% [3]);

3, (a + b)2

> op(%[2]);

a +b, 2

In the last substitution Maple encountered a+b as a component of a component
of the third component of the original expression, and substituted 7 only for this
subexpression.

In this case, there is an easy trick to exchange all occurrences of a+b for 7: sub­
stitute 7-b for a.

> subs(a=7-b , a + b + 3 * (a + b)~2);

154

138 11. Substitution and subexpressions

Remember:

The procedure subs replaces only subexpressions
of the given expression, generally.

The subexpressions of an expression, say 'expr', are expr itself, alI the compo­
nents of expr together with alI the components of these components, alI the com­
ponents of the components of the components, and so ono

11.3 Subexpressions of polynomials, substitution

When an expression is to be manipulated, it is of ten important to know how it is
built from subexpressions. Expression structure can be analyzed with the proce­
dure op. For instance, here is a case where the substitution command fails.

> pol := x-3 - 5*x-2 + 4*x - 3;

pol := x 3 - 5 x 2 + 4 x - 3

> subs(5=t , pol);

In order to tind out why substitution did not work as intended, we analyze the struc­
ture of pol.

> whattype(pol);

+

> op(pol);

We can select from this sequence the second element by indexing.

> % [2] ;

but we can also pick up the second subexpression by using op in another way.

> op(2,pol);

The procedure op gives the nth component of an expres sion with the command
op(n,).

11.3 Subexpressions of polynomials, substitution 139

> whattype(%);

*
> op(%%);

Obviously the number -5 is a subexpression of the original expression, so we can
substitute 5 for t in pol by

> subs(-5=-t , pol);

x3 - x 2 t + 4 x - 3

Let's analyze the tirst subexpression of pol.

> op(l,pol);

> whattype(%);

> op(%%);

x,3

Here is the full1isting of subexpressions of x3 - 5x2 +4x - 3, achieved by applying
op several times.

x, 3, x3 , -5, x, 2, x 2 , -5x2 , 4, x, 4x, -3, x3 - 5x2 + 4x - 3
By this analysis, you can pic ture

x3 - 5 x2 + 4 x - 3

as
sum(power(x,3) , product(-5, power(x,2» , product(4,x) ,3)

In fact, Maple stores such a polynomial in a slightly different way intemally. This
is evident when something is substituted for 1.

> subs(l=ONE, pol);

x3 O N E - 5 x2 + 4 x - 3 O N E

Therefore, never substitute something for 1 in a Maple expression.

The procedure subs behaves in an exotic way in other special cases, for instance,

> subs(a*b=p , t*a*b - 5*a*b);

tab-5p

Here a*b is not a subexpression according to the results of op, but substitution did
work in the last term.

140 11. Substitution and subexpressions

Experiment with subs yourself. You might predict the results of the following
commands, then check them:

• subs(a=t,-a*x);

• subs(-a=-t, -a*x);

• subs(5=t, -5*x);

• subs(-5=-t,-5*x);

• subs(5/6=t, 5/6*x);

• subs(a/b=t,a/b*x);

In all cases, it is wise to analyze the subexpression structure by repeatedly applying
the procedure op.

11.4 Subexpressions of rational expressions, substitution

Let's try a substitution in a rational expression.

> (a~2 - b)/(a~2*c);

> subs(a~2=t , %);
t-b
a2 c

This may not be what you expected, so let's analyze the original expression.

> op(%%);
2 1 1

a - b, 2' -
a c

A quotient is taken as just a product, in the same way a difference is taken as a
sum by Maple. Now let's see how the factors of the denominator of this quotient
are stored.

> % [2] ;

> whattype(%);

> op(%%);

1
a2

a,-2

11.5 Subexpressions of unevaluated function caUs

It is useful to know that

Maple takes quotients as products,
where each factor ofthe denominator is described

as a power with a negative exponent.

However, rational numbers are dealt with differently.

> op(5/8), whattype(5/8);

5, 8, fractian

141

It is not necessary to remember details on subexpression structure, such as the last
one. It is sufficient to keep in mind that generally subs can do nothing other than
substitute something for a subexpression, and that these subexpressions can be
found with the aid of op. Skip over the next section if you are not interested in
more details.

11.5 Subexpressions of unevaluated function caUs

In the example in the first section of this chapter, sin was replaced with another
name in the expression sin (a+b). Let's find the operands of this expression.

> sin(a+b);

sinea + b)

> op(%);
a+b

This looks strange: sin is not an operand of this expression, but it can be replaced.

> subs(sin=cos , %%);
cos(a+b)

However, sin really is an artificial operand: the zero-numbered operand.

> op(O , %%%);

sin

As such, it is recognized by subs as a subexpression. Here is another example:

142 11. Substitution and subexpressions

> int(f(x},x};

J f(x)dx

> op(% };

f(x), x

> op(O , %% };
int

11.6 The procedure eval

The procedure eval can be used in a similar way as subs (from release V.5), but
with essential differences. Here are some examples where both do the same:

> sin(a};

> eval(% , a=7 };

> eval(% , 7=ln(5) };

Observe the difference in syntax:
subs(x=y , expr)

versus
eval(expr , x=y)

sin(a)

sin(7)

sin(ln(5))

In the following command we see a difference:

> eval(% , sin=exp);

5

> sUbs(sin=exp, %%);

As you could see earlier, after substitution with subs no evaluation takes place,
but it does after substitution with eval.
The most important difference can be seen in combination with procedures such
as int, diff, sum, etc.:

11.8 More than one substitution at once 143

> int(f(x) ,x);

! f(x) dx

> eval(%,x=a);

(! f(x) dX) I{ x=a}

Although x is a subexpression of int (f (x) ,x), it is not replaced by a, as BubB
would have done, but eval interprets it as an expression in x that might be calcu­
lated in the future.

11.7 The procedures subs and eval-a survey

The main facts on the procedure Bubs are the following:

- before subs and eval come into action, the arguments are evaluated, as usual
in procedures

- usually, subs and eval can only replace subexpressions of an expression; a
subexpression of an expression is the expression itself, its operands or com­
ponents (to be determined with the aid of the procedure op) or an operand of
an operand, and so on

- subs replaces ali occurrences of the given subexpression are replaced in the
given expression, but eval respects such things as the integration variable in
an unevaluated call to int

- after this replacement subs does not evaluate the resulting expression, (only
elementary automatic simplifications are executed), but eval does

- subs and eval do not change references (values) of names

11.8 More than one substitution at once

It is possible to execute more than one substitution at once. For instance,

> plin := 2*x - 10*y;

plin := 2x - lOy

> subs(x=a , y=b , plin);

2a-lOb

But if you try to switch x and y in the same way, it fails:

144 11. Substitution and subexpressions

> subs(x=y , y=x , plin);

-8x

The procedure subs has executed the substitutions successively. It is possible to
do these two substitutions simultaneously as follows:

> subs([x=y,y=x] , plin);

2y -lOx

For eval it is also possible to execute more than one substitution at once, but only
simultaneously, and square brackets (or braces) are compulsory.

> eval(plin, [x=y,y=x]);

2y-lOx

11.9 The procedure PDEtools [dchange] for changing variables

The procedure PDEtools [dchange] is meant to be a general tool for changing
variables (from release V.5; in earlier releases DEtools [Dchangevar] and stu­
dent [changevar] are predecessors ofthis more powerful procedure). Examples:

> PDEtools[dchange] (x=t+5,sin(x)-x A 2);

sin(t + 5) - (t + 5)2

The procedure DEtools [dchange] cannot substitute objects for general subex­
pressions, but only for variables; it is meant for such cases as:

> PDEtools[dchange] (x=t+5,Int(sin(x),x=a .. b));

lb- 5

a-5 sin(t + 5) dt

In the following, the command cannot be interpreted uniquely, so Maple issues an
error:

> PDEtools[dchange] (x=t+u,Int(sin(x) ,x));
Error, Missing a list with the new variables

We have to indicate, with a third argument, what will be the new variable instead
ofx:

> PDEtools[dchange] (x=t+u,Int(sin(x) ,x), [t]);

f sin(t + u) dt

Square brackets are compulsory for this argument.

11.10 Substitution of algebraic subexpressions 145

The following looks strange:

> PDEtools[dchange] (x=t+u,Int(f(x),x),[t]);

J f(t,u) dt

What has happened is that Maple has changed the meaning of f at the same time.
The reason forthis is the main object ofPDEtools [dchange]: it is to be used for
differential equations, where f could be an unknown function to be found. How­
ever, this can be changed with another option:

> PDEtools[dchange] (x=t+u,Int(f(x),x),[t],known=f);

J f(t + u) dt

More on this procedure can be found in Chapter 17, Solving differential equations.

11.10 Substitution of algebraic subexpressions

The following substitution fails:

> a A 2*x*b + a*b A 3 - 3*a A 5*b A 5*c;

a2 x b + a b3 - 3 a5 b5 c

> subs(a A 2*b=NEW,%);

a2 x b + a b3 - 3 a5 b5 c

The procedure subs cannot do what the user seems to want in the last command
because a2 b is not a Maple subexpression of the given expression. But it is an
algebraic subexpression. For substitution of algebraic subexpressions the proce­
dure algsubs can be used. (In previous releases use student [changevar] and
asubs.)

> algsubs(a A 2*b=NEW,%%);

(-3cNEW2 + 1) b3 a + x NEW

The same result can be achieved with a more advanced tool, simplification to side
relations, explained in the next section.

You might use a variant of the previously mentioned trick of substituting NEW / a A 2
for b, but the result may not be desirable:

> subs(b=NEW/a A 2 , %%%);

xNEW + NE;V3 _ 3 NE~5C
a a

Here is another example:

146 11. Substitution and subexpressions

> x+y-l;

x+y-l

> algsubs(x-l

A drawback of this procedure is that it must choose what to do in less basic cases,
sometimes making the use of it complicated (see the on-line help for it). A clearer
approach can be found in the next section.

11.11 Applying side relations

Sometimes, when substitution falls short, you can use simplification to side rela­
tions. For example, let's take the expression

> a*x~2+b*x~3+c*x~4+d*x~5;

ax2 + bx3 + cx4 + dx5

Suppose that you want to substitute p y for x 2 • Substitution with the procedure
subs only changes the first term. In order to change the others as well you can
issue

> simplify(% , {x~2 = p*y}, [x]);

apy + Cp2 y2 + (bpy + d p2 y2) X

The last argument [x] asks for reduction of powers of x. In this case, it could have
been omitted, in fact.

Here is another example. Suppose that we have two relations:

> rels := {x~2 = p*y , y~2 = q};

rels := { y2 = q, x 2 = py }

and that we want to reduce the following expression to these two relations.

> expand((x~3+y*x-y)~2);

x 6 + 2 x4 y _ 2 x 3 y + y2 x 2 _ 2 y2 X + y2

That can be done with the same trick:

> simplify(% , rels, [x,y]);

q + (- 2 q - 2 p q) x + (p q + 2 p2 q + p3 q) Y

In the result you don't see x 2 : this could be eliminated with the relation x 2 = p *
y and it is eliminated because [x, y] indicates that in the first place x should be
eliminated as far as possible, and then y.
If we enter [y, x] as the last argument, we get:

11.12 Finding the structure and subexpressions of large expressions 147

> simplify(%% , rels, [y,x]);

q + (- 2 q - 2 p q) x + (q + 2 p q + p2 q) x2

Here y is eliminated and x is reduced to maximal degree 2.
The procedure simplify with side relations is based on the Buchberger algorithm
in Grăbner basis theory. Essentially, this aims at reduction of degrees of tenns.

The present method is not restricted to polynomials. For instance,

> a*exp(y)+a~2*(2*x*y-3*y*z)+x*y*z;

aeY + a2 (2yx - 3yz) + xyz

We will convert this into a complicated expression, to be used as an example for
simplifying to side relations.

> a:=exp(x)-y~2*z+1;

> expand(%%):
> combine(%,exp);

e(Y+x) -eY y2 z+eY +2 e(2 x) y x- 3e(2 x) y z-4 eX y3 z x+

6 eX y3 Z2 + 4 eX y x - 6 eX y z + 2 y5 z2 X _ 3 y5 Z3 -

4 y3 Z x + 6 y3 Z2 + 2 y x - 3 y Z + x y z

Now let's ask Maple to reduce the previous expression to the relation a = 0, that
is to say, to eX - y2 Z + 1 = 0, eliminating eX as far as possible.

> simplify(% , {a=O} , [exp(x)]);

xyz

More examples can be found in the Chapters 13, 14, and 15.

11.12 Finding the structure and subexpressions oflarge expressions

If an expression is too large to readily see what its structure is, use whattype
in order to see if it is a sum, a product, a power, an unevaluated function call, or
something else. See section A.l on page 275. The number of operands of an
expression can be found with nops. With the aid of the procedure bas you can
find out if one expression is a subexpression of another expression.

> has(factor(x~1000-1) , x~12);

true

148 11. Substitution and subexpressions

11.13 Selecting suboperands

Any level of components can be found with op. From release V.4 you can access
suboperands with op directly. For instance

> cos(x) + (3 - 5*x*sin(x-t))~2;

cos(x) + (3 - 5x sin(x - t))2

> op([2,1,2,3] , %);
sin(x - t)

The first argument of op may be a list of numbers. Here we select:

- the second operand of the given expression:
(3 - 5x sin(x - t))2

- the first operand of this:
3 - 5 x sin(x - t)

- the second operand of this:
-5 x sin(x - t)

- the third operand of this:
sin(x - t)

11.14 Substituting something for one component of an
expression

If an operand of an expression is to be exchanged for something else without
changing any other component, you can use subsop. For instance,

> 3*x~2 + 5*x*y~3 - 4*x~2*y~2 + x~6*s*y;

3 x2 + 5 x y3 - 4 x2 y2 + e x6 s y

> subsop(3=WHOOPS, %);
3x2 + 5 xy3 + WHOOPS + ex6 sy

The previous command asks Maple to exchange the third component for WHOOPS.

By an index list, you can replace suboperands as weB. The selection is the same
as with op. For instance, in order to replace in the last term x 6 by a you can issue

> subsop([3,2]=a , %);
3x2 + 5 xy3 + WHOOPS + easy

chapter 12

Manipulating and converting numbers

In Chapter 2, Numbers and algebraic operators, some basic manipulations for
numbers are discussed: expand, evalc, and simplify(,radical). The
present chapter is a sequel to that chapter, discussing more specialized manipu­
lations.

12.1 Real and imaginary parts of a complex number

The procedure evalc converts a complex number to the form a + bI, where a and b
are real numbers, supposing that alI variables concemed can be assumed to be real
numbers. The same procedure can be used to take the real and imaginary parts of
a complex expression separately as follows:

> a + b*I;

a+lb

> evalc(Re(%)); evalc(Im(%%));

a

b

> (-3)~(1/4)*exp(a*I);

(_3)(1/4) e(I a)

> evalc(Re(%)); evalc(Im(%%));
1 1
- 3(1/4) V2 cos(a) - - 3(1/4) V2 sin(a)
2 2

~ 3(1/4) V2 cos(a) + ~ 3(1/4) V2 sin(a)
2 2

In the last calculation Maple assumes again that a is real. Remember:

The procedure evalc assumes alI unassigned names to be real.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

150 12. Manipulating and converting numbers

12.2 Argument and absolute value of a complex number

The absolute value and the argument of a complex number (=F O) can be searched
for separately by the procedures abs and argument:

> abs(I~(5/3));

> argumente I~(5/3));

1

5
-7r
6

Conversion to polar coordinates is accomplished by convert(,polar):

> convert(I~(5/3) , polar);
5

polar(l, (3 7r)

Conversion to standard complex notation is performed by evalc:

> evalc(%);
1 1

--V3+-1
2 2

A number given in standard complex form a+b* 1 can be conjugated by conjugate.
Do not apply this procedure to objects that are not in this standard form, but then
apply evalc first.

> conjugate(evalc(I~(5/3)));
1 1

--V3--1
2 2

Ifyou don't apply evalc first, conjugate can go on strike:

> conjugate(I~(5/3));

conjugate ((-1) (5/6})

(In older releases, conjugate without evalc could yield wrong results.)

12.3 The sign of a real or a complex number

The procedure signum is the standard Maple test if a real number is positive or
negative: it yields 1 for a positive number and -1 for a negative number.

> signum(Pi - sqrt(10));

-1

> signum(sqrt(10) - Pi);

1

12.4 Manipulating products and quotients of radicals 151

> signum(O);

o
Generally, if signum is applied to an expression that might be zero for some special
values of the indeterminates, Maple ignores that possibility. For instance

> signum(abs(x)). signum(-abs(x));

1, -1

This looseness can be tightened by assigning a value to the special Maple variable
--EnvsignumO or with an extra argument. For details on --EnvsignumO, see the
on-line help to signum.

The procedure signum can also be applied to complex numbers: signum(x) is de­
fined as

. abs(x)
slgnum(x) := . ()

conjugate x
if x "1- O, and it is O if x = O.

Don't confuse signum with sign: the last is defined as the sign ofthe leading co­
efficient of a polynomial with real coefficients. In some cases the results are the
same, but in many others not.

For complex numbers you can also use csgn, yielding 1, if Maple can ascertain
that it lies in the right half-plane, and -1, if Maple knows that it lies in the left
half-plane.

12.4 Manipulating products and quotients of radicals

Products and quotients of radicals can be combined with the procedure combine:

> sqrt(10 - sqrt(7)) * sqrt(10 + sqrt(7));

VlO -..fi VlO +..fi

> combine(%);

For quotients of radical expressions, you can use the procedure rationalize, which
tries to remove radicals from the denominator. This procedure must be read from
the library before it can be used.

152 12. Manipulating and converting numbers

> (1+sqrt(3))/(2+sqrt(3)-sqrt(-5));

1 + V3
2+V3-IV5

> readlib(rationalize) (%);

2~ (1 + v'3) (2 + v'3 + I v'5) (-3 + v'3)

> evalc(%);

The last step can also be performed by expand.

12.5 Nested radicals and roots of complex numbers

A general tool for nested radicals (roots of expressions containing roots) is
raduormal, which must be read from the Iibrary before it can be used:

> readlib(radnormal);

proc(expr,optsl) ... eud

> sqrt(sqrt(2)+I*(-sqrt(3)-sqrt(6)));

J V2 + I (- v'3 - -/6)

> radnormal(%);
1 1 l+-V2--Iv'3V2
2 2

In some special cases, a root of a complex uumber cannot be simplified in this
way, but can be simplified by conversion to polar and back, where Maple can use
trigonometric tricks. For example, let's simplify Jl + A. First, we manipu­
latel +A:

> 1+sqrt(-5);

> convert(% , polar);

polar (-/6, arctan (v'5))
Now take the square root of it and apply evalc:

> sqrt(%);

polar (-/6, arctan (v'5))

12.6 An example: substituting expressions with radicals in polynomials 153

> evalc(%);

Sometimes, it is necessary to combine both methods, starting with the last one and
applying radnormal and/or rationalize afterward.

The procedure radnormal can also be used with other roots than the square root.
Here is an example:

> (a*(sqrt(2)-1)-3);

> expand(%);

5aV2-7a

> root [3] (%) ;

5aV2-7a ()
(1/3)

Before radnormal can come into action, the factor a must be isolated. For this
purpose, we use simplify (, power) twice:

> simplify(%,power);

(a (5 V2 _ 7)) (1/3)

> simplify(%,power);

5 V2 - 7 a(1/3) ()
(1/3)

Now radnormal can do its job:

> radnormal(%);

12.6 An example: substituting expressions with radicals in
polynomials

Expressions containing radicals and complex numbers often originate from solving
polynomial equations. For instance,

154 12. Manipulating and converting numbers

> equa := 2*x~3 - 3*x~2 - 12*x + 5 = O;

equa := 2 x 3 - 3 x 2 - 12 x + 5 = O

> solutions := solve(equa , x);

solutions :=

1 () (1/3) 9 1 1
2 3+ 121J5 + 2 (1/3) + 2'

(3+ 121 vis)

- - 3 + 121 J5 - - + - + 1 () (1/3) 9 1 1

4 4 (3 + 121 vis) (1/3) 2

1 (1 () (1/3) 9 1) 21 v'3 2 3 + 121 J5 - 2 (1/3) ,
(3+ 121 vis)

- - 3 + 121 J5 - - + - -1 () (1/3) 9 1 1
4 4 (3 + 121 vis) (1/3) 2

1 (1 () (1/3) 9 1) 21 v'3 2 3 + 121 J5 - 2 (1/3)
(3+ 121 vis)

Maple is fully reliable in solving such a polynomial equation, but we will check
one of the solutions as a demonstration of more complicated manipulations with
radicals. Let's substitute the first solution:

> subs(x=solutions[1J , equa);

()

3

1 (1/3) 9 1 1
2 2 (3 + 121 J5) + 2 (1/3) + 2

(3+ 121 vis)

)

2
1 (1/3) 9 1 1

3 (2 (3 + 121 J5) + 2 (1/3) + 2
(3 + 121 vis)

()
(1/3) 1

6 3 + 121 J5 - 54 (1/3) - 1 =
(3 + 121 vis)

O

The first step in simplifying this is the same as you probably would do in a cal­
culation by hand: the powers and multiplications must be elaborated; this can be
achieved with the procedure expand. Do not start with simplify.

> expand(%);
3 729 1

--+31J5+- =0
4 4 3 + 121 vis

The last expression can be handled weB by normal, by evalc, or by simplify.

12.8 Rounding rational numbers to integers 155

Of these three, the most powerful tool for simplifying natural powers of radical
expressions is the procedure simplify without options. In many other cases, the
other two are to be preferred. See Chapter 15, Manipulating algebraic expressions.

> simplify(%);

0=0

The other two solutions can be checked in the same way.

More about solving polynomial equations can be found in Chapter 14, Polynomial
equations andfactoring polynomials. In section E.6 on page 305, you can find how
you can check aII the candidate solutions at once.

12.7 Converting ftoating-point numbers to rational numbers

When an expres sion to be processed contains floating-point numbers, but nu­
merical algorithms should not be used, these numbers must be converted to
rational numbers first by convert(,rational) or convert(, rational,
exact).

> 0.3333333333333333*x - 0.34567;

.3333333333333333 x - .34567

> convert(% , rational, exact);
3333333333333333 34567
10000000000000000 x - 100000

If the second option exact is omitted, Maple yields rational numbers that approx­
imate the given floating-point numbers, where the accuracy of these approxima­
tions is controlled by the value of Digits, which is 10 initially.

> convert(%% , rational);
1 14206
"3 x - 41097

This procedure can be applied on polynomials as weIl in order to convert floating­
point coefficients.

12.8 Rounding rational numbers to integers

Real numbers can be rounded to an integer by several procedures: trunc, round,
floor, and ceil. The procedure round tries to yield the nearest integer:

> round(sqrt(5)), round(sqrt(S)), round(-sqrt(S));

2,3, -3

The procedure trunc yields the first integer that is encountered in the direction of
zero:

156 12. Manipulating and converting numbers

> trunc(sqrt(8», trunc(-sqrt(8»;

2, - 2

The procedures f100r and ceil do what their names suggest:

> floor(sqrt(8», floor(-sqrt(8»;

2, -3

> ceil(sqrt(8», ceil(-sqrt(8»;

3, -2

Moreover a fractional part can be calculated by frac:

> frac(37/8) , frac(sqrt(8»;
5
- 2\1'2-2
8'

where frac (x) + trunc (x) = x.

chapter 13

Polynomials and rational expressions

This chapter deals with elementary aspects of handling polynomials: the use of
arithmetic operations, extracting a coefficient, calculating greatest common divi­
sors and resultants, etc., and also with handling rational expressions.

13.1 Polynomials and the standard arithmetic operators

For calculations with polynomials and quotients of polynomials, the arithmetic
operators +, -, *, / ,and A can be used. Generally, multiplications and exponen­
tiations of polynomials, consisting of more than one term, are not worked out au­
tomatically. For instance,

> (z-1)/2*z + (y+a)-2;
1 2 2" (z - 1) z + (y + a)

Maple leaves the choice to the user: you can keep such an expression as it is or
manipulate it into some other form. Here you can ask to expand the products and
powers over the sums with the procedure expand:

> expand(%);
1 1
- Z2 __ z + y2 + 2 y a + a2
2 2

When using expand on expressions containing radicals and/or function calls, be­
ware of possibly unwanted side effects. See section 15.6 on page 196 and section
15.7 on page 198 for restrictions in the use of expand for such cases and the meth­
ods to be used in such a case.

If one or more fac tors of a product should not be expanded over the other fac tors,
the fac tors to be kept intact must be given as extra arguments:

> 10*(a-b)*(c+1)*(x+1)-2;

10 (a - b) (c + 1) (x + 1)2

> expand(% , a-b , c+1);

10 (a - b) (c + 1) x2 + 20 (a - b) (c + 1) x + 10 (a - b) (c + 1)

The opposite procedure of expand for polynomials is factor, Maple's powerful
procedure for factorization, which is discussed in section 14.6 on page 177, to­
gether with its variants.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

158 13. Polynomials and rational expressions

Automatic simplification of products and quotients of polynomials is restricted to
some simple cases; in alI other cases the user is in command:

> x~3 * 2*x~4 / x~5 + 8*(x-1);

2x2 + 8x - 8

Maple can handle very large polynomials with up to 65,535 terms, but if it finds
too many terms in a polynomial, possibly as an intermediate result in a calculation,
it gives a message that the object is too large, for instance here, where we try to
calculate the product of two polynomials, each containing 256 terms:

> expand(sum('x.i',i=1 .. 256)*sum('y.i',i=1 .. 256)):
Error, object too large

13.2 Division of polynomials with a remainder

Division with a remainder is supplied by quo, to be compared with iquo for inte­
gers. Let's divide 3x5 by x 2 - a as polynomials in x:

> quo(3*x~5 , x~2-a , x);

3xa + 3x3

The remainder can be found by appending a name as a fourth argument:

> quo(3*x~5 , x~2-a , x , 'r1');

3xa + 3x3

> r1;

In the first command the forward quotes around r1 are superfluous as r1 is not
assigned to previously, but generally it is wise to use these forward quotes for an
argument that is assigned to by the procedure quo, in order to make sure that this
argument cannot be evaluated before it is used by the procedure. This is explained
for iquo in section 5.4 on page 67.

As a demonstration, we calculate the original polynomial from both results:

> expand(%%*(x~2-a)+r1);

There is another procedure rem that calculates the remainder of the division and
assigns the quotient to an optional fourth argument.

13.3 The greatest common divisor and the least common multiple 159

. 13.3 The greatest common divisor and the least common multiple

The greatest common divisor of two polynomials can be calculated with gcd or
gcdex. We apply these to the polynomials pl and p2 created here by expand, so
that you can predict the result immediately:

> pl := expand((x-3) * (x-a) * (x~3+l));

p1 := x 5 + x 2 - x 4 a - x a - 3 x 4 - 3 x + 3 x 3 a + 3 a

> p2 := expand((x-3)~2 * (2*x-3*a));

p2 := 2 x3 - 3 x 2 a - 12 x 2 + 18 x a + 18 x - 27 a

> gcd(pl , p2);

x-3

Here no specification that pl and p2 are to be perceived as polynomials in x is
expected; gcd can be applied to polynomials in more than one variable. In fact,
Maple perceives p2 as a polynomial in a and x, not being brainwashed about some
special quality of the character x.

You might be tempted to teU Maple that the arguments to gcd are polynomials in
x, but supplying x as a third argument generates an error:

> gCd(pl,p2,x);
Error. The optional 3rd argument given to 'gcd' was x
This argument to 'gcd' is for returning the cofactor.
It is not for specifying the variable in which to compute the GCD.
If assigned. it could create a recursive definition of a name.

In fact, Maple has no need for the knowledge that you see pl and p2 as polynomi­
als in x. If gcd gets a third and a fourth argument, it tries to assign the cofactors
p1/gcd(pl,p2) and p2/gcd(pl,p2) to them.
If Maple would have assigned the cofactor pl/ gcd (pl, p2) to x, this would gen­
erate a recursive referrence; see section 3.10 on page 41. However, Maple sees
that x is a variable occurring in pl and p2 and prevents the assignment (not before
release V.4).

In many applications of the greatest common divisor, its main theorem can be used:
if Pl and P2 are polynomials and if dis the gcd of these two polynomials, there exist
polynomials ql and q2 such that qlPl + q2P2 = d. These polynomials ql and q2
can be calculated with gcdex. Contrary to gcd, gcdex wants to know in which of
the variables the gcd is to be calculated; in this case, we must give x as the third
argument to gcdex. The fourth and fifth arguments must be names to which the
calculated polynomials q 1 and q2 are to be assigned:

> gcdex(pl, p2, x, 'ql', 'q2')j

x-3

160

> ql;

~ (224 + 36a + 18a2 + ga3) x
14 a(8a - 24 - 81a3 + 27a4)

13. Polynomials and rational expressions

1 1344+27a4 +54a3 +108a2 +224a
28 a(8a-24-81a3 +27a4)

As ademonstration, we check thatgcd(p1,p2) = q1p1 + q2p2:

> normale expand(ql * pl + q2 * p2));

x-3

The use of expand and normal for the above type of simplification is discussed
in section 13.8 on page 166.

The procedure lem computes the least common multiple of its arguments, where
these can be any number.

13.4 The resultant oftwo polynomials

The resultant of the two polynomials pl and p2 from the previous section is zero,
as their gcd is not 1. It can be calculated with resultant:

> resultant(pl , p2 , x);

o
Here is one more example.

> resultant(pl+l , p2 , x);

-81 a5 + 162a4 - 24a2 + 48a - 32

The bezout matrix can be created with the procedure linalg [bezout] , the dis­
eriminant with discrim.

Another important concept in calculations with polynomials is the Grobner basis
together with the Buchberger algorithm for calculating such a basis. This can be
very helpful, especially in solving systems of polynomial equations. This subject
is discussed in section 14.9 on page 180.

13.5 The coefficients of a polynomial 161

13.5 The coefficients of a polynomial

You can ask Maple to describe a polynomial in several variables as a polynomial
in one of these variables with the aid of
collect:

> ,pol := a~2*x~2*y+y~2*a-2*b*x*y-b~2*x~2*y+b*x*y~2+
> c*y~2+3*x*y~2-6*x*y;

pol := a2 x2 y + y2 a - 2 b x y - b2 x 2 y + b x y2 + c y2 + 3 x y2 - 6 x y

This is made into a polynomial in x with:

> collect(% , x);

(a2 y _ b2 y) x2 + (b y2 - 2 b y - 6 y + 3 y2) X + y2 a + c y2

It is also possible to have Maple perceive an expression as a polynomial in two or
more given variables:

> collect(pol, [x,y] , distributed);

(a2 - b2) y x 2 + (3 + b) x y2 + (-2 b - 6) x y + (a + c) y2

Without the option distributed, the result is a polynomial in x where the coef­
ficients are polynomials in y:

> collect(pol, [x,y]);

(a2 - b2) y x 2 + ((3 + b) y2 + (-2 b - 6) y)x + (a + c) y2

A nice facility within collect is the ability to process the coefficients of the result
with a procedure or function given as an extra argument, without forward quotes:

> collect(pol, x , factor);

y (a - b) (a + b) x2 + y (y - 2) (3 + b) x + (a + c) y2

Coefficients of a polynomial can be selected with the procedure coeff. For in­
stance, the coefficient of x2 in the previous polynomial can be achieved by

> coeff(pol, x , 2);

The degree of a polynomial can be ca1culated with degree:

> degree(pol, x);

2

> degree(pol, [x,y]);

3

162 13. Polynomials and rational expressions

It is essential for this procedure that the polynomial be given in either collected or
expanded form. Otherwise, Maple does not accept it, or it might yield incorrect
resuIts:

> (x-3)~2 - x~2;

> degree(% , x);

2

The correct degree is found if the polynomial is expanded before degree comes
into action:

> degree(expand(%%) , x);

1

The same is true for some other procedures, for example tcoeff, which tries to
compute the coefficient of the lowest-degree monomial:

> (x-3)~2-9;

(x - 3)2 - 9

> tcoeff(%);

o

> tcoeff(expand(%%));

-6

The procedures lcoeff, tcoeff,
degree, ldegree, content, and norm

must only be applied to polynomials in expanded or collected form.

In releases before V.5 the same is true for the procedure coeff.

• Icoeff: yields the coefficient of the monomial corresponding to the degree of
the polynomial

• ldegree: yields the lowest degree

• tcoeff: yields the trailing coefficient: the coefficient of the monomial corre­
sponding to the lowest degree of the polynomial

• content: yields the greatest common divisor of the coefficients of a polyno­
mial in one or more variables

13.6 Truncating a polynomial above some degree 163

• norm: the n-nonn of the coefticients of an expanded polynomial p in x can
be caIculated with norm (p , n, x)

13.6 Truncating a polynomial above some degree

Here are three ways for truncating a polynomial above some degree. Consider the
following polynomial

> pol := sume 2-(-i)*t-i , i=O .. 18);

1121314151617
pol := 1 + 2" t+ 4 t + 8" t + 16 t + 32 t + 64 t + 128 t +

1 8 1 9 1 10 1 11 1 12
256 t + 512 t + 1024 t + 2048 t + 4096 t +

1 13 1 14 1 15 1 16
8192 t + 16384 t + 32768 t + 65536 t +

1 17 1 18
131072 t + 262144 t

This can be truncated above degree 7 as follows. First, apply series to the order
8:

> series(pol, t , 8);
111111 1

1 + -t + _t2 + _t3 + _t4 + _t5 + _t6 + -e + O(t8)
2 4 8 16 32 64 128

Then convert the resuIt into a polynomial:

> convert(%,polynom);

1121314151617 l+-t+-t +-t +-t +-t +-t +-t
2 4 8 16 32 64 128

It is also possible to realize the same result with the aid of simplifying according
to side relations (see section 11.11 on page 147) as follows:

> simplify(pol, {t-8=O});

1121314151617
1 + 2" t + 4 t + 8" t + 16 t + 32 t + 64 t + 128 t

As an alternative, you can apply select. See section 10.6 on page 131. The sec­
ond argument is the polynomial that should be truncated, the tirst argument is a
procedure that tests each tenn for whether its degree is lower than 8. This yields
the same result:

> selecte polyterm->degree(polyterm,t)<8 , pol);

1 + ~ t + ~ t2 + ~ t3 + ~ t4 + ~ t5 + ~ t6 + _1_ t7
2 4 8 16 32 64 128

164 13. Polynomials and rational expressions

13.7 Sorting a polynomial

When the order is not essential in mathematical sense, results are often printed in
an order based on the order in which subexpressions are stored in the computer
memory. This is also the case with polynomials. For instance,

> pol := a~5*x*y+y~2*a-b~2*x~2*y+b*x*y~2-y*x~2+
> x~2*y~2-y~2*c+3*x*y~2;

pol : = a5 x y + y2 a - b2 x2 y + b x y2 - Y x 2 + x 2 y2 - y2 C + 3 x y2

The product is printed as y2 a, in a different order than it has been entered. Maple
takes the printing order according to the order in which expressions are stored in
the computer memory, and obviously y2 precedes a in the present session. In the
same way, we can see that the expression y2 a is the second of the components of
pol in the computer memory order.

Readability of a polynomial can be improved sometimes by changing the order of
factors and terms. This is possible with the procedure sort. Let's sort pol as a
polynomial in x and y:

> sort(pol, [x,y]);

x 2 y2 _ x 2 Y _ b2 x 2 y + b x y2 + 3 x y2 + a5 x y + a y2 - C y2

Or you can apply collect first:

> collect(pol, [x,y] , distributed);

a5 xy + (3 + b)xy2 + x 2 y2 + (_b2 -1) x 2 y + (a - C)y2

> sort(% , [x,y]);

x 2 y2 + (_ b2 _ 1) x 2 y + (3 + b) x y2 + a5 x y + (a - c) y2

The procedure sort changes the order of subexpressions in the memory. There­
fore, pol is printed differently from the way it was printed before sort was ap­
plied:

> pol;

x 2 y2 _ x 2 Y _ b2 x 2 y + b x y2 + 3 x y2 + a5 x y + a y2 - C y2

By applying sort on pol, we have ordered its subexpressions in the memory as
well:

> y~2*a;

13.8 Simplifying rational expressions 165

But the execution of sort (pol, [x, y]) does not enforce a standard order for alI
polynomials in x and y. For instance,

> y~10*a*x~20 + b*y*x~30j

ylO a x 20 + b Y x30

13.8 Simplifying rational expressions

Rational numbers are simplified automatically by calculating the greatest common
divisor of numerator and denominator and dividing this out. That is not the case
with rational expressions: only fac tors that are "seen" by Maple directly are di­
vided out automatically:

> expand(x*(x-a)~2)j expand(x*(x-a)*(x+a))j

> %%/%j

x3 - 2 x 2 a + x a2

x 3 - 2 x2 a + x a2

x 3 - xa2

The procedure normal divides out the greatest common divisor. Clearly, this pro­
ce dure does not bother about the possibility that such a factor might be zero for
some set of values for the variables: that is the mathematical responsibility of the
user.
It is not a good idea to use simplify for such a job as, generalIy, this procedure tries
to do more, perhaps unwanted, simplifications, and takes more time:

> normal(%) j

-x+a
x+a

The same result could have been found with the procedure factor, but factoriza­
tion is much more complicated and time-consuming than calculating the greatest
common divisor of two polynomials.

The procedure normal can also convert a sum of quotients into one quotient:

> 1/(x~2-3*x) - x + 1/(x~2-9)j

> normale %)

1 1
----::----x+-­
x 2 - 3x x 2 - 9

x 4 - 9 x2 - 2 x - 3

(x2 -9)x

166 13. Polynomials and rational expressions

Here the denominator is a product of polynomials. If you don 't want this, caB nor­
mal with a second argument expanded:

> normale %% , expanded) j

- x4 + 9 x2 + 2 x + 3
x3 -9x

The counterpart of normal is expand in this case. It is easy to see what expand
does with a quotient by looking at the Maple structure of such a quotient:

> (x~2-b*x*y+c*y~2)/(a-c)j

> op(%)j

x 2 - bxy + cy2
a-c

Maple perceives the previous expression as the product of two factors: the numer­
ator and (a - c) -1. So expand yields the sum of the products of (a - c) -1 with
the terms of the first component:

> expand(%%)j

x2 bxy cy2
-----+-­
a-c a-c a-c

In the next example we expand the coefficient -5/8 ofthe quotient over the terms
of the numerator with combine:

> -5*(x+y)/(8*(x-2)*(y-l))j combine(%)j
5 x+y
8 (x - 2) (y - 1)

-l x -l y

(y - 1) (x - 2)

13.9 Numerator and denominator

In the previous section, the procedure op has been used in finding the subexpres­
sions of a quotient. This way of breaking down a quotient is not always efficient.
Closer to the usual way of looking at quotients are the procedures numer and de­
nom:

> 5*(x+y)/(8*(x-2)*(y-l))j
5 x+y
8 (x - 2)(y - 1)

> numere %)j

13.11 Reliability 167

5x +5y

> denom(%%);

8 (x - 2) (y - 1)

You can use these two procedures when you want to manipulate the denominator
or the numerator separately. For example:

> (x~3 - 4*x~2 + 7*x -12)/(x~2 + 7*x + 10);

x3 - 4 x2 + 7 x - 12

x 2 + 7x + 10

> numer(%) / factor(denom(%));

13.10 More tools

Maple supplies

x3 - 4x2 + 7 x - 12
(x + 5) (x + 2)

• conversion of a rational expression to a truncated continued fraction by the
procedure convert (, confrac , x) , useful for numeric al calculations;

• partial fraction decomposition by convert (, parfrac, x) and
convert (, fullparfrac, x); see also section 9.2 on page 119.

• calculation of an interpol ating polynomial function, the graph of which
contains a given sequence of points, with interp.

13.11 Reliability

Apart from the fact that sometimes the user must expand or collect a polynomial
before it can be manipulated, as shown in section 13.5 on page 162, in principle
there are no reliability problems in calculations on polynomials and quotients of
rational functions in Maple.

chapter 14

Polynomial equations and
factoring polynomials

Solving polynomial equations and systems of polynomial equations is a classical
type of problem. lts study received new impetus from the fact that computers can
now handle laborious algorithms, usingfactorization, resultants, and the more re­
cent Buchberger algorithm for calculating Grobner bases. Maple is in the front
line of using these developments. This chapter discusses Maple's powerful tools
in this field, as well as the related subject of symbolic roots of polynomials.

When solving equations with parameters, remember that these parameters are in­
terpreted as abstract items; solutions are to be interpreted as "general solutions".
lf special values for these parameters are substituted, the solution might be no
longer valid for this case; see for an example section 1.3 on page 6.

14.1 Solving polynomial equations symbolically

Maple uses several tricks for solving polynomial equations. Obviously, it knows
the standard algorithms for tirst-, second-, third-, and fourth-degree polynomials.
No general algorithms for degrees higher than four can be constructed, yet solve
can often tind a solution of a polynomial equation of higher degree. Here is an
example:

> x~5+x~4+1=O;

> solve(% , x);

1 1 1 1 1 1 --+-1 '3 ----IV3 -- %1{1/3)-2-::-:-"""777=
2 2 V.J, 2 2 '6 %1(1/3)'

1 (1/3) 1
12 %1 + %1(1/3) +

1 t;:; (1 (J-f (1/3) 1) "2 Iv3 -6 101 +2 %1(1/3) ,

1 (1/3) 1
12 %1 + %1(1/3)

1 t;:; (1 (1/3) 1) "2 Iv3 -6 %1 +2 %1(1/3)

%1 := 108 + 12 v'69

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

14.1 Solving polynomial equations symbolically 169

We obtain five solutions, expressed with the aid of the abbreviation % 1. The pro­
cedure sol ve handles this equation with the aid of factorization of x5 + x4 + 1
over the rational numbers.

> factor(x~5+x~4+1);

(x2 + x + l) (x3 - x + l)

Another trick is decornposition of polynornials, available by the procedure corn·
poly. When Maple solves the equation,

x6 + 2x4 + 2x3 + x 2 + 2x + 2 = O
it does so by creating a decomposition of the left-hand side: it finds that the left­
hand side can be described as 1 + t2 , where t = 1 + x + x3 •

In spite of alI the tricks of Maple, it is inevitable that solving fails for most high­
degree polynomials. If Maple cannot find an explicit sequence of alI exact solu­
tions, a symbolic representation of the intennediate result emerges, using a special
Maple construction, RootOf expressions.

> x~7+11*x~6+12*x~5+10*x~3-11*x~2-41*x~4-13*x+33;

x7 + llx6 + l2x5 + lOx3 -l1x2 - 4lx4 -l3x + 33

> solve(% , x);

-4 + 3 v'3, -4 - 3 v'3, RootOfLZ5 + 3_Z4 - _Z3 - _Z - 3)

First, sol ve factors the given polynomial into a product of polynomials with ra­
tional coefficients. Then each factor is dealt with by sol ve. As there are no gen­
eral algorithms for solving a fifth-degree polynomial equation and Maple's special
tricks are not successful here, Maple yields

RootOf(_Z~5 + 3*_Z~4 - _Z~3 - _Z - 3)
as a part of the solution. This is a symbolic representation of the set of five roots
of the equation

In order to avoid the complicated results of solving irreducible fourth-degree equa­
tions, these solutions are represented with RootOf expressions as weB, unless the
variable ..EnvExplicit is set to the value true.

If sol ve handles a polynomial equation, it renders each solution as many times as
its multiplicity.

The results of solving polynomial equations found with sol ve are reliable. (In
releases before V.4, there is an exception: if an equation contains floating-point
numbers, the set of solutions may be incomplete.)

170 14. Polynomial equations and factoring polynomials

Maple offers the procedures sturmseq and sturm based on the Sturm theorem,
conceming real roots, and the procedure realroots for calculating isolating in­
tervals of real roots.

14.2 Solving modest systems of polynomial equations

Here is an example: calculating the intersection points of two circles.

> circlel := x~2 + y~2 = 2*x + 8*y + 25;

circlel := x 2 + y2 = 2x + 8y + 25

> circle2 := x~2 + y~2 = 6*x - 4*y + 40;

circle2 := x2 + y2 = 6 x - 4 y + 40

Let's draw graphs in order to "see" the solutions beforehand:

> plots[implicitplot] (circlel,x=-7 .. 12,y=-10 .. 12):
> plots[implicitplot](circle2,x=-7 .. 12,y=-10 .. 12):
> plots[display]({%,%%}, scaling=CONSTRAINED);

2

A system of equations to be solved should be entered tied together in a set; the
variables must be entered as a set, too.

> solve({circlel,circle2} , {x,y});

14.2 Solving modest systems of polynomial equations 171

{Y = ~ RootOf(-55 + 1O_Z2 -146_Z) ,

3 15 } x = 4 RootOf(-55 + 1O_Z2 -146_Z) -"4

Here the solution is given as a set of two equations with the aid of a RootOf expres­
sion. The use of RootOf is a compact and well-ordered way of representing the
solution; Maple has no difficu1ty in finding a more explicit solution, but leaves the
choice to the user. We can substitute al1 possible values for this RootOf expression
with allvalues.

> allvalues(%);

{ 73 1 69 3 }
Y = 40 + 40 v'5879, x = 40 + 40 v'5879 ,

{ 73 1 69 3 }
Y = 40 - 40 v'5879, x = 40 - 40 v'5879

We see a sequence of two sets, each representing a solution. General1y, the pro­
cedure aH values substitutes the same value in each occurrence of that RootOf
expres sion, so it generates two values here. This behavior of aH values (from
release V.4) yields al1 solutions, if the equal RootOf expressions are dependent,
which can be the case mostly. However, it is possible that two equal RootOf ex­
pressions must be handled independently from each other. Obviously, this is the
case when a system can be split into two subsystems, for instance. Here is an ob­
vious example:

> {x~2-3*x=20,y~2-3*y=20};

{ x 2 - 3 x = 20, y2 - 3 y = 20 }

> eqs:=%: solve(eqs,{x,y});

{ x = RootOfCZ2 - 3_Z - 20) , y = RootOfCZ2 - 3_Z - 20) }

> aHvalues(%);

{ x = ~ + ~ v'89, y = ~ + ~ v'89 } ,

{ y=~-~v'89 x=~-~v'89} 22' 2 2

We obtain only two of the four solutions. In this case, we would have to add the op­
tion independent. In more complicated cases, for instance with nested RootOf
expressions, alI val ues may handle equal RootOf expressions independently. In
such cases, checking solutions is a must.
(For earlier releases than V.4, independent treatment ofRootOfs is the default and
the other behavior can be ordered by the option 'd'.)

> allvalues(%%,independent);

172 14. Polynomial equations and factoring polynomials

{x = %2, y = %2}, {y = %1, x = %2},
{x= %l,y= %2},{y= %l,x= %1}

3 1
%1 := 2 - 2 v'89

3 1
%2 := - + - v'89

2 2

If you are not sure that all values generates alI values, use the option indepen­
dent and check each item. Checking is never a bad habit! In the present case you
can check each value as folIows:

> sols:=%:
> subs(sols[l],eqs);

{ (~+ ~ v'89 r -~ -~ v'89 = 20 }

> expand(%);

{20 = 20}

and so ono The section E.6 on page 305 shows an example where the work is done
with more comfort by appIying a Ioop.

It is wise to check solutions anyhow: solving systems of equations is a com­
plicated process and allvalues might have neglected the equivalence of two
RootOf expressions.

If sol ve handIes a set of polynomial equations, it renders each solution as many
times as its multiplicity (from release V.4).

Often the mistake of entering in sol ve fewer variables than necessary is made.
Suppose you are interested only in the possible values of X. Then you might be
tempted to enter:

> solve({circlel,circle2} , x);
This does not yield a solution, because the system of equations is satisfied for no
values of x unless y has a matching value.

For solving systems of linear equations, the specific facilities described in section
18.10 on page 257, are useful.

For stepwise elimination, use eliminate. For instance:

> eliminate({circlel,circle2} , x);
A contrary procedure is algcurves [parameterization] , which can calculate
a parameterization for a two-dimensional curve, implicitly defined by an irre­
ducible polynomial in two variables, if the genus of this curve is O (check irre­
ducibility with AFactor and genus with algcurves [genus]).

14.3 Finding or approximating the elements represented by a RootOf expression 173

14.3 Finding or approximating the elements represented by a
RootOf expres sion

In the previous sections you can see that Maple of ten uses a symbolic Rootaf rep­
resentation of the solutions of a polynomial equation instead of the actual sequence
of solutions. Such a Rootaf expression can be created explicitly by the procedure
RootOf.

> 5*x-2 = 30*x + 10

5x2 = 30x + 10

> Rl .- Rootaf(% , x);

R1 := RootOfCZ2 - 6_Z - 2)

The default variable for Rootaf is _Z, so, in the last result, Maple omits the second
argument of Rootaf. Moreover, "= O" is omitted and only the left-hand side of
the equation is given.

Here Maple can find the roots in an explicit form. You can ask for them with the
procedure a1lvalues, described in the previous section, possibly with the option
independent for handling equal Rootaf expressions within an expression or a
lisUset of expressions separately.

> allvalues(Rl);

3 + /il, 3 - /il

IfMaple cannot find the sequence of explicit roots exactly, approximations are cal­
culated.

> Rootaf(x-6 + 6*x-5 + 2);

RootOfCZ6 + 6_Z5 + 2)

> allvalues(%);
-5.999742743, - .8269055711, - .2289757797 -.7744287008 I,

- .2289757797 +.7744287008 I, .6422999369- .4534117425 I,

.6422999369 + .4534117425 I

The procedure evalf can be applied directly to a Rootaf expression, but this pro­
duces an approximation of only one of the implied roots.

> evalf(Rl);

-.3166247904

174 14. Polynomial equations and factoring polynomials

Do not apply evalf to an expression
containing a RootOf subexpression

unless you are content with an approximation of
only one of its values.

You can get a list of approximations in the following way: apply al! values, then
apply evalf to the list of the results. For instance,

> evalf([allvalues(Rl)]);

[6.316624790, -.316624790]

14.4 Calculating with RootOf expressions

Maple can handle RootOf expressions in algebraic calculations.

> eq:= x-5-t*x-2+p=O;

eq := x 5 - t x 2 + p = O

> RootOf(% , x);

RootOf{_Z5 - t_Z2 + p)

RootOfCZ5 - t _Z2 + p) 7

> simplify(%,RootOf);

RootOfCZ5 - t_Z2 + p)4 t _ RootOfCZ5 _ t_Z2 + p)2 p

Instead of simplify (, RootOf) we could have used evala, discussed in sec­
tion 14.10 on page 183. A different approach can be found in section 11.11 on page
147.

In order to obtain more compact results in such calculations, we can abbreviate this
RootOf expression with an alias. See section B.I on page 285.

> alias(RO = RootOf(eq,x));

1, RO

The result of an alias command is a sequence of all aliases known to Maple at
that moment.

14.5 RootOf expressions versus radica1s 175

From now on, Maple prints RO instead of RootOf(_Z5 - LZ2 +p) and recognizes
RO in the input. You should remember its definition, as it is not possible to find the
internal interpretation of such an alias easily.

Now we can use RO in calculations such as:

> simplify(RO~7);

14.5 RootOf expressions versus radicals

A radical can be converted to a RootOf expression by convert(,RootOf):

> 5~(1/3); convert(%,RootOf);

5(1/3)

> a~2 - 2~(1/3)*b~(1/6); convert(%,RootOf);

a2 _ 2(1/3) b(1/6)

Sometimes it helps Maple if the user applies this conversion. For instance, see
section 4.8 on page 51, and section 14.10 on page 183.

Maple prefers ca1culating with RootOf expressions
above using radicals.

Conversion the other way is available with convert(,radical):

> convert(%,radical);

a2 _ 2(1/3) b(1/6)

Observe the difference with allvalues: a RootOf expression is essentially a mul­
tivalued expression; all values can be achieved with alI values, while convert
(,radical) picks up only one, so you might Iose solutions.

Of ten, RootOf expressions cannot be converted to radicals.

176 14. Polynomial equations and factoring polynomials

> RootOf(x-7+x+2,x); convert(%,radical);

RootOfLZ7 + _Z + 2)

RootOfLZ7 + _Z + 2)

14.6 Factoring with the procedure factor

Maple has a fast and powerful factorization facility, used frequently in various al­
gorithms. It is called with the procedure factor.

> (8*x-5-6*x-4-78*x-3+72*x-2+190*x-210)/(x-2-49);

8x5 - 6x4 - 78x3 + 72x2 + 190x - 210

> factor(%);

x 2 - 49

2 -'-.(4_x_-_7 __)....:...(x_2 _-_5,:-):....(x_2 -:-+_x_-_3-,-)
(x - 7) (x + 7)

The resulting factors are irreducible over Q, that is, each ofthem cannot be factored
into a true product of polynomials of degrees > 1 with coefficients in Q. We can
factor x2 - 5 into (x - v'5)(x+ v'5) and x 2 + x - 3 into (x + 1/2 + 1/2V13) (x +
1/2 - 1/2V13), but both cannot be factored over Q, so the procedure factor
leaves these polynomials unfactored.

Here is another example, where factor is surprisingly successful:

> (a-2 - sqrt(5))-3;

> expand(%); factor(%);

a6 - 3 a4 J5 + 15 a2 - 5 J5

As you can see, factor can use v'5 here. This is because it occurs in the given
argument. But factor does not introduce 51 / 4 . However, in section 14.10 on page
183 you wiIl see that we can tell factor to use roots ofpolynomial equations.

The procedure factor can handle polynomials in more than one variable equally
well, and does so quickly.

> 192*c-6*u-4*t-4 + 64*c-4*u-2*t-2 + 168*c-5*u-6*t-2 +
> 56*c-3*u-4 - 120*c-5*u-5*t-3 - 40*c-3*u-3*t -
> 480*c-4*t-7*u-2 - 160*c-2*t-5 - 420*c-3*t-5*u-4 -

14.7 More tools for factoring

> 140*c*t~3*u~2 + 588*c~3*t~6*u~3 + 196*c*t~4*u -
> 768*u~6*t~4*c~3 - 256*u~4*t~2*c - 672*u~8*t~2*c~2 -
> 224*u~6 + 480*u~7*t~3*c~2 + 160*u~5*t +
> 252*t~4*u~5*c~2 + 84*t~2*u~3 - 180*t~5*u~4*c~2

> - 60*t~3*u~2:

> factor(%);

-4 (8e c + 7u2 - 5ut) (3u2 e c2 + 1)
(5ct3 - 3t2 U - 2u2 c3 + 8u4)

Again the resuIting fac tors are irreducible over Q.

177

There exists another procedure, factors, that is almost the same as factor, but
yields the factors in an alternative form.

14.7 More tools for factoring

If necessary, Maple can try to factor a polynomial in one variable into a product of
linear fac tors with the procedure spUt, which must be loaded first with readlib.
Let's apply this to the denominator of the first example of the previous section:

> 8*x~5-6*x~4-78*x~3+72*x~2+190*x-210;

8x5 - 6x4 - 78x3 + 72x2 + 190x - 210

> readlib(split) (% , x);

8 (x + RoOtOfCZ2 - 5)) (x - RootOfCZ2 + _Z - 3))

(x + 1 + RootOfCZ2 + _Z - 3))
7

(x - 4) (x - RootOfCZ2 - 5))

As you can see, we obtain five linear fac tors instead of the three factors found with
factor. However, this procedure spli t is very time-consuming and can only be
applied to expressions perceived as polynomials in one variable. As in many other
procedures, spli t can work much more efficient1y with RootOf expressions than
radicals, so it may be necessary to apply convert (,RootOf) before this pro­
cedure is caUed.

You might wonder about the factor x + 1 + RootOf <-Z2 + _Z - 3) in the re­
suIt, but keep in mind that aU the occurrences ofRootOf <-Z2 + _Z - 3) should
be interpreted equaUy; in this case, if Xl is one of the roots of x 2 + x - 3, then the
otherequals -1 - Xl, so we get x 2 + x - 3 = (x + 1 + xt}(x - xt}.

If you don't like reading expressions containing RootOfs, try converting to radi­
caIs with convert(,radical):

178 14. Polynomial equations and factoring polynomials

> convert(% , radical);

8 (x + v'5) (x + ~ - ~ v'13) (x + ~ + ~ v'13) (x - ~) (x - v'5)
(In releases before V.4, convert (,radical) could not do this job; then you
could use all values, but you would see the desired result four times.)

The procedure spli t can handle only polynomials in one variable, but it can use
indetinite coefticients:

> x-2 - 2*y-4 - 4*y-2 - 2;

x2 _ 2 y4 _ 4 y2 - 2

> split(% , x);

(x + RootOfCZ2 - 2 y4 - 4 y2 - 2))
(x - RootOfCZ2 - 2 y4 - 4 y2 - 2))

Moreover, squarefree factorization is available with the very fast procedure
convert (,sqrfree) and the procedure sqrfree. In fact, this is used by
factor for its initial rough work.

14.8 Solving with numeric al tools

If you apply fsolve to a polynomial equation, generally you will tind all real roots
in numerical approximation:

> expand((x-2-2*x-5)*(x-2-2*x+5));

x4 - 4 x3 + 4 x2 - 25

> fsolve(%=0 , x);

-1.449489743, 3.449489743

If you want all complex roots, add the option complex:

> fsolve(%%=0 , x , complex);

-1.449489743, 1. - 2.1, 1. + 2.1,3.449489743

The roots are rendered according to their multiplicity:

> fsolve((x-2-2)-3 , x);

-1.414213562, -1.414213562, -1.414213562, 1.414213562,

1.414213562, 1.414213562

Generally, fsol ve can tind alI roots, but that is not guaranteed. If not, try the op­
tion fulldigi ts.

14.9 Solving complicated systems of polynomial equations with Grobner basis 179

If you are interested only in real solutions in a restricted range, you can ask for
these, for instance:

> fsolve(x-4-x-l , x=O .. 10);

1.220744085

For systems of polynomial equations, fsol ve tries to tind one solution, not all
solutions. For instance, let's solve the system ofsection 14.2 on page 171:

> fsolve({circlel,circle2} , {x,y});

{ y = 3.741865932, x = 7.475597795 }

In order to tind the other solution, you can try to help by entering other starting
values or by entering ranges for the variables; both are demonstrated here:

> fsolve({circlel,circle2} , {x=-l,y=-l});

{x = -4.025597795, y = -.09186593167}

> fsolve({circlel,circle2} , {x=-10 .. 0,y=-10 .. 0});

{x = -4.025597795, y = -.09186593167}

14.9 Solving complicated systems of polynomial equations
with Grobner basis

For the solution of systems of polynomial equations, Maple provides the proce­
dure Groebner [gsol ve] , which combines factorization with the Buchberger al­
gorithm for calculation of a Grobner base. (In releases before V.5, use grobner
instead of Groebner.)
The Buchberger algorithm is a powerful tool, based on the idea of elimination of
leading terms (terms of highest degree in some interpretation of "highest"). This
is the same idea as used in tinding the intersection points of two circ\es, where tirst
the difference of the two equations is calculated in order to get rid of the quadratic
terms. Additionally, the factorization in Groebner [gsol ve] can bring about a
splitting into several systems. Here is a simple example, which cannot reveal the
structure and the power of the Buchberger algorithm, but can c\arify the splitting
action of factorization and the result.
If you want to solve the following system of equations in x and y:

{
x2y2 + 12y = 3x2 + 4y3 }

x2 + x = y2
you can try to manipulate this into a more accessible system as follows. First con­
vert the tirst equation into the form" = O" and factor the result:

{:} { (y2 _ 3)(x2 - 4y) = O} {:}
x2 + x - y2 = O

180 14. Polynomial equations and factoring polynomials

Consequently, the systems splits into two systems:

{ x2 + ~ ~ y: = O} or {x2 :: : ;; = O } {}
In the right system, y can be eliminated by setting y = ~2 in the left system, y2 = 3
can be substituted in the second equation, yielding:

{} {x2 ::: ~ = O} or {x2 + x ~ ~2~)2 = O} {}
The right system splits into two systems because the second equation has a factor
x:

{} { x2 :: : ! = O} or {x:: ~y} or {x + 1 x~ :3 ;~6 = O }

This is essentially what you find when you apply Groebner[gsolve] to the system
at the beginning:

> x A 2*y A 2+12*y=3*x A 2+4*y A 3;

x 2 y2 + 12 y = 3 x2 + 4 y3

> eql:=%%: eq2:= %%:
In releases before V.5 you can enter

> grobner[gsolve]({eql,eq2} , { x,y});
but Groebner [gsol ve] does not accept polynomial equations; they must be con­
verted into polynomials first:

> map(eq->lhs(eq)-rhs(eq) , {eql,eq2});

{ x 2 + x - y2, x 2 y2 + 12 y _ 3 x 2 _ 4 y3 }

> Groebner[gsolve](% , {x,y});

{ [[y2 _ 3, x2 + x - 3] , plex (x, y), {}] ,

[[y, xl, plex(x,y), {} l,

[[-16 x - 16 + x3 , 4y - x2] , plex(y, x), {x2 + x - 3, x}] }

The result is a set of three lists, each containing

• a system of equations (without = O)

• the order of the equation variables used in the ca1culation (useful information
if you want to try other orders)

• polynomials that are assumed to be unequal to zero in the solution of that re­
suit system

14.9 Solving complicated systems of polynomial equations with Grobner basis 181

Omitting the second and third elements of the lists we see that the result is a set of
three systems of equations:

{ y2 - 3 = O } or { y = O } or { -16x - 16 + x3 = O }
x2 + x - 3 = O x = O 4y - x2 = O

which is equivalent to the result we found earlier by hand.

After this simplification of the original system, we can apply sol ve to each of the
resulting systems of equations. Let's name the result gsys before continuing the
manipulations.

> gsys := %:
The result of Groebner [gsol ve] renders each system of equations as a Zist of
polynomials, but since sol ve wants a set of equations as its first argument, we
must convert first. Let's take the third system, and convert this into a set:

> gsys[3];

[[-16 x - 16 + x3 , 4 y - x2] , plex(y, x), { x2 + x - 3, x }]

> % [1] ;

[-16 x - 16 + x3 , 4 y - x2]

> { op(%) };

This set can be tackled with sol ve.

> solve(% , {x,y});

{ x = 2 RootOf(-4_Z - 2 + _Z3) ,

Y = RootOf(-LZ - 2 + 2 3)2}

This is the third part of the solution, so let's save the result as

> so13:=%:
The other systems can be handled the same way.

> soli := solve({op(gsys[1] [1])} , {x,y}):
> so12 := solve({op(gsys[2] [1])} , {x,y}):

These solutions are joined together to find the solutions of the original system of
equations.

> soli, so12, so13;

182 14. Polynomial equations and factoring polynomials

{ Y = RootOf(_Z2 - 3) , x = RootOf(_Z2 + -Z - 3) },

{x=O,y=O},

{ x = 2 RootOf(-LZ - 2 + _Z3) ,

Y = RootOf(-LZ - 2 + _Z3)2}

Now we can apply aU values.

We could have solved this system with solve faster, but with this method more
complicated systems of polynomial equations can be solved, where of ten the pure
application of sol ve would take more time, possibly without finding any solution
at ali, or one less neat.

You can influence the solving process by passing a list of variables as the second
parameter in Groebner [gsol ve] , and choosing the order of these.

The Groebner package contains more tools for systems of equations, especially
Groebner [sol vable] and Groe bner [fini te], which decide if a given sys­
tem of polynomial equations is algebraically consistent, and if the system has a
finite number of solutions.

Maple also uses the same Grobner basis methods for simplifications with side re­
lations. See section 11.l1 on page 147 and section 14.9 on page 180.

14.10 Aigebraic extensions of the rational number field

The elementary number field for Maple is the field of the rational numbers. This
field can be extended with roots of polynomials, but doing so makes many calcu­
lations more complex, so Maple must be coaxed into it. For instance,

> (x-3 - 5)/(x - 5-(1/3));

x 3 - 5
x - 5(1 / 3)

The denominator is a factor of the numerator, but normal does not see:

> normal(%);

Even though this expression contains ~, normal does not use this radical for
simplification of the quotient. To make Maple do that, we must convert the radicals
to RootOf expressions first.

> convert(% , RootOf);

x - RootOfCZ3 - 5)

14.10 Algebraic extensions of the rational number field

We can order simplification in the following way:

> evala(Normal(% »;

x 2 + RootOf{_Z3 - 5) x + RootOfCZ3 _ 5)2

183

The name of the procedure evala is an abbreviation of "evaluate in an algebraic
extension field". The procedure Normal is the inert version of normal: it does
nothing itself, but it tells evala what is to be done.

The RootOf expression can now be converted into a radical.

> convert(% , radical);

x 2 + 5{1/3) x + 5(2/3)

The procedure evala can make several types of calculations involving RootOf
expressions in combination with inert procedures such as Normal, Expand, Fac­
tor, Factors, Quo, Resultant, etc.

> evala(Expand((x - RootOf(t-3 - 5*t - 3,t»-3));

x3 - 3x2 RootOfCZ3 - 5_Z - 3) +
3x RootOfCZ3 - 5_Z - 3)2 -

3 - 5 RootOfCZ3 - 5_Z - 3)

In order to make the above result more readable, we can use alias:

> alias(RT = RootOf(t-3 - 5*t - 3,t));

1, RO, RT

The procedure alias reports which names are aliased: the name RO has been used
earlier in this chapter. The alias construction is discussed in section B.l on page
285.

Now we achieve a nicer representation of the previous result.

> %% ;

x3 - 3 x 2 RT + 3 x RT2 - 3 - 5 RT

We can ask for factorization with evala and the inert factorization procedure Fac­
tor:

> evala(Factor(%»;

(x - RT)3

In the Iast command, Maple profits from the fact that the expression to be factored
already contains the necessary RootOf expression. If that is not the case, it must
be added as an extra argument to Factor.

> evala(Factor(x-3-5»;

184 14. Polynomial equations and factoring polynomials

> evala(Factor(x~3-5 , RootOf(t~3-5,t)));

(x - RootOfCZ3 - 5))

(x 2 + RootOfCZ3 - 5) x + RootOfCZ3 _ 5)2)

The algorithm used by Factor can be chosen by the user; consult the on-line help
about Factor.

In the on-line help you can find a listing of the inert procedures that can be handled
with evala.

In the last case, factor can do the job as well.

> factor(x~3-5 , RootOf(t~3-5,t));

(x - RootOfCZ3 - 5))

(x2 + RootOfCZ3 - 5) x + RootOfCZ3 - 5)2)

The combination of Factor with evala can do much more, such as managing
powers ofRootOf expressions, but factor offers another possibility, using a rad­
ical as its second argument. In this case, factor can use ?'5 as the second argu­
ment.

> factor(x~3-5 , 5~(1/3));

(x - 5(1/3)) (x2 + 5(1/3) x + 5(2/3))

The procedure factor calls the procedure evala automatically in such a case,
and converts resulting RootOfs back into radicals. The second argument must be
a radical, for instance sqrt (-2) does not work: it is evaluated to 1..;2, which is
not allowed, but (-2) ~ (1/2) can be used as a second argument.

If evala has to handle an expression that contains a RootOf expression, it tests if
it is irreducible:

> evala((RootOf(x~4+5*x,x) * RootOf(x~2+3))~4);
Error, reducible RootOf detected. Substitutions are
{RootOf(_Z-4+5*_Z) = O, RootOf(_Z A 4+5*_Z) = RootOf(_Z-3+5)}

If you want to solve polynomial equations in an algebraic number field, to be de­
fined by yourself, you can use roots. For instance, let's extend the field of the ra­
tionals with the roots of u2 + u - 1 = O:

> alias(gs=RootOf(u~2+u-1,u));

1, RO, RT, gs

Now we can solve the equation x 2 = 5 in this field. The procedure roots does
not accept equations; we must take left-hand side minus right-hand side as the first
argument:

14.12 Polynomials over Z mod p 185

> roots(x A 2-5,x,gs);

[[2gs + 1,1], [-1- 2gs, 1]]

14.11 Polynomial rings modulo ideals

For calculations with algebraic extensions in the setting of a polynomial ring mod­
ulo the ideal generated by one or more polynomials you can use simplify with
side relations. This idea is discussed in section 11.11 on page 147. Here is a sim­
ple example that demonstrates the idea in the present context. The same example
is handled in a different way in section 14.4 on page 175. We use the equality:

> eq;

x5 - tx2 + p = O

We can calculate x 7 modulo the corresponding polynomial as follows:

> simplify(x A 7 , {eq} , {x});

x 4 t - x 2 P

We have reduced x7 (first argument) as a polynomial in x (last argument) modulo
the ideal generated by x 5 - t x 2 + p (second argument). Much more complicated
problems containing several variables and several equations can be handled effi­
ciently thanks to the fact that Maple applies Grobner basis methods. For details,
please consult the on-line help about simplify [siderel] .

A package Domains is available for more general purposes. See section A.II on
page 283.

14.12 Polynomials over Z mod p

Maple can perform calculations on polynomials with coefficients in Z mod p as
follows:

> poly := 20*x A 7 - 7*x A 6 + 28*x A 5 + 5*x - 1;

poly:= 20x7 -7x6 + 28x5 + 5x-1

> poly mod 5;

The last resuIt is not represented intemally in Maple as a polynomial over Z mod 5
but as a polynomial over Q. So in the following command Maple does not handle
this resuIt as a polynomial over Z mod 5.

186 14. Polynomial equations and factoring polynomials

> expand(%-2);

9X12 + 18xll + 24x6 + 9xlO + 24x5 + 16

For each calculation mod 5 we must append mod 5 to the command again. If you
don't 1ike that, you might prefer to use the Domains package with Zmod; see sec­
tion A. 11 on page 283.

> expand(%%-2) mod 5;

4X12 + 3xll + 4x6 + 4xlO + 4x5 + 1

Modulo factorization is possible with Factor.

> Faetor(%) mod 5;

4(x+4)2 (x4 +2x2 +3x+1)2 (X+2)2

For solving an equation mod p, msolve can be used.

> msolve(poly = O , 5);

{x=1},{x=3}

For polynomials, Roots can be used, too, in combination with mod.

The equivalents of several procedures for manipulating polynomials and rational
expressions, such as normal and ged, are available as weB.

> Normal((x-2 - 3)/(x-3+7)) mod 11;

x+5

x 2 + 5x + 3

> Ged(x-2 - 3 , x-3+7) mod 11;

x+6

More information can be found in the on-line help about mod.

Maple can handle algebraic extensions of Z mod p; information about this subject
can be found in the on-line help to evalgf, the GF package for Galois fields, and
the Domains package for creating domains, discussed in section A.ll on page 283.

chapter 15

Manipulating algebraic expressions

Manipulation ofnumbers, polynomials, rational expressions, andRootOf expres­
sions is discussed in Chapter 2, Numbers and algebraic operators, in Chapter 13,
Polynomials and rational expressions, and in Chapter 14, Polynomial equations
and factoring polynomials.
This chapter continues discussing manipulation, but extends to more general types
of algebraic expressions. The usual goal of manipulating algebraic expressions
is conversion of an expression to a "simple" expression. But what is "simple"
depends on what you want to do with the expression. Therefore, inverse actions
are shown for most of the actions discussed.

Thejirst section on using optionsfor simplify and combine isfollowed by sec­
tions on manipulating powers and radicals, expressions with exp and In, and
trigonometric expressions. Although there are facilities for using properties of sev­
erai other mathematicalfunctions, we do not try to cover them ali; ifyou have seen
these cases, you will be able to jind your way yourself.

Restricting the action of manipulations to a part of an expression is discussed ex­
tensively in a special section.

If you want to see if an equality is true, you might use other methods than symbolic
manipulation. These are shown in a special section on this subject.

Examples are kept as small as possible. For such cases, manipulating by hand is
much simpler. But the same ideas can be usedfor manipulating very largeformulas
and then using these tools can pay the efforts. Two sections each give an example
of manipulating a not so simple expression.

In the Short Reference List at the start of this book is a survey of the main manip­
ulation tools.

15.1 Options for simplify and combine

The general manipulation tools simplify and combine can do many things at
once, for instance using properties of functions such as exp, In, sin, cos, etc., and/or
using properties of powers. In many cases it is desirable not to use aH these prop­
erties, but to select the type of transformation wanted. Restricting the action of
simplify or combine can be done by using options.
(In releases before VA, combine must be activated with options; without options
it can do only a few manipulations.)
Here is an example:

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

188 15. Manipu1ating a1gebraic expressions

> testexpr:=exp(sin(x)-4)/exp(cos(x)-2);
e(sin(x)4)

testexpr:= (()2) e COS X

For instance, to restrict combine to applying the properties of the function exp,
use the option exp:

> combine(testexpr , exp) ;
e(sin(x)4-cos(x)2)

Using the option power yields the same result. But using the options trig or sin
or cos causes actions to trigonometric functions:

> combine(testexpr , trig);
e(i+! cos(4x)-! cos(2x»)

e(! cos(2x)+!)

There are many more options available for combine. See the Short Reference List
at the start of the book for a fulllist of options.

It is also possible to apply combine without options:

> combine(testexpr);
e(-!+! cos(4x)-cos(2x»)

If you want to polish an expression without special purposes, you can experiment
with simplify, combine without options and the other tools discussed in this
chapter (especially expand, normal, factor, and rationalize and see what
you get. If you are not satisfied with the result, look for pattems in the expression
and decide what you want to do; then use the right procedure with the right option.
In many cases, several steps in the right order are necessary. Some of these more
complicated examples are demonstrated in this chapter.

To show the specific actions of procedures in combination with options, the rele­
vant option is added in each example of this chapter, although in most of the basic
examples you would get the same result without that option. In several cases, al­
tematives are shown.

15.2 Simplifications depending on conditions

Expected simplifications may not be executed. Here is another example:

> exp(X)-n*exp(Y);

(eX)n ey

Let's try to get en X+Y by applying combine or simplify:

15.2 Simplifications depending on conditions 189

> combine(%);

> simplify(%);

No effects! There is a good reason for that: X, Y, and n are to be taken as unknown
complex numbers. It may not be true that (eX) n = en x ; for instance, if X = ~1f
and n = ~, then

exp(x)n = eXP(~1f)(1/2) = (_i)(1/2) = ~V2(1 - i)
2 2

exp(n X) = exp(~1f) = ~V2(-1 + i)

But if X stands for a real number, then (e X) n = en x. In that case, we must teU
Maple that X is a real variable; then simplify without option or with the option
power can do the job:

> assume(X,real);

> simplify(%,power);

The trailing tilde indicates that X has a property; see section 3.4 on page 36, or
section A.4 on page 278.

It is possible to make simplify really foolhardy by adding the (euphemistic) op­
tion symbolic:

> exp(x)~n*exp(y);

> simplify(%,power,symbolic);

e(n x+y)

We could have used simplify(%,symbolic) as well. The option symbolic
may be used also for combine, but only together with other options.

If you are trying to simplify some expression without success, you might use the
option symbolic and, if it yields a nice result, check if this re suIt is equivalent
to the original expression (see section 15.12 on page 212), or, for instance, if you
are trying to find an antiderivative, a solution of an equation, or of a differential
equation, check if the result satisfies. An example can be found in section 15.8 on
page 201.

We could also have told Maple that the variables are real:

190 15. Manipulating algebraic expressions

> simplify(%%,power,assume=real);
e(nx+v)

This simplification rule can also be applied if the exponent is an integer:

> assume(n,integer);

> exp(x)~n*exp(y);

(exrlr-' eV

> simplify(%,exp);

If you are still using release V.3 or earlier, the suggestions above are not valid.
The improvements of the reliability of expression manipulation from the first re­
lease of Maple V untill the present release V.5 are enormous, now making Maple
V.5 a superior choice for reliable mathematical calculations. A system of proper­
ties has been built in; many procedures using rules that depend on properties can
now check properties fast and efficiently and will apply these rules only when it can
be determined that the necessary conditions are fulfilled. Up to a few marginal ex­
ceptions, mentioned in the last section of this chapter, you can trust the manipula­
tions discussed in this chapter if you are using rele ase V.5. If you are using release
V.3 or even an earlier release, the best advice is to grade up.

15.3 Sums of exponents, products of powers with equal basis

For each complex number z, each a, each b, and each c
a b

za+b-c = ~
Zc

Manipulation from the left-hand side to the right-hand side is possible with
expand:

> z~(a+b-c);

> expand(%);

Zc

However, expand does many things at once. There are facilities for restrict­
ing the action of expand, but it might be easier to use an alternative. You can
get an only slightly different result with simplify(,commonpow) (not docu­
mented by Maple); this result can even be converted into the previous result with
normal(,expanded):

15.3 Sums of exponents. products of powers with equa1 basis 191

> simplify(%%,commonpow)j

za zb z{- e)

> normal(%,expanded);

The reverse direction can be produced with simplify(,power) or combine
(,power):

> simplify(% , power);

> combine(%% , power);
z{a+b-e)

Halfway back brings us combine(,cmbpwr):

> combine(%%% , cmbpwr);

za zb z{- e)

Although the expression exp (x) has the structure of a function caU, not of a power,
it is printed as eX in windowing versions and it can be handled with some of the
manipulation tools for powers: simplify(,power), combine (,power),
and expand. For instance,

> exp(x)*exp(y)/exp(z);

> simplify(%,power);
e{X+Y-Z)

If action is to be restricted to exponential function caUs, try the procedures
simplify(,exp) and combine(,exp):

> exp(a)*exp(b)+xAa*xAb; simplify(%,exp);

ea eb + x a x b

192 15. Manipulating algebraic expressions

15.4 Powers of powers, products of exponents

The identity

is true

• if b is an integer, or

• if z is positive and a is real

but in many other cases it is not true, for instance,
((_1)2)(1/2) i= (_1)(2* 1/2)

Conversion from the left-hand side to the right-hand side is possible with expand,
simplify(,power), and combine(,power), but only when Maple can see that
the conversion is correct (from release V.3 for simplify, from release VA for ex­
pand). The following is correct because 5 is an integer:

> (z~a)~5j simplify(%,power)j

(za)5

The following is correct because 7r - 1 is positive:

> «Pi-l)~(7/4))~(1+I); simplify(%,power)j

((7/4))(HI) (7r-l)

If we ask the same in a more general case, Maple refuses to perform this type of
conversion:

> (z~x)~Yj simplify(%,power)j

(ZX)Y

But you can tell Maple that your variables have properties:

> assume(pos,positive,X,real,n,integer)j

> (pos~X)~Yj simplify(%,power)j

(pos""X~)Y

pos",,(X~Y)

> (z~x)~nj simplify(%,power)j

(ZX)7lr-'

15.4 Powers of powers, products of exponents 193

You can also teU Maple not to bother about correctness with the additional option
symbolic:

> simplify«z-x)-y,power,symbolic);
z(x y)

It is also possible to teU simplify that aU variables are to be taken as positive
numbers:

> simplify«z-x)-y,power,assume=positive);
z(x y)

Exponential function caUs can be handled with simplify(,power) as weU:

> exp(X)-y + exp(a)-n; simplify(%,power);

(eX~)Y + (ea)flrv

If action is to be restricted to exponential function
simplify (, exp) can be used instead of simplify (
the case in which the exterior exponent is an integer:

> exp(X)-b + exp(a)-n; ~implify(%,exp);

(eX~)b + (ea)flrv

(eX~)b + e(flrva)

caUs, the procedure
, power) , but only for

Manipulation in the reverse direction is available only for cases such as:

> z-(5*a); simplify(%,commonpow);
z(5 a)

> expand(%%);

In the last case, expand acts as its own inverse:

> expand(%);

For more general cases, you can convert for instance pX b into pX pb, assuming
that p is a positive number and X is real, as foUows:

194 15. Manipulating algebraic expressions

> p-(X*b); subs(p=pos-(l/X) , %);

p(X~b)

((....L))(X~b) pas'" x_

Now we need the assumptions on X and pos:

> expand(%);

Finish by substituting back:

> subs(pos=p-a , %);

Obviously, the user must take responsibility for the correctness of this conversion.

In order to change e(a b) into (ea) b we can use the method above, but it can be done
easier by manipulating exp and In:

> exp(a*b); subs(a=ln(t),%);

era b)

e(ln(t) b)

> expand(%);

> subs(t=exp(a),%);

15.5 Powers ofproducts, products ofpowers with equal exponents

The identity

is true

• if x or y is positive or

• a is an integer

but not in general. For instance,
(_1)1/2 (_1)1/2 =1- 11/ 2

First, let's look at the case where the base of the power is assumed to be positive:

15.6 Radica1s 195

> assume(pos>O);
The procedure simplify(,power) can use this property:

> (pos*z)~a; simplify(%,power);

(pas", zt

In the present release V.5, no general tools are available for conversion of (xy)n
into xnyn for the case in which n is assumed to be an integer, (and x and y have
no properties), apart from using the option symbolic. However, if the exponent
is a concrete integer, automatic simplification does the job immediately:

> (x*y) ~ 5;

The reverse is possible with the aid of simplify(,commonpow) (not docu­
mented):

> pos~a * z~a; simplify(%,commonpow);

15.6 Radicals

simplify(%,commonpow);

x"""y"""

(x y)"""

In cases in which the exponent of a power is a concrete rational number, some con­
versions can be executed by the procedure simplify(,radical). First, it splits off
the integer powers in some cases:

> (x*y)~(22/7); simplify(%,radical);

(xy)(22/7)

x3 y3 (xy)(l/7)

Then it tries to use properties ofthe power operation, for instance here, where pos
has been previously assumed to be a positive number:

196 15. Manipulating algebraic expressions

> (posA5)A(7/5); simplify(%,radical);

(5) (7/5) pOS'"

Then it tries to combine equal radicals:

> (a-b)*(z+1)A(1/4)+b*(z+1)A(1/4); simplify(%,radical);

(a - b) (z + 1)(1/4) + b (z + 1)(1/4)

(z + 1)(1/4) a

At last, simplify (, radical) caUs the procedure normal:

> posA2*(z+1)A(2/5)+(z+1)A(-3/5); simplify(%,radical);

2 ()(2/5) 1
pos'" z + 1 + (3/5)

(z + 1)
pos",2 z + pos",2 +1

(z + 1)(3/5)

For square roots, you can use simplify(,sqrt).

The results obtained with simplify(,radical) are quite different from the
results obtained with simplify(,power):

> «p+l)A(7/4»A(5/3);

((p + 1)(7/4») (5/3)

> simplify(%,power); simplify(%%,radical);

((p+ 1)(7/4»)(5/3)

(p + 1)(7/4) ((p + 1)(7/4») (2/3)

For elimination of radicals from the denominator of a quotient the procedure ra­
tionalize is available.

> (a+b)/(c+sqrt(d»;

> rationalize(%);

a+b

c+ v'd

15.7 Manipulating logarithmic expressions

Here is another example of a quotient:

> (w-2)~(3/2)/(WA2-4*w+4)~(1/4)j

(w - 2)(3/2)

(w2 - 4w + 4)(1/4)

197

We can try to divide out the common factor from numerator and denominator. Usu­
ally such ajob can be done with normal, but this is a conscientious procedure and
cannot handle the present expression, as it does not know if w is a real number
gre ater or less than 2. However, the procedure radsimp is not scrupulous: accord­
ing to its on-line help, it chooses branches according to its own rules:

> radsimp(%)j

w-2

The same result can be found with simplify(, symbolic) or with combine
(, radical, symbolic) followed by normal.
If you want to have control yourself, there are better ways of manipulation. Let's
help Maple and apply factor:

> factor(%%)j

(w - 2)(3/2)

(2) (1/4)
(w - 2)

We get a product of two powers with equal basis. The procedure simplify
, power) refuses to work, unless we tell Maple for instance that w < 2:

> assume(w<2)j

> simplify(%,power)j

-I(w~ -2)

(In release V.4 a wrong result is rendered: 1 ('l.V'" -2).)

Manipulating the nth root of a complex number is discussed in section 12.5 on page
153.

15.7 Manipulating logarithmic expressions

If x, y, and zare positive, then ln(x*y / z) = ln(x)+ln(y) -ln(z); it is even correct
if two of the three variables are positive, but of ten this rule cannot be applied (from
release V.4). For instance, if x = y = -1 + 1 and z = 1:

> [ln(-1+I) + ln(-1+I) , ln((-1+I)*(-1+I))]j

[21n(-1 +1), In(-21)]

198 15. Manipulating algebraic expressions

> evalc(%);

[ln(2) + ~ 1 1T, ln(2) - ~ 1 1T]

The procedure simplify(,In) converts the logarithm of a product or quotient of
two numbers into a sum of logarithms only if it can decide that one of the two num­
bers is a positive number or that it is a negative number (from release VA).

> ln(pos*y); simplify(%,ln);

In (pos '" y)

ln(pos"') + ln(y)

> assume(neg,negative);

> ln(x/neg); simplify(%,ln);

ln(n:U"')
-ln(-neg"') +ln(-x)

The same results can be found with expand; sometimes you also can use
simplify(,power).

For the opposite direction, you can use combine(,In),

> ln(pos)+ln(a);combine(%,ln);

ln(pos"') + ln(a)

ln(pos'" a)

> ln(a)-ln(pos);combine(%,ln);

ln(a) - In (pos "')

ln(_a)
pos'"

The following transformation can be handled only with the aid of the hazardous
option symbolic:

> ln(pos)-ln(a);combine(%,ln,symbolic);

ln(pos"') -ln(a)

In(PO;"')
The rule ln(ab) = bln(a) is only true for some special cases. When Maple can see
that the exponent b is an integer and that a is positive, then it converts ln(ab) into

15.7 Manipulating logarithmic expressions

b In(a) automatically:

> ln(pos~n);

n"-' In (pos "-')

199

In other cases where this transformation from the left to the right is correct, you
can use simplify(,In) or expand:

> ln(pos~X); simplify(",ln);

In (pos ""'x~)

The other way around is available only for the case in which b is a concrete number:

> (2/3)*ln(pos+l)-5*ln(pos+2);
2
3" ln(pos""' +1) - 5 ln(pos,,-, +2)

> combine(% ,In);

(
(pos,,", +1)(2/3»)

In 5
(pos"-' +2)

If you don't like exponents that are not an integer, you can request to avoid these
with an extra option:

> combine«2/3)*ln(pos+l)-5*ln(pos+2),ln,integer);
2
3" In(pos"-' +1) - 5 ln(pos""' +2)

The function exp is the left inverse of In; restricted to the real numbers it is the
right inverse as well. Automatic simplification uses this:

> exp(ln(x»;

> assume(X,real):
> ln(exp(X»;

x

For alI complex numbers a, x, y, and z with x, y, and z unequal to O:
xay

exp(aln(x) + ln(y) -ln(z)) = -
z

exp(y * In(x)) = x y

The conversion from the left to the right can be executed with simplify with the
option power or exp or with combine (, exp):

200 15. Manipulating algebraic expressions

> exp(a*ln(x) + ln(y) - ln(z));
e(a ln(x)+ln(y)-ln(z))

> simplify(%,exp);

For all real x: In(exp(x)) = x, but, for instance, In(exp(1+21fi)) = e. Don'tuse
the manipulations of this chapter for this; it can be found by evalc:

> ln(exp(1+2*I*Pi));

> simplify(%);

> evalc(%%);

1

However, evalc expects ali variables to be real, so it does the same simplification
as simplify (, In) for the case of undefined arguments:

> ln(exp(z)); evalc(%);

z

Not for ali complex z is this correct, so don't use evalc if your variables are not
ali real!

15.8 An example of the use of the option symbolic

In Chapter 4, Elementary ca/culus we found:

> integrand:=1/(x-(1/2)+x-(1/3));
. 1
zntegrand:= y'x + x(1/3)

> int(% , x);

2y'x-2 arctanh(y'x)-ln(x-1)-3x(1/3)-2In(x(1/3) -1)+

In (X(2/3) + x(1/3) + 1) + 2 In (x(1/6) - 1) -

In(X(1/3) + x(1/6) + 1) - 2 In (x(1/6) + 1) +

In (X(1/3) - X{1/6) + 1) + 6 X(1/6)

15.8 An example of the use of the option symbolic 201

The algorithm used yields a complex expression; if you have in mind an antideriva­
tive on positive numbers, this expression yields a discontinuous function with val­
ues that are not real. Let's try to convert this to a real expression for x positive.
First, let's make x a positive variable:

> assume(x,positive);
Now let's get rid of that arcsin:

> convert(%,ln);

2..;x;:: -ln(..;x;:: + 1) + ln(l-..;x;::) -ln(x '" -1) -

3x",{1/3) -2In(x",{1/3) -1)+ln(x",{2/3) +X",{1/3) +1)+

21n(x",{1/6) -1) -ln(x",{1/3) +X",{1/6) +1)-

2 In (X",{1/6) +1)+ln(x",{1/3) _X",,{1/6) +1)+6x",{1/6)

A sum of logs cannot be combined in general; that depends on the arguments. But
now, we don't care for branch cuts of In; to the contrary, by neglecting them, we
might change the expression into a continuous one. So, let's use the option sym­
bolic:

> combine(%,ln,symbolic);

2..;x;:: - 3X",{1/3) +6X",{1/6) +

ln((l-..;x;::) (X",{2/3) +X",{1/3) +1) (X",{1/6) -lf

(x",{1/3) _x",{1/6) +1) / (..;x;:: + 1) (x'" -1)

(X",{1/3) -1 f (X",{1/3) +X",{1/6) +1)

(X",{1/6) +lf)

If we apply radsimp to this expression direct1y, nothing happens: radsimp can­
not reach the argument ofIn. Let's analyze the expression. You can use op to tind
that out, but we can see it directly. The expression is a sum of four components;
the fourth component is a function calI, its argument being its sole regular compo­
nent. Now radsimp must act on this subcomponent, so it must reach an operand
of an operand of ttt. Let's apply it to alI the subcomponents of the components
of the expression with the aid of a double form of map:

> map(u->map(radsimp,u) , %);

2..;x;:: - 3 X ",(1/3) +6X",{1/6) +ln(- 1)
(x",{1/6) +1)6

This contains only a constant imaginary component:

> evalc(%);

202 15. Manipulating algebraic expressions

> evalc(Re(%));

2.;x;::;-3x, ... ,,(1/3) +6X",(1/6) -6In(x",(1/6) +1)

We have used the option symbolic so we cannot be sure that this is a correct an­
tiderivative (apart from this being the same result as in section 4.9 on page 52). So
let's check it:

> normal(diff(%,x)-integrand);

O

That confirms the correctness.
It's a good habit to delete an assumption as soon as it becomes superfluous:

> x:='x';

X :=x

15.9 Manipulating trigonometric expressions

The procedure simplify(, trig) applies the rules

a. sin2 (cfJ) + cos2 (cfJ) = 1

b. tan(cfJ) = ~~~~:~
to get rid of tan and sin as much as possible.

> 5*sin(x)-2 + 2*cos(x)-2; simplify(%,trig);

5 sin(x)2 + 2 COS(X)2

-3 COS(x)2 + 5

> sin(x)-3+cos(x)-3; simplify(%,trig);

sin(x)3 + COS(X)3

COS(X)3 + sin (x) - sin (x) COS(X)2

> sin(t)+tan(t); simplify(%,trig);

sin(t) + tan(t)

sin(t) (cos(t) + 1)
cos(t)

If no sin or cos is present in the expression, no conversion of tan is applied.

15.9 Manipulating trigonometric expressions 203

Ifyou prefer to remove cos as much as possible, apply simplify with side rela­
tions to the relation sin2 (x) + cos2 (x) = 1. See section 11.11 on page 147.

> simplify(%% , {sin(x)~2+cos(x)~2=1} , [cos(x)]);

sin(t) + tan(t)

The other manipulation procedures have the same inclination to cos. For instance,
the procedure expand, which can expand arguments of sin, cos, and tan:

> cos(5*x+y); expand(%);

cos(5x + y)

16 cos(y) COS(x)5 - 20 cos(y) COS(X)3 + 5 cos(y) cos(x)-

16 sin(y) sin(x) COS(X)4 + 12 sin(y) sin(x) cos(x)2 -

sin(y) sin (x)

The reverse direction is handled with combine (, trig) :

> combine(%,trig);

cos(5x + y)

Trigonometric products can also be handled with combine (, trig):

> sin(x)*sin(y); combine(%,trig);

sin(y) sin (x)

1 1
2" cos(- y + x) - 2" cos(y + x)

The procedure combine (, trig) tries to convert powers and products of sin
and cos function caUs into sums of sin and cos function caUs. It does not handle
tan function caUs.

The reverse direction is handled with its counterpart expand, which, however, may
have unwanted other effects:

> expand(%);

sin(y) sin (x)

The trigonometric functions incorporate some automatic simplifications. For in­
stance,

> cos(11*Pi/2-x);

- sin(x)

sin(x + mr) can be simplified to sin (x) easily when the name n has the property
of being an integer:

204 15. Manipulating algebraic expressions

> nA2 + sin(a+b+2*n*Pi) + cos(y-2*n*Pi)A3;

n",2 +sin(a+b+2n'" 1f)+cos(y-2n'" 1f)3

> expand(%);

n",2 + sin (a) cos(b) + cos (a) sin(b) + COS(y)3

(In releases before VA, use side relations.)

Conversion of sin and cos to tan is available:

> convert(cos(x) , tan);

1- tan(~ X)2

1 + tan(~ x)2

Conversion to sincos does not yield the original expression:

> convert(% , sincos);
1 _ (1-cos(x»2

sin(x)2

1 + (1-cos(x»2
sin(x)2

But simplify(, trig) can do the job:

> simplify(% , trig);

cos(x)

In most cases the procedure convert (, tan) bisects the arguments of sin and
cos, but unnecessary bisections are avoided if possible:

> sin(alpha)/cos(alpha)+cos(beta);

> convert(%,tan);

sin (o:) ((3) --(-) + cos cos o:

1 - tanC 1 (3)2
tan(o:)+ (i(3)2

1 + tan 2"

Maple knows that compositions of trigonometric functions with their inverses
should be handled with care:

> arcsin(sin(20»;

20 - 61f

> arcsin(sin(x»; simplify(%);

arcsin(sin(x))

15.9 Manipulating trigonometric expressions 205

arcsin(sin(x))

But arcsin is the right inverse of sin. Maple handles this by automatic simplifica­
tion:

> sin(arcsin(x));

x

Conversions of trigonometric expressions to complex expressions with exp are
available:

> convert(arctan(x),expln);
1
21 (ln(1 - 1 x) -ln(1 + 1 x))

> convert(sin(x),expln);

_! 1 (e(IX) __ 1_)
2 e(I x)

The reverse direction:

> evalc(%);

1 . 1 sin(x)
- sm(x) + - +
2 2 cos (x)2 + sin(x)2

1 (_! cos (x) + ! cos (x))
2 2 cos(x)2 + sin(x)2

> simplify(%,trig);

sin (x)

As an aid for substitutions, the procedure trigsubs can show possibilities:

> readlib(trigsubs);

proc(s,1) ... end

> trigsubs(cos(2*x));

[COS(2x), cos(2x), 2 cos(x)2-1, 1-2 sin(x)2, cos(x)2-

. ()2 1 1 l-tan(x)2 1 (2Ix) 1 (-2IX)]
SIn x , " - e + - e

sec(2x) sec(2x) l+tan(x)2' 2 2

The hyperbolic functions can be handled in about the same way as the trigono­
metric functions, using the same option trig, except that trigsubs cannot be
used.

206 15. Manipulating algebraic expressions

15.10 Manipulating parts of expressions

Often, a part of a large expression must be manipulated without changing otber
parts to prevent unwanted, possibly questionable conversions. There are several
standard tricks for this purpose, demonstrated here in examples where it would be
easier to do mental calculations and type in the results, but these exercises show
how to deal with much larger expressions.

• First, you can use subs for replacing subexpressions with others, or subsop
for replacing a component. See Chapter Il, Substitution and subexpressions:

> exp(x+y)+cos(x+y);

e(Y+x) + cos(y + x)

Suppose that we want to expand the second term only. We can realize this
with:

> subsop(2=expand(op(2,%)),%);

e(Y+x) + cos(y) cos(x) - sin(y) sin(x)

• If each of the components of an expression is to be processed but the main
structure of the expression should be kept, you can use map. See section 10.3
on page 127.

> (cos(x+y)-1)-2; map(expand,%);

(cos(y + x) - 1)2

(cos(y) cos (x) - sin(y) sin (x) - 1)2

> (x+l)/(x-2-1) + x/(x-2+3*x); map(normal,%);
x + 1 x --+-,--­
x 2 - 1 x 2 + 3 x

1 1
--+-­
x-l x+3

• The procedure collect can describe an expression as a polynomial in a variable
or a function caII; moreover, it can process the coefficients at the same time.
For instance,

> a-2*cos(x)+a-2*cos(x)-3+(a*cos(x))-2-9*cos(x)-3
> -2*a*cos(x)-2-cos(x);

a2 cos (x) + a2 COS(X)3 + a2 COS(X)2 - 9 COS(x)3 -

2a COS(X)2 - cos (x)

You can interpret this expression as a polynomial in cos (x) and factor the
coefficients with:

> collect(%,cos(x),factor);

(a - 3) (a + 3) cos(x)3 + a (a - 2) COS(X)2 + (a - 1) (a + 1) cos(x)

15.10 Manipulating parts of expressions 207

• You can take out a part of an expression in an algebraic way, process the re­
maining expression, then complete the result. In the foUowing example, we
want to combine the first and the third term into one quotient:

> (x~2-x-a~2+a)/(x~2-x-x*a+a)+1/sqrt(x+a)-1;
x 2 - x - a2 + a 1 -::------ + - 1
x2 - X - xa + a Jx + a

> % - op(2,%);
x 2 - X - a2 + a
--;::------ - 1
x 2 - X - xa + a

> normal(%)+op(2,%%);
a 1

--+--===
x -1 Jx + a

• For conversion of trigonometric and hyperbolic functions into sin and cos, it
is possible to indicate that only function caUs with special arguments must be
converted. For instance:

> tan(x+l)+sec(y-l);

tan(x + 1) + sec(y - 1)

> convert(%,sincos,y);
1

tan(x + 1) + (1) cos y-

• It is possible to shield subexpressions from the action of expand by entering
these subexpressions as additional arguments. For instance,

> (x~a)~n + cos(t+s);

(xa)""" + cos(t + s)

> expand(%); expand(%% , (x~a)~n);

x(nrva) + cos(t) cos(s) - sin(t) sin(s)

(xa)nrv + cos(t) cos(s) - sin(t) sin(s)

• Another trick is offered by the procedure freeze, which can freeze a subex­
pression into a temporary name; after processing you can use thaw. First
these procedures must be read in from the library by the command

> readlib(freeze);

proc(e) ... end

Here is an example:

> exp(a+b)+cos(x+y);

e(aH) + cos(y + x)

208 15. Manipulating algebraic expressions

Let's suppose that cos(x + y) should be expanded, while ea+b should be left
the same. Then we can use:

> subsop(l=freeze(op(l,%)),%)j

jreeze/RO + cos(y + x)

> expand(%)j

jreeze/RO + cos(y) cos(x) - sin(y) sin (x)

> thaw(%)j

e(a+b) + cos(y) cos(x) - sin(y) sin(x)

If you want to denote freeze/RO in a command, don't forget to use back
quotes, otherwise Maple divides freeze by RO:

> 'freeze/RO' , freeze/RO j
jreeze

jreeze/ RO, ~

• In the last example, the procedure expandoff can also be used. This proce­
dure must be read in from the library in a specific way:

> expand(expandoff())j

expandoffO

Now we can handle the previous problem by disabling expand for the func­
tion exp:

> exp(a+b)+cos(x+Y)j

> expandoff(exp)j

> expand(%)j

e(a+b) + cos(y + x)

e(a+b) + cos(y) cos(x) - sin(y) sin (x)

We can reset the expand facility for exp with:

> expand(expandon())j

expandonO

> expandon(exp)j
However, the procedure expand has built-in memory, its so-called remem­
ber table, from which it recalls old results. Therefore, after the previous ac­
tion it refuses to expand ln(x t) as it recalls the result ln(xt) from the former
part of the session, but it expands ln(yS) without problems:

15.10 Manipulating parts of expressions 209

> expand(ln(x~t)+ln(y~s));

ln(x t) + ln(yB)

The remedy is clearing the remember table of expand with forget. See sec­
tion D.2 on page 295.

> readlib(forget) (expand);

> expand(ln(x~t)+ln(y~s));

ln(x t) + In(yS)

• A rather complicated, but powerful and ftexible facility is frontend, which
can apply a procedure on an expression according to specitications. For in­
stance,

> (cos(x+l)-1)~2;

(cos(x + 1) - 1)2

We can ask to see this as a polynomial in cos (x+l) and apply expand on it
as follows:

> frontend(expand , [%]);

cos(x + 1)2 - 2 cos(x + 1) + 1

The function call cos (x+l) has been frozen by frontend, then expand is
called and the result is thawed.

A more complicated example is the following: we want to substitute a for x
in the expression x 2 + x y + cos(x), except for the x in the second term x y.
This can be done with the substitution trick mentioned earlier in this section,
but in more complicated cases this trick is less suitable than using frontend:

> x~2+x*y+cos(x);

x 2 + xy + cos(x)

We want to modify the command subs (x=a, %) ; therefore, the tirst argument
to frontend should be subs and the second should be [x=a, %]: the list of
arguments to subs. We can tell frontend with an option that expressions
should be subdivided into subexpressions by splitting sums and powers, but
not products. This freezes the product x y. Moreover, we want the function
call cos (x) nof to be frozen. Both requirements can be given together by the
third argument, the option [{' +' , ,~ '} , {cos (x)}]. But the second argu­
ment to frontend also contains x=a; this is not to be frozen either. We can
reach this by extending the third argument to [{' +' , , ~ , } , {x=a, cos (x) } 1
or [{'+', '~', '='},{cos(x)}]:

> frontend(subs,[x=a,%] ,[{'+','~'},{x=a,cos(x)}]);

a2 + xy + cos(a)

210 15. Manipulating algebraic expressions

The procedure frontend expects two or three arguments: first the procedure
that should be applied in a modified way, then a list of its arguments. As an op­
tionallast argument you can give a list of two sets: first the set of type names
of subexpressions nof to be frozen, second a set of subexpressions nof to be
frozen. For types, see section A.1 on page 275.

15.11 An example: converting a complex expres sion into a real
expression

Of ten, the result of a computation in Maple is a complex expression There may be
strong indications that this represents a real number. Here is an example:

> ti := solve(x-6+2*x-4-4*x-2-7) [1] ;

1 ..J6V %W/3) (%1(2/3) + 64 - 4 %1(1/3))

ti := 6" %1(1/3)

%1 := 404 + 121 V687

A test with evalf suggests that this is a real number:

> evalf(%);

1.391198165 - .792804972810-10 1

We want to convert the previous expression into an explicitly real one.
First, let's simplify the subexpression

(404 + 121 V687) (1/3)

We can extract the basis of this power and then simplify its third root as follows:

> si := %1;

sI := 404 + 121 V687

> evalc(convert(sl-(1/3),polar));

512(1/3} cos (~ arctan (1~1 V687)) +

1512(1/3} sin (~ arctan C~1 V687))

> s2:=simplify(%);

s2 := 8 cos (~ arctan C~1 V687)) +

81 sin (~ arctan (1~1 V687))

15.12 Verifying identities 211

We can substitute the result into the main expression. It is not efficient to issue
subs (sl=s2~3, tl), because it is not easy to simplify (s2 3)1/3 and (s2 3)-(1/3).
Therefore, we can issue:

> t2:=subs(sl~(1/3)=s2 , sl~(-1/3)=1/s2 ,
> sl~(2/3)=s2~2, tl);

~ v'6 ((8 cos(%l) + 81 sin(%l)) ((8 cos(%l) + 81 sin(%1))2 +

64 - 32 cos(%l) - 321 sin(%l))) (1/2) /

(8 cos(%l) + 81 sin(%l))

%1 := ~ arctan (1~1 v'687)
Now the problem is that a complex part of this expression is contained in the ar­
gument of a square root. Let's see what happens when we square the whole thing
and simplify with option trig:

> simplify(%~2,trig);

~ cos(~ arctan(~ v'687)) - ~
3 3 101 3

The result is a real expression. Because of the result of evalf (t 1) it is clear that
t 1 equals the square root of this expression.

15.12 Verifying identities

Manipulation of expressions can be used to verify identities. For instance, we can
try to check an antiderivative by verifying that its derivative equals the original
function. Often this can be done by applying normal to the difference. See section
4.11 on page 53. But in many cases more manipulation is necessary for verifying
identities. Sometimes, this proves to be difficult. If the result is numeric, you can
use evalf to get an indication about it. If it is not, you can ask Maple to execute
a numeric al test with testeq.

> testeq(sin(x)/cos(x)=tan(x));

true

Although this procedure uses numerical tricks, it does not walk into a trap such as
the following:

> epsilon:=lO~(-lOO):
> testeq(sin(x)/cos(x) + epsilon tan(x»;

false

However, in other cases it does not decide, for instance,

212 15. Manipulating algebraic expressions

> testeq(sin(x+epsilon)~2 + cos(x)~2 = 1);

FAIL

> testeq(sin(x+epsilon)~2 + cos(x+epsilon)~2 1);

FAIL

Another procedure verify can be used with some more comfort, but it relies on
testeq.

If the expression contains radicals, testeq cannot be trusted. This is shown in the
following example, where a solution of a polynomial equation is tested:

> pol := x~3+4*x~2+1:
> solve(pol=O , x):
> subs(x=%[2] , pol):
> testeq(%=0);

false

Here symbolic manipulation does the job well:

> simplify(expand(%%));

o
Moreover, testeq should not be applied to RootOf expressions. It checks equal­
ity of degrees and then uses evalf:

> testeq(RootOf(_Z~3-1)=RootOf(_Z~3+_Z~2-2));

true

Apart from the cases where the expression contains RootOf or radical subexpres­
sions, testeq is a fast and rather reliable tool.

15.14 General advice formanipulating 213

15.13 Reliability

The results of the manipulations discussed in this chapter are reliable in release V.s
and release V.4 (apart from possible bugs: nothing is perfect) with the folIowing
exceptions:

• simplifyand combine with the option symbolic use simplification rules
without checking conditions, as asked by this option;

• evalc expects alI variables to be real; if that is not the case, you might get
incorrect results;

• intentionalIy, radsimp does not respect the standard branch cuts; results must
be checked.

In fact, these exceptions are choices of the developers of Maple. In the old release
V.3 it is more difficult to guarantee reliability; in the following cases conditions are
not checked:

- expand in combination with powers, possibly powers ofnonpositive numbers
with undetermined exponents; moreover, it may convert expressions contain­
ing In in a way that may not be correct if an argument to In is not a real number.
Remedies: expandoff (In) and/or frontend: see earlier in this chapter

- combine(,power) with noninteger powers of nonpositive numbers

- simplify(,In) with logarithms of products and powers. Moreover, it may
convert the composition of In and x ~ eX into the identity function when the
argument is not a real number and not even an element of R x < -1f, 1f]

- simplify(,arctrig) with compositions of arc trigonometric functions and the
corresponding trigonometric functions, sometimes simplifying these to the
identity function without checking that the arguments are in the correct range.

15.14 General advice for manipulating

In manipulating expressions with Maple, do not apply the general tools blindly.
Many inexperienced users tend to use simpIify first, and if the result is not satis­
factory, they try to manipulate this result with other procedures. Genera11y, that is
not a good method. First, think what you would do by hand. Then you may want to
use more specific tools such as factor, evaIc, or expand. Ifnecessary, analyze
an expression with op, nops, and whattype, possibly with numboccur.

If you want to use simplify, remember that simplify without a specific option is
a very general tool, sometimes yielding the desired result, but of ten making things
worse or even hopeless by doing too much. Often, normal is a better general tool,
especially for checking if something equals zero.

chapter 16

Solving equations and inequalities in general

In Chapter 14, Polynomial equations and factoring polynomials, many aspects of
solving equations and sets of equations with Maple are discussed, but restricted to
polynomial and rational equations. The present chapter examines more general
types of equations and also inequalities.

This vast field is difficult and juli of pitfalls for a symbolic calculator. The present
chapter shows how the user can coopera te with the system and how common and
basic mathematics can help considerably.

Most ofthe examples are basic ones, but the same methods and ideas can be used
in more complicated cases.

16.1 General principles in using Maple for solving equations
and inequalities

Maple's powerful procedure solve can of ten tind solutions. For polynomial equa­
tions the results are reliable, but in general you cannot be sure, so you better check
the solutions.

No one expects an automatic solver to tind aH solutions of every equation, so the
user must decide if alI solutions have been found, and, if solutions are missing, try
to help Maple in tinding those missing solutions.

GeneraHy, there are three tasks left to the user when solving equations with Maple:

1. The results of sol ve must usualIy be checked by substituting them into
the equations and applying simplitications, approximations, or the procedure
testeq. See section 15.12 on page 212. Be careful when the equations con­
tain parameters: Maple interprets them as abstract objects and does not bother
about special values of these parameters. See section 1.3 on page 6.

2. Try to discem whether aH solutions have been found or not. Again, be careful
when your equations contain parameters and you want to substitute values:
think about special cases.

3. If sol ve cannot tind aH the solutions on its own, you can think about methods
to be used by hand, for instance looking for pattems in the equations, guessing
solutions, possibly substituting variables for subexpressions in order to obtain
equations that are easier for Maple to handle, such as polynomial ones. (See
again for instance section 1.3 on page 6.) Then try to execute your plan, using
Maple as a too1.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

16.2 An example: a trigonometric equation 215

Generally, the procedure sol ve tries to tind an complex solutions.
There are no facilities to re strict the domain, for instance to positive numbers. But
there is a procedure isol ve for solving equations over the integers.

16.2 An example: a trigonometric equation

Here is an example:

> eq := 6*sin(x)~3 + 11*sin(x)~2 - 3*sin(x)=2;

eq:= 6 sin(x)3 + 11 sin(x)2 - 3 sin (x) = 2

> solve(eq,x);

~ 11', - arcsin(~), - arcsin(2)

As you might guess, Maple has solved this equation in two steps:

> solve(eq , sin(x));
1 -1
- - -2
2' 3 '

> map(arcsin,[%]);

[~ 11', - arcsin(~), - arcsin(2)]

From the tirst result, you can tind easily all real solutions: t1l' + 2k1l', ~11' + 2k1l',
- arcsin(~) + 2k1l' and 11' - arcsin(~) + 2k1l', for anY integer k. But so can Maple,
if you ask for that:

> _EnvAllSolutions:=true;

_EnvAliSolutions := true

> solve(eq);

1 2 1 1
611'+311' _Bl"" +2 LZl"", - arcsin(3)+2 arcsin(3) .El""

+211' _ZI"" +11' .El"", - arcsin(2) + 2 arcsin(2) _Bl""

+211' _ZI"" +11' .El""

This rather cryptic answer is to be read as follows:

• _BI"" is to be understood as a binary: O or 1

• _ZI"" is to be understood as an integer

Unfortunately, these variables are not easily accessible. (For programmers: in fact,
they are local variables of procedures called by sol ve.) For instance, the follow­
ing substitution does not work:

216 16. Solving equations and inequalities in general

> subs (_21=4, _81=0, [%]);

[1 2
6"1f + 31f -.81,..., +21f _ZI,..."

- arcsin(~) + 2 arcsin(~) _El,..., +21f -ZI,..., +1f -.81,..."

- arcsin(2) + 2 arcsin(2) -.81,..., +21f _ZI", +1f -.81",]

Here you can see how to handle this. First, it is practical to name the solution:

> sinsol:=%%:
The indeterminates in an expression can always be found with indets:

> pars:=indets([%]);

{_El"', _ZI,.,." -.81"" _ZI"" -.81"" _ZI", }

You can see what these parameters are meant to be:

> about(pars);
{_B1, _Z1, _B1, _Z1, _B1, _Zi}:

is used in the following assumed objects
[_B1] assumed OrProp(O,l)
[_B1] assumed OrProp(O,l)
[_Z1] assumed integer
[_Bl] assumed OrProp(O,l)
[_Zi] assumed integer
[_Z1] assumed integer

but be careful: don't look for the order in the result of about. This is not neces­
sarily equal to the order of the argument.
Now we can substitute, for instance:

> subs(pars[1]=O,pars[2]=3,pars[3]=O,pars[4]=-2,
> pars[5]=1,pars[6]=O,[sinsol]);

[3: 1f, _ arcsin(~) - 41f, arcsin(2) + 1f]

You can tind all real solutions in acertain range, say between -21f and 21f, by look­
ing at the solution and making suitable choices for these parameters. In more com­
plicated cases, you might prefer to leave this work to Maple as in the following.
We will also pretend not to see that arcsin(2) is not a real number.

First, we make a sequence of solutions, then we will select the ones that are real and
lie in the [-21f, 21f]. It is still necessary to choose good ranges for the parameters,
but that can be done rather roughly:

> seq(seq(seq(seq(seq(seq(
> subs(pars[1]=k1,pars[2]=k2,pars[3]=k3,
> pars [4] =k4,pars [5]=k5,pars [6]=k6,
> [sinsol]) ,

16.2 An example: a trigonometric equation

> k1=O .. 1),k2=-2 .. 2),k3=O .. 1),k4=-2 .. 2),
> k5=O .. 1),k6=-2 .. 2):

This is a sequence of lists. Let's convert it into a set:

> map(op,{%});

{ arcsin(~) + 311', arcsin(~) -11', arcsin(~) + 511',

1
arcsin(2) - 311', arcsin("3) - 311', arcsin(2) + 11',

arcsin(~)+lI', ~11',- arcsin(~), - arcsin(2) +211',

23 19 11 7 5
- arcsin(2) + 411' - - 11' - - 11' - - 11' - - 11' - 11'

, 6 ' 6 ' 6 ' 6 '6 '
17 25 29 . 1 13
-11' -11' -11' - arcsm(-) - 411' -11'
6'6'6' 3 '6'

- arcsin(2) - 411', arcsin(2) + 311',

- arcsin(2) - 211', - arcsin(~) - 211', arcsin(2) - 11',

- arcsin(~) + 211', - arcsin(~) + 411', - arcsin(2),

arcsin(2) + 511' }

217

To avoid equal elements, we have made a set of alI values. This set contains some
nonreal elements. Let's select the real elements.

> select(x->(x=evalc(Re(x))),%):
In this simple case, we can trust the condition x=evalc, because evalc can handle
simple arcsin expressions perfectly. In more complicated cases, you could use:

> select(x->(fnormal(evalf(x))=evalc(Re(evalf(x)))),%):
Now that alI elements are real, we can remove the elements that are greater than
211' Of smaller than -211':

> remove(x->(evalf(x»evalf(2*Pi)),%):
> remove(x->(evalf(x)<evalf(-2*Pi)),%);

{ . (1) . (1) 1 . (1) 11 7 arcsm - -11' arcsm - +11' -11' - arcsm - --11' --11'
3' 3 '6' 3' 6' 6'

~ 11', - arcsin(~) + 211' }

At last, you might want a list of the numeric approximations in ascending order:

> sort(evalf([op(%)],3),numeric);

[-5.75, -3.67, -2.80, -.340, .524,2.62,3.48,5.94]

Now let's test this re suit by a plot:

> lhs(eq)-rhs(eq);

218 16. Solving equations and inequalities in general

6 sin(x)3 + 11 sin(x)2 - 3 sin (x) - 2

> plot(%,x=-2*Pi .. 2*Pi)j

12

10

8

-4 -2

-2

We can see that the zeros match the found solutions.

So we have checked in two ways that alI solutions have been found:

a. by calculating the solutions in steps, where sol ve is applied only to a poly­
nomial equation (in sin (x);

b. by numeric approximation of the solutions and comparing them with a plot.

16.3 Another example: an exponential equation

Here is another example:

> eq := exp(3*x) = «-9*q+27)*exp(2*x)-9*q*exp(x))/
> (3*exp(2*x)+(3-q)*exp(x)-q-27)j

eq .= e(3 x) = (-9 q + 27) e(2 x) - 9 q eX

. 3e(2x)+(3-q)eX -q-27

> sol := solve(eq,x)j
1

sol := ln(-3), ln(3), 1 1f, ln(3 q)

We tind a set of four solutions, which can be checked easily by substituting each
of them into the equation and applying simplify.

16.4 No solutions found 219

> seq(simplify(subs(x=sol[k],lhs(eq)-rhs(eq))),k=1 .. 4);

0,0,0, °
Now the question must be asked if alI solutions have been found. If you are only
interested in real solutions, you could enter a value for q and try to check with a
plot if alI real solutions have been found, but that does not ensure that this is the
case generally.
The other way is finding the solutions stepwise. That is easy here: you can do the
same as what you would do by hand:

> expand(eq);

(X)2 (X)2 x
(eX)3 = -9~ + 27_e_ -9~

%1 %1 %1

%1 := 3 (eX)2 + 3ex - qeX - q - 27

> solve(%,exp(x));
1

0, -3,3, -1, 3 q

For no value of x the value of exp(x) can be zero. If we apply ln to the other
solutions, we find the solutions rendered by sol ve (eq, x). However, sol ve has
not found all solutions, "forgetting" to add alI integer multiples of 21fi. The fulI
solution is:

1
ln(-3) + 2 k1f 1, In(3) + 2k1f 1, I1f + 2k1f 1, In(3 q) + 2k1f 1

where k takes alI integer values.

16.4 No solutions found

If you present a system of equations to Maple, you must provide all the variables
for which it is to be solved. For instance:

> {x+y=3,x-y=5};

{ x + y = 3, x - y = 5 }

> solve(% , x);
No solution is found because there is no value for x that makes both equations iden­
tities in y. So no result is printed on the screen.

If Maple does not find a solution, it retums nothing at alI and keeps silent. How­
ever, by putting

> infolevel[solve] :=1:
Maple telIs if no solutions have been found. For instance:

> solve(cos(x) = ln(x-2) , x);

220 16. Solving equations and inequalities in general

solve: Warning: no solutions found
solve: Warning: solutions may have been lost

The infolevel can be reset by

> infolevel[solveJ :=0:

16.5 Inequalities and systems of inequalities

The procedure sol ve can handle some types of inequalities, for instance:

> solve(x~2<9,x);

RealRange(Open(-3), Open(3))

The solution above can be read as the open interval < -3,3 >.
> solve(x~2>25,x);

RealRange(- 00, Open(-5)), ReaIRange(Open(5), 00)

The solution of the last inequality can be read as a union of the open intervals:
< -00,-5> U < 5,00 >.

> solve({x~2-x<1,x>-1,x<1},x);

{ x < 1, RootOf(_Z2 - _Z - 1, -.6180339887) < x }

> convert(%,radical);

{ x < 1, ~ - ~ vIS < x }

Here a different notation is used: ~ - ~ J5 < x AND x < 1.
The RootOf expression in the first result has a second argument, indicating which
radical should be chosen:

> RootOf(_Z~2 - _Z - 1, -.6180339887);

RootOf(_Z2 - -Z - 1, -.6180339887)

> convert(%,radical);
1 1 -- -J5
2 2

If this argument had been omitted, convert (
other radical:

> RootDf CZ~2 - _Z - 1);

,radical) would render the

RootOf(_Z2 - -Z - 1)

> convert(%,radical);

16.6 Manipulating equations and sets of equations

1 1
-+-V5
2 2

Don't try to use allvalues in this context, it makes no sense.

221

The following type of problem cannot be solved by sol ve (up to rele ase V.5):

> solve({sin(x)<1/2,x>-3,x<3},x);
Here is another example:

> solve(l/x<l,x);

RealRange(- 00, Open(O)), RealRange(Open(l), 00)

Using parameters in inequalities is rather restricted.

Systems of linear inequalities and equalities can be handled as follows:

> sOlve({x+y<5,x-2*y>-7,y>-10},{x,y});

{x < 15, -10 < y, x + Y - 5 < 0, -7 - x + 2y < 0,

-27 < x, y < 4}

> solve({x+y=5,x-2*y>-7,y>-10},{x,y});

{ -10 < y, x = - y + 5, y < 4}

For linear programming see the package simplex.

16.6 Manipulating equations and sets of equations

There are many possibilities for manipulating equations and systems of equations
apart from the most obvious tool, substitution. The standard tools are demonstrated
here. We apply these to the following two equations:

> x+l=y; eql:=%:

x+1=y

> u+(x-l)-2=w; eq2:=%:

u + (x _1)2 = W

• Take the left-hand side and right-hand side with Ihs and rhs:

> lhs(eql); rhs(eql);

x+1

y

• Add or subtract the same element to/from both sides:

222 16. Solving equations and inequalities in general

> lhs (eq2)-%=rhs (eq2)-%;

u = w - (x _1)2

The element added to both sides has been entered first, then used by quoting.
This prevents typographical errors such as:

> lhs(eq2)-(x-l)~2=rhs(eq2)-(x-l~2);

u=w-x+1

• Multiply both sides with the same factor:

> p*eql;

p(x+1)=py

• Apply a function or other procedure to both sides with the aid of map:

> map(sqrt,eql);

v'x+I = vy
• Some procedures can be applied in a direct way:

> expand(eq2);

• Add two equations:

> eql + eq2;

u + x 2 - 2 x + 1 = w

x + 1 + u + (x - 1)2 = y + w

• Divide (or multiply) two equations:

> lhs(eql)/lhs(eq2)=rhs(eql)/rhs(eq2);
x + 1 y

2-­
U + (x -1) w

• Combine two equations by simplification to side relations. See section 11.11
on page 147, section 14.11 on page 186, and section 15.9 on page 203. For
instance, we can use eql for simplification of eq2:

> simplify(eq2,{eql});

u + 4 - 4 y + y2 = W

Here Maple has chosen to eliminate x. If we prefer elimination of y as far as
possible, then we can add a third argument [y]:

> simplify(eq2,{eql},[y]);

u + x 2 - 2 x + 1 = w

This simplification uses Grobner basis methods for polynomials. However,
this method is not restricted to polynomials. Here is an example:

16.6 Manipulating equations and sets of equations 223

> exp(x)*exp(y) = exp(x)**2-t;

eX eY = (eX) 2 - t

> exp(x)-l=u*exp(x);

> simplify(%%,{%},[exp(x)]);
eY t - 2 u t + u2 t - 1

---=
-1 + u 1 - 2 u + u2

• Sometimes, the procedure isolate can be used, which must be read from the
library when it is used for the first time in a session:

> (a-b*cos(x»/(c-d*cos(x»=t-5;

a-bcos(x) =t-5
c - d cos(x)

> readlib(isolate)(% ,cos(x));
a-tc+5c

cos(x)=- -b+td-5d

Be careful with this procedure: ifthere is more than one possibility, isolate
makes a choice from among them.

> 6*cos(x)-2 - 5*cos(x) - 1 = O;

6 COS(X)2 - 5 cos (x) - 1 = O

> isolate(%,cos(x»;
-1

cos(x) = 6
• You might want to assign the solutions to the variables. This can be done eas­

ily with assign:

> solve({X+2*Y=a,3*X-Y=b},{X,Y});

> assign(%);

> X,Y;

{ Y=~a-~b x=~a+~b} 77' 7 7

1 2 3 1
-a+-b -a--b 7 7) 7 7

224 16. Solving equations and inequalities in general

16.7 Solving equations numerically

For solving equations and sets of equations in a numeric al way, the procedure
fsolve can be used. When solving a polynomial equation, fsol ve tries to find ap­
proximations to alI real solutions (or, with option complex, alI complex solutions)
and generaIly succeeds. For more general equations and sets of equations f sol ve
is content with just one solution. For instance:

> eq := ln(x)=x-2;

eq:=ln(x)=x-2

> plot({lhs(%),rhs(%)} , x=0.01 .. 10);

6

4

o

-2

-4

> fsolve(eq,x);

.1585943396

From the graph of In it is clear that there should be a solution between O and 1. We
can ask for this solution with the aid of an option x=O .. 1:

> fsolve(eq , x , x = O .. 1);

.1585943396

There is no solution gre ater than 4, but we can ask for such a solution:

> fsolve(eq , x, x = 4 .. infinity);

fsolve(ln(x) = x - 2, x, x = 4 ... 00)

If fsol ve cannot find a solution of a nonpolynomial equation, it may keep silent
or retum the command unevaluated.

It is possible that a root exists, although f sol ve cannot find one, but that is a very
rare exception.

16.8 S01ving systems of equations numerically 225

16.8 Solving systems of equations numerically

Systems of equations can be given to fsol ve in the same way as to sol ve. Here
is an example that can be solved in an exact way as well.

> eql := cos(x)*sin(y)~2 + 6*sin(y) = 4*cos(x)j

eq1 := cos(x) sin(y)2 + 6 sin(y) = 4 cos (x)

> eq2 . - 2*x+3*y=Pij

eq2:=2x+3Y=7r

> fsolve({eql,eq2} , {x,y})j

{ y = -8.936914292, x = 14.97616777}

Another solution {y=O , x=7r/2} can be seen directly. We can try to find this
with fsolve by specifying ranges as a third option:

> fsolve({eql,eq2} , {x,y} , {x=l .. 3, y=-l .. 1})j

{x = 1.571798612, Y = -.0006681900122}

This is the desired solution, but it is not very accurate. Trying to improve the ac­
curacy by enlarging Digi ts is not always successful:

> Digits:=20:
> fsolve({eql,eq2}, {x,y}, {x=1.5 .. 1.6, y=-.l .. O.l})j

{x = 1.5707967777287823174, Y = -.3006225904654406354610- 6 }

We get no better result. Let's try to improve the perforrnance by guiding Maple
step by step, taking advantage of the fact that the second equation is easy.

> solve(eq2,x)j
3 1

--y+-7r
2 2

There would be no reason to use f sol ve in this first step; it would even be impos­
sible, as f sol ve cannot cope with an unspecified parameter y.

> subs(x=%,eql)j
3 1. . 3 1

cos(- -2 Y + - 7r) sm(y)2 + 6 sm(y) = 4 cos(- - y + - 7r)
2 2 2

> fsolve(% , y , y=-l .. l)j

o
More details can be found in the on-line help for fsolve.

226 16. Solving equations and inequalities in general

16.9 Series of an implicitly defined function

Suppose that we have a parameterized equation in x: Jt (x) = O and a value to such
that one or more solutions of the equation Jto (x) = O are available: say Jto (xo) =
O. Then you might be interested in a parameterized extension x(t) of this solution.
From an implicit function theorem we know that, if Jlo -:f. O and ft (x) depends on x
and t in a continuous way, then there is a parameterized solution x(t) of ft(x) = O
for t in a neighborhood of to such that Xto =Xo.

If the parameter t does not have a special value, it may be impossible to solve ex­
plicitly the equation for x, but you might be interested in a series approximation to
t -t x(t) in to. For instance:

> eql:=exp(t*x)=x*exp(x)+exp(t);

eq1 := e(tx) = xex + et

It is easy to see that {x = O, t = O} satisties this equation. We can calculate a
series expansion in t = O of a function t -t x(t) on a neighborhood of O, satisfying
e(tx) = x eX + et , as follows:

First we must convert the equation into a series:

> lhs(eql)-rhs(eql);

> series(% , x=O , 5);

(t) (1 2) 2 (1 1 3) 3 1-e +(t-1)x+ "2t -1 x + -"2+6"t x +

(_~ + ~ t 4) x 4 + O(x5)
6 24

The procedure sol ve perceives this series as an equation (appending "=0") and it
tries to tind a series as a solution.

> solve(%,x);
5 2 43 3 569 4 (5 -lt - -t - -t - -t + O t)
2 6 24

Let's check this result by substituting:

> convert(%,polynom);
_ t _ ~ e _ 43 t3 _ 569 t4

2 6 24

> subs(x=%,eql);

16.9 Series of an implicitly defined function 227

e((-1/24 t2(24+60t+172 t2+569 t3))) =

-t--t --t --t e 2 6 24 + (5 2 43 3 569 4) (_t_Qt2_fit3_569 t4)

2 6 24

This is not an exact identity, but the difference of the left-hand side and the right­
hand one should be of order 5: the orderofthe seriesequation thathas been solved.
To show this more clearly we can ask for a series expansion of order 6.

> series(lhs(%)-rhs(%) , t=O , 6);

_ 2579 t5 + O(t6)

30

The result is of order 5, the same as the order of the original series. Apart from the
order of the Iasi series expansion there are two Iimiters to the order of the result:

1. the order of the series to which sol ve is appIied

2. the value of the variable Order. See section 8.2 on page 109.

In order to tind a solution series of order n, both Iimiters should be at least n. Here
is a pitfall: if only the variable Order is raised, the order of the series expansion
of the equation being high enough, the procedure sol ve yields no better result,
because it only picks up the resuIt from the remember table of one of its subproce­
dures, when it gets the old arguments. Therefore, in any case, raise both together
before you ask Maple to solve again. For remember tables, see Appendix D, Pro­
cedures remembering previous results.

From the series expansion of t ---+ x(t), its derivative in O can be read as the coef­
ticient oft, in this case -1. This can also be calculated with diffimplicit.

In the previous calculation we have used series expansion of the equation to x, but
we can use series expansion to t as weIl:

> series(lhs(eql)-rhs(eql),t=O,5);

x () (1 1 2) 2 (1 3 1) 3 - xe + x - 1 t + -"2 + "2 x t + 6 x - 6 t +

(214 x 4 - 2~) t 4 + O(t5)

> solve(%,x);

5 2 43 3 569 4 5 -t - -t - -t - -t + O(t)
2 6 24

The re suit is the same.

Obviously, this method fails if no zeroth-order solution can be found. For instance,
Maple cannot solve for x from the equation in the case t = 2:

228 16. Solving equations and inequalities in general

> subs(t=2,eq1);

> solve(%,x);

The probIem is transiated into a RootOf expression; Maple finds no solutions. This
is why the following sol ve command has no resuIt:

> series(lhs(eql)-rhs(eql) , t=2 , 5);

(e(2X) _ xex - e2) + (e(2X) x - e2) (t - 2) +

(_~e2 + ~e(2X) x 2) (t _ 2)2+(~e(2X) x3 _ ~e2) (t _ 2)3+

(~ e(2 x) x 4 _ ~ e2) (t - 2)4 + O((t _ 2)5)
24 24

> solve(% , x);

Here is another exampIe, this time with more than one solution:

> eq2 := x~2*exp(t)=2*t*x+l;

eq2 := x 2 et = 2 t x + 1

If we want a series solution for x in a neighborhood of t = O, Maple must solve
the following equation:

> subs(t=O,eq2);

> solve(%,x);

1, -1

So we may expect two series solutions.

> series(lhs(eq2)-rhs(eq2),t=O,5);
1 1 1

(x2 -1) + (x2 - 2x) t +"2 x 2t2 +"6 x 2 t 3 + 24 x 2 t4 + O(t5)

> solve(%,x);

1 3 2 13 3 35 4 5 3 13 2
1+"2t-gt -48 t + 128 t +O(t),-1+"2t -s t +

61 t3 _ 233 t4 + O(t5)

48 384

16.10 Recurrence relations 229

16.10 Recurrence relations

There is a procedure available for solving recurrence re1ations: rsolve. For in­
stance, we can calculate formulas for the generalized Fibonacci sequence a, b, a+b,
a + 2b, 2a + 3b, ... as follows. Here is the defining equation:

> fibo := F(n)=F(n-l)+F(n-2);

fibo := F(n) = F(n - 1) + F(n - 2)

and the initial values:

> fibinit := F(l)=a, F(2)=b;

fibinit := F(1) = a, F(2) = b

Now we can apply the procedure rsol ve to obtain an explicit formula for the nth
element of the sequence:

> rsolve({ fibo , fibinit } , F(n));

1 (2V5-5) (2a+b+V5b) (-2~r
'5 1-V5

1 (5+2V5) (2a+b-V5b) (-2~r
'5 1+V5

Let's test the formula by calculating the fourth element:

> normale subs(n=4,%) , expanded);

a+ 2b

The same procedure can also try to calculate the generating function of the solu­
tion of a recurrence relation. The necessary option genfunc (t) must be entered
between forward quotes to avoid c1ashing with a package of the same name.

> rsolve({ fibo , fibinit }, F(n) , 'genfunc'(t));

- a t - b t 2 + a t 2

-1 + t + t 2

As an example, let's calculate from this result the first seven elements of the se­
quence. These can be found as the coefficients in the series expansion of this result
up to order 8:

> series(% , t , 8);

at + bt2 + (a+b)t3 + (a+2b)t4 + (2a+3b)t5 +

(5 b + 3 a) t6 + (5 a + 8 b) e + O (t8)

More tools for linear recurrence relations are available in the package LREtools.

230 16. Solving equations and inequalities in general

16.11 Solving identities, matching pattems

There are two procedures for solving identities and pattern matching in MapIe:
sol ve applied to an identity, and match.

First a simple problem: for which a and b is x + c = x:tba ?

> eq:=x+c=(x~2+a)/(x+b);

x 2 +a
eq := x + c = --­

x+b

> solve(identity(eq, x),{a,b});

{a=-c2 ,b=-c}

Let's solve the same probIem with match:

> match(eq,x,'sol');

true

The result true aftirms that Maple can match both sides of the equation by sub­
stituting suitable values for the variables in the right-hand side. The substitution
chosen by Maple has been assigned to the third argument:

> sol;

The procedure match tries to tind values for the parameters of the right-hand ex­
pression in order to make this identical to the Ieft side. Therefore, we get no result
if the Ieft-hand side and the right one are exchanged in the present example:

> rhs(eq)=lhs(eq);

x 2 +a
--- =x+c
x+b

> match(%, x , 'sol');

false

Here match tries to tind a value for c such that the left-hand side equals the right­
hand side; this is impossible.

Apart from this question, there are cases where match is successful and sol ve
(identi ty (),) is not, and other cases where the reverse is true. If you
don't succeed with one of them, try the other.

16.12 Other procedures for solving 231

16.12 Other procedures for solving

Differential equations must be solved with the procedure dsol ve, which is dealt
with in Chapter 17, Solving diJferential equations.

Systems of linear equations can also be solved with the aid of linear algebra. See
section 18.10 on page 257.

A procedure isol ve is available for solving equations in integer variables, and
a procedure msolve is available for solving equations in variables over Z mod
m.

chapter 17

Solving differential equations

This chapter introduces the main tools for handling differential equations with ex­
act or approximate methods, andfor graphics in this field. This field is developing
at a great pace; Maple now offers a lot more tools than the basic ones, demon­
strated in this chapter.

17.1 Ordinary differential equations (ODEs):
denoting, solving, checking solutions

Let's start with one of the most basic differential equations: y" = -y. Both sides
of the equation are functions. In Maple notation, both must be applied to an argu­
ment, say x:

> diff(y(x) , x , x) = -y(x) ;
82
8x2 y(x) = - Y(x)

If y is entered without argument x, the output indicates c1early that something is
wrong:

> diff(y , x , x) = - y;

0= -y

A recurring mistake is forgetting the argument only for the undifferentiated func­
tion, like this:

> diff(y(x) , x , x) = -y ;
82

8x2 Y(x) =-y

This is not correct: the Ieft-hand side is the second derivative at x, while the right­
hand side is a function, not the value of this function at x. Maple does not accept
it:

> dso!ve(%);
Error, (in ODEtools/info) y(x) and y cannot both appear in the
given ODE.

For checking purposes, Iet's assign the given differential equation to a name.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

Ordinary differential equations (ODEs)

> deql := %%%;

82
deql := 8x2 y(x) = - Y(X)

Maple can solve this ODE with dsolve:

> dsolve(%);

Y(x) = _CI sin(x) + _C2 cos(x)

233

In this case, dsol ve can detennine what to tind, but generalIy we must telI that by
a second argument:

> dsolve(deql , y(x));

y(x) = _CI sin (x) + _C2 cos(x)

In fact, Maple tries to tind a function y, but expresses the solution as y(x). That is
the reason that the second argument should not be y, but y(x).

The result found by dsol ve contains the expected integration constants: _CI and
_C2. Names starting with an underscore are used by Maple for special purposes
and should never be assigned values by the user.

It is c1ear that this solution is correct and that alI solutions have been found, but
generally you can't be sure, and then you must check the found solutions and you
must decide by mathematical arguments if a full set of solutions has been found.
Solutions can be checked with Maple. In release V.5, you can use odetest:

> odetest(%,deql);

o
The result O proves that the solution is correct. (Sometimes some extra manipula­
tion is necessary to tind O; see also section 15.12 on page 212.)
In earlier releases, don't use assign in this case, as you could for solutions of sys­
tems of equations; if you want to assign the corresponding function to y, issue
y: =unapply (rhs (%) , x) ; (see section 6.7 on page 77). We will not assign the
solution, only substitute it:

> subs(%% , deql);

::2 _CI sin(x) + _C2 cos(x) = - _CI sin(x) - _C2 cos (x)

> normal(lhs(%)-rhs(%));

o
Sometimes more manipulation is necessary, but the above demonstrates the stan­
dard tirst try.

234 17. Solving differential equations

17.2 Ordinary differential equations with initial conditions

Let's solve the same ODE with initial conditions. Suppose that y'(O) = ~. This
is expressed as D(y) (0)=1/2: take the derivativejimction ofy and apply this to
1/2. Moreover, let's suppose y(O) = 1.

> {diff(y(x),x,x) = - y(x) , D(y)(0)=1/2, y(0)=1};

1 82
{ D(y) (O) = 2' Y(O) = 1, 8x2 y(x) = - Y(x) }

An ODE with initial conditions is entered as a set of equations. For checking pur­
poses let's assign this set to a name before solving it.

> deq2 := %
> dsolve(% , {y(x)})j

y(x) = ~ sin (x) + cos(x)

Checking this solution is a little more complicated as the operator D expects a func­
tion. So we must make a function of the result of dsol ve before substituting. See
section 6.7 on page 77.

> unapply(rhs(%%) , x);

x -+ ~ sin(x) + cos(x)

> subs(y=% ,deq2);

{ II D(x -+ 2 sin(x) + cos(x)) (O) = 2'

(x -+ ~ sin(x) + cos (x)) (O) = 1,

::2 (x -+ ~ sin(x) + cos(x)) (x) =

- (x -+ ~ sin(x) + COS(x)) (x) }

We can check the equations in the system with the same method as previously, with
the aid ofmap:

> map(eq -> normal(lhs(eq) - rhs(eq)) , %)j

{O}
You may dislike the use ofD and diff in combination. Altematively, the previous
system of equations can be denoted by

> { D(D(y)) (x) = - y(x) , y(0)=1 , D(y) (0)=1/2 }j

{ D(y) (O) = ~, Y(O) = 1, (D(2») (y) (x) = - Y(x) }

17.3 Implicit solutions and checking them 235

which makes a nicer input line but a less readable output. For detailed information
about acceptable forms for initial conditions, see the on-line help for dsol ve, Ies.

17.3 Implicit solutions and checking them

Here is another example, the differential equation:

yy' = xy+x-x

> de3 ;= y(x) * diff(y(x) ,x) = x*y(x)-2 + x - x-3;

de3 := Y(x) (:x Y(x)) = X Y(X)2 + x - x3

In order to have an idea of the possible solutions let's plot the direction field of this
differential equation:

> DEtools[dfieldplot] (de3, y(x), x=-3 .. 3, y(x)=-3 .. 3);

Now let's solve it:

> dsolve(de3 , y(x));

y(x) = J x2 + e(x2) _CI, Y(x) = - J x2 + e(x 2) _CI

We find two solutions; obviously, dsol ve has found an implicit solution and then
solved this equation to y(x). If you preferthe implicit solution, you can try the
option 'implicit':

> dsolve(de3 , y(x), 'implicit');

Y(X)2 _ x2 - e(x 2) _CI = O

236 17. So1ving differentia1 equations

If you want a parametric solution, you can try dsol ve (, , implici t' ,
'parametric'). (In the present case, that is not successful.)

Sometimes, dsol ve itself chooses to render an implicit solution. In such a case,
you can ask for an explicit solution, if possible, with the option 'explicit' .

In the present example, it is not difficult to see that all local solutions of the dif­
ferential equations are represented in the result, if it is correct. Let's check it. In
release V.5 you can check the results again with odetest:

> odetest(% , de3);

o

For earlier releases, you can check implicit solutions by substituting and using side
relations (see section 11.11 on page 147) as follows. In the set ofrelations we
gather the solution and the derivative of the solution, because the ODE contains
Y(x) and tx Y(x)

> rels := { %% , diff(%%,x) };

rels := {2 Y(x) (! Y(x)) - 2x - 2xe(x2
) _CI

O, Y(X)2 - x 2 - e(x2
) _CI = O }

Then we can ask Maple to eliminate y(x) and tx y(x) as far as possible by applying
simplification to the difference between the left-hand side and right-hand side.

> simpIify(Ihs(de3)-rhs(de3), rels ,
> { y(x) , diff(y(x),x) });

O

For a second-order ODE, the second derivative of the solution must also be put
into the second argument set and diff (y (x) , x, x) into the third argument set.
In order to check a possible solution (dsol) of a lOth-order ODE (deq) in y (x),
we can try:

> simpIify(Ihs(deq)-rhs(deq) ,
> { dsol(x) , seq(diff(dsol(x),x$k),k=1 .. 10) },
> { y(x) , seq(diff(y(x),x$k),k=l .. 10) });

This method of checking works in many cases, but sometimes additional manipu-
lations may be necessary.

17.5 Numerica1 approximations to solutions 237

17.4 DESol expressions appearing in solutions

Sometimes, when dsol ve cannot find a solution, it presents an intermediate result
with the aid of a DESol expression. For example:

> diff(y(x),x,x,x) + x*diff(y(x) ,x) + (x-1)*y(x) = O;

(::3 y (x)) + x (:x y (x)) + (x - 1) Y (x) = O

> dsolve(% , y(x));

y(x) = _CI (6e(- x) + 6 e(- x) x + e(- x) x2) +

(6e(-X) +6e(-X)x+e(-X)x2) J DESol({ (6+6x+x2)

(::2 _Y(x)) + (-12x - 3x2) (! _Y(x)) +

(12x + 9x2 + x3 -12) _Y(x)}, {_Y(x)}) dx

The DESol expression in the last result is a symbolic representation ofthe solutions
of the differential equation described by the arguments to DESo!. In this case, the
differential equation is:

(6+6x+x2) (t:2 _Y(x)) + (-12x-3x2) (tx _Y(x))

+ (12x + 9x2 + x3 -12) _Y(x) = O

So the solution found with dsol ve has the structure

_CI f(x) + g(x) J s(x)dx

where s(x) is a symbolic representation of a solution of the last ODE in _Y.

The DESol construction is discussed in section 17.9 on page 244.

In some cases the differential equation cannot be solved by dsol ve, but it can be
reduced with the aid of transformations. In such a case, an intermediate result may
be presented containing the word &where. If you want to use or manipulate this,
consult the on-line help for ODESolStruct.

17.5 Numerical approximations to solutions

The field of solving differential equations in an exact symbolic way is developing
rapidly. With each new release of Maple, new algorithms for solving differential
equations have been added. But there are limits; often, numeric al approximations
or series developments must be used.

238 17. Solving differential equations

Consider the differential equation: u'(t) = sin(t * u(t». As can be expected,
dsol ve cannot solve this in an exact way. The present section applies a numerical
method to this ODE; the next section applies a series method to the same equation.

> diff(u(t),t) = sin(t*u(t));

:t u(t) = sin(t u(t»

> deq4 := %:
Before solving, let's plot the direction field of this ODE with the procedure
DEtools[dfieldplot]:

> DEtools[dfieldplot] (deq4, u(t), t=O .. 7, u(t)=O .. 3);

3 II~\\/II\\~I//\\-I!
2.8 1 I~\ \~I I~\ \~! I~\ \~I
2.6 . 1 f/ \ \ '-./ / 1 \ \ V /1 \ \-

11/\\\/11--\\\111 \\
2.4 1 1 1'-. \ \ ~I 1 I~ \ \ '-./ / 1 ~ \
2.2 1 1 / \ \ \/1 11'-. \ \ '-.1/ 1/

2- 1/1--\\\ 1///\\\\///
. I/!/'-.\\\~//!/'-.\\\~I

1.8 1!!1_\\\\ __ I!lI~\\\\
urol~ ' 11/1/'-.\\\\--1//1--\\\

1.4 II/ II~\ \ \ \ \~I ! / 1 I~\
1 2 1 1 1 / 1/ \ \ \ \ \ / 1 / / 1 1
. II//II/ \\\\\\~/II/
1 //!/II//~'-.\\\\\\'-.~/

0.8 /1 1 1 / / / 1 1/-'-. \ \ \ \ \ \ \
0.6 /1 1 1 / ! 1 ! ! 1 1/"'-""''-. \ \ \ \

//IIIII!/!!IIII//~~
0.4 // / 111II II ! ! / / / ! 1 1 1
0.2 __ / / / / I1111 II II // //

Let's solve the equation in a numeric al way with the command:

> Y := dsolve({deq4,u(O)=2},u(t),numeric);

Y := proc(rkf45...x) ... end

This strange result says that a function has been assigned to Y that can calculate
numerical approximations to function values of the solution. For instance:

> Y(O); Y(i); Y(3);

[t = O, u(t) = 2.]

[t = 1, u(t) = 2.669716221353340]

[t = 3, u(t) = 1.297705136840902]

The function Y yields equations determining points of the numeric al solution found
with dsolve.

17.6 Series development of a solution 239

By additional arguments, the calculation method can be chosen and values of sev­
erai variables controlling the calculations can be changed; see the on-line help to
dsol ve ,numeric.

We can get a graph ofthe solution Y with the procedure odeplot, contained in the
plots package.

> plots[odeplot](Y , [t,u(t)] ,0 .. 7 , labels=[t,u]);

2.5

2

U
1.5

0.5

o 2 3 t 4 67

The third argument detennines the range of the first coordinate.

17.6 Series development of a solution

Another approach to approximation is a local Taylor series expansion. Let's apply
this to the same ODE as in the previous section. First, let's set the value of Order
to 20 to obtain a series expansion of order 20.

> Order:=20:
Let's apply dsol ve with option series:

> dsolve({deq4,u(0)=2} , u(t) , series);

u() - 2 t2 _ ~ 4 _ 109 t6 _ 1247 8 193657 10

t - + 12 t 360 20160 t + 1814400 t +
15397183 12 1302729349 14 41217747869 16

239500800 t - 43589145600 t - 951035904000 t +
78476591731 18 20

291016986624000t + O(t)

Let's compare this solution with the numeric al solution of the previous section by
plotting it.

240 17. Solving differential equations

> convert(rhs(%) , polynom);

2 2 1 4 109 6 1247 8 193657 10

+ t - 12 t - 360 t 20160 t + 1814400 t +
15397183 12 1302729349 14 41217747869 16

239500800 t - 43589145600 t - 951035904000 t +
78476591731 18

291016986624000 t

> plot(% , t = O .. 1.3);

2.5

1.5

0.5

o 0.2 0.4 0.6t 0.8 1.2

In this picture we have taken a smaller range for t than previously in the numerical
approach. From the graph of the direction field of the differential equation, it is
clear that for t > 1 the series solution is losing relevance, while the numeric al
solution is a good approximation to the solution on a much wider range. In fact,
there is a satisfying concordance between the numerical and the series solution for
t between O and 0.5.

17.7 Systems of ODEs

Systems of differential equations are entered as sets. Here is an example, where
dsol ve can find a solution.

> deq1 := diff(f(t),t)=f(t)-g(t)-1;
a

deql := at f(t) = f(t) - g(t) - 1

> deq2 := diff(g(t),t)=f(t)-2*t;
a

deq2 := at g(t) = f(t) - 2 t

17.7 Systems ofODEs

> dsolve({deql,deq2} , {f(t),g(t)});

{g(t) = ~J3e(!t) Sin(~tJ3) _Cl+_C2e(!t)CoS(~tJ3)-

~ J3 e(! t) sin (~ t J3) _C2 - 1 + 2 t,

f(t) =_Cle(!t) cos(~tJ3)+~J3eOt)Sin(~tJ3) _Cl­

~J3e(!t) Sin(~tJ3) _C2+2+2t}

Let's check this solution, first for rele ase V.S:

> odetest(% , {deql,deq2});

{O}

For earlier releases:

> subs(%% , {deql,deq2}):
> map(eq -> normal(lhs(eq)-rhs(eq» , %);

{O}

241

IfMaple cannot find an exact solution of a system ofODEs, the system can be pre­
sented to dsol ve (, series). Moreover, if it does not contain undetermined
constants, then the set together with sufficient initial conditions can be handled
withdsolve(,numeric).

Integral curves can be plotted with the procedure phaseportrai t contained in
the package DEtools. The arguments are here:

• a list of ODEs
• a list of the function names ("dependent variables")

• the range of the parameter t

• a set of initial conditions: lists of the form [t, f(t), g(t)]

> DEtools[phaseportrait] ([deql,deq2] ,[f,g] ,t=-2 .. 5,
> ([0,-2,-2], [0,0,0], [0,2,2], [0,5,5], [0,10,10]});

242 17. Solving differential equations

60

-80

For a system of first-order aDEs with constant coefficients, the exponential of a
matrix can be calculated with linalg [exponential]. This procedure is demon­
strated in section 18.13 on page 263.

17.8 HeIping Maple in solving ODEs

Because piecewise expressions can be handled weB by dsol ve (from release VA),
it can be useful to convert expressions and functions containing abs, signum,
Heaviside, max, min, etc. to piecewise-detined functions with convert

, piecewise) .

It can sometimes be helpful when integral transforms are applied in order to tind
a solution or a nicer solution. If you want the Laplace transform to be used, add
the option method=laplace. Other methods are fourier, fouriersin, and
fouriercos. These transforms are available separately in the inttrans package.

You may see a pattern in an ODE that Maple does not, perhaps a solution of its ho­
mogeneous variant. You can use this for manipulating that ODE, possibly resulting
in an easier ODE that can be solved with dsolve. A special tool for manipulat­
ing differential equations is PDEtools [dchange]. This procedure can convert a
differential equation by substituting variables. Here is an example:

> deq := x*diff(y(x),x,x) + (a*x-2-1)*diff(y(x) ,x) +
> b*x-3 = O;

deq:= x (::2 y(x)) + (ax2 -1) (:x y(x)) + bx3 = O

17.9 Symbolic representations of solutions: DESol 243

Let's substitute 0 for x and detine z(t) := y(0). This can be done with the
procedure PDEtools[dchange]. We must indicate that a and b are constants by
the third argument.

> PDEtools[dchange] ({x=sqrt(t),y(x)=z(t)} , deq , {a,b});

2t (:tJt) +2Vt (:t22 Z(t)))+2(at-1)Vt(:t Z(t)) +

b t(3!2) = O

This result becomes a nice expression if it is multiplied by sqrt (t) .

The tirst argument to PDEtools [dchange] is a set of substitution rules, saying
that the new variable is t, related to x by x=sqrt (t) and that the new function in
t is t - > z (t). The last argument says that a and b are constants.

In earlier releases, PDEtools [dchangevar] is not available. You might try
DEtools [Dchangevar]. The same result could be generated in V.3 (but not in
V.4) with:

> DEtools[Dchangevar] ({x=sqrt(t) ,y(x)=z(t)} , " , {a,b});

2t (:tJt) +2Vt (::2 Z(t))) +2(at-1)0 (:t Z(t)) +bt(3!2) =0

This tool is much more restricted. For instance, the following cannot be done with
DEtools[Dchangevar]:

> PDEtools[dchange] ({x=exp(u) ,y(x)=p(u)} ,deq , {a,b});

aa p(u) a:::'Ia2 p(u) (a (eU)2 - 1) (tu p(u)) 3
_ U + U + + b (eU) = O

eU eU eU

17.9 Symbolic representations of solutions: DESol

Maple V can use symbolic representations of solutions of ODEs with the aid of
DESol. First, let's use this for a basic standard equation:

> diff(y(x) ,x) = a*y(x);
a

ax Y(x) = a Y(x)

> DESol(% , y(x));

DESOl({ (:x Y(x)) - a Y(x) } ,{ Y(x)})

Such an expression can be manipulated with several procedures. For instance, it
can be integrated:

244 17. Solving differential equations

> int(%,x);

DESol({ (-Ix y(x)) - a Y(x)}, {Y(x) })
a

The last result says that the antiderivative of any solution of the present ODE is
equal to this solution divided by a. In this case an explicit solution is available, by
which we can affirm the last re suIt.

> subs(DESol=dsolve , %%);

dsolve({ (:x y(X)) - a y(x) } , {y(x)})

> %;

Let's take another easy example, the ODE y" = a y.

> DESol(diff(y(x),x,x)=a*y(x) , y(x));

DESOI({ (::2 y(x)) - a y(x) }, {y(x)})

> des := %:
Let's differentiate des.

> diff(des, x);

:x DESOl({ (::2 y(X)) -ay(x) },{y(x)})

Not very interesting. But ifwe differentiate this again, Maple can use the equation.

> diff (% , x);

a DESOI({ (::2 y(x)) - a y(x) }, {y(x)})

A DESol expression can be a part of an expression. For instance:

> des~3-1/des -5;

D ESol ({ (::2 y (x)) - a Y (x) } , { y (x) }) 3 -
1 -5

DESol({ (~ y(x)) - a y(x) }, {Y(x) })

This can be integrated as well:

> int(% , x);

17.10 Graphic tools for differential equations

({
2 ~ W(X)2 1 -t;s w(x)

DESol -9 :x w(x)(5/3) + 3" :x W(X)(2/3)

a :x W(X){1/3) } ,{ w(x) }) -

DESol ({ 2 ~ ;(~:: t w~;~;
Ix :(X)} ,{W(X)}) -5x

The procedure series can be applied to a DESol expression.

> series(des, x , 10);

1 1
Y(O) + D(Y) (O) x + 2" a Y(0)x2 + "6 a D(Y) (O) x3 +
111
24 a2 Y(0)x4 + 120 a2 D(Y) (O) x5 + 720 a3 Y(0)x6 +

1 3 7 1 4)8
5040 a D(Y) (O) x + 40320 a Y(O x +

1
-- a4 D(Y) (O) x 9 + O(xlO)
362880

245

The DESol construction is an analogue to the RootOf construction. If there is no
derivative, the first is converted to the second construction:

> DESol(y(x)~2=y(x)-1 , y(x));

RootOf(- _Z + _Z2 + 1)

A set of initial conditions can be used as a third argument to DESol.

Sometimes results can be made more readable by using an alias for a DESol ex­
pression; see section B.l on page 285.

17.10 Graphic tools for differential equations

The easiest method for plotting solutions is shown in section 17.5 on page 238
on numerical solutions: apply dsol ve (,numeric) and then plot the so­
lution with plots [odeplotJ. For other purposes, the package DEtools offers
df ieldplot and phaseportrai t, which are shown earlier in this chapter.

246 17. Solving differential equations

17.11 More tools

In the present rele ase 5 of Maple V, there is a new package PDEtools for manip­
ulating and solving partial ditTerential equations and for plotting solutions. See
the on-line help for this package.

The package linalg contains several procedures for vector calculus, such as
the procedure linalg [potential], which calculates a function in several vari­
ables, if extant, when its first-order partial derivatives are given; and the procedure
linalg [vecpotent] , which calculates a vector field, if extant, the curl of which
is a given three-dimensional vector field.

chapter 18

Vectors and matrices

Maple supplies a special toolkit for linear algebra: the linalg package. For ma­
trices and vectors Maple uses a special data structure. This chapter explains how
matrices and vectors can be created, changed, and handled.

18.1 The linear algebra package

Before we can start ca1culations with vectors and matrices we must load the pack­
age linalg:

> with(linalg):
Warning, new definition for norm
Warning, new definition for trace

Maple's wamings indicate that the names norm and trace were referring to pro­
cedures, and that loading the linalg package made these names refer to proce­
dures from the package. The "old" procedures can be reinstalled with the aid of
readli b, for instance with norm: =readl i b ('norm') .

Asking for on-line help to the procedures from the linalg package is always pos­
sible in a way like "?linalg [det] " or "?linalg, det", but in most cases it is
not necessary to use the name of the package; for instance, "?det" can be used as
well.

Of ten, Error messages oflinalg procedures are caused by applying them to sin­
gular matrices. The other important cause of error messages is this: if even one of
the matrix elements contains a floating-point number, many of the procedures of
this package try to switch to numeric al algorithms. These can be applied only if
all the elements of the matri x are numeric, and possibly complex. However, if the
matrix contains indeterminates at the same time, only symbolic procedures can be
used. In these cases, it might be necessary to convert the ftoating-point numbers
contained in the matrix to rationals with the aid ofmap, as is shown in section 18.7
on page 254. The main cases of this question are discussed in this chapter.

Almost all symbolic algorithms used in this package are based on arithmetic op­
erators and on handling polynomials. As Maple has a thorough command ofthese
fields, the symbolic algorithms of linalg are reliable, generally. Only the test
procedure orthogonal uses numeric al testing, which might yield incorrectresults
in a rare exceptional case.

E. Kamerich, A Guide to Maple
© Springer Science+Business Media New York 1999

248 18. Vectors and matrices

However, keep in mind that alI unassigned names are interpreted as abstract num­
bers. Beware of the effects of substitution of special values for indeterminates, for
instance causing matrices to be singular.

18.2 Creating vectors and matrices

A matrix can be created with the procedure matrix:

> A := matrix([[5,4,1] , [3,-1,2] , [-3,0,1]])

A- [J3 ~1 ~l
The argument to matrix is a list of the rows of the matrix, each row being rep­
resented as the list of its elements. For a discussion of lists, see Chapter 10, Ma­
nipulating several objects at once. This list of lists can be derived back from a
matrix: here for instance, with convert (A , listlist).

A vector can be created with the procedure vector:

> cv := vector([x,y,z]) ;

cv := [x, y, z]

The procedure vector has been applied to the Zist of elements of the vector. This
vector is printed horizontally, but it is interpreted by Maple as a column vector in
matrix operations. It looks like a list. Compare:

> [x,y,z] , vector([x,y,z]);

[x, y, z], [x, y, z]

The corresponding row vector can be created with transpose:

> transpose(vector([x,y,z]));

transpose([x, y, z])

The result is to be read as the transpose of a column vector, thus as a row vector.
It is also possible to think of a row vector as a matrix with one row:

> matrix([[x,y,z]]);

[x y z]

This one-by-three matrix is printed in exactly the same way as the column vector
vector ([x, y , z]) in windowing versions. However, it is always possible to get
extended information about a vector or matrix with lprint. For instance,

> lprint(%);

18.3 Evaluation of vectors and matrices 249

array(1 .. 1, 1 .. 3,[(1, 1)=x, (1, 2)=y,(1, 3)=z])

Vectors and matrices are one- and two-dimensional arrays, and here Maple ex­
plains that this one is an array with two indices, the tirst one ranging from 1 to
1, the second from 1 to 3; moreover, all its elements are presented.

Other ways of creating matrices and vectors are discussed later in this chapter.

18.3 Evaluation of vectors and matrices

In the previous section, we have assigned a matrix to the name A. If you simply
type A, you don't see this matrix:

> A ;

A

It is the same as with procedures: a name referring directly to a matrix is not au­
tomatically evaluated further; for full evaluation, use eval:

> eval(A) ;

[5 4 1]
3 -1 2
-3 O 1

Later in this chapter, you will see that sometimes full evaluation requires a combi­
nation of map and eval: map (eval , A).

By the same mechanism in Maple the name A at the right-hand side ofthe following
assignment is evaluated to itself:

> 8 := A;

B:=A

This makes 8 refer directly to A and not to the matrix itself:

> eval(8, 1) ;

A

Automatic evaluation of8 does not yield 8 itself, but the evaluation process reaches
A, where it stops as this name is referring directly to a matrix:

> 8;

A

250 18. Vectors and matrices

The special rule of evaluation demonstrated here is:

Automatic evaluation stops where it reaches
a name that refers directly to a matrix or a vector.

This rule is called the rule of evaluation up to the last name. The same rule applies
not only to vectors and matrices, but to tables in general and to procedures.

18.4 Elements of vectors and matrices

An element of a matri x can be selected with an index, using square brackets:

> A [2, 1] ;

3

An element of the matrix can be changed with an assignment:

> A[1,2] := -2 ;

AI ,2 := -2

More about what happens with such assignments can be found in section 18.8 on
page 255. The input A [1,2] is printed as Al, 2 in windowing versions, but the
square brackets are necessary in the input. Do not use as input A12 instead, which
yields the name A12, nor Al, 2, which yields a sequence of the name Al and the
number 2. In section B.3 on page 287 some special aspects of so-called indexed
names are discussed.

18.5 Matrix and vector arithmetic operators

For demonstration purposes in this section we use the following vector and matri·
ces:

> vc := vector([x,y]);

ve:= [x,y]

> Ml := matrix([[a,b], [c,d]]) ;

MI:= [~ ~]
> M2 := matrix([[p, q] , [r, s]]) ;

M2:= [~ ~]
In calculations with matrices and vectors the operators are lazy. For instance the
sum:

18.5 Matrix and vector arithmetic operators 251

> M1 + M2 j

Ml+M2

is not calculated. You must execute matri x operations with the procedure evalm:

> evalm(%) j

[a+ p b+q]
c+r d+s

The product of Mi and M2 is calculated correctly with:

> evalm(Mi &* M2)j

[ap+br aq+bS]
cp+dr cq+ds

The product operator between matrices is to be denoted with &*.
Maple always interprets * as a commutative operator.

If * is used for a matrix product, the order of the factors is chosen by Maple before
evalm comes into action, and so would yield a correct result only by chance.

The product operator between matrices and vectors must be denoted with &* as
wel1:

> evalm(Mi &* ve)j

[ax + by, cx + dy]

> evalm(transpose(ve) &* Mi)j

transpose([ax + YC,x b + dy])

The product operator between a scalar and a vector or a matrix must be denoted
with *:

> evalm(3 * Mi)j

[3a 3b]
3c 3d

Scalar addition to a matrix may seem odd, but in such cases Maple interprets a
scalar as a multiple of a suitable unit matrix:

> evalm(iOOO + Mi)

[a + 1000 b]
c d + 1000

Integer powers of matrices can be entered with ~:

252 18. Vectors and matrices

> evalm(Ml ~ 3);

[
(a2 +bC)a+(ab+bd)C (a2+bC)b+(ab+bd)d]

(ca+dc)a+ (bc+~)c (ca+dc)b+ (bc+~)d

> evalm(Ml ~ (-1));

[_ad~:C
ad-bc

- a~~bc]
ad-bc

The last result can also be calculated with the procedure inverse.

It is possible to substitute a matrix into a polynomial:

> x~2 - 5*x + 1;

x 2 - 5x + 1

> subs(x=Ml,%);

M1 2 - 5Ml + 1

> evalm(%);

[a2 +bc-5a.+l ab+ .• bd~5b 1
ca 4- d C - il c b c -r- d' - il d 4- 1

18.6 Manipulating alI the elements of a matri x or vector at once

All elements of a matrix can be processed at once with the aid of the procedure
map, discussed in section 10.3 on page 127. For instance, we have the matrix A:

> eval(A);

We can square each element of A as follows:

> map(x -> x~2 , A);

[25 4 1]
9 1 4
9 O 1

In fact, this is an exception to the general rule that map applies a procedure, the
first argument to map, to the operands of the second argument; the operands of a
matrix are not its elements:

18.7 Processing a matrix that contains ftoating-point numbers 253

> op(eval(A));

1 ... 3, 1 ... 3, [2, 3 = 2, 3, 1 = -3, 3, 2 0, 3, 3 =
1,1,1 = 5,1,2 = -2,1,3 = 1,2,1 = 3,2,2

-1]

but here map deviates from its normal rule in order to do what is useful for matrices
in most cases.

In the same way, alI the elements of a vector can be processed with the aid of map.

If a procedure such as simplify is to be applied to alI the elements of a matrix,
the procedure map can be used, too:

> matrix([[cos(phi),sin(phi)] ,[-sin(phi),cos(phi)]]);

[
cos(4)) Sin(4))]

- sin(4)) cos(4))

> inverse(%);

[
cos(<p)~~~ln(<p)2 - COS(<p)~nJ~ln(<p)21

sine <p) cost <p)
cost <p)2+sin(<p)2 cost <p)2+sin(<p)2

> map(simplify , % , trig);

[
COS(4)) - Sin(4))]
sin(4» COS(4»

18.7 Processing a matri x that contains floating-point numbers

Several procedures in the linalg package switch over to numerical algorithms as
soon as one of the elements of a matrix contains floating-point numbers, possibly
complex. If the matrix contains indeterminates, this results in an error "matrix
entries must alI evaluate complex floats". For example:

> A:=matrix([[0.2 , a] ,[b/3. ,4]]);

A:= [.33333;3333 b :]

> rank(%);
Error, matrix entries must alI evaluate to complex floats

In such a case, the floats must be converted to rationals. See section 12.7 on page
156. See also the previous section for the use ofmap:

254

> map(convert , A , rational, exact);

> ~ank(%);

[1. al 5
3333333333

10000000000 b 4

2

18. Vectors and matrices

Observe that this result is correct only if a and b are interpreted as abstract items;
substituting special values for a and b may result in rank equal to 1.

18.8 Names contained in elements of matrices and vectors

In substitutions, it is tempting to forget the special rule for evaluation of names
referring to vectors and matrices. For instance,

> S := vector([u-2 , u-l , u+l]);

S:= [u2 ,u -1,u + 1]

> subs(u=10,S);

S

This fails because S is not evaluated to the corresponding vector, so the procedure
subs does not "see" the u contained in this vector. A correct method is:

> subs(u=10 , eval(S));

[100,9,11]

The result is a new vector object where u is exchanged for 10, as can be read from
the result printed by Maple. Remember that the substitution has created a new vec­
tor and that S itself has not been changed by this command:

> eval(S) ;

[u2 ,u -1,u + 1]

If we assign a value to u we get the impression that this assignment does not influ­
ence the u in the matrix:

> u := 100;

u:= 100

> eval(S);

[u2 ,u -1,u + 1]

This effect is caused by the fact that after the evaluation of a matrix or vector, the
elements of the matrix are not evaluated. You can ask for this evaluation by apply­
ing eval to each of the elements of the matri x at once with the aid of map:

18.9 Detenninant, basis, range, kemel, Gaussian elimination 255

> map(eval , S);

[10000,99,101]

18.9 Determinant, basis, range, kemel, Gaussian elimination

Here is a short survey:

- det calculates the detenninant of a matrix

- Svd calculates the singular values of a numeric matri x in combination with
evalf, for example evalf (Svd (A))

- trace calculates the trace of a matrix

- rank calculates the rank of a matri x

- basis calculates a basis for the subspace spanned by the vectors in the list or
set given as argument to basis as a sublistlsubset of the given vectors

- colspace or range finds a basis for the range of a linear map described by a
matri x as a left operator on column vectors. This basis is calculated by Gaus­
sian elimination on the columns, resulting in a matrix in triangular form with
leading entries equal to 1. The columns of this matrix that are not equal to
zero yield a basis for the range of the given linear map.

- colspan does almost the same job as colspace, but it can only be used if
all the items of the matrix are polynomials over the rationals. Generally the
leading entries of the resulting matrix will not be equal to 1, but colspan has
the advantage that the elements of the resulting vectors are also polynomials;
it does not introduce quotients of polynomials.

- rowspace and rowspan do the same as colspace and colspan, respec-
tively, for rows instead of columns

- LUdecomp computes the LU decomposition of a square matrix

- intbasis calculates a basis for the intersection of two linear subspaces

- sumbasis calculates a basis for the sum of two linear subspaces

- gausselim and gaussjord apply Gaussian elimination, yielding a matrix
in row echelon fonn. In the case of gauss j ord the nonzero leading entries
in the resulting matrix are 1.
These two procedures can be applied to a matrix containing quotients of poly­
nomials over the rational complex numbers or only complex ftoating-point
numbers and rational complex numbers. If necessary, ftoating-point numbers
can be converted into rationals: see section 18.7 on page 254. The procedure
rref is equal to gaussjord.

- f f gaus se lim applies fraction-free Gaussian elimination on a matrix of poly­
nomials over the rationals

256 18. Vectors and matrices

- hermi te computes the reduced row echelon form of a matrix of polynomi­
als in one variable with coefficients in the field of quotients of multivariate
polynomials over the rationals

- smi th computes the Smith normal form of a matrix of polynomials in one
variable; ismi th is a variant for calculations with integer matrices

18.10 Systems of linear equations

With the aid of Maple's solve procedure, large systems of linear equations can be
solved in a fast and efficient way. Remember, that Maple conceives of variables
as abstract items, so if a system contains parameters, and you want to substitute
values for these parameters in the general solution, the result may not be the correct
solution of the special problem. Here is an extremely easy example:

> sys := { a*x+3*y=7 , 6*x+2*a*y=14 };

sys:= {ax+3Y = 7, 6x+2ay = 14}

> solve(sys , {x,y});

{ X=7_1_,y=7_1_}
a+3 a+3

When you look at the result, you can see that it is not correct if a=-3. When you
look at the system itself, you can see that the result is also not the correct solution
if a=3. Let's pretend not to see this fact and use the methods from linear algebra.
First, the homogeneous part of the system must be converted to a matrix by apply­
ing genmatrix:

> genmatrix(sys, [x,y]);

[~ 23a]
The singular cases can be found by using the determinant:

> solve(det(%)=O , a);

3, -3

These special cases can be handled by substituting 3 Of -3 for a in the system and
applying sol ve to these special systems. For instance,

> subs(a=3 , sys);

{3x + 3y = 7, 6x + 6y = 14}

> solve(% , {x,y});

{ y = y, x = - y + ~ }

18.10 Systems of linear equations 257

The preceding example may show advantages of handling a system of linear equa­
tions in Maple with tools from the linalg package before sol ve is used. It is not
necessary to use sol ve here; the package contains a special procedure for solving
matrix equations: Iinsolve:

> B := matrix([[a,l,l], [l,a,l], [l,l,a]]);

[
a 1 1] B:= 1 a 1
1 1 a

> w := vector([l,l,a~2]);

w := [1,1, a2J

The equation B x w in vector x can be solved with:

> linsolve(B , w);

a a a2 + 2a + 2
[- a+2'- a+2' a+2 J

Again it can be interesting to look at the cases where a special value of a causes B
to be singular:

> solve(det(B)=O,a);

-2,1,1

Let's solve B x = w in the case a=1. If we assign 1 to a, we get troubles: Maple
calculates the solution before it evaluates a because of the special evaluation sys­
tem of matrices and vectors:

> a:=l: linsolve(B,w);
Error, division by zero

Therefore, we substitute 1 for a in B and w:

> a:='a':
> subs(a=l , [eval(B),eval(w)]);

[[t : t], [1,1, Il]
We have combined the matrix B and the vector w together in a list in order to apply
substitution to both at once. The resulting list must be converted to a sequence with
op, yielding the two arguments to !insol ve:

> linsolve(op(%));

[1- -tI - -t2, -h, -t2J

The result contains two parameters -tI and -t2; the solution is two-dimensional.
This is the standard way of parameterizing a solution found by linsol ve. There-

258 18. Vectors and matrices

fore, it is important to avoid assigning values to -h, -t2,

This same procedure linsol ve can be used for solving equations of the following
type: given two matrices A, where A is not singular, and B of suitable dimensions,
for which matrix X is AX = B?

For optimization problems in linear equations the procedure leastsqrs is
available: if A is a matrix and w is a vector, then leastsqrs (A, w) yields a vec­
tor x such that A x - w has minimallength, where the length is calculated as the
square root of the sum of the squares of the coordinates.

For optimization problems in linear inequalities or linear programming the
simplex package is available. Consult the on-line help about this package.

18.11 Characteristic polynomials and eigenvalues

The procedure charpoly computes the characteristic polynomial of a square ma­
trix:

> M := matrix([[a,b~2],[25,a]]);

M:= [2~ ~]
> charpoly(M,lambda);

,\ 2 - 2 ,\ a + a2 - 25 b2

The procedure eigenvals calculates the eigenvalues of a square matrix:

> eigenvals(M);

-5b+a,5b+a

The procedure eigenvects tries to calculate the eigenvectors of a square matrix:

> eigenvects(M);
1 1

[5b+a, 1, {[-Sb,l]}], [-5b+a, 1, {[-Sb,l]}]

The result is a sequence of two lists. The first element of each list is an eigenvalue
of the matrix, followed by its multiplicity and a set of eigenvectors (a basis for
the corresponding eigenspace). As usual, the variables a and bare considered by
Maple as abstract items, not as unknown numbers, so the degenerated case where
b equals zero is not included in the re suIt.

When necessary, a RootOf expression is used in results of eigenvals and
eigenvects. This is generally necessary if the dimension is higher than 3:

18.11 Characteristic polynomials and eigenvalues

> hilbert(5);

1 1 1 1 1
2 3" 4 5"

1 1 1 1 1
2 3" 4 5" 6"
1 1 1 1 1
3" 4 5" 6" ;;
1 1 1 1 1
4 5" 6" ;; 8
1 1 1 1 1
5" 6" ;; 8 i)

> eigenvects(%);

[~ w1 1 { [1124794 w1 _ 37956758 rc12 31091207'13_
5 /0" 7875 /0 15625 o + 125 /0

4346496 4 81859 5891 6452734
15625 %1 - 7875000' 33750 - 4725 %1+

4613227607'12 _ 189683207'13 176870407'14
1875 10 75 10 + 625 10 ,

18880847 rc1- 4871447884 w12 5733056 w13_
7875 o 109375 /0 + 125 /0

80204544 rc 14 _ 2752963 1 2720979364 rc 12_
15625 o 3937500" 109375 o

2040832 w 1 _ 1847177 _ 641536 w 13 4488422407' 4] }]
1575 /0 3937500 25 /0 + 15625 101

%1 := RootOf{85349376_Z5 - 762725376_Z4+
741667248 _Z3 - 40915248 _Z2 + 61501 _Z - 1)

259

Here only one eigenvalue seems to be found, with multiplicity one, but this
RootOf expres sion has two values that can be found with alI values (, 'd'):

> allvalues(%);

[.328792877210-5 , 1, { [-.008047359657, .1521038665,

-.6597620813, 1, -.4904195315] }],

[.0003058980402, 1, {[.2023898935, -1.856745992,

2.863863673, 1, -2.392881055] }],

[.01140749162, 1, { [.6919626481, -2.339027826,

-.3890937582, 1, 1.82571361~}],

[.2085342186, 1, { [-1.355862594, .621559,

.9571437937,1, .966454]}],

[1.567050691, 1, {[3.029605206, 1.76,

1.270834794, 1, .83] }]

260 18. Vectors and matrices

Apart from using aH values, it is not convenient to manipulate the combinations
of the eigenvalues and eigenvectors yielded by eigenvects as a whole; proce­
dures such as normal, expand, and simplify must be applied separately to an
eigenvalue, and, with the aid of the procedure map, to a corresponding eigenvector.

If a matrix contains floating-point numbers, the procedures eigenvals and
eigenvects switch to numeric al methods automatically. However, these numer­
ical methods fail if the matrix contains indeterminates:

> M [2 , 1] : = . 11 :
> eval(M);

> eigenvects(M);

[a b2]
.11 a

Error, matrix entries must alI evaluate to float

In this case, all floating-point numbers must be converted to rationals. See section
18.7 on page 254.

> map(convert,M,rational);

> eigenvects(%);

[a+ 1~ Jilb, 1, { U~ Jilb, 1] }],

[a - IlO Jil b, 1, { [- ~~ Jil b, 1] }]

The procedure eigenvects for finding eigenvectors symbolically has restrictions
on the type of the elements of the matrix: only algebraic expressions, possibly con­
taining names, and RootOf expressions are allowed. Therefore, it fails in the fol­
lowing case:

> T:=matrix([[9*cos(phi)~2+43*cos(phi)+16,
> 50*(cos(phi)+1)~2] ,[-16+8*sin(phi)~2-16*cos(phi),

> 31*sin(phi)~2-37*cos(phi)-55]]);

[
9 COS(4))2 + 43 cos(4)) + 16 50 (cos(4» + 1)2 1

T:= -16 + 8 sin(4))2 - 16 cos(4)) 31 sin(4))2 - 37 cos(4)) - 55

> eigenvects(%);
Error, eigenvects only works for a matrix of rationals,
rational functions, algebraic numbers, or algebraic
functions at present

18.12 Dot product, cross product, nonns, and orthogonal systems 261

The procedure eigenvects cannot handle this matrix, as it contains cos and sin.
Sometimes it is possible to avoid these restrictions by substituting. However, be on
your guard. For instance, if cos(phi) and sin(phi) are replaced with c and s
in the present case, then eigenvects finds two eigenvalues with two correspond­
ing eigenvectors. However, both are equal if c and s are replaced with cos (phi)
and sin (phi). This is correct: T has only one eigenvalue and a one-dimensional
eigenspace. Obviously, if you apply such a substitution trick, you must watch for
possible relations between the elements of the matrix that might disappear with the
substitution, leading to misleading results. A more sensible approach to the present
problem is toapply convert (,tan) orevenonly simplify (,trig) to the
matri x with the aid of map:

> map(simplify , T , trig);

[
9 COS(4))2 + 43 cos(4)) + 16 50 COS(4))2 + 100 cos(4)) + 50 1
-8 - 16 cos(4)) - 8 COS(4))2 -24 - 37 cos(4)) - 31 COS(4))2

> subs(cos(phi)=c , %);

[92+43e+16
-8 -16e - 8e2

> eigenvects(%);

50e2 + 100e + 50 1
-24 - 37 e - 31 e2

[-4 + 3 e - 11 e2 , 2, { [-;} 1]}]

> subs(c=cos(phi) , %);
[-4+3 cos(4)) -11 COS(4))2, 2, {[~5 1]}]

The Jordan matrix of a matrix can be calculated with j ordan, the minimal poly­
nomial with minpoly, and the companion matrix with companion. Examples
can be found in the on-line help of Maple.

18.12 Dot product, cross product, norms, and orthogonal systems

Here is a short survey:

- dotprod calculates the interior product oftwo vectors in complex space, sup­
posing that each unassigned name occurring in the elements of the vectors
stands for a real number

- angle computes the angle between two vectors

- crossprod calculates the cross product of two three-dimensional vectors

- norm computes the norm of a vector or matrix according to the norm defi-
nition specijied by the second argument. If no second argument is present,
the norm of a vector yields the maximum of the absolute values of its el­
ements. For the square root of the sum of the squares of the elements use
norme ,frobenius).

262 18. Vectors and matrices

- GramSchmidt computes an orthogonal basis from a given basis

- QRdecomp computes the QR decomposition of a square matri x

- orthog tests a matrix for orthogonality, using a clever but numerical test on
equalities

18.13 Vector calculus

The standard differential operators of vector calculus, divergence, Laplacian, gra­
dient, curl, hessian, Jacobian, and Wronskian are available as diverge, grad,
curl, hessian, jacobian, and Wronskian. Moreover, potential determines
whether a given vector field is the gradient of an expression; if so, it can assign
such an expression to a name given as a third argument. The procedure vecpo­
tent determines whether a given three-dimensional vector (or list) of expressions
is the curl of a vector field; if so, this field can be assigned to a name given as a
third argument. Here is an example, where we indicate with an option that the co­
ordinates are meant to be spherical:

> grad(cos(phi)/r,[r,phi,theta],coords=spherical);

[_ cos(<p) _ sin(<p) o]
r2 ' r2 '

When the option coords=spherical had been omitted, the result is:

> grad(cos(phi)/r,[r,phi,theta]);

[_ cos(<p) _ sin(<p) o]
2' , r r

Moreover, in release 5 there is a package codegen, which offers the procedures
GRADIENT, JACOBIAN, and HESSIAN. These are meant to handle procedures, not
expressions; the output is also a procedure. If you apply such a resulting procedure,
you might need to apply eval to the values, due to a bug, that might be fixed later.
These procedures can only work with the standard Cartesian coordinates (in release
5).

For differential equations, the exp of a matrix can be important:
00

exp(tA) := L (tA)n
n=O

This can be calculated with the procedure exponential. Here is an example:

> M := matrix([[a + 4, 10], [-2, a - 5]]);

M:= [a+4 10]
-2 a- 5

18.14 Creating new vectors and matrices from old ones by changing elements 263

> exponential(M , t);

[
5 e(a t) _ 4 e((a-l) t)

2 e((a-l) t) _ 2 e(a t)

-10 e((a-l) t) + 10 e(a t) 1
-4 e(a t) + 5 e((a-l) t)

As in many other cases, the matrix is not allowed to contain floating-point numbers
if it also contains symbolic elements, so conversion of the floating-point numbers
to rationals may be necessary. See section 18.7 on page 254.

18.14 Creating new vectors and matrices from old ones by changing
elements

Suppose you have obtained a matrix, Mi:

> eval(Mi);

and you want ta create another matrix, M2, by changing one or more elements of
Mi, while preserving the value of Mi. The following assignment cannot fulfill these
demands:

> M2 := Mi;

M2:= MI

The right-hand side Mi is not evaluated further, as you can see in the output of
Maple, according to the rule of evaluation of matrices up to the last name, sa M2 is
made to refer to Mi. Changing an element ofM2 changes the corresponding element
of Mi as well:

> M2[i,i] := aaa;

M21,1 := aaa

> eval(M1);

That is not what we want.

Let's reset Mi and then try another way by urging Maple to evaluate fully with the
procedure eval.

> M1[i,i] :=a:
> M2 := eval(Mi);

M2:= [: !]

264 18. Vectors and matrices

The effect is that M2 refers to a matrix object directly. This can be seen by evalu­
ating M2 just one step:

> eval(M2, 1) ;

Let's change an element of M2 and look at the re suIt:

> M2[1,2] := bbb;

M21,2 := bbb

The output of Maple shows that M1 has been changed by changing M2. That is
because both names are referring to the same matrix object in memory.

Changing an element of a matrix (or vector)
does not create a new matrix (or vector) object in the memory,

but it changes only the existing object.

However, it is possible to create a new matrix object in the memory as a copy of
an existing one by using copy. If this object is assigned to the name M2, we tind
two independent matrix objects:

> M1[1, 2] : = b:
> M2 := copy(M1) ;

M2:=[~!]
> M2[2,2] := 2222222;

M22 ,2 := 2222222

> eval(M2) , eval(M1) ;

[~ 222~222]' [~ !]
Instead of copy the procedure evalm could have been used as well, but this is
much slower than the special procedure copy.

18.16 Alternative ways of creating vectors and matrices 265

18.15 Creating new matrices from old ones by transposing, cutting,
and pasting

Here is a short survey of available procedures for transposing matrices, pasting ma­
trices and vectors together, or cutting out parts of matrices. AlI these procedures do
not change an existing matrix or vector, but create a new one that can be assigned
to a name for later use.

- transpose transposes a matrix (or a column vector, yielding a row vector,
or vice versa)

- htranspose (Hermitian transpose) transposes a matrix and takes the com­
plex conjugate of the elements

- concat pastes matrices and/or vectors together side by side (horizontalIy)

- stackmatrix (older releases: stack) pastes matrices and/or vectors to-
gether bottom to top (verticalIy)

- delcols deletes columns of a matrix

- delrows deletes rows of a matrix

- col extracts a column of a matrix as a vector

- row extracts a row of a matrix; the re suIt is a column vector

- submatrix extracts a submatrix from a matrix

- subvector extracts a vector from a matrix

- copyinto copies the entries of a matrix as a block into another matrix

- extend creates a matrix by adding columns and rows to the original matrix

18.16 Alternative ways of creating vectors and matrices

It is possible to create a matrix without assigning values to its elements. For instance,

> X := matrix(3,4);

X := array (1 ... 3,1 ... 4, [])

The re suIt is described as an array. In fact, matrices and vectors are special types
of Maple arrays; the same object X can be created with the command X : = ar­
ray (i .. 3, i .. 4) ; .

We can assign values to one Of more elements of this matrix:

> X[i,i] :=0;

Xl,l := O

If we evaluate X, we see:

266

> eval(X);

?1,2

?2,2

?3,2

Printing X yields a slightly nicer picture:

> print(X);

18. Vectors and matrices

? 1,3 '1", 1
?2,3 ?2,4

?3,3 ?3,4

It is possible to create a matrix by using afunction that calculates each element of
the matrix from its coordinates. For instance, let's create the 8 by 8 matrix where

the element on position li, il is (; -= ~) 21- i if i ;:::: i and O otherwise:

> matrix(8 , 8 , (i,j) ->
> if i >= j then binomial(i-1,j-1)*2-(1-i)
> else O fi) ;

1 O O O O O O O
1 1 O O O O O O 2" 2"
1 1 1 O O O O O "4 2" "4
1 3 3 1 O O O O 8 8 8 8
1 1 3 1 1 O O O 16 "4 8 "4 16
1 5 5 5 5 1 O O 32 32 16 16 32 32
1 3 15 5 15 3 1 O 64 32 64 16 64 32 64
1 7 21 35 35 21 7 1

128 128 128 128 128 128 128 128

There are two procedures for creating random matrices and vectors: randma­
trix and randvector.

18.17 Special types of matrices: (anti)symmetric, sparse, identity

Some special types of matrices can be created by the use of index functions and
the procedure array:

• A symmetric matrix can be created with:

> S1 := array(1 .. 4 , 1 .. 4 , symmetric);

SI := array (symmetric, 1 ... 4,1 ... 4, [))

18.17 Special types ofmatrices: (anti)symmetric, sparse, identity 267

Observe that the dimensions of an array are entered as ranges, in contrast to
the procedures matrix and vector which require natural numbers for the
dimensions.

We can see that Si is symmetric by printing it:

> print(Sl);

811,1 81 1,2 81 1 ,3 811 ,4

811 ,2 8lz,2 8lz,3 8lz,4

8h,3 8lz,3 813,3 813,4

811 ,4 8lz,4 8b,4 814,4

If elements are assigned to, symmetry is used, too:

> Sl[2,3] :=0: Sl[4,1] :=100:
> print(Sl);

811,1 811 ,2 811 ,3 100

811 ,2 812,2 O 812,4

8h,3 O 813,3 813,4

100 8lz,4 813,4 814,4

Only the right upper triangle of the matrix is stored in memory; the indices
are exchanged, if necessary.

It is also possible to enter the values of the elements in the invocation of ar­
ray. As the elements are assigned row by row from the left, we should enter
only the elements of the left under triangle of the matrix, so the first element
of the first row, then the two first elements of the second row, and so on:

> array(symmetric , 1 .. 4 , 1 .. 4 ,
> [[1] , [2,3] , [4,5,6] , [7,8,9,10]]);

[~ ; : ~ 1
4 5 6 9
7 8 9 10

• An antisymmetric matrix can be created in a comparable way:

> print(array(antisymmetric , 1 .. 4 , 1 .. 4));

array(antisymmetric, 1 ... 4,1 ... 4)

The elements of such a matrix are to be entered by assignments, possibly us­
ing the repetitional control struCture discussed later in this section.

• A sparse matrix can be created as follows:

> Sp := array(1 .. 6 , 1 .. 6 , sparse);

8p := array (sparse, 1 ... 6,1 ... 6, [])

268 18. Vectors and matrices

In a sparse matrix all elements that are not assigned to are zero:

> Sp[2,2] :=777;

SP2,2 := 777

> print(Sp);

O O O O O O
O 777 O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O

For sparse arrays, only the elements that are assigned to are stored in memory.
If huge sparse matrices are to be handled, this feature can avoid unnecessary
seizure of memory.

• An identity matrix can be created with:

> Id := array(1 .. 4 , 1 .. 4 , identity);

Id:= array (identity, 1 ... 4,1 ... 4, [])

> print(Id);

[~ n ~l
• A diagonal matri x can be created with the index function diagonal, but the

procedure diag is generally preferable.

In section 18.16 on page 266 we created a matrix with the command

> matrix(8 , 8 , (i,j) -> if i >= j then
> binomial(i-1,j-1)*2~(1-i) else O fi);

1 O O O O O O O
1 1 O O O O O O 2" 2"
1 1 1 O O O O O 4" 2" 4:
1 3 3 1 O O O O 8' 8' 8' 8'
1 1 3 1 1 O O O 16 4: 8' 4" 16
1 5 5 5 5 1 O O 32 32 16 16 32 32
1 3 15 5 15 3 1 O 64 32 64 16 64 32 64
1 7 21 35 35 21 7 1

128 128 128 128 128 128 128 128

18.17 Special types ofmatrices: (anti)symmetric, sparse, identity 269

Such a construction is not available for arrays. However, it is easy to replace this
with a control structure, repetition. For instance, a sparse matrix with the same
elements can be created as follows:

> SB := array(1 .. 8 , 1 .. 8 , sparse);

SB := array (sparse, 1 ... 8,1 . .. 8, [])

> for i to 8 do
> for j to i do
> SB[i,j] := binomial(i-1,j-1)*2~(1-i)

> od
> od:
> print(SB);

1 O O O O O O O
1 1 O O O O O O 2" 2"
1 1 1 O O O O O 4" 2" 4"
1 3 3 1 O O O O 8" 8" 8" 8"
1 1 3 1 1 O O O 16 4" 8" 4" 16

1 5 5 5 5 1 O O 32 32 16 16 32 32
1 3 15 5 15 3 1 O 64 32 64 16 64 32 64
1 7 21 35 35 21 7 1

128 128 128 128 128 128 128 128

Do not forget to close a repetition structure with od. More information on this
structure can be found by entering ?do.

As an alternative we can use the procedure seq:

> SB := array(1. .8 , 1. .8 , sparse ,
> [seq(
> [seq(binomial(i-1,j-1)*2~(1-i),j=1 .. i)] ,
> i=1. .8)]) ;

1 O O O O O O O
1 1 O O O O O O 2" 2"
1 1 1 O O O O O 4" 2" 4"
1 3 3 1 O O O O 8" 8" 8" 8"

SB := 1 1 3 1 1 O O O 16 4" ii 4" 16
1 5 5 5 5 1 O O 32 32 16 16 32 32
1 3 15 5 15 3 1 O 64 32 64 16 64 32 64
1 7 21 35 35 21 7 1

128 128 128 128 128 128 128 128

270 18. Vectors and matrices

18.18 Creating more special types of matrices

There are several procedures for creating matrices of a special type, for instance,
the procedure diag for creating diagonal matrices and block diagonal matrices:

> diag(1,4,7);

[1 O O 1 O 4 O
O O 7

> diag(matrix([[a,b],[c,d]]) , p , q);

[a b O O] c d O O
O O P O
O O O q

> diag(JordanBlock(lambda,3) , JordanBlock(mu,2) , nu);

A 1 O O O O
O A 1 O O O
O O A O O O
O O O J.l 1 O
O O O O J.l O
O O O O O v

The procedure band creates band matrices:

> band([1,2,3,4,5] , 8) ;

3 4 5 O O O O O
2 3 4 5 O O O O
1 2 3 4 5 O O O
O 1 2 3 4 5 O O
O O 1 2 3 4 5 O
O O O 1 2 3 4 5
O O O O 1 2 3 4
O O O O O 1 2 3

The procedures blockmatrix, hilbert, sylvester, toeplitz, and
vandermonde can create matrices corresponding to the names of these proce­
dures.

18.19 Functions yielding vectors and matrices

A function yielding vectors or matrices can be created with the aid of the arrow
(-t) when the dimensions are entered as additional arguments:

18.19 Functions yielding vectors and matrices

> vf := t -> vector(3 , [t-l,t+l,t~2]);

vl:= t -+ [t -l,t + 1,t2]

> vf(100);

[99,101,10000]

271

In this example, the tirst argument to vector says that a three-element vector is
to be created. Here is an example of a function yielding matrices:

> mi:= phi -> matrix(2 , 2 ,
> [[cos(phi),sin(phi)],[-sin(phi),cos(phi)]]);

> mi(Pi/6);

[
cos(rI» Sin(rI»] m/:= rI>-+

- sin (rI» cos(rI»

[1.\1'3 1.]
2 -;1 ~ ~

Let's suppose that we have found a matrix containing a parameter:

> Ma := matrix([[a,a~2],[a~3,a~4]]);

[a a2] Ma:= a3 a4

Suppose that we want to create a function with parameter a yielding a matri x ac­
cording to the next expression. We could do so with the arrow construction as in
the previous example, but then the matrix must be typed in again; suppose that we
want to avoid that. The usual trick is using the procedure unapply, but this does
not work here without additional tricks. The easiest way to create a function from
Ma is as follows:

) F := t -) subs(a=t,eval(Ma));

F:= t -+ subs(a = t,eval(Ma))

) F(3);

The same trick can be used for vectors.

In release V.5 you can also use codegen[makeproc], but at the moment of release
it is not very suitable for this purpose; due to a bug the user must add eval for the
results.

272 18. Vectors and matrices

18.20 Vectors and matrices modulo an integer

Matrices with elements in Z modulo an integer can be used as in the following
example:

> A := matrix([[22,-4,-55] ,[88,33,7777],[333,-8,-1111]]);

A:= [~~ ;: ;~~]
333 -8 -1111

> map('mod',A,5);

[2 1 O]
332
324

The reason for the use of the back quotes here is that mod is a keyword, which can
only be used as a name of a procedure by enclosing it between back quotes. The
resulting matrix contains integers, not elements ofZ mod 5, so each new operation
is to be combined with 'mod' again. For instance,

> evalm(%~2);

> map('mod',%,5);

There are some special linear algebra procedures in connection with mod:

> Det(A) mod 5;

O

> Nullspace(A) mod 5;

{[4,2,1]}

The last two steps have called inert procedures, which are activated by mod. The
other inert procedures for linear algebra that can be activated by mod are Gausse­
lim, Gaussjord, Smith, and Nullspace.

For calculations with rings, Maple offers the Gauss package, which also can be
used for calculations on matrices with elements in a ring created by Gauss.

18.22 Pedagogical facilities 273

18.21 Reading a matrix of data from a file

Suppose that a file is available that contains numerical data in some columns. As­
sume, as an easy example, that the file exa looks like:

0.1 2 3.3
0.04 5.5 0.6

77 8 9.99
10 1.1 0.12

We can read these data into a matrix as follows:

> matrix(readdata(exa,3));

[,1 2. 3.3]
.04 5.5 .6
77. 8. 9.99
10. 1.1 .12

The number 3 in this command corresponds to the number of columns to be read.
More details can be found in the on-line help.

18.22 Pedagogical facilities

As explained in section 4.18 on page 62, Maple can be used excellent1y for teaching
mathematics. This is also the case for linear algebra. The linalg package even
contains some special procedures for this purpose. For explanations and examples,
consult the on-line help of Maple:

- addcol, addrow,mulcol,mulrow,multiply, swapcol, swaprow, and
pi vot for executing Gauss elimination step by step, where the user must
choose the steps and can leave the ca1culations to Maple

- backsub for the last step after Gauss elimination in solving a system of linear
equations by matrix operations

- plots [matrixplot] and plots [sparsematrixplot] for visualizing a
matrix

appendixA

Types, properties, and domains

Types of objects are important in the Maple system. In the interactive use of Maple,
some knowledge about types can be useful; types of ten appear in error messages.
When you manipulate a very large Maple ob ject, asking for the basic type of this
ob ject may help to reveal its structure; components of a special type can be singled
outfrom an expression, set, or Zist with select or remove.

Don't get confused by the fact that some other computer languages have typed vari­
ables. In Maple, each name can refer to any other Maple object, whatever the type
of the object, but the user can teli Maple to assume a special property for a name
or an expression. Thisfacility can help Maple calculations and is discussed here.

Mathematics owes much ofits power to abstraction; in algebra especially, many
theorems and algorithms are not restricted to a special number system, but can be
usedfor a whole class of groups or rings. The Domains package is a start in the
direction of generalization to computations in classes of rings. The basic idea of
this package is demonstrated at the end ofthis appendix.

A.l Basic types

Each Maple object has a basic type. This type can be found with the procedure
whattype. Some of these basic types are discussed in section 11.3 on page 139
and section 11.4 on page 141. Here are some examples:

> x,whattype(x);

x, symbol

In releases before V.5, the last result would be string.

> 5/3, whattype(5/3);

5 j . 3' ractwn

> sqrt(5)/3, whattype(sqrt(5)/3);
1
-V5 * 3 '

Observe that a rational number is called a jraction, and that other quotients are
stored as products.

A.2 More types 275

> sqrt(5), whattype(sqrt(5));

v'5, A

> exp(5), whattype(exp(5));

e5 , functian

Intemally e5 is an unevaluated function call of the procedure exp, so it has the
Maple type function.

> whattype(5 , sqrt(3));

exprseq

> M := linalg[matrix]([[1,2],[3,4]]); whattype(M);

M:= [~ ~]
symbol

> whattype(eval(M));

array

> abc[3], whattype(abc[3]);

abc3, indexed

The last type, indexed, is discussed in section B.3 on page 287. A list of the 28
basic types in Maple can be found in the on-line help to whattype. For each of
these types, separate on-line help is available.

A.2 More types

Apart from these basic types, many more types are available. These can be used
in the procedures type and hastype. For instance,

> type(5/3 , numeric);

true

> type(5/3 , polynom);

true

The following two results may make you wonder:

> type(sqrt(5) , numeric);

false

276 A. Types, properties, and domains

> type(sqrt(5) , positive);

false

Remember that v'5 is only a symbolic object to Maple, but Maple can determine
that v'5 is a positive number, for instance, if the procedure i s or s ignum is applied.

The name M has been assigned a matrix in the previous section. The procedure
type is very compliant here:

> type(M , symbol);

true

> type(M , table);

true

> type(M , matrix);

true

> type(M , array);

true

(In releases before V.5, the type string is used instead of symbol; in release V.5
a new basic type string has been added.)
A special case is a name referring to a sequence. For instance,

> sq:=5,sqrt(3);

sq:= 5, J3

> type(sq , exprseq);
Error, wrong number (or type) of parameters in function type

Here type reports an error, because it gets three arguments (5, sqrt (3) ,
exprseq) instead of two. The procedure type can handle alI basic types except
for exprseq: names referring to a sequence can only be handled by whattype.

> whattype(sq);

exprseq

A list ofthe standard types that can be used with the procedures type and hastype
can be found in the on-line help about type. More complicated types can be com­
posed from these standard types as structured types; it is even possible to program
new types.

AA Properties, the assume facility 277

A.3 Selection on type

AU operands of a special type in a list, set, sum, or product can be singled out with
the procedures select and remove. See section 10.6 on page 131.

> 2 + sqrt(3) - sqrt(5)*x + sqrt(7);

2+V3-V5x+V7

> select(x->type(x,radical) , %);

V3+V7

> remove(x->type(x,'*') , %%);

2+V3+V7
Observe that the first result is asum and that V5 is not contained in the result as
this is not one of the four operands of the sum.

A.4 Properties, the as sume facility

A property can be given to a name or expres sion with the procedure assume. For
instance,

> assume(t > O);
From now on, the name t is evaluated as being an undefined positive number. That
property can be used in calculations:

> 'limit(exp(t*x),x=infinity),
> limit(exp(-t*x),x=infinity)';

Iim e(tx) Iim e(-tx) ,
x-too x-too

> %;
00, O

It is also possible to as sume a property for an expression:

> assume(r-2-1 >=0);
After evaluation, the names t and r are printed with a tilde, indicating that they
have some property.

> t,r;

278 A. Types, properties, and domains

An assumption conceming a name can be removed by unassigning:

> r:='r':
> about(r-2-1);

r-2-1:
nothing known about this object

The procedure assume can be used for assuming properties for more than one ex­
pression at the same time, for instance, that ln(a) > 2 and that b is an integer:

> assume(ln(a»2 , b , integer);
This example also shows that there are two forms for assuming something: a re­
lation, such as (In (a) >2), or a pairing of an expression and a property, such as
(b, integer).

A.5 Derived properties

Properties can be derived from a known property with the procedure is:

> is(t,real);

true

> is(t+l,positive);

true

> is(exp(t»l);

true

> is(t-l,positive);

false

The first three results indicate that for each positive number t, this t is real, that
t + 1 is positive, and that exp(t) is gre ater than 1. The last result indicates that
there is a positive number t such that t - 1 is not positive.

A.6 Asking for the assumed properties

We can ask for the properties of t with the procedure about:

> about(t);
Originally t, renamed t-:

is assumed to be: RealRange(Open(O),infinity)

The message ~ is assumed to be: RealRange(Open(O),infinity)
means

t E< 0,00

A.8 Combining properties 279

A. 7 Adding properties

If you assume something for an expression or variable that has a property, the old
property is discarded. It is also possible to add a property: if you want to assume
that t is not only positive, but even a positive integer, then you can use the proce­
dure additionally:

> additionally(t,integer);

> about(t);
Driginally t, renamed t-:

is assumed to be: AndProp(integer,RealRange(l,infinity))

A.8 Combining properties

In the last example you can see a way in which properties can be combined: with
AndProp, indicating that t is assumed to be negative and integer.

There is another way of combining properties: OrProp. We can teU Maple that t
is positive ar negative with:

> assume(t,OrProp(positive,negative));
Essentially, this is the same as saying that t is a nonzero real number. We can ask
ift is assumed to be real with the procedure is:

> is(t,real);

true

is(t,Non(O));

true

The method by which Maple can derive this is by applying a table of "par­
ent properties": properties that are weaker than a given property. By trac­
ing these tables Maple finds that both RealRange (-infini ty, Open(O)) and
RealRange(Open(O) ,infinity)) have real as a so-caUed ancestor, so it
finds that t is a real number.

A survey of properties can be found by asking help for property. Moreover,
a user can extend this system by other simple or parametric properties, using
addproperty.

Information about properties can also be found with about. For instance, on
fraction:

> about(fraction);

280 A. Types, properties, and domains

fraction:
noninteger rational
a known property having {rational, Non(O)} as immediate parents
and {BottomProp} as immediate children.
mutually exclusive with {O, 1, integer, prime, irrational,

composite}

The first line explains the property. The next lines reveal the direct relations to
other properties: its immediate parents (the next weaker properties), its children
(the next stronger properties), and the next properties that are incompatible with
it.

In this case, the property is also a type, so we can ask on-line help with
?type,fraction as well. This explanation is more extensive than the one pro­
duced by about.

A. 9 Properties and assigning

Assuming a property for a name is like assigning an unidentified object with the
given property to that name. This can cause some strange effects. That is shown
in the next examples:

> assume(t,positive)j

> T:=tj

T:= t,,-,

Now T refers to a UPO, an Unidentified Positive number Object, indicated as trv.
Observe the result when we give another property to t:

> assume(t,negative)j

> about(t)j
Originally t, renamed t-:

is assumed to be: RealRange(-infinity,Open(O))

By this new assumption, the old property of t has been discarded, so t refers now
to an Unidentified Negative number Object, again printed as t,,-,. But the name T
has obtained its value before the second assumption for t, so it still refers to that
UPO:

> about(T)j
Originally t, renamed t-:

is assumed to be: RealRange(Open(O),infinity)

So at this moment T and t refer ta different unidentified objects, both of which are
indicated in the same way as trv.

Still more embarrassing is the result when we again assume t to be pasi ti ve:

> assume(t,positive)j
Now t refers to a new Unidentified Positive number Object, different from the one
that it referred to previously. This explains the following result:

A.lO Properties and fonnal parameters 281

> T-t;

Advice: when you want to assign an object with a property to a name, use single
quotes; for instance:

> T := , t-3 '; is(T>7) ;

T:= t - 3

false

> assume(t>10); is(T>7);

true

Because of the single quotes, T does not refer to the evaluation result of t-3 but to
this expression itself; when something is changed in the properties oft, this change
has an effect for T as well.

A.IO Properties and formal parameters

Assumed variables may not work as formal parameters. For instance:

> assume(n,integer);

> y:=n~2-1;

> seq(y,n=1. .5);

n",2 -1, n",2 -1, n",2 -1, n",2 -1, n",2 -1

Again the trick with back quotes works:

> y:='n~2-1';

y:= n 2 - 1

> seq (y ,n=1. .5) ;

0, 3, 8, 15, 24

282 A. Types, properties, and domains

A.II Domains, the Domains package

The Domains package is designed for calculations in rings, derived from the inte­
gers or the rationals by some standard steps, for instance taking the ring of poly­
nomials over an already existing ring or the ring of n by n matrices over such a
ring.

The Domains package creates representation methods, ring operations, and algo­
rithms such as the Euclidean algorithm for greatest common divisor, if applicable,
in an automatic and standardized way. The concept ofthis package originates from
the symbolic computation system Axiom.
Here is an example:

> with(Domains);
----------------------- Domains vers ion 1.0 ----------------------
Initially defined domains are Z and Q the integers and rationals
Abbreviations, e.g. DUP for DenseUnivariatePolynomial, also made

finit]

First, we create the ring of polynomials in X with rational coefficients:

> QX := DUP(Q , X):
The domain QX was created with the Domains-procedure DUP (=DenseUni vari­
atePolynomial), using the field Q, which is known to Domains. Now we can use
the domain QX. In fact, QX is a table of procedures. This table contains an input
procedure QX [Input] :

> p := QX[Input] (4 - 1*r2 + 5*r3);

p := 4 - 7 X 2 + 5 X 3

The name p refers to a special internal structure representing the given polynomial
of the ring represented by QX; this object can be handled by other procedures con­
tained in the table QX. For instance, we can calculate p2 and make q := XlO + p2:

> QX [' ~ '] (p , 2);

16 - 56 X 2 + 40 X 3 + 49 X 4 - 70 X 5 + 25 X 6

> q := QX['+'] (QX[Input](X~10) ,%);
X lO + 16 - 56 X 2 + 40 X 3 + 49 X 4 - 70 X 5 + 25 X 6

Let's calculate the remainder of the division of q by p:

> r := QX[Rem] (q , p);
667828 38204 X _ 1379399 X2
390625 + 78125 390625

A.II Domains, the Domains package 283

To see a survey of the available procedures in the table QX. enter sholl
(QX,operations).

To make things more efficient. we can define infix operators for QX. That is possible
by using names starting with an ampersand (&). For instance.

> '&QXpr' := QX['*'];

'&QXpr' := QX[' * 'l
As the name &QXpr starts with an ampersand. we must surround it with back quotes
to make Maple accept it as a name. It can be used without back quotes as an infix
operator:

> QX[Output](p &QXpr q) ;

5X13 -7 X 12 +64+4X lO + 125X9 -525X8 + 735 X 7 -

43X6 - 840X5 + 588X4 + 240X3 - 336X2

There are several other procedures in Domains for the creation of rings. For
instance. we can create the quotient field of Q[X] by applying the Domains­
command QF on the ring QX created earlier: QF (QX) :

> R ;= QF(QX):
> pl := R[Input] (4 - 7*X A 2 + 5*X A 3);

p1:=4-7X2 +5X3

> R[' 1'] (%,pl);

1

> R['I'] (pl,R[Input] (X A 2-8»;

4-7X2 +5X3
X2-8

The results are printed as the usual polynomials, but intemally they have a quite
different structure. The procedure lprint can reveal that:

> lprint(q);
'domains/DenseUnivariatePolynomial/badgeO' (16,0,-56,40 ,49,-70,25,0,

0,0,0

The package Domains is available from rele ase 4. In earlier versions of Domains
(called Gauss), resuIts are not printed in easily readable form automatically, but
only with the aid of output procedures, for instance:

> QX[Output] (q);

X lO + 16 - 56X2 + 40X3 + 49X4 - 70X5 + 25X6

For more information, consult the on-line help for Domains and Domains.
example. For the special case of Galois fields, consult the on-line help to the GF
package.

appendixB

Names and evaluation 3:
some special features

In Chapters 1, 3, and 5, using names in Maple is discussed. This appendix is a
supplement to this subject, discussing the alias facility and several aspects of
names and evaluation.

B.1 Changing names, alias

If yau want ta use anather name far an existing MapIe abject, yau can assign this
abject ta that ather name. Far instance, we can assign the procedure Bessell ta
the name BI. Let's use eval in arder ta make BI refer directIy ta that procedure.

> BI := eval(BesselI);

proc(v :: algebraic, x :: algebraic) ... end

Naw we can use BI instead af Bessell in the input, but if MapIe prints a resuIt
cantaining this abject, it uses the standard MapIe name:

> diff(BI(5,x),x);

B 11(4) BesselI(5,x)
esse , x - 5 -----'---'---'­

x

Ta haveMapIe use BI in the autput as weII, appIy the procedure alias:

> BI:='BI': alias(BI=BesselI);

1, EI

> diff(BI(5,x),x);

BI(4,x) _ 5 BI(~,x)

The alias facility is quite different from assigning; it anIy teIIs MapIe ta trans­
late input befare processing it and ta translate autput before printing it. The
alias command warks accarding ta the syntax alias «username>=<object
in Maple denotation, without the use of other aliases». The
result af an alias command is a sequence of aII names currentIY aliased to MapIe
abjects. Unassigning BI befare the alias cammand is nat necessary here, but
generaIIy an alias must be made anIy ta unassigned names.

B.l Changing names, alias 285

Entering the command alias (BI (n, x) = Bessell (n, x)) would not be effi­
cient; this would fail in the present example, as Maple would interpret n as the
name n, not as a variable that could be 5, for instance.

Another example: we want to use the symbol j instead of 1 for A. You might
think that it can be done in the following way:

> alias(j=I);

j,j

The result of this command is curious, but more so the effect:

> j-2 , sqrt(-l);

The reason is that it is not allowed to use an alias in the right-hand side of an alias
dec1aration; 1 is an alias for A, so the command alias (j = 1) is against the
rules. Instead, you must unalias 1 with the command alias (1=1) first, and then
alias j to A. Both can be combined in one command:

> alias(I=I,j=sqrt(-l));

BI, j

> expand«a+b*j)*(c+d*j));

ac+jad+jbc-bd

Now let's reset the aliases:

> alias(BI=BI,j=j,I=sqrt(-l));

1

For more examples of using alias, see Chapter 6, Creating and using mathemat­
icalJunctions, and Chapter 14, Polynomial equations andfactoring polynomials.

Another way of using your own names is the procedure macro. This works only
for translating input. It is even possible to use a macro for acalI such as:

> macro(whoops =
> convert(series(% , x=O , 10) , polynom));
> sin (x) : whoops;

13 1 5 1 7 19 x--x +-x ---x +---x
6 120 5040 362880

286 B. Names and evaluation 3: some special features

B.2 Finding names used

It is possible to obtain a sequence of all names that are assigned at that moment
with the procedure anames:

> demovar:=13:
> anamesO:

The result that would be printed if the command was terminated with a semicolon
contains a lot of uninteresting names, much more than that one name demovar that
has been assigned to in the present session: Maple has read in procedures from its
library and these names are presented here as well. Moreover, many tab les have
been made. It is, however, possible to obtain all names not referring to a procedure
or a table with the aid of remove as follows (rele ase V.5):

> remove (x->whattype (eval (x,2»=symbol, [anames()]);

[demovar]

For release VA use

> remove(x->whattype(eval(x,2»=string,[anames()]);

[demovar]

For release V.3, use

> seleet(x->whattype(eval(x» <> proeedure,[anames()]);

[demovar]

It is important that this command is not split into two commands, otherwise eval­
uation throws a spanner in the works.

If you wish to have this command easily available, make a macro of it and include
this in your initialization file.

It is also possible to obtain the assigned names in lexical order with:

> sort([anames()],lexorder):
(The output has been suppressed.)

B.3 Indexed names

An element of a sequence, a vector, a matrix, or, more generally, an array or a table,
can be selected by indexing:

> ve := linalg[veetor] ([1,2,3,5,7,11,13,17,19,23,29,31]);

ve := [1 2 3 5 7 11 13 17 19 23 29 31]

> vc[7];

13

BA Quotes with table, arrays, vectors, and matrices 287

Indexes are always given between square brackets. An index to an unassigned
name is accepted with the idea that this name might refer to something else in the
future:

> xyz[3];

This last object is called an indexed name. At this moment xyz is stiU an unas­
signed name:

> eval(xyz);

xyz

But as soon as something is assigned to xyz [3] , the name xyz refers to a table:

> xyz[3] :=0: eval(xyz);

table([

3=0

])

B.4 Quotes with table, arrays, vectors, and matrices

Suppose we want to unassign the last five elements of the vector ve. For that
purpose, we can use the repetitional control structure. See section E.5 on page
302. Obviously, we cannot apply the command "for i from 8 to 12 do
ve Ei] : =' ve [i]' od; ", as the last i would not be evaluated. For such purposes
the procedure evaln can be used instead of the forward quotes:

> for i from 8 to 12 do ve[i] := evaln(ve[i]) od:
> print(ve);

[1 2 3 5 7 11 13 VC8 VCg VClO VCu VC12]

U sing back quotes with tab les, etc. can also be a source of mistakes. For instance,

> 'some.thing'[l] := 2;

'some.thing'[I] 2

> 'other.thing[l] , := 3;

'other.thing[I]' := 3

In the first case, only the name is written between back quotes; in the second case,
the index is included. Look at the difference:

288

> eval('some.thing');

table([

1=2

])

> eval('other.thing');

B. Names and evaluation 3: some special features

'other.thing'

Notice that the name some . thing refers to a table, but the name other . thing is
unassigned; we have assigned 3 to the name other . thing [1] , which is a symbol,
not an indexed name, because the whole is enclosed in back quotes.

B.5 Recovering lost procedures

If you might have lost a procedure from the library, it is possible to get it back, un­
less it is a so-called internal procedure. To see the list of internal procedures, enter
?index, internal. In other cases, if the procedure is contained in the standard
library, use readli b and assign the procedure to the name. For instance, in the
following, we Iose the standard procedure norm:

> with(linalg,norm):
Warning, new definition for norm

[norm]

We can recover this procedure and assign it to a name by:

> polynorm := readlib(norm);

polynorm := proc(p, n, v) ... end

If the procedure is contained in one of the packages, it can be recovered in the same
way as it is obtained in other cases with the procedure wi th.

B.6 Exceptions to the mIe of automatic full evaluation

If an expression enclosed between a pair of forward quotes is evaluated, no values
of names are Iooked up by MapIe. Instead, that pair of quotes is peeled of.

ObviousIy, Ieft-hand sides of assignments are not evaluated.

In almost alI cases, the arguments to a procedure are evaluated before the procedure
comes into action. There are a few exceptions to this ruIe: evaln, assigned,
traperror, parse, and addressof. These procedures take arguments literalIy.
Moreover, the first argument in eval and the parameter in seq is taken literalIy,
without evaluation.

B.6 Exceptions to the rule of automatic fuII evaluation 289

For other procedures, evaluating arguments can be precluded with the aid of for­
ward quotes, but you must not use forward quotes for arguments taken literally by
the procedures mentioned in the above.

Names of procedures are evaluated to the last name, as explained in section 6.4
on page 75. However, if the procedure is applied to an argument, it is evaluated,
unless this is prevented by another cause, mentioned in this section.

Names of tables, arrays, matrices, and vectors are evaluated to the last name, as
explained in Chapter 18, Vectors and matrices. If such a name gets an index, it is
evaluated, unless this is prevented by another cause, mentioned in this section.

Local variables are specific for programming procedures; these are evaluated only
one step automatically within the procedure. See section E.5 on page 302.

appendix C

The user interface for text-only versions

Although the user interface for windowing systems offers many facilities, the text­
only inteiface is attractive on its own: it is fast and efficient and uses much less
memory. This appendix discusses general aspects of this user inteiface.

C.l Starting, interrupting, and quitting Maple

You can start text-only Maple by clicking on Command Line Maple from Win­
dows, but you can save more memory by starting from MS-DOS in the direc­
tory bin \ wnt with the command cmaple if Maple has been installed under Win­
dows 95 ar Windows NT, else from the directory win \ win with the command
dosmaple.

an the Mac, click on the icon Command Line Maple.

Under Unix, give the command maple.

When you start Maple with a command, you can add options. Several of the effects
ofthese options can also be produced with interface; moreover, this procedure
offers many other possibilities for changing the user interface, etc. Details can be
found in the on-line help for maple, interface, and kernelopts.

You can try to interrupt a process by pressing Control-C, but it may take some time
before this is intercepted.

You can end the Maple session with the command qui t, stop, or done.

C.2 Editing commands

A very nice feature of this interface is that a history of commands is available for
reusing. To recall the previous command, press the up-arrow key, press again for
the command before, etc. You can then change the command in the usual way.
(The number of commands that is remembered depends on their lengths.)

If a command is entered without a colon or semicolon, you get a waming (from
release V.4), and you can enter it on the next line. If you don 't mind getting wamed,
you can enter a command on more than one line.

After a syntax error, Maple prints syntax error: . .. and indicates with a 1\

the offending place. You have to enter the command again, but you may use the
history facility.

C.S Saving a session and its results 291

C.3 Pictures

On text-only systems you still can make plots, even 3-dimensional, made by char­
acters. But you can always export pictures to a file and view them with other soft­
ware. Several formats are available. For instance, if you want to create a jpeg file,
you can enter

> plotsetup(jpeg);
Warning, plotoutput file set to plot.jpg

Maple informs you that from now on the pictures will not be printed to the screen
but to a file named plot. jpg. If you want to print more than one file, each time
you may indicate a new name for the file, for instance:

> plotsetup(jpeg,plotoutput='figure7.jpg');
If you want to see pictures on the screen again, enter

> plotsetup(default);

In rele ase V.3 the last command should be plotsetup (terminal) .

C.4 Maple system messages

In most Maple versions you can see the amount of workspace in memory used
by Maple, and the computing time from the start of the session at the bot­
tom of the screen. Only in character-based, full scrolling, terminal versions,
messages on the state are printed on the screen between parts of the session.
If you want to suppress such messages, enter gc (O) in release V.3 or ker­
nelopts (printbytes=false) in later releases.

C.S Saving a session and its results

If you intend to continue your Maple work later on and want to exit Maple or to
perform other operations that might disturb your present results, you can preserve
the present state of your Maple session in a file, say 'seeyou. m ' :

> save 'seeyou.m';
The extension . m causes fast and efficient saving in a special Maple format. Omit­
ting this extension yields a readable file.
If you start Maple later on, you can enter

> read 'seeyou.m';
All variables at the moment of saving in the previous session are restored.

appendixD

Procedures remembering previous results

The remember tables are an essential aspect of the Junctioning of Maple proce­
dures. Effects ofremember tables are shown in Chapter 8 (series), Chapter 14
(expand), and Chapter 15 (solve). This appendix shows how to handle such re­
member rabies.

D.I Remember tables of procedures

For each procedure, individual results can be stored. For instance,

> sin(1) := h;

sin(l) := h

> sin(5*Pi+l);

-h

We can even create a procedure in this way:

> f(3) := 5000;

f(3) := 5000

> eval(f);

procO option remember; 'procname(args)' end

This cryptic description of f means that the procedure f stores each "calculated"
result in its remember table, and that the result of applying f is the function name
f applied to the given arguments, except for the case(s) that the argument is con­
tained in its remember table. This remember table can be obtained as follows:

> op(4 , eval(f))j

table([3 = 5000

])

Another possibility (from release V.4) is as follows:

> interface(verboseproc=3)}:
> print(f):

procO opt ion remember; 'procname(args), end # (3) = 5000

D.I Remember tabies of procedures

Let's calculate some function values of f:

> f(1),f(t),f(3),f(Pi);

f(I), f(t), 5000, f(1T)

293

The procedure retums the unevaluated function call, unless the argument is 3, in
which case it yields 5,000.

For many procedures, the remember table is essential. For instance, here is the
remember table of sin:

> op(4,eval(sin));

table([

1T = O,
1 1
"6 1T = 2'
311
10 1T = 4 J5 + 4'

!1T=!/2-v'2
8 2 V '

~ 1T = ~ V2 + v'2,
1 1
37f = 2 v'3,
1 1
4 1T = 2 v'2,
O = O,

1 = h,
1
21T = 1,

!1T=!v'2/5-J5
5 4 V '
1 = 1 sinh(I),

112 1T = ~ v'6 (1 - ~ v'3) ,
111
10 7f = 4 J5 - 4'

152 1T = ~ v'6 (1 + ~ v'3) ,
~7f= ~v'2V5+J5
])

In the table you can find the addition made at the start of this chapter: sin(l) = h.

294 D. Procedures remembering previous results

D.2 Clearing (parts of) the remember table

An item of a remember table can be removed with fQrget, which must be read from
the library before it is used:

> readlib(forget);

proc(f) ... eud

To have Maple forget that 1(3) should be 5, enter:

> forget(f,3);

> f(3);

f(3)

If no arguments are specified, his command removes alI additions to the remember
table, resetting it to the original state:

> forget(sin);

> sin(l),sin(Pi);

sin(l), O

Some procedures store alI results automaticalIy. If a procedure is calIed, it looks
up its present arguments in its remember table first; if it has calculated the same
thing before, it uses the result from the table instead of calculating it.

If a procedure calls another procedure, it is possible that results are stored in the
memory table of that subprocedure. For instance, if Maple encounters the com­
mand int (s in (x) , x), then it translates the parameter x into _x first, it passes
the translation on to a subprocedure 'int/indef', which tries to calculate the
integral and stores the result in the memory table ofthat subprocedure, and, at last,
that result is translated back by the main procedure.

Although this calculation of an integral makes Maple store a result, it is not always
easy to find which subprocedure has stored it. However, the procedure forget
resets the remember tables of the specific subprocedures as well.

D.3 An example of side effects of the remember table: infolevel

The memory tables of procedures are essential for the efficiency of some of them,
especially where procedures are programmed recursively. But sometimes, mem­
ory tables can have unexpected effects. Here is an example:

> int(exp(sin(x)),x)j

J eSin(x) dx

If we want to know what Maple has tried to do, it does not suffice to set iufolevel:

An example of side effects of the remember table 295

> infolevel[int] :=1;

infolevelint := 1

> int(exp(sin(x»,x);

J eSin(x) dx

We don't get information about the calculation, because Maple did not calculate
anything at alI: it found an item "exp(sin(x))=FAIL" in the memory table of
'int/indef' and immediately retumed the calI to int unevaluated. But when
the memory table of int and its subprocedures is reset, we get the desired infor­
mation:

> forget (int) ;

> int(exp(sin(x»,x);
int/indef: first-stage indefinite integration
int/indef2: second-stage indefinite integration
int/trigexp: case of integrand containing exp and trigs
int/rischnorm: enter Risch-Norman integrator
int/risch: enter Risch integrat ion
int/risch/algebraicl: RootOfs should be algebraic numbers and
functions
int/indef: first-stage indefinite integration
int/indef2: second-stage indefinite integration
int/indef2: applying derivative-divides
int/indef: first-stage indefinite integration
int/indef: first-stage indefinite integration
int/indef2: second-stage indefinite integration
int/exp: case of integrand containing exp
int/indef: first-stage indefinite integration
int/indef2: second-stage indefinite integration
int/exp: case of integrand containing exp
int/prpexp: case ratpoly*exp(arg)
int/risch: exit Risch integration

J eSin(x) dx

appendixE

Control structures

An extensive guide to programming in Maple is beyond the scope of this book. But
sometimes it can be convenient to automate a task in order to prevent typing too
much. For these cases, the present appendix can give you some support.

In some versions of Maple V.5 you can use a spreadsheet for automated execution
of a system of commands. Another way of automating tasks in Maple is to write
the commands in afile, check thisfile with mintfrom outside of Maple (read your
manual or the on-line help about that wonderful tool mint), and then read the file
from within Maple with the command read.

A more elegant way is to write procedures containing the desired commands. This
has some advantages, especially the possibility of using arguments. Again, it is
very much advisable to write such a procedure into a file, then check it with mint
and, after having fixed the possible syntax errors, read the file from within Maple
with read.

This appendix discusses the elementary use ofprocedures, choices, and repetitions.
At the end, an extensive example is shown, concerning checking solutions of a set
of polynomial equations.

Ifyou want to know more on programming in Maple, you can read Maple V Pro­
gramming Guide by Monagan, Geddes, Real, Labahn, and Vorkoetter.

E.l Procedures

In section 6.4 on page 75, you can read how mathematical functions can be created
in Maple with the aid of the arrow. In fact, these functions are procedures, meant
to be printed in the mathematical style. For instance,

> f := x -> x-2 - 1;

This is really a procedure:

> lprint(eval(f));

f:= x -+ x 2 -1

proc(x) options operator, arrow; x 2 - 1 end

We could have defined f as well with the aid of the procedure proc:

E.l Procedures 297

> f := proc(x) x~2-1 endj

proc(x) x 2 - 1 end

This last f ca1culates the same results as the previous one, but it is not printed in
the mathematical style.

The construction with proc is more flexible than the construction with the arrow.
An important advantage is the possibility of inc1uding more than one command.
As a basic example, here is a procedure that ca1culates a series expansion and then
converts the result into a polynomial.

> polseries:=proc(y ,pos ,order)
> series(y , pos , order)j
> convert(% , polynom)j
> endj
polseries:= proc(y,pos,order)

series(y,pos, order)j convert(%,polynom)
end

> polseries(cos(x) , x=Pi , 5)j
1 2 1 4

-1 + 2" (x - n) - 24 (x - n)

> polseries(exp(y) , y=l ,4)j
1 2 1 3

e + e (y - 1) + - e (y - 1) + -e (y - 1)
2 6

The last command shows that the y in the argument exp (y) does not interfere with
the parameter y in the definition of polseries.

Procedure parameters should not be used as if they are variables that can obtain an­
other value: assignments can cause strange effects. The value of such a procedure
parameter is known only to the procedure itself.

The result of executing a procedure is the result of the last executed command.
For instance, if the last executed command was something like print () , then
there would be no result that could be referred to by the ditto or used by another
procedure, though something would be printed to the screen.

Observe that the intermediate results are not printed by Maple. That can be
changed by raising the value of printlevel. See section E.5 on page 302.

298 E. Control structures

E.2 Searching for causes of odd behavior with trace or
printlevel

If a procedure yields an unexpected error message, first, check that the arguments
given to that procedure are correct by evaluating them. If these are not suspect,
and the Error message mentions problems with a specific procedure, tryapplying
trace to the offending procedure. This causes Maple to print input and output for
each caII of this procedure, with intermediate results calculated by that procedure.
There are several other tools for debugging available; if necessary, look at the on­
line help for debug.

E.3 Using if .. . fi for choices

Here is an example of the choice structure: we want to create a function 1 with
1(0) = a, 1(1) = b, 1(2) = e, and I(x) = O for x f- 0, 1,2. We can write this
procedure in a file:

f := proc(x)

end:

if x=O then a
elif x=l then b
elif x=2 then c
else O

fi

Let's suppose that this file is called "demo1". Now we can use mint to check
this file for correct syntax by entering mint demo 1. This command should not
be given from Maple, but from the operating system of the computer. The result
is:

Procedure f(x) on lines 1 to 7
These names were used as global names: a, b, c

There are no reports on syntax errors, nor cues that something might not be accord­
ing to our plans, so we can start Maple and give the command

> read demo1;
Now f is available:

> f(-l), f(O), f(l), f(2), f(3);

O,a, b, e,O

The last command executed after then or else yields the result of the if .. . fi
structure. This is the last executed command of the procedure as well, so it yields
the result of the procedure.

After each occurrence of then and after else, several commands can be given,
each closed by a colon or semicolon apart from the last one. There is no objection
to using more (semi)colons, as in:

EA Recursion

f := proc(x);

end:

if x=O then a;
elif x=l then bj

elif x=2 then c;
else O;

fi;

299

The present example shows a choice from several possibilities. If your choice is
more restricted, you can omit elif ... and even omit else But in any case,
the choice structure must be c10sed by the word fi, otherwise you get a syntax
error.

The procedure in the previous section requires an argument order. The standard
procedure ser ies can do without: if that order argument is omitted, it uses the
value of the name Order. Such a functionality can also be used for modifying the
procedure polseries created in the first section:

polseries:=proc(y , pos)
if nargs>2 then series(y , pos , args[3]+1)

else series(y , pos) fi;
convert(% , polynom);
end;

Here nargs and args are used; within a procedure, nargs is interpreted as the num­
ber of arguments in the present caB. Moreover, args is interpreted as the actual
sequence of arguments.
If we read in this procedure, we can use it, as in:

> polseries(ln(x) , x=Pi , 3)j

1 () X-7f 1 (X-7f)2 1 (X-7f)3
n 7f + -- - - + - -'----;:--'-

7f 2 7f2 3 7f3

> polseries(ln(x) , x=Pi);

1 () X-7f 1 (X-7f)2 1 (X-7f)3 1 (X-7f)4
n7f +---- +- -- +

7f 2 ~ 3 ~ 4 ~

1 (x - 7f)5

5 7f5

E.4 RecursÎon

Many mathematical objects are defined recursively. Such a definition can be used
in a natural way for ca1culations. In Maple, n! is available, but here is a simple
procedure for it by way of an example:

300 E. Control structures

fac := proc(n)
it n=O then 1

elif type(n,posint) then n*fac(n-1)
else 'procname(args),
fi

end;
After having checked this with mint and having read it in Maple, you can use it.
For instance,

> fac(?), fac(O), fac(-sqrt(3)), fac(t);

5040, 1, fac (- J3) , fac(t)

A less trivial example is calculating Hermite polynomials. The orthopoly pack­
age contains a procedure for this purpose. The Hermite polynomials are defined
by:

H(n,x) := { 2~
2xH(n -l,x) - 2(n -1) H(n - 2,x)

This can be programmed as follows:

H := proc(n: :integer,x)
if n>1 then 2*x*H(n-1,x)-2*(n-1)*H(n-2,x)

elif n=1 then 2*x
else 1
fi

end;

if n = O
if n = 1
otherwise

The first argument n is indicated as an integer by n::integer; the procedure will
test if it is an integer automatically.

If this text is read in by Maple, the procedure H can be used, for instance,

> H(2,x); H(3,x); H(4,t);

2 x (4 x 2 - 2) - 8 x

2t (2t (4t2 - 2) - 8t) - 24t2 + 12

This seems to be fine. However, there are efficiency problems: if you ask for
H (5, x) , Maple has to calculate H(4,x) and H(3,x). For the calculation of H (4, x) ,
Maple has to calculate H(3,x) a second time. For instance, if you ask for H (10, x) ,
then H (3, x) is calculated 21 times. We can avoid a procedure to calculate things
more than once by adding the option remember. Then each result of the proce­
dure is stored in its remember table automatically. See Appendix D, Procedures
remembering previous results. In fact, the standard procedure in Maple that calcu­
lates Hermite polynomials uses this option remember. Here is the source:

E.S Using do ... od for repeating actions

'orthopoly/H' := proc(n,x)
option remember,
'Copyright (c) 1991 by the University of Waterloo.
AII rights reserved.';

end:

if 1 < n then
expand(2*x*'orthopoly/H'(n-l,x)
-2*(n-l)*'orthopoly/H'(n-2,x»

elif n = 1 then 2*x
else 1
fi

301

Now the procedure stores each Hennite polynomial that it has calculated in its
memory table. When the procedure is called, it looks first to see if the required
Hennite polynomial is available in its memory table.

In fact, when you call orthopoly [H] for calculating a Hennite polynomial,
Maple does more: it checks the first arguments (it should be an integer ~ O), then
it calls the previous procedure with a second argument -X, and, at the end, it trans­
lates that _x into the second argument given by the user.

E.S Using do ... od for repeating actions

The previous section shows an elegant method for repetition. There is also a spe­
cial structure for this purpose, already shown partially in section 18.17 on page 267
and in section B.3 on page 287.
Here is an example: let's suppose that we want to factor x 3 - 1, x 5 - 1, x7 - 1,
x9 - 1, and x ll - 1.

> for i from 3 by 2 to 11 do factor(x-i-l) od;

(x - 1) (x2 + x + 1)

Maple can use defaults if not all elements are given. For instance, the same result
is obtained with the following command:

> for i to 5 do factor(x-(2*i+l) - 1) od:
Here i takes the values 1,2,3,4, and 5.

302 E. Control structures

In many cases, such a repetition can also be generated efficiently by applying the
procedure seq. See section 10.7 on page 132.

The previous section gives a procedure for calculating Hermite polynomials by re­
cursion. The present construction can be used as well as follows:

H := proc(n::integer,x)
local h,i;

h[O] := 1;
h[1] := 2*x;
for i from 2 to n do

2*x*h[i-1] - 2*(i-1)*h[i-2];
h[i] := expand(%)
od;

h[n]
end:

The second line declares the names h and i to be local variables. If a name is a local
variable within a procedure, the values it gets in the execution of that procedure
play no role outside that execution, so it cannot interfere with the session or with
execution of other procedures. If we had not declared these as local, Maple would
have done so automatically, but at the same time it would have issued a waming.
It is also possible to declare a name as global. If you want to use local variables,
you are advised to read more on this subject, for instance, on the special one-step
evaluation rule, in the on-line help, or the book mentioned in the introduction of
this appendix.

In the procedure, a table h is used. This is created automatically in the first assign­
ment h [O] : =1. A table resembles a vector, but it has no restrictions in the type
and the number of indices.

If you execute a repetition within a repetition interactively, results of the inner rep­
etition are not usually shown on the screen:

> for i to 2 do
> for j to 3 do 10*i+j od;
> %*100
> od;

1300

2300

This can be changed by the value of printlevel:

> printlevel := 2:
> for i to 2 do
> for j to 3 do 10*i+j od;
> %*100
> od;

E.5 Using do ... od for repeating actions 303

11

12

13

1300

21

22

23

2300

Generally, ne sting choice and repetition structures prevents output of intermediate
results unless the value of printlevel is high enough. Output generated by the
procedure print is not inftuenced by this mechanism, but output from plot and
plot3d is. Therefore, if you want to plot from inside nested choices and loops, you
can better use print (plot ()) instead of plot () .

If it is not clear in advance how many repetitions are necessary, use
while do od

For instance, if you try to tind the smallest n such that factorization of xn -1 yields
10 or more factors, you can enter:

> n:=3: while nops(factor(x~n-1))<10 do n:=n+1 od:
> n;

48

The full repetition structure is:
for from by to

where only the do od part is mandatory.
demonstrated in the next section:

for in while

while do od
There is a variant of this structure,

do od

304 E. Control structures

E.6 An example: checking the results of sol ve by substituting

This section shows how candidate solutions for a system of polynomial equations
can be checked in an automated way. The system of equations in the example is
chosen to be basic enough to be solved by hand, in order to help you understand
the results.

> eql := 3*x-2 + 2*y-2 = 7*x*y;

eq 1 : = 3 x 2 + 2 y2 = 7 x y

> eq2 .- x-2 + y-2+2*x = 20;

eq2 := x 2 + y2 + 2x = 20

> sol := solve({eql,eq2} , {x,y});

sol:= { x = RootOf(5_Z2 + _Z - 10),

y = 3 RootOf(5 2 2 + 2 - 10) },

{y = ~ RootOf(5_Z2 + 8_Z - 80),

x = RootOf(5 _Z2 + 8 _Z - 80) }

Maple's solution consists of a sequence of two sets. It is easy to check these, for
instance the first one:

> subs(%[lJ,{eql,eq2});

{1O%12 + 2%1 = 20,21 %12 = 21 %12 }

%1 = RootOf(5 Z2 + Z - 10)

> map(eq->simplify(lhs(eq)-rhs(eq)),%);

{O}

This affirms the first solution. The second can be handled in the same way.

In fact, each of these two elements of sol represents some explicit solutions. We
can find these with allvalues. See section 14.2 on page 171. We could use this
procedure without option (or in release V.3 with the option 'd'), so that alI oc­
currences of the same RootOf are interpreted as the same number, after having
argued that we would find ali solutions that way. But suppose that we don't trust
this idea. Then we can use the option 'independent' and check alI candidate
solutions found.

Ifwe try to apply allvalues directly to sol, we get a syntax error: it is a sequence
of two objects, which yields two arguments for aU values. So we must bundle
them together, in a set (or a list):

E.6 An example: checking the results of solve by substituting 305

> allvalues({sol} , 'independent');

x = -- + - J26 y = -- + - J26 {{ 4 4 2 2 }
5 5 ' 5 5 '

Y = - - + - V20l x = - - + - V201 { 3 3 1 1 }}
10 10 ' 10 10 '

x = -- - - J26 y = -- + - J26 {{ 4 4 2 2 }
5 5 ' 5 5 '

Y = - - + - V201 x = - - + - V20l { 3 3 1 1 }}
10 10 ' 10 10 '

. .. omitting a part of the output ...

x = -- - - J26 y = -- - - J26 {{ 4 4 2 2 }
5 5 ' 5 5 '

Y = - - - - V201 x = - - - - V201 { 3 3 1 1 }}
10 10 ' 10 10

We have obtained a sequence consisting of sets, each containing two possible so­
lutions. We must make a union of these sets. This can be done as follows by using
the procedure union. See section 10.8 on page 133.

> (union ((%) ;

x = -- + - '26 y = -- + - J26 {{ 4 4 2 2 }
5 5 y.GO, 5 5 '

x = -- - - J26 y = -- + - J26 { 4 4 2 2 }
5 5 ' 5 5 '

x = -- + - J26 y = -- - - J26 { 4 4 2 2 }
5 5 ' 5 5 '

x = -- - - J26 y = -- - - J26 { 4 4 2 2 }
5 5 ' 5 5 '

Y = - - - - V201 x = - - + - V20l { 3 3 1 1 }
10 10 ' 10 10 '

{ 3 3 1 1 }
Y = - 10 + 10 V20l, x = - 10 - 10 V201 ,

Y = -- - - V201 x = -- - - V201 { 3 3 1 1 }}
10 10 ' 10 10

306 E. Control structures

Each of the eight sets of potential solutions can be checked by substitution into the
set of equations. After application of expand and simplify we must check if the
result is {O=O}. In section 1.3 on page 6, a solution of a third-degree polynomial
equation is checked. The same process is executed here in a more advanced way,
using a do loop and a choice structure in order to handle all solutions.

First, let's give a name to the set of candidates for solutions:

> candidates := %:
Let's create a void sequence to which all the found solutions can be appended:

> solutions := NULL;
Now we start a repetition, using the construction

for in do od
We take each of the elements of candidates, naming that element "testcand"
temporarily:

> for testcand in candidates do
We substitute testcand in the set of equations and apply expand and simplify
on each of the two resulting equations.

> map(eq->lhs(eq)-rhs(eq), {eql,eq2}):
> subs(testcand , %):
> map(expand , %):
> map(simplify , %):

If the result is {O}, then testcand satisfies the system of equations and should be
appended to the sequence of found solutions:

> if %={O} then solutions:=solutions,testcand fi:
Now the repetition structure should be terminated:

> od:
After this last line the loop is executed, but all the commands have been closed
with a colon, so we do not see any result. We have obtained:

> solutions;

{y =-~+~J26 x=-~+~J26}
5 5 ' 5 5 '

{ Y = -~ - ~ J26 x = -~ - ~ J26}
5 5 ' 5 5 '

{ y = - ~ + ~ v'201 x = - ~ + ~ v'201 }
10 10 ' 10 10 '

{ y = - ~ - ~ v'201 x = - ~ - ~ v'201 }
10 10 ' 10 10

In fact, this is the same result as yielded by all values without option, but the pre­
vious demonstration may show how you can check solutions of a system of poly­
nomial equations, for instance, in a case where it is not clear if solutions are omitted
byallvalues.

E.6 An example: checking the results of sol ve by substituting 307

The method for testing candidates for solutions that is shown here can be used for
sets of polynomial equations if all ofthese equations are reduced to the form poly­
nomial=O. Dur checking method relies fully on the power of simplify. In order
to minimize the chance that solutions get lost by a failing simplification, an alter­
native check with testeq could be used or added. As always, choosing methods
and judging results is the task of the user.

Errar messages and wamings

';' unexpected .. 13,40
attempting to assign to 'abs' which is protected 37,68
Could not determine discontinuities 94
division by zero ... 257
does not have a taylor expansion, try seriesO 114
eigenvects only works for a matrix of rationals, rational functions,
algebraic numbers, or algebraic functions at present 260
Illegal use of an object as a name 37,40
invalid assignment to Digits ... 38
invalid substitution in series .. 110
matrix entries must alI evaluate to complex ftoats 253
matrix entries must alI evaluate to ftoat 260
may not assign to a system constant 38
Missing a list with the new variables 144
object too large ... 29, 125, 158
optional3rd argument given to 'gcd' was 159
reducible RootOf detected. Substitutions are 184
summation variable previously assigned 61
too many levels of recursion ... 42
unable to handle singularity , ... ,................................ 58
Waming, incomplete statement or missing semicolon 6, 40
wrong number (or type) of parameters in function diff 44, 65
wrong number (or type) of parameters in function int 65
wrong number (or type) of parameters in function iquo 67
wrong number (or type) of parameters in function op 124, 126
wrong number (or type) of parameters in function subs 127
wrong number (or type) of parameters in function type 276

Catchword Index

... 29
" .. 2,12,41
, .. 35, 39,287
* ... 8
-) .. 75
.. 20

.. 50,60,131
: .. 8
:: ... 300
:= .. 10

... 8
.. 85
$.. 44
%•.•.•.................•..• 33,66,91
& .. 283
&* ... 251
&where .. 237
%•.•......•...•..•...•..•.............•............•.•. 2, 11, 12, 16
_ .. 38
, ... 40,287
@ •••••.••••••••••••••••••••••••• • •••••••••••••••••••••••••••••••••••• 85
@@ •• 85
'" .. 36,277
'Y•...•.•.......................... 22
r-function .. 74
7f •••••.•••. 22,38
(.. 74
abbreviation ... 16
about .. 278
abs .. 84,150,242
accuracy .. 117
addi tionally ... 279
algsubs ... 145
alias ... 37,174,183,284
allvalues .. 48,171,173,175
allvalues(,independent) 171
ampersand .. 283
anames .. 286
AndProp ... 279
antiderivative function ... 46, 77
antisymmetric matrix .. 267

312 Catchword Index

approximation to an expression by a rational expres sion 121
args ... 299
argument .. 150
array ... 265,266
arrow ... 75,270
assign .. 223,233
assignment .. 10,32,91
assume ... 36,50, 115,277
asterisk ... 8
asympt .. 111
autosimplification .. 33
autosimplification of rational numbers 22
back quotes ... 40, 272, 287
band matrices ... 270
bezout matrix ... 160
Catalan .. 22
ceil ... 156
Chebyshev ... 72
check sols of ODE .. 233, 236
codegen[makeproc] 78,80,119,271
codegen[optimize] ... 119
codegen [prep2trans] .. 80
coeff .. 161
coefficients of a polynomial .. 161
collect ... 161,206
colon ... 8, 10
column vector ... 248
combine ... 151, 166
combine (,cmbpwr) .. 191
combine (,exp) ... 191
combine (,In) ... 198
combine (,power) 191,192,213
comment .. 85
companion matrix ... 261
complex ... 23
compoly ... 169
components ... 137
composition of two functions .. 85
composition, repeated ... 85
concatenation .. 39
conjugate ... 150
constants .. 38
content ... 162
continued fraction ... 167
continuous .. 116

Catchword Index 313

control structure. condition ... 298
control structure. repetition 269.301
convert (, confrac, <var» 121
convert(,horner) .. 119
convert (, piecewise) 84.242
convert(,polar) ... 150
convert (, radical) .. 175. 177
convert (, rational) 118, 155
convert (,RootOf) ... 175.182
copy ... 264
cost ... 120
crash .. 42
csgn ... 151
O•....•....•.•.....•................... 79,120
decimal fractions ... 22
decomposition of polynomials .. 169
degree .. 161
denom .. 166
denominator .. 166
density plot .. 90
derivative at a point ... 45
diag ... 270
diagonal matrices .. 270
diff ... 43,142
differential forms ... 46
differentiation ... 43. 120
difforms ... 46
Digits ... 5,27,118
Dirac .. 79
discriminant .. 160
ditto .. 11, 12, 14,33,66,91
domain ... 215
Domains ... 186
dot .. 20
double quote ... 2. 12, 41
do ... od .. 301
dsolve .. 233
e .. 74
E .. 23
elimination ... 172
entering fewer variables than necessary in sol ve 172
environment variables ... 38
estimation of the order term .. 108
eval ... 34,45,46, 142
evala .. 183

314 Catchword Index

evalc 23, 149,200,213
evalf 27,57, 117
evalhf ... 27, 121
evalm 251
evaln 287
evaluation 32, 288
evaluation at a point 45, 142
exp 74
exp of a matrix 262
expand 157,166,190,192,198,199,203,207,213
expandoff ... 208
explicit solution ... 236
exponential 262
extrema 46
factor 176, 184
Factor 186
factorial 29
factors .. . 177
Fast Fourier Transform 121
fast numeric al calculations ... 27
floating-point number 26, 247
floor 156
fnormal 27, 131
for 301
forget 209,294
forward quotes ... 35,39,41,67,287
frac 156
fraction 141
freeze 207
frontend 209
fsolve .. 178,224
functions in more than one argument 76
Galois fields 31, 186
Gauss 272
Gaussian integers 31
gcd 159
gcdex 159
Gegenbauer 72
genmatrix 256
graphs of functions 87
greatest common divisor ... 159
Groebner[gsolve] .. 180
group 31
has 147
Heaviside ... 84, 242

Catchword Index 315

Hennite ... 72
hilbert ... 270
hyperbolic functions ... 205
l .. 23
identity ... 230
identity matrix .. 268
if ... fi .. 298
imaginary part of a complex number 149
implicit solution ... 235
implicitly defined functions 46, 103
indets .. 216
index .. 39
index functions .. 266
indexed name ... 287
inert form .. 62
inert procedures ... 272
infolevel .. 47,70,294
int ... 46,142
lnt .. 58,62
intat ... 47
integers .. 29
integral transfonns ... 242
integral, definite .. 50
integral, indefinite .. 46
integral, numeric ... 57
integrate .. 46
interp .. 167
interpol ating polynomial function 167
intersect ... 132
inttrans ... 53
inverse hyperbolic functions ... 73
inverse trigonometric functions .. 73
iquo .. 29,67
irem .. 29
is ... 278
iscont .. 116
isolate ... 223
Jacobi ... 72
Jordan matrix ... 261
keywords .. 37
Laguerre ... 72
lcm .. 160
lcoeff .. 162
ldegree ... 162
leading terrn of a series ... 11 O

316 Catchword Index

leadterm 110
least common multiple 160
Legendre 72
lexical order 286
lhs 221
limit 114
linalg 247
linear programming 258
linsolve 257
list 124
In 73
lprint 12,38,66,74
macro 285
manipulation of graphical objects 91
map 127, 206, 252
map2 129
match 230
max 84, 129,242
maximal element 129
maximum absolute value of a function 121
member 129
min 84,129,242
minimal element 129
minimal polynomial 261
mint 298
minus 132
mod 30
modulo 30, 272
msolve 186
mtaylor 113
nargs 299
nops 124, 147
norm from standard library 163
norm from linalg package 261
normal 5,55, 165, 182,213
normal(,expanded) 166,190
NULL 124
numapprox [infnormJ 109
number of elements 124
number of operands 147
numer 166
numerator 166
numerical approximation 27
numerical approximation to an antiderivative 58
numeric al integration 120

Catchword Index 317

odetest ... 233
op ... 109, 124, 133, 137, 138
operands ... 137
operator ... 19, 31, 283
optimization problems in linear equations 258
optimization problems in linear inequalities 258
options .. 65
Order ... 108,115
order in printing expressions ... 33
order of a series expansion ... 108
OrProp .. 279
Output Display .. 13, 16
Pade approximation .. 121
parameterization .. 172
parameterized curve .. 97, 103
parametric solution .. 236
partial differential equations .. 246
partial fraction decomposition .. 167
pattern matching .. 230
PDEtools [dchange] .. 52, 243
peadic numbers ... 31
percentage sign .. 2
Pi ... 22,38
piecewise .. 82,84,242
plot ... 87,303
plot options, changing defaults ... 90
plot3d ... 88,303
plots [animate3d] .. 105
plots [animate] ... 105
plots[display] ... 91,104
plots [setoptions3d] .. 90
plots [setoptions] .. 90
plots [spacecurve] .. 98
polar coordinates .. 150
polynomials .. 157
precedence rules .. 20
primitive function ... 46, 77
print .. 12,66,91
printlevel ... 302
proc ... 296
procedure .. 14,79,296
procedure, print source .. 71
product .. 62
property ... 36, 277
protected .. 37

318 Catchword Index

quo 158
radical 24, 182
radnormal 152
radsimp 197,213
random matrices and vectors 266
range 50,60, 87,131
rational complex numbers 24
rational numbers 141
rationalize 151,196
readlib 68
real part of a complex number 149
recurrence relations 229
recursive definition 41
refer 10, 32
reliability 44,53,56,110,111,115,167,169,213,247
rem 158
remember table 208, 292
remove 131 , 217,277
residue 116
restart 36
resultant 160
rhs 221
root of a complex number 152
RootOf 48, 169,171,173,174,177,212,220,228,304
roots 184
Roots 186
root [n] () 25
round 155
row vector 248
rsolve 229
save session or state 291
scaling=CONSTRAINED 88, 104
select 130,277
semicolon 8
seq 131
sequences 123
series 107, 226, 239
series structure 110
set 123
share library 69
showtime 13
side relations 146, 163, 185,203,222,236
sign 150,151
signum 84, 150,242
simplification 33

Catchword Index 319

simplify .. 24, 165,213
simplify(,arctrig) ... 213
simplify(,commonpow) 190,195
simplify(,exp) .. 191
simplify(,ln) .. 198,199,213
simplify(,power) 191,192,193,198
simplify(,radical) ... 195
simplify(,sqrt) ... 196
single back quotes .. 40
single forward quotes .. 35,39,41
singularity .. 116
solve .. 3,6,36,168,214,256,304
solving equations in integer variables 231
solving equations in variables over Z mod m 231
solving identities .. 230
sort ... 164
sparse matrix .. 267
spline .. 102
split .. 177
sqrt .. 24
square root ... 24
squarefree factorization .. 178
Sturm theorem .. 170
subexpression .. 137, 138
subs ... 45, 136
subsop .. 148
substitution .. 45,136
substitutions simultaneously .. 144
sum ... 60,142
Sum ... 62
surd .. 25
syl vester ... 270
symbolic, option 189,193,201,202,213
symmetric matrix .. 266
TayIor ... 107,226,239
tcoeff .. 162
testeq .. 211
thaw ... 207
tilde .. 36, 277
toepli tz .. 270
trace (from standard library) .. 298
trace (from linalg package) 255
transpose ... 248
trigsubs .. 205
trunc .. 155

320 Catchword Index

type ... 274,275
unapply .. 77,271
unassign ... 35
underscore ... 38
unevaluated function caII ... 15,73
union ... 132,305
value ... 52,63
vandermonde .. 270
verify .. 212
very large polynomials ... 158
void list .. 124
void sequence ... 124
void set ... 124
whattype ... 109,274
where .. 237
while .. 303
with .. 69
Z-transform .. 62

321

notes:

322

notes:

323

notes:

324

notes:

325

notes:

